Sample records for causing deleterious effects

  1. Computational Methods to Work as First-Pass Filter in Deleterious SNP Analysis of Alkaptonuria

    PubMed Central

    Magesh, R.; George Priya Doss, C.

    2012-01-01

    A major challenge in the analysis of human genetic variation is to distinguish functional from nonfunctional SNPs. Discovering these functional SNPs is one of the main goals of modern genetics and genomics studies. There is a need to effectively and efficiently identify functionally important nsSNPs which may be deleterious or disease causing and to identify their molecular effects. The prediction of phenotype of nsSNPs by computational analysis may provide a good way to explore the function of nsSNPs and its relationship with susceptibility to disease. In this context, we surveyed and compared variation databases along with in silico prediction programs to assess the effects of deleterious functional variants on protein functions. In other respects, we attempted these methods to work as first-pass filter to identify the deleterious substitutions worth pursuing for further experimental research. In this analysis, we used the existing computational methods to explore the mutation-structure-function relationship in HGD gene causing alkaptonuria. PMID:22606059

  2. Deleterious mutations and selection for sex in finite diploid populations.

    PubMed

    Roze, Denis; Michod, Richard E

    2010-04-01

    In diploid populations, indirect benefits of sex may stem from segregation and recombination. Although it has been recognized that finite population size is an important component of selection for recombination, its effects on selection for segregation have been somewhat less studied. In this article, we develop analytical two- and three-locus models to study the effect of recurrent deleterious mutations on a modifier gene increasing sex, in a finite diploid population. The model also incorporates effects of mitotic recombination, causing loss of heterozygosity (LOH). Predictions are tested using multilocus simulations representing deleterious mutations occurring at a large number of loci. The model and simulations show that excess of heterozygosity generated by finite population size is an important component of selection for sex, favoring segregation when deleterious alleles are nearly additive to dominant. Furthermore, sex tends to break correlations in homozygosity among selected loci, which disfavors sex when deleterious alleles are either recessive or dominant. As a result, we find that it is difficult to maintain costly sex when deleterious alleles are recessive. LOH tends to favor sex when deleterious mutations are recessive, but the effect is relatively weak for rates of LOH corresponding to current estimates (of the order 10(-4)-10(-5)).

  3. The role of the interactome in the maintenance of deleterious variability in human populations

    PubMed Central

    Garcia-Alonso, Luz; Jiménez-Almazán, Jorge; Carbonell-Caballero, Jose; Vela-Boza, Alicia; Santoyo-López, Javier; Antiñolo, Guillermo; Dopazo, Joaquin

    2014-01-01

    Recent genomic projects have revealed the existence of an unexpectedly large amount of deleterious variability in the human genome. Several hypotheses have been proposed to explain such an apparently high mutational load. However, the mechanisms by which deleterious mutations in some genes cause a pathological effect but are apparently innocuous in other genes remain largely unknown. This study searched for deleterious variants in the 1,000 genomes populations, as well as in a newly sequenced population of 252 healthy Spanish individuals. In addition, variants causative of monogenic diseases and somatic variants from 41 chronic lymphocytic leukaemia patients were analysed. The deleterious variants found were analysed in the context of the interactome to understand the role of network topology in the maintenance of the observed mutational load. Our results suggest that one of the mechanisms whereby the effect of these deleterious variants on the phenotype is suppressed could be related to the configuration of the protein interaction network. Most of the deleterious variants observed in healthy individuals are concentrated in peripheral regions of the interactome, in combinations that preserve their connectivity, and have a marginal effect on interactome integrity. On the contrary, likely pathogenic cancer somatic deleterious variants tend to occur in internal regions of the interactome, often with associated structural consequences. Finally, variants causative of monogenic diseases seem to occupy an intermediate position. Our observations suggest that the real pathological potential of a variant might be more a systems property rather than an intrinsic property of individual proteins. PMID:25261458

  4. The role of the interactome in the maintenance of deleterious variability in human populations.

    PubMed

    Garcia-Alonso, Luz; Jiménez-Almazán, Jorge; Carbonell-Caballero, Jose; Vela-Boza, Alicia; Santoyo-López, Javier; Antiñolo, Guillermo; Dopazo, Joaquin

    2014-09-26

    Recent genomic projects have revealed the existence of an unexpectedly large amount of deleterious variability in the human genome. Several hypotheses have been proposed to explain such an apparently high mutational load. However, the mechanisms by which deleterious mutations in some genes cause a pathological effect but are apparently innocuous in other genes remain largely unknown. This study searched for deleterious variants in the 1,000 genomes populations, as well as in a newly sequenced population of 252 healthy Spanish individuals. In addition, variants causative of monogenic diseases and somatic variants from 41 chronic lymphocytic leukaemia patients were analysed. The deleterious variants found were analysed in the context of the interactome to understand the role of network topology in the maintenance of the observed mutational load. Our results suggest that one of the mechanisms whereby the effect of these deleterious variants on the phenotype is suppressed could be related to the configuration of the protein interaction network. Most of the deleterious variants observed in healthy individuals are concentrated in peripheral regions of the interactome, in combinations that preserve their connectivity, and have a marginal effect on interactome integrity. On the contrary, likely pathogenic cancer somatic deleterious variants tend to occur in internal regions of the interactome, often with associated structural consequences. Finally, variants causative of monogenic diseases seem to occupy an intermediate position. Our observations suggest that the real pathological potential of a variant might be more a systems property rather than an intrinsic property of individual proteins. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  5. The Janus face of iron on anoxic worlds: iron oxides are both protective and destructive to life on the early Earth and present-day Mars.

    PubMed

    Wadsworth, Jennifer; Cockell, Charles S

    2017-05-01

    The surface of the early Earth was probably subjected to a higher flux of ultraviolet (UV) radiation than today. UV radiation is known to severely damage DNA and other key molecules of life. Using a liquid culture and a rock analogue system, we investigated the interplay of protective and deleterious effects of iron oxides under UV radiation on the viability of the model organism, Bacillus subtilis. In the presence of hydrogen peroxide, there exists a fine balance between iron oxide's protective effects against this radiation and its deleterious effects caused by Photo-Fenton reactions. The maximum damage was caused by a concentration of hematite of ∼1 mg/mL. Concentrations above this confer increasing protection by physical blockage of the UV radiation, concentrations below this cause less effective UV radiation blockage, but also a correspondingly less effective Photo-Fenton reaction, providing an overall advantage. These results show that on anoxic worlds, surface habitability under a high UV flux leaves life precariously poised between the beneficial and deleterious effects of iron oxides. These results have relevance to the Archean Earth, but also the habitability of the Martian surface, where high levels of UV radiation in combination with iron oxides and hydrogen peroxide can be found. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Liquid Water Restricts Habitability in Extreme Deserts

    NASA Astrophysics Data System (ADS)

    Cockell, Charles S.; Brown, Sarah; Landenmark, Hanna; Samuels, Toby; Siddall, Rebecca; Wadsworth, Jennifer

    2017-04-01

    Liquid water is a requirement for biochemistry, yet under some circumstances it is deleterious to life. Here, we show that liquid water reduces the upper temperature survival limit for two extremophilic photosynthetic microorganisms (Gloeocapsa and Chroococcidiopsis spp.) by greater than 40°C under hydrated conditions compared to desiccated conditions. Under hydrated conditions, thermal stress causes protein inactivation as shown by the fluorescein diacetate assay. The presence of water was also found to enhance the deleterious effects of freeze-thaw in Chroococcidiopsis sp. In the presence of water, short-wavelength UV radiation more effectively kills Gloeocapsa sp. colonies, which we hypothesize is caused by factors including the greater penetration of UV radiation into hydrated colonies compared to desiccated colonies. The data predict that deserts where maximum thermal stress or irradiation occurs in conjunction with the presence of liquid water may be less habitable to some organisms than more extreme arid deserts where organisms can dehydrate prior to being exposed to these extremes, thus minimizing thermal and radiation damage. Life in extreme deserts is poised between the deleterious effects of the presence and the lack of liquid water.

  7. Exercise Promotes Healthy Aging of Skeletal Muscle

    PubMed Central

    Cartee, Gregory D.; Hepple, Russell T.; Bamman, Marcas M.; Zierath, Juleen R.

    2016-01-01

    Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics, and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes “healthy aging” by inducing modifications in skeletal muscle. PMID:27304505

  8. Liquid Water Restricts Habitability in Extreme Deserts.

    PubMed

    Cockell, Charles S; Brown, Sarah; Landenmark, Hanna; Samuels, Toby; Siddall, Rebecca; Wadsworth, Jennifer

    2017-04-01

    Liquid water is a requirement for biochemistry, yet under some circumstances it is deleterious to life. Here, we show that liquid water reduces the upper temperature survival limit for two extremophilic photosynthetic microorganisms (Gloeocapsa and Chroococcidiopsis spp.) by greater than 40°C under hydrated conditions compared to desiccated conditions. Under hydrated conditions, thermal stress causes protein inactivation as shown by the fluorescein diacetate assay. The presence of water was also found to enhance the deleterious effects of freeze-thaw in Chroococcidiopsis sp. In the presence of water, short-wavelength UV radiation more effectively kills Gloeocapsa sp. colonies, which we hypothesize is caused by factors including the greater penetration of UV radiation into hydrated colonies compared to desiccated colonies. The data predict that deserts where maximum thermal stress or irradiation occurs in conjunction with the presence of liquid water may be less habitable to some organisms than more extreme arid deserts where organisms can dehydrate prior to being exposed to these extremes, thus minimizing thermal and radiation damage. Life in extreme deserts is poised between the deleterious effects of the presence and the lack of liquid water. Key Words: Deserts-Extremophiles-Stress-High temperatures-UV radiation-Desiccation. Astrobiology 17, 309-318.

  9. A Novel Hybrid Approach for Estimating Total Deposition in the United States

    EPA Science Inventory

    Atmospheric deposition of nitrogen and sulfur causes many deleterious effects on ecosystems including acidification and excess eutrophication. Assessments to support development of strategies to mitigate these effects require spatially and temporally continuous values of nitrogen...

  10. A Hybrid Approach for Estimating Total Deposition in the United States

    EPA Science Inventory

    Atmospheric deposition of nitrogen and sulfur causes many deleterious effects on ecosystems including acidification and excess eutrophication. Assessments to support development of strategies to mitigate these effects require spatially and temporally continuous values of nitrogen...

  11. Novel mutations in the long isoform of the USH2A gene in patients with Usher syndrome type II or non-syndromic retinitis pigmentosa.

    PubMed

    McGee, Terri L; Seyedahmadi, Babak Jian; Sweeney, Meredith O; Dryja, Thaddeus P; Berson, Eliot L

    2010-07-01

    Usher syndrome type II (USH2) is an autosomal recessive disorder characterised by retinitis pigmentosa (RP) and mild to moderate sensorineural hearing loss. Mutations in the USH2A gene are the most common cause of USH2 and are also a cause of some forms of RP without hearing loss (ie, non-syndromic RP). The USH2A gene was initially identified as a transcript comprised of 21 exons but subsequently a longer isoform containing 72 exons was identified. The 51 exons unique to the long isoform of USH2A were screened for mutations among a core set of 108 patients diagnosed with USH2 and 80 patients with non-syndromic RP who were all included in a previously reported screen of the short isoform of USH2A. For several exons, additional patients were screened. In total, 35 deleterious mutations were identified including 17 nonsense mutations, 9 frameshift mutations, 5 splice-site mutations, and 4 small in-frame deletions or insertions. Twenty-seven mutations were novel. In addition, 65 rare missense changes were identified. A method of classifying the deleterious effect of the missense changes was developed using the summed results of four different mutation assessment algorithms, SIFT, pMUT, PolyPhen, and AGVGD. This system classified 8 of the 65 changes as 'likely deleterious' and 9 as 'possibly deleterious'. At least one mutation was identified in 57-63% of USH2 cases and 19-23% of cases of non-syndromic recessive RP (calculated without and including probable/possible deleterious changes) thus supporting that USH2A is the most common known cause of RP in the USA.

  12. Exercise Promotes Healthy Aging of Skeletal Muscle.

    PubMed

    Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M; Zierath, Juleen R

    2016-06-14

    Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Obstruction of adaptation in diploids by recessive, strongly deleterious alleles.

    PubMed

    Assaf, Zoe June; Petrov, Dmitri A; Blundell, Jamie R

    2015-05-19

    Recessive deleterious mutations are common, causing many genetic disorders in humans and producing inbreeding depression in the majority of sexually reproducing diploids. The abundance of recessive deleterious mutations in natural populations suggests they are likely to be present on a chromosome when a new adaptive mutation occurs, yet the dynamics of recessive deleterious hitchhikers and their impact on adaptation remains poorly understood. Here we model how a recessive deleterious mutation impacts the fate of a genetically linked dominant beneficial mutation. The frequency trajectory of the adaptive mutation in this case is dramatically altered and results in what we have termed a "staggered sweep." It is named for its three-phased trajectory: (i) Initially, the two linked mutations have a selective advantage while rare and will increase in frequency together, then (ii), at higher frequencies, the recessive hitchhiker is exposed to selection and can cause a balanced state via heterozygote advantage (the staggered phase), and (iii) finally, if recombination unlinks the two mutations, then the beneficial mutation can complete the sweep to fixation. Using both analytics and simulations, we show that strongly deleterious recessive mutations can substantially decrease the probability of fixation for nearby beneficial mutations, thus creating zones in the genome where adaptation is suppressed. These mutations can also significantly prolong the number of generations a beneficial mutation takes to sweep to fixation, and cause the genomic signature of selection to resemble that of soft or partial sweeps. We show that recessive deleterious variation could impact adaptation in humans and Drosophila.

  14. Mistranslation can enhance fitness through purging of deleterious mutations

    PubMed Central

    Bratulic, Sinisa; Toll-Riera, Macarena; Wagner, Andreas

    2017-01-01

    Phenotypic mutations are amino acid changes caused by mistranslation. How phenotypic mutations affect the adaptive evolution of new protein functions is unknown. Here we evolve the antibiotic resistance protein TEM-1 towards resistance on the antibiotic cefotaxime in an Escherichia coli strain with a high mistranslation rate. TEM-1 populations evolved in such strains endow host cells with a general growth advantage, not only on cefotaxime but also on several other antibiotics that ancestral TEM-1 had been unable to deactivate. High-throughput sequencing of TEM-1 populations shows that this advantage is associated with a lower incidence of weakly deleterious genotypic mutations. Our observations show that mistranslation is not just a source of noise that delays adaptive evolution. It could even facilitate adaptive evolution by exacerbating the effects of deleterious mutations and leading to their more efficient purging. The ubiquity of mistranslation and its effects render mistranslation an important factor in adaptive protein evolution. PMID:28524864

  15. 40 CFR 257.25 - Assessment monitoring program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Minimum distance between upgradient edge of the unit and downgradient monitoring well screen (minimum... that is likely to be without appreciable risk of deleterious effects during a lifetime. For purposes of this subpart, systemic toxicants include toxic chemicals that cause effects other than cancer or...

  16. 40 CFR 257.25 - Assessment monitoring program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Minimum distance between upgradient edge of the unit and downgradient monitoring well screen (minimum... that is likely to be without appreciable risk of deleterious effects during a lifetime. For purposes of this subpart, systemic toxicants include toxic chemicals that cause effects other than cancer or...

  17. 40 CFR 257.25 - Assessment monitoring program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Minimum distance between upgradient edge of the unit and downgradient monitoring well screen (minimum... that is likely to be without appreciable risk of deleterious effects during a lifetime. For purposes of this subpart, systemic toxicants include toxic chemicals that cause effects other than cancer or...

  18. Deep sequencing of the mitochondrial genome reveals common heteroplasmic sites in NADH dehydrogenase genes.

    PubMed

    Liu, Chunyu; Fetterman, Jessica L; Liu, Poching; Luo, Yan; Larson, Martin G; Vasan, Ramachandran S; Zhu, Jun; Levy, Daniel

    2018-03-01

    Increasing evidence implicates mitochondrial dysfunction in aging and age-related conditions. But little is known about the molecular basis for this connection. A possible cause may be mutations in the mitochondrial DNA (mtDNA), which are often heteroplasmic-the joint presence of different alleles at a single locus in the same individual. However, the involvement of mtDNA heteroplasmy in aging and age-related conditions has not been investigated thoroughly. We deep-sequenced the complete mtDNA genomes of 356 Framingham Heart Study participants (52% women, mean age 43, mean coverage 4570-fold), identified 2880 unique mutations and comprehensively annotated them by MITOMAP and PolyPhen-2. We discovered 11 heteroplasmic "hot" spots [NADH dehydrogenase (ND) subunit 1, 4, 5 and 6 genes, n = 7; cytochrome c oxidase I (COI), n = 2; 16S rRNA, n = 1; D-loop, n = 1] for which the alternative-to-reference allele ratios significantly increased with advancing age (Bonferroni correction p < 0.001). Four of these heteroplasmic mutations in ND and COI genes were predicted to be deleterious nonsynonymous mutations which may have direct impact on ATP production. We confirmed previous findings that healthy individuals carry many low-frequency heteroplasmy mutations with potentially deleterious effects. We hypothesize that the effect of a single deleterious heteroplasmy may be minimal due to a low mutant-to-wildtype allele ratio, whereas the aggregate effects of many deleterious mutations may cause changes in mitochondrial function and contribute to age-related diseases. The identification of age-related mtDNA mutations is an important step to understand the genetic architecture of age-related diseases and may uncover novel therapeutic targets for such diseases.

  19. Perturbation of Gene Expression and Steroidogenesis with In vitro Exposure of Fathead Minnow Ovaries to Ketoconazole

    EPA Science Inventory

    Various chemicals in the environment can disrupt normal endocrine function, including steroid hormone synthesis, causing deleterious effects. Because these compounds can act at different levels of the hypothalamus-pituitary-gonadal (HPG) axis, their effects can lead to a mixture...

  20. Designer aminoglycosides that selectively inhibit cytoplasmic rather than mitochondrial ribosomes show decreased ototoxicity: a strategy for the treatment of genetic diseases.

    PubMed

    Shulman, Eli; Belakhov, Valery; Wei, Gao; Kendall, Ann; Meyron-Holtz, Esther G; Ben-Shachar, Dorit; Schacht, Jochen; Baasov, Timor

    2014-01-24

    There is compelling evidence that aminoglycoside (AG) antibiotics can induce the mammalian ribosome to suppress disease-causing nonsense mutations and partially restore the expression of functional proteins. However, prolonged AG treatment can cause detrimental side effects in patients, including most prominently, ototoxicity. Recent mechanistic discussions have considered the relative contributions of mitochondrial and cytoplasmic protein synthesis inhibition to AG-induced ototoxicity. We show that AGs inhibit mitochondrial protein synthesis in mammalian cells and perturb cell respiration, leading to a time- and dose-dependent increase in superoxide overproduction and accumulation of free ferrous iron in mitochondria caused by oxidative damage of mitochondrial aconitase, ultimately leading to cell apoptosis via the Fenton reaction. These deleterious effects increase with the increased potency of AG to inhibit the mitochondrial rather than cytoplasmic protein synthesis, which in turn correlates with their ototoxic potential in both murine cochlear explants and the guinea pig in vivo. The deleterious effects of AGs were alleviated in synthetic derivatives specially designed for the treatment of genetic diseases caused by nonsense mutations and possessing low affinity toward mitochondrial ribosomes. This work highlights the benefit of a mechanism-based drug redesign strategy that can maximize the translational value of "readthrough therapy" while mitigating drug-induced side effects. This approach holds promise for patients suffering from genetic diseases caused by nonsense mutations.

  1. EFFECTIVENESS OF SELECTION IN REDUCING THE GENETIC LOAD IN POPULATIONS OF PEROMYSCUS POLIONOTUS DURING GENERATIONS OF INBREEDING.

    PubMed

    Lacy, Robert C; Ballou, Jonathan D

    1998-06-01

    It has been hypothesized that natural selection reduces the "genetic load" of deleterious alleles from populations that inbreed during bottlenecks, thereby ameliorating impacts of future inbreeding. We tested the efficiency with which natural selection purges deleterious alleles from three subspecies of Peromyscus polionotus during 10 generations of laboratory inbreeding by monitoring pairing success, litter size, viability, and growth in 3604 litters produced from 3058 pairs. In P. p. subgriseus, there was no reduction across generations in inbreeding depression in any of the fitness components. Strongly deleterious recessive alleles may have been removed previously during episodes of local inbreeding in the wild, and the residual genetic load in this population was not further reduced by selection in the lab. In P. p. rhoadsi, four of seven fitness components did show a reduction of the genetic load with continued inbreeding. The average reduction in the genetic load was as expected if inbreeding depression in this population is caused by highly deleterious recessive alleles that are efficiently removed by selection. For P. p. leucocephalus a population that experiences periodic bottlenecks in the wild, the effect of further inbreeding in the laboratory was to exacerbate rather than reduce the genetic load. Recessive deleterious alleles may have been removed from this population during repeated bottlenecks in the wild; the population may be close to a threshold level of heterozygosity below which fitness declines rapidly. Thus, the effects of selection on inbreeding depression varied substantially among populations, perhaps due to different histories of inbreeding and selection. © 1998 The Society for the Study of Evolution.

  2. HIGH-THROUGHPUT CHEMICAL SCREENING USING PROTEIN PROFILING OF FISH PLASMA

    EPA Science Inventory

    Compounds that affect the hormone system, referred to as "endocrine-disrupting chemicals" (EDCs), cause human and animal health problems. It is necessary to test putative EDC chemicals for such deleterious effects, though current testing methodologies are time/animal intensive an...

  3. Exploration of structural stability in deleterious nsSNPs of the XPA gene: A molecular dynamics approach.

    PubMed

    Nagasundaram, N; Priya Doss, C George

    2011-01-01

    Distinguishing the deleterious from the massive number of non-functional nsSNPs that occur within a single genome is a considerable challenge in mutation research. In this approach, we have used the existing in silico methods to explore the mutation-structure-function relationship in the XPAgene. We used the Sorting Intolerant From Tolerant (SIFT), Polymorphism Phenotyping (PolyPhen), I-Mutant 2.0, and the Protein Analysis THrough Evolutionary Relationships methods to predict the effects of deleterious nsSNPs on protein function and evaluated the impact of mutation on protein stability by Molecular Dynamics simulations. By comparing the scores of all the four in silico methods, nsSNP with an ID rs104894131 at position C108F was predicted to be highly deleterious. We extended our Molecular dynamics approach to gain insight into the impact of this non-synonymous polymorphism on structural changes that may affect the activity of the XPAgene. Based on the in silico methods score, potential energy, root-mean-square deviation, and root-mean-square fluctuation, we predict that deleterious nsSNP at position C108F would play a significant role in causing disease by the XPA gene. Our approach would present the application of in silicotools in understanding the functional variation from the perspective of structure, evolution, and phenotype.

  4. A Temporal Perspective on the Interplay of Demography and Selection on Deleterious Variation in Humans

    PubMed Central

    Koch, Evan; Novembre, John

    2017-01-01

    When mutations have small effects on fitness, population size plays an important role in determining the amount and nature of deleterious genetic variation. The extent to which recent population size changes have impacted deleterious variation in humans has been a question of considerable interest and debate. An emerging consensus is that the Out-of-Africa bottleneck and subsequent growth events have been too short to cause meaningful differences in genetic load between populations; though changes in the number and average frequencies of deleterious variants have taken place. To provide more support for this view and to offer additional insight into the divergent evolution of deleterious variation across populations, we numerically solve time-inhomogeneous diffusion equations and study the temporal dynamics of the frequency spectra in models of population size change for modern humans. We observe how the response to demographic change differs by the strength of selection, and we then assess whether similar patterns are observed in exome sequence data from 33,370 and 5203 individuals of non-Finnish European and West African ancestry, respectively. Our theoretical results highlight how even simple summaries of the frequency spectrum can have complex responses to demographic change. These results support the finding that some apparent discrepancies between previous results have been driven by the behaviors of the precise summaries of deleterious variation. Further, our empirical results make clear the difficulty of inferring slight differences in frequency spectra using recent next-generation sequence data. PMID:28159863

  5. Genetic Allee effects and their interaction with ecological Allee effects.

    PubMed

    Wittmann, Meike J; Stuis, Hanna; Metzler, Dirk

    2018-01-01

    It is now widely accepted that genetic processes such as inbreeding depression and loss of genetic variation can increase the extinction risk of small populations. However, it is generally unclear whether extinction risk from genetic causes gradually increases with decreasing population size or whether there is a sharp transition around a specific threshold population size. In the ecological literature, such threshold phenomena are called 'strong Allee effects' and they can arise for example from mate limitation in small populations. In this study, we aim to (i) develop a meaningful notion of a 'strong genetic Allee effect', (ii) explore whether and under what conditions such an effect can arise from inbreeding depression due to recessive deleterious mutations, and (iii) quantify the interaction of potential genetic Allee effects with the well-known mate-finding Allee effect. We define a strong genetic Allee effect as a genetic process that causes a population's survival probability to be a sigmoid function of its initial size. The inflection point of this function defines the critical population size. To characterize survival-probability curves, we develop and analyse simple stochastic models for the ecology and genetics of small populations. Our results indicate that inbreeding depression can indeed cause a strong genetic Allee effect, but only if individuals carry sufficiently many deleterious mutations (lethal equivalents). Populations suffering from a genetic Allee effect often first grow, then decline as inbreeding depression sets in and then potentially recover as deleterious mutations are purged. Critical population sizes of ecological and genetic Allee effects appear to be often additive, but even superadditive interactions are possible. Many published estimates for the number of lethal equivalents in birds and mammals fall in the parameter range where strong genetic Allee effects are expected. Unfortunately, extinction risk due to genetic Allee effects can easily be underestimated as populations with genetic problems often grow initially, but then crash later. Also interactions between ecological and genetic Allee effects can be strong and should not be neglected when assessing the viability of endangered or introduced populations. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  6. Antipsychotics activate the TGFβ pathway effector SMAD3

    PubMed Central

    Cohen, T.; Sundaresh, S.; Levine, F.

    2014-01-01

    Although effective in treating an array of neurological disorders, antipsychotics are associated with deleterious metabolic side effects. Through high-throughput screening, we previously identified phenothiazine antipsychotics as modulators of the human insulin promoter. Here, we extended our initial finding to structurally diverse typical and atypical antipsychotics. We then identified the TGFβ pathway as being involved in the effect of antipsychotics on the insulin promoter, finding that antipsychotics activated SMAD3, a downstream effector of the TGFβ pathway, through a receptor distinct from the TGFβ receptor family and known neurotransmitter receptor targets of antipsychotics. Of note, antipsychotics that do not cause metabolic side effects did not activate SMAD3. In vivo relevance was demonstrated by reanalysis of gene expression data from human brains treated with antipsychotics, which showed altered expression of SMAD3 responsive genes. This work raises the possibility that antipsychotics could be designed that retain beneficial CNS activity while lacking deleterious metabolic side effects. PMID:22290122

  7. Simulation of deleterious processes in a static-cell diode pumped alkali laser

    NASA Astrophysics Data System (ADS)

    Oliker, Benjamin Q.; Haiducek, John D.; Hostutler, David A.; Pitz, Greg A.; Rudolph, Wolfgang; Madden, Timothy J.

    2014-02-01

    The complex interactions in a diode pumped alkali laser (DPAL) gain cell provide opportunities for multiple deleterious processes to occur. Effects that may be attributable to deleterious processes have been observed experimentally in a cesium static-cell DPAL at the United States Air Force Academy [B.V. Zhdanov, J. Sell, R.J. Knize, "Multiple laser diode array pumped Cs laser with 48 W output power," Electronics Letters, 44, 9 (2008)]. The power output in the experiment was seen to go through a "roll-over"; the maximum power output was obtained with about 70 W of pump power, then power output decreased as the pump power was increased beyond this point. Research to determine the deleterious processes that caused this result has been done at the Air Force Research Laboratory utilizing physically detailed simulation. The simulations utilized coupled computational fluid dynamics (CFD) and optics solvers, which were three-dimensional and time-dependent. The CFD code used a cell-centered, conservative, finite-volume discretization of the integral form of the Navier-Stokes equations. It included thermal energy transport and mass conservation, which accounted for chemical reactions and state kinetics. Optical models included pumping, lasing, and fluorescence. The deleterious effects investigated were: alkali number density decrease in high temperature regions, convective flow, pressure broadening and shifting of the absorption lineshape including hyperfine structure, radiative decay, quenching, energy pooling, off-resonant absorption, Penning ionization, photoionization, radiative recombination, three-body recombination due to free electron and buffer gas collisions, ambipolar diffusion, thermal aberration, dissociative recombination, multi-photon ionization, alkali-hydrocarbon reactions, and electron impact ionization.

  8. Exploration of structural stability in deleterious nsSNPs of the XPA gene: A molecular dynamics approach

    PubMed Central

    NagaSundaram, N; Priya Doss, C George

    2011-01-01

    Background: Distinguishing the deleterious from the massive number of non-functional nsSNPs that occur within a single genome is a considerable challenge in mutation research. In this approach, we have used the existing in silico methods to explore the mutation-structure-function relationship in the XPAgene. Materials and Methods: We used the Sorting Intolerant From Tolerant (SIFT), Polymorphism Phenotyping (PolyPhen), I-Mutant 2.0, and the Protein Analysis THrough Evolutionary Relationships methods to predict the effects of deleterious nsSNPs on protein function and evaluated the impact of mutation on protein stability by Molecular Dynamics simulations. Results: By comparing the scores of all the four in silico methods, nsSNP with an ID rs104894131 at position C108F was predicted to be highly deleterious. We extended our Molecular dynamics approach to gain insight into the impact of this non-synonymous polymorphism on structural changes that may affect the activity of the XPAgene. Conclusion: Based on the in silico methods score, potential energy, root-mean-square deviation, and root-mean-square fluctuation, we predict that deleterious nsSNP at position C108F would play a significant role in causing disease by the XPA gene. Our approach would present the application of in silicotools in understanding the functional variation from the perspective of structure, evolution, and phenotype. PMID:22190868

  9. Method and system for reducing device performance degradation of organic devices

    DOEpatents

    Teague, Lucile C.

    2014-09-02

    Methods and systems for reducing the deleterious effects of gate bias stress on the drain current of an organic device, such as an organic thin film transistor, are provided. In a particular aspect, the organic layer of an organic device is illuminated with light having characteristics selected to reduce the gate bias voltage effects on the drain current of the organic device. For instance, the wavelength and intensity of the light are selected to provide a desired recovery of drain current of the organic device. If the characteristics of the light are appropriately matched to the organic device, recovery of the deleterious effects caused by gate bias voltage stress effects on the drain current of the organic device can be achieved. In a particular aspect, the organic device is selectively illuminated with light to operate the organic device in multiple modes of operation.

  10. Effect of soil biochar amendment on grain crop resistance to Fusarium mycotoxin contamination

    USDA-ARS?s Scientific Manuscript database

    Mycotoxin contamination of food and feed is among the top food safety concerns. Fusarium spp. cause serious diseases in cereal crops reducing yield and contaminating grain with mycotoxins that can be deleterious to human and animal health. Fusarium graminearum and Fusarium verticillioides infect whe...

  11. Tobacco Use among Individuals with Intellectual or Developmental Disabilities: A Brief Review

    ERIC Educational Resources Information Center

    Steinberg, Marc L.; Heimlich, Laura; Williams, Jill M.

    2009-01-01

    Tobacco use is the leading preventable cause of death in the United States. Although few tobacco control efforts target individuals with intellectual and/or developmental disabilities, this population may be especially vulnerable to the deleterious effects of tobacco use and dependence. Individuals with intellectual and developmental disabilities…

  12. Smoking and Soldier Performance: A Literature Review

    DTIC Science & Technology

    1986-06-01

    should improve soldier performance and *military operations. On the other hand, the effects of smoking ron endurance and health appear to be primarily bad...from smoking may provide much of the "reinforcement" that causes people to continue to smoke in the face of indisputable deleterious effects on health ... health and behavior are fairly well understood. Although there are contradictory findings related to both long-term and immediate effects of smoking

  13. Lineage dynamics and mutation-selection balance in non-adapting asexual populations

    NASA Astrophysics Data System (ADS)

    Pénisson, Sophie; Sniegowski, Paul D.; Colato, Alexandre; Gerrish, Philip J.

    2013-02-01

    In classical population genetics, mutation-selection balance refers to the equilibrium frequency of a deleterious allele established and maintained under two opposing forces: recurrent mutation, which tends to increase the frequency of the allele; and selection, which tends to decrease its frequency. In a haploid population, if μ denotes the per capita rate of production of the deleterious allele by mutation and s denotes the selective disadvantage of carrying the allele, then the classical mutation-selection balance frequency of the allele is approximated by μ/s. This calculation assumes that lineages carrying the mutant allele in question—the ‘focal allele’—do not accumulate deleterious mutations linked to the focal allele. In principle, indirect selection against the focal allele caused by such additional mutations can decrease the frequency of the focal allele below the classical mutation-selection balance. This effect of indirect selection will be strongest in an asexual population, in which the entire genome is in linkage. Here, we use an approach based on a multitype branching process to investigate this effect, analyzing lineage dynamics under mutation, direct selection, and indirect selection in a non-adapting asexual population. We find that the equilibrium balance between recurrent mutation to the focal allele and the forces of direct and indirect selection against the focal allele is closely approximated by γμ/(s + U) (s = 0 if the focal allele is neutral), where γ ≈ eθθ-(ω+θ)(ω + θ)(Γ(ω + θ) - Γ(ω + θ,θ)), \\theta =U/\\tilde {s}, and \\omega =s/\\tilde {s}; U denotes the genomic deleterious mutation rate and \\tilde {s} denotes the geometric mean selective disadvantage of deleterious mutations elsewhere on the genome. This mutation-selection balance for asexual populations can remain surprisingly invariant over wide ranges of the mutation rate.

  14. Interparental Aggression and Antisocial Behavior among African American Youth: A Simultaneous Test of Competing Explanations

    ERIC Educational Resources Information Center

    Su, Xiaoli; Simons, Ronald L.; Simons, Leslie G.

    2011-01-01

    Interparental aggression has long been implicated as a cause of child and adolescent antisocial behavior. Four theoretical explanations (viz., an aggressogenic cognition model, general strain theory, an emotional security model, and a spillover model) have been proposed to account for this deleterious effect. To gain a better understanding of the…

  15. Effects of Bank Revetment on Sacramento River, California

    Treesearch

    Michael D. Harvey; Chester C. Watson

    1989-01-01

    Twelve low radius of curvature bends, half of which were rivetted, were studied in the Butte Basin reach of Sacramento River, California, to determine whether bank revetment deleteriously affected salmonid habitat. At low discharge (128.6 cubic meters/s) it was demonstrated that revetment does not cause channel narrowing or deepening, nor does it prevent re-entrainment...

  16. Prenatal exposure to a maternal LP diet decreases BDNF expression in the brains of the neonatal offspring

    USDA-ARS?s Scientific Manuscript database

    Maternal low protein (LP) diets during gestation cause learning and mernmy impai1ment as well as cognitive deficits in the neonatal and adult offsp1ing. The cellular and molecular mechanism that mediate the deleterious effects of prenatal exposure to a maternal LP diet on cognitive function is egreg...

  17. Diesel exhaust worsens cardiac conduction instability in dobutamine-challenged Wistar-Kyoto and spontaneously hypertensive rats

    EPA Science Inventory

    This study shows that a single exposure to diesel exhaust causes conduction instability in rats that is worse in the presence of hypertension. The RoR assessment is shown to be a valuable tool that can be used to reveal the deleterious effects of air pollution, particularly in th...

  18. Common sex-linked deleterious alleles in a plant parasitic fungus alter infection success but show no pleiotropic advantage.

    PubMed

    Giraud, T; Jonot, O; Shykoff, J A

    2006-05-01

    Microbotryum violaceum is a fungus that causes the sterilizing anther smut disease in Caryophyllaceae. Its diploid teliospores normally produce equal proportions of haploid sporidia of its two mating types. However natural populations contain high frequencies of individuals producing sporidia of only one mating type ('biased strains'). This mating type-ratio bias is caused by deleterious alleles at haploid phase ('haplo-lethals') linked to the mating type locus that can be transmitted only by intra-tetrad selfing. We used experimental inoculations to test some of the hypotheses proposed to explain the maintenance of haplo-lethals. We found a disadvantage of biased strains in infection ability and high intra-tetrad mating rates. Biased strains had no higher competitive ability nor shorter latency and their higher spore production per flower appeared insufficient to compensate their disadvantages. These findings were only consistent with the hypothesis that haplo-lethals are maintained under a metapopulation structure because of high intra-tetrad selfing rates, founder effects and selection at the population level.

  19. Integrated strategy urged to address coastal contamination issues

    USGS Publications Warehouse

    Swarzenski, Peter W.; Kvenvolden, Keith A.; Horowitz, Arthur J.; Buchholtz ten Brink, Marilyn R.

    2001-01-01

    Coastal bays and estuaries are well known for their intrinsic recreational and economic value, yet these ecosystems are also among our most troubled natural environments. Urban development, agriculture, and shipping are just a few examples of human activities that can cause a wide range of deleterious changes within the coastal environment. These alterations, however, occur simultaneously with cycles of natural variability such as climate change. To effectively manage coastal ecosystems, we need to be able to carefully distinguish between anthropogenic and natural causes of change.

  20. Effects of Combining Na and Sr additions on Eutectic Modification in Al-Si alloy

    NASA Astrophysics Data System (ADS)

    Zhu, G. L.; Gu, N. J.; Zhou, B. J.

    2017-09-01

    Experiments were designed to investigate the effects of strontium and sodium modified on the eutectic silicon for Al-Si alloy. It was found that combining addition of Na and Sr did not appear to cause deleterious interactions of modification, at at the same time, Sr-Na was fairly constant with holding time and without obvious modification fading. Addition of Na-Sr modifier could take effect quickly and decrease incubation period.

  1. Herbivory versus corallivory: are parrotfish good or bad for Caribbean coral reefs?

    NASA Astrophysics Data System (ADS)

    Mumby, Peter J.

    2009-09-01

    With coral cover in decline on many Caribbean reefs, any process of coral mortality is of potential concern. While sparisomid parrotfishes are major grazers of Caribbean reefs and help control algal blooms, the fact that they also undertake corallivory has prompted some to question the rationale for their conservation. Here the weight of evidence for beneficial effects of parrotfishes, in terms of reducing algal cover and facilitating demographic processes in corals, and the deleterious effects of parrotfishes in terms of causing coral mortality and chronic stress, are reviewed. While elevated parrotfish density will likely increase the predation rate upon juvenile corals, the net effect appears to be positive in enhancing coral recruitment through removal of macroalgal competitors. Parrotfish corallivory can cause modest partial colony mortality in the most intensively grazed species of Montastraea but the generation and healing of bite scars appear to be in near equilibrium, even when coral cover is low. Whole colony mortality in adult corals can lead to complete exclusion of some delicate, lagoonal species of Porites from forereef environments but is only reported for one reef species ( Porites astreoides), for one habitat (backreef), and with uncertain incidence (though likely <<10%). No deleterious effects of predation on coral growth or fecundity have been reported, though recovery of zooxanthellae after bleaching events may be retarded. The balance of evidence to date finds strong support for the herbivory role of parrotfishes in facilitating coral recruitment, growth, and fecundity. In contrast, no net deleterious effects of corallivory have been reported for reef corals. Corallivory is unlikely to constrain overall coral cover but contraints upon dwindling populations of the Montastraea annularis species complex are feasible and the role of parrotfishes as a vector of coral disease requires evaluation. However, any assertion that conservation practices should guard against protecting corallivorous parrotfishes appears to be unwarranted at this stage.

  2. Profiling deleterious non-synonymous SNPs of smoker's gene CYP1A1.

    PubMed

    Ramesh, A Sai; Khan, Imran; Farhan, Md; Thiagarajan, Padma

    2013-01-01

    CYP1A1 gene belongs to the cytochrome P450 family and is known better as smokers' gene due to its hyperactivation as a consequence of long term smoking. The expression of CYP1A1 induces polycyclic aromatic hydrocarbon production in the lungs, which when over expressed, is known to cause smoking related diseases, such as cardiovascular pathologies, cancer, and diabetes. Single nucleotide polymorphisms (SNPs) are the simplest form of genetic variations that occur at a higher frequency, and are denoted as synonymous and non-synonymous SNPs on the basis of their effects on the amino acids. This study adopts a systematic in silico approach to predict the deleterious SNPs that are associated with disease conditions. It is inferred that four SNPs are highly deleterious, among which the SNP with rs17861094 is commonly predicted to be harmful by all tools. Hydrophobic (isoleucine) to hydrophilic (serine) amino acid variation was observed in the candidate gene. Hence, this investigation aims to characterize a candidate gene from 159 SNPs of CYP1A1.

  3. Polyoxometalates as antitumor agents: Bioactivity of a new polyoxometalate with copper on a human osteosarcoma model.

    PubMed

    León, I E; Porro, V; Astrada, S; Egusquiza, M G; Cabello, C I; Bollati-Fogolin, M; Etcheverry, S B

    2014-10-05

    Polyoxometalates (POMs) are early transition metal oxygen anion clusters. They display interesting biological effects mainly related to their antiviral and antitumor properties. On the other hand, copper compounds also show different biological and pharmacological effects in cell culture and in animal models. We report herein for the first time, a detailed study of the mechanisms of action of a copper(II) compound of the group of HPOMs with the formula K7Na3[Cu4(H2O)2(PW9034)2]20H2O (PW9Cu), in a model of human osteosarcoma derived cell line, MG-63. The compound inhibited selectively the viability of the osteosarcoma cells in the range of 25-100μM (p<0.01). Besides, we have clearly shown a more deleterious action of PW9Cu on tumor osteoblasts than in normal cells. Cytotoxicity studies also showed deleterious effects for PW9Cu. The increment of reactive oxygen species (ROS) and the decrease of the GSH/GSSG ratio were involved in the antiproliferative effects of PW9Cu. Moreover, the compound caused cell cycle arrest in G2 phase, triggering apoptosis as determined by flow cytometry. As a whole, these results showed the main mechanisms of the deleterious effects of PW9Cu in the osteosarcoma cell line MG-63, demonstrating that this compound is a promissory agent for cancer treatments. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Executive Function Deficits in Children with Fetal Alcohol Spectrum Disorders (FASD) Measured Using the Cambridge Neuropsychological Tests Automated Battery (CANTAB)

    ERIC Educational Resources Information Center

    Green, C. R.; Mihic, A. M.; Nikkel, S. M.; Stade, B. C.; Rasmussen, C.; Munoz, D. P.; Reynolds, J. N.

    2009-01-01

    Background: Chronic prenatal alcohol exposure causes a spectrum of deleterious effects in offspring, collectively termed fetal alcohol spectrum disorders (FASD), and deficits in executive function are prevalent in FASD. The goal of this research was to test the hypothesis that children with FASD exhibit performance deficits in tasks that assess…

  5. Deleterious Wolbachia in the ant Formica truncorum.

    PubMed

    Wenseleers, T; Sundström, L; Billen, J

    2002-03-22

    Wolbachia is a maternally inherited bacterium that may manipulate the reproduction of its arthropod hosts. In insects, it is known to lead to inviable matings, cause asexual reproduction or kill male offspring, all to its own benefit, but to the detriment of its host. In social Hymenoptera, Wolbachia occurs widely, but little is known about its fitness effects. We report on a Wolbachia infection in the wood ant Formica truncorum, and evaluate whether it influences reproductive patterns. All 33 colonies of the study population were infected, suggesting that Wolbachia infection is at, or close to, fixation. Interestingly, in colonies with fewer infected workers, significantly more sexuals are produced, indicating that Wolbachia has deleterious effects in this species. In addition, adult workers are shown to have significantly lower infection rates (45%) than worker pupae (87%) or virgin queens (94%), suggesting that workers lose their infection over life. Clearance of Wolbachia infection has, to our knowledge, never been shown in any other natural system, but we argue that it may, in this case, represent an adaptive strategy to reduce colony load. The cause of fixation requires further study, but our data strongly suggest that Wolbachia has no influence on the sex ratio in this species.

  6. Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction

    PubMed Central

    Weidinger, Adelheid; Kozlov, Andrey V.

    2015-01-01

    In the past, reactive oxygen and nitrogen species (RONS) were shown to cause oxidative damage to biomolecules, contributing to the development of a variety of diseases. However, recent evidence has suggested that intracellular RONS are an important component of intracellular signaling cascades. The aim of this review was to consolidate old and new ideas on the chemical, physiological and pathological role of RONS for a better understanding of their properties and specific activities. Critical consideration of the literature reveals that deleterious effects do not appear if only one primary species (superoxide radical, nitric oxide) is present in a biological system, even at high concentrations. The prerequisite of deleterious effects is the formation of highly reactive secondary species (hydroxyl radical, peroxynitrite), emerging exclusively upon reaction with another primary species or a transition metal. The secondary species are toxic, not well controlled, causing irreversible damage to all classes of biomolecules. In contrast, primary RONS are well controlled (superoxide dismutase, catalase), and their reactions with biomolecules are reversible, making them ideal for physiological/pathophysiological intracellular signaling. We assume that whether RONS have a signal transducing or damaging effect is primarily defined by their quality, being primary or secondary RONS, and only secondly by their quantity. PMID:25884116

  7. The Role of piRNA-Mediated Epigenetic Silencing in the Population Dynamics of Transposable Elements in Drosophila melanogaster

    PubMed Central

    Lee, Yuh Chwen G.

    2015-01-01

    The piwi-interacting RNAs (piRNA) are small RNAs that target selfish transposable elements (TEs) in many animal genomes. Until now, piRNAs’ role in TE population dynamics has only been discussed in the context of their suppression of TE transposition, which alone is not sufficient to account for the skewed frequency spectrum and stable containment of TEs. On the other hand, euchromatic TEs can be epigenetically silenced via piRNA-dependent heterochromatin formation and, similar to the widely known “Position-effect variegation”, heterochromatin induced by TEs can “spread” into nearby genes. We hypothesized that the piRNA-mediated spread of heterochromatin from TEs into adjacent genes has deleterious functional effects and leads to selection against individual TEs. Unlike previously identified deleterious effects of TEs due to the physical disruption of DNA, the functional effect we investigated here is mediated through the epigenetic influences of TEs. We found that the repressive chromatin mark, H3K9me, is elevated in sequences adjacent to euchromatic TEs at multiple developmental stages in Drosophila melanogaster. Furthermore, the heterochromatic states of genes depend not only on the number of and distance from adjacent TEs, but also on the likelihood that their nearest TEs are targeted by piRNAs. These variations in chromatin status probably have functional consequences, causing genes near TEs to have lower expression. Importantly, we found stronger selection against TEs that lead to higher H3K9me enrichment of adjacent genes, demonstrating the pervasive evolutionary consequences of TE-induced epigenetic silencing. Because of the intrinsic biological mechanism of piRNA amplification, spread of TE heterochromatin could result in the theoretically required synergistic deleterious effects of TE insertions for stable containment of TE copy number. The indirect deleterious impact of piRNA-mediated epigenetic silencing of TEs is a previously unexplored, yet important, element for the evolutionary dynamics of TEs. PMID:26042931

  8. A reverse genetic approach identifies an ancestral frameshift mutation in RP1 causing recessive progressive retinal degeneration in European cattle breeds.

    PubMed

    Michot, Pauline; Chahory, Sabine; Marete, Andrew; Grohs, Cécile; Dagios, Dimitri; Donzel, Elise; Aboukadiri, Abdelhak; Deloche, Marie-Christine; Allais-Bonnet, Aurélie; Chambrial, Matthieu; Barbey, Sarah; Genestout, Lucie; Boussaha, Mekki; Danchin-Burge, Coralie; Fritz, Sébastien; Boichard, Didier; Capitan, Aurélien

    2016-08-10

    Domestication and artificial selection have resulted in strong genetic drift, relaxation of purifying selection and accumulation of deleterious mutations. As a consequence, bovine breeds experience regular outbreaks of recessive genetic defects which might represent only the tip of the iceberg since their detection depends on the observation of affected animals with distinctive symptoms. Thus, recessive mutations resulting in embryonic mortality or in non-specific symptoms are likely to be missed. The increasing availability of whole-genome sequences has opened new research avenues such as reverse genetics for their investigation. Our aim was to characterize the genetic load of 15 European breeds using data from the 1000 bull genomes consortium and prove that widespread harmful mutations remain to be detected. We listed 2489 putative deleterious variants (in 1923 genes) segregating at a minimal frequency of 5 % in at least one of the breeds studied. Gene enrichment analysis showed major enrichment for genes related to nervous, visual and auditory systems, and moderate enrichment for genes related to cardiovascular and musculoskeletal systems. For verification purposes, we investigated the phenotypic consequences of a frameshift variant in the retinitis pigmentosa-1 gene segregating in several breeds and at a high frequency (27 %) in Normande cattle. As described in certain human patients, clinical and histological examination revealed that this mutation causes progressive degeneration of photoreceptors leading to complete blindness in homozygotes. We established that the deleterious allele was even more frequent in the Normande breed before 1975 (>40 %) and has been progressively counter-selected likely because of its associated negative effect on udder morphology. Finally, using identity-by-descent analysis we demonstrated that this mutation resulted from a unique ancestral event that dates back to ~2800 to 4000 years. We provide a list of mutations that likely represent a substantial part of the genetic load of domestication in European cattle. We demonstrate that they accumulated non-randomly and that genes related to cognition and sensory functions are particularly affected. Finally, we describe an ancestral deleterious variant segregating in different breeds causing progressive retinal degeneration and irreversible blindness in adult animals.

  9. Novel mutations in the long isoform of the USH2A gene in patients with Usher syndrome type II or non-syndromic retinitis pigmentosa

    PubMed Central

    McGee, Terri L.; Seyedahmadi, Babak Jian; Sweeney, Meredith O.; Dryja, Thaddeus P.; Berson, Eliot L.

    2010-01-01

    Background Usher syndrome type II (USH2) is an autosomal recessive disorder characterized by retinitis pigmentosa (RP) and mild to moderate sensorineural hearing loss. Mutations in the USH2A gene are the most common cause of USH2 and are also a cause of some forms of RP without hearing loss (ie non-syndromic RP). The USH2A gene was initially identified as a transcript comprised of 21 exons but subsequently a longer isoform containing 72 exons was identified. Methods The 51 exons unique to the long isoform of USH2A were screened for mutations among a core set of 108 patients diagnosed with USH2 and 80 patients with non-syndromic RP who were all included in a previously reported screen of the short isoform of USH2A. For several exons, additional patients were screened. Results In total, 35 deleterious mutations were identified including 17 nonsense mutations, 9 frameshift mutations, 5 splice-site mutations, and 4 small in-frame deletions or insertions. Twenty-seven mutations were novel. In addition, 65 rare missense changes were identified. A method of classifying the deleterious effect of the missense changes was developed using the summed results of 4 different mutation assessment algorithms, SIFT, pMUT, PolyPhen, and AGVGD. This system classified 8 of the 65 changes as “likely deleterious” and 9 as “possibly deleterious”. Conclusion At least one mutation was identified in 57–63% of USH2 cases and 19–23% of cases of non-syndromic recessive RP (calculated without and including probable/possible deleterious changes) thus supporting that USH2A is the most common known cause of RP in the United States. PMID:20507924

  10. Positive selection of deleterious alleles through interaction with a sex-ratio suppressor gene in African Buffalo: a plausible new mechanism for a high frequency anomaly.

    PubMed

    van Hooft, Pim; Greyling, Ben J; Getz, Wayne M; van Helden, Paul D; Zwaan, Bas J; Bastos, Armanda D S

    2014-01-01

    Although generally rare, deleterious alleles can become common through genetic drift, hitchhiking or reductions in selective constraints. Here we present a possible new mechanism that explains the attainment of high frequencies of deleterious alleles in the African buffalo (Syncerus caffer) population of Kruger National Park, through positive selection of these alleles that is ultimately driven by a sex-ratio suppressor. We have previously shown that one in four Kruger buffalo has a Y-chromosome profile that, despite being associated with low body condition, appears to impart a relative reproductive advantage, and which is stably maintained through a sex-ratio suppressor. Apparently, this sex-ratio suppressor prevents fertility reduction that generally accompanies sex-ratio distortion. We hypothesize that this body-condition-associated reproductive advantage increases the fitness of alleles that negatively affect male body condition, causing genome-wide positive selection of these alleles. To investigate this we genotyped 459 buffalo using 17 autosomal microsatellites. By correlating heterozygosity with body condition (heterozygosity-fitness correlations), we found that most microsatellites were associated with one of two gene types: one with elevated frequencies of deleterious alleles that have a negative effect on body condition, irrespective of sex; the other with elevated frequencies of sexually antagonistic alleles that are negative for male body condition but positive for female body condition. Positive selection and a direct association with a Y-chromosomal sex-ratio suppressor are indicated, respectively, by allele clines and by relatively high numbers of homozygous deleterious alleles among sex-ratio suppressor carriers. This study, which employs novel statistical techniques to analyse heterozygosity-fitness correlations, is the first to demonstrate the abundance of sexually-antagonistic genes in a natural mammal population. It also has important implications for our understanding not only of the evolutionary and ecological dynamics of sex-ratio distorters and suppressors, but also of the functioning of deleterious and sexually-antagonistic alleles, and their impact on population viability.

  11. A case of early onset rectal cancer of Lynch syndrome with a novel deleterious PMS2 mutation.

    PubMed

    Nomura, Sachio; Fujimoto, Yoshiya; Yamamoto, Noriko; Sato, Yuri; Ashihara, Yuumi; Kita, Mizuho; Yamaguchi, Junya; Ishikawa, Yuichi; Ueno, Masashi; Arai, Masami

    2015-10-01

    Heterozygous deleterious mutation of the PMS2 gene is a cause of Lynch syndrome, an autosomal dominant cancer disease. However, the frequency of PMS2 mutation is rare compared with that of the other causative genes; MSH2, MLH1 and MSH6. PMS2 mutation has so far only been reported once from a Japanese facility. Detection of PMS2 mutation is relatively complicated due to the existence of 15 highly homologous pseudogenes, and its gene conversion event with the pseudogene PMS2CL. Therefore, for PMS2 mutation analysis, it is crucial to clearly distinguish PMS2 from its pseudogenes. We report here a novel deleterious 11 bp deletion mutation of exon 11 of PMS2 distinguished from PMS2CL in a 34-year-old Japanese female with rectal cancer. PMS2 mutated at c.1492del11 results in a truncated 500 amino acid protein rather than the wild-type protein of 862 amino acids. This is supported by the fact that, although there is usually concordance between MLH1 and PMS2 expression, cells were immunohistochemically positive for MLH1, whereas PMS2 could not be immunohistochemically stained using an anti-C-terminal PMS2 antibody, or effective PMS2 mRNA degradation with NMD caused by the frameshift mutation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. The Installation Restoration Program Toxicology Guide. Volume 2

    DTIC Science & Technology

    1989-07-01

    producing substance. Carcinoma A malignant epithelial tumor. CAS REG NO Numeric designation assigned by the A.~’erican Chemical Socecty’s Chemica ...violent, exothermic, and capable of causing violent rupture of sealed containers. ABBREVIATIONS AB-I1 Polymerization A chemica reaction, usually carried...a deleterious effect on the taste and/or odor of human food derred from aquatic environments cannot be discharged into inland surface waters

  13. 76 FR 63443 - Endangered and Threatened Wildlife and Plants; 12-Month Finding on a Petition To List Northern...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... associated waste rock piles (Trout Unlimited 2011, p. 1). This water can cause deleterious effects to fishes... Vol. 76 Wednesday, No. 197 October 12, 2011 Part IV Department of the Interior Fish and Wildlife... INTERIOR Fish and Wildlife Service 50 CFR Part 17 [Docket No. FWS-R6-ES-2011-0092; MO 92210-0-0008-B2...

  14. Hypokalemia causing rhabdomyolysis in a patient with short bowel syndrome.

    PubMed

    Balhara, Kamna S; Highet, Bridget; Omron, Rodney

    2015-04-01

    Rhabdomyolysis, usually in the setting of trauma or drug use, is frequently seen in the emergency setting, and often leads to hyperkalemia at presentation. Hypokalemia, however, is a potentially underrecognized cause of rhabdomyolysis. We present a case of rhabdomyolysis likely due to hypokalemia in the setting of short bowel syndrome. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Although less common, hypokalemia can be a significant cause of rhabdomyolysis via its effects on muscle. This scenario should be considered in the differential diagnosis of patients at risk for hypokalemia who present with weakness. Rapid recognition of this relationship and rapid correction of hypokalemia may prove very important in preventing the deleterious effects of rhabdomyolysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Experiments on the role of deleterious mutations as stepping stones in adaptive evolution

    PubMed Central

    Covert, Arthur W.; Lenski, Richard E.; Wilke, Claus O.; Ofria, Charles

    2013-01-01

    Many evolutionary studies assume that deleterious mutations necessarily impede adaptive evolution. However, a later mutation that is conditionally beneficial may interact with a deleterious predecessor before it is eliminated, thereby providing access to adaptations that might otherwise be inaccessible. It is unknown whether such sign-epistatic recoveries are inconsequential events or an important factor in evolution, owing to the difficulty of monitoring the effects and fates of all mutations during experiments with biological organisms. Here, we used digital organisms to compare the extent of adaptive evolution in populations when deleterious mutations were disallowed with control populations in which such mutations were allowed. Significantly higher fitness levels were achieved over the long term in the control populations because some of the deleterious mutations served as stepping stones across otherwise impassable fitness valleys. As a consequence, initially deleterious mutations facilitated the evolution of complex, beneficial functions. We also examined the effects of disallowing neutral mutations, of varying the mutation rate, and of sexual recombination. Populations evolving without neutral mutations were able to leverage deleterious and compensatory mutation pairs to overcome, at least partially, the absence of neutral mutations. Substantially raising or lowering the mutation rate reduced or eliminated the long-term benefit of deleterious mutations, but introducing recombination did not. Our work demonstrates that deleterious mutations can play an important role in adaptive evolution under at least some conditions. PMID:23918358

  16. Experiments on the role of deleterious mutations as stepping stones in adaptive evolution.

    PubMed

    Covert, Arthur W; Lenski, Richard E; Wilke, Claus O; Ofria, Charles

    2013-08-20

    Many evolutionary studies assume that deleterious mutations necessarily impede adaptive evolution. However, a later mutation that is conditionally beneficial may interact with a deleterious predecessor before it is eliminated, thereby providing access to adaptations that might otherwise be inaccessible. It is unknown whether such sign-epistatic recoveries are inconsequential events or an important factor in evolution, owing to the difficulty of monitoring the effects and fates of all mutations during experiments with biological organisms. Here, we used digital organisms to compare the extent of adaptive evolution in populations when deleterious mutations were disallowed with control populations in which such mutations were allowed. Significantly higher fitness levels were achieved over the long term in the control populations because some of the deleterious mutations served as stepping stones across otherwise impassable fitness valleys. As a consequence, initially deleterious mutations facilitated the evolution of complex, beneficial functions. We also examined the effects of disallowing neutral mutations, of varying the mutation rate, and of sexual recombination. Populations evolving without neutral mutations were able to leverage deleterious and compensatory mutation pairs to overcome, at least partially, the absence of neutral mutations. Substantially raising or lowering the mutation rate reduced or eliminated the long-term benefit of deleterious mutations, but introducing recombination did not. Our work demonstrates that deleterious mutations can play an important role in adaptive evolution under at least some conditions.

  17. Genomic instability and bystander effects: a paradigm shift in radiation biology?

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2002-01-01

    A basic paradigm in radiobiology is that, following exposure to ionizing radiation, the deposition of energy in the cell nucleus and the resulting damage to DNA, the principal target, are responsible for the radiation's deleterious biological effects. Findings in two rapidly expanding fields of research--radiation-induced genomic instability and bystander effects--have caused us to reevaluate these central tenets. In this article, the potential influence of induced genomic instability and bystander effects on cellular injury after exposure to low-level radiation will be reviewed.

  18. The Prestige oil spill: a laboratory study about the toxicity of the water-soluble fraction of the fuel oil.

    PubMed

    Navas, José M; Babín, Mar; Casado, Susana; Fernández, Carlos; Tarazona, José V

    2006-07-01

    The Prestige oil spill caused severe effects on the coastal fauna and flora due to direct contact of organisms with the fuel oil. However, the water soluble fraction (WSF) of the fuel oil can also provoke deleterious effects in the long term and even in regions not directly affected by the spill. Our objective was to determine the toxicity of the WSF using a battery of laboratory toxicity tests. To obtain a WSF in the laboratory, a sample of the spilled fuel was mixed with adequate medium, sonicated, agitated and filtered. No cytotoxic effects were detected in RTG-2 cells exposed to the WSF. In an algae growth inhibition test (OECD test guideline 201) the WSF did not affect the growth of Chlorella vulgaris. Furthermore, acute and reproductive toxicity tests (OECD test guideline 202) carried out using Daphnia magna did not indicate any deleterious effect of the WSF. In a bioassay designed in our laboratory, D. magna were fed with algae previously exposed to the fuel, but no toxic effects were detected. However, the WSF was able to induce a dose-dependent increase of ethoxyresorufin-O-deethylase activity in RTG-2 cells, indicating the presence of chemicals that could cause sub-lethal effects to organisms. After chemical analyses it was established that the final total quantity of polyaromatic hydrocarbons dissolved in medium was approximately 70 ng/ml. These low concentrations explain the observed lack of toxicity.

  19. The Prospective Function of Curcumin Against the Negative Effects of Microgravity

    NASA Astrophysics Data System (ADS)

    Lewis, A.; Johnson, P.; Jejelowo, O. A.; Sodipe, A.; Shishodia, S.

    2010-04-01

    Microgravity has several deleterious effects on cells. These cells may exhibit an up-regulation or down-regulation of their gene expression. We are investigating the effects of the phytochemical curcumin on microgravity-induced deleterious effects.

  20. The role of the pediatrician in preventing congenital malformations.

    PubMed

    Brent, Robert L

    2011-10-01

    • The development of new knowledge and new diagnostic techniques and technology as well as the sophistication of epidemiology studies and maturation of the fields of clinical genetics and clinical teratology have revolutionized the field of reproductive and developmental biology.• Advances have enabled physicians and scientists to determine the causes of developmental abnormalities and, therefore, discover methods of prevention. The process of evaluation is based on the knowledge base developed over the past 50 years.• Although genetic abnormalities are responsible for a significant proportion of reproductive and developmental deleterious effects, a larger proportion of these effects are due to unknown causes.• Environmental causes are less frequent, although many of the environmental effects as well as many of the genetic effects can be prevented through genetic counseling and preconceptual planning. Effective treatment and amelioration of developmental effects also have improved.• More than 50 environmental drugs, chemicals, maternal diseases, infections, nutritional abnormalities, and physical agents can affect reproduction deleteriously and result in CMs.Theoretically, all these causes are preventable.• Throughout the developing world, the addition of folic acid and iodine could prevent tens of thousands of birth defects and developmental abnormalities.• In the United States, the opportunity for prevention can be introduced at the population level and by addressing individual patients’ clinical problems.• If a mother of a malformed infant had some type of exposure during pregnancy, such as a diagnostic radiologic examination or medication, the consulting physician should not support or suggest the possibility of a causal relationship before performing a complete evaluation. If a pregnant woman who has not yet delivered had some type of exposure during pregnancy, the consulting physician should not support or suggest the possibility that the fetus is at increased risk before performing a complete evaluation. • Every patient deserves a complete, scholarly evaluation that uses the basic principles of teratology and risk analysis.

  1. Heavy metals and living systems: An overview

    PubMed Central

    Singh, Reena; Gautam, Neetu; Mishra, Anurag; Gupta, Rajiv

    2011-01-01

    Heavy metals are natural constituents of the earth's crust, but indiscriminate human activities have drastically altered their geochemical cycles and biochemical balance. This results in accumulation of metals in plant parts having secondary metabolites, which is responsible for a particular pharmacological activity. Prolonged exposure to heavy metals such as cadmium, copper, lead, nickel, and zinc can cause deleterious health effects in humans. Molecular understanding of plant metal accumulation has numerous biotechnological implications also, the long term effects of which might not be yet known. PMID:21713085

  2. [Advanced glycation end products: A risk factor for human health].

    PubMed

    Wautier, M-P; Tessier, F J; Wautier, J-L

    2014-11-01

    Advanced glycation end products (AGE) result from a chemical reaction between the carbonyl group of reducing sugar and the nucleophilic NH2 of a free amino acid or a protein; lysine and arginine being the main reactive amino acids on proteins. Following this first step, a molecular rearrangement occurs, rearrangement of Amadori resulting to the formation of Maillard products. Glycation can cause the clouding of the lens by inducing reactions crosslinking proteins. Specialized receptors (RAGE, Galectin 3…) bind AGE. The binding to the receptor causes the formation of free radicals, which have a deleterious effect because they are powerful oxidizing agents, but also play the role of intracellular messenger, altering the cell functions. This is especially true at the level of endothelial cells: the attachment of AGE to RAGE receptor causes an increase in vascular permeability. AGE binding to endothelium RAGE and to monocytes-macrophages, led to the production of cytokines, growth factors, to the expression of adhesion molecules, and the production of procoagulant activity. Diabetic retinopathy is related to excessive secretion of vascular growth factor (vascular endothelial growth factor [VEGF]). AGE-RAGE receptor binding causes the synthesis and secretion of VEGF. Increased permeability, facilitation of leukocyte migration, the production of reactive oxygen species, cytokines and VEGF suggest that the AGE could be an element of a cascade of reactions responsible for the diabetic angiopathy and vascular damages observed during aging and chronic renal failure. Balanced diet or some drugs can limit the deleterious effect of AGE. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Protective role of caffeic acid on lambda cyhalothrin-induced changes in sperm characteristics and testicular oxidative damage in rats.

    PubMed

    Abdallah, Fatma Ben; Fetoui, Hamadi; Zribi, Nassira; Fakhfakh, Feiza; Keskes, Leila

    2012-08-01

    The synthetic pyrethroids are expected to cause deleterious effects on most of the organs and especially on the male reproductive system. The current study was performed to assess the adverse effect of lambda cyhalothrin (LC) on reproductive organs and fertility in male rats and to evaluate the protective role of caffeic acid phenethyl ester (CAPE) in alleviating the detrimental effect of LC on male fertility. A total of 48 male rats were divided into 4 groups (12 rats each): control group received distilled water ad libitum and 1 ml of vehicle solution given intraperitoneally (i.p.); CAPE-treated group received a single i.p. dose of CAPE (10 μmol kg⁻¹ day⁻¹); LC-treated group received 668 ppm of LC through drinking water; and CAPE + LC-treated group received an i.p. injection of CAPE (10 μmol kg⁻¹ day⁻¹) 12 h before the LC administration. The experiment was conducted for 10 consecutive weeks. LC caused a significant increase in testicular malondialdehyde, catalase, superoxide dismutase, glutathione-S-transferase activities, and sperm abnormalities and a significant reduction in testicular glutathione concentration, sperm count, sperm motility, and a live sperm percentage. Conversely, treatment with CAPE improved the reduction in the sperm characteristics, LC-induced oxidative damage of testes and the testicular histopathological alterations. Results indicate that LC exerts significant harmful effects on the male reproductive system and that CAPE reduced the deleterious effects of LC on male fertility.

  4. Betel nut chewing and its deleterious effects on oral cavity.

    PubMed

    Anand, Richa; Dhingra, Chandan; Prasad, Sumanth; Menon, Ipseeta

    2014-01-01

    The habit of chewing betel nut has a long history of use. Betel nut and products derived from it are widely used as a masticatory product among various communities and in several countries across the world. Over a long period, several additives have been added to a simple betel nut preparation; thus, creating the betel quid (BQ) and encompassing chewing tobacco in the preparation. Betel nut has deleterious effects on oral soft tissues. Its effects on dental caries and periodontal diseases, two major oral diseases are less well-documented. Betel-induced lichenoid lesions mainly on buccal mucosa have been reported at quid retained sites. In chronic chewers, a condition called betel chewers mucosa is often found where the quid is placed. Betel nut chewing is implicated in oral submucous fibrosis (OSF) and its use along with tobacco can cause leukoplakia, both of which are potentially malignant in the oral cavity. Oral cancer often arises from such precancerous changes. Thus, public health measures to quit betel use are recommended to control disabling conditions such as OSF and oral cancer.

  5. A glycogene mutation map for discovery of diseases of glycosylation

    PubMed Central

    Hansen, Lars; Lind-Thomsen, Allan; Joshi, Hiren J; Pedersen, Nis Borbye; Have, Christian Theil; Kong, Yun; Wang, Shengjun; Sparso, Thomas; Grarup, Niels; Vester-Christensen, Malene Bech; Schjoldager, Katrine; Freeze, Hudson H; Hansen, Torben; Pedersen, Oluf; Henrissat, Bernard; Mandel, Ulla; Clausen, Henrik; Wandall, Hans H; Bennett, Eric P

    2015-01-01

    Glycosylation of proteins and lipids involves over 200 known glycosyltransferases (GTs), and deleterious defects in many of the genes encoding these enzymes cause disorders collectively classified as congenital disorders of glycosylation (CDGs). Most known CDGs are caused by defects in glycogenes that affect glycosylation globally. Many GTs are members of homologous isoenzyme families and deficiencies in individual isoenzymes may not affect glycosylation globally. In line with this, there appears to be an underrepresentation of disease-causing glycogenes among these larger isoenzyme homologous families. However, genome-wide association studies have identified such isoenzyme genes as candidates for different diseases, but validation is not straightforward without biomarkers. Large-scale whole-exome sequencing (WES) provides access to mutations in, for example, GT genes in populations, which can be used to predict and/or analyze functional deleterious mutations. Here, we constructed a draft of a functional mutational map of glycogenes, GlyMAP, from WES of a rather homogenous population of 2000 Danes. We cataloged all missense mutations and used prediction algorithms, manual inspection and in case of carbohydrate-active enzymes family GT27 experimental analysis of mutations to map deleterious mutations. GlyMAP (http://glymap.glycomics.ku.dk) provides a first global view of the genetic stability of the glycogenome and should serve as a tool for discovery of novel CDGs. PMID:25267602

  6. Psychological sequelae of induced abortion.

    PubMed

    Romans-Clarkson, S E

    1989-12-01

    This article reviews the scientific literature on the psychological sequelae of induced abortion. The methodology and results of studies carried out over the last twenty-two years are examined critically. The unanimous consensus is that abortion does not cause deleterious psychological effects. Women most likely to show subsequent problems are those who were pressured into the operation against their own wishes, either by relatives or because their pregnancy had medical or foetal contraindications. Legislation which restricts abortion causes problems for women with unwanted pregnancies and their doctors. It is also unjust, as it adversely most affects lower socio-economic class women.

  7. Background Selection in Partially Selfing Populations

    PubMed Central

    Roze, Denis

    2016-01-01

    Self-fertilizing species often present lower levels of neutral polymorphism than their outcrossing relatives. Indeed, selfing automatically increases the rate of coalescence per generation, but also enhances the effects of background selection and genetic hitchhiking by reducing the efficiency of recombination. Approximations for the effect of background selection in partially selfing populations have been derived previously, assuming tight linkage between deleterious alleles and neutral loci. However, loosely linked deleterious mutations may have important effects on neutral diversity in highly selfing populations. In this article, I use a general method based on multilocus population genetics theory to express the effect of a deleterious allele on diversity at a linked neutral locus in terms of moments of genetic associations between loci. Expressions for these genetic moments at equilibrium are then computed for arbitrary rates of selfing and recombination. An extrapolation of the results to the case where deleterious alleles segregate at multiple loci is checked using individual-based simulations. At high selfing rates, the tight linkage approximation underestimates the effect of background selection in genomes with moderate to high map length; however, another simple approximation can be obtained for this situation and provides accurate predictions as long as the deleterious mutation rate is not too high. PMID:27075726

  8. NASA STD-4005: The LEO Spacecraft Charging Design Standard

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    2006-01-01

    Power systems with voltages higher than about 55 volts may charge in Low Earth Orbit (LEO) enough to cause destructive arcing. The NASA STD-4005 LEO Spacecraft Charging Design Standard will help spacecraft designers prevent arcing and other deleterious effects on LEO spacecraft. The Appendices, an Information Handbook based on the popular LEO Spacecraft Charging Design Guidelines by Ferguson and Hillard, serve as a useful explanation and accompaniment to the Standard.

  9. The Effect of an Extreme and Prolonged Population Bottleneck on Patterns of Deleterious Variation: Insights from the Greenlandic Inuit.

    PubMed

    Pedersen, Casper-Emil T; Lohmueller, Kirk E; Grarup, Niels; Bjerregaard, Peter; Hansen, Torben; Siegismund, Hans R; Moltke, Ida; Albrechtsen, Anders

    2017-02-01

    The genetic consequences of population bottlenecks on patterns of deleterious genetic variation in human populations are of tremendous interest. Based on exome sequencing of 18 Greenlandic Inuit we show that the Inuit have undergone a severe ∼20,000-year-long bottleneck. This has led to a markedly more extreme distribution of allele frequencies than seen for any other human population tested to date, making the Inuit the perfect population for investigating the effect of a bottleneck on patterns of deleterious variation. When comparing proxies for genetic load that assume an additive effect of deleterious alleles, the Inuit show, at most, a slight increase in load compared to European, East Asian, and African populations. Specifically, we observe <4% increase in the number of derived deleterious alleles in the Inuit. In contrast, proxies for genetic load under a recessive model suggest that the Inuit have a significantly higher load (20% increase or more) compared to other less bottlenecked human populations. Forward simulations under realistic models of demography support our empirical findings, showing up to a 6% increase in the genetic load for the Inuit population across all models of dominance. Further, the Inuit population carries fewer deleterious variants than other human populations, but those that are present tend to be at higher frequency than in other populations. Overall, our results show how recent demographic history has affected patterns of deleterious variants in human populations. Copyright © 2017 by the Genetics Society of America.

  10. Deleterious Mutations, Apparent Stabilizing Selection and the Maintenance of Quantitative Variation

    PubMed Central

    Kondrashov, A. S.; Turelli, M.

    1992-01-01

    Apparent stabilizing selection on a quantitative trait that is not causally connected to fitness can result from the pleiotropic effects of unconditionally deleterious mutations, because as N. Barton noted, ``... individuals with extreme values of the trait will tend to carry more deleterious alleles ....'' We use a simple model to investigate the dependence of this apparent selection on the genomic deleterious mutation rate, U; the equilibrium distribution of K, the number of deleterious mutations per genome; and the parameters describing directional selection against deleterious mutations. Unlike previous analyses, we allow for epistatic selection against deleterious alleles. For various selection functions and realistic parameter values, the distribution of K, the distribution of breeding values for a pleiotropically affected trait, and the apparent stabilizing selection function are all nearly Gaussian. The additive genetic variance for the quantitative trait is kQa(2), where k is the average number of deleterious mutations per genome, Q is the proportion of deleterious mutations that affect the trait, and a(2) is the variance of pleiotropic effects for individual mutations that do affect the trait. In contrast, when the trait is measured in units of its additive standard deviation, the apparent fitness function is essentially independent of Q and a(2); and β, the intensity of selection, measured as the ratio of additive genetic variance to the ``variance'' of the fitness curve, is very close to s = U/k, the selection coefficient against individual deleterious mutations at equilibrium. Therefore, this model predicts appreciable apparent stabilizing selection if s exceeds about 0.03, which is consistent with various data. However, the model also predicts that β must equal V(m)/V(G), the ratio of new additive variance for the trait introduced each generation by mutation to the standing additive variance. Most, although not all, estimates of this ratio imply apparent stabilizing selection weaker than generally observed. A qualitative argument suggests that even when direct selection is responsible for most of the selection observed on a character, it may be essentially irrelevant to the maintenance of variation for the character by mutation-selection balance. Simple experiments can indicate the fraction of observed stabilizing selection attributable to the pleiotropic effects of deleterious mutations. PMID:1427047

  11. Investigating the Structural Impacts of I64T and P311S Mutations in APE1-DNA Complex: A Molecular Dynamics Approach

    PubMed Central

    Doss, C. George Priya; NagaSundaram, N.

    2012-01-01

    Background Elucidating the molecular dynamic behavior of Protein-DNA complex upon mutation is crucial in current genomics. Molecular dynamics approach reveals the changes on incorporation of variants that dictate the structure and function of Protein-DNA complexes. Deleterious mutations in APE1 protein modify the physicochemical property of amino acids that affect the protein stability and dynamic behavior. Further, these mutations disrupt the binding sites and prohibit the protein to form complexes with its interacting DNA. Principal Findings In this study, we developed a rapid and cost-effective method to analyze variants in APE1 gene that are associated with disease susceptibility and evaluated their impacts on APE1-DNA complex dynamic behavior. Initially, two different in silico approaches were used to identify deleterious variants in APE1 gene. Deleterious scores that overlap in these approaches were taken in concern and based on it, two nsSNPs with IDs rs61730854 (I64T) and rs1803120 (P311S) were taken further for structural analysis. Significance Different parameters such as RMSD, RMSF, salt bridge, H-bonds and SASA applied in Molecular dynamic study reveals that predicted deleterious variants I64T and P311S alters the structure as well as affect the stability of APE1-DNA interacting functions. This study addresses such new methods for validating functional polymorphisms of human APE1 which is critically involved in causing deficit in repair capacity, which in turn leads to genetic instability and carcinogenesis. PMID:22384055

  12. Similarity of Deleterious Effects of Divorce on Chinese and American Children.

    ERIC Educational Resources Information Center

    Zhou, Zheng; Bray, Melissa A.; Kehle, Thomas J.; Xin, Tao

    2001-01-01

    Reviews and contrasts the effects of divorce on Chinese children's adjustment to American children of divorce. Results indicate that the deleterious effects of divorce on children's academic and social functioning appear to be similar to that experienced by American children. (Contains 23 references.) (GCP)

  13. Phase 2 Remedial Investigation Report Army Materials Technology Laboratory Task Order 1 Remedial Investigation/Feasibility Study, Volume 1

    DTIC Science & Technology

    1994-05-01

    River Sediments 5-5 5.2.7 Indoor Air 5-5 3 6 BASELINE RISK ASSESSMENT OF HUMAN HEALTH EFFECTS 6-1 5 6.1 Introduction 6-1 6.1.1 Approach 6-1 6.1.2 Scope 6...between the assumed daily intake of a substance and the maximum daily dose that could be incurred without deleterious health effects for all substances...considered) of 1.0 or less to be unlikely to cause any health effects . Metals concentrations were reported above background in shallow (less than 1 ft

  14. Sunlight decreased genotoxicity of azadirachtin on root tip cells of Allium cepa and Eucrosia bicolor.

    PubMed

    Kwankua, W; Sengsai, S; Kuleung, C; Euawong, N

    2010-07-01

    Utilization of neem plant (Azadirachta indica A. Juss) extract for pest control in agriculture has raised concerns over contamination by the residues to the environment. Such residues, particularly azadirachtin (Aza), may cause deleterious effect to non-target organisms. This investigation was conducted to find out if Aza could be inactivated through exposures to sunlight. Activity of Aza was assessed as its ability to cause cytotoxic and genotoxic effects in the forms of nuclei abnormality and chromosome aberration as measured by mitotic index (MI) and mitotic aberration (MA). Varying concentrations of Aza were tested on Allium cepa and Eucrosia bicolor. It was found that the MI of all root tip meristematic cells of A. cepa and E. bicolor treated with 0.00005%, 0.00010%, 0.00015%, and 0.00020% (w/v) Aza-containing neem extract for 24h, were significantly lower than the controls. Complementary to the lower levels of MI, the Aza-treated groups showed higher MA levels in all cases investigated. Furthermore, the decreasing levels of MI and the increasing levels of MA related well with the increasing concentration of Aza. Microscopic examination of root tip meristematic cells revealed that the anomaly found most often were mitotic disturbances and chromosomal bridges. Exposures of 0.00020% (w/v) Aza to sunlight for 3 days and 7 days decreased Aza ability to induce cytotoxicity and genotoxicity, both in terms of MI and MA, to root tip meristematic cells in A. cepa and E. bicolor. Photodegradation of Aza upon exposure to direct sunlight was confirmed by HPLC. The study implicates that Aza would unlikely cause long term deleterious effects to the environment since it would be inactivated by sunlight. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  15. The Use of ATP-MgC1(2) in the Treatment of Injury and Shock.

    DTIC Science & Technology

    1979-12-01

    not only have significance in terms of host defense against bacteremia but may also be associated with pulmonary changes which jeopardize the animals as...splenectomy may not only have deleterious effects in terms of host defense systems, but may also cause prolonged pulmonary changes which may jeopardize the...significance in terms of host defense against bacteremia but may also be associated with pulmonary changes which jeopardize the animal as well. B

  16. 4-Hydroxytamoxifen induces slight uncoupling of mitochondrial oxidative phosphorylation system in relation to the deleterious effects of tamoxifen.

    PubMed

    Cardoso, Carla M P; Moreno, António J M; Almeida, Leonor M; Custódio, José B A

    2002-10-15

    The use of tamoxifen (TAM) has been questioned on the chemotherapy and chemoprevention of breast cancer due to several estrogen receptor-independent cytotoxic effects. As an alternative, its more active metabolite 4-hydroxytamoxifen (OHTAM) has been proposed with presumed lower side effects. In this work, the potential OHTAM toxicity on rat liver mitochondrial bioenergetics in relation to the multiple deleterious effects of TAM was evaluated. OHTAM, at concentrations lower than those putatively reached in tissues following the administration of TAM, does not induce significant perturbations on the respiratory control ratio (RCR), ADP/O, transmembrane potential (DeltaPsi), phosphorylative capacity and membrane integrity of mitochondria. However, at high concentrations, OHTAM depresses the DeltaPsi, RCR and ADP/O, affecting the phosphorylation efficiency, as also inferred from the DeltaPsi fluctuations and pH changes associated with ADP phosphorylation. Moreover, OHTAM, at concentrations that stimulate the rate of state 4 respiration in parallel to the decrease in the DeltaPsi and phosphorylation rate, causes mitochondrial swelling and stimulates both ATPase and citrate synthase activities. However, the OHTAM-observed effects, at high concentrations, are not significant relatively to the damaging effects promoted by TAM and suggest alterations to mitochondrial functions due to proton leak across the mitochondrial inner membrane.

  17. The effects of sex-biased gene expression and X-linkage on rates of sequence evolution in Drosophila.

    PubMed

    Campos, José Luis; Johnston, Keira; Charlesworth, Brian

    2017-12-08

    A faster rate of adaptive evolution of X-linked genes compared with autosomal genes (the faster-X effect) can be caused by the fixation of recessive or partially recessive advantageous mutations. This effect should be largest for advantageous mutations that affect only male fitness, and least for mutations that affect only female fitness. We tested these predictions in Drosophila melanogaster by using coding and functionally significant non-coding sequences of genes with different levels of sex-biased expression. Consistent with theory, nonsynonymous substitutions in most male-biased and unbiased genes show faster adaptive evolution on the X. However, genes with very low recombination rates do not show such an effect, possibly as a consequence of Hill-Robertson interference. Contrary to expectation, there was a substantial faster-X effect for female-biased genes. After correcting for recombination rate differences, however, female-biased genes did not show a faster X-effect. Similar analyses of non-coding UTRs and long introns showed a faster-X effect for all groups of genes, other than introns of female-biased genes. Given the strong evidence that deleterious mutations are mostly recessive or partially recessive, we would expect a slower rate of evolution of X-linked genes for slightly deleterious mutations that become fixed by genetic drift. Surprisingly, we found little evidence for this after correcting for recombination rate, implying that weakly deleterious mutations are mostly close to being semidominant. This is consistent with evidence from polymorphism data, which we use to test how models of selection that assume semidominance with no sex-specific fitness effects may bias estimates of purifying selection. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Analysing the Effect of Mutation on Protein Function and Discovering Potential Inhibitors of CDK4: Molecular Modelling and Dynamics Studies

    PubMed Central

    N, Nagasundaram; Zhu, Hailong; Liu, Jiming; V, Karthick; C, George Priya Doss; Chakraborty, Chiranjib; Chen, Luonan

    2015-01-01

    The cyclin-dependent kinase 4 (CDK4)-cyclin D1 complex plays a crucial role in the transition from the G1 phase to S phase of the cell cycle. Among the CDKs, CDK4 is one of the genes most frequently affected by somatic genetic variations that are associated with various forms of cancer. Thus, because the abnormal function of the CDK4-cyclin D1 protein complex might play a vital role in causing cancer, CDK4 can be considered a genetically validated therapeutic target. In this study, we used a systematic, integrated computational approach to identify deleterious nsSNPs and predict their effects on protein-protein (CDK4-cyclin D1) and protein-ligand (CDK4-flavopiridol) interactions. This analysis resulted in the identification of possible inhibitors of mutant CDK4 proteins that bind the conformations induced by deleterious nsSNPs. Using computational prediction methods, we identified five nsSNPs as highly deleterious: R24C, Y180H, A205T, R210P, and R246C. From molecular docking and molecular dynamic studies, we observed that these deleterious nsSNPs affected CDK4-cyclin D1 and CDK4-flavopiridol interactions. Furthermore, in a virtual screening approach, the drug 5_7_DIHYDROXY_ 2_ (3_4_5_TRI HYDROXYPHENYL) _4H_CHROMEN_ 4_ONE displayed good binding affinity for proteins with the mutations R24C or R246C, the drug diosmin displayed good binding affinity for the protein with the mutation Y180H, and the drug rutin displayed good binding affinity for proteins with the mutations A205T and R210P. Overall, this computational investigation of the CDK4 gene highlights the link between genetic variation and biological phenomena in human cancer and aids in the discovery of molecularly targeted therapies for personalized treatment. PMID:26252490

  19. Social management of laboratory rhesus macaques housed in large groups using a network approach: A review.

    PubMed

    McCowan, Brenda; Beisner, Brianne; Hannibal, Darcy

    2017-12-07

    Biomedical facilities across the nation and worldwide aim to develop cost-effective methods for the reproductive management of macaque breeding groups, typically by housing macaques in large, multi-male multi-female social groups that provide monkey subjects for research as well as appropriate socialization for their psychological well-being. One of the most difficult problems in managing socially housed macaques is their propensity for deleterious aggression. From a management perspective, deleterious aggression (as opposed to less intense aggression that serves to regulate social relationships) is undoubtedly the most problematic behavior observed in group-housed macaques, which can readily escalate to the degree that it causes social instability, increases serious physical trauma leading to group dissolution, and reduces psychological well-being. Thus for both welfare and other management reasons, aggression among rhesus macaques at primate centers and facilities needs to be addressed with a more proactive approach.Management strategies need to be instituted that maximize social housing while also reducing problematic social aggression due to instability using efficacious methods for detection and prevention in the most cost effective manner. Herein we review a new proactive approach using social network analysis to assess and predict deleterious aggression in macaque groups. We discovered three major pathways leading to instability, such as unusually high rates and severity of trauma and social relocations.These pathways are linked either directly or indirectly to network structure in rhesus macaque societies. We define these pathways according to the key intrinsic and extrinsic variables (e.g., demographic, genetic or social factors) that influence network and behavioral measures of stability (see Fig. 1). They are: (1) presence of natal males, (2) matrilineal genetic fragmentation, and (3) the power structure and conflict policing behavior supported by this power structure. We discuss how these three major pathways leading to greater understanding and predictability of deleterious aggression in macaque social groups. Copyright © 2017. Published by Elsevier B.V.

  20. High genetic load in the Pacific oyster Crassostrea gigas.

    PubMed Central

    Launey, S; Hedgecock, D

    2001-01-01

    The causes of inbreeding depression and the converse phenomenon of heterosis or hybrid vigor remain poorly understood despite their scientific and agricultural importance. In bivalve molluscs, related phenomena, marker-associated heterosis and distortion of marker segregation ratios, have been widely reported over the past 25 years. A large load of deleterious recessive mutations could explain both phenomena, according to the dominance hypothesis of heterosis. Using inbred lines derived from a natural population of Pacific oysters and classical crossbreeding experiments, we compare the segregation ratios of microsatellite DNA markers at 6 hr and 2-3 months postfertilization in F(2) or F(3) hybrid families. We find evidence for strong and widespread selection against identical-by-descent marker homozygotes. The marker segregation data, when fit to models of selection against linked deleterious recessive mutations and extrapolated to the whole genome, suggest that the wild founders of inbred lines carried a minimum of 8-14 highly deleterious recessive mutations. This evidence for a high genetic load strongly supports the dominance theory of heterosis and inbreeding depression and establishes the oyster as an animal model for understanding the genetic and physiological causes of these economically important phenomena. PMID:11560902

  1. Transporter Protein-Coupled DPCPX Nanoconjugates Induce Diaphragmatic Recovery after SCI by Blocking Adenosine A1 Receptors.

    PubMed

    Minic, Zeljka; Zhang, Yanhua; Mao, Guangzhao; Goshgarian, Harry G

    2016-03-23

    Respiratory complications in patients with spinal cord injury (SCI) are common and have a negative impact on the quality of patients' lives. Systemic administration of drugs that improve respiratory function often cause deleterious side effects. The present study examines the applicability of a novel nanotechnology-based drug delivery system, which induces recovery of diaphragm function after SCI in the adult rat model. We developed a protein-coupled nanoconjugate to selectively deliver by transsynaptic transport small therapeutic amounts of an A1 adenosine receptor antagonist to the respiratory centers. A single administration of the nanoconjugate restored 75% of the respiratory drive at 0.1% of the systemic therapeutic drug dose. The reduction of the systemic dose may obviate the side effects. The recovery lasted for 4 weeks (the longest period studied). These findings have translational implications for patients with respiratory dysfunction after SCI. The leading causes of death in humans following SCI are respiratory complications secondary to paralysis of respiratory muscles. Systemic administration of methylxantines improves respiratory function but also leads to the development of deleterious side effects due to actions of the drug on nonrespiratory sites. The importance of the present study lies in the novel drug delivery approach that uses nanotechnology to selectively deliver recovery-inducing drugs to the respiratory centers exclusively. This strategy allows for a reduction in the therapeutic drug dose, which may reduce harmful side effects and markedly improve the quality of life for SCI patients. Copyright © 2016 the authors 0270-6474/16/363441-12$15.00/0.

  2. Are There Deleterious Cardiac Effects of Acute and Chronic Endurance Exercise?

    PubMed Central

    Eijsvogels, Thijs M. H.; Fernandez, Antonio B.; Thompson, Paul D.

    2015-01-01

    Multiple epidemiological studies document that habitual physical activity reduces the risk of atherosclerotic cardiovascular disease (ASCVD), and most demonstrate progressively lower rates of ASCVD with progressively more physical activity. Few studies have included individuals performing high-intensity, lifelong endurance exercise, however, and recent reports suggest that prodigious amounts of exercise may increase markers for, and even the incidence of, cardiovascular disease. This review examines the evidence that extremes of endurance exercise may increase cardiovascular disease risk by reviewing the causes and incidence of exercise-related cardiac events, and the acute effects of exercise on cardiovascular function, the effect of exercise on cardiac biomarkers, including “myocardial” creatine kinase, cardiac troponins, and cardiac natriuretic peptides. This review also examines the effect of exercise on coronary atherosclerosis and calcification, the frequency of atrial fibrillation in aging athletes, and the possibility that exercise may be deleterious in individuals genetically predisposed to such cardiac abnormalities as long QT syndrome, right ventricular cardiomyopathy, and hypertrophic cardiomyopathy. This review is to our knowledge unique because it addresses all known potentially adverse cardiovascular effects of endurance exercise. The best evidence remains that physical activity and exercise training benefit the population, but it is possible that prolonged exercise and exercise training can adversely affect cardiac function in some individuals. This hypothesis warrants further examination. PMID:26607287

  3. Optimal physiological structure of small neurons to guarantee stable information processing

    NASA Astrophysics Data System (ADS)

    Zeng, S. Y.; Zhang, Z. Z.; Wei, D. Q.; Luo, X. S.; Tang, W. Y.; Zeng, S. W.; Wang, R. F.

    2013-02-01

    Spike is the basic element for neuronal information processing and the spontaneous spiking frequency should be less than 1 Hz for stable information processing. If the neuronal membrane area is small, the frequency of neuronal spontaneous spiking caused by ion channel noise may be high. Therefore, it is important to suppress the deleterious spontaneous spiking of the small neurons. We find by simulation of stochastic neurons with Hodgkin-Huxley-type channels that the leakage system is critical and extremely efficient to suppress the spontaneous spiking and guarantee stable information processing of the small neurons. However, within the physiological limit the potassium system cannot do so. The suppression effect of the leakage system is super-exponential, but that of the potassium system is quasi-linear. With the minor physiological cost and the minimal consumption of metabolic energy, a slightly lower reversal potential and a relatively larger conductance of the leakage system give the optimal physiological structure to suppress the deleterious spontaneous spiking and guarantee stable information processing of small neurons, dendrites and axons.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szovenyi, Peter; Shaw, Jon; Yang, Xiaohan

    In diploid organisms, selfing reduces the efficiency of selection in removing deleterious mutations from a population. This need not be the case for all organisms. Some plants, for example, undergo an extreme form of selfing known as intragametophytic selfing, which immediately exposes all recessive deleterious mutations in a parental genome to selective purging. Here we ask how effectively deleterious mutations are removed from such plants. Specifically, we study the extent to which deleterious mutations accumulate in a predominantly selfing and a predominantly outcrossing pair of moss species, using genome-wide transcriptome data. We find that the selfing species purge significantly moremore » non-synonymous mutations, as well as a greater proportion of radical amino acid changes which alter physicochemical properties of amino acids. Moreover, their purging of deleterious mutation is especially strong in conserved regions of protein-coding genes. Our observations show that selfing need not impede but can even accelerate the removal of deleterious mutations, and do so on a genome-wide scale.« less

  5. The effects of a deleterious mutation load on patterns of influenza A/H3N2's antigenic evolution in humans

    PubMed Central

    Koelle, Katia; Rasmussen, David A

    2015-01-01

    Recent phylogenetic analyses indicate that RNA virus populations carry a significant deleterious mutation load. This mutation load has the potential to shape patterns of adaptive evolution via genetic linkage to beneficial mutations. Here, we examine the effect of deleterious mutations on patterns of influenza A subtype H3N2's antigenic evolution in humans. By first analyzing simple models of influenza that incorporate a mutation load, we show that deleterious mutations, as expected, act to slow the virus's rate of antigenic evolution, while making it more punctuated in nature. These models further predict three distinct molecular pathways by which antigenic cluster transitions occur, and we find phylogenetic patterns consistent with each of these pathways in influenza virus sequences. Simulations of a more complex phylodynamic model further indicate that antigenic mutations act in concert with deleterious mutations to reproduce influenza's spindly hemagglutinin phylogeny, co-circulation of antigenic variants, and high annual attack rates. DOI: http://dx.doi.org/10.7554/eLife.07361.001 PMID:26371556

  6. Mineralocorticoid receptor activation causes cerebral vessel remodeling and exacerbates the damage caused by cerebral ischemia.

    PubMed

    Dorrance, Anne M; Rupp, Nikki C; Nogueira, Edson F

    2006-03-01

    Mineralocorticoid receptor antagonists protect against ischemic cerebrovascular disease; this appears to be caused by changes in cerebral vessel structure that would promote blood flow. Therefore, we hypothesized that mineralocorticoid receptor activation with deoxycorticosterone acetate would cause deleterious remodeling of the cerebral vasculature and exacerbate the damage caused by cerebral ischemia. Six-week-old male Wistar rats were treated with deoxycorticosterone acetate (200 mg/kg) for 6 weeks. At 12 weeks of age, the deoxycorticosterone acetate-treated rats had elevated systolic blood pressure compared with age-matched controls (157+/-5.9 versus 124+/-3.1 mm Hg deoxycorticosterone acetate versus control; P<0.05). The area of ischemic damage resulting from middle cerebral artery occlusion was greater in the deoxycorticosterone acetate-treated rats than control (63.5+/-3.72 versus 46.6+/-5.52% of the hemisphere infarcted, deoxycorticosterone acetate versus control; P<0.05). Middle cerebral artery structure was assessed using a pressurized arteriograph under calcium-free conditions. Over a range of intralumenal pressures, the lumen and ODs of the middle cerebral arteries were smaller in the deoxycorticosterone acetate-treated rats than the control rats (P<0.05). There was also an increase in the wall thickness and wall:lumen ratio in the vessels from deoxycorticosterone acetate-treated rats (P<0.05). The vessels from the deoxycorticosterone acetate-treated rats were stiffer than those from control rats as evidenced by a leftward shift in the stress/strain curve. These novel data suggest that mineralocorticoid receptor activation without salt loading and nephrectomy is sufficient to elicit deleterious effects on the cerebral vasculature that lead to inward hypertrophic remodeling and an increase in the ischemic damage in the event of a stroke.

  7. Pathway to neural resilience: Self-esteem buffers against deleterious effects of poverty on the hippocampus.

    PubMed

    Wang, Yinan; Zhang, Lin; Kong, Xiangzhen; Hong, Yingyi; Cheon, Bobby; Liu, Jia

    2016-11-01

    Human neuroimaging studies have shown that people living in poverty tend to suffer hippocampal atrophy, which leads to impaired memory and learning throughout life. However, behavioral studies demonstrate that poor people with high self-esteem are often exempt from the deleterious effect of poverty and instead possess a happy and successful life. Here we investigated whether high self-esteem can buffer against the deleterious effects of poverty, as indicated by low subjective socioeconomic status (SSS), on the hippocampal gray matter volume (GMV) in a large cohort of young participants (N = 280). As expected, findings revealed that although low (vs. high) SSS was linked with a smaller hippocampal GMV, the deleterious effect of low SSS on hippocampal GMV was alleviated when the participants have high self-esteem. Commonality analyses further confirmed this observation. The current study suggests that positive psychological resources such as self-esteem may provide protection for the hippocampal atrophy in adversity. Hum Brain Mapp 37:3757-3766, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Cushing’s Syndrome: All variants, detection, and treatment

    PubMed Central

    Sharma, Susmeeta T.; Nieman, Lynnette K.

    2010-01-01

    Synopsis Cushing’s syndrome is caused by prolonged exposure to excess glucocorticoids. Diagnosis of Cushing’s syndrome involves a step-wise approach and establishing the cause can be challenging in some cases. Hypertension is present in about 80% of patients with Cushing’s syndrome and can lead to significant morbidity and mortality. Several pathogenic mechanisms have been proposed for glucocorticoid-induced hypertension including a functional mineralocorticoid excess state, up-regulation of the renin angiotensin system and deleterious effects of cortisol on the vasculature. Surgical excision of the cause of excess glucocorticoids remains the optimal treatment for Cushing’s syndrome. Anti-glucocorticoid and antihypertensive agents and steroidogenesis inhibitors can be used as adjunctive treatment modalities in preparation for surgery, and in cases where surgery is contraindicated or has not led to cure. PMID:21565673

  9. Accumulation of Spontaneous Mutations in the Ciliate Tetrahymena thermophila

    PubMed Central

    Long, Hong-An; Paixão, Tiago; Azevedo, Ricardo B. R.; Zufall, Rebecca A.

    2013-01-01

    Knowledge of the rate and fitness effects of mutations is essential for understanding the process of evolution. Mutations are inherently difficult to study because they are rare and are frequently eliminated by natural selection. In the ciliate Tetrahymena thermophila, mutations can accumulate in the germline genome without being exposed to selection. We have conducted a mutation accumulation (MA) experiment in this species. Assuming that all mutations are deleterious and have the same effect, we estimate that the deleterious mutation rate per haploid germline genome per generation is U = 0.0047 (95% credible interval: 0.0015, 0.0125), and that germline mutations decrease fitness by s = 11% when expressed in a homozygous state (95% CI: 4.4%, 27%). We also estimate that deleterious mutations are partially recessive on average (h = 0.26; 95% CI: –0.022, 0.62) and that the rate of lethal mutations is <10% of the deleterious mutation rate. Comparisons between the observed evolutionary responses in the germline and somatic genomes and the results from individual-based simulations of MA suggest that the two genomes have similar mutational parameters. These are the first estimates of the deleterious mutation rate and fitness effects from the eukaryotic supergroup Chromalveolata and are within the range of those of other eukaryotes. PMID:23934880

  10. Somatic deleterious mutation rate in a woody plant: estimation from phenotypic data

    PubMed Central

    Bobiwash, K; Schultz, S T; Schoen, D J

    2013-01-01

    We conducted controlled crosses in populations of the long-lived clonal shrub, Vaccinium angustifolium (lowbush blueberry) to estimate inbreeding depression and mutation parameters associated with somatic deleterious mutation. Inbreeding depression level was high, with many plants failing to set fruit after self-pollination. We also compared fruit set from autogamous pollinations (pollen collected from within the same inflorescence) with fruit set from geitonogamous pollinations (pollen collected from the same plant but from inflorescences separated by several meters of branch growth). The difference between geitonogamous versus autogamous fitness within single plants is referred to as ‘autogamy depression' (AD). AD can be caused by somatic deleterious mutation. AD was significantly different from zero for fruit set. We developed a maximum-likelihood procedure to estimate somatic mutation parameters from AD, and applied it to geitonogamous and autogamous fruit set data from this experiment. We infer that, on average, approximately three sublethal, partially dominant somatic mutations exist within the crowns of the plants studied. We conclude that somatic mutation in this woody plant results in an overall genomic deleterious mutation rate that exceeds the rate measured to date for annual plants. Some implications of this result for evolutionary biology and agriculture are discussed. PMID:23778990

  11. Broad phenotypes in heterozygous NR5A1 46,XY patients with a disorder of sex development: an oligogenic origin?

    PubMed

    Camats, Núria; Fernández-Cancio, Mónica; Audí, Laura; Schaller, André; Flück, Christa E

    2018-06-11

    SF-1/NR5A1 is a transcriptional regulator of adrenal and gonadal development. NR5A1 disease-causing variants cause disorders of sex development (DSD) and adrenal failure, but most affected individuals show a broad DSD/reproductive phenotype only. Most NR5A1 variants show in vitro pathogenic effects, but not when tested in heterozygote state together with wild-type NR5A1 as usually seen in patients. Thus, the genotype-phenotype correlation for NR5A1 variants remains an unsolved question. We analyzed heterozygous 46,XY SF-1/NR5A1 patients by whole exome sequencing and used an algorithm for data analysis based on selected project-specific DSD- and SF-1-related genes. The variants detected were evaluated for their significance in literature, databases and checked in silico using webtools. We identified 19 potentially deleterious variants (one to seven per patient) in 18 genes in four 46,XY DSD subjects carrying heterozygous NR5A1 disease-causing variants. We constructed a scheme of all these hits within the landscape of currently known genes involved in male sex determination and differentiation. Our results suggest that the broad phenotype in these heterozygous NR5A1 46,XY DSD subjects may well be explained by an oligogenic mode of inheritance, in which multiple hits, individually non-deleterious, may contribute to a DSD phenotype unique to each heterozygous SF-1/NR5A1 individual.

  12. Economic growth and mortality: do social protection policies matter?

    PubMed

    Bilal, Usama; Cooper, Richard; Abreu, Francis; Nau, Claudia; Franco, Manuel; Glass, Thomas A

    2017-08-01

    In the 20th century, periods of macroeconomic growth have been associated with increases in population mortality. Factors that cause or mitigate this association are not well understood. Evidence suggests that social policy may buffer the deleterious impact of economic growth. We sought to explore associations between changing unemployment (as a proxy for economic change) and trends in mortality over 30 years in the context of varying social protection expenditures. We model change in all-cause mortality in 21 OECD (Organization for Economic Cooperation and Development) countries from 1980 to 2010. Data from the Comparative Welfare States Data Set and the WHO Mortality Database were used. A decrease in the unemployment rate was used as a proxy for economic growth and age-adjusted mortality rates as the outcome. Social protection expenditure was measured as percentage of gross domestic product expended. A 1% decrease in unemployment (i.e. the proxy for economic growth) was associated with a 0.24% increase in the overall mortality rate (95% confidence interval: 0.07;0.42) in countries with no changes in social protection. Reductions in social protection expenditure strengthened this association between unemployment and mortality. The magnitude of the association was diminished over time. Our results are consistent with the hypothesis that social protection policies that accompany economic growth can mitigate its potential deleterious effects on health. Further research should identify specific policies that are most effective. © The Author 2017; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association

  13. The Effect of Cannabis on the Brain: Can it cause brain anomalies that lead to increased risk for Schizophrenia?

    PubMed Central

    DeLisi, Lynn E.

    2015-01-01

    Purpose of This Review This review explores what is known about cannabis’s association with schizophrenia, cannabis’s effects on the brain, and whether the brain changes known to be present in schizophrenia could be caused by cannabis and thus lead to a psychosis. Recent Findings The heavy use of cannabis is known to be associated with some adverse consequences, such as the occurrence of acute psychotic episodes and the development of chronic schizophrenia in some people even after its use has terminated. Recent studies have produced controversy about whether cannabis in heavy use can cause irreversible brain damage, particularly to adolescents and thus, whether a chronic psychosis could be a result of brain changes caused by cannabis. Summary From the evidence that exists, it appears that the above view is unlikely and that cannabis may even have benign effects on brain structure, not producing deleterious damage. However, its neurochemical interactions with the dopaminergic pathway may, particularly in genetically vulnerable individuals, have adverse consequences. PMID:18332661

  14. Methamphetamine induces apoptosis in immortalized neural cells: protection by the proto-oncogene, bcl-2.

    PubMed

    Cadet, J L; Ordonez, S V; Ordonez, J V

    1997-02-01

    Methamphetamine (METH) is an amphetamine analog that produces degeneration of the dopaminergic system in mammals. The neurotoxic effects of the drug are thought to be mediated by oxygen-based free radicals. In the present report, we have used immortalized neural cells obtained from rat mesencephalon in order to further assess the role of oxidative stress in METH-induced neurotoxicity. We thus tested if the anti-death proto-oncogene, bcl-2 could protect against METH-induced cytotoxicity. METH caused dose-dependent loss of cellular viability in control cells while bcl-2-expressing cells were protected against these deleterious effects. Using flow cytometry, immunofluorescent staining, and DNA electrophoresis, we also show that METH exposure can cause DNA strand breaks, chromatin condensation, nuclear fragmentation, and DNA laddering. All these changes were prevented by bcl-2 expression. These observations provide further support for the involvement of oxidative stress in the toxic effects of amphetamine analogs. They also document that METH-induced cytotoxicity is secondary to apoptosis. These findings may be of relevance to the cause(s) of Parkinson's disease which involves degeneration of the nigrostriatal dopaminergic pathway.

  15. Sexual selection on spontaneous mutations strengthens the between-sex genetic correlation for fitness.

    PubMed

    Allen, Scott L; McGuigan, Katrina; Connallon, Tim; Blows, Mark W; Chenoweth, Stephen F

    2017-10-01

    A proposed benefit to sexual selection is that it promotes purging of deleterious mutations from populations. For this benefit to be realized, sexual selection, which is usually stronger on males, must purge mutations deleterious to both sexes. Here, we experimentally test the hypothesis that sexual selection on males purges deleterious mutations that affect both male and female fitness. We measured male and female fitness in two panels of spontaneous mutation-accumulation lines of the fly, Drosophila serrata, each established from a common ancestor. One panel of mutation accumulation lines limited both natural and sexual selection (LS lines), whereas the other panel limited natural selection, but allowed sexual selection to operate (SS lines). Although mutation accumulation caused a significant reduction in male and female fitness in both the LS and SS lines, sexual selection had no detectable effect on the extent of the fitness reduction. Similarly, despite evidence of mutational variance for fitness in males and females of both treatments, sexual selection had no significant impact on the amount of mutational genetic variance for fitness. However, sexual selection did reshape the between-sex correlation for fitness: significantly strengthening it in the SS lines. After 25 generations, the between-sex correlation for fitness was positive but considerably less than one in the LS lines, suggesting that, although most mutations had sexually concordant fitness effects, sex-limited, and/or sex-biased mutations contributed substantially to the mutational variance. In the SS lines this correlation was strong and could not be distinguished from unity. Individual-based simulations that mimick the experimental setup reveal two conditions that may drive our results: (1) a modest-to-large fraction of mutations have sex-limited (or highly sex-biased) fitness effects, and (2) the average fitness effect of sex-limited mutations is larger than the average fitness effect of mutations that affect both sexes similarly. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  16. Effects of a single dose of menadione on the intestinal calcium absorption and associated variables.

    PubMed

    Marchionatti, Ana M; Díaz de Barboza, Gabriela E; Centeno, Viviana A; Alisio, Arturo E; Tolosa de Talamoni, Nori G

    2003-08-01

    The effect of a single large dose of menadione on intestinal calcium absorption and associated variables was investigated in chicks fed a normal diet. The data show that 2.5 micro mol of menadione/kg of b.w. causes inhibition of calcium transfer from lumen-to-blood within 30 min. This effect seems to be related to oxidative stress provoked by menadione as judged by glutathione depletion and an increment in the total carbonyl group content produced at the same time. Two enzymes presumably involved in calcium transcellular movement, such as alkaline phosphatase, located in the brush border membrane, and Ca(2+)- pump ATPase, which sits in the basolateral membrane, were also inhibited. The enzyme inhibition could be due to alterations caused by the appearance of free hydroxyl groups, which are triggered by glutathione depletion. Addition of glutathione monoester to the duodenal loop caused reversion of the menadione effect on both intestinal calcium absorption and alkaline phosphatase activity. In conclusion, menadione shifts the balance of oxidative and reductive processes in the enterocyte towards oxidation causing deleterious effects on intestinal Ca(2+) absorption and associated variables, which could be prevented by administration of oral glutathione monoester.

  17. Episodic weakness due to mitochondrial DNA MT-ATP6/8 mutations.

    PubMed

    Auré, Karine; Dubourg, Odile; Jardel, Claude; Clarysse, Lucie; Sternberg, Damien; Fournier, Emmanuel; Laforêt, Pascal; Streichenberger, Nathalie; Petiot, Philippe; Gervais-Bernard, Hélène; Vial, Christophe; Bedat-Millet, Anne-Laure; Drouin-Garraud, Valérie; Bouillaud, Frédéric; Vandier, Christophe; Fontaine, Bertrand; Lombès, Anne

    2013-11-19

    To report that homoplasmic deleterious mutations in the mitochondrial DNA MT-ATP6/8 genes may be responsible for acute episodes of limb weakness mimicking periodic paralysis due to channelopathies and dramatically responding to acetazolamide. Mitochondrial DNA sequencing and restriction PCR, oxidative phosphorylation functional assays, reactive oxygen species metabolism, and patch-clamp technique in cultured skin fibroblasts. Occurrence of a typical MELAS (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) syndrome in a single member of a large pedigree with episodic weakness associated with a later-onset distal motor neuropathy led to the disclosure of 2 deleterious mitochondrial DNA mutations. The MT-ATP6 m.9185T>C p.Leu220Pro mutation, previously associated with Leigh syndrome, was present in all family members, while the MT-TL1 m.3271T>C mutation, a known cause of MELAS syndrome, was observed in the sole patient with MELAS presentation. Significant defect of complexes V and I as well as oxidative stress were observed in both primary fibroblasts and cybrid cells with 100% m.9185T>C mutation. Permanent plasma membrane depolarization and altered permeability to K(+) in fibroblasts provided a link with the paralysis episodes. Screening of 9 patients, based on their clinical phenotype, identified 4 patients with similar deleterious MT-ATP6 mutations (twice m.9185T>C and once m.9176T>C or m.8893T>C). A fifth patient presented with an original potentially deleterious MT-ATP8 mutation (m.8403T>C). All mutations were associated with almost-normal complex V activity but significant oxidative stress and permanent plasma membrane depolarization. Homoplasmic mutations in the MT-ATP6/8 genes may cause episodic weakness responding to acetazolamide treatment.

  18. R-loop-mediated genomic instability is caused by impairment of replication fork progression

    PubMed Central

    Gan, Wenjian; Guan, Zhishuang; Liu, Jie; Gui, Ting; Shen, Keng; Manley, James L.; Li, Xialu

    2011-01-01

    Transcriptional R loops are anomalous RNA:DNA hybrids that have been detected in organisms from bacteria to humans. These structures have been shown in eukaryotes to result in DNA damage and rearrangements; however, the mechanisms underlying these effects have remained largely unknown. To investigate this, we first show that R-loop formation induces chromosomal DNA rearrangements and recombination in Escherichia coli, just as it does in eukaryotes. More importantly, we then show that R-loop formation causes DNA replication fork stalling, and that this in fact underlies the effects of R loops on genomic stability. Strikingly, we found that attenuation of replication strongly suppresses R-loop-mediated DNA rearrangements in both E. coli and HeLa cells. Our findings thus provide a direct demonstration that R-loop formation impairs DNA replication and that this is responsible for the deleterious effects of R loops on genome stability from bacteria to humans. PMID:21979917

  19. Effects of plant phenols of performance of southern armyworm larvae.

    PubMed

    Lindroth, R L; Peterson, S S

    1988-03-01

    We evaluated the effects of two classes of phenols on performance of penultimate instar southern armyworms, Spodoptera eridania. One class consisted of phenols containing a catechol (ortho-dihydroxybenzene) moiety and included chlorogenic acid, quercetin, rutin, and rhamnetin. A second group consisted of the phenolic glycoside salicin and its derivatives salicortin and tremulacin. The compounds were painted onto lima bean (Phaseolus lunatus) leaves and fed to larvae for the duration of the fifth instar. Chlorogenic acid and rhamnetin had no deleterious effects; rutin and quercetin caused some mortality and rutin reduced growth rates by decreasing consumption and digestion efficiency. Results showed that ortho-dihydroxybenzene groups may be necessary, but are not sufficient for biological activity. Salicin did not affect larvae; salicortin and tremulacin reduced growth rates primarily by decreasing consumption. These two compounds also caused degenerative lesions in midgut tissues. The presence of a benzoyl ester group in tremulacin accentuates its toxicity, relative to that of salicortin.

  20. Antiproliferative and apoptosis-inducing activity of an oxidovanadium(IV) complex with the flavonoid silibinin against osteosarcoma cells.

    PubMed

    Leon, I E; Porro, V; Di Virgilio, A L; Naso, L G; Williams, P A M; Bollati-Fogolín, M; Etcheverry, S B

    2014-01-01

    Flavonoids are a large family of polyphenolic compounds synthesized by plants. They display interesting biological effects mainly related to their antioxidant properties. On the other hand, vanadium compounds also exhibit different biological and pharmacological effects in cell culture and in animal models. Since coordination of ligands to metals can improve or change the pharmacological properties, we report herein, for the first time, a detailed study of the mechanisms of action of an oxidovanadium(IV) complex with the flavonoid silibinin, Na2[VO(silibinin)2]·6H2O (VOsil), in a model of the human osteosarcoma derived cell line MG-63. The complex inhibited the viability of osteosarcoma cells in a dose-dependent manner with a greater potency than that of silibinin and oxidovanadium(IV) (p < 0.01), demonstrating the benefit of complexation. Cytotoxicity and genotoxicity studies also showed a concentration effect for VOsil. The increase in the levels of reactive oxygen species and the decrease of the ratio of the amount of reduced glutathione to the amount of oxidized glutathione were involved in the deleterious effects of the complex. Besides, the complex caused cell cycle arrest and activated caspase 3, triggering apoptosis as determined by flow cytometry. As a whole, these results show the main mechanisms of the deleterious effects of VOsil in the osteosarcoma cell line, demonstrating that this complex is a promising compound for cancer treatments.

  1. Lay Understanding of the Causes of Binge Drinking in the United Kingdom and Australia: A Network Diagram Approach

    ERIC Educational Resources Information Center

    Keatley, David A.; Ferguson, Eamonn; Lonsdale, Adam; Hagger, Martin S.

    2017-01-01

    Binge drinking is associated with deleterious health, social and economic outcomes. This study explored the lay understanding of the causes of binge drinking in members of the general public in the United Kingdom and Australia. Participants in the United Kingdom (N = 133) and Australia (N = 102) completed a network diagram exercise requiring them…

  2. Genetic Factors of the Disease Course After Sepsis: Rare Deleterious Variants Are Predictive.

    PubMed

    Taudien, Stefan; Lausser, Ludwig; Giamarellos-Bourboulis, Evangelos J; Sponholz, Christoph; Schöneweck, Franziska; Felder, Marius; Schirra, Lyn-Rouven; Schmid, Florian; Gogos, Charalambos; Groth, Susann; Petersen, Britt-Sabina; Franke, Andre; Lieb, Wolfgang; Huse, Klaus; Zipfel, Peter F; Kurzai, Oliver; Moepps, Barbara; Gierschik, Peter; Bauer, Michael; Scherag, André; Kestler, Hans A; Platzer, Matthias

    2016-10-01

    Sepsis is a life-threatening organ dysfunction caused by dysregulated host response to infection. For its clinical course, host genetic factors are important and rare genomic variants are suspected to contribute. We sequenced the exomes of 59 Greek and 15 German patients with bacterial sepsis divided into two groups with extremely different disease courses. Variant analysis was focusing on rare deleterious single nucleotide variants (SNVs). We identified significant differences in the number of rare deleterious SNVs per patient between the ethnic groups. Classification experiments based on the data of the Greek patients allowed discrimination between the disease courses with estimated sensitivity and specificity>75%. By application of the trained model to the German patients we observed comparable discriminatory properties despite lower population-specific rare SNV load. Furthermore, rare SNVs in genes of cell signaling and innate immunity related pathways were identified as classifiers discriminating between the sepsis courses. Sepsis patients with favorable disease course after sepsis, even in the case of unfavorable preconditions, seem to be affected more often by rare deleterious SNVs in cell signaling and innate immunity related pathways, suggesting a protective role of impairments in these processes against a poor disease course. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Role of Neuroinflammation in Adult Neurogenesis and Alzheimer Disease: Therapeutic Approaches

    PubMed Central

    Llorens-Martín, María; Hernández, Félix; Avila, Jesús

    2013-01-01

    Neuroinflammation, a specialized immune response that takes place in the central nervous system, has been linked to neurodegenerative diseases, and specially, it has been considered as a hallmark of Alzheimer disease, the most common cause of dementia in the elderly nowadays. Furthermore, neuroinflammation has been demonstrated to affect important processes in the brain, such as the formation of new neurons, commonly known as adult neurogenesis. For this, many therapeutic approaches have been developed in order to avoid or mitigate the deleterious effects caused by the chronic activation of the immune response. Considering this, in this paper we revise the relationships between neuroinflammation, Alzheimer disease, and adult neurogenesis, as well as the current therapeutic approaches that have been developed in the field. PMID:23690659

  4. Military Retirement: Background and Recent Developments

    DTIC Science & Technology

    2016-09-12

    be made. However, others have argued that past modifications intended to save money have had a deleterious effect on military recruiting and...In addition, some have argued that past modifications to the system intended to save money have had a deleterious effect on military recruiting and...to accrue tax- free . As such, a Roth plan is typically a better savings vehicle for young, low-income individuals who typically

  5. Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators of Inflammation to Ameliorate the Deleterious Effects of Blast Overpressure on Eye and Brain Visual Processing Centers in Rats

    DTIC Science & Technology

    2013-10-01

    Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators 5a. CONTRACT NUMBER of Inflammation to Ameliorate the Deleterious Effects...studies have not been carried out as yet. Our hypothesis is that novel polyunsaturated fatty acid derived lipid mediators of inflammation, i.e., lipoxins

  6. Effect of lanthanum(III) on the production of ethylene and reactive oxygen species in soybean seedlings exposed to the enhanced ultraviolet-B radiation.

    PubMed

    Yang, Qing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2014-06-01

    The enhanced ultraviolet-B (UV-B) radiation caused by ozone depletion may exert deleterious effects on plants. Therefore, studies on the effect of UV-B radiation on plants, as well as studies on the methods for alleviating the deleterious effects by chemical control, are of great significance. In this study, after soybean (Glycine max) seedlings were exposed to UV-B radiation (10.2 and 13.8kJ m(-2)day(-1)) for 5 days and the followed 6 days of restoration, respectively, the effects of 20mg L(-1) lanthanum (III) [La(III)] on leaf phenotype, photosynthetic rate, and production of ethylene and reactive oxygen species (ROS) were investigated. The results indicated that the exposure to 10.2 and 13.8kJ m(-2)day(-1) UV-B radiation could cause injury to the leaf phenotype, and lead to the decrease in the content of chlorophyll and the net photosynthetic rate, and the increase in the contents of ROS, ethylene and 1-aminocyclopropanecarboxylic acid, and 1-aminocyclopropanecarboxylic acid synthase activity in soybean seedlings. Following the withdrawal of the enhanced UV-B radiation, the above mentioned parameters gradually recovered, and the recovery of soybean seedlings exposed to 10.2kJ m(-2)day(-1) UV-B radiation was faster than those in soybean seedlings exposed to 13.8kJ m(-2)day(-1) UV-B radiation. The leaf injury and the changes in the above indices that were induced by the enhanced UV-B radiation, especially at 10.2kJ m(-2)day(-1), were alleviated after the pretreatment of soybean seedlings with 20mg L(-1) La(III). The results of the correlation analysis demonstrated that the injury to the leaf phenotype and the decrease in the photosynthetic rate of soybean seedlings were correlated with the increase in the ROS content that was induced by ethylene in soybean seedlings. The pretreatment with 20mg L(-1) La(III) alleviated the injury caused by the enhanced UV-B radiation through the regulation of the ROS production. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Development of Predictive Model for bridge deck cracking : final report.

    DOT National Transportation Integrated Search

    2017-04-01

    Early-age bridge deck cracking has been found to be a prevalent problem worldwide. While early-age : cracking will not cause failure of a bridge deck system independently, the penetration of deleterious substances : through the early-age cracks into ...

  8. Epistatic Interactions Among Herbicide Resistances in Arabidopsis thaliana: The Fitness Cost of Multiresistance

    PubMed Central

    Roux, Fabrice; Camilleri, Christine; Giancola, Sandra; Brunel, Dominique; Reboud, Xavier

    2005-01-01

    The type of interactions among deleterious mutations is considered to be crucial in numerous areas of evolutionary biology, including the evolution of sex and recombination, the evolution of ploidy, the evolution of selfing, and the conservation of small populations. Because the herbicide resistance genes could be viewed as slightly deleterious mutations in the absence of the pesticide selection pressure, the epistatic interactions among three herbicide resistance genes (acetolactate synthase CSR, cellulose synthase IXR1, and auxin-induced AXR1 target genes) were estimated in both the homozygous and the heterozygous states, giving 27 genotype combinations in the model plant Arabidopsis thaliana. By analyzing eight quantitative traits in a segregating population for the three herbicide resistances in the absence of herbicide, we found that most interactions in both the homozygous and the heterozygous states were best explained by multiplicative effects (each additional resistance gene causes a comparable reduction in fitness) rather than by synergistic effects (each additional resistance gene causes a disproportionate fitness reduction). Dominance coefficients of the herbicide resistance cost ranged from partial dominance to underdominance, with a mean dominance coefficient of 0.07. It was suggested that the csr1-1, ixr1-2, and axr1-3 resistance alleles are nearly fully recessive for the fitness cost. More interestingly, the dominance of a specific resistance gene in the absence of herbicide varied according to, first, the presence of the other resistance genes and, second, the quantitative trait analyzed. These results and their implications for multiresistance evolution are discussed in relation to the maintenance of polymorphism at resistance loci in a heterogeneous environment. PMID:16020787

  9. Nicotinamide Inhibits the Lysosomal Cathepsin b-like Protease and Kills African Trypanosomes*

    PubMed Central

    Unciti-Broceta, Juan D.; Maceira, José; Morales, Sonia; García-Pérez, Angélica; Muñóz-Torres, Manuel E.; Garcia-Salcedo, Jose A.

    2013-01-01

    Nicotinamide, a soluble compound of the vitamin B3 group, has antimicrobial activity against several microorganisms ranging from viruses to parasite protozoans. However, the mode of action of this antimicrobial activity is unknown. Here, we investigate the trypanocidal activity of nicotinamide on Trypanosoma brucei, the causative agent of African trypanosomiasis. Incubation of trypanosomes with nicotinamide causes deleterious defects in endocytic traffic, disruption of the lysosome, failure of cytokinesis, and, ultimately, cell death. At the same concentrations there was no effect on a cultured mammalian cell line. The effects on endocytosis and vesicle traffic were visible within 3 h and can be attributed to inhibition of lysosomal cathepsin b-like protease activity. The inhibitory effect of nicotinamide was confirmed by a direct activity assay of recombinant cathepsin b-like protein. Taken together, these data demonstrate that inhibition of the lysosomal protease cathepsin b-like blocks endocytosis, causing cell death. In addition, these results demonstrate for the first time the inhibitory effect of nicotinamide on a protease. PMID:23443665

  10. Germline BRCA1/BRCA2 mutations among high risk breast cancer patients in Jordan.

    PubMed

    Abdel-Razeq, Hikmat; Al-Omari, Amal; Zahran, Farah; Arun, Banu

    2018-02-06

    Breast cancer is the most common malignancy and the leading cause of cancer-related deaths among Jordanian women. With a median age of 50 years at diagnosis, a higher prevalence of hereditary breast cancer may be expected. The objective of this pilot study is to evaluate, for the first time, the contribution of germline mutations in BRCA1/2 to breast cancer among Jordanian patients. Jordanian breast cancer women with a selected high risk profile were invited to participate. Peripheral blood samples were obtained for DNA extraction. A detailed 3-generation family history was also collected. BRCA sequencing was performed at a reference laboratory. Mutations were classified as deleterious, suspected deleterious, variant of uncertain significance or favor polymorphisms. Patients' medical records were reviewed for extraction of clinical and tumor pathology data. One hundred patients were enrolled to the study. Median age was 40 (22-75) years. In total, 20 patients had deleterious and 7 suspected deleterious mutations in BRCA1 or BRCA2 genes. Seven variants of uncertain significance were also detected. After excluding patients tested subsequent to the index case in their families, highest mutation rates were observed among triple negatives (9/16, 56.3%) especially among those with positive family history of breast and/or ovarian cancer (9/13, 69.2%), patients with bilateral or second primary breast cancer (10/15, 66.7%) and those with family history of male breast cancer (2/5, 40.0%). BRCA1/2 mutations are not uncommon among selected Jordanian females with breast cancer. The contribution of these findings to much younger age at diagnosis is debatable. Although small, our selected patient cohort shows an important incidence of deleterious and suspected deleterious BRCA1/2 mutations suggesting that genetic testing should be offered to patients with certain high risk features.

  11. Sunlight damage to cellular DNA: Focus on oxidatively generated lesions.

    PubMed

    Schuch, André Passaglia; Moreno, Natália Cestari; Schuch, Natielen Jacques; Menck, Carlos Frederico Martins; Garcia, Camila Carrião Machado

    2017-06-01

    The routine and often unavoidable exposure to solar ultraviolet (UV) radiation makes it one of the most significant environmental DNA-damaging agents to which humans are exposed. Sunlight, specifically UVB and UVA, triggers various types of DNA damage. Although sunlight, mainly UVB, is necessary for the production of vitamin D, which is necessary for human health, DNA damage may have several deleterious consequences, such as cell death, mutagenesis, photoaging and cancer. UVA and UVB photons can be directly absorbed not only by DNA, which results in lesions, but also by the chromophores that are present in skin cells. This process leads to the formation of reactive oxygen species, which may indirectly cause DNA damage. Despite many decades of investigation, the discrimination among the consequences of these different types of lesions is not clear. However, human cells have complex systems to avoid the deleterious effects of the reactive species produced by sunlight. These systems include antioxidants, that protect DNA, and mechanisms of DNA damage repair and tolerance. Genetic defects in these mechanisms that have clear harmful effects in the exposed skin are found in several human syndromes. The best known of these is xeroderma pigmentosum (XP), whose patients are defective in the nucleotide excision repair (NER) and translesion synthesis (TLS) pathways. These patients are mainly affected due to UV-induced pyrimidine dimers, but there is growing evidence that XP cells are also defective in the protection against other types of lesions, including oxidized DNA bases. This raises a question regarding the relative roles of the various forms of sunlight-induced DNA damage on skin carcinogenesis and photoaging. Therefore, knowledge of what occurs in XP patients may still bring important contributions to the understanding of the biological impact of sunlight-induced deleterious effects on the skin cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Cyclic Voltammetric Wave-Shapes for Microdisk Electrodes: Coupled Effects of Solution Resistance, Double-Layer Capacitance, and Finite Electrochemical Kinetics

    DTIC Science & Technology

    1991-05-01

    vaveshapea. While the use of high scan rates enhances the effect of electrode kinetics upon the voltametry , the deleterious coupled influence of pa 20...waveshapes. While the use of high scan rates enhances the effect of electrode kinetics upon the voltametry , the deleterious coupled influence of P...2 1 󈧚 Aoki et al have in- 23 vestigated linear sweep voltammetry at microdisks in the reversible case, and Zoski and co-workers have developed

  13. Astronaut health monitoring

    NASA Astrophysics Data System (ADS)

    Inscore, Frank; Shende, Chetan; Gift, Alan; Maksymiuk, Paul; Farquharson, Stuart

    2006-10-01

    Extended weightlessness causes numerous deleterious changes in human physiology, including space motion sickness, cephalad fluid shifts, reduced immune response, and breakdown of muscle tissue with subsequent loss of bone mass and formation of renal stones. Furthermore, these physiological changes also influence the metabolism of drugs used by astronauts to minimize these deleterious effects. Unfortunately, the changes in human physiology in space are also reflected in drug metabolism, and current pre-flight analyses designed to set dosage are inadequate. Furthermore, current earth-based analytical laboratory methods that employ liquid or gas chromatography for separation and fluorescence or mass spectrometry for trace detection are labor intensive, slow, massive, and not cost-effective for operation in space. In an effort to overcome these instrument limitations we have been developing a sampling device to both separate these drugs and metabolites from urine, and generate surface-enhanced Raman (SER) spectra. The detailed molecular vibrational information afforded by Raman scattering allows chemical identification, while the surface-enhancement increases sensitivity by six or more orders of magnitude and allows detection of nanogram per milliliter concentrations. Generally no more than 1 milliliter of sample is required and complete analysis can be performed in 5 minutes using a portable, light-weight Raman spectrometer. Here we present the SER analysis of several drugs used by astronauts measured in synthetic urine and reconstituted urine.

  14. Effects and mechanisms of the combined pollution of lanthanum and acid rain on the root phenotype of soybean seedlings.

    PubMed

    Sun, Zhaoguo; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2013-09-01

    Rare earth pollution and acid rain pollution are both important environmental issues worldwide. In regions which simultaneously occur, the combined pollution of rare earth and acid rain becomes a new environmental issue, and the relevant research is rarely reported. Accordingly, we investigated the combined effects and mechanisms of lanthanum ion (La(3+)) and acid rain on the root phenotype of soybean seedlings. The combined pollution of low-concentration La(3+) and acid rain exerted deleterious effects on the phenotype and growth of roots, which were aggravated by the combined pollution of high-concentration La(3+) and acid rain. The deleterious effects of the combined pollution were stronger than those of single La(3+) or acid rain pollution. These stronger deleterious effects on the root phenotype and growth of roots were due to the increased disturbance of absorption and utilization of mineral nutrients in roots. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Combined effects of lanthanum(III) and elevated ultraviolet-B radiation on root growth and ion absorption in soybean seedlings.

    PubMed

    Huang, Guang Rong; Wang, Li Hong; Zhou, Qing

    2014-03-01

    Rare earth element accumulation in the soil and elevated ultraviolet (UV)-B radiation (280-315 nm) are important environmental issues worldwide. To date, there have been no reports concerning the combined effects of lanthanum (La)(III) and elevated UV-B radiation on plant roots in regions where the two issues occur simultaneously. Here, the combined effects of La(III) and elevated UV-B radiation on the growth, biomass, ion absorption, activities, and membrane permeability of roots in soybean (Glycine max L.) seedlings were investigated. A 0.08 mmol L(-1) La(III) treatment improved the root growth and biomass of soybean seedlings, while ion absorption, activities, and membrane permeability were obviously unchanged; a combined treatment with 0.08 mmol L(-1) La(III) and elevated UV-B radiation (2.63/6.17 kJ m(-2) day(-1)) exerted deleterious effects on the investigated indices. The deleterious effects were aggravated in the other combined treatments and were stronger than those of treatments with La(III) or elevated UV-B radiation alone. The combined treatment with 0.24/1.20 mmol L(-1) La(III) and elevated UV-B radiation exerted synergistically deleterious effects on the growth, biomass, ion absorption, activities, and membrane permeability of roots in soybean seedlings. In addition, the deleterious effects of the combined treatment on the root growth were due to the inhibition of ion absorption induced by the changes in the root activity and membrane permeability.

  16. Low- and high-frequency transcutaneous electrical nerve stimulation have no deleterious or teratogenic effects on pregnant mice.

    PubMed

    Yokoyama, L M; Pires, L A; Ferreira, E A Gonçalves; Casarotto, R A

    2015-06-01

    To evaluate the effects of application of transcutaneous electrical nerve stimulation (TENS) at low and high frequencies to the abdomens of Swiss mice throughout pregnancy. Experimental animal study. Research laboratory. Thirty Swiss mice received TENS throughout pregnancy. They were divided into three groups (n=10): placebo, low-frequency TENS (LF group) and high-frequency TENS (HF group). In the placebo group, the electrodes were applied to the abdominal region without any electrical current. In the LF group, the frequency was 10 Hz, pulse duration was 200 μs and intensity started at 2 mA. In the HF group, the same parameters were applied and the frequency was 150 Hz. All stimulation protocols were applied for 20 min/day from Day 0 until Day 20. The pregnant mice were weighed on Days 0, 7, 14 and 20 to verify weekly weight gain by two-way analysis of variance. The numbers of fetuses, placentas, implantations, resorptions and major external fetal malformations on Day 20 were analysed using the Kruskal-Wallis test. No significant differences were found between the placebo and TENS groups (P>0.05). Application of low- and high-frequency TENS to the abdomens of pregnant mice did not cause any deleterious or major teratogenic effects. Copyright © 2014 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  17. Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation.

    PubMed

    Basso, Thiago Olitta; Gomes, Fernanda Sgarbosa; Lopes, Mario Lucio; de Amorim, Henrique Vianna; Eggleston, Gillian; Basso, Luiz Carlos

    2014-01-01

    Bacterial contamination during industrial yeast fermentation has serious economic consequences for fuel ethanol producers. In addition to deviating carbon away from ethanol formation, bacterial cells and their metabolites often have a detrimental effect on yeast fermentative performance. The bacterial contaminants are commonly lactic acid bacteria (LAB), comprising both homo- and heterofermentative strains. We have studied the effects of these two different types of bacteria upon yeast fermentative performance, particularly in connection with sugarcane-based fuel ethanol fermentation process. Homofermentative Lactobacillus plantarum was found to be more detrimental to an industrial yeast strain (Saccharomyces cerevisiae CAT-1), when compared with heterofermentative Lactobacillus fermentum, in terms of reduced yeast viability and ethanol formation, presumably due to the higher titres of lactic acid in the growth medium. These effects were only noticed when bacteria and yeast were inoculated in equal cell numbers. However, when simulating industrial fuel ethanol conditions, as conducted in Brazil where high yeast cell densities and short fermentation time prevail, the heterofermentative strain was more deleterious than the homofermentative type, causing lower ethanol yield and out competing yeast cells during cell recycle. Yeast overproduction of glycerol was noticed only in the presence of the heterofermentative bacterium. Since the heterofermentative bacterium was shown to be more deleterious to yeast cells than the homofermentative strain, we believe our findings could stimulate the search for more strain-specific antimicrobial agents to treat bacterial contaminations during industrial ethanol fermentation.

  18. Efficacy of an extract from garlic, Allium sativum, against infection with the furunculosis bacterium, Aeromonas salmonicida, in rainbow trout, Oncorhynchus mykiss

    USGS Publications Warehouse

    Breyer, Kate E.; Getchell, Rodman G.; Cornwell, Emily R.; Wooster, Gregory A.; Ketola, H. George; Bowser, Paul R.

    2015-01-01

    Juvenile rainbow trout, Oncorhynchus mykiss, were fed diets containing 0, 0.5, 1.0, and 2.0% of a garlic extract, challenged with a modified 50% lethal dose of Aeromonas salmonicida and monitored for 28 d. There were significant increases in survival of trout fed 0.5 and 1.0% garlic extract as compared to the control and 2.0% garlic extract groups. A target animal safety study was performed at varying increments using the target dose of 0.5% garlic extract at 0× (0% garlic extract), 1× (0.5% garlic extract), 3× (1.5% garlic extract), and 5× (2.5% garlic extract) for 3× (6 wk) the duration of the original study. There was a significant increase in the level of circulating lymphocytes and a significant decrease in the level of circulating monocytes. The latter correlated to an increased level of pigment-containing macrophage centers within the renal tissue as garlic extract dosing increased, denoting a potential deleterious inflammatory effect as macrophage infiltration became severe at the highest dose. These studies suggest that feeding low-dose (0.5% or 1.0%) garlic extract improves survivability in rainbow trout when challenged with A. salmonicida and appears safe; however, higher levels do not appear to be effective and may cause deleterious effects on health.

  19. Biogenic Magnetite and EMF Effects

    NASA Astrophysics Data System (ADS)

    Kirschvink, Joseph L.

    1996-03-01

    Magnetite biomineralization is a genetically-controlled biochemical process through which organisms make perfect ferrimagnetic crystals, usually of single magnetic domain size. This process is an ancient one, having evolved about 2 billion years ago in the magnetotactic bacteria, and presumably was incorporated in the genome of higher organisms, including humans. During this time, DNA replication, protein synthesis, and many other biochemical processes have functioned in the presence of strong static fields of up to 400 mT adjacent to these magnetosomes without any obvious deleterious effects. Recent behavioral experiments using short but strong magnetic pulses in honeybees and birds demonstrates that ferromagnetic materials are involved in the sensory transduction of geomagnetic field information to the nervous system, and both behavioral and direct electrophysiological experiments indicate sensitivity thresholds to DC magnetic fields down to a few nT. However, far more biogenic magnetite is present in animal tissues than is needed for magnetoreception, and the biological function of this extra material is unknown. The presence of ferromagnetic materials in biological systems could provide physical transduction mechanisms for ELF magnetic fields, as well for microwave radiation in the .5 to 10 GHz band where magnetite has its peak ferromagnetic resonance. Elucidation of the cellular ultrastructure and biological function(s) of magnetite might help resolve the question of whether anthropogenic EMFs can cause deleterious biological effects. This work has been supported by grants from the NIH and EPRI.

  20. Overview of proteomics studies in obstructive sleep apnea

    PubMed Central

    Feliciano, Amélia; Torres, Vukosava Milic; Vaz, Fátima; Carvalho, Ana Sofia; Matthiesen, Rune; Pinto, Paula; Malhotra, Atul; Bárbara, Cristina; Penque, Deborah

    2015-01-01

    Obstructive sleep apnea (OSA) is an underdiagnosed common public health concern causing deleterious effects on metabolic and cardiovascular health. Although much has been learned regarding the pathophysiology and consequences of OSA in the past decades, the molecular mechanisms associated with such processes remain poorly defined. The advanced high-throughput proteomics-based technologies have become a fundamental approach for identifying novel disease mediators as potential diagnostic and therapeutic targets for many diseases, including OSA. Here, we briefly review OSA pathophysiology and the technological advances in proteomics and the first results of its application to address critical issues in the OSA field. PMID:25770042

  1. Thermal magnetic field noise limits resolution in transmission electron microscopy.

    PubMed

    Uhlemann, Stephan; Müller, Heiko; Hartel, Peter; Zach, Joachim; Haider, Max

    2013-07-26

    The resolving power of an electron microscope is determined by the optics and the stability of the instrument. Recently, progress has been obtained towards subångström resolution at beam energies of 80 kV and below but a discrepancy between the expected and achieved instrumental information limit has been observed. Here we show that magnetic field noise from thermally driven currents in the conductive parts of the instrument is the root cause for this hitherto unexplained decoherence phenomenon. We demonstrate that the deleterious effect depends on temperature and at least weakly on the type of material.

  2. Alcoholic liver disease.

    PubMed

    Penny, Steven M

    2013-01-01

    In the United States, approximately 100,000 deaths are attributed to alcohol abuse each year. In 2009, the World Health Organization listed alcohol use as one of the leading causes of the global burden of disease and injury. Alcoholic liver disease, a direct result of chronic alcohol abuse, insidiously destroys the normal functions of the liver. The end result of the disease, cirrhosis, culminates in a dysfunctional and diffusely scarred liver. This article discusses the clinical manifestations, imaging considerations, and treatment of alcoholic liver disease and cirrhosis. Normal liver function, liver hemodynamics, the disease of alcoholism, and the deleterious effects of alcohol also are reviewed.

  3. Ammonia toxicity: from head to toe?

    PubMed

    Dasarathy, Srinivasan; Mookerjee, Rajeshwar P; Rackayova, Veronika; Rangroo Thrane, Vinita; Vairappan, Balasubramaniyan; Ott, Peter; Rose, Christopher F

    2017-04-01

    Ammonia is diffused and transported across all plasma membranes. This entails that hyperammonemia leads to an increase in ammonia in all organs and tissues. It is known that the toxic ramifications of ammonia primarily touch the brain and cause neurological impairment. However, the deleterious effects of ammonia are not specific to the brain, as the direct effect of increased ammonia (change in pH, membrane potential, metabolism) can occur in any type of cell. Therefore, in the setting of chronic liver disease where multi-organ dysfunction is common, the role of ammonia, only as neurotoxin, is challenged. This review provides insights and evidence that increased ammonia can disturb many organ and cell types and hence lead to dysfunction.

  4. Mineralocorticoid receptor function in bone metabolism and its role in glucocorticoid-induced osteopenia.

    PubMed

    Fumoto, Toshio; Ishii, Kiyo-Aki; Ito, Masako; Berger, Stefan; Schütz, Günther; Ikeda, Kyoji

    2014-05-09

    Although the mineralocorticoid receptor (MR) is expressed in osteoblasts and osteocytes and frequently co-localizes with the glucocorticoid receptors (GR), its pathophysiological functions in bone remain elusive. We report here that pharmacologic inhibition of MR function with eplerenone resulted in increased bone mass, with stimulation of bone formation and suppression of resorption, while specific genetic deletion of MR in osteoblast lineage cells had no effect. Further, treatment with eplerenone as well as specific deletion of MR in osteocytes ameliorated the cortical bone thinning caused by slow-release prednisolone pellets. Thus, MR may be involved in the deleterious effects of glucocorticoid excess on cortical bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Expansion of the spectrum of ITGB6-related disorders to adolescent alopecia, dentogingival abnormalities and intellectual disability.

    PubMed

    Ansar, Muhammad; Jan, Abid; Santos-Cortez, Regie Lyn P; Wang, Xin; Suliman, Muhammad; Acharya, Anushree; Habib, Rabia; Abbe, Izoduwa; Ali, Ghazanfar; Lee, Kwanghyuk; Smith, Joshua D; Nickerson, Deborah A; Shendure, Jay; Bamshad, Michael J; Ahmad, Wasim; Leal, Suzanne M

    2016-08-01

    Alopecia with mental retardation (APMR) is a very rare disorder. In this study, we report on a consanguineous Pakistani family (AP91) with mild-to-moderate intellectual disability, adolescent alopecia and dentogingival abnormalities. Using homozygosity mapping, linkage analysis and exome sequencing, we identified a novel rare missense variant c.898G>A (p.(Glu300Lys)) in ITGB6, which co-segregates with the phenotype within the family and is predicted to be deleterious. Structural modeling shows that Glu300 lies in the β-propeller domain, and is surrounded by several residues that are important for heterodimerization with α integrin. Previous studies showed that ITGB6 variants can cause amelogenesis imperfecta in humans, but patients from family AP91 who are homozygous for the c.898G>A variant present with neurological and dermatological features, indicating a role for ITGB6 beyond enamel formation. Our study demonstrates that a rare deleterious variant within ITGB6 causes not only dentogingival anomalies but also intellectual disability and alopecia.

  6. Recurrent loss of sex is associated with accumulation of deleterious mutations in Oenothera.

    PubMed

    Hollister, Jesse D; Greiner, Stephan; Wang, Wei; Wang, Jun; Zhang, Yong; Wong, Gane Ka-Shu; Wright, Stephen I; Johnson, Marc T J

    2015-04-01

    Sexual reproduction is nearly universal among eukaryotes. Theory predicts that the rarity of asexual eukaryotic species is in part caused by accumulation of deleterious mutations and heightened extinction risk associated with suppressed recombination and segregation in asexual species. We tested this prediction with a large data set of 62 transcriptomes from 29 species in the plant genus Oenothera, spanning ten independent transitions between sexual and a functionally asexual genetic system called permanent translocation heterozygosity. Illumina short-read sequencing and de novo transcript assembly yielded an average of 16.4 Mb of sequence per individual. Here, we show that functionally asexual species accumulate more deleterious mutations than sexual species using both population genomic and phylogenetic analysis. At an individual level, asexual species exhibited 1.8 × higher heterozygosity than sexual species. Within species, we detected a higher proportion of nonsynonymous polymorphism relative to synonymous variation within asexual compared with sexual species, indicating reduced efficacy of purifying selection. Asexual species also exhibited a greater proportion of transcripts with premature stop codons. The increased proportion of nonsynonymous mutations was also positively correlated with divergence time between sexual and asexual species, consistent with Muller's ratchet. Between species, we detected repeated increases in the ratio of nonsynonymous to synonymous divergence in asexual species compared with sexually reproducing sister taxa, indicating increased accumulation of deleterious mutations. These results confirm that an important advantage of sex is that it facilitates selection against deleterious alleles, which might help to explain the dearth of extant asexual species. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Tight Junction Proteins and Oxidative Stress in Heavy Metals-Induced Nephrotoxicity

    PubMed Central

    Reyes, José L.; Molina-Jijón, Eduardo; Rodríguez-Muñoz, Rafael; Bautista-García, Pablo; Debray-García, Yazmin; Namorado, María del Carmen

    2013-01-01

    Kidney is a target organ for heavy metals. They accumulate in several segments of the nephron and cause profound alterations in morphology and function. Acute intoxication frequently causes acute renal failure. The effects of chronic exposure have not been fully disclosed. In recent years increasing awareness of the consequences of their presence in the kidney has evolved. In this review we focus on the alterations induced by heavy metals on the intercellular junctions of the kidney. We describe that in addition to the proximal tubule, which has been recognized as the main site of accumulation and injury, other segments of the nephron, such as glomeruli, vessels, and distal nephron, show also deleterious effects. We also emphasize the participation of oxidative stress as a relevant component of the renal damage induced by heavy metals and the beneficial effect that some antioxidant drugs, such as vitamin A (all-trans-retinoic acid) and vitamin E (α-tocopherol), depict on the morphological and functional alterations induced by heavy metals. PMID:23710457

  8. Effects of laser phase fluctuations on squeezing in intracavity second-harmonic generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, T. A. B.; Anderson, T. B.; Walls, D. F.

    1989-08-01

    Excellent squeezing in intracavity second-harmonic generation has been predicted to occur on cavity resonance in the output intensity fluctuations. Cavity detunings cause laser phase noise to couple in and reduce the squeezing observable. Here we consider the effects of laser phase fluctuations on the output-squeezing spectrum. Laser phase noise is modeled as an Ornstein-Uhlenbeck (colored-noise) Gaussian stochastic process and its effects are compared with the white-noise limit. This indicates that the white-noise model may qualitatively overestimate the deleterious effects of laser fluctuations on sideband squeezing. We compare our results with the recently reported experiment of Pereira /ital et/ /ital al/.more » (Phys. Rev. A 38, 4931 (1988)) and present an analysis of the empty cavity for comparison.« less

  9. Functional and Structural Consequence of Rare Exonic Single Nucleotide Polymorphisms: One Story, Two Tales

    PubMed Central

    Gu, Wanjun; Gurguis, Christopher I.; Zhou, Jin J.; Zhu, Yihua; Ko, Eun-A.; Ko, Jae-Hong; Wang, Ting; Zhou, Tong

    2015-01-01

    Genetic variation arising from single nucleotide polymorphisms (SNPs) is ubiquitously found among human populations. While disease-causing variants are known in some cases, identifying functional or causative variants for most human diseases remains a challenging task. Rare SNPs, rather than common ones, are thought to be more important in the pathology of most human diseases. We propose that rare SNPs should be divided into two categories dependent on whether the minor alleles are derived or ancestral. Derived alleles are less likely to have been purified by evolutionary processes and may be more likely to induce deleterious effects. We therefore hypothesized that the rare SNPs with derived minor alleles would be more important for human diseases and predicted that these variants would have larger functional or structural consequences relative to the rare variants for which the minor alleles are ancestral. We systematically investigated the consequences of the exonic SNPs on protein function, mRNA structure, and translation. We found that the functional and structural consequences are more significant for the rare exonic variants for which the minor alleles are derived. However, this pattern is reversed when the minor alleles are ancestral. Thus, the rare exonic SNPs with derived minor alleles are more likely to be deleterious. Age estimation of rare SNPs confirms that these potentially deleterious SNPs are recently evolved in the human population. These results have important implications for understanding the function of genetic variations in human exonic regions and for prioritizing functional SNPs in genome-wide association studies of human diseases. PMID:26454016

  10. Harnessing Omics Big Data in Nine Vertebrate Species by Genome-Wide Prioritization of Sequence Variants with the Highest Predicted Deleterious Effect on Protein Function.

    PubMed

    Rozman, Vita; Kunej, Tanja

    2018-05-10

    Harnessing the genomics big data requires innovation in how we extract and interpret biologically relevant variants. Currently, there is no established catalog of prioritized missense variants associated with deleterious protein function phenotypes. We report in this study, to the best of our knowledge, the first genome-wide prioritization of sequence variants with the most deleterious effect on protein function (potentially deleterious variants [pDelVars]) in nine vertebrate species: human, cattle, horse, sheep, pig, dog, rat, mouse, and zebrafish. The analysis was conducted using the Ensembl/BioMart tool. Genes comprising pDelVars in the highest number of examined species were identified using a Python script. Multiple genomic alignments of the selected genes were built to identify interspecies orthologous potentially deleterious variants, which we defined as the "ortho-pDelVars." Genome-wide prioritization revealed that in humans, 0.12% of the known variants are predicted to be deleterious. In seven out of nine examined vertebrate species, the genes encoding the multiple PDZ domain crumbs cell polarity complex component (MPDZ) and the transforming acidic coiled-coil containing protein 2 (TACC2) comprise pDelVars. Five interspecies ortho-pDelVars were identified in three genes. These findings offer new ways to harness genomics big data by facilitating the identification of functional polymorphisms in humans and animal models and thus provide a future basis for optimization of protocols for whole genome prioritization of pDelVars and screening of orthologous sequence variants. The approach presented here can inform various postgenomic applications such as personalized medicine and multiomics study of health interventions (iatromics).

  11. Uncovering disease mechanisms through network biology in the era of Next Generation Sequencing

    NASA Astrophysics Data System (ADS)

    Piñero, Janet; Berenstein, Ariel; Gonzalez-Perez, Abel; Chernomoretz, Ariel; Furlong, Laura I.

    2016-04-01

    Characterizing the behavior of disease genes in the context of biological networks has the potential to shed light on disease mechanisms, and to reveal both new candidate disease genes and therapeutic targets. Previous studies addressing the network properties of disease genes have produced contradictory results. Here we have explored the causes of these discrepancies and assessed the relationship between the network roles of disease genes and their tolerance to deleterious germline variants in human populations leveraging on: the abundance of interactome resources, a comprehensive catalog of disease genes and exome variation data. We found that the most salient network features of disease genes are driven by cancer genes and that genes related to different types of diseases play network roles whose centrality is inversely correlated to their tolerance to likely deleterious germline mutations. This proved to be a multiscale signature, including global, mesoscopic and local network centrality features. Cancer driver genes, the most sensitive to deleterious variants, occupy the most central positions, followed by dominant disease genes and then by recessive disease genes, which are tolerant to variants and isolated within their network modules.

  12. Selection against Heteroplasmy Explains the Evolution of Uniparental Inheritance of Mitochondria

    PubMed Central

    Christie, Joshua R.; Schaerf, Timothy M.; Beekman, Madeleine

    2015-01-01

    Why are mitochondria almost always inherited from one parent during sexual reproduction? Current explanations for this evolutionary mystery include conflict avoidance between the nuclear and mitochondrial genomes, clearing of deleterious mutations, and optimization of mitochondrial-nuclear coadaptation. Mathematical models, however, fail to show that uniparental inheritance can replace biparental inheritance under any existing hypothesis. Recent empirical evidence indicates that mixing two different but normal mitochondrial haplotypes within a cell (heteroplasmy) can cause cell and organism dysfunction. Using a mathematical model, we test if selection against heteroplasmy can lead to the evolution of uniparental inheritance. When we assume selection against heteroplasmy and mutations are neither advantageous nor deleterious (neutral mutations), uniparental inheritance replaces biparental inheritance for all tested parameter values. When heteroplasmy involves mutations that are advantageous or deleterious (non-neutral mutations), uniparental inheritance can still replace biparental inheritance. We show that uniparental inheritance can evolve with or without pre-existing mating types. Finally, we show that selection against heteroplasmy can explain why some organisms deviate from strict uniparental inheritance. Thus, we suggest that selection against heteroplasmy explains the evolution of uniparental inheritance. PMID:25880558

  13. Uncovering disease mechanisms through network biology in the era of Next Generation Sequencing

    PubMed Central

    Piñero, Janet; Berenstein, Ariel; Gonzalez-Perez, Abel; Chernomoretz, Ariel; Furlong, Laura I.

    2016-01-01

    Characterizing the behavior of disease genes in the context of biological networks has the potential to shed light on disease mechanisms, and to reveal both new candidate disease genes and therapeutic targets. Previous studies addressing the network properties of disease genes have produced contradictory results. Here we have explored the causes of these discrepancies and assessed the relationship between the network roles of disease genes and their tolerance to deleterious germline variants in human populations leveraging on: the abundance of interactome resources, a comprehensive catalog of disease genes and exome variation data. We found that the most salient network features of disease genes are driven by cancer genes and that genes related to different types of diseases play network roles whose centrality is inversely correlated to their tolerance to likely deleterious germline mutations. This proved to be a multiscale signature, including global, mesoscopic and local network centrality features. Cancer driver genes, the most sensitive to deleterious variants, occupy the most central positions, followed by dominant disease genes and then by recessive disease genes, which are tolerant to variants and isolated within their network modules. PMID:27080396

  14. The estimation of selection coefficients in Afrikaners: Huntington disease, porphyria variegata, and lipoid proteinosis.

    PubMed Central

    Stine, O C; Smith, K D

    1990-01-01

    The effects of mutation, migration, random drift, and selection on the change in frequency of the alleles associated with Huntington disease, porphyria variegata, and lipoid proteinosis have been assessed in the Afrikaner population of South Africa. Although admixture cannot be completely discounted, it was possible to exclude migration and new mutation as major sources of changes in the frequency of these alleles by limiting analyses to pedigrees descendant from founding families. Calculations which overestimated the possible effect of random drift demonstrated that drift did not account for the observed changes in gene frequencies. Therefore these changes must have been caused by natural selection, and a coefficient of selection was estimated for each trait. For the rare, dominant, deleterious allele associated with Huntington disease, the coefficient of selection was estimated to be .34, indicating that this allele has a selective disadvantage, contrary to some recent studies. For the presumed dominant and probably deleterious allele associated with porphyria variegata, the coefficient of selection lies between .07 and .02. The coefficient of selection for the rare, clinically recessive allele associated with lipoid proteinosis was estimated to be .07. Calculations based on a model system indicate that the observed decrease in allele frequency cannot be explained solely on the basis of selection against the homozygote. Thus, this may be an example of a pleiotropic gene which has a dominant effect in terms of selection even though its known clinical effect is recessive. PMID:2137963

  15. The estimation of selection coefficients in Afrikaners: Huntington disease, porphyria variegata, and lipoid proteinosis.

    PubMed

    Stine, O C; Smith, K D

    1990-03-01

    The effects of mutation, migration, random drift, and selection on the change in frequency of the alleles associated with Huntington disease, porphyria variegata, and lipoid proteinosis have been assessed in the Afrikaner population of South Africa. Although admixture cannot be completely discounted, it was possible to exclude migration and new mutation as major sources of changes in the frequency of these alleles by limiting analyses to pedigrees descendant from founding families. Calculations which overestimated the possible effect of random drift demonstrated that drift did not account for the observed changes in gene frequencies. Therefore these changes must have been caused by natural selection, and a coefficient of selection was estimated for each trait. For the rare, dominant, deleterious allele associated with Huntington disease, the coefficient of selection was estimated to be .34, indicating that this allele has a selective disadvantage, contrary to some recent studies. For the presumed dominant and probably deleterious allele associated with porphyria variegata, the coefficient of selection lies between .07 and .02. The coefficient of selection for the rare, clinically recessive allele associated with lipoid proteinosis was estimated to be .07. Calculations based on a model system indicate that the observed decrease in allele frequency cannot be explained solely on the basis of selection against the homozygote. Thus, this may be an example of a pleiotropic gene which has a dominant effect in terms of selection even though its known clinical effect is recessive.

  16. Effect of inbreeding on pollen tube growth in diploid and tetraploid Chamerion angustifolium: Do polyploids mask mutational load in pollen?

    PubMed

    Husband, Brian C

    2016-03-01

    Deleterious recessive mutations are an important determinant of fitness (mutational load) in the sporophytic phase of plants and a major cause of inbreeding depression; however, their role in gametophyte function is less well documented but may account for variation in pollen tube growth and siring ability, especially between diploid and polyploid plants, which can mask the load. We investigated the role of mutational load in pollen performance using the perennial polyploid Chamerion angustifolium by comparing tube growth of pollen, in styles and in growth medium, from inbred (selfed) and outbred diploids to that of inbred and outbred tetraploids. Pollen from tetraploids is expected to mask deleterious mutations more effectively in the outbred condition but reveal them after inbreeding. In contrast, gametophytes from diploids should express the same genetic load in inbred or outbred plants. Pollen tube growth measured in growth medium was highest in outbred tetraploids and generally lower in inbred than outbred plants. The effect of selfing was significant in pollen from tetraploids but not diploids. The differential effect of selfing was also evident in the proportion of pollen reaching the base of styles, but the ploidy × pollination interaction was not significant. Selfing also had a negative effect on sporophyte fitness but was greater in diploids than tetraploids. Pollen performance is influenced by the expression of mutational load, which is masked in polyploids. This effect may partly explain strong siring success of tetraploids in this species. © 2016 Botanical Society of America.

  17. Habitual exercise program protects murine intestinal, skeletal, and cardiac muscles against aging.

    PubMed

    Rosa, Eloi F; Silva, Antonio C; Ihara, Silvia S M; Mora, Oswaldo A; Aboulafia, Jeannine; Nouailhetas, Viviane L A

    2005-10-01

    Aging and aerobic exercise are two conditions known to interfere with health and quality of life, most likely by inducing oxidative stress to the organism. We studied the effects of aging on the morphological and functional properties of skeletal, cardiac, and intestinal muscles and their corresponding oxidative status in C57BL/6 mice and investigated whether a lifelong moderate exercise program would exert a protective effect against some deleterious effects of aging. As expected, aged animals presented a significant reduction of physical performance, accompanied by a decrease of gastrocnemius cross-sectional area and cardiac hypertrophy. However, most interesting was that aging dramatically interfered with the intestinal structure, causing a significant thickening of the ileum muscular layer. Senescent intestinal myocytes displayed many mitochondria with disorganized cristae and the presence of cytosolic lamellar corpuscles. Lipid peroxidation of ileum and gastrocnemius muscle, but not of the heart, increased in aged mice, thus suggesting enhanced oxidative stress. With exception of the intestinal muscle responsiveness, animals submitted to a daily session of 60 min, 5 days/wk, at 13 up to 21 m/min of moderate running in treadmill during animal life span exhibited a reversion of all the observed aging effects on intestinal, skeletal, and heart muscles. The introduction of this lifelong exercise protocol prevented the enhancement of lipid peroxidation and sarcopenia and also preserved cellular and ultracellular structures of the ileum. This is the first time that the protective effect of a lifelong regular aerobic physical activity against the deleterious effects of aging on intestinal muscle was demonstrated.

  18. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs.

    PubMed

    Marsden, Clare D; Ortega-Del Vecchyo, Diego; O'Brien, Dennis P; Taylor, Jeremy F; Ramirez, Oscar; Vilà, Carles; Marques-Bonet, Tomas; Schnabel, Robert D; Wayne, Robert K; Lohmueller, Kirk E

    2016-01-05

    Population bottlenecks, inbreeding, and artificial selection can all, in principle, influence levels of deleterious genetic variation. However, the relative importance of each of these effects on genome-wide patterns of deleterious variation remains controversial. Domestic and wild canids offer a powerful system to address the role of these factors in influencing deleterious variation because their history is dominated by known bottlenecks and intense artificial selection. Here, we assess genome-wide patterns of deleterious variation in 90 whole-genome sequences from breed dogs, village dogs, and gray wolves. We find that the ratio of amino acid changing heterozygosity to silent heterozygosity is higher in dogs than in wolves and, on average, dogs have 2-3% higher genetic load than gray wolves. Multiple lines of evidence indicate this pattern is driven by less efficient natural selection due to bottlenecks associated with domestication and breed formation, rather than recent inbreeding. Further, we find regions of the genome implicated in selective sweeps are enriched for amino acid changing variants and Mendelian disease genes. To our knowledge, these results provide the first quantitative estimates of the increased burden of deleterious variants directly associated with domestication and have important implications for selective breeding programs and the conservation of rare and endangered species. Specifically, they highlight the costs associated with selective breeding and question the practice favoring the breeding of individuals that best fit breed standards. Our results also suggest that maintaining a large population size, rather than just avoiding inbreeding, is a critical factor for preventing the accumulation of deleterious variants.

  19. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs

    PubMed Central

    Marsden, Clare D.; Ortega-Del Vecchyo, Diego; O’Brien, Dennis P.; Taylor, Jeremy F.; Ramirez, Oscar; Vilà, Carles; Marques-Bonet, Tomas; Schnabel, Robert D.; Wayne, Robert K.; Lohmueller, Kirk E.

    2016-01-01

    Population bottlenecks, inbreeding, and artificial selection can all, in principle, influence levels of deleterious genetic variation. However, the relative importance of each of these effects on genome-wide patterns of deleterious variation remains controversial. Domestic and wild canids offer a powerful system to address the role of these factors in influencing deleterious variation because their history is dominated by known bottlenecks and intense artificial selection. Here, we assess genome-wide patterns of deleterious variation in 90 whole-genome sequences from breed dogs, village dogs, and gray wolves. We find that the ratio of amino acid changing heterozygosity to silent heterozygosity is higher in dogs than in wolves and, on average, dogs have 2–3% higher genetic load than gray wolves. Multiple lines of evidence indicate this pattern is driven by less efficient natural selection due to bottlenecks associated with domestication and breed formation, rather than recent inbreeding. Further, we find regions of the genome implicated in selective sweeps are enriched for amino acid changing variants and Mendelian disease genes. To our knowledge, these results provide the first quantitative estimates of the increased burden of deleterious variants directly associated with domestication and have important implications for selective breeding programs and the conservation of rare and endangered species. Specifically, they highlight the costs associated with selective breeding and question the practice favoring the breeding of individuals that best fit breed standards. Our results also suggest that maintaining a large population size, rather than just avoiding inbreeding, is a critical factor for preventing the accumulation of deleterious variants. PMID:26699508

  20. Development and characterization of novel electrically conductive PANI-PGS composites for cardiac tissue engineering applications.

    PubMed

    Qazi, Taimoor H; Rai, Ranjana; Dippold, Dirk; Roether, Judith E; Schubert, Dirk W; Rosellini, Elisabetta; Barbani, Niccoletta; Boccaccini, Aldo R

    2014-06-01

    Cardiovascular diseases, especially myocardial infarction, are the leading cause of morbidity and mortality in the world, also resulting in huge economic burdens on national economies. A cardiac patch strategy aims at regenerating an infarcted heart by providing healthy functional cells to the injured region via a carrier substrate, and providing mechanical support, thereby preventing deleterious ventricular remodeling. In the present work, polyaniline (PANI) was doped with camphorsulfonic acid and blended with poly(glycerol-sebacate) at ratios of 10, 20 and 30vol.% PANI content to produce electrically conductive composite cardiac patches via the solvent casting method. The composites were characterized in terms of their electrical, mechanical and physicochemical properties. The in vitro biodegradability of the composites was also evaluated. Electrical conductivity increased from 0Scm(-1) for pure PGS to 0.018Scm(-1) for 30vol.% PANI-PGS samples. Moreover, the conductivities were preserved for at least 100h post fabrication. Tensile tests revealed an improvement in the elastic modulus, tensile strength and elasticity with increasing PANI content. The degradation products caused a local drop in pH, which was higher in all composite samples compared with pure PGS, hinting at a buffering effect due to the presence of PANI. Finally, the cytocompatibility of the composites was confirmed when C2C12 cells attached and proliferated on samples with varying PANI content. Furthermore, leaching of acid dopants from the developed composites did not have any deleterious effect on the viability of C2C12 cells. Taken together, these results confirm the potential of PANI-PGS composites for use as substrates to modulate cellular behavior via electrical stimulation, and as biocompatible scaffolds for cardiac tissue engineering applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Matrix Metalloproteinase-9 Mediates the Deleterious Effects of α2-Antiplasmin on Blood-Brain Barrier Breakdown and Ischemic Brain Injury in Experimental Stroke.

    PubMed

    Singh, Satish; Houng, Aiilyan K; Reed, Guy L

    2018-04-15

    During acute brain ischemia, α2-antiplasmin markedly enhances brain injury, blood-brain barrier breakdown and matrix metalloproteinase-9 (MMP-9) expression. Although α2-antiplasmin inhibits fibrin thrombus-degradation, and MMP-9 is a collagen-degrading enzyme altering blood-brain barrier, both have similar deleterious effects on the ischemic brain. We examined the hypothesis that MMP-9 is an essential downstream mediator of α2-antiplasmin's deleterious effects during brain ischemia. Middle cerebral artery thromboembolic stroke was induced in a randomized, blinded fashion in mice with increased blood levels of α2-antiplasmin. There was a robust increase in MMP-9 expression (immunofluorescence) in the ischemic vs. the non-ischemic hemisphere of MMP-9 +/+ but not MMP-9 -/- mice, 24 h after stroke. Brain swelling and hemorrhage were significantly increased in the ischemic vs. the non-ischemic hemisphere of MMP-9 +/+ mice. By comparison to MMP-9 +/+ mice, the ischemic hemispheres of MMP-9 -/- mice showed a ∼6-fold reduction in brain swelling (p < 0.001) and a ∼9-fold reduction in brain hemorrhage. Brain infarction (p < 0.0001) and TUNEL-positive cell death (p < 0.001) were significantly diminished in the ischemic hemisphere of MMP-9 -/- mice vs. MMP-9 +/+ mice. Ischemic breakdown of the blood-brain barrier and fibrin deposition were also significantly reduced in MMP-9 -/- mice vs. MMP-9 +/+ mice (p < 0.05), as measured by quantitative immunofluorescence. We conclude that MMP-9 deficiency ablates many of the deleterious effects of high α2-antiplasmin levels, significantly reducing blood-brain barrier breakdown, TUNEL-positive cell death, brain hemorrhage, swelling and infarction. This suggests that the two molecules may be in a shared pathway in which MMP-9 is essential downstream for the deleterious effects of α2-antiplasmin in ischemic stroke. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Hyperspectral near-infrared reflectance imaging for detection of defect tomatoes

    USDA-ARS?s Scientific Manuscript database

    Cuticle cracks on tomatoes are potential sites of pathogenic infection that may cause deleterious consequences both to consumer health and to fresh and fresh-cut produce markets. The feasibility of a hyperspectral near-infrared imaging technique in the spectral range of 1000 nm to 1700 nm was inves...

  3. Beneficial or Deleterious Effects of a Preexisting Hypersensitivity to Bacterial Components on the Course and Outcome of Infection

    PubMed Central

    Gumenscheimer, Marina; Mitov, Ivan; Galanos, Chris; Freudenberg, Marina A.

    2002-01-01

    Priming with heat-killed Propionibacterium acnes enhances the sensitivity of mice to lipopolysaccharide (LPS) and other biologically active bacterial components. We show that P. acnes priming has protective and deleterious effects on a subsequent serovar Typhimurium infection. It may result in a complete protection or prolonged survival, or it may accelerate mortality of the infected mice, depending on the number of serovar Typhimurium bacteria administered and on the degree of LPS hypersensitivity at the time of infection. Both effects of P. acnes-induced hypersensitivity are mediated by gamma interferon (IFN-γ) and are based on a differential activation of the innate immune mechanisms which recognize and react against the LPS present in infecting bacteria. In P. acnes-primed mice null for LPS-binding protein (LBP−/− mice), the impaired LPS recognition, due to the absence of LBP, resulted in a higher resistance to serovar Typhimurium infection. A similar P. acnes priming of mice had a protective, but no deleterious effect on a subsequent L. monocytogenes infection. This effect was IFN-γ dependent but independent of LBP. PMID:12228287

  4. Combined ocean acidification and low temperature stressors cause coral mortality

    NASA Astrophysics Data System (ADS)

    Kavousi, Javid; Parkinson, John Everett; Nakamura, Takashi

    2016-09-01

    Oceans are predicted to become more acidic and experience more temperature variability—both hot and cold—as climate changes. Ocean acidification negatively impacts reef-building corals, especially when interacting with other stressors such as elevated temperature. However, the effects of combined acidification and low temperature stress have yet to be assessed. Here, we exposed nubbins of the scleractinian coral Montipora digitata to ecologically relevant acidic, cold, or combined stress for 2 weeks. Coral nubbins exhibited 100% survival in isolated acidic and cold treatments, but ~30% mortality under combined conditions. These results provide further evidence that coupled stressors have an interactive effect on coral physiology, and reveal that corals in colder environments are also susceptible to the deleterious impacts of coupled ocean acidification and thermal stress.

  5. The glucocorticoid budesonide has protective and deleterious effects in experimental colitis in mice.

    PubMed

    Ocón, Borja; Aranda, Carlos J; Gámez-Belmonte, Reyes; Suárez, María Dolores; Zarzuelo, Antonio; Martínez-Augustin, Olga; Sánchez de Medina, Fermín

    2016-09-15

    Glucocorticoids are widely used for the management of inflammatory bowel disease, albeit with known limitations for long-term use and relevant adverse effects. In turn, they have harmful effects in experimental colitis. We aimed to explore the mechanism and possible implications of this phenomenon. Regular and microbiota depleted C57BL/6 mice were exposed to dextran sulfate sodium (DSS) to induce colitis and treated with budesonide. Colonic inflammation and animal status were compared. In vitro epithelial models of wound healing were used to confirm the effects of glucocorticoids. Budesonide was also tested in lymphocyte transfer colitis. Budesonide (1-60μg/day) exerted substantial colonic antiinflammatory effects in DSS colitis. At the same time, it aggravated body weight loss, increased rectal bleeding, and induced general deterioration of animal status, bacterial translocation and endotoxemia. As a result, there was an associated increase in parameters of sepsis, such as plasma NOx, IL-1β, IL-6, lung myeloperoxidase and iNOS, as well as significant hypothermia. Budesonide also enhanced DSS induced colonic damage in microbiota depleted mice. These effects were correlated with antiproliferative effects at the epithelial level, which are expected to impair wound healing. In contrast, budesonide had significant but greatly diminished deleterious effects in noncolitic mice or in mice with lymphocyte transfer colitis. We conclude that budesonide weakens mucosal barrier function by interfering with epithelial dynamics and dampening the immune response in the context of significant mucosal injury, causing sepsis. This may be a contributing factor, at least in part, limiting clinical usefulness of corticoids in inflammatory bowel disease. Copyright © 2016. Published by Elsevier Inc.

  6. Short-term effect of the soil amendments activated carbon, biochar, and ferric oxyhydroxide on bacteria and invertebrates.

    PubMed

    Hale, Sarah E; Jensen, John; Jakob, Lena; Oleszczuk, Patryk; Hartnik, Thomas; Henriksen, Thomas; Okkenhaug, Gudny; Martinsen, Vegard; Cornelissen, Gerard

    2013-08-06

    The aim of the present study was to evaluate the secondary ecotoxicological effects of soil amendment materials that can be added to contaminated soils in order to sequester harmful pollutants. To this end, a nonpolluted agricultural soil was amended with 0.5, 2, and 5% of the following four amendments: powder activated carbon (PAC), granular activated carbon, corn stover biochar, and ferric oxyhydroxide powder, which have previously been proven to sequester pollutants in soil. The resulting immediate effects (i.e., without aging the mixtures before carrying out tests) on the springtail Folsomia candida, the earthworm species Aporectodea caliginosa and Eisenia fetida, the marine bacteria Vibrio fischeri, a suite of ten prokaryotic species, and a eukaryote (the yeast species Pichia anomalia) were investigated. Reproduction of F. candida was significantly increased compared to the unamended soil when 2% biochar was added to it. None of the treatments caused a negative effect on reproduction. All amendments had a deleterious effect on the growth of A. caliginosa when compared to the unamended soil, except the 0.5% amendment of biochar. In avoidance tests, E. fetida preferred biochar compared to all other amendments including the unamended soil. All amendments reduced the inhibition of luminescence to V. fischeri, i.e., were beneficial for the bacteria, with PAC showing the greatest improvement. The effects of the amendments on the suite of prokaryotic species and the eukaryote were variable, but overall the 2% biochar dose provided the most frequent positive effect on growth. It is concluded that the four soil amendments had variable but never strongly deleterious effects on the bacteria and invertebrates studied here during the respective recommended experimental test periods.

  7. Light at night pollution of the internal clock, a public health issue.

    PubMed

    Touitou, Yvan

    2015-10-01

    Light is the major synchronizer of the internal clock located in the suprachiasmatic nuclei of the anterior hypothalamus. Retinal ganglion cells contain melanopsin, a photoreceptor with a peak sensitivity to blue wavelength (460-480 nm). Light signal is transmitted from the eye to the clock, then to the pineal gland which produces melatonin, considered as the hand of the clock. Even a weak intensity of light (LEDs, tablets, mobile phones, computers...) is able to block the secretion of melatonin, the hormone of darkness. Light is also able to phase advance or phase delay the circadian system according to the timing of exposure. This Phase Response Curve (PRC) is used to resynchronize the clock in various situations of circadian desynchronization. Exposure to Light at Night (LAN) results in a disruption of the circadian system which is deleterious to health. In industrialized countries, including France, 75 % of the total workforce is estimated to be involved in atypical hours, far from the classical diurnal hours of work. Of interest, shift work and night work involve 15.4 % of the French workforce. A number of epidemiologic studies, peiformed mainly on nurses, showed an association between sustained night work (3 to 20 years) and an increased risk of breast cancer Health problems faced by flight attendants have also been reported, though other causes like exposure to radiations cannot be ruled out. Other deleterious effects are reported in this paper. The potential mechanisms of the deleterious effects of LAN on health are suppression of melatonin andsleep deprivation. The International Agencyfor Cancer Research (IARC) classified shift work that involves circadian disruption as ( probably carcinogenic to humans". Countermeasures (e.g melatonin, bright light, use of psychotropic drugs) have been proposed as a means to improve adaptation to shift work and night work and to fight " clock pollution " and circadian desynchronization by LAN.

  8. Oxidative Stress, Nitric Oxide, and Diabetes

    PubMed Central

    Pitocco, Dario; Zaccardi, Francesco; Di Stasio, Enrico; Romitelli, Federica; Santini, Stefano A.; Zuppi, Cecilia; Ghirlanda, Giovanni

    2010-01-01

    In the recent decades, oxidative stress has become focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence from research on several diseases show that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on this research, the emerging concept is that oxidative stress is the “final common pathway”, through which risk factors of several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell-cell homeostasis. In this review, we discuss the role of oxidative stress in the pathogenesis of insulin resistance and beta-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes, and in the pathogenesis of diabetic vascular complications, the leading cause of death in diabetic patients. PMID:20703435

  9. Oxidative Stress in Diabetes: Implications for Vascular and Other Complications

    PubMed Central

    Pitocco, Dario; Tesauro, Manfredi; Alessandro, Rizzi; Ghirlanda, Giovanni; Cardillo, Carmine

    2013-01-01

    In recent decades, oxidative stress has become a focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence shows that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on these studies, an emerging concept is that oxidative stress is the “final common pathway” through which the risk factors for several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell–cell homeostasis; in particular, oxidative stress plays a key role in the pathogenesis of insulin resistance and β-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes and its vascular complications, the leading cause of death in diabetic patients. PMID:24177571

  10. A review of the current status of the American shad '(Alosa sapidissima)' in the Susquehanna River. Special report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidell, B.D.

    1979-02-01

    During the last two hundred years there has been a dramatic and sustained decline in the American shad fishery of the Susquehanna River. Among the explanations most often advanced for this decline are overfishing, both in the Chesapeake Bay and in the river itself; construction of dams (canal-feeder and hydro-electric) or other obstructions to passage of anadromous fishes; and deleterious effects on water quality caused by mining wastes, sawmill pulp wastes, municipal sewages and increased agricultural activity in the watershed leading to fluctuations in flow characteristis of the river. This report attempts to answer these questions.

  11. Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance.

    PubMed

    Fashola, Muibat Omotola; Ngole-Jeme, Veronica Mpode; Babalola, Olubukola Oluranti

    2016-10-26

    Mining activities can lead to the generation of large quantities of heavy metal laden wastes which are released in an uncontrolled manner, causing widespread contamination of the ecosystem. Though some heavy metals classified as essential are important for normal life physiological processes, higher concentrations above stipulated levels have deleterious effects on human health and biota. Bacteria able to withstand high concentrations of these heavy metals are found in the environment as a result of various inherent biochemical, physiological, and/or genetic mechanisms. These mechanisms can serve as potential tools for bioremediation of heavy metal polluted sites. This review focuses on the effects of heavy metal wastes generated from gold mining activities on the environment and the various mechanisms used by bacteria to counteract the effect of these heavy metals in their immediate environment.

  12. Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance

    PubMed Central

    Fashola, Muibat Omotola; Ngole-Jeme, Veronica Mpode; Babalola, Olubukola Oluranti

    2016-01-01

    Mining activities can lead to the generation of large quantities of heavy metal laden wastes which are released in an uncontrolled manner, causing widespread contamination of the ecosystem. Though some heavy metals classified as essential are important for normal life physiological processes, higher concentrations above stipulated levels have deleterious effects on human health and biota. Bacteria able to withstand high concentrations of these heavy metals are found in the environment as a result of various inherent biochemical, physiological, and/or genetic mechanisms. These mechanisms can serve as potential tools for bioremediation of heavy metal polluted sites. This review focuses on the effects of heavy metal wastes generated from gold mining activities on the environment and the various mechanisms used by bacteria to counteract the effect of these heavy metals in their immediate environment. PMID:27792205

  13. ATP6AP2 over-expression causes morphological alterations in the hippocampus and in hippocampus-related behaviour.

    PubMed

    Bracke, A; Schäfer, S; von Bohlen Und Halbach, V; Klempin, F; Bente, K; Bracke, K; Staar, D; van den Brandt, J; Harzsch, S; Bader, M; Wenzel, U O; Peters, J; von Bohlen Und Halbach, O

    2018-02-23

    The (pro)renin receptor [(P)RR], also known as ATP6AP2 [ATPase 6 accessory protein 2], is highly expressed in the brain. ATP6AP2 plays a role in early brain development, adult hippocampal neurogenesis and in cognitive functions. Lack of ATP6AP2 has deleterious effects, and mutations of ATP6AP2 in humans are associated with, e.g. X-linked intellectual disability. However, little is known about the effects of over-expression of ATP6AP2 in the adult brain. We hypothesized that mice over-expressing ATP6AP2 in the brain might exhibit altered neuroanatomical features and behavioural responses. To this end, we investigated heterozygous transgenic female mice and confirmed increased levels of ATP6AP2 in the brain. Our data show that over-expression of ATP6AP2 does not affect adult hippocampal neurogenesis, exercise-induced cell proliferation, or dendritic spine densities in the hippocampus. Only a reduced ventricular volume on the gross morphological level was found. However, ATP6AP2 over-expressing mice displayed altered exploratory behaviour with respect to the hole-board and novel object recognition tests. Moreover, primary adult hippocampal neural stem cells over-expressing ATP6AP2 exhibit a faster cell cycle progression and increased cell proliferation. Together, in contrast to the known deleterious effects of ATP6AP2 depletion, a moderate over-expression results in moderate behavioural changes and affects cell proliferation rate in vitro.

  14. IN VITRO AND IN VIVO EVALUATION OF ANTIMICROBIAL AND ANTIOXIDANT POTENTIAL OF STEVIA EXTRACT.

    PubMed

    Moselhy, Said S; Ghoneim, Magdy A; Khan, Jehan A

    2016-01-01

    The current trend globally is the utilization of natural products as therapeutic agents given its minimum side effects. The leaves of Stevia contain several active ingredient compounds such as rebaudioside. Stevia extract have been used for many purposes. Active oxygen radicals can induce base modifications, DNA breakage, and intracellular protein crosslink's. This study was done to evaluate the potential of stevia extract as antibacterial and antioxidants actions. Antibacterial activity of different extracts of stevia was tested in vitro against different species of bacteria and hepato-protective efficacy was testes in rats injected with CCl 4 as hepatotoxic. Acetone extract exhibited antibacterial activity against selected five bacteria species. The acetone extract suppressed the elevation of serum ALT (p <0.05) and AST (p <0.001) activities induced by CCl 4 . Animals given stevia extract showed prevention against deleterious effects of CCl 4 by lowering lipid peroxidation and enhancement of antioxidant activities as SOD and CAT. The protection trial is better than treatment trial. Total phenolic content of aqueous and acetone extracts were found 30 mg and 85 mg gallic /gm extract respectively. While the total flavonoids were 40 mg and 80 mg quercetin/g respectively. The GC-MS analysis showed that monoterpene and indole are the main components. Aqueous extract don't show any antibacterial activity against the tested strains. The antioxidant properties were attributable to its phenolic content to scavenge free radicals. Acetone extract possess a potent antimicrobial and activity against deleterious effect of CCl 4 -caused liver damage.

  15. Preventing E-cadherin aberrant N-glycosylation at Asn-554 improves its critical function in gastric cancer

    PubMed Central

    Carvalho, S; Catarino, TA; Dias, AM; Kato, M; Almeida, A; Hessling, B; Figueiredo, J; Gärtner, F; Sanches, JM; Ruppert, T; Miyoshi, E; Pierce, M; Carneiro, F; Kolarich, D; Seruca, R; Yamaguchi, Y; Taniguchi, N; Reis, CA; Pinho, SS

    2016-01-01

    E-cadherin is a central molecule in the process of gastric carcinogenesis and its posttranslational modifications by N-glycosylation have been described to induce a deleterious effect on cell adhesion associated with tumor cell invasion. However, the role that site-specific glycosylation of E-cadherin has in its defective function in gastric cancer cells needs to be determined. Using transgenic mice models and human clinical samples, we demonstrated that N-acetylglucosaminyltransferase V (GnT-V)-mediated glycosylation causes an abnormal pattern of E-cadherin expression in the gastric mucosa. In vitro models further indicated that, among the four potential N-glycosylation sites of E-cadherin, Asn-554 is the key site that is selectively modified with β1,6 GlcNAc-branched N-glycans catalyzed by GnT-V. This aberrant glycan modification on this specific asparagine site of E-cadherin was demonstrated to affect its critical functions in gastric cancer cells by affecting E-cadherin cellular localization, cis-dimer formation, molecular assembly and stability of the adherens junctions and cell–cell aggregation, which was further observed in human gastric carcinomas. Interestingly, manipulating this site-specific glycosylation, by preventing Asn-554 from receiving the deleterious branched structures, either by a mutation or by silencing GnT-V, resulted in a protective effect on E-cadherin, precluding its functional dysregulation and contributing to tumor suppression. PMID:26189796

  16. Unraveling the Deleterious Effects of Cancer-Driven STK11 Mutants Through Conformational Sampling Approach.

    PubMed

    Lopus, Merlin; Paul, D Meshach; Rajasekaran, R

    2016-01-01

    Tumor suppressor gene, STK11, encodes for serine-threonine kinase, which has a critical role in regulating cell growth and apoptosis. Mutations of the same lead to the inactivation of STK11, which eventually causes different types of cancer. In this study, we focused on identifying those driver mutations through analyzing structural variations of mutants, viz., D194N, E199K, L160P, and Y49D. Native and the mutants were analyzed to determine their geometrical deviations such as root-mean-square deviation, root-mean-square fluctuation, radius of gyration, potential energy, and solvent-accessible surface area using conformational sampling technique. Additionally, the global minimized structure of native and mutants was further analyzed to compute their intramolecular interactions and distribution of secondary structure. Subsequently, simulated thermal denaturation and docking studies were performed to determine their structural variations, which in turn alter the formation of active complex that comprises STK11, STRAD, and MO25. The deleterious effect of the mutants would result in a comparative loss of enzyme function due to variations in their binding energy pertaining to spatial conformation and flexibility. Hence, the structural variations in binding energy exhibited by the mutants, viz., D194N, E199K, L160P, and Y49D, to that of the native, consequently lead to pathogenesis.

  17. The effect of parasites on sex differences in selection.

    PubMed

    Sharp, N P; Vincent, C M

    2015-04-01

    The life history strategies of males and females are often divergent, creating the potential for sex differences in selection. Deleterious mutations may be subject to stronger selection in males, owing to sexual selection, which can improve the mean fitness of females and reduce mutation load in sexual populations. However, sex differences in selection might also maintain sexually antagonistic genetic variation, creating a sexual conflict load. The overall impact of separate sexes on fitness is unclear, but the net effect is likely to be positive when there is a large sex difference in selection against deleterious mutations. Parasites can also have sex-specific effects on fitness, and there is evidence that parasites can intensify the fitness consequences of deleterious mutations. Using lines that accumulated mutations for over 60 generations, we studied the effect of the pathogenic bacterium Pseudomonas aeruginosa on sex differences in selection in the fruit fly Drosophila melanogaster. Pseudomonas infection increased the sex difference in selection, but may also have weakened the intersexual correlation for fitness. Our results suggest that parasites may increase the benefits of sexual selection.

  18. Detection of Clinically Relevant Genetic Variants in Autism Spectrum Disorder by Whole-Genome Sequencing

    PubMed Central

    Jiang, Yong-hui; Yuen, Ryan K.C.; Jin, Xin; Wang, Mingbang; Chen, Nong; Wu, Xueli; Ju, Jia; Mei, Junpu; Shi, Yujian; He, Mingze; Wang, Guangbiao; Liang, Jieqin; Wang, Zhe; Cao, Dandan; Carter, Melissa T.; Chrysler, Christina; Drmic, Irene E.; Howe, Jennifer L.; Lau, Lynette; Marshall, Christian R.; Merico, Daniele; Nalpathamkalam, Thomas; Thiruvahindrapuram, Bhooma; Thompson, Ann; Uddin, Mohammed; Walker, Susan; Luo, Jun; Anagnostou, Evdokia; Zwaigenbaum, Lonnie; Ring, Robert H.; Wang, Jian; Lajonchere, Clara; Wang, Jun; Shih, Andy; Szatmari, Peter; Yang, Huanming; Dawson, Geraldine; Li, Yingrui; Scherer, Stephen W.

    2013-01-01

    Autism Spectrum Disorder (ASD) demonstrates high heritability and familial clustering, yet the genetic causes remain only partially understood as a result of extensive clinical and genomic heterogeneity. Whole-genome sequencing (WGS) shows promise as a tool for identifying ASD risk genes as well as unreported mutations in known loci, but an assessment of its full utility in an ASD group has not been performed. We used WGS to examine 32 families with ASD to detect de novo or rare inherited genetic variants predicted to be deleterious (loss-of-function and damaging missense mutations). Among ASD probands, we identified deleterious de novo mutations in six of 32 (19%) families and X-linked or autosomal inherited alterations in ten of 32 (31%) families (some had combinations of mutations). The proportion of families identified with such putative mutations was larger than has been previously reported; this yield was in part due to the comprehensive and uniform coverage afforded by WGS. Deleterious variants were found in four unrecognized, nine known, and eight candidate ASD risk genes. Examples include CAPRIN1 and AFF2 (both linked to FMR1, which is involved in fragile X syndrome), VIP (involved in social-cognitive deficits), and other genes such as SCN2A and KCNQ2 (linked to epilepsy), NRXN1, and CHD7, which causes ASD-associated CHARGE syndrome. Taken together, these results suggest that WGS and thorough bioinformatic analyses for de novo and rare inherited mutations will improve the detection of genetic variants likely to be associated with ASD or its accompanying clinical symptoms. PMID:23849776

  19. MtDNA genomes reveal a relaxation of selective constraints in low-BMI individuals in a Uyghur population.

    PubMed

    Zheng, Hong-Xiang; Li, Lei; Jiang, Xiao-Yan; Yan, Shi; Qin, Zhendong; Wang, Xiaofeng; Jin, Li

    2017-10-01

    Considerable attention has been focused on the effect of deleterious mutations caused by the recent relaxation of selective constraints on human health, including the prevalence of obesity, which might represent an adaptive response of energy-conserving metabolism under the conditions of modern society. Mitochondrial DNA (mtDNA) encoding 13 core subunits of oxidative phosphorylation plays an important role in metabolism. Therefore, we hypothesized that a relaxation of selection constraints on mtDNA and an increase in the proportion of deleterious mutations have played a role in obesity prevalence. In this study, we collected and sequenced the mtDNA genomes of 722 Uyghurs, a typical population with a high prevalence of obesity. We identified the variants that occurred in the Uyghur population for each sample and found that the number of nonsynonymous mutations carried by Uyghur individuals declined with elevation of their BMI (P = 0.015). We further calculated the nonsynonymous and synonymous ratio (N/S) of the high-BMI and low-BMI haplogroups, and the results showed that a significantly higher N/S occurred in the whole mtDNA genomes of the low-BMI haplogroups (0.64) than in that of the high-BMI haplogroups (0.35, P = 0.030) and ancestor haplotypes (0.41, P = 0.032); these findings indicated that low-BMI individuals showed a recent relaxation of selective constraints. In addition, we investigated six clinical characteristics and found that fasting plasma glucose might be correlated with the N/S and selective pressures. We hypothesized that a higher proportion of deleterious mutations led to mild mitochondrial dysfunction, which helps to drive glucose consumption and thereby prevents obesity. Our results provide new insights into the relationship between obesity predisposition and mitochondrial genome evolution.

  20. Evidence for Hitchhiking of Deleterious Mutations within the Human Genome

    PubMed Central

    Chun, Sung; Fay, Justin C.

    2011-01-01

    Deleterious mutations present a significant obstacle to adaptive evolution. Deleterious mutations can inhibit the spread of linked adaptive mutations through a population; conversely, adaptive substitutions can increase the frequency of linked deleterious mutations and even result in their fixation. To assess the impact of adaptive mutations on linked deleterious mutations, we examined the distribution of deleterious and neutral amino acid polymorphism in the human genome. Within genomic regions that show evidence of recent hitchhiking, we find fewer neutral but a similar number of deleterious SNPs compared to other genomic regions. The higher ratio of deleterious to neutral SNPs is consistent with simulated hitchhiking events and implies that positive selection eliminates some deleterious alleles and increases the frequency of others. The distribution of disease-associated alleles is also altered in hitchhiking regions. Disease alleles within hitchhiking regions have been associated with auto-immune disorders, metabolic diseases, cancers, and mental disorders. Our results suggest that positive selection has had a significant impact on deleterious polymorphism and may be partly responsible for the high frequency of certain human disease alleles. PMID:21901107

  1. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi

    USDA-ARS?s Scientific Manuscript database

    Rust fungi are obligate biotrophic pathogens causing considerable damage on crop plants. P. graminis f. sp. tritici, the causal agent of wheat stem rust, and M. larici-populina, the poplar rust pathogen, have strong deleterious impact on wheat and poplar wood production, respectively. The recently r...

  2. Molecular responses of calreticulin genes to iron overload and bacterial challenge in channel catfish Ictalurus punctatus

    USDA-ARS?s Scientific Manuscript database

    Infection and inflammation are often accompanied by oxidative stress caused by the accumulation of reactive oxygen species which can be deleterious to the health of the host. Antioxidant defense mechanisms and components are crucial in limiting cellular and tissue-level damage and restoring homeosta...

  3. Molecular responses of calreticulin genes to iron overload and bacterial challenge in channel catfish (Ictalurus punctatus)

    USDA-ARS?s Scientific Manuscript database

    Infection and inflammation are often accompanied by oxidative stress caused by the accumulation of reactive oxygen species which can be deleterious to the health of the host. Antioxidant defense mechanisms and components are crucial in limiting cellular and tissue-level damage and restoring homeosta...

  4. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding

    PubMed Central

    Ayub, Qasim; Szpak, Michal; Frandsen, Peter; Chen, Yuan; Yngvadottir, Bryndis; Cooper, David N.; de Manuel, Marc; Hernandez-Rodriguez, Jessica; Lobon, Irene; Siegismund, Hans R.; Pagani, Luca; Quail, Michael A.; Hvilsom, Christina; Mudakikwa, Antoine; Eichler, Evan E.; Cranfield, Michael R.; Marques-Bonet, Tomas; Tyler-Smith, Chris; Scally, Aylwyn

    2015-01-01

    Mountain gorillas are an endangered great ape subspecies and a prominent focus for conservation, yet we know little about their genomic diversity and evolutionary past. We sequenced whole genomes from multiple wild individuals and compared the genomes of all four Gorilla subspecies. We found that the two eastern subspecies have experienced a prolonged population decline over the past 100,000 years, resulting in very low genetic diversity and an increased overall burden of deleterious variation. A further recent decline in the mountain gorilla population has led to extensive inbreeding, such that individuals are typically homozygous at 34% of their sequence, leading to the purging of severely deleterious recessive mutations from the population. We discuss the causes of their decline and the consequences for their future survival. PMID:25859046

  5. Structural impact analysis of missense SNPs present in the uroguanylin gene by long-term molecular dynamics simulations.

    PubMed

    Marcolino, Antonio C S; Porto, William F; Pires, Állan S; Franco, Octavio L; Alencar, Sérgio A

    2016-12-07

    The guanylate cyclase activator 2B, also known as uroguanylin, is part of the guanylin peptide family, which includes peptides such as guanylin and lymphoguanylin. The guanylin peptides could be related to sodium absorption inhibition and water secretion induction and their dysfunction may be related to various pathologies such as chronic renal failure, congestive heart failure and nephrotic syndrome. Besides, uroguanylin point mutations have been associated with essential hypertension. However, currently there are no studies on the impact of missense SNPs on uroguanylin structure. This study applied in silico SNP impact prediction tools to evaluate the impact of uroguanylin missense SNPs and to filter those considered as convergent deleterious, which were then further analyzed through long-term molecular dynamics simulations of 1μs of duration. The simulations suggested that all missense SNPs considered as convergent deleterious caused some kind of structural change to the uroguanylin peptide. Additionally, four of these SNPs were also shown to cause modifications in peptide flexibility, possibly resulting in functional changes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Expansion of the spectrum of ITGB6-related disorders to adolescent alopecia, dentogingival abnormalities and intellectual disability

    PubMed Central

    Ansar, Muhammad; Jan, Abid; Santos-Cortez, Regie Lyn P; Wang, Xin; Suliman, Muhammad; Acharya, Anushree; Habib, Rabia; Abbe, Izoduwa; Ali, Ghazanfar; Lee, Kwanghyuk; Smith, Joshua D; Bamshad, Michael J; Shendure, Jay; Nickerson, Deborah A; Abecasis, Gonçalo R; Anderson, Peter; Annable, Marcus; Beightol, Mallory; Browning, Brian L; Buckingham, Kati J; Chen, Christina; Chin, Jennifer; Chong, Jessica X; Cooper, Gregory M; Davis, Colleen; Felker, Lindsay; Frazar, Christopher; Hanna, David; He, Zongxiao; Jain, Preti; Jarvik, Gail P; Johanson, Eric; Jun, Goo; Kircher, Martin; Kolar, Tom; Leal, Suzanne M; Luksic, Daniel; McMillin, Margaret J; McGee, Sean; Munson, Brenton; O'Roak, Brian J; Paeper, Bryan; Patterson, Karynne; Phillips, Eric; Pijoan, Jessica; Poel, Christa; Robertson, Peggy D; Santos-Cortez, Regie Lyn P; Shaffer, Tristan; Shephard, Cindy; Siegel, Deborah L; Smith, Joshua D; Staples, Jeffrey C; Tabor, Holly K; Tackett, Monica; Wang, Gao T; Yi, Qian; Nickerson, Deborah A; Shendure, Jay; Bamshad, Michael J; Ahmad, Wasim; Leal, Suzanne M

    2016-01-01

    Alopecia with mental retardation (APMR) is a very rare disorder. In this study, we report on a consanguineous Pakistani family (AP91) with mild-to-moderate intellectual disability, adolescent alopecia and dentogingival abnormalities. Using homozygosity mapping, linkage analysis and exome sequencing, we identified a novel rare missense variant c.898G>A (p.(Glu300Lys)) in ITGB6, which co-segregates with the phenotype within the family and is predicted to be deleterious. Structural modeling shows that Glu300 lies in the β-propeller domain, and is surrounded by several residues that are important for heterodimerization with α integrin. Previous studies showed that ITGB6 variants can cause amelogenesis imperfecta in humans, but patients from family AP91 who are homozygous for the c.898G>A variant present with neurological and dermatological features, indicating a role for ITGB6 beyond enamel formation. Our study demonstrates that a rare deleterious variant within ITGB6 causes not only dentogingival anomalies but also intellectual disability and alopecia. PMID:26695873

  7. Irbesartan attenuates advanced glycation end products-mediated damage in diabetes-associated osteoporosis through the AGEs/RAGE pathway.

    PubMed

    Cheng, Yan-Zhen; Yang, Shuang-Li; Wang, Ji-Yu; Ye, Meng; Zhuo, Xiao-Yun; Wang, Li-Tao; Chen, Hong; Zhang, Hua; Yang, Li

    2018-04-24

    Diabetes-associated osteoporosis is mainly caused by the formation and accumulation of advanced glycation end products (AGEs). Angiotensin II type 1 receptor blocker (ARB) has anabolic bone effects on the physicochemical properties of the bone in diabetes. We hypothesized that ARB could inhibit AGEs-induced deleterious effects. In this study, we chose seven-week-old Leprdb/Lepr+ (db/+) and Leprdb/Leprdb (db/db) mice. After 12 week intervention by irbesartan, the microarchitecture and mechanical strength of the bone of seven-week-old db/db mice were investigated systematically. Meanwhile, the molecular mechanisms of the osteoblasts were analyzed, after AGEs or irbesartan were added to the culture. Also, intracellular formation of reactive oxygen species (ROS) was measured with DCF fluorescence. Results showed that 12-week irbesartan treatment could dramatically improve trabecular bone microarchitecture through increasing BV/TV (p = 0.003, +46.7%), Tb.N (p = 0.020, +52.0%), and decreasing that of Tb.Sp (p = 0.005, -21.2%) and SMI (p = 0.007, -26.4%), comparing with the db/db group. Irbesartan could also substantially raise biomechanical parameters including max load (p = 0.013, +20.7%), fracture load (p = 0.014, +70.5%), energy absorption (p = 0.019, +99.4%). Besides, it could inhibit AGEs-induced damage of cell proliferation and osteogenic differentiation of osteoblasts, as well as suppressing the activation of apoptosis caused by AGEs. Moreover, co-incubation with irbesartan could prevent the AGEs-induced increase of intracellular oxidative stress and RAGE expression in osteoblasts. In conclusion, this study suggested that irbesartan might play a protective role in diabetes-related bone damages by blocking the deleterious effects of AGEs/RAGE-mediated oxidative stress. This may provide a revolutionary benefits to therapy with irbesartan on diabetic osteoporosis. Copyright © 2017. Published by Elsevier Inc.

  8. Human iPSC-Derived Neural Progenitors Are an Effective Drug Discovery Model for Neurological mtDNA Disorders.

    PubMed

    Lorenz, Carmen; Lesimple, Pierre; Bukowiecki, Raul; Zink, Annika; Inak, Gizem; Mlody, Barbara; Singh, Manvendra; Semtner, Marcus; Mah, Nancy; Auré, Karine; Leong, Megan; Zabiegalov, Oleksandr; Lyras, Ekaterini-Maria; Pfiffer, Vanessa; Fauler, Beatrix; Eichhorst, Jenny; Wiesner, Burkhard; Huebner, Norbert; Priller, Josef; Mielke, Thorsten; Meierhofer, David; Izsvák, Zsuzsanna; Meier, Jochen C; Bouillaud, Frédéric; Adjaye, James; Schuelke, Markus; Wanker, Erich E; Lombès, Anne; Prigione, Alessandro

    2017-05-04

    Mitochondrial DNA (mtDNA) mutations frequently cause neurological diseases. Modeling of these defects has been difficult because of the challenges associated with engineering mtDNA. We show here that neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (iPSCs) retain the parental mtDNA profile and exhibit a metabolic switch toward oxidative phosphorylation. NPCs derived in this way from patients carrying a deleterious homoplasmic mutation in the mitochondrial gene MT-ATP6 (m.9185T>C) showed defective ATP production and abnormally high mitochondrial membrane potential (MMP), plus altered calcium homeostasis, which represents a potential cause of neural impairment. High-content screening of FDA-approved drugs using the MMP phenotype highlighted avanafil, which we found was able to partially rescue the calcium defect in patient NPCs and differentiated neurons. Overall, our results show that iPSC-derived NPCs provide an effective model for drug screening to target mtDNA disorders that affect the nervous system. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Environmental contaminants in tissues, foods, and feces of California condors

    USGS Publications Warehouse

    Wiemeyer, Stanley N.; Krynitsky, A.J.; Wilbur, S.R.; Wilbur, Sanford R.; Jackson, Jerome A.

    1983-01-01

    Two wild California Condors contained moderate to high levels of DDE in their tissues. The levels found could be high enough to cause reproductive problems in adult condors, if the assumption is made that condors are as susceptible to DDE as many other species of birds of prey. Other organochlorines occurred at low levels and probably were not high enough to cause deleterious effects. Metal residues in tissues of one bird were generally low except for copper in liver and lead in bone. Normal background levels of these metals in cathartids are unknown, making interpretation of the results difficult. Organochlorine residues in biopsy samples from a captive condor were low and probably would not have an adverse effect on reproduction if the bird were used for captive breeding. Organochlorines were not detected in food items used in the supplemental feeding program, and mercury and lead residues in these items were generally low. Information is needed on current contaminant levels in natural condor prey throughout the condor range.

  10. A Ruby in the Rubbish: Beneficial Mutations, Deleterious Mutations and the Evolution of Sex

    PubMed Central

    Peck, J. R.

    1994-01-01

    This study presents a mathematical model in which a single beneficial mutation arises in a very large population that is subject to frequent deleterious mutations. The results suggest that, if the population is sexual, then the deleterious mutations will have little effect on the ultimate fate of the beneficial mutation. However, if most offspring are produced asexually, then the probability that the beneficial mutation will be lost from the population may be greatly enhanced by the deleterious mutations. Thus, sexual populations may adapt much more quickly than populations where most reproduction is asexual. Some of the results were produced using computer simulation methods, and a technique was developed that allows treatment of arbitrarily large numbers of individuals in a reasonable amount of computer time. This technique may be of prove useful for the analysis of a wide variety of models, though there are some constraints on its applicability. For example, the technique requires that reproduction can be described by Poisson processes. PMID:8070669

  11. Landscape of Pleiotropic Proteins Causing Human Disease: Structural and System Biology Insights.

    PubMed

    Ittisoponpisan, Sirawit; Alhuzimi, Eman; Sternberg, Michael J E; David, Alessia

    2017-03-01

    Pleiotropy is the phenomenon by which the same gene can result in multiple phenotypes. Pleiotropic proteins are emerging as important contributors to rare and common disorders. Nevertheless, little is known on the mechanisms underlying pleiotropy and the characteristic of pleiotropic proteins. We analyzed disease-causing proteins reported in UniProt and observed that 12% are pleiotropic (variants in the same protein cause more than one disease). Pleiotropic proteins were enriched in deleterious and rare variants, but not in common variants. Pleiotropic proteins were more likely to be involved in the pathogenesis of neoplasms, neurological, and circulatory diseases and congenital malformations, whereas non-pleiotropic proteins in endocrine and metabolic disorders. Pleiotropic proteins were more essential and had a higher number of interacting partners compared with non-pleiotropic proteins. Significantly more pleiotropic than non-pleiotropic proteins contained at least one intrinsically long disordered region (P < 0.001). Deleterious variants occurring in structurally disordered regions were more commonly found in pleiotropic, rather than non-pleiotropic proteins. In conclusion, pleiotropic proteins are an important contributor to human disease. They represent a biologically different class of proteins compared with non-pleiotropic proteins and a better understanding of their characteristics and genetic variants can greatly aid in the interpretation of genetic studies and drug design. © 2016 WILEY PERIODICALS, INC.

  12. Pyridostigmine Improves the Effects of Resistance Exercise Training after Myocardial Infarction in Rats

    PubMed Central

    Feriani, Daniele J.; Coelho-Júnior, Hélio J.; de Oliveira, Juliana C. M. F.; Delbin, Maria A.; Mostarda, Cristiano T.; Dourado, Paulo M. M.; Caperuto, Érico C.; Irigoyen, Maria C. C.; Rodrigues, Bruno

    2018-01-01

    Myocardial infarction (MI) remains the leading cause of morbidity and mortality worldwide. Exercise training and pharmacological treatments are important strategies to minimize the deleterious effects of MI. However, little is known about the effects of resistance training combined with pyridostigmine bromide (PYR) treatment on cardiac and autonomic function, as well as on the inflammatory profile after MI. Thus, in the present study, male Wistar rats were randomly assigned into: control (Cont); sedentary infarcted (Inf); PYR – treated sedentary infarcted rats (Inf+P); infarcted rats undergoing resistance exercise training (Inf+RT); and infarcted rats undergoing PYR treatment plus resistance training (Inf+RT+P). After 12 weeks of resistance training (15–20 climbs per session, with a 1-min rest between each climb, at a low to moderate intensity, 5 days a week) and/or PYR treatment (0.14 mg/mL of drink water), hemodynamic function, autonomic modulation, and cytokine expressions were evaluated. We observed that 3 months of PYR treatment, either alone or in combination with exercise, can improve the deleterious effects of MI on left ventricle dimensions and function, baroreflex sensitivity, and autonomic parameters, as well as systemic and tissue inflammatory profile. Furthermore, additional benefits in a maximal load test and anti-inflammatory state of skeletal muscle were found when resistance training was combined with PYR treatment. Thus, our findings suggest that the combination of resistance training and PYR may be a good therapeutic strategy since they promote additional benefits on skeletal muscle anti-inflammatory profile after MI. PMID:29483876

  13. Cigarette smoking: health effects and control strategies.

    PubMed

    Alberg, Anthony J

    2008-12-01

    Active cigarette smoking causes a broad spectrum of diseases that extend to many different organ systems. Its numerous deleterious health effects, combined with the substantial prevalence of cigarette smoking, make it a major worldwide cause of death. Smoking contributes so heavily to the mortality burden because it is a major cause of vascular disease, cancer and chronic obstructive pulmonary disease. In addition to these diseases, cigarette smoking also causes other respiratory symptoms, adversely affects reproductive outcomes and is a cause of diminished health status. Furthermore, exposure to secondhand smoke is an established cause of coronary heart disease and lung cancer, as well as a host of other adverse health effects. Given that cigarette smoking is such a major threat to global public health, controlling the worldwide epidemic of cigarette smoking would lead to enormous public health benefits. Strategies to control cigarette smoking at the societal level include smoke-free workplace legislation, increasing cigarette taxes and regulating cigarette advertising. On the individual level, preventing the initiation of cigarette smoking among youths is the optimal strategy; in practice, discovering efficacious primary prevention interventions has proven challenging. During the past two decades, major advances have been made in extending the menu of options available to assist dependent smokers in successfully quitting smoking. Successfully combating cigarette smoking requires a broad-based commitment to smoking control from multiple stakeholders, along with a multifaceted strategy that addresses both societal and individual factors. Copyright 2008 Prous Science, S.A.U. or its licensors. All rights reserved.

  14. Influence of Dexamethasone on Some Reproductive Hormones and Uterine Progesterone Receptor Localization in Pregnant Yankasa Sheep in Semiarid Zones of Nigeria.

    PubMed

    Yahi, Dauda; Ojo, Nicholas Adetayo; Mshelia, Gideon Dauda

    2017-01-01

    Dexamethasone is widely used in both veterinary and human medical practices. However, it seems to cause some deleterious effects on pregnancy probably by causing changes in the reproductive hormone levels and their corresponding receptor concentrations. This study investigated the effects of dexamethasone on these parameters. Twenty healthy adult Yankasa sheep comprising 18 ewes and 2 rams were used for this study. Pregnancies were achieved by natural mating after estrus synchronization. Dexamethasone was administered at 0.25 mg/kg body weight on days 1, 3, and 5 during first trimester; days 51, 53, and 55 during second trimester; and days 101, 103, and 105 during the third trimester. Blood samples were collected biweekly for hormonal assay. Uterine biopsies were harvested through caesarean section for immunohistochemical analysis. Results showed that dexamethasone significantly ( p < 0.05) decreased progesterone concentrations and caused abortion in Yankasa sheep but had no significant ( p > 0.05) effect on estrogen, while progesterone receptors (PR) were upregulated. The abortion could probably be due to decreased progesterone concentrations as a consequence of the adverse effects on placenta. The PR upregulation may be a compensatory mechanism to increase progesterone sensitivity. It was concluded that dexamethasone should not be used in advanced pregnancy in Yankasa sheep.

  15. Influence of Dexamethasone on Some Reproductive Hormones and Uterine Progesterone Receptor Localization in Pregnant Yankasa Sheep in Semiarid Zones of Nigeria

    PubMed Central

    Ojo, Nicholas Adetayo; Mshelia, Gideon Dauda

    2017-01-01

    Dexamethasone is widely used in both veterinary and human medical practices. However, it seems to cause some deleterious effects on pregnancy probably by causing changes in the reproductive hormone levels and their corresponding receptor concentrations. This study investigated the effects of dexamethasone on these parameters. Twenty healthy adult Yankasa sheep comprising 18 ewes and 2 rams were used for this study. Pregnancies were achieved by natural mating after estrus synchronization. Dexamethasone was administered at 0.25 mg/kg body weight on days 1, 3, and 5 during first trimester; days 51, 53, and 55 during second trimester; and days 101, 103, and 105 during the third trimester. Blood samples were collected biweekly for hormonal assay. Uterine biopsies were harvested through caesarean section for immunohistochemical analysis. Results showed that dexamethasone significantly (p < 0.05) decreased progesterone concentrations and caused abortion in Yankasa sheep but had no significant (p > 0.05) effect on estrogen, while progesterone receptors (PR) were upregulated. The abortion could probably be due to decreased progesterone concentrations as a consequence of the adverse effects on placenta. The PR upregulation may be a compensatory mechanism to increase progesterone sensitivity. It was concluded that dexamethasone should not be used in advanced pregnancy in Yankasa sheep. PMID:29181440

  16. A pulsed magnetic stress applied to Drosophila melanogaster flies

    NASA Astrophysics Data System (ADS)

    Delle Side, D.; Bozzetti, M. P.; Friscini, A.; Giuffreda, E.; Nassisi, V.; Specchia, V.; Velardi, L.

    2014-04-01

    We report the development of a system to feed pulsed magnetic stress to biological samples. The device is based on a RLC circuit that transforms the energy stored in a high voltage capacitor into a magnetic field inside a coil. The field has been characterized and we found that charging the capacitor with 24 kV results in a peak field of 0.4 T. In order to test its effect, we applied such a stress to the Drosophila melanogaster model and we examined its bio-effects. We analysed, in the germ cells, the effects on the control of specific DNA repetitive sequences that are activated after different environmental stresses. The deregulation of these sequences causes genomic instability and chromosomes breaks leading to sterility. The magnetic field treatment did not produce effects on repetitive sequences in the germ cells of Drosophila. Hence, this field doesn't produce deleterious effects linked to repetitive sequences derepression.

  17. Can mutation-mediated effects occurring early in development cause long-term seizure susceptibility in genetic generalized epilepsies?

    PubMed

    Reid, Christopher Alan; Rollo, Ben; Petrou, Steven; Berkovic, Samuel F

    2018-05-01

    Epilepsy has a strong genetic component, with an ever-increasing number of disease-causing genes being discovered. Most epilepsy-causing mutations are germ line and thus present from conception. These mutations are therefore well positioned to have a deleterious impact during early development. Here we review studies that investigate the role of genetic lesions within the early developmental window, specifically focusing on genetic generalized epilepsy (GGE). Literature on the potential pathogenic role of sub-mesoscopic structural changes in GGE is also reviewed. Evidence from rodent models of genetic epilepsy support the idea that functional and structural changes can occur in early development, leading to altered seizure susceptibility into adulthood. Both animal and human studies suggest that sub-mesoscopic structural changes occur in GGE. The existence of sub-mesoscopic structural changes prior to seizure onset may act as biomarkers of excitability in genetic epilepsies. We also propose that presymptomatic treatment may be essential for limiting the long-term consequences of disease-causing mutations in genetic epilepsies. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.

  18. Vitamin C acts as a hepatoprotectant in carbofuran treated rat liver slices in vitro.

    PubMed

    Jaiswal, Sunil Kumar; Gupta, Vivek Kumar; Ansari, Md Dilshad; Siddiqi, Nikhat J; Sharma, Bechan

    2017-01-01

    Carbamates, most commonly used pesticides in agricultural practices, have been reported to produce free radicals causing deleterious effects in animals. The present study was designed to assess the carbofuran induced oxidative stress in rat liver slices in vitro and also to evaluate protective role of vitamin C by incubating them in Krebs-Ringer HEPES Buffer (KRHB) containing incubation media (Williams medium E (WME) supplemented with glucose and antibiotics) with different concentrations of carbofuran. The results demonstrated that carbofuran caused significant increase in lipid peroxidation and inhibition in the activity of hepatic superoxide dismutase (SOD) in concentration dependent manner. The data with incubation medium reflected that carbofuran at lowest concentration caused an increase in SOD activity followed by its inhibition at higher concentration. Carbofuran treatment caused inhibition in the activity of catalase in liver slices and WME incubation medium. Pre-incubation of liver slices and the WME media with vitamin C restored the values of biochemical indices tested. The results indicated that carbofuran might induce oxidative stress in hepatocytes. The pretreatment with vitamin C may offer hepatoprotection from toxicity of pesticide at low concentration only.

  19. Clinical manifestations and management of Gaucher disease.

    PubMed

    Linari, Silvia; Castaman, Giancarlo

    2015-01-01

    Gaucher disease is a rare multi-systemic metabolic disorder caused by the inherited deficiency of the lysosomal enzyme β-glucocerebrosidase, which leads to the accumulation of its normal substrate, glucocerebroside, in tissue macrophages with damage to haematological, visceral and bone systems. Anaemia, thrombocytopenia, enlargement of liver and/or spleen, skeletal abnormalities (osteopenia, lytic lesions, pathological fractures, chronic bone pain, bone crisis, bone infarcts, osteonecrosis and skeletal deformities) are typical manifestations of the most prevalent form of the disease, the so-called non-neuronopathic type 1. However, severity and coexistence of different symptoms are highly variable. The determination of deficient β-glucocerebrosidase activity in leukocytes or fibroblasts by enzymatic assay is the gold standard for the diagnosis of Gaucher disease. Comprehensive and reproducible evaluation and monitoring of all clinically relevant aspects are fundamental for the effective management of Gaucher disease patients. Enzyme replacement therapy has been shown to be effective in reducing glucocerebroside storage burden and diminishing the deleterious effects caused by its accumulation. Tailored treatment plan for each patient should be directed to symptom relief, general improvement of quality of life, and prevention of irreversible damage.

  20. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.)

    PubMed Central

    Aranjuelo, Iker; Molero, Gemma; Erice, Gorka; Avice, Jean Christophe; Nogués, Salvador

    2011-01-01

    Despite its relevance, protein regulation, metabolic adjustment, and the physiological status of plants under drought is not well understood in relation to the role of nitrogen fixation in nodules. In this study, nodulated alfalfa plants were exposed to drought conditions. The study determined the physiological, metabolic, and proteomic processes involved in photosynthetic inhibition in relation to the decrease in nitrogenase (Nase) activity. The deleterious effect of drought on alfalfa performance was targeted towards photosynthesis and Nase activity. At the leaf level, photosynthetic inhibition was mainly caused by the inhibition of Rubisco. The proteomic profile and physiological measurements revealed that the reduced carboxylation capacity of droughted plants was related to limitations in Rubisco protein content, activation state, and RuBP regeneration. Drought also decreased amino acid content such as asparagine, and glutamic acid, and Rubisco protein content indicating that N availability limitations were caused by Nase activity inhibition. In this context, drought induced the decrease in Rubisco binding protein content at the leaf level and proteases were up-regulated so as to degrade Rubisco protein. This degradation enabled the reallocation of the Rubisco-derived N to the synthesis of amino acids with osmoregulant capacity. Rubisco degradation under drought conditions was induced so as to remobilize Rubisco-derived N to compensate for the decrease in N associated with Nase inhibition. Metabolic analyses showed that droughted plants increased amino acid (proline, a major compound involved in osmotic regulation) and soluble sugar (D-pinitol) levels to contribute towards the decrease in osmotic potential (Ψs). At the nodule level, drought had an inhibitory effect on Nase activity. This decrease in Nase activity was not induced by substrate shortage, as reflected by an increase in total soluble sugars (TSS) in the nodules. Proline accumulation in the nodule could also be associated with an osmoregulatory response to drought and might function as a protective agent against ROS. In droughted nodules, the decrease in N2 fixation was caused by an increase in oxygen resistance that was induced in the nodule. This was a mechanism to avoid oxidative damage associated with reduced respiration activity and the consequent increase in oxygen content. This study highlighted that even though drought had a direct effect on leaves, the deleterious effects of drought on nodules also conditioned leaf responsiveness. PMID:20797998

  1. Arsenic, asbestos and radon: emerging players in lung tumorigenesis

    PubMed Central

    2012-01-01

    The cause of lung cancer is generally attributed to tobacco smoking. However lung cancer in never smokers accounts for 10 to 25% of all lung cancer cases. Arsenic, asbestos and radon are three prominent non-tobacco carcinogens strongly associated with lung cancer. Exposure to these agents can lead to genetic and epigenetic alterations in tumor genomes, impacting genes and pathways involved in lung cancer development. Moreover, these agents not only exhibit unique mechanisms in causing genomic alterations, but also exert deleterious effects through common mechanisms, such as oxidative stress, commonly associated with carcinogenesis. This article provides a comprehensive review of arsenic, asbestos, and radon induced molecular mechanisms responsible for the generation of genetic and epigenetic alterations in lung cancer. A better understanding of the mode of action of these carcinogens will facilitate the prevention and management of lung cancer related to such environmental hazards. PMID:23173984

  2. Homeland security in the C. elegans germ line: insights into the biogenesis and function of piRNAs.

    PubMed

    Kasper, Dionna M; Gardner, Kathryn E; Reinke, Valerie

    2014-01-01

    While most eukaryotic genomes contain transposable elements that can provide select evolutionary advantages to a given organism, failure to tightly control the mobility of such transposable elements can result in compromised genomic integrity of both parental and subsequent generations. Together with the Piwi subfamily of Argonaute proteins, small, non-coding Piwi-interacting RNAs (piRNAs) primarily function in the germ line to defend the genome against the potentially deleterious effects that can be caused by transposition. Here, we describe recent discoveries concerning the biogenesis and function of piRNAs in the nematode Caenorhabditis elegans, illuminating how the faithful production of these mature species can impart a robust defense mechanism for the germ line to counteract problems caused by foreign genetic elements across successive generations by contributing to the epigenetic memory of non-self vs. self.

  3. Lipotoxicity, fatty acid uncoupling and mitochondrial carrier function.

    PubMed

    Rial, Eduardo; Rodríguez-Sánchez, Leonor; Gallardo-Vara, Eunate; Zaragoza, Pilar; Moyano, Eva; González-Barroso, M Mar

    2010-01-01

    Diseases like obesity, diabetes or generalized lipodystrophy cause a chronic elevation of circulating fatty acids that can become cytotoxic, a condition known as lipotoxicity. Fatty acids cause oxidative stress and alterations in mitochondrial structure and function. The uncoupling of the oxidative phosphorylation is one of the most recognized deleterious fatty acid effects and several metabolite transporters are known to mediate in their action. The fatty acid interaction with the carriers leads to membrane depolarization and/or the conversion of the carrier into a pore. The result is the opening of the permeability transition pore and the initiation of apoptosis. Unlike the other members of the mitochondrial carrier superfamily, the eutherian uncoupling protein UCP1 has evolved to achieve its heat-generating capacity in the physiological context provided by the brown adipocyte and therefore it is activated by the low fatty acid concentrations generated by the noradrenaline-stimulated lipolysis. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. [Congenital hypothyroidism].

    PubMed

    Castilla Peón, María Fernanda

    Congenital hypothyroidism (CH) is a cause of preventable mental retardation; therefore, timely diagnosis and treatment by the primary care physician is very important. CH screening must be performed between the second and fifth days of life with capillary blood done with a heel prick and must be confirmed by measurement of thyroid hormones in venous blood. The most common cause of CH is thyroid dysgenesis, which may be identified by a thyroid scan carried out before initiating treatment. Treatment should be with levothyroxine (10-15μg/kg/day) and should not be delayed or suspended during the first 3 years of life due to the deleterious effect on neurodevelopment in case of low thyroid hormones during this time. Preterm or sick infants or those with Down syndrome require special consideration. This article provides diagnostic and therapeutic algorithms for CH. Copyright © 2015 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  5. Elevated Proportions of Deleterious Genetic Variation in Domestic Animals and Plants

    PubMed Central

    Rubin, Carl-Johan; Carneiro, Miguel; Axelsson, Erik; Andersson, Leif

    2018-01-01

    Abstract A fraction of genetic variants segregating in any population are deleterious, which negatively impacts individual fitness. The domestication of animals and plants is associated with population bottlenecks and artificial selection, which are predicted to increase the proportion of deleterious variants. However, the extent to which this is a general feature of domestic species is unclear. Here, we examine the effects of domestication on the prevalence of deleterious variation using pooled whole-genome resequencing data from five domestic animal species (dog, pig, rabbit, chicken, and silkworm) and two domestic plant species (rice and soybean) compared with their wild ancestors. We find significantly reduced genetic variation and increased proportion of nonsynonymous amino acid changes in all but one of the domestic species. These differences are observable across a range of allele frequencies, both common and rare. We find proportionally more single nucleotide polymorphisms in highly conserved elements in domestic species and a tendency for domestic species to harbor a higher proportion of changes classified as damaging. Our findings most likely reflect an increased incidence of deleterious variants in domestic species, which is most likely attributable to population bottlenecks that lead to a reduction in the efficacy of selection. An exception to this pattern is displayed by European domestic pigs, which do not show traces of a strong population bottleneck and probably continued to exchange genes with wild boar populations after domestication. The results presented here indicate that an elevated proportion of deleterious variants is a common, but not ubiquitous, feature of domestic species. PMID:29325102

  6. Targeted Genetic Screen in Amyotrophic Lateral Sclerosis Reveals Novel Genetic Variants with Synergistic Effect on Clinical Phenotype.

    PubMed

    Cooper-Knock, Johnathan; Robins, Henry; Niedermoser, Isabell; Wyles, Matthew; Heath, Paul R; Higginbottom, Adrian; Walsh, Theresa; Kazoka, Mbombe; Ince, Paul G; Hautbergue, Guillaume M; McDermott, Christopher J; Kirby, Janine; Shaw, Pamela J

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is underpinned by an oligogenic rare variant architecture. Identified genetic variants of ALS include RNA-binding proteins containing prion-like domains (PrLDs). We hypothesized that screening genes encoding additional similar proteins will yield novel genetic causes of ALS. The most common genetic variant of ALS patients is a G4C2-repeat expansion within C9ORF72 . We have shown that G4C2-repeat RNA sequesters RNA-binding proteins. A logical consequence of this is that loss-of-function mutations in G4C2-binding partners might contribute to ALS pathogenesis independently of and/or synergistically with C9ORF72 expansions. Targeted sequencing of genomic DNA encoding either RNA-binding proteins or known ALS genes ( n = 274 genes) was performed in ALS patients to identify rare deleterious genetic variants and explore genotype-phenotype relationships. Genomic DNA was extracted from 103 ALS patients including 42 familial ALS patients and 61 young-onset (average age of onset 41 years) sporadic ALS patients; patients were chosen to maximize the probability of identifying genetic causes of ALS. Thirteen patients carried a G4C2-repeat expansion of C9ORF72 . We identified 42 patients with rare deleterious variants; 6 patients carried more than one variant. Twelve mutations were discovered in known ALS genes which served as a validation of our strategy. Rare deleterious variants in RNA-binding proteins were significantly enriched in ALS patients compared to control frequencies ( p = 5.31E-18). Nineteen patients featured at least one variant in a RNA-binding protein containing a PrLD. The number of variants per patient correlated with rate of disease progression ( t -test, p = 0.033). We identified eighteen patients with a single variant in a G4C2-repeat binding protein. Patients with a G4C2-binding protein variant in combination with a C9ORF72 expansion had a significantly faster disease course ( t -test, p = 0.025). Our data are consistent with an oligogenic model of ALS. We provide evidence for a number of entirely novel genetic variants of ALS caused by mutations in RNA-binding proteins. Moreover we show that these mutations act synergistically with each other and with C9ORF72 expansions to modify the clinical phenotype of ALS. A key finding is that this synergy is present only between functionally interacting variants. This work has significant implications for ALS therapy development.

  7. Cirrus Cloud Seeding has Potential to Cool Climate

    NASA Technical Reports Server (NTRS)

    Storelvmo, T.; Kristjansson, J. E.; Muri, H.; Pfeffer, M.; Barahona, D.; Nenes, A.

    2013-01-01

    Cirrus clouds, thin ice clouds in the upper troposphere, have a net warming effect on Earth s climate. Consequently, a reduction in cirrus cloud amount or optical thickness would cool the climate. Recent research indicates that by seeding cirrus clouds with particles that promote ice nucleation, their lifetimes and coverage could be reduced. We have tested this hypothesis in a global climate model with a state-of-the-art representation of cirrus clouds and find that cirrus cloud seeding has the potential to cancel the entire warming caused by human activity from pre-industrial times to present day. However, the desired effect is only obtained for seeding particle concentrations that lie within an optimal range. With lower than optimal particle concentrations, a seeding exercise would have no effect. Moreover, a higher than optimal concentration results in an over-seeding that could have the deleterious effect of prolonging cirrus lifetime and contributing to global warming.

  8. Liver Proteome of Mice with Distinct Genetic Susceptibilities to Fluorosis Treated with Different Concentrations of F in the Drinking Water.

    PubMed

    Khan, Zohaib Nisar; Sabino, Isabela Tomazini; de Souza Melo, Carina Guimarães; Martini, Tatiana; da Silva Pereira, Heloísa Aparecida Barbosa; Buzalaf, Marília Afonso Rabelo

    2018-04-29

    Appropriate doses of fluoride (F) have therapeutic action against dental caries, but higher levels can cause disturbances in soft and mineralized tissues. Interestingly, the susceptibility to the toxic effects of F is genetically determined. This study evaluated the effects of F on the liver proteome of mice susceptible (A/J) or resistant (129P3/J) to the effects of F. Weanling male A/J (n = 12) and 129P3/J (n = 12) mice were housed in pairs and assigned to two groups given low-F food and drinking water containing 15 or 50 ppm F for 6 weeks. Liver proteome profiles were examined using nano-LC-ESI-MS/MS. Difference in expression among the groups was determined using the PLGS software. Treatment with the lower F concentration provoked more pronounced alterations in fold change in liver proteins in comparison to the treatment with the higher F concentration. Interestingly, most of the proteins with fold change upon treatment with 15 ppm F were increased in the A/J mice compared with their 129P3/J counterparts, suggesting an attempt of the former to fight the deleterious effects of F. However, upon treatment with 50 ppm F, most proteins with fold change were decreased in the A/J mice compared with their 129P3/J counterparts, especially proteins related to oxidative stress and protein folding, which might be related to the higher susceptibility of the A/J animals to the deleterious effects of F. Our findings add light into the mechanisms underlying genetic susceptibility to fluorosis.

  9. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding.

    PubMed

    Xue, Yali; Prado-Martinez, Javier; Sudmant, Peter H; Narasimhan, Vagheesh; Ayub, Qasim; Szpak, Michal; Frandsen, Peter; Chen, Yuan; Yngvadottir, Bryndis; Cooper, David N; de Manuel, Marc; Hernandez-Rodriguez, Jessica; Lobon, Irene; Siegismund, Hans R; Pagani, Luca; Quail, Michael A; Hvilsom, Christina; Mudakikwa, Antoine; Eichler, Evan E; Cranfield, Michael R; Marques-Bonet, Tomas; Tyler-Smith, Chris; Scally, Aylwyn

    2015-04-10

    Mountain gorillas are an endangered great ape subspecies and a prominent focus for conservation, yet we know little about their genomic diversity and evolutionary past. We sequenced whole genomes from multiple wild individuals and compared the genomes of all four Gorilla subspecies. We found that the two eastern subspecies have experienced a prolonged population decline over the past 100,000 years, resulting in very low genetic diversity and an increased overall burden of deleterious variation. A further recent decline in the mountain gorilla population has led to extensive inbreeding, such that individuals are typically homozygous at 34% of their sequence, leading to the purging of severely deleterious recessive mutations from the population. We discuss the causes of their decline and the consequences for their future survival. Copyright © 2015, American Association for the Advancement of Science.

  10. Inactivation of Microorganisms

    NASA Astrophysics Data System (ADS)

    Alzamora, Stella Maris; Guerrero, Sandra N.; Schenk, Marcela; Raffellini, Silvia; López-Malo, Aurelio

    Minimal processing techniques for food preservation allow better retention of product flavor, texture, color, and nutrient content than comparable conventional treatments. A wide range of novel alternative physical factors have been intensely investigated in the last two decades. These physical factors can cause inactivation of microorganisms at ambient or sublethal temperatures (e.g., high hydrostatic pressure, pulsed electric fields, ultrasound, pulsed light, and ultraviolet light). These technologies have been reported to reduce microorganism population in foods while avoiding the deleterious effects of severe heating on quality. Among technologies, high-energy ultrasound (i.e., intensities higher than 1 W/cm2, frequencies between 18 and 100 kHz) has attracted considerable interest for food preservation applications (Mason et al., 1996; Povey and Mason, 1998).

  11. Regulatory T cells: mechanisms of differentiation and function.

    PubMed

    Josefowicz, Steven Z; Lu, Li-Fan; Rudensky, Alexander Y

    2012-01-01

    The immune system has evolved to mount an effective defense against pathogens and to minimize deleterious immune-mediated inflammation caused by commensal microorganisms, immune responses against self and environmental antigens, and metabolic inflammatory disorders. Regulatory T (Treg) cell-mediated suppression serves as a vital mechanism of negative regulation of immune-mediated inflammation and features prominently in autoimmune and autoinflammatory disorders, allergy, acute and chronic infections, cancer, and metabolic inflammation. The discovery that Foxp3 is the transcription factor that specifies the Treg cell lineage facilitated recent progress in understanding the biology of regulatory T cells. In this review, we discuss cellular and molecular mechanisms in the differentiation and function of these cells.

  12. Risk of population extinction from fixation of deleterious and reverse mutations.

    PubMed

    Lande, R

    1998-01-01

    A model is developed for alternate fixations of mildly deleterious and wild-type alleles arising by forward and reverse mutation in a finite population. For almost all parameter values, this gives an equilibrium load that agrees closely with the general expression derived from diffusion theory. Nearly neutral mutations with selection coefficient a few times larger than 1/(2N(e)) do the most damage by increasing the equilibrium load. The model of alternate fixations facilitates dynamical analysis of the expected load and the mean time to extinction in a population that has been suddenly reduced from a very large size to a small size. Reverse mutation can substantially improve population viability, increasing the mean time to extinction by an order of magnitude or more, but because many mutations are irreversible the effects may not be large. Populations with initially high mean fitness and small effective size, N(e) below a few hundred individuals, may be at serious risk of extinction from fixation of deleterious mutations within 10(3) to 10(4) generations.

  13. In silico identification of genetic variants in glucocerebrosidase (GBA) gene involved in Gaucher's disease using multiple software tools.

    PubMed

    Manickam, Madhumathi; Ravanan, Palaniyandi; Singh, Pratibha; Talwar, Priti

    2014-01-01

    Gaucher's disease (GD) is an autosomal recessive disorder caused by the deficiency of glucocerebrosidase, a lysosomal enzyme that catalyses the hydrolysis of the glycolipid glucocerebroside to ceramide and glucose. Polymorphisms in GBA gene have been associated with the development of Gaucher disease. We hypothesize that prediction of SNPs using multiple state of the art software tools will help in increasing the confidence in identification of SNPs involved in GD. Enzyme replacement therapy is the only option for GD. Our goal is to use several state of art SNP algorithms to predict/address harmful SNPs using comparative studies. In this study seven different algorithms (SIFT, MutPred, nsSNP Analyzer, PANTHER, PMUT, PROVEAN, and SNPs&GO) were used to predict the harmful polymorphisms. Among the seven programs, SIFT found 47 nsSNPs as deleterious, MutPred found 46 nsSNPs as harmful. nsSNP Analyzer program found 43 out of 47 nsSNPs are disease causing SNPs whereas PANTHER found 32 out of 47 as highly deleterious, 22 out of 47 are classified as pathological mutations by PMUT, 44 out of 47 were predicted to be deleterious by PROVEAN server, all 47 shows the disease related mutations by SNPs&GO. Twenty two nsSNPs were commonly predicted by all the seven different algorithms. The common 22 targeted mutations are F251L, C342G, W312C, P415R, R463C, D127V, A309V, G46E, G202E, P391L, Y363C, Y205C, W378C, I402T, S366R, F397S, Y418C, P401L, G195E, W184R, R48W, and T43R.

  14. An epigenetic basis for autism spectrum disorder risk and oral contraceptive use.

    PubMed

    Strifert, Kim

    2015-12-01

    In the United States 1 in 68 children are diagnosed with autism spectrum disorder (ASD). Although the etiology is unknown, many scientists believe ASD is caused by a combination of genetic and environmental factors and/or epigenetic factors. The widespread use of oral contraceptives is one environmental risk factor that has been greatly overlooked in the biomedical literature. Oral contraceptives, synthetic hormones created to imitate natural human hormones and disrupt endogenous endocrine function to inhibit pregnancy, may be causing the harmful neurodevelopmental effects that result in the increased prevalence of ASD. It is conceivable that the synthetic hormones repeatedly assault the oocyte causing persistent changes in expression of the estrogen receptor beta gene. Ethinylestradiol, a known endocrine disruptor, may trigger DNA methylation of the estrogen receptor beta gene causing decreased mRNA resulting in impaired brain estrogen signaling in progeny. In addition, it is possible the deleterious effects are transgenerational as the estrogen receptor gene and many of its targets may be imprinted and the methylation marks protected from global demethylation and preserved through fertilization and beyond to progeny generations. This article will delineate the hypothesis that ethinylestradiol activates DNA methylation of the estrogen receptor beta gene causing decreased mRNA resulting in diminished brain estrogen signaling in offspring of mothers exposed to oral contraceptives. Considering the detrimental epigenetic and transgenerational effects proposed, it calls for further study. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Rare beneficial mutations can halt Muller's ratchet

    NASA Astrophysics Data System (ADS)

    Balick, Daniel; Goyal, Sidhartha; Jerison, Elizabeth; Neher, Richard; Shraiman, Boris; Desai, Michael

    2012-02-01

    In viral, bacterial, and other asexual populations, the vast majority of non-neutral mutations are deleterious. This motivates the application of models without beneficial mutations. Here we show that the presence of surprisingly few compensatory mutations halts fitness decay in these models. Production of deleterious mutations is balanced by purifying selection, stabilizing the fitness distribution. However, stochastic vanishing of fitness classes can lead to slow fitness decay (i.e. Muller's ratchet). For weakly deleterious mutations, production overwhelms purification, rapidly decreasing population fitness. We show that when beneficial mutations are introduced, a stable steady state emerges in the form of a dynamic mutation-selection balance. We argue this state is generic for all mutation rates and population sizes, and is reached as an end state as genomes become saturated by either beneficial or deleterious mutations. Assuming all mutations have the same magnitude selective effect, we calculate the fraction of beneficial mutations necessary to maintain the dynamic balance. This may explain the unexpected maintenance of asexual genomes, as in mitochondria, in the presence of selection. This will affect in the statistics of genetic diversity in these populations.

  16. IN VITRO AND IN VIVO EVALUATION OF ANTIMICROBIAL AND ANTIOXIDANT POTENTIAL OF STEVIA EXTRACT.

    PubMed Central

    Moselhy, Said S.; Ghoneim, Magdy A.; Khan, Jehan A.

    2016-01-01

    Background: The current trend globally is the utilization of natural products as therapeutic agents given its minimum side effects. The leaves of Stevia contain several active ingredient compounds such as rebaudioside. Stevia extract have been used for many purposes. Active oxygen radicals can induce base modifications, DNA breakage, and intracellular protein crosslink’s. This study was done to evaluate the potential of stevia extract as antibacterial and antioxidants actions. Materials and methods: Antibacterial activity of different extracts of stevia was tested in vitro against different species of bacteria and hepato-protective efficacy was testes in rats injected with CCl4 as hepatotoxic. Results: Acetone extract exhibited antibacterial activity against selected five bacteria species. The acetone extract suppressed the elevation of serum ALT (p <0.05) and AST (p <0.001) activities induced by CCl4. Animals given stevia extract showed prevention against deleterious effects of CCl4 by lowering lipid peroxidation and enhancement of antioxidant activities as SOD and CAT. The protection trial is better than treatment trial. Total phenolic content of aqueous and acetone extracts were found 30 mg and 85 mg gallic /gm extract respectively. While the total flavonoids were 40 mg and 80 mg quercetin/g respectively. The GC-MS analysis showed that monoterpene and indole are the main components. Aqueous extract don’t show any antibacterial activity against the tested strains. The antioxidant properties were attributable to its phenolic content to scavenge free radicals. Conclusion: Acetone extract possess a potent antimicrobial and activity against deleterious effect of CCl4-caused liver damage. PMID:28480355

  17. The seleno-organic compound ebselen impairs mitochondrial physiology and induces cell death in AR42J cells.

    PubMed

    Santofimia-Castaño, Patricia; Garcia-Sanchez, Lourdes; Ruy, Deborah Clea; Fernandez-Bermejo, Miguel; Salido, Gines M; Gonzalez, Antonio

    2014-09-17

    Ebselen is a seleno-organic compound that causes cell death in several cancer cell types. The mechanisms underlying its deleterious effects have not been fully elucidated. In this study, the effects of ebselen (1 μM-40 μM) on AR42J tumor cells have been examined. Cell viability was studied using AlamarBlue(®) test. Cell cycle phase determination was carried out by flow cytometry. Changes in intracellular free Ca(2+) concentration were followed by fluorimetry analysis of fura-2-loaded cells. Distribution of mitochondria, mitochondrial Ca(2+) concentration and mitochondrial membrane potential were monitored by confocal microscopy of cells loaded with Mitotracker Green™ FM, rhod-2 or TMRM respectively. Caspase-3 activity was calculated following the luorogenic substrate ACDEVD-AMC signal with a spectrofluorimeter. Results show that cell viability decreased in the presence of ebselen. An increase in the number of cells in the S-phase of the cell cycle was observed. Ebselen induced a concentration-dependent mobilization of Ca(2+) from agonist- and thapsigargin-sensitive Ca(2+) pools. Ebselen induced also a transient increase in mitochondrial Ca(2+) concentration, a progressive decrease of the mitochondrial membrane potential and a disruption of the mitochondrial network. Finally, a concentration-dependent increase in caspase-3 activity was detected. We conclude that ebselen exerts deleterious actions on the cells that involve the impairment of mitochondrial physiology and the activation of caspase-3-mediated apoptotic pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Identification of Lynch syndrome mutations in the MLH1-PMS2 interface that disturb dimerization and mismatch repair

    PubMed Central

    Kosinski, Jan; Hinrichsen, Inga; Bujnicki, Janusz M.; Friedhoff, Peter; Plotz, Guido

    2010-01-01

    Missense alterations of the mismatch repair gene MLH1 have been identified in a significant proportion of individuals suspected of having Lynch syndrome, a hereditary syndrome which predisposes for cancer of colon and endometrium. The pathogenicity of many of these alterations, however, is unclear. A number of MLH1 alterations are located in the C-terminal domain (CTD) of MLH1, which is responsible for constitutive dimerization with PMS2. We analyzed which alterations may result in pathogenic effects due to interference with dimerization. We used a structural model of CTD of MLH1-PMS2 heterodimer to select 19 MLH1 alterations located inside and outside two candidate dimerization interfaces in the MLH1-CTD. Three alterations (p.Gln542Leu, p.Leu749Pro, p.Tyr750X) caused decreased co-expression of PMS2, which is unstable in the absence of interaction with MLH1, suggesting that these alterations interfere with dimerization. All three alterations are located within the dimerization interface suggested by our model. They also compromised mismatch repair, suggesting that defects in dimerization abrogate repair and confirming that all three alterations are pathogenic. Additionally, we provided biochemical evidence that four alterations with uncertain pathogenicity (p.Ala586Pro, p.Leu636Pro, p.Thr662Pro, and p.Arg755Trp) are deleterious because of poor expression or poor repair efficiency, and confirm the deleterious effect of eight further alterations. PMID:20533529

  19. Identification of Lynch syndrome mutations in the MLH1-PMS2 interface that disturb dimerization and mismatch repair.

    PubMed

    Kosinski, Jan; Hinrichsen, Inga; Bujnicki, Janusz M; Friedhoff, Peter; Plotz, Guido

    2010-08-01

    Missense alterations of the mismatch repair gene MLH1 have been identified in a significant proportion of individuals suspected of having Lynch syndrome, a hereditary syndrome that predisposes for cancer of colon and endometrium. The pathogenicity of many of these alterations, however, is unclear. A number of MLH1 alterations are located in the C-terminal domain (CTD) of MLH1, which is responsible for constitutive dimerization with PMS2. We analyzed which alterations may result in pathogenic effects due to interference with dimerization. We used a structural model of CTD of MLH1-PMS2 heterodimer to select 19 MLH1 alterations located inside and outside two candidate dimerization interfaces in the MLH1-CTD. Three alterations (p.Gln542Leu, p.Leu749Pro, p.Tyr750X) caused decreased coexpression of PMS2, which is unstable in the absence of interaction with MLH1, suggesting that these alterations interfere with dimerization. All three alterations are located within the dimerization interface suggested by our model. They also compromised mismatch repair, suggesting that defects in dimerization abrogate repair and confirming that all three alterations are pathogenic. Additionally, we provided biochemical evidence that four alterations with uncertain pathogenicity (p.Ala586Pro, p.Leu636Pro, p.Thr662Pro, and p.Arg755Trp) are deleterious because of poor expression or poor repair efficiency, and confirm the deleterious effect of eight further alterations.

  20. A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera.

    PubMed

    Charreton, Mercédès; Decourtye, Axel; Henry, Mickaël; Rodet, Guy; Sandoz, Jean-Christophe; Charnet, Pierre; Collet, Claude

    2015-01-01

    The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee's locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48 h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case of fipronil demonstrates that toxicity evaluation requires information on multiple endpoints (e.g. long term survival) to fully address pesticides risks for honeybees. Pyrethroid-induced locomotor deficits are discussed in light of recent advances regarding their mode of action on honeybee ion channels and current structure-function studies.

  1. A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera

    PubMed Central

    Charreton, Mercédès; Decourtye, Axel; Henry, Mickaël; Rodet, Guy; Sandoz, Jean-Christophe; Charnet, Pierre; Collet, Claude

    2015-01-01

    The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee’s locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case of fipronil demonstrates that toxicity evaluation requires information on multiple endpoints (e.g. long term survival) to fully address pesticides risks for honeybees. Pyrethroid-induced locomotor deficits are discussed in light of recent advances regarding their mode of action on honeybee ion channels and current structure-function studies. PMID:26659095

  2. Desipramine induces disorder in cholesterol-rich membranes: implications for viral trafficking

    NASA Astrophysics Data System (ADS)

    Pakkanen, Kirsi; Salonen, Emppu; Mäkelä, Anna R.; Oker-Blom, Christian; Vattulainen, Ilpo; Vuento, Matti

    2009-12-01

    In this study, the effect of desipramine (DMI) on phospholipid bilayers and parvoviral entry was elucidated. In atomistic molecular dynamics simulations, DMI was found to introduce disorder in cholesterol-rich phospholipid bilayers. This was manifested by a decrease in the deuterium order parameter SCD as well as an increase in the membrane area. Disordering of the membrane suggested DMI to destabilize cholesterol-rich membrane domains (rafts) in cellular conditions. To relate the raft disrupting ability of DMI with novel biological relevance, we studied the intracellular effect of DMI using canine parvovirus (CPV), a virus known to interact with endosomal membranes and sphingomyelin, as an intracellular probe. DMI was found to cause retention of the virus in intracellular vesicular structures leading to the inhibition of viral proliferation. This implies that DMI has a deleterious effect on the viral traffic. As recycling endosomes and the internal vesicles of multivesicular bodies are known to contain raft components, the effect of desipramine beyond the plasma membrane step could be caused by raft disruption leading to impaired endosomal function and possibly have direct influence on the penetration of the virus through an endosomal membrane.

  3. Physical activity, health status and risk of hospitalization in patients with severe chronic obstructive pulmonary disease.

    PubMed

    Benzo, Roberto P; Chang, Chung-Chou H; Farrell, Max H; Kaplan, Robert; Ries, Andrew; Martinez, Fernando J; Wise, Robert; Make, Barry; Sciurba, Frank

    2010-01-01

    Chronic obstructive pulmonary disease (COPD) is a leading cause of death and 70% of the cost of COPD is due to hospitalizations. Self-reported daily physical activity and health status have been reported as predictors of a hospitalization in COPD but are not routinely assessed. We tested the hypothesis that self-reported daily physical activity and health status assessed by a simple question were predictors of a hospitalization in a well-characterized cohort of patients with severe emphysema. Investigators gathered daily physical activity and health status data assessed by a simple question in 597 patients with severe emphysema and tested the association of those patient-reported outcomes to the occurrence of a hospitalization in the following year. Multiple logistic regression analyses were used to determine predictors of hospitalization during the first 12 months after randomization. The two variables tested in the hypothesis were significant predictors of a hospitalization after adjusting for all univariable significant predictors: >2 h of physical activity per week had a protective effect [odds ratio (OR) 0.60; 95% confidence interval (95% CI) 0.41-0.88] and self-reported health status as fair or poor had a deleterious effect (OR 1.57; 95% CI 1.10-2.23). In addition, two other variables became significant in the multivariate model: total lung capacity (every 10% increase) had a protective effect (OR 0.88; 95% CI 0.78-0.99) and self-reported anxiety had a deleterious effect (OR 1.75; 95% CI 1.13-2.70). Self-reported daily physical activity and health status are independently associated with COPD hospitalizations. Our findings, assessed by simple questions, suggest the value of patient-reported outcomes in developing risk assessment tools that are easy to use.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Fu, Jianfang; Zhang, Shun

    Understanding how chemotherapeutic agents mediate testicular toxicity is crucial in light of compelling evidence that male infertility, one of the severe late side effects of intensive cancer treatment, occurs more often than they are expected to. Previous study demonstrated that bortezomib (BTZ), a 26S proteasome inhibitor used to treat refractory multiple myeloma (MM), exerts deleterious impacts on spermatogenesis in pubertal mice via unknown mechanisms. Here, we showed that intermittent treatment with BTZ resulted in fertility impairment in adult mice, evidenced by testicular atrophy, desquamation of immature germ cells and reduced caudal sperm storage. These deleterious effects may originate from themore » elevated apoptosis in distinct germ cells during the acute phase and the subsequent disruption of Sertoli–germ cell anchoring junctions (AJs) during the late recovery. Mechanistically, balance between AMP-activated protein kinase (AMPK) activation and Akt/ERK pathway appeared to be indispensable for AJ integrity during the late testicular recovery. Of particular interest, the upregulated testicular apoptosis and the following disturbance of Sertoli–germ cell interaction may both stem from the excessive oxidative stress elicited by BTZ exposure. We also provided the in vitro evidence that AMPK-dependent mechanisms counteract follicle-stimulating hormone (FSH) proliferative effects in BTZ-exposed Sertoli cells. Collectively, BTZ appeared to efficiently prevent germ cells from normal development via multiple mechanisms in adult mice. Employment of antioxidants and/or AMPK inhibitor may represent an attractive strategy of fertility preservation in male MM patients exposed to conventional BTZ therapy and warrants further investigation. - Highlights: • Intermittent treatment with BTZ caused fertility impairment in adult mice. • BTZ treatment elicited apoptosis during early phase of testicular recovery. • Up-regulation of oxidative stress by BTZ treatment disrupted AJs dynamics. • BTZ treatment stimulated AMPK activity during late phase of testicular recovery. • AMPK-dependent mechanisms counteract FSH proliferative effects in BTZ-exposed SCs.« less

  5. 21 CFR 509.6 - Added poisonous or deleterious substances.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Added poisonous or deleterious substances. 509.6...-PACKAGING MATERIAL General Provisions § 509.6 Added poisonous or deleterious substances. (a) Use of an added... approved under the criteria of section 409 of the act, or when the added poisonous or deleterious substance...

  6. 21 CFR 509.6 - Added poisonous or deleterious substances.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Added poisonous or deleterious substances. 509.6...-PACKAGING MATERIAL General Provisions § 509.6 Added poisonous or deleterious substances. (a) Use of an added... approved under the criteria of section 409 of the act, or when the added poisonous or deleterious substance...

  7. 21 CFR 509.6 - Added poisonous or deleterious substances.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Added poisonous or deleterious substances. 509.6...-PACKAGING MATERIAL General Provisions § 509.6 Added poisonous or deleterious substances. (a) Use of an added... approved under the criteria of section 409 of the act, or when the added poisonous or deleterious substance...

  8. 21 CFR 509.6 - Added poisonous or deleterious substances.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Added poisonous or deleterious substances. 509.6...-PACKAGING MATERIAL General Provisions § 509.6 Added poisonous or deleterious substances. (a) Use of an added... approved under the criteria of section 409 of the act, or when the added poisonous or deleterious substance...

  9. 21 CFR 109.6 - Added poisonous or deleterious substances.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Added poisonous or deleterious substances. 109.6...-PACKAGING MATERIAL General Provisions § 109.6 Added poisonous or deleterious substances. (a) Use of an added... approved under the criteria of section 409 of the act, or when the added poisonous or deleterious substance...

  10. 21 CFR 109.6 - Added poisonous or deleterious substances.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Added poisonous or deleterious substances. 109.6...-PACKAGING MATERIAL General Provisions § 109.6 Added poisonous or deleterious substances. (a) Use of an added... approved under the criteria of section 409 of the act, or when the added poisonous or deleterious substance...

  11. 21 CFR 509.6 - Added poisonous or deleterious substances.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Added poisonous or deleterious substances. 509.6...-PACKAGING MATERIAL General Provisions § 509.6 Added poisonous or deleterious substances. (a) Use of an added... approved under the criteria of section 409 of the act, or when the added poisonous or deleterious substance...

  12. 21 CFR 109.6 - Added poisonous or deleterious substances.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Added poisonous or deleterious substances. 109.6...-PACKAGING MATERIAL General Provisions § 109.6 Added poisonous or deleterious substances. (a) Use of an added... approved under the criteria of section 409 of the act, or when the added poisonous or deleterious substance...

  13. TCDD modulation of gut microbiome correlated with liver and immune toxicity in streptozotocin (STZ)-induced hyperglycemic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefever, Daniel E.; Xu, Joella; Chen, Yingjia

    2016-08-01

    An increasing body of evidence has shown the important role of the gut microbiome in mediating toxicity following environmental contaminant exposure. The goal of this study was to determine if the adverse metabolic effects of chronic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure would be sufficient to exacerbate hyperglycemia, and to further determine if these outcomes were attributable to the gut microbiota alteration. Adult male CD-1 mice were exposed to TCDD (6 μg/kg body weight biweekly) by gavage and injected (i.p.) with STZ (4 × 50 mg/kg body weight) to induced hyperglycemia. 16S rRNA sequencing was used to characterize the changes in the microbiomemore » community composition. Glucose monitoring, flow cytometry, histopathology, and organ characterization were performed to determine the deleterious phenotypic changes of TCDD exposure. Chronic TCDD treatment did not appear to exacerbate STZ-induced hyperglycemia as blood glucose levels were slightly reduced in the TCDD treated mice; however, polydipsia and polyphagia were observed. Importantly, TCDD exposure caused a dramatic change in microbiota structure, as characterized at the phylum level by increasing Firmicutes and decreasing Bacteroidetes while at the family level most notably by increasing Lactobacillaceae and Desulfovibrionaceae, and decreasing Prevotellaceae and ACK M1. The changes in microbiota were further found to be broadly associated with phenotypic changes seen from chronic TCDD treatment. In particular, the phylum level Bacteroidetes to Firmicutes ratio negatively correlated with both liver weight and liver pathology, and positively associated with %CD3{sup +} NK{sup +} T cells, a key mediator of host-microbial interactions. Collectively, these findings suggest that the dysregulated gut microbiome may contribute to the deleterious effects (e.g., liver toxicity) seen with TCDD exposure. - Highlights: • TCDD promoted wasting syndrome. • TCDD decreased hyperglycemia. • TCDD exposure caused dysbiosis. • Dysbiosis correlated with the adverse phenotypic changes.« less

  14. Giardia duodenalis: Number and Fluorescence Reduction Caused by the Advanced Oxidation Process (H2O2/UV)

    PubMed Central

    Guimarães, José Roberto; Franco, Regina Maura Bueno; Guadagnini, Regiane Aparecida; dos Santos, Luciana Urbano

    2014-01-01

    This study evaluated the effect of peroxidation assisted by ultraviolet radiation (H2O2/UV), which is an advanced oxidation process (AOP), on Giardia duodenalis cysts. The cysts were inoculated in synthetic and surface water using a concentration of 12 g H2O2 L−1 and a UV dose (λ = 254 nm) of 5,480 mJcm−2. The aqueous solutions were concentrated using membrane filtration, and the organisms were observed using a direct immunofluorescence assay (IFA). The AOP was effective in reducing the number of G. duodenalis cysts in synthetic and surface water and was most effective in reducing the fluorescence of the cyst walls that were present in the surface water. The AOP showed a higher deleterious potential for G. duodenalis cysts than either peroxidation (H2O2) or photolysis (UV) processes alone. PMID:27379301

  15. Compatibility of refrigerants and lubricants with motor materials. Volume 1, Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerr, R.; Kujak, S.

    This volume contains the abstract, scope, discussion of results, charts of motor material compatibility, test procedures, material identifications, and 84 pages of data summary tables. Compatibility test results for 11 pure refrigerants and 17 refrigerant-lubricant combinations with 24 motor materials are included. The greatest effect on the motor materials was caused by adsorption followed by desorption of refrigerants at higher temperatures. High internal pressure of the adsorbed refrigerants and their tendency to evolve from the materials resulted in blisters, cracks, internal bubbles in the varnish, and delamination or bubbles in the sheet insulations. The second effect was extraction or dissolutionmore » of materials that lead to embrittlement of some sheet insulations. HCFC-22 and HCFC- 22/mineral oil had the most deleterious effects; the materials are expected to be reliable when used with most of the new refrigerants and lubricants. Tables.« less

  16. [Medicines interacting with mitochondria: anti-ischemic effects of trimetazidine].

    PubMed

    Spedding, M; Tillement, J P; Morin, D; Le Ridant, A

    1999-01-01

    While mitochondria are key factors in energy production in cells they are also key factors in their life cycle because under certain circumstances they can provoke cellular apoptosis. Some 45 per cent of myocardial volume is taken up by mitochondria. Furthermore, mitochondria are key to many aspects of neuronal activity and can trigger neurodegenerative processes. Lipid oxidation is responsible for the production of much ATP resynthesis in the heart but this process is less oxygen efficient than glucose oxidation. During ischaemia, lipid oxidation is suddenly blocked, but markedly increased during reperfusion, causing accumulation of potentially toxic metabolites (acylcarnitines, acyl-CoA, lysophospholipids). These metabolites can change calcium handling, inducing arrhythmias. Trimetazidine, and another product in development, ranolazine, by inhibiting lipid oxidation favours glucose oxidation and inhibits the production of deleterious lipid metabolites. Thus this class of drugs can have beneficial effects on myocardial metabolism without direct haemodynamic effects.

  17. Fatigue crack growth at elevated temperature 316 stainless steel and H-13 steel

    NASA Technical Reports Server (NTRS)

    Chen, W. C.; Liu, H. W.

    1976-01-01

    Crack growths were measured at elevated temperatures under four types of loading: pp, pc, cp, and cc. In H-13 steel, all these four types of loading gave nearly the same crack growth rates, and the length of hold time had negligible effects. In AISI 316 stainless steel, the hold time effects on crack growth rate were negligible if the loading was tension-tension type; however, these effects were significant in reversed bending load, and the crack growth rates under these four types of loading varied considerably. Both tensile and compressive hold times caused increased crack growth rate, but the compressive hold period was more deleterious than the tensile one. Metallographic examination showed that all the crack paths under different types of loading were largely transgranular for both CTS tension-tension specimens and SEN reversed cantilever bending specimens. In addition, an electric potential technique was used to monitor crack growth at elevated temperature.

  18. Chemotherapeutic agents for the treatment of metastatic breast cancer: An update.

    PubMed

    Abotaleb, Mariam; Kubatka, Peter; Caprnda, Martin; Varghese, Elizabeth; Zolakova, Barbora; Zubor, Pavol; Opatrilova, Radka; Kruzliak, Peter; Stefanicka, Patrik; Büsselberg, Dietrich

    2018-05-01

    Breast cancer is the second greatest cause of death among women worldwide; it comprises a group of heterogeneous diseases that evolves due to uncontrolled cellular growth and differentiation and the loss of normal programmed cell death. There are different molecular sub-types of breast cancer; therefore, various options are selected for treatment of different forms of metastatic breast cancer. However, the use of chemotherapeutic drugs is usually accompanied by deleterious side effects and the development of drug resistance when applied for a longer period. This review offers a classification of these chemotherapeutic agents according to their modes of action and therefore improves the understanding of molecular targets that are affected during treatment. Overall, it will allow the clinician to identify more specific targets to increase the effectiveness of a drug and to reduce general toxicity, resistance and other side effects. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. The efficiency of close inbreeding to reduce genetic adaptation to captivity

    PubMed Central

    Theodorou, K; Couvet, D

    2015-01-01

    Although ex situ conservation is indispensable for thousands of species, captive breeding is associated with negative genetic changes: loss of genetic variance and genetic adaptation to captivity that is deleterious in the wild. We used quantitative genetic individual-based simulations to model the effect of genetic management on the evolution of a quantitative trait and the associated fitness of wild-born individuals that are brought to captivity. We also examined the feasibility of the breeding strategies under a scenario of a large number of loci subject to deleterious mutations. We compared two breeding strategies: repeated half-sib mating and a method of minimizing mean coancestry (referred to as gc/mc). Our major finding was that half-sib mating is more effective in reducing genetic adaptation to captivity than the gc/mc method. Moreover, half-sib mating retains larger allelic and adaptive genetic variance. Relative to initial standing variation, the additive variance of the quantitative trait increased under half-sib mating during the sojourn in captivity. Although fragmentation into smaller populations improves the efficiency of the gc/mc method, half-sib mating still performs better in the scenarios tested. Half-sib mating shows two caveats that could mitigate its beneficial effects: low heterozygosity and high risk of extinction when populations are of low fecundity and size and one of the following conditions are met: (i) the strength of selection in captivity is comparable with that in the wild, (ii) deleterious mutations are numerous and only slightly deleterious. Experimental validation of half-sib mating is therefore needed for the advancement of captive breeding programs. PMID:25052417

  20. An Upper Limit on the Functional Fraction of the Human Genome.

    PubMed

    Graur, Dan

    2017-07-01

    For the human population to maintain a constant size from generation to generation, an increase in fertility must compensate for the reduction in the mean fitness of the population caused, among others, by deleterious mutations. The required increase in fertility due to this mutational load depends on the number of sites in the genome that are functional, the mutation rate, and the fraction of deleterious mutations among all mutations in functional regions. These dependencies and the fact that there exists a maximum tolerable replacement level fertility can be used to put an upper limit on the fraction of the human genome that can be functional. Mutational load considerations lead to the conclusion that the functional fraction within the human genome cannot exceed 25%, and is probably considerably lower. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Augmented generation of protein fragments during wakefulness as the molecular cause of sleep: a hypothesis

    PubMed Central

    Varshavsky, Alexander

    2012-01-01

    Despite extensive understanding of sleep regulation, the molecular-level cause and function of sleep are unknown. I suggest that they originate in individual neurons and stem from increased production of protein fragments during wakefulness. These fragments are transient parts of protein complexes in which the fragments were generated. Neuronal Ca2+ fluxes are higher during wakefulness than during sleep. Subunits of transmembrane channels and other proteins are cleaved by Ca2+-activated calpains and by other nonprocessive proteases, including caspases and secretases. In the proposed concept, termed the fragment generation (FG) hypothesis, sleep is a state during which the production of fragments is decreased (owing to lower Ca2+ transients) while fragment-destroying pathways are upregulated. These changes facilitate the elimination of fragments and the remodeling of protein complexes in which the fragments resided. The FG hypothesis posits that a proteolytic cleavage, which produces two fragments, can have both deleterious effects and fitness-increasing functions. This (previously not considered) dichotomy can explain both the conservation of cleavage sites in proteins and the evolutionary persistence of sleep, because sleep would counteract deleterious aspects of protein fragments. The FG hypothesis leads to new explanations of sleep phenomena, including a longer sleep after sleep deprivation. Studies in the 1970s showed that ethanol-induced sleep in mice can be strikingly prolonged by intracerebroventricular injections of either Ca2+ alone or Ca2+ and its ionophore (Erickson et al., Science 1978;199:1219–1221; Harris, Pharmacol Biochem Behav 1979;10:527–534; Erickson et al., Pharmacol Biochem Behav 1980;12:651–656). These results, which were never interpreted in connection to protein fragments or the function of sleep, may be accounted for by the FG hypothesis about molecular causation of sleep. PMID:22930402

  2. Malarial pathocoenosis: beneficial and deleterious interactions between malaria and other human diseases

    PubMed Central

    Faure, Eric

    2014-01-01

    In nature, organisms are commonly infected by an assemblage of different parasite species or by genetically distinct parasite strains that interact in complex ways. Linked to co-infections, pathocoenosis, a term proposed by M. Grmek in 1969, refers to a pathological state arising from the interactions of diseases within a population and to the temporal and spatial dynamics of all of the diseases. In the long run, malaria was certainly one of the most important component of past pathocoenoses. Today this disease, which affects hundreds of millions of individuals and results in approximately one million deaths each year, is always highly endemic in over 20% of the world and is thus co-endemic with many other diseases. Therefore, the incidences of co-infections and possible direct and indirect interactions with Plasmodium parasites are very high. Both positive and negative interactions between malaria and other diseases caused by parasites belonging to numerous taxa have been described and in some cases, malaria may modify the process of another disease without being affected itself. Interactions include those observed during voluntary malarial infections intended to cure neuro-syphilis or during the enhanced activations of bacterial gastro-intestinal diseases and HIV infections. Complex relationships with multiple effects should also be considered, such as those observed during helminth infections. Moreover, reports dating back over 2000 years suggested that co- and multiple infections have generally deleterious consequences and analyses of historical texts indicated that malaria might exacerbate both plague and cholera, among other diseases. Possible biases affecting the research of etiological agents caused by the protean manifestations of malaria are discussed. A better understanding of the manner by which pathogens, particularly Plasmodium, modulate immune responses is particularly important for the diagnosis, cure, and control of diseases in human populations. PMID:25484866

  3. Thermal-barrier-coated turbine blade study

    NASA Technical Reports Server (NTRS)

    Siemers, P. A.; Hillig, W. B.

    1981-01-01

    The effects of coating TBC on a CF6-50 stage 2 high-pressure turbine blade were analyzed with respect to changes in the mean bulk temperature, cooling air requirements, and high-cycle fatigue. Localized spallation was found to have a possible deleterious effect on low-cycle fatigue life. New blade design concepts were developed to take optimum advantage of TBCs. Process and material development work and rig evaluations were undertaken which identified the most promising combination as ZrO2 containing 8 w/o Y2O3 applied by air plasma spray onto a Ni22Cr-10Al-1Y bond layer. The bond layer was applied by a low-pressure, high-velocity plasma spray process onto the base alloy. During the initial startup cycles the blades experienced localized leading edge spallation caused by foreign objects.

  4. Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures.

    PubMed

    Potter, Gregory D M; Skene, Debra J; Arendt, Josephine; Cade, Janet E; Grant, Peter J; Hardie, Laura J

    2016-12-01

    Circadian (∼24-hour) timing systems pervade all kingdoms of life and temporally optimize behavior and physiology in humans. Relatively recent changes to our environments, such as the introduction of artificial lighting, can disorganize the circadian system, from the level of the molecular clocks that regulate the timing of cellular activities to the level of synchronization between our daily cycles of behavior and the solar day. Sleep/wake cycles are intertwined with the circadian system, and global trends indicate that these, too, are increasingly subject to disruption. A large proportion of the world's population is at increased risk of environmentally driven circadian rhythm and sleep disruption, and a minority of individuals are also genetically predisposed to circadian misalignment and sleep disorders. The consequences of disruption to the circadian system and sleep are profound and include myriad metabolic ramifications, some of which may be compounded by adverse effects on dietary choices. If not addressed, the deleterious effects of such disruption will continue to cause widespread health problems; therefore, implementation of the numerous behavioral and pharmaceutical interventions that can help restore circadian system alignment and enhance sleep will be important.

  5. On the Effects of a Spacecraft Subcarrier Unbalanced Modulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien Manh

    1993-01-01

    This paper presents mathematical models with associated analysis of the deleterious effects which a spacecraft's subcarrier unbalanced modulator has on the performance of a phase-modulated residual carrier communications link. The undesired spectral components produced by the phase and amplitude imbalances in the subcarrier modulator can cause (1) potential interference to the carrier tracking and (2) degradation in the telemetry bit signal-to-noise ratio (SNR). A suitable model for the unbalanced modulator is developed and the threshold levels of undesired components that fall into the carrier tracking loop are determined. The distribution of the carrier phase error caused by the additive White Gaussian noise (AWGN) and undesired component at the residual RF carrier is derived for the limiting cases. Further, this paper analyses the telemetry bit signal-to-noise ratio degradations due to undesirable spectral components as well as the carrier tracking phase error induced by phase and amplitude imbalances. Numerical results which indicate the sensitivity of the carrier tracking loop and the telemetry symbol-error rate (SER) to various parameters of the models are also provided as a tool in the design of the subcarrier balanced modulator.

  6. Current investigations into the genotoxicity of zinc oxide and silica nanoparticles in mammalian models in vitro and in vivo: carcinogenic/genotoxic potential, relevant mechanisms and biomarkers, artifacts, and limitations

    PubMed Central

    Kwon, Jee Young; Koedrith, Preeyaporn; Seo, Young Rok

    2014-01-01

    Engineered nanoparticles (NPs) are widely used in many sectors, such as food, medicine, military, and sport, but their unique characteristics may cause deleterious health effects. Close attention is being paid to metal NP genotoxicity; however, NP genotoxic/carcinogenic effects and the underlying mechanisms remain to be elucidated. In this review, we address some metal and metal oxide NPs of interest and current genotoxicity tests in vitro and in vivo. Metal NPs can cause DNA damage such as chromosomal aberrations, DNA strand breaks, oxidative DNA damage, and mutations. We also discuss several parameters that may affect genotoxic response, including physicochemical properties, widely used assays/end point tests, and experimental conditions. Although potential biomarkers of nanogenotoxicity or carcinogenicity are suggested, inconsistent findings in the literature render results inconclusive due to a variety of factors. Advantages and limitations related to different methods for investigating genotoxicity are described, and future directions and recommendations for better understanding genotoxic potential are addressed. PMID:25565845

  7. Duration of Sexual Harassment and Generalized Harassment in the Workplace Over Ten Years: Effects on Deleterious Drinking Outcomes

    PubMed Central

    McGinley, Meredith; Richman, Judith A.; Rospenda, Kathleen M.

    2012-01-01

    While harassment in the workplace has been linked to deleterious drinking outcomes, researchers have yet to examine the long-term effects of chronic workplace harassment. During a ten year longitudinal mail survey, university employees (N = 2265) were administered measures of sexual harassment, generalized workplace harassment, and problematic drinking. Using growth mixture modeling, two latent classes of workplace harassment emerged: infrequent and chronic. Demographic characteristics (gender, age, and race) predicted the shape of the trajectories and likelihood of class membership. As hypothesized, membership in the chronic harassment classes was linked to future problematic drinking, even after controlling for previous drinking. PMID:21745045

  8. Duration of sexual harassment and generalized harassment in the workplace over ten years: effects on deleterious drinking outcomes.

    PubMed

    McGinley, Meredith; Richman, Judith A; Rospenda, Kathleen M

    2011-01-01

    Although harassment in the workplace has been linked to deleterious drinking outcomes, researchers have yet to examine the long-term effects of chronic workplace harassment. During a 10-year longitudinal mail survey, university employees (N = 2,265) were administered measures of sexual harassment, generalized workplace harassment, and problematic drinking. Using growth mixture modeling, two latent classes of workplace harassment emerged: infrequent and chronic. Demographic characteristics (gender, age, and race) predicted the shape of the trajectories and likelihood of class membership. As hypothesized, membership in the chronic harassment classes was linked to future problematic drinking, even after controlling for previous drinking.

  9. Testing the ability of non-methylamine osmolytes present in kidney cells to counteract the deleterious effects of urea on structure, stability and function of proteins.

    PubMed

    Khan, Sheeza; Bano, Zehra; Singh, Laishram R; Hassan, Md Imtaiyaz; Islam, Asimul; Ahmad, Faizan

    2013-01-01

    Human kidney cells are under constant urea stress due to its urine concentrating mechanism. It is believed that the deleterious effect of urea is counteracted by methylamine osmolytes (glycine betaine and glycerophosphocholine) present in kidney cells. A question arises: Do the stabilizing osmolytes, non-methylamines (myo-inositol, sorbitol and taurine) present in the kidney cells also counteract the deleterious effects of urea? To answer this question, we have measured structure, thermodynamic stability (ΔG D (o)) and functional activity parameters (K m and k cat) of different model proteins in the presence of various concentrations of urea and each non-methylamine osmolyte alone and in combination. We observed that (i) for each protein myo-inositol provides perfect counteraction at 1∶2 ([myo-inositol]:[urea]) ratio, (ii) any concentration of sorbitol fails to refold urea denatured proteins if it is six times less than that of urea, and (iii) taurine regulates perfect counteraction in a protein specific manner; 1.5∶2.0, 1.2∶2.0 and 1.0∶2.0 ([taurine]:[urea]) ratios for RNase-A, lysozyme and α-lactalbumin, respectively.

  10. Testing the Ability of Non-Methylamine Osmolytes Present in Kidney Cells to Counteract the Deleterious Effects of Urea on Structure, Stability and Function of Proteins

    PubMed Central

    Khan, Sheeza; Bano, Zehra; Singh, Laishram R.; Hassan, Md. Imtaiyaz; Islam, Asimul; Ahmad, Faizan

    2013-01-01

    Human kidney cells are under constant urea stress due to its urine concentrating mechanism. It is believed that the deleterious effect of urea is counteracted by methylamine osmolytes (glycine betaine and glycerophosphocholine) present in kidney cells. A question arises: Do the stabilizing osmolytes, non-methylamines (myo-inositol, sorbitol and taurine) present in the kidney cells also counteract the deleterious effects of urea? To answer this question, we have measured structure, thermodynamic stability (ΔG D o) and functional activity parameters (K m and k cat) of different model proteins in the presence of various concentrations of urea and each non-methylamine osmolyte alone and in combination. We observed that (i) for each protein myo-inositol provides perfect counteraction at 1∶2 ([myo-inositol]:[urea]) ratio, (ii) any concentration of sorbitol fails to refold urea denatured proteins if it is six times less than that of urea, and (iii) taurine regulates perfect counteraction in a protein specific manner; 1.5∶2.0, 1.2∶2.0 and 1.0∶2.0 ([taurine]:[urea]) ratios for RNase-A, lysozyme and α-lactalbumin, respectively. PMID:24039776

  11. Nuclear, biological and chemical warfare. Part I: Medical aspects of nuclear warfare.

    PubMed

    Kasthuri, A S; Pradhan, A B; Dham, S K; Bhalla, I P; Paul, J S

    1990-04-01

    Casualties in earlier wars were due much more to diseases than to weapons. Mention has been made in history of the use of biological agents in warfare, to deny the enemy food and water and to cause disease. In the first world war chemical agents were used to cause mass casualties. Nuclear weapons were introduced in the second world war. Several countries are now involved in developing nuclear, biological and chemical weapon systems, for the mass annihilation of human beings, animals and plants, and to destroy the economy of their enemies. Recently, natural calamities and accidents in nuclear, chemical and biological laboratories and industries have caused mass instantaneous deaths in civilian population. The effects of future wars will not be restricted to uniformed persons. It is time that physicians become aware of the destructive potential of these weapons. Awareness, immediate protective measures and first aid will save a large number of persons. This series of articles will outline the medical aspects of nuclear, biological and chemical weapon systems in three parts. Part I will deal with the biological effects of a nuclear explosion. The short and long term effects due to blast, heat and associated radiation are highlighted. In Part II, the role of biological agents which cause commoner or new disease patterns is mentioned. Some of the accidents from biological warfare laboratories are a testimony to its potential deleterious effects. Part III deals with medical aspects of chemical warfare agents, which in view of their mass effects can overwhelm the existing medical resources, both civilian and military.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. On the Overdispersed Molecular Clock

    PubMed Central

    Takahata, Naoyuki

    1987-01-01

    Rates of molecular evolution at some loci are more irregular than described by simple Poisson processes. Three situations under which molecular evolution would not follow simple Poisson processes are reevaluated from the viewpoint of the neutrality hypothesis: (i) concomitant or multiple substitutions in a gene, (ii) fluctuating substitution rates in time caused by coupled effects of deleterious mutations and bottlenecks, and (iii) changes in the degree of selective constraints against a gene (neutral space) caused by successive substitutions. The common underlying assumption that these causes are lineage nonspecific excludes the case where mutation rates themselves change systematically among lineages or taxonomic groups, and severely limits the extent of variation in the number of substitutions among lineages. Even under this stringent condition, however, the third hypothesis, the fluctuating neutral space model, can generate fairly large variation. This is described by a time-dependent renewal process, which does not exhibit any episodic nature of molecular evolution. It is argued that the observed elevated variances in the number of nucleotide or amino acid substitutions do not immediately call for positive Darwinian selection in molecular evolution. PMID:3596230

  13. Targeting the r(CGG) repeats that cause FXTAS with modularly assembled small molecules and oligonucleotides.

    PubMed

    Tran, Tuan; Childs-Disney, Jessica L; Liu, Biao; Guan, Lirui; Rzuczek, Suzanne; Disney, Matthew D

    2014-04-18

    We designed small molecules that bind the structure of the RNA that causes fragile X-associated tremor ataxia syndrome (FXTAS), an incurable neuromuscular disease. FXTAS is caused by an expanded r(CGG) repeat (r(CGG)(exp)) that inactivates a protein regulator of alternative pre-mRNA splicing. Our designed compounds modulate r(CGG)(exp) toxicity in cellular models of FXTAS, and pull-down experiments confirm that they bind r(CGG)(exp) in vivo. Importantly, compound binding does not affect translation of the downstream open reading frame (ORF). We compared molecular recognition properties of our optimal compound to oligonucleotides. Studies show that r(CGG)(exp)'s self-structure is a significant energetic barrier for oligonucleotide binding. A fully modified 2'-OMethyl phosphorothioate is incapable of completely reversing an FXTAS-associated splicing defect and inhibits translation of the downstream ORF, which could have deleterious effects. Taken together, these studies suggest that a small molecule that recognizes structure may be more well suited for targeting highly structured RNAs that require strand invasion by a complementary oligonucleotide.

  14. Targeting the r(CGG) Repeats That Cause FXTAS with Modularly Assembled Small Molecules and Oligonucleotides

    PubMed Central

    2015-01-01

    We designed small molecules that bind the structure of the RNA that causes fragile X-associated tremor ataxia syndrome (FXTAS), an incurable neuromuscular disease. FXTAS is caused by an expanded r(CGG) repeat (r(CGG)exp) that inactivates a protein regulator of alternative pre-mRNA splicing. Our designed compounds modulate r(CGG)exp toxicity in cellular models of FXTAS, and pull-down experiments confirm that they bind r(CGG)expin vivo. Importantly, compound binding does not affect translation of the downstream open reading frame (ORF). We compared molecular recognition properties of our optimal compound to oligonucleotides. Studies show that r(CGG)exp’s self-structure is a significant energetic barrier for oligonucleotide binding. A fully modified 2′-OMethyl phosphorothioate is incapable of completely reversing an FXTAS-associated splicing defect and inhibits translation of the downstream ORF, which could have deleterious effects. Taken together, these studies suggest that a small molecule that recognizes structure may be more well suited for targeting highly structured RNAs that require strand invasion by a complementary oligonucleotide. PMID:24506227

  15. Modeling the dynamics of chromosomal alteration progression in cervical cancer: A computational model

    PubMed Central

    2017-01-01

    Computational modeling has been applied to simulate the heterogeneity of cancer behavior. The development of Cervical Cancer (CC) is a process in which the cell acquires dynamic behavior from non-deleterious and deleterious mutations, exhibiting chromosomal alterations as a manifestation of this dynamic. To further determine the progression of chromosomal alterations in precursor lesions and CC, we introduce a computational model to study the dynamics of deleterious and non-deleterious mutations as an outcome of tumor progression. The analysis of chromosomal alterations mediated by our model reveals that multiple deleterious mutations are more frequent in precursor lesions than in CC. Cells with lethal deleterious mutations would be eliminated, which would mitigate cancer progression; on the other hand, cells with non-deleterious mutations would become dominant, which could predispose them to cancer progression. The study of somatic alterations through computer simulations of cancer progression provides a feasible pathway for insights into the transformation of cell mechanisms in humans. During cancer progression, tumors may acquire new phenotype traits, such as the ability to invade and metastasize or to become clinically important when they develop drug resistance. Non-deleterious chromosomal alterations contribute to this progression. PMID:28723940

  16. Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants.

    PubMed

    Fu, Wenqing; O'Connor, Timothy D; Jun, Goo; Kang, Hyun Min; Abecasis, Goncalo; Leal, Suzanne M; Gabriel, Stacey; Rieder, Mark J; Altshuler, David; Shendure, Jay; Nickerson, Deborah A; Bamshad, Michael J; Akey, Joshua M

    2013-01-10

    Establishing the age of each mutation segregating in contemporary human populations is important to fully understand our evolutionary history and will help to facilitate the development of new approaches for disease-gene discovery. Large-scale surveys of human genetic variation have reported signatures of recent explosive population growth, notable for an excess of rare genetic variants, suggesting that many mutations arose recently. To more quantitatively assess the distribution of mutation ages, we resequenced 15,336 genes in 6,515 individuals of European American and African American ancestry and inferred the age of 1,146,401 autosomal single nucleotide variants (SNVs). We estimate that approximately 73% of all protein-coding SNVs and approximately 86% of SNVs predicted to be deleterious arose in the past 5,000-10,000 years. The average age of deleterious SNVs varied significantly across molecular pathways, and disease genes contained a significantly higher proportion of recently arisen deleterious SNVs than other genes. Furthermore, European Americans had an excess of deleterious variants in essential and Mendelian disease genes compared to African Americans, consistent with weaker purifying selection due to the Out-of-Africa dispersal. Our results better delimit the historical details of human protein-coding variation, show the profound effect of recent human history on the burden of deleterious SNVs segregating in contemporary populations, and provide important practical information that can be used to prioritize variants in disease-gene discovery.

  17. The galactose-induced decrease in phosphate levels leads to toxicity in yeast models of galactosemia.

    PubMed

    Machado, Caio M; De-Souza, Evandro A; De-Queiroz, Ana Luiza F V; Pimentel, Felipe S A; Silva, Guilherme F S; Gomes, Fabio M; Montero-Lomelí, Mónica; Masuda, Claudio A

    2017-06-01

    Classic galactosemia is an inborn error of metabolism caused by deleterious mutations in the GALT gene. A number of evidences indicate that the galactose-1-phosphate accumulation observed in patient cells is a cause of toxicity in this disease. Nevertheless, the consequent molecular events caused by the galactose-1-phosphate accumulation remain elusive. Here we show that intracellular inorganic phosphate levels decreased when yeast models of classic galactosemia were exposed to galactose. The decrease in phosphate levels is probably due to the trapping of phosphate in the accumulated galactose-1-phosphate since the deletion of the galactokinase encoding gene GAL1 suppressed this phenotype. Galactose-induced phosphate depletion caused an increase in glycogen content, an expected result since glycogen breakdown by the enzyme glycogen phosphorylase is dependent on inorganic phosphate. Accordingly, an increase in intracellular phosphate levels suppressed the galactose effect on glycogen content and conferred galactose tolerance to yeast models of galactosemia. These results support the hypothesis that the galactose-induced decrease in phosphate levels leads to toxicity in galactosemia and opens new possibilities for the development of better treatments for this disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Distance from sub-Saharan Africa predicts mutational load in diverse human genomes.

    PubMed

    Henn, Brenna M; Botigué, Laura R; Peischl, Stephan; Dupanloup, Isabelle; Lipatov, Mikhail; Maples, Brian K; Martin, Alicia R; Musharoff, Shaila; Cann, Howard; Snyder, Michael P; Excoffier, Laurent; Kidd, Jeffrey M; Bustamante, Carlos D

    2016-01-26

    The Out-of-Africa (OOA) dispersal ∼ 50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive.

  19. TiO2 photocatalysis causes DNA damage via fenton reaction-generated hydroxyl radicals during the recovery period.

    PubMed

    Gogniat, Gaëtan; Dukan, Sam

    2007-12-01

    Here, we show that resistance of Escherichia coli to TiO2 photocatalysis involves defenses against reactive oxygen species. Results support the idea that TiO2 photocatalysis generates damage which later becomes deleterious during recovery. We found this to be partly due to DNA attack via hydroxyl radicals generated by the Fenton reaction during recovery.

  20. Deleterious Thermal Effects due to Randomized Flow Paths in Pebble Bed, and Particle Bed Style Reactors

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.

    2013-01-01

    Reactor fuel rod surface area that is perpendicular to coolant flow direction (+S) i.e. perpendicular to the P creates areas of coolant stagnation leading to increased coolant temperatures resulting in localized changes in fluid properties. Changes in coolant fluid properties caused by minor increases in temperature lead to localized reductions in coolant mass flow rates leading to localized thermal instabilities. Reductions in coolant mass flow rates result in further increases in local temperatures exacerbating changes to coolant fluid properties leading to localized thermal runaway. Unchecked localized thermal runaway leads to localized fuel melting. Reactor designs with randomized flow paths are vulnerable to localized thermal instabilities, localized thermal runaway, and localized fuel melting.

  1. Deleterious effects of neuronal accumulation of glycogen in flies and mice.

    PubMed

    Duran, Jordi; Tevy, María Florencia; Garcia-Rocha, Mar; Calbó, Joaquim; Milán, Marco; Guinovart, Joan J

    2012-08-01

    Under physiological conditions, most neurons keep glycogen synthase (GS) in an inactive form and do not show detectable levels of glycogen. Nevertheless, aberrant glycogen accumulation in neurons is a hallmark of patients suffering from Lafora disease or other polyglucosan disorders. Although these diseases are associated with mutations in genes involved in glycogen metabolism, the role of glycogen accumulation remains elusive. Here, we generated mouse and fly models expressing an active form of GS to force neuronal accumulation of glycogen. We present evidence that the progressive accumulation of glycogen in mouse and Drosophila neurons leads to neuronal loss, locomotion defects and reduced lifespan. Our results highlight glycogen accumulation in neurons as a direct cause of neurodegeneration. Copyright © 2012 EMBO Molecular Medicine.

  2. Deleterious effects of neuronal accumulation of glycogen in flies and mice

    PubMed Central

    Duran, Jordi; Tevy, María Florencia; Garcia-Rocha, Mar; Calbó, Joaquim; Milán, Marco; Guinovart, Joan J

    2012-01-01

    Under physiological conditions, most neurons keep glycogen synthase (GS) in an inactive form and do not show detectable levels of glycogen. Nevertheless, aberrant glycogen accumulation in neurons is a hallmark of patients suffering from Lafora disease or other polyglucosan disorders. Although these diseases are associated with mutations in genes involved in glycogen metabolism, the role of glycogen accumulation remains elusive. Here, we generated mouse and fly models expressing an active form of GS to force neuronal accumulation of glycogen. We present evidence that the progressive accumulation of glycogen in mouse and Drosophila neurons leads to neuronal loss, locomotion defects and reduced lifespan. Our results highlight glycogen accumulation in neurons as a direct cause of neurodegeneration. PMID:22549942

  3. Under the radar: mitigating enigmatic ecological impacts.

    PubMed

    Raiter, Keren G; Possingham, Hugh P; Prober, Suzanne M; Hobbs, Richard J

    2014-11-01

    Identifying the deleterious ecological effects of developments, such as roads, mining, and urban expansion, is essential for informing development decisions and identifying appropriate mitigation actions. However, there are many types of ecological impacts that slip 'under the radar' of conventional impact evaluations and undermine the potential for successful impact mitigation (including offsets). These 'enigmatic' impacts include those that are small but act cumulatively; those outside of the area directly considered in the evaluation; those not detectable with the methods, paradigms, or spatiotemporal scales used to detect them; those facilitated, but not directly caused, by development; and synergistic impact interactions. Here, we propose a framework for conceptualising enigmatic impacts and discuss ways to address them. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Sensitivity tests of two-dimensional model predictions of corridor effects. [concentration of spacecraft produced air pollutants into narrow latitude ranges

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Whitten, R. C.; Capone, L. A.; Riegel, C. A.

    1981-01-01

    Future aerospace-vehicle systems, such as supersonic transport fleets, the Space Shuttle (SS), and the Heavy-Lift Launch Vehicle (HLLV) system will inject substantial amounts of pollutants into the stratosphere. It is, therefore, pertinent to ask whether the operation of these systems will lead to deleterious effects in the atmosphere. The current investigation is concerned with the development of criteria to assess the likelihood of a detectable corridor effect being caused by the long-term deposition of pollutants at a single latitude. The sources are assumed to operate continuously and at a uniform rate for periods of many years. It is found that transport by meridional winds and by eddy processes acts to diminish the corridor effect by advecting the pollutants out of the region of injection and by mixing them with the ambient air. Attention is given to the altitude for which a detectable corridor effect can be expected for the hypothetical launching of 400 HLLV's per year for 10 years.

  5. Sex Hormones and Sex Chromosomes Cause Sex Differences in the Development of Cardiovascular Diseases.

    PubMed

    Arnold, Arthur P; Cassis, Lisa A; Eghbali, Mansoureh; Reue, Karen; Sandberg, Kathryn

    2017-05-01

    This review summarizes recent evidence concerning hormonal and sex chromosome effects in obesity, atherosclerosis, aneurysms, ischemia/reperfusion injury, and hypertension. Cardiovascular diseases occur and progress differently in the 2 sexes, because biological factors differing between the sexes have sex-specific protective and harmful effects. By comparing the 2 sexes directly, and breaking down sex into its component parts, one can discover sex-biasing protective mechanisms that might be targeted in the clinic. Gonadal hormones, especially estrogens and androgens, have long been found to account for some sex differences in cardiovascular diseases, and molecular mechanisms mediating these effects have recently been elucidated. More recently, the inherent sexual inequalities in effects of sex chromosome genes have also been implicated as contributors in animal models of cardiovascular diseases, especially a deleterious effect of the second X chromosome found in females but not in males. Hormonal and sex chromosome mechanisms interact in the sex-specific control of certain diseases, sometimes by opposing the action of the other. © 2017 American Heart Association, Inc.

  6. The legacy of domestication: accumulation of deleterious mutations in the dog genome.

    PubMed

    Cruz, Fernando; Vilà, Carles; Webster, Matthew T

    2008-11-01

    Dogs exhibit more phenotypic variation than any other mammal and are affected by a wide variety of genetic diseases. However, the origin and genetic basis of this variation is still poorly understood. We examined the effect of domestication on the dog genome by comparison with its wild ancestor, the gray wolf. We compared variation in dog and wolf genes using whole-genome single nucleotide polymorphism (SNP) data. The d(N)/d(S) ratio (omega) was around 50% greater for SNPs found in dogs than in wolves, indicating that a higher proportion of nonsynonymous alleles segregate in dogs compared with nonfunctional genetic variation. We suggest that the majority of these alleles are slightly deleterious and that two main factors may have contributed to their increase. The first is a relaxation of selective constraint due to a population bottleneck and altered breeding patterns accompanying domestication. The second is a reduction of effective population size at loci linked to those under positive selection due to Hill-Robertson interference. An increase in slightly deleterious genetic variation could contribute to the prevalence of disease in modern dog breeds.

  7. Allelic Expression of Deleterious Protein-Coding Variants across Human Tissues

    PubMed Central

    Kukurba, Kimberly R.; Zhang, Rui; Li, Xin; Smith, Kevin S.; Knowles, David A.; How Tan, Meng; Piskol, Robert; Lek, Monkol; Snyder, Michael; MacArthur, Daniel G.; Li, Jin Billy; Montgomery, Stephen B.

    2014-01-01

    Personal exome and genome sequencing provides access to loss-of-function and rare deleterious alleles whose interpretation is expected to provide insight into individual disease burden. However, for each allele, accurate interpretation of its effect will depend on both its penetrance and the trait's expressivity. In this regard, an important factor that can modify the effect of a pathogenic coding allele is its level of expression; a factor which itself characteristically changes across tissues. To better inform the degree to which pathogenic alleles can be modified by expression level across multiple tissues, we have conducted exome, RNA and deep, targeted allele-specific expression (ASE) sequencing in ten tissues obtained from a single individual. By combining such data, we report the impact of rare and common loss-of-function variants on allelic expression exposing stronger allelic bias for rare stop-gain variants and informing the extent to which rare deleterious coding alleles are consistently expressed across tissues. This study demonstrates the potential importance of transcriptome data to the interpretation of pathogenic protein-coding variants. PMID:24786518

  8. Antiproliferative effect of elevated glucose in human microvascular endothelial cells

    NASA Technical Reports Server (NTRS)

    Kamal, K.; Du, W.; Mills, I.; Sumpio, B. E.

    1998-01-01

    Diabetic microangiopathy has been implicated as a fundamental feature of the pathological complications of diabetes including retinopathy, neuropathy, and diabetic foot ulceration. However, previous studies devoted to examining the deleterious effects of elevated glucose on the endothelium have been performed largely in primary cultured cells of macrovessel origin. Difficulty in the harvesting and maintenance of microvascular endothelial cells in culture have hindered the study of this relevant population. Therefore, the objective of this study was to characterize the effect of elevated glucose on the proliferation and involved signaling pathways of an immortalized human dermal microvascular endothelial cell line (HMEC-1) that possess similar characteristics to their in vivo counterparts. Human dermal microvascular endothelial cells (HMEC-1) were grown in the presence of normal (5 mM) or high D-glucose (20 mM) for 14 days. The proliferative response of HMEC-1 was compared under these conditions as well as the cAMP and PKC pathways by in vitro assays. Elevated glucose significantly inhibited (P < 0.05) HMEC-1 proliferation after 7, 10, and 14 days. This effect was not mimicked by 20 mM mannitol. The antiproliferative effect was more pronounced with longer exposure (1-14 days) to elevated glucose and was irreversible 4 days after a 10-day exposure. The antiproliferative effect was partially reversed in the presence of a PKA inhibitor, Rp-cAMP (10-50 microM), and/or a PKC inhibitor, Calphostin C (10 nM). HMEC-1 exposed to elevated glucose (20 mM) for 14 days caused an increase in cyclic AMP accumulation, PKA, and PKC activity but was not associated with the activation of downstream events such as CRE and AP-1 binding activity. These data support the hypothesis that HMEC-1 is a suitable model to study the deleterious effects of elevated glucose on microvascular endothelial cells. Continued studies with HMEC-1 may prove advantageous in delineation of the molecular pathophysiology associated with diabetic microangiopathy.

  9. Dosages of cold-water immersion post exercise on functional and clinical responses: a randomized controlled trial.

    PubMed

    Machado, A F; Almeida, A C; Micheletti, J K; Vanderlei, F M; Tribst, M F; Netto Junior, J; Pastre, C M

    2017-11-01

    Cold-water immersion (CWI) is one of the recovery techniques commonly used by athletes for post-exercise recovery. Nevertheless, the effects of CWI using different temperatures and the dose-response relationship of this technique have not yet been investigated. The aims of this study were to compare the effects of two strategies of CWI, using different water temperatures with passive recovery post exercise in the management of some markers of muscle damage, and to observe whether any of the techniques used caused deleterious effects on performance. Sixty healthy male participants performed an eccentric protocol to induce muscle damage and were then randomized to one of three groups (CWI1: 15 min at 9 °C; CWI2: 15 min at 14 °C; CG: control group). Levels of creatine kinase, muscle soreness, pain threshold, perception of recovery, and maximal voluntary isometric contraction were monitored up to 96 h post exercise. A large effect for time for all outcomes was observed [P < 0.001; CK (ES = 0.516), muscle soreness (ES = 0.368); pain threshold (ES = 0.184); perception of recovery (ES = 0.565); MVIC (ES = 0.273)]. CWI groups presented an earlier recovery for muscle soreness with lower ratings immediately post recovery. For delayed effects, the application of CWI2 (15 min at 14 °C) presented earlier recovery compared with CWI1 and control condition for maximal voluntary isometric contraction (P < 0.05). There were no significant group and interaction (Group × Time) effects. CWI groups acted more efficiently for muscle soreness and performance considering the time of recovery was observed. No evidence was found to suggest dose-response relationship and deleterious effects. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Methylphenidate and environmental enrichment ameliorate the deleterious effects of prenatal stress on attention functioning.

    PubMed

    Zubedat, Salman; Aga-Mizrachi, Shlomit; Cymerblit-Sabba, Adi; Ritter, Ami; Nachmani, Maayan; Avital, Avi

    2015-01-01

    Either pre- or post-natal environmental factors seem to play a key role in brain and behavioral development and to exert long-term effects. Increasing evidence suggests that exposure to prenatal stress (PS) leads to motor and learning deficits and elevated anxiety, while enriched environment (EE) shows protective effects. The dopaminergic system is also sensitive to environmental life circumstances and affects attention functioning, which serves as the preliminary gate to cognitive processes. However, the effects of methylphenidate (MPH) on the dopaminergic system and attentional functioning, in the context of these life experiences, remain unclear. Therefore, we aimed to examine the effects of EE or PS on distinct types of attention, along with possible effects of MPH exposure. We found that PS impaired selective attention as well as partial sustained attention, while EE had beneficial effects. Both EE and MPH ameliorated the deleterious effects of PS on attention functioning. Considering the possible psychostimulant effect of MPH, we examined both anxiety-like behavior as well as motor learning. We found that PS had a clear anxiogenic effect, whereas EE had an anxiolytic effect. Nevertheless, the treatment with both MPH and/or EE recovered the deleterious effects of PS. In the motor-learning task, the PS group showed superior performance while MPH led to impaired motor learning. Performance decrements were prevented in both the PS + MPH and EE + MPH groups. This study provides evidence that peripubertal exposure to EE (by providing enhanced sensory, motor, and social opportunities) or MPH treatments might be an optional therapeutic intervention in preventing the PS long-term adverse consequences.

  11. Nutritional status of the cauliflower cultivar 'verona' grown with omission of out added macronutrients.

    PubMed

    Bianco, Matheus Saraiva; Cecílio Filho, Arthur Bernardes; de Carvalho, Leonardo Bianco

    2015-01-01

    Knowledge of plant nutritional status allows an understanding of the physiological responses of plants to crop fertilization. A hydroponic experiment evaluated the symptoms of macronutrient deficiency in cauliflower 'Verona' and determined: a) the macronutrient contents of foliar tissues when visual symptoms were observed, b) macronutrients content of foliar and inflorescence tissues at harvest. The effect of nutrient deficiency on inflorescence mass was also evaluated. Nitrogen deficiency caused chlorosis followed by purple color in the old leaves, while P deficiency caused only chlorosis in old leaves. Chlorosis at the edge of old leaves progressing to the center of the leaves was observed with the omission of K, and after was observed necrosis in the chlorotic areas. Ca deficiency caused tip burn in new leaves, while Mg deficiency caused internerval chlorosis in old leaves. The omission of each macronutrient reduced inflorescence dry matter. This deleterious effect was larger for N, P, and K deficiencies, reducing inflorescence dry matter by 87, 49, and 42%, respectively. When the nutrient solutions without N, P, K, Ca, or Mg were supplied to cauliflower plants, the macronutrient contents at harvest were 8.8, 0.6, 3.5, 13.0, and 0.8 g kg-1 in the foliar tissues and 27.3, 2.2, 21.6, 1.1, and 0.7 g kg-1 in the inflorescence tissues, respectively.

  12. Nutritional Status of the Cauliflower Cultivar ‘Verona’ Grown with Omission of out Added Macronutrients

    PubMed Central

    Bianco, Matheus Saraiva; Cecílio Filho, Arthur Bernardes; de Carvalho, Leonardo Bianco

    2015-01-01

    Knowledge of plant nutritional status allows an understanding of the physiological responses of plants to crop fertilization. A hydroponic experiment evaluated the symptoms of macronutrient deficiency in cauliflower ‘Verona’ and determined: a) the macronutrient contents of foliar tissues when visual symptoms were observed, b) macronutrients content of foliar and inflorescence tissues at harvest. The effect of nutrient deficiency on inflorescence mass was also evaluated. Nitrogen deficiency caused chlorosis followed by purple color in the old leaves, while P deficiency caused only chlorosis in old leaves. Chlorosis at the edge of old leaves progressing to the center of the leaves was observed with the omission of K, and after was observed necrosis in the chlorotic areas. Ca deficiency caused tip burn in new leaves, while Mg deficiency caused internerval chlorosis in old leaves. The omission of each macronutrient reduced inflorescence dry matter. This deleterious effect was larger for N, P, and K deficiencies, reducing inflorescence dry matter by 87, 49, and 42%, respectively. When the nutrient solutions without N, P, K, Ca, or Mg were supplied to cauliflower plants, the macronutrient contents at harvest were 8.8, 0.6, 3.5, 13.0, and 0.8 g kg-1 in the foliar tissues and 27.3, 2.2, 21.6, 1.1, and 0.7 g kg-1 in the inflorescence tissues, respectively. PMID:25856380

  13. Effects of obesity on lung volume and capacity in children and adolescents: a systematic review

    PubMed Central

    Winck, Aline Dill; Heinzmann-Filho, João Paulo; Soares, Rafaela Borges; da Silva, Juliana Severo; Woszezenki, Cristhiele Taís; Zanatta, Letiane Bueno

    2016-01-01

    Abstract Objective: To assess the effects of obesity on lung volume and capacity in children and adolescents. Data source: This is a systematic review, carried out in Pubmed, Lilacs, Scielo and PEDro databases, using the following Keywords: Plethysmography; Whole Body OR Lung Volume Measurements OR Total Lung Capacity OR Functional Residual Capacity OR Residual Volume AND Obesity. Observational studies or clinical trials that assessed the effects of obesity on lung volume and capacity in children and adolescents (0-18 years) without any other associated disease; in English; Portuguese and Spanish languages were selected. Methodological quality was assessed by the Agency for Healthcare Research and Quality. Data synthesis: Of the 1,030 articles, only four were included in the review. The studies amounted to 548 participants, predominantly males, with sample size ranging from 45 to 327 individuals. 100% of the studies evaluated nutritional status through BMI (z-score) and 50.0% reported the data on abdominal circumference. All demonstrated that obesity causes negative effects on lung volume and capacity, causing a reduction mainly in functional residual capacity in 75.0% of the studies; in the expiratory reserve volume in 50.0% and in the residual volume in 25.0%. The methodological quality ranged from moderate to high, with 75.0% of the studies classified as having high methodological quality. Conclusions: Obesity causes deleterious effects on lung volume and capacity in children and adolescents, mainly by reducing functional residual capacity, expiratory reserve volume and residual volume. PMID:27130483

  14. A PIGN Mutation Responsible for Multiple Congenital Anomalies–Hypotonia–Seizures Syndrome 1 (MCAHS1) in an Israeli–Arab Family

    PubMed Central

    Khayat, Morad; Tilghman, Joseph Mark; Chervinsky, Ilana; Zalman, Lucia; Chakravarti, Aravinda; Shalev, Stavit A.

    2017-01-01

    Mutations in the PIGN gene involved in the glycosylphoshatidylinositol (GPI) anchor biosynthesis pathway cause Multiple Congenital Anomalies–Hypotonia–Seizures syndrome 1 (MCAHS1). The syndrome manifests developmental delay, hypotonia, and epilepsy, combined with multiple congenital anomalies. We report on the identification of a homozygous novel c.755A>T (p.D252V) deleterious mutation in a patient with Israeli–Arab origin with MCAHS1. The mutated PIGN caused a significant decrease of the overall GPI-anchored proteins and CD24 expression. Our results, strongly support previously published data, that partial depletion of GPI-anchored proteins is sufficient to cause severe phenotypic expression. PMID:26364997

  15. On the genetic parameter determining the efficiency of purging: an estimate for Drosophila egg-to-pupae viability.

    PubMed

    Bersabé, D; García-Dorado, A

    2013-02-01

    The consequences of inbreeding on fitness can be crucial in evolutionary and conservation grounds and depend upon the efficiency of purging against deleterious recessive alleles. Recently, analytical expressions have been derived to predict the evolution of mean fitness, taking into account both inbreeding and purging, which depend on an 'effective purging coefficient (d(e) )'. Here, we explore the validity of that predictive approach and assay the strength of purging by estimating d(e) for egg-to-pupae viability (EPV) after a drastic reduction in population size in a recently captured base population of Drosophila melanogaster. For this purpose, we first obtained estimates of the inbreeding depression rate (δ) for EPV in the base population, and we found that about 40% was due to segregating recessive lethals. Then, two sets of lines were founded from this base population and were maintained with different effective size throughout the rest of the experiment (N = 6; N = 12), their mean EPV being assayed at different generations. Due to purging, the reductions in mean EPV experienced by these lines were considerably smaller than the corresponding neutral predictions. For the 60% of δ attributable to nonlethal deleterious alleles, our results suggest an effective purging coefficient d(e) > 0.02. Similarly, we obtain that d(e) > 0.09 is required to roughly account for purging against the pooled inbreeding depression from lethal and nonlethal deleterious alleles. This implies that purging should be efficient for population sizes of the order of a few tens and larger, but might be inefficient against nonlethal deleterious alleles in smaller populations. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  16. Oxidovanadium(IV) complexes with chrysin and silibinin: anticancer activity and mechanisms of action in a human colon adenocarcinoma model.

    PubMed

    León, I E; Cadavid-Vargas, J F; Tiscornia, I; Porro, V; Castelli, S; Katkar, P; Desideri, A; Bollati-Fogolin, M; Etcheverry, S B

    2015-10-01

    Vanadium compounds were studied during recent years to be considered as a representative of a new class of nonplatinum metal antitumor agents in combination to its low toxicity. On the other hand, flavonoids are a wide family of polyphenolic compounds synthesized by plants that display many interesting biological effects. Since coordination of ligands to metals can improve the pharmacological properties, we report herein, for the first time, a exhaustive study of the mechanisms of action of two oxidovanadium(IV) complexes with the flavonoids: silibinin Na₂[VO(silibinin)₂2]·6H₂O (VOsil) and chrysin [VO(chrysin)₂EtOH]₂(VOchrys) on human colon adenocarcinoma derived cell line HT-29. The complexes inhibited the cell viability of colon adenocarcinoma cells in a dose dependent manner with a greater potency than that the free ligands and free metal, demonstrating the benefit of complexation. The decrease of the ratio of the amount of reduced glutathione to the amount of oxidized glutathione were involved in the deleterious effects of both complexes. Besides, VOchrys caused cell cycle arrest in G2/M phase while VOsil activated caspase 3 and triggering the cells directly to apoptosis. Moreover, VOsil diminished the NF-kB activation via increasing the sensitivity of cells to apoptosis. On the other hand, VOsil inhibited the topoisomerase IB activity concluding that this is important target involved in the anticancer vanadium effects. As a whole, the results presented herein demonstrate that VOsil has a stronger deleterious action than VOchrys on HT-29 cells, whereby suggesting that Vosil is the potentially best candidate for future use in alternative anti-tumor treatments.

  17. Decline in offspring viability as a manifestation of aging in Drosophila melianogaster.

    PubMed

    Kern, S; Ackermann, M; Stearns, S C; Kawecki, T J

    2001-09-01

    The evolutionary explanation of senescence proposes that selection against alleles with deleterious effects manifested only late in life is weak because most individuals die earlier for extrinsic reasons. This argument also applies to alleles whose deleterious effects are nongenetically transmitted from mother to progeny, that is, that affect the performance of progeny produced at late ages rather than of the aging individuals themselves. We studied the effect of maternal age on offspring viability (egg hatching success and larva-to-adult survival) in two sets of Drosophila melanogaster lines (HAM/LAM and YOUNG/OLD), originating from two long-term selection experiments. In each set, some lines (HAM and YOUNG, respectively) have been selected for early reproduction, whereas later reproduction was favored in their counterparts (LAM and OLD). In the HAM and LAM lines, both egg hatching success and larval viability declined with mother's age and did so with accelerating rates. The hatching success declined significantly faster with maternal age in HAM than in LAM lines, according to one of two statistical approaches used. Egg hatching success also declined with maternal age in YOUNG and OLD lines, with no difference between the selection regimes. However, the relationship between mother's age and offspring larva-to-adult viability differed significantly between these two selection regimes: a decline of larval viability with maternal age occurred in YOUNG lines but not in OLD lines. This suggests that the rate with which offspring viability declines with mother's age responded to selection for early versus late reproduction. We suggest broadening the evolutionary concept of senescence to include intrinsically caused declines in offspring quality with maternal age.

  18. The presence of Bacillus thuringiensis (Bt) protein in earthworms Eisenia fetida has no deleterious effects on their growth and reproduction.

    PubMed

    Shu, Yinghua; Ma, Honghui; Du, Yan; Li, Zhixian; Feng, Yuanjiao; Wang, Jianwu

    2011-11-01

    Earthworms Eisenia fetida, bred in substances with stover of two genetically-engineered Bacillus thuringiensis (Bt) corns (5422Bt1 (Event Bt11) and 5422CBCL (MON810)) expressing Cry1Ab and their near-isogenic non-Bt corn (5422), were used to investigate the non-target effects of Bt corn on soil-dwelling organisms. Cry1Ab concentrations in substances, casts and guts of E. fetida were also investigated by Enzyme-linked immunosorbent assay (ELISA). More than 90% individuals of E. fetida survived over a period of 30 d, irrespective of whether they received Bt corn or non-Bt corn. Compared to 5422 treatments, significantly higher relative growth rate and more number of new offspring and cocoons of E. fetida were found in 5422Bt1 and 5422CBCL treatments. These results were unlikely to be directly caused by Cry1Ab released from Bt corns but rather by differences in other factors of plants such as plant components (soluble sugar, total organic carbon, total protein and available phosphorus of Bt corns were more than 5422). ELISA results indicated immunoreactive Cry1Ab was detectable in substances, and the casts, guts of E. fetida from Bt corns treatments, of which the highest levels were detected in substances under the corresponding experimental conditions. With the increase of treated time, a strong decline was observed in Cry1Ab from substances and casts of E. fetida, whereas Cry1Ab in guts of E. fetida from 5422Bt1 treatments gradually increased and that from 5422CBCL treatments increased between 14 and 30 d. Therefore, the presence of Cry1Ab in E. fetida had no deleterious effects on their growth and reproduction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Autosomal Recessive Hypotrichosis with Woolly Hair Caused by a Mutation in the Keratin 25 Gene Expressed in Hair Follicles.

    PubMed

    Zernov, Nikolay V; Skoblov, Mikhail Y; Marakhonov, Andrey V; Shimomura, Yutaka; Vasilyeva, Tatyana A; Konovalov, Fedor A; Abrukova, Anna V; Zinchenko, Rena A

    2016-06-01

    Hypotrichosis is an abnormal condition characterized by decreased hair density and various defects in hair structure and growth patterns. In particular, in woolly hair, hypotrichosis is characterized by a tightly curled structure and abnormal growth. In this study, we present a detailed comparative examination of individuals affected by autosomal-recessive hypotrichosis (ARH), which distinguishes two types of ARH. Earlier, we demonstrated that exon 4 deletion in the lipase H gene caused an ARH (hypotrichosis 7; MIM: 604379) in populations of the Volga-Ural region of Russia. Screening for this mutation in all affected individuals revealed its presence only in the group with the hypotrichosis 7 phenotype. Other patients formed a separate group of woolly hair-associated ARH, with a homozygous missense mutation c.712G>T (p.Val238Leu) in a highly conserved position of type I keratin KRT25 (K25). Haplotype analysis indicated a founder effect. An expression study in the HaCaT cell line demonstrated a deleterious effect of the p.Val238Leu mutation on the formation of keratin intermediate filaments. Hence, we have identified a previously unreported missense mutation in the KRT25 gene causing ARH with woolly hair. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. [Improvement of physical fitness as anti-aging intervention].

    PubMed

    Castillo Garzón, Manuel J; Ortega Porcel, Francisco B; Ruiz Ruiz, Jonatan

    2005-02-05

    Several recent important studies have clearly shown that a low physical fitness represents a potent risk factor and even a predictor of both cardiovascular and all-causes morbidity and mortality. As a consequence, physical fitness assessment should be performed at the clinical level since, when properly assessed, it is a highly valuable health and life expectancy indicator. Based on the results of fitness assessment in a particular person and knowing his/her life style and daily physical activity, an individually adapted training program can be prescribed. This training program will allow that person to develop his/her maximal physical potential while improving his/her physical and mental health and attenuating the deleterious consequences of aging. In fact, physical exercise is today proposed as a highly effective means to treat and prevent major morbidity and mortality causes in industrialized countries. Most of these causes are associated with the aging process. In order to be effective, this type of intervention should be directed to improve the aerobic capacity and strength. In addition, it should be complemented with work directed to improve the general coordination and flexibility. Finally, diet optimization and use of nutritional supplements and legal ergogenic aids are key elements to improve the functional capacity and health, all of which is synonymous of anti-aging interventions.

  1. Mitochondrial DNA sequence variation in human evolution and disease.

    PubMed

    Wallace, D C

    1994-09-13

    Germ-line and somatic mtDNA mutations are hypothesized to act together to shape our history and our health. Germ-line mtDNA mutations, both ancient and recent, have been associated with a variety of degenerative diseases. Mildly to moderately deleterious germ-line mutations, like neutral polymorphisms, have become established in the distant past through genetic drift but now may predispose certain individuals to late-onset degenerative diseases. As an example, a homoplasmic, Caucasian, tRNA(Gln) mutation at nucleotide pair (np) 4336 has been observed in 5% of Alzheimer disease and Parkinson disease patients and may contribute to the multifactorial etiology of these diseases. Moderately to severely deleterious germ-line mutations, on the other hand, appear repeatedly but are eliminated by selection. Hence, all extant mutations of this class are recent and associated with more devastating diseases of young adults and children. Representative of these mutations is a heteroplasmic mutation in MTND6 at np 14459 whose clinical presentations range from adult-onset blindness to pediatric dystonia and basal ganglial degeneration. To the inherited mutations are added somatic mtDNA mutations which accumulate in random arrays within stable tissues. These mutations provide a molecular clock that measures our age and may cause a progressive decline in tissue energy output that could precipitate the onset of degenerative diseases in individuals harboring inherited deleterious mutations.

  2. The Loss and Gain of Functional Amino Acid Residues Is a Common Mechanism Causing Human Inherited Disease

    PubMed Central

    Lugo-Martinez, Jose; Pejaver, Vikas; Pagel, Kymberleigh A.; Mort, Matthew; Cooper, David N.; Mooney, Sean D.; Radivojac, Predrag

    2016-01-01

    Elucidating the precise molecular events altered by disease-causing genetic variants represents a major challenge in translational bioinformatics. To this end, many studies have investigated the structural and functional impact of amino acid substitutions. Most of these studies were however limited in scope to either individual molecular functions or were concerned with functional effects (e.g. deleterious vs. neutral) without specifically considering possible molecular alterations. The recent growth of structural, molecular and genetic data presents an opportunity for more comprehensive studies to consider the structural environment of a residue of interest, to hypothesize specific molecular effects of sequence variants and to statistically associate these effects with genetic disease. In this study, we analyzed data sets of disease-causing and putatively neutral human variants mapped to protein 3D structures as part of a systematic study of the loss and gain of various types of functional attribute potentially underlying pathogenic molecular alterations. We first propose a formal model to assess probabilistically function-impacting variants. We then develop an array of structure-based functional residue predictors, evaluate their performance, and use them to quantify the impact of disease-causing amino acid substitutions on catalytic activity, metal binding, macromolecular binding, ligand binding, allosteric regulation and post-translational modifications. We show that our methodology generates actionable biological hypotheses for up to 41% of disease-causing genetic variants mapped to protein structures suggesting that it can be reliably used to guide experimental validation. Our results suggest that a significant fraction of disease-causing human variants mapping to protein structures are function-altering both in the presence and absence of stability disruption. PMID:27564311

  3. The Loss and Gain of Functional Amino Acid Residues Is a Common Mechanism Causing Human Inherited Disease.

    PubMed

    Lugo-Martinez, Jose; Pejaver, Vikas; Pagel, Kymberleigh A; Jain, Shantanu; Mort, Matthew; Cooper, David N; Mooney, Sean D; Radivojac, Predrag

    2016-08-01

    Elucidating the precise molecular events altered by disease-causing genetic variants represents a major challenge in translational bioinformatics. To this end, many studies have investigated the structural and functional impact of amino acid substitutions. Most of these studies were however limited in scope to either individual molecular functions or were concerned with functional effects (e.g. deleterious vs. neutral) without specifically considering possible molecular alterations. The recent growth of structural, molecular and genetic data presents an opportunity for more comprehensive studies to consider the structural environment of a residue of interest, to hypothesize specific molecular effects of sequence variants and to statistically associate these effects with genetic disease. In this study, we analyzed data sets of disease-causing and putatively neutral human variants mapped to protein 3D structures as part of a systematic study of the loss and gain of various types of functional attribute potentially underlying pathogenic molecular alterations. We first propose a formal model to assess probabilistically function-impacting variants. We then develop an array of structure-based functional residue predictors, evaluate their performance, and use them to quantify the impact of disease-causing amino acid substitutions on catalytic activity, metal binding, macromolecular binding, ligand binding, allosteric regulation and post-translational modifications. We show that our methodology generates actionable biological hypotheses for up to 41% of disease-causing genetic variants mapped to protein structures suggesting that it can be reliably used to guide experimental validation. Our results suggest that a significant fraction of disease-causing human variants mapping to protein structures are function-altering both in the presence and absence of stability disruption.

  4. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training?

    PubMed Central

    Ristow, Michael

    2016-01-01

    Abstract A popular belief is that reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced during exercise by the mitochondria and other subcellular compartments ubiquitously cause skeletal muscle damage, fatigue and impair recovery. However, the importance of ROS and RNS as signals in the cellular adaptation process to stress is now evident. In an effort to combat the perceived deleterious effects of ROS and RNS it has become common practice for active individuals to ingest supplements with antioxidant properties, but interfering with ROS/RNS signalling in skeletal muscle during acute exercise may blunt favourable adaptation. There is building evidence that antioxidant supplementation can attenuate endurance training‐induced and ROS/RNS‐mediated enhancements in antioxidant capacity, mitochondrial biogenesis, cellular defence mechanisms and insulin sensitivity. However, this is not a universal finding, potentially indicating that there is redundancy in the mechanisms controlling skeletal muscle adaptation to exercise, meaning that in some circumstances the negative impact of antioxidants on acute exercise response can be overcome by training. Antioxidant supplementation has been more consistently reported to have deleterious effects on the response to overload stress and high‐intensity training, suggesting that remodelling of skeletal muscle following resistance and high‐intensity exercise is more dependent on ROS/RNS signalling. Importantly there is no convincing evidence to suggest that antioxidant supplementation enhances exercise‐training adaptions. Overall, ROS/RNS are likely to exhibit a non‐linear (hormetic) pattern on exercise adaptations, where physiological doses are beneficial and high exposure (which would seldom be achieved during normal exercise training) may be detrimental. PMID:26638792

  5. Muscle transcriptome response to ACTH administration in a free-ranging marine mammal

    PubMed Central

    Champagne, Cory D.; Preeyanon, Likit; Ortiz, Rudy M.; Crocker, Daniel E.

    2015-01-01

    While much of our understanding of stress physiology is derived from biomedical studies, little is known about the downstream molecular consequences of adaptive stress responses in free-living animals. We examined molecular effectors of the stress hormones cortisol and aldosterone in the northern elephant seal, a free-ranging study system in which extreme physiological challenges and cortisol fluctuations are a routine part of life history. We stimulated the neuroendocrine stress axis by administering exogenous adrenocorticotropic hormone (ACTH) and examined the resultant effects by measuring corticosteroid hormones, metabolites, and gene expression before, during, and following administration. ACTH induced an elevation in cortisol, aldosterone, glucose, and fatty acids within 2 h, with complete recovery observed within 24 h of administration. The global transcriptional response of elephant seal muscle tissue to ACTH was evaluated by transcriptomics and involved upregulation of a highly coordinated network of conserved glucocorticoid (GC) target genes predicted to promote metabolic substrate availability without causing deleterious effects seen in laboratory animals. Transcriptional recovery from ACTH was characterized by downregulation of GC target genes and restoration of cell proliferation, metabolism, and tissue maintenance pathways within 24 h. Differentially expressed genes included several adipokines not previously described in muscle, reflecting unique metabolic physiology in fasting-adapted animals. This study represents one of the first transcriptome analyses of cellular responses to hypothalamic-pituitary-adrenal axis stimulation in a free-living marine mammal and suggests that compensatory, tissue-sparing mechanisms may enable marine mammals to maintain cortisol and aldosterone sensitivity while avoiding deleterious long-term consequences of stress. PMID:26038394

  6. Evidence for an absence of deleterious effects of ultrasound on human oocytes.

    PubMed

    Mahadevan, M; Chalder, K; Wiseman, D; Leader, A; Taylor, P J

    1987-10-01

    Animal and human data would suggest that ultrasound causes deleterious effects to oocytes during meiosis. We directly compared the fertilization rate and embryonic development following in vitro fertilization and embryo transfer of those oocytes exposed to ultrasound and those not exposed in the same patient. In 39 unscreened patients a combination of laparoscopy and ultrasound was used for oocyte recovery. Laparoscopy was performed first on the most accessible ovary (usually the right) and at least one oocyte was obtained. Ultrasound-guided oocyte recovery was successful in the other inaccessible ovary. To assess how oocytes obtained by ultrasound or laparoscopy related to the pregnancy rate, two groups of patients were evaluated in whom the embryos transferred either had been exposed to ultrasound or had not been. The fertilization and the embryo cleavage rates were not significantly different between the ultrasound-exposed and the unexposed groups. The pregnancy rate was also not significantly different [9 of 49 (18.4%) for ultrasound exposed versus 14 of 74 (18.9%) for unexposed]. There was one early spontaneous abortion in each group. Further analysis of a group of 40 patients, in whom the oocytes were exposed to ultrasound in situ, after the endogenous luteinizing hormone (LH) surge had begun 1-27 hr earlier, revealed that 6 became pregnant (15%). This preliminary study suggests that exposure of human oocytes to ultrasonic waves, either during the different phases of meiosis or after the completion of meiosis, did not significantly influence the developmental potential of the in vitro fertilized embryos.

  7. Mild KCC2 Hypofunction Causes Inconspicuous Chloride Dysregulation that Degrades Neural Coding

    PubMed Central

    Doyon, Nicolas; Prescott, Steven A.; De Koninck, Yves

    2016-01-01

    Disinhibition caused by Cl− dysregulation is implicated in several neurological disorders. This form of disinhibition, which stems primarily from impaired Cl− extrusion through the co-transporter KCC2, is typically identified by a depolarizing shift in GABA reversal potential (EGABA). Here we show, using computer simulations, that intracellular [Cl−] exhibits exaggerated fluctuations during transient Cl− loads and recovers more slowly to baseline when KCC2 level is even modestly reduced. Using information theory and signal detection theory, we show that increased Cl− lability and settling time degrade neural coding. Importantly, these deleterious effects manifest after less KCC2 reduction than needed to produce the gross changes in EGABA required for detection by most experiments, which assess KCC2 function under weak Cl− load conditions. By demonstrating the existence and functional consequences of “occult” Cl− dysregulation, these results suggest that modest KCC2 hypofunction plays a greater role in neurological disorders than previously believed. PMID:26858607

  8. Watson-Crick Base Pair Radical Cation as a Model for Oxidative Damage in DNA.

    PubMed

    Feketeová, Linda; Chan, Bun; Khairallah, George N; Steinmetz, Vincent; Maitre, Philippe; Radom, Leo; O'Hair, Richard A J

    2017-07-06

    The deleterious cellular effects of ionizing radiation are well-known, but the mechanisms causing DNA damage are poorly understood. The accepted molecular events involve initial oxidation and deprotonation at guanine sites, triggering hydrogen atom abstraction reactions from the sugar moieties, causing DNA strand breaks. Probing the chemistry of the initially formed radical cation has been challenging. Here, we generate, spectroscopically characterize, and examine the reactivity of the Watson-Crick nucleobase pair radical cation in the gas phase. We observe rich chemistry, including proton transfer between the bases and propagation of the radical site in deoxyguanosine from the base to the sugar, thus rupturing the sugar. This first example of a gas-phase model system providing molecular-level details on the chemistry of an ionized DNA base pair paves the way toward a more complete understanding of molecular processes induced by radiation. It also highlights the role of radical propagation in chemistry, biology, and nanotechnology.

  9. Enhancement of thermal neutron shielding of cement mortar by using borosilicate glass powder.

    PubMed

    Jang, Bo-Kil; Lee, Jun-Cheol; Kim, Ji-Hyun; Chung, Chul-Woo

    2017-05-01

    Concrete has been used as a traditional biological shielding material. High hydrogen content in concrete also effectively attenuates high-energy fast neutrons. However, concrete does not have strong protection against thermal neutrons because of the lack of boron compound. In this research, boron was added in the form of borosilicate glass powder to increase the neutron shielding property of cement mortar. Borosilicate glass powder was chosen in order to have beneficial pozzolanic activity and to avoid deleterious expansion caused by an alkali-silica reaction. According to the experimental results, borosilicate glass powder with an average particle size of 13µm showed pozzolanic activity. The replacement of borosilicate glass powder with cement caused a slight increase in the 28-day compressive strength. However, the incorporation of borosilicate glass powder resulted in higher thermal neutron shielding capability. Thus, borosilicate glass powder can be used as a good mineral additive for various radiation shielding purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Transient protein-protein interactions perturb E. coli metabolome and cause gene dosage toxicity

    PubMed Central

    Bhattacharyya, Sanchari; Bershtein, Shimon; Yan, Jin; Argun, Tijda; Gilson, Amy I; Trauger, Sunia A; Shakhnovich, Eugene I

    2016-01-01

    Gene dosage toxicity (GDT) is an important factor that determines optimal levels of protein abundances, yet its molecular underpinnings remain unknown. Here, we demonstrate that overexpression of DHFR in E. coli causes a toxic metabolic imbalance triggered by interactions with several functionally related enzymes. Though deleterious in the overexpression regime, surprisingly, these interactions are beneficial at physiological concentrations, implying their functional significance in vivo. Moreover, we found that overexpression of orthologous DHFR proteins had minimal effect on all levels of cellular organization – molecular, systems, and phenotypic, in sharp contrast to E. coli DHFR. Dramatic difference of GDT between ‘E. coli’s self’ and ‘foreign’ proteins suggests the crucial role of evolutionary selection in shaping protein-protein interaction (PPI) networks at the whole proteome level. This study shows how protein overexpression perturbs a dynamic metabolon of weak yet potentially functional PPI, with consequences for the metabolic state of cells and their fitness. DOI: http://dx.doi.org/10.7554/eLife.20309.001 PMID:27938662

  11. Post space mission lumbo-pelvic neuromuscular reconditioning: a European perspective.

    PubMed

    Evetts, Simon N; Caplan, Nick; Debuse, Dorothée; Lambrecht, Gunda; Damann, Volker; Petersen, Nora; Hides, Julie

    2014-07-01

    Long-duration exposure to the space environment causes physical adaptations that are deleterious to optimal functioning on Earth. Post-mission rehabilitation traditionally concentrates on regaining general muscle strength, neuromuscular control, and lumbo-pelvic stability. A particular problem is muscle imbalance caused by the hypertrophy of the flexor and atrophy of the extensor and local lumbo-pelvic muscles, increasing the risk of post-mission injury. A method currently used in European human spaceflight to aid post-mission recovery involves a motor control approach, focusing initially on teaching voluntary contraction of specific lumbo-pelvic muscles and optimizing spinal position, progressing to functional retraining in weight bearing positions. An alternative approach would be to use a Functional Readaptive Exercise Device to appropriately recruit this musculature, thus complementing current rehabilitation programs. Advances in post-mission recovery of this nature may both improve astronaut healthcare and aid terrestrial healthcare through more effective treatment of low back pain and accelerated post bed rest rehabilitation.

  12. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations.

    PubMed

    Kuscu, Cem; Parlak, Mahmut; Tufan, Turan; Yang, Jiekun; Szlachta, Karol; Wei, Xiaolong; Mammadov, Rashad; Adli, Mazhar

    2017-07-01

    CRISPR-Cas9-induced DNA damage may have deleterious effects at high-copy-number genomic regions. Here, we use CRISPR base editors to knock out genes by changing single nucleotides to create stop codons. We show that the CRISPR-STOP method is an efficient and less deleterious alternative to wild-type Cas9 for gene-knockout studies. Early stop codons can be introduced in ∼17,000 human genes. CRISPR-STOP-mediated targeted screening demonstrates comparable efficiency to WT Cas9, which indicates the suitability of our approach for genome-wide functional screenings.

  13. Time-controlled fasting prevents aging-like mitochondrial changes induced by persistent dietary fat overload in skeletal muscle

    PubMed Central

    Lettieri-Barbato, Daniele; Cannata, Stefano Maria; Casagrande, Viviana; Ciriolo, Maria Rosa

    2018-01-01

    A large body of evidence suggests that persistent dietary fat overload causes mitochondrial dysfunction and systemic metabolic gridlock. Mitochondrial and lipid metabolism in skeletal muscle (SkM) are severely affected upon persistent high fat diet (HFD) leading to premature tissue aging. Here, we designed weekly cycles of fasting (called as time-controlled fasting, TCF) and showed that they were effective in limiting mitochondrial damage and metabolic disturbances induced by HFD. Specifically, TCF was able to prevent the decline of adipose triglyceride lipase (Atgl), maintain efficient mitochondrial respiration in SkM as well as improve blood glucose and lipid profile. Atgl was found to be the mediator of such preventive effects as its downregulation or up-regulation in C2C12 myotubes triggers mitochondrial alteration or protects against the deleterious effects of high fat levels respectively. In conclusion, TCF could represent an effective strategy to limit mitochondrial impairment and metabolic inflexibility that are typically induced by modern western diets or during aging. PMID:29742122

  14. Time-controlled fasting prevents aging-like mitochondrial changes induced by persistent dietary fat overload in skeletal muscle.

    PubMed

    Lettieri-Barbato, Daniele; Cannata, Stefano Maria; Casagrande, Viviana; Ciriolo, Maria Rosa; Aquilano, Katia

    2018-01-01

    A large body of evidence suggests that persistent dietary fat overload causes mitochondrial dysfunction and systemic metabolic gridlock. Mitochondrial and lipid metabolism in skeletal muscle (SkM) are severely affected upon persistent high fat diet (HFD) leading to premature tissue aging. Here, we designed weekly cycles of fasting (called as time-controlled fasting, TCF) and showed that they were effective in limiting mitochondrial damage and metabolic disturbances induced by HFD. Specifically, TCF was able to prevent the decline of adipose triglyceride lipase (Atgl), maintain efficient mitochondrial respiration in SkM as well as improve blood glucose and lipid profile. Atgl was found to be the mediator of such preventive effects as its downregulation or up-regulation in C2C12 myotubes triggers mitochondrial alteration or protects against the deleterious effects of high fat levels respectively. In conclusion, TCF could represent an effective strategy to limit mitochondrial impairment and metabolic inflexibility that are typically induced by modern western diets or during aging.

  15. Characterization of the Effects of the Shiitake Culinary-Medicinal Mushroom, Lentinus edodes (Agaricomycetes), on Severe Gestational Diabetes Mellitus in Rats.

    PubMed

    Maschio, Bianca Hessel; Gentil, Bianca Carvalho; Caetano, Erika Leão Ajala; Rodrigues, Lucas Silva; Laurino, Leticia Favara; Spim, Sara Rosicler Vieira; Jozala, Angela Faustino; Dos Santos, Carolina Alves; Grotto, Denise; Gerenutti, Marli

    2017-01-01

    This study evaluated the protective effect of Lentinus edodes in rats with streptozotocin-induced gestational diabetes mellitus (STZ-GDM) when administered orally. The rats received from the 1st to the 19th day of gestation daily doses of 100 or 200 mg/kg of lyophilized and reconstituted L. edodes; the animals in the saline control group and diabetic control group received a saline solution (DS). Gestational diabetes mellitus was induced by streptozotocin (80 mg/kg, administered intraperitoneally) on the fourth day of pregnancy; blood glucose > 180 mg/dL was considered to indicate STZ-GDM. L. edodes reduced catalase in plasma. We also observed reduced glucose in plasma, urea, triglycerides, and aspartate aminotransferase. There was a decrease in preimplantation loss when compared with the DS group. The doses of L. edodes used here had a protective effect on the preimplantation parameters in STZGDM. However, the mushroom was not able to reverse the deleterious effects caused by streptozotocin throughout the evolution of pregnancy.

  16. Gastroprotective [6]-Gingerol Aspirinate as a Novel Chemopreventive Prodrug of Aspirin for Colon Cancer

    PubMed Central

    Zhu, Yingdong; Wang, Fang; Zhao, Yantao; Wang, Pei; Sang, Shengmin

    2017-01-01

    A growing body of research suggests daily low-dose aspirin (ASA) reduces heart diseases and colorectal cancers. However, the major limitation to the use of aspirin is its side effect to cause ulceration and bleeding in the gastrointestinal tract. Preclinical studies have shown that ginger constituents ameliorate ASA-induced gastric ulceration. We here report the design and synthesis of a novel prodrug of aspirin, [6]-gingerol aspirinate (GAS). Our data show that GAS exerts enhanced anti-cancer properties in vitro and superior gastroprotective effects in mice. GAS was also able to survive stomach acid and decomposed in intestinal linings or after absorption to simultaneously release ASA and [6]-gingerol. We further present that GAS inactivates both COX-1 and COX-2 equally. Our results demonstrate the enhanced anticancer properties along with gastroprotective effects of GAS, suggesting that GAS can be a therapeutic equivalent for ASA in inflammatory and proliferative diseases without the deleterious effects on stomach mucosa. PMID:28067282

  17. Effects of Incretin-Based Therapies on Neuro-Cardiovascular Dynamic Changes Induced by High Fat Diet in Rats.

    PubMed

    Marques-Neto, Silvio Rodrigues; Castiglione, Raquel Carvalho; Pontes, Aiza; Oliveira, Dahienne Ferreira; Ferraz, Emanuelle Baptista; Nascimento, José Hamilton Matheus; Bouskela, Eliete

    2016-01-01

    Obesity promotes cardiac and cerebral microcirculatory dysfunction that could be improved by incretin-based therapies. However, the effects of this class of compounds on neuro-cardiovascular system damage induced by high fat diet remain unclear. The aim of this study was to investigate the effects of incretin-based therapies on neuro-cardiovascular dysfunction induced by high fat diet in Wistar rats. We have evaluated fasting glucose levels and insulin resistance, heart rate variability quantified on time and frequency domains, cerebral microcirculation by intravital microscopy, mean arterial blood pressure, ventricular function and mitochondrial swelling. High fat diet worsened biometric and metabolic parameters and promoted deleterious effects on autonomic, myocardial and haemodynamic parameters, decreased capillary diameters and increased functional capillary density in the brain. Biometric and metabolic parameters were better improved by glucagon like peptide-1 (GLP-1) compared with dipeptdyl peptidase-4 (DPP-4) inhibitor. On the other hand, both GLP-1 agonist and DPP-4 inhibitor reversed the deleterious effects of high fat diet on autonomic, myocardial, haemodynamic and cerebral microvascular parameters. GLP-1 agonist and DPP-4 inhibitor therapy also increased mitochondrial permeability transition pore resistance in brain and heart tissues of rats subjected to high fat diet. Incretin-based therapies improve deleterious cardiovascular effects induced by high fat diet and may have important contributions on the interplay between neuro-cardiovascular dynamic controls through mitochondrial dysfunction associated to metabolic disorders.

  18. Oxidative stress generated during monensin treatment contributes to altered Toxoplasma gondii mitochondrial function

    PubMed Central

    Charvat, Robert A.; Arrizabalaga, Gustavo

    2016-01-01

    The ionophore monensin displays potent activities against several coccidian parasites of veterinary and medical importance including the opportunistic pathogen of humans, Toxoplasma gondii. While monensin is used widely in animals, toxicity impedes its use in humans. Nonetheless, given its potency, understanding its mode of action would reveal vulnerable aspects of the parasite that can be exploited for drug development. We previously established that monensin induces Toxoplasma to undergo cell cycle arrest and an autophagy-like cell death. Interestingly, these effects are dependent on the mitochondrion-localized TgMSH-1 protein, suggesting that monensin disrupts mitochondrial function. We demonstrate that monensin treatment results in decreased mitochondrial membrane potential and altered morphology. These effects are mitigated by the antioxidant compound N-acetyl-cysteine suggesting that monensin causes an oxidative stress, which was indeed the case based on direct detection of reactive oxygen species. Moreover, over-expression of the antioxidant proteins glutaredoxin and peroxiredoxin 2 protect Toxoplasma from the deleterious effects of monensin. Thus, our studies show that the effects of monensin on Toxoplasma are due to a disruption of mitochondrial function caused by the induction of an oxidative stress and implicate parasite redox biology as a viable target for the development of drugs against Toxoplasma and related pathogenic parasites. PMID:26976749

  19. Therapeutic effects of date palm (Phoenix dactylifera L.) pollen extract on cadmium-induced testicular toxicity.

    PubMed

    El-Neweshy, M S; El-Maddawy, Z K; El-Sayed, Y S

    2013-12-01

    Cadmium (Cd) is a well-known testicular toxicant. This study was designed to explore the long-term effects of a single low dose of Cd on spermatogenesis, and testicular dysfunction and oxidative stress, and the therapeutic potential of date palm pollen extract (DPP) in averting such reproductive damage. Adult male Wistar rats received a single intraperitoneal injection of CdCl2 (0 or 1 mg kg(-1) ). Twenty-four hours later, they started receiving DPP (0 or 40 mg kg(-1) ) orally, once daily for 56 consecutive days. Cd exposure caused significant reproductive damage via reduced weight of the reproductive organs, which includes spermatological damage (decreased sperm count and motility and increased rates of sperm abnormalities), increased oxidative stress (increased malondialdehyde and decreased reduced glutathione levels), histological alterations (necrosis, inefficient to completely arrest spermatogenesis and a reduced Johnsen's score) and decreased serum testosterone level. DPP restored spermatogenesis and attenuated the toxic effects of Cd on the reproductive system to the levels observed in the control animals. These findings support the hypothesis that the testis is particularly sensitive to Cd, which can cause testicular damage and infertility. Treatment with DPP can ameliorate the deleterious effects of Cd, probably by activating testicular endocrine and antioxidant systems. © 2012 Blackwell Verlag GmbH.

  20. Nosema spp. infection and its negative effects on honey bees (Apis mellifera iberiensis) at the colony level

    PubMed Central

    2013-01-01

    Nosemosis caused by the microsporidia Nosema apis and Nosema ceranae are among the most common pathologies affecting adult honey bees. N. apis infection has been associated with a reduced lifespan of infected bees and increased winter mortality, and its negative impact on colony strength and productivity has been described in several studies. By contrast, when the effects of nosemosis type C, caused by N. ceranae infection, have been analysed at the colony level, these studies have largely focused on collapse as a response to infection without addressing the potential sub-clinical effects on colony strength and productivity. Given the spread and prevalence of N. ceranae worldwide, we set out here to characterize the sub-clinical and clinical signs of N. ceranae infection on colony strength and productivity. We evaluated the evolution of 50 honey bee colonies naturally infected by Nosema (mainly N. ceranae) over a one year period. Under our experimental conditions, N. ceranae infection was highly pathogenic for honey bee colonies, producing significant reductions in colony size, brood rearing and honey production. These deleterious effects at the colony level may affect beekeeping profitability and have serious consequences on pollination. Further research is necessary to identify possible treatments or beekeeping techniques that will limit the rapid spread of this dangerous emerging disease. PMID:23574888

  1. Nosema spp. infection and its negative effects on honey bees (Apis mellifera iberiensis) at the colony level.

    PubMed

    Botías, Cristina; Martín-Hernández, Raquel; Barrios, Laura; Meana, Aránzazu; Higes, Mariano

    2013-04-10

    Nosemosis caused by the microsporidia Nosema apis and Nosema ceranae are among the most common pathologies affecting adult honey bees. N. apis infection has been associated with a reduced lifespan of infected bees and increased winter mortality, and its negative impact on colony strength and productivity has been described in several studies. By contrast, when the effects of nosemosis type C, caused by N. ceranae infection, have been analysed at the colony level, these studies have largely focused on collapse as a response to infection without addressing the potential sub-clinical effects on colony strength and productivity. Given the spread and prevalence of N. ceranae worldwide, we set out here to characterize the sub-clinical and clinical signs of N. ceranae infection on colony strength and productivity. We evaluated the evolution of 50 honey bee colonies naturally infected by Nosema (mainly N. ceranae) over a one year period. Under our experimental conditions, N. ceranae infection was highly pathogenic for honey bee colonies, producing significant reductions in colony size, brood rearing and honey production. These deleterious effects at the colony level may affect beekeeping profitability and have serious consequences on pollination. Further research is necessary to identify possible treatments or beekeeping techniques that will limit the rapid spread of this dangerous emerging disease.

  2. Preliminary analysis of data from SRI international transient pulse monitor on board P78-2 SCATHA satellite

    NASA Technical Reports Server (NTRS)

    Damron, S. A.; Adamo, R. C.; Nanevicz, J. E.

    1980-01-01

    The satellite charging at high altitudes (SCATHA) program addresses the occurrence of electrostatic discharges causing undesirable effects like deleterious transients in electronic circuits on satellites. The high altitude plasma environment and the effects of the interaction of this environment with the orbiting satellite are studied. The SRI transient pulse monitor (TPM) detects the transient electromagnetic signals induced in selected circuits. As a transient detector the TPM records transient signals, indicates the number of transients observed, and gives peak amplitude of the largest transient during each second's interval. Most of the early data from the TPM contain pulses associated with internal electrical activity and electrostatic charging on the surface of the P78-2 is evidenced. It is found that periods of external discharging do not necessarily coincide with periods in which high potentials are measured on the satellite's surface.

  3. Hydrogen peroxide contributes to the ultraviolet-B (280-315 nm) induced oxidative stress of plant leaves through multiple pathways.

    PubMed

    Czégény, Gyula; Wu, Min; Dér, András; Eriksson, Leif A; Strid, Åke; Hideg, Éva

    2014-06-27

    Solar UV-B (280-315 nm) radiation is a developmental signal in plants but may also cause oxidative stress when combined with other environmental factors. Using computer modeling and in solution experiments we show that UV-B is capable of photosensitizing hydroxyl radical production from hydrogen peroxide. We present evidence that the oxidative effect of UV-B in leaves is at least twofold: (i) it increases cellular hydrogen peroxide concentrations, to a larger extent in pyridoxine antioxidant mutant pdx1.3-1 Arabidopsis and; (ii) is capable of a partial photo-conversion of both 'natural' and 'extra' hydrogen peroxide to hydroxyl radicals. As stress conditions other than UV can increase cellular hydrogen peroxide levels, synergistic deleterious effects of various stresses may be expected already under ambient solar UV-B. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Analysis of Minor Component Segregation in Ternary Powder Mixtures

    NASA Astrophysics Data System (ADS)

    Asachi, Maryam; Hassanpour, Ali; Ghadiri, Mojtaba; Bayly, Andrew

    2017-06-01

    In many powder handling operations, inhomogeneity in powder mixtures caused by segregation could have significant adverse impact on the quality as well as economics of the production. Segregation of a minor component of a highly active substance could have serious deleterious effects, an example is the segregation of enzyme granules in detergent powders. In this study, the effects of particle properties and bulk cohesion on the segregation tendency of minor component are analysed. The minor component is made sticky while not adversely affecting the flowability of samples. The segregation extent is evaluated using image processing of the photographic records taken from the front face of the heap after the pouring process. The optimum average sieve cut size of components for which segregation could be reduced is reported. It is also shown that the extent of segregation is significantly reduced by applying a thin layer of liquid to the surfaces of minor component, promoting an ordered mixture.

  5. Deleterious Effects From Occupational Exposure to Ethylene Thiourea in Pregnant Women.

    PubMed

    Mutic, Abby D; Baker, Brenda J; McCauley, Linda A

    2017-12-01

    Human exposure to endocrine disrupting chemicals (EDCs) has become common as a result of widespread application of these chemicals to the food supply, environmental contamination, and occupational exposures (Caserta et al., 2011). However, relatively little is known about the effects of EDCs such as ethylene thiourea (ETU) in developing fetuses and the lasting implications of this disruption on human development from birth through adulthood. Of highest concern are chronic, low-dose exposures among industrial and agricultural workers. Current knowledge regarding the significance of endocrine thyroid signaling on normal human development raises serious concerns about the possible deleterious effects of EDCs in the developing fetus, children, and mature adults. Occupational health nurses are critical in identifying women and families at increased risk of ETU exposure and mitigating early exposures in pregnancy.

  6. Counteraction of the deleterious effects of urea on structure and stability of mammalian kidney proteins by osmolytes.

    PubMed

    Dar, Mohammad Aasif; Wahiduzzaman; Islam, Asimul; Hassan, Md Imtaiyaz; Ahmad, Faizan

    2018-02-01

    Owing to the urine concentrating mechanism of kidney cells, urea concentration is very high (3.0-5.0M) in mammalian kidneys which may denature many kidney proteins. Methylamines are known to counteract the deleterious effects of urea on structure, stability and function of proteins at 2:1 molar ratio of urea to methylamines. It is known that mammalian kidney cells also contain stabilizing osmolytes, non-methylamines (myo-inositol and sorbitol). A question arises: Do these non-methylmine osmolytes have ability to counteract the deleterious effects of urea on kidney proteins? To answer this question, we took two kidney proteins, namely, sheep serum albumin and Human carbonic anhydrase II. We measured their thermodynamic stability (ΔG 0 N↔D , the Gibbs free energy change in absence of GdmCl (guanidinium chloride) associated with the equilibrium, native (N) state↔denatured (D) state) from the GdmCl-induced denaturation curves in the presence of different concentrations of urea and each kidney osmolyte individually and in combination. For both proteins, we observed that (i) glycine betaine and myo-inositol provide perfect counteraction at 2:1 molar ratio of urea to osmolyte, i.e., denaturing effect of 2M urea is 100% neutralized by 1M of glycine betaine (or myo-inositol), and (ii) sorbitol fails to refold urea denatured proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. High-protein-low-carbohydrate diet: deleterious metabolic and cardiovascular effects depend on age.

    PubMed

    Bedarida, Tatiana; Baron, Stephanie; Vessieres, Emilie; Vibert, Francoise; Ayer, Audrey; Marchiol-Fournigault, Carmen; Henrion, Daniel; Paul, Jean-Louis; Noble, Florence; Golmard, Jean-Louis; Beaudeux, Jean-Louis; Cottart, Charles-Henry; Nivet-Antoine, Valerie

    2014-09-01

    High-protein-low-carbohydrate (HP-LC) diets have become widespread. Yet their deleterious consequences, especially on glucose metabolism and arteries, have already been underlined. Our previous study (2) has already shown glucose intolerance with major arterial dysfunction in very old mice subjected to an HP-LC diet. The hypothesis of this work was that this diet had an age-dependent deleterious metabolic and cardiovascular outcome. Two groups of mice, young and adult (3 and 6 mo old), were subjected for 12 wk to a standard or to an HP-LC diet. Glucose and lipid metabolism was studied. The cardiovascular system was explored from the functional stage with Doppler-echography to the molecular stage (arterial reactivity, mRNA, immunohistochemistry). Young mice did not exhibit any significant metabolic modification, whereas adult mice presented marked glucose intolerance associated with an increase in resistin and triglyceride levels. These metabolic disturbances were responsible for cardiovascular damages only in adult mice, with decreased aortic distensibility and left ventricle dysfunction. These seemed to be the consequence of arterial dysfunctions. Mesenteric arteries were the worst affected with a major oxidative stress, whereas aorta function seemed to be maintained with an appreciable role of cyclooxygenase-2 to preserve endothelial function. This study highlights for the first time the age-dependent deleterious effects of an HP-LC diet on metabolism, with glucose intolerance and lipid disorders and vascular (especially microvessels) and cardiac functions. This work shows that HP-LC lead to equivalent cardiovascular alterations, as observed in very old age, and underlines the danger of such diet. Copyright © 2014 the American Physiological Society.

  8. The role of parental cognitive, behavioral, and motor profiles in clinical variability in individuals with chromosome 16p11.2 deletions.

    PubMed

    Moreno-De-Luca, Andres; Evans, David W; Boomer, K B; Hanson, Ellen; Bernier, Raphael; Goin-Kochel, Robin P; Myers, Scott M; Challman, Thomas D; Moreno-De-Luca, Daniel; Slane, Mylissa M; Hare, Abby E; Chung, Wendy K; Spiro, John E; Faucett, W Andrew; Martin, Christa L; Ledbetter, David H

    2015-02-01

    Most disorders caused by copy number variants (CNVs) display significant clinical variability, often referred to as incomplete penetrance and variable expressivity. Genetic and environmental sources of this variability are not well understood. To investigate the contributors to phenotypic variability in probands with CNVs involving the same genomic region; to measure the effect size for de novo mutation events; and to explore the contribution of familial background to resulting cognitive, behavioral, and motor performance outcomes in probands with de novo CNVs. Family-based study design with a volunteer sample of 56 individuals with de novo 16p11.2 deletions and their noncarrier parents and siblings from the Simons Variation in Individuals Project. We used linear mixed-model analysis to measure effect size and intraclass correlation to determine the influence of family background for a de novo CNV on quantitative traits representing the following 3 neurodevelopmental domains: cognitive ability (Full-Scale IQ), social behavior (Social Responsiveness Scale), and neuromotor performance (Purdue Pegboard Test). We included an anthropometric trait, body mass index, for comparison. A significant deleterious effect of the 16p11.2 deletion was demonstrated across all domains. Relative to the biparental mean, the effect sizes were -1.7 SD for cognitive ability, 2.2 SD for social behavior, and -1.3 SD for neuromotor performance (P < .001). Despite large deleterious effects, significant positive correlations between parents and probands were preserved for the Full-Scale IQ (0.42 [P = .03]), the verbal IQ (0.53 [P = .004]), and the Social Responsiveness Scale (0.52 [P = .009]) scores. We also observed a 1-SD increase in the body mass index of probands compared with siblings, with an intraclass correlation of 0.40 (P = .07). Analysis of families with de novo CNVs provides the least confounded estimate of the effect size of the 16p11.2 deletion on heritable, quantitative traits and demonstrates a 1- to 2-SD effect across all neurodevelopmental dimensions. Significant parent-proband correlations indicate that family background contributes to the phenotypic variability seen in this and perhaps other CNV disorders and may have implications for counseling families regarding their children's developmental and psychiatric prognoses. Use of biparental mean scores rather than general population mean scores may be more relevant to examine the effect of a mutation or any other cause of trait variation on a neurodevelopmental outcome and possibly on systems of diagnosis and trait ascertainment for developmental disorders.

  9. Melatonin Scavenger Properties against Oxidative and Nitrosative Stress: Impact on Gamete Handling and In Vitro Embryo Production in Humans and Other Mammals

    PubMed Central

    Loren, Pía; Sánchez, Raúl; Arias, María-Elena; Felmer, Ricardo; Risopatrón, Jennie; Cheuquemán, Carolina

    2017-01-01

    Oxidative and nitrosative stress are common problems when handling gametes in vitro. In vitro development in mammalian embryos is highly affected by culture conditions, especially by reactive oxygen species (ROS) and reactive nitrogen species (RNS), because their absence or overproduction causes embryo arrest and changes in gene expression. Melatonin in gamete co-incubation during in vitro fertilization (IVF) has deleterious or positive effects, depending on the concentration used in the culture medium, demonstrating the delicate balance between antioxidant and pro-oxidant activity. Further research is needed to better understand the possible impact of melatonin on the different IVP steps in humans and other mammals, especially in seasonal breeds where this neuro-hormone system highly regulates its reproduction physiology. PMID:28613231

  10. Climate and environmental triggers of acute myocardial infarction.

    PubMed

    Claeys, Marc J; Rajagopalan, Sanjay; Nawrot, Tim S; Brook, Robert D

    2017-04-01

    Over the past few decades, a growing body of epidemiological and clinical evidence has led to heightened concerns about the potential short- and long-term deleterious effects of the environment on cardiovascular health, including the risk for acute myocardial infarction (AMI). This review highlights the increased risk of AMI caused by exposure to air pollution and cold temperatures. These factors should be considered modifiable risk factors in the prevention of cardiovascular disease. The current body of knowledge about the biological mechanisms linking environmental changes to atherothrombotic events and the impact of climate change on cardiovascular health are discussed. Finally, recommendations for prevention and public policy are presented. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  11. Penna model from the perspective of one geneticist

    NASA Astrophysics Data System (ADS)

    Cebrat, Stanis l̶aw

    1998-09-01

    Penna model of ageing predicts many phenomena in population dynamics. Since the model assumes that all genes in genomes are switched on chronologically and that there are no structural differences between male and female genomes, it cannot explain genetic death before birth and differences in mortality rates of men and women. I suggest adding the set of housekeeping genes, which are switched on during the embryo development, to the “death genes” of Penna model. Taking into account the large fraction of genes located on X chromosome whose deleterious mutations exert dominant effect on the male phenotype and recessive on the female phenotype would make it possible to avoid introducing somatic mutations as a cause of higher mortality of men. The modelling of linkage disequilibrium and its implications on eugenics have also been suggested.

  12. The Electric Storm of November 1882

    NASA Astrophysics Data System (ADS)

    Love, Jeffrey J.

    2018-01-01

    In November 1882, an intense magnetic storm related to a large sunspot group caused widespread interference to telegraph and telephone systems and provided spectacular and unusual auroral displays. The (ring current) storm time disturbance index for this storm reached maximum -Dst ≈ 386 nT, comparable to Halloween storm of 29-31 October 2003, but from 17 to 20 November the aa midlatitude geomagnetic disturbance index averaged 214.25 nT, the highest 4 day level of disturbance since the beginning of aa index in 1868. This storm contributed to scientists' understanding of the reality of solar-terrestrial interaction. Past occurrences of magnetic storms, like that of November 1882, can inform modern evaluations of the deleterious effects that a magnetic superstorm might have on technological systems of importance to society.

  13. Air toxics and epigenetic effects: ozone altered microRNAs in the sputum of human subjects

    EPA Science Inventory

    Ozone (03) is a criteria air pollutant that is associated with numerous adverse health effects, including altered respiratory immune responses. Despite its deleterious health effects, possible epigenetic mechanisms underlying 03-induced health effects remain understudied. MicroRN...

  14. Male mutation rates and the cost of sex for females

    NASA Astrophysics Data System (ADS)

    Redfield, Rosemary J.

    1994-05-01

    ALTHOUGH we do not know why sex evolved, the twofold cost of meiosis for females provides a standard against which postulated benefits of sex can be evaluated1. The most reliable benefit is sex's ability to reduce the impact of deleterious mutations2,3. But deleterious mutations may themselves generate a large and previously overlooked female-specific cost of sex. DNA sequence comparisons have confirmed Haldane's suggestion that most mutations arise in the male germ line4,5; recent estimates of α, the ratio of male to female mutation rates, are ten, six and two in humans, primates and rodents, respectively6-8. Consequently, male gametes may give progeny more mutations than the associated sexual recombination eliminates. Here I describe computer simulations showing that the cost of male mutations can easily exceed the benefits of recombination, causing females to produce fitter progeny by parthenogenesis than by mating. The persistence of sexual reproduction by females thus becomes even more problematic.

  15. Spatial filter system as an optical relay line

    DOEpatents

    Hunt, John T.; Renard, Paul A.

    1979-01-01

    A system consisting of a set of spatial filters that are used to optically relay a laser beam from one position to a downstream position with minimal nonlinear phase distortion and beam intensity variation. The use of the device will result in a reduction of deleterious beam self-focusing and produce a significant increase in neutron yield from the implosion of targets caused by their irradiation with multi-beam glass laser systems.

  16. Radiographic followup of joints injected with triamcinolone hexacetonide for the management of childhood arthritis.

    PubMed

    Sparling, M; Malleson, P; Wood, B; Petty, R

    1990-06-01

    Evidence of deleterious effects following intraarticular injection of triamcinolone hexacetonide was sought through a review of radiographs of 145 joints of 55 children with chronic arthritis. Possible deleterious effects were noted in 16 joints of 11 patients. These effects included: small patella (2 joints), patellar osteochondritis dissecans (1 joint), periarticular calcification (9 joints), intraarticular tibial bony spur (1 joint), avascular necrosis of the distal radial epiphysis (2 joints), and avascular necrosis of the proximal femoral epiphysis (1 joint). Only the latter possible complication was symptomatic. Serial radiographs of 76 joints of 30 children showed mild progressive changes compatible with the underlying disease, except in the hip joint, where changes were more severe. The intraarticular injection of triamcinolone hexacetonide is a procedure that appears to be associated with an acceptably low frequency of radiologic abnormalities for many joints in children with chronic arthritis, but its effects on the hip joint remain uncertain.

  17. Structural study of the effects of mutations in proteins to identify the molecular basis of the loss of local structural fluidity leading to the onset of autoimmune diseases.

    PubMed

    Ali, Ananya; Ghosh, Semanti; Bagchi, Angshuman

    2017-02-26

    Protein-Protein Interactions (PPIs) are crucial in most of the biological processes and PPI dysfunctions are known to be associated with the onsets of various diseases. One of such diseases is the auto-immune disease. Auto-immune diseases are one among the less studied group of diseases with very high mortality rates. Thus, we tried to correlate the appearances of mutations with their probable biochemical basis of the molecular mechanisms leading to the onset of the disease phenotypes. We compared the effects of the Single Amino Acid Variants (SAVs) in the wild type and mutated proteins to identify any structural deformities that might lead to altered PPIs leading ultimately to disease onset. For this we used Relative Solvent Accessibility (RSA) as a spatial parameter to compare the structural perturbation in mutated and wild type proteins. We observed that the mutations were capable to increase intra-chain PPIs whereas inter-chain PPIs would remain mostly unaltered. This might lead to more intra-molecular friction causing a deleterious alteration of protein's normal function. A Lyapunov exponent analysis, using the altered RSA values due to polymorphic and disease causing mutations, revealed polymorphic mutations have a positive mean value for the Lyapunov exponent while disease causing mutations have a negative mean value. Thus, local spatial stochasticity has been lost due to disease causing mutations, indicating a loss of structural fluidity. The amino acid conversion plot also showed a clear tendency of altered surface patch residue conversion propensity than polymorphic conversions. So far, this is the first report that compares the effects of different kinds of mutations (disease and non-disease causing polymorphic mutations) in the onset of autoimmune diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Harmful effects of shisha: literature review

    PubMed Central

    2014-01-01

    Tobacco is a preventable cause of morbidity and mortality across the world. A recently infamous way of smoking tobacco is shisha. Shisha smoking is also known as water pipe, hookah and Narghile smoking. The percentage of shisha smokers is on the rise rapidly spanning the globe. A literature review was conducted to identify all evidence on the epidemiological variations and health effects of shisha smoking. “Pub med” is used as a searching tool to identify all relevant empirical studies conducted worldwide. A qualitative overview of evidence is presented. Exposure to Shisha smoking is significantly associated with low infant weight, heart rate variations, hyperglycemia and hypertriglyceridemia. Increased risk of carcinoma is also leagued with it including carcinomas of the pancreas and lung being at the forefront. In conclusion, this review identifies grounds of several adverse conditions being associated with the habit of shisha smoking. It also evaluates the relevant epidemiological variations around the globe. The review culminates in the importance of enlightening shisha smokers regarding its deleterious effects. PMID:24708750

  19. [Antioxidant and anti-inflammatory modulation of exercise during aging].

    PubMed

    Galle, Fernando Alexis; Martella, Diana; Bresciani, Guilherme

    2018-06-10

    Aging is characterised by a gradual loss of the functional reserve. This, along with the fostering of sedentary habits and the increase in risk factors, causes a deterioration of antioxidant defences and an increase of the circulatory levels of inflammatory and oxidative markers, boosting a low-rate chronic inflammation, defined as inflamm-aging. This phenomenon is present in the aetiopathology of chronic diseases, as well as in cognitive deterioration cases associated with aging. The objective of this review is to describe the modulation of antioxidant and anti-inflammatory effects of physical exercise of moderate intensity and volume in the elderly. Evidence of its effectiveness as a non-pharmacological resource is presented, which decreases some deleterious effects of aging. This is mainly due to its neuroprotective action, the increase in circulating anti-inflammatory markers, and the improvement of antioxidant defence derived from its practice. Copyright © 2018 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. The Role of Oxygen Sensors, Hydroxylases, and HIF in Cardiac Function and Disease.

    PubMed

    Townley-Tilson, W H Davin; Pi, Xinchun; Xie, Liang

    2015-01-01

    Ischemic heart disease is the leading cause of death worldwide. Oxygen-sensing proteins are critical components of the physiological response to hypoxia and reperfusion injury, but the role of oxygen and oxygen-mediated effects is complex in that they can be cardioprotective or deleterious to the cardiac tissue. Over 200 oxygen-sensing proteins mediate the effects of oxygen tension and use oxygen as a substrate for posttranslational modification of other proteins. Hydroxylases are an essential component of these oxygen-sensing proteins. While a major role of hydroxylases is regulating the transcription factor HIF, we investigate the increasing scope of hydroxylase substrates. This review discusses the importance of oxygen-mediated effects in the heart as well as how the field of oxygen-sensing proteins is expanding, providing a more complete picture into how these enzymes play a multifaceted role in cardiac function and disease. We also review how oxygen-sensing proteins and hydroxylase function could prove to be invaluable in drug design and therapeutic targets for heart disease.

  1. Ecological effects of nitrogen deposition in the western United States

    USGS Publications Warehouse

    Fenn, M.E.; Baron, Jill S.; Allen, E.B.; Rueth, H.M.; Nydick, K.R.; Geiser, L.; Bowman, W.D.; Sickman, J.O.; Meixner, T.; Johnson, D.W.; Neitlich, P.

    2003-01-01

    In the western United States vast acreages of land are exposed to low levels of atmospheric nitrogen (N) deposition, with interspersed hotspots of elevated N deposition downwind of large, expanding metropolitan centers or large agricultural operations. Biological response studies in western North America demonstrate that some aquatic and terrestrial plant and microbial communities are significantly altered by N deposition. Greater plant productivity is counterbalanced by biotic community changes and deleterious effects on sensitive organisms (lichens and phytoplankton) that respond to low inputs of N (3 to 8 kilograms N per hectare per year). Streamwater nitrate concentrations are elevated in high-elevation catchments in Colorado and are unusually high in southern California and in some chaparral catchments in the southwestern Sierra Nevada. Chronic N deposition in the West is implicated in increased fire frequency in some areas and habitat alteration for threatened species. Between hotspots, N deposition is too low to cause noticeable effects or has not been studied.

  2. Protective effects of friedelin isolated from Azima tetracantha Lam. against ethanol-induced gastric ulcer in rats and possible underlying mechanisms.

    PubMed

    Antonisamy, Paulrayer; Duraipandiyan, Veeramuthu; Aravinthan, Adithan; Al-Dhabi, Naif Abdullah; Ignacimuthu, Savarimuthu; Choi, Ki Choon; Kim, Jong-Hoon

    2015-03-05

    The current study was aimed to investigate the gastroprotective effects of friedelin isolated from the hexane extract of leaves of Azima tetracantha. Ethanol-induced gastric ulcer model was used to investigate the gastroprotective effects of friedelin. Antioxidant enzymes, lipid peroxidation, nitric oxide, gastric vascular permeability, pro and anti-inflammatory cytokines and apoptosis level have been investigated. Ethanol caused severe gastric damage and friedelin pretreatment protected against its deleterious role. Antioxidant enzyme activities, anti-inflammatory cytokines, prostaglandin E2 (PGE2), constitutive nitric oxide synthase (cNOS) and mucus weight have been increased significantly. However, the vascular permeability, pro-inflammatory cytokines, inducible nitric oxide synthase (iNOS), caspase-3 and apoptosis level have significantly been decreased after friedelin ingestion. The present study has clearly demonstrated the anti-ulcer potential of friedelin, these findings suggested that friedelin could be a new useful natural gastroprotective tool against gastric ulcer. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. How voluntary prenatal diagnosis and selective abortion increase the abnormal human gene pool.

    PubMed

    Boss, J A

    1990-06-01

    It is often assumed that prenatal diagnosis followed by the selective abortion of "defective" fetuses has a positive eugenic effect. Although mandatory selective abortion of "defective" fetuses and, more important, carriers would tend to reduce the number of deleterious genes in the gene pool, the present program of voluntary prenatal diagnosis and selective abortion actually increases the number of deleterious genes. This raises the issue of freedom of choice regarding selective abortion and societal pressure on parents to undergo prenatal testing and to abort their fetus should it have a genetic disorder or be a carrier of one.

  4. VIRAL PESTICIDES: PRESENT KNOWLEDGE AND POTENTIAL EFFECTS ON PUBLIC AND ENVIRONMENTAL HEALTH (SYMPOSIUM PROCEEDINGS)

    EPA Science Inventory

    Baculoviruses appear to be effective alternatives to chemical pest control. To date deleterious effects on other components of the ecosystem have not been demonstrated. However, safety testing recommended for registration utilize protocols developed for chemical pesticides. Safet...

  5. Protocol for an experimental investigation of the roles of oxytocin and social support in neuroendocrine, cardiovascular, and subjective responses to stress across age and gender

    PubMed Central

    2009-01-01

    Background Substantial empirical evidence has demonstrated that individuals who are socially isolated or have few positive social connections seem to age at a faster rate and have more chronic diseases. Oxytocin is a neurohypophyseal hormone hypothesized to coordinate both the causes and effects of positive social interactions, and may be involved in positive physiological adaptations such as buffering the deleterious effects of stress and promoting resilience. The proposed research will examine whether and how oxytocin influences responses to stress in humans and will consider effects in relation to those of social support. Methods/Design Experimental research will be used to determine whether exogenously administered oxytocin (intranasal) influences psychological and physiological outcomes under conditions of stress across gender and age in adulthood. Hypotheses to be tested are: 1) Oxytocin ameliorates the deleterious neuroendocrine, cardiovascular, and subjective effects of stress; 2) Oxytocin and social support have similar and additive stress-buffering effects; 3) Oxytocin effects are stronger in women versus men; and 4) Oxytocin effects are similar across a range of adult ages. Hypotheses will be tested with a placebo-controlled, double-blind study using a sample of healthy men and women recruited from the community. Participants are randomly assigned to receive either oxytocin or placebo. They undergo a social stress manipulation with and without social support (randomly assigned), and outcome measures are obtained at multiple times during the procedure. Discussion Understanding the determinants of healthy aging is a major public health priority and identifying effective measures to prevent or delay the onset of chronic diseases is an important goal. Experimental research on oxytocin, social relationships, and health in adulthood will contribute to the scientific knowledge base for maximizing active life and health expectancy. At conclusion of the study we will have solid evidence concerning the effects of oxytocin on stress response and whether it has similar effects across age and gender groups. A neurobiological understanding of resilience can inform efforts for both prevention and intervention of diseases or problems common in later life. Trial registration Clinical trial identification number is NCT01011465. PMID:20025778

  6. B-type natriuretic peptide testing for detection of heart failure.

    PubMed

    Saul, Lauren; Shatzer, Melanie

    2003-01-01

    The incidence of heart failure (HF) is on the increase with the aging population. Heart failure can manifest as either systolic or diastolic dysfunction. Systolic dysfunction causes impaired ventricular contractility with an ejection fraction of less than 45%. In contrast, diastolic dysfunction is evidenced by impaired ventricular relaxation and an ejection fraction greater than 45%. The diagnosis of HF is challenging with patients who present with acute dyspnea and a history of chronic obstructive pulmonary disease or pneumonia. The pathophysiology of HF and the resulting compensatory mechanisms involve a complex neuroendocrine response that includes a release of natriuretic peptides including B-type natriuretic peptides (BNPs). Elevation of BNP is in response to ventricular wall stress and volume overload from HF. BNP promotes natriuresis, diuresis, and vasodilitation and therefore counteracts some of the deleterious effects of the neuroendocrine response in HF Recently, a new laboratory test for BNP has been developed to assist in rapid identification of patients with HF. Research studies have shown that BNP testing assists in differentiating between cardiac and pulmonary causes of acute dyspnea and could be used to evaluate effectiveness of therapy and as a predictor for length of stay and readmission.

  7. Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures

    PubMed Central

    Skene, Debra J.; Arendt, Josephine; Cade, Janet E.; Grant, Peter J.; Hardie, Laura J.

    2016-01-01

    Circadian (∼24-hour) timing systems pervade all kingdoms of life and temporally optimize behavior and physiology in humans. Relatively recent changes to our environments, such as the introduction of artificial lighting, can disorganize the circadian system, from the level of the molecular clocks that regulate the timing of cellular activities to the level of synchronization between our daily cycles of behavior and the solar day. Sleep/wake cycles are intertwined with the circadian system, and global trends indicate that these, too, are increasingly subject to disruption. A large proportion of the world's population is at increased risk of environmentally driven circadian rhythm and sleep disruption, and a minority of individuals are also genetically predisposed to circadian misalignment and sleep disorders. The consequences of disruption to the circadian system and sleep are profound and include myriad metabolic ramifications, some of which may be compounded by adverse effects on dietary choices. If not addressed, the deleterious effects of such disruption will continue to cause widespread health problems; therefore, implementation of the numerous behavioral and pharmaceutical interventions that can help restore circadian system alignment and enhance sleep will be important. PMID:27763782

  8. SPINK2 deficiency causes infertility by inducing sperm defects in heterozygotes and azoospermia in homozygotes.

    PubMed

    Kherraf, Zine-Eddine; Christou-Kent, Marie; Karaouzene, Thomas; Amiri-Yekta, Amir; Martinez, Guillaume; Vargas, Alexandra S; Lambert, Emeline; Borel, Christelle; Dorphin, Béatrice; Aknin-Seifer, Isabelle; Mitchell, Michael J; Metzler-Guillemain, Catherine; Escoffier, Jessica; Nef, Serge; Grepillat, Mariane; Thierry-Mieg, Nicolas; Satre, Véronique; Bailly, Marc; Boitrelle, Florence; Pernet-Gallay, Karin; Hennebicq, Sylviane; Fauré, Julien; Bottari, Serge P; Coutton, Charles; Ray, Pierre F; Arnoult, Christophe

    2017-08-01

    Azoospermia, characterized by the absence of spermatozoa in the ejaculate, is a common cause of male infertility with a poorly characterized etiology. Exome sequencing analysis of two azoospermic brothers allowed the identification of a homozygous splice mutation in SPINK2, encoding a serine protease inhibitor believed to target acrosin, the main sperm acrosomal protease. In accord with these findings, we observed that homozygous Spink2 KO male mice had azoospermia. Moreover, despite normal fertility, heterozygous male mice had a high rate of morphologically abnormal spermatozoa and a reduced sperm motility. Further analysis demonstrated that in the absence of Spink2, protease-induced stress initiates Golgi fragmentation and prevents acrosome biogenesis leading to spermatid differentiation arrest. We also observed a deleterious effect of acrosin overexpression in HEK cells, effect that was alleviated by SPINK2 coexpression confirming its role as acrosin inhibitor. These results demonstrate that SPINK2 is necessary to neutralize proteases during their cellular transit toward the acrosome and that its deficiency induces a pathological continuum ranging from oligoasthenoteratozoospermia in heterozygotes to azoospermia in homozygotes. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  9. Partial uniparental isodisomy of chromosome 16 unmasks a deleterious biallelic mutation in IFT140 that causes Mainzer-Saldino syndrome.

    PubMed

    Helm, Benjamin M; Willer, Jason R; Sadeghpour, Azita; Golzio, Christelle; Crouch, Eric; Vergano, Samantha Schrier; Katsanis, Nicholas; Davis, Erica E

    2017-07-19

    The ciliopathies represent an umbrella group of >50 clinical entities that share both clinical features and molecular etiology underscored by structural and functional defects of the primary cilium. Despite the advances in gene discovery, this group of entities continues to pose a diagnostic challenge, in part due to significant genetic and phenotypic heterogeneity and variability. We consulted a pediatric case from asymptomatic, non-consanguineous parents who presented as a suspected ciliopathy due to a constellation of retinal, renal, and skeletal findings. Although clinical panel sequencing of genes implicated in nephrotic syndromes yielded no likely causal mutation, an oligo-SNP microarray identified a ~20-Mb region of homozygosity, with no altered gene dosage, on chromosome 16p13. Intersection of the proband's phenotypes with known disease genes within the homozygous region yielded a single candidate, IFT140, encoding a retrograde intraflagellar transport protein implicated previously in several ciliopathies, including the phenotypically overlapping Mainzer-Saldino syndrome (MZSDS). Sanger sequencing yielded a maternally inherited homozygous c.634G>A; p.Gly212Arg mutation altering the exon 6 splice donor site. Functional studies in cells from the proband showed that the locus produced two transcripts: a majority message containing a mis-splicing event that caused a premature termination codon and a minority message homozygous for the p.Gly212Arg allele. Zebrafish in vivo complementation studies of the latter transcript demonstrated a loss of function effect. Finally, we conducted post-hoc trio-based whole exome sequencing studies to (a) test the possibility of other causal loci in the proband and (b) explain the Mendelian error of segregation for the IFT140 mutation. We show that the proband harbors a chromosome 16 maternal heterodisomy, with segmental isodisomy at 16p13, likely due to a meiosis I error in the maternal gamete. Using clinical phenotyping combined with research-based genetic and functional studies, we have characterized a recurrent IFT140 mutation in the proband; together, these data are consistent with MZSDS. Additionally, we report a rare instance of a uniparental isodisomy unmasking a deleterious mutation to cause a ciliary disorder.

  10. RNA Recombination Enhances Adaptability and Is Required for Virus Spread and Virulence.

    PubMed

    Xiao, Yinghong; Rouzine, Igor M; Bianco, Simone; Acevedo, Ashley; Goldstein, Elizabeth Faul; Farkov, Mikhail; Brodsky, Leonid; Andino, Raul

    2016-04-13

    Mutation and recombination are central processes driving microbial evolution. A high mutation rate fuels adaptation but also generates deleterious mutations. Recombination between two different genomes may resolve this paradox, alleviating effects of clonal interference and purging deleterious mutations. Here we demonstrate that recombination significantly accelerates adaptation and evolution during acute virus infection. We identified a poliovirus recombination determinant within the virus polymerase, mutation of which reduces recombination rates without altering replication fidelity. By generating a panel of variants with distinct mutation rates and recombination ability, we demonstrate that recombination is essential to enrich the population in beneficial mutations and purge it from deleterious mutations. The concerted activities of mutation and recombination are key to virus spread and virulence in infected animals. These findings inform a mathematical model to demonstrate that poliovirus adapts most rapidly at an optimal mutation rate determined by the trade-off between selection and accumulation of detrimental mutations. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. A novel regulatory system in plants involving medium-chain fatty acids.

    PubMed

    Hunzicker, Gretel Mara

    2009-12-01

    Polyethylene glycol sorbitan monoacylates (Tween) are detergents of widespread use in plant sciences. However, little is known about the plant response to these compounds. Interestingly, the structure of Tweens' detergents (especially from Tween 20) resembles the lipid A structure from gram-negative bacteria polysaccharides (a backbone with short saturated fatty acids). Thus, different assays (microarray, GC-MS, RT-PCR, Northern blots, alkalinization and mutant analyses) were conducted in order to elucidate physiological changes in the plant response to Tween 20 detergent. Tween 20 causes a rapid and complex change in transcript abundance which bears all characteristics of a pathogenesis-associated molecular pattern (PAMP)/elicitor-induced defense response, and they do so at concentrations which cause no detectable deleterious effects on plant cellular integrity. In the present work, it is shown that the PAMP/elicitor-induced defense responses are caused by medium-chain fatty acids which are efficiently released from the Tween backbone by the plant, notably lauric acid (12:0) and methyl lauric acid. These compounds induce the production of ethylene, medium alkalinization and gene activation in a jasmonate-independent manner. Medium-chain fatty acids are thus novel elicitors/regulators of plant pathogen defense as they have being proved in animals.

  12. Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation

    USDA-ARS?s Scientific Manuscript database

    Cassava (Manihot esculenta Crantz) is an important staple food crop in Africa and South America whose fitness may be severely reduced by ubiquitous deleterious variation. To evaluate these deleterious mutations in cassava genome, we constructed a cassava haplotype map by deep sequencing of 241 diver...

  13. Comparative study of the effect of BPA and its selected analogues on hemoglobin oxidation, morphological alterations and hemolytic changes in human erythrocytes.

    PubMed

    Maćczak, Aneta; Bukowska, Bożena; Michałowicz, Jaromir

    2015-01-01

    Bisphenol A (BPA) has been shown to provoke many deleterious impacts on human health, and thus it is now successively substituted by BPA analogues, whose effects have been poorly investigated. Up to now, only one study has been realized to assess the effect of BPA on human erythrocytes, which showed its significant hemolytic and oxidative potential. Moreover, no study has been conducted to evaluate the effect of BPA analogues on red blood cells. The purpose of the present study was to compare the impact of BPA and its selected analogues such as bisphenol F (BPF), bisphenol S (BPS) and bisphenol AF (BPAF) on hemolytic and morphological changes and hemoglobin oxidation (methemoglobin formation) of human erythrocytes. The erythrocytes were incubated with different bisphenols concentrations ranging from 0.5 to 500μg/ml for 1, 4 and 24h. The compounds examined caused hemolysis in human erythrocytes with BPAF exhibiting the strongest effect. All bisphenols examined caused methemoglobin formation with BPA inducing the strongest oxidative potential. Flow cytometry analysis showed that all bisphenols (excluding BPS) induced significant changes in erythrocytes size. Changes in red blood cells shape were conducted using phase contrast microscopy. It was noticed that BPA and BPAF induced echinocytosis, BPF caused stomatocytosis, while BPS did not provoke significant changes in shape of red blood cells. Generally, the results showed that BPS, which is the main substituent of bisphenol A in polymers and thermal paper production, exhibited significantly lower disturbance of erythrocyte functions than BPA. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Effects of obesity on lung volume and capacity in children and adolescents: a systematic review.

    PubMed

    Winck, Aline Dill; Heinzmann-Filho, João Paulo; Soares, Rafaela Borges; da Silva, Juliana Severo; Woszezenki, Cristhiele Taís; Zanatta, Letiane Bueno

    2016-12-01

    To assess the effects of obesity on lung volume and capacity in children and adolescents. This is a systematic review, carried out in Pubmed, Lilacs, Scielo and PEDro databases, using the following Keywords: Plethysmography; Whole Body OR Lung Volume Measurements OR Total Lung Capacity OR Functional Residual Capacity OR Residual Volume AND Obesity. Observational studies or clinical trials that assessed the effects of obesity on lung volume and capacity in children and adolescents (0-18 years) without any other associated disease; in English; Portuguese and Spanish languages were selected. Methodological quality was assessed by the Agency for Healthcare Research and Quality. Of the 1,030 articles, only four were included in the review. The studies amounted to 548 participants, predominantly males, with sample size ranging from 45 to 327 individuals. 100% of the studies evaluated nutritional status through BMI (z-score) and 50.0% reported the data on abdominal circumference. All demonstrated that obesity causes negative effects on lung volume and capacity, causing a reduction mainly in functional residual capacity in 75.0% of the studies; in the expiratory reserve volume in 50.0% and in the residual volume in 25.0%. The methodological quality ranged from moderate to high, with 75.0% of the studies classified as having high methodological quality. Obesity causes deleterious effects on lung volume and capacity in children and adolescents, mainly by reducing functional residual capacity, expiratory reserve volume and residual volume. Copyright © 2016 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  15. Bile-acid-induced cell injury and protection

    PubMed Central

    Perez, Maria J; Briz, Oscar

    2009-01-01

    Several studies have characterized the cellular and molecular mechanisms of hepatocyte injury caused by the retention of hydrophobic bile acids (BAs) in cholestatic diseases. BAs may disrupt cell membranes through their detergent action on lipid components and can promote the generation of reactive oxygen species that, in turn, oxidatively modify lipids, proteins, and nucleic acids, and eventually cause hepatocyte necrosis and apoptosis. Several pathways are involved in triggering hepatocyte apoptosis. Toxic BAs can activate hepatocyte death receptors directly and induce oxidative damage, thereby causing mitochondrial dysfunction, and induce endoplasmic reticulum stress. When these compounds are taken up and accumulate inside biliary cells, they can also cause apoptosis. Regarding extrahepatic tissues, the accumulation of BAs in the systemic circulation may contribute to endothelial injury in the kidney and lungs. In gastrointestinal cells, BAs may behave as cancer promoters through an indirect mechanism involving oxidative stress and DNA damage, as well as acting as selection agents for apoptosis-resistant cells. The accumulation of BAs may have also deleterious effects on placental and fetal cells. However, other BAs, such as ursodeoxycholic acid, have been shown to modulate BA-induced injury in hepatocytes. The major beneficial effects of treatment with ursodeoxycholic acid are protection against cytotoxicity due to more toxic BAs; the stimulation of hepatobiliary secretion; antioxidant activity, due in part to an enhancement in glutathione levels; and the inhibition of liver cell apoptosis. Other natural BAs or their derivatives, such as cholyl-N-methylglycine or cholylsarcosine, have also aroused pharmacological interest owing to their protective properties. PMID:19360911

  16. Heterozygosity-fitness correlations among wild populations of European tree frog (Hyla arborea) detect fixation load.

    PubMed

    Luquet, E; David, P; Lena, J-P; Joly, P; Konecny, L; Dufresnes, C; Perrin, N; Plenet, S

    2011-05-01

    Quantifying the impacts of inbreeding and genetic drift on fitness traits in fragmented populations is becoming a major goal in conservation biology. Such impacts occur at different levels and involve different sets of loci. Genetic drift randomly fixes slightly deleterious alleles leading to different fixation load among populations. By contrast, inbreeding depression arises from highly deleterious alleles in segregation within a population and creates variation among individuals. A popular approach is to measure correlations between molecular variation and phenotypic performances. This approach has been mainly used at the individual level to detect inbreeding depression within populations and sometimes at the population level but without consideration about the genetic processes measured. For the first time, we used in this study a molecular approach considering both the interpopulation and intrapopulation level to discriminate the relative importance of inbreeding depression vs. fixation load in isolated and non-fragmented populations of European tree frog (Hyla arborea), complemented with interpopulational crosses. We demonstrated that the positive correlations observed between genetic heterozygosity and larval performances on merged data were mainly caused by co-variations in genetic diversity and fixation load among populations rather than by inbreeding depression and segregating deleterious alleles within populations. Such a method is highly relevant in a conservation perspective because, depending on how populations lose fitness (inbreeding vs. fixation load), specific management actions may be designed to improve the persistence of populations. © 2011 Blackwell Publishing Ltd.

  17. In vitro production of two chitinolytic proteins with an inhibiting effect on the insect coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae) and the fungus Hemileia vastatrix the most limiting pests of coffee crops

    PubMed Central

    2012-01-01

    Two genes from Streptomyces albidoflavus, one exochitinase (905-bp) and an endochitinase (1100-bp) were functionally expressed in Escherichia coli in form of a fusion protein with a maltose binding protein (MBP). The goal was to produce and test proteins that inhibit both the coffee berry borer insect Hypothenemus hampei and the coffee rust fungus Hemileia vastatrix. Both recombinant proteins MBP/exochitinase and MBP/endochitinase showed chitinolytic activity. When recombinant purified proteins were added to an artificial coffee-based diet for the coffee berry borer, MBP/exochitinase at a concentration of 0.5% W/W caused delayed growth of larvae and 100% mortality between days 8 and 15, while MBP/endochitinase caused 100% mortality at day 35. H. vastatrix urediniospores presented total cell wall degradation in their germinative tubes within 18 h of exposure to the proteins at enzyme concentrations of 5 and 6 mg ml-1, with exochitinase having the greatest effect. The dual deleterious effect of S. albidoflavus chitinases on two of the most limiting coffee pests worldwide, the coffee borer and the coffee rust, make them potential elements to be incorporated in integrated control strategies. PMID:22464210

  18. Withaferin A modulates the Spindle assembly checkpoint by degradation of Mad2-Cdc20 complex in colorectal cancer cell lines.

    PubMed

    Das, Tania; Roy, Kumar Singha; Chakrabarti, Tulika; Mukhopadhyay, Sibabrata; Roychoudhury, Susanta

    2014-09-01

    Withania somnifera L. Dunal (Ashwagandha) is used over centuries in the ayurvedic medicines in India. Withaferin A, a withanolide, is the major compound present in leaf extract of the plant which shows anticancer activity against leukemia, breast cancer and colorectal cancer. It arrests the ovarian cancer cells in the G2/M phase in dose dependent manner. In the current study we show the effect of Withaferin A on cell cycle regulation of colorectal cancer cell lines HCT116 and SW480 and its effect on cell fate. Treatment of these cells with this compound leads to apoptosis in a dose dependent manner. It causes the G2/M arrest in both the cell lines. We show that Withaferin A (WA) causes mitotic delay by blocking Spindle assembly checkpoint (SAC) function. Apoptosis induced by Withaferin A is associated with proteasomal degradation of Mad2 and Cdc20, an important constituent of the Spindle Checkpoint Complex. Further overexpression of Mad2 partially rescues the deleterious effect of WA by restoring proper anaphase initiation and keeping more number of cells viable. We hypothesize that Withaferin A kills cancer cells by delaying the mitotic exit followed by inducing chromosome instability. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Role of oxidative stress in diabetic retinopathy and the beneficial effects of flavonoids.

    PubMed

    Ola, Mohammad Shamsul; Al-Dosari, Dalia; Alhomida, Abdullah S

    2018-05-15

    Diabetic retinopathy (DR) is one of the leading causes of decreased vision and blindness in developed countries. Diabetes-induced metabolic disorder is believed to increase oxidative stress in the retina. This results in deleterious changes through dysregulation of cellular physiology that damages both neuronal and vascular cells. Here in this review, we first highlight the evidence of potential metabolic sources and pathways which increase oxidative stress that contributes to retinal pathology in diabetes. As oxidative stress is a central factor in the pathophysiology of DR, antioxidants therapy would be beneficial towards preventing the retinal damage. A number of experimental studies by us and others showed that dietary flavonoids cause reduction in increased oxidative stress and other beneficial effects in diabetic retina. We then discuss the potential beneficial effects of the six major flavonoid families, such as flavonones, flavanols, flavonols, isoflavones, flavones and anthocyanins, which have been studied to improve retinal damage. Flanonoids, being known antioxidants, may ameliorate the retinal degenerative factors including apoptosis, inflammation and neurodegeneration in the diabetic retina. Therefore, intake of potential dietary flavonoids would limit oxidative stress and thereby prevent the retinal damage, and subsequently the development of DR. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Phosphodiesterase 10A inhibition attenuates sleep deprivation-induced deficits in long-term fear memory.

    PubMed

    Guo, Lengqiu; Guo, Zhuangli; Luo, Xiaoqing; Liang, Rui; Yang, Shui; Ren, Haigang; Wang, Guanghui; Zhen, Xuechu

    2016-12-02

    Sleep, particularly rapid eye movement (REM) sleep, is implicated in the consolidation of emotional memories. In the present study, we investigated the protective effects of a phosphodiesterase 10A (PDE10A) inhibitor MP-10 on deficits in long-term fear memory induced by REM sleep deprivation (REM-SD). REM-SD caused deficits in long-term fear memory, however, MP-10 administration ameliorated the deleterious effects of REM-SD on long term fear memory. Brain-derived neurotropic factor (BDNF) and phosphorylated cAMP response element-binding protein (pCREB) were altered in specific brain regions associated with learning and memory in REM-SD rats. Accordingly, REM-SD caused a significant decrease of pCREB in hippocampus and striatum and a significant decrease of BDNF in the hippocampus, striatum and amygdala, however, MP-10 reversed the effects of REM-SD in a dose-dependent manner. Our findings suggest that REM-SD disrupts the consolidation of long-term fear memory and that administration of MP-10 protects the REM-SD-induced deficits in fear memory, which may be due to the MP-10-induced expression of BDNF in the hippocampus, striatum and amygdala, and phosphorylation of CREB in the hippocampus and striatum. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Both physiology and epidemiology support zero tolerable blood lead levels.

    PubMed

    Shefa, Syeda T; Héroux, Paul

    2017-10-05

    Inorganic lead is one of the most common causes of environmental metal poisonings, and its adverse effects on multiple body systems are of great concern. The brain, along with the kidneys, are critically susceptible to lead toxicity for their hosting of high affinity lead binding proteins, and very sensitive physiology. Prolonged low-lead exposure frequently remains unrecognized, causes subtle changes in these organ systems, and manifests later at an irreversible stage. With the repeated documentation of "no safe blood lead level", the pernicious effects of lead at any measurable concentration need to be emphasized. In this review, we surveyed articles on chronic low-level lead exposures with a blood lead concentrations <10μg/dL and the development of neurobehavioral or renal disorders. The negative impacts of lead on both nervous and renal systems were obvious at a blood lead concentration of 2μg/dL, with the absence of any detectable threshold. The deleterious effect of lead on two different organ systems at such low concentrations drew our attention to the various extracellular and intracellular events that might be affected by minimal concentration of body lead, especially blood lead. Is there a true common ground between low-level lead toxicity in both the nervous system and the kidney? Copyright © 2017 Elsevier B.V. All rights reserved.

  2. On-Command Exoskeleton for Countermeasure Microgravity Effects on Muscles and Bones

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Y.; Bao, X.; Badescu, M.; Sherrit, S.; Mavroidis, C.; Unluhisarcikh, O.; Pietrusinski, M.; Rajulu, S.; Berka, R.; Cowley, M.

    2012-06-01

    On-command exoskeleton with impeding and augmenting elements would support the operation of astronauts traveling to Mars. Thus, countermeasure deleterious effects on the muscles and bones during travel and assist their physical activity on Mars.

  3. The effects of ambient particulate matter on human alveolar machrophage oxidative and inflammatory responses

    EPA Science Inventory

    Epidemiologic and occupational studies demonstrate that ambient PM and DEP have deleterious effects on human cardiopulmonary health including exacerbation of pre-existing lung disease and development of respiratory infections. The effects of ambient PM on lung cell responsivenes...

  4. RCAD/BiP pathway is necessary for the proper synthesis of digestive enzymes and secretory function of the exocrine pancreas.

    PubMed

    Miller, Camille; Cai, Yafei; Patton, Tadd; Graves, Sarai Hacker; Li, Honglin; Sabbatini, Maria Eugenia

    2017-03-01

    Alcoholism causes an imbalance of endoplasmic reticulum (ER) homeostasis in pancreatic acini. In those cells, the ER is involved in the synthesis and folding of pancreatic enzymes. Ubiquitin-fold modifier 1 (Ufm1) is part of a novel ubiquitin-like modification system involved in maintaining ER homeostasis. Among the components of the Ufm1 system, Regulator of C53 and DDRGK1 (RCAD) has recently been identified as a Ufm1-specific E3 ligase that promotes ufmylation of DDRGK1, an RCAD-interacting protein. We determined the importance of RCAD in the proper synthesis and secretion of pancreatic enzymes using mice with genetically deleted RCAD. The pancreas of RCAD-deficient mice was of normal size and histology. Using quantitative PCR and Western blotting, we found that amylase was upregulated in pancreas organs from RCAD-knockout (KO) mice. Constitutive amylase secretion was much higher in isolated pancreatic acini from RCAD KO mice, whereas CCK-stimulated amylase secretion was disturbed. RCAD deficiency caused a downregulation in expression of ER chaperone BiP, which affected ER homeostasis and activated both apoptosis and trypsin. We also found that both RCAD and DDRGK1 transcript levels were upregulated in pancreatic acini from alcohol-preferring rats. Elevated expression of RCAD and DDRGK1 was associated with increased ER stress and UPR activation. Because of the lack of BiP expression, caspase 3 and trypsin activation we enhanced in RCAD-deficient pancreatic acini upon treatment with ethanol and CCK. In conclusion, the RCAD/BiP pathway is required for proper synthesis and secretion of pancreatic enzymes. In alcoholism, increased levels of components of the Ufm1 system could prevent the deleterious effects of alcohol in the pancreas by regulating BiP levels. NEW & NOTEWORTHY RCAD/BiP pathway is required for the proper synthesis and secretion of amylase from pancreatic acini, as well as for the maintenance of the ER homeostasis. In alcoholism, the exocrine pancreas could increase the levels of components of the Ufm1 system to protect itself from alcohol's deleterious effects by regulating the expression of ER chaperone BiP. Copyright © 2017 the American Physiological Society.

  5. Good distractions: Testing the effects of listening to an audiobook on driving performance in simple and complex road environments.

    PubMed

    Nowosielski, Robert J; Trick, Lana M; Toxopeus, Ryan

    2018-02-01

    Distracted driving (driving while performing a secondary task) causes many collisions. Most research on distracted driving has focused on operating a cell-phone, but distracted driving can include eating while driving, conversing with passengers or listening to music or audiobooks. Although the research has focused on the deleterious effects of distraction, there may be situations where distraction improves driving performance. Fatigue and boredom are also associated with collision risk and it is possible that secondary tasks can help alleviate the effects of fatigue and boredom. Furthermore, it has been found that individuals with high levels of executive functioning as measured by the OSPAN (Operation Span) task show better driving while multitasking. In this study, licensed drivers were tested in a driving simulator (a car body surrounded by screens) that simulated simple or complex roads. Road complexity was manipulated by increasing traffic, scenery, and the number of curves in the drive. Participants either drove, or drove while listening to an audiobook. Driving performance was measured in terms of braking response time to hazards (HRT): the time required to brake in response to pedestrians or vehicles that suddenly emerged from the periphery into the path of the vehicle, speed, standard deviation of speed, standard deviation of lateral position (SDLP). Overall, braking times to hazards were higher on the complex drive than the simple one, though the effects of secondary tasks such as audiobooks were especially deleterious on the complex drive. In contrast, on the simple drive, driving while listening to an audiobook lead to faster HRT. We found evidence that individuals with high OSPAN scores had faster HRTs when listening to an audiobook. These results suggest that there are environmental and individual factors behind difference in the allocation of attention while listening to audiobooks while driving. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The Effect of Deep Brain Stimulation on the Speech Motor System

    ERIC Educational Resources Information Center

    Mücke, Doris; Becker, Johannes; Barbe, Michael T.; Meister, Ingo; Liebhart, Lena; Roettger, Timo B.; Dembek, Till; Timmermann, Lars; Grice, Martine

    2014-01-01

    Purpose: Chronic deep brain stimulation of the nucleus ventralis intermedius is an effective treatment for individuals with medication-resistant essential tremor. However, these individuals report that stimulation has a deleterious effect on their speech. The present study investigates one important factor leading to these effects: the…

  7. Sex speeds adaptation by altering the dynamics of molecular evolution.

    PubMed

    McDonald, Michael J; Rice, Daniel P; Desai, Michael M

    2016-03-10

    Sex and recombination are pervasive throughout nature despite their substantial costs. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation. Theory has proposed several distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect) or by separating them from deleterious load (the ruby in the rubbish effect). Previous experiments confirm that sex can increase the rate of adaptation, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here we present the first, to our knowledge, comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual Saccharomyces cerevisiae populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations.

  8. Effects of arsenic toxicity on morphological characters in blackgram (Vigna mungo L.) during early growth stage.

    PubMed

    Shamim, M Z; Pandey, A

    2017-07-31

    Blackgram is an important pulse crop of the tropic and sub-tropic area and has been identified as a potential crop in many countries. In the south-East Asia arsenic toxicity in soil and water is one of the most environmental problems. Crop productivity is highly affected by cultivation in arsenic polluted soil or irrigation through arsenic polluted water. The present study was conducted to evaluate the effect of arsenic (As) on fresh shoot length, fresh shoot weight, fresh root length, fresh shoot weight and total fresh biomass, The results indicate that root length is more affected than shoot length due to arsenic toxicity. The fresh shoot weight observed was more affected than fresh root weight. This study indicates that arsenic toxicity causes the deleterious effect on blackgram growth. The toxic effect of blackgram depends on the genotypic variability. Some blackgram genotypes show very less toxic effect of arsenic due to its genetic makeup. Experimental findings of study indicate that longer root length and more shoot weight in arsenic stress condition may be tolerant blackgram genotype to arsenic toxicity.

  9. Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death.

    PubMed

    Sellier, Chantal; Campanari, Maria-Letizia; Julie Corbier, Camille; Gaucherot, Angeline; Kolb-Cheynel, Isabelle; Oulad-Abdelghani, Mustapha; Ruffenach, Frank; Page, Adeline; Ciura, Sorana; Kabashi, Edor; Charlet-Berguerand, Nicolas

    2016-06-15

    An intronic expansion of GGGGCC repeats within the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). Ataxin-2 with intermediate length of polyglutamine expansions (Ataxin-2 Q30x) is a genetic modifier of the disease. Here, we found that C9ORF72 forms a complex with the WDR41 and SMCR8 proteins to act as a GDP/GTP exchange factor for RAB8a and RAB39b and to thereby control autophagic flux. Depletion of C9orf72 in neurons partly impairs autophagy and leads to accumulation of aggregates of TDP-43 and P62 proteins, which are histopathological hallmarks of ALS-FTD SMCR8 is phosphorylated by TBK1 and depletion of TBK1 can be rescued by phosphomimetic mutants of SMCR8 or by constitutively active RAB39b, suggesting that TBK1, SMCR8, C9ORF72, and RAB39b belong to a common pathway regulating autophagy. While depletion of C9ORF72 only has a partial deleterious effect on neuron survival, it synergizes with Ataxin-2 Q30x toxicity to induce motor neuron dysfunction and neuronal cell death. These results indicate that partial loss of function of C9ORF72 is not deleterious by itself but synergizes with Ataxin-2 toxicity, suggesting a double-hit pathological mechanism in ALS-FTD. © 2016 The Authors.

  10. Morphine amplifies mechanical allodynia via TLR4 in a rat model of spinal cord injury

    PubMed Central

    Ellis, Amanda; Grace, Peter M.; Wieseler, Julie; Favret, Jacob; Springer, Kendra; Skarda, Bryce; Hutchinson, Mark R.; Falci, Scott; Rice, Kenner C.; Maier, Steven F.; Watkins, Linda R.

    2016-01-01

    Central neuropathic pain (CNP) is a pervasive, debilitating problem that impacts thousands of people living with central nervous system disorders, including spinal cord injury (SCI). Current therapies for treating this type of pain are ineffective and often have dose-limiting side effects. Although opioids are one of the most commonly used CNP treatments, recent animal literature has indicated that administering opioids shortly after a traumatic injury can actually have deleterious effects on long-term health and recovery. In order to study the deleterious effects of administering morphine shortly after trauma, we employed our low thoracic (T13) dorsal root avulsion model (Spinal Neuropathic Avulsion Pain, SNAP). Administering a weeklong course of 10 mg/kg/day morphine beginning 24 hr after SNAP resulted in amplified mechanical allodynia. Co-administering the non-opioid toll-like receptor 4 (TLR4) antagonist (+)-naltrexone throughout the morphine regimen prevented morphine-induced amplification of SNAP. Exploration of changes induced by early post-trauma morphine revealed that this elevated gene expression of TLR4, TNF, IL-1β, and NLRP3, as well as IL-1β protein at the site of spinal cord injury. These data suggest that a short course of morphine administered early after spinal trauma can exacerbate CNP in the long term. TLR4 initiates this phenomenon and, as such, may be potential therapeutic targets for preventing the deleterious effects of administering opioids after traumatic injury. PMID:27519154

  11. Effect of 3-keto-1,5-bisphosphonates on obese-liver's rats.

    PubMed

    Lahbib, Karima; Touil, Soufiane

    2016-10-01

    Obesity is associated with an oxidative stress status, which is defined by an excess of reactive oxygen species (ROS) vs. the antioxidant defense system. We report in this present work, the link between fat deposition and oxidative stress markers using a High Fat Diet-(HFD) induced rat obesity and liver-oxidative stress. We further determined the impact of chronic administration of 3-keto-1, 5-BPs 1 (a & b) (40μg/kg/8 weeks/i.p.) on liver's level. In fact, exposure of rats to HFD during 16 weeks induced body and liver weight gain and metabolic disruption with an increase on liver Alanine amino transférase (ALAT) and Aspartate aminotransférase (ASAT) concentration. HFD increased liver calcium level as well as free iron, whereas, it provoked a decrease on liver lipase activity. HFD also induced liver-oxidative stress status vocalized by an increase in reactive oxygen species (ROS) as superoxide radical (O 2 ), hydroxyl radical (OH) and Hydrogen peroxide (H 2 O 2 ). Consequently, different deleterious damages as an increase on Malon Dialdehyde MDA, Carbonyl protein PC levels with a decrease in non-protein sulfhydryls NPSH concentrations, have been detected. Interestingly, our results demonstrate a decrease in antioxidant enzymes activities such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx) and peroxidases (POD). Importantly, 3-keto-1,5-bisphosphonates treatment corrected the majority of the deleterious effects caused by HFD, but it failed to correct some liver's disruptions as mineral profile, oxidative damages (PC and NPSH levels) as well as SOD and lipase activities. Our investigation point that 3-keto-1,5-bisphosphonates could be considered as safe antioxidant agents on the hepatic level that should also find other potential biological applications. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Comet assay: a reliable tool for the assessment of DNA damage in different models.

    PubMed

    Dhawan, Alok; Bajpayee, Mahima; Parmar, Devendra

    2009-02-01

    New chemicals are being added each year to the existing burden of toxic substances in the environment. This has led to increased pollution of ecosystems as well as deterioration of the air, water, and soil quality. Excessive agricultural and industrial activities adversely affect biodiversity, threatening the survival of species in a particular habitat as well as posing disease risks to humans. Some of the chemicals, e.g., pesticides and heavy metals, may be genotoxic to the sentinel species and/or to non-target species, causing deleterious effects in somatic or germ cells. Test systems which help in hazard prediction and risk assessment are important to assess the genotoxic potential of chemicals before their release into the environment or commercial use as well as DNA damage in flora and fauna affected by contaminated/polluted habitats. The Comet assay has been widely accepted as a simple, sensitive, and rapid tool for assessing DNA damage and repair in individual eukaryotic as well as some prokaryotic cells, and has increasingly found application in diverse fields ranging from genetic toxicology to human epidemiology. This review is an attempt to comprehensively encase the use of Comet assay in different models from bacteria to man, employing diverse cell types to assess the DNA-damaging potential of chemicals and/or environmental conditions. Sentinel species are the first to be affected by adverse changes in their environment. Determination of DNA damage using the Comet assay in these indicator organisms would thus provide information about the genotoxic potential of their habitat at an early stage. This would allow for intervention strategies to be implemented for prevention or reduction of deleterious health effects in the sentinel species as well as in humans.

  13. European ACP1*C Allele Has Recessive Deleterious Effects on Early Life Viability

    PubMed Central

    WILDER, JASON A.; HAMMER, MICHAEL F.

    2005-01-01

    The acid phosphatase locus (ACP1) is a classical polymorphism that has been surveyed in hundreds of human populations worldwide. Among individuals of European ancestry, the ACP1*C allele occurs with an average frequency of approximately 0.05, whereas it is nearly absent in all other human populations. It has been hypothesized that this allele is maintained by over dominant selection among European populations. Here, we analyze ACP1 protein polymorphism data from more than 50,000 individuals previously surveyed in 67 populations across Europe as well as inheritance data from more than 6,000 European parent–offspring pairs to assess the signature of natural selection currently acting on this allele. Although we see a significant excess of ACP1*C heterozygotes relative to Hardy–Weinberg expectations, we find no evidence that natural selection favors ACP1*C heterozygotes. Instead, ACP1*C appears to have a strongly deleterious and recessive fitness effect. We observed only 48.9% of expected homozygous offspring from heterozygous parents and significantly fewer homozygotes than expected within populations. Because parent–offspring pairs indicate a significant deficiency of ACP1*C homozygotes, we infer that viability selection is acting on ACP1*C homozygotes very early in life, perhaps before birth. We estimate that approximately 1.2% of all couples of European ancestry are composed of individuals who both carry the APC1*C allele. As such, selection against ACP1*C homozygotes may represent a nonnegligible contribution to the overall number of spontaneous abortions among women of European ancestry and may cause substantial fertility reductions among some combinations of parental genotypes. PMID:15974295

  14. Reversal of the deleterious effects of chronic dietary HFCS-55 intake by PPAR-δ agonism correlates with impaired NLRP3 inflammasome activation.

    PubMed

    Collino, Massimo; Benetti, Elisa; Rogazzo, Mara; Mastrocola, Raffaella; Yaqoob, Muhammed M; Aragno, Manuela; Thiemermann, Christoph; Fantozzi, Roberto

    2013-01-15

    Although high-fructose corn syrup (HFCS-55) is the major sweetener in foods and soft-drinks, its potential role in the pathophysiology of diabetes and obesity ("diabesity") remains unclear. Peroxisome-proliferator activated receptor (PPAR)-δ agonists have never been tested in models of sugar-induced metabolic abnormalities. This study was designed to evaluate (i) the metabolic and renal consequences of HFCS-55 administration (15% wt/vol in drinking water) for 30 weeks on male C57Bl6/J mice and (ii) the effects of the selective PPAR-δ agonist GW0742 (1 mg/kg/day for 16 weeks) in this condition. HFCS-55 caused (i) hyperlipidemia, (ii) insulin resistance, and (iii) renal injury/inflammation. In the liver, HFCS-55 enhanced the expression of fructokinase resulting in hyperuricemia and caused abnormalities in known insulin-driven signaling events. In the kidney, HFCS-55 enhanced the expression of the NLRP3 (nucleotide-binding domain and leucine-rich-repeat-protein 3) inflammasome complex, resulting in caspase-1 activation and interleukin-1β production. All of the above effects of HFCS-55 were attenuated by the specific PPAR-δ agonist GW0742. Thus, we demonstrate for the first time that the specific PPAR-δ agonist GW0742 attenuates the metabolic abnormalities and the renal dysfunction/inflammation caused by chronic HFCS-55 exposure by preventing upregulation of fructokinase (liver) and activation of the NLRP3 inflammasome (kidney). Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Dexamethasone Rescues Neurovascular Unit Integrity from Cell Damage Caused by Systemic Administration of Shiga Toxin 2 and Lipopolysaccharide in Mice Motor Cortex

    PubMed Central

    Pinto, Alipio; Jacobsen, Mariana; Geoghegan, Patricia A.; Cangelosi, Adriana; Cejudo, María Laura; Tironi-Farinati, Carla; Goldstein, Jorge

    2013-01-01

    Shiga toxin 2 (Stx2)-producing Escherichia coli (STEC) causes hemorrhagic colitis and hemolytic uremic syndrome (HUS) that can lead to fatal encephalopathies. Neurological abnormalities may occur before or after the onset of systemic pathological symptoms and motor disorders are frequently observed in affected patients and in studies with animal models. As Stx2 succeeds in crossing the blood-brain barrier (BBB) and invading the brain parenchyma, it is highly probable that the observed neurological alterations are based on the possibility that the toxin may trigger the impairment of the neurovascular unit and/or cell damage in the parenchyma. Also, lipopolysaccharide (LPS) produced and secreted by enterohemorrhagic Escherichia coli (EHEC) may aggravate the deleterious effects of Stx2 in the brain. Therefore, this study aimed to determine (i) whether Stx2 affects the neurovascular unit and parenchymal cells, (ii) whether the contribution of LPS aggravates these effects, and (iii) whether an inflammatory event underlies the pathophysiological mechanisms that lead to the observed injury. The administration of a sub-lethal dose of Stx2 was employed to study in detail the motor cortex obtained from a translational murine model of encephalopathy. In the present paper we report that Stx2 damaged microvasculature, caused astrocyte reaction and neuronal degeneration, and that this was aggravated by LPS. Dexamethasone, an anti-inflammatory, reversed the pathologic effects and proved to be an important drug in the treatment of acute encephalopathies. PMID:23894578

  16. Exploration of Structural and Functional Variations Owing to Point Mutations in α-NAGA.

    PubMed

    Meshach Paul, D; Rajasekaran, R

    2018-03-01

    Schindler disease is a lysosomal storage disorder caused due to deficiency or defective activity of alpha-N-acetylgalactosaminidase (α-NAGA). Mutations in gene encoding α-NAGA cause wide range of diseases, characterized with mild to severe clinical features. Molecular effects of these mutations are yet to be explored in detail. Therefore, this study was focused on four missense mutations of α-NAGA namely, S160C, E325K, R329Q and R329W. Native and mutant structures of α-NAGA were analysed to determine geometrical deviations such as the contours of root mean square deviation, root mean square fluctuation, percentage of residues in allowed regions of Ramachandran plot and solvent accessible surface area, using conformational sampling technique. Additionally, global energy-minimized structures of native and mutants were further analysed to compute their intra-molecular interactions, hydrogen bond dilution and distribution of secondary structure. In addition, docking studies were also performed to determine variations in binding energies between native and mutants. The deleterious effects of mutants were evident due to variations in their active site residues pertaining to spatial conformation and flexibility, comparatively. Hence, variations exhibited by mutants, namely S160C, E325K, R329Q and R329W to that of native, consequently, lead to the detrimental effects causing Schindler disease. This study computationally explains the underlying reasons for the pathogenesis of the disease, thereby aiding future researchers in drug development and disease management.

  17. Age-related macular degeneration: economic burden and value-based medicine analysis.

    PubMed

    Brown, Melissa M; Brown, Gary C; Stein, Joshua D; Roth, Zachary; Campanella, Joseph; Beauchamp, George R

    2005-06-01

    It can be estimated that 17,100 new cases of neovascular (wet) AMD and 180,000 new cases of geographic-atrophy (dry) AMD occur in Canada annually. In addition to having a devastating effect on patients' lives, the condition causes significant adverse consequences for the economy. The deleterious effect of AMD on quality of life is markedly underestimated by ophthalmologists who treat patients with AMD, by non-ophthalmic physicians and by the public. In fact, patients with different degrees of severity of AMD have a perceived impairment of their quality of life that is 96% to 750% greater than the impairment estimated by treating ophthalmologists. Mild AMD causes a 17% decrease in the quality of life of the average patient, a decrease similar to that encountered with symptomatic human immunodeficiency virus infection or moderate cardiac angina. Moderate AMD produces a 40% decrease in quality of life, a decrease similar to that associated with permanent renal dialysis or severe cardiac angina. Very severe AMD causes a 63% decrement in quality of life, a decrease similar to that encountered with advanced prostatic cancer with uncontrollable pain or a severe stroke that leaves a person bedridden, incontinent and requiring constant nursing care. The adverse economic consequences of AMD include an annual $2.6 billion negative impact on Canada's gross domestic product. The return on investment is high for both current AMD therapies and research into new treatment modalities.

  18. Quorum-sensing inhibition abrogates the deleterious impact of Pseudomonas aeruginosa on airway epithelial repair.

    PubMed

    Ruffin, Manon; Bilodeau, Claudia; Maillé, Émilie; LaFayette, Shantelle L; McKay, Geoffrey A; Trinh, Nguyen Thu Ngan; Beaudoin, Trevor; Desrosiers, Martin-Yvon; Rousseau, Simon; Nguyen, Dao; Brochiero, Emmanuelle

    2016-09-01

    Chronic Pseudomonas aeruginosa lung infections are associated with progressive epithelial damage and lung function decline. In addition to its role in tissue injury, the persistent presence of P. aeruginosa-secreted products may also affect epithelial repair ability, raising the need for new antivirulence therapies. The purpose of our study was to better understand the outcomes of P. aeruginosa exoproducts exposure on airway epithelial repair processes to identify a strategy to counteract their deleterious effect. We found that P. aeruginosa exoproducts significantly decreased wound healing, migration, and proliferation rates, and impaired the ability of directional migration of primary non-cystic fibrosis (CF) human airway epithelial cells. Impact of exoproducts was inhibited after mutations in P. aeruginosa genes that encoded for the quorum-sensing (QS) transcriptional regulator, LasR, and the elastase, LasB, whereas impact was restored by LasB induction in ΔlasR mutants. P. aeruginosa purified elastase also induced a significant decrease in non-CF epithelial repair, whereas protease inhibition with phosphoramidon prevented the effect of P. aeruginosa exoproducts. Furthermore, treatment of P. aeruginosa cultures with 4-hydroxy-2,5-dimethyl-3(2H)-furanone, a QS inhibitor, abrogated the negative impact of P. aeruginosa exoproducts on airway epithelial repair. Finally, we confirmed our findings in human airway epithelial cells from patients with CF, a disease featuring P. aeruginosa chronic respiratory infection. These data demonstrate that secreted proteases under the control of the LasR QS system impair airway epithelial repair and that QS inhibitors could be of benefit to counteract the deleterious effect of P. aeruginosa in infected patients.-Ruffin, M., Bilodeau, C., Maillé, É., LaFayette, S. L., McKay, G. A., Trinh, N. T. N., Beaudoin, T., Desrosiers, M.-Y., Rousseau, S., Nguyen, D., Brochiero, E. Quorum-sensing inhibition abrogates the deleterious impact of Pseudomonas aeruginosa on airway epithelial repair. © FASEB.

  19. Hydrogen-Induced Cold Cracking in High-Frequency Induction Welded Steel Tubes

    NASA Astrophysics Data System (ADS)

    Banerjee, Kumkum

    2016-04-01

    Detailed investigation was carried out on 0.4C steel tubes used for the telescopic front fork of two-wheelers to establish the root cause for the occurrence of transverse cracks at the weld heat-affected zone of the tubes. Fractographic and microstructural observations provide evidences of delayed hydrogen-induced cracking. The beneficial microstructure for avoiding the transverse cracks was found to be the bainitic-martensitic, while martensitic structure was noted to be deleterious.

  20. Phosphorylation of αB-crystallin: Role in stress, aging and patho-physiological conditions.

    PubMed

    Bakthisaran, Raman; Akula, Kranthi Kiran; Tangirala, Ramakrishna; Rao, Ch Mohan

    2016-01-01

    αB-crystallin, once thought to be a lenticular protein, is ubiquitous and has critical roles in several cellular processes that are modulated by phosphorylation. Serine residues 19, 45 and 59 of αB-crystallin undergo phosphorylation. Phosphorylation of S45 is mediated by p44/42 MAP kinase, whereas S59 phosphorylation is mediated by MAPKAP kinase-2. Pathway involved in S19 phosphorylation is not known. The review highlights the role of phosphorylation in (i) oligomeric structure, stability and chaperone activity, (ii) cellular processes such as apoptosis, myogenic differentiation, cell cycle regulation and angiogenesis, and (iii) aging, stress, cardiomyopathy-causing αB-crystallin mutants, and in other diseases. Depending on the context and extent of phosphorylation, αB-crystallin seems to confer beneficial or deleterious effects. Phosphorylation alters structure, stability, size distribution and dynamics of the oligomeric assembly, thus modulating chaperone activity and various cellular processes. Phosphorylated αB-crystallin has a tendency to partition to the cytoskeleton and hence to the insoluble fraction. Low levels of phosphorylation appear to be protective, while hyperphosphorylation has negative implications. Mutations in αB-crystallin, such as R120G, Q151X and 464delCT, associated with inherited myofibrillar myopathy lead to hyperphosphorylation and intracellular inclusions. An ongoing study in our laboratory with phosphorylation-mimicking mutants indicates that phosphorylation of R120GαB-crystallin increases its propensity to aggregate. Phosphorylation of αB-crystallin has dual role that manifests either beneficial or deleterious consequences depending on the extent of phosphorylation and interaction with cytoskeleton. Considering that disease-causing mutants of αB-crystallin are hyperphosphorylated, moderation of phosphorylation may be a useful strategy in disease management. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Augmented generation of protein fragments during wakefulness as the molecular cause of sleep: a hypothesis.

    PubMed

    Varshavsky, Alexander

    2012-11-01

    Despite extensive understanding of sleep regulation, the molecular-level cause and function of sleep are unknown. I suggest that they originate in individual neurons and stem from increased production of protein fragments during wakefulness. These fragments are transient parts of protein complexes in which the fragments were generated. Neuronal Ca²⁺ fluxes are higher during wakefulness than during sleep. Subunits of transmembrane channels and other proteins are cleaved by Ca²⁺-activated calpains and by other nonprocessive proteases, including caspases and secretases. In the proposed concept, termed the fragment generation (FG) hypothesis, sleep is a state during which the production of fragments is decreased (owing to lower Ca²⁺ transients) while fragment-destroying pathways are upregulated. These changes facilitate the elimination of fragments and the remodeling of protein complexes in which the fragments resided. The FG hypothesis posits that a proteolytic cleavage, which produces two fragments, can have both deleterious effects and fitness-increasing functions. This (previously not considered) dichotomy can explain both the conservation of cleavage sites in proteins and the evolutionary persistence of sleep, because sleep would counteract deleterious aspects of protein fragments. The FG hypothesis leads to new explanations of sleep phenomena, including a longer sleep after sleep deprivation. Studies in the 1970s showed that ethanol-induced sleep in mice can be strikingly prolonged by intracerebroventricular injections of either Ca²⁺ alone or Ca²⁺ and its ionophore (Erickson et al., Science 1978;199:1219-1221; Harris, Pharmacol Biochem Behav 1979;10:527-534; Erickson et al., Pharmacol Biochem Behav 1980;12:651-656). These results, which were never interpreted in connection to protein fragments or the function of sleep, may be accounted for by the FG hypothesis about molecular causation of sleep. Copyright © 2012 The Protein Society.

  2. Radio-induced inherited sterility in Heliothis zea (Boddie)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, J.E.

    1985-01-01

    Heliothis zea (Boddie) (Lepidoptera: Noctuidae) males and females were irradiated with substerilizing doses of radiation. These moths were inbred and outcrossed and observed for their ability to reproduce. The inherited deleterious effects resulting from the irradiated P/sub 1/ males were recorded for several generations. Larvae from both irradiated (10 krad) and normal parents were compared for their ability to survive under field conditions on whole-stage sweet corn and these results were compared with those from a laboratory study using meridic diet. Irradiated males and females and F/sub 1/ males from an irradiated (10 krad) male x normal female cross weremore » released in the field and in field cages and observed for their ability to search/attract and secure a mate. Females that had mated with normal and irradiated (10 krad) males were studied to determine the effect of different mating histories on the subsequent mating propensity of the females. A 10-krad dose of radiation induced deleterious effects which were inherited through the F/sub 2/ generation. These radiation-induced deleterious effects were similar to those reported in other species of Lepidoptera. The relationship between the survival of normal larvae and larvae from irradiated parents was similar under laboratory and field rearing conditions. Females mated to normal males and males irradiated with 10 krad had the same mating propensity and experienced the same intermating interval. These effects of substerilizing doses of radiation and inherited sterility on the reproductive ability and behavior of H. zea suggest that a great potential exists for population suppression.« less

  3. Hyperspectral data analysis procedures with reduced sensitivity to noise

    NASA Technical Reports Server (NTRS)

    Landgrebe, David A.

    1993-01-01

    Multispectral sensor systems have become steadily improved over the years in their ability to deliver increased spectral detail. With the advent of hyperspectral sensors, including imaging spectrometers, this technology is in the process of taking a large leap forward, thus providing the possibility of enabling delivery of much more detailed information. However, this direction of development has drawn even more attention to the matter of noise and other deleterious effects in the data, because reducing the fundamental limitations of spectral detail on information collection raises the limitations presented by noise to even greater importance. Much current effort in remote sensing research is thus being devoted to adjusting the data to mitigate the effects of noise and other deleterious effects. A parallel approach to the problem is to look for analysis approaches and procedures which have reduced sensitivity to such effects. We discuss some of the fundamental principles which define analysis algorithm characteristics providing such reduced sensitivity. One such analysis procedure including an example analysis of a data set is described, illustrating this effect.

  4. Fibrin tissue adhesive and autologous concha cartilage for reconstruction of the posterior-superior canal wall of the chinchilla middle ear.

    PubMed

    Siedentop, Karl H; O'Grady, Kevin; Bhattacharyya, Tapan K; Shah, Ami

    2004-05-01

    We conducted this study to prove that fibrin tissue adhesive (FTA) is safe, efficacious, biocompatible, and readily biodegradable with no deleterious side effects for fixation of a cartilage graft to bone along the chinchilla canal wall. A posterior-superior canal defect was created in 12 chinchillas. The canal walls of six chinchillas were closed with autologous concha cartilage alone, whereas the canal wall of the remaining six animals were closed with cartilage in conjunction with fibrin tissue adhesive. Animals were killed 8 weeks postoperatively. Three of six cartilage grafts were displaced in the graft alone group, whereas all six grafts in the cartilage with FTA group healed without displacement. Fibrin tissue adhesive was found to be effective, biocompatible, biodegradable, and without any deleterious side effects for reconstruction of the superior-posterior canal wall of chinchillas.

  5. Oxaloacetate: a novel neuroprotective for acute ischemic stroke.

    PubMed

    Campos, Francisco; Sobrino, Tomás; Ramos-Cabrer, Pedro; Castillo, José

    2012-02-01

    It is well established that glutamate acts as an important mediator of neuronal degeneration during cerebral ischemia. Different kind of glutamate antagonists have been used to reduce the deleterious effects of glutamate. However, their preclinical success failed to translate into practical treatments. Far from the classical use of glutamate antagonists employed so far, the systemic administration of oxaloacetate represents a novel neuroprotective strategy to minimize the deleterious effect of glutamate in the brain tissue after ischemic stroke. The neuroprotective effect of oxaloacetate is based on the capacity of this molecule to reduce the brain and blood glutamate levels as a result of the activation of the blood-resident enzyme glutamate-oxaloacetate transaminase. Here we review the recent experimental and clinical results where it is demonstrated the potential applicability of oxaloacetate as a novel and powerful neuroprotective treatment against ischemic stroke. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Influence of gallic acid on α-amylase and α-glucosidase inhibitory properties of acarbose.

    PubMed

    Oboh, Ganiyu; Ogunsuyi, Opeyemi Babatunde; Ogunbadejo, Mariam Damilola; Adefegha, Stephen Adeniyi

    2016-07-01

    Acarbose is an antidiabetic drug which acts by inhibiting α-amylase and α-glucosidase activities but with deleterious side effects. Gallic acid (GA) is a phenolic acid that is widespread in plant foods. We therefore investigated the influence of GA on α-amylase and α-glucosidase inhibitory properties of acarbose (in vitro). Aqueous solutions of acarbose and GA were prepared to a final concentration of 25μM each. Thereafter, mixtures of the samples (50% acarbose + 50% GA; 75% acarbose+25% GA; and 25% acarbose+75% GA) were prepared. The results revealed that the combination of 50% acarbose and 50% GA showed the highest α-glucosidase inhibitory effect, while 75% acarbose+25% GA showed the highest α-amylase inhibitory effect. Furthermore, all the samples caused the inhibition of Fe 2+ -induced lipid peroxidation (in vitro) in rat pancreatic tissue homogenate, with the combination of 50% acarbose and 50% GA causing the highest inhibition. All the samples also showed antioxidant properties (reducing property, 2,2'-azino-bis (-3-ethylbenzthiazoline-6-sulphonate [ABTS*] and 1,1-diphenyl-2-picrylhydrazyl [DPPH] free radicals scavenging abilities, and Fe 2+ chelating ability). Therefore, combinations of GA with acarbose could be employed as antidiabetic therapy, with a possible reduction of side effects of acarbose; nevertheless, the combination of 50% acarbose and 50% GA seems the best. Copyright © 2016. Published by Elsevier B.V.

  7. Olaparib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With Defects in DNA Damage Repair Genes (A Pediatric MATCH Treatment Trial)

    ClinicalTrials.gov

    2018-06-25

    Advanced Malignant Solid Neoplasm; Ann Arbor Stage III Childhood Non-Hodgkin Lymphoma; Ann Arbor Stage IV Childhood Non-Hodgkin Lymphoma; Deleterious ATM Gene Mutation; Deleterious BRCA1 Gene Mutation; Deleterious BRCA2 Gene Mutation; Deleterious RAD51C Gene Mutation; Deleterious RAD51D Gene Mutation; Histiocytosis; Low Grade Glioma; Malignant Glioma; Recurrent Childhood Central Nervous System Neoplasm; Recurrent Childhood Ependymoma; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Non-Hodgkin Lymphoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Soft Tissue Sarcoma; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Glioma; Recurrent Hepatoblastoma; Recurrent Langerhans Cell Histiocytosis; Recurrent Malignant Solid Neoplasm; Recurrent Medulloblastoma; Recurrent Neuroblastoma; Recurrent Osteosarcoma; Refractory Central Nervous System Neoplasm; Refractory Langerhans Cell Histiocytosis; Refractory Malignant Solid Neoplasm; Refractory Neuroblastoma; Refractory Non-Hodgkin Lymphoma; Rhabdoid Tumor; Wilms Tumor

  8. ON THE MECHANISM OF INJURY OF FETUSES IN GRAVID ANIMALS WITH RADIATION SICKNESS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinina, N.A.

    1960-10-01

    An assessment is made of the importance of the maternal organism in the mechanism of injury of the fetus during x-ray irradiation of gravid animals. A confrontation of the severity of radiation sickness in pregnant rats with the severity of injury of the fetuses divulged that in irradiation during the period before implantation in the mechanism of fetus injury of great importance are changes occurring in the irradiated organism of the mother; irradiation at the time of completed placentation produces a lesser deleterious effect on the state of the fetus than in earlier periods of gestation. Disturbance of lactation andmore » of the maternal instinct in the animals subjected to the action of ionizing radiation is one of the causes of postnatal death of the progeny of the irradiated rats. (auth)« less

  9. Prerequisites for successful human sperm cryobanking: sperm quality and prefreezing holding time.

    PubMed

    Yavetz, H; Yogev, L; Homonnai, Z; Paz, G

    1991-04-01

    Frozen-thawed donor semen was used in artificial inseminations and in vitro fertilization programs. Semen accepted for donation was characterized (mean +/- SE) by sperm concentration of 150 +/- 18.6 x 10(6)/mL, normal morphology of 57% +/- 1.4%, good progressive motility at 1 hour of 57% +/- 1.0%, and post-thaw motility of 45% +/- 1.0%. Delay of the freezing process for greater than 1 hour after semen delivery caused a deleterious effect to the freezability of sperm. The average monthly fecundability for the 1st 6 months after inseminations was 13.6%. This value decreased dramatically to 2.6% from the 7th month onward. In 74 IVF/embryo transfer (ET) cycles, the fertilization rate was 55.3% +/- 3.8%, pregnancy rate (PR) per ET was 39.6%, and the PR per woman was 42.8%.

  10. Third-space fluid shift in elderly patients undergoing gastrointestinal surgery: Part II: nursing assessment.

    PubMed

    Wotton, Karen; Redden, Maurine

    2002-08-01

    Third-space fluid shift is the mobilisation of body fluid to a non-contributory space rendering it unavailable to the circulatory system. It is a recurrent clinical phenomenon requiring swift identification to minimise deleterious effects. Nurses experience difficulties however in its early identification, diagnosis and subsequent treatment because of the lack of consensual and consistent information regarding third-spacing. This article, part II, building on the previous article, explores the clinical validly and reliability of signs and symptoms of both phases of third-space fluid shift. In addition it reinforces the use multiple patient assessment cues if nurses are to differentiate between, and accurately respond to, the various causes of both hypovolaemia and hypervolaemia. It assists nurses to increase their knowledge and uderstanding of third-space fluid shift in patients undergoing gastrointestinal surgery.

  11. Expanded ATXN3 frameshifting events are toxic in Drosophila and mammalian neuron models.

    PubMed

    Stochmanski, Shawn J; Therrien, Martine; Laganière, Janet; Rochefort, Daniel; Laurent, Sandra; Karemera, Liliane; Gaudet, Rebecca; Vyboh, Kishanda; Van Meyel, Don J; Di Cristo, Graziella; Dion, Patrick A; Gaspar, Claudia; Rouleau, Guy A

    2012-05-15

    Spinocerebellar ataxia type 3 is caused by the expansion of the coding CAG repeat in the ATXN3 gene. Interestingly, a -1 bp frameshift occurring within an (exp)CAG repeat would henceforth lead to translation from a GCA frame, generating polyalanine stretches instead of polyglutamine. Our results show that transgenic expression of (exp)CAG ATXN3 led to -1 frameshifting events, which have deleterious effects in Drosophila and mammalian neurons. Conversely, transgenic expression of polyglutamine-encoding (exp)CAA ATXN3 was not toxic. Furthermore, (exp)CAG ATXN3 mRNA does not contribute per se to the toxicity observed in our models. Our observations indicate that expanded polyglutamine tracts in Drosophila and mouse neurons are insufficient for the development of a phenotype. Hence, we propose that -1 ribosomal frameshifting contributes to the toxicity associated with (exp)CAG repeats.

  12. Regional climate change and national responsibilities

    NASA Astrophysics Data System (ADS)

    Hansen, James; Sato, Makiko

    2016-03-01

    Global warming over the past several decades is now large enough that regional climate change is emerging above the noise of natural variability, especially in the summer at middle latitudes and year-round at low latitudes. Despite the small magnitude of warming relative to weather fluctuations, effects of the warming already have notable social and economic impacts. Global warming of 2 °C relative to preindustrial would shift the ‘bell curve’ defining temperature anomalies a factor of three larger than observed changes since the middle of the 20th century, with highly deleterious consequences. There is striking incongruity between the global distribution of nations principally responsible for fossil fuel CO2 emissions, known to be the main cause of climate change, and the regions suffering the greatest consequences from the warming, a fact with substantial implications for global energy and climate policies.

  13. Job stress among Iranian prison employees.

    PubMed

    Akbari, J; Akbari, R; Farasati, F; Mahaki, B

    2014-10-01

    Exposure to job stress causes deleterious effects on physical and mental health of employees and productivity of organizations. To study work-related stressors among employees of prisons of Ilam, western Iran. In a cross-sectional study conducted from July to October 2013, 177 employees of Ilam prisons and security-corrective measures organization were enrolled in this study. The UK Health and Safety Executive Organization 35-item questionnaire for assessment of occupational stress was used to determine job stress among the studied employees. Job stress was highest among employees of "correction and rehabilitation center" of Ilam province followed by "Dalab vocational training center." There was no significant relationship between occupational stress and age, work experience, level of education, marital status, sex of employees, and obesity. Employees of prisons, for their nature of job and work environment, are exposed to high level of occupational stress.

  14. Evolutionary Consequences of DNA Methylation in a Basal Metazoan

    PubMed Central

    Dixon, Groves B.; Bay, Line K.; Matz, Mikhail V.

    2016-01-01

    Gene body methylation (gbM) is an ancestral and widespread feature in Eukarya, yet its adaptive value and evolutionary implications remain unresolved. The occurrence of gbM within protein-coding sequences is particularly puzzling, because methylation causes cytosine hypermutability and hence is likely to produce deleterious amino acid substitutions. We investigate this enigma using an evolutionarily basal group of Metazoa, the stony corals (order Scleractinia, class Anthozoa, phylum Cnidaria). We show that patterns of coral gbM are similar to other invertebrate species, predicting wide and active transcription and slower sequence evolution. We also find a strong correlation between gbM and codon bias, resulting from systematic replacement of CpG bearing codons. We conclude that gbM has strong effects on codon evolution and speculate that this may influence establishment of optimal codons. PMID:27189563

  15. The electric storm of November 1882

    USGS Publications Warehouse

    Love, Jeffrey J.

    2018-01-01

    In November 1882, an intense magnetic storm related to a large sunspot group caused widespread interference to telegraph and telephone systems and provided spectacular and unusual auroral displays. The (ring current) storm time disturbance index for this storm reached maximum −Dst ≈ 386 nT, comparable to Halloween storm of 29–31 October 2003, but from 17 to 20 November the aa midlatitude geomagnetic disturbance index averaged 214.25 nT, the highest 4 day level of disturbance since the beginning of aa index in 1868. This storm contributed to scientists' understanding of the reality of solar‐terrestrial interaction. Past occurrences of magnetic storms, like that of November 1882, can inform modern evaluations of the deleterious effects that a magnetic superstorm might have on technological systems of importance to society.

  16. Effect of transportation and mixing with unfamiliar pig on Salmonella susceptibility in market weight pigs

    USDA-ARS?s Scientific Manuscript database

    There is increasing evidence that stress can have a significant deleterious effect on food safety through a variety of potential mechanisms. However, there is very little research conducted to determine the potential effects of specific pre-slaughter stressors on Salmonella infection and carriage in...

  17. Effects of Anabolic Steroids on Lipoprotein Profiles of Female Weight Lifters.

    ERIC Educational Resources Information Center

    Moffatt, Robert J.; And Others

    1990-01-01

    This study examined the effects of resistance exercise and anabolic steroids on lipoprotein profiles of female weightlifters. The study found that women who participate in resistance training have better lipoprotein profiles than their sedentary counterparts, but these changes do not offset the deleterious effects of steroid use. (SM)

  18. Effects of Belongingness and Synchronicity on Face-to-Face and Computer-Mediated Online Cooperative Pedagogy

    ERIC Educational Resources Information Center

    Saltarelli, Andrew John

    2012-01-01

    Previous research suggests asynchronous online computer-mediated communication (CMC) has deleterious effects on certain cooperative learning pedagogies (e.g., constructive controversy), but the processes underlying this effect and how it may be ameliorated remain unclear. This study tests whether asynchronous CMC thwarts belongingness needs…

  19. Subclinical and Overt Adverse Cardiac Effects with Ozone Inhalation in Rats: Potentially Dire Implications of Low Exposures

    EPA Science Inventory

    Ozone is a ubiquitous smog-associated photochemical oxidant with deleterious health effects. While most of the adverse effects described to date involve the respiratory system (i.e, decrements in lung function, airway injury and inflammation, exacerbation of asthma, and compromis...

  20. Linking the Scales of Scientific inquiry and Watershed Management: A Focus on Green Infrastructure

    EPA Science Inventory

    Urbanization modifies the hydrologic cycle, resulting in potentially deleterious downstream water quality and quantity effects. However, the cumulative interacting effects of water storage, transport, and biogeochemical processes occurring within other land cover and use types of...

  1. 75 FR 61871 - Endangered and Threatened Wildlife and Plants; Proposed Listing Determinations for Three Distinct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... single facility in one city (ASSRT, 2007). There are currently no fish consumption advisories in effect... substantial deleterious effects on aquatic life. Effects from these elements and compounds on fish include... quality as a result of eutrophication. In a simulation of the effects of water temperature on available...

  2. Synthetic cannabinoids: the multi-organ failure and metabolic derangements associated with getting high.

    PubMed

    Sherpa, Dolkar; Paudel, Bishow M; Subedi, Bishnu H; Chow, Robert Dobbin

    2015-01-01

    Synthetic cannabinoids (SC), though not detected with routine urine toxicology screening, can cause severe metabolic derangements and widespread deleterious effects in multiple organ systems. The diversity of effects is related to the wide distribution of cannabinoid receptors in multiple organ systems. Both cannabinoid-receptor-mediated and non-receptor-mediated effects can result in severe cardiovascular, renal, and neurologic manifestations. We report the case of a 45-year-old African American male with ST-elevation myocardial infarction, subarachnoid hemorrhage, reversible cardiomyopathy, acute rhabdomyolysis, and severe metabolic derangement associated with the use of K2, an SC. Though each of these complications has been independently associated with SCs, the combination of these effects in a single patient has not been heretofore reported. This case demonstrates the range and severity of complications associated with the recreational use of SCs. Though now banned in the United States, use of systemic cannabinoids is still prevalent, especially among adolescents. Clinicians should be aware of their continued use and the potential for harm. To prevent delay in diagnosis, tests to screen for these substances should be made more readily available.

  3. Assessing acute effects of trapping, handling, and tagging on the behavior of wildlife using GPS telemetry: a case study of the common brushtail possum.

    PubMed

    Dennis, Todd E; Shah, Shabana F

    2012-01-01

    Trapping, handling, and deployment of tracking devices (tagging) are essential aspects of many research and conservation studies of wildlife. However, often these activities place nonhuman animals under considerable physical or psychological distress, which disrupts normal patterns of behavior and may ultimately result in deleterious effects on animal welfare and the validity of research results. Thus, knowledge of how trapping, handling, and tagging alter the behavior of research animals is essential if measures to ameliorate stress-related effects are to be developed and implemented. This article describes how time-stamped location data obtained by global-positioning-system telemetry can be used to retrospectively characterize acute behavioral responses to trapping, handling, and tagging in free-ranging animals used for research. Methods are demonstrated in a case study of the common brushtail possum, a semiarboreal phalangerid marsupial native to Australia. The study discusses possible physiological causes of observed effects and offers general suggestions regarding simple means to reduce trapping-handling-and-tagging-related stress in field studies of vertebrates.

  4. Effect of Magnetic Fields on g-jitter Induced Convection and Solute Striation During Space Processing of Single Crystals

    NASA Technical Reports Server (NTRS)

    deGroh, H. C.; Li, K.; Li, B. Q.

    2002-01-01

    A 2-D finite element model is presented for the melt growth of single crystals in a microgravity environment with a superimposed DC magnetic field. The model is developed based on the deforming finite element methodology and is capable of predicting the phenomena of the steady and transient convective flows, heat transfer, solute distribution, and solid-liquid interface morphology associated with the melt growth of single crystals in microgravity with and without an applied magnetic field. Numerical simulations were carried out for a wide range of parameters including idealized microgravity conditions, the synthesized g-jitter and the real g-jitter data taken by on-board accelerometers during space flights. The results reveal that the time varying g-jitter disturbances, although small in magnitude, cause an appreciable convective flow in the liquid pool, which in turn produces detrimental effects during the space processing of single crystal growth. An applied magnetic field of appropriate strength, superimposed on microgravity, can be very effective in suppressing the deleterious effects resulting from the g-jitter disturbances.

  5. Effectively parameterizing dissipative particle dynamics using COSMO-SAC: A partition coefficient study

    NASA Astrophysics Data System (ADS)

    Saathoff, Jonathan

    2018-04-01

    Dissipative Particle Dynamics (DPD) provides a tool for studying phase behavior and interfacial phenomena for complex mixtures and macromolecules. Methods to quickly and automatically parameterize DPD greatly increase its effectiveness. One such method is to map predicted activity coefficients derived from COSMO-SAC onto DPD parameter sets. However, there are serious limitations to the accuracy of this mapping, including the inability of single DPD beads to reproduce asymmetric infinite dilution activity coefficients, the loss of precision when reusing parameters for different molecular fragments, and the error due to bonding beads together. This report describes these effects in quantitative detail and provides methods to mitigate much of their deleterious effects. This includes a novel approach to remove errors caused by bonding DPD beads together. Using these methods, logarithm hexane/water partition coefficients were calculated for 61 molecules. The root mean-squared error for these calculations was determined to be 0.14—a very low value—with respect to the final mapping procedure. Cognizance of the above limitations can greatly enhance the predictive power of DPD.

  6. Liver Disease in Sri Lanka.

    PubMed

    Wijewantha, Hasitha S

    2017-01-01

    Liver disease in Sri Lanka is mainly due to alcoholic liver disease and nonalcoholic fatty liver disease. In contrast to other South Asian countries, the prevalence of hepatitis B and C is low in Sri Lanka and prevalence of hepatitis A is intermediate. The few reported cases of hepatitis E in Sri Lanka are mainly in people who have traveled to neighboring South Asian countries. Wilson's disease, autoimmune hepatitis, hemochromatosis, drug-induced liver disease, and primary biliary cirrhosis are recognized causes of liver disease in Sri Lanka. Pyogenic and amebic liver abscesses and dengue infection are the other causes of liver disease. Some of the commonly used plants as traditional herbal medicine in Sri Lanka have been shown to have deleterious effects on the liver in animal studies. Considering the high popularity of traditional herbal medicine in the country, it is likely that herbal medicine is an etiological factor for liver disease in Sri Lanka, but no published data are available. Address reprint requests to: Wijewantha HS. Liver Disease in Sri Lanka. Euroasian J Hepato-Gastroenterol 2017;7(1):78-81.

  7. Transient and Steady-state Tests of the Space Power Research Engine with Resistive and Motor Loads

    NASA Technical Reports Server (NTRS)

    Rauch, Jeffrey S.; Kankam, M. David

    1995-01-01

    The NASA Lewis Research Center (LeRC) has been testing free-piston Stirling engine/linear alternators (FPSE/LA) to develop advanced power convertors for space-based electrical power generation. Tests reported herein were performed to evaluate the interaction and transient behavior of FPSE/LA-based power systems with typical user loads. Both resistive and small induction motor loads were tested with the space power research engine (SPRE) power system. Tests showed that the control system could maintain constant long term voltage and stable periodic operation over a large range of engine operating parameters and loads. Modest resistive load changes were shown to cause relatively large voltage and, therefore, piston and displacer amplitude excursions. Starting a typical small induction motor was shown to cause large and, in some cases, deleterious voltage transients. The tests identified the need for more effective controls, if FPSE/LAs are to be used for stand-alone power systems. The tests also generated a large body of transient dynamic data useful for analysis code validation.

  8. Transient and steady-state tests of the space power research engine with resistive and motor loads

    NASA Astrophysics Data System (ADS)

    Rauch, Jeffrey S.; Kankam, M. David

    1995-01-01

    The NASA Lewis Research Center (LeRC) has been testing free-piston Stirling engine/linear alternators (FPSE/LA) to develop advanced power convertors for space-based electrical power generation. Tests reported herein were performed to evaluate the interaction and transient behavior of FPSE/LA-based power systems with typical user loads. Both resistive and small induction motor loads were tested with the space power research engine (SPRE) power system. Tests showed that the control system could maintain constant long term voltage and stable periodic operation over a large range of engine operating parameters and loads. Modest resistive load changes were shown to cause relatively large voltage and, therefore, piston and displacer amplitude excursions. Starting a typical small induction motor was shown to cause large and, in some cases, deleterious voltage transients. The tests identified the need for more effective controls, if FPSE/LAs are to be used for stand-alone power systems. The tests also generated a large body of transient dynamic data useful for analysis code validation.

  9. A red and far-red light receptor mutation confers resistance to the herbicide glyphosate

    PubMed Central

    Sharkhuu, Altanbadralt; Narasimhan, Meena L; Merzaban, Jasmeen S; Bressan, Ray A; Weller, Steve; Gehring, Chris

    2014-01-01

    Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide. PMID:24654847

  10. Meeting Disorders.

    PubMed

    Yager, Joel; Katzman, Jeffrey W

    2017-12-01

    Although meetings are central to organizational work, considerable time devoted to meetings in Academic Health Centers appears to be unproductively spent. The primary purposes of this article are to delineate and describe Meeting Disorders, pathological processes resulting in these inefficient and ineffective scenarios, and Meeting Fatigue Disorder (MFD), a clinical syndrome. The paper also offers preliminary approaches to remedies. The authors integrate observations made during tens of thousands of hours in administrative meetings in academic medical settings with information in the literature regarding the nature, causes and potential interventions for dysfunctional groups and meetings. Meeting Disorders, resulting from distinct pathologies of leadership and organization, constitute prevalent subgroups of the bureaucrapathologies, pathological conditions caused by dysfunctional bureaucratic processes that generate excesses of wasted time, effort, and other resources. These disorders also generate frustration and demoralization among participants, contributing to professional burnout. Meeting Fatigue Disorder (MFD) is a subjective condition that develops in individuals who overdose on these experiences and may reflect one manifestation of burnout. Meeting disorders and Meeting Fatigue Disorder occur commonly in bureaucratic life. Resources and potential remedies are available to help ameliorate their more deleterious effects.

  11. Rethinking the causes of deforestation: lessons from economic models.

    PubMed

    Angelsen, A; Kaimowitz, D

    1999-02-01

    Concern is rising over the deleterious effects of tropical deforestation. For example, the loss of forest cover influences the climate and reduces biodiversity, while reduced timber supplies, siltation, flooding, and soil degradation affect economic activity and threaten the livelihoods and cultural integrity of forest-dependent people. Such concerns have led economists to expand their efforts to model why, where, and to what extent forests are being converted to other land uses. This synthesis of the results of more than 140 economic models analyzing the causes of tropical deforestation brings into question many conventional hypotheses upon deforestation. More roads, higher agricultural prices, lower wages, and a shortage of off-farm employment generally lead to more deforestation. However, it is not known how technical change, agricultural input prices, household income levels, and tenure security affect deforestation. The role of macroeconomic factors such as population growth, poverty reduction, national income, economic growth, and foreign debt is also unclear. The authors nonetheless determine through their review that policy reforms included in current economic liberalization and adjustment efforts may increase pressure upon forests.

  12. The role of deleterious mutations in the stability of hybridogenetic water frog complexes

    PubMed Central

    2014-01-01

    Background Some species of water frogs originated from hybridization between different species. Such hybrid populations have a particular reproduction system called hybridogenesis. In this paper we consider the two species Pelophylax ridibundus and Pelophylax lessonae, and their hybrids Pelophylax esculentus. P. lessonae and P. esculentus form stable complexes (L-E complexes) in which P. esculentus are hemiclonal. In L-E complexes all the transmitted genomes by P. esculentus carry deleterious mutations which are lethal in homozygosity. Results We analyze, by means of an individual based computational model, L-E complexes. The results of simulations based on the model show that, by eliminating deleterious mutations, L-E complexes collapse. In addition, simulations show that particular female preferences can contribute to the diffusion of deleterious mutations among all P. esculentus frogs. Finally, simulations show how L-E complexes react to the introduction of translocated P. ridibundus. Conclusions The conclusions are the following: (i) deleterious mutations (combined with sexual preferences) strongly contribute to the stability of L-E complexes; (ii) female sexual choice can contribute to the diffusion of deleterious mutations; and (iii) the introduction of P. ridibundus can destabilize L-E complexes. PMID:24885008

  13. Multilevel biological characterization of exomic variants at the protein level significantly improves the identification of their deleterious effects.

    PubMed

    Raimondi, Daniele; Gazzo, Andrea M; Rooman, Marianne; Lenaerts, Tom; Vranken, Wim F

    2016-06-15

    There are now many predictors capable of identifying the likely phenotypic effects of single nucleotide variants (SNVs) or short in-frame Insertions or Deletions (INDELs) on the increasing amount of genome sequence data. Most of these predictors focus on SNVs and use a combination of features related to sequence conservation, biophysical, and/or structural properties to link the observed variant to either neutral or disease phenotype. Despite notable successes, the mapping between genetic variants and their phenotypic effects is riddled with levels of complexity that are not yet fully understood and that are often not taken into account in the predictions, despite their promise of significantly improving the prediction of deleterious mutants. We present DEOGEN, a novel variant effect predictor that can handle both missense SNVs and in-frame INDELs. By integrating information from different biological scales and mimicking the complex mixture of effects that lead from the variant to the phenotype, we obtain significant improvements in the variant-effect prediction results. Next to the typical variant-oriented features based on the evolutionary conservation of the mutated positions, we added a collection of protein-oriented features that are based on functional aspects of the gene affected. We cross-validated DEOGEN on 36 825 polymorphisms, 20 821 deleterious SNVs, and 1038 INDELs from SwissProt. The multilevel contextualization of each (variant, protein) pair in DEOGEN provides a 10% improvement of MCC with respect to current state-of-the-art tools. The software and the data presented here is publicly available at http://ibsquare.be/deogen : wvranken@vub.ac.be Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Whole exome sequencing in recurrent early pregnancy loss.

    PubMed

    Qiao, Ying; Wen, Jiadi; Tang, Flamingo; Martell, Sally; Shomer, Naomi; Leung, Peter C K; Stephenson, Mary D; Rajcan-Separovic, Evica

    2016-05-01

    Exome sequencing can identify genetic causes of idiopathic recurrent pregnancy loss (RPL). We identified compound heterozygous deleterious mutations affecting DYNC2H1 and ALOX15 in two out of four families with RPL. Both genes have a role in early development. Bioinformatics analysis of all genes with rare and putatively pathogenic mutations in miscarriages and couples showed enrichment in pathways relevant to pregnancy loss, including the complement and coagulation cascades pathways. Next generation sequencing (NGS) is increasingly being used to identify known and novel gene mutations in children with developmental delay and in fetuses with ultrasound-detected anomalies. In contrast, NGS is rarely used to study pregnancy loss. Chromosome microarray analysis detects putatively causative DNA copy number variants (CNVs) in ∼2% of miscarriages and CNVs of unknown significance (predominantly parental in origin) in up to 40% of miscarriages. Therefore, a large number of miscarriages still have an unknown cause. Whole exome sequencing (WES) was performed using Illumina HiSeq 2000 platform on seven euploid miscarriages from four families with RPL. Golden Helix SVS v8.1.5 was used for data assessment and inheritance analysis for deleterious DNA variants predicted to severely disrupt protein-coding genes by introducing a frameshift, loss of the stop codon, gain of the stop codon, changes in splicing or the initial codon. Webgestalt (http://bioinfo.vanderbilt.edu/webgestalt/) was used for pathway and disease association enrichment analysis of a gene pool containing putatively pathogenic variants in miscarriages and couples in comparison to control gene pools. Compound heterozygous mutations in DYNC2H1 and ALOX15 were identified in miscarriages from two families with RPL. DYNC2H1 is involved in cilia biogenesis and has been associated with fetal lethality in humans. ALOX15 is expressed in placenta and its dysregulation has been associated with inflammation, placental, dysfunction, abnormal oxidative stress response and angiogenesis. The pool of putatively pathogenic single nucleotide variants (SNVs) and small insertions and deletions (indels) detected in the miscarriages showed enrichment in 'complement and coagulation cascades pathway', and 'ciliary motility disorders'. We conclude that CNVs, individual SNVs and pool of deleterious gene mutations identified by exome sequencing could contribute to RPL. The size of our sample cohort is small. The functional effect of candidate mutations should be evaluated to determine whether the mutations are causative. This is the first study to assess whether SNVs may contribute to the pathogenesis of miscarriage. Furthermore, our findings suggest that collective effect of mutations in relevant biological pathways could be implicated in RPL. The study was funded by Canadian Institutes of Health Research (grant MOP 106467) and Michael Smith Foundation of Health Research Career Scholar salary award to ERS. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Whole exome sequencing in recurrent early pregnancy loss

    PubMed Central

    Qiao, Ying; Wen, Jiadi; Tang, Flamingo; Martell, Sally; Shomer, Naomi; Leung, Peter C.K.; Stephenson, Mary D.; Rajcan-Separovic, Evica

    2016-01-01

    STUDY HYPOTHESIS Exome sequencing can identify genetic causes of idiopathic recurrent pregnancy loss (RPL). STUDY FINDING We identified compound heterozygous deleterious mutations affecting DYNC2H1 and ALOX15 in two out of four families with RPL. Both genes have a role in early development. Bioinformatics analysis of all genes with rare and putatively pathogenic mutations in miscarriages and couples showed enrichment in pathways relevant to pregnancy loss, including the complement and coagulation cascades pathways. WHAT IS KNOWN ALREADY Next generation sequencing (NGS) is increasingly being used to identify known and novel gene mutations in children with developmental delay and in fetuses with ultrasound-detected anomalies. In contrast, NGS is rarely used to study pregnancy loss. Chromosome microarray analysis detects putatively causative DNA copy number variants (CNVs) in ∼2% of miscarriages and CNVs of unknown significance (predominantly parental in origin) in up to 40% of miscarriages. Therefore, a large number of miscarriages still have an unknown cause. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Whole exome sequencing (WES) was performed using Illumina HiSeq 2000 platform on seven euploid miscarriages from four families with RPL. Golden Helix SVS v8.1.5 was used for data assessment and inheritance analysis for deleterious DNA variants predicted to severely disrupt protein-coding genes by introducing a frameshift, loss of the stop codon, gain of the stop codon, changes in splicing or the initial codon. Webgestalt (http://bioinfo.vanderbilt.edu/webgestalt/) was used for pathway and disease association enrichment analysis of a gene pool containing putatively pathogenic variants in miscarriages and couples in comparison to control gene pools. MAIN RESULTS AND THE ROLE OF CHANCE Compound heterozygous mutations in DYNC2H1 and ALOX15 were identified in miscarriages from two families with RPL. DYNC2H1 is involved in cilia biogenesis and has been associated with fetal lethality in humans. ALOX15 is expressed in placenta and its dysregulation has been associated with inflammation, placental, dysfunction, abnormal oxidative stress response and angiogenesis. The pool of putatively pathogenic single nucleotide variants (SNVs) and small insertions and deletions (indels) detected in the miscarriages showed enrichment in ‘complement and coagulation cascades pathway’, and ‘ciliary motility disorders’. We conclude that CNVs, individual SNVs and pool of deleterious gene mutations identified by exome sequencing could contribute to RPL. LIMITATIONS, REASONS FOR CAUTION The size of our sample cohort is small. The functional effect of candidate mutations should be evaluated to determine whether the mutations are causative. WIDER IMPLICATIONS OF THE FINDINGS This is the first study to assess whether SNVs may contribute to the pathogenesis of miscarriage. Furthermore, our findings suggest that collective effect of mutations in relevant biological pathways could be implicated in RPL. STUDY FUNDING AND COMPETING INTEREST(S) The study was funded by Canadian Institutes of Health Research (grant MOP 106467) and Michael Smith Foundation of Health Research Career Scholar salary award to ERS. PMID:26826164

  16. Biological Responses of the Coral Montastraea annularis to the Removal of Filamentous Turf Algae

    PubMed Central

    Cetz-Navarro, Neidy P.; Espinoza-Avalos, Julio; Hernández-Arana, Héctor A.; Carricart-Ganivet, Juan P.

    2013-01-01

    Coral reef degradation increases coral interactions with filamentous turf algae (FTA) and macroalgae, which may result in chronic stress for the corals. We evaluated the effects of short (2.5 month) and long (10 month) periods of FTA removal on tissue thickness (TT), zooxanthellae density (ZD), mitotic index (MI), and concentration of chlorophyll a (Chl a) in Montastraea annularis at the beginning and end of gametogenesis. Ramets (individual lobes within a colony) consistently surrounded by FTA and ramets surrounded by crustose coralline algae (CCA) were used as controls. FTA removal reduced coral stress, indicated by increased TT and ZD and lower MI. The measured effects were similar in magnitude for the short and long periods of algal removal. Ramets were more stressed at the end of gametogenesis compared with the beginning, with lower ZD and Chl a cm−2, and higher MI. However, it was not possible to distinguish the stress caused by the presence of FTA from that caused by seasonal changes in seawater temperature. Ramets surrounded by CCA showed less stress in comparison with ramets surrounded by FTA: with higher TT, Chl a cm−2 and ZD, and lower MI values. Coral responses indicated that ramets with FTA suffered the most deleterious effects and contrasted with those measured in ramets surrounded by CCA. According to published studies and our observations, there could be at least six mechanisms associated to FTA in the stress caused to M. annularis by FTA. Owing to the high cover of FTA (in contrast to macroalgae and CCA) in the Caribbean, the chronic stress, the overgrowth and mortality that this functional algal group can cause on M. annularis species complex, a further decline of this important reef-building coral in the Caribbean is expected. PMID:23372774

  17. Structural study of the effects of mutations in proteins to identify the molecular basis of the loss of local structural fluidity leading to the onset of autoimmune diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Ananya; Ghosh, Semanti; Bagchi, Angshuman

    Protein-Protein Interactions (PPIs) are crucial in most of the biological processes and PPI dysfunctions are known to be associated with the onsets of various diseases. One of such diseases is the auto-immune disease. Auto-immune diseases are one among the less studied group of diseases with very high mortality rates. Thus, we tried to correlate the appearances of mutations with their probable biochemical basis of the molecular mechanisms leading to the onset of the disease phenotypes. We compared the effects of the Single Amino Acid Variants (SAVs) in the wild type and mutated proteins to identify any structural deformities that mightmore » lead to altered PPIs leading ultimately to disease onset. For this we used Relative Solvent Accessibility (RSA) as a spatial parameter to compare the structural perturbation in mutated and wild type proteins. We observed that the mutations were capable to increase intra-chain PPIs whereas inter-chain PPIs would remain mostly unaltered. This might lead to more intra-molecular friction causing a deleterious alteration of protein's normal function. A Lyapunov exponent analysis, using the altered RSA values due to polymorphic and disease causing mutations, revealed polymorphic mutations have a positive mean value for the Lyapunov exponent while disease causing mutations have a negative mean value. Thus, local spatial stochasticity has been lost due to disease causing mutations, indicating a loss of structural fluidity. The amino acid conversion plot also showed a clear tendency of altered surface patch residue conversion propensity than polymorphic conversions. So far, this is the first report that compares the effects of different kinds of mutations (disease and non-disease causing polymorphic mutations) in the onset of autoimmune diseases. - Highlights: • Protein-Protein Interaction. • Changes in Relative Solvent Accessibility (RSA). • Amino acid conversion matrix. • Polymorphic mutations. • Disease causing mutations.« less

  18. The opioid effects of gluten exorphins: asymptomatic celiac disease.

    PubMed

    Pruimboom, Leo; de Punder, Karin

    2015-11-24

    Gluten-containing cereals are a main food staple present in the daily human diet, including wheat, barley, and rye. Gluten intake is associated with the development of celiac disease (CD) and related disorders such as diabetes mellitus type I, depression, and schizophrenia. However, until now, there is no consent about the possible deleterious effects of gluten intake because of often failing symptoms even in persons with proven CD. Asymptomatic CD (ACD) is present in the majority of affected patients and is characterized by the absence of classical gluten-intolerance signs, such as diarrhea, bloating, and abdominal pain. Nevertheless, these individuals very often develop diseases that can be related with gluten intake. Gluten can be degraded into several morphine-like substances, named gluten exorphins. These compounds have proven opioid effects and could mask the deleterious effects of gluten protein on gastrointestinal lining and function. Here we describe a putative mechanism, explaining how gluten could "mask" its own toxicity by exorphins that are produced through gluten protein digestion.

  19. Cellular and behavioral effects of stilbene resveratrol analogues: implications for reducing the deleterious effects of aging.

    PubMed

    Joseph, James A; Fisher, Derek R; Cheng, Vivian; Rimando, Agnes M; Shukitt-Hale, Barbara

    2008-11-26

    Research suggests that polyphenolic compounds contained in fruits and vegetables that are rich in color may have potent antioxidant and anti-inflammatory activities. The present studies determined if stilbene (e.g., resveratrol) compounds would be efficacious in reversing the deleterious effects of aging in 19 month old Fischer 344 rats. Experiment I utilized resveratrol and six resveratrol analogues and examined their efficacies in preventing dopamine-induced decrements in calcium clearance following oxotremorine-induced depolarization in COS-7 cells transfected with M1 muscarinic receptors (MAChR) that we have shown previously to be sensitive to oxidative stressors. Experiment II utilized the most efficacious analogue (pterostilbene) from experiment I and fed aged rats a diet with a low (0.004%) or a high (0.016%) concentration of pterostilbene. Results indicated that pterostilbene was effective in reversing cognitive behavioral deficits, as well as dopamine release, and working memory was correlated with pterostilbene levels in the hippocampus.

  20. Antioxidant activity of hydrated carboxylated nanodiamonds and its influence on water γ-radiolysis

    NASA Astrophysics Data System (ADS)

    Santacruz-Gomez, Karla; Sarabia-Sainz, A.; Acosta-Elias, M.; Sarabia-Sainz, M.; Janetanakit, Woraphong; Khosla, Nathan; Melendrez, R.; Pedroza Montero, Martin; Lal, Ratnesh

    2018-03-01

    Water radiolysis involves chemical decomposition of the water molecule into free radicals after exposure to ionizing radiation. These free radicals have deleterious effects on normal cell physiology. Carboxylated nanodiamonds (cNDs) appear to modulate the deleterious effects of γ-irradiation on the pathophysiology of red blood cells (RBCs). In the present work, the antioxidant activity of hydrated cNDs (h-cNDs) on limiting oxidative damage (the water radiolysis effect) by γ-irradiation was confirmed. Our results show that h-cNDs have remarkable free radical scavenging ability and preserve the enzymatic activity of catalase after γ-irradiation. The underlying mechanism through which nanodiamonds exhibit antioxidant activity appears to depend on their colloidal stability. This property of detonation synthesized nanodiamonds is improved after carboxylation, which in turn influences changes in the hydrogen bond strength in water. The observed stability of h-cNDs in water and their antioxidant activity correlates with their protective effect on RBCs against γ-irradiation.

  1. Uniparental Inheritance Promotes Adaptive Evolution in Cytoplasmic Genomes

    PubMed Central

    Christie, Joshua R.; Beekman, Madeleine

    2017-01-01

    Eukaryotes carry numerous asexual cytoplasmic genomes (mitochondria and plastids). Lacking recombination, asexual genomes should theoretically suffer from impaired adaptive evolution. Yet, empirical evidence indicates that cytoplasmic genomes experience higher levels of adaptive evolution than predicted by theory. In this study, we use a computational model to show that the unique biology of cytoplasmic genomes—specifically their organization into host cells and their uniparental (maternal) inheritance—enable them to undergo effective adaptive evolution. Uniparental inheritance of cytoplasmic genomes decreases competition between different beneficial substitutions (clonal interference), promoting the accumulation of beneficial substitutions. Uniparental inheritance also facilitates selection against deleterious cytoplasmic substitutions, slowing Muller’s ratchet. In addition, uniparental inheritance generally reduces genetic hitchhiking of deleterious substitutions during selective sweeps. Overall, uniparental inheritance promotes adaptive evolution by increasing the level of beneficial substitutions relative to deleterious substitutions. When we assume that cytoplasmic genome inheritance is biparental, decreasing the number of genomes transmitted during gametogenesis (bottleneck) aids adaptive evolution. Nevertheless, adaptive evolution is always more efficient when inheritance is uniparental. Our findings explain empirical observations that cytoplasmic genomes—despite their asexual mode of reproduction—can readily undergo adaptive evolution. PMID:28025277

  2. Mutation spectrum of genes associated with steroid-resistant nephrotic syndrome in Chinese children.

    PubMed

    Wang, Ying; Dang, Xiqiang; He, Qingnan; Zhen, Yan; He, Xiaoxie; Yi, Zhuwen; Zhu, Kuichun

    2017-08-20

    Approximately 20% of children with idiopathic nephrotic syndrome do not respond to steroid therapy. More than 30 genes have been identified as disease-causing genes for the steroid-resistant nephrotic syndrome (SRNS). Few reports were from the Chinese population. The coding regions of genes commonly associated with SRNS were analyzed to characterize the gene mutation spectrum in children with SRNS in central China. The first phase study involved 38 children with five genes (NPHS1, NPHS2, PLCE1, WT1, and TRPC6) by Sanger sequencing. The second phase study involved 33 children with 17 genes by next generation DNA sequencing (NGS. 22 new patients, and 11 patients from first phase study but without positive findings). Overall deleterious or putatively deleterious gene variants were identified in 19 patients (31.7%), including four NPHS1 variants among five patients and three PLCE1 variants among four other patients. Variants in COL4A3, COL4A4, or COL4A5 were found in six patients. Eight novel variants were identified, including two in NPHS1, two in PLCE1, one in NPHS2, LAMB2, COL4A3, and COL4A4, respectively. 55.6% of the children with variants failed to respond to immunosuppressive agent therapy, while the resistance rate in children without variants was 44.4%. Our results show that screening for deleterious variants in some common genes in children clinically suspected with SRNS might be helpful for disease diagnosis as well as prediction of treatment efficacy and prognosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Berry Fruit Consumption and Metabolic Syndrome

    PubMed Central

    Vendrame, Stefano; Del Bo’, Cristian; Ciappellano, Salvatore; Riso, Patrizia; Klimis-Zacas, Dorothy

    2016-01-01

    Metabolic Syndrome is a cluster of risk factors which often includes central obesity, dyslipidemia, insulin resistance, glucose intolerance, hypertension, endothelial dysfunction, as well as a pro-inflammatory, pro-oxidant, and pro-thrombotic environment. This leads to a dramatically increased risk of developing type II diabetes mellitus and cardiovascular disease, which is the leading cause of death both in the United States and worldwide. Increasing evidence suggests that berry fruit consumption has a significant potential in the prevention and treatment of most risk factors associated with Metabolic Syndrome and its cardiovascular complications in the human population. This is likely due to the presence of polyphenols with known antioxidant and anti-inflammatory effects, such as anthocyanins and/or phenolic acids. The present review summarizes the findings of recent dietary interventions with berry fruits on human subjects with or at risk of Metabolic Syndrome. It also discusses the potential role of berries as part of a dietary strategy which could greatly reduce the need for pharmacotherapy, associated with potentially deleterious side effects and constituting a considerable financial burden. PMID:27706020

  4. Physicochemical characteristics and quality parameters of a beef product subjected to chemical preservatives and high hydrostatic pressure.

    PubMed

    Giménez, Belén; Graiver, Natalia; Califano, Alicia; Zaritzky, Noemí

    2015-02-01

    The use of high hydrostatic pressure (HHP) on fresh beef causes a deleterious effect on red colour. A beef product subjected to HHP exhibiting acceptable colour and microbiological stability was developed; the process requires as a first step the immersion in a preservative solution containing ascorbic acid, sodium nitrite, and sodium chloride. Desirability functions were used to optimise the composition of this solution in order to maintain the colour attributes minimising the concentration of sodium nitrite. The product was packed in low gas permeability film before HHP treatment. The effect of the applied pressure (300, 600 MPa) on quality parameters (colour,texture) was analysed. The stability of the product during storage at 4 °C was determined by microbial counts, colour, texture, and exudate. The combination of treatments provided acceptable colour and microbiological stability during four and six weeks of refrigerated storage after the product has been subjected to 300 and 600 MPa, respectively.

  5. Effect of alpha-tocopherol on lipid peroxidation and antioxidant system in fibrosarcoma bearing rats.

    PubMed

    Vasavi, H; Thangaraju, M; Sachdanandam, P

    1994-02-23

    The anticarcinogenic activity of alpha-tocopherol (Vitamin E) was tried in fibrosarcoma induced rats through its antioxidative potential. The rate of formation of malondialdehyde (MDA), the end product of lipid peroxidation was analysed in alpha-tocopherol (400 mg/kg body weight) treated and untreated fibrosarcoma bearing rats with respective controls. The levels of non-enzymic antioxidants like, glutathione and vitamin E, and enzymic antioxidants viz., catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and glutathione-S-transferase (GST) were assayed as well. Significantly increased (p < 0.001) level of lipid peroxide was observed with concomitant decreases in the level of enzymic and non-enzymic antioxidants in fibrosarcoma bearing rats when compared with control animals. In alpha-tocopherol supplemented animals, the corrected level of these parameters were observed likely to near normal values. Thus, alpha-tocopherol can be accepted to pose first line of defense mechanism against excessively formed reactive species due to impaired antioxidant systems in fibrosarcoma conditions, that cause membrane damage leading to deleterious effects.

  6. Preliminary identification of unicellular algal genus by using combined confocal resonance Raman spectroscopy with PCA and DPLS analysis

    NASA Astrophysics Data System (ADS)

    He, Shixuan; Xie, Wanyi; Zhang, Ping; Fang, Shaoxi; Li, Zhe; Tang, Peng; Gao, Xia; Guo, Jinsong; Tlili, Chaker; Wang, Deqiang

    2018-02-01

    The analysis of algae and dominant alga plays important roles in ecological and environmental fields since it can be used to forecast water bloom and control its potential deleterious effects. Herein, we combine in vivo confocal resonance Raman spectroscopy with multivariate analysis methods to preliminary identify the three algal genera in water blooms at unicellular scale. Statistical analysis of characteristic Raman peaks demonstrates that certain shifts and different normalized intensities, resulting from composition of different carotenoids, exist in Raman spectra of three algal cells. Principal component analysis (PCA) scores and corresponding loading weights show some differences from Raman spectral characteristics which are caused by vibrations of carotenoids in unicellular algae. Then, discriminant partial least squares (DPLS) classification method is used to verify the effectiveness of algal identification with confocal resonance Raman spectroscopy. Our results show that confocal resonance Raman spectroscopy combined with PCA and DPLS could handle the preliminary identification of dominant alga for forecasting and controlling of water blooms.

  7. Jet transport performance in thunderstorm wind shear conditions

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Blick, E. F.; Bensch, R. R.

    1979-01-01

    Several hours of three dimensional wind data were collected in the thunderstorm approach-to-landing environment, using an instrumented Queen Air airplane. These data were used as input to a numerical simulation of aircraft response, concentrating on fixed-stick assumptions, while the aircraft simulated an instrument landing systems approach. Output included airspeed, vertical displacement, pitch angle, and a special approach deterioration parameter. Theory and the results of approximately 1000 simulations indicated that about 20 percent of the cases contained serious wind shear conditions capable of causing a critical deterioration of the approach. In particular, the presence of high energy at the airplane's phugoid frequency was found to have a deleterious effect on approach quality. Oscillations of the horizontal wind at the phugoid frequency were found to have a more serious effect than vertical wind. A simulation of Eastern flight 66, which crashed at JFK in 1975, served to illustrate the points of the research. A concept of a real-time wind shear detector was outlined utilizing these results.

  8. Curricular Innovations in Tobacco Cessation Education for Prelicensure Baccalaureate Nursing Students.

    PubMed

    Schwindt, Rhonda G; McNelis, Angela M; Agley, Jon

    2016-08-01

    Tobacco use is the primary preventable cause of morbidity and mortality in the United States, resulting in enormous health care expenditures. The burden of smoking is higher among disadvantaged populations, such as individuals with mental illness. As the largest group of health care providers, nurses must assume a leading role in tobacco control efforts to decrease the deleterious impact on health outcomes. Investigators used a randomized control group design to assess the effectiveness of a theory-based tobacco education program on the perceived competence and intrinsic motivation of prelicensure BSN students (N = 134) to engage in cessation interventions with patients with mental illness. Students completing the program reported a significant increase in perceived competence, compared with their peers who received standard instruction only. Intrinsic motivation did not increase significantly for either group. Findings suggest that the program improves students' perceived competence, but further research is needed to determine its effect on motivation and its usefulness in other health care contexts. [J Nurs Educ. 2016;55(8):425-431.]. Copyright 2016, SLACK Incorporated.

  9. A Case Report of Cannabis Induced Hemoptysis

    PubMed Central

    Hashmi, Hafiz Rizwan Talib; Duncalf, Richard; Khaja, Misbahuddin

    2016-01-01

    Abstract As the principal route of marijuana use is by inhalation, potential harmful consequences on pulmonary structure and function can be anticipated. Here, we present a case of hemoptysis attributed to smoking cannabis in a 38-year-old man. The patient experienced an episode of hemoptysis and shortness of breath immediately after smoking marijuana. Chest radiograph and computed tomography (CT) scans of the chest showed bilateral diffuse ground-glass opacities. A fiber optic bronchoscopy confirmed bilateral diffuse bleeding from respiratory tract. Additional evaluation of hemoptysis indicated no infection or immunological responses. Urine toxicology was positive for cannabis. Chronic marijuana smoking causes visible and microscopic injury to the larger airways responsible for symptoms or chronic bronchitis. We review the beneficial and deleterious effects of marijuana and describe a case of significant hemoptysis attributed to smoking marijuana. In addition to other respiratory complications of marijuana use, physicians should educate their patients about this potentially lethal effect of marijuana smoking in the form of hemoptysis. PMID:27043693

  10. Should we eat less salt?

    PubMed

    Delahaye, François

    2013-05-01

    High blood pressure is a major cardiovascular risk factor. There is overwhelming evidence that high salt consumption is a major cause of increased blood pressure. There is also a link between high salt consumption and risk of stroke, left ventricular hypertrophy, renal disease, obesity, renal stones and stomach cancer. Reducing salt consumption leads to a decrease in blood pressure and the incidence of cardiovascular disease. There are no deleterious effects associated with reducing salt consumption and it is also very cost-effective. Many organizations and state governments have issued recommendations regarding the suitable amount of salt consumption. In France, the objective is a salt consumption<8g/day in men and<6.5g/day in women and children. As 80% of consumed salt comes from manufactured products in developed countries, reduction of salt consumption requires the participation of the food industry. The other tool is consumer information and education. Salt consumption has already decreased in France in recent years, but efforts must continue. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Pro-environmental beach driving is uncommon and ineffective in reducing disturbance to beach-dwelling birds.

    PubMed

    Weston, Michael A; Schlacher, Thomas A; Lynn, David

    2014-05-01

    Vehicles on beaches cause numerous deleterious effects to coastal wildlife. These impacts may, hypothetically, be lessened if drivers act to reduce disturbance. Since it is unknown to what extent such behavior occurs, and whether it can reduce disturbance, we quantified the behavior of drivers who encountered birds on open-coast, sandy beaches in eastern Australia and the consequent bird responses. Drivers of commercial tourist buses never slowed or altered course ("evaded birds") to avoid disturbing birds; conversely, 34 % of drivers of private cars did evade birds. Drivers of vehicles with fishing rod holders tended (P = 0.09) to evade birds more frequently than non-fishing vehicles. Evasion, when it occurred, was modest, and did not significantly decrease the intensity of bird response or the probability of escapes on the wing. Voluntary behavioral adjustments to alleviate impacts on wildlife may be unworkable, suggesting that other solutions (e.g., beach closures) might be the only effective and feasible way to reduce disturbance to birds on ocean beaches.

  12. Is social media bad for mental health and wellbeing? Exploring the perspectives of adolescents.

    PubMed

    O'Reilly, Michelle; Dogra, Nisha; Whiteman, Natasha; Hughes, Jason; Eruyar, Seyda; Reilly, Paul

    2018-05-01

    Despite growing evidence of the effects of social media on the mental health of adolescents, there is still a dearth of empirical research into how adolescents themselves perceive social media, especially as knowledge resource, or how they draw upon the wider social and media discourses to express a viewpoint. Accordingly, this article contributes to this scarce literature. Six focus groups took place over 3 months with 54 adolescents aged 11-18 years, recruited from schools in Leicester and London (UK). Thematic analysis suggested that adolescents perceived social media as a threat to mental wellbeing and three themes were identified: (1) it was believed to cause mood and anxiety disorders for some adolescents, (2) it was viewed as a platform for cyberbullying and (3) the use of social media itself was often framed as a kind of 'addiction'. Future research should focus on targeting and utilising social media for promoting mental wellbeing among adolescents and educating youth to manage the possible deleterious effects.

  13. 21 CFR 250.201 - Preparations for the treatment of pernicious anemia.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... be markedly deleterious effects on the nervous system. It is well established that whereas the development of anemia is completely reversible with adequate treatment, the involvement of the nervous system...

  14. 21 CFR 250.201 - Preparations for the treatment of pernicious anemia.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... be markedly deleterious effects on the nervous system. It is well established that whereas the development of anemia is completely reversible with adequate treatment, the involvement of the nervous system...

  15. 21 CFR 250.201 - Preparations for the treatment of pernicious anemia.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... be markedly deleterious effects on the nervous system. It is well established that whereas the development of anemia is completely reversible with adequate treatment, the involvement of the nervous system...

  16. 21 CFR 250.201 - Preparations for the treatment of pernicious anemia.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... be markedly deleterious effects on the nervous system. It is well established that whereas the development of anemia is completely reversible with adequate treatment, the involvement of the nervous system...

  17. 21 CFR 250.201 - Preparations for the treatment of pernicious anemia.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... be markedly deleterious effects on the nervous system. It is well established that whereas the development of anemia is completely reversible with adequate treatment, the involvement of the nervous system...

  18. De novo PHIP-predicted deleterious variants are associated with developmental delay, intellectual disability, obesity, and dysmorphic features.

    PubMed

    Webster, Emily; Cho, Megan T; Alexander, Nora; Desai, Sonal; Naidu, Sakkubai; Bekheirnia, Mir Reza; Lewis, Andrea; Retterer, Kyle; Juusola, Jane; Chung, Wendy K

    2016-11-01

    Using whole-exome sequencing, we have identified novel de novo heterozygous pleckstrin homology domain-interacting protein ( PHIP ) variants that are predicted to be deleterious, including a frameshift deletion, in two unrelated patients with common clinical features of developmental delay, intellectual disability, anxiety, hypotonia, poor balance, obesity, and dysmorphic features. A nonsense mutation in PHIP has previously been associated with similar clinical features. Patients with microdeletions of 6q14.1, including PHIP , have a similar phenotype of developmental delay, intellectual disability, hypotonia, and obesity, suggesting that the phenotype of our patients is a result of loss-of-function mutations. PHIP produces multiple protein products, such as PHIP1 (also known as DCAF14), PHIP, and NDRP. PHIP1 is one of the multiple substrate receptors of the proteolytic CUL4-DDB1 ubiquitin ligase complex. CUL4B deficiency has been associated with intellectual disability, central obesity, muscle wasting, and dysmorphic features. The overlapping phenotype associated with CUL4B deficiency suggests that PHIP mutations cause disease through disruption of the ubiquitin ligase pathway.

  19. ANMCO/AIOM/AICO Consensus Document on clinical and management pathways of cardio-oncology: executive summary.

    PubMed

    Tarantini, Luigi; Massimo Gulizia, Michele; Di Lenarda, Andrea; Maurea, Nicola; Giuseppe Abrignani, Maurizio; Bisceglia, Irma; Bovelli, Daniella; De Gennaro, Luisa; Del Sindaco, Donatella; Macera, Francesca; Parrini, Iris; Radini, Donatella; Russo, Giulia; Beatrice Scardovi, Angela; Inno, Alessandro

    2017-05-01

    Cardiovascular disease and cancer are leading causes of death. Both diseases share the same risk factors and, having the highest incidence and prevalence in the elderly, they often coexist in the same individual. Furthermore, the enhanced survival of cancer patients registered in the last decades and linked to early diagnosis and improvement of care, not infrequently exposes them to the appearance of ominous cardiovascular complications due to the deleterious effects of cancer treatment on the heart and circulatory system. The above considerations have led to the development of a new branch of clinical cardiology based on the principles of multidisciplinary collaboration between cardiologists and oncologists: Cardio-oncology, which aims to find solutions to the prevention, monitoring, diagnosis and treatment of heart damage induced by cancer care in order to pursue, in the individual patient, the best possible care for cancer while minimizing the risk of cardiac toxicity. In this consensus document we provide practical recommendations on how to assess, monitor, treat and supervise the candidate or patient treated with potentially cardiotoxic cancer therapy in order to treat cancer and protect the heart at all stages of the oncological disease. Cardiovascular diseases and cancer often share the same risk factors and can coexist in the same individual. Such possibility is amplified by the deleterious effects of cancer treatment on the heart. The above considerations have led to the development of a new branch of clinical cardiology, based on multidisciplinary collaboration between cardiologist and oncologist: the cardio-oncology. It aims to prevent, monitor, and treat heart damages induced by cancer therapies in order to achieve the most effective cancer treatment, while minimizing the risk of cardiac toxicity. In this paper, we provide practical recommendations on how to assess, monitor, treat and supervise patients treated with potential cardiotoxic cancer therapies.

  20. ANMCO/AIOM/AICO Consensus Document on clinical and management pathways of cardio-oncology: executive summary

    PubMed Central

    Tarantini, Luigi; Massimo Gulizia, Michele; Di Lenarda, Andrea; Maurea, Nicola; Giuseppe Abrignani, Maurizio; Bisceglia, Irma; Bovelli, Daniella; De Gennaro, Luisa; Del Sindaco, Donatella; Macera, Francesca; Parrini, Iris; Radini, Donatella; Russo, Giulia; Beatrice Scardovi, Angela; Inno, Alessandro

    2017-01-01

    Abstract Cardiovascular disease and cancer are leading causes of death. Both diseases share the same risk factors and, having the highest incidence and prevalence in the elderly, they often coexist in the same individual. Furthermore, the enhanced survival of cancer patients registered in the last decades and linked to early diagnosis and improvement of care, not infrequently exposes them to the appearance of ominous cardiovascular complications due to the deleterious effects of cancer treatment on the heart and circulatory system. The above considerations have led to the development of a new branch of clinical cardiology based on the principles of multidisciplinary collaboration between cardiologists and oncologists: Cardio-oncology, which aims to find solutions to the prevention, monitoring, diagnosis and treatment of heart damage induced by cancer care in order to pursue, in the individual patient, the best possible care for cancer while minimizing the risk of cardiac toxicity. In this consensus document we provide practical recommendations on how to assess, monitor, treat and supervise the candidate or patient treated with potentially cardiotoxic cancer therapy in order to treat cancer and protect the heart at all stages of the oncological disease. Cardiovascular diseases and cancer often share the same risk factors and can coexist in the same individual. Such possibility is amplified by the deleterious effects of cancer treatment on the heart. The above considerations have led to the development of a new branch of clinical cardiology, based on multidisciplinary collaboration between cardiologist and oncologist: the cardio-oncology. It aims to prevent, monitor, and treat heart damages induced by cancer therapies in order to achieve the most effective cancer treatment, while minimizing the risk of cardiac toxicity. In this paper, we provide practical recommendations on how to assess, monitor, treat and supervise patients treated with potential cardiotoxic cancer therapies. PMID:28751851

  1. Double Hits in Schizophrenia.

    PubMed

    Vorstman, Jacob A S; Olde Loohuis, Loes M; Kahn, René S; Ophoff, Roel A

    2018-05-14

    The co-occurrence of a Copy Number Variant (CNV) and a functional variant on the other allele may be a relevant genetic mechanism in schizophrenia. We hypothesized that the cumulative burden of such double hits - in particular those composed of a deletion and a coding single nucleotide variation (SNV) - is increased in patients with schizophrenia.We combined CNV data with coding variants data in 795 patients with schizophrenia and 474 controls. To limit false CNV-detection, only CNVs called only by two algorithms we included. CNV-affected genes were subsequently examined for coding SNVs, which we termed "CNV-SNVs". Correcting for total queried sequence, we assessed the CNV-SNV-burden and the combined predicted deleterious effect. We estimated p-values by permutation of the phenotype.We detected 105 CNV-SNVs; 67 in duplicated and 38 in deleted genic sequence. While the difference in CNV-SNVs rates was not significant, the combined deleteriousness inferred by CNV-SNVs in deleted sequence was almost fourfold higher in cases compared to controls (nominal p = 0.009). This effect may be driven by a higher number of CNV-SNVs and/or by a higher degree of predicted deleteriousness of CNV-SNVs. No such effect was observed for duplications.We provide early evidence that deletions co-occurring with a functional variant may be relevant, albeit of modest impact, for the genetic etiology of schizophrenia. Large-scale consortium studies are required to validate our findings. Sequence-based analyses would provide the best resolution for detection of CNVs as well as coding variants genome-wide.

  2. Similar Efficacies of Selection Shape Mitochondrial and Nuclear Genes in Both Drosophila melanogaster and Homo sapiens.

    PubMed

    Cooper, Brandon S; Burrus, Chad R; Ji, Chao; Hahn, Matthew W; Montooth, Kristi L

    2015-08-21

    Deleterious mutations contribute to polymorphism even when selection effectively prevents their fixation. The efficacy of selection in removing deleterious mitochondrial mutations from populations depends on the effective population size (Ne) of the mitochondrial DNA and the degree to which a lack of recombination magnifies the effects of linked selection. Using complete mitochondrial genomes from Drosophila melanogaster and nuclear data available from the same samples, we reexamine the hypothesis that nonrecombining animal mitochondrial DNA harbor an excess of deleterious polymorphisms relative to the nuclear genome. We find no evidence of recombination in the mitochondrial genome, and the much-reduced level of mitochondrial synonymous polymorphism relative to nuclear genes is consistent with a reduction in Ne. Nevertheless, we find that the neutrality index, a measure of the excess of nonsynonymous polymorphism relative to the neutral expectation, is only weakly significantly different between mitochondrial and nuclear loci. This difference is likely the result of the larger proportion of beneficial mutations in X-linked relative to autosomal loci, and we find little to no difference between mitochondrial and autosomal neutrality indices. Reanalysis of published data from Homo sapiens reveals a similar lack of a difference between the two genomes, although previous studies have suggested a strong difference in both species. Thus, despite a smaller Ne, mitochondrial loci of both flies and humans appear to experience similar efficacies of purifying selection as do loci in the recombining nuclear genome. Copyright © 2015 Cooper et al.

  3. The sheltered genetic load linked to the s locus in plants: new insights from theoretical and empirical approaches in sporophytic self-incompatibility.

    PubMed

    Llaurens, Violaine; Gonthier, Lucy; Billiard, Sylvain

    2009-11-01

    Inbreeding depression and mating systems evolution are closely linked, because the purging of deleterious mutations and the fitness of individuals may depend on outcrossing vs. selfing rates. Further, the accumulation of deleterious mutations may vary among genomic regions, especially for genes closely linked to loci under balancing selection. Sporophytic self-incompatibility (SSI) is a common genetic mechanism in angiosperm that enables hermaphrodite plants to avoid selfing and promote outcrossing. The SSI phenotype is determined by the S locus and may depend on dominance relationships among alleles. Since most individuals are heterozygous at the S locus and recombination is suppressed in the S-locus region, it has been suggested that deleterious mutations could accumulate at genes linked to the S locus, generating a "sheltered load." In this article, we first theoretically investigate the conditions generating sheltered load in SSI. We show that deleterious mutations can accumulate in linkage with specific S alleles, and particularly if those S alleles are dominant. Second, we looked for the presence of sheltered load in Arabidopsis halleri using CO(2) gas treatment to overcome self-incompatibility. By examining the segregation of S alleles and measuring the relative fitness of progeny, we found significant sheltered load associated with the most dominant S allele (S15) of three S alleles tested. This sheltered load seems to be expressed at several stages of the life cycle and to have a larger effect than genomic inbreeding depression.

  4. Inference of the Distribution of Selection Coefficients for New Nonsynonymous Mutations Using Large Samples

    PubMed Central

    Kim, Bernard Y.; Huber, Christian D.; Lohmueller, Kirk E.

    2017-01-01

    The distribution of fitness effects (DFE) has considerable importance in population genetics. To date, estimates of the DFE come from studies using a small number of individuals. Thus, estimates of the proportion of moderately to strongly deleterious new mutations may be unreliable because such variants are unlikely to be segregating in the data. Additionally, the true functional form of the DFE is unknown, and estimates of the DFE differ significantly between studies. Here we present a flexible and computationally tractable method, called Fit∂a∂i, to estimate the DFE of new mutations using the site frequency spectrum from a large number of individuals. We apply our approach to the frequency spectrum of 1300 Europeans from the Exome Sequencing Project ESP6400 data set, 1298 Danes from the LuCamp data set, and 432 Europeans from the 1000 Genomes Project to estimate the DFE of deleterious nonsynonymous mutations. We infer significantly fewer (0.38–0.84 fold) strongly deleterious mutations with selection coefficient |s| > 0.01 and more (1.24–1.43 fold) weakly deleterious mutations with selection coefficient |s| < 0.001 compared to previous estimates. Furthermore, a DFE that is a mixture distribution of a point mass at neutrality plus a gamma distribution fits better than a gamma distribution in two of the three data sets. Our results suggest that nearly neutral forces play a larger role in human evolution than previously thought. PMID:28249985

  5. Validation of Deleterious Mutations in Vorderwald Cattle

    PubMed Central

    Reinartz, Sina; Distl, Ottmar

    2016-01-01

    In Montbéliarde cattle two candidate mutations on bovine chromosomes 19 and 29 responsible for embryonic lethality have been detected. Montbéliarde bulls have been introduced into Vorderwald cattle to improve milk and fattening performance. Due to the small population size of Vorderwald cattle and the wide use of a few Montbéliarde bulls through artificial insemination, inbreeding on Montbéliarde bulls in later generations was increasing. Therefore, we genotyped an aborted fetus which was inbred on Montbéliarde as well as Vorderwald x Montbéliarde crossbred bulls for both deleterious mutations. The abortion was observed in an experimental herd of Vorderwald cattle. The objectives of the present study were to prove if one or both lethal mutations may be assumed to have caused this abortion and to show whether these deleterious mutations have been introduced into the Vorderwald cattle population through Montbéliarde bulls. The aborted fetus was homozygous for the SLC37A2:g.28879810C>T mutation (ss2019324563) on BTA29 and both parents as well as the paternal and maternal grandsire were heterozygous for this mutation. In addition, the parents and the paternal grandsire were carriers of the MH2-haplotype linked with the T-allele of the SLC37A2:g.28879810C>T mutation. For the SHBG:g.27956790C>T mutation (rs38377500) on BTA19 (MH1), the aborted fetus and its sire were heterozygous. Among all further 341 Vorderwald cattle genotyped we found 27 SLC37A2:g.28879810C>T heterozygous animals resulting in an allele frequency of 0.0396. Among the 120 male Vorderwald cattle, there were 12 heterozygous with an allele frequency of 0.05. The SLC37A2:g.28879810C>T mutation could not be found in further nine cattle breeds nor in Vorderwald cattle with contributions from Ayrshire bulls. In 69 Vorderwald cattle without genes from Montbéliarde bulls the mutated allele of SLC37A2:g.28879810C>T could not be detected. The SHBG:g.27956790C>T mutation appeared unlikely to be responsible for the present case of abortion and, in addition, we observed this mutation in a homozygous state in a living animal. In conclusion, we could demonstrate the first case of an aborted fetus carrying the deleterious SLC37A2:g.28879810C>T mutation homozygous and show that this deleterious mutation had been introduced through Montbéliarde bulls into Vorderwald cattle. PMID:27472836

  6. Too much sitting and all-cause mortality: is there a causal link?

    PubMed

    Biddle, Stuart J H; Bennie, Jason A; Bauman, Adrian E; Chau, Josephine Y; Dunstan, David; Owen, Neville; Stamatakis, Emmanuel; van Uffelen, Jannique G Z

    2016-07-26

    Sedentary behaviours (time spent sitting, with low energy expenditure) are associated with deleterious health outcomes, including all-cause mortality. Whether this association can be considered causal has yet to be established. Using systematic reviews and primary studies from those reviews, we drew upon Bradford Hill's criteria to consider the likelihood that sedentary behaviour in epidemiological studies is likely to be causally related to all-cause (premature) mortality. Searches for systematic reviews on sedentary behaviours and all-cause mortality yielded 386 records which, when judged against eligibility criteria, left eight reviews (addressing 17 primary studies) for analysis. Exposure measures included self-reported total sitting time, TV viewing time, and screen time. Studies included comparisons of a low-sedentary reference group with several higher sedentary categories, or compared the highest versus lowest sedentary behaviour groups. We employed four Bradford Hill criteria: strength of association, consistency, temporality, and dose-response. Evidence supporting causality at the level of each systematic review and primary study was judged using a traffic light system depicting green for causal evidence, amber for mixed or inconclusive evidence, and red for no evidence for causality (either evidence of no effect or no evidence reported). The eight systematic reviews showed evidence for consistency (7 green) and temporality (6 green), and some evidence for strength of association (4 green). There was no evidence for a dose-response relationship (5 red). Five reviews were rated green overall. Twelve (67 %) of the primary studies were rated green, with evidence for strength and temporality. There is reasonable evidence for a likely causal relationship between sedentary behaviour and all-cause mortality based on the epidemiological criteria of strength of association, consistency of effect, and temporality.

  7. Heterozygous Mutations Causing Partial Prohormone Convertase 1 Deficiency Contribute to Human Obesity

    PubMed Central

    Creemers, John W.M.; Choquet, Hélène; Stijnen, Pieter; Vatin, Vincent; Pigeyre, Marie; Beckers, Sigri; Meulemans, Sandra; Than, Manuel E.; Yengo, Loïc; Tauber, Maithé; Balkau, Beverley; Elliott, Paul; Jarvelin, Marjo-Riitta; Van Hul, Wim; Van Gaal, Luc; Horber, Fritz; Pattou, François; Froguel, Philippe; Meyre, David

    2012-01-01

    Null mutations in the PCSK1 gene, encoding the proprotein convertase 1/3 (PC1/3), cause recessive monogenic early onset obesity. Frequent coding variants that modestly impair PC1/3 function mildly increase the risk for common obesity. The aim of this study was to determine the contribution of rare functional PCSK1 mutations to obesity. PCSK1 exons were sequenced in 845 nonconsanguineous extremely obese Europeans. Eight novel nonsynonymous PCSK1 mutations were identified, all heterozygous. Seven mutations had a deleterious effect on either the maturation or the enzymatic activity of PC1/3 in cell lines. Of interest, five of these novel mutations, one of the previously described frequent variants (N221D), and the mutation found in an obese mouse model (N222D), affect residues at or near the structural calcium binding site Ca-1. The prevalence of the newly identified mutations was assessed in 6,233 obese and 6,274 lean European adults and children, which showed that carriers of any of these mutations causing partial PCSK1 deficiency had an 8.7-fold higher risk to be obese than wild-type carriers. These results provide the first evidence of an increased risk of obesity in heterozygous carriers of mutations in the PCSK1 gene. Furthermore, mutations causing partial PCSK1 deficiency are present in 0.83% of extreme obesity phenotypes. PMID:22210313

  8. Heterozygous mutations causing partial prohormone convertase 1 deficiency contribute to human obesity.

    PubMed

    Creemers, John W M; Choquet, Hélène; Stijnen, Pieter; Vatin, Vincent; Pigeyre, Marie; Beckers, Sigri; Meulemans, Sandra; Than, Manuel E; Yengo, Loïc; Tauber, Maithé; Balkau, Beverley; Elliott, Paul; Jarvelin, Marjo-Riitta; Van Hul, Wim; Van Gaal, Luc; Horber, Fritz; Pattou, François; Froguel, Philippe; Meyre, David

    2012-02-01

    Null mutations in the PCSK1 gene, encoding the proprotein convertase 1/3 (PC1/3), cause recessive monogenic early onset obesity. Frequent coding variants that modestly impair PC1/3 function mildly increase the risk for common obesity. The aim of this study was to determine the contribution of rare functional PCSK1 mutations to obesity. PCSK1 exons were sequenced in 845 nonconsanguineous extremely obese Europeans. Eight novel nonsynonymous PCSK1 mutations were identified, all heterozygous. Seven mutations had a deleterious effect on either the maturation or the enzymatic activity of PC1/3 in cell lines. Of interest, five of these novel mutations, one of the previously described frequent variants (N221D), and the mutation found in an obese mouse model (N222D), affect residues at or near the structural calcium binding site Ca-1. The prevalence of the newly identified mutations was assessed in 6,233 obese and 6,274 lean European adults and children, which showed that carriers of any of these mutations causing partial PCSK1 deficiency had an 8.7-fold higher risk to be obese than wild-type carriers. These results provide the first evidence of an increased risk of obesity in heterozygous carriers of mutations in the PCSK1 gene. Furthermore, mutations causing partial PCSK1 deficiency are present in 0.83% of extreme obesity phenotypes.

  9. Point mutation in D8C domain of Tamm-Horsfall protein/uromodulin in transgenic mice causes progressive renal damage and hyperuricemia

    PubMed Central

    Landry, Nichole K.; El-Achkar, Tarek M.; Lieske, John C.

    2017-01-01

    Hereditary mutations in Tamm-Horsfall protein (THP/uromodulin) gene cause autosomal dominant kidney diseases characterized by juvenile-onset hyperuricemia, gout and progressive kidney failure, although the disease pathogenesis remains unclear. Here we show that targeted expression in transgenic mice of a mutation within the domain of 8 cysteines of THP in kidneys’ thick ascending limb (TAL) caused unfolded protein response in younger (1-month old) mice and apoptosis in older (12-month old) mice. While the young mice had urine concentration defects and polyuria, such defects progressively reversed in the older mice to marked oliguria, highly concentrated urine, fibrotic kidneys and reduced creatinine clearance. Both the young and the old transgenic mice had significantly higher serum uric acid and its catabolic product, allantoin, than age-matched wild-type mice. This THP mutation apparently caused primary defects in TAL by compromising the luminal translocation and reabsorptive functions of NKCC2 and ROMK and secondary responses in proximal tubules by upregulating NHE3 and URAT1. Our results strongly suggest that the progressive worsening of kidney functions reflects the accumulation of the deleterious effects of the misfolded mutant THP and the compensatory responses. Transgenic mice recapitulating human THP/uromodulin-associated kidney diseases could be used to elucidate their pathogenesis and test novel therapeutic strategies. PMID:29145399

  10. Point mutation in D8C domain of Tamm-Horsfall protein/uromodulin in transgenic mice causes progressive renal damage and hyperuricemia.

    PubMed

    Ma, Lijie; Liu, Yan; Landry, Nichole K; El-Achkar, Tarek M; Lieske, John C; Wu, Xue-Ru

    2017-01-01

    Hereditary mutations in Tamm-Horsfall protein (THP/uromodulin) gene cause autosomal dominant kidney diseases characterized by juvenile-onset hyperuricemia, gout and progressive kidney failure, although the disease pathogenesis remains unclear. Here we show that targeted expression in transgenic mice of a mutation within the domain of 8 cysteines of THP in kidneys' thick ascending limb (TAL) caused unfolded protein response in younger (1-month old) mice and apoptosis in older (12-month old) mice. While the young mice had urine concentration defects and polyuria, such defects progressively reversed in the older mice to marked oliguria, highly concentrated urine, fibrotic kidneys and reduced creatinine clearance. Both the young and the old transgenic mice had significantly higher serum uric acid and its catabolic product, allantoin, than age-matched wild-type mice. This THP mutation apparently caused primary defects in TAL by compromising the luminal translocation and reabsorptive functions of NKCC2 and ROMK and secondary responses in proximal tubules by upregulating NHE3 and URAT1. Our results strongly suggest that the progressive worsening of kidney functions reflects the accumulation of the deleterious effects of the misfolded mutant THP and the compensatory responses. Transgenic mice recapitulating human THP/uromodulin-associated kidney diseases could be used to elucidate their pathogenesis and test novel therapeutic strategies.

  11. Effect of Green Macroalgal Blooms on the Survival, Growth, and Behavior of Cockles in Pacific NW Estuaries

    EPA Science Inventory

    Nutrient over-enrichment of estuaries is a pervasive issue worldwide that often results in blooms of green macroalgae (GMA; Ulva spp.), which can have disruptive and deleterious effects to estuarine flora and fauna. However, little is known of the effects of GMA blooms on the pr...

  12. NAS Report Reveals Dangers From SST

    ERIC Educational Resources Information Center

    Fowler, Jo Ann V.

    1973-01-01

    Reported are some harmful effects of supersonic travel on humans and other living organisms. Slight decreases in ozone concentration as a result of emissions from the SST aircrafts reduce absorption of ultraviolet radiation. Effects of this may include skin cancer, distort balance of activity in cells and have a deleterious effect on insects and…

  13. 77 FR 62285 - Self-Regulatory Organizations; NASDAQ OMX BX, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... other markets and thereby allows market participants to react to the execution (an effect known as... BX available shares and routing to other venues' shares will avoid the deleterious effect of market... Orders To Simultaneously Execute Against Exchange Available Shares and Route to Other Markets for...

  14. Effects of prenatal diesel exhaust inhalation on pulmonary inflammation and development of specific immune responses

    EPA Science Inventory

    There is increasing evidence that exposure to air pollutants during pregnancy can result in a number of deleterious effects including low birth weight and the incidence of allergic asthma. To investigate the in utero effects of DE exposure, timed pregnant BALB/c mice were exposed...

  15. A Theory of Age-Dependent Mutation and Senescence

    PubMed Central

    Moorad, Jacob A.; Promislow, Daniel E. L.

    2008-01-01

    Laboratory experiments show us that the deleterious character of accumulated novel age-specific mutations is reduced and made less variable with increased age. While theories of aging predict that the frequency of deleterious mutations at mutation–selection equilibrium will increase with the mutation's age of effect, they do not account for these age-related changes in the distribution of de novo mutational effects. Furthermore, no model predicts why this dependence of mutational effects upon age exists. Because the nature of mutational distributions plays a critical role in shaping patterns of senescence, we need to develop aging theory that explains and incorporates these effects. Here we propose a model that explains the age dependency of mutational effects by extending Fisher's geometrical model of adaptation to include a temporal dimension. Using a combination of simple analytical arguments and simulations, we show that our model predicts age-specific mutational distributions that are consistent with observations from mutation-accumulation experiments. Simulations show us that these age-specific mutational effects may generate patterns of senescence at mutation–selection equilibrium that are consistent with observed demographic patterns that are otherwise difficult to explain. PMID:18660535

  16. Effect of socioeconomic status disparity on child language and neural outcome: how early is early?

    PubMed

    Hurt, Hallam; Betancourt, Laura M

    2016-01-01

    It is not news that poverty adversely affects child outcome. The literature is replete with reports of deleterious effects on developmental outcome, cognitive function, and school performance in children and youth. Causative factors include poor nutrition, exposure to toxins, inadequate parenting, lack of cognitive stimulation, unstable social support, genetics, and toxic environments. Less is known regarding how early in life adverse effects may be detected. This review proposes to elucidate "how early is early" through discussion of seminal articles related to the effect of socioeconomic status on language outcome and a discussion of the emerging literature on effects of socioeconomic status disparity on brain structure in very young children. Given the young ages at which such outcomes are detected, the critical need for early targeted interventions for our youngest is underscored. Further, the fiscal reasonableness of initiating quality interventions supports these initiatives. As early life adversity produces lasting and deleterious effects on developmental outcome and brain structure, increased focus on programs and policies directed to reducing the impact of socioeconomic disparities is essential.

  17. Beneficial effects of neotyphodium tembladerae and neotyphodium pampeanum on a wild forage grass

    USDA-ARS?s Scientific Manuscript database

    Asexual, vertically transmitted fungal endophytes of the genus Neotyphodium are considered to enhance growth, stress resistance and competitiveness of agronomic grasses, but have been suggested to have neutral or deleterious effects on wild grasses. We studied whether the associations between Bromus...

  18. Beneficial effects of Neotyphodium tembladerae and Neotyphodium pampeanum on a wild forage grass

    USDA-ARS?s Scientific Manuscript database

    Asexual, vertically transmitted fungal endophytes of the genus Neotyphodium are considered to enhance growth, stress resistance and competitiveness of agronomic grasses, but have been suggested to have neutral or deleterious effects on wild grasses. We studied whether the associations between Bromus...

  19. Entomotoxicity Assay of Silica, Zinc Oxide, Titanium Dioxide, Aluminium Oxide Nanoparticles on Lipaphis pseudobrassicae

    NASA Astrophysics Data System (ADS)

    Debnath, Nitai; Das, Sumistha; Brahmachary, R. L.; Chandra, Ramesh; Sudan, Sandeep; Goswami, Arunava

    2010-10-01

    High volume uses of conventional pesticides end up contaminating ground water and soil with highly toxic pesticide residues. Nano-pesticides and nano-encapsulated pesticides are expected to reduce the volume of application and slow down the fast release kinetics. Nature inspired Diatomaceous Earth (DE) were used to design and fabricate a variety of 15-50 nm size range hydrophilic, hydrophobic and lipophilic SiO2, ZnO, TiO2 (anatase and rutile) and Al2O3 (α and γ) nanoparticles (Nanocides). Mustard aphid (Lipaphis pseudobrassicae) causes devastations on oil producing mustard crops every year in Asia. Due to several distinct adaptations present in insects, tools of Genetics, Plant breeding, Biochemistry and Transgenic technology have not been so far effective. Nano Al2O3 and amorphous nano SiO2 were found to be highly effective and nano TiO2 was moderately effective against L. pseudobrassicae. But nano Al2O3 has deleterious effects on plant growth, whereas non crystalline nano SiO2 has no such adverse effect on plants. Here we present the first report showing that nanocides, especially nano SiO2 can be effectively used to control insect pests.

  20. Neonicotinoid insecticides negatively affect performance measures of non‐target terrestrial arthropods: a meta‐analysis

    USGS Publications Warehouse

    Main, Anson; Webb, Elisabeth B.; Goyne, Keith W.; Mengel, Doreen C.

    2018-01-01

    Neonicotinoid insecticides are currently the fastest‐growing and most widely used insecticide class worldwide. Valued for their versatility in application, these insecticides may cause deleterious effects in a range of non‐target (beneficial) arthropods. However, it remains unclear whether strong patterns exist in terms of their major effects, if broad measures of arthropod performance are negatively affected, or whether different functional groups are equally vulnerable. Here, we present a meta‐analysis of 372 observations from 44 field and laboratory studies that describe neonicotinoid effects on 14 arthropod orders across five broad performance measures: abundance, behavior, condition, reproductive success, and survival. Across studies, neonicotinoids negatively affected all performance metrics evaluated; however, magnitude of the effects varied. Arthropod behavior and survival were the most negatively affected and abundance was the least negatively affected. Effects on arthropod functional groups were inconsistent. Pollinator condition, reproductive success, and survival were significantly lower in neonicotinoid treatments compared to untreated controls; whereas, neonicotinoid effects on detritivores were not significant. Although magnitude of arthropod response to neonicotinoids varied among performance measures and functional groups, we documented a consistent negative relationship between exposure to neonicotinoid insecticides in published studies and beneficial arthropod performance.

  1. Integrating in silico prediction methods, molecular docking, and molecular dynamics simulation to predict the impact of ALK missense mutations in structural perspective.

    PubMed

    Doss, C George Priya; Chakraborty, Chiranjib; Chen, Luonan; Zhu, Hailong

    2014-01-01

    Over the past decade, advancements in next generation sequencing technology have placed personalized genomic medicine upon horizon. Understanding the likelihood of disease causing mutations in complex diseases as pathogenic or neutral remains as a major task and even impossible in the structural context because of its time consuming and expensive experiments. Among the various diseases causing mutations, single nucleotide polymorphisms (SNPs) play a vital role in defining individual's susceptibility to disease and drug response. Understanding the genotype-phenotype relationship through SNPs is the first and most important step in drug research and development. Detailed understanding of the effect of SNPs on patient drug response is a key factor in the establishment of personalized medicine. In this paper, we represent a computational pipeline in anaplastic lymphoma kinase (ALK) for SNP-centred study by the application of in silico prediction methods, molecular docking, and molecular dynamics simulation approaches. Combination of computational methods provides a way in understanding the impact of deleterious mutations in altering the protein drug targets and eventually leading to variable patient's drug response. We hope this rapid and cost effective pipeline will also serve as a bridge to connect the clinicians and in silico resources in tailoring treatments to the patients' specific genotype.

  2. Omega-3 polyunsaturated fatty acid docosahexaenoic acid and its role in exhaustive-exercise-induced changes in female rat ovulatory cycle.

    PubMed

    Mostafa, Abeer F; Samir, Shereen M; Nagib, R M

    2018-04-01

    Exhaustive exercises can cause delayed menarche or menstrual cycle irregularities in females. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are incorporated into a wide range of benefits in many physiological systems. Our work aimed to assess the role of ω-3 PUFA docosahexaenoic acid (DHA) on the deleterious effects of exhaustive exercise on the female reproductive system in rats. Virgin female rats were randomly divided into 4 groups (12 rats in each): control group, omega-3 group treated with DHA, exhaustive exercise group, and exhaustive exercised rats treated with DHA. Omega-3 was given orally to the rats once daily for 4 estrous cycles. Exhaustive exercises revealed lower levels in progesterone and gonadotropins together with histopathological decrease in number of growing follicles and corpora lutea. Moreover, the exercised rats showed low levels of ovarian antioxidants with high level of caspase-3 and plasma cortisol level that lead to disruption of hypothalamic-pituitary-gonadal axis. ω-3 PUFA DHA has beneficial effects on the number of newly growing follicles in both sedentary and exercised rats with decreasing the level of caspase-3 and increasing the antioxidant activity in ovaries. Exhaustive exercises can cause ovulatory problems in female rats that can be improved by ω-3 supplementation.

  3. HUMAN EXPOSURE MODELING: CONCEPTS, METHODS, AND TOOLS

    EPA Science Inventory

    Understanding human exposure is critical when estimating the occurrence of deleterious effects that could follow contact with environmental contaminants. For many pollutants, the intensity, duration, frequency, route, and timing of exposure is highly variable, particularly whe...

  4. Transient Blockade of ERK Phosphorylation in the Critical Period Causes Autistic Phenotypes as an Adult in Mice

    PubMed Central

    Yufune, Shinya; Satoh, Yasushi; Takamatsu, Isao; Ohta, Hiroyuki; Kobayashi, Yasushi; Takaenoki, Yumiko; Pagès, Gilles; Pouysségur, Jacques; Endo, Shogo; Kazama, Tomiei

    2015-01-01

    The critical period is a distinct time-window during the neonatal stage when animals display elevated sensitivity to certain environmental stimuli, and particular experiences can have profound and long-lasting effects on behaviors. Increasing evidence suggests that disruption of neuronal activity during the critical period contributes to autistic phenotype, although the pathogenic mechanism is largely unknown. Herein we show that extracellular signal-regulated protein kinases (ERKs) play important roles in proper formation of neural circuits during the critical period. Transient blockade of ERKs phosphorylation at postnatal day 6 (P6) by intraperitoneal injection of blood-brain barrier-penetrating MEK inhibitor, α-[amino[(4-aminophenyl)thio]methylene]-2-(trifluoromethyl)benzeneacetonitrile (SL327) caused significant increase of apoptosis in the forebrain. Furthermore, this induced long-term deleterious effects on brain functioning later in adulthood, resulting in social deficits, impaired memory and reduced long-term potentiation (LTP). Conversely, blockade of ERK phosphorylation at P14 no longer induced apoptosis, nor behavioral deficits, nor the reduced LTP. Thus, surprisingly, these effects of ERKs are strongly age-dependent, indicating that phosphorylation of ERKs during the critical period is absolutely required for proper development of brain functioning. This study provides novel insight into the mechanistic basis for neurodevelopment disorders: various neurodevelopment disorders might be generally linked to defects in ERKs signaling during the critical period. PMID:25993696

  5. Transient Blockade of ERK Phosphorylation in the Critical Period Causes Autistic Phenotypes as an Adult in Mice.

    PubMed

    Yufune, Shinya; Satoh, Yasushi; Takamatsu, Isao; Ohta, Hiroyuki; Kobayashi, Yasushi; Takaenoki, Yumiko; Pagès, Gilles; Pouysségur, Jacques; Endo, Shogo; Kazama, Tomiei

    2015-05-20

    The critical period is a distinct time-window during the neonatal stage when animals display elevated sensitivity to certain environmental stimuli, and particular experiences can have profound and long-lasting effects on behaviors. Increasing evidence suggests that disruption of neuronal activity during the critical period contributes to autistic phenotype, although the pathogenic mechanism is largely unknown. Herein we show that extracellular signal-regulated protein kinases (ERKs) play important roles in proper formation of neural circuits during the critical period. Transient blockade of ERKs phosphorylation at postnatal day 6 (P6) by intraperitoneal injection of blood-brain barrier-penetrating MEK inhibitor, α-[amino[(4-aminophenyl)thio]methylene]-2-(trifluoromethyl)benzeneacetonitrile (SL327) caused significant increase of apoptosis in the forebrain. Furthermore, this induced long-term deleterious effects on brain functioning later in adulthood, resulting in social deficits, impaired memory and reduced long-term potentiation (LTP). Conversely, blockade of ERK phosphorylation at P14 no longer induced apoptosis, nor behavioral deficits, nor the reduced LTP. Thus, surprisingly, these effects of ERKs are strongly age-dependent, indicating that phosphorylation of ERKs during the critical period is absolutely required for proper development of brain functioning. This study provides novel insight into the mechanistic basis for neurodevelopment disorders: various neurodevelopment disorders might be generally linked to defects in ERKs signaling during the critical period.

  6. Effect of beverages on bovine dental enamel subjected to erosive challenge with hydrochloric acid.

    PubMed

    Amoras, Dinah Ribeiro; Corona, Silmara Aparecida Milori; Rodrigues, Antonio Luiz; Serra, Mônica Campos

    2012-01-01

    This study evaluated by an in vitro model the effect of beverages on dental enamel previously subjected to erosive challenge with hydrochloric acid. The factor under study was the type of beverage, in five levels: Sprite® Zero Low-calorie Soda Lime (positive control), Parmalat® ultra high temperature (UHT) milk, Ades® Original soymilk, Leão® Ice Tea Zero ready-to-drink low-calorie peach-flavored black teaand Prata® natural mineral water (negative control). Seventy-five bovine enamel specimens were distributed among the five types of beverages (n=15), according to a randomized complete block design. For the formation of erosive wear lesions, the specimens were immersed in 10 mL aqueous solution of hydrochloric acid 0.01 M for 2 min. Subsequently, the specimens were immersed in 20 mL of the beverages for 1 min, twice daily for 2 days at room temperature. In between, the specimens were kept in 20 mL of artificial saliva at 37ºC. The response variable was the quantitative enamel microhardness. ANOVA and Tukey's test showed highly significant differences (p<0.00001) in the enamel exposed to hydrochloric acid and beverages. The soft drink caused a significantly higher decrease in microhardness compared with the other beverages. The black tea caused a significantly higher reduction in microhardness than the mineral water, UHT milk and soymilk, but lower than the soft drink. Among the analyzed beverages, the soft drink and the black tea caused the most deleterious effects on dental enamel microhardness.

  7. Royal dynasties as human inbreeding laboratories: the Habsburgs

    PubMed Central

    Ceballos, F C; Álvarez, G

    2013-01-01

    The European royal dynasties of the Early Modern Age provide a useful framework for human inbreeding research. In this article, consanguineous marriage, inbreeding depression and the purging of deleterious alleles within a consanguineous population are investigated in the Habsburgs, a royal dynasty with a long history of consanguinity over generations. Genealogical information from a number of historical sources was used to compute kinship and inbreeding coefficients for the Habsburgs. The marriages contracted by the Habsburgs from 1450 to 1750 presented an extremely high mean kinship (0.0628±0.009), which was the result of the matrimonial policy conducted by the dynasty to establish political alliances through marriage. A strong inbreeding depression for both infant and child survival was detected in the progeny of 71 Habsburg marriages in the period 1450–1800. The inbreeding load for child survival experienced a pronounced decrease from 3.98±0.87 in the period 1450–1600 to 0.93±0.62 in the period 1600–1800, but temporal changes in the inbreeding depression for infant survival were not detected. Such a reduction of inbreeding depression for child survival in a relatively small number of generations could be caused by elimination of deleterious alleles of a large effect according with predictions from purging models. The differential purging of the infant and child inbreeding loads suggest that the genetic basis of inbreeding depression was probably very different for infant and child survival in the Habsburg lineage. Our findings provide empirical support that human inbreeding depression for some fitness components might be purged by selection within consanguineous populations. PMID:23572123

  8. Experimental evolution of recombination and crossover interference in Drosophila caused by directional selection for stress-related traits.

    PubMed

    Aggarwal, Dau Dayal; Rashkovetsky, Eugenia; Michalak, Pawel; Cohen, Irit; Ronin, Yefim; Zhou, Dan; Haddad, Gabriel G; Korol, Abraham B

    2015-11-27

    Population genetics predicts that tight linkage between new and/or pre-existing beneficial and deleterious alleles should decrease the efficiency of natural selection in finite populations. By decoupling beneficial and deleterious alleles and facilitating the combination of beneficial alleles, recombination accelerates the formation of high-fitness genotypes. This may impose indirect selection for increased recombination. Despite the progress in theoretical understanding, interplay between recombination and selection remains a controversial issue in evolutionary biology. Even less satisfactory is the situation with crossover interference, which is a deviation of double-crossover frequency in a pair of adjacent intervals from the product of recombination rates in the two intervals expected on the assumption of crossover independence. Here, we report substantial changes in recombination and interference in three long-term directional selection experiments with Drosophila melanogaster: for desiccation (~50 generations), hypoxia, and hyperoxia tolerance (>200 generations each). For all three experiments, we found a high interval-specific increase of recombination frequencies in selection lines (up to 40-50% per interval) compared to the control lines. We also discovered a profound effect of selection on interference as expressed by an increased frequency of double crossovers in selection lines. Our results show that changes in interference are not necessarily coupled with increased recombination. Our results support the theoretical predictions that adaptation to a new environment can promote evolution toward higher recombination. Moreover, this is the first evidence of selection for different recombination-unrelated traits potentially leading, not only to evolution toward increased crossover rates, but also to changes in crossover interference, one of the fundamental features of recombination.

  9. Royal dynasties as human inbreeding laboratories: the Habsburgs.

    PubMed

    Ceballos, F C; Alvarez, G

    2013-08-01

    The European royal dynasties of the Early Modern Age provide a useful framework for human inbreeding research. In this article, consanguineous marriage, inbreeding depression and the purging of deleterious alleles within a consanguineous population are investigated in the Habsburgs, a royal dynasty with a long history of consanguinity over generations. Genealogical information from a number of historical sources was used to compute kinship and inbreeding coefficients for the Habsburgs. The marriages contracted by the Habsburgs from 1450 to 1750 presented an extremely high mean kinship (0.0628±0.009), which was the result of the matrimonial policy conducted by the dynasty to establish political alliances through marriage. A strong inbreeding depression for both infant and child survival was detected in the progeny of 71 Habsburg marriages in the period 1450-1800. The inbreeding load for child survival experienced a pronounced decrease from 3.98±0.87 in the period 1450-1600 to 0.93±0.62 in the period 1600-1800, but temporal changes in the inbreeding depression for infant survival were not detected. Such a reduction of inbreeding depression for child survival in a relatively small number of generations could be caused by elimination of deleterious alleles of a large effect according with predictions from purging models. The differential purging of the infant and child inbreeding loads suggest that the genetic basis of inbreeding depression was probably very different for infant and child survival in the Habsburg lineage. Our findings provide empirical support that human inbreeding depression for some fitness components might be purged by selection within consanguineous populations.

  10. Stearoyl-Acyl Carrier Protein Desaturase Mutations Uncover an Impact of Stearic Acid in Leaf and Nodule Structure.

    PubMed

    Lakhssassi, Naoufal; Colantonio, Vincent; Flowers, Nicholas D; Zhou, Zhou; Henry, Jason; Liu, Shiming; Meksem, Khalid

    2017-07-01

    Stearoyl-acyl carrier protein desaturase (SACPD-C) has been reported to control the accumulation of seed stearic acid; however, no study has previously reported its involvement in leaf stearic acid content and impact on leaf structure and morphology. A subset of an ethyl methanesulfonate mutagenized population of soybean ( Glycine max ) 'Forrest' was screened to identify mutants within the GmSACPD-C gene. Using a forward genetics approach, one nonsense and four missense Gmsacpd-c mutants were identified to have high levels of seed, nodule, and leaf stearic acid content. Homology modeling and in silico analysis of the GmSACPD-C enzyme revealed that most of these mutations were localized near or at conserved residues essential for diiron ion coordination. Soybeans carrying Gmsacpd-c mutations at conserved residues showed the highest stearic acid content, and these mutations were found to have deleterious effects on nodule development and function. Interestingly, mutations at nonconserved residues show an increase in stearic acid content yet retain healthy nodules. Thus, random mutagenesis and mutational analysis allows for the achievement of high seed stearic acid content with no associated negative agronomic characteristics. Additionally, expression analysis demonstrates that nodule leghemoglobin transcripts were significantly more abundant in soybeans with deleterious mutations at conserved residues of GmSACPD-C. Finally, we report that Gmsacpd-c mutations cause an increase in leaf stearic acid content and an alteration of leaf structure and morphology in addition to differences in nitrogen-fixing nodule structure. © 2017 American Society of Plant Biologists. All Rights Reserved.

  11. Interactions between the impacts of ultraviolet radiation, elevated CO2, and nutrient limitation on marine primary producers.

    PubMed

    Beardall, John; Sobrino, Cristina; Stojkovic, Slobodanka

    2009-09-01

    It is well known that UV radiation can cause deleterious effects to the physiological performance, growth and species assemblages of marine primary producers. In this review we describe the range of interactions observed between these impacts of ultraviolet radiation (UVR, 280-400 nm) with other environmental factors such as the availability of photosynthetically active radiation (PAR), nutrient status and levels of dissolved CO2, all of which can, in turn, be influenced by global climate change. Thus, increases in CO2 levels can affect the sensitivity of some species to UV-B radiation (UV-B), while others show no such impact on UV-B susceptibility. Both nitrogen- and phosphorus-limitation can have direct interactive effects on the susceptibility of algal cells and communities to UVR, though such effects are somewhat variable. Nutrient depletion can also potentially lead to a dominance of smaller celled species, which may be less able to screen out and are thus likely to be more susceptible to UVR-induced damage. The variability of responses to such interactions can lead to alterations in the species composition of algal assemblages.

  12. Short-Term Evaluation in Growing Rats of Diet Containing Bacillus thuringiensis Cry1Ia12 Entomotoxin: Nutritional Responses and Some Safety Aspects

    PubMed Central

    Guimarães, Luciane Mourão; Farias, Davi Felipe; Muchagata, Relinda Campos Carvalho; de Magalhães, Mariana Quezado; Campello, Cláudio Cabral; Rocha, Thales Lima; Vasconcelos, Ilka Maria; Carvalho, Ana Fontenele Urano; Mulinari, Fernanda; Grossi-de-Sa, Maria Fátima

    2010-01-01

    The Cry1Ia12 entomotoxin from a Brazilian Bacillus thuringiensis strain is currently being expressed in cotton cultivars to confer resistance to insect-pests. The present study aimed to assess the effects of a diet containing Cry1Ia12 protein on growing rats. A test diet containing egg white and Cry1Ia12 (0.1% of total protein) as a protein source was offered to rats for ten days. In addition, an acute toxicity bioassay was performed in rats with a single oral dose of the entomotoxin (12 mg/animal). No adverse effects were observed in the animals receiving the test diet when compared to those receiving a control diet (egg white). The analysed parameters included relative dry weight of internal organs, duodenum histology, blood biochemistry, and nutritional parameters. The results of the acute toxicity test showed no mortality or behaviour alteration. Thus, Cry1Ia12 toxin at the tested concentration does not cause deleterious effects on growing rats when incorporated in the diet for 10 days. PMID:20862341

  13. Impairment and restoration of response to TSH in dog thyroid slices after treatment with phospholipase A and lubrol PX.

    PubMed

    Yamashita, K; Oka, H; Kaneko, T; Ogata, E

    1976-01-01

    Incubation of dog thyroid slices with phospholipase A (10-40 U/Ml) or Lubrol PX (0.08-0.4%) caused a diminution in the subsequent TSH effect on the tissue cyclic AMP level and glucose oxidation. The same treatment had no effect on the basal level of these parameters. When the phospholipase A or Lubrol PX-treated slices were rinsed intensively with a Krebs-Ringer bicarbonate buffer and then incubated at 37degreesC in the same buffer for a further 1 to 3 hours, responsiveness to TSH recovered progressively reaching almost completely that of the control slices. Again, these procedures were without any significant effect on the responsiveness of the control slices. The above results together with those reported previously suggest strongly that phospholipids are an essential component of the plasma membrane system by which TSH stimulates adenylate cyclase activity. In addition, these essential lipids in the membrane appear to be renewed rather efficiently in this tissue, thus securing the functional integrity of the thyroid in the face of various deleterious situations.

  14. Basic Biology of Skeletal Aging: Role of Stress Response Pathways

    PubMed Central

    2013-01-01

    Although a decline in bone formation and loss of bone mass are common features of human aging, the molecular mechanisms mediating these effects have remained unclear. Evidence from pharmacological and genetic studies in mice has provided support for a deleterious effect of oxidative stress in bone and has strengthened the idea that an increase in reactive oxygen species (ROS) with advancing age represents a pathophysiological mechanism underlying age-related bone loss. Mesenchymal stem cells and osteocytes are long-lived cells and, therefore, are more susceptible than other types of bone cells to the molecular changes caused by aging, including increased levels of ROS and decreased autophagy. However, short-lived cells like osteoblast progenitors and mature osteoblasts and osteoclasts are also affected by the altered aged environment characterized by lower levels of sex steroids, increased endogenous glucocorticoids, and higher oxidized lipids. This article reviews current knowledge on the effects of the aging process on bone, with particular emphasis on the role of ROS and autophagy in cells of the osteoblast lineage in mice. PMID:23825036

  15. Role of preoperative carbohydrate loading: a systematic review.

    PubMed

    Bilku, D K; Dennison, A R; Hall, T C; Metcalfe, M S; Garcea, G

    2014-01-01

    Surgical stress in the presence of fasting worsens the catabolic state, causes insulin resistance and may delay recovery. Carbohydrate rich drinks given preoperatively may ameliorate these deleterious effects. A systematic review was undertaken to analyse the effect of preoperative carbohydrate loading on insulin resistance, gastric emptying, gastric acidity, patient wellbeing, immunity and nutrition following surgery. All studies identified through PubMed until September 2011 were included. References were cross-checked to ensure capture of cited pertinent articles. Overall, 17 randomised controlled trials with a total of 1,445 patients who met the inclusion criteria were identified. Preoperative carbohydrate drinks significantly improved insulin resistance and indices of patient comfort following surgery, especially hunger, thirst, malaise, anxiety and nausea. No definite conclusions could be made regarding preservation of muscle mass. Following ingestion of carbohydrate drinks, no adverse events such as apparent or proven aspiration during or after surgery were reported. Administration of oral carbohydrate drinks before surgery is probably safe and may have a positive influence on a wide range of perioperative markers of clinical outcome. Further studies are required to determine its cost effectiveness.

  16. Effect of fiber and dye degradation products (FDP) on burn wound healing.

    PubMed

    Knox, F S; Wachtel, T L; McCahan, G R; Knapp, S C

    1979-10-01

    Upon exposure to the thermal environment of an aircraft fire, many fire retardant fabrics off-gas fiber and dye degradation products (FDP). Condensation of these products on human skin raises questions concerning possible deleterious effects on burn wound healing. A porcine bioassay was used to study the physiological effects of FDP. Selected areas of living skin, protected by dyed aromatic polyamides and polybenzimidazole fabrics, were exposed to a thermal source adjusted to simulate a postcrash JP-4 fuel fire. Burn sites contaminated with FDP were evaluated by clinical observation ane to begin epithelialization, time to closure of an open wound, and the amount and type of cicatrix formation. The experiment showed that each fabric has unique off-gasing products. The greatest amount of FDP was deposited on the skin when the skin was covered by a single layer of shell fabric separated by a 6.35-mm air gap. The presence of an intervening cotton T-shirt decreased the amount of FDP deposited on the skin. We found no evidence that FDP caused alterations in wound healing.

  17. The influence of hydrocarbon composition and exposure conditions on jet fuel-induced immunotoxicity.

    PubMed

    Hilgaertner, Jianhua W; He, Xianghui; Camacho, Daniel; Badowski, Michael; Witten, Mark; Harris, David T

    2011-11-01

    Chronic jet fuel exposure could be detrimental to the health and well-being of exposed personnel, adversely affect their work performance and predispose these individuals to increased incidences of infectious disease, cancer and autoimmune disorders. Short-term (7 day) JP-8 jet fuel exposure has been shown to cause lung injury and immune dysfunction. Physiological alterations can be influenced not only by jet fuel exposure concentration (absolute amount), but also are dependent on the type of exposure (aerosol versus vapor) and the composition of the jet fuel (hydrocarbon composition). In the current study, these variables were examined with relation to effects of jet fuel exposure on immune function. It was discovered that real-time, in-line monitoring of jet fuel exposure resulted in aerosol exposure concentrations that were approximately one-eighth the concentration of previously reported exposure systems. Further, the effects of a synthetic jet fuel designed to eliminate polycyclic aromatic hydrocarbons were also examined. Both of these changes in exposure reduced but did not eliminate the deleterious effects on the immune system of exposed mice.

  18. RNAi-mediated gene silencing as a principle of action of venoms and poisons.

    PubMed

    Pereira, Tiago Campos; Lopes-Cendes, Iscia

    2008-01-01

    RNA interference (RNAi) is a natural phenomenon in which double-stranded RNA molecules (dsRNAs) promote silencing of genes with similar sequence. It is noteworthy that in some instances the effects of gene silencing are similar to those caused by venoms and natural poisons (e.g., hemorrhage and low blood pressure). This observation raises the possibility that venomous/poisonous species in fact produce dsRNAs in their venoms/poisons and leading to the deleterious effects in the victim by RNAi-mediated gene silencing. Two approaches could be used to test this hypothesis, first, the neutralization of the dsRNAs and comparing to a non-treated venom sample; and second, to identify the dsRNA present in the venom and attempt to artificially reproduce its effects in the laboratory. In addition, we present three innovative treatment strategies for accidental interactions with venomous or poisonous species. RNAi has several roles in biological systems: gene regulation, antiviral defense, transposon silencing and heterochromatin formation. The hypothesis presented here provides a new role: a natural attack mechanism.

  19. Combined Therapy of Iron Chelator and Antioxidant Completely Restores Brain Dysfunction Induced by Iron Toxicity

    PubMed Central

    Sripetchwandee, Jirapas; Pipatpiboon, Noppamas; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2014-01-01

    Background Excessive iron accumulation leads to iron toxicity in the brain; however the underlying mechanism is unclear. We investigated the effects of iron overload induced by high iron-diet consumption on brain mitochondrial function, brain synaptic plasticity and learning and memory. Iron chelator (deferiprone) and antioxidant (n-acetyl cysteine) effects on iron-overload brains were also studied. Methodology Male Wistar rats were fed either normal diet or high iron-diet consumption for 12 weeks, after which rats in each diet group were treated with vehicle or deferiprone (50 mg/kg) or n-acetyl cysteine (100 mg/kg) or both for another 4 weeks. High iron-diet consumption caused brain iron accumulation, brain mitochondrial dysfunction, impaired brain synaptic plasticity and cognition, blood-brain-barrier breakdown, and brain apoptosis. Although both iron chelator and antioxidant attenuated these deleterious effects, combined therapy provided more robust results. Conclusion In conclusion, this is the first study demonstrating that combined iron chelator and anti-oxidant therapy completely restored brain function impaired by iron overload. PMID:24400127

  20. Mutational analysis of FUS gene and its structural and functional role in amyotrophic lateral sclerosis 6.

    PubMed

    Kamaraj, Balu; Rajendran, Vidya; Sethumadhavan, Rao; Kumar, Chundi Vinay; Purohit, Rituraj

    2015-01-01

    Amyotrophic lateral sclerosis 6 (ALS6) is an autosomal recessive disorder caused by heterozygous mutation in the Fused in Sarcoma (FUS) gene. ALS6 is a neurodegenerative disorder, which affects the upper and lower motor neurons in the brain and spinal cord, resulting in fatal paralysis. ALS6 is caused by the genetic mutation in the proline/tyrosine-nuclear localization signals of the Fused in sarcoma Protein (FUS). FUS gene also known as TLS (Translocated in liposarcoma), which encodes a protein called RNA-binding protein-Fus (FUS), has a molecular weight of 75 kDa. In this analysis, we applied computational approach to filter the most deleterious and neurodegenerative disease of ALS6-associated mutation on FUS protein. We found H517Q as most deleterious and disease associated using PolyPhen 2.0, I-Mutant 3.0, SIFT, SNPs&GO, PhD-SNP, Pmut, and Mutpred tools. Molecular dynamics simulation (MDS) approach was conducted to investigate conformational changes in the mutant protein structure with respect to its native conformation. MDS results showed the flexibility loss in mutant (H517Q) FUS protein. Due to mutation, FUS protein became more rigid in nature and might alter the structural and functional behavior of protein and play a major role in inducing ALS6. The results obtained from this investigation would help in the field of pharmacogenomics to develop a potent drug target against FUS-associated neurodegenerative diseases.

  1. Deleterious effects of recombination and possible nonrecombinatorial advantages of sex in a fungal model.

    PubMed

    López-Villavicencio, M; Debets, A J M; Slakhorst, M; Giraud, T; Schoustra, S E

    2013-09-01

    Why sexual reproduction is so prevalent in nature remains a major question in evolutionary biology. Most of the proposed advantages of sex rely on the benefits obtained from recombination. However, it is still unclear whether the conditions under which these recombinatorial benefits would be sufficient to maintain sex in the short term are met in nature. Our study addresses a largely overlooked hypothesis, proposing that sex could be maintained in the short term by advantages due to functions linked with sex, but not related to recombination. These advantages would be so essential that sex could not be lost in the short term. Here, we used the fungus Aspergillus nidulans to experimentally test predictions of this hypothesis. Specifically, we were interested in (i) the short-term deleterious effects of recombination, (ii) possible nonrecombinatorial advantages of sex particularly through the elimination of mutations and (iii) the outcrossing rate under choice conditions in a haploid fungus able to reproduce by both outcrossing and haploid selfing. Our results were consistent with our hypotheses: we found that (i) recombination can be strongly deleterious in the short term, (ii) sexual reproduction between individuals derived from the same clonal lineage provided nonrecombinatorial advantages, likely through a selection arena mechanism, and (iii) under choice conditions, outcrossing occurs in a homothallic species, although at low rates. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  2. What California sea lions exposed to domoic acid might teach us about autism: lessons for predictive and preventive medicine.

    PubMed

    Lahvis, Garet Paul

    2017-09-01

    Autism spectrum disorder (ASD) shares many biological and behavioral similarities with the deleterious effects of domoic acid (DA) exposure. DA is produced by marine algae and most commonly by species of Pseudo-nitzschia . Humans and marine mammals can be exposed to DA when they consume whole fish or shellfish. The mammalian fetus is highly sensitive to the deleterious effects of DA exposure. Both ASD and exposures to toxic levels of DA feature repetitive behaviors, challenges with social interaction, and seizures. They can also share a commonality in brain anatomy and function, particularly the balance between excitatory and inhibitory mechanisms. The current article is relevant to predictive, preventive, and personalized medicine for three reasons. First, shellfish consumption may be a risk factor for ASD and the regulatory limit for DA should be adjusted to prevent this possibility. Human contributions to increased algal production of DA in coastal waters should be identified and reduced. Second, evaluations of sentinel species wild and free-roaming in the environment, though typically outside the purview of biomedical research, should be much more fully employed to gain insights to risk factors for human disease. To better identify and prevent disease, biomedical researchers should study wild populations. Third, studies of DA exposure highlight the possibility that glutamate additives to processed foods may also have deleterious impacts on human brain development and behavior.

  3. A Survey of Caffeine Use and Associated Side Effects in a College Population.

    ERIC Educational Resources Information Center

    Johnson-Greene, Douglas; And Others

    1988-01-01

    Surveyed 270 college students concerning their caffeine consumption. Results suggest there is identifiable group using excessive amounts of caffeine. Identified several deleterious effects possibly related to caffeine use. Approximately 75 percent of caffeine users surveyed rarely sought information on caffeine content of products or avoided…

  4. Temporal metabolomic responses of cultured HepG2 liver cells to high fructose and high glucose exposures

    USDA-ARS?s Scientific Manuscript database

    High fructose consumption has been implicated with deleterious effects on human health, including hyperlipidemia elicited through de novo lipogenesis. However, more global effects of fructose on cellular metabolism have not been elucidated. In order to explore the metabolic impact of fructose-contai...

  5. Water jetting for the mitigation of defects in drilled shafts : a laboratory investigation of jetting effectiveness in different deleterious materials.

    DOT National Transportation Integrated Search

    2012-09-01

    Presented in this report are results of a laboratory investigation designed to examine the effectiveness of water : jetting as a means for mitigating defects in drilled shaft foundations. The primary objective of this research was : to establish an e...

  6. Effect of pH and solvent on the fluorescence spectroscopy of ochratoxin A

    USDA-ARS?s Scientific Manuscript database

    Ochratoxin A is a potential contaminant of agricultural commodities that is produced by Aspergillus and Penicillium species. Although this toxin has been observed at very low levels in commodities, it can reach levels of concern under certain conditions. It exhibits deleterious effects on animals an...

  7. Ecological Engineering Practices for the Reduction of Excess Nitrogen in Human-Influenced Landscapes: A Guide for Watershed Managers

    EPA Science Inventory

    Excess nitrogen (N) in freshwater systems, estuaries, and coastal areas has well-documented deleterious effects on ecosystems. Ecological engineering practices (EEPs) may be effective at decreasing nonpoint source N leaching to surface and groundwater. However, few studies have s...

  8. Temporal variations in atmospheric water vapor and aerosol optical depth determined by remote sensing

    NASA Technical Reports Server (NTRS)

    Pitts, D. E.; Mcallum, W. E.; Heidt, M.; Jeske, K.; Lee, J. T.; Demonbrun, D.; Morgan, A.; Potter, J.

    1977-01-01

    By automatically tracking the sun, a four-channel solar radiometer was used to continuously measure optical depth and atmospheric water vapor. The design of this simple autotracking solar radiometer is presented. A technique for calculating the precipitable water from the ratio of a water band to a nearby nonabsorbing band is discussed. Studies of the temporal variability of precipitable water and atmospheric optical depth at 0.610, 0.8730 and 1.04 microns are presented. There was good correlation between the optical depth measured using the autotracker and visibility determined from National Weather Service Station data. However, much more temporal structure was evident in the autotracker data than in the visibility data. Cirrus clouds caused large changes in optical depth over short time periods. They appear to be the largest deleterious atmospheric effect over agricultural areas that are remote from urban pollution sources.

  9. Characterization of 316L(N)-IG SS joint produced by hot isostatic pressing technique

    NASA Astrophysics Data System (ADS)

    Nakano, J.; Miwa, Y.; Tsukada, T.; Kikuchi, M.; Kita, S.; Nemoto, Y.; Tsuji, H.; Jitsukawa, S.

    2002-12-01

    Type 316L(N) stainless steel of the international thermonuclear experimental reactor grade (316L(N)-IG SS) is being considered for the first wall/blanket module. Hot isostatic pressing (HIP) technique is expected for the fabrication of the module. To evaluate the integrity and susceptibility to stress corrosion cracking (SCC) of HIPed 316L(N)-IG SS, tensile tests in vacuum and slow strain rate tests in high temperature water were performed. Specimen with the HIPed joint had similar tensile properties to specimens of 316L(N)-IG SS, and did not show susceptibility to SCC in oxygenated water at 423 K. Thermally sensitized specimen was low susceptible to SCC even in the creviced condition. It is concluded that the tensile properties of HIPed SS are as high as those of the base alloy and the HIP process caused no deleterious effects.

  10. Identification of syncytial mutations in a clinical isolate of herpes simplex virus 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muggeridge, Martin I.; Grantham, Michael L.; Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130

    2004-10-25

    Small polykaryocytes resulting from cell fusion are found in herpes simplex virus (HSV) lesions in patients, but their significance for viral spread and pathogenesis is unclear. Although syncytial variants causing extensive fusion in tissue culture can be readily isolated from laboratory strains, they are rarely found in clinical isolates, suggesting that extensive cell fusion may be deleterious in vivo. Syncytial mutations have previously been identified for several laboratory strains, but not for clinical isolates of HSV type 2. To address this deficiency, we studied a recent syncytial clinical isolate, finding it to be a mixture of two syncytial and onemore » nonsyncytial strain. The two syncytial strains have novel mutations in glycoprotein B, and in vitro cell fusion assays confirmed that they are responsible for syncytium formation. This panel of clinical strains may be ideal for examining the effect of increased cell fusion on pathogenesis.« less

  11. Mississippi burnout part II: satisfaction, autonomy and work/family balance.

    PubMed

    Cossman, Jeralynn S; Street, Debra

    2009-10-01

    Documented Mississippi physician shortages' make evidence about factors shaping physicians' career choices especially important if Mississippi policymakers are to devise workable strategies to maximize the physician workforce. Work-life interactions influence physicians' choices about how they manage their careers and professional burnout is one documented cause of physicians' decisions to change work hours or to choose early retirement. We find that women and mid-career physicians are more likely than men or later career physicians to experience stress and burnout. Additionally, physicians who experience burnout are less likely to report being satisfied with nearly every aspect of their professional life and work-life balance indicating that burnout permeates several dimensions of physicians' lives. The associations in our findings are suggestive; however, to minimize deleterious effects of burnout on the Mississippi physician workforce, future research should examine the causal factors underlying stress and burnout.

  12. Review of the quantification techniques for polycyclic aromatic hydrocarbons (PAHs) in food products.

    PubMed

    Bansal, Vasudha; Kumar, Pawan; Kwon, Eilhann E; Kim, Ki-Hyun

    2017-10-13

    There is a growing need for accurate detection of trace-level PAHs in food products due to the numerous detrimental effects caused by their contamination (e.g., toxicity, carcinogenicity, and teratogenicity). This review aims to discuss the up-to-date knowledge on the measurement techniques available for PAHs contained in food or its related products. This article aims to provide a comprehensive outline on the measurement techniques of PAHs in food to help reduce their deleterious impacts on human health based on the accurate quantification. The main part of this review is dedicated to the opportunities and practical options for the treatment of various food samples and for accurate quantification of PAHs contained in those samples. Basic information regarding all available analytical measurement techniques for PAHs in food samples is also evaluated with respect to their performance in terms of quality assurance.

  13. Notched strength of beryllium powder and ingot sheets.

    NASA Technical Reports Server (NTRS)

    Moss, R. G.

    1972-01-01

    The effects of notches in thin beryllium sheets were studied as functions of material variables and notch severity. Double edge notched samples having stress concentration factors of 1.0 to 15.4 were prepared by milling to size, etching, and electrical discharge machining the notches. Strength was not reduced greatly by sharp notches, and duller notches were more deleterious than sharp notches. The trend was for reduced strength for dull notches, increased strength for sharper notches, and reduced strength for very sharp notches. Differences in material purity or source of the sheet had little affect on notch sensitivity. The most important factors appear to be oxide content and directionality of the sheet microstructure; high oxide content and highly directional microstructure tend to give more notch sensitivity than low oxide content, and more bidirectional microstructure. Postulated causes of the change in notched/unnotched strength are given.

  14. Calcium in the pathomechanism of amyotrophic lateral sclerosis - Taking center stage?

    PubMed

    Patai, Roland; Nógrádi, Bernát; Engelhardt, József I; Siklós, László

    2017-02-19

    Amyotrophic lateral sclerosis is an incurable, relentlessly progressive disease primarily affecting motor neurons. The cause of the disease, except for the mutations identified in a small fraction of patients, is unknown. The major mechanisms contributing to the degeneration of motor neurons have already been disclosed and characterized, including excitotoxicity, oxidative stress, mitochondrial dysfunction, and immune/inflammatory processes. During the progression of the disease these toxic processes are not discrete, but each facilitates the deleterious effect of the other. However, due to their common reciprocal calcium dependence, calcium ions may act as a common denominator and through a positive feedback loop may combine the individual pathological processes into a unified escalating mechanism of neuronal destruction. This mini-review provides an overview of the mutual calcium dependence of the major toxic mechanisms associated with amyotrophic lateral sclerosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The Use of Explosive Forming for Fastening and Joining Structural and Pressure Components

    NASA Technical Reports Server (NTRS)

    Schroeder, J. W.

    1985-01-01

    Explosive expansion of tubes into tubesheets has been used for over 20 years in the fabrication and repair of shell and tube heat exchangers. The use of explosives to perform these expansions has offered several distinct advantages over other methods. First, the process is fast and economical and can be performed with minimal training of personnel. Secondly, explosive forming does not cause the deleterious metallurgical effects which often result from other forming operations. In addition, the process can be performed remotely without the need for sophisticated handling equipment. The expansion of tubes into tubesheets is only one of many possible fastening and joining applications for which explosive forming can be used to achieve highly successful results. The explosive forming process and where it has been used are described. In addition, some possible adaptations to other joining applications are identified and discussed.

  16. Endocrine Consequences of Anorexia Nervosa

    PubMed Central

    Misra, Madhusmita; Klibanski, Anne

    2014-01-01

    Summary Anorexia nervosa (AN) is prevalent in adolescents and young adults, and endocrine changes include hypothalamic amenorrhea, a nutritionally acquired growth hormone resistance with low insulin like growth factor-1 (IGF-1), relative hypercortisolemia, decreases in leptin, insulin, amylin and incretins, and increases in ghrelin, PYY and adiponectin. These changes in turn have deleterious effects on bone, and may affect neurocognition, anxiety, depression and eating disorder psychopathology. Low bone density is particularly concerning; clinical fractures occur and changes in both bone microarchitecture and strength estimates have been reported. Recovery causes improvement of many, but not all, hormonal changes, and deficits in bone accrual may persist despite recovery. Physiologic, primarily transdermal, estrogen replacement increases bone density in adolescents, although catch-up is incomplete. In adults, oral estrogen co-administered with rhIGF-1 in one study, and bisphosphonates in another increased bone density, though not to normal. More studies are necessary to determine the optimal therapeutic approach in AN. PMID:24731664

  17. Race, socioeconomic status, and health. The added effects of racism and discrimination.

    PubMed

    Williams, D R

    1999-01-01

    Higher disease rates for blacks (or African Americans) compared to whites are pervasive and persistent over time, with the racial gap in mortality widening in recent years for multiple causes of death. Other racial/ethnic minority populations also have elevated disease risk for some health conditions. This paper considers the complex ways in which race and socioeconomic status (SES) combine to affect health. SES accounts for much of the observed racial disparities in health. Nonetheless, racial differences often persist even at "equivalent" levels of SES. Racism is an added burden for nondominant populations. Individual and institutional discrimination, along with the stigma of inferiority, can adversely affect health by restricting socioeconomic opportunities and mobility. Racism can also directly affect health in multiple ways. Residence in poor neighborhoods, racial bias in medical care, the stress of experiences of discrimination and the acceptance of the societal stigma of inferiority can have deleterious consequences for health.

  18. Mutations in DDX3X Are a Common Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signaling.

    PubMed

    Snijders Blok, Lot; Madsen, Erik; Juusola, Jane; Gilissen, Christian; Baralle, Diana; Reijnders, Margot R F; Venselaar, Hanka; Helsmoortel, Céline; Cho, Megan T; Hoischen, Alexander; Vissers, Lisenka E L M; Koemans, Tom S; Wissink-Lindhout, Willemijn; Eichler, Evan E; Romano, Corrado; Van Esch, Hilde; Stumpel, Connie; Vreeburg, Maaike; Smeets, Eric; Oberndorff, Karin; van Bon, Bregje W M; Shaw, Marie; Gecz, Jozef; Haan, Eric; Bienek, Melanie; Jensen, Corinna; Loeys, Bart L; Van Dijck, Anke; Innes, A Micheil; Racher, Hilary; Vermeer, Sascha; Di Donato, Nataliya; Rump, Andreas; Tatton-Brown, Katrina; Parker, Michael J; Henderson, Alex; Lynch, Sally A; Fryer, Alan; Ross, Alison; Vasudevan, Pradeep; Kini, Usha; Newbury-Ecob, Ruth; Chandler, Kate; Male, Alison; Dijkstra, Sybe; Schieving, Jolanda; Giltay, Jacques; van Gassen, Koen L I; Schuurs-Hoeijmakers, Janneke; Tan, Perciliz L; Pediaditakis, Igor; Haas, Stefan A; Retterer, Kyle; Reed, Patrick; Monaghan, Kristin G; Haverfield, Eden; Natowicz, Marvin; Myers, Angela; Kruer, Michael C; Stein, Quinn; Strauss, Kevin A; Brigatti, Karlla W; Keating, Katherine; Burton, Barbara K; Kim, Katherine H; Charrow, Joel; Norman, Jennifer; Foster-Barber, Audrey; Kline, Antonie D; Kimball, Amy; Zackai, Elaine; Harr, Margaret; Fox, Joyce; McLaughlin, Julie; Lindstrom, Kristin; Haude, Katrina M; van Roozendaal, Kees; Brunner, Han; Chung, Wendy K; Kooy, R Frank; Pfundt, Rolph; Kalscheuer, Vera; Mehta, Sarju G; Katsanis, Nicholas; Kleefstra, Tjitske

    2015-08-06

    Intellectual disability (ID) affects approximately 1%-3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%-3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  19. Neurochemical differences in learning and memory paradigms among rats supplemented with anthocyanin-rich blueberry diets and exposed to acute doses of 56Fe particles

    NASA Astrophysics Data System (ADS)

    Poulose, Shibu M.; Rabin, Bernard M.; Bielinski, Donna F.; Kelly, Megan E.; Miller, Marshall G.; Thanthaeng, Nopporn; Shukitt-Hale, Barbara

    2017-02-01

    The protective effects of anthocyanin-rich blueberries (BB) on brain health are well documented and are particularly important under conditions of high oxidative stress, which can lead to "accelerated aging." One such scenario is exposure to space radiation, consisting of high-energy and -charge particles (HZE), which are known to cause cognitive dysfunction and deleterious neurochemical alterations. We recently tested the behavioral and neurochemical effects of acute exposure to HZE particles such as 56Fe, within 24-48 h after exposure, and found that radiation primarily affects memory and not learning. Importantly, we observed that specific brain regions failed to upregulate antioxidant and anti-inflammatory mechanisms in response to this insult. To further examine these endogenous response mechanisms, we have supplemented young rats with diets rich in BB, which are known to contain high amounts of antioxidant-phytochemicals, prior to irradiation. Exposure to 56Fe caused significant neurochemical changes in hippocampus and frontal cortex, the two critical regions of the brain involved in cognitive function. BB supplementation significantly attenuated protein carbonylation, which was significantly increased by exposure to 56Fe in the hippocampus and frontal cortex. Moreover, BB supplementation significantly reduced radiation-induced elevations in NADPH-oxidoreductase-2 (NOX2) and cyclooxygenase-2 (COX-2), and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) in the hippocampus and frontal cortex. Overall results indicate that 56Fe particles may induce their toxic effects on hippocampus and frontal cortex by reactive oxygen species (ROS) overload, which can cause alterations in the neuronal environment, eventually leading to hippocampal neuronal death and subsequent impairment of cognitive function. Blueberry supplementation provides an effective preventative measure to reduce the ROS load on the CNS in an event of acute HZE exposure.

  20. In vitro cytotoxic effects of benzalkonium chloride in corticosteroid injection suspension.

    PubMed

    Davis, Daniel; Cyriac, Mathew; Ge, Dongxia; You, Zongbing; Savoie, Felix H

    2010-01-01

    Some deleterious effects on cartilage and even severe arthropathy have been reported after intra-articular corticosteroid injections. The objective of the present in vitro study was to determine if an injectable corticosteroid suspension is toxic to articular chondrocytes and synovial cells. Human and bovine articular chondrocytes, bovine synovial cells, mouse C3H10T1/2 cells, and human osteosarcoma MG-63 cells were treated for thirty minutes in monolayer or suspension culture with an injectable corticosteroid suspension or its chemical components, including betamethasone sodium phosphate, betamethasone acetate, and benzalkonium chloride (as preservative). Cell viability was determined by means of microscopy or flow cytometry analysis. In monolayer culture, the betamethasone corticosteroids per se did not cause cell death, whereas benzalkonium chloride caused death of articular chondrocytes. In suspension culture, betamethasone sodium phosphate at dosages of as high as 6 mg/mL did not cause significant death of human or bovine articular chondrocytes (p > 0.05). In contrast, benzalkonium chloride caused a death rate of 10.6% in human articular chondrocytes at a dosage of 10 microg/mL (p < 0.01), 21.0% at a dosage of 13.3 microg/mL (p < 0.01), and 99.3% and 99.4% at dosages of 20 and 200 microg/mL, respectively (p < 0.001 for both). Similarly, benzalkonium chloride caused death of bovine articular chondrocytes, bovine synovial cells, C3H10T1/2 cells, and MG-63 cells in a dose-dependent manner. When treated with a combination of betamethasone sodium phosphate and 200 microg/mL benzalkonium chloride, >99% of human or bovine articular chondrocytes were dead (p < 0.001). The injectable corticosteroid suspension caused death in in vitro culture of human and bovine articular chondrocytes as well as bovine synovial cells because of its preservative benzalkonium chloride. The betamethasone corticosteroids per se did not cause significant chondrocyte death under the conditions tested.

  1. Effects of hyperlipidemia on adaptive responses to repeated zinc exposure

    EPA Science Inventory

    In individuals with underlying atherosclerosis and coronary heart disease (CHD), exposure to near-road air pollution correlates epidemiologically with deleterious health outcome. Associated cardiotoxicity purportedly involves generation of reactive oxygen species (ROS) and activa...

  2. Outdoor Ambient Air Pollution and Neurodegenerative Diseases: the Neuroinflammation Hypothesis.

    PubMed

    Jayaraj, Richard L; Rodriguez, Eric A; Wang, Yi; Block, Michelle L

    2017-06-01

    Accumulating research indicates that ambient outdoor air pollution impacts the brain and may affect neurodegenerative diseases, yet the potential underlying mechanisms are poorly understood. The neuroinflammation hypothesis holds that elevation of cytokines and reactive oxygen species in the brain mediates the deleterious effects of urban air pollution on the central nervous system (CNS). Studies in human and animal research document that neuroinflammation occurs in response to several inhaled pollutants. Microglia are a prominent source of cytokines and reactive oxygen species in the brain, implicated in the progressive neuron damage in diverse neurodegenerative diseases, and activated by inhaled components of urban air pollution through both direct and indirect pathways. The MAC1-NOX2 pathway has been identified as a mechanism through which microglia respond to different forms of air pollution, suggesting a potential common deleterious pathway. Multiple direct and indirect pathways in response to air pollution exposure likely interact in concert to exert CNS effects.

  3. Interprofessional Rivalry in Nigeria's Health Sector: A Comparison of Doctors and Other Health Workers' Views at a Secondary Care Center.

    PubMed

    Omisore, Akinlolu G; Adesoji, Richard O; Abioye-Kuteyi, Emmanuel A

    2017-10-01

    To examine interprofessional rivalry (IPR) between doctors and other health workers and their understanding of its effects. IPR in Nigeria's health system is a burgeoning issue with apparent adverse effects. The most profound rivalry appears to be between doctors and other health workers. A descriptive cross-sectional study involving 120 health workers (24 doctors and 96 other health workers) at the State Specialist Hospital, Okitipupa, Ondo State, Nigeria. Pertinent data were collected via semistructured questionnaire and analyzed using SPSS Version17.0. IPR is perceived to be the leading cause of conflicts among health workers by 70% of respondents. Doctors and other workers had significantly divergent opinions on the leadership of the health team, patient management, establishment positions, and monetary issues as well as on the effects of IPR with more doctors recognizing its hazards. Nearly half of the respondents believe that strikes are justifiable and the most recommended antidote is for the government to attempt to meet group needs. IPR has reached unprecedented levels in Nigeria. However, its adverse effects have not been duly recognized, especially by nondoctors. There is an urgent need for education of health workers on the deleterious effects of IPR.

  4. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in Mammalian cells.

    PubMed

    Kalghatgi, Sameer; Spina, Catherine S; Costello, James C; Liesa, Marc; Morones-Ramirez, J Ruben; Slomovic, Shimyn; Molina, Anthony; Shirihai, Orian S; Collins, James J

    2013-07-03

    Prolonged antibiotic treatment can lead to detrimental side effects in patients, including ototoxicity, nephrotoxicity, and tendinopathy, yet the mechanisms underlying the effects of antibiotics in mammalian systems remain unclear. It has been suggested that bactericidal antibiotics induce the formation of toxic reactive oxygen species (ROS) in bacteria. We show that clinically relevant doses of bactericidal antibiotics-quinolones, aminoglycosides, and β-lactams-cause mitochondrial dysfunction and ROS overproduction in mammalian cells. We demonstrate that these bactericidal antibiotic-induced effects lead to oxidative damage to DNA, proteins, and membrane lipids. Mice treated with bactericidal antibiotics exhibited elevated oxidative stress markers in the blood, oxidative tissue damage, and up-regulated expression of key genes involved in antioxidant defense mechanisms, which points to the potential physiological relevance of these antibiotic effects. The deleterious effects of bactericidal antibiotics were alleviated in cell culture and in mice by the administration of the antioxidant N-acetyl-l-cysteine or prevented by preferential use of bacteriostatic antibiotics. This work highlights the role of antibiotics in the production of oxidative tissue damage in mammalian cells and presents strategies to mitigate or prevent the resulting damage, with the goal of improving the safety of antibiotic treatment in people.

  5. Bactericidal Antibiotics Induce Mitochondrial Dysfunction and Oxidative Damage in Mammalian Cells

    PubMed Central

    Costello, James C.; Liesa, Marc; Morones-Ramirez, J Ruben; Slomovic, Shimyn; Molina, Anthony; Shirihai, Orian S.; Collins, James J.

    2013-01-01

    Prolonged antibiotic treatment can lead to detrimental side effects in patients, including ototoxicity, nephrotoxicity, and tendinopathy, yet the mechanisms underlying the effects of antibiotics in mammalian systems remain unclear. It has been suggested that bactericidal antibiotics induce the formation of toxic reactive oxygen species (ROS) in bacteria. We show that clinically relevant doses of bactericidal antibiotics—quinolones, aminoglycosides, and β-lactams—cause mitochondrial dysfunction and ROS overproduction in mammalian cells. We demonstrate that these bactericidal antibiotic–induced effects lead to oxidative damage to DNA, proteins, and membrane lipids. Mice treated with bactericidal antibiotics exhibited elevated oxidative stress markers in the blood, oxidative tissue damage, and up-regulated expression of key genes involved in antioxidant defense mechanisms, which points to the potential physiological relevance of these antibiotic effects. The deleterious effects of bactericidal antibiotics were alleviated in cell culture and in mice by the administration of the antioxidant N-acetyl-L-cysteine or prevented by preferential use of bacteriostatic antibiotics. This work highlights the role of antibiotics in the production of oxidative tissue damage in mammalian cells and presents strategies to mitigate or prevent the resulting damage, with the goal of improving the safety of antibiotic treatment in people. PMID:23825301

  6. Variability in mutational fitness effects prevents full lethal transitions in large quasispecies populations

    NASA Astrophysics Data System (ADS)

    Sardanyés, Josep; Simó, Carles; Martínez, Regina; Solé, Ricard V.; Elena, Santiago F.

    2014-04-01

    The distribution of mutational fitness effects (DMFE) is crucial to the evolutionary fate of quasispecies. In this article we analyze the effect of the DMFE on the dynamics of a large quasispecies by means of a phenotypic version of the classic Eigen's model that incorporates beneficial, neutral, deleterious, and lethal mutations. By parameterizing the model with available experimental data on the DMFE of Vesicular stomatitis virus (VSV) and Tobacco etch virus (TEV), we found that increasing mutation does not totally push the entire viral quasispecies towards deleterious or lethal regions of the phenotypic sequence space. The probability of finding regions in the parameter space of the general model that results in a quasispecies only composed by lethal phenotypes is extremely small at equilibrium and in transient times. The implications of our findings can be extended to other scenarios, such as lethal mutagenesis or genomically unstable cancer, where increased mutagenesis has been suggested as a potential therapy.

  7. Financial hardship and psychological distress: Exploring the buffering effects of religion

    PubMed Central

    Bradshaw, Matt; Ellison, Christopher G.

    2013-01-01

    Despite ample precedent in theology and social theory, few studies have systematically examined the role of religion in mitigating the harmful effects of socioeconomic deprivation on mental health. The present study outlines several arguments linking objective and subjective measures of financial hardship, as well as multiple aspects of religious life, with psychological distress. Relevant hypotheses are then tested using data on adults aged 18–59 from the 1998 US NORC General Social Survey. Findings confirm that both types of financial hardship are positively associated with distress, and that several different aspects of religious life buffer against these deleterious influences. Specifically, religious attendance and the belief in an afterlife moderate the deleterious effects of financial hardship on both objective and subjective financial hardship, while meditation serves this function only for objective hardship. No interactive relationships were found between frequency of prayer and financial hardship. A number of implications, study limitations, and directions for future research are identified. PMID:20556889

  8. Single season effects of mixed-species cover crops on tomato health (cultivar Celebrity) in multi-state field trials

    USDA-ARS?s Scientific Manuscript database

    Cover crop use can help mitigate the deleterious effects of common cropping practices (e.g., tillage) and is, therefore, an important component of soil health maintenance. While known to be beneficial in the long term, the short-term effects of cover crops, specifically mixed-species cover crops in ...

  9. Effect of increased systemic concentrations of urea nitrogen in crossbred heifers on in vitro fertilization (IVF)

    USDA-ARS?s Scientific Manuscript database

    Elevated levels of dietary N and hence systemic concentrations of urea-N have been shown to have a deleterious effect on reproductive processes. The objective of this study was to determine the effect of feeding pubertal crossbred heifers diets with moderate (M-N; 64.8% corn silage, 30.0% alfalfa h...

  10. Distration, Response Mode, Anxiety, and Achievement in Computer Assisted Instruction.

    ERIC Educational Resources Information Center

    Tobias, Sigmund

    The effects of distraction on achievement are particularly important in relation to the acceptability of computer-assisted instructional materials. In addition to these effects, various levels of anxiety may also be deleterious to the learner. In order to measure the effects of both distraction and anxiety 121 subjects were used in a two-by-two…

  11. A novel mutation in SLITRK6 causes deafness and myopia in a Moroccan family.

    PubMed

    Salime, Sara; Riahi, Zied; Elrharchi, Soukaina; Elkhattabi, Lamiae; Charoute, Hicham; Nahili, Halima; Rouba, Hassan; Kabine, Mostafa; Bonnet, Crystel; Petit, Christine; Barakat, Abdelhamid

    2018-06-15

    Deafness and myopia syndrome is characterized by moderate-profound, bilateral, congenital or prelingual deafness and high myopia. Autosomal recessive non-syndromic hearing loss is one of the most prevalent human genetic sensorineural defects. Myopia is by far the most common human eye disorder that is known to have a clear heritable component. The analysis of the two exons of SLITRK6 gene in a Moroccan family allowed us to identify a novel single deleterious mutation c.696delG, p.Trp232Cysfs*10 at homozygous state in the exon 2 of the SLITRK6, a gene reported to cause deafness and myopia in various populations. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Toxicity of organic UV-filters to the aquatic midge Chironomus riparius.

    PubMed

    Campos, Diana; Gravato, Carlos; Quintaneiro, Carla; Golovko, Oksana; Žlábek, Vladimír; Soares, Amadeu M V M; Pestana, João L T

    2017-09-01

    Despite the frequent detection of organic ultraviolet-filters (UV-filters) in freshwater sediments, there is a lack of ecotoxicological data undermining a correct risk assessment for these emerging contaminants. The present study assessed the effects of three of the most commonly used UV-filters (benzophenone-3 - BP3; 3-(4-methylbenzylidene)camphor - 4-MBC and octocrylene - OC) on Chironomus riparius life history and biochemical responses. Standard ecotoxicological assays confirmed that all compounds impaired growth of C. riparius larvae and induced developmental effects such as delayed emergence and a reduction of imagoes weight. Concerning the biochemical responses analysed no evidences of oxidative damage in lipids or neurotoxicity (tested assessing acetylcholinesterase activity) were observed for any of the tested compounds. However, 4-MBC exposure induced a decrease in catalase activity and an increase in glutathione-S-transferase activity at 14.13mg/Kg while OC exposure caused an increase in total glutathione levels at 0.23 and 18.23mg/Kg. Exposure to all UV-filters tested, increased energy consumption on C. riparius with significant differences above 1.00mg/Kg for BP3, 0.09mg/Kg for 4-MBC and 2.13mg/Kg for OC. These results suggest that environmental relevant concentrations of UV-filters can cause deleterious effects to aquatic benthic species, such as C. riparius, and call for further research concerning effects of organic UV-filters on natural invertebrate communities and ecosystem functioning. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Raf Kinase Inhibitory Protein protects cells against locostatin-mediated inhibition of migration.

    PubMed

    Shemon, Anne N; Eves, Eva M; Clark, Matthew C; Heil, Gary; Granovsky, Alexey; Zeng, Lingchun; Imamoto, Akira; Koide, Shohei; Rosner, Marsha Rich

    2009-06-24

    Raf Kinase Inhibitory Protein (RKIP, also PEBP1), a member of the Phosphatidylethanolamine Binding Protein family, negatively regulates growth factor signaling by the Raf/MAP kinase pathway. Since an organic compound, locostatin, was reported to bind RKIP and inhibit cell migration by a Raf-dependent mechanism, we addressed the role of RKIP in locostatin function. We analyzed locostatin interaction with RKIP and examined the biological consequences of locostatin binding on RKIP function. NMR studies show that a locostatin precursor binds to the conserved phosphatidylethanolamine binding pocket of RKIP. However, drug binding to the pocket does not prevent RKIP association with its inhibitory target, Raf-1, nor affect RKIP phosphorylation by Protein Kinase C at a regulatory site. Similarly, exposure of wild type, RKIP-depleted HeLa cells or RKIP-deficient (RKIP(-/-)) mouse embryonic fibroblasts (MEFs) to locostatin has no effect on MAP kinase activation. Locostatin treatment of wild type MEFs causes inhibition of cell migration following wounding. RKIP deficiency impairs migration further, indicating that RKIP protects cells against locostatin-mediated inhibition of migration. Locostatin treatment of depleted or RKIP(-/-) MEFs reveals cytoskeletal disruption and microtubule abnormalities in the spindle. These results suggest that locostatin's effects on cytoskeletal structure and migration are caused through mechanisms independent of its binding to RKIP and Raf/MAP kinase signaling. The protective effect of RKIP against drug inhibition of migration suggests a new role for RKIP in potentially sequestering toxic compounds that may have deleterious effects on cells.

  14. Autoradiographic evidence for methamphetamine-induced striatal dopaminergic loss in mouse brain: attenuation in CuZn-superoxide dismutase transgenic mice.

    PubMed

    Hirata, H; Ladenheim, B; Carlson, E; Epstein, C; Cadet, J L

    1996-04-01

    Methamphetamine (METH) has long-lasting neurotoxic effects on the nigrostriatal dopamine (DA) system of rodents. METH-induced neurotoxicity is thought to involve release of DA in presynaptic DA terminals, which is associated with increased formation of oxygen-based free radicals. We have recently shown that METH-induced striatal DA depletion is attenuated in transgenic (Tg) mice that express the human CuZn-superoxide dismutase (SOD) enzyme. That study did not specifically address the issue of loss of DA terminals. In the present study, we have used receptor autoradiographic studies of [(125)I]RTI-121-labeled DA uptake sites to evaluate the effects of several doses of METH on striatal DA terminals of Non-Tg as well as of heterozygous and homozygous SOD-Tg mice. In Non-Tg mice, METH caused decreases in striatal DA uptake sites in a dose-dependent fashion. The loss of DA terminals was more prominent in the lateral region than in the medial subdivisions of the striatum. In SOD-Tg mice, the loss of DA terminals caused by METH was attenuated in a gene dosage-dependent fashion, with the homozygous mice showing the greatest protection. Female mice were somewhat more resistant than male mice against these deleterious effects of METH. These results provide further evidence for a role of superoxide radicals in the long-term effects of METH. They also suggest the notion of a gender-specific handling of oxidative stress.

  15. Deleterious BRCA1/2 mutations in an urban population of Black women

    PubMed Central

    Smith, Karen Lisa; Stein, Julie; DeMarco, Tiffani; Wang, Yiru; Wang, Hongkun; Fries, Melissa; Peshkin, Beth N.; Isaacs, Claudine

    2018-01-01

    Information on the prevalence of deleterious BRCA1 and BRCA2 (BRCA1/2) mutations in clinic-based populations of Black women is limited. In order to address this gap, we performed a retrospective study to determine the prevalence of deleterious BRCA1/2 mutations, predictors of having a mutation, and acceptance of risk-reducing surgeries in Black women. In an urban unselected clinic-based population, we evaluated 211 self-identified Black women who underwent genetic counseling for hereditary breast–ovarian cancer syndrome. BRCA1/2 mutations were identified in 13.4 % of the participants who received genetic testing. Younger age at diagnosis, higher BRCA-PRO score, significant family history, and diagnosis of triple-negative breast cancer were associated with identification of a BRCA1/2 mutation. Of the affected patients found to have a deleterious mutation, almost half underwent prophylactic measures. In our study population, 1 in 7 Black women who underwent genetic testing harbored a deleterious BRCA1/2 mutation independent of age at diagnosis or family history. PMID:26250392

  16. Mutator dynamics in sexual and asexual experimental populations of yeast.

    PubMed

    Raynes, Yevgeniy; Gazzara, Matthew R; Sniegowski, Paul D

    2011-06-07

    In asexual populations, mutators may be expected to hitchhike with associated beneficial mutations. In sexual populations, recombination is predicted to erode such associations, inhibiting mutator hitchhiking. To investigate the effect of recombination on mutators experimentally, we compared the frequency dynamics of a mutator allele (msh2Δ) in sexual and asexual populations of Saccharomyces cerevisiae. Mutator strains increased in frequency at the expense of wild-type strains in all asexual diploid populations, with some approaching fixation in 150 generations of propagation. Over the same period of time, mutators declined toward loss in all corresponding sexual diploid populations as well as in haploid populations propagated asexually. We report the first experimental investigation of mutator dynamics in sexual populations. We show that a strong mutator quickly declines in sexual populations while hitchhiking to high frequency in asexual diploid populations, as predicted by theory. We also show that the msh2Δ mutator has a high and immediate realized cost that is alone sufficient to explain its decline in sexual populations. We postulate that this cost is indirect; namely, that it is due to a very high rate of recessive lethal or strongly deleterious mutation. However, we cannot rule out the possibility that msh2Δ also has unknown directly deleterious effects on fitness, and that these effects may differ between haploid asexual and sexual populations. Despite these reservations, our results prompt us to speculate that the short-term cost of highly deleterious recessive mutations can be as important as recombination in preventing mutator hitchhiking in sexual populations.

  17. Multimodel assessment of BRCA1 mutations in Taiwanese (ethnic Chinese) women with early-onset, bilateral or familial breast cancer.

    PubMed

    Kuo, Wen-Hong; Lin, Po-Han; Huang, Ai-Chu; Chien, Yin-Hsiu; Liu, Tsang-Pai; Lu, Yen-Shen; Bai, Li-Yuan; Sargeant, Aaron M; Lin, Ching-Hung; Cheng, Ann-Lii; Hsieh, Fon-Jou; Hwu, Wuh-Liang; Chang, King-Jen

    2012-02-01

    Although evidence suggests an importance of genetic factors in the development of breast cancer in Taiwanese (ethnic Chinese) women, including a high incidence of early-onset and secondary contralateral breast cancer, a major breast cancer predisposition gene, BRCA1, has not been well studied in this population. In fact, the carcinogenic impacts of many genetic variants of BRCA1 are unknown and classified as variants of uncertain significance (VUS). It is therefore important to establish a method to characterize the BRCA1 VUSs and understand their role in Taiwanese breast cancer patients. Accordingly, we developed a multimodel assessment strategy consisting of a prescreening portion and a validated functional assay to study breast cancer patients with early-onset, bilateral or familial breast cancer. We found germ-line BRCA1 mutations in 11.1% of our cohort and identified one novel missense mutation, c.5191C>A. Two genetic variants were initially classified as VUSs (c.1155C>T and c.5191C>A). c.1155C>T is not predicted to be deleterious in the prescreening portion of our assessment strategy. c.5191C>A, on the other hand, causes p.T1691K, which is predicted to have high deleterious probability because of significant structural alteration, a high deleterious score in the predictive programs and, clinically, triple negative characteristics in breast tumors. This mutant is confirmed by transcription activation and yeast growth-inhibition assays. In conclusion, we show as high a prevalence of germ-line BRCA1 mutation in high-risk Taiwanese patients as in Caucasians and demonstrate a useful strategy for studying BRCA1 VUSs.

  18. BRCA1 and BRCA2 mutations in ethnic Lebanese Arab women with high hereditary risk breast cancer.

    PubMed

    El Saghir, Nagi S; Zgheib, Nathalie K; Assi, Hussein A; Khoury, Katia E; Bidet, Yannick; Jaber, Sara M; Charara, Raghid N; Farhat, Rania A; Kreidieh, Firas Y; Decousus, Stephanie; Romero, Pierre; Nemer, Georges M; Salem, Ziad; Shamseddine, Ali; Tfayli, Arafat; Abbas, Jaber; Jamali, Faek; Seoud, Muhieddine; Armstrong, Deborah K; Bignon, Yves-Jean; Uhrhammer, Nancy

    2015-04-01

    Breast cancer is the most common malignancy among women in Lebanon and in Arab countries, with 50% of cases presenting before the age of 50 years. Between 2009 and 2012, 250 Lebanese women with breast cancer who were considered to be at high risk of carrying BRCA1 or BRCA2 mutations because of presentation at young age and/or positive family history (FH) of breast or ovarian cancer were recruited. Clinical data were analyzed statistically. Coding exons and intron-exon boundaries of BRCA1 and BRCA2 were sequenced from peripheral blood DNA. All patients were tested for BRCA1 rearrangements using multiplex ligation-dependent probe amplification (MLPA). BRCA2 MLPA was done in selected cases. Overall, 14 of 250 patients (5.6%) carried a deleterious BRCA mutation (7 BRCA1, 7 BRCA2) and 31 (12.4%) carried a variant of uncertain significance. Eight of 74 patients (10.8%) aged ≤40 years with positive FH and only 1 of 74 patients (1.4%) aged ≤40 years without FH had a mutated BRCA. Four of 75 patients (5.3%) aged 41-50 years with FH had a deleterious mutation. Only 1 of 27 patients aged >50 years at diagnosis had a BRCA mutation. All seven patients with BRCA1 mutations had grade 3 infiltrating ductal carcinoma and triple-negative breast cancer. Nine BRCA1 and 17 BRCA2 common haplotypes were observed. Prevalence of deleterious BRCA mutations is lower than expected and does not support the hypothesis that BRCA mutations alone cause the observed high percentage of breast cancer in young women of Lebanese and Arab descent. Studies to search for other genetic mutations are recommended. ©AlphaMed Press.

  19. Genome-wide Polygenic Burden of Rare Deleterious Variants in Sudden Unexpected Death in Epilepsy.

    PubMed

    Leu, Costin; Balestrini, Simona; Maher, Bridget; Hernández-Hernández, Laura; Gormley, Padhraig; Hämäläinen, Eija; Heggeli, Kristin; Schoeler, Natasha; Novy, Jan; Willis, Joseph; Plagnol, Vincent; Ellis, Rachael; Reavey, Eleanor; O'Regan, Mary; Pickrell, William O; Thomas, Rhys H; Chung, Seo-Kyung; Delanty, Norman; McMahon, Jacinta M; Malone, Stephen; Sadleir, Lynette G; Berkovic, Samuel F; Nashef, Lina; Zuberi, Sameer M; Rees, Mark I; Cavalleri, Gianpiero L; Sander, Josemir W; Hughes, Elaine; Helen Cross, J; Scheffer, Ingrid E; Palotie, Aarno; Sisodiya, Sanjay M

    2015-09-01

    Sudden unexpected death in epilepsy (SUDEP) represents the most severe degree of the spectrum of epilepsy severity and is the commonest cause of epilepsy-related premature mortality. The precise pathophysiology and the genetic architecture of SUDEP remain elusive. Aiming to elucidate the genetic basis of SUDEP, we analysed rare, protein-changing variants from whole-exome sequences of 18 people who died of SUDEP, 87 living people with epilepsy and 1479 non-epilepsy disease controls. Association analysis revealed a significantly increased genome-wide polygenic burden per individual in the SUDEP cohort when compared to epilepsy (P = 5.7 × 10(- 3)) and non-epilepsy disease controls (P = 1.2 × 10(- 3)). The polygenic burden was driven both by the number of variants per individual, and over-representation of variants likely to be deleterious in the SUDEP cohort. As determined by this study, more than a thousand genes contribute to the observed polygenic burden within the framework of this study. Subsequent gene-based association analysis revealed five possible candidate genes significantly associated with SUDEP or epilepsy, but no one single gene emerges as common to the SUDEP cases. Our findings provide further evidence for a genetic susceptibility to SUDEP, and suggest an extensive polygenic contribution to SUDEP causation. Thus, an overall increased burden of deleterious variants in a highly polygenic background might be important in rendering a given individual more susceptible to SUDEP. Our findings suggest that exome sequencing in people with epilepsy might eventually contribute to generating SUDEP risk estimates, promoting stratified medicine in epilepsy, with the eventual aim of reducing an individual patient's risk of SUDEP.

  20. Genome-wide Polygenic Burden of Rare Deleterious Variants in Sudden Unexpected Death in Epilepsy

    PubMed Central

    Leu, Costin; Balestrini, Simona; Maher, Bridget; Hernández-Hernández, Laura; Gormley, Padhraig; Hämäläinen, Eija; Heggeli, Kristin; Schoeler, Natasha; Novy, Jan; Willis, Joseph; Plagnol, Vincent; Ellis, Rachael; Reavey, Eleanor; O'Regan, Mary; Pickrell, William O.; Thomas, Rhys H.; Chung, Seo-Kyung; Delanty, Norman; McMahon, Jacinta M.; Malone, Stephen; Sadleir, Lynette G.; Berkovic, Samuel F.; Nashef, Lina; Zuberi, Sameer M.; Rees, Mark I.; Cavalleri, Gianpiero L.; Sander, Josemir W.; Hughes, Elaine; Helen Cross, J.; Scheffer, Ingrid E.; Palotie, Aarno; Sisodiya, Sanjay M.

    2015-01-01

    Sudden unexpected death in epilepsy (SUDEP) represents the most severe degree of the spectrum of epilepsy severity and is the commonest cause of epilepsy-related premature mortality. The precise pathophysiology and the genetic architecture of SUDEP remain elusive. Aiming to elucidate the genetic basis of SUDEP, we analysed rare, protein-changing variants from whole-exome sequences of 18 people who died of SUDEP, 87 living people with epilepsy and 1479 non-epilepsy disease controls. Association analysis revealed a significantly increased genome-wide polygenic burden per individual in the SUDEP cohort when compared to epilepsy (P = 5.7 × 10− 3) and non-epilepsy disease controls (P = 1.2 × 10− 3). The polygenic burden was driven both by the number of variants per individual, and over-representation of variants likely to be deleterious in the SUDEP cohort. As determined by this study, more than a thousand genes contribute to the observed polygenic burden within the framework of this study. Subsequent gene-based association analysis revealed five possible candidate genes significantly associated with SUDEP or epilepsy, but no one single gene emerges as common to the SUDEP cases. Our findings provide further evidence for a genetic susceptibility to SUDEP, and suggest an extensive polygenic contribution to SUDEP causation. Thus, an overall increased burden of deleterious variants in a highly polygenic background might be important in rendering a given individual more susceptible to SUDEP. Our findings suggest that exome sequencing in people with epilepsy might eventually contribute to generating SUDEP risk estimates, promoting stratified medicine in epilepsy, with the eventual aim of reducing an individual patient's risk of SUDEP. PMID:26501104

  1. Phytochemicals reduce aflatoxin-induced toxicity in chicken embryos

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins (AF) are toxic metabolites produced by molds, Aspergillus flavus and Aspergillus parasiticus, which frequently contaminate poultry feed ingredients. Ingestion of AF-contaminated feed by chickens leads to deleterious effects, including decreased bird performance and reduced egg production....

  2. Phytochemicals reduce aflatoxin-induced toxicity in chicken embryos

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins (AF) are toxic metabolites produced by molds, Aspergillus flavus and Aspergillus parasicitus, which frequently contaminate chicken feed ingredients. Ingestion of AF-contaminated feed by chickens leads to deleterious effects, including decreased chicken performance and reduced egg producti...

  3. The effect of acute sleep deprivation on visual evoked potentials in professional drivers.

    PubMed

    Jackson, Melinda L; Croft, Rodney J; Owens, Katherine; Pierce, Robert J; Kennedy, Gerard A; Crewther, David; Howard, Mark E

    2008-09-01

    Previous studies have demonstrated that as little as 18 hours of sleep deprivation can cause deleterious effects on performance. It has also been suggested that sleep deprivation can cause a "tunnel-vision" effect, in which attention is restricted to the center of the visual field. The current study aimed to replicate these behavioral effects and to examine the electrophysiological underpinnings of these changes. Repeated-measures experimental study. University laboratory. Nineteen professional drivers (1 woman; mean age = 45.3 +/- 9.1 years). Two experimental sessions were performed; one following 27 hours of sleep deprivation and the other following a normal night of sleep, with control for circadian effects. A tunnel-vision task (central versus peripheral visual discrimination) and a standard checkerboard-viewing task were performed while 32-channel EEG was recorded. For the tunnel-vision task, sleep deprivation resulted in an overall slowing of reaction times and increased errors of omission for both peripheral and foveal stimuli (P < 0.05). These changes were related to reduced P300 amplitude (indexing cognitive processing) but not measures of early visual processing. No evidence was found for an interaction effect between sleep deprivation and visual-field position, either in terms of behavior or electrophysiological responses. Slower processing of the sustained parvocellular visual pathway was demonstrated. These findings suggest that performance deficits on visual tasks during sleep deprivation are due to higher cognitive processes rather than early visual processing. Sleep deprivation may differentially impair processing of more-detailed visual information. Features of the study design (eg, visual angle, duration of sleep deprivation) may influence whether peripheral visual-field neglect occurs.

  4. Uniparental Inheritance Promotes Adaptive Evolution in Cytoplasmic Genomes.

    PubMed

    Christie, Joshua R; Beekman, Madeleine

    2017-03-01

    Eukaryotes carry numerous asexual cytoplasmic genomes (mitochondria and plastids). Lacking recombination, asexual genomes should theoretically suffer from impaired adaptive evolution. Yet, empirical evidence indicates that cytoplasmic genomes experience higher levels of adaptive evolution than predicted by theory. In this study, we use a computational model to show that the unique biology of cytoplasmic genomes-specifically their organization into host cells and their uniparental (maternal) inheritance-enable them to undergo effective adaptive evolution. Uniparental inheritance of cytoplasmic genomes decreases competition between different beneficial substitutions (clonal interference), promoting the accumulation of beneficial substitutions. Uniparental inheritance also facilitates selection against deleterious cytoplasmic substitutions, slowing Muller's ratchet. In addition, uniparental inheritance generally reduces genetic hitchhiking of deleterious substitutions during selective sweeps. Overall, uniparental inheritance promotes adaptive evolution by increasing the level of beneficial substitutions relative to deleterious substitutions. When we assume that cytoplasmic genome inheritance is biparental, decreasing the number of genomes transmitted during gametogenesis (bottleneck) aids adaptive evolution. Nevertheless, adaptive evolution is always more efficient when inheritance is uniparental. Our findings explain empirical observations that cytoplasmic genomes-despite their asexual mode of reproduction-can readily undergo adaptive evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Increased Mycoplasma hyopneumoniae Disease Prevalence in Domestic Hybrids Among Free-Living Wild Boar.

    PubMed

    Goedbloed, Daniel J; van Hooft, Pim; Lutz, Walburga; Megens, Hendrik-Jan; van Wieren, Sip E; Ydenberg, Ron C; Prins, Herbert H T

    2015-12-01

    Wildlife immune genes are subject to natural selection exerted by pathogens. In contrast, domestic immune genes are largely protected from pathogen selection by veterinary care. Introgression of domestic alleles into the wild could lead to increased disease susceptibility, but observations are scarce due to low introgression rates, low disease prevalence and reduced survival of domestic hybrids. Here we report the first observation of a deleterious effect of domestic introgression on disease prevalence in a free-living large mammal. A fraction of 462 randomly sampled free-living European wild boar (Sus scrofa) was genetically identified as recent wild boar-domestic pig hybrids based on 351 SNP data. Analysis of antibody prevalence against the bacterial pathogen Mycoplasma hyopneumoniae (Mhyo) showed an increased Mhyo prevalence in wild-domestic hybrids. We argue that the most likely mechanism explaining the observed association between domestic hybrid status and Mhyo antibody prevalence would be introgression of deleterious domestic alleles. We hypothesise that large-scale use of antibiotics in the swine breeding sector may have played a role in shaping the relatively deleterious properties of domestic swine immune genes and that domestic introgression may also lead to increased wildlife disease susceptibility in the case of other species.

  6. Evolutionary constraints and the neutral theory. [mutation-caused nucleotide substitutions in DNA

    NASA Technical Reports Server (NTRS)

    Jukes, T. H.; Kimura, M.

    1984-01-01

    The neutral theory of molecular evolution postulates that nucleotide substitutions inherently take place in DNA as a result of point mutations followed by random genetic drift. In the absence of selective constraints, the substitution rate reaches the maximum value set by the mutation rate. The rate in globin pseudogenes is about 5 x 10 to the -9th substitutions per site per year in mammals. Rates slower than this indicate the presence of constraints imposed by negative (natural) selection, which rejects and discards deleterious mutations.

  7. Undergraduate Students' Achievement Goals for Conducting Research: Examining the Motivational Benefits of Laboratory Classroom Affiliation

    ERIC Educational Resources Information Center

    Deemer, Eric D.; Dotterer, Aryn M.; Morel, Samantha A.; Bastnagel, Abigail E.

    2017-01-01

    Rooted in achievement goal theory, the buffering hypothesis posits that contextual factors serve to moderate the deleterious effects of personal achievement goals on relevant outcomes. The present study sought to test this hypothesis by examining the interactive effects of classroom affiliation perceptions and personal achievement goals for…

  8. Mechanisms of nitrogen deposition effects on temperate forest lichens and trees

    Treesearch

    Therese S. Carter; Christopher M. Clark; Mark E. Fenn; Sarah Jovan; Steven S. Perakis; Jennifer Riddell; Paul G. Schaberg; Tara L. Greaver; Meredith G. Hastings

    2017-01-01

    We review the mechanisms of deleterious nitrogen (N) deposition impacts on temperate forests, with a particular focus on trees and lichens. Elevated anthropogenic N deposition to forests has varied effects on individual organisms depending on characteristics both of the N inputs (form, timing, amount) and of the organisms (ecology, physiology) involved. Improved...

  9. 77 FR 71312 - Irradiation in the Production, Processing and Handling of Food

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-30

    ... consumption, the Agency must identify the various effects that may result from irradiating the food and assess..., and fish) were irradiated under such conditions, there would be no deleterious effect on the total... foodborne pathogens and extend shelf-life. \\1\\ For the purpose of this final rule, refrigeration temperature...

  10. Loblolly Pine Responds to Mechanical Wounding with Increased Resin Flow

    Treesearch

    Jonathan J. Ruel; Matthew P. Ayres; Peter L. Lorio

    1998-01-01

    The oleoresin produced by many conifers has a deleterious effect on numerous associated herbivores, including bark beetles (Coleoptera: Scolytidae), and may have evolved as a plant defense mechanism. Three experiments with juvenile loblolly pine (Pinus taeda L.) used mechanical wounding to drain resin reserves and assess the effects of prior bark wounding on...

  11. Immunizing Children against the Negative Effects of Reward.

    ERIC Educational Resources Information Center

    Amabile, Teresa M.; And Others

    To determine whether training could counter deleterious effects of reward on intrinsic motivation and creativity, 68 students in grades 3, 4, and 5 at a parochial school in Massachusetts were assigned to one of four conditions in which intrinsic motivation training and rewards were either provided or withheld. In the intrinsic motivation training…

  12. Nuclear Weapon Tests and their Consequences,

    DTIC Science & Technology

    Nuclear weapon research, specifically nuclear bomb tests, and the deleterious effects of heightened radioactivity levels on the world’s biology, are...Soviet Union is discussed. The effects of the U.S.A. bombing of Hiroshima and Nagasaki, as well as the U.S.A. bomb test of March 1, 1954, and listed as

  13. [Autopsy case of drowning caused by accidental carbon dioxide intoxication in a hold tank].

    PubMed

    Sato, Hiroaki; Tanaka, Toshiko; Kasai, Kentaro; Kita, Toshiro

    2009-12-01

    A 49-year-old male captain fell and unfortunately died in a hold tank where he had entered to rescue his fainting co-worker on the disposing waste fluid left there. An autopsy revealed that the captain died from drowning in the waste fluid. In order to clarify the cause of their falling in the tank, the gas in the hold tank was analyzed. The concentration of oxygen was 18.86 to 19.31%, carbon dioxide was 7.28 to 9.07% and the other gases, including hydrogen sulfide, were assessed to be under the normal level. It was concluded that the intoxication of carbon dioxide generated from the waste fluid fermentation was the cause of this fatal accident through loss of consciousness. It is necessary to recognize that carbon dioxide is a dangerous and deleterious gas in circumstances where the gas can be produced.

  14. Management of cardiac arrest caused by coronary artery spasm: epinephrine/adrenaline versus nitrates.

    PubMed

    Kiss, Gabor; Corre, Olivier; Gueret, Gildas; Nguyen Ba, Vinh; Gilard, Martine; Boschat, Jaques; Arvieux, Charles Chistian

    2009-01-01

    Cardiopulmonary resuscitation guidelines imply the use of epinephrine/adrenaline during cardiopulmonary arrest. However, in cardiac arrest situations resulting from coronary artery spasm (CAS), the use of epinephrine/adrenaline could be deleterious. A 49-year-old patient underwent an emergency coronarography with an attempt to stent the coronary arteries. Radiologic imaging revealed a positive methylergonovine maleate (Methergine, Novartis Pharmaceuticals, East Hanover, NJ) test, with subocclusive CAS in several coronary vessels leading to electromechanical dissociation. Cardiopulmonary resuscitation was performed, and intracoronary boluses of isosorbide dinitrate were given to treat CAS. Epinephrine/adrenaline was not administered during resuscitation. Spontaneous circulation was obtained after cardioversion for ventricular fibrillation, and the patient progressively regained consciousness. Resuscitation guidelines do not specify the use of trinitrate derivatives in cardiac arrest situations caused by CAS. The pros and cons of the use of nitrates and epinephrine/adrenaline during cardiac arrest caused by CAS are analyzed in this case report.

  15. LncRNA ZFAS1 as a SERCA2a Inhibitor to Cause Intracellular Ca2+ Overload and Contractile Dysfunction in a Mouse Model of Myocardial Infarction.

    PubMed

    Zhang, Ying; Jiao, Lei; Sun, Lihua; Li, Yanru; Gao, Yuqiu; Xu, Chaoqian; Shao, Yingchun; Li, Mengmeng; Li, Chunyan; Lu, Yanjie; Pan, Zhenwei; Xuan, Lina; Zhang, Yiyuan; Li, Qingqi; Yang, Rui; Zhuang, Yuting; Zhang, Yong; Yang, Baofeng

    2018-05-11

    Ca 2+ homeostasis-a critical determinant of cardiac contractile function-is critically regulated by SERCA2a (sarcoplasmic reticulum Ca 2+ -ATPase 2a). Our previous study has identified ZFAS1 as a new lncRNA biomarker of acute myocardial infarction (MI). To evaluate the effects of ZFAS1 on SERCA2a and the associated Ca 2+ homeostasis and cardiac contractile function in the setting of MI. ZFAS1 expression was robustly increased in cytoplasm and sarcoplasmic reticulum in a mouse model of MI and a cellular model of hypoxia. Knockdown of endogenous ZFAS1 by virus-mediated silencing shRNA partially abrogated the ischemia-induced contractile dysfunction. Overexpression of ZFAS1 in otherwise normal mice created similar impairment of cardiac function as that observed in MI mice. Moreover, at the cellular level, ZFAS1 overexpression weakened the contractility of cardiac muscles. At the subcellular level, ZFAS1 deleteriously altered the Ca 2+ transient leading to intracellular Ca 2+ overload in cardiomyocytes. At the molecular level, ZFAS1 was found to directly bind SERCA2a protein and to limit its activity, as well as to repress its expression. The effects of ZFAS1 were readily reversible on knockdown of this lncRNA. Notably, a sequence domain of ZFAS1 gene that is conserved across species mimicked the effects of the full-length ZFAS1 . Mutation of this domain or application of an antisense fragment to this conserved region efficiently canceled out the deleterious actions of ZFAS1 . ZFAS1 had no significant effects on other Ca 2+ -handling regulatory proteins. ZFAS1 is an endogenous SERCA2a inhibitor, acting by binding to SERCA2a protein to limit its intracellular level and inhibit its activity, and a contributor to the impairment of cardiac contractile function in MI. Therefore, anti- ZFAS1 might be considered as a new therapeutic strategy for preserving SERCA2a activity and cardiac function under pathological conditions of the heart. © 2018 The Authors.

  16. Non-target effects of an introduced biological control agent on deer mouse ecology

    Treesearch

    Dean E. Pearson; Kevin S. McKelvey; Leonard F. Ruggiero

    2000-01-01

    Release of exotic insects as biological control agents is a common approach to controlling exotic plants. Though controversy has ensued regarding the deleterious direct effects of biological control agents to non-target species, few have examined the indirect effects of a "well-behaved" biological control agent on native fauna. We studied a grassland in west-...

  17. Sleep Deprivation Diminishes Attentional Control Effectiveness and Impairs Flexible Adaptation to Changing Conditions.

    PubMed

    Whitney, Paul; Hinson, John M; Satterfield, Brieann C; Grant, Devon A; Honn, Kimberly A; Van Dongen, Hans P A

    2017-11-22

    Insufficient sleep is a global public health problem resulting in catastrophic accidents, increased mortality, and hundreds of billions of dollars in lost productivity. Yet the effect of sleep deprivation (SD) on decision making and performance is often underestimated by fatigued individuals and is only beginning to be understood by scientists. The deleterious impact of SD is frequently attributed to lapses in vigilant attention, but this account fails to explain many SD-related problems, such as loss of situational awareness and perseveration. Using a laboratory study protocol, we show that SD individuals can maintain information in the focus of attention and anticipate likely correct responses, but their use of such a top-down attentional strategy is less effective at preventing errors caused by competing responses. Moreover, when the task environment requires flexibility, performance under SD suffers dramatically. The impairment in flexible shifting of attentional control we observed is distinct from lapses in vigilant attention, as corroborated by the specificity of the influence of a genetic biomarker, the dopaminergic polymorphism DRD2 C957T. Reduced effectiveness of top-down attentional control under SD, especially when conditions require flexibility, helps to explain maladaptive performance that is not readily explained by lapses in vigilant attention.

  18. [Complementary treatment of acute heart failure in patients with diabetes, chronic obstructive pulmonary disease or anemia].

    PubMed

    Carrasco Sánchez, Francisco Javier; Recio Iglesias, Jesús; Grau Amorós, Jordi

    2014-03-01

    Diabetes, chronic obstructive pulmonary disease (COPD) and anemia are comorbidities with a high prevalence and impact in heart failure (HF). The presence of these comorbidities considerably worsens the prognosis of HF. Diabetic patients have a higher likelihood of developing symptoms of HF and both the treatment of diabetes and that of acute HF are altered by the coexistence of both entities. The glycemic targets in patients with acute HF are not well-defined, but could show a U-shaped relationship. Stress hyperglycemia in non-diabetic patients with HF could also have a deleterious effect on the medium-term prognosis. The inter-relationship between COPD and HF hampers diagnosis due to the overlap between the symptoms and signs of both entities and complementary investigations. The treatment of acute HF is also altered by the presence of COPD. Anemia is highly prevalent and is often the direct cause of decompensated HF, the most common cause being iron deficiency anemia. Iron replacement therapy, specifically intravenous forms, has helped to improve the prognosis of acute HF. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  19. The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance

    PubMed Central

    MacMillan, Heath A.; Andersen, Jonas L.; Davies, Shireen A.; Overgaard, Johannes

    2015-01-01

    Many insects, including Drosophila, succumb to the physiological effects of chilling at temperatures well above those causing freezing. Low temperature causes a loss of extracellular ion and water homeostasis in such insects, and chill injuries accumulate. Using an integrative and comparative approach, we examined the role of ion and water balance in insect chilling susceptibility/ tolerance. The Malpighian tubules (MT), of chill susceptible Drosophila species lost [Na+] and [K+] selectivity at low temperatures, which contributed to a loss of Na+ and water balance and a deleterious increase in extracellular [K+]. By contrast, the tubules of chill tolerant Drosophila species maintained their MT ion selectivity, maintained stable extracellular ion concentrations, and thereby avoided injury. The most tolerant species were able to modulate ion balance while in a cold-induced coma and this ongoing physiological acclimation process allowed some individuals of the tolerant species to recover from chill coma during low temperature exposure. Accordingly, differences in the ability to maintain homeostatic control of water and ion balance at low temperature may explain large parts of the wide intra- and interspecific variation in insect chilling tolerance. PMID:26678786

  20. Is gamma-glutamyl transpeptidase a biomarker for oxidative stress in periodontitis?

    PubMed Central

    Sreeram, Meenakshi; Suryakar, Adinath Narayan; Dani, Nitin Hemchandra

    2015-01-01

    Context: Periodontal disease and oxidative stress (OS) are part of a vicious cycle with each causing a deleterious effect on the other causing changes in the levels of antioxidants, and enzymes of antioxidant defense. Biomarkers and methods used for measuring OS are very expensive. Aims: To see how gamma-glutamyltransferase (GGT) fares, as a biomarker for OS in periodontits along with other routinely used biomarkers. Design: A cross-sectional study involving 300 people of which 150 were cases and 150 were controls. Setting: Candidates enrolled were patients visiting the OPD of MGV's Dental College and Hospital, Nasik, India between January 2011 and December 2012. Materials and Methods: Serum samples of patients with periodontitis, and controls were analyzed for malondialdehyde, superoxide dismutase (SOD), glutathione peroxidase (GPx), uric acid, and GGT. Statistical Analysis Used: Analysis was performed using Student's t test. P <0.05 were considered to be significant. Results: Malondialdehyde values were found to be significantly higher cases, while SOD, GPx and uric acid levels were found to be lower than controls. GGT levels were significantly higher in cases as compared to controls. Conclusions: GGT may be used as a cheap, quick, easy and precise marker for measuring OS. PMID:26015663

Top