ERIC Educational Resources Information Center
Saraçli, Sinan; Yilmaz, Veysel; Arslan, Talha
2014-01-01
Problem Statement: The damage caused by recent environmental problems has led to increased environmental concerns and the development of environment-friendly consumption behaviours in almost every society. Environment-friendly consumption involves the consideration of environmental benefits by minimizing any damage done to the environment at all…
Luque-Larena, Juan J; Mougeot, François; Arroyo, Beatriz; Lambin, Xavier
2018-07-01
Rodents damaging alfalfa crops typically destined for export to booming Eastern markets often cause economical losses to farmers, but management interventions attempting to control rodents (i.e., use of rodenticides) are themselves damaging to biodiversity. These damages resonate beyond dairy feed producing regions through animal migration and are an overlooked part of the transferred environmental burden caused by a growing thirst for milk in China and elsewhere. © 2018 John Wiley & Sons Ltd.
[A Method Research on Environmental Damage Assessment of a Truck Rollover Pollution Incident].
Cai, Feng; Zhao, Shi-ho; Chen, Gang-cai; Xian, Si-shu; Yang, Qing-ling; Zhou, Xian-jie; Yu, Hai
2015-05-01
With high occurrence of sudden water pollution incident, China faces an increasingly severe situation of water environment. In order to deter the acts of environmental pollution, ensure the damaged resources of environment can be restored and compensated, it is very critical to quantify the economic losses caused by the sudden water pollution incident. This paper took truck rollover pollution incidents in Chongqing for an example, established a set of evaluation method for quantifying the environmental damage, and then assessed the environmental damage by the method from four aspects, including the property damage, ecological environment and resources damages, the costs of administrative affairs in emergency disposal, and the costs of investigation and evaluation.
DNA Damage in Euonymus japonicus Leaf Cells Caused by Roadside Pollution in Beijing
Li, Tianxin; Zhang, Minjie; Gu, Ke; Herman, Uwizeyimana; Crittenden, John; Lu, Zhongming
2016-01-01
The inhalable particles from vehicle exhaust can cause DNA damage to exposed organisms. Research on DNA damage is primarily focused on the influence of specific pollutants on certain species or the effect of environmental pollution on human beings. To date, little research has quantitatively studied the relationship between roadside pollution and DNA damage. Based on an investigation of the roadside pollution in Beijing, Euonymus japonicus leaves of differing ages grown in heavily-polluted sections were chosen as biomonitors to detect DNA damage using the comet assay technique. The percentage of DNA in the tail and tail moment was chosen as the analysis index based on SPSS data analysis. The roadside samples showed significantly higher levels of DNA damage than non-roadside samples, which increased in older leaves, and the DNA damage to Euonymus japonicus leaf cells was positively correlated with haze-aggravated roadside pollution. The correlation between damage and the Air Quality Index (AQI) are 0.921 (one-year-old leaves), 0.894 (two-year-old leaves), and 0.878 (three-year-old leaves). Over time, the connection between DNA damage and AQI weakened, with the sensitivity coefficient for δyear 1 being larger than δyear 2 and δyear 3. These findings support the suitability and sensitivity of the comet assay for surveying plants for an estimation of DNA damage induced by environmental genotoxic agents. This study might be applied as a preliminary quantitative method for Chinese urban air pollution damage assessment caused by environmental stress. PMID:27455298
Environmental impacts of forest road construction on mountainous terrain.
Caliskan, Erhan
2013-03-15
Forest roads are the base infrastructure foundation of forestry operations. These roads entail a complex engineering effort because they can cause substantial environmental damage to forests and include a high-cost construction. This study was carried out in four sample sites of Giresun, Trabzon(2) and Artvin Forest Directorate, which is in the Black Sea region of Turkey. The areas have both steep terrain (30-50% gradient) and very steep terrain (51-80% gradient). Bulldozers and hydraulic excavators were determined to be the main machines for forest road construction, causing environmental damage and cross sections in mountainous areas.As a result of this study, the percent damage to forests was determined as follows: on steep terrain, 21% of trees were damaged by excavators and 33% of trees were damaged by bulldozers during forest road construction, and on very steep terrain, 27% of trees were damaged by excavators and 44% of trees were damaged by bulldozers during forest road construction. It was also determined that on steep terrain, when excavators were used, 12.23% less forest area was destroyed compared with when bulldozers were used and 16.13% less area was destroyed by excavators on very steep terrain. In order to reduce the environmental damage on the forest ecosystem, especially in steep terrains, hydraulic excavators should replace bulldozers in forest road construction activities.
Environmental, Physiological, and Cultural Injuries and Genetic Disorders
USDA-ARS?s Scientific Manuscript database
There are some disorders of citrus that are not currently known to be caused by a pathogenic agent, but appears to be inherited, physiologically based, or caused by environmental conditions. Environmental injuries include heat injury and sunburn; wind injury; smog; flooding; hail damage; lightning; ...
Management of wildlife causing damage at Argonne National Laboratory-East, DuPage County, Illinois
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-01
The DOE, after an independent review, has adopted an Environmental Assessment (EA) prepared by the US Department of Agriculture (USDA) which evaluates use of an Integrated Wildlife Damage Management approach at Argonne National Laboratory-East (ANL-E) in DuPage County, Illinois (April 1995). In 1994, the USDA issued a programmatic Environmental Impact Statement (EIS) that covers nationwide animal damage control activities. The EA for Management of Wildlife Causing Damage at ANL-E tiers off this programmatic EIS. The USDA wrote the EA as a result of DOE`s request to USDA to prepare and implement a comprehensive Wildlife Management Damage Plan; the USDA hasmore » authority for animal damage control under the Animal Damage Control Act of 1931, as amended, and the Rural Development, Agriculture and Related Agencies Appropriations Act of 1988. DOE has determined, based on the analysis in the EA, that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an EIS is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).« less
Environmental Control for Regional Library Facilities. RR-80-3.
ERIC Educational Resources Information Center
King, Richard G., Jr.
This report presents an overview of the damage to library materials caused by uncontrollable environmental variables. The control of atmospheric pollutants, temperature, and humidity are discussed with regard to damage, standards, and the costs of deterioration due to these factors. Twelve references are listed. (FM)
Environmental impacts of forest road construction on mountainous terrain
2013-01-01
Forest roads are the base infrastructure foundation of forestry operations. These roads entail a complex engineering effort because they can cause substantial environmental damage to forests and include a high-cost construction. This study was carried out in four sample sites of Giresun, Trabzon(2) and Artvin Forest Directorate, which is in the Black Sea region of Turkey. The areas have both steep terrain (30-50% gradient) and very steep terrain (51-80% gradient). Bulldozers and hydraulic excavators were determined to be the main machines for forest road construction, causing environmental damage and cross sections in mountainous areas. As a result of this study, the percent damage to forests was determined as follows: on steep terrain, 21% of trees were damaged by excavators and 33% of trees were damaged by bulldozers during forest road construction, and on very steep terrain, 27% of trees were damaged by excavators and 44% of trees were damaged by bulldozers during forest road construction. It was also determined that on steep terrain, when excavators were used, 12.23% less forest area was destroyed compared with when bulldozers were used and 16.13% less area was destroyed by excavators on very steep terrain. In order to reduce the environmental damage on the forest ecosystem, especially in steep terrains, hydraulic excavators should replace bulldozers in forest road construction activities. PMID:23497078
Warsini, Sri; Buettner, Petra; Mills, Jane; West, Caryn; Usher, Kim
2014-12-01
The eruption of Indonesia's Mount Merapi volcano in 2010 caused extensive environmental degradation. Settlements and hundreds of hectares of farmlands were buried under volcanic ash. Until now, there has been no research on the psychosocial impact of living in an environment damaged by a volcanic eruption. We studied and compared the psychosocial impact of environmental damage on volcano survivors from two subdistricts-Cangkringan and Pakem. Cangkringan survivors affected by the 2010 eruption continue to live in a damaged environment. The Pakem subdistrict was damaged by eruptions of Mt Merapi in the 1990s but there is no recent damage to their environment. The Indonesian-Environmental Distress Scale (I-EDS), a translated revision of the original Environmental Distress Scale (EDS), was used to collect data. Exploratory statistical methods and multivariate linear regression analyses were performed to examine the relative contributions of demographic variables on the psychosocial impact of living in an environment damaged by volcanic eruption. A total of 348 survivors of the Mt Merapi eruption participated in the survey. The mean I-EDS score for Cangkringan district was 15.8 (SD 1.6; range 11.8-19.8) compared to 14.6 (SD 1.3; range 11.8-18.3) for Pakem district (P < 0.001). This result was confirmed by multiple linear regression analysis showing further that older respondents (P < 0.001), unemployed and retired respondents (P = 0.007), and respondents with no formal school education (P = 0.037) had lower I-EDS scores compared to the respective reference groups. Survivors of the Mt Merapi eruption who continue to live in the environment damaged by the 2010 volcanic eruption experience environmental distress. Relevant interventions should target those from low sosioeconomic groups to deal with the distress.
Nowicka, Anna M; Kowalczyk, Agata; Stojek, Zbigniew; Hepel, Maria
2010-01-01
Electrochemical and nanogravimetric DNA-hybridization biosensors have been developed for sensing single mismatches in the probe-target ssDNA sequences. The voltammetric transduction was achieved by coupling ferrocene moiety to streptavidin linked to biotinylated tDNA. The mass-related frequency transduction was implemented by immobilizing the sensory pDNA on a gold-coated quartz crystal piezoresonators oscillating in the 10MHz band. The high sensitivity of these sensors enabled us to study DNA damage caused by representative toxicants and environmental pollutants, including Cr(VI) species, common pesticides and herbicides. We have found that the sensor responds rapidly to any damage caused by Cr(VI) species, with more severe DNA damage observed for Cr(2)O(7)(2-) and for CrO(4)(2-) in the presence of H(2)O(2) as compared to CrO(4)(2-) alone. All herbicides and pesticides examined caused DNA damage or structural alterations leading to the double-helix unwinding. Among these compounds, paraoxon-ethyl and atrazine caused the fastest and most severe damage to DNA. The physico-chemical mechanism of damaging interactions between toxicants and DNA has been proposed. The methodology of testing voltammetric and nanogravimetric DNA-hybridization biosensors developed in this work can be employed as a simple protocol to obtain rapid comparative data concerning DNA damage caused by herbicide, pesticides and other toxic pollutants. The DNA-hybridization biosensor can, therefore, be utilized as a rapid screening device for classifying environmental pollutants and to evaluate DNA damage induced by these compounds.
Boudaghpour, Siamak; Bagheri, Majid; Bagheri, Zahra
2014-01-01
High flood occurrences with large environmental damages have a growing trend in Iran. Dynamic movements of water during a flood cause different environmental damages in geographical areas with different characteristics such as topographic conditions. In general, environmental effects and damages caused by a flood in an area can be investigated from different points of view. The current essay is aiming at detecting environmental effects of flood occurrences in Halilrood catchment area of Kerman province in Iran using flood zone mapping techniques. The intended flood zone map was introduced in four steps. Steps 1 to 3 pave the way to calculate and estimate flood zone map in the understudy area while step 4 determines the estimation of environmental effects of flood occurrence. Based on our studies, wide range of accuracy for estimating the environmental effects of flood occurrence was introduced by using of flood zone mapping techniques. Moreover, it was identified that the existence of Jiroft dam in the study area can decrease flood zone from 260 hectares to 225 hectares and also it can decrease 20% of flood peak intensity. As a result, 14% of flood zone in the study area can be saved environmentally.
The environmental implications of intensified land use in developing countries
Tinker, P. B.
1997-01-01
The major agricultural intensifications in the developed world over the last half century have produced a range of important environmental problems. These include pollution, damage to wildlife and landscape and other issues, both on- and off-site. These are largely being controlled by scientific investigation and Government regulation. As developing countries increase agricultural production over the next 30 years, this may also cause even more serious environmental damage.
The paper distinguishes between production-related on-site damage, and off-site and more extensive effects. Both may involve soil and water effects, such as soil erosion, salinization, siltation, eutrophication and loss of water quality. The use of more agrochemicals can damage water quality, health, wildlife and biodiversity. Loss of habitat from the extension of farming is particularly damaging to biodiversity. A developing off-site problem is the production of greenhouse gases by farming systems, including the conversion of forests to farmland. In the future the introduction of genetically engineered species of plants, animals or microbes will need secure control.
Work, probably on a catchment basis, is necessary to understand and control these problems. The three main requirements are much better environmental information from the developing world; the selection of environmental indicators to be monitored; and the support of local farmers in protecting the environment. There are encouraging indications of farmer concern and action over obvious on-site damage, but this may not extend to extensive off-site issues. The main danger is that developing food scarcity would cause the environmental issues to be ignored in a race for production.
NASA Astrophysics Data System (ADS)
Rumberg, Martin
Environmental noise may be defined as unwanted sound that is caused by emissions from traffic (roads, air traffic corridors, and railways), industrial sites and recreational infrastructures, which may cause both annoyance and damage to health. Noise in the environment or community seriously affects people, interfering with daily activities at school, work and home and during leisure time.
Plumlee, Geoffrey S.; Alpers, Charles N.; Morman, Suzette A.; San Juan, Carma A.
2016-01-01
The ARkStorm Scenario predicts that a prolonged winter storm event across California would cause extreme precipitation, flooding, winds, physical damages, and economic impacts. This study uses a literature review and geographic information system-based analysis of national and state databases to infer how and where ARkStorm could cause environmental damages, release contamination from diverse natural and anthropogenic sources, affect ecosystem and human health, and cause economic impacts from environmental-remediation, liability, and health-care costs. Examples of plausible ARkStorm environmental and health concerns include complex mixtures of contaminants such as petroleum, mercury, asbestos, persistent organic pollutants, molds, and pathogens; adverse physical and contamination impacts on riverine and coastal marine ecosystems; and increased incidences of mold-related health concerns, some vector-borne diseases, and valley fever. Coastal cities, the San Francisco Bay area, the Sacramento-San Joaquin River Delta, parts of the Central Valley, and some mountainous areas would likely be most affected. This type of screening analysis, coupled with follow-up local assessments, can help stakeholders in California and disaster-prone areas elsewhere better plan for, mitigate, and respond to future environmental disasters.
ENVIRONMENTAL SAMPLING AND ANALYSIS IN THE AFTERMATH OF HURRICANE KATRINA
This presentation describes the environmental sampling completed by EPA in southeastern Louisiana after Hurricane Katrina caused major catastrophic damage. Presentation also describes EPA's Environmental Unit activities in Baton Rouge and New Orleans, LA, and Dallas, TX.
Detection of vulnerable neurons damaged by environmental insults in utero
Torii, Masaaki; Chang, Yu-Wen; Ishii, Seiji; Waxman, Stephen G.; Kocsis, Jeffery D.; Rakic, Pasko; Hashimoto-Torii, Kazue
2017-01-01
Development of prognostic biomarkers for the detection of prenatally damaged neurons before manifestations of postnatal disorders is an essential step for prevention and treatment of susceptible individuals. We have developed a versatile fluorescence reporter system in mice enabling detection of Heat Shock Factor 1 activation in response to prenatal cellular damage caused by exposure to various harmful chemical or physical agents. Using an intrautero electroporation-mediated reporter assay and transgenic reporter mice, we are able to identify neurons that survive prenatal exposure to harmful agents but remain vulnerable in postnatal life. This system may provide a powerful tool for exploring the pathogenesis and treatment of multiple disorders caused by exposure to environmental stress before symptoms become manifested, exacerbated, and/or irreversible. PMID:28123061
Mitochondrial DNA Damage and Diseases.
Singh, Gyanesh; Pachouri, U C; Khaidem, Devika Chanu; Kundu, Aman; Chopra, Chirag; Singh, Pushplata
2015-01-01
Various endogenous and environmental factors can cause mitochondrial DNA (mtDNA) damage. One of the reasons for enhanced mtDNA damage could be its proximity to the source of oxidants, and lack of histone-like protective proteins. Moreover, mitochondria contain inadequate DNA repair pathways, and, diminished DNA repair capacity may be one of the factors responsible for high mutation frequency of the mtDNA. mtDNA damage might cause impaired mitochondrial function, and, unrepaired mtDNA damage has been frequently linked with several diseases. Exploration of mitochondrial perspective of diseases might lead to a better understanding of several diseases, and will certainly open new avenues for detection, cure, and prevention of ailments.
Nucleotide excision repair deficient mouse models and neurological disease
Niedernhofer, Laura J.
2008-01-01
Nucleotide excision repair (NER) is a highly conserved mechanism to remove helix-distorting DNA base damage. A major substrate for NER is DNA damage caused by environmental genotoxins, most notably ultraviolet radiation. Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy are three human diseases caused by inherited defects in NER. The symptoms and severity of these diseases vary dramatically, ranging from profound developmental delay to cancer predisposition and accelerated aging. All three syndromes include neurological disease, indicating an important role for NER in protecting against spontaneous DNA damage as well. To study the pathophysiology caused by DNA damage, numerous mouse models of NER deficiency were generated by knocking-out genes required for NER or knocking-in disease-causing human mutations. This review explores the utility of these mouse models to study neurological disease caused by NER deficiency. PMID:18272436
Acid Rain: The Silent Environmental Threat.
ERIC Educational Resources Information Center
Zmud, Mia
1992-01-01
Describes the silent environmental threat posed by acid rain. Caused mainly by manmade pollutants, acid rain damages water and trees, decreases visibility, corrodes monuments, and threatens public health. The article includes guidelines for action. (SM)
36 CFR 223.137 - Causes for debarment.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., fire prevention, and the disposal of slash; (2) Protection of soil, water, wildlife, range, cultural, and timber resources and protection of improvements when such failure causes significant environmental, resource, or improvements damage; (3) Removal of designated timber when such failure causes substantial...
Mitochondrial DNA Damage and Diseases
Singh, Gyanesh; Pachouri, U C; Khaidem, Devika Chanu; Kundu, Aman; Chopra, Chirag; Singh, Pushplata
2015-01-01
Various endogenous and environmental factors can cause mitochondrial DNA (mtDNA) damage. One of the reasons for enhanced mtDNA damage could be its proximity to the source of oxidants, and lack of histone-like protective proteins. Moreover, mitochondria contain inadequate DNA repair pathways, and, diminished DNA repair capacity may be one of the factors responsible for high mutation frequency of the mtDNA. mtDNA damage might cause impaired mitochondrial function, and, unrepaired mtDNA damage has been frequently linked with several diseases. Exploration of mitochondrial perspective of diseases might lead to a better understanding of several diseases, and will certainly open new avenues for detection, cure, and prevention of ailments. PMID:27508052
Unlike the hepatic, cardiovascular, nervous, or excretory organ systems, where there .ls a strong contribution of host factors or extracellular biochemical milieu in causing organ damage, the causes of lung injuries and subsequent diseases are primarily from direct environmental ...
A large-scale assessment of European rabbit damage to agriculture in Spain.
Delibes-Mateos, Miguel; Farfán, Miguel Ángel; Rouco, Carlos; Olivero, Jesús; Márquez, Ana Luz; Fa, John E; Vargas, Juan Mario; Villafuerte, Rafael
2018-01-01
Numerous small and medium-sized mammal pests cause widespread and economically significant damage to crops all over the globe. However, most research on pest species has focused on accounts of the level of damage. There are fewer studies concentrating on the description of crop damage caused by pests at large geographical scales, or on analysis of the ecological and anthropogenic factors correlated with these observed patterns. We investigated the relationship between agricultural damage by the European rabbit (Oryctolagus cuniculus) and environmental and anthropogenic variables throughout Spain. Rabbit damage was mainly concentrated within the central-southern regions of Spain. We found that rabbit damage increased significantly between the early 2000s and 2013. Greater losses were typical of those areas where farming dominated and natural vegetation was scarce, where main railways and highways were present, and where environmental conditions were generally favourable for rabbit populations to proliferate. From our analysis, we suggest that roads and railway lines act as potential corridors along which rabbits can spread. The recent increase in Spain of such infrastructure may explain the rise in rabbit damage reported in this study. Our approach is valuable as a method for assessing drivers of wildlife pest damage at large spatial scales, and can be used to propose methods to reduce human - wildlife conflict. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Long-term population patterns of rodents and associated damage in German forestry.
Imholt, Christian; Reil, Daniela; Plašil, Pavel; Rödiger, Kerstin; Jacob, Jens
2017-02-01
Several rodent species can damage forest trees, especially at young tree age in afforestation. Population outbreaks of field voles (Microtus agrestis L.) and bank voles (Myodes glareolus Schreber) in particular can cause losses. Analyses of long-term time series indicate good synchrony of population abundance in rodent species associated with damage in forestry. This synchrony could be related to the effect of beech (Fagus spec.) mast in the previous year on population growth rates of both species. In shorter time series from Eastern Germany, damage in forestry was mostly associated with autumn abundances of rodents. Environmental factors such as beech mast and snow cover did not explain additional variation in rodent damage to trees. Beech mast is a good indicator of long-term rodent abundance in Northern German afforestation areas. However, rodent damage to forestry in Central Germany did not seem to depend on environmental parameters other than rodent abundance at large scale. As a result, there is still uncertainty about the link between environmental predictors and rodent damage to forestry, and further experimental work is required to identify suitable environmental drivers and their interplay with other potential factors such as the local predator community. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Translations on Environmental Quality, Number 147
1977-09-26
banned. In animals, it has been shown that TCDD damages the foetus . Investigations into whether dioxins and phenoxy acids cause cancer in animals...fears that elements in these herbicides may produce foetus damage in humans, but a rapid study earlier this year by the Swedish Social Welfare Board
Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension
Chen, Pin-I; Cao, Aiqin; Miyagawa, Kazuya; Tojais, Nancy F.; Hennigs, Jan K.; Li, Caiyun G.; Sweeney, Nathaly M.; Inglis, Audrey S.; Wang, Lingli; Li, Dan; Ye, Matthew; Feldman, Brian J.
2017-01-01
Amphetamine (AMPH) or methamphetamine (METH) abuse can cause oxidative damage and is a risk factor for diseases including pulmonary arterial hypertension (PAH). Pulmonary artery endothelial cells (PAECs) from AMPH-associated-PAH patients show DNA damage as judged by γH2AX foci and DNA comet tails. We therefore hypothesized that AMPH induces DNA damage and vascular pathology by interfering with normal adaptation to an environmental perturbation causing oxidative stress. Consistent with this, we found that AMPH alone does not cause DNA damage in normoxic PAECs, but greatly amplifies DNA damage in hypoxic PAECs. The mechanism involves AMPH activation of protein phosphatase 2A, which potentiates inhibition of Akt. This increases sirtuin 1, causing deacetylation and degradation of HIF1α, thereby impairing its transcriptional activity, resulting in a reduction in pyruvate dehydrogenase kinase 1 and impaired cytochrome c oxidase 4 isoform switch. Mitochondrial oxidative phosphorylation is inappropriately enhanced and, as a result of impaired electron transport and mitochondrial ROS increase, caspase-3 is activated and DNA damage is induced. In mice given binge doses of METH followed by hypoxia, HIF1α is suppressed and pulmonary artery DNA damage foci are associated with worse pulmonary vascular remodeling. Thus, chronic AMPH/METH can induce DNA damage associated with vascular disease by subverting the adaptive responses to oxidative stress. PMID:28138562
Review of United Nations Environment Programme and Other Post-Conflict Environmental Analyses
2004-01-01
creation Environmental planning Environmental impact assessment procedures Industry and trade Public participation, training, and environmental...conflict caused significant damage to Sudan’s wildlife and habitat. Throughout Sudan, farming, deforestation, subsistence hunting, and poaching are...contributing factors. In some areas, species such as elephant, rhino , buffalo, giraffe, eland, and zebra are all but eradicated despite laws seeking to
Environmental considerations influencing dietary choices: exploring consumer attitudes
USDA-ARS?s Scientific Manuscript database
Introduction: With increasing focus on anthropogenic causes of climate change, more attention is on the contribution of food systems. Public discourse on sustainability leads consumers to consider how they may reduce environmental damage with personal dietary decisions. US-based studies evaluating p...
Worldwide Emerging Environmental Issues Affecting the U.S. Military. February 2008 Report
2008-02-01
lost, and economic and environmental damages should be addressed. Mangroves ’ destruction could cause biodiversity loss in tropical areas , increase... Environmental Science & Technology Online is a comprehensive overview of the current state of nanotechnology risk assessment , emphasizing the paucity of...search and rescue robots. These recommendations apply equally well to the handling of robotic devices for environmental assessment and cleanup
ERIC Educational Resources Information Center
Howe, Robert W.
During the past several years, interest, concern, and action related to environmental problems have increased. Among the problems creating the concern have been materials that can cause pollution and biological damage in and near the home and the disposal of materials used in the home. Discussed in this digest are the reduction of problems related…
THE ATM-SMC1 PATHWAY IS ESSENTIAL FOR ACTIVATION OF THE CHROMIUM[VI]-INDUCED S-PHASE CHECKPOINT
Hexavalent chromium (Cr[VI] is a common industrial waste product, an environmental pollutant, and a recognized human carcinogen. Following cellular uptake, Cr[VI] can cause DNA damage, however, the mechanisims by which mammalian cells respond to Cr-induced DNA damage remain to b...
QUANTIFYING AND MODELING THE RISK OF DISTURBANCE TO ECOSYSTEMS CAUSED BY INVASIVE SPECIES
Invasive species are biological pollutants that threaten ecosystem health. Identifying the mechanisms of invasive and developing predictive models of invasion will be critical to developing risk management strategies for limiting the economic and environmental damage caused by i...
2011-03-22
Aircraft collisions with birds and other wildlife annually cause millions of dollars in aircraft damage and may result in loss of life and aircraft...collisions with birds and other wildlife annually cause millions of dollars in aircraft damage and may result in loss of life and aircraft. More...Action would support the BASH program and meet the AF goal of reducing the loss of life and of valuable aircraft and other resources. Figure 1-2
Atmospheric skin aging-Contributors and inhibitors.
McDaniel, David; Farris, Patricia; Valacchi, Giuseppe
2018-04-01
Cutaneous aging is a complex biological process consisting of 2 elements: intrinsic aging, which is primarily determined by genetics, and extrinsic aging, which is largely caused by atmospheric factors, such as exposure to sunlight and air pollution, and lifestyle choices, such as diet and smoking. The role of the solar spectrum, comprised of ultraviolet light, specifically UVB (290-320 nm) and UVA (320-400) in causing skin damage, including skin cancers, has been well documented. In recent years, the contribution of visible light (400-700 nm) and infrared radiation (above 800 nm) in causing skin damage, similar to the photodamage caused by UV light, is also being elucidated. In addition, other atmospheric factors such as air pollution (smog, ozone, particulate matter, etc.) have been implicated in premature skin aging. The skin damage caused by environmental exposure is largely attributable to a complex cascade of reactions inside the skin initiated by the generation of reactive oxygen species (ROS), which causes oxidative damage to cellular components such as proteins, lipids, and nucleic acids. These damaged skin cells initiate inflammatory responses leading to the eventual damage manifested in chronically exposed skin. Novel therapeutic strategies to combat ROS species generation are being developed to prevent the skin damage caused by atmospheric factors. In addition to protecting skin from solar radiation using sunscreens, other approaches using topically applied ingredients, particularly antioxidants that penetrate the skin and protect the skin from within, have also been well documented. This review summarizes current knowledge of atmospheric aggressors, including UVA, UVB, visible light, infrared radiation (IR), and ozone on skin damage, and proposes new avenues for future research in the prevention and treatment of premature skin aging caused by such atmospheric factors. New therapeutic modalities currently being developed are also discussed. © 2018 Wiley Periodicals, Inc.
DOT National Transportation Integrated Search
2012-06-01
The continuing increase in air traffic has implications for the preservation of our common : resources and causes global and micro-environmental pollution. This pollution affects public : health and causes damage to the prospects of future generation...
Ned B. Klopfenstein; Jennifer Juzwik; Michael E. Ostry; Mee-Sook Kim; Paul J. Zambino; Robert C. Venette; Bryce A. Richardson; John E. Lundquist; D. Jean Lodge; Jessie A. Glaeser; Susan J. Frankel; William J. Otrosina; Pauline Spaine; Brian W. Geils
2010-01-01
Invasive pathogens have caused immeasurable ecological and economic damage to forest ecosystems. Damage will undoubtedly increase over time due to increased introductions and evolution of invasive pathogens in concert with complex environmental disturbances, such as climate change. Forest Service Research and Development must fulfill critical roles and responsibilities...
46 CFR 185.304 - Navigation underway.
Code of Federal Regulations, 2013 CFR
2013-10-01
... direction of the transiting area; (2) Tidal state; (3) Prevailing and forecasted visibility and environmental conditions, including wind and waves; (4) Density of marine traffic; (5) Potential damage caused...
46 CFR 185.304 - Navigation underway.
Code of Federal Regulations, 2012 CFR
2012-10-01
... direction of the transiting area; (2) Tidal state; (3) Prevailing and forecasted visibility and environmental conditions, including wind and waves; (4) Density of marine traffic; (5) Potential damage caused...
46 CFR 185.304 - Navigation underway.
Code of Federal Regulations, 2014 CFR
2014-10-01
... direction of the transiting area; (2) Tidal state; (3) Prevailing and forecasted visibility and environmental conditions, including wind and waves; (4) Density of marine traffic; (5) Potential damage caused...
46 CFR 185.304 - Navigation underway.
Code of Federal Regulations, 2011 CFR
2011-10-01
... direction of the transiting area; (2) Tidal state; (3) Prevailing and forecasted visibility and environmental conditions, including wind and waves; (4) Density of marine traffic; (5) Potential damage caused...
40 CFR 93.126 - Exempt projects.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Engineering to assess social, economic, and environmental effects of the proposed action or alternatives to... transportation buildings, structures, or facilities). Repair of damage caused by natural disasters, civil unrest...
40 CFR 93.126 - Exempt projects.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Engineering to assess social, economic, and environmental effects of the proposed action or alternatives to... transportation buildings, structures, or facilities). Repair of damage caused by natural disasters, civil unrest...
Spatial Differences and Costs of Emissions at U.S. Airport Hubs.
Nahlik, Matthew J; Chester, Mikhail V; Ryerson, Megan S; Fraser, Andrew M
2016-04-19
As local governments plan to expand airport infrastructure and build air service, monetized estimates of damages from air pollution are important for balancing environmental impacts. While it is well-known that aircraft emissions near airports directly affect nearby populations, it is less clear how the airport-specific aircraft operations and impacts result in monetized damages to human health and the environment. We model aircraft and ground support equipment emissions at major U.S. airports and estimate the monetized human health and environmental damages of near airport (within 60 miles) emissions. County-specific unit damage costs for PM, SOx, NOx, and VOCs and damage valuations for CO and CO2 are used along with aircraft emissions estimations at airports to determine impacts. We find that near-airport emissions at major U.S. airports caused a total of $1.9 billion in damages in 2013, with airports contributing between $720 thousand and $190 million each. These damages vary by airport from $1 to $9 per seat per one-way flight and costs per passenger are often greater than airport charges levied on airlines for infrastructure use. As the U.S. aviation system grows, it is possible to minimize human and environmental costs by shifting aircraft technologies and expanding service into airports where fewer impacts are likely to occur.
Doi, Kunio
2011-01-01
It is not widely known how the developing brain responds to extrinsic damage, although the developing brain is considered to be sensitive to diverse environmental factors including DNA-damaging agents. This paper reviews the mechanisms of neurotoxicity induced in the developing brain of mice and rats by six chemicals (ethylnitrosourea, hydroxyurea, 5-azacytidine, cytosine arabinoside, 6-mercaptopurine and etoposide), which cause DNA damage in different ways, especially from the viewpoints of apoptosis and cell cycle arrest in neural progenitor cells. In addition, this paper also reviews the repair process following damage in the developing brain.
46 CFR 122.304 - Navigation underway.
Code of Federal Regulations, 2014 CFR
2014-10-01
...; (2) Tidal state; (3) Prevailing and forecasted visibility and environmental conditions, including wind and waves; (4) Density of marine traffic; (5) Potential damage caused by own wake; (6) The danger...
46 CFR 122.304 - Navigation underway.
Code of Federal Regulations, 2013 CFR
2013-10-01
...; (2) Tidal state; (3) Prevailing and forecasted visibility and environmental conditions, including wind and waves; (4) Density of marine traffic; (5) Potential damage caused by own wake; (6) The danger...
46 CFR 122.304 - Navigation underway.
Code of Federal Regulations, 2011 CFR
2011-10-01
...; (2) Tidal state; (3) Prevailing and forecasted visibility and environmental conditions, including wind and waves; (4) Density of marine traffic; (5) Potential damage caused by own wake; (6) The danger...
46 CFR 122.304 - Navigation underway.
Code of Federal Regulations, 2012 CFR
2012-10-01
...; (2) Tidal state; (3) Prevailing and forecasted visibility and environmental conditions, including wind and waves; (4) Density of marine traffic; (5) Potential damage caused by own wake; (6) The danger...
Mišík, Miroslav; Krupitza, Georg; Mišíková, Katarina; Mičieta, Karol; Nersesyan, Armen; Kundi, Michael; Knasmueller, Siegfried
2016-12-01
Environmental contamination with radioactive materials of geogenic and anthropogenic origin is a global problem. A variety of mutagenicity test procedures has been developed which enable the detection of DNA damage caused by ionizing radiation which plays a key role in the adverse effects caused by radioisotopes. In the present study, we investigated the usefulness of the Tradescantia micronucleus test (the most widely used plant based genotoxicity bioassay) for the detection of genetic damage caused by environmental samples and a human artifact (ceramic plate) which contained radioactive elements. We compared the results obtained with different exposure protocols and found that direct exposure of the inflorescences is more sensitive and that the number of micronuclei can be further increased under "wet" conditions. The lowest dose rate which caused a significant effect was 1.2 μGy/h (10 h). Comparisons with the results obtained with other systems (i.e. with mitotic cells of higher plants, molluscs, insects, fish and human lymphocytes) show that the Tradescantia MN assay is one to three orders of magnitude more sensitive as other models, which are currently available. Taken together, our findings indicate that this method is due to its high sensitivity a unique tool, which can be used for environmental biomonitoring in radiation polluted areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Environmental factors and unhealthy lifestyle influence oxidative stress in humans--an overview.
Aseervatham, G Smilin Bell; Sivasudha, T; Jeyadevi, R; Arul Ananth, D
2013-07-01
Oxygen is the most essential molecule for life; since it is a strong oxidizing agent, it can aggravate the damage within the cell by a series of oxidative events including the generation of free radicals. Antioxidative agents are the only defense mechanism to neutralize these free radicals. Free radicals are not only generated internally in our body system but also trough external sources like environmental pollution, toxic metals, cigarette smoke, pesticides, etc., which add damage to our body system. Inhaling these toxic chemicals in the environment has become unavoidable in modern civilization. Antioxidants of plant origin with free radical scavenging properties could have great importance as therapeutic agents in several diseases caused by environmental pollution. This review summarizes the generation of reactive oxygen species and damage to cells by exposure to external factors, unhealthy lifestyle, and role of herbal plants in scavenging these reactive oxygen species.
How Farmers Learn about Environmental Issues: Reflections on a Sociobiographical Approach
ERIC Educational Resources Information Center
Vandenabeele, Joke; Wildemeersch, Danny
2012-01-01
At the time of this research, protests of farmers against new environmental policy measures received much media attention. News reports suggested that farmers' organizations rejected the idea that modern farming techniques cause damage to the environment and even tried to undermine attempts to reconcile the goals of modern agriculture with…
Green IT Model for IT Departments in Gulf Cooperation Council (GCC) Organisations
ERIC Educational Resources Information Center
Albahlal, Abdulaziz
2016-01-01
Environmental problems such as climate change, pollution, non-sustainable energy, resource depletion, and recycling Information Technology (IT) devices considered the biggest glitches which are facing developed and developing countries. IT devices have become a critical issue due to the great amount of environmental damage caused by IT companies…
Environmental and medical geochemistry in urban disaster response and preparedness
Plumlee, Geoffrey S.; Morman, Suzette A.; Cook, A.
2012-01-01
History abounds with accounts of cities that were destroyed or significantly damaged by natural or anthropogenic disasters, such as volcanic eruptions, earthquakes, wildland–urban wildfires, hurricanes, tsunamis, floods, urban firestorms, terrorist attacks, and armed conflicts. Burgeoning megacities place ever more people in the way of harm from future disasters. In addition to the physical damage, casualties, and injuries they cause, sudden urban disasters can also release into the environment large volumes of potentially hazardous materials. Environmental and medical geochemistry investigations help us to (1) understand the sources and environmental behavior of disaster materials, (2) assess potential threats the materials pose to the urban environment and health of urban populations, (3) develop strategies for their cleanup/disposal, and (4) anticipate and mitigate potential environmental and health effects from future urban disasters.
Kubik, Laura L.; Philbert, Martin A.
2015-01-01
In recent decades, there has been a significant expansion in our understanding of the role of astrocytes in neuroprotection, including spatial buffering of extracellular ions, secretion of metabolic coenzymes, and synaptic regulation. Astrocytic neuroprotective functions require energy, and therefore require a network of functional mitochondria. Disturbances to astrocytic mitochondrial homeostasis and their ability to produce ATP can negatively impact neural function. Perturbations in astrocyte mitochondrial function may accrue as the result of physiological aging processes or as a consequence of neurotoxicant exposure. Hydrophobic environmental neurotoxicants, such as 1,3-dinitrobenzene and α-chlorohydrin, cause regionally specific spongiform lesions mimicking energy deprivation syndromes. Astrocyte involvement includes mitochondrial damage that either precedes or is accompanied by neuronal damage. Similarly, environmental neurotoxicants that are implicated in the etiology of age-related neurodegenerative conditions cause regionally specific damage in the brain. Based on the regioselective nature of age-related neurodegenerative lesions, chemically induced models of regioselective lesions targeting astrocyte mitochondria can provide insight into age-related susceptibilities in astrocyte mitochondria. Most of the available research to date focuses on neuronal damage in cases of age-related neurodegeneration; however, there is a body of evidence that supports a central mechanistic role for astrocyte mitochondria in the expression of neural injury. Regional susceptibility to neuronal damage induced by aging by exposure to neurotoxicants may be a reflection of highly variable regional energy requirements. This review identifies region-specific vulnerabilities in astrocyte mitochondria in examples of exposure to neurotoxicants and in age-related neurodegeneration. PMID:25740792
Observations and Modeling of Environmental and Human Damages by the 2004 Indian Ocean tsunami
NASA Astrophysics Data System (ADS)
Goto, K.; Imamura, F.; Koshimura, S.; Yanagisawa, H.
2008-05-01
On 26 December 2004, one of the largest tsunamis in human history (the 2004 Indian Ocean tsunami) struck coastal areas of countries surrounding the Indian Ocean, causing severe property damage and loss of life and causing us to think anew about the fearful consequences of a tsunami disaster. The tsunami devastated more than 10 countries around the ocean including Indonesia, Sri Lanka, India, and Thailand. Since its energy remains almost constant, the tsunami wave height grows tremendously in shallow water. It ranged in runups of ~48m on the western shore of Sumatra, ~18m in Thailand, and ~15m in Sri Lanka. The tsunami killed nearly 230,000 people, including visitors from foreign countries, resulting in great economic losses. The tsunami was also affected coastal environment at these countries and induced severe topographic change, and damages to the marine ecosystems as well as vegetations on land. Immediately following the tsunami, number of research teams has investigated damages of environment and human communities by tsunamis. Numerical analyses of tsunami propagation have also been carried out to understand the behavior and wave properties of tsunamis. However, there are few studies that focused on the integration of the field observations and numerical results, nevertheless that such analysis is critically important to evaluate the environmental and human damages by the tsunami. In this contribution, we first review damages to the environment and humans due to the 2004 Indian Ocean tsunami at Thailand, Indonesia, and Sri Lanka based on our field observations, and then we evaluate these damages based on high resolution numerical results. For example, we conducted field observation as well as high-resolution (17 m grid cells) numerical calculation for damages of corals (reef rocks) and mangroves at Pakarang Cape, Thailand. We found that hundreds of reef rocks were emplaced on the tidal bench, and 70 % of mangroves were destroyed at the cape. Our numerical results further clarified that these damages are well explained by the calculated hydraulic force of tsunamis. This kind of analysis that integrated the observation and numerical results is important to evaluate environmental and human damages quantitatively, and to make a future disaster prevention plan.
NASA Astrophysics Data System (ADS)
Jin, Seung-Seop; Jung, Hyung-Jo
2014-03-01
It is well known that the dynamic properties of a structure such as natural frequencies depend not only on damage but also on environmental condition (e.g., temperature). The variation in dynamic characteristics of a structure due to environmental condition may mask damage of the structure. Without taking the change of environmental condition into account, false-positive or false-negative damage diagnosis may occur so that structural health monitoring becomes unreliable. In order to address this problem, an approach to construct a regression model based on structural responses considering environmental factors has been usually used by many researchers. The key to success of this approach is the formulation between the input and output variables of the regression model to take into account the environmental variations. However, it is quite challenging to determine proper environmental variables and measurement locations in advance for fully representing the relationship between the structural responses and the environmental variations. One alternative (i.e., novelty detection) is to remove the variations caused by environmental factors from the structural responses by using multivariate statistical analysis (e.g., principal component analysis (PCA), factor analysis, etc.). The success of this method is deeply depending on the accuracy of the description of normal condition. Generally, there is no prior information on normal condition during data acquisition, so that the normal condition is determined by subjective perspective with human-intervention. The proposed method is a novel adaptive multivariate statistical analysis for monitoring of structural damage detection under environmental change. One advantage of this method is the ability of a generative learning to capture the intrinsic characteristics of the normal condition. The proposed method is tested on numerically simulated data for a range of noise in measurement under environmental variation. A comparative study with conventional methods (i.e., fixed reference scheme) demonstrates the superior performance of the proposed method for structural damage detection.
Salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA.
Gao, Qiuqiang; Liou, Liang-Chun; Ren, Qun; Bao, Xiaoming; Zhang, Zhaojie
2014-03-03
The yeast cell wall plays an important role in maintaining cell morphology, cell integrity and response to environmental stresses. Here, we report that salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA (ρ 0 ). Upon salt treatment, the cell wall is thickened, broken and becomes more sensitive to the cell wall-perturbing agent sodium dodecyl sulfate (SDS). Also, SCW11 mRNA levels are elevated in ρ 0 cells. Deletion of SCW11 significantly decreases the sensitivity of ρ 0 cells to SDS after salt treatment, while overexpression of SCW11 results in higher sensitivity. In addition, salt stress in ρ 0 cells induces high levels of reactive oxygen species (ROS), which further damages the cell wall, causing cells to become more sensitive towards the cell wall-perturbing agent.
29 CFR 1910.401 - Scope and application.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of this standard to the extent necessary to prevent or minimize a situation which is likely to cause death, serious physical harm, or major environmental damage, provided that the employer: (1) Notifies...
Nutrient pollution and harmful algal blooms cause major environmental damage as well as serious health problems in people and animals.They also take a toll on the economy, hurting industries and sectors that depend on clean water.
Stenner, E; Gianoli, E; Biasioli, B; Piccinini, C; Delbello, G; Bussani, A
2006-01-01
Objective To verify presence and severity of muscular and/or intravascular damage during a subterranean exploration of long duration. Methods We measured serum levels of creatine kinase (CK) and lactate dehydrogenase (LDH) as markers of muscular damage. We also measured haptoglobin as a marker of intravascular haemolysis, and platelets and leucocytes as markers of inflammation. Results We found in all the participants an increase in CK, LDH, and platelets and leucocytes (mainly due to neutrophilia and monocytosis), and a decrease in the level of haptoglobin and circulating lymphocytes. Conclusions The observed data suggest that continuous effort during long alpine subterranean explorations, environmental conditions, sleep deprivation, multiple impacts on rocks, and compression caused by bindings of the caving harness cause muscle damage, intravascular haemolysis, inflammation response, and immunological changes. PMID:16505080
USDA-ARS?s Scientific Manuscript database
Invasive species and acid rain cause global environmental problems. Limited information exists, however, concerning the effects of acid rain on the invasiveness of these plants. For example, creeping daisy, an invasive exotic allelopathic weed, has caused great damage in southern China where acid ra...
Electricity's Future: The Shift to Efficiency and Small-Scale Power. Worldwatch Paper 61.
ERIC Educational Resources Information Center
Flavin, Christopher
Electricity, which has largely supplanted oil as the most controversial energy issue of the 1980s, is at the center of some of the world's bitterest economic and environmental controversies. Soaring costs, high interest rates, and environmental damage caused by large power plants have wreaked havoc on the once booming electricity industry.…
Environmental impact of the landslides caused by the 12 May 2008, Wenchuan, China earthquake
Highland, Lynn; Sun, Ping; Edited by Margottini, Claudio; Canuti, Paolo; Sassa, Kyoji
2013-01-01
The magnitude 7.9 (Mw) Wenchuan, China, earthquake of May 12, 2008 caused at least 88,000 deaths of which one third are estimated to be due to the more than 56,000 earthquake-induced landslides. The affected area is mountainous, featuring densely-vegetated, steep slopes through which narrowly confined rivers and streams flow. Numerous types of landslides occurred in the area, including rock avalanches, rock falls, translational and rotational slides, lateral spreads and debris flows. Some landslides mobilized hundreds of million cubic meters of material, often resulting in the damming of rivers and streams, impacting river ecosystems and morphology. Through an extensive search of both Chinese- and English-language publications we provide a summary of pertinent research on environmental effects, emphasizing key findings. Environmental effects caused by landslides include the alteration of agriculture, changes to natural ecosystems, changes in river morphology due to landslide dams and other effects such as sedimentation and flooding. Damage by landslides to the giant panda reserve infrastructure and habitat, was severe, threatening the survival of one of the world’s rarest species. The Panda reserves are of national significance to China, and to the vital tourism economy of the region. One of the major impacts to both the natural and built environment is the complete relocation of some human populations and infrastructure to new areas, resulting in the abandonment of towns and other areas that were damaged by the earthquake and landslides. The landslide effects have affected the biodiversity of the affected area, and it has been hypothesized that strict forest preservation measures taken in the years preceding the earthquake resulted in a reduction of the environmental damage to the area.
Invasive Species in the Great Lakes
Invasive species have significantly changed the Great Lakes ecosystem. An invasive species is a plant or animal that is not native to an ecosystem, and whose introduction is likely to cause economic, human health, or environmental damage.
Yao, Hong; You, Zhen; Liu, Bo
2016-01-01
The number of surface water pollution accidents (abbreviated as SWPAs) has increased substantially in China in recent years. Estimation of economic losses due to SWPAs has been one of the focuses in China and is mentioned many times in the Environmental Protection Law of China promulgated in 2014. From the perspective of water bodies’ functions, pollution accident damages can be divided into eight types: damage to human health, water supply suspension, fishery, recreational functions, biological diversity, environmental property loss, the accident’s origin and other indirect losses. In the valuation of damage to people’s life, the procedure for compensation of traffic accidents in China was used. The functional replacement cost method was used in economic estimation of the losses due to water supply suspension and loss of water’s recreational functions. Damage to biological diversity was estimated by recovery cost analysis and damage to environmental property losses were calculated using pollutant removal costs. As a case study, using the proposed calculation procedure the economic losses caused by the major Songhuajiang River pollution accident that happened in China in 2005 have been estimated at 2263 billion CNY. The estimated economic losses for real accidents can sometimes be influenced by social and political factors, such as data authenticity and accuracy. Besides, one or more aspects in the method might be overestimated, underrated or even ignored. The proposed procedure may be used by decision makers for the economic estimation of losses in SWPAs. Estimates of the economic losses of pollution accidents could help quantify potential costs associated with increased risk sources along lakes/rivers but more importantly, highlight the value of clean water to society as a whole. PMID:26805869
Yao, Hong; You, Zhen; Liu, Bo
2016-01-22
The number of surface water pollution accidents (abbreviated as SWPAs) has increased substantially in China in recent years. Estimation of economic losses due to SWPAs has been one of the focuses in China and is mentioned many times in the Environmental Protection Law of China promulgated in 2014. From the perspective of water bodies' functions, pollution accident damages can be divided into eight types: damage to human health, water supply suspension, fishery, recreational functions, biological diversity, environmental property loss, the accident's origin and other indirect losses. In the valuation of damage to people's life, the procedure for compensation of traffic accidents in China was used. The functional replacement cost method was used in economic estimation of the losses due to water supply suspension and loss of water's recreational functions. Damage to biological diversity was estimated by recovery cost analysis and damage to environmental property losses were calculated using pollutant removal costs. As a case study, using the proposed calculation procedure the economic losses caused by the major Songhuajiang River pollution accident that happened in China in 2005 have been estimated at 2263 billion CNY. The estimated economic losses for real accidents can sometimes be influenced by social and political factors, such as data authenticity and accuracy. Besides, one or more aspects in the method might be overestimated, underrated or even ignored. The proposed procedure may be used by decision makers for the economic estimation of losses in SWPAs. Estimates of the economic losses of pollution accidents could help quantify potential costs associated with increased risk sources along lakes/rivers but more importantly, highlight the value of clean water to society as a whole.
Interplay of space radiation and microgravity in DNA damage and DNA damage response.
Moreno-Villanueva, María; Wong, Michael; Lu, Tao; Zhang, Ye; Wu, Honglu
2017-01-01
In space, multiple unique environmental factors, particularly microgravity and space radiation, pose constant threat to the DNA integrity of living organisms. Specifically, space radiation can cause damage to DNA directly, through the interaction of charged particles with the DNA molecules themselves, or indirectly through the production of free radicals. Although organisms have evolved strategies on Earth to confront such damage, space environmental conditions, especially microgravity, can impact DNA repair resulting in accumulation of severe DNA lesions. Ultimately these lesions, namely double strand breaks, chromosome aberrations, micronucleus formation, or mutations, can increase the risk for adverse health effects, such as cancer. How spaceflight factors affect DNA damage and the DNA damage response has been investigated since the early days of the human space program. Over the years, these experiments have been conducted either in space or using ground-based analogs. This review summarizes the evidence for DNA damage induction by space radiation and/or microgravity as well as spaceflight-related impacts on the DNA damage response. The review also discusses the conflicting results from studies aimed at addressing the question of potential synergies between microgravity and radiation with regard to DNA damage and cellular repair processes. We conclude that further experiments need to be performed in the true space environment in order to address this critical question.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massey, Veronica L.; Stocke, Kendall S.; Schmidt, Robin H.
Arsenic (As) tops the ATSDR list of hazardous environmental chemicals and is known to cause liver injury. Although the concentrations of As found in the US water supply are generally too low to directly damage the liver, subhepatotoxic doses of As sensitize the liver to experimental NAFLD. It is now suspected that GI microbiome dysbiosis plays an important role in development of NALFD. Importantly, arsenic has also been shown to alter the microbiome. The purpose of the current study was to test the hypothesis that the prebiotic oligofructose (OFC) protects against enhanced liver injury caused by As in experimental NAFLD.more » Male C57Bl6/J mice were fed low fat diet (LFD), high fat diet (HFD), or HFD containing oligofructose (OFC) during concomitant exposure to either tap water or As-containing water (4.9 ppm as sodium arsenite) for 10 weeks. HFD significantly increased body mass and caused fatty liver injury, as characterized by an increased liver weight-to-body weight ratio, histologic changes and transaminases. As observed previously, As enhanced HFD-induced liver damage, which was characterized by enhanced inflammation. OFC supplementation protected against the enhanced liver damage caused by As in the presence of HFD. Interestingly, arsenic, HFD and OFC all caused unique changes to the gut flora. These data support previous findings that low concentrations of As enhance liver damage caused by high fat diet. Furthermore, these results indicate that these effects of arsenic may be mediated, at least in part, by GI tract dysbiosis and that prebiotic supplementation may confer significant protective effects. - Highlights: • Arsenic (As) enhances liver damage caused by a high-fat (HFD) diet in mice. • Oligofructose protects against As-enhanced liver damage caused by HFD. • As causes dysbiosis in the GI tract and exacerbates the dysbiosis caused by HFD. • OFC prevents the dysbiosis caused by HFD and As, increasing commensal bacteria.« less
Tunay, Metin
2006-07-01
Forest road construction by bulldozers in Calabrian Pine (Pinus brutia Ten.) forests on mountainous terrain of Turkey causes considerable damage to the environment and the forest standing alongside the road. This situation obliges a study of environmentally sound road construction in Turkey. This study was carried out in 4 sample sites of Antalya Forest Directorate in steep (34-50% gradient) and very steep terrain (51-70% gradient) conditions with bulldozer and excavator machine and direct damages to forest during road construction was determined, including forest area losses and damages to downhill trees in mountainous areas. It was determined that in steep terrain when excavators were used, less forest area (22.16%) was destroyed compared to bulldozers and 26.54% less area in very steep terrain. The proportion of damage on trees where bulldozer worked was nearly twofold higher than excavator was used. The results of this research show that the environmentally sensitive techniques applied for the road construction projects are considerably superior to the traditional use of bulldozers on steep slopes. The environmentally sound forest road construction by use of excavator must be considered an appropriate and reliable solution for mountainous terrain where areas of sensitive forest ecosystems are to be opened up.
Long-term monitoring on environmental disasters using multi-source remote sensing technique
NASA Astrophysics Data System (ADS)
Kuo, Y. C.; Chen, C. F.
2017-12-01
Environmental disasters are extreme events within the earth's system that cause deaths and injuries to humans, as well as causing damages and losses of valuable assets, such as buildings, communication systems, farmlands, forest and etc. In disaster management, a large amount of multi-temporal spatial data is required. Multi-source remote sensing data with different spatial, spectral and temporal resolutions is widely applied on environmental disaster monitoring. With multi-source and multi-temporal high resolution images, we conduct rapid, systematic and seriate observations regarding to economic damages and environmental disasters on earth. It is based on three monitoring platforms: remote sensing, UAS (Unmanned Aircraft Systems) and ground investigation. The advantages of using UAS technology include great mobility and availability in real-time rapid and more flexible weather conditions. The system can produce long-term spatial distribution information from environmental disasters, obtaining high-resolution remote sensing data and field verification data in key monitoring areas. It also supports the prevention and control on ocean pollutions, illegally disposed wastes and pine pests in different scales. Meanwhile, digital photogrammetry can be applied on the camera inside and outside the position parameters to produce Digital Surface Model (DSM) data. The latest terrain environment information is simulated by using DSM data, and can be used as references in disaster recovery in the future.
ERIC Educational Resources Information Center
Douthwaite, Richard
The premise of this book is that economic growth has made life considerably worse for people in Britain since 1955 and that, even if growth were beneficial at one stage in human history, it is now damaging. The book presents evidence of social and environmental damage caused by growth and several reasons for a persistence of growth in the face of…
Chemical Safety Alert: Lightning Hazard to Facilities Handling Flammable Substances
Raises awareness about lightning strikes, which cause more death/injury and damage than all other environmental elements combined, so industry can take proper precautions to protect equipment and storage or process vessels containing flammable materials.
Mechanisms of mutagenesis: DNA replication in the presence of DNA damage
Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F. Peter; Zhang, Huidong
2017-01-01
Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, E. coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. PMID:27234563
Mechanisms of mutagenesis: DNA replication in the presence of DNA damage.
Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F Peter; Zhang, Huidong
2016-01-01
Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, Escherichia coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.
Dental X-ray exposure and Alzheimer's disease: a hypothetical etiological association.
Rodgers, Caroline C
2011-07-01
Despite the fact that Alzheimer's disease was identified more than 100 years ago, its cause remains elusive. Although the chance of developing Alzheimer's disease increases with age, it is not a natural consequence of aging. This article proposes that dental X-rays can damage microglia telomeres - the structures at the end of chromosomes that determine how many times cells divide before they die - causing them to age prematurely. Degenerated microglia lose their neuroprotective properties, resulting in the formation of neurofibrillary tau tangles and consequently, the neuronal death that causes Alzheimer's dementia. The hypothesis that Alzheimer's is caused specifically by microglia telomere damage would explain the delay of one decade or longer between the presence of Alzheimer's brain pathology and symptoms; telomere damage would not cause any change in microglial function, it would just reset the countdown clock so that senescence and apoptosis occurred earlier than they would have without the environmental insult. Once microglia telomere damage causes premature aging and death, the adjacent neurons are deprived of the physical support, maintenance and nourishment they require to survive. This sequence of events would explain why therapies and vaccines that eliminate amyloid plaques have been unsuccessful in stopping dementia. Regardless of whether clearing plaques is beneficial or harmful - which remains a subject of debate - it does not address the failing microglia population. If microglia telomere damage is causing Alzheimer's disease, self-donated bone marrow or dental pulp stem cell transplants could give rise to new microglia populations that would maintain neuronal health while the original resident microglia population died. Copyright © 2011 Elsevier Ltd. All rights reserved.
Erosion and lateral surface processes
USDA-ARS?s Scientific Manuscript database
: Erosion can cause serious agricultural and environmental hazards. It can generate severe damage to the landscape, lead to significant loss of agricultural land and consequently to reduction in agricultural productivity, induce surface water pollution due to the transport of sediments and suspende...
ERIC Educational Resources Information Center
Blumenstyk, Goldie
2007-01-01
In the 1990s, the giant mining company now known as BHP Billiton drew worldwide condemnation for the environmental damage caused by its copper and gold mine in Papua, New Guinea. Its mining practices destroyed the way of life of thousands of farming and fishing families who lived along and subsisted on the rivers polluted by the mine, and it was…
[Environmental causes of the distal airways disease. Hypersensitivity pneumonitis and rare causes].
Dalphin, J-C; Didier, A
2013-10-01
Hypersensitivity pneumonitis is one of the most frequent causes of distal airways disease. It is associated with inflammation of the bronchioles, predominantly by lymphocytic infiltrates, and with granuloma formation causing bronchial obstruction. This inflammation explains the clinical manifestations and the airways obstruction seen on pulmonary function tests, most often in the distal airways but proximal in almost 20%. CT scan abnormalities reflect the lymphocytic infiltrates and air trapping and, in some cases, the presence of emphysema. Bronchiolitis induced by chronic inhalation of mineral particles or acute inhalation of toxic gases (such as NO2) are other examples of small airways damage due to environmental exposure. The pathophysiological mechanisms are different and bronchiolar damage is either exclusive or predominant. Bronchiolitis induced by tobacco smoke exposure, usually classified as interstitial pneumonitis, is easily diagnosed thanks to broncho-alveolar lavage. Its prognosis is linked to the other consequences of tobacco smoke exposure including respiratory insufficiency. Finally, the complex lung exposure observed in some rare cases (such as the World Trade Center fire or during wars) may lead to a less characteristic pattern of small airways disease. Copyright © 2013 SPLF. Published by Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Qiu, Zeyang; Liang, Wei; Wang, Xue; Lin, Yang; Zhang, Meng
2017-05-01
As an important part of national energy supply system, transmission pipelines for natural gas are possible to cause serious environmental pollution, life and property loss in case of accident. The third party damage is one of the most significant causes for natural gas pipeline system accidents, and it is very important to establish an effective quantitative risk assessment model of the third party damage for reducing the number of gas pipelines operation accidents. Against the third party damage accident has the characteristics such as diversity, complexity and uncertainty, this paper establishes a quantitative risk assessment model of the third party damage based on Analytic Hierarchy Process (AHP) and Fuzzy Comprehensive Evaluation (FCE). Firstly, risk sources of third party damage should be identified exactly, and the weight of factors could be determined via improved AHP, finally the importance of each factor is calculated by fuzzy comprehensive evaluation model. The results show that the quantitative risk assessment model is suitable for the third party damage of natural gas pipelines and improvement measures could be put forward to avoid accidents based on the importance of each factor.
NASA Astrophysics Data System (ADS)
Abdul-Aziz, Ali; Abumeri, Galib; Troha, William; Bhatt, Ramakrishna T.; Grady, Joseph E.; Zhu, D.
2012-04-01
Ceramic matrix composites (CMCs) are getting the attention of most engine manufacturers and aerospace firms for turbine engine and other related applications. This is because of their potential weight advantage and performance benefits. As a protecting guard for these materials, a highly specialized form of environmental barrier coating (EBC) is being developed and explored for high temperature applications that are greater than 1100 °C1,2. The EBCs are typically a multilayer of coatings and are on the order of hundreds of microns thick. CMCs are generally porous materials and this feature is somewhat beneficial since it allows some desirable infiltration of the EBC. Their degradation usually includes coating interface oxidation as opposed to moisture induced matrix degradation which is generally seen at a higher temperature. A variety of factors such as residual stresses, coating process related flaws, and casting conditions may influence the strength of degradation. The cause of such defects which cause cracking and other damage is that not much energy is absorbed during fracture of these materials. Therefore, an understanding of the issues that control crack deflection and propagation along interfaces is needed to maximize the energy dissipation capabilities of layered ceramics. Thus, evaluating components and subcomponents made out of CMCs under gas turbine engine conditions is suggested to demonstrate that these material will perform as expected and required under these aggressive environmental circumstances. Progressive failure analysis (PFA) is applied to assess the damage growth of the coating under combined thermal and mechanical loading conditions. The PFA evaluation is carried out using a full-scale finite element model to account for the average material failure at the microscopic or macroscopic levels. The PFA life prediction evaluation identified the root cause for damage initiation and propagation. It indicated that delamination type damage initiated mainly in the bond and intermediate coating materials then propagated to the substrate. Results related to damage initiation and propagation; behavior and life assessment of the coating at the interface of the EBC/CMC are presented and discussed.
Flexible, multi-measurement guided wave damage detection under varying temperatures
NASA Astrophysics Data System (ADS)
Douglass, Alexander C. S.; Harley, Joel B.
2018-04-01
Temperature compensation in structural health monitoring helps identify damage in a structure by removing data variations due to environmental conditions, such as temperature. Stretch-based methods are one of the most commonly used temperature compensation methods. To account for variations in temperature, stretch-based methods optimally stretch signals in time to optimally match a measurement to a baseline. All of the data is then compared with the single baseline to determine the presence of damage. Yet, for these methods to be effective, the measurement and the baseline must satisfy the inherent assumptions of the temperature compensation method. In many scenarios, these assumptions are wrong, the methods generate error, and damage detection fails. To improve damage detection, a multi-measurement damage detection method is introduced. By using each measurement in the dataset as a baseline, error caused by imperfect temperature compensation is reduced. The multi-measurement method increases the detection effectiveness of our damage metric, or damage indicator, over time and reduces the presence of additional peaks caused by temperature that could be mistaken for damage. By using many baselines, the variance of the damage indicator is reduced and the effects from damage are amplified. Notably, the multi-measurement improves damage detection over single-measurement methods. This is demonstrated through an increase in the maximum of our damage signature from 0.55 to 0.95 (where large values, up to a maximum of one, represent a statistically significant change in the data due to damage).
Comparison of two wild rodent species as sentinels of environmental contamination by mine tailings.
Tovar-Sánchez, E; Cervantes, L T; Martínez, C; Rojas, E; Valverde, M; Ortiz-Hernández, M L; Mussali-Galante, P
2012-06-01
Contamination with heavy metals is among the most hazardous environmental concerns caused by mining activity. A valuable tool for monitoring these effects is the use of sentinel organisms. Particularly, small mammals living inside mine tailings are an excellent study system because their analysis represents a realistic approach of mixtures and concentrations of metal exposure. We analyzed metal tissue concentrations and DNA damage levels for comparison between genders of a sentinel (Peromyscus melanophrys) and a nonsentinel (Baiomys musculus) species. Also, the relationship between DNA damage and the distance from the contamination source was evaluated. This study was conducted in an abandoned mine tailing at Morelos, Mexico. Thirty-six individuals from both species at the exposed and reference sites were sampled. Metal concentrations in bone and liver of both species were analyzed by atomic absorption spectrophotometry, and DNA damage levels were assayed using the alkaline comet assay. In general, concentrations of zinc, nickel, iron, and manganese were statistically higher in exposed individuals. A significant effect of the organ and the site on all metal tissue concentrations was detected. Significant DNA damage levels were registered in the exposed group, being higher in B. musculus. Females registered higher DNA damage levels than males. A negative relationship between distance from the mine tailing and DNA damage in B. musculus was observed. We consider that B. musculus is a suitable species to assess environmental quality, especially for bioaccumulable pollutants--such as metals--and recommend that it may be considered as a sentinel species.
Blast vibration damage to water supply well - water quality and quantity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matheson, G.M.; Miller, D.K.
1997-05-01
Possible impacts to the water quality and production capacity of ground water supply wells by blasting is a common cause of complaints for blasting contractors, mining companies, and local regulatory authorities. The major complaints of changes in well water quality include; turbidity; discolored water (red, brown, black, yellow and milky water), and nitrate and/or coliform contamination. The major complaints for changes in well water production capacity include: loss of quantity production, air in water and/or water lines, damage to pump, and damage to well screen or borehole. The review of research and common causes of these problems indicates that mostmore » of these complaints are not related to blasting and can be shown to be related to either environmental factors, poor well construction, or wells whose elements required repair or replacement prior to blasting. The paper reviews each of the complaints cited and provides the probable causes of the observed condition and discusses their relation to blasting.« less
The Entrepreneurial Community College
ERIC Educational Resources Information Center
Roueche, John E., Ed.; Jones, Barbara R., Ed.
2005-01-01
Environmental factors currently affecting today's community colleges either will cause irreparable damage to their fiscal health and organizational structure or contribute to their rebirth--transforming systems and processes to meet current and future challenges successfully. Community colleges are facing challenges on many levels: (1) In 2003,…
Protecting Consumers from Contaminated Drinking Water during Natural Disasters
Natural disasters can cause damage and destruction to local water supplies affecting millions of people. Communities should plan for and designate an authorized team to manage and prioritize emergency response in devastated areas. Sections 2.0 and 3.0 describe the Environmental...
CATALYTIC ENZYME-BASED METHODS FOR WATER TREATMENT AND WATER DISTRIBUTION SYSTEM DECONTAMINATION
Current chemistry-based decontaminants for chemical or biological warfare agents and related toxic materials are caustic and have the potential for causing material and environmental damage. In addition, most are bulk liquids that require significant logistics and storage capabil...
Invasive plants affect prairie soil biology
USDA-ARS?s Scientific Manuscript database
Non-native or exotic plants often cause ecological and environmental damage in ecosystems where they invade and become established. These invasive plants may be the most serious threat to plant diversity in prairies, especially those in scattered remnants, which may be particularly vulnerable to rap...
Incorporating exposure science into life-cycle assessment
Life-cycle assessment (LCA) is used to estimate the potential for environmental damage that may be caused by a product or process, ideally before the product or process begins. LCA includes all of the steps from extracting natural resources through manufacturing through product u...
NASA Technical Reports Server (NTRS)
1975-01-01
It is shown that urban sprawl and the abuses of technological industries result in substantial environmental and economic costs at the expense of center city locations and populations. Socioeconomic deterioration and modification of the biosphere triggers climatic and environmental changes leading to ecosystem damage and destruction, health consequences and international conflict.
Application of environmental scanning electron microscopy to determine biological surface structure.
Kirk, S E; Skepper, J N; Donald, A M
2009-02-01
The use of environmental scanning electron microscopy in biology is growing as more becomes understood about the advantages and limitations of the technique. These are discussed and we include new evidence about the effect of environmental scanning electron microscopy imaging on the viability of mammalian cells. We show that although specimen preparation for high-vacuum scanning electron microscopy introduces some artefacts, there are also challenges in the use of environmental scanning electron microscopy, particularly at higher resolutions. This suggests the two technologies are best used in combination. We have used human monocyte-derived macrophages as a test sample, imaging their complicated and delicate membrane ruffles and protrusions. We have also explored the possibility of using environmental scanning electron microscopy for dynamic experiments, finding that mammalian cells cannot be imaged and kept alive in the environmental scanning electron microscopy. The dehydration step in which the cell surface is exposed causes irreversible damage, probably via loss of membrane integrity during liquid removal in the specimen chamber. Therefore, mammalian cells should be imaged after fixation where possible to protect against damage as a result of chamber conditions.
Analysis of Ricefield Land Damage in Denpasar City, Bali, Indonesia
NASA Astrophysics Data System (ADS)
Suyarto, R.; Wiyanti; Dibia, I. N.
2018-02-01
Soil as a natural resource, living area, environmental media, and factors of production including biomass production that supports human life and other living beings must be preserved, on the other hand, uncontrolled biomass production activities can cause soil damage, ultimately can threaten the survival of humans and other living things. Therefore, in order to control soil damage, first must inventories the soil condition data and its damage which then visualised in soil damage potential and soil damage status. The activities of the study are the preparation of a map of the initial soil conditions and the delineation of potentially land degradation distribution. Mapping results are used as work maps for verification on the field to take soil samples and create soil damage status. In general, Denpasar City have soil damage potential at very low, low until medium rate. Soil damage status in Denpasar City generally is low damage of bulk volume, total porosity, soil permeability and electrolyte conductivity which beyond limitation thresholds.
CpG island methylator phenotype (CIMP) in cancer: causes and implications.
Teodoridis, Jens M; Hardie, Catriona; Brown, Robert
2008-09-18
Strong evidence exists for a subgroup of tumours, from a variety of tissue types, exhibiting concordant tumour specific DNA methylation: the "CpG island methylator phenotype" (CIMP). Occurrence of CIMP is associated with a range of genetic and environmental factors, although the molecular causes are not well-understood. Both increased expression and aberrant targeting of DNA methyltransferases (DNMTs) could contribute to the occurrence of CIMP. One under-explored area is the possibility that DNA damage may induce or select for CIMP during carcinogenesis or treatment of tumours with chemotherapy. DNA damaging agents can induce DNA damage at guanine rich regions throughout the genome, including CpG islands. This DNA damage can result in stalled DNA synthesis, which will lead to localised increased DNMT1 concentration and therefore potentially increased DNA methylation at these sites. Chemotherapy can select for cells which have increased tolerance to DNA damage due to increased lesion bypass, in some cases by mechanisms which involve inactivation of genes by CpG island methylation. CIMP has been associated with worse patient prognosis, probably due to increased epigenetic plasticity. Therefore, further clinical testing of the diagnostic and prognostic value of the current CIMP markers, as well as increasing our understanding of the molecular causes underlying CIMP are required.
Climate change damages to Alaska public infrastructure and the economics of proactive adaptation
Climate change in the circumpolar region is causing dramatic environmental change that increases the vulnerability of the built environment. We quantified the economic impacts of climate change on Alaska’s public infrastructure under relatively high and low climate forcing scenar...
Histone deacetylases (HDACs) in XPC gene silencing and bladder cancer
2011-01-01
Bladder cancer is one of the most common malignancies and causes hundreds of thousands of deaths worldwide each year. Bladder cancer is strongly associated with exposure to environmental carcinogens. It is believed that DNA damage generated by environmental carcinogens and their metabolites causes development of bladder cancer. Nucleotide excision repair (NER) is the major DNA repair pathway for repairing bulk DNA damage generated by most environmental carcinogens, and XPC is a DNA damage recognition protein required for initiation of the NER process. Recent studies demonstrate reduced levels of XPC protein in tumors for a majority of bladder cancer patients. In this work we investigated the role of histone deacetylases (HDACs) in XPC gene silencing and bladder cancer development. The results of our HDAC inhibition study revealed that the treatment of HTB4 and HTB9 bladder cancer cells with the HDAC inhibitor valproic acid (VPA) caused an increase in transcription of the XPC gene in these cells. The results of our chromatin immunoprecipitation (ChIP) studies indicated that the VPA treatment caused increased binding of both CREB1 and Sp1 transcription factors at the promoter region of the XPC gene for both HTB4 and HTB9 cells. The results of our immunohistochemistry (IHC) staining studies further revealed a strong correlation between the over-expression of HDAC4 and increased bladder cancer occurrence (p < 0.001) as well as a marginal significance of increasing incidence of HDAC4 positivity seen with an increase in severity of bladder cancer (p = 0.08). In addition, the results of our caspase 3 activation studies demonstrated that prior treatment with VPA increased the anticancer drug cisplatin-induced activation of caspase 3 in both HTB4 and HTB9 cells. All of these results suggest that the HDACs negatively regulate transcription of the XPC gene in bladder cancer cells and contribute to the severity of bladder tumors. PMID:21507255
Hattori, Kenji; Nakadate, Kazuhiko; Morii, Akane; Noguchi, Takumi; Ogasawara, Yuki; Ishii, Kazuyuki
2017-10-14
Exposure to nanoparticles such as carbon nanotubes has been shown to cause pleural mesothelioma similar to that caused by asbestos, and has become an environmental health issue. Not only is the percutaneous absorption of nano-size titanium dioxide particles frequently considered problematic, but the possibility of absorption into the body through the pulmonary route is also a concern. Nevertheless, there are few reports of nano-size titanium dioxide particles on respiratory organ exposure and dynamics or on the mechanism of toxicity. In this study, we focused on the morphology as well as the size of titanium dioxide particles. In comparing the effects between nano-size anatase and rutile titanium dioxide on human-derived pleural mesothelial cells, the anatase form was shown to be actively absorbed into cells, producing reactive oxygen species and causing oxidative damage to DNA. In contrast, we showed for the first time that the rutile form is not easily absorbed by cells and, therefore, does not cause oxidative DNA damage and is significantly less damaging to cells. These results suggest that with respect to the toxicity of titanium dioxide particles on human-derived mesothelial cells, the crystal form rather than the particle size has a greater effect on cellular absorption. Also, it was indicated that the difference in absorption is the primary cause of the difference in the toxicity against mesothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Cooperative biological effects between ionizing radiation and other physical and chemical agents.
Manti, Lorenzo; D'Arco, Annalisa
2010-01-01
Exposure to ionizing radiation (IR), at environmentally and therapeutically relevant doses or as a result of diagnostics or accidents, causes cyto- and genotoxic damage. However, exposure to IR alone is a rare event as it occurs in spatial and temporal combination with several physico-chemical agents. Some of these are of known noxiousness, as is the case with chemical compounds at high dose, hence additive/synergistic effects can be expected or have been demonstrated. Conversely, the cellular toxicity of other agents, such as non-ionizing electromagnetic fields (EMFs), is only presumed and their short- and long-term cooperation on IR-induced damage remains undetermined. In this review, we shall examine evidence in support of the interplay between spatially and/or temporally related environmentally relevant stressors. In vitro or animal-based studies as well as epidemiological surveys have generally examined the combined action of no more than a couple of known or potentially DNA-damaging agents. Moreover, most existing research mainly focused on short-term effects of combined exposures. Hence, it is important that quantitative research addresses the issue of the possible cooperation between chronic exposure to environmental trace contaminants and exposure to EMFs, examining not only the modulation of damage acutely induced by IR but also long-term genome stability. 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sanford, L.
2017-12-01
When do politicians' re-election strategies cause serious environmental damage? This paper focuses on a case of deforestation, and argues that the protection of forested areas is a long-term public good while their destruction provides short-term, private goods for local voters and elected officials. Politicians give voters access to forested areas for commercial use of timber and small-scale farming in exchange for electoral support. I test the theory that competitive elections are associated with higher rates of deforestation using remote sensed satellite data of forest cover and data on national elections cross-nationally. The findings suggest that rates of forest cover loss are 50% higher in anocracies during election years, and more than double the average rate in years when there are competitive elections in anocracies and democracies. This suggests that democratic elections can be an important source of environmental damage, such as deforestation, contrary to the conventional wisdom that democratization improves environmental protection.
On the Storm Surge and Sea Level Rise Projections for Infrastructure Risk Analysis and Adaptation
Storm surge can cause coastal hydrology changes, flooding, water quality changes, and even inundation of low-lying terrain. Strong wave actions and disruptive winds can damage water infrastructure and other environmental assets (hazardous and solid waste management facilities, w...
40 CFR 264.601 - Environmental performance standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... other vegetation; (8) The potential for health risks caused by human exposure to waste constituents; and... effects on human health or the environment due to migration of waste constituents in surface water, or... human exposure to waste constituents; and (11) The potential for damage to domestic animals, wildlife...
40 CFR 264.601 - Environmental performance standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... other vegetation; (8) The potential for health risks caused by human exposure to waste constituents; and... effects on human health or the environment due to migration of waste constituents in surface water, or... human exposure to waste constituents; and (11) The potential for damage to domestic animals, wildlife...
40 CFR 264.601 - Environmental performance standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... other vegetation; (8) The potential for health risks caused by human exposure to waste constituents; and... effects on human health or the environment due to migration of waste constituents in surface water, or... human exposure to waste constituents; and (11) The potential for damage to domestic animals, wildlife...
Jill Pokorny
1998-01-01
Sphaeropsis shoot blight, formerly called Diplodia shoot blight, is worldwide in distribution and can infect many conifer hosts. Although many pine species are reported hosts, this disease causes severe damage only to trees that are predisposed by unfavorable environmental conditions. Non-native, exotic pine species growing outside their natural range are especially...
[Environmental damage assessment: international regulations and revelation to China].
Zhang, Hong-zhen; Cao, Dong; Yu, Fang; Wang, Jin-nan; Qi, Ji; Jia, Qian; Zhang, Tian-zhu; Luo, Yong-ming
2013-05-01
As the whole society gradually realizes the scarcity of nature resources and environmental value, countries all over the world have evolved and improved the system of environmental damage assessment through the practices of pollution prevention and ecological environmental protection. On one hand, in the research prospective, the practices of environmental damage assessment brought new challenges to environmental law, environmental economics, environmental science, environmental engineering, etc. On the other hand, they constantly promoted and developed relevant laws and regulations, techniques, working mechanism, and guidelines on procedure in practice. On the hasis of comparison and analysis of international practices and experiences from US, EU, and Japan, etc., this article identified relevant concepts, content, and scope of environmental damage assessment, and presented its scientific positioning and development direction. At present, both theory and practice of environmental damage assessment in China are in their infancy period. Considering current environmental situation and socioeconomic development features of China, learning international practices and experiences and raising the orientation of environmental damage assessment have great meaning in exploring the suitable environmental damage assessment system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yi-Cheng; Lu, Pin-Hsuan; Hsu, Jui-Ling
2011-12-15
Poly(ADP-ribose) polymerase-1 (PARP-1), a sensor of DNA damage, plays a crucial role in the regulation of DNA repair. PARP-1 hyperactivation causes DNA damage and cell death. The underlying mechanism is complicated and is through diverse pathways. The understanding of responsible signaling pathways may offer implications for effective therapies. After concentration-response determination of N-Methyl-N Prime -Nitro-N-Nitrosoguanidine (MNNG, a PARP-1 activating agent and an environmental mutagen) in human hormone-refractory prostate cancers, the data showed that concentrations below 5 {mu}M did not change cell survival but cause a time-dependent up-regulation of intracellular adhesion molecule-1 (ICAM-1) in mRNA, total protein and cell surface levels.more » Detection of phosphorylation and degradation of I{kappa}B-{alpha} and nuclear translocation of NF-{kappa}B showed that MNNG induced the activation of NF-{kappa}B that was responsible for the ICAM-1 up-regulation since PDTC (a NF-{kappa}B inhibitor) significantly abolished this effect. However, higher concentrations (e.g., 10 {mu}M) of MNNG induced a 61% detachment of the cells which were apoptosis associated with the activation of AMP-activated protein kinase (AMPK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Further identification showed that both AMPK and JNK other than p38 MAPK functionally contributed to cell death. The remaining 39% attached cells were survival associated with high ICAM-1 expression. In conclusion, the data suggest that NF-{kappa}B-dependent up-regulation of ICAM-1 plays a key role on cell attachment and survival; whereas, activation of AMPK and JNK participates in cytotoxic signaling pathways in detached cells caused by PARP-1 activation. Highlights: Black-Right-Pointing-Pointer Low level of DNA damage helps cell attachment and survival via ICAM-1 upregulation. Black-Right-Pointing-Pointer High level of DNA damage causes AMPK- and JNK-involved cell detachment and death. Black-Right-Pointing-Pointer The study provides an anticancer approach targeting PARP-1 and DNA damage response.« less
Genomics of compositae weeds: EST libraries, microarrays, and evidence of introgression
USDA-ARS?s Scientific Manuscript database
• Premise of Study: Weeds cause considerable environmental and economic damage. However, genomic characterization of weeds has lagged behind that of model plants and crop species. Here we report on the development of genomic tools and resources for 11 weeds from the Compositae family that can serve ...
Leslie Newton; Heike Meissner; Andrea. Lemay
2011-01-01
Forests of the Greater Caribbean Region (GCR) are important ecologically and economically. These unique ecosystems are under increasing pressure from exotic pests, which may cause extensive environmental damage and cost billions of dollars in control programs, lost production, and forest restoration.
Improving Knowledge for Green Textile Products: Life Cycle Analysis
ERIC Educational Resources Information Center
Nam, Jinhee
2012-01-01
Textile products are used heavily every day. The apparel industry is one of the largest industrial polluters, causing damage to both human health and the environment. Despite increasing consumer concern about environmental issues and a growing trend toward supporting sustainable production, consumers are often unable to evaluate accurately which…
USDA-ARS?s Scientific Manuscript database
Efficient nitrogen (N) management strategies are a key approach in addressing the increase of food demand and environmental protection. Failing to achieve adequate nitrogen use efficiency (NUE) in agricultural systems can cause damaging outcomes including degradative water quality, increase in green...
Plastics in the Ocean: More Than a Litter Problem.
ERIC Educational Resources Information Center
Center for Environmental Education, Washington, DC.
Environmental impacts arise from entanglement of marine animals in plastic debris and from ingestion of plastics by marine organisms. Plastic debris can cause potential threats to humans when divers become entangled or vessels become fouled in debris. The depletion of fishery resources, vessel damage, and aesthetic degradation resulting in lost…
2003-09-01
transition temperature TBT tributyltin THF tetrahydrofuran TPE thermoplastic elastomer 4 EXECUTIVE SUMMARY The goal of this research is to...compounds that are environmentally persistant cause damage to the ecosystem, and enter the food chain. The ban on tributyltin ( TBT ) antifoulants by the
Cwikel, Julie G; Gidron, Yori; Quastel, Michael
2010-01-01
Radiation causes DNA damage, increases risk of cancer, and is associated with psychological stress responses. This article proposes an evidence-based integrative model in which psychological factors could interact with radiation by either augmenting or moderating the adverse effects of radiation on DNA integrity and eventual tumorigenesis. Based on a review of the literature, we demonstrate the following: (1) the effects of low-dose radiation exposures on DNA integrity and on tumorigenesis; (2) the effects of low-dose radiation exposure on psychological distress; (3) the relationship between psychological factors and DNA damage; and (4) the possibility that psychological stress augments and that psychological resource variables moderate radiation-induced DNA damage and risk of cancer. The additional contribution of psychological processes to radiation-DNA damage-cancer relationships needs further study, and if verified, has clinical implications.
Al-Gubory, Kaïs H
2014-07-01
Developmental toxicity caused by exposure to a mixture of environmental pollutants has become a major health concern. Human-made chemicals, including xenoestrogens, pesticides and heavy metals, as well as unhealthy lifestyle behaviours, mainly tobacco smoking, alcohol consumption and medical drug abuse, are major factors that adversely influence prenatal development and increase susceptibility of offspring to diseases. There is evidence to suggest that the developmental toxicological mechanisms of chemicals and lifestyle factors involve the generation of reactive oxygen species (ROS) and cellular oxidative damage. Overproduction of ROS induces oxidative stress, a state where increased ROS generation overwhelms antioxidant protection and subsequently leads to oxidative damage of cellular macromolecules. Data on the involvement of oxidative stress in the mechanism of developmental toxicity following exposure to environmental pollutants are reviewed in an attempt to provide an updated basis for future studies on the toxic effect of such pollutants, particularly the notion of increased risk for developmental toxicity due to combined and cumulative exposure to various environmental pollutants. The aims of such studies are to better understand the mechanisms by which environmental pollutants adversely affect conceptus development and to elucidate the impact of cumulative exposures to multiple pollutants on post-natal development and health outcomes. Developmental toxicity caused by exposure to mixture of environmental pollutants has become a major health concern. Human-made chemicals, including xenoestrogens, pesticides and heavy metals, as well as unhealthy lifestyle behaviors, mainly tobacco smoking, alcohol consumption and medical drug abuse, are major factors that adversely influence prenatal development and increase the susceptibility of offspring to development complications and diseases. There is evidence to suggest that the developmental toxicological mechanisms of human-made chemicals and unhealthy lifestyle factors involve the generation of reactive oxygen species (ROS) and cellular oxidative damage. Overproduction of ROS induces oxidative stress, a state where increased generation of ROS overwhelms antioxidant protection and subsequently leads to oxidative damage of cellular macromolecules. Exposure to various environmental pollutants induces synergic and cumulative dose-additive adverse effects on prenatal development, pregnancy outcomes and neonate health. Data from the literature on the involvement of oxidative stress in the mechanism of developmental toxicity following in vivo exposure to environmental pollutants will be reviewed in an attempt to provide an updated basis for future studies on the toxic effect of such pollutants, particularly the notion of increased risk for developmental toxicity due to combined and cumulative exposure to various environmental pollutants. The aims of such studies are to better understand the mechanisms by which environmental pollutants adversely affect conceptus development and to elucidate the impact of cumulative exposures to multiple pollutants on postnatal development and health outcomes. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
1988-01-01
nerve and blister agents evaluated in this appendix have been especially formulated to cause -major injuries or death to enemy forces in wartime...days. Hallucinations, particularly of visual type. Patients may exhibit selfdestructive acts l Seizures may occur, but true convulsions arc rare l Rare...lesions produced in experimental animals by GB and interprets the damage as caused by convulsions or seizure activity that kill neurons (nerve cells
Impact of the environment on reproductive health.
1991-01-01
The WHO workshop on the impact of the environment on reproductive health is summarized. Topics include the nature of environmental factors affecting reproductive health, environmental factors blamed for declining sperm quantity and quality, the effects of natural and man-made disasters on reproductive health, chemical pollutants, how the environment damages reproductive health, and research needs for better research methodologies and surveillance data. Recommendations are made to: 1) promote international research collaboration with an emphasis on consistency of methodological approaches for assessing developmental and reproductive toxicity, on development of improved surveillance systems and data bases, an strengthening international disaster alert and evaluation systems; 2) promote research capabilities for multidisciplinary studies, for interactive studies of the environment and cellular processes, and for expansion of training and education; and 3) take action on priority problems of exposure to chemical, physical, and biological agents, of exposure to pesticides among specific populations, and of inadequate screening methods for identification of environmental chemicals. The costs of environmental injury to reproduction include subfertility, intrauterine growth retardation, spontaneous abortion, and various birth defects. Developed country's primary threats are from chemical pollution, radiation, and stress. There is a large gap in knowledge. Caution is urged in understanding the direct relationship between environmental causes and infertility. Sexual health is difficult to assess and research is suggested. Exposure to excessive vitamin A and toxic chemicals are cited as agents probably having serious effects on malformations. Sperm quality has declined over the decades; there is speculation about the potential causes. The effects of radiation such as at Chernobyl are described. Toxic chemical exposure such as in Bhopal, India killed thousands. Neurological damage is reported for fetuses and infants exposed to methyl mercury. There is the beginning of evidence that complications of pregnancy may be related to pollution levels surrounding industrial plants. Reproductive health is affected through chromosome damage and cell destruction, prenatal death, altered growth, fetal abnormalities, postnatal death, functional learning deficits, and premature aging.
NASA Astrophysics Data System (ADS)
Shao, Huaiyong; Xian, Wei; Yang, Wunian
2009-07-01
The large-scale and super-strength development of mineral resources in mining cities in long term has made great contributions to China's economic construction and development, but it has caused serious damage to the ecological environment even ecological imbalance at the same time because the neglect of the environmental impact even to the expense of the environment to some extent. In this study, according to the characteristics of mining cities, the scientific and practical eco-environmental vulnerability evaluation index system of mining cities had been established. Taking Panzhihua city of Sichuan province as an example, using remote sensing and GIS technology, applying various types of remote sensing image (TM, SPOT5, IKONOS) and Statistical data, the ecological environment evaluation data of mining cities was extracted effectively. For the non-linear relationship between the evaluation indexes and the degree of eco-environmental vulnerability in mining cities, this study innovative took the evaluation of eco-environmental vulnerability of the study area by using artificial neural network whose training used SCE-UA algorithm that well overcome the slow learning and difficult convergence of traditional neural network algorithm. The results of ecoenvironmental vulnerability evaluation of the study area were objective, reasonable and the credibility was high. The results showed that the area distribution of five eco-environmental vulnerability grade types was basically normal, and the overall ecological environment situation of Panzhihua city was in the middle level, the degree of eco-environmental vulnerability in the south was higher than the north, and mining activities were dominant factors to cause ecoenvironmental damage and eco-environmental Vulnerability. In this study, a comprehensive theory and technology system of regional eco-environmental vulnerability evaluation which included the establishment of eco-environmental vulnerability evaluation index system, processing of evaluation data and establishing of evaluation model. New ideas and methods had provided for eco-environmental vulnerability of mining cities.
Pollution Impact and Alternative Treatment for Produced Water
NASA Astrophysics Data System (ADS)
Hedar, Yusran; Budiyono
2018-02-01
Oil and gas exploration and production are two of the activities that potentially cause pollution and environmental damage. The largest waste generated from this activity is produced water. Produced water contains hazardous pollutants of both organic and inorganic materials, so that the produced water of oil and gas production cannot be discharged directly to the environment. Uncontrolled discharge can lead to the environmental damage, killing the life of water and plants. The produced water needs to be handled and fulfill the quality standards before being discharged to the environment. Several studies to reduce the contaminants in the produced water were conducted by researchers. Among them were gravity based separation - flotation, separation technique based on filtration, and biological process treatment. Therefore, some of these methods can be used as an alternative waste handling of produced water.
Fujise, Lisa; Yamashita, Hiroshi; Suzuki, Go; Sasaki, Kengo; Liao, Lawrence M; Koike, Kazuhiko
2014-01-01
The foundation of coral reef biology is the symbiosis between corals and zooxanthellae (dinoflagellate genus Symbiodinium). Recently, coral bleaching, which often results in mass mortality of corals and the collapse of coral reef ecosystems, has become an important issue around the world as coral reefs decrease in number year after year. To understand the mechanisms underlying coral bleaching, we maintained two species of scleractinian corals (Acroporidae) in aquaria under non-thermal stress (27°C) and moderate thermal stress conditions (30°C), and we compared the numbers and conditions of the expelled Symbiodinium from these corals. Under non-thermal stress conditions corals actively expel a degraded form of Symbiodinium, which are thought to be digested by their host coral. This response was also observed at 30°C. However, while the expulsion rates of Symbiodinium cells remained constant, the proportion of degraded cells significantly increased at 30°C. This result indicates that corals more actively digest and expel damaged Symbiodinium under thermal stress conditions, likely as a mechanism for coping with environmental change. However, the increase in digested Symbiodinium expulsion under thermal stress may not fully keep up with accumulation of the damaged cells. There are more photosynthetically damaged Symbiodinium upon prolonged exposure to thermal stress, and corals release them without digestion to prevent their accumulation. This response may be an adaptive strategy to moderate stress to ensure survival, but the accumulation of damaged Symbiodinium, which causes subsequent coral deterioration, may occur when the response cannot cope with the magnitude or duration of environmental stress, and this might be a possible mechanism underlying coral bleaching during prolonged moderate thermal stress.
Kyjovska, Zdenka O; Jacobsen, Nicklas R; Saber, Anne T; Bengtson, Stefan; Jackson, Petra; Wallin, Håkan; Vogel, Ulla
2015-01-01
We previously observed genotoxic effects of carbon black nanoparticles at low doses relative to the Danish Occupational Exposure Limit (3.5 mg/m3). Furthermore, DNA damage occurred in broncho-alveolar lavage (BAL) cells in the absence of inflammation, indicating that inflammation is not required for the genotoxic effects of carbon black. In this study, we investigated inflammatory and acute phase response in addition to genotoxic effects occurring following exposure to nanoparticulate carbon black (NPCB) at even lower doses. C57BL/6JBomTac mice were examined 1, 3, and 28 days after a single instillation of 0.67, 2, 6, and 162 µg Printex 90 NPCB and vehicle. Cellular composition and protein concentration was evaluated in BAL fluid as markers of inflammatory response and cell damage. DNA strand breaks in BAL cells, lung, and liver tissue were assessed using the alkaline comet assay. The pulmonary acute phase response was analyzed by Saa3 mRNA real-time quantitative PCR. Instillation of the low doses of NPCB induced a slight neutrophil influx one day after exposure. Pulmonary exposure to small doses of NPCB caused an increase in DNA strand breaks in BAL cells and lung tissue measured using the comet assay. We interpret the increased DNA strand breaks occurring following these low exposure doses of NPCB as DNA damage caused by primary genotoxicity in the absence of substantial inflammation, cell damage, and acute phase response. Environ. Mol. Mutagen. 56:41–49, 2015. © 2014 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society PMID:25042074
Fujise, Lisa; Yamashita, Hiroshi; Suzuki, Go; Sasaki, Kengo; Liao, Lawrence M.; Koike, Kazuhiko
2014-01-01
The foundation of coral reef biology is the symbiosis between corals and zooxanthellae (dinoflagellate genus Symbiodinium). Recently, coral bleaching, which often results in mass mortality of corals and the collapse of coral reef ecosystems, has become an important issue around the world as coral reefs decrease in number year after year. To understand the mechanisms underlying coral bleaching, we maintained two species of scleractinian corals (Acroporidae) in aquaria under non-thermal stress (27°C) and moderate thermal stress conditions (30°C), and we compared the numbers and conditions of the expelled Symbiodinium from these corals. Under non-thermal stress conditions corals actively expel a degraded form of Symbiodinium, which are thought to be digested by their host coral. This response was also observed at 30°C. However, while the expulsion rates of Symbiodinium cells remained constant, the proportion of degraded cells significantly increased at 30°C. This result indicates that corals more actively digest and expel damaged Symbiodinium under thermal stress conditions, likely as a mechanism for coping with environmental change. However, the increase in digested Symbiodinium expulsion under thermal stress may not fully keep up with accumulation of the damaged cells. There are more photosynthetically damaged Symbiodinium upon prolonged exposure to thermal stress, and corals release them without digestion to prevent their accumulation. This response may be an adaptive strategy to moderate stress to ensure survival, but the accumulation of damaged Symbiodinium, which causes subsequent coral deterioration, may occur when the response cannot cope with the magnitude or duration of environmental stress, and this might be a possible mechanism underlying coral bleaching during prolonged moderate thermal stress. PMID:25493938
Overview on the effects of parasites on fish health
Iwanowicz, D.D.; Cipriano, R.C.; Bruckner, A.W.; Shchelkunov, I.S.
2011-01-01
It is believed by many that parasites are only as important as the fish they infect. Parasites are ubiquitous, primarily surviving in a dynamic equilibrium with their host(s) and they are often overlooked in fish health assessments. Changes in the environment, both anthropogenic and environmental, can alter the parasite/host equilibrium and cause disease or mortality in fish. Therefore it is imperative that we have knowledge of both parasites and parasitic communities within a given population. When fish kills occur, it can often be associated with changes in parasite density and community composition. Often the damage associated with these fish is relative to the rate of infestation with the parasite; a fish that is lightly infected will show few signs of the parasite, while a heavily infected fish may become physiologically impaired and even die. Parasites can cause mechanical damage (fusion of gill lamellae, tissue replacement), physiological damage (cell proliferation, immunomodulation, detrimental behavioral responses, altered growth) and reproductive damage. As parasitism is the most common lifestyle on the planet, understanding its role in the environment may help researchers understand changes in a given fish population or stream ecosystem.
Growth of Candida albicans hyphae.
Sudbery, Peter E
2011-08-16
The fungus Candida albicans is often a benign member of the mucosal flora; however, it commonly causes mucosal disease with substantial morbidity and in vulnerable patients it causes life-threatening bloodstream infections. A striking feature of its biology is its ability to grow in yeast, pseudohyphal and hyphal forms. The hyphal form has an important role in causing disease by invading epithelial cells and causing tissue damage. This Review describes our current understanding of the network of signal transduction pathways that monitors environmental cues to activate a programme of hypha-specific gene transcription, and the molecular processes that drive the highly polarized growth of hyphae.
NASA Technical Reports Server (NTRS)
Krishnamurthy, T.; Hochhalter, Jacob D.; Gallegos, Adam M.
2012-01-01
The development of validated multidisciplinary Integrated Vehicle Health Management (IVHM) tools, technologies, and techniques to enable detection, diagnosis, prognosis, and mitigation in the presence of adverse conditions during flight will provide effective solutions to deal with safety related challenges facing next generation aircraft. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and damage conditions. A major concern in these structures is the growth of undetected damage (cracks) due to fatigue and low velocity foreign impacts that can reach a critical size during flight, resulting in loss of control of the aircraft. Hence, development of efficient methodologies to determine the presence, location, and severity of damage in critical structural components is highly important in developing efficient structural health management systems.
Damage Characterization Using the Extended Finite Element Method for Structural Health Management
NASA Technical Reports Server (NTRS)
Krishnamurthy, Thiagarajan; Gallegos, Adam M.
2011-01-01
The development of validated multidisciplinary Integrated Vehicle Health Management (IVHM) tools, technologies, and techniques to enable detection, diagnosis, prognosis, and mitigation in the presence of adverse conditions during flight will provide effective solutions to deal with safety related challenges facing next generation aircraft. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and damage conditions. A major concern in these structures is the growth of undetected damage/cracks due to fatigue and low velocity foreign impact that can reach a critical size during flight, resulting in loss of control of the aircraft. Hence, development of efficient methodologies to determine the presence, location, and severity of damage/cracks in critical structural components is highly important in developing efficient structural health management systems.
Flood Disaster Risk Reduction in municipality-scale in Rio de Janeiro State
NASA Astrophysics Data System (ADS)
Japiassú Viana, Viviane; Formiga Johnsson, Rosa Maria; De Gouvello, Bernard
2015-04-01
In Brazil, flood disasters causing human damage, pecuniary loss and environmental damage, are mainly due to greater exposure of the population; urban densification on the riverbanks and margins, incurring vulnerability due to changes in river level and climate changes. This article presents the data and studies required in the Brazilian legal basis and analyzes the scales adopted by planners in contrast to the scales demands by the executing agencies in the context of prevention and adaptation to climate change, particularly to flood disaster reduction in municipality-scale.
1983-01-01
to determine the potential hazards of noise exposure to embryos or fetuses of pregnant women; (2) on the basis of then current knowledge, to determine...discounted. Three very intense sonic booms between May 4 and and May 11 may have caused embryo damage due to egg abandonment or physical damages to uncovered...rights as citizens of the United States to I determine our own destinies , that doesn’t mean that we should--if we’re opposed to people coming and
Bartz, Robert; Heink, Ulrich; Kowarik, Ingo
2010-06-01
The introduction of non-native plant species and the release of genetically modified (GM) crops can induce environmental changes at gene to ecosystem levels. Regulatory frameworks such as the Convention on Biological Diversity or the EU Deliberate Release Directive aim to prevent environmental damage but do not define the term. Although ecologists and conservationists often refer to environmental effects of GM crops or invasive species as damage, most authors do not disclose their normative assumptions or explain why some environmental impacts are regarded as detrimental and others are not. Thus far, a concise definition of environmental damage is missing and is necessary for a transparent assessment of environmental effects or risks. Therefore, we suggest defining environmental damage as a significant adverse effect on a biotic or abiotic conservation resource (i.e., a biotic or abiotic natural resource that is protected by conservational or environmental legislation) that has an impact on the value of the conservation resource, the conservation resource as an ecosystem component, or the sustainable use of the conservation resource. This definition relies on three normative assumptions: only concrete effects on a conservation resource can be damages; only adverse effects that lead to a decrease in the value of the conservation resource can be damages; and only significant adverse effects constitute damage to a conservation resource. Applying this definition within the framework of environmental risk assessment requires further normative determinations, for example, selection of a threshold to distinguish between adverse and significant adverse effects and approaches for assessing the environmental value of conservation resources. Such determinations, however, are not part of the definition of environmental damage. Rather they are part of the definition's operationalization through assessment procedures, which must be grounded in a comprehensible definition of environmental damage.
Altering Genomic Integrity: Heavy Metal Exposure Promotes Transposable Element-Mediated Damage.
Morales, Maria E; Servant, Geraldine; Ade, Catherine; Roy-Engel, Astrid M
2015-07-01
Maintenance of genomic integrity is critical for cellular homeostasis and survival. The active transposable elements (TEs) composed primarily of three mobile element lineages LINE-1, Alu, and SVA comprise approximately 30% of the mass of the human genome. For the past 2 decades, studies have shown that TEs significantly contribute to genetic instability and that TE-caused damages are associated with genetic diseases and cancer. Different environmental exposures, including several heavy metals, influence how TEs interact with its host genome increasing their negative impact. This mini-review provides some basic knowledge on TEs, their contribution to disease, and an overview of the current knowledge on how heavy metals influence TE-mediated damage.
Overview of Nepal's energy sources and environment
NASA Astrophysics Data System (ADS)
Sharma, C. K.
In the Kathmandu Valley, Nepal faces environmental problems of most industrialized countries whereas it has problems similar to the least developed countries, in the hills. Types and quantity of energy use have a close link with the environmental degradation in Nepal Himalaya. Over dependence on the forest to meet the energy demand in the hills has aggravated the environmental problems. Lack of forest cover on the hills, the intense monsoon rain, the fragile geology and steep terrain are contributing to the acceleration of landslides, soil erosion and temperature rise. The rise of average minimum temperature is causing glaciers to retreat and thereby the development of large bodies of glacial lake. Glacial lake outbursts of 1981 in Kodari and of 1985 in Namche bazar area caused extensive damage on infrastructures down stream. Heavy use of commercial fuel (hydrocarbons) in the bowl shaped Kathmandu valley is causing air and water pollution and an increase in the average minimum temperature. Extensive development of hydropower, biogas plants and massive reforestation on naked hills and efficient use of imported hydrocarbons are the solution to existing energy and environmental problems.
2008-06-01
yearly, billion $, various years, 2003–2007) Protecting the Environment Due to Its Inherent Moral Value Plant and animal species are being...a liability and redress regime concerning potential damage caused by the movements of GMOs , which will be further discussed in October 2010 at the...risk management issues of GMOs . UNESCO‘s Man and the Biosphere network is expanding, comprising now 529 sites in 105 countries. The UN notes that
Environment and drug trafficking.
Bryson, L O
1992-01-01
Illicit drug trafficking is a very complex matter, not only because it causes serious and pernicious problems in the socio-economic sphere, but because drug-taking can lead to personal degradation. To this situation, lamentable enough in itself, must be added the immense ecological and environmental damage, which presents grave and serious dangers for the planet.
Missing the Boat on Invasive Alien Species: A Review of Post-Secondary Curricula in Canada
ERIC Educational Resources Information Center
Smith, Andrea L.; Bazely, Dawn R.; Yan, Norman D.
2011-01-01
Invasive alien species (IAS) cause major environmental and economic damage worldwide, and also threaten human food security and health. The impacts of IAS are expected to rise with continued globalization, land use modification, and climate change. Developing effective strategies to deal with IAS requires a collaborative, interdisciplinary…
30 CFR 551.6 - Obligations and rights under a permit or a Notice.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., coastal, or human environment; (3) Cause harm or damage to any mineral resource (in areas leased or not... environmental hazards which imminently threaten life and property; or (3) Adversely affect the environment... of the area for navigation and safety purposes. (d) Any persons conducting shallow test drilling or...
30 CFR 551.6 - Obligations and rights under a permit or a Notice.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., coastal, or human environment; (3) Cause harm or damage to any mineral resource (in areas leased or not... environmental hazards which imminently threaten life and property; or (3) Adversely affect the environment... of the area for navigation and safety purposes. (d) Any persons conducting shallow test drilling or...
30 CFR 551.6 - Obligations and rights under a permit or a Notice.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., coastal, or human environment; (3) Cause harm or damage to any mineral resource (in areas leased or not... environmental hazards which imminently threaten life and property; or (3) Adversely affect the environment... of the area for navigation and safety purposes. (d) Any persons conducting shallow test drilling or...
Invasive plant species in hardwood tree plantations
Rochelle R. Beasley; Paula M. Pijut
2010-01-01
Invasive plants are species that can grow and spread aggressively, mature quickly, and invade an ecosystem causing economic and environmental damage. Invasive plants usually invade disturbed areas, but can also colonize small areas quickly, and may spread and dominate large areas in a few short years. Invasive plant species displace native or desirable forest...
Harmful Non-Indigenous Species in the United States.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Office of Technology Assessment.
Non-indigenous species (NIS) are common in the United States landscape. While some are beneficial, others are harmful and can cause significant economic, environmental, and health damage. This study, requested by the U.S. House Merchant Marine and Fisheries Committee, examined State and Federal policies related to these harmful NIS. The report is…
Earthquakes in Mississippi and vicinity 1811-2010
Dart, Richard L.; Bograd, Michael B.E.
2011-01-01
This map summarizes two centuries of earthquake activity in Mississippi. Work on the Mississippi map was done in collaboration with the Mississippi Department of Environmental Quality, Office of Geology. The earthquake data plotted on the map are from several sources: the Mississippi Department of Environmental Quality, the Center for Earthquake Research and Information, the National Center for Earthquake Engineering Research, and the Arkansas Geological Survey. In addition to earthquake locations, other materials include seismic hazard and isoseismal maps and related text. Earthquakes are a legitimate concern in Mississippi and parts of adjacent States. Mississippi has undergone a number of felt earthquakes since 1811. At least two of these events caused property damage: a magnitude 4.7 earthquake in 1931, and a magnitude 4.3 earthquake in 1967. The map shows all historical and instrumentally located earthquakes in Mississippi and vicinity between 1811 and 2010. The largest historic earthquake in the vicinity of the State was an intensity XI event, on December 16, 1811; the first earthquake in the New Madrid sequence. This violent event and the earthquakes that followed caused considerable damage to the then sparsely settled region.
Imidacloprid Causes DNA Damage in Fish: Clastogenesis as a Mechanism of Genotoxicity.
Iturburu, Fernando G; Simoniello, María F; Medici, Sandra; Panzeri, Ana M; Menone, Mirta L
2018-06-01
Neonicotinoids are one of the most widely used insecticides in the world. DNA damage is considered an early biological effect which could lead to reproductive and carcinogenic effects. The present study aimed to evaluate DNA damage and bases oxidation as a mechanism of genotoxicity, on the freshwater fish Australoheros facetus acutely exposed to imidacloprid (IMI). The Comet assay with the nuclease ENDO III enzyme was performed for detecting pyrimidine bases oxidation using blood samples. Micronucleus and other nuclear abnormalities frequencies were also quantified. A significant increase of damage index at 100 and 1000 µg/L IMI was detected; while ENDO III score increased from 1 to 1000 µg/L IMI; varying both in a linear concentration-response manner. MN frequency increased in fish exposed to 1000 µg/L IMI. These results show that short-term exposures to environmentally relevant concentrations of IMI could affect the genetic integrity of fishes through oxidative damage.
Cardoso-Mohedano, J G; Páez-Osuna, F; Amezcua-Martínez, F; Ruiz-Fernández, A C; Ramírez-Reséndiz, G; Sanchez-Cabeza, J A
2016-03-15
Nutrient pollution causes environmental damages on aquatic ecosystems worldwide. Eutrophication produces impacts in coastal ecosystems, affecting biota and ecosystem services. The Urias coastal lagoon (SE Gulf of California) is a sub-tropical estuary under several environmental pressures such as nutrient inputs from shrimp farm effluents and dredging related to port operations, which can release substances accumulated in sediments. We assessed the water quality impacts caused by these activities and results showed that i) nitrogen was the limiting nutrient, ii) shrimp farm effluents increased particulate organic matter and chlorophyll a in the receiving stations, and iii) dredging activities increased nitrite and reduced dissolved oxygen concentrations. The co-occurrence of the shrimp farm releases and dredging activities was likely the cause of a negative synergistic effect on water quality which mainly decreases dissolved oxygen and increases nitrite concentrations. Coastal zone management should avoid the co-occurrence of these, and likely others, stressors in coastal ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fan, Xingli; Zhang, Zishan; Gao, Huiyuan; Yang, Cheng; Liu, Meijun; Li, Yuting; Li, Pengmin
2014-01-01
Submergence is a common type of environmental stress for plants. It hampers survival and decreases crop yield, mainly by inhibiting plant photosynthesis. The inhibition of photosynthesis and photochemical efficiency by submergence is primarily due to leaf senescence and excess excitation energy, caused by signals from hypoxic roots and inhibition of gas exchange, respectively. However, the influence of mere leaf-submergence on the photosynthetic apparatus is currently unknown. Therefore, we studied the photosynthetic apparatus in detached leaves from four plant species under dark-submergence treatment (DST), without influence from roots and light. Results showed that the donor and acceptor sides, the reaction center of photosystem II (PSII) and photosystem I (PSI) in leaves were significantly damaged after 36 h of DST. This is a photoinhibition-like phenomenon similar to the photoinhibition induced by high light, as further indicated by the degradation of PsaA and D1, the core proteins of PSI and PSII. In contrast to previous research, the chlorophyll content remained unchanged and the H2O2 concentration did not increase in the leaves, implying that the damage to the photosynthetic apparatus was not caused by senescence or over-accumulation of reactive oxygen species (ROS). DST-induced damage to the photosynthetic apparatus was aggravated by increasing treatment temperature. This type of damage also occurred in the anaerobic environment (N2) without water, and could be eliminated or restored by supplying air to the water during or after DST. Our results demonstrate that DST-induced damage was caused by the hypoxic environment. The mechanism by which DST induces the photoinhibition-like damage is discussed below.
Gao, Huiyuan; Yang, Cheng; Liu, Meijun; Li, Yuting; Li, Pengmin
2014-01-01
Submergence is a common type of environmental stress for plants. It hampers survival and decreases crop yield, mainly by inhibiting plant photosynthesis. The inhibition of photosynthesis and photochemical efficiency by submergence is primarily due to leaf senescence and excess excitation energy, caused by signals from hypoxic roots and inhibition of gas exchange, respectively. However, the influence of mere leaf-submergence on the photosynthetic apparatus is currently unknown. Therefore, we studied the photosynthetic apparatus in detached leaves from four plant species under dark-submergence treatment (DST), without influence from roots and light. Results showed that the donor and acceptor sides, the reaction center of photosystem II (PSII) and photosystem I (PSI) in leaves were significantly damaged after 36 h of DST. This is a photoinhibition-like phenomenon similar to the photoinhibition induced by high light, as further indicated by the degradation of PsaA and D1, the core proteins of PSI and PSII. In contrast to previous research, the chlorophyll content remained unchanged and the H2O2 concentration did not increase in the leaves, implying that the damage to the photosynthetic apparatus was not caused by senescence or over-accumulation of reactive oxygen species (ROS). DST-induced damage to the photosynthetic apparatus was aggravated by increasing treatment temperature. This type of damage also occurred in the anaerobic environment (N2) without water, and could be eliminated or restored by supplying air to the water during or after DST. Our results demonstrate that DST-induced damage was caused by the hypoxic environment. The mechanism by which DST induces the photoinhibition-like damage is discussed below. PMID:24586508
Cascading costs: an economic nitrogen cycle.
Moomaw, William R; Birch, Melissa B L
2005-09-01
The chemical nitrogen cycle is becoming better characterized in terms of fluxes and reservoirs on a variety of scales. Galloway has demonstrated that reactive nitrogen can cascade through multiple ecosystems causing environmental damage at each stage before being denitrified to N(2). We propose to construct a parallel economic nitrogen cascade (ENC) in which economic impacts of nitrogen fluxes can be estimated by the costs associated with each stage of the chemical cascade. Using economic data for the benefits of damage avoided and costs of mitigation in the Chesapeake Bay basin, we have constructed an economic nitrogen cascade for the region. Since a single ton of nitrogen can cascade through the system, the costs also cascade. Therefore evaluating the benefits of mitigating a ton of reactive nitrogen released needs to consider the damage avoided in all of the ecosystems through which that ton would cascade. The analysis reveals that it is most cost effective to remove a ton of nitrogen coming from combustion since it has the greatest impact on human health and creates cascading damage through the atmospheric, terrestrial, aquatic and coastal ecosystems. We will discuss the implications of this analysis for determining the most cost effective policy option for achieving environmental quality goals.
Cascading costs: an economic nitrogen cycle.
Moomaw, William R; Birch, Melissa B L
2005-12-01
The chemical nitrogen cycle is becoming better characterized in terms of fluxes and reservoirs on a variety of scales. Galloway has demonstrated that reactive nitrogen can cascade through multiple ecosystems causing environmental damage at each stage before being denitrified to N2. We propose to construct a parallel economic nitrogen cascade (ENC) in which economic impacts of nitrogen fluxes can be estimated by the costs associated with each stage of the chemical cascade. Using economic data for the benefits of damage avoided and costs of mitigation in the Chesapeake Bay basin, we have constructed an economic nitrogen cascade for the region. Since a single tonne of nitrogen can cascade through the system, the costs also cascade. Therefore evaluating the benefits of mitigating a tonne of reactive nitrogen released needs to consider the damage avoided in all of the ecosystems through which that tonne would cascade. The analysis reveals that it is most cost effective to remove a tonne of nitrogen coming from combustion since it has the greatest impact on human health and creates cascading damage through the atmospheric, terrestrial, aquatic and coastal ecosystems. We will discuss the implications of this analysis for determining the most cost effective policy option for achieving environmental quality goals.
Hazmat storage requires a zero-risk attitude
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roer, M.
It does not matter whether a company accumulates, transports, treats, stores or disposes hazardous chemicals--it is held responsible by the Environmental Protection Agency for environmental damage caused by leaks and spills. As a result, facilities must take sufficient precautions to minimize damage and avoid liability under the federal Comprehensive Environmental Response, Compensation and Liability Act, applicable state statute, Occupational Safety and Health Administration regulations, and Department of Transportation (DOT) requirements. A facility may accumulate hazardous waste onsite--without a permit or having interim status--for 90 days or less, or up to 120 days with an extension. However, certain conditions must bemore » met. Companies can determine their specific storage requirements in accordance with federal regulations and local requirements. To help these companies, various laboratories have developed procedures for examining, testing, listing and labeling hazardous materials storage lockers. A pre-examination service and accompanying approval label should provide generators and authorities with an increased level of confidence when selecting storage containment systems.« less
Groundwater potential for water supply during droughts in Korea
NASA Astrophysics Data System (ADS)
Hyun, Y.; Cha, E.; Moon, H. J.
2016-12-01
Droughts have been receiving much attention in Korea because severe droughts occurred in recent years, causing significant social, economic and environmental damages in some regions. Residents in agricultural area, most of all, were most damaged by droughts with lack of available water supplies to meet crop water demands. In order to mitigate drought damages, we present a strategy to keep from agricultural droughts by using groundwater to meet water supply as a potential water resource in agricultural areas. In this study, we analyze drought severity and the groundwater potential to mitigate social and environmental damages caused by droughts in Korea. We evaluate drought severity by analyzing spatial and temporal meteorological and hydrological data such as rainfall, water supply and demand. For drought severity, we use effective drought index along with the standardized precipitation index (SPI) and standardized runoff index(SRI). Water deficit during the drought period is also quantified to consider social and environmental impact of droughts. Then we assess the feasibility of using groundwater as a potential source for groundwater impact mitigation. Results show that the agricultural areas are more vulnerable to droughts and use of groundwater as an emergency water resource is feasible in some regions. For a case study, we select Jeong-Sun area located in Kangwon providence having well-developed Karst aquifers and surrounded by mountains. For Jeong-Sun area, we quantify groundwater potential use, design the method of water supply by using groundwater, and assess its economic benefit. Results show that water supply system with groundwater abstraction can be a good strategy when droughts are severe for an emergency water supply in Jeong-Sun area, and groundwater can also be used not only for a dry season water supply resource, but for everyday water supply system. This case study results can further be applicable to some regions with no sufficient water infrastructure and high groundwater use potential. For concrete conclusions, rigorous study on performance evaluation of water supply using groundwater is further needed.
2014-04-01
Corneal damage can have a variety of causes, including infections, chemical splashes, environmental factors (radiation, trauma, contact lenses, etc.), and systemic diseases (genetic, autoimmune, inflammatory, metabolic, etc.). A wide range of drugs can also damage the cornea. The severity of drug-induced corneal changes can range from simple asymptomatic deposits to irreversible, sight-threatening damage. Several factors can influence the onset of corneal lesions. Some factors, such as the dose, are treatment-related, while others such as contact lenses, are patient-related. A variety of mechanisms may be involved, including corneal dryness, changes in the corneal epithelium, impaired wound healing and deposits. Many drugs can damage the cornea through direct contact, after intraocular injection or instillation, including VEGF inhibitors, anti-inflammatory drugs, local anaesthetics, glaucoma drugs, fluoroquinolones, and preservatives. Some systemically administered drugs can also damage the cornea, notably cancer drugs, amiodarone and isotretinoin. Vulnerable patients should be informed of this risk if they are prescribed a drug with the potential to damage the cornea so that they can identify problems in a timely manner. It may be necessary to discontinue the suspect drug when signs and symptoms of corneal damage occur.
NASA Astrophysics Data System (ADS)
Lovell, Sabrina J.; Drake, Lisa A.
2009-03-01
The U.S. Environmental Protection Agency has proposed permitting ballast water discharges—a benefit of which would be to reduce the economic damages associated with the introduction and spread of aquatic invasive species. Research on ship-borne aquatic invasive species has been conducted in earnest for decades, but determining the economic damages they cause remains troublesome. Furthermore, with the exception of harmful algal blooms, the economic consequences of microscopic invaders have not been studied, despite their potentially great negative effects. In this paper, we show how to estimate the economic benefits of preventing the introduction and spread of harmful bacteria, microalgae, and viruses delivered in U.S. waters. Our calculations of net social welfare show the damages from a localized incident, cholera-causing bacteria found in shellfish in the Gulf of Mexico, to be approximately 706,000 (2006). On a larger scale, harmful algal species have the potential to be transported in ships’ ballast tanks, and their effects in the United States have been to reduce commercial fisheries landings and impair water quality. We examine the economic repercussions of one bloom-forming species. Finally, we consider the possible translocation within the Great Lakes of a virus that has the potential to harm commercial and recreational fisheries. These calculations illustrate an approach to quantifying the benefits of preventing invasive aquatic microorganisms from controls on ballast water discharges.
Lovell, Sabrina J; Drake, Lisa A
2009-03-01
The U.S. Environmental Protection Agency has proposed permitting ballast water discharges--a benefit of which would be to reduce the economic damages associated with the introduction and spread of aquatic invasive species. Research on ship-borne aquatic invasive species has been conducted in earnest for decades, but determining the economic damages they cause remains troublesome. Furthermore, with the exception of harmful algal blooms, the economic consequences of microscopic invaders have not been studied, despite their potentially great negative effects. In this paper, we show how to estimate the economic benefits of preventing the introduction and spread of harmful bacteria, microalgae, and viruses delivered in U.S. waters. Our calculations of net social welfare show the damages from a localized incident, cholera-causing bacteria found in shellfish in the Gulf of Mexico, to be approximately $706,000 (2006$). On a larger scale, harmful algal species have the potential to be transported in ships' ballast tanks, and their effects in the United States have been to reduce commercial fisheries landings and impair water quality. We examine the economic repercussions of one bloom-forming species. Finally, we consider the possible translocation within the Great Lakes of a virus that has the potential to harm commercial and recreational fisheries. These calculations illustrate an approach to quantifying the benefits of preventing invasive aquatic microorganisms from controls on ballast water discharges.
DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice.
Wang, Degui; Yu, Tianyu; Liu, Yongqiang; Yan, Jun; Guo, Yingli; Jing, Yuhong; Yang, Xuguang; Song, Yanfeng; Tian, Yingxia
2016-12-02
Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. Copyright © 2016 Elsevier Inc. All rights reserved.
Anatomical causes of female infertility and their management.
Abrao, Mauricio S; Muzii, Ludovico; Marana, Riccardo
2013-12-01
The main female anatomical causes of infertility include post-infectious tubal damage, endometriosis, and congenital/acquired uterine anomalies. Congenital (septate uterus) and acquired (myomas and synechiae) diseases of the uterus may lead to infertility, pregnancy loss, and other obstetric complications. Pelvic inflammatory disease represents the most common cause of tubal damage. Surgery still remains an important option for tubal factor infertility, with results in terms of reproductive outcome that compare favorably with those of in vitro fertilization. Endometriosis is a common gynecologic condition affecting women of reproductive age, which can cause pain and infertility. The cause of infertility associated with endometriosis remains elusive, suggesting a multifactorial mechanism involving immunologic, genetic, and environmental factors. Despite the high prevalence of endometriosis, the exact mechanisms of its pathogenesis are unknown. Specific combinations of medical, surgical, and psychological treatments can ameliorate the quality of life of women with endometriosis. In the majority of cases, surgical treatment of endometriosis has promoted significant increases in fertilization rates. There are obvious associations between endometriosis and the immune system, and future strategies to treat endometriosis might be based on immunologic concepts. © 2013.
Stachybotrys: relevance to human disease.
Terr, A I
2001-12-01
Recent public concern about the danger of environmental fungi has focused attention on one particular mold, Stachybotrys. The purpose of this review is to examine and critique the published literature on Stachybotrys for objective scientific and clinical evidence of disease caused by the presence of this fungal organism in the environment. Data were obtained from all published research and reviews of Stachybotrys indexed in MEDLINE since 1966. The publications used for this review were those that contained information about human health effects of this microorganism. The critique of these publications is the author's. Stachybotrys is a minor component of the indoor mycoflora, found on certain building material surfaces in water-damaged buildings, but airborne spores are present in very low concentrations. Published reports fail to establish inhalation of Stachybotrys spores as a cause of human disease even in water-damaged buildings. A possible exception may be mycotoxin-caused pulmonary hemorrhage/hemosiderosis in infants, although scientific evidence to date is suggestive but not conclusive. Based on old reports ingestion of food prepared from Stachybotrys-contaminated grains may cause a toxic gastroenteropathy. No convincing cases of human allergic disease or infection from this mold have been published. The current public concern for adverse health effects from inhalation of Stachybotrys spores in water-damaged buildings is not supported by published reports in the medical literature.
NASA Astrophysics Data System (ADS)
Erkens, G.; Bucx, T.; Dam, R.; de Lange, G.; Lambert, J.
2015-11-01
In many coastal and delta cities land subsidence now exceeds absolute sea level rise up to a factor of ten. A major cause for severe land subsidence is excessive groundwater extraction related to rapid urbanization and population growth. Without action, parts of Jakarta, Ho Chi Minh City, Bangkok and numerous other coastal cities will sink below sea level. Land subsidence increases flood vulnerability (frequency, inundation depth and duration of floods), with floods causing major economic damage and loss of lives. In addition, differential land movement causes significant economic losses in the form of structural damage and high maintenance costs for (infra)structure. The total damage worldwide is estimated at billions of dollars annually. As subsidence is often spatially variable and can be caused by multiple processes, an assessment of subsidence in delta cities needs to answer questions such as: what are the main causes? What is the current subsidence rate and what are future scenarios (and interaction with other major environmental issues)? Where are the vulnerable areas? What are the impacts and risks? How can adverse impacts be mitigated or compensated for? Who is involved and responsible to act? In this study a quick-assessment of subsidence is performed on the following mega-cities: Jakarta, Ho Chi Minh City, Dhaka, New Orleans and Bangkok. Results of these case studies will be presented and compared, and a (generic) approach how to deal with subsidence in current and future subsidence-prone areas is provided.
The effects of environmental conditions on the growth of Merulius lacrymans
Jesse D. Diller; E. James Koch
1960-01-01
The two building decay fungi, the European Merulius lacrymans Fr. and the native Poria incrassate (Berk. & Curt.) Burt., do not often become established in buildings. But when they do, these fungi can cause serious damage to structural timbers. In extreme cases they have advanced to the second and third floor of buildings. This...
Climate and very large wildland fires in the contiguous western USA
E. Natasha Stavros; John Abatzoglou; Narasimhan K. Larkin; Donald McKenzie; E. Ashley Steel
2014-01-01
Very large wildfires can cause significant economic and environmental damage, including destruction of homes, adverse air quality, firefighting costs and even loss of life. We examine how climate is associated with very large wildland fires (VLWFs >=50 000 acres, or ~20234 ha) in the western contiguous USA. We used composite records of climate and fire to...
Kadri, Yamina; Nciri, Riadh; Brahmi, Noura; Saidi, Saber; Harrath, Abdel Halim; Alwasel, Saleh; Aldahmash, Waleed; El Feki, Abdelfatteh; Allagui, Mohamed Salah
2018-05-07
Cerium chloride (CeCl 3 ) is considered an environmental pollutant and a potent neurotoxic agent. Medicinal plants have many bioactive compounds that provide protection against damage caused by such pollutants. Curcuma longa is a bioactive compound-rich plant with very important antioxidant properties. To study the preventive and healing effects of Curcuma longa on cerium-damaged mouse brains, we intraperitoneally injected cerium chloride (CeCl 3 , 20 mg/kg BW) along with Curcuma longa extract, administrated by gavage (100 mg/kg BW), into mice for 60 days. We then examined mouse behavior, brain tissue damage, and brain oxidative stress parameters. Our results revealed a significant modification in the behavior of the CeCl 3 -treated mice. In addition, CeCl 3 induced a significant increment in lipid peroxidation, carbonyl protein (PCO), and advanced oxidation protein product levels, as well as a significant reduction in superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Acetylcholinesterase (AChE) activity remarkably increased in the brain of CeCl 3 -treated mice. Histopathological observations confirmed these results. Curcuma longa attenuated CeCl 3 -induced oxidative stress and increased the activities of antioxidant enzymes. It also decreased AChE activity in the CeCl 3 -damaged mouse brain that was confirmed by histopathology. In conclusion, this study suggests that Curcuma longa has a neuroprotective effect against CeCl 3 -induced damage in the brain.
Damage cost of the Dan River coal ash spill.
Dennis Lemly, A
2015-02-01
The recent coal ash spill on the Dan River in North Carolina, USA has caused several negative effects on the environment and the public. In this analysis, I report a monetized value for these effects after the first 6 months following the spill. The combined cost of ecological damage, recreational impacts, effects on human health and consumptive use, and esthetic value losses totals $295,485,000. Because the environmental impact and associated economic costs of riverine coal ash spills can be long-term, on the order of years or even decades, this 6-month assessment should be viewed as a short-term preview. The total cumulative damage cost from the Dan River coal ash spill could go much higher. Published by Elsevier Ltd.
Copper toxicity, oxidative stress, and antioxidant nutrients.
Gaetke, Lisa M; Chow, Ching Kuang
2003-07-15
Copper (Cu) is an integral part of many important enzymes involved in a number of vital biological processes. Although normally bound to proteins, Cu may be released and become free to catalyze the formation of highly reactive hydroxyl radicals. Data obtained from in vitro and cell culture studies are largely supportive of Cu's capacity to initiate oxidative damage and interfere with important cellular events. Oxidative damage has been linked to chronic Cu-overload and/or exposure to excess Cu caused by accidents, occupational hazards, and environmental contamination. Additionally, Cu-induced oxidative damage has been implicated in disorders associated with abnormal Cu metabolism and neurodegenerative changes. Interestingly, a deficiency in dietary Cu also increases cellular susceptibility to oxidative damage. A number of nutrients have been shown to interact with Cu and alter its cellular effects. Vitamin E is generally protective against Cu-induced oxidative damage. While most in vitro or cell culture studies show that ascorbic acid aggravates Cu-induced oxidative damage, results obtained from available animal studies suggest that the compound is protective. High intakes of ascorbic acid and zinc may provide protection against Cu toxicity by preventing excess Cu uptake. Zinc also removes Cu from its binding site, where it may cause free radical formation. Beta-carotene, alpha-lipoic acid and polyphenols have also been shown to attenuate Cu-induced oxidative damage. Further studies are needed to better understand the cellular effects of this essential, but potentially toxic, trace mineral and its functional interaction with other nutrients.
Proteomics as a tool to understand the distribution and activity of ammonia-oxidizing archaea
NASA Astrophysics Data System (ADS)
Lundeen, R. A.; Qin, W.; Moffett, J.; Devol, A.; Armbrust, E. V.; Stahl, D.; Ingalls, A. E.
2016-02-01
Nitrification plays a central role in the marine nitrogen cycle and ammonia-oxidizing archaea (AOA) are now known to be the principle microorganisms involved in catalyzing the first step of nitrification in the ocean. Typical AO rate profiles show lower rates in surface waters and increasing rates with depth, reaching a maximum just below the photic zone. Despite numerous observations of this ubiquitous and abundant group, the interactions between environment and AOA genetic capability that shape their natural distribution and activity are largely unknown. Here we use proteomics to study the response of an AOA isolate (Nitrosopulimus maritimus) to environmental stress (e.g., sunlight and low nutrient conditions) in order to understand factors determining AOA distributions. We hypothesize that the activity of marine AOA may be impacted by sunlight and/or competition for nutrients. For instance, harmful ultraviolet radiation can exert stress on cellular machinery by both direct damage and indirect damage caused by photochemically produced reactive oxygen species. Our aim is to elucidate N. maritimus response to varying conditions of environmental stress by surveying protein damage and regulation using shotgun proteomic approaches. Ultimately we will use these tools to assess the status of natural AOA communities to provide a more complete understanding of the environmental factors that influence AOA physiology, activity and biogeography across marine ecosystems.
Wang, Zhuang; Luo, You-Qing; Shi, Juan; Gao, Ruihe; Wang, Guoming
2014-01-01
Abstract With growing concerns over the serious ecological problems in pine forests ( Pinus massoniana , P. thunbergii ) caused by the invasion of Bursaphelenchus xylophilus (the pine wood nematode), a particular challenge is to determine the succession and restoration of damaged pine forests in Asia. We used two-way indicator species analysis and canonical correlation analysis for the hierarchical classification of existing secondary forests that have been restored since the invasion of B. xylophilus 18 years ago. Biserial correlation analysis was used to relate the spatial distribution of species to environmental factors. After 18 years of natural recovery, the original pine forest had evolved into seven types of secondary forest. Seven environmental factors, namely soil depth, humus depth, soil pH, aspect, slope position, bare rock ratio, and distance to the sea, were significantly correlated with species distribution. Furthermore, we proposed specific reform measures and suggestions for the different types of secondary forest formed after the damage and identified the factors driving the various forms of restoration. These results suggest that it is possible to predict the restoration paths of damaged pine forests, which would reduce the negative impact of B. xylophilus invasions. PMID:25527600
Environmental geology and hydrology
NASA Astrophysics Data System (ADS)
Nakić, Zoran; Mileusnić, Marta; Pavlić, Krešimir; Kovač, Zoran
2017-10-01
Environmental geology is scientific discipline dealing with the interactions between humans and the geologic environment. Many natural hazards, which have great impact on humans and their environment, are caused by geological settings. On the other hand, human activities have great impact on the physical environment, especially in the last decades due to dramatic human population growth. Natural disasters often hit densely populated areas causing tremendous death toll and material damage. Demand for resources enhanced remarkably, as well as waste production. Exploitation of mineral resources deteriorate huge areas of land, produce enormous mine waste and pollute soil, water and air. Environmental geology is a broad discipline and only selected themes will be presented in the following subchapters: (1) floods as natural hazard, (2) water as geological resource and (3) the mining and mineral processing as types of human activities dealing with geological materials that affect the environment and human health.
Obsolete Laws: Economic and Moral Aspects, Case Study-Composting Standards.
Vochozka, Marek; Maroušková, Anna; Šuleř, Petr
2017-12-01
From the early days of philosophy, ethics and justice, there is wide consensus that the constancy of the laws establishes the legal system. On the other hand, the rate at which we accumulate knowledge is gaining speed like never before. Due to the recently increased attention of academics to climate change and other environmental issues, a lot of new knowledge has been obtained about carbon management, its role in nature and mechanisms regarding the formation and degradation of organic matter. A multidisciplinary techno-economic assessment of current composting standards and laws that took into account the current state of knowledge about carbon management was carried out as a case study. Economic and environmental damage caused by outdated laws was revealed. In addition, it was found that the introduction of the best composts into the market is permitted, causing additional negative environmental as well as economic impacts.
Climate change damages to Alaska public infrastructure and the economics of proactive adaptation
Melvin, April M.; Larsen, Peter; Boehlert, Brent; Neumann, James E.; Chinowsky, Paul; Espinet, Xavier; Martinich, Jeremy; Baumann, Matthew S.; Rennels, Lisa; Bothner, Alexandra; Nicolsky, Dmitry J.; Marchenko, Sergey S.
2017-01-01
Climate change in the circumpolar region is causing dramatic environmental change that is increasing the vulnerability of infrastructure. We quantified the economic impacts of climate change on Alaska public infrastructure under relatively high and low climate forcing scenarios [representative concentration pathway 8.5 (RCP8.5) and RCP4.5] using an infrastructure model modified to account for unique climate impacts at northern latitudes, including near-surface permafrost thaw. Additionally, we evaluated how proactive adaptation influenced economic impacts on select infrastructure types and developed first-order estimates of potential land losses associated with coastal erosion and lengthening of the coastal ice-free season for 12 communities. Cumulative estimated expenses from climate-related damage to infrastructure without adaptation measures (hereafter damages) from 2015 to 2099 totaled $5.5 billion (2015 dollars, 3% discount) for RCP8.5 and $4.2 billion for RCP4.5, suggesting that reducing greenhouse gas emissions could lessen damages by $1.3 billion this century. The distribution of damages varied across the state, with the largest damages projected for the interior and southcentral Alaska. The largest source of damages was road flooding caused by increased precipitation followed by damages to buildings associated with near-surface permafrost thaw. Smaller damages were observed for airports, railroads, and pipelines. Proactive adaptation reduced total projected cumulative expenditures to $2.9 billion for RCP8.5 and $2.3 billion for RCP4.5. For road flooding, adaptation provided an annual savings of 80–100% across four study eras. For nearly all infrastructure types and time periods evaluated, damages and adaptation costs were larger for RCP8.5 than RCP4.5. Estimated coastal erosion losses were also larger for RCP8.5. PMID:28028223
Climate change damages to Alaska public infrastructure and the economics of proactive adaptation.
Melvin, April M; Larsen, Peter; Boehlert, Brent; Neumann, James E; Chinowsky, Paul; Espinet, Xavier; Martinich, Jeremy; Baumann, Matthew S; Rennels, Lisa; Bothner, Alexandra; Nicolsky, Dmitry J; Marchenko, Sergey S
2017-01-10
Climate change in the circumpolar region is causing dramatic environmental change that is increasing the vulnerability of infrastructure. We quantified the economic impacts of climate change on Alaska public infrastructure under relatively high and low climate forcing scenarios [representative concentration pathway 8.5 (RCP8.5) and RCP4.5] using an infrastructure model modified to account for unique climate impacts at northern latitudes, including near-surface permafrost thaw. Additionally, we evaluated how proactive adaptation influenced economic impacts on select infrastructure types and developed first-order estimates of potential land losses associated with coastal erosion and lengthening of the coastal ice-free season for 12 communities. Cumulative estimated expenses from climate-related damage to infrastructure without adaptation measures (hereafter damages) from 2015 to 2099 totaled $5.5 billion (2015 dollars, 3% discount) for RCP8.5 and $4.2 billion for RCP4.5, suggesting that reducing greenhouse gas emissions could lessen damages by $1.3 billion this century. The distribution of damages varied across the state, with the largest damages projected for the interior and southcentral Alaska. The largest source of damages was road flooding caused by increased precipitation followed by damages to buildings associated with near-surface permafrost thaw. Smaller damages were observed for airports, railroads, and pipelines. Proactive adaptation reduced total projected cumulative expenditures to $2.9 billion for RCP8.5 and $2.3 billion for RCP4.5. For road flooding, adaptation provided an annual savings of 80-100% across four study eras. For nearly all infrastructure types and time periods evaluated, damages and adaptation costs were larger for RCP8.5 than RCP4.5. Estimated coastal erosion losses were also larger for RCP8.5.
Anetor, J I
2010-12-01
Increased reliance on chemicals in the industrializing developing countries places new demands on them, as they have limited resources to adequately regulate exposure to these chemicals. Majority of the chemicals cause mutation in DNA among others. The consequences of increased exposure to chemicals on the genome and their mitigation by Nutrigenomics, a science concerned with the prevention of genome damage by nutritional factors is poorly recognized in these countries. Growing evidence indicates that genome instability in the absence of overt exposure to genotoxicants is a sensitive marker of nutritional deficiency. Therefore, the increasing prevalence of chemicals in these countries which contribute to genome disturbances and the widespread nutritional deficiency, at least double the risk of genome instability.Environmental pollutants such polychlorobiphenyls, metal fumes, and fly ash, common in these countries are known to increase urinary level of 8-hydroxy deoxyguanosine (8-OHdG), a marker of oxidative DNA damage, precursor of genome instability.Increasing evidence emphasizes the importance of zinc in both genetic stability and function. Zinc deficiency has been linked with oxidative stress, DNA damage and impairment of repair mechanisms as well as risk of cancer. Zinc plays an important role in vitamin A metabolism from which the retinoids are derived. Zinc is also an important component of the p53 protein, a DNA damage sensor which prevents genetic lesions contributing to genome instability.Zinc deficiency ranks among the top 10 leading causes of death in developing countries. A large proportion of the population in these countries ingests less than 50% of the RDA for Zn.This makes this genome protective nutrient among others grossly inadequate. Folate now also recognized for its role in genome stability, is among the nutrients frequently cited as critical to genome stability. Folate deficiency of sub- clinical degree is common. Reduced folate intake causes as much genome damage as that induced by exposure to a high dose of ionizing radiation. Even moderate folate deficiency causes very severe damage to the genome in the general population. All these accentuate the susceptibility of populations in these nations to environmental toxic assault requiring preventive measures employing the science of Nutrigenomics, probably augmented with adaptive response pathways such as the Nrf2 signaling pathway. Human populations in developing countries are increasingly exposed to a diverse array of industrial chemicals, which adversely modify the genome, the precursor of many diseases especially cancer. Nutrigenomics encompasses nutritional factors that protect the genome from damage and is a promising new field that can be exploited, perhaps augmented with the Nrf2 signaling pathway with international collaboration in these nations as an antidote to chemical-induced genome instability.
Schmidt, Wiebke; O'Rourke, Kathleen; Hernan, Robert; Quinn, Brian
2011-07-01
Human pharmaceuticals, like the lipid lowering agent gemfibrozil and the non-steroidal anti-inflammatory drug diclofenac are causing environmental concern. In this study, the marine mussel (Mytilus spp.) was exposed by injection to environmentally relevant and elevated (1 μg/L and 1000 μg/L) concentrations of both compounds and biomarker expression was observed. Gemfibrozil exposure induced biomarkers of stress (glutathione S-transferase and metallothionein) at both concentrations 24h and 96 h after exposure, respectively. Biomarkers of damage (lipid peroxidation (LPO) and DNA damage) were significantly affected, as well as the biomarker for reproduction, alkali-labile phosphate assay, indicating the potential oxidative stress and endocrine disrupting effect of gemfibrozil. Diclofenac significantly induced LPO after 96 h indicating tissue damage. Additionally standard toxicity tests using the marine species Vibrio fischeri, Skeletonema costatum and Tisbe battagliai showed differences in sensitivity to both drugs in the mg/L range. Results indicate a suite of tests should be used to give accurate information for regulation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Usami, Masahide; Iwadare, Yoshitaka; Kodaira, Masaki; Watanabe, Kyota; Aoki, Momoko; Katsumi, Chiaki; Matsuda, Kumi; Makino, Kazunori; Iijima, Sonoko; Harada, Maiko; Tanaka, Hiromi; Sasaki, Yoshinori; Tanaka, Tetsuya; Ushijima, Hirokage; Saito, Kazuhiko
2012-01-01
To evaluate relationships between traumatic symptoms and environmental damage conditions among children who survived the 2011 Great East Japan Earthquake and Tsunami. The subjects were 12,524 children in kindergartens, elementary schools, and junior high schools in Ishinomaki City, Miyagi Prefecture, Japan. The Post Traumatic Stress Symptoms for Children 15 items (PTSSC-15), a self-completion questionnaire on traumatic symptoms, was distributed to the children and a questionnaire regarding environmental damage conditions affecting the children was distributed to their teachers. Of 12,524 questionnaires distributed, an effective response was obtained from 11,692 (93.3%). The PTSSC-15 score was significantly higher in females than in males among 4(th) to 6(th) grade students in elementary schools and among junior high school students. In terms of traumatic symptoms and environmental damage conditions, with the exception of kindergartners, children who had their houses damaged or experienced separation from family members had a significantly higher PTSSC-15 score than children who did not experience environmental damage. Except for kindergartners and 4(th)- to 6(th)-grade elementary school students, children who experienced evacuation had a significantly higher PTSSC-15 score. This study demonstrated relationships between traumatic symptoms and environmental damage conditions in children who had suffered from the disaster. Factors examined in studying the relationship between environmental damage conditions and traumatic symptoms were gender, age, house damage, evacuation experience, and bereavement experience. It was critical not only to examine the traumatic symptoms of the children but also to collect accurate information about environmental damage conditions.
Usami, Masahide; Iwadare, Yoshitaka; Kodaira, Masaki; Watanabe, Kyota; Aoki, Momoko; Katsumi, Chiaki; Matsuda, Kumi; Makino, Kazunori; Iijima, Sonoko; Harada, Maiko; Tanaka, Hiromi; Sasaki, Yoshinori; Tanaka, Tetsuya; Ushijima, Hirokage; Saito, Kazuhiko
2012-01-01
Background To evaluate relationships between traumatic symptoms and environmental damage conditions among children who survived the 2011 Great East Japan Earthquake and Tsunami. Methods The subjects were 12,524 children in kindergartens, elementary schools, and junior high schools in Ishinomaki City, Miyagi Prefecture, Japan. The Post Traumatic Stress Symptoms for Children 15 items (PTSSC-15), a self-completion questionnaire on traumatic symptoms, was distributed to the children and a questionnaire regarding environmental damage conditions affecting the children was distributed to their teachers. Of 12,524 questionnaires distributed, an effective response was obtained from 11,692 (93.3%). Results The PTSSC-15 score was significantly higher in females than in males among 4th to 6th grade students in elementary schools and among junior high school students. In terms of traumatic symptoms and environmental damage conditions, with the exception of kindergartners, children who had their houses damaged or experienced separation from family members had a significantly higher PTSSC-15 score than children who did not experience environmental damage. Except for kindergartners and 4th- to 6th-grade elementary school students, children who experienced evacuation had a significantly higher PTSSC-15 score. Conclusions This study demonstrated relationships between traumatic symptoms and environmental damage conditions in children who had suffered from the disaster. Factors examined in studying the relationship between environmental damage conditions and traumatic symptoms were gender, age, house damage, evacuation experience, and bereavement experience. It was critical not only to examine the traumatic symptoms of the children but also to collect accurate information about environmental damage conditions. PMID:23209817
[Impact on environmental factors on the reproductive system and fetal development].
Dulskiene, Virginija; Maroziene, Ligita
2002-01-01
A literature review discusses the effect of selected environmental factors on women reproductive system, fetal development and growth. According to recent reports, 2-3% of newborns have congenital malformations. These malformations are caused by interaction of genetic and environmental factors. Exposure of paternal or maternal organisms to environmental hazards may damage germ cells or interfere fetal development, resulting in malformation of various organ systems. Since environmental hazards exposures are complex, it is difficult to establish the primary effect of single factor. Factors, that are known to increase the risk of congenital malformations, preterm delivery or spontaneous abortion, are classified into five groups--psychological, social, biological, physical and chemical factors. The governments of most counties recognize the effect of hazardous environmental factors on public health as global problem. World Health Organization encourages researches, aimed at evaluation of various environmental factors impact on health of pregnant women and their offsprings.
Kevin M. Potter; William D. Smith
2012-01-01
Biological invasions represent one of the most significant environmental threats to the maintenance of natural forest ecosystems in North America and elsewhere (Liebhold and others 1995), and have been estimated to cause more than $100 billion annually in damage and control costs (Pimentel and others 2000). However, these costs do not take into account the economic...
Lycium barbarum polysaccharide protects human keratinocytes against UVB-induced photo-damage.
Li, Huaping; Li, Zhenjie; Peng, Liqian; Jiang, Na; Liu, Qing; Zhang, Erting; Liang, Bihua; Li, Runxiang; Zhu, Huilan
2017-02-01
Ultraviolet B (UVB) irradiation plays a key role in skin damage, which induces oxidative and inflammatory damages, thereby causing photoaging or photocarcinogenesis. Lycium barbarum polysaccharide (LBP), the most biologically active fraction of wolfberry, possesses significant antioxidative and anti-inflammatory effects on multiple tissues. In the present study, the photoprotective effects and potential underlying molecular mechanisms of LBP against UVB-induced photo-damage were investigated in immortalized human keratinocytes (HaCaT cells). The data indicated that pretreatment with LBP significantly attenuated UVB-induced decrease in cell viability, increase in ROS production and DNA damage. LBP also significantly suppressed UVB-induced p38 MAPK activation, and subsequently reversed caspase-3 activation and MMP-9 expression. Notably, LBP was found to induce Nrf2 nuclear translocation and increase the expression of Nrf2-dependent ARE target genes. Furthermore, the protective effects of LBP were abolished by siRNA-mediated Nrf2 silencing. These results showed that the antioxidant LBP could partially protect against UVB irradiation-induced photo-damage through activation of Nrf2/ARE pathway, thereby scavenging ROS and reducing DNA damage, and subsequently suppressing UVB-induced p38 MAP pathway. Thus, LBP can be potentially used for skincare against oxidative damage from environmental insults.
Mitochondrial dysfunction as a trigger of innate immune responses and inflammation.
West, A Phillip
2017-11-01
A growing literature indicates that mitochondria are key participants in innate immune pathways, functioning as both signaling platforms and contributing to effector responses. In addition to regulating antiviral signaling and antibacterial immunity, mitochondria are also important drivers of inflammation caused by sterile injury. Much research on mitochondrial control of immunity now centers on understanding how mitochondrial constituents released during cellular damage simulate the innate immune system. When mitochondrial integrity is compromised, mitochondrial damage-associated molecular patterns engage pattern recognition receptors, trigger inflammation, and promote pathology in an expanding list of diseases. Here, I review the emerging knowledge of mitochondrial dysfunction in innate immune responses and discuss how environmental exposures may induce mitochondrial damage to potentiate inflammation and human disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Chiodi Boudet, L N; Polizzi, P; Romero, M B; Robles, A; Marcovecchio, J E; Gerpe, M S
2015-03-01
Cadmium (Cd) is one of the most common pollutants in the environment and induces a range of tissue changes or damages and organ dysfunction. The histopathological effects of Cd and lipid peroxidation (LPO) on hepatopancreas of the freshwater shrimp, Palaemonetes argentinus, were studied. Shrimp were obtained from two lagoons with contrasting environmental quality, De los Padres (LP, impacted site) and Nahuel Rucá (NR, reference site), and were exposed to 3.06 and 12.24µgCdL(-1) for 3, 7, 10 and 15 days. The health status of both populations was also evaluated by histological analysis of control individuals. After exposure, shrimp were transferred to clean water for 28 days to evaluate the recuperation capacity of hepatopancreas. Control shrimp from NR exhibited a normal hepatopancreas structure; unlike control shrimp from LP which showed several alterations. These results were attributed to the different environmental quality of lagoons. The exposure to Cd resulted in several alterations in the histological structure of the hepatopancreas of both populations. The observed alterations included haemocytic and connective infiltrations in the intertubular space, erosioned microvilli, ripple of basal lamina, atrophied epithelium and necrosis, however, the latter was only observed in shrimp from LP. The exposure also caused an increase of LPO levels in both populations. P. argentinus was able to repair the hepatopancreas structure from the damage caused by Cd, evidenced by the histopathological results and LPO levels. Obtained results are indicating that the histological analysis of the hepatopancreas proved to be a highly sensitive method for evaluating water quality, in both environmental and laboratory conditions. Copyright © 2014 Elsevier Inc. All rights reserved.
Mechanisms of Microwave Induced Damage in Biologic Materials
1992-10-01
that low level electromagnetic fields can cause developmental abnormalities in early stages of chick embryo development . In studies of the effects of...early embryonic development has led to a great deal of speculation about the safety of environmental exposure to such fields. Power lines, household...capable of covalent binding to embryonic or fetal macromolecules and nucleic acids, disrupting normal development . Individuals with low levels of
Charro, José Luis; López-Sánchez, Aida; Perea, Ramón
2018-01-15
Wild ungulate populations have increased and expanded considerably in many regions, including austral woodlands and forests where deer (Cervus elaphus) have been introduced as an alternative management to traditional cattle grazing. In this study, we compared traditional cattle with introduced deer management at increasing deer densities in the "Chaco Serrano" woodlands of Argentina to assess their ecological sustainability. We used three ecological indicators (abundance of tree regeneration, woody plant diversity and browsing damage) as proxies for environmental sustainability in woody systems. Our results indicate that traditional cattle management, at stocking rates of ∼10 ind km -2 , was the most ecologically sustainable management since it allowed greater tree regeneration abundance, higher richness of woody species and lower browsing damage. Importantly, cattle management and deer management at low densities (10 ind km -2 ) showed no significant differences in species richness and abundance of seedlings, although deer caused greater browsing damage on saplings and juveniles. However, management regimes involving high deer densities (∼35 deer km 2 ) was highly unsustainable in comparison to low (∼10 deer km -2 ) and medium (∼20 deer km -2 ) densities, with 40% probability of unsustainable browsing as opposed to less than 5% probability at low and medium densities. In addition, high deer densities caused a strong reduction in tree regeneration, with a 19-30% reduction in the abundance of seedlings and young trees when compared to low deer densities. These results showed that the effect of increasing deer densities on woody plant conservation was not linear, with high deer densities causing a disproportional deleterious effect on tree regeneration and sustainable browsing. Our results suggest that traditional management at low densities or the use of introduced ungulates (deer breeding areas) at low-medium densities (<20 deer km -2 ) are compatible with woody vegetation conservation. However, further research is needed on plant palatability, animal habitat use (spatial heterogeneity) and species turnover and extinction (comparison to areas of low-null historical browsing) to better estimate environmental sustainability of Neotropical ungulate-dominated woodlands. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mitochondrial DNA Damage and its Consequences for Mitochondrial Gene Expression
Cline, Susan D.
2012-01-01
How mitochondria process DNA damage and whether a change in the steady-state level of mitochondrial DNA damage (mtDNA) contributes to mitochondrial dysfunction are questions that fuel burgeoning areas of research into aging and disease pathogenesis. Over the past decade, researchers have identified and measured various forms of endogenous and environmental mtDNA damage and have elucidated mtDNA repair pathways. Interestingly, mitochondria do not appear to contain the full range of DNA repair mechanisms that operate in the nucleus, although mtDNA contains types of damage that are targets of each nuclear DNA repair pathway. The reduced repair capacity may, in part, explain the high mutation frequency of the mitochondrial chromosome. Since mtDNA replication is dependent on transcription, mtDNA damage may alter mitochondrial gene expression at three levels: by causing DNA polymerase γ nucleotide incorporation errors leading to mutations, by interfering with the priming of mtDNA replication by the mitochondrial RNA polymerase, or by inducing transcriptional mutagenesis or premature transcript termination. This review summarizes our current knowledge of mtDNA damage, its repair, and its effects on mtDNA integrity and gene expression. PMID:22728831
Porter, K.; Jones, Lucile M.; Ross, Stephanie L.; Borrero, J.; Bwarie, J.; Dykstra, D.; Geist, Eric L.; Johnson, L.; Kirby, Stephen H.; Long, K.; Lynett, P.; Miller, K.; Mortensen, Carl E.; Perry, S.; Plumlee, G.; Real, C.; Ritchie, L.; Scawthorn, C.; Thio, H.K.; Wein, Anne; Whitmore, P.; Wilson, R.; Wood, Nathan J.; Ostbo, Bruce I.; Oates, Don
2013-01-01
The U.S. Geological Survey and several partners operate a program called Science Application for Risk Reduction (SAFRR) that produces (among other things) emergency planning scenarios for natural disasters. The scenarios show how science can be used to enhance community resiliency. The SAFRR Tsunami Scenario describes potential impacts of a hypothetical, but realistic, tsunami affecting California (as well as the west coast of the United States, Alaska, and Hawaii) for the purpose of informing planning and mitigation decisions by a variety of stakeholders. The scenario begins with an Mw 9.1 earthquake off the Alaska Peninsula. With Pacific basin-wide modeling, we estimate up to 5m waves and 10 m/sec currents would strike California 5 hours later. In marinas and harbors, 13,000 small boats are damaged or sunk (1 in 3) at a cost of $350 million, causing navigation and environmental problems. Damage in the Ports of Los Angeles and Long Beach amount to $110 million, half of it water damage to vehicles and containerized cargo. Flooding of coastal communities affects 1800 city blocks, resulting in $640 million in damage. The tsunami damages 12 bridge abutments and 16 lane-miles of coastal roadway, costing $85 million to repair. Fire and business interruption losses will substantially add to direct losses. Flooding affects 170,000 residents and workers. A wide range of environmental impacts could occur. An extensive public education and outreach program is underway, as well as an evaluation of the overall effort.
Bioremediation: a genuine technology to remediate radionuclides from the environment
Prakash, Dhan; Gabani, Prashant; Chandel, Anuj K; Ronen, Zeev; Singh, Om V
2013-01-01
Summary Radionuclides in the environment are a major human and environmental health concern. Like the Chernobyl disaster of 1986, the Fukushima Daiichi nuclear disaster in 2011 is once again causing damage to the environment: a large quantity of radioactive waste is being generated and dumped into the environment, and if the general population is exposed to it, may cause serious life-threatening disorders. Bioremediation has been viewed as the ecologically responsible alternative to environmentally destructive physical remediation. Microorganisms carry endogenous genetic, biochemical and physiological properties that make them ideal agents for pollutant remediation in soil and groundwater. Attempts have been made to develop native or genetically engineered (GE) microbes for the remediation of environmental contaminants including radionuclides. Microorganism-mediated bioremediation can affect the solubility, bioavailability and mobility of radionuclides. Therefore, we aim to unveil the microbial-mediated mechanisms for biotransformation of radionuclides under various environmental conditions as developing strategies for waste management of radionuclides. A discussion follows of ‘-omics’-integrated genomics and proteomics technologies, which can be used to trace the genes and proteins of interest in a given microorganism towards a cell-free bioremediation strategy. PMID:23617701
Expansive Soil Crack Depth under Cumulative Damage
Shi, Bei-xiao; Chen, Sheng-shui; Han, Hua-qiang; Zheng, Cheng-feng
2014-01-01
The crack developing depth is a key problem to slope stability of the expansive soil and its project governance and the crack appears under the roles of dry-wet cycle and gradually develops. It is believed from the analysis that, because of its own cohesion, the expansive soil will have a certain amount of deformation under pulling stress but without cracks. The soil body will crack only when the deformation exceeds the ultimate tensile strain that causes cracks. And it is also believed that, due to the combined effect of various environmental factors, particularly changes of the internal water content, the inherent basic physical properties of expansive soil are weakened, and irreversible cumulative damages are eventually formed, resulting in the development of expansive soil cracks in depth. Starting from the perspective of volumetric strain that is caused by water loss, considering the influences of water loss rate and dry-wet cycle on crack developing depth, the crack developing depth calculation model which considers the water loss rate and the cumulative damages is established. Both the proposal of water loss rate and the application of cumulative damage theory to the expansive soil crack development problems try to avoid difficulties in matrix suction measurement, which will surely play a good role in promoting and improving the research of unsaturated expansive soil. PMID:24737974
DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Degui; Yu, Tianyu; Liu, Yongqiang
Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenicmore » mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. - Highlights: • This study explore contribution of DNA damage to neurodegeneration in Parkinson's disease mice. • A53T-α-Syn MEF cells show a prolonged DNA damage repair process and senescense phenotype. • DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice. • DNA damage decrease the number of nigrostriatal dopaminergic neurons. • Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages.« less
Handel, Colleen M.; Van Hemert, Caroline R.
2015-01-01
A large cluster of beak abnormalities among black-capped chickadees (Poecile atricapillus) in Alaska raised concern about underlying environmental factors in this region. Metals and trace elements, organochlorine pesticides, polychlorinated biphenyls (PCBs), and polychlorinated dibenzo-dioxins and polychlorinated dibenzofurans (PCDD-Fs) were analyzed in adults, nestlings, and eggs of the affected population; local bird seed was also tested for organochlorine pesticides. The results offered no support for the hypothesis that selenium or any other inorganic element was responsible for beak deformities among chickadees, but some evidence that organochlorine compounds may be contributing factors. Adults with beak deformities had an elevated level of chromosomal damage, which was correlated with lipid level and concentrations of several organochlorine compounds. Multivariate analyses of pesticides and PCBs did not distinguish abnormal from normal adults, but subsequent univariate analysis demonstrated higher concentrations of heptachlor epoxide and PCB-123 in abnormal adults. Concentrations of all organochlorine compounds were low, and none is known to cause beak or keratin abnormalities. Patterns of PCB congener concentrations differed between nestlings with normal and abnormal parents. Eggs from clutches with low hatchability had higher concentrations of hexachlorobenzene and PCDD-Fs than those with high hatching success, and hexachlorobenzene was found in seeds. Additional testing for PCDD-Fs, polycyclic aromatic hydrocarbons, and other emerging contaminants, including brominated compounds, is needed to rule out environmental contaminants as a cause of beak deformities in chickadees in Alaska.
Srivastava, Ritesh K; Traylor, Amie M; Li, Changzhao; Feng, Wenguang; Guo, Lingling; Antony, Veena B; Schoeb, Trenton R; Agarwal, Anupam; Athar, Mohammad
2018-06-01
Lewisite (2-chlorovinyldichloroarsine) is an organic arsenical chemical warfare agent that was developed and weaponized during World Wars I/II. Stockpiles of lewisite still exist in many parts of the world and pose potential environmental and human health threat. Exposure to lewisite and similar chemicals causes intense cutaneous inflammatory response. However, morbidity and mortality in the exposed population is not only the result of cutaneous damage but is also a result of systemic injury. Here, we provide data delineating the pathogenesis of acute kidney injury (AKI) following cutaneous exposure to lewisite and its analog phenylarsine oxide (PAO) in a murine model. Both agents caused renal tubular injury, characterized by loss of brush border in proximal tubules and tubular cell apoptosis accompanied by increases in serum creatinine, neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1. Interestingly, lewisite exposure enhanced production of reactive oxygen species (ROS) in the kidney and resulted in the activation of autophagic and DNA damage response (DDR) signaling pathways with increased expression of beclin-1, autophagy-related gene 7, and LC-3A/B-II and increased phosphorylation of γ-H 2 A.X and checkpoint kinase 1/2, respectively. Terminal deoxyribonucleotide-transferase-mediated dUTP nick-end labeling-positive cells were detected in renal tubules along with enhanced proapoptotic BAX/cleaved caspase-3 and reduced antiapoptotic BCL 2 . Scavenging ROS by cutaneous postexposure application of the antioxidant N-acetyl-l-cysteine reduced lewisite-induced autophagy and DNA damage. In summary, we provide evidence that topical exposure to lewisite causes AKI. The molecular mechanism underlying these changes involves ROS-dependent activation of autophagy and DDR pathway associated with the induction of apoptosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colotelo, Alison HA; Cooke, Steven J.
Angling is a popular recreational activity across the globe and a large proportion of fish captured by anglers are released due to voluntary or mandatory catch-and-release practices. The handling associated with hook removal and return of the fish to their environment can cause physical damage to the epidermal layer of the fish which may affect the condition and survival of released fish. This study investigated possible sources of epithelial damage associated with several different handling methods (i.e. landing net types, interactions with different boat floor surfaces, tournament procedures) commonly used in recreational angling for two popular freshwater sport fish species,more » largemouth bass (Micropterus salmoides) and northern pike (Esox lucius). Epithelial damage was examined using fluorescein, a non-toxic dye, which has been shown to detect latent epithelial damage. Northern pike exhibited extensive epithelial damage after exposure to several of the induced treatments (i.e., interaction with a carpeted surface, knotted nylon net, and line rolling) but relatively little epithelial damage when exposed to others (i.e., knotless rubber nets, smooth boat surfaces, or lip gripping devices). Largemouth bass did not show significant epithelial damage for any of the treatments, with the exception of fish caught in a semi-professional live release tournament. The detection of latent injuries using fluorescein can be an important management tool as it provides visual examples of potential damage that can be caused by different handling methods. Such visualizations can be used to encourage fish friendly angler behaviour and enhance the survival and welfare of released fish. It can also be used to test new products that are intended to or claim to reduce injury to fish that are to be released. Future research should evaluate the relationship between different levels of epithelial damage and mortality across a range of environmental conditions.« less
Candida albicans Pathogenesis: Fitting within the Host-Microbe Damage Response Framework
Kong, Eric F.; Tsui, Christina; Nguyen, M. Hong; Clancy, Cornelius J.; Fidel, Paul L.; Noverr, Mairi
2016-01-01
Historically, the nature and extent of host damage by a microbe were considered highly dependent on virulence attributes of the microbe. However, it has become clear that disease is a complex outcome which can arise because of pathogen-mediated damage, host-mediated damage, or both, with active participation from the host microbiota. This awareness led to the formulation of the damage response framework (DRF), a revolutionary concept that defined microbial virulence as a function of host immunity. The DRF outlines six classifications of host damage outcomes based on the microbe and the strength of the immune response. In this review, we revisit this concept from the perspective of Candida albicans, a microbial pathogen uniquely adapted to its human host. This fungus commonly colonizes various anatomical sites without causing notable damage. However, depending on environmental conditions, a diverse array of diseases may occur, ranging from mucosal to invasive systemic infections resulting in microbe-mediated and/or host-mediated damage. Remarkably, C. albicans infections can fit into all six DRF classifications, depending on the anatomical site and associated host immune response. Here, we highlight some of these diverse and site-specific diseases and how they fit the DRF classifications, and we describe the animal models available to uncover pathogenic mechanisms and related host immune responses. PMID:27430274
Code of Federal Regulations, 2010 CFR
2010-07-01
... environmental damage or to conform to forest plans. Timber sale contract, permits, and other such instruments... revisions of land and resource management plans adopted subsequent to award or issuance of a timber sale... prevent environmental damage or to conform to forest plans. 223.113 Section 223.113 Parks, Forests, and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearson, Walter H.; Al-Ghais, Saif M.; Neff, Jerry M.
1998-12-01
Historically, about half the oil transported through the global marine environment has come through the Arabian Gulf and the annual input of oil to the gulf's marine environment is skewed toward sources connected with marine transport. As a case study, we assess the damages from an oil spill caused by a collision between the crude oil tankers Baynuna and the Seki on 30 March 1994. The collision released approximately 16,000 metric tons (MT) of light Iranian crude oil into the coastal waters of the Emirate of Fujairah, United Arab Emirates. Under the sponsorship of the government of Fujairah, we analyzemore » the effects on commercial fisheries and marine environment of Fujairah resulting from the spill. This analysis was the first comprehensive natural resource damage assessment conducted in this area. The major difficulty was to establish the economic damages associated with the environmental contamination and fisheries declines. We adapt an established compensation schedule to the UA E situation. Information on the amount and type of oil spilled, the amount of oil recovered, the season, the habitats oiled, the resources exposed, and the sensitivity of the resources is then used to establish the conic value of losses associated with environmental contamination and fisheries decline.« less
NASA Astrophysics Data System (ADS)
Pravitasari, A. E.; Rustiadi, E.; Mulya, S. P.; Setiawan, Y.; Fuadina, L. N.; Murtadho, A.
2018-05-01
The socio-economic development in Jakarta-Bandung Mega Urban Region (JBMUR) caused the increasing of urban expansion and led to a variety of environmental damage such as uncontrolled land use conversion and raising anthropogenic disaster. The objectives of this study are: (1) to identify the driving forces of urban expansion that occurs on JBMUR and (2) to analyze the environmental quality decline on JBMUR by producing time series spatial distribution map and spatial autocorrelation of floods and landslide as the proxy of anthropogenic disaster. The driving forces of urban expansion in this study were identified by employing Geographically Weighted Regression (GWR) model using 6 (six) independent variables, namely: population density, percentage of agricultural land, distance to the center of capital city/municipality, percentage of household who works in agricultural sector, distance to the provincial road, and distance to the local road. The GWR results showed that local demographic, social and economic factors including distance to the road spatially affect urban expansion in JBMUR. The time series spatial distribution map of floods and landslide event showed the spatial cluster of anthropogenic disaster in some areas. Through Local Moran Index, we found that environmental damage in one location has a significant impact on the condition of its surrounding area.
Exploit and ignore the consequences: A mother of planetary issues.
Moustafa, Khaled
2016-07-01
Many environmental and planetary issues are due to an exploitation strategy based on exploit, consume and ignore the consequences. As many natural and environmental resources are limited in time and space, such exploitation approach causes important damages on earth, in the sea and maybe soon in the space. To sustain conditions under which humans and other living species can coexist in productive and dynamic harmony with their environments, terrestrial and space exploration programs may need to be based on 'scrutinize the consequences, prepare adequate solutions and then, only then, exploit'. Otherwise, the exploitation of planetary resources may put the environmental stability and sustainability at a higher risk than it is currently predicted. Copyright © 2016 Elsevier B.V. All rights reserved.
Exploit and ignore the consequences: A mother of planetary issues
NASA Astrophysics Data System (ADS)
Moustafa, K.
2016-07-01
Many environmental and planetary issues are due to an exploitation strategy based on exploit, consume and ignore the consequences. As many natural and environmental resources are limited in time and space, such exploitation approach causes important damages on earth, in the sea and maybe soon in the space. To sustain conditions under which humans and other living species can coexist in productive and dynamic harmony with their environments, terrestrial and space exploration programs may need to be based on 'scrutinize the consequences, prepare adequate solutions and then, only then, exploit'. Otherwise, the exploitation of planetary resources may put the environmental stability and sustainability at a higher risk than it is currently predicted. (C) 2016 Elsevier B.V. All rights reserved.
Accelerated Aging Test for Plastic Scintillator Gamma Ray Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kouzes, Richard T.
Polyvinyl toluene (PVT) and polystyrene (PS), collectively referred to as “plastic scintillator,” are synthetic polymer materials used to detect gamma radiation, and are commonly used in instrumentation. Recent studies have revealed that plastic scintillator undergoes an environmentally related material degradation that adversely affects performance under certain conditions and histories. A significant decrease in gamma ray sensitivity has been seen in some detectors in systems as they age. The degradation of sensitivity of plastic scintillator over time is due to a variety of factors, and the term “aging” is used to encompass all factors. Some plastic scintillator samples show no agingmore » effects (no significant change in sensitivity over more than 10 years), while others show severe aging (significant change in sensitivity in less than 5 years). Aging effects arise from weather (variations in heat and humidity), chemical exposure, mechanical stress, light exposure, and loss of volatile components. The damage produced by these various causes can be cumulative, causing observable damage to increase over time. Damage may be reversible up to some point, but becomes permanent under some conditions. It has been demonstrated that exposure of plastic scintillator in an environmental chamber to 30 days of high temperature and humidity (90% relative humidity and 55°C) followed by a single cycle to cold temperature (-30°C) will produce severe fogging in all PVT samples. This thermal cycle will be referred to as the “Accelerated Aging Test.” This document describes the procedure for performing this Accelerated Aging Test.« less
Hexavalent chromium is cytotoxic and genotoxic to hawksbill sea turtle cells.
Wise, Sandra S; Xie, Hong; Fukuda, Tomokazu; Douglas Thompson, W; Wise, John Pierce
2014-09-01
Sea turtles are a charismatic and ancient ocean species and can serve as key indicators for ocean ecosystems, including coral reefs and sea grass beds as well as coastal beaches. Genotoxicity studies in the species are absent, limiting our understanding of the impact of environmental toxicants on sea turtles. Hexavalent chromium (Cr(VI)) is a ubiquitous environmental problem worldwide, and recent studies show it is a global marine pollutant of concern. Thus, we evaluated the cytotoxicity and genotoxicity of soluble and particulate Cr(VI) in hawksbill sea turtle cells. Particulate Cr(VI) was both cytotoxic and genotoxic to sea turtle cells. Concentrations of 0.1, 0.5, 1, and 5μg/cm(2) lead chromate induced 108, 79, 54, and 7% relative survival, respectively. Additionally, concentrations of 0, 0.1, 0.5, 1, and 5μg/cm(2) lead chromate induced damage in 4, 10, 15, 26, and 36% of cells and caused 4, 11, 17, 30, and 56 chromosome aberrations in 100 metaphases, respectively. For soluble Cr, concentrations of 0.25, 0.5, 1, 2.5, and 5μM sodium chromate induced 84, 69, 46, 25, and 3% relative survival, respectively. Sodium chromate induced 3, 9, 9, 14, 21, and 29% of metaphases with damage, and caused 3, 10, 10, 16, 26, and 39 damaged chromosomes in 100 metaphases at concentrations of 0, 0.25, 0.5, 1, 2.5, and 5μM sodium chromate, respectively. These data suggest that Cr(VI) may be a concern for hawksbill sea turtles and sea turtles in general. Copyright © 2014 Elsevier Inc. All rights reserved.
Hexavalent Chromium Is Cytotoxic and Genotoxic to Hawksbill Sea Turtle Cells
Wise, Sandra S.; Xie, Hong; Fukuda, Tomokazu; Thompson, W. Douglas; Wise, John Pierce
2014-01-01
Sea turtles are a charismatic and ancient ocean species and can serve as key indicators for ocean ecosystems, including coral reefs and sea grass beds as well as coastal beaches. Genotoxicity studies in the species are absent, limiting our understanding of the impact of environmental toxicants on sea turtles. Hexavalent chromium (Cr(VI)) is a ubiquitous environmental problem worldwide, and recent studies show it is a global marine pollutant of concern. Thus, we evaluated the cytotoxicity and genotoxicity of soluble and particulate Cr(VI) in hawksbill sea turtle cells. Particulate Cr(VI) was both cytotoxic and genotoxic to sea turtle cells. Concentrations of 0.1, 0.5, 1, and 5 μg/cm2 lead chromate induced 108, 79, 54, and 7 percent relative survival, respectively. Additionally, concentrations of 0, 0.1, 0.5, 1, and 5 μg/cm2 lead chromate induced damage in 4, 10, 15, 26, and 36 percent of cells and caused 4, 11, 17, 30, and 56 chromosome aberrations in 100 metaphases, respectively. For soluble Cr, concentrations of 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate induced 84, 69, 46, 25, and 3 percent relative survival, respectively. Sodium chromate induced 3, 9, 9, 14, 21, and 29 percent of metaphases with damage, and caused 3, 10, 10, 16, 26, and 39 damaged chromosomes in 100 metaphases at concentrations of 0, 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate, respectively. These data suggest that Cr(VI) may be a concern for hawksbill sea turtles and sea turtles in general. PMID:24952338
Zebrafish in Toxicology and Environmental Health
Bambino, Kathryn; Chu, Jaime
2018-01-01
As manufacturing processes and development of new synthetic compounds increase to keep pace with the expanding global demand, environmental health, and the effects of toxicant exposure are emerging as critical public health concerns. Additionally, chemicals that naturally occur in the environment, such as metals, have profound effects on human and animal health. Many of these compounds are in the news: lead, arsenic, and endocrine disruptors such as bisphenol A have all been widely publicized as causing disease or damage to humans and wildlife in recent years. Despite the widespread appreciation that environmental toxins can be harmful, there is limited understanding of how many toxins cause disease. Zebrafish are at the forefront of toxicology research; this system has been widely used as a tool to detect toxins in water samples and to investigate the mechanisms of action of environmental toxins and their related diseases. The benefits of zebrafish for studying vertebrate development are equally useful for studying teratogens. Here, we review how zebrafish are being used both to detect the presence of some toxins as well as to identify how environmental exposures affect human health and disease. We focus on areas where zebrafish have been most effectively used in ecotoxicology and in environmental health, including investigation of exposures to endocrine disruptors, industrial waste byproducts, and arsenic. PMID:28335863
Wang, Hanxun; Bai, Xueliang; Shi, Lei
2018-01-01
In general, exploitation of rock materials, such as limestone or granite exploitation, can cause serious damage to the environment near a mine area. With economic development and the ever-increasing demand for ore resources, mining activities have induced very serious environmental issues in China. Therefore, environmental restoration work around mines in China is urgently required. This study explores the Chuankou open-pit limestone quarry in Tongchuan City, Shaanxi Province, Northwest China, as the engineering case. The environmental issues caused by over 40 years of limestone exploitation, including land degradation, land occupation, dust pollution and potential geological disasters, were investigated. Combining the characteristics of this quarry with a summary of previous studies on environmental restoration work, this paper proposes a novel and systematic method that was comprehensively carried out through engineering and revegetation measures. The engineering measure, that is, the construction of an artificial slope by using local abandoned construction materials, solved the environmental problems in this quarry and provided site conditions favourable for revegetation. The revegetation measure restored the local ecosystem. This method provides both a new idea for the sustainable development of a mining area and a useful reference for analogous engineering cases. PMID:29892461
Zebrafish in Toxicology and Environmental Health.
Bambino, Kathryn; Chu, Jaime
2017-01-01
As manufacturing processes and development of new synthetic compounds increase to keep pace with the expanding global demand, environmental health, and the effects of toxicant exposure are emerging as critical public health concerns. Additionally, chemicals that naturally occur in the environment, such as metals, have profound effects on human and animal health. Many of these compounds are in the news: lead, arsenic, and endocrine disruptors such as bisphenol A have all been widely publicized as causing disease or damage to humans and wildlife in recent years. Despite the widespread appreciation that environmental toxins can be harmful, there is limited understanding of how many toxins cause disease. Zebrafish are at the forefront of toxicology research; this system has been widely used as a tool to detect toxins in water samples and to investigate the mechanisms of action of environmental toxins and their related diseases. The benefits of zebrafish for studying vertebrate development are equally useful for studying teratogens. Here, we review how zebrafish are being used both to detect the presence of some toxins as well as to identify how environmental exposures affect human health and disease. We focus on areas where zebrafish have been most effectively used in ecotoxicology and in environmental health, including investigation of exposures to endocrine disruptors, industrial waste byproducts, and arsenic. © 2017 Elsevier Inc. All rights reserved.
Robert A. Haack; Kerry O. Britton; Eckelhard G. Brockerhoff; Joseph F. Cavey; Lynn J. Garrett; Mark Kimberley; Frank Lowenstein; Amelia Nuding; Lars J. Olson; James Tumer; Kathryn N. Vasilaky
2014-01-01
Numerous bark- and wood-infesting insects have been introduced to new countries by international trade where some have caused severe environmental and economic damage. Wood packaging material (WPM), such as pallets, is one of the high risk pathways for the introduction of wood pests. International recognition of this risk resulted in adoption of International Standards...
Genotoxicity and oxidative stress in chromium-exposed tannery workers in North India.
Ambreen, Khushboo; Khan, Faizan Haider; Bhadauria, Smrati; Kumar, Sudhir
2014-06-01
Trivalent chromium (Cr) is an environmental contaminant, which is extensively used in tanning industries throughout the world and causes various forms of health hazards in tannery workers. Therefore, a cross-sectional study design was used to evaluate the DNA damage and oxidative stress condition in tannery workers exposed to Cr in North India. The study population comprised 100 male tanners in the exposed group and 100 healthy males (no history of Cr exposure) in the comparable control group. Baseline characteristics including age, smoking, alcohol consumption habits and duration of exposure were recorded via interviewing the subjects. Blood Cr level (measured by atomic absorption spectrophotometry), DNA damage (measured by comet assay) and oxidative stress parameters (malondialdehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD)) were estimated in both the groups. As a result of statistical analysis, exposed group showed significantly higher level of Cr (p < 0.0001), DNA damage (p < 0.0001), MDA (p < 0.0001), SOD (p < 0.05) and lower level of GSH (p < 0.001) when compared with controls. Smoking, alcohol consumption habits and age had no significant effect (p > 0.05) on DNA damage and oxidative stress parameters in both the groups. In simple and multiple correlation analysis, DNA damage and oxidative stress parameters showed significant correlation with Cr level and duration of exposure in exposed group. The findings of the present study revealed that chronic occupational exposure to trivalent Cr may cause DNA damage and oxidative stress in tannery workers. © The Author(s) 2012.
Straussman, Sharon; Levitsky, Lynne L
2010-02-01
Hypoglycemia in the newborn may be associated with both acute decompensation and long-term neuronal loss. Studies of the cause of hypoglycemic brain damage and the relationship of hypoglycemia to disorders associated with hyperinsulinism have aided in our understanding of this common clinical finding. A recent consensus workshop concluded that there has been little progress toward a precise numerical definition of neonatal hypoglycemia. Nonetheless, newer brain imaging modalities have provided insight into the relationship between neuronal energy deficiency and central nervous system damage. Laboratory studies have begun to reveal the mechanism of hypoglycemic damage. In addition, there is new information about hyperinsulinemic hypoglycemia of genetic, environmental, and iatrogenic origin. The quantitative definition of hypoglycemia in the newborn remains elusive because it is a surrogate marker for central nervous system energy deficiency. Nonetheless, the recognition that hyperinsulinemic hypoglycemia, which produces profound central nervous system energy deficiency, is most likely to lead to long-term central nervous system damage, has altered management of children with hypoglycemia. In addition, imaging studies on neonates and laboratory evaluation in animal models have provided insight into the mechanism of neuronal damage.
NASA Technical Reports Server (NTRS)
Seshadri, Banavara R.; Krishnamurthy, Thiagarajan; Ross, Richard W.
2016-01-01
The development of multidisciplinary Integrated Vehicle Health Management (IVHM) tools will enable accurate detection, diagnosis and prognosis of damage under normal and adverse conditions during flight. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and structural damage conditions. A major concern is the growth of undetected damage/cracks due to fatigue and low velocity foreign object impact that can reach a critical size during flight, resulting in loss of control of the aircraft. To avoid unstable catastrophic propagation of damage during a flight, load levels must be maintained that are below the load-carrying capacity for damaged aircraft structures. Hence, a capability is needed for accurate real-time predictions of safe load carrying capacity for aircraft structures with complex damage configurations. In the present work, a procedure is developed that uses guided wave responses to interrogate damage. As the guided wave interacts with damage, the signal attenuates in some directions and reflects in others. This results in a difference in signal magnitude as well as phase shifts between signal responses for damaged and undamaged structures. Accurate estimation of damage size and location is made by evaluating the cumulative signal responses at various pre-selected sensor locations using a genetic algorithm (GA) based optimization procedure. The damage size and location is obtained by minimizing the difference between the reference responses and the responses obtained by wave propagation finite element analysis of different representative cracks, geometries and sizes.
NASA Astrophysics Data System (ADS)
Mauzerall, D. L.; Sultan, B.; Kim, N.; Bradford, D.
2004-12-01
We present a proof-of-concept analysis of the measurement of the health damage of ozone (O3) produced from nitrogen oxides (NOx = NO + NO2) emitted by individual large point sources in the eastern United States. We use a regional atmospheric model of the eastern United States, the Comprehensive Air Quality Model with Extensions (CAMx), to quantify the variable impact that a fixed quantity of NOx emitted from individual sources can have on the downwind concentration of surface O3, depending on temperature and local biogenic hydrocarbon emissions. We also examine the dependence of resulting ozone-related health damages on the size of the exposed population. The investigation is relevant to the increasingly widely used "cap and trade" approach to NOx regulation, which presumes that shifts of emissions over time and space, holding the total fixed over the course of the summer O3 season, will have minimal effect on the environmental outcome. By contrast, we show that a shift of a unit of NOx emissions from one place or time to another could result in large changes in the health effects due to ozone formation and exposure. We indicate how the type of modeling carried out here might be used to attach externality-correcting prices to emissions. Charging emitters fees that are commensurate with the damage caused by their NOx emissions would create an incentive for emitters to reduce emissions at times and in locations where they cause the largest damage.
September 2013 Storm and Flood Assessment Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walterscheid, J. C.
2015-12-21
Between September 10 and 17, 2013, New Mexico and Colorado received a historically large amount of precipitation (Figure 1). This report assesses the damage caused by flooding along with estimated costs to repair the damage at Los Alamos National Laboratory (the Laboratory) on the Pajarito Plateau. Los Alamos County, New Mexico, received between 200% and 600% of the normal precipitation for this time period (Figure 2), and the Laboratory received approximately 450% percent of its average precipitation for September (Figure 3). As a result, the Laboratory was inundated with rain, including the extremely large, greater-than-1000-yr return period event that occurredmore » between September 12 and 13 (Table 1). With saturated antecedent soil conditions from the September 10 storm, when the September 12 to September 13 storm hit, the flooding was disastrous to the Laboratory’s environmental infrastructure, including access roads, gage stations, watershed controls, control measures installed under the National Pollutant Discharge Elimination System Permit (hereafter, the Individual Permit), and groundwater monitoring wells (Figures 4 through 21). From September 16 to October 1, 2013, the Laboratory completed field assessments of environmental infrastructure and generated descriptions and estimates of the damage, which are presented in spreadsheets in Attachments 1 to 4 of this report. Section 2 of this report contains damage assessments by watershed, including access roads, gage stations, watershed controls, and control measures installed under the Individual Permit. Section 3 contains damage assessments of monitoring wells by the groundwater monitoring groups as established in the Interim Facility-Wide Groundwater Monitoring Plan for Monitoring Year 2014. Section 4 addresses damage and loss of automated samplers. Section 5 addresses sediment sampling needs, and Section 6 is the summary of estimated recovery costs from the significant rain and flooding during September 2013.« less
Panich, Uraiwan; Sittithumcharee, Gunya; Rathviboon, Natwarath
2016-01-01
Skin is the largest human organ. Skin continually reconstructs itself to ensure its viability, integrity, and ability to provide protection for the body. Some areas of skin are continuously exposed to a variety of environmental stressors that can inflict direct and indirect damage to skin cell DNA. Skin homeostasis is maintained by mesenchymal stem cells in inner layer dermis and epidermal stem cells (ESCs) in the outer layer epidermis. Reduction of skin stem cell number and function has been linked to impaired skin homeostasis (e.g., skin premature aging and skin cancers). Skin stem cells, with self-renewal capability and multipotency, are frequently affected by environment. Ultraviolet radiation (UVR), a major cause of stem cell DNA damage, can contribute to depletion of stem cells (ESCs and mesenchymal stem cells) and damage of stem cell niche, eventually leading to photoinduced skin aging. In this review, we discuss the role of UV-induced DNA damage and oxidative stress in the skin stem cell aging in order to gain insights into the pathogenesis and develop a way to reduce photoaging of skin cells. PMID:27148370
The Effect of Wind Exposure on the Web Characteristics of a Tetragnathid Orb Spider.
Tew, Nicholas; Hesselberg, Thomas
2017-01-01
Studies on spiders in their natural habitats are necessary for determining the full range of plasticity in their web-building behaviour. Plasticity in web design is hypothesised to be important for spiders building in habitats where environmental conditions cause considerable web damage. Here we compared web characteristics of the orb spider Metellina mengei (Araneae, Tetragnathidae) in two different forest habitats differing in their wind exposure. We found a notable lack of differences in web geometry, orientation and inclination between webs built along an exposed forest edge and those built inside the forest, despite marked differences in wind speed. This suggests that M. mengei did not exhibit web-building plasticity in response to wind in the field, contrasting with the findings of laboratory studies on other species of orb spiders. Instead, differences in prey capture and wind damage trade-offs between habitats may provide an explanation for our results, indicating that different species employ different strategies to cope with environmental constraints.
Heuson, Clemens; Traidl-Hoffmann, Claudia
2018-06-01
The skin, together with gut and respiratory tract, harbor a central epithelial barrier function in regards to the interaction of an individual with the environment. Continuing exposure to environmental influences can cause epithelial barrier damages and thus pave the way for atopy development. The latter describes the tendency for allergies, i. e. hypersensitivity of the skin, intestine, and respiratory tract towards per se unharmful environmental substances.Allergies are classified as non-communicable diseases (NCDs). According to the World Health Organization (WHO), they are presently the most demanding medical challenge. Allergies are the most frequent NCDs and are characterized by a high and multi-facetted level of suffering. An enormous socio-economic burden and the urgent need for effective prevention follows as consequence. Prevention options have by no means been sufficiently used. Within the skin barrier's key function in regards to the defense of atopic diseases are so far inadequately used prevention possibilities. They are based on ambitious environmental and climatic policy that pointedly addresses the barrier disrupting environmental factors.On the basis of this proposition, the present article assigns appropriate environmental and climatic policy measures. The two main arguments for such measures are a disburdening of the healthcare system as well as a far better life quality for the affected people. They are the legitimization towards an ambitious environmental and climatic policy. For its realization an integrated approach of (allergy) prevention and environmental research is necessary. Now, campaigning for its acceptance in politics and society is an urgent matter.
The possible DNA damage induced by environmental organic compounds: The case of Nonylphenol.
Noorimotlagh, Zahra; Mirzaee, Seyyed Abbas; Ahmadi, Mehdi; Jaafarzadeh, Neemat; Rahim, Fakher
2018-08-30
Human impact on the environment leads to the release of many pollutants that produce artificial compounds, which can have harmful effects on the body's endocrine system; these are known as endocrine disruptors (EDs). Nonylphenol (NP) is a chemical compound with a nonyl group that is attached to a phenol ring. NP-induced H 2 AX is a sensitive genotoxic biomarker for detecting possible DNA damage; it also causes male infertility and carcinogenesis. We attempt to comprehensively review all the available evidence about the different ways with descriptive mechanisms for explaining the possible DNA damage that is induced by NP. We systematically searched several databases, including PubMed, Scopus, Web of Science, and gray literature, such as Google Scholar by using medical subheading (MeSH) terms and various combinations of selected keywords from January 1970 to August 2017. The initial search identified 62,737 potentially eligible studies; of these studies, 33 were included according to the established inclusion criteria. Thirty-three selected studies, include the topics of animal model (n = 21), cell line (n = 6), human model (n = 4), microorganisms (n = 1), solid DNA (n = 1), infertility (n = 4), apoptosis (n = 6), and carcinogenesis (n = 3). This review highlighted the possible deleterious effects of NP on DNA damage through the ability to produce ROS/RNS. Finally, it is significant to observe caution at this stage with the continued use of environmental pollutants such as NP, which may induce DNA damage and apoptosis. Copyright © 2018 Elsevier Inc. All rights reserved.
Roibás, Laura; Martínez, Ismael; Goris, Alfonso; Barreiro, Rocío; Hospido, Almudena
2016-10-01
This study compares a premium brand of UHT milk, Unicla, characterised by an improved nutritional composition, to conventional milk, in terms of health effects and environmental impacts. Unlike enriched milks, in which nutrients are added to the final product, Unicla is obtained naturally by improving the diet of the dairy cows. Health effects have been analysed based on literature findings, while the environmental analysis focused on those spheres of the environment where milk is expected to cause the higher impacts, and thus carbon (CF) and water footprints (WF) have been determined. Five final products have been compared: 3 conventional (skimmed, semi-skimmed, whole) and 2 Unicla (skimmed, semi-skimmed) milks. As a functional unit, one litre of packaged UHT milk entering the regional distribution centre has been chosen. The improved composition of Unicla milk is expected to decrease the risk of cardiovascular disease and to protect consumers against oxidative damage, among other health benefits. Concerning the environmental aspect, CF of Unicla products are, on average, 10% lower than their conventional equivalents, mainly due to the lower enteric emissions of caused by the Unicla diet. No significant differences were found between the WF of Unicla and conventional milk. Raw milk is the main contributor to both footprints (on average, 83.2 and 84.3% of the total CF of Unicla and conventional milk, respectively, and 99.9% of WF). The results have been compared to those found in literature, and a sensitivity analysis has been performed to verify their robustness. The study concludes that switching to healthier milk compositions can help slowing down global warming, without contributing to other environmental issues such as water scarcity. The results should encourage other milk companies to commit to the development of healthier, less environmentally damaging products, and also to stimulate consumers to bet on them. Copyright © 2016 Elsevier B.V. All rights reserved.
The Necessity of Public Relations for Sustainable Mining Activities
NASA Astrophysics Data System (ADS)
Lee, Hyunbock; Ji, Sangwoo
2015-04-01
This paper reports research about the necessity of image making for sustainable mine developments in the Republic of Korea. One of the big risks in mining activities is mining area residents opposing mine developments and operations. Analysis of the media reports on disputes between mining companies and residents can determine causes of opposing mine developments, dispute process, and influences of disputes on processes of mining projects. To do this, civil complaints from 2009 to 2012 and 24 media reports since 2000 on opposing mining activities are analyzed. And, to analyze difficulties of mining companies, the survey is conducted to target to mining companies. 57 representatives of mining companies are participated in the survey. The result of analysis cited that the major reasons of anti-mining activities are environmental degradation and reduced agricultural productivity. And specifically because of water pollution (50%), crop damages (33%), and mining dust pollution (21%), communities of mining area are against mine developments and operations. However, 25% of residents have experience of the damage caused by mining activities and the remaining 75% of residents opposing mining activities simply have anxiety about mining pollution. In the past, construction-oriented, environment-unfriendly mining projects had lasted. And while mine reclamation had been postponed in abandoned mines, mining area residents had suffered from mining pollution. So, mining area residents are highly influenced by the prejudice that mining activities are harmful to mining area communities. Current mining projects in South Korea, unlike the past mining activity, focus on minimizing environmental damage and contributing to mining area communities financially. But, in many case of disputes between mining companies and mining area residents, the both cannot reach an agreements because of the negative prejudice. Moreover, some communities categorically refuse any mining activity. On the other hand, in the survey to determine what the greatest difficulties of the current mining activities, 54% of mining companies chose environmental regulations, 26% of mining companies chose conflicts between mine area residents and mining companies. Environmental regulations are may defined as the greatest difficulty of current mining activities. But most of environmental regulation's problems are caused by frictions with residents, because all of South Korean mines are very close to villages. So, the biggest difficulty of mining activities can be defined conflicts between residents and mining companies. Moreover, general people in South Korea including some mining engineers recognize the mining industry as a declined and pollution industry. Without clear understanding of mining activities, any mine developments and policies related to mining activities cannot be made by rational discussions. And, if their recognition is not formed in a rational way, it will be turned to extreme fear or blind hatred. Therefore, to understand mining activities correctly, the effective public relations strategy is necessary such as corporate advertisements or public advertisements.
NASA Astrophysics Data System (ADS)
Yakovlev, Aleksandr
2016-04-01
Sustainable development of the territory is possible only under certain environmental requirements. These requirements are based on the implementation of the concept, conventionally called "zero land degradation", which cannot be reached in the process of real land use. "Zero degradation" is the establishment of acceptable ecological state of the environment and permissible anthropogenic impact on it, wherein self-healing of nature quality is possible and there is no accumulation of irreversible environmental damage. The values of parameters that characterize the relationship between the ecological state of the environment, in particular, land degradation, and the socio-economic development of the Russian Federation are represented in the materials of recent issues of the Russian State environmental report (2012 - 2014). Environmental problems in Russia are actively discussed in relation to issues of environmental and socio-economic development of the neighboring countries of the Eurasian region. So the Law "On Soil Protection", which was developed and adopted by the Union: Russia, Belarus, Kazakhstan, is dedicated to the protection of soil and soil degradation control. Ecological Doctrine of Russia (2012) and the State Environmental Program (2012-2020) identify the main strategic steps to combat land degradation in our country. In the first place, it has been tasked to identify and eliminate past environmental damage followed by the organization of nature "from scratch", in accordance with environmental regulations. Currently the Ministry of natural resources of Russia started implementation of the Federal program on environmental-economic assessment and the elimination of past environmental damage. The main steps of this program are: the works related to the inventory of degraded and contaminated lands and their subsequent reclamation and return to the appropriate land use system. The territory must comply with officially approved environmental requirements. The list of requirements can be divided into two areas: - the standards and norms of environmental assessment for all components of environment, - requirements to the level of environmental stress on the land when designing the system of nature management. Environmental requirements for components of the environment are based primarily on stringent environmental and health standards (maximum permissible concentration, permissible residual oil content in the soil, etc.), compliance of which involves the maintenance of the ecological state of nature in close to background rates. The assessment of environmental stress in planning and land management is not provided with official regulations and is based primarily on expert opinions. However, projects and land use programs must pass the corresponding procedure of environmental expertise. Rating, ranking and regulation of soil and land quality allow to establish the level of its disturbance and the ability to heal itself, according to the methodological approach developed and adopted by several Russian Agencies (Environmental, Agricultural and Land use Agencies). The basis for assessing the ecological status of soils was based on the five-level evaluation scale according to which a fairly conventional boundary of reversibility is considered to be the third (threshold) level, and irreversible accumulation of environmental damage occurs when reaching . fourth and fifth level of loss of environmental quality of soils. According to a separate study in the field of environmental regulation irreversible changes occur in the loss of more than a quarter of Bioorganic capacity of soils. The main condition for sustainable development is the development, which does not cause irreversible damage to nature and society, based on compliance with environmental quality requirements for components of the environment, particularly soils and lands and secure planning and safe placement of the productive forces. Acknowledgments: This study was supported by the Russian Science Foundation, project no. 143800023.
2015-06-30
when these equipment failures cause some of the worst accidents and environmental damages in human history such as the March 2011 Fukushima Nuclear ...ultimately facilitate the MRO acquisition process through effective maintenance triggers and supplier selection Task 2. Stochastic Availability Importance...dollars with a replacement plan lasting for several decades [GAO 2004]. A budget reduction of about 29 percent since 1990 has “forced the branches of the
René Cifuentes Medina
2013-01-01
Mega wildfires are critical, high-impact events that cause severe environmental, economic and social damage, resulting, in turn, in high-cost suppression operations and the need for mutual support, phased use of resources and the coordinated efforts of civilian government agencies, the armed forces, private companies and the international community. The mega forest...
Toxicity assessment of individual ingredients of synthetic-based drilling muds (SBMs).
Bakhtyar, Sajida; Gagnon, Marthe Monique
2012-09-01
Synthetic-based drilling muds (SBMs) offer excellent technical characteristics while providing improved environmental performance over other drilling muds. The low acute toxicity and high biodegradability of SBMs suggest their discharge at sea would cause minimal impacts on marine ecosystems, however, chronic toxicity testing has demonstrated adverse effects of SBMs on fish health. Sparse environmental monitoring data indicate effects of SBMs on bottom invertebrates. However, no environmental toxicity assessment has been performed on fish attracted to the cutting piles. SBM formulations are mostly composed of synthetic base oils, weighting agents, and drilling additives such as emulsifiers, fluid loss agents, wetting agents, and brine. The present study aimed to evaluate the impact of exposure to individual ingredients of SBMs on fish health. To do so, a suite of biomarkers [ethoxyresorufin-O-deethylase (EROD) activity, biliary metabolites, sorbitol dehydrogenase (SDH) activity, DNA damage, and heat shock protein] have been measured in pink snapper (Pagrus auratus) exposed for 21 days to individual ingredients of SBMs. The primary emulsifier (Emul S50) followed by the fluid loss agent (LSL 50) caused the strongest biochemical responses in fish. The synthetic base oil (Rheosyn) caused the least response in juvenile fish. The results suggest that the impact of Syndrill 80:20 on fish health might be reduced by replacement of the primary emulsifier Emul S50 with an alternative ingredient of less toxicity to aquatic biota. The research provides a basis for improving the environmental performance of SBMs by reducing the environmental risk of their discharge and providing environmental managers with information regarding the potential toxicity of individual ingredients.
Environmental impact assessment of cottage industries of Kashmir, India.
Wani, Khursheed Ahmad; Jaiswal, Y K
2011-07-01
Our objective was to carry out environmental impact assessment of small scale industries in Kashmir (India). A prepared questionnaire was circulated among the workers, owners and residents to assess the pros and cons of the small scale industries in Kashmir. The study revealed that most of the small scale industries in Kashmir valley have an impact on the quality of the environment and may cause discomfort to the people living very close to these industries. It has been observed that small scale industries lack efficient waste management system. However, the generated wastes from these units may be used effectively, as a raw material in various ways when managed properly and may minimize the impact on the quality of the environment and may also contribute in improving the economy of the State. The proliferation of small scale industries has caused an irreversible damage to the agricultural land of the area studied.
Life cycle water use of energy production and its environmental impacts in China.
Zhang, Chao; Anadon, Laura Diaz
2013-12-17
The energy sector is a major user of fresh water resources in China. We investigate the life cycle water withdrawals, consumptive water use, and wastewater discharge of China's energy sectors and their water-consumption-related environmental impacts, using a mixed-unit multiregional input-output (MRIO) model and life cycle impact assessment method (LCIA) based on the Eco-indicator 99 framework. Energy production is responsible for 61.4 billion m(3) water withdrawals, 10.8 billion m(3) water consumption, and 5.0 billion m(3) wastewater discharges in China, which are equivalent to 12.3%, 4.1% and 8.3% of the national totals, respectively. The most important feature of the energy-water nexus in China is the significantly uneven spatial distribution of consumptive water use and its corresponding environmental impacts caused by the geological discrepancy among fossil fuel resources, fresh water resources, and energy demand. More than half of energy-related water withdrawals occur in the east and south coastal regions. However, the arid north and northwest regions have much larger water consumption than the water abundant south region, and bear almost all environmental damages caused by consumptive water use.
Psychosocial and environmental distress resulting from a volcanic eruption: Study protocol.
Warsini, Sri; Usher, Kim; Buettner, Petra; Mills, Jane; West, Caryn; Methods, Res
2015-01-01
To examine the psychosocial and environmental distress resulting from the 2010 eruption of the Merapi volcano and explore the experience of living in an environment damaged by a volcanic eruption. Natural disasters cause psychosocial responses in survivors. While volcanic eruptions are an example of a natural disaster, little is currently known about the psychosocial impact on survivors. Volcanic eruptions also cause degradation of the environment, which is linked to environmental distress. However, little is currently known of this phenomenon. An explanatory mixed method study. The research will be divided into three phases. The first phase will involve instrument modification, translation and testing. The second phase will involve a survey to a larger sample using the modified and tested questionnaire. The third phase will involve the collection of interviews from a sub set of the same participants as the second phase. Quantitative data will be analyzed to determine the extent of psychosocial and environmental distress experienced by the participants. Qualitative data will be analyzed to explain the variation among the participants. The results of the study will be used to develop strategies to support survivors in the future and to help ameliorate distress.
Bioremediation: a genuine technology to remediate radionuclides from the environment.
Prakash, Dhan; Gabani, Prashant; Chandel, Anuj K; Ronen, Zeev; Singh, Om V
2013-07-01
Radionuclides in the environment are a major human and environmental health concern. Like the Chernobyl disaster of 1986, the Fukushima Daiichi nuclear disaster in 2011 is once again causing damage to the environment: a large quantity of radioactive waste is being generated and dumped into the environment, and if the general population is exposed to it, may cause serious life-threatening disorders. Bioremediation has been viewed as the ecologically responsible alternative to environmentally destructive physical remediation. Microorganisms carry endogenous genetic, biochemical and physiological properties that make them ideal agents for pollutant remediation in soil and groundwater. Attempts have been made to develop native or genetically engineered (GE) microbes for the remediation of environmental contaminants including radionuclides. Microorganism-mediated bioremediation can affect the solubility, bioavailability and mobility of radionuclides. Therefore, we aim to unveil the microbial-mediated mechanisms for biotransformation of radionuclides under various environmental conditions as developing strategies for waste management of radionuclides. A discussion follows of '-omics'-integrated genomics and proteomics technologies, which can be used to trace the genes and proteins of interest in a given microorganism towards a cell-free bioremediation strategy. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Impact damage in aircraft composite sandwich panels
NASA Astrophysics Data System (ADS)
Mordasky, Matthew D.
An experimental study was conducted to develop an improved understanding of the damage caused by runway debris and environmental threats on aircraft structures. The velocities of impacts for stationary aircraft and aircraft under landing and takeoff speeds was investigated. The impact damage by concrete, asphalt, aluminum, hail and rubber sphere projectiles was explored in detail. Additionally, a kinetic energy and momentum experimental study was performed to look at the nature of the impacts in more detail. A method for recording the contact force history of the impact by an instrumented projectile was developed and tested. The sandwich composite investigated was an IM7-8552 unidirectional prepreg adhered to a NOMEXRTM core with an FM300K film adhesive. Impact experiments were conducted with a gas gun built in-house specifically for delivering projectiles to a sandwich composite target in this specic velocity regime (10--140 m/s). The effect on the impact damage by the projectile was investigated by ultrasonic C-scan, high speed camera and scanning electron and optical microscopy. Ultrasonic C-scans revealed the full extent of damage caused by each projectile, while the high speed camera enabled precise projectile velocity measurements that were used for striking velocity, kinetic energy and momentum analyses. Scanning electron and optical images revealed specific features of the panel failure and manufacturing artifacts within the lamina and honeycomb core. The damage of the panels by different projectiles was found to have a similar damage area for equivalent energy levels, except for rubber which had a damage area that increased greatly with striking velocity. Further investigation was taken by kinetic energy and momentum based comparisons of 19 mm diameter stainless steel sphere projectiles in order to examine the dominating damage mechanisms. The sandwich targets were struck by acrylic, aluminum, alumina, stainless steel and tungsten carbide spheres of the same geometry (19mm diameter) and surface finish. A peak absorbed energy for perforation of 34.5J was identied regardless of the projectile density. The effect of composite panel manufacturing methods on the impact damage and energy absorption of the panel was also investigated. Specifically, damage related to pre-cured facesheets is compared to the co-cured facesheets used throughout the study.
Social determinants and lifestyles: integrating environmental and public health perspectives.
Graham, H; White, P C L
2016-12-01
Industrialization and urbanization have been associated with an epidemiological transition, from communicable to non-communicable disease, and a geological transition that is moving the planet beyond the stable Holocene epoch in which human societies have prospered. The lifestyles of high-income countries are major drivers of these twin processes. Our objective is to highlight the common causes of chronic disease and environmental change and, thereby, contribute to shared perspectives across public health and the environment. Integrative reviews focused on social determinants and lifestyles as two 'bridging' concepts between the fields of public health and environmental sustainability. We drew on established frameworks to consider the position of the natural environment within social determinants of health (SDH) frameworks and the position of social determinants within environmental frameworks. We drew on evidence on lifestyle factors central to both public health and environmental change (mobility- and diet-related factors). We investigated how public health's focus on individual behaviour can be enriched by environmental perspectives that give attention to household consumption practices. While SDH frameworks can incorporate the biophysical environment, their causal structure positions it as a determinant and one largely separate from the social factors that shape it. Environmental frameworks are more likely to represent the environment and its ecosystems as socially determined. A few frameworks also include human health as an outcome, providing the basis for a combined public health/environmental sustainability framework. Environmental analyses of household impacts broaden public health's concern with individual risk behaviours, pointing to the more damaging lifestyles of high-income households. The conditions for health are being undermined by rapid environmental change. There is scope for frameworks reaching across public health and environmental sustainability and a shared evidence base that captures the health- and environmentally damaging impacts of high-consumption lifestyles. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Application of Green Net Metropolitan Product to Measure ...
The U.S. Environmental Protection Agency (USEPA) has been increasingly incorporating the concept of sustainability in its research programs. One facet of this research is the quantitative assessment of the sustainability of urban systems in light of several multidisciplinary sustainability metrics. In this work, we explore the estimation of economic measure of sustainability for Chicago Metropolitan Area (CMA) based on Green Net Metropolitan Product (GNMP), by adapting the economic models of sustainability at the macroeconomic level to regional sustainability. GNMP aims at amending the limitations of Net Domestic Product (NDP), a classical indicator of economic wellbeing, which fails to account for the degradation of environmental and natural resources caused by economic activities. We collect data for computing GNMP from publicly available secondary sources on variables such as gross metropolitan product, net income, emissions, solid waste, etc. In estimating GNMP for CMA, we have accounted for the damage costs associated with pollution emissions based on marginal damage values obtained from the literature using benefit transfers method. In addition, we attempt at accounting for the marginal value of depletion of natural resources in the CMA in terms of water depletion and changes in urban ecosystems such as green spaces. We account for the marginal damage cost associated with solid waste generation. It is expected the preliminary results of this exploration se
NASA Astrophysics Data System (ADS)
Goldman, G. T.; Johnson, C.; Gutierrez, A.; Declet-Barreto, J.; Berman, E.; Bergman, A.
2017-12-01
When Hurricane Harvey made landfall outside Houston, Texas, the storm's wind speeds and unprecedented precipitation caused significant damage to the region's petrochemical infrastructure. Most notably, the company Arkema's Crosby facility suffered a power failure that led to explosions and incineration of six of its peroxide tanks. Chemicals released into the air from the explosions sent 15 emergency responders to the hospital with severe respiratory conditions and led to the evacuation of hundreds of surrounding households. Other petrochemical facilities faced other damages that resulted in unsafe and acute chemical releases into the air and water. What impacts did such chemical disasters have on the surrounding communities and emergency responders during Harvey's aftermath? What steps might companies have taken to prevent such chemical releases? And what chemical safety policies might have ensured that such disaster risks were mitigated? In this talk we will report on a survey of the extent of damage to Houston's oil and gas infrastructure and related chemical releases and discuss the role of federal chemical safety policy in preventing and mitigating the potential for such risks for future storms and other extreme weather and climate events. We will also discuss how these chemical disasters created acute toxics exposures on environmental justice communities already overburdened with chronic exposures from the petrochemical industry.
NASA Astrophysics Data System (ADS)
Misurec, J.; Kopačková, V.; Lhotáková, Z.; Albrechtova, J.; Campbell, P. K. E.
2015-12-01
The Ore Mountains are an example of the region that suffered from severe environmental pollution caused by long-term coal mining and heavy industry leading to massive dieback of the local Norway spruce forests between the 1970's and 1990's. The situation became getting better at the end of 1990's after pollution loads significantly decreased. In 1998 and 2013, airborne hyperspectral data (with sensor ASAS and APEX, respectively) were used to study recovery of the originally damaged forest stands and compared them with those that have been less affected by environmental pollution. The field campaign (needle biochemical analysis, tree defoliation etc.) accompanied hyperspectral imagery acquisition. An analysis was conducted assessing a set of 16 vegetation indices providing complex information on foliage, biochemistry and canopy biophysics and structure. Five of them (NDVI, NDVI705, VOG1, MSR and TCARI/OSAVI) showing the best results were employed to study spatial gradients as well as temporal changes. The detected gradients are in accordance with ground truth data on representative trees. The obtained results indicate that the original significant differences between the damaged and undamaged stands have been generally levelled until 2013, although it is still possible to detect signs of the previous damages in several cases.
Toxicity of tributyltin (TBT) to the freshwater planarian Schmidtea mediterranea.
Ofoegbu, Pearl U; Simão, Fátima C P; Cruz, Andreia; Mendo, Sónia; Soares, Amadeu M V M; Pestana, João L T
2016-04-01
The freshwater planarian Schmidtea mediterranea, one of the best characterized animal models for regeneration research and developmental biology, is being recognised as a useful species for ecotoxicological studies. Sensitive endpoints related to planarians' behaviour and regeneration can be easily evaluated after exposure to environmental stressors. In this work the sensitivity of S. mediterranea to a gradient of environmentally relevant concentrations of TBT was studied using multiple endpoints like survival, locomotion, head regeneration and DNA damage. In addition, a feeding assay based on planarian's predatory behaviour was performed. Results indicated that TBT is toxic to planarians with LC50's of 1.87 μg L(-1) Sn and 1.31 μg L(-1) Sn at 48 h and 96 h of exposure respectively. Sub-lethal exposures to TBT significantly reduced locomotion and feeding, delayed head regeneration and caused DNA damage in planarians. The behavioural endpoints (feeding and locomotion) and head regeneration were the most sensitive parameters followed by DNA damage. Similar to other aquatic model organisms, S. mediterranea showed high sensitivity towards TBT exposure. Based on our results, and though further research is required concerning their sensitivity to other pollutants, the use of freshwater planarians as a model species in ecotoxicology is discussed. Copyright © 2016. Published by Elsevier Ltd.
The role of the pathologist in wound management.
Lansdown, Alan B G
Skin wounds result from a wide variety of physical insults, traumas and idiopathic causes. All are prone to infection and vulnerable to dehydration, contamination and further damage from environmental insult. Appropriate therapy depends upon correct diagnosis of the lesion, wound bed preparation with antimicrobial measures as required, and selection and application of suitable dressings. Whereas tissue viability clinicians and nurses will routinely assess levels of tissue damage and infection through observation of the colour, depth and size of wounds, backed up by microbiological assessment, a range of laboratory pathological services are available to give a wider picture of clinical wounds and possible causes of indolence and non-healing. This review identifies the contribution that specialist pathologists can make to identifying immunological changes in patients and toxic events resulting from the use of xenobiotic materials in wound management, and unravelling the mechanistic action of wound care products. Emphasis is placed on the central role of research in furthering the study of wound healing and mechanisms of chronicity.
NASA Astrophysics Data System (ADS)
Dudkowiak, A.; Olejarz, B.; Łukasiewicz, J.; Banaszek, J.; Sikora, J.; Wiktorowicz, K.
2011-04-01
The toxic effect of six heavy metals on cyanobacteria Synechocystis aquatilis was studied by absorption, fluorescence, flow cytometry, and photothermal measurements. This study indicates that at the concentration used, the cyanobacteria are more sensitive to silver, copper, and mercury than to cadmium, lead, and zinc metals. Disregarding the decrease in the yields of the related radiative processes caused by photochemical processes and/or damage to phycobilisomes, no changes were detected in the efficiency of thermal deactivation processes within a few microseconds, which can indicate the lack of disturbances in the photosynthetic light reaction and the lack of damage to the photosystem caused by the heavy metal ions in the concentrations used. The results demonstrate that the relative values of fluorescence yield as well as promptly generated heat calculated for the metal-affected and unaffected (reference) bacteria are sensitive indicators of environmental pollution with heavy metal ions, whereas the complementary methods proposed could be used as a noninvasive and fast procedure for in vivo assessment of their toxicity.
NASA Astrophysics Data System (ADS)
Hwang, J.; Lee, K.; Jang, R.; Jeon, S.
2018-04-01
The environmental impact assessment system and the environmental plan for the preservation of the land environment are carried out with the aim of preventing damage to the environment caused by human activities, improving the quality of life and creating a pleasant environment. However, despite these various systems, the natural resources have been continuously damaged, and the system to cope with them has been advanced, but there has been a limit to fully conserve natural resources from development. The total amount of natural resources is being promoted as a part of the purpose of supplementing the system, but the evaluation method of the total amount of natural resources suitable for domestic situation is not presented yet. Natural resources are diverse and complicated in their categories and elements, and their measurement units are also diverse, making it difficult to synthesize them into one unit. Therefore, in this study, we proposed a method to calculate the total amount by using the evaluation map of the Environmental Conservation Value Assessment Map (ECVAM) which derives the final achievement with 5 grades using 65 evaluation items. However, we consistently applied the weight twice as much as the grade and did not utilize any information other than the map of ECVAM. The results of this study can be applied to the Total Natural Resources Management System through follow-up study such as application of various environmental information and weighting method.
Abdelfattah, Eman A; Augustyniak, Maria; Yousef, Hesham A
2017-09-01
Phosphate fertilizer industry is considered as one of the main sources of environmental pollutants. Besides solid waste products, e.g. phosphates, sulphates, and heavy metals, also atmospheric pollutants, such as hydrofluoric acid fumes (HF), sulphur dioxide (SO 2 ), nitrogen oxides (NO 2 ), and particulate matter with diameter up to 10 μm (PM 10 ) can be dangerous. Genotoxic effect of these pollutants was monitored by assessing the DNA damage using alkaline comet assay on cells from brain, thoracic muscles and gut of Aiolopus thalassinus collected at three sites (A-C) located at 1, 3, and 6 km away from Abu-Zaabal Company for Fertilizers and Chemical Industries. Control site was established 32 km from the source of pollution, at the Cairo University Campus. The level of the DNA damage was significantly higher in insects from polluted sites comparing to that from the control site. A strong negative correlation between percentage of cells with visible DNA damage (% of severed cells) and the distance of the sites from Abu-Zaabal Company was found. The best parameter for monitoring of fertilizer pollutants is % of severed cells. Possible impact of Abu-Zaabal Company (extremely high concentration of phosphates and sulphates in all the polluted sites) on DNA integrity in A. thalassinus tissues was discussed. The potential use of the comet assay as a biomonitoring method of the environmental pollution caused by fertilizer industry was proposed. Specific pollution resulting from the activity of the fertilizer industry can cause comparable adverse effects in the organisms inhabiting areas up to 6 km from the source of contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.
Environmental Perturbations Caused by the Impacts of Asteroids and Comets
NASA Technical Reports Server (NTRS)
Toon, Owen B.; Zahnle, Kevin; Morrison, David; Turco, Richard; Covey, Curt
1997-01-01
We review the major mechanisms proposed to cause extinctions at the Cretaceous-Tertiary geological boundary following an asteroid impact. We then discuss how the proposed extinction may relate to the impact of asteroids or comets in general. We discuss the limitations of these mechanisms in terms of the spatial scale that may be affected, and the time scale over which the effects may last. Our goal is to provide relatively simple prescriptions for evaluating the importance of colliding objects having a range of energies and compositions. We also identify the many uncertainties concerning the environmental effects of impacts. We conclude that, for impact energies below about 10(exp 4) Mts (megatons of TNT equivalent) - i.e., impact frequencies less than in 6 x 10(exp 4) yr, corresponding to comets and asteroids with diameters smaller than about 400 m and 650 m, respectively - blast damage, earthquakes, and fires should be important on a scale of 10(exp 4) or 10(exp 5) km (exp 2), which corresponds to the area damaged in many natural disasters of recent history. However, tsunami could be more damaging, flooding a kilometer of coastal plane over entire ocean basins. In the energy range of 10(exp 4) to 10 (exp 5) Mts (intervals up to 3 x 10(exp 5) yr; comets and asteroids with sizes up to 800 m and 1.5 km, respectively) water vapor injections and ozone loss become significant on the global scale. In the submicrometer dust injection fraction from the pulverized target material is much higher than is presently thought to be most likely, then dust injection could be important in this energy range.
Gao, Pan; Qin, Jiaxing; Li, Delong
2018-01-01
The fungal pathogen Botrytis cinerea causes gray mold disease on various hosts, which results in serious economic losses. Over the past several decades, many kinds of fungicides have been used to successfully control the disease. Meanwhile, the uses of fungicides lead to environmental pollution as well as a potential threat to the human health by the chemical residues in tomato fruit. Also, the gray mold disease is difficult to control with fungicides. Therefore, exploring alternative measures such as biological controls could be the best choice to control the disease and alleviate damages caused by fungicides. In this study, we isolated and identified a novel Pseudomonas strain termed as QBA5 from healthy tomato plant based on the morphological, biochemical characteristics and molecular detection. The antifungal activity assays revealed that, in the presence of QBA5, conidia germination, germ tube elongation and mycelial growth of B. cinerea were significantly inhibited. Most importantly, QBA5 exerted a significant preventive effectiveness against gray mold on tomato fruits and plants. The possible mechanism of QBA5 involved in the inhibition of B. cinerea was investigated. It revealed that the conidia plasma membrane of B. cinerea was severely damaged by QBA5. Further, four different antifungal compounds in the supernatant of QBA5 were separated by preparative high performance liquid chromatography (PHPLC). Overall, the data indicate that there is a considerable potential for QBA5 to reduce the damage caused by gray mold disease on tomato. PMID:29320571
Gao, Pan; Qin, Jiaxing; Li, Delong; Zhou, Shanyue
2018-01-01
The fungal pathogen Botrytis cinerea causes gray mold disease on various hosts, which results in serious economic losses. Over the past several decades, many kinds of fungicides have been used to successfully control the disease. Meanwhile, the uses of fungicides lead to environmental pollution as well as a potential threat to the human health by the chemical residues in tomato fruit. Also, the gray mold disease is difficult to control with fungicides. Therefore, exploring alternative measures such as biological controls could be the best choice to control the disease and alleviate damages caused by fungicides. In this study, we isolated and identified a novel Pseudomonas strain termed as QBA5 from healthy tomato plant based on the morphological, biochemical characteristics and molecular detection. The antifungal activity assays revealed that, in the presence of QBA5, conidia germination, germ tube elongation and mycelial growth of B. cinerea were significantly inhibited. Most importantly, QBA5 exerted a significant preventive effectiveness against gray mold on tomato fruits and plants. The possible mechanism of QBA5 involved in the inhibition of B. cinerea was investigated. It revealed that the conidia plasma membrane of B. cinerea was severely damaged by QBA5. Further, four different antifungal compounds in the supernatant of QBA5 were separated by preparative high performance liquid chromatography (PHPLC). Overall, the data indicate that there is a considerable potential for QBA5 to reduce the damage caused by gray mold disease on tomato.
NASA Astrophysics Data System (ADS)
García-Hernández, Cristina; Ruiz-Fernández, Jesús; Sánchez-Posada, Covadonga; Pereira, Susana; Oliva, Marc; Vieira, Gonçalo
2017-06-01
Natural conditions that explain the triggering of snow avalanches are becoming better-known, but our understanding of how socio-environmental changes can influence the occurrence of damaging avalanches is still limited. This study analyses the evolution of snow avalanche damage in the Asturian Massif (NW Spain) between 1800 and 2015, paying special attention to changes in land-use and land-cover patterns. A damage index has been performed using historical sources, photointerpretation and fieldwork-based data, which were introduced in a GIS and processed by means of statistical analysis. Mapping allowed connecting spatiotemporal variations of damage and changes in human-environment interactions. The total number of victims was 342 (192 dead and 150 injured). Results show stability in the number of avalanches during the study period, but a progressive decrease in the damage per avalanche. Changes in land use explain the evolution of damage and its spatial/temporal behaviour. The role played by vegetation cover is at the root of this process: damage was the highest during the late 19th and early 20th centuries, when a massive deforestation process affected the protective forest. This deforestation was the result of demographic growth and intensive grazing, disentailment laws and emerging coal mining. Since the mid-20th century, the transformation of a traditional land-management system based on overexploitation into a system based on land marginalization and reforestation, together with the decline of deforestation due to industrial and legal causes, resulted in the decrease of avalanches that affected settlements (mostly those released below the potential timberline). The decrease of damage has been sharper in the western sector of the Asturian Massif, where oak deforestation was very intense in the past and where lithology allows for a more successful ecological succession at present. Taking into account that reforestation can be observed in mountain environments of developed countries worldwide, and considering present initiatives conducted to counteract its negative cultural effects by means of grazing and clearing operations, planning is imperative, and this research provides useful information for environmental management policies and risk mitigation in avalanche prone areas.
Comet Assay in Cancer Chemoprevention.
Santoro, Raffaela; Ferraiuolo, Maria; Morgano, Gian Paolo; Muti, Paola; Strano, Sabrina
2016-01-01
The comet assay can be useful in monitoring DNA damage in single cells caused by exposure to genotoxic agents, such as those causing air, water, and soil pollution (e.g., pesticides, dioxins, electromagnetic fields) and chemo- and radiotherapy in cancer patients, or in the assessment of genoprotective effects of chemopreventive molecules. Therefore, it has particular importance in the fields of pharmacology and toxicology, and in both environmental and human biomonitoring. It allows the detection of single strand breaks as well as double-strand breaks and can be used in both normal and cancer cells. Here we describe the alkali method for comet assay, which allows to detect both single- and double-strand DNA breaks.
Jonescheit, Linda
2012-01-01
The summer of 2011 proved to be a season of extreme events. Heavy snowfall in the western mountains and excessive spring rains caused flooding along the Missouri and Mississippi Rivers; whereas extended dry conditions enabled fires to rage out of control from Alaska and Canada, south to Texas, Arizona, New Mexico, Georgia, and Mexico. The Landsat archive holds nearly 40 years of continuous global earth observation data. Landsat data are used by emergency responders to monitor change and damage caused by natural and man-made disasters. Decision makers rely on Landsat as they create plans for future environmental concerns.
Browning, Matthew H.E.M.; Marion, Jeffrey L.; Gregoire, Timothy G.
2013-01-01
Parks are developing nature play areas to improve children's health and “connect” them with nature. However, these play areas are often located in protected natural areas where managers must balance recreation with associated environmental impacts. In this exploratory study, we sought to describe these impacts. We also investigated which ages, gender, and play group sizes most frequently caused impact and where impacts most frequently occur. We measured the lineal and aerial extent and severity of impacts at three play areas in the eastern United States. Methods included soil and vegetation loss calculations, qualitative searches and tree and shrub damage classifications. Additionally, we observed 12 h of play at five play areas. Results showed that measurable negative impacts were caused during 33% of the time children play. On average, 76% of groundcover vegetation was lost at recreation sites and 100% was lost at informal trails. In addition, approximately half of all trees and shrubs at sites were damaged. Meanwhile, soil exposure was 25% greater on sites and trails than at controls. Boys and small group sizes more frequently caused impact, and informal recreation sites were most commonly used for play. No statistically significant correlations were found between age or location and impact frequency. Managers interested in developing nature play areas should be aware of, but not deterred by these impacts. The societal benefits of unstructured play in nature may outweigh the environmental costs. Recommended management strategies include selecting impact-resistant sites, improving site resistance, promoting low impact practices, and managing adaptively.
NASA Astrophysics Data System (ADS)
Mauzerall, Denise L.; Sultan, Babar; Kim, Namsoug; Bradford, David F.
We present a proof-of-concept analysis of the measurement of the health damage of ozone (O 3) produced from nitrogen oxides (NO=NO+NO) emitted by individual large point sources in the eastern United States. We use a regional atmospheric model of the eastern United States, the Comprehensive Air quality Model with Extensions (CAMx), to quantify the variable impact that a fixed quantity of NO x emitted from individual sources can have on the downwind concentration of surface O 3, depending on temperature and local biogenic hydrocarbon emissions. We also examine the dependence of resulting O 3-related health damages on the size of the exposed population. The investigation is relevant to the increasingly widely used "cap and trade" approach to NO x regulation, which presumes that shifts of emissions over time and space, holding the total fixed over the course of the summer O 3 season, will have minimal effect on the environmental outcome. By contrast, we show that a shift of a unit of NO x emissions from one place or time to another could result in large changes in resulting health effects due to O 3 formation and exposure. We indicate how the type of modeling carried out here might be used to attach externality-correcting prices to emissions. Charging emitters fees that are commensurate with the damage caused by their NO x emissions would create an incentive for emitters to reduce emissions at times and in locations where they cause the largest damage.
Pfuhler, Stefan; Downs, Thomas R; Allemang, Ashley J; Shan, Yuching; Crosby, Meredith E
2017-01-01
In a previous study, 15-nm silica nanoparticles (NPs) caused small increases in DNA damage in liver as measured in the in vivo comet and micronucleus assays after intravenous administration to rats at their maximum tolerated dose, a worst-case exposure scenario. Histopathological examination supported a particle-induced, tissue damage-mediated inflammatory response. This study used a targeted approach to provide insight into the mode of action (MoA) by examining transcriptional regulation of genes in liver in a time and dose-dependent manner at 1, 2, 4, 8 and 24 h after intravenous administration of 15-nm silica NPs. DNA damage was assessed using the standard comet assay and hOGG1 glycosylase-modified comet assay that also measures oxidative DNA damage. Potassium bromate, an IARC Class 2B carcinogen that specifically operates via an oxidative stress MoA, was used as a positive control for the hOGG1 comet assay and gave a strong signal in its main target organ, the kidney, while showing less activity in liver. Treatment of rats with silica NPs at 50 mg/kg body weight (bw) caused small, statistically insignificant increases in DNA damage in liver measured by the standard comet assay, while a statistically significant increase was observed at 4 h with the hOGG1 comet assay, consistent with a MoA involving reactive oxygen species. Histopathology showed liver damage and neutrophil involvement while genomic analysis and response pattern of key genes involved in inflammation and oxidative stress supported a tissue damage-mediated inflammatory response involving the complement system for removing/phagocytising damaged cells. No changes were observed for histopathology or gene array for the low-dose (5 mg/kg bw) silica NPs. The results of this study confirm our hypothesis that the weak DNA damage observed by silica NPs occurs secondary to inflammation/immune response, indicating that a threshold can be applied in the risk assessment of these materials. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Kinney, Dennis K; Barch, Daniel H; Chayka, Bogdan; Napoleon, Siena; Munir, Kerim M
2010-01-01
Recent research has discovered that a number of genetic risk factors for autism are de novo mutations. Advanced parental age at the time of conception is associated with increased risk for both autism and de novo mutations. We investigated the hypothesis that other environmental factors associated with increased risk for autism might also be mutagenic and contribute to autism by causing de novo mutations. A survey of the research literature identified 9 environmental factors for which increased pre-conceptual exposure appears to be associated with increased risk for autism. Five of these factors--mercury, cadmium, nickel, trichloroethylene, and vinyl chloride--are established mutagens. Another four--including residence in regions that are urbanized, located at higher latitudes, or experience high levels of precipitation--are associated with decreased sun exposure and increased risk for vitamin D deficiency. Vitamin D plays important roles in repairing DNA damage and protecting against oxidative stress--a key cause of DNA damage. Factors associated with vitamin D deficiency will thus contribute to higher mutation rates and impaired repair of DNA. We note how de novo mutations may also help explain why the concordance rate for autism is so markedly higher in monozygotic than dizygotic twins. De novo mutations may also explain in part why the prevalence of autism is so remarkably high, given the evidence for a strong role of genetic factors and the low fertility of individuals with autism--and resultant selection pressure against autism susceptibility genes. These several lines of evidence provide support for the hypothesis, and warrant new research approaches--which we suggest--to address limitations in existing studies. The hypothesis has implications for understanding possible etiologic roles of de novo mutations in autism, and it suggests possible approaches to primary prevention of the disorder, such as addressing widespread vitamin D deficiency and exposure to known mutagens.
The Spatial Distributions and Variations of Water Environmental Risk in Yinma River Basin, China.
Di, Hui; Liu, Xingpeng; Zhang, Jiquan; Tong, Zhijun; Ji, Meichen
2018-03-15
Water environmental risk is the probability of the occurrence of events caused by human activities or the interaction of human activities and natural processes that will damage a water environment. This study proposed a water environmental risk index (WERI) model to assess the water environmental risk in the Yinma River Basin based on hazards, exposure, vulnerability, and regional management ability indicators in a water environment. The data for each indicator were gathered from 2000, 2005, 2010, and 2015 to assess the spatial and temporal variations in water environmental risk using particle swarm optimization and the analytic hierarchy process (PSO-AHP) method. The results showed that the water environmental risk in the Yinma River Basin decreased from 2000 to 2015. The risk level of the water environment was high in Changchun, while the risk levels in Yitong and Yongji were low. The research methods provide information to support future decision making by the risk managers in the Yinma River Basin, which is in a high-risk water environment. Moreover, water environment managers could reduce the risks by adjusting the indicators that affect water environmental risks.
Cadmium--influence on biochemical processes of the human organism.
Boguszewska, Anna; Pasternak, Kazimierz
2004-01-01
Heavy metals are too well-known environmental pollutants of particularly dangerous effect to human health. Because of their wide usage in many industrial branches they are present everywhere in the air, water and soils. Food contamination by heavy elements is hard to avoid and it is a result of environmental contamination by dusts, industrial gases, sewage, waste and coal burning processes. One of the most harmful heavy metals, widely spread in nature is cadmium. Toxic cadmium action involves free oxygen generation and inactivation of protein containing cysteine residues with -SH groups. It influences many metabolic processes causing great damage in many organs. Cadmium can also interact with some essential elements leading to their homeostasis disorders.
Japanese experiences of environmental management.
Matsuo, T
2003-01-01
Japan experienced a very rapid industrialization and economic growth in the era of income doubling in 1960s and at the same time Japan experienced very severe damage from various types of environmental pollution. In this paper, historical development of population, GNP, energy consumption with classification of petroleum, coal and electric power, and CO2 emission are introduced as basic background data on Japanese development. The tragic experience of Minamata disease and Itai-itai disease caused by methyl mercury and cadmium, respectively, are introduced. In two tables, historical development of water pollution and air pollution are summarized. Regarding solid wastes management, the total mass balance in Japan and recent development in legislation framework for enhancement of recycling of wastes are introduced briefly.
DNA Excision Repair at Telomeres
Jia, Pingping; Her, Chengtao; Chai, Weihang
2015-01-01
DNA damage is caused by either endogenous cellular metabolic processes such as hydrolysis, oxidation, alkylation, and DNA base mismatches, or exogenous sources including ultraviolet (UV) light, ionizing radiation, and chemical agents. Damaged DNA that is not properly repaired can lead to genomic instability, driving tumorigenesis. To protect genomic stability, mammalian cells have evolved highly conserved DNA repair mechanisms to remove and repair DNA lesions. Telomeres are composed of long tandem TTAGGG repeats located at the ends of chromosomes. Maintenance of functional telomeres is critical for preventing genome instability. The telomeric sequence possesses unique features that predispose telomeres to a variety of DNA damage induced by environmental genotoxins. This review briefly describes the relevance of excision repair pathways in telomere maintenance, with the focus on base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). By summarizing current knowledge on excision repair of telomere damage and outlining many unanswered questions, it is our hope to stimulate further interest in a better understanding of excision repair processes at telomeres and in how these processes contribute to telomere maintenance. PMID:26422132
DNA Damage Observed in Unaffected Individuals with Family History of T2DM
NASA Astrophysics Data System (ADS)
Ramesh, Nikhila; Abilash, V. G.
2017-11-01
Diabetes has been documented to cause high levels of DNA fragmentation in some cases. As diabetes is inheritable and influenced by both genetic and environmental factors, an investigation into the genomic stability of individuals who are strongly at risk of inheriting diabetes was conducted by inducing oxidative stress, as DNA damage in unaffected individuals could be a sign of onset of the disease or the presence of genetic alterations that reduce cellular defences against reactive oxygen species. In this study, alkaline comet assay was performed on isolated human leukocytes to determine whether individuals with a family history of Type 2 Diabetes Mellitus (T2DM) are more prone to DNA damage under oxidative stress. Visual scoring of comets showed that these individuals have higher degree of DNA damage compared to a control individual with no family history of Type 2 Diabetes Mellitus. Further studies with large sample could determine the presence of disabled cellular defences against oxidative stress in unaffected individuals and intervention with antioxidants could prevent or manage Type 2 Diabetes Mellitus and its complications.
NASA Astrophysics Data System (ADS)
Kim, Tae-Guon; Grigalunas, Thomas
2009-09-01
Rapid growth in marine sand mining for construction and other uses poses environmental challenges to coastal nations virtually worldwide. Yet the development of management policies, such as a system of fees imposed on operators for damage caused by mining, has been frustrated by a lack of studies to support such measures. Adapting a Beverton-Holt bioeconomic model, this paper attempts to contribute to the estimation of external costs to commercial fisheries due to marine mining. Using the major mining area of Ongjin in Korea as a case study, we estimate economic losses in use value of commercial fisheries through the time to recovery of the injured resource stocks. Present value of lost catch over a 1-year period from mining to resource recovery is estimated at 38,851 for a single “prototype” mining site. Estimated cumulative damages due to recurring mining for 5 and 10 years are 1.5 million and 2.2 million, respectively, at 20 mining sites. Sensitivity analyses are used to examine the effects of alternative assumptions to assess the many sources of uncertainty. Using a form of meta-analysis, dose-response information is used to assess the excess mortality the mining sediment plume has on eggs and larvae and, ultimately, on the value of lost catch (841). Also addressed is the importance of specifying the appropriate “premining” conditions against which to assess environmental losses at the mining site. Damages estimated with premining fish populations are 23,066 higher than is the case using postmining conditions. Overall, the illustrative results suggest the variety of complex conditions which influence damage to fisheries from mining and which can benefit from further study to improve management guidelines.
Charge-transfer interactions of Cr species with DNA.
Nowicka, Anna M; Matysiak-Brynda, Edyta; Hepel, Maria
2017-10-01
Interactions of Cr species with nucleic acids in living organisms depend strongly on Cr oxidation state and the environmental conditions. As the effects of these interactions range from benign to pre-mutagenic to carcinogenic, careful assessment of the hazard they pose to human health is necessary. We have investigated methods that would enable quantifying the DNA damage caused by Cr species under varying environmental conditions, including UV, O 2 , and redox potential, using simple instrumental techniques which could be in future combined into a field-deployable instrumentation. We have employed electrochemical quartz crystal nanogravimetry (EQCN), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) to evaluate the extent of DNA damage expressed in terms of guanine oxidation yield (η) and changes in specific characteristics provided by these techniques. The effects of the interactions of Cr species with DNA were analyzed using a model calf thymus DNA (ctDNA) film on a gold electrode (Au@ctDNA) in different media, including: (i) Cr(VI), (ii) Cr(VI) reduced at -0.2V, (iii) Cr(III)+UV radiation+O 2 , and Cr(III), obtaining the η values: 7.4±1.4, 1.5±0.4, 1.1±0.31%, and 0%, respectively, thus quantifying the hazard posed. The EIS measurements have enabled utilizing the decrease in charge-transfer resistance (R ct ) for ferri/ferrocyanide redox probe at an Au@ctDNA electrode to assess the oxidative ctDNA damage by Cr(VI) species. In this case, circular dichroism indicates an extensive damage to the ctDNA hydrogen bonding. On the other hand, Cr(III) species have not induced any damage to ctDNA, although the EQCN measurements show an electrostatic binding to DNA. Copyright © 2017 Elsevier Inc. All rights reserved.
Andersen, D.C.; Shafroth, P.B.
2010-01-01
Beaver convert lotic stream habitat to lentic through dam construction, and the process is reversed when a flood or other event causes dam failure. We investigated both processes on a regulated Sonoran Desert stream, using the criterion that average current velocity is < 0.2 m s-1 in a lentic reach. We estimated temporal change in the lotic:lentic stream length ratio by relating beaver pond length (determined by the upstream lentic-lotic boundary position) to dam size, and coupling that to the dam-size frequency distribution and repeated censuses of dams along the 58-km river. The ratio fell from 19:1 when no beaver dams were present to < 3:1 after 7 years of flows favourable for beaver. We investigated the dam failure-flood intensity relationship in three independent trials (experimental floods) featuring peak discharge ranging from 37 to 65 m3 s-1. Major damage (breach ??? 3-m wide) occurred at ??? 20% of monitored dams (n = 7-86) and a similar or higher proportion was moderately damaged. We detected neither a relationship between dam size and damage level nor a flood discharge threshold for initiating major damage. Dam constituent materials appeared to control the probability of major damage at low (attenuated) flood magnitude. We conclude that environmental flows prescribed to sustain desert riparian forest will also reduce beaver-created lentic habitat in a non-linear manner determined by both beaver dam and flood attributes. Consideration of both desirable and undesirable consequences of ecological engineering by beaver is important when optimizing environmental flows to meet ecological and socioeconomic goals. ?? 2010 John Wiley & Sons, Ltd.
Environmental damage schedules: community judgments of importance and assessments of losses
Ratana Chuenpagdee; Jack L. Knetsch; Thomas C. Brown
2001-01-01
Available methods of valuing environmental changes are often limited in their applicability to current issues such as damage assessment and implementing regulatory controls, or may otherwise not provide reliable readings of community preferences. An alternative is to base decisions on predetermined fixed schedules of sanctions, restrictions, damage awards, and other...
The Prevalence and Distribution of Neurodegenerative Compound-Producing Soil Streptomyces spp.
Watkins, Anna L.; Ray, Arpita; R. Roberts, Lindsay; Caldwell, Kim A.; Olson, Julie B.
2016-01-01
Recent work from our labs demonstrated that a metabolite(s) from the soil bacterium Streptomyces venezuelae caused dopaminergic neurodegeneration in Caenorhabditis elegans and human neuroblastoma cells. To evaluate the capacity for metabolite production by naturally occurring streptomycetes in Alabama soils, Streptomyces were isolated from soils under different land uses (agriculture, undeveloped, and urban). More isolates were obtained from agricultural than undeveloped soils; there was no significant difference in the number of isolates from urban soils. The genomic diversity of the isolates was extremely high, with only 112 of the 1509 isolates considered clones. A subset was examined for dopaminergic neurodegeneration in the previously established C. elegans model; 28.3% of the tested Streptomyces spp. caused dopaminergic neurons to degenerate. Notably, the Streptomyces spp. isolates from agricultural soils showed more individual neuron damage than isolates from undeveloped or urban soils. These results suggest a common environmental toxicant(s) within the Streptomyces genus that causes dopaminergic neurodegeneration. It could also provide a possible explanation for diseases such as Parkinson’s disease (PD), which is widely accepted to have both genetic and environmental factors. PMID:26936423
Age-Related Macular Degeneration: New Paradigms for Treatment and Management of AMD.
Hernández-Zimbrón, Luis Fernando; Zamora-Alvarado, Ruben; Ochoa-De la Paz, Lenin; Velez-Montoya, Raul; Zenteno, Edgar; Gulias-Cañizo, Rosario; Quiroz-Mercado, Hugo; Gonzalez-Salinas, Roberto
2018-01-01
Age-related macular degeneration (AMD) is a well-characterized and extensively studied disease. It is currently considered the leading cause of visual disability among patients over 60 years. The hallmark of early AMD is the formation of drusen, pigmentary changes at the macula, and mild to moderate vision loss. There are two forms of AMD: the "dry" and the "wet" form that is less frequent but is responsible for 90% of acute blindness due to AMD. Risk factors have been associated with AMD progression, and they are taking relevance to understand how AMD develops: (1) advanced age and the exposition to environmental factors inducing high levels of oxidative stress damaging the macula and (2) this damage, which causes inflammation inducing a vicious cycle, altogether causing central vision loss. There is neither a cure nor treatment to prevent AMD. However, there are some treatments available for the wet form of AMD. This article will review some molecular and cellular mechanisms associated with the onset of AMD focusing on feasible treatments for each related factor in the development of this pathology such as vascular endothelial growth factor, oxidative stress, failure of the clearance of proteins and organelles, and glial cell dysfunction in AMD.
Kaur, Jasjeet; Karthikeyan, Raghupathy; Pillai, Suresh D
2016-07-02
In this study, effects of 24 kHz continuous ultrasound and UV-C on inactivation and potential repair of environmental E. coli strains were studied through a culture based method and a metabolic activity assay. Three environmental E. coli strains isolated from fecal samples of feral hog and deer and treated wastewater effluent were studied and compared with a laboratory E. coli strain (ATCC® 10798). Metabolic activity of E. coli cells during the inactivation and repair period was assessed using the AlamarBlue® assay. Transmission electron microscopy assays were also performed to evaluate morphological damage of bacterial cell wall. After 24 h of photoreactivation period, laboratory E. coli strain (ATCC® 10798) reactivated by 30% and 42% in contrast to E. coli isolate from treated wastewater effluent, which reactivated by 53% and 82% after ultrasound and UV-C treatment, respectively. Possible shearing and reduction in cell size of E. coli strains exposed to ultrasound was revealed by transmission electron micrographs. Metabolic activity of E. coli strains was greatly reduced due to morphological damage to cell membrane caused by 24 kHz continuous ultrasound. Based upon experimental data and TEM micrographs, it could be concluded that ultrasound irradiation has potential in advanced water treatment and water reuse applications.
Spain's greatest and most recent mine disaster.
Guerrero, Flor Ma; Lozano, Macarena; Rueda-Cantuche, José M
2008-03-01
On 25 April 1998, the mineral waste retaining wall at the Swedish-owned pyrite mine at Aznalcóllar (Seville, Spain) burst, causing the most harmful environmental and socio-economic disaster in the history of the River Guadiamar basin. The damage was so great that the regional government decided in May 1998 to finance a comprehensive, multidisciplinary research initiative with the objective of eradicating or at least minimising all of the negative social, economic and environmental impacts. This paper utilises a Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis to identify eight strategic measures aimed at providing policymakers with key guidelines on implementing a sustainable development model, in a broad sense. Empirical evidence, though, reveals that, to date, major efforts to tackle the negative impacts have centred on environmental concerns and that the socio-economic consequences have not been completely mitigated.
Operational Forecasting and Warning systems for Coastal hazards in Korea
NASA Astrophysics Data System (ADS)
Park, Kwang-Soon; Kwon, Jae-Il; Kim, Jin-Ah; Heo, Ki-Young; Jun, Kicheon
2017-04-01
Coastal hazards caused by both Mother Nature and humans cost tremendous social, economic and environmental damages. To mitigate these damages many countries have been running the operational forecasting or warning systems. Since 2009 Korea Operational Oceanographic System (KOOS) has been developed by the leading of Korea Institute of Ocean Science and Technology (KIOST) in Korea and KOOS has been operated in 2012. KOOS is consists of several operational modules of numerical models and real-time observations and produces the basic forecasting variables such as winds, tides, waves, currents, temperature and salinity and so on. In practical application systems include storm surges, oil spills, and search and rescue prediction models. In particular, abnormal high waves (swell-like high-height waves) have occurred in the East coast of Korea peninsula during winter season owing to the local meteorological condition over the East Sea, causing property damages and the loss of human lives. In order to improve wave forecast accuracy even very local wave characteristics, numerical wave modeling system using SWAN is established with data assimilation module using 4D-EnKF and sensitivity test has been conducted. During the typhoon period for the prediction of sever waves and the decision making support system for evacuation of the ships, a high-resolution wave forecasting system has been established and calibrated.
Balasuriya, A; Serhal, P; Doshi, A; Harper, J C
2014-03-01
Sperm preparation techniques in assisted reproduction technologies (ART) are potential generators of exogenous stresses that cause additional DNA damage. DNA fragmentation tests, such as the sperm chromatin structure assay, involve freezing sperm samples in the absence of cryoprotectant. Thermal, oxidative stress (OS) and freezing are detrimental to sperm DNA fragmentation and phosphatidylserine (PS) translocation. The primary aim of this study was to subject mature sperm to environmental insults that normally occur during ART. We tested the hypotheses that OS, thermal stress and freeze-thawing caused sperm nuclear and membrane damage and that a positive correlation exists between PS translocation and DNA fragmentation. Sperm DNA integrity deteriorates in semen samples from men with advancing age and a sperm concentration of <15 m ml(-1) . The significant increase in sperm DNA fragmentation at 37 °C after merely 1 h is important clinically as semen liquefaction and short-term sperm storage in an ART cycle involve incubating samples at this temperature. Freezing without a cryoprotectant significantly increases the level of sperm nuclear damage, so it is important not to freeze neat semen prior to DNA fragmentation testing. This study highlights the importance of minimising the production of exogenous stresses during sperm preparation in ART. © 2012 Blackwell Verlag GmbH.
Cheng, Zhe; Tian, Huimin; Chu, Hongran; Wu, Jianjian; Li, Yingying; Wang, Yanhai
2014-03-21
Tributyltin (TBT), one of the environmental pollutants, has been shown to impact the reproduction of animals. However, due to the lack of appropriate animal model, analysis of the affected molecular pathways in germ cells is lagging and has been particularly challenging. In the present study, we investigated the effects of tributyltin chloride (TBTCL) on the nematode Caenorhabditis elegans germline. We show that exposure of C. elegans to TBTCL causes significantly elevated level of sterility and embryonic lethality. TBTCL exposure results in an increased number of meiotic DNA double-strand breaks in germ cells, subsequently leading to activated DNA damage checkpoint. Exposing C. elegans to TBTCL causes dose- and time-dependent germline apoptosis. This apoptotic response was blocked in loss-of-function mutants of hus-1 (op241), mrt-2 (e2663) and p53/cep-1 (gk138), indicating that checkpoints and p53 are essential for mediating TBTCL-induced germ cell apoptosis. Moreover, TBTCL exposure can inhibit germ cell proliferation, which is also mediated by the conserved checkpoint pathway. We thereby propose that TBT exhibits its effects on the germline by inducing DNA damage and impaired maintenance of genomic integrity. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Cytotoxicity of lambda-cyhalothrin on the macrophage cell line RAW 264.7.
Zhang, Quan; Wang, Cui; Sun, Liwei; Li, Ling; Zhao, Meirong
2010-01-01
The wide use and wide-spectrum toxicity of synthetic pyrethroids (SPs) insecticides make them an emerging ecotoxicological concern. Some previous studies showed that SPs possessed cytotoxicity in some immune cells such as human lymphocytes and rat bone marrow. However, the cytotoxicity of SPs to macrophages, which are crucial to innate immunity, has not been explored. In the present report, we investigated a new pyrethroid insecticide, lambda-cyhalothrin (LCT), which may increase the generation of reactive oxygen species (ROS) and DNA damage levels and cause cytotoxicity in RAW 264.7 cells in dose- and time-dependent manners. The results for the first time implicated increased endogenous ROS and DNA damage as co-mediators of LCT-induced cytotoxicity in macrophages. Our results also suggested that macrophages were involved in synthetic pyrethroid-induced adverse immune effects. Considering the ubiquitous environmental presence of SPs, this study provided new information relative to the potential long-term physiological and immunological effects associated with chronic exposure to SPs. Hence, the potential immunotoxicity of SPs should be considered in assessing the safety of these compounds in sensitive environmental compartments.
Cellular and Molecular Mechanisms of Alveolar Destruction in Emphysema
Tuder, Rubin M.; Yoshida, Toshinori; Arap, Wadih; Pasqualini, Renata; Petrache, Irina
2006-01-01
Emphysema consists of a unique pattern of alveolar destruction, resulting in marked airspace enlargement with reduction of alveolar capillary exchange area. Classical concepts of the pathogenesis of emphysema have relied on the paradigm set by the inflammation and protease/antiprotease imbalance. We propose herein that cigarette smoke constitutes an environmental hazard that causes alveolar destruction by the interaction of apoptosis, oxidative stress, and protease/antiprotease imbalance. We draw a parallel between organismal aging, organ structural maintenance, and the damage resulting from chronic cigarette smoke inhalation. The stochastic interaction between environmental hazards and the effort of an organism or a particular organ to fend off these hazards results in the accumulation of cellular damage and features characteristic of aging. Inflammation follows as the result of the multiplication of injuries. We highlight the importance of understanding the biology of the interaction of alveolar cells in homeostasis and in alveolar destruction, and the potential role of novel processes related to senescence and stress response. An evolutionary perspective of emphysema that incorporates mechanisms related to aging may lead to important advances in the understanding and therapeutic targeting of chronic obstructive pulmonary disease. PMID:16921129
Using insurance data to learn more about damages to buildings caused by surface runoff
NASA Astrophysics Data System (ADS)
Bernet, Daniel; Roethlisberger, Veronika; Prasuhn, Volker; Weingartner, Rolf
2015-04-01
In Switzerland, almost forty percent of total insurance loss due to natural hazards in the last two decades was caused by flooding. Those flood damages occurred not only within known inundation zones of water courses. Practitioners expect that roughly half of all flood damages lie outside of known inundation zones. In urban areas such damages may simply be caused by drainage system overload for instance. However, as several case studies show, natural and agricultural land play a major role in surface runoff formation leading to damages in rural and peri-urban areas. Although many damages are caused by surface runoff, the whole process chain including surface runoff formation, propagation through the landscape and damages to buildings is not well understood. Therefore, within the framework of a project, we focus our research on this relevant process. As such flash flood events have a very short response time and occur rather diffusely in the landscape, this process is very difficult to observe directly. Therefore indirect data sources with the potential to indicate spatial and temporal distributions of the process have to be used. For that matter, post-flood damage data may be a profitable source. Namely, insurance companies' damage claim records could provide a good picture about the spatial and temporal distributions of damages caused by surface runoff and, thus, about the process itself. In our research we analyze insurance data records of flood damage claims systematically to infer main drivers and influencing factors of surface runoff causing damages to buildings. To demonstrate the potential and drawbacks of using data from insurance companies in relation to damages caused by surface runoff, a case study is presented. A well-documented event with data from a public as well as a private insurance company is selected. The case study focuses on the differences of the datasets as well as the associated problems and advantages respectively. Furthermore, the analysis of the data, especially the crucial identification of damages caused by surface runoff opposed to damages caused by other processes such as riverine flooding, drainage system surcharges etc. are discussed.
Expected radiation damage of reverse-type APDs for the Astro-H mission
NASA Astrophysics Data System (ADS)
Kataoka, J.; Saito, T.; Yoshino, M.; Mizoma, H.; Nakamori, T.; Yatsu, Y.; Ishikawa, Y.; Matsunaga, Y.; Tajima, H.; Kokubun, M.; Edwards, P. G.
2012-06-01
Scheduled for launch in 2014, Astro-H is the sixth Japanese X-ray astronomy satellite mission. More than 60 silicon avalanche photodiodes (Si-APDs; hereafter APDs) will be used to read out BGO scintillators, which are implemented to generate a veto signal to reduce background contamination for the hard X-ray imager (HXI) and a soft gamma-ray detector (SGD). To date, however, APDs have rarely been used in space experiments. Moreover, strict environmental tests are necessary to guarantee APD performance for missions expected to extend beyond five years. The radiation hardness of APDs, as for most semiconductors, is particularly crucial, since radiation in the space environment is severe. In this paper, we present the results of radiation tests conducted on reverse-type APDs (provided by Hamamatsu Photonics) irradiated by gamma rays (60Co) and 150 MeV protons. We show that, even under the same 100 Gy dose, high energy protons can cause displacement (bulk) damage in the depletion region and possibly change the activation energy, whereas gamma-ray irradiation is less prone to cause damage, because ionization damage dominates only the surface region. We also present quantitative guidance on how to estimate APD noise deterioration over a range of temperatures and radiation doses. As a practical example, we discuss the expected degradation of the BGO energy threshold for the generation of veto signals, following several years of Astro-H operation in Low Earth Orbit (LEO), and directly compare it to experimental results obtained using a small BGO crystal.
Duration of emission of volatile organic compounds from mechanically damaged plant leaves.
Smith, Lincoln; Beck, John J
2015-09-01
Classical biological control of invasive alien weeds depends on the use of arthropod herbivores that are sufficiently host specific to avoid risk of injuring nontarget plants. Host plant specificity is usually evaluated by using a combination of behavioral and developmental experiments under choice, no-choice and field conditions. Secondary plant compounds are likely to have an important influence on host plant specificity. However, relatively little is known about the volatile organic compounds (VOCs) that are emitted by target and nontarget plants, and how environmental conditions may affect their emission. Previous studies have shown that mechanical damage of leaves increases the composition and content of VOCs emitted. In this study we measured the VOC emissions of five species of plants in the subtribe Centaureinae (Asteraceae)--Carthamus tinctorius, Centaurea cineraria, Centaurea melitensis, Centaurea rothrockii, and Centaurea solstitialis--that have previously been used in host specificity experiments for a prospective biological control agent of yellow starthistle (C. solstitialis). Leaves of each plant were punctured with a needle and the VOCs were collected by solid-phase microextraction (SPME) periodically over 48 h and analyzed by GC-MS. A total of 49 compounds were detected. Damage caused an immediate increase of 200-600% in the composition of VOCs emitted from each plant species, and the amounts generally remained high for at least 48 h. The results indicate that a very unspecific mechanical damage can cause a prolonged change in the VOC profile of plants. Published by Elsevier GmbH.
Mathews, J T
1989-01-01
The concept of US national security was redefined in the 1970s to include international economics, and lately environmental degradation has also become a factor, as pollution transcends boundaries. By 2100 another 5-6 billion people may be added to the world's population requiring dramatic production and technology transformation with the resultant expanded energy use, emissions, and waste impacting the ecosystem. Climate change through global warming is in the offing. The exponential growth of the population in the developing world poses a crucial challenge for food production, housing, and employment. At a 1% growth rate population doubles in 72 years, while at 3% it doubles in 24 years. Africa's growth rate is almost 3%, it is close to 2% in Latin America, and it is somewhat less in Asia. Renewable resources such as overfished fishing grounds can become nonrenewable, and vanished species can never be resurrected. Deforestation leads to soil erosion, damage to water resources through floods and silting of irrigation networks, and accelerated loss of species. 20% of species could disappear by 2000 thereby losing genetic resources for chemicals, drugs, and food sources. Overcultivation has caused major erosion and decline of agricultural productivity in Haiti, Guatemala, Turkey, and India. Lopsided land ownership in Latin America requires land reform for sustainable agricultural production in the face of the majority of people cultivating plots for bare subsistence. Human practices that have caused environmental damage include concessions granted to logging companies in the Philippines, mismanagement of natural resources in sub-Saharan Africa, the ozone hole, and the greenhouse effect with potential climate changes. Solutions include family planning, efficient energy use, sustainable agroforestry techniques, and environmental accounting of goods and services.
Assessing European wild fire vulnerability
NASA Astrophysics Data System (ADS)
Oehler, F.; Oliveira, S.; Barredo, J. I.; Camia, A.; Ayanz, J. San Miguel; Pettenella, D.; Mavsar, R.
2012-04-01
Wild fire vulnerability is a measure of potential socio-economic damage caused by a fire in a specific area. As such it is an important component of long-term fire risk management, helping policy-makers take informed decisions about adequate expenditures for fire prevention and suppression, and to target those regions at highest risk. This paper presents a first approach to assess wild fire vulnerability at the European level. A conservative approach was chosen that assesses the cost of restoring the previous land cover after a potential fire. Based on the CORINE Land Cover, a restoration cost was established for each land cover class at country level, and an average restoration time was assigned according to the recovery capacity of the land cover. The damage caused by fire was then assessed by discounting the cost of restoring the previous land cover over the restoration period. Three different vulnerability scenarios were considered assuming low, medium and high fire severity causing different levels of damage. Over Europe, the potential damage of wild land fires ranges from 10 - 13, 732 Euro*ha-1*yr-1 for low fire severity, 32 - 45,772 Euro*ha-1*yr-1 for medium fire severity and 54 - 77,812 Euro*ha-1*yr-1 for high fire severity. The least vulnerable are natural grasslands, moors and heathland and sclerophyllous vegetation, while the highest cost occurs for restoring broad-leaved forest. Preliminary validation comparing these estimates with official damage assessments for past fires shows reasonable results. The restoration cost approach allows for a straightforward, data extensive assessment of fire vulnerability at European level. A disadvantage is the inherent simplification of the evaluation procedure with the underestimation of non-markets goods and services. Thus, a second approach has been developed, valuing individual wild land goods and services and assessing their annual flow which is lost for a certain period of time in case of a fire event. However, due to limitations in data availability, this approach of environmental accounting is not fully implemented yet. Keywords: fire vulnerability, damage assessment, land cover restoration, long-term fire risk, European scale
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-05
... DEPARTMENT OF DEFENSE Department of the Army; Corps of Engineers Intent To Prepare a Draft Environmental Impact Statement for Hurricane and Storm Damage Reduction for South Ponte Vedra Beach, Vilano... feasibility of providing hurricane and storm damage reduction (HSDR), and related purposes to the shores of St...
Damage pattern as a function of radiation quality and other factors.
Burkart, W; Jung, T; Frasch, G
1999-01-01
An understanding of damage pattern in critical cellular structures such as DNA is an important prerequisite for a mechanistic assessment of primary radiation damage, its possible repair, and the propagation of residual changes in somatic and germ cells as potential contributors to disease or ageing. Important quantitative insights have been made recently on the distribution in time and space of critical lesions from direct and indirect action of ionizing radiation on mammalian cells. When compared to damage from chemicals or from spontaneous degradation, e.g. depurination or base deamination in DNA, the potential of even low-LET radiation to create local hot spots of damage from single particle tracks is of utmost importance. This has important repercussions on inferences from critical biological effects at high dose and dose rate exposure situations to health risks at chronic, low-level exposures as experienced in environmental and controlled occupational settings. About 10,000 DNA lesions per human cell nucleus and day from spontaneous degradation and chemical attack cause no apparent effect, but a dose of 4 Gy translating into a similar number of direct and indirect DNA breaks induces acute lethality. Therefore, single lesions cannot explain the high efficiency of ionizing radiation in the induction of mutation, transformation and loss of proliferative capacity. Clustered damage leading to poorly repairable double-strand breaks or even more complex local DNA degradation, correlates better with fixed damage and critical biological endpoints. A comparison with other physical, chemical and biological agents indicates that ionizing radiation is indeed set apart from these by its unique micro- and nano-dosimetric traits. Only a few other agents such as bleomycin have a similar potential to cause complex damage from single events. However, in view of the multi-stage mechanism of carcinogenesis, it is still an open question whether dose-effect linearity for complex primary DNA damage and resulting fixed critical cellular lesions translate into linearity for radiation-induced cancer. To solve this enigma, a quantitative assessment of all genotoxic and harmful non-genotoxic agents affecting the human body would be needed.
Kumar, Anuj; Priyadarshinee, Rashmi; Roy, Abhishek; Dasgupta, Dalia; Mandal, Tamal
2016-12-01
Rice mills release huge volumes of wastewater and other by-products when processing paddy rice. The wastewater often contains toxic inorganic and organic contaminants which cause environmental damage when released. Accordingly, cost-effective techniques for removing contaminants are needed. This article reviews current processes for curbing pollution and also reusing and recycling waste products. Novel techniques exist for converting waste products into energy and value-added products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Brill, Nancy L; Osborne, Jason; Abney, Mark R
2013-10-01
A farmscape study was conducted in commercial sweetpotato (Ipomoea batatas (L.) Lam) fields in Columbus County, NC, in 2010 and 2011 to investigate the effects of the following field conditions: soil drainage class, soil texture, field size, border habitat, land elevation, and the previous year's crop rotation on the incidence of damage caused by Plectris aliena Chapman (Coleoptera:Scarabaeidae) larval feeding. Soil drainage and crop rotation significantly affected the incidence of damage to roots, with well drained soils having a low estimated incidence of damaged roots (0.004) compared with all other drainage classes (0.009-0.011 incidence of damaged roots). Fields with soybeans [Glycine max (L.) Merr] planted the preceding year had the highest incidence of root damage (0.15) compared with all other crops. The effects of border habitats, which were adjacent to grower fields where roots were sampled, showed that as the location of the roots was closer to borders of soybean (planted the year before) or grass fields, the chance of damage to roots decreased. Results indicate that growers can use crop rotation as a management technique and avoid planting sweetpotatoes the year after soybeans to reduce the incidence of P. aliena larval feeding on sweetpotato roots. Environmental conditions such as fields with poor drainage and certain border habitats may be avoided, or selected, by growers to reduce risk of damage to roots by P. aliena.
NASA Astrophysics Data System (ADS)
Mosa, Kareem A.; El-Keblawy, Ali; Najar, Atyat
2017-04-01
Calotropis procera seedlings could be used as a rapid cost effective bioindicator for measuring aluminum environmental pollution Kareem A. Mosa, Ali El-Keblawy, Atyat Najar Department of Applied Biology, College of Sciences, University of Sharjah, UAE Rapid industrialization and urbanization processes has led to the incorporation of different heavy metals in natural resources like soil, water and air thus affecting their quality. Aluminum (Al) is a dominant heavy metal pollutant that causes serious toxic effects to living systems including plants. Therefore, it is critical to regularly monitor the changes in Al levels in natural resources. Living organisms could be used as bioindicators for monitoring and measuring the levels of heavy metals in environmental samples. The aim of this study was to develop a cost effective bioindicator for monitoring aluminum (Al) and assess the damage caused by Al bioaccumulation using the root system of Calotropis Procera seedlings. A hydroponic system was developed for growing C. Procera in four different concentrations of Al (20, 40, 60 and 80 ppm). Root length and shoot fresh and dry weights were assessed after 5, 10, 15 and 20 days of Al treatment. The results showed remarkable sensitivity of C. Procera seedlings for the different concentrations of Al. There was gradual but significant decrease in C. Procera root length with the increase in the Al concentrations. X-ray fluorescence microscopy (XRF) analysis indicated a significant increase in Al concentration in C. Procera roots with the increase of both Al concentration in the hydroponic solution and the growing period. Moreover, electrical conductivity analysis showed that Al induced damage to C. Procera root plasma membrane as indicated by the increase in electrolyte leakages. Randomly amplified polymorphic DNA (RAPD) PCR analysis confirmed the genotoxin effect of Al which induced C. Procera genomic DNA modification. Altogether, the result demonstrated that C. Procera could be used as a bioindicator for direct monitoring of aluminum environmental pollution.
The Human Stomach in Health and Disease: Infection Strategies by Helicobacter pylori.
Robinson, Karen; Letley, Darren P; Kaneko, Kazuyo
2017-01-01
Helicobacter pylori is a bacterial pathogen which commonly colonizes the human gastric mucosa from early childhood and persists throughout life. In the vast majority of cases, the infection is asymptomatic. H. pylori is the leading cause of peptic ulcer disease and gastric cancer, however, and these outcomes occur in 10-15% of those infected. Gastric adenocarcinoma is the third most common cause of cancer-associated death, and peptic ulcer disease is a significant cause of morbidity. Disease risk is related to the interplay of numerous bacterial host and environmental factors, many of which influence chronic inflammation and damage to the gastric mucosa. This chapter summarizes what is known about health and disease in H. pylori infection, and highlights the need for additional research in this area.
NASA Astrophysics Data System (ADS)
Garlipp, C. R.; Bottini, P. V.; de Capitan, E. M.; Pinho, M. C.; Panzan, A. D. N.; Sakuma, A. M. A.; Paoliello, M. B.
2003-05-01
In Southeast Brazil. Ribeira Valley region has been a major public health concern due to he environmental heavy metals contamination indexes of vegetation, rocks and aquifers, caused by locai mining in the past. Human contamination low levels of heavy rnetals doesn't cause acute intoxication but ni chronic exposure, renal damage may occur with progressive tubuJointerstitial changes evolvil1g to glomemlar 1esiol1, ln this stndy we invesligated the relationship between thc profile of utillan, excreted proteins (glomerular or lubular origin) of arsenic and mercury and blood lead concentration in chiJdren and adults from highly e) qJosed regions of the Ribeira Valley. The subjects were classieed as GROUP 1 (GI; higher environmental risk n=333) and GROUP 2 (G2; lower risk of contamination. n=104). In order to determine the urinary excretion of total protein, albumin (MA, glomerular marker) and alpha i microglobulin (AIM, tubular marker) and the blood lead concentrations. random wine and blood samples were obtaiiied. Plasmatic lead levels were assessed by atomic absorption spectrometty with graphite fumace. Totai protein concentration (PROT) was assessed on a biochemical analyzer ,progallol red method). MA and AIM were determined by nephelometric method. Croup 1 showcd a higher frequency of altered urinary excretion of PROT (GI=3.4%; G2=1.0%), MA (Gl=9.0%; G2=5.1%) and AIM (Gt=7.5%, G2=3.8%), without significant differences between both groups. Elevated arscnic levels were more prevaient among subjects from Group 1 (2.8.8%) and demonstrated a significant corrolation with abiiormal iirinarv excretion of ilbumin and alpha-l-micrglobulin (p=0.019).Leadaand mercury levels showed no difference among the groups and no correlation will MAa and/or M. Oti-c dala suggests that abnormal itrinary protein excretion is relatively frequent in this population independently of the plasmatic or urinaryl heavy metal levels. The early detection of possible renal damage become necessary for effective measures can be taken to prevent clinical nephropathies.
Environmental degradation of Opalinus Clay with cyclic variations in relative humidity
NASA Astrophysics Data System (ADS)
Wild, Katrin; Walter, Patric; Madonna, Claudio; Amann, Florian
2016-04-01
Clay shales are considered as favorable host rocks for nuclear waste repositories due to their low permeability, high sorption capacity and the potential for self-sealing. However, the favorable characteristics of the rock mass may change during tunnel excavation. Excavation is accompanied by stress redistribution and the development of an excavation damage zone. Furthermore, unloading and exposure to atmospheric conditions with a lower relative humidity (RH) causes desaturation of the rock mass close to the tunnel. This leads to shrinkage and the formation of desiccation cracks. During the open drift stage, seasonal atmospheric changes, especially RH variations, may alter the rock mass and influence the long-term crack evolution. This contribution discusses the influence of RH variation on the mechanical behavior of OPA. A series of specimens were exposed to short-term and long-term, stepwise cyclic RH variations between about 60 and 95% at constant temperature. Strains were measured using strain gauges to monitor the volumetric response during RH cycles. After each applied RH cycle, Brazilian tensile strength (BTS) tests were performed to identify whether there is a change in tensile strength due to environmental damage caused by the change in RH. Swelling and shrinkage of the specimens accompanied by irreversible volumetric expansion was observed as a consequence of the exposure to RH cycles. However, the irreversible strain was limited to the direction normal to bedding suggesting that internal damage is restricted along the bedding planes. No significant effect of cyclic RH variations on the BTS of the specimens was observed. The strength parallel to bedding remained constant over several cycles while the strength normal to bedding shows a slightly decreasing trend after 2 cycles. Furthermore, the water retention characteristics of the specimens were not altered significantly during stepwise RH cycling as the evolution of the water content was reversible throughout the cycles. For the RH variation used, the results suggest that the long-term crack evolution around excavations in OPA is not expected to be significantly influenced by environmental degradation but dominated by other processes such as consolidation and creep.
Damage Caused by the Rogue Trustee
ERIC Educational Resources Information Center
O'Banion, Terry
2009-01-01
Fifty-nine community college presidents and chancellors in 16 states report on the damage caused by rogue trustees. While the damage to presidents, other trustees, and faculty and staff is alarming, the damage these trustees cause the college suggests that the rogue trustee may be the single most destructive force ever to plague an educational…
Role of dietary fatty acids in liver injury caused by vinyl chloride metabolites in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anders, Lisanne C
Background: Vinyl chloride (VC) causes toxicant-associated steatohepatitis at high exposure levels. Recent work by this group suggests that underlying liver disease may predispose the liver to VC hepatotoxicity at lower exposure levels. The most common form of underlying liver disease in the developed world is non-alcoholic fatty liver disease (NAFLD). It is well-known that the type of dietary fat can play an important role in the pathogenesis of NAFLD. However, whether the combination of dietary fat and VC/metabolites promotes liver injury has not been studied. Methods: Mice were administered chloroethanol (CE - a VC metabolite) or vehicle once, 10 weeksmore » after being fed diets rich in saturated fatty acids (HSFA), rich in poly-unsaturated fatty acids (HPUFA), or the respective low-fat control diets (LSFA; LPUFA). Results: In control mice, chloroethanol caused no detectable liver injury, as determined by plasma transaminases and histologic indices of damage. In HSFA-fed mice, chloroethanol increased HSFA-induced liver damage, steatosis, infiltrating inflammatory cells, hepatic expression of proinflammatory cytokines, and markers of endoplasmic reticulum (ER) stress. Moreover, markers of inflammasome activation were increased, while markers of inflammasome inhibition were downregulated. In mice fed HPUFA all of these effects were significantly attenuated. Conclusions: Chloroethanol promotes inflammatory liver injury caused by dietary fatty acids. This effect is far more exacerbated with saturated fat, versus poly-unsaturated fat; and strongly correlates with a robust activation of the NLRP3 inflammasome in the saturated fed animals only. Taken together these data support the hypothesis that environmental toxicant exposure can exacerbate the severity of NAFLD/NASH. - Highlights: • CE promotes inflammatory liver injury caused by dietary fatty acids. • This effect is stronger with saturated than with unsaturated fatty acids. • Damage caused by saturated fat and CE correlates with inflammasome activation.« less
Environmental concerns and future oil and gas developments in Coastal Wetlands of Louisiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
John, C.J.; Harder, B.J.; Groat, C.G.
1993-09-01
Recent studies have confirmed that much oil and natural gas have been overlooked and increases in future recoverable reserves will come from drilling in these areas. Increased production will result from identifying unexploited compartmentalized reservoirs, new infield reservoirs, and bypassed reservoirs, and by using enhanced recovery technologies for hydrocarbon recovery in incompletely drained reservoirs previously left unproduced for economic reasons. Most of southern Louisiana's hydrocarbon reserves underlie coastal wetland areas of the state. Major environmental concerns associated with the future development of existing reserves are canal dredging and destruction of wildlife habitat, use and disposal of oil-based muds, mitigation formore » wetland damage, and the recent emerging issue of surface contamination by naturally occurring radioactive materials with potential liabilities and future remedial regulation. To reduce wetland environmental damage caused by access canals to drilling sites, the Coastal Management Division of the Louisiana Department of Natural Resources instituted a geologic reviews program to review drilling permit application in the coastal wetlands. This process provides a mechanism for state and federal agencies to comment on the requested drilling permit. As a result of this process, the total average wetland disturbed area has been reduced from 767 ac per year in 1982 to approximately 76 ac per year in 1991. Average lengths of access canals also have been reduced by approximately 78% during the period. Oil and gas companies are becoming increasingly aware of the environmental consequences of drilling in wetlands and are considering them in planning for development activities. In the current climate of increasing public consciousness about the environment, addressing environmental concerns in the planning state will go a long way in helping alleviate future environmental problems.« less
Molecular and sensory mechanisms to mitigate sunlight-induced DNA damage in treefrog tadpoles.
Schuch, André P; Lipinski, Victor M; Santos, Mauricio B; Santos, Caroline P; Jardim, Sinara S; Cechin, Sonia Z; Loreto, Elgion L S
2015-10-01
The increased incidence of solar ultraviolet B (UVB) radiation has been proposed as an environmental stressor, which may help to explain the enigmatic decline of amphibian populations worldwide. Despite growing knowledge regarding the UV-induced biological effects in several amphibian models, little is known about the efficacy of DNA repair pathways. In addition, little attention has been given to the interplay between these molecular mechanisms with other physiological strategies that avoid the damage induced by sunlight. Here, DNA lesions induced by environmental doses of solar UVB and UVA radiation were detected in genomic DNA samples of treefrog tadpoles (Hypsiboas pulchellus) and their DNA repair activity was evaluated. These data were complemented by monitoring the induction of apoptosis in blood cells and tadpole survival. Furthermore, the tadpoles' ability to perceive and escape from UV wavelengths was evaluated as an additional strategy of photoprotection. The results show that tadpoles are very sensitive to UVB light, which could be explained by the slow DNA repair rates for both cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6,4) pyrimidone photoproducts (6,4PPs). However, they were resistant to UVA, probably as a result of the activation of photolyases during UVA irradiation. Surprisingly, a sensory mechanism that triggers their escape from UVB and UVA light avoids the generation of DNA damage and helps to maintain the genomic integrity. This work demonstrates the genotoxic impact of both UVB and UVA radiation on tadpoles and emphasizes the importance of the interplay between molecular and sensory mechanisms to minimize the damage caused by sunlight. © 2015. Published by The Company of Biologists Ltd.
Sykora, Peter; Chiari, Ylenia; Heaton, Andrew; Moreno, Nickolas; Glaberman, Scott; Sobol, Robert W
2018-05-01
DNA damage has been linked to genomic instability and the progressive breakdown of cellular and organismal homeostasis, leading to the onset of disease and reduced longevity. Insults to DNA from endogenous sources include base deamination, base hydrolysis, base alkylation, and metabolism-induced oxidative damage that can lead to single-strand and double-strand DNA breaks. Alternatively, exposure to environmental pollutants, radiation or ultra-violet light, can also contribute to exogenously derived DNA damage. We previously validated a novel, high through-put approach to measure levels of DNA damage in cultured mammalian cells. This new CometChip Platform builds on the classical single cell gel electrophoresis or comet methodology used extensively in environmental toxicology and molecular biology. We asked whether the CometChip Platform could be used to measure DNA damage in samples derived from environmental field studies. To this end, we determined that nucleated erythrocytes from multiple species of turtle could be successfully evaluated in the CometChip Platform to quantify levels of DNA damage. In total, we compared levels of DNA damage in 40 animals from two species: the box turtle (Terrapene carolina) and the red-eared slider (Trachemys scripta elegans). Endogenous levels of DNA damage were identical between the two species, yet we did discover some sex-linked differences and changes in DNA damage accumulation. Based on these results, we confirm that the CometChip Platform allows for the measurement of DNA damage in a large number of samples quickly and accurately, and is particularly adaptable to environmental studies using field-collected samples. Environ. Mol. Mutagen. 59:322-333, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Solvents and Parkinson disease: A systematic review of toxicological and epidemiological evidence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lock, Edward A., E-mail: e.lock@ljmu.ac.uk; Zhang, Jing; Checkoway, Harvey
2013-02-01
Parkinson disease (PD) is a debilitating neurodegenerative motor disorder, with its motor symptoms largely attributable to loss of dopaminergic neurons in the substantia nigra. The causes of PD remain poorly understood, although environmental toxicants may play etiologic roles. Solvents are widespread neurotoxicants present in the workplace and ambient environment. Case reports of parkinsonism, including PD, have been associated with exposures to various solvents, most notably trichloroethylene (TCE). Animal toxicology studies have been conducted on various organic solvents, with some, including TCE, demonstrating potential for inducing nigral system damage. However, a confirmed animal model of solvent-induced PD has not been developed.more » Numerous epidemiologic studies have investigated potential links between solvents and PD, yielding mostly null or weak associations. An exception is a recent study of twins indicating possible etiologic relations with TCE and other chlorinated solvents, although findings were based on small numbers, and dose–response gradients were not observed. At present, there is no consistent evidence from either the toxicological or epidemiologic perspective that any specific solvent or class of solvents is a cause of PD. Future toxicological research that addresses mechanisms of nigral damage from TCE and its metabolites, with exposure routes and doses relevant to human exposures, is recommended. Improvements in epidemiologic research, especially with regard to quantitative characterization of long-term exposures to specific solvents, are needed to advance scientific knowledge on this topic. -- Highlights: ► The potential for organic solvents to cause Parkinson's disease has been reviewed. ► Twins study suggests etiologic relations with chlorinated solvents and Parkinson's. ► Animal studies with TCE showed potential to cause damage to dopaminergic neurons. ► Need to determine if effects in animals are relevant to human exposure levels.« less
Fan, Yan; He, Hong; Dong, Yan; Pan, Hengbiao
2013-12-01
Fungal virulence mechanisms include adhesion to epithelia, morphogenesis, production of secretory hydrolytic enzymes, and phenotype switching, all of which contribute to the process of pathogenesis. A striking feature of the biology of Candida albicans is its ability to grow in yeast, pseudohyphal, and hyphal forms. The hyphal form plays an important role in causing disease, by invading epithelial cells and causing tissue damage. In this review, we illustrate some of the main hyphae-specific genes, namely HGC1, UME6, ALS3, HWP1, and ECE1, and their relevant and reversed signal transduction pathways in reactions stimulated by environmental factors, including pH, CO2, and serum.
Salerno, Tatiana; Ribeiro, Márcio Garcia; Langoni, Hélio; Siqueira, Amanda Keller; Costa, Elizabeth Oliveira da; Melville, Priscilla Anne; Bueno, Válter Ferreira Félix; Yamamura, Aline Artioli Machado; Roesler, Uwe; da Silva, Aristeu Vieira
2010-04-01
Prototheca zopfii has been considered one of the most important causes of environmental mastitis in Brazil. These algae are refractory to conventional therapy and cause great damage to the mammary gland. The present study evaluated the in vitro algaecide effect of sodium hypochlorite and iodine based antiseptics on 27 P. zopfii strains isolated from the milk of cattle. Low concentrations of sodium hypochlorite (0.0390625-0.15625%) and iodine (0.15625-0.625%) were effective against the isolates. These antiseptics may be recommended for hygiene routines, pre and postdipping and cauterization of bovine mammary glands infected by P. zopfii. Copyright 2009 Elsevier Ltd. All rights reserved.
Inflammation in aging: cause, effect, or both?
Jenny, Nancy S
2012-06-01
Aging is a progressive degenerative process tightly integrated with inflammation. Cause and effect are not clear. A number of theories have been developed that attempt to define the role of chronic inflammation in aging: redox stress, mitochondrial damage, immunosenescence, endocrinosenescence, epigenetic modifications, and age-related diseases. However, no single theory explains all aspects of aging; instead, it is likely that multiple processes contribute and that all are intertwined with inflammatory responses. Human immunodeficiency virus (HIV)-infected patients undergo a premature aging phenomenon which may provide clues to better elucidate the nature of inflammation in aging. Environmental and lifestyle effectors of inflammation may also contribute to modulation of both inflammation and age-related dysfunction.
The effects of ozone exposure and associated injury mechanisms on the central nervous system.
Martínez-Lazcano, Juan Carlos; González-Guevara, Edith; del Carmen Rubio, María; Franco-Pérez, Javier; Custodio, Verónica; Hernández-Cerón, Miguel; Livera, Carlos; Paz, Carlos
2013-01-01
Ozone (O3) is a component of photochemical smog, which is a major air pollutant and demonstrates properties that are harmful to health because of the toxic properties that are inherent to its powerful oxidizing capabilities. Environmental O3 exposure is associated with many symptoms related to respiratory disorders, which include loss of lung function, exacerbation of asthma, airway damage, and lung inflammation. The effects of O3 are not restricted to the respiratory system or function - adverse effects within the central nervous system (CNS) such as decreased cognitive response, decrease in motor activity, headaches, disturbances in the sleep-wake cycle, neuronal dysfunctions, cell degeneration, and neurochemical alterations have also been described; furthermore, it has also been proposed that O3 could have epigenetic effects. O3 exposure induces the reactive chemical species in the lungs, but the short half-life of these chemical species has led some authors to attribute the injurious mechanisms observed within the lungs to inflammatory processes. However, the damage to the CNS induced by O3 exposure is not well understood. In this review, the basic mechanisms of inflammation and activation of the immune system by O3 exposure are described and the potential mechanisms of damage, which include neuroinflammation and oxidative stress, and the signs and symptoms of disturbances within the CNS caused by environmental O3 exposure are discussed.
Matzenbacher, Cristina Araujo; Garcia, Ana Letícia Hilario; Dos Santos, Marcela Silva; Nicolau, Caroline Cardoso; Premoli, Suziane; Corrêa, Dione Silva; de Souza, Claudia Telles; Niekraszewicz, Liana; Dias, Johnny Ferraz; Delgado, Tânia Valéria; Kalkreuth, Wolfgang; Grivicich, Ivana; da Silva, Juliana
2017-02-15
Coal mining and combustion generating huge amounts of bottom and fly ash are major causes of environmental pollution and health hazards due to the release of polycyclic aromatic hydrocarbons (PAH) and heavy metals. The Candiota coalfield in Rio Grande do Sul, is one of the largest open-cast coal mines in Brazil. The aim of this study was to evaluate genotoxic and mutagenic effects of coal, bottom ash and fly ash samples from Candiota with the comet assay (alkaline and modified version) and micronucleus test using the lung fibroblast cell line (V79). Qualitative and quantitative analysis of PAH and inorganic elements was carried out by High Performance Liquid Chromatography (HPLC) and by Particle-Induced X-ray Emission (PIXE) techniques respectively. The samples demonstrated genotoxic and mutagenic effects. The comet assay modified using DNA-glicosilase formamidopirimidina (FPG) endonuclease showed damage related to oxidative stress mechanisms. The amount of PAHs was higher in fly ash followed by pulverized coal. The amount of inorganic elements was highest in fly ash, followed by bottom ash. It is concluded that the samples induce DNA damage by mechanisms that include oxidative stress, due to their complex composition, and that protective measures have to be taken regarding occupational and environmental hazards. Copyright © 2016 Elsevier B.V. All rights reserved.
Bilham, Kirstin; Newman, Chris; Buesching, Christina D; Noonan, Michael J; Boyd, Amy; Smith, Adrian L; Macdonald, David W
Wild-living animals are subject to weather variability that may cause the generation of reactive oxygen species, resulting in oxidative stress and tissue damage, potentially driving demographic responses. Our 3-yr field study investigated the effects of seasonal weather conditions on biomarkers for oxidative stress, oxidative damage, and antioxidant defense in the European badger (Meles meles). We found age class effects: cubs were more susceptible to oxidative stress and oxidative damage than adults, especially very young cubs in the spring, when they also exhibited lower antioxidant biomarkers than adults. Although previous studies have found that intermediate spring and summer rainfall and warmer temperatures favor cub survival, counterintuitively these conditions were associated with more severe oxidative damage. Oxidative damage was high in cubs even when antioxidant biomarkers were high. In contrast, adult responses accorded with previous survival analyses. Wetter spring and summer conditions were associated with higher oxidative damage, but they were also associated with higher antioxidant biomarkers. Autumnal weather did not vary substantially from normative values, and thus effects were muted. Winter carryover effects were partially evident, with drier and milder conditions associated with greater oxidative damage in the following spring but also with higher antioxidant capacity. Plausibly, warmer conditions promoted more badger activity, with associated metabolic costs at a time of year when food supply is limited. Modeling biomarkers against projected climate change scenarios predicted greater future risks of oxidative damage, although not necessarily exceeding antioxidant capacity. This interdisciplinary approach demonstrates that individual adaptive physiological responses are associated with variation in natural environmental conditions.
Liu, Hong-Tao
2016-10-01
Recycling sludge as a soil amendment has both positive and negative effects because of its enrichment in both nutrients and contaminants. So far, the negative effect has to be extensively investigated that the severities of different types of contaminants also remain unclear. The environmental behavior and risk of organic contaminant and pharmaceuticals, heavy metal and salt as well as pathogenic microorganisms brought by sludge amendment are summarized and discussed here. Organic contaminants and pharmaceuticals are typically found at low concentrations in sludge, the risks from sludge-amended soil decrease over time owing to its biodegradability. On the other hand, application of sludge generally increases soil salinity, which may cause physiological damage to plants grown in sludge-amended soil. In some extent, this negative effect can be alleviated by means of dilution; however, greater attention should be paid to long term increasing possible risk of eutrophication. Heavy metal (particularly of mobile heavy metals, such as Cd) with high concentrations in sludge and soil receiving considerable sludge can cause its incremental abundance in soil and crop contamination, further posing risks to humans, but most cases showed that there remained not excessive in heavy metal caused by sludge amendment. It is worth noting that increasing soil organic matter content may reduce transfer of heavy metal from soil to crops, but not restrict its uptake by crops at all. Combined literature together, it is summarized that heavy metal becomes a relatively severe bottleneck in recycling of sludge as soil amendment due to its non-biodegradability and potential damage to health by adventuring contamination from agricultural products. Particular attention should therefore be paid to long term monitoring the change of heavy metals concentration in sludge amended soil. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pirhonen, P.
Life-cycle assessment is usually based on regular discharges that occur at a more or less constant rate. Nevertheless, the more factors that are taken into account in the LCA the better picture it gives on the environmental aspects of a product. In this study an approach to incorporate accidental releases into a products` life-cycle assessment was developed. In this approach accidental releases are divided into two categories. The first category consists of those unplanned releases which occur with a predicted level and frequency. Due to the high frequency and small release size at a time, these accidental releases can bemore » compared to continuous emissions. Their global impacts are studied in this approach. Accidental releases of the second category are sudden, unplanned releases caused by exceptional situations, e.g. technical failure, action error or disturbances in process conditions. These releases have a singular character and local impacts are typical of them. As far as the accidental releases of the second category are concerned, the approach introduced in this study results in a risk value for every stage of a life-cycle, the sum of which is a risk value for the whole life-cycle. Risk value is based on occurrence frequencies of incidents and potential environmental damage caused by releases. Risk value illustrates the level of potential damage caused by accidental releases related to the system under study and is meant to be used for comparison of these levels of two different products. It can also be used to compare the risk levels of different stages of the life-cycle. An approach was illustrated using petrol as an example product. The whole life-cycle of petrol from crude oil production to the consumption of petrol was studied.« less
NASA Astrophysics Data System (ADS)
Avilova, I. P.; Krutilova, M. O.
2018-01-01
Economic growth is the main determinant of the trend to increased greenhouse gas (GHG) emission. Therefore, the reduction of emission and stabilization of GHG levels in the atmosphere become an urgent task to avoid the worst predicted consequences of climate change. GHG emissions in construction industry take a significant part of industrial GHG emission and are expected to consistently increase. The problem could be successfully solved with a help of both economical and organizational restrictions, based on enhanced algorithms of calculation and amercement of environmental harm in building industry. This study aims to quantify of GHG emission caused by different constructive schemes of RC framework in concrete casting. The result shows that proposed methodology allows to make a comparative analysis of alternative projects in residential housing, taking into account an environmental damage, caused by construction process. The study was carried out in the framework of the Program of flagship university development on the base of Belgorod State Technological University named after V.G. Shoukhov
Peripheral blood lymphocytes: a model for monitoring physiological adaptation to high altitude.
Mariggiò, Maria A; Falone, Stefano; Morabito, Caterina; Guarnieri, Simone; Mirabilio, Alessandro; Pilla, Raffaele; Bucciarelli, Tonino; Verratti, Vittore; Amicarelli, Fernanda
2010-01-01
Depending on the absolute altitude and the duration of exposure, a high altitude environment induces various cellular effects that are strictly related to changes in oxidative balance. In this study, we used in vitro isolated peripheral blood lymphocytes as biosensors to test the effect of hypobaric hypoxia on seven climbers by measuring the functional activity of these cells. Our data revealed that a 21-day exposure to high altitude (5000 m) (1) increased intracellular Ca(2+) concentration, (2) caused a significant decrease in mitochondrial membrane potential, and (3) despite possible transient increases in intracellular levels of reactive oxygen species, did not significantly change the antioxidant and/or oxidative damage-related status in lymphocytes and serum, assessed by measuring Trolox-equivalent antioxidant capacity, glutathione peroxidase activity, vitamin levels, and oxidatively modified proteins and lipids. Overall, these results suggest that high altitude might cause an impairment in adaptive antioxidant responses. This, in turn, could increase the risk of oxidative-stress-induced cellular damage. In addition, this study corroborates the use of peripheral blood lymphocytes as an easily handled model for monitoring adaptive response to environmental challenge.
The Protective Role of Antioxidants in the Defence against ROS/RNS-Mediated Environmental Pollution
Poljšak, Borut; Fink, Rok
2014-01-01
Overproduction of reactive oxygen and nitrogen species can result from exposure to environmental pollutants, such as ionising and nonionising radiation, ultraviolet radiation, elevated concentrations of ozone, nitrogen oxides, sulphur dioxide, cigarette smoke, asbestos, particulate matter, pesticides, dioxins and furans, polycyclic aromatic hydrocarbons, and many other compounds present in the environment. It appears that increased oxidative/nitrosative stress is often neglected mechanism by which environmental pollutants affect human health. Oxidation of and oxidative damage to cellular components and biomolecules have been suggested to be involved in the aetiology of several chronic diseases, including cancer, cardiovascular disease, cataracts, age-related macular degeneration, and aging. Several studies have demonstrated that the human body can alleviate oxidative stress using exogenous antioxidants. However, not all dietary antioxidant supplements display protective effects, for example, β-carotene for lung cancer prevention in smokers or tocopherols for photooxidative stress. In this review, we explore the increases in oxidative stress caused by exposure to environmental pollutants and the protective effects of antioxidants. PMID:25140198
Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain.
Liang, Chanjuan; Wang, Weimin
2013-11-01
Excess of rare earth elements in soil can be a serious environmental stress on plants, in particular when acid rain coexists. To understand how such a stress affects plants, we studied antioxidant response of soybean leaves and roots exposed to lanthanum (0.06, 0.18, and 0.85 mmol L(-1)) under acid rain conditions (pH 4.5 and 3.0). We found that low concentration of La3+ (0.06 mmol L(-1)) did not affect the activity of antioxidant enzymes (catalase and peroxidase) whereas high concentration of La3+ (≥0.18 mmol L(-1)) did. Compared to treatment with acid rain (pH 4.5 and pH 3.0) or La3+ alone, joint stress of La3+ and acid rain affected more severely the activity of catalase and peroxidase, and induced more H2O2 accumulation and lipid peroxidation. When treated with high level of La3+ (0.85 mmol L(-1)) alone or with acid rain (pH 4.5 and 3.0), roots were more affected than leaves regarding the inhibition of antioxidant enzymes, physiological function, and growth. The severity of oxidative damage and inhibition of growth caused by the joint stress associated positively with La3+ concentration and soil acidity. These results will help us understand plant response to joint stress, recognize the adverse environmental impact of rare earth elements in acidic soil, and develop measures to eliminate damage caused by such joint stress.
Xu, Xuehui; Huang, Honglin; Wen, Bei; Wang, Sen; Zhang, Shuzhen
2015-03-16
Polybrominated diphenyl ethers (PBDEs), methoxylated PBDEs (MeO-PBDEs), and hydroxylated PBDEs (OH-PBDEs) are widely found in various environmental media, which is of concern given their biological toxicity. In this study, the phytotoxicities of BDE-47, 6-MeO-BDE-47, and 6-OH-BDE-47 to maize (Zea mays L.) were investigated by an in vivo exposure experiment. Results showed that BDE-47, 6-MeO-BDE-47, and 6-OH-BDE-47 inhibited seed germination and seedling development, and elevated malondialdehyde (MDA), carbonyl groups, and phosphorylated histone H2AX levels in maize roots, suggesting the inducement of lipid peroxidation, protein carbonylation, and DNA damage to maize. Exposure to BDE-47, 6-MeO-BDE-47, and 6-OH-BDE-47 caused the overproduction of H2O2, O2(•-), and •OH, and elevated the activities of antioxidant enzymes in the roots. In addition, 6-OH-BDE-47 caused more severe damage and reactive oxygen species (ROS) generation in maize than did BDE-47 and 6-MeO-BDE-47. These results demonstrated the phytotoxicities of BDE-47, 6-OH-BDE-47, and 6-MeO-BDE-47 to maize, and clarified that overproduction of ROS was the key mechanism leading to toxicity. This study offers useful information for a more comprehensive understanding of the environmental behaviors and toxicities of PBDEs, MeO-PBDEs, and OH-PBDEs.
Stefănescu, Lucrina; Robu, Brînduşa Mihaela; Ozunu, Alexandru
2013-11-01
The environmental impact assessment of mining sites represents nowadays a large interest topic in Romania. Historical pollution in the Rosia Montana mining area of Romania caused extensive damage to environmental media. This paper has two goals: to investigate the environmental pollution induced by mining activities in the Rosia Montana area and to quantify the environmental impacts and associated risks by means of an integrated approach. Thus, a new method was developed and applied for quantifying the impact of mining activities, taking account of the quality of environmental media in the mining area, and used as case study in the present paper. The associated risks are a function of the environmental impacts and the probability of their occurrence. The results show that the environmental impacts and quantified risks, based on quality indicators to characterize the environmental quality, are of a higher order, and thus measures for pollution remediation and control need to be considered in the investigated area. The conclusion drawn is that an integrated approach for the assessment of environmental impact and associated risks is a valuable and more objective method, and is an important tool that can be applied in the decision-making process for national authorities in the prioritization of emergency action.
Eco-analytical Methodology in Environmental Problems Monitoring
NASA Astrophysics Data System (ADS)
Agienko, M. I.; Bondareva, E. P.; Chistyakova, G. V.; Zhironkina, O. V.; Kalinina, O. I.
2017-01-01
Among the problems common to all mankind, which solutions influence the prospects of civilization, the problem of ecological situation monitoring takes very important place. Solution of this problem requires specific methodology based on eco-analytical comprehension of global issues. Eco-analytical methodology should help searching for the optimum balance between environmental problems and accelerating scientific and technical progress. The fact that Governments, corporations, scientists and nations focus on the production and consumption of material goods cause great damage to environment. As a result, the activity of environmentalists is developing quite spontaneously, as a complement to productive activities. Therefore, the challenge posed by the environmental problems for the science is the formation of geo-analytical reasoning and the monitoring of global problems common for the whole humanity. So it is expected to find the optimal trajectory of industrial development to prevent irreversible problems in the biosphere that could stop progress of civilization.
The importance of early investigation and publishing in an emergent health and environment crisis.
Murase, Kaori
2016-10-01
To minimize the damage resulting from a long-term environmental disaster such as the 2011 Fukushima nuclear accident in Japan, early disclosure of research data by scientists and prompt decision making by government authorities are required in place of careful, time-consuming research and deliberation about the consequences and cause of the accident. A Bayesian approach with flexible statistical modeling helps scientists and encourages government authorities to make decisions based on environmental data available in the early stages of a disaster. It is evident from Fukushima and similar accidents that classical research methods involving statistical methodologies that require rigorous experimental design and complex data sets are too cumbersome and delay important actions that may be critical in the early stages of an environmental disaster. Integr Environ Assess Manag 2016;12:680-682. © 2016 SETAC. © 2016 SETAC.
Evolution of environmental responsibility in civil engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovell, C.W.
1995-12-31
Environmental responsibility has evolved slowly and only after abundant evidence of damage to the earth. The global issues constitute a formidable list, all of which require immediate attention and remediation. A basic principle which can unify and cause scientists and engineers to cooperate and synergize is that of Sustainable Development. In this strategy, development takes place with appropriate environmental sensitivity. Unless population growth rates are sharply decreased, man will undoubtedly exhaust food supplies, even given great technology developments. Sustainable technology will involve many ideas and approaches, but an important one is reuse/recycle of current wastes such as scrap rubber tires,more » coal combustion ash, and spent foundry sands. Paving should be recycled, as well, and products of building demolition should also be separated and reused. The author has significant personal interest in this topic, and has given some details in the paper.« less
[Assessment of eco-environmental vulnerability of Hainan Island, China].
Huang, Bao-rong; Ouyang, Zhi-yun; Zhang, Hui-zhi; Zhang, Li-hua; Zheng, Hua
2009-03-01
Based on the assessment method of environmental vulnerability constructed by SOPAC and UNEP, this paper constructed an indicator system from three sub-themes including hazard, resistance, and damage to assess the eco-environmental vulnerability of Hainan Island. The results showed that Hainan Island was suffering a middling level eco-environmental hazard, and the main hazards came from some intensive human activities such as intensive agriculture, mass tourism, mining, and a mass of solid wastes thrown by islanders and tourists. Some geographical characters such as larger land area, larger altitude range, integrated geographical form, and abundant habitat types endowed Hainan Island higher resistance to environmental hazards. However, disturbed by historical accumulative artificial and natural hazards, the Island ecosystem had showed serious ecological damage, such as soil degradation and biodiversity loss. Comprehensively considered hazard, resistance, damage, and degradation, the comprehensive environmental vulnerability of the Island was at a middling level. Some indicators showed lower vulnerability, but some showed higher vulnerability.
NASA Astrophysics Data System (ADS)
Shi, Mingjie; Liu, Junjie; Zhao, Maosheng; Yu, Yifan; Saatchi, Sassan
2017-12-01
The long-term impact of Amazonian drought on canopy structure has been observed in ground and remote sensing measurements. However, it is still unclear whether it is caused by biotic (e.g., plant structure damage) or environmental (e.g., water deficiency) factors. We used the Community Land Model version 4.5 (CLM4.5) and radar backscatter observations from SeaWinds Scatterometer on board QuikSCAT (QSCAT) satellite to investigate the relative role of biotic and environmental factors in controlling the forest canopy disturbance and recovery processes after the 2005 Amazonian drought. We validated the CLM4.5 simulation of the drought impact and the recovery of leaf carbon (C) pool, an indicator of canopy structure, over southwestern Amazonia with QSCAT backscatter observations, which are sensitive to canopy structure change. We found that the leaf C pool simulated by CLM4.5 recovered to the 2000-2009 mean level (343 g C m-2) in 3 years after a sharp decrease in 2005, consistent with the QSCAT observed slow recovery. Through sensitivity experiments, we found that the slow C recovery was primarily due to biotic factors represented by the canopy damage and reduction of plant C pools. The recovery of soil water and the coupling between water and C pools, which is an environmental factor, only contributes 24% to the leaf C recovery. The results showed (1) the strength of scatterometer backscatter measurements in capturing canopy damage over tropical forests and in validating C cycle models and (2) the biotic factors play the dominant role in regulating the drought induced disturbance and persistent canopy changes in CLM4.5.
Gene-environment interaction and male reproductive function
Axelsson, Jonatan; Bonde, Jens Peter; Giwercman, Yvonne L.; Rylander, Lars; Giwercman, Aleksander
2010-01-01
As genetic factors can hardly explain the changes taking place during short time spans, environmental and lifestyle-related factors have been suggested as the causes of time-related deterioration of male reproductive function. However, considering the strong heterogeneity of male fecundity between and within populations, genetic variants might be important determinants of the individual susceptibility to the adverse effects of environment or lifestyle. Although the possible mechanisms of such interplay in relation to the reproductive system are largely unknown, some recent studies have indicated that specific genotypes may confer a larger risk of male reproductive disorders following certain exposures. This paper presents a critical review of animal and human evidence on how genes may modify environmental effects on male reproductive function. Some examples have been found that support this mechanism, but the number of studies is still limited. This type of interaction studies may improve our understanding of normal physiology and help us to identify the risk factors to male reproductive malfunction. We also shortly discuss other aspects of gene-environment interaction specifically associated with the issue of reproduction, namely environmental and lifestyle factors as the cause of sperm DNA damage. It remains to be investigated to what extent such genetic changes, by natural conception or through the use of assisted reproductive techniques, are transmitted to the next generation, thereby causing increased morbidity in the offspring. PMID:20348940
The Spatial Distributions and Variations of Water Environmental Risk in Yinma River Basin, China
Di, Hui; Liu, Xingpeng; Tong, Zhijun; Ji, Meichen
2018-01-01
Water environmental risk is the probability of the occurrence of events caused by human activities or the interaction of human activities and natural processes that will damage a water environment. This study proposed a water environmental risk index (WERI) model to assess the water environmental risk in the Yinma River Basin based on hazards, exposure, vulnerability, and regional management ability indicators in a water environment. The data for each indicator were gathered from 2000, 2005, 2010, and 2015 to assess the spatial and temporal variations in water environmental risk using particle swarm optimization and the analytic hierarchy process (PSO-AHP) method. The results showed that the water environmental risk in the Yinma River Basin decreased from 2000 to 2015. The risk level of the water environment was high in Changchun, while the risk levels in Yitong and Yongji were low. The research methods provide information to support future decision making by the risk managers in the Yinma River Basin, which is in a high-risk water environment. Moreover, water environment managers could reduce the risks by adjusting the indicators that affect water environmental risks. PMID:29543706
NASA Astrophysics Data System (ADS)
Vranken, L.; Van Turnhout, P.; Van Den Eeckhaut, M.; Vandekerckhove, L.; Vantilt, G.; Poesen, J.
2012-04-01
Several regions around the globe are at risk to incur damage from landslides. These landslides cause significant structural and functional damage to public and private buildings and infrastructure. Numerous studies investigated how natural factors and human activities control the (re-)activation of landslides. However, few studies have concentrated on a quantitative estimate of the overall damage caused by landslides at a regional scale. This study therefore starts with a quantitative economic assessment of the direct and indirect damage caused by landslides in the Flemish Ardennes (Belgium), a low-relief region (area=ca. 700 km2) susceptible to landslides. Based on focus interviews as well as on semi-structured interviews with homeowners, civil servants (e.g. from the technical services from the various towns), or with the owners and providers of lifelines such as electricity and sewage, we have quantitatively estimated the direct and indirect damage induced by landsliding and this for a 10 to 30 year period (depending on the type of infrastructure or buildings). Economic damage to public infrastructure and buildings was estimated for the entire region, while for private damage 10 cases with severe to small damage were quantified. For example, in the last 10 year, costs of road repair augmented to 814 560 €. Costs to repair damaged roads that have not yet been repaired, were estimated at 669 318 €. In the past 30 years, costs of measures to prevent road damage augmented to at least 14 872 380 €. More than 90% of this budget for preventive measures was spent 30 years ago, when an important freeway was damaged and had to be repaired. These preventive measures (building a grout wall and improving the drainage system) were effective as no further damage has been reported until present. To repair and prevent damage to waterworks and sewage systems, expenditures amounted to 551 044 € and this for the last 30 years. In the past 10 years, a new railway line connecting two important Belgian cities has been built and within that one project, the cost to prevent damage to railroads augmented already to at least 4 567 822 €. The value of real estate located in regions affected by landslides decreased with 15% to 35%. All these damage costs were then used to made potential damage maps. Based on the inventory of landslides, frequency of landslides' re-activation and land use, we categorized regions that are affected by landslides according to their temporal probability of landslide re-activation. This allowed us to produce a (semi-) qualitative risk map for regions that were affected by landslides in the past. This paper shows that, though generally not spectacular, landsliding in low-relief regions susceptible to landslides is a slow but continuously operating process with considerable damage allowing one to identify several medium to high landslide risk zones. As such this study provides important information for government officials, especially those in charge of spatial planning and of town and environmental planning, as it clearly informs about the costs associated with certain land use types in landslide prone areas. This information can be particularly useful for regions in which increasing demand for building land pressures government officials and (local) political leaders to expand the built environment.
NASA Astrophysics Data System (ADS)
Markantonis, V.; Bithas, K.
2009-04-01
In March 2006 Greece was struck by a severe flooding, which caused significant damages in the Prefecture of Evros, on the Eastern border of Greece. 250 million m² of farmland was flooded causing severe damages to agriculture, transport and water supply networks. Total direct damages are estimated at € 372 million. The negative effect on economic activity caused by the floods, considered the worst over the last 50 years, took place in an area that had already been severely affected by floods in 2005. Apart from the direct damages critical were also the indirect impacts on the environmental and the social level. The need for economic analysis concerning the design and implementation of efficient flood management policies is well emphasized in the natural hazards' policies. Within this framework, the present paper is analyzing the application of stated preferences valuation techniques for the assessment of the damages caused in the Prefecture of Evros by the severe floods of March 2006. The objective of this paper is to define the role of economic valuation techniques in assisting the design of efficient and sustainable policies for flood management. More specific, the Contingent Valuation (CV) method is applied in order to valuate the impacts of the March 2006 floods, including the environmental impacts as far as concerns the soil, the biodiversity and the aesthetic environment of the flooded areas. The paper begins with a discussion of the theoretical economic framework, and particularly, the contingent valuation method framework that can be used to evaluate flood impacts. Understanding public preferences for complex environmental policy changes, such as flood impacts, is a preeminent challenge for environmental economists and other social scientists. Information issues are central to the design and application of the survey-based contingent valuation (CV) method for valuing environmental goods. While content is under the control of the analyst, how this information is accessed and used is ultimately up to the respondent. In addition, the future trends of floods in the Evros River Basin are presented, linking the socio-economic framework with the physical conditions of climate change. The forecast of the future precipitation trends in the Evros River has been realized at the Bjerkness Climate Change Center, Norway (May - July 2006). The objective of this forecast is to identify the future extreme precipitation trends in the Evros River Basin applying the global change models and identifying the differences between the present climate and the IPCC scenarios for the future climate. The scenario used for the present climate was the ‘20C3M' and the scenarios used for the future climate was the ‘SRES A2' and the ‘SRES A1B as well. The climate change models used were the following: BCM, ECHAM5_MPI, GFDL and CNRM_CM3. The analysis was based on changes concerning extreme precipitation in periods of three and seven days, which can theoritically lead to flooding events. Eventually, an application of the contingent valuation method is presented using the case study of March 2006 floods in the Evros River. In this context, the valuation scenario, the structure of the questionnaire, the elaboration of the survey and the results of the application are thoroughly illustrated. The good, or policy, being valued is the flooding impacts, focusing more at environmental aspects (soil, biodiversity, aesthetic environment). The survey includes a sample of 53 local experts in floods from various sectors such as local authorities, local public services, agricultural associations, environmental NGO's and universities. The survey is based on peer to peer interviews, which theoretically provide the most coherent results. The valuation question explores the Willingness to Pay (WTP) to Avoid future impacts of flooding formatted as an annual household fee and alternatively as a percentage of the Prefecture's GDP. In both cases the respondents are also asked which percentage of their initially stated value should specifically given for the elimination of the impacts on the soil, the biodiversity and the aesthetic environment. Moreover, the payment vehicle is the payment card method with four pre-defined sets of values. The basic survey template includes three major sections. The first part contains attitudinal, and knowledge questions. The second part, or valuation section, contains the contingent valuation scenario, the actual valuation questions and the follow-up questions. The final section contains the demographic questions. Results indicate well informed local experts who are willing to pay respectable amounts in order to avoid flooding impacts and give a strong gravity on the environmental impacts of the floods. Also, respondents are criticizing the weaknesses of the current flood management status and provide alternative policies, which can potentially affect the policy-making.
Kim, Byung-Hak; Choi, Mi Sun; Lee, Hyun Gyu; Lee, Song-Hee; Noh, Kum Hee; Kwon, Sunho; Jeong, Ae Jin; Lee, Haeri; Yi, Eun Hee; Park, Jung Youl; Lee, Jintae; Joo, Eun Young; Ye, Sang-Kyu
2015-11-01
Exposure of the skin to ultraviolet radiation can cause skin damage with various pathological changes including inflammation. In the present study, we identified the skin-protective activity of 1,2,3,4,6-penta-O-galloyl-β-D-glucose (pentagalloyl glucose, PGG) in ultraviolet B (UVB) radiation-induced human dermal fibroblasts and mouse skin. PGG exhibited antioxidant activity with regard to intracellular reactive oxygen species (ROS) generation as well as ROS and reactive nitrogen species (RNS) scavenging. Furthermore, PGG exhibited anti-inflammatory activity, inhibiting the activation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling, resulting in inhibition of the expression of pro-inflammatory mediators. Topical application of PGG followed by chronic exposure to UVB radiation in the dorsal skin of hairless mice resulted in a significant decrease in the progression of inflammatory skin damages, leading to inhibited activation of NF-κB signaling and expression of pro-inflammatory mediators. The present study demonstrated that PGG protected from skin damage induced by UVB radiation, and thus, may be a potential candidate for the prevention of environmental stimuli-induced inflammatory skin damage.
Monitoring of corrosion damage using high-frequency guided ultrasonic waves
NASA Astrophysics Data System (ADS)
Chew, D.; Fromme, P.
2014-03-01
Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.
Monitoring of corrosion damage using high-frequency guided ultrasonic waves
NASA Astrophysics Data System (ADS)
Chew, D.; Fromme, P.
2015-03-01
Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.
Torabifard, Mina; Arjmandi, Reza; Rashidi, Alimorad; Nouri, Jafar; Mohammadfam, Iraj
2018-01-10
The health and environmental effects of chemical processes can be assessed during the initial stage of their production. In this paper, the Chemical Screening Tool for Exposure and Environmental Release (ChemSTEER) software was used to compare the health and environmental risks of spray pyrolysis and wet chemical techniques for the fabrication of nanostructured metal oxide on a semi-industrial scale with a capacity of 300 kg/day in Iran. The pollution sources identified in each production process were pairwise compared in Expert Choice software using indicators including respiratory damage, skin damage, and environmental damages including air, water, and soil pollution. The synthesis of nanostructured zinc oxide using the wet chemical technique (with 0.523 wt%) leads to lower health and environmental risks compared to when spray pyrolysis is used (with 0.477 wt%). The health and environmental risk assessment of nanomaterial production processes can help select safer processes, modify the operation conditions, and select or modify raw materials that can help eliminate the risks.
Superfund: conscripting industry support for environmental cleanup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulick, T.E.
The Superfund is notable in its attempt to charge the costs of environmental damage to those commercial interests that contributed to the damage. The approach should appeal to the Reagan administration's fiscal austerity program. It realizes the attendant costs to the benefits of our technologically productive society and recognizes that those costs must be paid either as environmental precautions or as cleanup costs, property damage, and disease. This article examines the major problems addressed by Superfund, describing the major provisions of the Act, discussing previously available remedies, and considering some of the problems that may arise with implementation. 126 references.
Structural Health Management of Damaged Aircraft Structures Using the Digital Twin Concept
NASA Technical Reports Server (NTRS)
Seshadri, Banavara R.; Krishnamurthy, Thiagarajan
2017-01-01
The development of multidisciplinary integrated Structural Health Management (SHM) tools will enable accurate detection, and prognosis of damaged aircraft under normal and adverse conditions during flight. As part of the digital twin concept, methodologies are developed by using integrated multiphysics models, sensor information and input data from an in-service vehicle to mirror and predict the life of its corresponding physical twin. SHM tools are necessary for both damage diagnostics and prognostics for continued safe operation of damaged aircraft structures. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and structural damage conditions. A major concern in these structures is the growth of undetected damage/cracks due to fatigue and low velocity foreign object impact that can reach a critical size during flight, resulting in loss of control of the aircraft. To avoid unstable, catastrophic propagation of damage during a flight, load levels must be maintained that are below a reduced load-carrying capacity for continued safe operation of an aircraft. Hence, a capability is needed for accurate real-time predictions of damage size and safe load carrying capacity for structures with complex damage configurations. In the present work, a procedure is developed that uses guided wave responses to interrogate damage. As the guided wave interacts with damage, the signal attenuates in some directions and reflects in others. This results in a difference in signal magnitude as well as phase shifts between signal responses for damaged and undamaged structures. Accurate estimation of damage size, location, and orientation is made by evaluating the cumulative signal responses at various pre-selected sensor locations using a genetic algorithm (GA) based optimization procedure. The damage size, location, and orientation is obtained by minimizing the difference between the reference responses and the responses obtained by wave propagation finite element analysis of different representative cracks, geometries, and sizes.
Statistical analysis of low-rise building damage caused by the San Fernando earthquake
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholl, R.E.
1974-02-01
An empirical investigation of damage to low-rise buildings in two selected control areas within Glendale, California, caused by the ground motion precipitated by the San Fernando earthquake of February 9, 1971 is summarized. The procedures for obtaining the appropriate data and the methodology used in deriving ground motion-damage relationships are described. Motion-damage relationships are derived for overall damage and for the most frequently damaged building components. Overall motion-damage relationships are expressed in terms of damage incidence (damage ratio) and damage cost (damage cost factor). The motion-damage relationships derived from the earthquake data are compared with similar data obtained for lou-risemore » buildings subjected to ground motion generated by an underground nuclear explosion. Overall comparison results show that for the same spectral acceleration, the earthquake caused slightly more damage. Differences in ground-motion characteristics for the two types of disturbances provide the most probable explanation for this discrepancy. (auth)« less
Frequency of viral infections and environmental factors in multiple sclerosis.
Eftekharian, Mohammad Mahdi; Ghannad, Masoud Sabouri; Taheri, Mohammad; Roshanaei, Ghodratollah; Mazdeh, Mehrdokht; Musavi, Mehrnoosh; Hormoz, Mona Bahmani
2016-06-08
Multiple sclerosis (MS) is a complicated disease which occurs due to relationship between genes and environmental factors that causes tissue damage by autoimmune mechanisms.We investigated and illustrated the hypotheses correlated to the evidence of several putative environmental risk factors for MS onset and progression in this part of Iran. Univariate logistic regression was used to detect the effects of environmental factors on the risk of MS. Data were analyzed using SPSS version 16. The childhood history of patients with rubella, measles and chickenpox increased the risk of MS significantly. Moreover, low consumption of dairy products, avoidance of seafood consumption, cigarette smoking and exposure to tobacco smoke, stress, anxiety disorders, depress and disturbing thoughts, negative and disturbing thoughts, developing a sudden shock upon hearing bad news, having obsessive-compulsive and being depressed increased the risk of MS significantly. The results of the current research partially solved the puzzling question of complex interplay between environmental factors and MS disease in this part of Iran. Incorporating these factors enables more powerful and accurate detection of novel risk factors with diagnostic and prognostic methods.
Auditory and non-auditory effects of noise on health
Basner, Mathias; Babisch, Wolfgang; Davis, Adrian; Brink, Mark; Clark, Charlotte; Janssen, Sabine; Stansfeld, Stephen
2014-01-01
Noise is pervasive in everyday life and can cause both auditory and non-auditory health effects. Noise-induced hearing loss remains highly prevalent in occupational settings, and is increasingly caused by social noise exposure (eg, through personal music players). Our understanding of molecular mechanisms involved in noise-induced hair-cell and nerve damage has substantially increased, and preventive and therapeutic drugs will probably become available within 10 years. Evidence of the non-auditory effects of environmental noise exposure on public health is growing. Observational and experimental studies have shown that noise exposure leads to annoyance, disturbs sleep and causes daytime sleepiness, affects patient outcomes and staff performance in hospitals, increases the occurrence of hypertension and cardiovascular disease, and impairs cognitive performance in schoolchildren. In this Review, we stress the importance of adequate noise prevention and mitigation strategies for public health. PMID:24183105
2017-01-01
The eukaryotic global genomic nucleotide excision repair (GG-NER) pathway is the major mechanism that removes most bulky and some nonbulky lesions from cellular DNA. There is growing evidence that certain DNA lesions are repaired slowly or are entirely resistant to repair in cells, tissues, and in cell extract model assay systems. It is well established that the eukaryotic DNA lesion-sensing proteins do not detect the damaged nucleotide, but recognize the distortions/destabilizations in the native DNA structure caused by the damaged nucleotides. In this article, the nature of the structural features of certain bulky DNA lesions that render them resistant to NER, or cause them to be repaired slowly, is compared to that of those that are good-to-excellent NER substrates. Understanding the structural features that distinguish NER-resistant DNA lesions from good NER substrates may be useful for interpreting the biological significance of biomarkers of exposure of human populations to genotoxic environmental chemicals. NER-resistant lesions can survive to replication and cause mutations that can initiate cancer and other diseases. Furthermore, NER diminishes the efficacy of certain chemotherapeutic drugs, and the design of more potent pharmaceuticals that resist repair can be advanced through a better understanding of the structural properties of DNA lesions that engender repair-resistance. PMID:28750166
Pathogenic nature of Syncephalastrum in Atta sexdens rubropilosa fungus gardens.
Barcoto, Mariana O; Pedrosa, Felipe; Bueno, Odair C; Rodrigues, Andre
2017-05-01
Leaf-cutter ants are considered to be a major herbivore and agricultural pest in the Neotropics. They are often controlled by environmentally persistent insecticides. Biological control using pathogenic fungi is regarded as an alternative for the management of these insects. Here, we assess whether the filamentous fungus Syncephalastrum sp. is a pathogenic microorganism responsible for a characteristic disease in fungus gardens. We also characterise the damage caused by this fungus by evaluating physiological and behavioural responses of Atta sexdens rubropilosa subcolonies infected with Syncephalastrum sp. Syncephalastrum sp. fulfils Koch's postulates characterising it as a pathogenic microorganism. Ant workers recognise the infection and remove contaminated fragments from the fungus garden. Syncephalastrum sp. infection causes an interruption of foraging activity, an increase in ant mortality, subcolony deterioration and an increase in the amount of waste generated, all resulting in subcolony death. Syncephalastrum sp. also inhibits the ant fungal cultivar in vitro. The pathogenic effect of Syncephalastrum sp. does not depend on host morbidity or stress (e.g. worker mortality caused by an entomopathogenic fungus). Syncephalastrum sp. treatment resulted in progressive damage in subcolonies. The interactions among Syncephalastrum sp., fungus garden and ants offer new opportunities in integrated pest management of leaf-cutter ants. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Age-Related Macular Degeneration: New Paradigms for Treatment and Management of AMD
Zamora-Alvarado, Ruben; Gulias-Cañizo, Rosario; Quiroz-Mercado, Hugo
2018-01-01
Age-related macular degeneration (AMD) is a well-characterized and extensively studied disease. It is currently considered the leading cause of visual disability among patients over 60 years. The hallmark of early AMD is the formation of drusen, pigmentary changes at the macula, and mild to moderate vision loss. There are two forms of AMD: the “dry” and the “wet” form that is less frequent but is responsible for 90% of acute blindness due to AMD. Risk factors have been associated with AMD progression, and they are taking relevance to understand how AMD develops: (1) advanced age and the exposition to environmental factors inducing high levels of oxidative stress damaging the macula and (2) this damage, which causes inflammation inducing a vicious cycle, altogether causing central vision loss. There is neither a cure nor treatment to prevent AMD. However, there are some treatments available for the wet form of AMD. This article will review some molecular and cellular mechanisms associated with the onset of AMD focusing on feasible treatments for each related factor in the development of this pathology such as vascular endothelial growth factor, oxidative stress, failure of the clearance of proteins and organelles, and glial cell dysfunction in AMD. PMID:29484106
The threat from sea and land. Regional report 2: the Bay of Bengal.
1994-01-01
This article reports on the environmental threat caused by the Bay of Bengal on the economic situation in Bangladesh and India. More than four-fifths of Bangladesh amount to an extended delta at the confluence of one of the largest river systems in the world, comprising the Ganges, Brahmaputra, and Meghna. In the Brahmaputra watershed, the rate of deforestation caused soil erosion in the Himalayas is five times as much as in the geological past. This sediment loading is often considered to be a prime factor in downstream flooding. Because of this, Bangladesh agriculture products were damaged, which led to economic instability. Furthermore, as a result of the combined impacts of population growth, poverty, no land, and inadequate food supplies, many migrated into the neighboring Indian areas. Moreover, the susceptibility of the Bay of Bengal to cyclones has caused a great number of deaths leaving millions of people homeless. Cyclone episodes are expected to be more frequent as global warming continues. Furthermore, Bangladesh was estimated to be only 5 meters above sea level, which is considered vulnerable to sea level rise. On top of these problems, trouble from the other side of Bangladesh was also predicted with the combined outflow of the Ganges, Brahmaputra, and Meghna leading to more national damage.
Malla, Spundana; Kadimisetty, Karteek; Jiang, Di; Choudhary, Dharamainder; Rusling, James F
2018-05-11
Reactive metabolites of environmental chemicals and drugs can cause site-specific damage to p53 tumor suppressor gene in a major pathway for genotoxicity. We report here a high throughput, cell-free, 96-well plate magnetic bead-enzyme system interfaced with LC-MS/MS sequencing to bioactivate test chemicals and identify resulting adduction sites on genes. Bioactivated aflatoxin B1 was reacted with a 32 bp exon 7 fragment of the p53 gene using 8 microsomal cyt P450 enzymes from different organs coated on magnetic beads. All cyt P450s converted aflatoxin B1 to aflatoxin B1-8,9-epoxide that adducts guanine (G) in codon 249, with subsequent depurination to give abasic sites, then strand breaks. This is the first demonstration in a cell-free medium that aflatoxin B1 metabolite selectively causes abasic site formation and strand breaks at codon 249 of the p53 probe, corresponding to the chemical pathway and mutations of p53 in human liver cells and tumors. Molecular modeling supports the view that binding of aflatoxin B1-8,9-epoxide to G in codon 249 precedes the SN2 adduction reaction. Among a range of metabolic enzymes characteristic of different organs, human liver microsomes and cyt P450 3A5 supersomes showed the highest bioactivation rate for p53 exon 7 damage. This method to identify metabolite-related gene damage sites may facilitate predictions of organ-specific cancers for test chemicals via correlations with mutation sites.
Effects of acid deposition on terrestrial ecosystems and their rehabilitation strategies in China.
Feng, Zong-wei; Miao, Hong; Zhang, Fu-zhu; Huang, Yi-zong
2002-04-01
South China has become the third largest region associated with acid deposition following Europe and North America, the area subject to damage by acid deposition increased from 1.75 million km2 in 1985 to 2.8 million km2 in 1993. Acid deposition has caused serious damage to ecosystem. Combined pollution of acid rain and SO2 showed the obvious multiple effects on crops. Vegetable was more sensitive to acid deposition than foodstuff crops. Annual economic loss of crops due to acid deposition damage in eleven provinces of south China was 4.26 billion RMB Yuan. Acid deposition caused serious damage to forest. Annual economic loss of wood volume was about 1.8 billion RMB Yuan and forest ecological benefit loss 16.2 billion in eleven provinces of south China. Acid deposition in south China was typical "sulfuric acid type". According to the thoughts of sustainable development, some strategies were brought forward as follows: (1) enhancing environmental management, specifying acid-controlling region, controlling and abating the total emission amount of SO2; (2) selecting practical energy technologies of clean coal, for example, cleansing and selecting coal, sulfur-fixed-type industrial briqutting, abating sulfur from waste gas and so on; (3) developing other energy sources to replace coal, including water electricity, atomic energy and the new energy such as solar energy, wind energy and so on; (4) in acid deposition region of south China, selecting acid-resistant type of crop and tree to decrease agricultural losses, planting more green fertilizer crops, using organic fertilizers and liming, in order to improve buffer capacities of soil.
The Novel Candida albicans Transporter Dur31 Is a Multi-Stage Pathogenicity Factor
Mayer, François L.; Wilson, Duncan; Jacobsen, Ilse D.; Miramón, Pedro; Große, Katharina; Hube, Bernhard
2012-01-01
Candida albicans is the most frequent cause of oral fungal infections. However, the exact pathogenicity mechanisms that this fungus employs are largely unknown and many of the genes expressed during oral infection are uncharacterized. In this study we sought to functionally characterize 12 previously unknown function genes associated with oral candidiasis. We generated homozygous knockout mutants for all 12 genes and analyzed their interaction with human oral epithelium in vitro. Eleven mutants caused significantly less epithelial damage and, of these, deletion of orf19.6656 (DUR31) elicited the strongest reduction in pathogenicity. Interestingly, DUR31 was not only involved in oral epithelial damage, but in multiple stages of candidiasis, including surviving attack by human neutrophils, endothelial damage and virulence in vivo. In silico analysis indicated that DUR31 encodes a sodium/substrate symporter with 13 transmembrane domains and no human homologue. We provide evidence that Dur31 transports histatin 5. This is one of the very first examples of microbial driven import of this highly cytotoxic antimicrobial peptide. Also, in contrast to wild type C. albicans, dur31Δ/Δ was unable to actively increase local environmental pH, suggesting that Dur31 lies in the extracellular alkalinization hyphal auto-induction pathway; and, indeed, DUR31 was required for morphogenesis. In agreement with this observation, dur31Δ/Δ was unable to assimilate the polyamine spermidine. PMID:22438810
Petit-Boix, Anna; Arahuetes, Ana; Josa, Alejandro; Rieradevall, Joan; Gabarrell, Xavier
2017-02-15
Flood damage results in economic and environmental losses in the society, but flood prevention also entails an initial investment in infrastructure. This study presents an integrated eco-efficiency approach for assessing flood prevention and avoided damage. We focused on ephemeral streams in the Maresme region (Catalonia, Spain), which is an urbanized area affected by damaging torrential events. Our goal was to determine the feasibility of post-disaster emergency actions implemented after a major event through an integrated hydrologic, environmental and economic approach. Life cycle assessment (LCA) and costing (LCC) were used to determine the eco-efficiency of these actions, and their net impact and payback were calculated by integrating avoided flood damage. Results showed that the actions effectively reduced damage generation when compared to the registered water flows and rainfall intensities. The eco-efficiency of the emergency actions resulted in 1.2kgCO 2 eq. per invested euro. When integrating the avoided damage into the initial investment, negative net impacts were obtained (e.g., -5.2E+05€ and -2.9E+04kgCO 2 eq. per event), which suggests that these interventions contributed with environmental and economic benefits to the society. The economic investment was recovered in two years, whereas the design could be improved to reduce their environmental footprint, which is recovered in 25years. Our method and results highlight the effects of integrating the environmental and economic consequences of decisions at an urban scale and might help the administration and insurance companies in the design of prevention plans and climate change adaptation. Copyright © 2016 Elsevier B.V. All rights reserved.
Accountability in the pesticide industry.
Riggs, Peter; Waples, Megan
2003-01-01
To counter the lack of corporate accountability of the agrochemical industry for the damage caused by its perpetuation of the use of harmful chemical pesticides, the Rockefeller Brothers Fund staff in June 2002 brought together concerned scientists, lawyers, socially responsible investment professionals, and sustainable agriculture advocates at their Pocantico Conference Center. The group's objective was to communicate to market analysts the long-term downside risks of investments in pesticides, in the hope that dissemination of this information would contribute to increasing corporate accountability and safeguarding public and environmental health. Excerpts from its proceedings are presented.
Reversal of Mitochondrial Damage Caused by Environmental Neurotoxins
2002-10-01
intervention for the treatment of Parkinson’s Disease, or from protection from neurotoxic substrates metabolized by MAO in the central nervous system... neurotoxicity . She has used 2 Gluck CnCi w #2 0101 0 0 0 0 o oz 0 Q0 mo Ŕo lz + z 0,*+ 00 0 0E 0 0 0, > 00 0 0 10 0 00 0 Gluck mesencephalic...dopaminergic mixed-cell culture models to examine the effects of GSH depletion on the development of neurotoxicity . Although Dr. Mytilineau was PI for a very
Hexavalent chromium is cytotoxic and genotoxic to hawksbill sea turtle cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wise, Sandra S., E-mail: sandra.wise@maine.edu; Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103; Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103
Sea turtles are a charismatic and ancient ocean species and can serve as key indicators for ocean ecosystems, including coral reefs and sea grass beds as well as coastal beaches. Genotoxicity studies in the species are absent, limiting our understanding of the impact of environmental toxicants on sea turtles. Hexavalent chromium (Cr(VI)) is a ubiquitous environmental problem worldwide, and recent studies show it is a global marine pollutant of concern. Thus, we evaluated the cytotoxicity and genotoxicity of soluble and particulate Cr(VI) in hawksbill sea turtle cells. Particulate Cr(VI) was both cytotoxic and genotoxic to sea turtle cells. Concentrations ofmore » 0.1, 0.5, 1, and 5 μg/cm{sup 2} lead chromate induced 108, 79, 54, and 7% relative survival, respectively. Additionally, concentrations of 0, 0.1, 0.5, 1, and 5 μg/cm{sup 2} lead chromate induced damage in 4, 10, 15, 26, and 36% of cells and caused 4, 11, 17, 30, and 56 chromosome aberrations in 100 metaphases, respectively. For soluble Cr, concentrations of 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate induced 84, 69, 46, 25, and 3% relative survival, respectively. Sodium chromate induced 3, 9, 9, 14, 21, and 29% of metaphases with damage, and caused 3, 10, 10, 16, 26, and 39 damaged chromosomes in 100 metaphases at concentrations of 0, 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate, respectively. These data suggest that Cr(VI) may be a concern for hawksbill sea turtles and sea turtles in general. - Highlights: • Particulate Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Soluble Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Cr(VI) may be a risk factor for hawksbill sea turtle health.« less
Wester, Misse; Eklund, Britta
2011-07-01
Human behavior impacts the environment we live in. In order to better understand how one group, boat owners, in three Nordic countries adjacent to the Baltic Sea; Sweden, Finland and Denmark, viewed the relationship between the marine environment, leisure boats and issues of responsibility, a survey study was conducted (n = 1701). The results show that there are differences between gender in many areas and those women in general are more environmentally friendly than men in their views and behavior. Men and women seek information about boating by different channels and this knowledge may be used in future information campaigns. Both men and women ranked boat owners as having the lowest impact on the marine environment and perceived these to be responsible for addressing environmental issues caused by leisure boat activities. The results also show that it is important to prove the effectiveness of an environmentally safe product since this factor is ranked higher than price when considering buying a product. The results suggest that once environmentally friendly behavior is established, such as recycling, this behavior continues. One implication of this study is that small changes in human behavior are seen as acceptable but larger commitments are more difficult to achieve. If individuals do not feel responsible for causing environmental damage, this aspect needs to be addressed in information aimed at this group. Novel approaches on framing the information and new ways of disseminating information are needed.
Coelho, Patrícia; García-Lestón, Julia; Costa, Solange; Costa, Carla; Silva, Susana; Dall'Armi, Valentina; Zoffoli, Roberto; Bonassi, Stefano; de Lima, João Pereira; Gaspar, Jorge Francisco; Pásaro, Eduardo; Laffon, Blanca; Teixeira, João Paulo
2013-10-01
Previous studies investigating the exposure to metal(loid)s of populations living in the Panasqueira mine area of central Portugal found a higher internal dose of elements such as arsenic, chromium, lead, manganese, molybdenum and zinc in exposed individuals. The aims of the present study were to evaluate the extent of genotoxic damage caused by environmental and occupational exposure in individuals previously tested for metal(loid) levels in different biological matrices, and the possible modulating role of genetic polymorphisms involved in metabolism and DNA repair. T-cell receptor mutation assay, comet assay, micronucleus (MN) test and chromosomal aberrations (CA) were performed in a group of 122 subjects working in the Panasqueira mine or living in the same region. The modifying effect of polymorphisms in GSTA2, GSTM1, GSTP1, GSTT1, XRCC1, APEX1, MPG, MUTYH, OGG1, PARP1, PARP4, ERCC1, ERCC4, and ERCC5 genes was investigated. Significant increases in the frequency of all biomarkers investigated were found in exposed groups, however those environmentally exposed were generally higher. Significant influences of polymorphisms were observed for GSTM1 deletion and OGG1 rs1052133 on CA frequencies, APEX1 rs1130409 on DNA damage, ERCC1 rs3212986 on DNA damage and CA frequency, and ERCC4 rs1800067 on MN and CA frequencies. Our results show that the metal(loid) contamination in the Panasqueira mine area induced genotoxic damage both in individuals working in the mine or living in the area. The observed effects are closely associated to the internal exposure dose, and are more evident in susceptible genotypes. The urgent intervention of authorities is required to protect exposed populations. © 2013.
Environmental pollution, chromosomes, and health
NASA Astrophysics Data System (ADS)
Bell, Peter M.
In mid-May, 1980, President Carter declared a state of emergency at the Love Canal area, near Niagara Falls, New York. The reason for this was for the U.S. to underwrite the relocation costs ($3-5 million) of some 2500 residents who, according to a report by the EPA (Environmental Protection Agency) may have suffered damaged chromosomes. These injuries were apparently caused by contact with toxic wastes that had been dumped in the area in the years prior to development for housing.That the toxic compounds exist in the Love Canal and Niagara Falls subsurface zones, including public water supplies, appears to be established fact. That the residents of the Love Canal area suffered chromosomal damage may be established fact as well. Whether or not these two findings can be linked to ill health of the residents is another matter. Recently, the EPA report has been described as having ‘close to zero scientific significance,’ and has been ‘discredited’(Science, 208, 123a, 1980). The reasons for this disparity go beyond differences of opinion, beyond possible inadequacies of the EPA study, and even beyond problems that probably will arise from future studies, including those now in the planning stages. The problem is that even if victims have easily recognizable injuries from toxic substances (injury that apparently has not occurred to Love Canal residents), medical science usually cannot show a causal relationship. Even chromosomal damage is, at best, difficult to interpret. In ideal studies of significant populations and control groups, the association of toxic chemical to chromosome damage and to cancer and birth defects is indirect and, up to now, has been shown to have little or no significance to an individual member of the exposed population.
NASA Astrophysics Data System (ADS)
Adhikari, Ek R.; Samara, Vladimir; Ptasinska, Sylwia
2018-05-01
Because environmental conditions, such as room temperature and humidity, fluctuate arbitrarily, effects of atmospheric pressure plasma jets (APPJs) used in medical applications operating at various places and time might vary. Therefore, understanding the possible effects of air components in and outside APPJs is essential for clinical use, which requires reproducibility of plasma performance. These air components can influence the formation of reactive species in the APPJ, and the type and amount of these species formed depend on the feed gas inside the APPJ and the plasma jet environment. In this study, we monitored changes in plasma current and power, as well as in the level of DNA damage attributable to plasma irradiation, by adjusting the fraction of oxygen and water vapor in the plasma jet environment and feed gas. Here, DNA was used as a molecular probe to identify chemical changes that occurred in the plasma jet under these various environmental conditions. The damaged and undamaged fractions of DNA were quantified using agarose gel electrophoresis. We obtained an optimal amount of oxygen or water vapor in the plasma jet environment, as well as in the feed gas, which increased the level of DNA damage significantly. This increase can be attributed primarily to the formation of reactive species caused by water and oxygen decomposition in the APPJ detected with mass spectrometry. Moreover, we observed that the plasma power remained the same or decreased when gas was added to the jet environment or the feed gas, respectively, but in both cases, DNA damage increased. This indicates the superiority of plasma chemistry over the electrical power applied for APPJ ignition of the plasma sources used in medical applications.
NASA Technical Reports Server (NTRS)
Ricles, James M.
1991-01-01
Spacecraft are susceptible to structural damage over their operating life from impact, environmental loads, and fatigue. Structural damage that is not detected and not corrected may potentially cause more damage and eventually catastrophic structural failure. NASA's current fleet of reusable spacecraft, namely the Space Shuttle, has been flown on several missions. In addition, configurations of future NASA space structures, e.g. Space Station Freedom, are larger and more complex than current structures, making them more susceptible to damage as well as being more difficult to inspect. Consequently, a reliable structural damage detection capability is essential to maintain the flight safety of these structures. Visual inspections alone can not locate impending material failure (fatigue cracks, yielding); it can only observe post-failure situations. An alternative approach is to develop an inspection and monitoring system based on vibration characterization that assesses the integrity of structural and mechanical components. A methodology for detecting structural damage is presented. This methodology is based on utilizing modal test data in conjunction with a correlated analytical model of the structure to: (1) identify the structural dynamic characteristics (resonant frequencies and mode shapes) from measurements of ambient motions and/or force excitation; (2) calculate modal residual force vectors to identify the location of structural damage; and (3) conduct a weighted sensitivity analysis in order to assess the extent of mass and stiffness variations, where structural damage is characterized by stiffness reductions. The approach is unique from other existing approaches in that varying system mass and stiffness, mass center locations, the perturbation of both the natural frequencies and mode shapes, and statistical confidence factors for structural parameters and experimental instrumentation are all accounted for directly.
Biomarker as a Research Tool in Linking Exposure to Air Particles and Respiratory Health
2015-01-01
Some of the environmental toxicants from air pollution include particulate matter (PM10), fine particulate matter (PM2.5), and ultrafine particles (UFP). Both short- and long-term exposure could result in various degrees of respiratory health outcomes among exposed persons, which rely on the individuals' health status. Methods. In this paper, we highlight a review of the studies that have used biomarkers to understand the association between air particles exposure and the development of respiratory problems resulting from the damage in the respiratory system. Data from previous epidemiological studies relevant to the application of biomarkers in respiratory system damage reported from exposure to air particles are also summarized. Results. Based on these analyses, the findings agree with the hypothesis that biomarkers are relevant in linking harmful air particles concentrations to increased respiratory health effects. Biomarkers are used in epidemiological studies to provide an understanding of the mechanisms that follow airborne particles exposure in the airway. However, application of biomarkers in epidemiological studies of health effects caused by air particles in both environmental and occupational health is inchoate. Conclusion. Biomarkers unravel the complexity of the connection between exposure to air particles and respiratory health. PMID:25984536
Fate, transport, and interactions of heavy metals.
Serrano, O R
1995-02-01
Mishandling of hazardous wastes, like their unauthorized disposal in abandoned dump yards or sites, in river beds, estuaries or in the sea, causes substantial damage to the environment and its resources and, given the persistence and toxicity of these pollutants, they can seriously damage human health and quality of life. The importance of controlling management, transport, and disposal of toxic and hazardous substances in the years to come will be a crucial issue in the design and implementation of public policies. This is especially true for residents of such areas as the border between the United States and Mexico, where historically hazardous wastes have been a public health and environmental problem. The aim of this Conference on the Fate, Transport, and Interactions of Metals, A Joint United States-Mexico Conference, co-sponsored by the National Institute of Environmental Health Sciences, Superfund Basic Research Program, the National University of Mexico, Program for the Environment and the Pan American Health Organization, and hosted by the University of Arizona Center for Toxicology, College of Pharmacy, is to begin a joint effort by the United States and Mexico to better understand the complex problems related to heavy metals as hazardous wastes.
Prediction of blast-induced air overpressure: a hybrid AI-based predictive model.
Jahed Armaghani, Danial; Hajihassani, Mohsen; Marto, Aminaton; Shirani Faradonbeh, Roohollah; Mohamad, Edy Tonnizam
2015-11-01
Blast operations in the vicinity of residential areas usually produce significant environmental problems which may cause severe damage to the nearby areas. Blast-induced air overpressure (AOp) is one of the most important environmental impacts of blast operations which needs to be predicted to minimize the potential risk of damage. This paper presents an artificial neural network (ANN) optimized by the imperialist competitive algorithm (ICA) for the prediction of AOp induced by quarry blasting. For this purpose, 95 blasting operations were precisely monitored in a granite quarry site in Malaysia and AOp values were recorded in each operation. Furthermore, the most influential parameters on AOp, including the maximum charge per delay and the distance between the blast-face and monitoring point, were measured and used to train the ICA-ANN model. Based on the generalized predictor equation and considering the measured data from the granite quarry site, a new empirical equation was developed to predict AOp. For comparison purposes, conventional ANN models were developed and compared with the ICA-ANN results. The results demonstrated that the proposed ICA-ANN model is able to predict blast-induced AOp more accurately than other presented techniques.
Plant extracts and natural compounds used against UVB-induced photoaging.
Cavinato, Maria; Waltenberger, Birgit; Baraldo, Giorgia; Grade, Carla V C; Stuppner, Hermann; Jansen-Dürr, Pidder
2017-08-01
Skin is continuously exposed to a variety of environmental stresses, including ultraviolet (UV) radiation. UVB is an inherent component of sunlight that crosses the epidermis and reaches the upper dermis, leading to increased oxidative stress, activation of inflammatory response and accumulation of DNA damage among other effects. The increase in UVB radiation on earth due to the destruction of stratospheric ozone poses a major environmental threat to the skin, increasing the risk of damage with long-term consequences, such as photoaging and photocarcinogenesis. Extracts from plants and natural compounds have been historically used in traditional medicine in the form of teas and ointments but the effect of most of these compounds has yet to be verified. Regarding the increasing concern of the population with issues related to quality of life and appearance, the cosmetic market for anti-aging and photoprotective products based on natural compounds is continuously growing, and there is increasing requirement of expansion on research in this field. In this review we summarized the most current and relevant information concerning plant extracts and natural compounds that are able to protect or mitigate the deleterious effects caused by photoaging in different experimental models.
Fate, transport, and interactions of heavy metals.
Serrano, O R
1995-01-01
Mishandling of hazardous wastes, like their unauthorized disposal in abandoned dump yards or sites, in river beds, estuaries or in the sea, causes substantial damage to the environment and its resources and, given the persistence and toxicity of these pollutants, they can seriously damage human health and quality of life. The importance of controlling management, transport, and disposal of toxic and hazardous substances in the years to come will be a crucial issue in the design and implementation of public policies. This is especially true for residents of such areas as the border between the United States and Mexico, where historically hazardous wastes have been a public health and environmental problem. The aim of this Conference on the Fate, Transport, and Interactions of Metals, A Joint United States-Mexico Conference, co-sponsored by the National Institute of Environmental Health Sciences, Superfund Basic Research Program, the National University of Mexico, Program for the Environment and the Pan American Health Organization, and hosted by the University of Arizona Center for Toxicology, College of Pharmacy, is to begin a joint effort by the United States and Mexico to better understand the complex problems related to heavy metals as hazardous wastes. PMID:7621804
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-23
... Prepare a Draft Environmental Impact Statement for the Bogue Banks Coastal Storm Damage Reduction... alternatives to reduce coastal storm damages from beach erosion on Bogue Banks North Carolina. The Bogue Banks.... This area [[Page 17037
Starks, Angela M.; Schoeb, Trenton R.; Tamplin, Mark L.; Parveen, Salina; Doyle, Thomas J.; Bomeisl, Philip E.; Escudero, Gloria M.; Gulig, Paul A.
2000-01-01
Vibrio vulnificus is an opportunistic pathogen that contaminates oysters harvested from the Gulf of Mexico. In humans with compromising conditions, especially excess levels of iron in plasma and tissues, consumption of contaminated seafood or exposure of wounds to contaminated water can lead to systemic infection and disfiguring skin infection with extremely high mortality. V. vulnificus-associated diseases are noted for the rapid replication of the bacteria in host tissues, with extensive tissue damage. In this study we examined the virulence attributes of three virulent clinical strains and three attenuated oyster or seawater isolates in mouse models of systemic disease. All six V. vulnificus strains caused identical skin lesions in subcutaneously (s.c.) inoculated iron dextran-treated mice in terms of numbers of recovered CFU and histopathology; however, the inocula required for identical frequency and magnitude of infection were at least 350-fold higher for the environmental strains. At lethal doses, all strains caused s.c. skin lesions with extensive edema, necrosis of proximate host cells, vasodilation, and as many as 108 CFU/g, especially in perivascular regions. These data suggest that the differences between these clinical and environmental strains may be related to growth in the host or susceptibility to host defenses. In non-iron dextran-treated mice, strains required 105-fold-higher inocula to cause an identical disease process as with iron dextran treatment. These results demonstrate that s.c. inoculation of iron dextran-treated mice is a useful model for studying systemic disease caused by V. vulnificus. PMID:10992486
De Brauwer, Maarten; Saunders, Benjamin J; Ambo-Rappe, Rohani; Jompa, Jamaluddin; McIlwain, Jennifer L; Harvey, Euan S
2018-07-15
Scuba diving tourism is a sustainable source of income for many coastal communities, but can have negative environmental impacts if not managed effectively. Diving on soft sediment habitats, typically referred to as 'muck diving', is a growing multi-million dollar industry with a strong focus on photographing cryptobenthic fauna. We assessed how the environmental impacts of scuba divers are affected by the activity they are engaged in while diving and the habitat they dive in. To do this, we observed 66 divers on coral reefs and soft sediment habitats in Indonesia and the Philippines. We found diver activity, specifically interacting with and photographing fauna, causes greater environmental disturbances than effects caused by certification level, gender, dive experience or age. Divers touched the substrate more often while diving on soft sediment habitats than on coral reefs, but this did not result in greater environmental damage on soft sediment sites. Divers had a higher impact on the substrate and touch animals more frequently when observing or photographing cryptobenthic fauna. When using dSLR-cameras, divers spent up to five times longer interacting with fauna. With the unknown, long-term impacts on cryptobenthic fauna or soft sediment habitats, and the increasing popularity of underwater photography, we argue for the introduction of a muck diving code of conduct. Copyright © 2018 Elsevier Ltd. All rights reserved.
Acceptable Risk Analysis for Abrupt Environmental Pollution Accidents in Zhangjiakou City, China.
Du, Xi; Zhang, Zhijiao; Dong, Lei; Liu, Jing; Borthwick, Alistair G L; Liu, Renzhi
2017-04-20
Abrupt environmental pollution accidents cause considerable damage worldwide to the ecological environment, human health, and property. The concept of acceptable risk aims to answer whether or not a given environmental pollution risk exceeds a societally determined criterion. This paper presents a case study on acceptable environmental pollution risk conducted through a questionnaire survey carried out between August and October 2014 in five representative districts and two counties of Zhangjiakou City, Hebei Province, China. Here, environmental risk primarily arises from accidental water pollution, accidental air pollution, and tailings dam failure. Based on 870 valid questionnaires, demographic and regional differences in public attitudes towards abrupt environmental pollution risks were analyzed, and risk acceptance impact factors determined. The results showed females, people between 21-40 years of age, people with higher levels of education, public servants, and people with higher income had lower risk tolerance. People with lower perceived risk, low-level risk knowledge, high-level familiarity and satisfaction with environmental management, and without experience of environmental accidents had higher risk tolerance. Multiple logistic regression analysis indicated that public satisfaction with environmental management was the most significant factor in risk acceptance, followed by perceived risk of abrupt air pollution, occupation, perceived risk of tailings dam failure, and sex. These findings should be helpful to local decision-makers concerned with environmental risk management (e.g., selecting target groups for effective risk communication) in the context of abrupt environmental accidents.
On the geoethical implications of wind erosion
NASA Astrophysics Data System (ADS)
Károly, Tatárvári
2016-04-01
Human activities exerts an ever growing impact on our environment, and this is undeniably the responsibility of mankind. In spite of this fact there is almost no process in our environment that can be described exactly with complete exactness, and the working of which is known in full extent. Wind erosion is such a process. Although water erosion is mentioned ever more often in scientific circles as a from of erosion, its effect is restrained to a certain region, although it may cause perceptibly damage of a greater extent in short time. Wind erosion, apart from the fact that it may have global impact, may play an important role in the warming of our climate according to recent studies. First of all, wind erosion may cause damage far from its origin in human health, nutrition, or in the environment in general. Today several surveys have proved, that erosion caused by wind significantly contributes to the air pollution of cities, the fine dust carried as drift by the wind may cause severe environmental damage in accumulation zones. Microbes, toxic material may attach themselves to the dust carried this way and carried on and by the wings of the wind they may cause health issues in humans animals and plants as well. In spite of these facts there are almost no measures against wind erosion employed in arable land, although our ever doughtier climate and changes would make these necessary. Reduction of organic matter content presents a great problem in a large part of cultivated land, so the risk of the production of high quality food raises questions of more and more ethical nature. Who is responsible? The fact, that the chemicals used in a growing extent by agriculture may reach many people causing considerable damage to the environment also raises serious ethical questions. More and more periods with extreme weather conditions are experienced in Hungary and Europe as the effect of climate change. Drought periods are longer and more frequent as the intensity of precipitation changes, this also increases the occurrence of bush-fires, and the growing extent of uncovered soil surface shall intensify wind erosion as well accelerating the negative effects described above. Who will be held responsible for this? Who should bear the larger cost of production in agriculture that is caused by the cost of research necessary to uncover the methods of prevention of irreversible damages caused in nature and environment? Because the field of research requires an interdisciplinary approach, research and innovation requires huge funds, the different approaches to the problem in every single field, and different reasoning methods represent a hurdle as well. In search for possible solutions it is necessary that political decision-makers adopt regulations which have solid scientific fundamentals, and also the cooperation of mankind active in science and economy is crucial. This is the only way of finding sustainable and long term solutions to the problem.
Holden, Joseph; Howard, Andy J; West, L Jared; Maxfield, Eleanor; Panter, Ian; Oxley, John
2009-08-01
Environmental change caused by urban development, possibly augmented by climate change, may result in accelerated decay of in situ archaeological resources. Damage may be related to changes in hydrological processes. Such archaeological resources have to be considered in environmental planning. In this paper we highlight the need for improved hydrological data from urban archaeological sites using the case study of the City of York, UK, arguably one of the most well studied and well preserved urban archaeological environments globally. We suggest that the quality of hydrological data collected during routine surveys and experimental work must be improved and standardised in order for us to produce reliable archaeological risk models for urban sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couch, Daniel P.; Gronier, Serge; Heriot, Ian D.
2005-08-08
Chornobyl Nuclear Power Plant ? An Overview of the Current Efforts to Stabilize the Chornobyl Shelter and Establish an Environmentally Safe Site Abstract?The 1986 accident at the Chornobyl Nuclear Power Plant in Ukraine resulted in the destruction of the reactor core and most of the reactor building. The Chornobyl accident released an enormous quantity of radionuclides into the environment, significantly contaminating a large region around the plant. Within seven months of the accident, the damaged Unit 4 was encased in a massive concrete and steel enclosure known as the Shelter. Deterioration of the Shelter over time poses increasing risks. Themore » Shelter is subject to structural damage or collapse due to wind, snow loading, or seismic activity. Collapse could lead to the release of radioactive fallout. Leakage of rainwater into the Shelter has caused the accumulation of a large quantity of highly radioactive liquid, corrosion of extremely contaminated nuclear fuel debris, and creation of hazardous radioactive dust. To address these concerns, the government of Ukraine, the G7 nations, and additional donor countries adopted the Shelter Implementation Plan (SIP) in 1997. The SIP's objectives are to reduce the risk and potential consequences of accidental collapse of the Shelter; improve nuclear, industrial and environmental safety; and develop a long-term strategy for conversion to an environmentally safe site. Implementation of the SIP has made significant progress that will lead to the construction of a new confinement facility by 2009. (Full paper available by contacting lead author, Dan Couch)« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-18
..., Restoration Plan and Environmental Assessment for the T/B DBL 152 Oil Spill in the Gulf of Mexico AGENCY... Damage Assessment and Restoration Plan and Environmental Assessment for the T/B DBL 152 Oil Spill in the..., T/B DBL 152 oil spill in the Gulf of Mexico. The purpose of this notice is to inform the public of...
NASA Astrophysics Data System (ADS)
Jin, Chenhao; Li, Jingcheng; Jang, Shinae; Sun, Xiaorong; Christenson, Richard
2015-03-01
Structural health monitoring has drawn significant attention in the past decades with numerous methodologies and applications for civil structural systems. Although many researchers have developed analytical and experimental damage detection algorithms through vibration-based methods, these methods are not widely accepted for practical structural systems because of their sensitivity to uncertain environmental and operational conditions. The primary environmental factor that influences the structural modal properties is temperature. The goal of this article is to analyze the natural frequency-temperature relationships and detect structural damage in the presence of operational and environmental variations using modal-based method. For this purpose, correlations between natural frequency and temperature are analyzed to select proper independent variables and inputs for the multiple linear regression model and neural network model. In order to capture the changes of natural frequency, confidence intervals to detect the damages for both models are generated. A long-term structural health monitoring system was installed on an in-service highway bridge located in Meriden, Connecticut to obtain vibration and environmental data. Experimental testing results show that the variability of measured natural frequencies due to temperature is captured, and the temperature-induced changes in natural frequencies have been considered prior to the establishment of the threshold in the damage warning system. This novel approach is applicable for structural health monitoring system and helpful to assess the performance of the structure for bridge management and maintenance.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Halbig, Michael; Jaskowiak, Martha; Hurst, Janet; Bhatt, Ram; Fox, Dennis S.
2014-01-01
This paper describes recent development of environmental barrier coatings on SiC/SiC ceramic matrix composites. The creep and fatigue behavior at aggressive long-term high temperature conditions have been evaluated and highlighted. Thermal conductivity and high thermal gradient cyclic durability of environmental barrier coatings have been evaluated. The damage accumulation and complex stress-strain behavior environmental barrier coatings on SiCSiC ceramic matrix composite turbine airfoil subelements during the thermal cyclic and fatigue testing of have been also reported.
The effects of environmental chemical carcinogens on the microRNA machinery.
Izzotti, A; Pulliero, A
2014-07-01
The first evidence that microRNA expression is early altered by exposure to environmental chemical carcinogens in still healthy organisms was obtained for cigarette smoke. To date, the cumulative experimental data indicate that similar effects are caused by a variety of environmental carcinogens, including polycyclic aromatic hydrocarbons, nitropyrenes, endocrine disruptors, airborne mixtures, carcinogens in food and water, and carcinogenic drugs. Accordingly, the alteration of miRNA expression is a general mechanism that plays an important pathogenic role in linking exposure to environmental toxic agents with their pathological consequences, mainly including cancer development. This review summarizes the existing experimental evidence concerning the effects of chemical carcinogens on the microRNA machinery. For each carcinogen, the specific microRNA alteration signature, as detected in experimental studies, is reported. These data are useful for applying microRNA alterations as early biomarkers of biological effects in healthy organisms exposed to environmental carcinogens. However, microRNA alteration results in carcinogenesis only if accompanied by other molecular damages. As an example, microRNAs altered by chemical carcinogens often inhibits the expression of mutated oncogenes. The long-term exposure to chemical carcinogens causes irreversible suppression of microRNA expression thus allowing the transduction into proteins of mutated oncogenes. This review also analyzes the existing knowledge regarding the mechanisms by which environmental carcinogens alter microRNA expression. The underlying molecular mechanism involves p53-microRNA interconnection, microRNA adduct formation, and alterations of Dicer function. On the whole, reported findings provide evidence that microRNA analysis is a molecular toxicology tool that can elucidate the pathogenic mechanisms activated by environmental carcinogens. Copyright © 2014 Elsevier GmbH. All rights reserved.
Automatic Detection of Storm Damages Using High-Altitude Photogrammetric Imaging
NASA Astrophysics Data System (ADS)
Litkey, P.; Nurminen, K.; Honkavaara, E.
2013-05-01
The risks of storms that cause damage in forests are increasing due to climate change. Quickly detecting fallen trees, assessing the amount of fallen trees and efficiently collecting them are of great importance for economic and environmental reasons. Visually detecting and delineating storm damage is a laborious and error-prone process; thus, it is important to develop cost-efficient and highly automated methods. Objective of our research project is to investigate and develop a reliable and efficient method for automatic storm damage detection, which is based on airborne imagery that is collected after a storm. The requirements for the method are the before-storm and after-storm surface models. A difference surface is calculated using two DSMs and the locations where significant changes have appeared are automatically detected. In our previous research we used four-year old airborne laser scanning surface model as the before-storm surface. The after-storm DSM was provided from the photogrammetric images using the Next Generation Automatic Terrain Extraction (NGATE) algorithm of Socet Set software. We obtained 100% accuracy in detection of major storm damages. In this investigation we will further evaluate the sensitivity of the storm-damage detection process. We will investigate the potential of national airborne photography, that is collected at no-leaf season, to automatically produce a before-storm DSM using image matching. We will also compare impact of the terrain extraction algorithm to the results. Our results will also promote the potential of national open source data sets in the management of natural disasters.
[Factors causing damage and destruction of beta-cells of the islets of Langerhans in the pancreas].
Anděl, Michal; Němcová, Vlasta; Pavlíková, Nela; Urbanová, Jana; Cecháková, Marie; Havlová, Andrea; Straková, Radka; Večeřová, Livia; Mandys, Václav; Kovář, Jan; Heneberg, Petr; Trnka, Jan; Polák, Jan
2014-09-01
Insulin secretion in patients with manifested diabetes mellitus tends to disappear months to decades after the diagnosis, which is a clear sign of a gradual loss of pancreatic islet beta-cells. In our sample of 30 type 2 diabetic patients, whose disease manifested between 30 and 45 years of age, about a half have retained or even increased insulin secretion 30 years later, while the other half exhibit a much diminished or lost insulin secretion. Factors that can damage or destroy beta-cells can be divided into the following groups: Metabolic factors: hyperglycemia and glucotoxicity, lipotoxicity, hypoxia, reactive oxygen species; Pharmacological factors: antimicrobial medication pentamidine, SSRI antidepressants; Factors related to impaired insulin secretion: MODY type diabetes; Environmental toxic factors: rat poison Vacor, streptozotocin, polychlorinated and polybrominated hydrocarbons; Disorders of the exocrine pancreas: tumor infiltration, fibrous infiltration, chronic pancreatitis, cystic fibrosis; Infections, inflammation, autoimmunity, viral factors: Coxsackie viruses, H1N1 influenza, enteroviruses. We are currently working on finding other factors leading to beta-cell damage, studying their effect on apoptosis and necrosis and looking for possible protective factors to prevent this damage. We our increasing knowledge about the mechanisms of beta-cell damage and destruction we come ever closer to suggest measures for their prevention. In this review we offer a brief and simplified summary of some of the findings related to this area.Key words: pancreatic islet beta-cells of Langerhans - factors damaging or destroying beta-cells - insulin secretion.
Compensating temperature-induced ultrasonic phase and amplitude changes
NASA Astrophysics Data System (ADS)
Gong, Peng; Hay, Thomas R.; Greve, David W.; Junker, Warren R.; Oppenheim, Irving J.
2016-04-01
In ultrasonic structural health monitoring (SHM), environmental and operational conditions, especially temperature, can significantly affect the propagation of ultrasonic waves and thus degrade damage detection. Typically, temperature effects are compensated using optimal baseline selection (OBS) or optimal signal stretch (OSS). The OSS method achieves compensation by adjusting phase shifts caused by temperature, but it does not fully compensate phase shifts and it does not compensate for accompanying signal amplitude changes. In this paper, we develop a new temperature compensation strategy to address both phase shifts and amplitude changes. In this strategy, OSS is first used to compensate some of the phase shifts and to quantify the temperature effects by stretching factors. Based on stretching factors, empirical adjusting factors for a damage indicator are then applied to compensate for the temperature induced remaining phase shifts and amplitude changes. The empirical adjusting factors can be trained from baseline data with temperature variations in the absence of incremental damage. We applied this temperature compensation approach to detect volume loss in a thick wall aluminum tube with multiple damage levels and temperature variations. Our specimen is a thick-walled short tube, with dimensions closely comparable to the outlet region of a frac iron elbow where flow-induced erosion produces the volume loss that governs the service life of that component, and our experimental sequence simulates the erosion process by removing material in small damage steps. Our results show that damage detection is greatly improved when this new temperature compensation strategy, termed modified-OSS, is implemented.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Nemeth, Noel N.
2017-01-01
Advanced environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect emerging light-weight SiC/SiC ceramic matrix composite (CMC) engine components, further raising engine operating temperatures and performance. Because the environmental barrier coating systems are critical to the performance, reliability and durability of these hot-section ceramic engine components, a prime-reliant coating system along with established life design methodology are required for the hot-section ceramic component insertion into engine service. In this paper, we have first summarized some observations of high temperature, high-heat-flux environmental degradation and failure mechanisms of environmental barrier coating systems in laboratory simulated engine environment tests. In particular, the coating surface cracking morphologies and associated subsequent delamination mechanisms under the engine level high-heat-flux, combustion steam, and mechanical creep and fatigue loading conditions will be discussed. The EBC compostion and archtechture improvements based on advanced high heat flux environmental testing, and the modeling advances based on the integrated Finite Element Analysis Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program will also be highlighted. The stochastic progressive damage simulation successfully predicts mud flat damage pattern in EBCs on coated 3-D specimens, and a 2-D model of through-the-thickness cross-section. A 2-parameter Weibull distribution was assumed in characterizing the coating layer stochastic strength response and the formation of damage was therefore modeled. The damage initiation and coalescence into progressively smaller mudflat crack cells was demonstrated. A coating life prediction framework may be realized by examining the surface crack initiation and delamination propagation in conjunction with environmental degradation under high-heat-flux and environment load test conditions.
Parolini, Marco; Magni, Stefano; Traversi, Irene; Villa, Sara; Finizio, Antonio; Binelli, Andrea
2015-03-21
Synthetic musk compounds (SMCs) are extensively used as fragrances in several personal care products and have been recognized as emerging aquatic pollutants. Among SMCs, galaxolide (HHCB) and tonalide (AHTN) are extensively used and have been measured in aquatic ecosystems worldwide. However, their potential risk to organisms remains largely unknown. The aim of this study was to investigate whether 21-day exposures to HHCB and AHTN concentrations frequently measured in aquatic ecosystems can induce oxidative and genetic damage in Dreissena polymorpha. The lipid peroxidation (LPO) and protein carbonyl content (PCC) were measured as oxidative stress indexes, while the DNA precipitation assay and the micronucleus test (MN test) were applied to investigate genetic injuries. HHCB induced significant increases in LPO and PCC levels, while AHTN enhanced only protein carbonylation. Moreover, significant increases in DNA strand breaks were caused by exposure to the highest concentrations of HHCB and AHTN tested in the present study, but no fixed genetic damage was observed. Copyright © 2014 Elsevier B.V. All rights reserved.
Corrosion monitoring using high-frequency guided ultrasonic waves
NASA Astrophysics Data System (ADS)
Fromme, Paul
2014-02-01
Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.
Hepatoprotective activity of sea cucumber Phyllophorus sp. extract in carp (Cyprinus carpio)
NASA Astrophysics Data System (ADS)
Sulmartiwi, Laksmi; Triastuti, Juni; Andriyono, Sapto; Umami, Mardiah Rahma
2017-02-01
Many procedures continuously in aquaculture and scientific research like tagging and vaccinating cause pain, involving damaging tissue and also cause stress responses in fish. Stress responses in fish influence liver because liver have vital role to supply energy and metabolism. Histology alteration in liver is caused by stress response like changes of vacuolation hepatocyte and characteristic colour. Triterpenoid was known had hepatoprotective activity. One of marine organism contained triterpenoid was sea cucumber. Result of research showed that liver tissue in fish with injected acetic acid 5 % (in upper lip) as pain stimulus have histopathology damages such as pyknosis (medium damage level) and oedema (heavy damage level) after 8 hour injection. Injected Lidocaine 1mg/fish as analgesic drug have histopathology damages such as oedema (heavy damages level), necrosis and pyknosis (low damages level). Injected acetic acid 5 % (in upper lip) and ethanolic extract of sea cucumber Phyllophorus sp. dose 5 mg/50 gr body weight shown histopathology damages such as necrosis, edema (medium damage level) and pyknosis (low damage level).
Janssens, Lizanne; Stoks, Robby
2017-07-01
Interactions with pollutants and environmental factors are poorly studied for physiological traits. Yet physiological traits are important for explaining and predicting interactions at higher levels of organization. We investigated the single and combined impact of the pesticide chlorpyrifos, predation risk and warming on endpoints related to oxidative stress in the damselfly Enallagma cyathigerum. We thereby integrated information on reactive oxygen species (ROS), antioxidant enzymes and oxidative damage. All three treatments impacted the oxidative stress levels and for most traits the pesticide interacted antagonistically with warming or predation risk. Chlorpyrifos exposure resulted in increased ROS levels, decreased antioxidant defence and increased oxidative damage compared to the control situation. Under warming, the pesticide-induced increase in oxidative stress was less strong and the investment in antioxidant defence higher. Although both the pesticide and predation risk increased oxidative damage, the effects of the pesticide on oxidative damage were less strong in the presence of predator cues (at 20 °C). Despite the weaker pesticide-induced effects under predation risk, the combination of the pesticide and predator cues consistently caused the highest ROS levels, the lowest antioxidant defence and the highest oxidative damage, indicating the importance of cumulative stressor effects for impairing fitness. Our results provide the first evidence for antagonistic interactions of warming and predation risk with a pollutant for physiological traits. We identified two general mechanisms that may generate antagonistic interactions for oxidative stress: cross-tolerance and the maximum cumulative levels of damage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterizing Damage of Brown Marmorated Stink Bug (Hemiptera: Pentatomidae) in Blueberries.
Wiman, Nik G; Parker, Joyce E; Rodriguez-Saona, Cesar; Walton, Vaughn M
2015-06-01
Brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), is a severe economic pest of growing importance in the United States, Canada, and Europe. While feeding damage from H. halys has been characterized in tree fruit, vegetables, and agronomic crops, less is known about the impacts of stink bugs on small fruits such as blueberries. In this study, we examined H. halys feeding on two representative early and late ripening blueberry cultivars in Oregon and New Jersey. This research examined how different densities of H. halys confined on blueberry clusters for week-long periods affected fruit quality at harvest. After fruit were ripe, we stained and quantified the number of salivary sheaths on berries as an indication of feeding pressure. Feeding by H. halys damaged the fruits by causing increased levels of external discoloration, and internal damage in the form of tissue necrosis. Exposure of berries to H. halys was also associated with decreasing berry weights and lower soluble solids in fruits. However, the different cultivars did not respond consistently to feeding pressure from H. halys. Weekly variability in feeding pressure of two of the cultivars as quantified by the number of stylet sheaths per berry was largely accounted for by environmental variables. We conclude that H. halys does have potential to severely damage blueberries and may become an important economic pest. Characterization of damage is important because correct identification of insect damage is key for successful management. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
INHIBITION OF FRIED MEAT-INDUCED DNA DAMAGE: A DIETARY INTERVENTION STUDY IN HUMANS
Dietary exposures have been implicated as risk factors in colorectal cancer. Such agents may act by causing DNA damage or may be protective against DNA damage. The effects of dietary exposures in causing or preventing damage have not been assessed directly in colon tissues. In th...
Identification of sandstone core damage using scanning electron microscopy
NASA Astrophysics Data System (ADS)
Ismail, Abdul Razak; Jaafar, Mohd Zaidi; Sulaiman, Wan Rosli Wan; Ismail, Issham; Shiunn, Ng Yinn
2017-12-01
Particles and fluids invasion into the pore spaces causes serious damage to the formation, resulting reduction in petroleum production. In order to prevent permeability damage for a well effectively, the damage mechanisms should be identified. In this study, water-based drilling fluid was compared to oil-based drilling fluids based on microscopic observation. The cores were damaged by several drilling fluid systems. Scanning electron microscope (SEM) was used to observe the damage mechanism caused by the drilling fluids. Results showed that the ester based drilling fluid system caused the most serious damage followed by synthetic oil based system and KCI-polymer system. Fine solids and filtrate migration and emulsion blockage are believed to be the major mechanisms controlling the changes in flow properties for the sandstone samples.
Li, Junmin; Jin, Zexin; Song, Wenjing
2012-01-01
Field studies have shown that native, parasitic plants grow vigorously on invasive plants and can cause more damage to invasive plants than native plants. However, no empirical test has been conducted and the mechanism is still unknown. We conducted a completely randomized greenhouse experiment using 3 congeneric pairs of exotic, invasive and native, non-invasive herbaceous plant species to quantify the damage caused by parasitic plants to hosts and its correlation with the hosts' growth rate and resource use efficiency. The biomass of the parasitic plants on exotic, invasive hosts was significantly higher than on congeneric native, non-invasive hosts. Parasites caused more damage to exotic, invasive hosts than to congeneric, native, non-invasive hosts. The damage caused by parasites to hosts was significantly positively correlated with the biomass of parasitic plants. The damage of parasites to hosts was significantly positively correlated with the relative growth rate and the resource use efficiency of its host plants. It may be the mechanism by which parasitic plants grow more vigorously on invasive hosts and cause more damage to exotic, invasive hosts than to native, non-invasive hosts. These results suggest a potential biological control effect of native, parasitic plants on invasive species by reducing the dominance of invasive species in the invaded community.
A Case of Generalized Auditory Agnosia with Unilateral Subcortical Brain Lesion
Suh, Hyee; Kim, Soo Yeon; Kim, Sook Hee; Chang, Jae Hyeok; Shin, Yong Beom; Ko, Hyun-Yoon
2012-01-01
The mechanisms and functional anatomy underlying the early stages of speech perception are still not well understood. Auditory agnosia is a deficit of auditory object processing defined as a disability to recognize spoken languages and/or nonverbal environmental sounds and music despite adequate hearing while spontaneous speech, reading and writing are preserved. Usually, either the bilateral or unilateral temporal lobe, especially the transverse gyral lesions, are responsible for auditory agnosia. Subcortical lesions without cortical damage rarely causes auditory agnosia. We present a 73-year-old right-handed male with generalized auditory agnosia caused by a unilateral subcortical lesion. He was not able to repeat or dictate but to perform fluent and comprehensible speech. He could understand and read written words and phrases. His auditory brainstem evoked potential and audiometry were intact. This case suggested that the subcortical lesion involving unilateral acoustic radiation could cause generalized auditory agnosia. PMID:23342322
Importance of secondary damage in downer cows.
Poulton, P J; Vizard, A L; Anderson, G A; Pyman, M F
2016-05-01
To investigate the relative importance in downer cows of the primary cause of recumbency in comparison with secondary complications. Downer dairy cows were monitored during their recumbency under field conditions in South Gippsland, Victoria, Australia. The cause of the original recumbency of the 218 cows was determined and secondary damage, status on day 7 and final outcome were recorded. Some type of secondary damage was found in 183/218 (84%) cows, of which 173/218 (79%) had damage deemed to be clinically important. By day 7, 52 (24%) had recovered and 69 (32%) eventually recovered. Of the 149 (68%) cows that were euthanased or died, 23 (15%) were deemed to have been lost solely from the primary cause, 107 (72%) from secondary damage and 19 (13%) from a combination of both. There was no difference in recovery among the five broad groups of causes of primary recumbency. Secondary damage was very common and presented in a large variety of ways, with many cows having multiple types of secondary damage concurrently. For most cows the secondary damage was more important than the initial primary damage in determining their fate. © 2016 Australian Veterinary Association.
Oxidative damage of DNA in subjects occupationally exposed to lead.
Pawlas, Natalia; Olewińska, Elżbieta; Markiewicz-Górka, Iwona; Kozłowska, Agnieszka; Januszewska, Lidia; Lundh, Thomas; Januszewska, Ewa; Pawlas, Krystyna
2017-09-01
Exposure to lead (Pb) in environmental and occupational settings continues to be a serious public health problem and may pose an elevated risk of genetic damage. The aim of this study was to assess the level of oxidative stress and DNA damage in subjects occupationally exposed to lead. We studied a population of 78 male workers exposed to lead in a lead and zinc smelter and battery recycling plant and 38 men from a control group. Blood lead levels were detected by graphite furnace atomic absorption spectrophotometry and plasma lead levels by inductively coupled plasma-mass spectrometry. The following assays were performed to assess the DNA damage and oxidative stress: comet assay, determination of 8-hydroxy-2'-deoxyguanosine (8-OHdG), lipid peroxidation and total antioxidant status (TAS). The mean concentration of lead in the blood of the exposed group was 392 ± 103 μg/L and was significantly higher than in the control group (30.3 ± 29.4 μg/L, p < 0.0001). Oxidative DNA damages measured by comet assay showed no significant differences between populations. The concentration of 8-OHdG was about twice as high as in the control group. We found a significant positive correlation between the level of biomarkers of lead exposure [lead in blood, lead in plasma, zinc protoporphyrin (ZPP)] and urine concentration of 8-OHdG. The level of oxidative damage of DNA was positively correlated with the level of lipid peroxidation (TBARS) and negatively with total anti-oxidative status (TAS). Our study suggests that occupational exposure causes an increase in oxidative damage to DNA, even in subjects with relatively short length of service (average length of about 10 years). 8-OHdG concentration in the urine proved to be a sensitive and non-invasive marker of lead induced genotoxic damage.
Development of waterborne oil spill sensor based on printed ITO nanocrystals.
Koo, Jieun; Jung, Jung-Yeul; Lee, Sangtae; Lee, Moonjin; Chang, Jiho
2015-09-15
Oil spill accidents occasionally occur in coastal and ocean environments, and cause critical environmental damage, spoiling the marine habitats and ecosystems. To mitigate the damages, the species and amount of spilled oil should be monitored. In this study, we developed a waterborne oil spill sensor using a printed ITO layer. ITO is a compatible material for salty environments such as oceans because ITO is strong against corrosion. The fabricated sensor was tested using three oils, gasoline, lubricant and diesel, and different oil thicknesses of 0, 5, 10, and 15mm. The results showed that the resistance of the sensor clearly increased with the oil thickness and its electrical resistance. For sustainable sensing applications in marine environments, XRD patterns confirmed that the crystal structure of the ITO sensor did not change and FE-SEM images showed that the surface was clearly maintained after tests. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Min; Wang, Xiu Feng; Cui, Xiu Min; Wang, Jian; Yu, Shi Xin
2015-02-01
To determine the correlation between the working environment and the health status of employees in solar greenhouse, 1171 employees were surveyed. The results show the 'Greenhouse diseases' are affected by many factors. Among general uncomforts, the morbidity of the bone and joint damage is the highest and closely related to labor time and age. Planting summer squash and wax gourd more easily cause skin pruritus. Asthma-related cough, eye disease, and skin pruritus are significantly correlated with the cultivation of wax gourd. The application of inorganic fertilizer and fertigation dramatically induce the bone and joint damage. The smell of covering film greatly influence skin pruritus. Personal protection is badly scanty and normative occupational health and safety need to be completed. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Cantrell, Susannah M.; Lutz, Linda H.; Tillitt, Donald E.; Hannink, Mark
1996-01-01
Vertebrate embryos are extremely sensitive to environmental contaminants known as planar halogenated hydrocarbons (PHHs). The physiological targets that mediate PHH-induced embryotoxicity are not known. We have characterized embryotoxicity in medaka (Orizias latipes) caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the prototypic PHH. DNA degradation in cells of the embryonic vasculature and loss of functional integrity of the medial yolk vein were demonstrated in TCDD-exposed embryos. Pharmacological intervention with piperonyl butoxide inhibited TCDD-induced DNA degradation, restored the functional integrity of the medial yolk vein, and protected against the embryotoxicity of TCDD. Treatment of TCDD-exposed embryos with the antioxidant N-acetylcysteine also provided significant protection against the embryotoxicity of TCDD. These results demonstrate that DNA damage and consequent cell death in the embryonic vasculature are key physiological mediators of TCDD-induced embryotoxicity.
Risk Analysis using Corrosion Rate Parameter on Gas Transmission Pipeline
NASA Astrophysics Data System (ADS)
Sasikirono, B.; Kim, S. J.; Haryadi, G. D.; Huda, A.
2017-05-01
In the oil and gas industry, the pipeline is a major component in the transmission and distribution process of oil and gas. Oil and gas distribution process sometimes performed past the pipeline across the various types of environmental conditions. Therefore, in the transmission and distribution process of oil and gas, a pipeline should operate safely so that it does not harm the surrounding environment. Corrosion is still a major cause of failure in some components of the equipment in a production facility. In pipeline systems, corrosion can cause failures in the wall and damage to the pipeline. Therefore it takes care and periodic inspections or checks on the pipeline system. Every production facility in an industry has a level of risk for damage which is a result of the opportunities and consequences of damage caused. The purpose of this research is to analyze the level of risk of 20-inch Natural Gas Transmission Pipeline using Risk-based inspection semi-quantitative based on API 581 associated with the likelihood of failure and the consequences of the failure of a component of the equipment. Then the result is used to determine the next inspection plans. Nine pipeline components were observed, such as a straight pipes inlet, connection tee, and straight pipes outlet. The risk assessment level of the nine pipeline’s components is presented in a risk matrix. The risk level of components is examined at medium risk levels. The failure mechanism that is used in this research is the mechanism of thinning. Based on the results of corrosion rate calculation, remaining pipeline components age can be obtained, so the remaining lifetime of pipeline components are known. The calculation of remaining lifetime obtained and the results vary for each component. Next step is planning the inspection of pipeline components by NDT external methods.
NASA Astrophysics Data System (ADS)
Brand, David; Wijewardana, Chathurika; Gao, Wei; Reddy, K. Raja
2016-12-01
Interactive effects of multiple environmental stresses are predicted to have a negative effect on cotton growth and development and these effects will be exacerbated in the future climate. The objectives of this study were to test the hypothesis that cotton cultivars differ in their responses to multiple environmental factors of (CO2) [400 and 750 µmol·mol-1 (+(CO2)], temperature [28/20 and 20/12°C (-T)], and UV-B radiation [0 and 10 kJ·m-2·d-1 (+ UV-B)]. A genetic and molecular standard (TM-1) and three modern cotton cultivars (DP1522B2XF, PHY496W3R, and ST4747GLB2) were grown in eight sunlit, controlled environment chambers with control treatment 400 µmol·mol-1 [CO2], 28/21°C temperature, and 0 kJ UV-B. The results showed significant differences among the cultivars for most of the shoot and root parameters. Plants grown under low temperature alone or as a combination with + UV-B treatment caused more detrimental effects on root and shoot vigor. Although the elevated CO2 treatments weakened the damaging effects of higher UV-B levels on cotton growth on all cultivars, increased CO2 could not mask the negative effects of low temperature. When comparing all cultivars, genetic standard TM-1 produced the smallest values for the majority of traits under CO2, UV-B, and low temperature either alone or in combination with other treatments. Based on principal component analysis, the four cultivars were classified as tolerant (DP1522B2XF), intermediate (PHY496W3R and ST4747GLB2) and sensitive (TM-1) to multiple environmental stresses.Low temperature was identified as the most damaging treatment to cotton early seedling vigor while elevated CO2 caused the least. Existing variability of cotton cultivars in response to multiple environmental stresses could allow for selection of cultivars with the best coping ability and higher lint yield for future climate change environments.
Ghosh, Ilika; Mukherjee, Amitava; Mukherjee, Anita
2017-05-01
Nanoremediation of soil, ground and surface water using nanoscale zerovalent iron particles (nZVI) has facilitated their direct environmental exposure posing ecotoxicological concerns. Numerous studies elucidate their phytotoxicity in terms of growth and their fate within the plant system. However, their potential genotoxicity and cytotoxicity mechanisms are not known in plants. This study encompasses the physico-chemical characterisation of two forms of nZVI (nZVI-1 and nZVI-2) with different surface chemistries and their influence on uptake, root morphology, DNA damage, oxidative stress and cell death in Allium cepa roots after 24 h. To our knowledge, this is the first report on the cyto-genotoxicity of nZVI in plants. The adsorption of nZVI on root surfaces caused root tip, epidermal and root hair damage as assessed by Scanning Electron Microscopy. nZVI-1, due to its colloidal destabilisation (low zeta potential, conductivity and high polydispersity index), smaller size and high uptake imparted enhanced DNA damage, chromosome/nuclear aberrations (CAs/NAs) and micronuclei formation compared to nZVI-2. Although nZVI-2 exhibited high zeta potential and conductivity, its higher dissolution and substantial uptake induced genotoxicity. nZVI incited the generation of reactive oxygen species (ROS) (hydrogen peroxide, superoxide and hydroxyl radicals) leading to membrane lipid peroxidation, electrolyte leakage and mitochondrial depolarisation. The inactivation of catalase and insignificant glutathione levels marked the onset of oxidative stress. Increased superoxide dismutase and guaiacol peroxidase enzyme activities, and proline content indicated the activation of antioxidant defence machinery to alleviate ROS. Moreover, ROS-mediated apoptotic and necrotic cell death occurred in both nZVI-1 and nZVI-2-treated roots. Our results open up further possibilities in the environmental safety appraisal of bare and modified nZVI in correlation with their physico-chemical characters. © The Author 2017. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Shao, Bo; Mao, Li; Qu, Na; Wang, Ya-Fen; Gao, Hui-Ying; Li, Feng; Qin, Li; Shao, Jie; Huang, Chun-Hua; Xu, Dan; Xie, Lin-Na; Shen, Chen; Zhou, Xiang; Zhu, Ben-Zhan
2017-03-01
2,6-Dibromohydroquinone (2,6-DBrHQ) has been identified as an reactive metabolite of many brominated phenolic environmental pollutants such as tetrabromobisphenol-A (TBBPA), bromoxynil and 2,4,6-tribromophenol, and was also found as one of disinfection byproducts in drinking water. In this study, we found that the combination of 2,6-DBrHQ and Cu(II) together could induce synergistic DNA damage as measured by double strand breakage in plasmid DNA and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation, while either of them alone has no effect. 2,6-DBrHQ/Cu(II)-induced DNA damage could be inhibited by the Cu(I)-specific chelating agent bathocuproine disulfonate and catalase, but not by superoxide dismutase, nor by the typical hydroxyl radical (•OH) scavengers such as DMSO and mannitol. Interestingly, we found that Cu(II)/Cu(I) could be combined with DNA to form DNA-Cu(II)/Cu(I) complex by complementary application of low temperature direct ESR, circular dichroism, cyclic voltammetry and oxygen consumption methods; and the highly reactive •OH were produced synergistically by DNA-bound-Cu(I) with H 2 O 2 produced by the redox reactions between 2,6-DBrHQ and Cu(II), which then immediately attack DNA in a site-specific manner as demonstrated by both fluorescent method and by ESR spin-trapping studies. Further DNA sequencing investigations provided more direct evidence that 2,6-DBrHQ/Cu(II) caused preferential cleavage at guanine, thymine and cytosine residues. Based on these data, we proposed that the synergistic DNA damage induced by 2,6-DBrHQ/Cu(II) might be due to the synergistic and site-specific production of •OH near the binding site of copper and DNA. Our findings may have broad biological and environmental implications for future research on the carcinogenic polyhalogenated phenolic compounds. Copyright © 2017 Elsevier Inc. All rights reserved.
Piston Aviation Fuel Initiative (PAFI) – A Review
NASA Astrophysics Data System (ADS)
Thanikasalam, K.; Rahmat, M.; Fahmi, A. G. Mohammad; Zulkifli, A. M.; Shawal, N. Noor; Ilanchelvi, K.; Ananth, M.; Elayarasan, R.
2018-05-01
Aviation gasoline (Avgas) has remained unchanged for seventy years and the existing fleet of piston aircraft was designed to be compatible with its chemical and physical properties to achieve superior levels of safety. Tetra-ethyl lead (TEL) is an octane-enhancing metal additive used in aviation gasoline to prevent knocking. Studies have shown that lead causes brain damage in children reducing their IQ and cardiovascular difficulties and kidney failure in adults. Friends of the Earth (FOE) petitioned the Environmental Protection Agency (EPA) in 2006 to make a finding that lead emissions from general aviation (GA) aircraft cause to public health endangerment or carry out studies and issue a report on its findings. PAFI was set up by Federal Aviation Administration (FAA) to find most suitable unleaded replacements for Avgas to recognize best unleaded fuel that have the capacity to in fact satisfy the requirements of the present aircraft fleet while additionally considering the creation, dispersion, cost, availability, environmental impacts. This study will technically review PAFI and broaden the limited knowledge on piston aviation fuels in Malaysia by giving a comprehensive analysis and possible gap in reciprocation aviation engine market in Malaysia.
Zhu, Chunpeng; Hu, Xun
2013-01-01
Mitotic chromosomal instability (CIN) plays important roles in tumor progression, but what causes CIN is incompletely understood. In general, tumor CIN arises from abnormal mitosis, which is caused by either intrinsic or extrinsic factors. While intrinsic factors such as mitotic checkpoint genes have been intensively studied, the impact of tumor microenvironmental factors on tumor CIN is largely unknown. We investigate if glucose deprivation and lactic acidosis – two tumor microenvironmental factors – could induce cancer cell CIN. We show that glucose deprivation with lactic acidosis significantly increases CIN in 4T1, MCF-7 and HCT116 scored by micronuclei, or aneuploidy, or abnormal mitosis, potentially via damaging DNA, up-regulating mitotic checkpoint genes, and/or amplifying centrosome. Of note, the feature of CIN induced by glucose deprivation with lactic acidosis is similar to that of aneuploid human tumors. We conclude that tumor environmental factors glucose deprivation and lactic acidosis can induce tumor CIN and propose that they are potentially responsible for human tumor aneuploidy. PMID:23675453
USDA Forest Service
1981-01-01
Flagging (dead branch tips) on jack pine and red pine may be caused by insects, diseases, or mechanical damage. In the Lake States, flagging is often the result of mechanical damage, sometimes girdling, caused when the cones are torn off by red squirrels.
Polyamines and abiotic stress in plants: a complex relationship1
Minocha, Rakesh; Majumdar, Rajtilak; Minocha, Subhash C.
2014-01-01
The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g., due to their ability to deal with oxidative radicals) or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism). The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e., being protectors from as well as perpetrators of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress. PMID:24847338
Liu, Huijun; Xia, YiLu; Cai, Weidan; Zhang, Yina; Zhang, Xiaoqiang; Du, Shaoting
2017-04-01
The rational use and environmental security of chiral pesticides has gained the interest of many researchers. The enantioselective effects of Rac- and S-metolachlor on oxidative stress in Scenedesmus obliquus were determined in this study. Stronger green fluorescence was observed in response to S-metolachlor treatment than to Rac-metolachlor treatment, suggesting that more reactive oxygen species (ROS) were stimulated by S-metolachlor. ROS levels following S-metolachlor treatment were 1.92-, 8.31-, and 1.08-times higher than those observed following Rac-metolachlor treatment at 0.1, 0.2, and 0.3 mg/L, respectively. Superoxide dismutase (SOD) and catalase (CAT) were stimulated with increasing herbicide concentrations, with S-metolachlor exhibiting a greater effect. Oxidative damage in terms of chlorophyll (Chl) content, cellular membrane permeability, and cellular ultrastructures of S. obliquus were investigated. Chla and Chlb contents in algae treated with Rac-metolachlor were 2-6-fold higher than those in algae treated with S-metolachlor at 0.1, 0.2, and 0.3 mg/L. The cellular membrane permeability of algae exposed to 0.3 mg/L Rac- and S-metolachlor was 6.19- and 42.5-times that of the control. Correlation analysis implied that ROS are the major factor responsible for the oxidative damage caused by Rac- and S-metolachlor. Damage to the chloroplasts and cell membrane of S. obliquus, low production of starch granules, and an increased number of vacuoles were observed upon ultrastructural morphology analysis by transmission electron microscope. These results indicate that S-metolachlor has a greater effect on S. obliquus than Rac-metolachlor. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biomarkers of Oxidative Stress in the Assessment of Enantioselective Toxicity of Chiral Pesticides.
Ye, Xiaoqing; Liu, Ying; Li, Feixue
2017-01-01
In biological systems, the individual stereoisomers of chiral substances possess significantly different biochemical properties because the specific structure-activity relationships are required for a common site on biomolecules. In the past decade, there has been increasing concern over the enantioselective toxicity of environmental chiral pollutants, especially chiral pesticides. Different responses and activities of a pair of enantiomers of chiral pesticides were often observed. Therefore, assessment of the enantioselective toxicological properties of chiral pesticides is a prerequisite in application of single-isomer products and particularly important for environmental protection. The development of biomarkers that can predict enantioselective effects from chiral pesticides has recently been gained more and more attention. The biomarkers of oxidative stress have become a topic of significant interest for toxic assessments. In this review, we summarized current knowledge and advances in the understanding of enantiomeric oxidative processes in biological systems in response to chiral pesticides. The consistent results in two types of chiral insecticides (synthetic pyrethroids and organochlorine pesticides) showed the significant difference in cytotoxicity of enantiomers, suggesting the antioxidant enzymes are reliable biomarkers for the assessment of toxicity of chiral chemicals. Results indicate that antioxidant enzymes are sensitive and valid biomarkers to assess the oxidative damage caused by chiral herbicides. In addition, it can be inferred that the enantioselectivity of chiral herbicides on antioxidant enzymes exists in other species. Compared with insecticides and herbicides, researches about the enantioselectivity of oxidative stress caused by chiral fungicides are quite limited. Only two kinds of chiral fungicides has been used to study the enantioselectivity of oxidative stress by now. The current knowledge that enantioselective processes of oxidative damage occur in organisms or cells extends toxicological studies of environmental contamination by chiral chemicals. These studies indicate that oxidative biomarkers can be useful for monitoring enantioselective toxicity of chiral contaminates, while comparing enantiomer-induced responses in different species should be approached with caution because of differences in uptake, target sites, biotransformation and pharmacokinetics of the enantiomers.
Earthquakes in Arkansas and vicinity 1699-2010
Dart, Richard L.; Ausbrooks, Scott M.
2011-01-01
This map summarizes approximately 300 years of earthquake activity in Arkansas. It is one in a series of similar State earthquake history maps. Work on the Arkansas map was done in collaboration with the Arkansas Geological Survey. The earthquake data plotted on the map are from several sources: the Arkansas Geological Survey, the Center for Earthquake Research and Information, the National Center for Earthquake Engineering Research, and the Mississippi Department of Environmental Quality. In addition to earthquake locations, other materials presented include seismic hazard and isoseismal maps and related text. Earthquakes are a legitimate concern in Arkansas and parts of adjacent states. Arkansas has undergone a number of significant felt earthquakes since 1811. At least two of these events caused property damage: a magnitude 4.7 earthquake in 1931, and a magnitude 4.3 earthquake in 1967. The map shows all historical and instrumentally located earthquakes in Arkansas and vicinity between 1811 and 2010. The largest historic earthquake in the vicinity of the State was an intensity XI event, on December 16, 1811; the first earthquake in the New Madrid sequence. This violent event and the earthquakes that followed caused considerable damage to the then sparsely settled region.
Oil spill treatment products approval: the UK approach and potential application to the Gulf region.
Kirby, Mark F; Law, Robin J
2008-07-01
The environmental threat from oil spills remains significant across the globe and particularly in regions of high oil production and transport such as the Gulf. The ultimate damage caused can be limited by mitigation actions that responders deploy. The responsible and appropriate use of oil spill treatment products (e.g. dispersants, sorbents etc.) can offer response options that can result in substantial net environmental benefit. However, the approval and choice of what products to use needs careful consideration. The United Kingdom has had in place a statutory approval scheme for oil spill treatment products for 30 years. It is based on measures of efficiency and environmental acceptability. Two toxicity tests form an integral part of the assessment, the Sea test and the Rocky Shore test, and work on the premise that approved products will not make the situation significantly worse when added to spilled oil. This paper outlines the UK approach and how its rationale might be applied to the approval of products specific for the Gulf region. Issues such as species choice, higher temperatures and salinity and regional environmental conditions are considered.
Garzillo, Elpidio Maria; Miraglia, Nadia; Pedata, Paola; Feola, Daniela; Sannolo, Nicola; Lamberti, Monica
2015-01-01
In recent years, scientific literature has been giving more and more importance to the study of the occupational/environmental exposure to risk agents related to the onset of Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease characterized by progressive muscular paralysis reflecting degeneration of motor neurons in the primary motor cortex. Aim of this work is to verify the state of art about the eventual role of occupational/environmental exposure to risk agents. Selected articles, on the basis of keywords, year of publication and topics, are related to occupational and environmental exposure to xenobiotics, and, in particular, to the exposure to heavy metals that could lead to neuronal damage mechanisms involved in ALS onset. The review shows that although the scientific production has increased the interest in the evaluation of extra-genetic causes of ALS onset, there are still few studies concerning the careful study of the work activities of the individual patient, and the inferences that can be drawn to date about the possible connection between occupational exposure to risk factors and the onset of ALS are still lacking.
Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes.
Kolb, Hubert; Martin, Stephan
2017-07-19
Environmental and lifestyle changes, in addition to the ageing of populations, are generally believed to account for the rapid global increase in type 2 diabetes prevalence and incidence in recent decades. In this review, we present a comprehensive overview of factors contributing to diabetes risk, including aspects of diet quality and quantity, little physical activity, increased monitor viewing time or sitting in general, exposure to noise or fine dust, short or disturbed sleep, smoking, stress and depression, and a low socioeconomic status. In general, these factors promote an increase in body mass index. Since loss of β-cell function is the ultimate cause of developing overt type 2 diabetes, environmental and lifestyle changes must have resulted in a higher risk of β-cell damage in those at genetic risk. Multiple mechanistic pathways may come into play. Strategies of diabetes prevention should aim at promoting a 'diabetes-protective lifestyle' whilst simultaneously enhancing the resistance of the human organism to pro-diabetic environmental and lifestyle factors. More research on diabetes-protective mechanisms seems warranted.
Richard L. Lindroth
2001-01-01
Quaking aspen (Populus tremuloides) employs two major systems of defense against damage by environmental agents: chemical defense and tolerance. Aspen accumulates appreciable quantities of phenolic glycosides (salicylates) and condensed tannins in most tissues and accumulates coniferyl benzoate in flower buds. Phenolic glycosides are toxic and/or deterrent to pathogens...
Fluoride induces oxidative damage and SIRT1/autophagy through ROS-mediated JNK signaling.
Suzuki, Maiko; Bandoski, Cheryl; Bartlett, John D
2015-12-01
Fluoride is an effective caries prophylactic, but at high doses can also be an environmental health hazard. Acute or chronic exposure to high fluoride doses can result in dental enamel and skeletal and soft tissue fluorosis. Dental fluorosis is manifested as mottled, discolored, porous enamel that is susceptible to dental caries. Fluoride induces cell stress, including endoplasmic reticulum stress and oxidative stress, which leads to impairment of ameloblasts responsible for dental enamel formation. Recently we reported that fluoride activates SIRT1 and autophagy as an adaptive response to protect cells from stress. However, it still remains unclear how SIRT1/autophagy is regulated in dental fluorosis. In this study, we demonstrate that fluoride exposure generates reactive oxygen species (ROS) and the resulting oxidative damage is counteracted by SIRT1/autophagy induction through c-Jun N-terminal kinase (JNK) signaling in ameloblasts. In the mouse-ameloblast-derived cell line LS8, fluoride induced ROS, mitochondrial damage including cytochrome-c release, up-regulation of UCP2, attenuation of ATP synthesis, and H2AX phosphorylation (γH2AX), which is a marker of DNA damage. We evaluated the effects of the ROS inhibitor N-acetylcysteine (NAC) and the JNK inhibitor SP600125 on fluoride-induced SIRT1/autophagy activation. NAC decreased fluoride-induced ROS generation and attenuated JNK and c-Jun phosphorylation. NAC decreased SIRT1 phosphorylation and formation of the autophagy marker LC3II, which resulted in an increase in the apoptosis mediators γH2AX and cleaved/activated caspase-3. SP600125 attenuated fluoride-induced SIRT1 phosphorylation, indicating that fluoride activates SIRT1/autophagy via the ROS-mediated JNK pathway. In enamel organs from rats or mice treated with 50, 100, or 125 ppm fluoride for 6 weeks, cytochrome-c release and the DNA damage markers 8-oxoguanine, p-ATM, and γH2AX were increased compared to those in controls (0 ppm fluoride). These results suggest that fluoride-induced ROS generation causes mitochondrial damage and DNA damage, which may lead to impairment of ameloblast function. To counteract this impairment, SIRT1/autophagy is induced via JNK signaling to protect cells/ameloblasts from fluoride-induced oxidative damage that may cause dental fluorosis. Copyright © 2015 Elsevier Inc. All rights reserved.
Fluoride induces oxidative damage and SIRT1/autophagy through ROS-mediated JNK signaling
Suzuki, Maiko; Bandoski, Cheryl; Bartlett, John D.
2015-01-01
Fluoride is an effective caries prophylactic, but at high doses can also be an environmental health hazard. Acute or chronic exposure to high fluoride doses can result in dental enamel and skeletal and soft tissue fluorosis. Dental fluorosis is manifested as mottled, discolored, porous enamel that is susceptible to dental caries. Fluoride induces cell stress, including endoplasmic reticulum stress and oxidative stress, which leads to impairment of ameloblasts responsible for dental enamel formation. Recently we reported that fluoride activates SIRT1 and autophagy as an adaptive response to protect cells from stress. However, it still remains unclear how SIRT1/autophagy is regulated in dental fluorosis. In this study, we demonstrate that fluoride exposure generates reactive oxygen species (ROS) and the resulting oxidative damage is counteracted by SIRT1/autophagy induction through c-Jun N-terminal kinase (JNK) signaling in ameloblasts. In the mouse-ameloblast-derived cell line LS8, fluoride induced ROS, mitochondrial damage including cytochrome-c release, up-regulation of UCP2, attenuation of ATP synthesis, and H2AX phosphorylation (γH2AX), which is a marker of DNA damage. We evaluated the effects of the ROS inhibitor N-acetylcysteine (NAC) and the JNK inhibitor SP600125 on fluoride-induced SIRT1/autophagy activation. NAC decreased fluoride-induced ROS generation and attenuated JNK and c-Jun phosphorylation. NAC decreased SIRT1 phosphorylation and formation of the autophagy marker LC3II, which resulted in an increase in the apoptosis mediators γH2AX and cleaved/activated caspase-3. SP600125 attenuated fluoride-induced SIRT1 phosphorylation, indicating that fluoride activates SIRT1/autophagy via the ROS-mediated JNK pathway. In enamel organs from rats or mice treated with 50, 100, or 125 ppm fluoride for 6 weeks, cytochrome-c release and the DNA damage markers 8-oxoguanine, p-ATM, and γH2AX were increased compared to those in controls (0 ppm fluoride). These results suggest that fluoride-induced ROS generation causes mitochondrial damage and DNA damage, which may lead to impairment of ameloblast function. To counteract this impairment, SIRT1/autophagy is induced via JNK signaling to protect cells/ameloblasts from fluoride-induced oxidative damage that may cause dental fluorosis. PMID:26431905
Peteffi, Giovana Piva; da Silva, Luciano Basso; Antunes, Marina Venzon; Wilhelm, Camila; Valandro, Eduarda Trevizani; Glaeser, Jéssica; Kaefer, Djeine; Linden, Rafael
2016-10-01
Formaldehyde (FA) is a chemical widely used in the furniture industry and has been classified as a potential human carcinogen. The purpose of this study was to evaluate the occupational exposure of workers to FA at a furniture manufacturing facility and the relationship between environmental concentrations of FA, formic acid concentration in urine, and DNA damage. The sample consisted of 46 workers exposed to FA and a control group of 45 individuals with no history of occupational exposure. Environmental concentrations of FA were determined by high-performance liquid chromatography. Urinary formic acid concentrations were determined by gas chromatography with flame ionization detector. DNA damage was evaluated by the micronucleus (MN) test performed in exfoliated buccal cells and comet assay with venous blood. The 8-h time-weighted average of FA environmental concentration ranged from 0.03 ppm to 0.09 ppm at the plant, and the control group was exposed to a mean concentration of 0.012 ppm. Workers exposed to higher environmental FA concentrations had urinary formic acid concentrations significantly different from those of controls (31.85 mg L(-1) vs. 19.35 mg L(-), p ≤ 0.01 Mann-Whitney test). Significant differences were found between control and exposed groups for the following parameters: damage frequency and damage index in the comet assay, frequency of binucleated cells in the MN test, and formic acid concentration in urine. The frequency of micronuclei, nuclear buds, and karyorrhexis did not differ between groups. There was a positive correlation between environmental concentrations of FA and damage frequency (Spearman's rank correlation coefficient [r s] = 0.24), damage index (r s = 0.21), binucleated cells (r s = 0.34), and urinary formic acid concentration (r s = 0.63). The results indicate that, although workers in the furniture manufacturing facility were exposed to low environmental levels of FA, this agent contributes to the observed increase in cytogenetic damage. In addition, urinary formic acid concentrations correlated strongly with occupational exposure to FA. © The Author(s) 2015.
Orantes Navarro, Carlos M; Herrera Valdés, Raúl; López, Miguel Almaguer; Calero, Denis J; Fuentes de Morales, Jackeline; Alvarado Ascencio, Nelly P; Vela Parada, Xavier F; Zelaya Quezada, Susana M; Granados Castro, Delmy V; Orellana de Figueroa, Patricia
2015-01-01
In El Salvador end-stage renal disease (ESRD) was the first cause of hospital mortality overall, the first cause of hospital deaths in men, and the fifth cause of hospital mortality in women in 2013. In agricultural communities, chronic kidney disease (CKD) occurs predominantly in male agricultural workers, but it also affects women to a lesser degree, even those who are not involved in agricultural work. Internationally, most epidemiological CKD studies emphasize men and no epidemiological studies focused exclusively on women. To describe the epidemiological characteristics of CKD in females in agricultural communities of El Salvador. A cross-sectional epidemiological study was carried out in 2009 - 2011 based on active screening for CKD and risk factors in women aged ≥ 18 years in 3 disadvantaged populations of El Salvador: Bajo Lempa (Usulután Department), Guayapa Abajo (Ahuachapán Department), and Las Brisas (San Miguel Department). Epidemiological and clinical data were gathered through personal history, as well as urinalysis for renal damage markers, determinations of serum creatinine and glucose, and estimation of glomerular filtration rates. CKD cases were confirmed at 3 months. Prevalence of CKD was 13.9% in 1,412 women from 1,306 families studied. Chronic kidney disease of nontraditional causes (CKDu), not attributed to diabetes mellitus, hypertension, or proteinuric primary glomerulopathy (proteinuria > 1 g/L) was 6.6%. Prevalence of chronic renal failure was 6.8%. Prevalence of renal damage markers was 9.8% (microalbuminuria (30 - 300 mg/L) 5.7%; macroalbuminuria (> 300 mg/L) 2%; and hematuria, 2.1%. Prevalence of chronic kidney disease risk factors was: diabetes mellitus, 9.3%; hypertension, 23%; family history of CKD, 16%; family history of diabetes mellitus (DM), 18.7%; family history of hypertension (HT), 31.9%; obesity, 21%; central obesity, 30.7%; NSAID use, 84.3%; agricultural occupation, 15.2%; and contact with agrochemicals, 33.1%. CKD in women of Salvadoran agricultural communities is associated with disadvantaged populations, traditional (DM, HT, obesity) and non-traditional causes (environmental and occupational exposure to toxic agents and inadequate working conditions). Our results reinforce the hypotheses emerging from other studies, suggesting a multifactorial etiopathology including environmental and occupational nephrotoxic exposure.
Rella, R; Sturaro, A; Parvoli, G; Ferrara, D; Casellato, U; Vadalà, G
2005-01-01
In Italy, every summer forest fires attract public attention due to the number of victims, the intensity of the fires, the areas devastated, the environmental damage and the loss of property. Excluding some fires by natural causes, other causes are related to the social, economic, and productive profile of the territory. The erroneous expectation is that wooded areas destroyed by fire can then be used for private interests. Often, a fire, started to clear a small area, can completely change the expected result, producing disaster, loss of property, destruction of entire forests and resident fauna, and kill innocent people. In this case report, the reconstruction of an arson scene, the analytical techniques and the results obtained are illustrated in this paper, with the aim of sharing with other research laboratories the current knowledge on forest fire.
Fertilizing Nature: A Tragedy of Excess in the Commons
Good, Allen G.; Beatty, Perrin H.
2011-01-01
Globally, we are applying excessive nitrogen (N) fertilizers to our agricultural crops, which ultimately causes nitrogen pollution to our ecosphere. The atmosphere is polluted by N2O and NOx gases that directly and indirectly increase atmospheric warming and climate change. Nitrogen is also leached from agricultural lands as the water-soluble form NO3 −, which increases nutrient overload in rivers, lakes, and oceans, causing “dead zones”, reducing property values and the diversity of aquatic life, and damaging our drinking water and aquatic-associated industries such as fishing and tourism. Why do some countries show reductions in fertilizer use while others show increasing use? What N fertilizer application reductions could occur, without compromising crop yields? And what are the economic and environmental benefits of using directed nutrient management strategies? PMID:21857803
Franco-Belussi, Lilian; Fanali, Lara Zácari; De Oliveira, Classius
2018-03-01
Ultra-Violet (UV) radiation is a stressor of the immune system and causes DNA damage. Leukocytes can change in response to environmental changes in anurans, making them an important biomarker of stressful situations. The initial barrier against UV in ectothermic animals is melanin-containing cells in skin and in their internal organs. Here, we tested the effects of UV exposure on immune cells and DNA integrity in pigmented and non-pigmented tadpoles of Lithobates catesbeianus. We used an inflammation model with lipopolysaccharide (LPS) of Escherichia coli to test synergic effects of UV and LPS. We tested the following hypotheses: 1) DNA damage caused by UV will be more pronounced in non-pigmented than in pigmented animals; 2) LPS increases leukocytes in both pigmented and non-pigmented animals by systemic inflammation; 3) The combined LPS and UV exposure will decrease the number of leukocytes. We found that the frequency of immune cells differed between pigmented and non-pigmented tadpoles. UV exposure increased mast cells and DNA damage in erythrocytes in both pigmented and non-pigmented tadpoles, while leukocytes decreased after UV exposure. Non-pigmented tadpoles experienced DNA damage and a lower lymphocyte count earlier than pigmented tadpoles. UV altered immune cells likely as a consequence of local and systemic inflammation. These alterations were less severe in pigmented than in non-pigmented animals. UV and LPS increased internal melanin in pigmented tadpoles, which were correlated with DNA damage and leukocytes. Here, we described for the first time the effects of UV and LPS in immune cells of pigmented and non-pigmented tadpoles. In addition, we demonstrated that internal melanin in tadpoles help in these defenses, since leukocyte responses were faster in non-pigmented animals, supporting the hypothesis that melanin is involved in the initial innate immune response. Copyright © 2018 Elsevier B.V. All rights reserved.
HST Multi Layer Insulation Failure Review Board Findings
NASA Technical Reports Server (NTRS)
Townsend, Jacqueline; Hansen, Patricia
1998-01-01
The mechanical and optical properties of the thermal control materials on the Hubble Space Telescope (HST) have degraded over the nearly seven years the telescope has been in orbit. Astronaut observations and photographs from the Second Servicing Mission (SM2) revealed large cracks in the metallized Teflon fluorinated ethylene propylene (FEP), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. Also, the absorptance of the bonded metallized Teflon FEP radiator surfaces of the telescope has increased over time. A Failure Review Board was established to determine the damage mechanism and to identify a replacement material. Samples of the top layer of the MLI and radiator material were retrieved during SM2, and a thorough investigation into the degradation followed in order to determine the primary cause of the damage. Mapping of the cracks on HST and the ground testing showed that thermal cycling with deep-layer damage from electron and proton radiation are necessary to cause the observed embrittlement. Further, strong evidence was found indicating that chain scission (reduced molecular weight) is the dominant form of damage to the metallized Teflon FEP. Given the damage to the outer layer of the multi-layer insulation (MLI) that was apparent during the second servicing mission (SM2), the decision was made to replace the outer layer during subsequent servicing missions. The replacement material had to meet the stringent thermal requirements of the spacecraft and maintain structural integrity for at least ten years. Ten candidate materials were exposed to simulated orbital environments and a replacement material was selected. This presentation will summarize the FRB results, in particular, the analysis of the retrieved specimens, the results of the simulated environmental exposures, and the selection of the replacement material. The NASA Space Environments and Effects community needs to hear these results because they reveal that Teflon (FEP) films should not be used in LEO as routinely as they are today.
Fagnano, Massimo; Maggio, Albino
2018-03-01
The main environmental stresses of Italian croplands are discussed in relation to their interactions with ozone effects on crops. Water deficit and salinization are frequent in Mediterranean environments during spring-summer causing a decrease of soil water potential and water uptake by roots and consequently stomatal closure. These stresses also stimulate secondary metabolism and antioxidant accumulation, which also serves as a stress protection mechanism. High concentrations of tropospheric ozone are common all over Italy during the spring-summer season. Ozone injuries to vegetation are related to its penetration into plant tissues, mostly via stomatal uptake, rather than to tropospheric concentrations per se. In several crops, closure of stomata due to drought/salinization reduces ozone entering into leaf tissues and counteracts possible ozone damages. Furthermore, the stimulation of antioxidant synthesis as a response to environmental stresses can represent a further protection factor from ozone injuries for Mediterranean crops.The co-existence of stress-induced stomatal closure and high ozone levels during spring-summer in Mediterranean environments implies that models that do not take into account physiological responses of crops to drought and salinity stress may overestimate ozone damages when stress responses overlap with seasonal ozone peaks. The shift from concentration-based to flux-based approaches has improved the accuracy of models to assess ozone effects on agricultural crops. It is, however, necessary to further refine the flux concept with respect to the plant abiotic stress defense capacity that can differ among genotypes, climatic conditions, and physiological states.
NASA Astrophysics Data System (ADS)
Mohamed, Adel M. E.; Mohamed, Abuo El-Ela A.
2013-06-01
Ground vibrations induced by blasting in the cement quarries are one of the fundamental problems in the quarrying industry and may cause severe damage to the nearby utilities and pipelines. Therefore, a vibration control study plays an important role in the minimization of environmental effects of blasting in quarries. The current paper presents the influence of the quarry blasts at the National Cement Company (NCC) on the two oil pipelines of SUMED Company southeast of Helwan City, by measuring the ground vibrations in terms of Peak Particle Velocity (PPV). The seismic refraction for compressional waves deduced from the shallow seismic survey and the shear wave velocity obtained from the Multi channel Analysis of Surface Waves (MASW) technique are used to evaluate the closest site of the two pipelines to the quarry blasts. The results demonstrate that, the closest site of the two pipelines is of class B, according to the National Earthquake Hazard Reduction Program (NEHRP) classification and the safe distance to avoid any environmental effects is 650 m, following the deduced Peak Particle Velocity (PPV) and scaled distance (SD) relationship (PPV = 700.08 × SD-1.225) in mm/s and the Air over Pressure (air blast) formula (air blast = 170.23 × SD-0.071) in dB. In the light of prediction analysis, the maximum allowable charge weight per delay was found to be 591 kg with damage criterion of 12.5 mm/s at the closest site of the SUMED pipelines.
The environmental impacts of three different queen scallop (Aequipecten opercularis) fishing gears.
Hinz, Hilmar; Murray, Lee G; Malcolm, Fraser R; Kaiser, Michel J
2012-02-01
The negative impact of demersal fishing gears on the marine environment may be mitigated by utilizing less damaging fishing gears. Within this context three queen scallop fishing gears were tested for their catch efficiencies and their environmental impact on benthos: a traditional 'Newhaven' dredge, a new dredge design with a rubber lip instead of the traditional teeth as its main new design feature and an otter trawl. Both, the new dredge and the otter trawl showed high catches and relatively low by-catches. Catches made with the traditional dredge were lower and contained larger amounts of non-target species. Both dredges primarily caught invertebrate species, while by-catches of the otter trawl were dominated by demersal fish. The impact of these gears on the benthic biota demonstrated that while no effects were detected for the otter trawl both dredges showed similar negative effects. Clear negative effects were evident for the brittlestar Ophiura ophiura while positive trends for the common starfish Asterias rubens and the hermit crab Pagurus bernhardus indicated scavenging effects. Due to its higher catch efficiency the new dredge caused less damage per unit catch compared to the traditional dredge, yet compared to the otter trawl it appears less environmentally friendly. However, the new dredge may be an alternative to the otter trawls for fisheries where the by-catch of demersal fish has been identified as a significant problem. Copyright © 2011 Elsevier Ltd. All rights reserved.
Data search and environmental hazard assessment for post-seveso chemicals
NASA Astrophysics Data System (ADS)
Blok, Johan; Oostergo, Herman D.; Wondergem, Abraham C.; Leeuwen, Cornelis J. V.
1992-05-01
After the serious accident with a chemical industrial plant at Seveso (Italy) in 1976, the Commission of the European Communities has made a directive on major accidents, usually called the Post-Seveso Guideline. In its annex III, a list of 178 substances is given for which potentially dangerous volumes in case of an accident are defined on the basis of human health criteria. For the implementation of environmental criteria, information on toxicity to aquatic organisms, dilution, and physical behavior in water is needed. A literature search for relevant data on these 178 substances revealed aquatic toxicity data for 116 substances, but only for 87 substances sufficient data were available to make a hazard assessment. As an example, the River Rhine was used to calculate the critical quantities that, after a sudden discharge in the Swiss part, could cause damage at the Dutch part some 800 km downstream. In the absence of a common opinion on the criteria for being a major accident and a serious environmental hazard, the impact of different criteria quantities is discussed. If, for example, in the whole River Rhine a mortality of 5% of the aquatic species is chosen as the criterion for damage to the ecosystem, the critical quantities as mentioned in the EEC directive have to be lowered drastically for the majority of the substances. For 18 substances it could be shown that release of the mentioned quantities would be catastrophic for aquatic life in the whole river.
Zhao, Cai-Yun; Xu, Jing; Liu, Xiao-Yan
2017-01-01
Abstract Globalization increases the opportunities for unintentionally introduced invasive alien species, especially for insects, and most of these species could damage ecosystems and cause economic loss in China. In this study, we analyzed drivers of the distribution of unintentionally introduced invasive alien insects. Based on the number of unintentionally introduced invasive alien insects and their presence/absence records in each province in mainland China, regression trees were built to elucidate the roles of environmental and anthropogenic factors on the number distribution and similarity of species composition of these insects. Classification and regression trees indicated climatic suitability (the mean temperature in January) and human economic activity (sum of total freight) are primary drivers for the number distribution pattern of unintentionally introduced invasive alien insects at provincial scale, while only environmental factors (the mean January temperature, the annual precipitation and the areas of provinces) significantly affect the similarity of them based on the multivariate regression trees. PMID:28973576
Douven, Wim; Buurman, Joost
2013-10-15
Road development in relatively undisturbed floodplain systems, such as the floodplains of the Mekong River, will impact hydraulics and interrupt the natural flow of water. This affects the ecology and environment, and the livelihoods of people who depend on fishing and agriculture. On the other hand, floods can severely damage road infrastructure in years with large floods and can cause high annual maintenance costs. Improving road development practices in floodplains is a complex, multidimensional task involving hydraulic and geotechnical analysis, ecosystem analysis, socio-economic analysis, policy analysis, etc. This paper analyses the planning practice of road development and rehabilitation and how this practice can be improved in support of economically and environmentally sustainable roads in floodplains. It is concluded that although ample technical, planning and environmental assessment guidelines exist, guidelines need updating to address cumulative impacts at floodplain level and factors hampering the implementation in guidelines should be addressed in the guideline design (process). Copyright © 2013 Elsevier Ltd. All rights reserved.
New consumers: The influence of affluence on the environment
Myers, Norman; Kent, Jennifer
2003-01-01
Growing consumption can cause major environmental damage. This is becoming specially significant through the emergence of over 1 billion new consumers, people in 17 developing and three transition countries with an aggregate spending capacity, in purchasing power parity terms, to match that of the U.S. Two of their consumption activities have sizeable environmental impacts. First is a diet based strongly on meat, which, because it is increasingly raised in part on grain, puts pressure on limited irrigation water and international grain supplies. Second, these new consumers possess over one-fifth of the world's cars, a proportion that is rising rapidly. Global CO2 emissions from motor vehicles, of which cars make up 74%, increased during 1990–1997 by 26% and at a rate four times greater than the growth of CO2 emissions overall. It is in the self-interest of new consumer countries, and of the global community, to restrict the environmental impacts of consumption; this restriction is achievable through a number of policy initiatives. PMID:12672963
Hao, Yu; Liu, Shuang; Lu, Zhi-Nan; Huang, Junbing; Zhao, Mingyuan
2018-05-01
In recent years, along with rapid economic growth, China's environmental problems have become increasingly prominent. At the same time, the level of China's pollution has been growing rapidly, which has caused huge damages to the residents' health. In this regard, the public health expenditure ballooned as the environmental quality deteriorated in China. In this study, the effect of environmental pollution on residents' health expenditure is empirically investigated by employing the first-order difference generalized method of moments (GMM) method to control for potential endogeneity. Using a panel data of Chinese provinces for the period of 1998-2015, this study found that the environmental pollution (represented by SO 2 and soot emissions) would indeed lead to the increase in the medical expenses of Chinese residents. At the current stage of economic development, an increase in SO 2 and soot emissions per capita would push up the public health expenditure per capita significantly. The estimation results are quite robust for different types of regression specifications and different combinations of control variables. Some social and economic variables such as public services and education may also have remarkable influences on residential medical expenses through different channels.
Health and environmental impact of mercury: Past and present experience
NASA Astrophysics Data System (ADS)
Rivera, A. T. F.; Cortes-Maramba, N. P.; Akagi, H.
2003-05-01
Mercury exists in various forms including metallic mercury, inorganie and organic mercury compounds. Research studies show that contamination brought about by natural and man-made activities is clearly a growing problem today. In 1956, the first recognized poisoning outbreaks occurred. Minamata Disease is a disorder of the central nervous system caused by the consumption of fish and shellfish contaminated with methylmercury. Clinical manifestation differs from inorganic mercury poisoning in which the kidneys and the renal system are damaged. The toxidrome consists of sensory disorders in the distal portion of the four extremities, cerebral ataxia, bilateral concentric constriction of the visual field. central disorder of ocular movement, central hearing impairment and disequilibrium. Fetal type Minamata Disease bom of mothers being exposed to methylmercury during pregnancy resulted in conditions similar to those associated with “infantile cerebral palsy" were also documented. Measures to control environmental pollution were implemented such as the environmental restoration project, compensation and relief of victims as part of the health and environmental management undertaken by the government. At present, global research studies are focusing on long-term and low-dose inorganic and methyl mercury exposure; and developmental neurobehavioral toxicity including relevant environmental factors influencing mercury transformations, mass balances and partitioning in ecosystems.
Vedi, Mahima; Sabina, Evan Prince
2016-10-01
Bromobenzene is a well-known environmental toxin which causes liver and kidney damage through CYP450-mediated bio-activation to generate reactive metabolites and, consequently, oxidative stress. The present study aimed to evaluate the possible protective role of withaferin A against bromobenzene-induced liver and kidney damage in mice. Withaferin A (10 mg/kg) was administered orally to the mice for 8 days before intragastric intubation of bromobenzene (10 mmol/kg). As results of this experiment, the levels of liver and kidney functional markers, lipid peroxidation, and cytokines (TNF-α and IL-1β) presented an increase and there was a decrease in anti-oxidant activity in the bromobenzene-treated group of mice. Pre-treatment with withaferin A not only significantly decreased the levels of liver and kidney functional markers and cytokines but also reduced oxidative stress, as evidenced by improved anti-oxidant status. In addition, the mitochondrial dysfunction shown through the decrease in the activities of mitochondrial enzymes and imbalance in the Bax/Bcl-2 expression in the livers and kidneys of bromobenzene-treated mice was effectively prevented by pre-administration of withaferin A. These results validated our conviction that bromobenzene caused liver and kidney damage via mitochondrial pathway and withaferin A provided significant protection against it. Thus, withaferin A may have possible usage in clinical liver and kidney diseases in which oxidative stress and mitochondrial dysfunction may be existent.
Water Vapor Permeation in Plastics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Paul E.; Kouzes, Richard T.
Polyvinyl toluene (PVT) and polystyrene (PS) (referred to as “plastic scintillator”) are used for gamma ray detectors. A significant decrease in radiation detection performance has been observed in some PVT-based gamma-ray detectors in systems in outdoor environments as they age. Recent studies have revealed that plastic scintillator can undergo an environmentally related material degradation that adversely affects gamma ray detection performance under certain conditions and histories. A significant decrease in sensitivity has been seen in some gamma-ray detectors in some systems as they age. The degradation of sensitivity of plastic scintillator over time is due to a variety of factors,more » and the term “aging” is used to encompass all factors. Some plastic scintillator samples show no aging effects (no significant change in sensitivity over more than 10 years), while others show severe aging (significant change in sensitivity in less than 5 years). Aging effects arise from weather (variations in heat and humidity), chemical exposure, mechanical stress, light exposure, and loss of volatile components. The damage produced by these various causes can be cumulative, causing observable damage to increase over time. Damage may be reversible up to some point, but becomes permanent under some conditions. The objective of this report is to document the phenomenon of permeability of plastic scintillator to water vapor and to derive the relationship between time, temperature, humidity and degree of water penetration in plastic. Several conclusions are documented about the properties of water permeability of plastic scintillator.« less
The evolution of senescence through decelerating selection for system reliability.
Laird, R A; Sherratt, T N
2009-05-01
Senescence is a universal phenomenon in organisms, characterized by increasing mortality and decreasing fecundity with advancing chronological age. Most proximate agents of senescence, such as reactive oxygen species and UV radiation, are thought to operate by causing a gradual build-up of bodily damage. Yet most current evolutionary theories of senescence emphasize the deleterious effects of functioning genes in late life, leaving a gap between proximate and ultimate explanations. Here, we present an evolutionary model of senescence based on reliability theory, in which beneficial genes or gene products gradually get damaged and thereby fail, rather than actively cause harm. Specifically, the model allows organisms to evolve multiple redundant copies of a gene product (or gene) that performs a vital function, assuming that organisms can avoid condition-dependent death so long as at least one copy remains undamaged. We show that organisms with low levels of extrinsic mortality, and high levels of genetic damage, tend to evolve high levels of redundancy, and that mutation-selection balance results in a stable population distribution of the number of redundant elements. In contrast to previous evolutionary models of senescence, the mortality curves that emerge from such populations match empirical senescence patterns in three key respects: they exhibit: (1) an initially low, but rapidly increasing mortality rate at young ages, (2) a plateau in mortality at advanced ages and (3) 'mortality compensation', whereby the height of the mortality plateau is independent of the environmental conditions under which different populations evolved.
Rodgers, J.E.; Elebi, M.
2011-01-01
The 1994 Northridge earthquake caused brittle fractures in steel moment frame building connections, despite causing little visible building damage in most cases. Future strong earthquakes are likely to cause similar damage to the many un-retrofitted pre-Northridge buildings in the western US and elsewhere. Without obvious permanent building deformation, costly intrusive inspections are currently the only way to determine if major fracture damage that compromises building safety has occurred. Building instrumentation has the potential to provide engineers and owners with timely information on fracture occurrence. Structural dynamics theory predicts and scale model experiments have demonstrated that sudden, large changes in structure properties caused by moment connection fractures will cause transient dynamic response. A method is proposed for detecting the building-wide level of connection fracture damage, based on observing high-frequency, fracture-induced transient dynamic responses in strong motion accelerograms. High-frequency transients are short (<1 s), sudden-onset waveforms with frequency content above 25 Hz that are visually apparent in recorded accelerations. Strong motion data and damage information from intrusive inspections collected from 24 sparsely instrumented buildings following the 1994 Northridge earthquake are used to evaluate the proposed method. The method's overall success rate for this data set is 67%, but this rate varies significantly with damage level. The method performs reasonably well in detecting significant fracture damage and in identifying cases with no damage, but fails in cases with few fractures. Combining the method with other damage indicators and removing records with excessive noise improves the ability to detect the level of damage. ?? 2010 Elsevier B.V. All rights reserved.
Li, Junmin; Jin, Zexin; Song, Wenjing
2012-01-01
Field studies have shown that native, parasitic plants grow vigorously on invasive plants and can cause more damage to invasive plants than native plants. However, no empirical test has been conducted and the mechanism is still unknown. We conducted a completely randomized greenhouse experiment using 3 congeneric pairs of exotic, invasive and native, non-invasive herbaceous plant species to quantify the damage caused by parasitic plants to hosts and its correlation with the hosts' growth rate and resource use efficiency. The biomass of the parasitic plants on exotic, invasive hosts was significantly higher than on congeneric native, non-invasive hosts. Parasites caused more damage to exotic, invasive hosts than to congeneric, native, non-invasive hosts. The damage caused by parasites to hosts was significantly positively correlated with the biomass of parasitic plants. The damage of parasites to hosts was significantly positively correlated with the relative growth rate and the resource use efficiency of its host plants. It may be the mechanism by which parasitic plants grow more vigorously on invasive hosts and cause more damage to exotic, invasive hosts than to native, non-invasive hosts. These results suggest a potential biological control effect of native, parasitic plants on invasive species by reducing the dominance of invasive species in the invaded community. PMID:22493703
The debt of nations and the distribution of ecological impacts from human activities
Srinivasan, U. Thara; Carey, Susan P.; Hallstein, Eric; Higgins, Paul A. T.; Kerr, Amber C.; Koteen, Laura E.; Smith, Adam B.; Watson, Reg; Harte, John; Norgaard, Richard B.
2008-01-01
As human impacts to the environment accelerate, disparities in the distribution of damages between rich and poor nations mount. Globally, environmental change is dramatically affecting the flow of ecosystem services, but the distribution of ecological damages and their driving forces has not been estimated. Here, we conservatively estimate the environmental costs of human activities over 1961–2000 in six major categories (climate change, stratospheric ozone depletion, agricultural intensification and expansion, deforestation, overfishing, and mangrove conversion), quantitatively connecting costs borne by poor, middle-income, and rich nations to specific activities by each of these groups. Adjusting impact valuations for different standards of living across the groups as commonly practiced, we find striking imbalances. Climate change and ozone depletion impacts predicted for low-income nations have been overwhelmingly driven by emissions from the other two groups, a pattern also observed for overfishing damages indirectly driven by the consumption of fishery products. Indeed, through disproportionate emissions of greenhouse gases alone, the rich group may have imposed climate damages on the poor group greater than the latter's current foreign debt. Our analysis provides prima facie evidence for an uneven distribution pattern of damages across income groups. Moreover, our estimates of each group's share in various damaging activities are independent from controversies in environmental valuation methods. In a world increasingly connected ecologically and economically, our analysis is thus an early step toward reframing issues of environmental responsibility, development, and globalization in accordance with ecological costs. PMID:18212119
Environmental effects of magmatic sulfur emitted by large-scale flood basalt eruptions
NASA Astrophysics Data System (ADS)
Schmidt, A.; Skeffington, R.; Thordarson, T.; Self, S.; Forster, P.; Rap, A.; Ridgwell, A.; Fowler, D.; Wilson, M.; Mann, G.; Wignall, P.; Carslaw, K. S.
2015-12-01
Continental flood basalt (CFB) volcanism has been temporally, and therefore causally, linked to periods of environmental crisis in the past 260 Ma. The majority of the proposed causal relationships are, however, qualitative, in particular the potential climatic and environmental effects of large amounts of sulfur dioxide (SO2) emitted to the atmosphere. CFB provinces are typically formed by numerous individual eruptions, each lasting years to decades, with highly uncertain periods of quiescence lasting hundreds to thousands of years. I will present results obtained from a global aerosol-climate model set-up to simulate the sulfur-induced climatic and environmental effects of individual decade to century-long CFB eruptions. For sulfur dioxide emissions representative of a single decade-long eruption in the 65 Ma Deccan Trap Volcanic Province, the model predicts a substantial reduction in global surface temperature of 4.5 K, which is in good agreement with multi-proxy palaeo-temperature records. However, the calculated cooling is short-lived and temperatures recover within less than 50 years once volcanic activity ceases. In contrast to previous studies, I show that acid rain from decade-long eruptions cannot cause widespread vegetation stress or loss due to the buffering capacities of soils. The direct exposure of vegetation to acid mists and fogs, however, could cause damage where the exposure is high and sustained, such as at high elevations. Finally, I will use these modeling results to place constraints on the likely environmental effects and habitability by simulating different eruption frequencies and durations as well as hiatus periods and by comparing to the proxy records.
Wooden beverage cases cause little damage to bottle caps
R. Bruce Anderson; William C. Miller
1973-01-01
Wooden beverage cases cause little damage to aluminum resealable caps during distribution. A study at bottling plants and distribution warehouses showed that an average of 1 bottle out of 4,000 has cap damage. Most of the damage was attributed to handling at the warehouse and in transit. Some recommendations are given for improvement of wooden beverage cases to prevent...
Epigenetic memory in response to environmental stressors.
Vineis, Paolo; Chatziioannou, Aristotelis; Cunliffe, Vincent T; Flanagan, James M; Hanson, Mark; Kirsch-Volders, Micheline; Kyrtopoulos, Soterios
2017-06-01
Exposure to environmental stressors, toxicants, and nutrient deficiencies can affect DNA in several ways. Some exposures cause damage and alter the structure of DNA, but there is increasing evidence that the same or other environmental exposures, including those that occur during fetal development in utero , can cause epigenetic effects that modulate DNA function and gene expression. Some epigenetic changes to DNA that affect gene transcription are at least partially reversible ( i.e., they can be enzymatically reversed after cessation of exposure to environmental agents), but some epigenetic modifications seem to persist, even for decades. To explain the effects of early life experiences (such as famine and exposures to other stressors) on the long-term persistence of specific patterns of epigenetic modifications, such as DNA methylation, we propose an analogy with immune memory. We propose that an epigenetic memory can be established and maintained in self-renewing stem cell compartments. We suggest that the observations on early life effects on adult diseases and the persistence of methylation changes in smokers support our hypothesis, for which a mechanistic basis, however, needs to be further clarified. We outline a new model based on methylation changes. Although these changes seem to be mainly adaptive, they are also implicated in the pathogenesis and onset of diseases, depending on individual genotypic background and types of subsequent exposures. Elucidating the relationships between the adaptive and maladaptive consequences of the epigenetic modifications that result from complex environmental exposures is a major challenge for current and future research in epigenetics.-Vineis, P., Chatziioannou, A., Cunliffe, V. T., Flanagan, J. M., Hanson, M., Kirsch-Volders, M., Kyrtopoulos, S. Epigenetic memory in response to environmental stressors. © FASEB.
Broadening the application of evolutionarily based genetic pest management.
Gould, Fred
2008-02-01
Insect- and tick-vectored diseases such as malaria, dengue fever, and Lyme disease cause human suffering, and current approaches for prevention are not adequate. Invasive plants and animals such as Scotch broom, zebra mussels, and gypsy moths continue to cause environmental damage and economic losses in agriculture and forestry. Rodents transmit diseases and cause major pre- and postharvest losses, especially in less affluent countries. Each of these problems might benefit from the developing field of Genetic Pest Management that is conceptually based on principles of evolutionary biology. This article briefly describes the history of this field, new molecular tools in this field, and potential applications of those tools. There will be a need for evolutionary biologists to interact with researchers and practitioners in a variety of other fields to determine the most appropriate targets for genetic pest management, the most appropriate methods for specific targets, and the potential of natural selection to diminish the effectiveness of genetic pest management. In addition to producing environmentally sustainable pest management solutions, research efforts in this area could lead to new insights about the evolution of selfish genetic elements in natural systems and will provide students with the opportunity to develop a more sophisticated understanding of the role of evolutionary biology in solving societal problems.
[Epidemiology, risk factors and prevention of Clostridium difficile nosocomial infections].
Barbut, F; Petit, J C
2000-10-01
Clostridium difficile is responsible for 10-25% of cases of antibiotic-associated diarrhea (AAD) and for virtually all cases of antibiotic-associated pseudo-membranous colitis (PMC). This anaerobic spore-forming bacterium has been identified as the leading cause of nosocomial infectious diarrhea in adults. Pathogenesis relies on a disruption of the normal bacterial flora of the colon, a colonization by C. difficile and the release of toxins A and B that cause mucosal damage and inflammation. Incidence of C. difficile intestinal disorders usually varies from one to 40 per thousand patient admissions. Risk factors for C. difficile-associated diarrhea include antimicrobial therapy, older age (> 65 years), antineoplastic chemotherapy, and length of hospital stay. Nosocomial transmission of C. difficile via oro-fecal route occurs in 3-30% of total patient admissions but it remains asymptomatic in more than 66% of cases. Persistent environmental contamination and carrying of the organism on the hands of hospital staff are common. Measures that are effective in reducing cross-infection consist of an accurate and rapid diagnosis, an appropriate treatment, an implementation of enteric precautions for symptomatic patients, a reinforcement of hand-washing and a daily environmental disinfection. C. difficile is a common cause of infectious diarrhea and should be therefore systematically investigated in patients with nosocomial diarrhea.
Microbial bioreporters of trace explosives.
Shemer, Benjamin; Koshet, Ori; Yagur-Kroll, Sharon; Belkin, Shimshon
2017-06-01
Since its introduction as an explosive in the late 19th century, 2,4,6-trinitrotoluene (TNT), along with other explosive compounds, has left numerous environmental marks. One of these is widespread soil and water pollution by trace explosives in military proving grounds, manufacturing facilities, or actual battlefields. Another dramatic impact is that exerted by the millions of landmines and other explosive devices buried in large parts of the world, causing extensive loss of life, injuries, and economical damage. In this review we highlight recent advances in the design and construction of microbial bioreporters, molecularly engineered to generate a quantifiable dose-dependent signal in the presence of trace amounts of explosives. Such sensor strains may be employed for monitoring environmental pollution as well as for the remote detection of buried landmines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Early remote laser detection of vegetation damage caused by certain environmental stress factors
NASA Technical Reports Server (NTRS)
Chappelle, Emmett W.; Mcmurtrey, James E., III
1989-01-01
The fluorescence spectra of plants excited with a pulsed nitrogen laser beam emitting at 337 nm were found to be related to plant type, as well as with changes in the physiology of the plant as the result of various kinds of environmental stress. The plant types which were studied included herbaceous dicots, monocots, hardwoods, and conifers. These plant types could be identified on the basis of differences in either the number of fluorescent bands, or the relative intensity of the bands. The dicots and monocots had fluorescent maxima at 440, 685, and 740 nm. The monocots could be distinguished from the dicots by virtue of having a much higher 440 nm/685 nm ratio. Hardwoods and conifers had an additional fluorescence band at 525 nm, but healthy conifers did not have a band at 685 nm.
Lai, K M
2006-03-01
An extensive growth of Stachybotrys in water-damaged buildings is of great public health concern. It is inconclusive whether Stachybotrys is responsible for the reported health effects on the occupants in these contaminated environments. However, based on the veterinary, occupational and laboratory toxicity studies, it is reasonable to project that Stachybotrys can cause adverse health responses once the toxic level of the corresponding agents reached the target systems. In order to assess the risk to occupants in contaminated buildings, it is essential to outline and collect information for risk assessment. This review paper presents the current information in the format of hazard identification, dose-response and environmental characteristics and aims to discuss existing information with researchers and risk assessors and help to conduct risk characterization under different indoor conditions.
NASA Technical Reports Server (NTRS)
Babcock, Jason R.; Ramachandran, Gautham; Williams, Brian E.; Effinger, Michael R.
2004-01-01
Ultraviolet-enhanced chemical vapor deposition (UVCVD) has been developed to lower the required substrate temperature thereby allowing for the application of metal oxide-based coatings to carbon and ceramic fibers without causing significant fiber damage. An effort to expand this capability to other ceramic phases chosen to maximize oxidation protection in the likely event of matrix cracking and minimize possible reaction between the coating and fiber during long-term high temperature use will be presented along with studies aimed at the demonstration of these and other benefits for the next-generation interface coating systems being developed herein.
[To smoke or not to smoke, in restaurants, hotels, and bars].
López-Antuñano, Francisco Javier; Tovar-Guzmán, Victor José
2002-01-01
A MEDLINE search was conducted to identify relevant references, to review the information on adverse effects of tobacco smoking and environmental tobacco smoke (ETS). Occupational exposure to ETS causes significant damages to food industry workers. High levels of mutagenic substances have been demonstrated in restaurant air as well as in the urine samples from those workers. Exposition to 3-aminophenyl, a hemoglobin-associated carcinogen. The best way to protect these workers is the reduction of tobacco smoking in restaurants, hotels, bars and taverns. In restaurant workers, ETS attributable risk for lung cancer is evident.
Acceptable Risk Analysis for Abrupt Environmental Pollution Accidents in Zhangjiakou City, China
Du, Xi; Zhang, Zhijiao; Dong, Lei; Liu, Jing; Borthwick, Alistair G. L.; Liu, Renzhi
2017-01-01
Abrupt environmental pollution accidents cause considerable damage worldwide to the ecological environment, human health, and property. The concept of acceptable risk aims to answer whether or not a given environmental pollution risk exceeds a societally determined criterion. This paper presents a case study on acceptable environmental pollution risk conducted through a questionnaire survey carried out between August and October 2014 in five representative districts and two counties of Zhangjiakou City, Hebei Province, China. Here, environmental risk primarily arises from accidental water pollution, accidental air pollution, and tailings dam failure. Based on 870 valid questionnaires, demographic and regional differences in public attitudes towards abrupt environmental pollution risks were analyzed, and risk acceptance impact factors determined. The results showed females, people between 21–40 years of age, people with higher levels of education, public servants, and people with higher income had lower risk tolerance. People with lower perceived risk, low-level risk knowledge, high-level familiarity and satisfaction with environmental management, and without experience of environmental accidents had higher risk tolerance. Multiple logistic regression analysis indicated that public satisfaction with environmental management was the most significant factor in risk acceptance, followed by perceived risk of abrupt air pollution, occupation, perceived risk of tailings dam failure, and sex. These findings should be helpful to local decision-makers concerned with environmental risk management (e.g., selecting target groups for effective risk communication) in the context of abrupt environmental accidents. PMID:28425956
NASA Astrophysics Data System (ADS)
Ross, S.; Jones, L.; Wilson, R. I.; Bahng, B.; Barberopoulou, A.; Borrero, J. C.; Brosnan, D.; Bwarie, J.; Geist, E. L.; Johnson, L.; Kirby, S. H.; Knight, W.; Long, K.; Lynett, P. J.; Miller, K.; Mortensen, C. E.; Nicolsky, D.; Oglesby, D. D.; Perry, S. C.; Plumlee, G. S.; Porter, K. A.; Real, C. R.; Ryan, K. J.; Suleimani, E.; Thio, H. K.; Titov, V.; Wein, A. M.; Whitmore, P.; Wood, N. J.
2013-12-01
The SAFRR Tsunami Scenario models a hypothetical but plausible tsunami, created by an Mw9.1 earthquake occurring offshore from the Alaskan peninsula, and its impacts on the California coast. We present the likely inundation areas, current velocities in key ports and harbors, physical damage and repair costs, economic consequences, environmental impacts, social vulnerability, emergency management, and policy implications for California associated with the tsunami scenario. The intended users are those who must make mitigation decisions before and rapid decisions during future tsunamis. Around a half million people would be present in the scenario's inundation area in residences, businesses, public venues, parks and beaches. Evacuation would likely be ordered for the State of California's maximum mapped tsunami inundation zone, evacuating an additional quarter million people from residences and businesses. Some island and peninsula communities would face particular evacuation challenges because of limited access options and short warning time, caused by the distance between Alaska and California. Evacuations may also be a challenge for certain dependent-care populations. One third of the boats in California's marinas could be damaged or sunk, costing at least 700 million in repairs to boats and docks, and potentially much more to address serious issues due to sediment transport and environmental contamination. Fires would likely start at many sites where fuel and petrochemicals are stored in ports and marinas. Tsunami surges and bores may travel several miles inland up coastal rivers. Debris clean-up and recovery of inundated and damaged areas will take days, months, or years depending on the severity of impacts and the available resources for recovery. The Ports of Los Angeles and Long Beach (POLA/LB) would be shut down for a miniμm of two days due to strong currents. Inundation of dry land in the ports would result in 100 million damages to cargo and additional downtime. The direct exposure of port trade value totals over 1.2 billion, while associated business interruption losses in the California economy could more than triple that value. Other estimated damages include 1.8 billion of property damage and 85 million for highway and railroad repairs. In total, we have estimated repair and replacement costs of almost 3 billion to California marinas, coastal properties and the POLA/LB. These damages could cause $6 billion of business interruption losses in the California economy, but that could be reduced by 80-90% with the implementation of business continuity or resilience strategies. This scenario provides the basis for improving preparedness, mitigation, and continuity planning for tsunamis, which can reduce damage and economic impacts and enhance recovery efforts. Two positive outcomes have already resulted from the SAFRR Tsunami Scenario. Emergency managers in areas where the scenario inundation exceeds the State's maximum inundation zone have been notified and evacuation plans have been updated appropriately. The State has also worked with NOAA's West Coast and Alaska Tsunami Warning Center to modify future message protocols to facilitate effective evacuations in California. While our specific results pertain to California, the lessons learned and our scenario approach can be applied to other regions.
ANALYSIS OF DNA DAMAGE AND REPAIR IN SKIN FIBROBLASTS OF INFANT AND OLDER CHILDREN USING THE IN VITRO ALKALINE COMET ASSAY, Alan H. Tennant1, Geremy W. Knapp1 and Andrew D. Kligerman1, 1Environmental Carcinogenesis Division, National Health and Environmental Effects Research Lab...
Compensation for oil pollution damage
NASA Astrophysics Data System (ADS)
Matugina, E. G.; Glyzina, T. S.; Kolbysheva, Yu V.; Klyuchnikov, A. S.; Vusovich, O. V.
2015-11-01
The commitment of national industries to traditional energy sources, as well as constantly growing energy demand combined with adverse environmental impact of petroleum production and transportation urge to establish and maintain an appropriate legal and administrative framework for oil pollution damage compensation. The article considers management strategies for petroleum companies that embrace not only production benefits but also environmental issues.
Cano-Europa, Edgar; Blas-Valdivia, Vanessa; Franco-Colin, Margarita; Gallardo-Casas, Carlos Angel; Ortiz-Butrón, Rocio
2011-01-01
It is known that a hypothyroidism-induced hypometabolic state protects against oxidative damage caused by toxins. However, some workers demonstrated that antithyroid drug-induced hypothyroidism can cause cellular damage. Our objective was to determine if methimazole (an antithyroid drug) or hypothyroidism causes cellular damage in the liver, kidney, lung, spleen and heart. Twenty-five male Wistar rats were divided into 5 groups: euthyroid, false thyroidectomy, thyroidectomy-induced hypothyroidism, methimazole-induced hypothyroidism (60 mg/kg), and treatment with methimazole (60 mg/kg) and a T₄ injection (20 μg/kg/d sc). At the end of the treatments (4 weeks for the pharmacological groups and 8 weeks for the surgical groups), the animals were anesthetized with sodium pentobarbital and they were transcardially perfused with 10% formaldehyde. The spleen, heart, liver, lung and kidney were removed and were processed for embedding in paraffin wax. Coronal sections were stained with hematoxylin-eosin. At the end of treatment, animals with both the methimazole- and thyroidectomy-induced hypothyroidism had a significant reduction of serum concentration of thyroid hormones. Only methimazole-induced hypothyroidism causes cellular damage in the kidney, lung, liver, heart, kidney and spleen. In addition, animals treated with methimazole and T₄ showed cellular damage in the lung, spleen and renal medulla with lesser damage in the liver, renal cortex and heart. The thyroidectomy only altered the lung structure. The alterations were prevented by T₄ completely in the heart and partially in the kidney cortex. These results indicate that tissue damage found in hypothyroidism is caused by methimazole. Copyright © 2009 Elsevier GmbH. All rights reserved.
Ramos-Lopez, Omar; Martinez-Lopez, Erika; Roman, Sonia; Fierro, Nora A; Panduro, Arturo
2015-01-01
Liver cirrhosis (LC) is a chronic illness caused by inflammatory responses and progressive fibrosis. Globally, the most common causes of chronic liver disease include persistent alcohol abuse, followed by viral hepatitis infections and nonalcoholic fatty liver disease. However, regardless of the etiological factors, the susceptibility and degree of liver damage may be influenced by genetic polymorphisms that are associated with distinct ethnic and cultural backgrounds. Consequently, metabolic genes are influenced by variable environmental lifestyle factors, such as diet, physical inactivity, and emotional stress, which are associated with regional differences among populations. This Topic Highlight will focus on the genetic and environmental factors that may influence the metabolism of alcohol and nutrients in the setting of distinct etiologies of liver disease. The interaction between genes and environment in the current-day admixed population, Mestizo and Native Mexican, will be described. Additionally, genes involved in immune regulation, insulin sensitivity, oxidative stress and extracellular matrix deposition may modulate the degree of severity. In conclusion, LC is a complex disease. The onset, progression, and clinical outcome of LC among the Mexican population are influenced by specific genetic and environmental factors. Among these are an admixed genome with a heterogenic distribution of European, Amerindian and African ancestry; a high score of alcohol consumption; viral infections; a hepatopathogenic diet; and a high prevalence of obesity. The variance in risk factors among populations suggests that intervention strategies directed towards the prevention and management of LC should be tailored according to such population-based features. PMID:26556986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chase, A.R.
When Congress enacted the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), it ushered in a sweeping approach to controlling the environmental effects of improper hazardous waste disposal. CERCLA`s cleanup provisions, which focus on removal and remediation of hazardous substances from inactive hazardous waste sites, have progressed through more than a decade of litigation and a great deal of public debate. However, CERCLA`s natural resource damage provisions have not shared this same degree of progress.
Damage from wind and other causes in mixed white fir-red fir stands adjacent to clearcuttings
Donald T. Gordon
1973-01-01
Damage to timber surrounding clearcuttings and in one light selection cutting in mixed white fir-red fir stands was monitored for 6 years in northeastern California. In some years, bark beetles apparently killed more trees than did wind damage, but in two of the study years, severe wind storms caused much damage. One storm produced mainly break-age, apparently...
Are functional fillers improving environmental behavior of plastics? A review on LCA studies.
Civancik-Uslu, Didem; Ferrer, Laura; Puig, Rita; Fullana-I-Palmer, Pere
2018-06-01
The use of functional fillers can be advantageous in terms of cost reduction and improved properties in plastics. There are many types of fillers used in industry, organic and inorganic, with a wide application area. As a response to the growing concerns about environmental damage that plastics cause, recently fillers have started to be considered as a way to reduce it by decreasing the need for petrochemical resources. Life cycle assessment (LCA) is identified as a proper tool to evaluate potential environmental impacts of products or systems. Therefore, in this study, the literature regarding LCA of plastics with functional fillers was reviewed in order to see if the use of fillers in plastics could be environmentally helpful. It was interesting to find out that environmental impacts of functional fillers in plastics had not been studied too often, especially in the case of inorganic fillers. Therefore, a gap in the literature was identified for the future works. Results of the study showed that, although there were not many and some differences exist among the LCA studies, the use of fillers in plastics industry may help to reduce environmental emissions. In addition, how LCA methodology was applied to these materials was also investigated. Copyright © 2018 Elsevier B.V. All rights reserved.
Point pattern analysis applied to flood and landslide damage events in Switzerland (1972-2009)
NASA Astrophysics Data System (ADS)
Barbería, Laura; Schulte, Lothar; Carvalho, Filipe; Peña, Juan Carlos
2017-04-01
Damage caused by meteorological and hydrological extreme events depends on many factors, not only on hazard, but also on exposure and vulnerability. In order to reach a better understanding of the relation of these complex factors, their spatial pattern and underlying processes, the spatial dependency between values of damage recorded at sites of different distances can be investigated by point pattern analysis. For the Swiss flood and landslide damage database (1972-2009) first steps of point pattern analysis have been carried out. The most severe events have been selected (severe, very severe and catastrophic, according to GEES classification, a total number of 784 damage points) and Ripley's K-test and L-test have been performed, amongst others. For this purpose, R's library spatstat has been used. The results confirm that the damage points present a statistically significant clustered pattern, which could be connected to prevalence of damages near watercourses and also to rainfall distribution of each event, together with other factors. On the other hand, bivariate analysis shows there is no segregated pattern depending on process type: flood/debris flow vs landslide. This close relation points to a coupling between slope and fluvial processes, connectivity between small-size and middle-size catchments and the influence of spatial distribution of precipitation, temperature (snow melt and snow line) and other predisposing factors such as soil moisture, land-cover and environmental conditions. Therefore, further studies will investigate the relationship between the spatial pattern and one or more covariates, such as elevation, distance from watercourse or land use. The final goal will be to perform a regression model to the data, so that the adjusted model predicts the intensity of the point process as a function of the above mentioned covariates.
Zheng, Jian; Tagami, Keiko; Uchida, Shigeo
2013-09-03
The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident has caused serious contamination in the environment. The release of Pu isotopes renewed considerable public concern because they present a large risk for internal radiation exposure. In this Critical Review, we summarize and analyze published studies related to the release of Pu from the FDNPP accident based on environmental sample analyses and the ORIGEN model simulations. Our analysis emphasizes the environmental distribution of released Pu isotopes, information on Pu isotopic composition for source identification of Pu releases in the FDNPP-damaged reactors or spent fuel pools, and estimation of the amounts of Pu isotopes released from the FDNPP accident. Our analysis indicates that a trace amount of Pu isotopes (∼2 × 10(-5)% of core inventory) was released into the environment from the damaged reactors but not from the spent fuel pools located in the reactor buildings. Regarding the possible Pu contamination in the marine environment, limited studies suggest that no extra Pu input from the FDNPP accident could be detected in the western North Pacific 30 km off the Fukushima coast. Finally, we identified knowledge gaps remained on the release of Pu into the environment and recommended issues for future studies.
Are endocrine disruptors among the causes of the deterioration of aquatic biodiversity?
Zhou, Jin; Cai, Zhong-Hua; Zhu, Xiao-Shan
2010-07-01
Exposure to environmental pollutants such as endocrine-disrupting compounds (EDCs) is now taken into account to explain partially the biodiversity decline of aquatic ecosystems. Much research has demonstrated that EDCs can adversely affect the endocrine system, reproductive health, and immune function in aquatic species. These toxicological effects include 1) interference with normal hormonal synthesis, release, and transport, 2) impairment of growth, development, and gonadal maturation, and 3) increased sensitivity to environmental stressors. Recent studies also have confirmed that EDCs have carcinogenic and mutagenic potential. In essence, these changes in physiological and biochemical parameters reflect, to some extent, some phenotypic characteristics of the deterioration of aquatic biodiversity. At present, evidence at the molecular level shows that exposure to EDCs can trigger genotoxicity, such as DNA damage, and can reduce genetic diversity. Field studies have also provided more direct evidence that EDCs contribute to the population decrease and biodiversity decline. Evolutionary toxicology and multigenerational toxicity tests have further demonstrated that EDCs can damage an organism's offspring and eventually likely lead to loss of evolutionary potential. Taken together, these results provide some basis for understanding the relationship between variety deterioration and EDC exposure. It is conceivable that there is a causal association between EDC exposure and variety deterioration of aquatic organisms. (c) 2010 SETAC.
Egan, Scott P; Grey, Erin; Olds, Brett; Feder, Jeffery L; Ruggiero, Steven T; Tanner, Carol E; Lodge, David M
2015-04-07
Invasive species introduced via the ballast water of commercial ships cause enormous environmental and economic damage worldwide. Accurate monitoring for these often microscopic and morphologically indistinguishable species is challenging but critical for mitigating damages. We apply eDNA sampling, which involves the filtering and subsequent DNA extraction of microscopic bits of tissue suspended in water, to ballast and harbor water sampled during a commercial ship's 1400 km voyage through the North American Great Lakes. Using a lab-based gel electrophoresis assay and a rapid, field-ready light transmission spectroscopy (LTS) assay, we test for the presence of two invasive species: quagga (Dreissena bugensis) and zebra (D. polymorpha) mussels. Furthermore, we spiked a set of uninfested ballast and harbor samples with zebra mussel tissue to further test each assay's detection capabilities. In unmanipulated samples, zebra mussel was not detected, while quagga mussel was detected in all samples at a rate of 85% for the gel assay and 100% for the LTS assay. In the spiked experimental samples, both assays detected zebra mussel in 94% of spiked samples and 0% of negative controls. Overall, these results demonstrate that eDNA sampling is effective for monitoring ballast-mediated invasions and that LTS has the potential for rapid, field-based detection.
Marine molluscs in environmental monitoring. I. Cellular and molecular responses
NASA Astrophysics Data System (ADS)
Bresler, Vladimir; Abelson, Avigdor; Fishelson, Lev; Feldstein, Tamar; Rosenfeld, Michael; Mokady, Ofer
2003-10-01
The study reported here is part of an ongoing effort to establish sensitive and reliable biomonitoring markers for probing the coastal marine environment. Here, we report comparative measurements of a range of histological, cellular and sub-cellular parameters in molluscs sampled in polluted and reference sites along the Mediterranean coast of Israel and in the northern tip of the Gulf of Aqaba, Red Sea. Available species enabled an examination of conditions in two environmental 'compartments': benthic (Donax trunculus) and intertidal (Brachidontes pharaonis, Patella caerulea) in the Mediterranean; pelagic (Pteria aegyptia) and intertidal (Cellana rota) in the Red Sea. The methodology used provides rapid results by combining specialized fluorescent probes and contact microscopy, by which all parameters are measured in unprocessed animal tissue. The research focused on three interconnected levels. First, antixenobiotic defence mechanisms aimed at keeping hazardous agents outside the cell. Paracellular permeability was 70-100% higher in polluted sites, and membrane pumps (MXRtr and SATOA) activity was up to 65% higher in polluted compared to reference sites. Second, intracellular defence mechanisms that act to minimize potential damage by agents having penetrated the first line of defence. Metallothionein expression and EROD activity were 160-520% higher in polluted sites, and lysosomal functional activity (as measured by neutral red accumulation) was 25-50% lower. Third, damage caused by agents not sufficiently eliminated by the above mechanisms (e.g. single-stranded DNA breaks, chromosome damage and other pathological alterations). At this level, the most striking differences were observed in the rate of micronuclei formation and DNA breaks (up to 150% and 400% higher in polluted sites, respectively). The different mollusc species used feature very similar trends between polluted and reference sites in all measured parameters. Concentrating on relatively basic levels of biological organization—the molecular and cellular level—the parameters measured may have the capacity not only for biomonitoring environmental quality, but also for early warning.
Morpho-anatomical and growth alterations induced by arsenic in Cajanus cajan (L.) DC (Fabaceae).
Pita-Barbosa, Alice; Gonçalves, Elton Carvalho; Azevedo, Aristéa Alves
2015-08-01
Arsenic (As) is a toxic element to most organisms. Studies investigating anatomic alterations due to As exposure in plants are scarce but of utmost importance to the establishment of environmental biomonitoring techniques. So, this study aimed to investigate the effects of As on the development and initial root growth in Cajanus cajan (Fabaceae), characterize and quantify the possible damages, evaluate genotoxic effects, and identify structural markers to be used in environmental bioindication. Plants were exposed hydroponically to 0.5, 1.0, 1.5, and 2.0 mg As L(-1), as sodium arsenate. Growth parameters were measured, and in the end of the exposure, root samples were analyzed for qualitative and quantitative anatomical alterations. Arsenic genotoxicity was evaluated through analysis of the mitotic index in the root apex. Compared to the control, As-treated seedlings showed an altered architecture, with significantly decreased root length (due to the lower mitotic index in the apical meristem and reduced elongation of parenchyma cells) with darkened color, and abnormal development of the root cap. A significant increase in vascular cylinder/root diameter ratio was also detected, due to the reduction of the cellular spaces in the cortex. The secondary xylem vessel elements were reduced in diameter and had sinuous walls. The severest damage was visible in the ramification zone, where uncommon division planes of phellogen and cambium cells and disintegration of the parenchyma cells adjacent to lateral roots were observed. The high sensibility of C. cajan to As was confirmed, since it caused severe damages in root growth and anatomy. The main structural markers for As toxicity were the altered root architecture, with the reduction of the elongation zone and increase of ramification zone length, and the root primordia retained within the cortex. Our results show a new approach about As toxicity and indicate that C. cajan is a promising species to be used for bioindication of environmental contamination by As.
Damage assessment of RC buildings subjected to the different strong motion duration
NASA Astrophysics Data System (ADS)
Mortezaei, Alireza; mohajer Tabrizi, Mohsen
2015-07-01
An earthquake has three important characteristics; namely, amplitude, frequency content and duration. Amplitude and frequency content have a direct impact but not necessarily the sole cause of structural damage. Regarding the duration, some researchers show a high correlation between strong motion duration and structural damage whereas some others find no relation. This paper focuses on the ground motion durations characterized by Arias Intensity (AI). High duration may increase the damage state of structure for the damage accumulation. This paper investigates the response time histories (acceleration, velocity and displacement) of RC buildings under the different strong motion durations. Generally, eight earthquake records were selected from different soil type, and these records were grouped according to their PGA and frequency ranges. Maximum plastic rotation and drift response was chosen as damage indicator. In general, there was a positive correlation between strong motion duration and damage; however, in some PGA and frequency ranges input motions with shorter durations might cause more damage than the input motions with longer durations. In soft soils, input motions with longer durations caused more damage than the input motions with shorter durations.
NASA Astrophysics Data System (ADS)
Lakshmi, K.; Rama Mohan Rao, A.
2014-10-01
In this paper, a novel output-only damage-detection technique based on time-series models for structural health monitoring in the presence of environmental variability and measurement noise is presented. The large amount of data obtained in the form of time-history response is transformed using principal component analysis, in order to reduce the data size and thereby improve the computational efficiency of the proposed algorithm. The time instant of damage is obtained by fitting the acceleration time-history data from the structure using autoregressive (AR) and AR with exogenous inputs time-series prediction models. The probability density functions (PDFs) of damage features obtained from the variances of prediction errors corresponding to references and healthy current data are found to be shifting from each other due to the presence of various uncertainties such as environmental variability and measurement noise. Control limits using novelty index are obtained using the distances of the peaks of the PDF curves in healthy condition and used later for determining the current condition of the structure. Numerical simulation studies have been carried out using a simply supported beam and also validated using an experimental benchmark data corresponding to a three-storey-framed bookshelf structure proposed by Los Alamos National Laboratory. Studies carried out in this paper clearly indicate the efficiency of the proposed algorithm for damage detection in the presence of measurement noise and environmental variability.
Karaya gum electrocardiographic electrodes for preterm infants.
Cartlidge, P H; Rutter, N
1987-01-01
Changes in transepidermal water loss were used to measure skin damage caused by removal of electrocardiograph electrodes in 20 preterm infants. Electrodes secured by conventional adhesive damaged the skin, leading to a potentially dangerous increase in skin permeability. In contrast, those secured by karaya gum caused no skin damage. PMID:3435167
Winter storm intensity, hazards, and property losses in the New York tristate area.
Shimkus, Cari E; Ting, Mingfang; Booth, James F; Adamo, Susana B; Madajewicz, Malgosia; Kushnir, Yochanan; Rieder, Harald E
2017-07-01
Winter storms pose numerous hazards to the Northeast United States, including rain, snow, strong wind, and flooding. These hazards can cause millions of dollars in damages from one storm alone. This study investigates meteorological intensity and impacts of winter storms from 2001 to 2014 on coastal counties in Connecticut, New Jersey, and New York and underscores the consequences of winter storms. The study selected 70 winter storms on the basis of station observations of surface wind strength, heavy precipitation, high storm tide, and snow extremes. Storm rankings differed between measures, suggesting that intensity is not easily defined with a single metric. Several storms fell into two or more categories (multiple-category storms). Following storm selection, property damages were examined to determine which types lead to high losses. The analysis of hazards (or events) and associated damages using the Storm Events Database of the National Centers for Environmental Information indicates that multiple-category storms were responsible for a greater portion of the damage. Flooding was responsible for the highest losses, but no discernible connection exists between the number of storms that afflict a county and the damage it faces. These results imply that losses may rely more on the incidence of specific hazards, infrastructure types, and property values, which vary throughout the region. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.
Approach for Assessing Direct Flood Damages
NASA Astrophysics Data System (ADS)
Gaňová, Lenka; Zeleňáková, Martina; Słyś, Daniel; Purcz, Pavol
2014-11-01
This article presents a methodological approach to flood direct tangible damage - damage to assets and direct intangible damage - environmental damage and loss of life assessment. The assessment of flood risk is an essential part of the risk management approach, which is the conceptual basis for the EU directive 2007/60/ES on the assessment and management of flood risk. The purpose of this directive is to establish a framework for the assessment and management of flood risk, aiming at the reduction of the adverse consequences for human health, the environment, cultural heritage and economic activity associated with flood in the community. Overall, an accurate estimation of negative effects on assets, environment and people is important in order to be able to determine the economy, environmental and social flood risk level in a system and the effects of risk mitigation measures.
Comparison of magnetic properties of austenitic stainless steel after ion irradiation
NASA Astrophysics Data System (ADS)
Xu, Chaoliang; Liu, Xiangbing; Xue, Fei; Li, Yuanfei; Qian, Wangjie
2018-07-01
Specimens of austenitic stainless steel (ASS) were irradiated with H, Fe and Xe ions at room temperature. The vibrating sample magnetometer (VSM) and grazing incidence X-ray diffraction (GIXRD) were used to analyze the magnetic properties and martensite formation. The magnetic hysteresis loops indicated that higher irradiation damage causes more significant magnetization phenomenon. Under the same damage level, Xe irradiation causes the most significant magnetization, Fe irradiation is the second, and H irradiation is the least. A similar martensite amount variation with irradiation can be obtained. The coercivity Hc increases first to 2 dpa and then decreases continuously with irradiation damage for Xe irradiation. At the same damage lever, H irradiation causes a largest Hc and Xe irradiation causes a minimal one.
Vendramini, Maria Cláudia Ramalho; Camargo-Mathias, Maria Izabel; de Faria, Adriano Uemura; Bechara, Gervásio Henrique; de Oliveira, Patrícia Rosa; Roma, Gislaine Cristina
2012-11-01
The present study performed an analysis about the effects of andiroba seed oil (Carapa guianensis) in the ovary of Rhipicephalus sanguineus semi-engorged females; once, there are few studies about the action of natural products on the reproductive system, a vital organ for the biological success of this animal group. The results showed that andiroba oil is a potent natural agent which causes significant structural changes in the oocytes, such as the emergence of large vacuolated cytoplasmic regions, reduction in the number of yolk granules, changes in the shape of the cells, as well as impairment of genetic material. In addition, the ovary epithelium showed severe morphological changes, such as extreme structural disorganization, with highly vacuolated cells and picnotic nuclei, forming an amorphous mass. This study showed also that oocytes (mainly in the initial stages of development) and the ovary epithelium of R. sanguineus females subjected to different concentrations of andiroba oil presented morphological changes which became more numerous and intense as the concentration of the product increased. Based on the results, it can be inferred that although the defense mechanisms are developed by oocytes to recover the cellular integrity (presence of autophagic vacuoles), these cells are not able to revert the damage caused by this product. Thus, it can be concluded that although the damages caused to the oocytes by andiroba oil are comparatively less severe than the ones caused by synthetic acaricides, this product can be considered a potent natural agent that reduce and/or prevent the reproduction of R. sanguineus females, with the advantage of not causing environmental impact such as synthetic chemical acaricides.
Medical diagnostics for indoor mold exposure.
Hurraß, Julia; Heinzow, Birger; Aurbach, Ute; Bergmann, Karl-Christian; Bufe, Albrecht; Buzina, Walter; Cornely, Oliver A; Engelhart, Steffen; Fischer, Guido; Gabrio, Thomas; Heinz, Werner; Herr, Caroline E W; Kleine-Tebbe, Jörg; Klimek, Ludger; Köberle, Martin; Lichtnecker, Herbert; Lob-Corzilius, Thomas; Merget, Rolf; Mülleneisen, Norbert; Nowak, Dennis; Rabe, Uta; Raulf, Monika; Seidl, Hans Peter; Steiß, Jens-Oliver; Szewszyk, Regine; Thomas, Peter; Valtanen, Kerttu; Wiesmüller, Gerhard A
2017-04-01
In April 2016, the German Society of Hygiene, Environmental Medicine and Preventative Medicine (Gesellschaft für Hygiene, Umweltmedizin und Präventivmedizin (GHUP)) together with other scientific medical societies, German and Austrian medical societies, physician unions and experts has provided an AWMF (Association of the Scientific Medical Societies) guideline 'Medical diagnostics for indoor mold exposure'. This guideline shall help physicians to advise and treat patients exposed indoors to mold. Indoor mold growth is a potential health risk, even without a quantitative and/or causal association between the occurrence of individual mold species and health effects. Apart from the allergic bronchopulmonary aspergillosis (ABPA) and the mycoses caused by mold, there is only sufficient evidence for the following associations between moisture/mold damages and different health effects: Allergic respiratory diseases, asthma (manifestation, progression, exacerbation), allergic rhinitis, exogenous allergic alveolitis and respiratory tract infections/bronchitis. In comparison to other environmental allergens, the sensitizing potential of molds is estimated to be low. Recent studies show a prevalence of sensitization of 3-10% in the total population of Europe. The evidence for associations to mucous membrane irritation and atopic eczema (manifestation, progression, exacerbation) is classified as limited or suspected. Inadequate or insufficient evidence for an association is given for COPD, acute idiopathic pulmonary hemorrhage in children, rheumatism/arthritis, sarcoidosis, and cancer. The risk of infections from indoor molds is low for healthy individuals. Only molds that are capable to form toxins can cause intoxications. The environmental and growth conditions and especially the substrate determine whether toxin formation occurs, but indoor air concentrations are always very low. In the case of indoor moisture/mold damages, everyone can be affected by odor effects and/or impairment of well-being. Predisposing factors for odor effects can be given by genetic and hormonal influences, imprinting, context and adaptation effects. Predisposing factors for impairment of well-being are environmental concerns, anxieties, conditioning and attributions as well as a variety of diseases. Risk groups that must be protected are patients with immunosuppression and with mucoviscidosis (cystic fibrosis) with regard to infections and individuals with mucoviscidosis and asthma with regard to allergies. If an association between mold exposure and health effects is suspected, the medical diagnosis includes medical history, physical examination, conventional allergy diagnosis, and if indicated, provocation tests. For the treatment of mold infections, it is referred to the AWMF guidelines for diagnosis and treatment of invasive Aspergillus infections. Regarding mycotoxins, there are currently no validated test methods that could be used in clinical diagnostics. From the perspective of preventive medicine, it is important that mold damages cannot be tolerated in indoor environments. Copyright © 2016 Elsevier GmbH. All rights reserved.
Camargo-Mathias, Maria Izabel; Pereira, Natalia Rubio Claret; da Silva Reis, Camila; de Almeida, Cristiane Regina; Dos Santos Mendes, Douglas Rodrigo; de Araújo, Giselle Bezerra; Postali, Lays; Figueroa, Tober; Ferreira, Allan Roberto Fernandes; Santos, Juan Parente; de Oliveira, Patrícia Rosa
2017-06-01
The cosmopolitan species Rhipicephalus sanguineus s.l. is one of the most widely distributed ticks all over the world. These ectoparasites are vectors of several pathogens and cause significant direct damage to their hosts. The biological success of these ectoparasites has been attributed to their ovaries and salivary glands, organs that ensure their survival in various environmental conditions. The importance of the ovaries in ticks is that, after mating, the individuals are able to lay approximately three thousand eggs. The present study had the objective to demonstrate the effects of deltamethrin obtained from the product Butox P CE 25 ® (MSD Saúde Animal, São Paulo, Brazil) on the ovarian development of R. sanguineus s.l. females. The chemical was tested in the concentrations of 25, 50, 100 and 200 ppm (respectively 80, 40, 20 and 10 times lower than the recommended by the manufacturer). Through the application of histological techniques and HE staining, the results showed that the deltamethrin was potentially able to modify the morphophysiology of the oocytes in all developmental stages, interfering in the vitellogenesis, causing intense vacuolation, cytoplasmic disorganization, and alterations in the chorion secretion. In addition, the chemical affected the germ vesicle of some oocytes, causing damages and hypertrophy, fragmenting the chromatin and forming bodies strongly stained by hematoxylin. Therefore, this study confirmed that the deltamethrin had an important action on the reproductive system of the R. sanguineus s.l. females, causing the precocious structural disorganization of the germ cells, consequently preventing the generation of new individuals.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-17
... environmental and fatigue inspections would not have detected the corrosion or fatigue damage. Corrosion or fatigue damage in this area, if not detected and corrected, could lead to degradation of the structural... fatigue inspections would not have detected the corrosion or fatigue damage. Corrosion or fatigue damage...
Paracelsus to parascience: the environmental cancer distraction.
Ames, B N; Gold, L S
2000-01-17
Entering a new millennium seems a good time to challenge some old ideas, which in our view are implausible, have little supportive evidence, and might best be left behind. In this essay, we summarize a decade of work, raising four issues that involve toxicology, nutrition, public health, and government regulatory policy. (a) Paracelsus or parascience: the dose (trace) makes the poison. Half of all chemicals, whether natural or synthetic, are positive in high-dose rodent cancer tests. These results are unlikely to be relevant at the low doses of human exposure. (b) Even Rachel Carson was made of chemicals: natural vs. synthetic chemicals. Human exposure to naturally occurring rodent carcinogens is ubiquitous, and dwarfs the general public's exposure to synthetic rodent carcinogens. (c) Errors of omission: micronutrient inadequacy is genotoxic. The major causes of cancer (other than smoking) do not involve exogenous carcinogenic chemicals: dietary imbalances, hormonal factors, infection and inflammation, and genetic factors. Insufficiency of many micronutrients, which appears to mimic radiation, is a preventable source of DNA damage. (d) Damage by distraction: regulating low hypothetical risks. Putting huge amounts of money into minuscule hypothetical risks damages public health by diverting resources and distracting the public from major risks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Caitlin Anne; Bufford, Daniel Charles; Muntifering, Brittany Rana
Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I 3TEM) offers the unique ability to observe microstructural changes duemore » to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. As a result, this work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO 2.« less
In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects
Taylor, Caitlin Anne; Bufford, Daniel Charles; Muntifering, Brittany Rana; Senor, David; Steckbeck, Mackenzie; Davis, Justin; Doyle, Barney; Buller, Daniel
2017-01-01
Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM) offers the unique ability to observe microstructural changes due to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO2. PMID:28961199
Assessing MMOD Impacts on Seal Performance
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Daniels, C.; Dunlap, P.; Steinetz, B.
2007-01-01
The elastomer seal needed to seal in cabin air when NASA s Crew Exploration Vehicle is docked is exposed to space prior to docking. While open to space, the seal might be hit by orbital debris or meteoroids. The likelihood of damage of this type depends on the size of the particle. Our campaign is designed to find the smallest particle that will cause seal failure resulting in loss of mission. We will then be able to estimate environmental risks to the seal. Preliminary tests indicate seals can withstand a surprising amount of damage and still function. Collaborations with internal and external partners are in place and include seal leak testing, modeling of the space environment using a computer code known as BUMPER, and hypervelocity impact (HVI) studies at Caltech. Preliminary work at White Sands Test Facility showed a 0.5 mm diameter HVI damaged areas about 7 times that diameter, boring deep (5 mm) into elastomer specimens. BUMPER simulations indicate there is a 1 in 1440 chance of getting hit by a particle of diameter 0.08 cm for current Lunar missions; and 0.27 cm for a 10 year ISS LIDS seal area exposure.
In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Caitlin; Bufford, Daniel; Muntifering, Brittany
Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM) offers the unique ability to observe microstructural changes due tomore » irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO2.« less
The Canadian experience in frontier environmental protection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, G.H.
1991-03-01
Early Canadian frontier exploration (from 1955 onshore and from 1966 for offshore drilling) caused insignificant public concern. The 1967-1968 Torrey Canyon Tanker and Santa Barbara disasters roused public opinion and governments. In Canada, 1969-1970 Arctic gas blowouts, a tanker disaster, and damage to the 'Manhattan' exacerbated concerns and resulted in new environmental regulatory constraints. From 1970, the Arctic Petroleum Operations Association learned to operate safely with environmental responsibility. It studied physical environment for design criteria, and the biological and human environment to ameliorate impact. APOA's research projects covered sea-ice, permafrost, sea-bottom, oil-spills, bird and mammal migration, fish habitat, food chains,more » oceanography, meteorology, hunters'/trappers' harvests, etc. In 1971 Eastcoast Petroleum Operators' Association and Alaska Oil and Gas Association followed APOA's cooperative research model. EPOA stressed icebergs and fisheries. Certain research was handled by the Canadian Offshore Oil Spill Research Association. By the mid-1980s these associations had undertaken $70,000,000 of environmental oriented research, with equivalent additional work by member companies on specific needs and similar sums by Federal agencies often working with industry on complementary research. The frontier associations then merged with the Canadian Petroleum Association, already active environmentally in western Canada. Working with government and informing environmental interest groups, the public, natives, and local groups, most Canadian frontier petroleum operations proceeded with minimal delay and environmental disturbance.« less
Deleterious role of trace elements - Silica and lead in the development of chronic kidney disease.
Mascarenhas, Starlaine; Mutnuri, Srikanth; Ganguly, Anasuya
2017-06-01
Chronic-Kidney-Disease of Unknown-etiology (CKDu) has been reported in developing-countries like Sri-Lanka, India and Central-America without sparing the Indian sub-district (namely Canacona) located in south-Goa. The disease etiology is unlinked to common causes of diabetes and hypertension and assumed to be environmentally induced due to its asymptomatic-nature and occurrence in groundwater relying communities. This study aimed to understand environmental risk-factors underlying CKDu-etiology using Indian sub-district (Canacona) as case-study. Biochemical-analysis of CKDu-affected and non-affected individual's blood and detailed hydro-geochemical analyses of CKDu-affected and non-affected region's groundwater (drinking-water)were conducted. Trace geogenic-element-silica was highly dominant in affected-region's groundwater, thus its nephrotoxic-potential was analysed via in-vitro cytotoxicity-assays on human-kidney-cell-lines. All CKDu-affected-subjects showed increased-levels of serum-urea (52.85 mM),creatinine (941.5 μM),uric-acid (1384.5 μM), normal blood-glucose (4.65 mM), being distinct biomarkers of environmentally-induced CKD-'chronic-tubulo-interstitial-nephritis'. Affected-subjects reported high blood-lead levels (1.48 μM)suggesting direct-nephrotoxicity resulting in impaired blood-clearance and also exhibits indirect-nephrotoxicity by disrupting calcium-homeostasis causing skeletal-disorders and prolonged-consumption of NSAID's (pain-alleviation), indirectly causing renal-damage. Affected-region's groundwater was acidic (pH-5.6), resulting in borderline-lead (9.98 μgL -1 ) and high-silica (115.5 mgL -1 )contamination. Silica's bio-availability (determining its nephrotoxicity) was enhanced at groundwater's acidic-pH and Ca-Mg-deficient-composition (since these cations complex with silica reducing bioavailability). Silica exhibited renal-proximal-tubular-cytotoxicity on long-term exposure comparable with affected-region's groundwater silica-levels, by apoptosis-mediated-cell-death resulting in tubular-atrophy, interstitial-fibrosis and irreversible renal-damage (CKD). Thus this study provides novel-insights into nephrotoxic-potential of trace-geogenic-element-silica in CKDu causation. It highlights direct-indirect nephrotoxicity exhibited by lead at low-levels due to its bio-accumulative-capacity. Silica's nephrotoxic-potential can be considered when deciphering etiology of CKDu-problem in developing-countries (relying on groundwater). Copyright © 2017 Elsevier Ltd. All rights reserved.
van der Kamp, Jonathan; Bachmann, Till M
2015-03-03
"Getting the prices right" through internalizing external costs is a guiding principle of environmental policy making, one recent example being the EU Clean Air Policy Package released at the end of 2013. It is supported by impact assessments, including monetary valuation of environmental and health damages. For over 20 years, related methodologies have been developed in Europe in the Externalities of Energy (ExternE) project series and follow-up activities. In this study, we aim at analyzing the main methodological developments over time from the 1990s until today with a focus on classical air pollution-induced human health damage costs. An up-to-date assessment including the latest European recommendations is also applied. Using a case from the energy sector, we identify major influencing parameters: differences in exposure modeling and related data lead to variations in damage costs of up to 21%; concerning risk assessment and monetary valuation, differences in assessing long-term exposure mortality risks together with assumptions on particle toxicity explain most of the observed changes in damage costs. These still debated influencing parameters deserve particular attention when damage costs are used to support environmental policy making.
Person, W.J.
1981-01-01
The months of May and June were somewhat quiet, seismically speaking. There was one major earthquake (7.0-7.9) off the west coast of South Island, New Zealand. The most destructive earthquake during this reporting period was in southern Iran on June 11 which caused fatalities and extensive damage. Peru also experienced a destructive earthquake on June 22 which caused fatalities and damage. In the United States, a number of earthquakes were experienced, but none caused significant damage.
Landscape changes have greater effects than climate changes on six insect pests in China.
Zhao, Zihua; Sandhu, Hardev S; Ouyang, Fang; Ge, Feng
2016-06-01
In recent years, global changes are the major causes of frequent, widespread outbreaks of pests in mosaic landscapes, which have received substantial attention worldwide. We collected data on global changes (landscape and climate) and economic damage caused by six main insect pests during 1951-2010 in China. Landscape changes had significant effects on all six insect pests. Pest damage increased significantly with increasing arable land area in agricultural landscapes. However, climate changes had no effect on damage caused by pests, except for the rice leaf roller (Cnaphalocrocis medinalis Guenee) and armyworm (Mythimna separate (Walker)), which caused less damage to crops with increasing mean temperature. Our results indicate that there is slight evidence of possible offset effects of climate changes on the increasing damage from these two agricultural pests. Landscape changes have caused serious outbreaks of several species, which suggests the possibility of the use of landscape design for the control of pest populations through habitat rearrangement. Landscape manipulation may be used as a green method to achieve sustainable pest management with minimal use of insecticides and herbicides.
Selective environmental stress from sulphur emitted by continental flood basalt eruptions
NASA Astrophysics Data System (ADS)
Schmidt, Anja; Skeffington, Richard; Thordarson, Thorvaldur; Self, Stephen; Forster, Piers; Rap, Alexandru; Ridgwell, Andy; Fowler, David; Wilson, Marjorie; Mann, Graham; Wignall, Paul; Carslaw, Ken
2016-04-01
Several biotic crises during the past 300 million years have been linked to episodes of continental flood basalt volcanism, and in particular to the release of massive quantities of magmatic sulphur gas species. Flood basalt provinces were typically formed by numerous individual eruptions, each lasting years to decades. However, the environmental impact of these eruptions may have been limited by the occurrence of quiescent periods that lasted hundreds to thousands of years. Here we use a global aerosol model to quantify the sulphur-induced environmental effects of individual, decade-long flood basalt eruptions representative of the Columbia River Basalt Group, 16.5-14.5 million years ago, and the Deccan Traps, 65 million years ago. For a decade-long eruption of Deccan scale, we calculate a decadal-mean reduction in global surface temperature of 4.5 K, which would recover within 50 years after an eruption ceased unless climate feedbacks were very different in deep-time climates. Acid mists and fogs could have caused immediate damage to vegetation in some regions, but acid-sensitive land and marine ecosystems were well-buffered against volcanic sulphur deposition effects even during century-long eruptions. We conclude that magmatic sulphur from flood basalt eruptions would have caused a biotic crisis only if eruption frequencies and lava discharge rates had been high and sustained for several centuries at a time.
Selective environmental stress from sulphur emitted by continental flood basalt eruptions
NASA Astrophysics Data System (ADS)
Schmidt, Anja; Skeffington, Richard A.; Thordarson, Thorvaldur; Self, Stephen; Forster, Piers M.; Rap, Alexandru; Ridgwell, Andy; Fowler, David; Wilson, Marjorie; Mann, Graham W.; Wignall, Paul B.; Carslaw, Kenneth S.
2016-01-01
Several biotic crises during the past 300 million years have been linked to episodes of continental flood basalt volcanism, and in particular to the release of massive quantities of magmatic sulphur gas species. Flood basalt provinces were typically formed by numerous individual eruptions, each lasting years to decades. However, the environmental impact of these eruptions may have been limited by the occurrence of quiescent periods that lasted hundreds to thousands of years. Here we use a global aerosol model to quantify the sulphur-induced environmental effects of individual, decade-long flood basalt eruptions representative of the Columbia River Basalt Group, 16.5-14.5 million years ago, and the Deccan Traps, 65 million years ago. For a decade-long eruption of Deccan scale, we calculate a decadal-mean reduction in global surface temperature of 4.5 K, which would recover within 50 years after an eruption ceased unless climate feedbacks were very different in deep-time climates. Acid mists and fogs could have caused immediate damage to vegetation in some regions, but acid-sensitive land and marine ecosystems were well-buffered against volcanic sulphur deposition effects even during century-long eruptions. We conclude that magmatic sulphur from flood basalt eruptions would have caused a biotic crisis only if eruption frequencies and lava discharge rates had been high and sustained for several centuries at a time.
Size effect of SnO2 nanoparticles on bacteria toxicity and their membrane damage.
Chávez-Calderón, Adriana; Paraguay-Delgado, Francisco; Orrantia-Borunda, Erasmo; Luna-Velasco, Antonia
2016-12-01
Semiconductor SnO 2 nanoparticles (NPs) are being exploited for various applications, including those in the environmental context. However, toxicity studies of SnO 2 NPs are very limited. This study evaluated the toxic effect of two sizes of spherical SnO 2 NPs (2 and 40 nm) and one size of flower-like SnO 2 NPs (800 nm) towards the environmental bacteria E. coli and B. subtilis. SnO 2 NPs were synthesized using a hydrothermal or calcination method and they were well characterized prior to toxicity assessment. To evaluate toxicity, cell viability and membrane damage were determined in cells (1 × 10 9 CFU mL -1 ) exposed to up to 1000 mg L -1 of NPs, using the plate counting method and confocal laser scanning microscopy. Spherical NPs of smaller primary size (E2) had the lowest hydrodynamic size (226 ± 96 nm) and highest negative charge (-30.3 ± 10.1 mV). Smaller spherical NPs also showed greatest effect on viability (IC 50 > 500 mg L -1 ) and membrane damage of B. subtilis, whereas E. coli was unaffected. Scanning electron microscopy confirmed the membrane damage of exposed B. subtilis and also exhibited the attachment of E2 NPs to the cell surface, as well as the elongation of cells. It was also apparent that toxicity was caused solely by NPs, as released Sn 4+ was not toxic to B. subtilis. Thus, surface charge interaction between negatively charged SnO 2 NPs and positively charged molecules on the membrane of the Gram positive B. subtilis was indicated as the key mechanism related to toxicity of NPs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-26
... Collection; Comment Request; Natural Resource Damage Assessment Restoration Project Information Sheet AGENCY... federal Natural Resource Trustees in more efficiently carrying out the restoration planning phase of Natural Resource Damage Assessments (NRDA), in compliance with the National Environmental Policy Act of...
Biochemical Responses in Freshwater Fish Exposed to Insecticide Propoxur.
Gonçalves, Carjone Rosa; Marins, Aline Teixeira; do Amaral, Aline Monique Blank; Leitemperger, Jossiele; Severo, Eduardo Stringini; Moraes, Bibiana Silveira; Zanella, Renato; Loro, Vania Lucia
2018-04-01
Although designed to control pests selectively, there is some evidence that environmental contamination by pesticides increases risks for humans and wildlife. In the present study, we evaluated biomarkers of oxidative stress in Astyanax jacuhiensis exposed to (5, 15 and 30 µg L -1 ) of carbamate Propoxur (PPX) for 96 h. Glutathione S-transferase (GST) in liver and gills showed reduced activity in all PPX concentrations tested. Acetylcholinesterase (AChE) activities reduced in brain and muscle at concentrations 15 and 30 µg L -1 of PPX. Lipid peroxidation (LPO) and hydrogen peroxide (HP) had no significant differences. In the brain, protein carbonyl (PC) increased in all groups treated with PPX. Although PPX is a selective pesticide, it causes oxidative damage and enzyme alteration in fish. This study pointed out some biomarkers that could be used to assess effects of environmentally relevant concentrations of pesticides, and infer about studies using fish as bioindicator.
Jackson, D; Stone, D M; Smith, K; Morgan, G; Shimmield, T
2007-09-01
This study assesses the impact on species other than humans associated with radioactive particles present in the marine environment close to the UKAEA Dounreay site, through a review of marine survey data, to establish the distribution of species and the likelihood of encountering a particle, and considering retention, dissolution or absorption of the particle. Assumptions are made regarding particle density, distribution, size and bio-availability of the radioactive materials. From this, impacts are assessed against the likelihood of mortality or other significant harm to individuals and interpreted in terms of local populations. Results obtained indicate that no significant impact, at the population level, is likely to be observed. This does not preclude that some individuals will be affected. It does, however, suggest that any decision to remediate, if based predominantly on environmental considerations, should be cognisant of the damage caused by remediation itself and subsequent exploitation of the environment by humans.
Tributyltin exposure causes brain damage in Sebastiscus marmoratus.
Zhang, Jiliang; Zuo, Zhenghong; Chen, Rong; Chen, Yixin; Wang, Chonggang
2008-09-01
Tributyltin (TBT) is a ubiquitous marine environmental contaminant characterized primarily by its reproductive toxicity. However, the neurotoxic effect of TBT has not been extensively described, especially in fishes which have a high number of species in the marine environment. This study was conducted to investigate the neurotoxic effects of TBT at environmental levels (1, 10, and 100ngl(-1)) on female Sebastiscus marmoratus. The results showed that TBT exposure induced apoptosis in brain cells of three regions including the pallial areas of the telencephalon, the granular layer of the optic tectum, and the cerebellum. In addition, the increase of reactive oxygen species and nitric oxide levels, and the decrease of Na+/K+-ATPase activity were found in the brain. The results strongly indicated neurotoxicity of TBT to fishes. According to the regions in which apoptosis was found in the brain, TBT exposure might influence the schooling, sensory and motorial functions of fishes.
Riaz, Muhammad Adil; McKay, Gordon; Saleem, Junaid
2017-12-01
Oil spills over seawater and dye pollutants in water cause economic and environmental damage every year. Among various methods to deal oil spill problems, the use of porous materials has been proven as an effective strategy. In recent years, graphene-based porous sorbents have been synthesized to address the shortcomings associated with conventional sorbents such as their low uptake capacity, slow sorption rate, and non-recyclability. This article reviews the research undertaken to control oil spillage using three-dimensional (3D) graphene-based materials. The use of these materials for removal of dyes and miscellaneous environmental pollutants from water is explored and the application of various multifunctional 3D oil sorbents synthesized by surface modification technique is presented. The future prospects and limitations of these materials as sorbents are also discussed.
Martínez-Paz, Pedro; Morales, Mónica; Martínez-Guitarte, José Luis; Morcillo, Gloria
2013-12-12
Genotoxicity is one of the most important toxic endpoints in chemical toxicity testing and environmental risk assessment. The aim of this study was to evaluate the genotoxic potential of various environmental pollutants frequently found in aquatic environments and characterized by their endocrine disrupting activity. Monitoring of DNA damage was undertaken after in vivo exposures of the aquatic larvae of the midge Chironomus riparius, a model organism that represents an abundant and ecologically relevant macroinvertebrate, widely used in freshwater toxicology. DNA-induced damage, resulting in DNA fragmentation, was quantified by the comet assay after short (24 h) and long (96 h) exposures to different concentrations of the selected toxicants: bisphenol A (BPA), nonylphenol (NP), pentachlorophenol (PCP), tributyltin (TBT) and triclosan (TCS). All five compounds were found to have genotoxic activity as demonstrated by significant increases in all the comet parameters (%DNA in tail, tail length, tail moment and Olive tail moment) at all tested concentrations. Persistent exposure did not increase the extent of DNA damage, except for TCS at the highest concentration, but generally there was a reduction in DNA damage thought to be associated with the induction of the detoxification processes and repairing mechanisms. Comparative analysis showed differences in the genotoxic potential between the chemicals, as well as significant time and concentration-dependent variations, which most likely reflect differences in the ability to repair DNA damage under the different treatments. The present report demonstrates the sensitivity of the benthic larvae of C. riparius to these environmental genotoxins suggesting its potential as biomonitor organism in freshwater ecosystems. The results obtained about the DNA-damaging potential of these environmental pollutants reinforce the need for additional studies on the genotoxicity of endocrine active substances that, by linking genotoxic activity to other biological responses, could provide further understanding of adverse effects in aquatic environments. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Humer, Günter; Reithofer, Andreas
2016-04-01
Using an extended 2D hydrodynamic model for evaluating damage risk caused by extreme rain events: Flash-Flood-Risk-Map (FFRM) Upper Austria Considering the increase in flash flood events causing massive damage during the last years in urban but also rural areas [1-4], the requirement for hydrodynamic calculation of flash flood prone areas and possible countermeasures has arisen to many municipalities and local governments. Besides the German based URBAS project [1], also the EU-funded FP7 research project "SWITCH-ON" [5] addresses the damage risk caused by flash floods in the sub-project "FFRM" (Flash Flood Risk Map Upper Austria) by calculating damage risk for buildings and vulnerable infrastructure like schools and hospitals caused by flash-flood driven inundation. While danger zones in riverine flooding are established as an integral part of spatial planning, flash floods caused by overland runoff from extreme rain events have been for long an underrated safety hazard not only for buildings and infrastructure, but man and animals as well. Based on the widespread 2D-model "hydro_as-2D", an extension was developed, which calculates the runoff formation from a spatially and temporally variable precipitation and determines two dimensionally the land surface area runoff and its concentration. The conception of the model is to preprocess the precipitation data and calculate the effective runoff-volume for a short time step of e.g. five minutes. This volume is applied to the nodes of the 2D-model and the calculation of the hydrodynamic model is started. At the end of each time step, the model run is stopped, the preprocessing step is repeated and the hydraulic model calculation is continued. In view of the later use for the whole of Upper Austria (12.000 km²) a model grid of 25x25 m² was established using digital elevation data. Model parameters could be estimated for the small catchment of river Ach, which was hit by an intense rain event with up to 109 mm per hour at 20th of June 2012, based on open data sources of geology, soil and land use. The aim of FFRM is to provide an estimation of the damage risk caused by flash-floods for the whole of Upper Austria. To address the hazard, inundation depths were calculated with the extended 2D-model using design rains with an 100-year return period provided by the Environmental Ministry [7]. The potential damage was calculated using damage functions, which were derived from our experience from damage surveys of past events in Austria and according to guidelines for determination of cost-benefit-ratios for flood protection measures [8]. The greatest difficulty was to get appropriate data for the distribution of houses and industrial plants. Zoning plans provide good information on spatial distribution of residential, commercial and industrial areas, but does not contain information on the kind of industry, which is essential for estimating absolute damage values. To get a first idea detailed information from surveyed areas was intersected with the zoning plan, which provides an average damage in the respective zones. The first results can be found on www.waterviewer.com and will be updated with the further development of the project. [1] URBAS, risk management of extreme flooding events - prediction and management of flash floods in urban areas, www.urbanesturzfluten.de, prompted on 13th of November 2014 [2] Società Meteorologica Italiana (SMI), http://www.nimbus.it/eventi/2013/130624flashfloodRimini.pdf, prompted on 13th of November 2014 [3]Newspaper "Österreich", http://www.oe24.at/oesterreich/chronik/Sturzflut-Regen-legt-Ost-Oesterreich-lahm/1509113, prompted on 13th of November 2014 [4] Newspaper "Oberösterreichische Nachrichten", http://www.nachrichten.at/oberoesterreich/Unwetter-Mure-riss-Strasse-mit-Wohnhaus-in-Gosau-gefaehrdet;art4,911288 , prompted on 13th of November 2014 [5] Sharing Water-related Information to Tackle Changes in the Hydrosphere - for Operational Needs (SWITCH-ON), http://water-switch-on.eu [6] European Commission, directive 2007/60/EC of the European Parliament and the Council of 23rd October 2007 on the assessment and management of flood risks: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:288:0027:0034:en:PDF [7] http://ehyd.gv.at [8] Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management: „Kosten-Nutzen-Untersuchungen im Schutzwaserbau", July 2009
32 CFR 651.42 - Actions normally requiring an EIS.
Code of Federal Regulations, 2011 CFR
2011-07-01
... environmental damage might occur. (g) Major changes in the mission or facilities either affecting...) ENVIRONMENTAL QUALITY ENVIRONMENTAL ANALYSIS OF ARMY ACTIONS (AR 200-2) Environmental Impact Statement § 651.42... effect on wetlands, coastal zones, or other areas of critical environmental concern. (c) The disposal of...
Chen, J Z; Ye, J Y; Zhang, H Y; Jiang, X J; Zhang, Y X; Liu, Z L
2011-06-15
Cyanobacteria in freshwater ecosystems can present a harmful effect on growth and development of plants through irrigation with contaminated water. In this study, the effects of microcystins (MCs)-containing cyanobacteria extract (CE) on DNA damage of apple, rape and rice were investigated to explore the phytotoxic mechanism of MCs through DNA fragmentation and RAPD analysis. Determination of DNA fragmentation by fluorescent dye DAPI showed that significant DNA damage was observed in rice seedlings after exposure to CE while DNA fragmentation in rape seedlings and apple cultures did not differ significantly between treatment and control groups. Qualitative characterization of genomic DNA fragmentation by agarose gel electrophoresis supported the quantitative determination using DAPI. The main changes in RAPD profiles of rape seedlings following exposure of lower doses of CE were variation in band intensity for the primers F03 and S01, while higher doses of CE caused loss of normal bands and appearance of new bands except band intensity changes. The data presented here demonstrate that DNA damage in plants occurs following exposure of microcystins, and the polymorphic RAPDs may be used as an investigation tool for environmental toxicology and as a useful biomarker for the detection of genotoxic effects of microcystins on plants. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
[The psychodynamics of deafness].
Corvera, J; González, F
2000-01-01
Deafness generates psychological conflicts for the deaf as well as for others in their environment. Our purpose is to obtain a panorama of the topic based on the available bibliography. Relevant articles were located in Medline and in unlisted journals, accessible at the National Institute of the Human Communication and at the Juan N. Navarro Hospital of Mexico City. The books were located at the National Institute of the Human Communication. The articles were selected by the authors, based in their apparent internal consistency and relation to our purpose. Two different concepts became apparent: one which recognizes a "personality of the deaf" that would predispose to emotional damage, and the other that denies that concept, explaining the distinctive features of deaf people as due to basically environmental factors. We think that this review sustains the premise that the psychological damages of deafness are real, not inherent to it, but caused by the social, occupational, pedagogical and familiar conflicts that are generated. Those damages vary with the age at the presentation of deafness the personal adjustment to the deficiency and acceptance by the community. The mitigation of deafness, damage depends on educated parents, adequate instruction programs (scholastic as well as occupational), and when needed, appropriate supportive psychotherapy based on the specific needs of each deaf person and this/her environment. We consider highly desirable to promote the elaboration and publication of interdisciplinary studies related to this topic.
Jiménez-Villarreal, J; Rivas-Armendariz, D I; Pineda-Belmontes, C P; Betancourt-Martínez, N D; Macías-Corral, M A; Guerra-Alanis, A J; Niño-Castañeda, M S; Morán-Martínez, J
2017-05-18
Different studies have suggested an association between arsenic (As) exposure and damage to single-stranded DNA by reactive oxygen species derived from the biotransformation of arsenic. The single strand damages are converted to double strand damage upon interaction with ultraviolet radiation. Analysis of genomic integrity is important for assessing the genotoxicity caused by environmental pollutants. In this study, we compared the concentration of As in drinking water, nutritional status, lifestyle variables, and the level of genotoxicity in an exposed population and a control group. Arsenic content of water was determined using a portable Arsenator ® kit. DNA fragmentation was determined using the two-tailed comet assay. Our results show that the exposed population had low nutritional consumption compared to the control group (P < 0.05). Furthermore, the water consumed by the exposed group had As concentration of 14.3 ± 8.4 mg/L, whereas the As level in the water consumed by the control group was 7.7 ± 3.5 mg/L. Analysis shows that the frequency of double strand break (DSB) fragmentation was higher in the population exposed to higher levels of As compared to that of the control group. These results suggest a possible association between the concentration of As in drinking water and lifestyle variables, with increasing fragmentation of DSBs in the exposed population.
Bisphenol a exposure causes meiotic aneuploidy in the female mouse.
Hunt, Patricia A; Koehler, Kara E; Susiarjo, Martha; Hodges, Craig A; Ilagan, Arlene; Voigt, Robert C; Thomas, Sally; Thomas, Brian F; Hassold, Terry J
2003-04-01
There is increasing concern that exposure to man-made substances that mimic endogenous hormones may adversely affect mammalian reproduction. Although a variety of reproductive complications have been ascribed to compounds with androgenic or estrogenic properties, little attention has been directed at the potential consequences of such exposures to the genetic quality of the gamete. A sudden, spontaneous increase in meiotic disturbances, including aneuploidy, in studies of oocytes from control female mice in our laboratory coincided with the accidental exposure of our animals to an environmental source of bisphenol A (BPA). BPA is an estrogenic compound widely used in the production of polycarbonate plastics and epoxy resins. We identified damaged caging material as the source of the exposure, as we were able to recapitulate the meiotic abnormalities by intentionally damaging cages and water bottles. In subsequent studies of female mice, we administered daily oral doses of BPA to directly test the hypothesis that low levels of BPA disrupt female meiosis. Our results demonstrated that the meiotic effects were dose dependent and could be induced by environmentally relevant doses of BPA. Both the initial inadvertent exposure and subsequent experimental studies suggest that BPA is a potent meiotic aneugen. Specifically, in the female mouse, short-term, low-dose exposure during the final stages of oocyte growth is sufficient to elicit detectable meiotic effects. These results provide the first unequivocal link between mammalian meiotic aneuploidy and an accidental environmental exposure and suggest that the oocyte and its meiotic spindle will provide a sensitive assay system for the study of reproductive toxins.
Papa, M; Pedrazzani, R; Bertanza, G
2013-07-01
The research on the impact of chemical pollution is now increasingly attracted by the topic of organic micropollutants: as secondary biological treatment of wastewater does not provide the complete elimination of these substances, an advanced treatment downstream the biological process can be implemented. Notwithstanding, the benefits of improved effluent quality can be weakened by the negative effects on air quality, when energy consumption and related pollutants emissions deriving from the advanced treatment technologies are taken into account. It is the aim of this work to present an innovative methodology to judge the environmental compatibility of wastewater treatment processes on the basis of the damage on human health produced/avoided, expressed as an economic value. In particular, while for air pollution the established external costs were applied, for water pollution the rates of the impacts on human health have been evaluated in terms of Global Burden of Disease and measured in units of DALY (Disability-Adjusted Life Years), then converted into costs based on Gross Domestic Product. As a first application, this procedure was used for assessing environmental compatibility of a final ozonation: the results of this study showed that the reduction of water pollution achieved by means of ozonation might be beneficial for human health at an extent which is in the same order of magnitude of damage caused by air pollution, emphasizing that the question if the use of advanced (energy-intensive) treatments is a proper solution to remove organic micropollutants from wastewater remains still open. Copyright © 2013 Elsevier Ltd. All rights reserved.
Risk Assessment of Face Skin Exposure to UV Irradiance from Different Rotation Angle Ranges
Wang, Fang; Gao, Qian; Deng, Yan; Chen, Rentong; Liu, Yang
2017-01-01
Ultraviolet (UV) is one of the environmental pathogenic factors causing skin damage. Aiming to assess the risk of face skin exposure to UV irradiance from different rotation angles, a rotating model was used to monitor the exposure of the skin on the face to UV irradiance, with skin damage action spectra used to determine the biologically effective UV irradiance (UVBEskin) and UVBEskin radiant exposure (HBEskin) causing skin damage. The results indicate that the UVBEskin is directly influenced by variations in rotation angles. A significant decrease of approximately 52.70% and 52.10% in UVBEskin was found when the cheek and nose measurement sites was rotated from 0° to 90°, while a decrease of approximately 62.70% was shown when the forehead measurement sites was rotated from an angle of 0° to 108°. When HBEskin was compared to the exposure limits (ELs; 30 J·m−2), the maximum relative risk ratios (RR) for cheek, nose, and forehead were found to be approximately 2.01, 2.40, and 2.90, respectively, which were all measured at a rotation angle of 0°. The maximal increase in the percentage of the average HBEskin for rotation angles of 60°, 120°, 180°, and 360° facing the sun to ELs were found to be approximately 62.10%, 52.72%, 43.43%, and 26.27% for the cheek; approximately 130.61%, 109.68%, 86.43%, and 50.06% for the nose; and approximately 178.61%, 159.19%, 134.38%, and 83.41% for the forehead, respectively. PMID:28587318
Risk Assessment of Face Skin Exposure to UV Irradiance from Different Rotation Angle Ranges.
Wang, Fang; Gao, Qian; Deng, Yan; Chen, Rentong; Liu, Yang
2017-06-06
Ultraviolet (UV) is one of the environmental pathogenic factors causing skin damage. Aiming to assess the risk of face skin exposure to UV irradiance from different rotation angles, a rotating model was used to monitor the exposure of the skin on the face to UV irradiance, with skin damage action spectra used to determine the biologically effective UV irradiance (UVBE skin ) and UVBE skin radiant exposure (HBE skin ) causing skin damage. The results indicate that the UVBE skin is directly influenced by variations in rotation angles. A significant decrease of approximately 52.70% and 52.10% in UVBE skin was found when the cheek and nose measurement sites was rotated from 0° to 90°, while a decrease of approximately 62.70% was shown when the forehead measurement sites was rotated from an angle of 0° to 108°. When HBE skin was compared to the exposure limits (ELs; 30 J·m -2 ), the maximum relative risk ratios (RR) for cheek, nose, and forehead were found to be approximately 2.01, 2.40, and 2.90, respectively, which were all measured at a rotation angle of 0°. The maximal increase in the percentage of the average HBE skin for rotation angles of 60°, 120°, 180°, and 360° facing the sun to ELs were found to be approximately 62.10%, 52.72%, 43.43%, and 26.27% for the cheek; approximately 130.61%, 109.68%, 86.43%, and 50.06% for the nose; and approximately 178.61%, 159.19%, 134.38%, and 83.41% for the forehead, respectively.
Kumar, Anil; Goyal, Richa
2008-03-01
Hypoxia is an environmental stressor that is known to elicit alterations in both the autonomic nervous system and endocrine functions. The free radical or oxidative stress theory holds that oxidative reactions are mainly underlying neurodegenerative disorders. In fact among complex metabolic reactions occurring during hypoxia, many could be related to the formation of oxygen derived free radicals, causing a wide spectrum of cell damage. In present study, we investigated possible involvement of GABAergic mechanism in the protective effect of zolpidem against acute hypoxia-induced behavioral modification and biochemical alterations in mice. Mice were subjected to acute hypoxic stress for a period of 2 h. Acute hypoxic stress for 2 h caused significant impairment in locomotor activity, anxiety-like behavior, and antinocioceptive effect in mice. Biochemical analysis revealed a significant increased malondialdehyde, nitrite concentrations and depleted reduced glutathione and catalase levels. Pretreatment with zolpidem (5 and 10 mg/kg, i.p.) significantly improved locomotor activity, anti-anxiety effect, reduced tail flick latency and attenuated oxidative damage (reduced malondialdehyde, nitrite concentration, and restoration of reduced glutathione and catalase levels) as compared to stressed control (hypoxia) (P < 0.05). Besides, protective effect of zolpidem (5 mg/kg) was blocked significantly by picrotoxin (1.0 mg/kg) or flumazenil (2 mg/kg) and potentiated by muscimol (0.05 mg/kg) in hypoxic animals (P < 0.05). These effects were significant as compared to zolpidem (5 mg/kg) per se (P < 0.05). Present study suggest that the possible involvement of GABAergic modulation in the protective effect of zolpidem against hypoxic stress.
Amaral, A T; Ribeiro, R M; Santos, P H D; Poltronieri, T P S; Vivas, J M S; Gerhardt, I F S; Carvalho, B M; Freitas, C S; Miranda, S B
2016-12-19
Northern leaf blight (NLB), caused by Exserohilum turcicum, is one of the main foliar diseases that affect popcorn culture. Farmers use many control measures to minimize damage caused by this disease, among which, the use of cultivars with genetic resistance is the most effective and economical. The aim of this study was to investigate genetic variability influencing resistance to NLB in 25 popcorn maize lines grown under high and low phosphorus conditions in relation to foliar fungal disease caused by E. turcicum. We evaluated the disease incidence and severity, by analysis of variance and cluster test (Scott-Knott). There was sufficient genetic variability between strains for resistance traits. Genotypic variance was higher than environmental variance, and had more discriminatory power. We conclude that new progenies could be selected for the establishment of future populations. P-7, P-9, L-59, L-71, and L-76 progenies possess promising characteristics that simultaneously reduce the severity and the incidence of NLB in popcorn plants.
Estimated land-surface subsidence in Harris County, Texas, 1915-17 to 2001
Kasmarek, Mark C.; Gabrysch, Robert K.; Johnson, Michaela R.
2009-01-01
Land-surface subsidence, or land subsidence, in Harris County, Texas, which encompasses much of the Houston area, has been occurring for decades. Land subsidence has increased the frequency and extent of flooding, damaged buildings and transportation infrastructure, and caused adverse environmental effects. The primary cause of land subsidence in the Houston area is withdrawal of groundwater, although extraction of oil and gas also has contributed. Throughout most of the 20th century, groundwater was the primary source of municipal, agricultural, and industrial water supply for Harris County. Currently (2009) a transition to surface water as the primary source of supply, guided by a groundwater regulatory plan developed by the Harris-Galveston Subsidence District (2001), is in effect. The aquifers in Harris County contain an abundant amount of potable groundwater, but they also contain layers of clay. Groundwater withdrawals caused compaction of the clay layers, which in turn resulted in the widespread, substantial land-surface subsidence that has occurred in the Houston area.
Aeromonas hydrophila exotoxin induces cytoplasmic vacuolation and cell death in VERO cells.
Di Pietro, Angela; Picerno, Isa; Visalli, Giuseppa; Chirico, Cristina; Spataro, Pasquale; Cannavò, Giuseppe; Scoglio, Maria E
2005-07-01
Many organisms are able to cause cell vacuolation, but it is unclear if this can be considered a step of apoptosis or necrosis, or a distinct form of cell death. In this study VERO cells were used to evaluate the relationship between vacuolation and cell death pattern caused by exotoxins produced by environmental strains of A. hydrophila. Cell damage has been evaluated morphologically as well as biochemically. Cytotoxic and vacuolating titres were strictly correlated and the vacuolation has to be considered an early indicator of cytotoxicity that causes cell apoptosis or necrosis in relation to the dose. Signs of apoptosis (chromatin condensation and blebbing) were observed at low concentration and TGase activity, referable to apoptosis induction, confirms morphological observations. In fact, putrescine incorporation was related both to cytotoxin concentration and time of incubation. Moreover, the observed doubling cells with necrotic features permit us to suppose that cell sensitivity and death pattern could change during the different phases of cellular cycle.
Mercury in municipal solid wastes and New Jersey mercury prevention and reduction program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdogan, H.; Stevenson, E.
1994-12-31
Mercury is a very toxic heavy metal which accumulates in the brain causing neurological damages involving psychasthenic and vegetative syndrome. At high exposure levels it causes behavioral and personality changes, loss of memory and insomnia. Long-term exposure or exposure during pregnancy to mercury or mercury compounds can permanently damage the kidney and fetus. In addition to potential effects on human health, mercury poisoning can also affect other living organisms. Mercury is different than other heavy metals. It consistently biomagnifies and bioaccumulates within the aquatic food chain. Global sources of mercury release are both natural and anthropogenic. Natural sources include volatilizationmore » of gaseous-mercury iron soils ana rocks, volcanic releases, evaporation from the ocean and other water bodies. Anthropogenic sources are fuel and coal combustion, mining, smelting, manufacturing activities, disposal of sludge, pesticides, animal and food waste, and incineration of municipal solid waste. Worldwide combustion of municipal solid waste is the second largest source of atmospheric emission of mercury. In New Jersey, incineration of solid waste is the largest source of atmospheric emission of mercury. The New Jersey Department of Environmental Protection and Energy (NJDEPE) has developed a comprehensive program to control and prevent emission of mercury resulting from combustion municipal solid waste.« less
Phytoplankton response to polystyrene microplastics: Perspective from an entire growth period.
Mao, Yufeng; Ai, Hainan; Chen, Yi; Zhang, Zhenyu; Zeng, Peng; Kang, Li; Li, Wei; Gu, Weikang; He, Qiang; Li, Hong
2018-05-29
Microplastics are widely identified in aquatic environments, but their impacts on phytoplankton have not been extensively studied. Here, the responses of Chlorella pyrenoidosa under polystyrene (PS) microplastics exposure were studied across its whole growth period, with microplastic sizes of 0.1 and 1.0 μm and 3 concentration gradients each, which covered (10 and 50 mg/L) and exceeded (100 mg/L) its environmental concentrations, respectively. PS microplastics caused dose-dependent adverse effects on Chlorella pyrenoidosa growth from the lag to the earlier logarithmic phases, but exhibited slight difference in the maximal inhibition ratio (approximately 38%) with respect to the two microplastic sizes. In addition to the reduced photosynthetic activity of Chlorella pyrenoidosa, unclear pyrenoids, distorted thylakoids and damaged cell membrane were observed, attributing to the physical damage and oxidative stress caused by microplastics. However, from the end of the logarithmic to the stationary phase, Chlorella pyrenoidosa could reduce the adverse effects of microplastics jointly through cell wall thickening, algae homo-aggregation and algae-microplastics hetero-aggregation, hence triggering an increase of algal photosynthetic activity and its growth, and cell structures turned to normal. Our study confirmed that PS microplastics can impair but then enhance algae growth, which will be helpful in understanding the ecological risks of microplastics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cho, Eun Seob; Moon, Seong Yong; Shu, Young Sang; Hwang, Jae Dong; Youn, Seok Hyun
2015-09-01
Cochlodinium polykrikoides Margalef produces annual massive blooms in Korean coastal waters which cause great damage to aquaculture and fisheries. Although various methods have been developed to remove the red tide of C. polykrikoides, release of yellow loess has been regarded as the most desirable technique for mitigation for over 10 years. Each August, strong irradiation generates water column stratification separating warm surface from colder bottom waters. Water from a distance of 0 (St. 1), 5 (St. 2), 10 (St. 3), and 15 m (St. 4) was pumped by running a pump for 0, 10, 30 and 90 min and characterized water temperature, salinity collected, suspended solids, Chl-a, and phytoplankton including C. polykrikoides. After running for 30 min, was temperature and salinity in surface water was similar to those of bottom water, and water column stratification completely reversed after 90 min. Likewise, suspended solids, Chl-a, and total phytoplankton cell density decreased after 30 min, but C. polykrikoides did not show strong removal because of low cell density during sampling. However, the number of C. polykrikoides was significantly diluted (80%) after 90 min. These results suggested that pumping device was as an environmentally-friendly method convenient to be install in fish cages and effective to remove C. polykrikoides stratified water column conditions.
Microbially influenced corrosion communities associated with fuel-grade ethanol environments.
Williamson, Charles H D; Jain, Luke A; Mishra, Brajendra; Olson, David L; Spear, John R
2015-08-01
Microbially influenced corrosion (MIC) is a costly problem that impacts hydrocarbon production and processing equipment, water distribution systems, ships, railcars, and other types of metallic infrastructure. In particular, MIC is known to cause considerable damage to hydrocarbon fuel infrastructure including production, transportation, and storage systems, often times with catastrophic environmental contamination results. As the production and use of alternative fuels such as fuel-grade ethanol (FGE) increase, it is important to consider MIC of engineered materials exposed to these "newer fuels" as they enter existing infrastructure. Reports of suspected MIC in systems handling FGE and water prompted an investigation of the microbial diversity associated with these environments. Small subunit ribosomal RNA gene pyrosequencing surveys indicate that acetic-acid-producing bacteria (Acetobacter spp. and Gluconacetobacter spp.) are prevalent in environments exposed to FGE and water. Other microbes previously implicated in corrosion, such as sulfate-reducing bacteria and methanogens, were also identified. In addition, acetic-acid-producing microbes and sulfate-reducing microbes were cultivated from sampled environments containing FGE and water. Results indicate that complex microbial communities form in these FGE environments and could cause significant MIC-related damage that may be difficult to control. How to better manage these microbial communities will be a defining aspect of improving mitigation of global infrastructure corrosion.
Impact of ammunition and military explosives on human health and the environment.
Lima, Débora R S; Bezerra, Marcio L S; Neves, Eduardo B; Moreira, Fátima R
2011-01-01
To review the literature concerning the risks associated with the main xenobiotics contained in military ammunition and explosive residues and damage to human and environmental health. Using "ammunition", "military", "environmental", "health", "explosive", "metal", "TNT", "RDX", "pollution", and "contamination" as search terms, a large database, namely ISI Web of Knowledge and PubMed, was searched for studies on military ammunition and explosive residues from 1989 to 2010. Other sources used to conduct the search included the library of the Toxicology Laboratory of the Center for Workers' Health and Human Ecology (CESTEH) at the National School of Public Health. In total, 15 different combinations were used with the search words above and 708 papers were found. Among them, 76 papers concerned this review. More than 12 references of interest were discovered in the library of the CESTEH. The results were organized into metals, dinitrotoluene, trinitrotoluene (TNT), and royal demolition explosive (RDX), showing their main uses, occurrence in the environment, the current toxic effects to human and environmental health, and remediation possibilities. Because military activities can cause the acute and chronic exposure of human beings, the public administration must aim politics towards suitable environmental management.
Chinta, Shankar J; Lieu, Christopher A; DeMaria, Marco; Laberge, Remi-Martin; Campisi, Judith; Andersen, Julie K
2013-01-01
Exposure to environmental toxins is associated with a variety of age-related diseases including cancer and neurodegeneration. For example, in Parkinson’s disease (PD), chronic environmental exposure to certain toxins has been linked to the age-related development of neuropathology. Neuronal damage is believed to involve the induction of neuroinflammatory events as a consequence of glial cell activation. Cellular senescence is a potent anti-cancer mechanism that occurs in a number of proliferative cell types and causes the arrest of proliferation of cells at risk of malignant transformation following exposure to potentially oncogenic stimuli. With age, senescent cells accumulate and express a senescence-associated secretory phenotype (SASP; i.e. the robust secretion of many inflammatory cytokines, growth factors and proteases). Whereas cell senescence in peripheral tissues has been causally linked to a number of age-related pathologies, little is known about the induction of cellular senescence and the SASP in the brain. Based on recently reported findings, we propose that environmental stressors associated with PD may act in part by eliciting senescence and the SASP within non-neuronal glial cells in the ageing brain, thus contributing to the characteristic decline in neuronal integrity that occurs in this disorder. PMID:23600398
Epidemiological, evolutionary and co-evolutionary implications of context-dependent parasitism
Vale, Pedro F.; Wilson, Alastair J.; Best, Alex; Boots, Mike; Little, Tom J.
2013-01-01
Victims of infection are expected to suffer increasingly as parasite population growth increases. Yet, under some conditions, faster growing parasites do not appear to cause more damage and infections can be quite tolerable. We studied these conditions by assessing how the relationship between parasite population growth and host health is sensitive to environmental variation. In experimental infections of the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa we show how easily an interaction can shift from a severe interaction, i.e. when host fitness declines substantially with each unit of parasite growth, to a tolerable relationship by changing only simple environmental variables: temperature and food availability. We explored the evolutionary and epidemiological implications of such a shift by modelling pathogen evolution and disease spread under different levels of infection severity, and find that environmental shifts that promote tolerance ultimately result in populations harbouring more parasitized individuals. We also find that the opportunity for selection, as indicated by the variance around traits, varied considerably with the environmental treatment. Thus our results suggest two mechanisms that could underlie co-evolutionary hot- and coldspots: spatial variation in tolerance and spatial variation in the opportunity for selection. PMID:21460572
Epidemiological, evolutionary, and coevolutionary implications of context-dependent parasitism.
Vale, Pedro F; Wilson, Alastair J; Best, Alex; Boots, Mike; Little, Tom J
2011-04-01
Abstract Victims of infection are expected to suffer increasingly as parasite population growth increases. Yet, under some conditions, faster-growing parasites do not appear to cause more damage, and infections can be quite tolerable. We studied these conditions by assessing how the relationship between parasite population growth and host health is sensitive to environmental variation. In experimental infections of the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we show how easily an interaction can shift from a severe interaction, that is, when host fitness declines substantially with each unit of parasite growth, to a tolerable relationship by changing only simple environmental variables: temperature and food availability. We explored the evolutionary and epidemiological implications of such a shift by modeling pathogen evolution and disease spread under different levels of infection severity and found that environmental shifts that promote tolerance ultimately result in populations harboring more parasitized individuals. We also find that the opportunity for selection, as indicated by the variance around traits, varied considerably with the environmental treatment. Thus, our results suggest two mechanisms that could underlie coevolutionary hotspots and coldspots: spatial variation in tolerance and spatial variation in the opportunity for selection.
Moure-Eraso, R
1999-01-01
This article evaluates how an observational epidemiologic study of federal agencies in uranium miners became an experiment of opportunity for radiation effects. Navajo miners and communities suffered environmental exposures caused by the practices of uranium mining and milling in the Navajo reservation during the 1947 to 1966 period. A historical review of the state-of-the-art knowledge of the health effects of uranium mining and milling during the years prior to 1947 was conducted. Contemporary prevention and remediation practices also were assessed. An appraisal of the summary of findings of a comprehensive evaluation of radiation human experimentation conducted by the U.S. federal government in 1995-96 (ACHRE) demonstrates that uranium miners, including Navajo miners, were the single group that was put more seriously at risk of harm from radiation exposures, with inadequate disclosure and often with fatal consequences. Uranium miners were unwilling and unaware victims of human experimentation to evaluate the health effects of radiation. The failure of the State and U.S. Governments to issue regulations or demand installation of known mine-dust exposure control measures caused widespread environmental damage in the Navajo Nation.
The situation of hazardous chemical accidents in China between 2000 and 2006.
Duan, Weili; Chen, Guohua; Ye, Qing; Chen, Qingguang
2011-02-28
From the aspects of the total quantity of accidents, regional inequality, enterprises scale and environmental pollution accidents, this study makes an analysis of hazardous chemical accidents in China for the period spanning from 2000 to 2006. The following results are obtained: firstly, there were lots of accidents and fatalities in hazardous chemical business, i.e., the number of casualty accidents fluctuated between 200 and 600/year, the number of fatality fluctuated between 220 and 1100/year. Secondly, the accident rate in developed southeast coastal areas, e.g., Guangdong, Zhejiang and Jiangsu, was far higher than that in the northwest regions, e.g., Xizang, Xinjiang, and Qinghai. Thirdly, nearly 80% of dangerous chemical accidents had occurred in small and medium-sized enterprises (SMEs). Finally, various sudden environmental pollution accidents resulted from hazardous chemicals were frequent in recent years, causing a huge damage to human and property. Then, based on the readjustment of economic structure in the last decades, the development status of Occupational Health and Safety (OHS) in SMEs and other factors, the paper explores the main causes, which offers valuable insight into measures that should be taken to reduce hazardous chemical accidents. Copyright © 2010 Elsevier B.V. All rights reserved.
Degenkolb, Thomas; Vilcinskas, Andreas
2016-05-01
Plant-parasitic nematodes are estimated to cause global annual losses of more than US$ 100 billion. The number of registered nematicides has declined substantially over the last 25 years due to concerns about their non-specific mechanisms of action and hence their potential toxicity and likelihood to cause environmental damage. Environmentally beneficial and inexpensive alternatives to chemicals, which do not affect vertebrates, crops, and other non-target organisms, are therefore urgently required. Nematophagous fungi are natural antagonists of nematode parasites, and these offer an ecophysiological source of novel biocontrol strategies. In this first section of a two-part review article, we discuss 83 nematicidal and non-nematicidal primary and secondary metabolites found in nematophagous ascomycetes. Some of these substances exhibit nematicidal activities, namely oligosporon, 4',5'-dihydrooligosporon, talathermophilins A and B, phomalactone, aurovertins D and F, paeciloxazine, a pyridine carboxylic acid derivative, and leucinostatins. Blumenol A acts as a nematode attractant. Other substances, such as arthrosporols and paganins, play a decisive role in the life cycle of the producers, regulating the formation of reproductive or trapping organs. We conclude by considering the potential applications of these beneficial organisms in plant protection strategies.
Comparison of hair shaft damage after chemical treatment in Asian, White European, and African hair.
Lee, Yoonhee; Kim, Youn-Duk; Pi, Long-Quan; Lee, Sung Yul; Hong, Hannah; Lee, Won-Soo
2014-09-01
Diverse causes of extrinsic damage to the hair shaft have been documented and can be roughly divided into physical and chemical causes. Chemical causes of hair damage include bleaching, hair dyeing, and perming. The goal of this study was to investigate differences in patterns of serial damage in Asian, White European (WE), and African hair after chemical stress imposed by straightening and coloring treatments. Hairs were divided into control and treatment groups (straightening, coloring, and a combination of straightening and coloring). At 24 hours after the final treatment, patterns of hair damage were evaluated using transmission electron microscopy (TEM) and lipid TEM. Grades of hair cuticle and cortex damage were evaluated by three dermatologists. In the TEM examination, the cuticle of Asian hair proved to be resistant to damage caused by straightening treatments, whereas the WE hair cuticle and cortex were relatively susceptible to stress imposed by coloring treatments. In the combination treatment of straightening and coloring, African hair emerged as the most resistant to stress. In the lipid TEM examination, no notable differences in cell membrane complex damage were observed among the three groups of hairs. The present study suggests that WE hair is relatively susceptible and African hair is more resistant to chemical stresses, such as those imposed by straightening and coloring. © 2013 The International Society of Dermatology.
14 CFR 29.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Composite Rotorcraft Structures. 29.573 Section 29.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...
14 CFR 27.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Composite Rotorcraft Structures. 27.573 Section 27.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...
14 CFR 27.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Composite Rotorcraft Structures. 27.573 Section 27.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...
14 CFR 29.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Composite Rotorcraft Structures. 29.573 Section 29.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...
14 CFR 27.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Composite Rotorcraft Structures. 27.573 Section 27.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...
14 CFR 29.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Composite Rotorcraft Structures. 29.573 Section 29.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...
7 CFR 51.882 - U.S. Fancy Table.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Grades § 51.882 U.S. Fancy Table. “U.S. Fancy Table” consists of bunches of well developed grapes of one...) Berries not damaged by: (1) Any other cause. (g) Bunches not damaged by: (1) Shot berries; (2) Dried...) Stems not damaged by: (1) Freezing; (2) Any other cause. (i) Size: (1) For berries: Exclusive of shot...
7 CFR 51.882 - U.S. Fancy Table.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Grades § 51.882 U.S. Fancy Table. “U.S. Fancy Table” consists of bunches of well developed grapes of one...) Berries not damaged by: (1) Any other cause. (g) Bunches not damaged by: (1) Shot berries; (2) Dried...) Stems not damaged by: (1) Freezing; (2) Any other cause. (i) Size: (1) For berries: Exclusive of shot...
... are most often a sign of nerve damage (peripheral neuropathy). Nerve damage has many different causes, including diabetes, ... if any of the various conditions that cause peripheral neuropathy are to blame. Eleftheriadou I, et al. A ...
... cause inflammation in the brain, including the cerebellum multiple sclerosis, in which damage to the insulating membrane (myelin) ... cause inflammation in the brain, including the cerebellum multiple sclerosis, in which damage to the insulating membrane (myelin) ...
Remediation of biochar on heavy metal polluted soils
NASA Astrophysics Data System (ADS)
Wang, Shuguang; Xu, Yan; Norbu, Namkha; Wang, Zhan
2018-01-01
Unreasonable mining and smelting of mineral resources, solid waste disposal, sewage irrigation, utilization of pesticides and fertilizers would result in a large number of heavy metal pollutants into the water and soil environment, causing serious damage to public health and ecological safety. In recent years, a majority of scholars tried to use biochar to absorb heavy metal pollutants, which has some advantages of extensive raw material sources, low-cost and high environmental stability. This paper reviewed the definition, properties of biochar, the mechanism of heavy metal sorption by biochar and some related problems and prospects, to provide some technical support for the application of biochar into heavy metal polluted soils.
The impact of emerging technologies on an advanced supersonic transport
NASA Technical Reports Server (NTRS)
Driver, C.; Maglieri, D. J.
1986-01-01
The effects of advances in propulsion systems, structure and materials, aerodynamics, and systems on the design and development of supersonic transport aircraft are analyzed. Efficient propulsion systems with variable-cycle engines provide the basis for improved propulsion systems; the propulsion efficienies of supersonic and subsonic engines are compared. Material advances consist of long-life damage-tolerant structures, advanced material development, aeroelastic tailoring, and low-cost fabrication. Improvements in the areas of aerodynamics and systems are examined. The environmental problems caused by engine emissions, airport noise, and sonic boom are studied. The characteristics of the aircraft designed to include these technical advances are described.
Dioxin uptake by Indian plant species.
Pandey, J S; Kumar, R; Wate, S R
2008-08-01
Dioxins like various gaseous pollutants and aerosols can be scavenged by appropriate vegetative greenbelts. Based on their stomatal properties and the models for contaminant uptake, uptake of dioxin (2,3,7,8-TCDD) by three important Indian plant species, viz. Eugenia jambolana (Jamun), Azadirachta indica (Neem) and Ficus religiosa (Peepal), has been estimated. 2,3,7,8-TCDD is a contaminant with severe harmful ecological ramifications. Computations show that Ficus religiosa has highest uptake capacity. The present exercise has its utility in designing appropriate green-belts for mitigating adverse environmental and human health impacts due to dioxins. This can be an effective management option for mitigating the damages caused by dioxins.
Mitochondria and mitochondrial DNA as relevant targets for environmental contaminants.
Roubicek, Deborah A; Souza-Pinto, Nadja C de
2017-11-01
The mitochondrial DNA (mtDNA) is a closed circular molecule that encodes, in humans, 13 polypeptides components of the oxidative phosphorylation complexes. Integrity of the mitochondrial genome is essential for mitochondrial function and cellular homeostasis, and mutations and deletions in the mtDNA lead to oxidative stress, mitochondrial dysfunction and cell death. In vitro and in situ studies suggest that when exposed to certain genotoxins, mtDNA accumulates more damage than nuclear DNA, likely owing to its organization and localization in the mitochondrial matrix, which tends to accumulate lipophilic, positively charged molecules. In that regard, several relevant environmental and occupational contaminants have physical-chemical characteristics that indicate that they might accumulate in mitochondria and target mtDNA. Nonetheless, very little is known so far about mtDNA damage and mitochondrial dysfunction due to environmental exposure, either in model organisms or in humans. In this article, we discuss some of the characteristics of mtDNA which render it a potentially relevant target for damage by environmental contaminants, as well as possible functional consequences of damage/mutation accumulation. In addition, we review the data available in the literature focusing on mitochondrial effects of the most common classes of environmental pollutants. From that, we conclude that several lines of experimental evidence support the idea that mitochondria and mtDNA are susceptible and biologically relevant targets for pollutants, and more studies, including mechanistic ones, are needed to shed more light into the contribution of mitochondrial dysfunction to the environmental and human health effects of chemical exposure. Copyright © 2017 Elsevier B.V. All rights reserved.
Pentreath, R J
2004-01-01
There is now a general consensus of opinion that an explicit approach is necessary to demonstrate radiation protection of the environment, and that this approach needs to be developed in a systematic way. The framework that is emerging links ethical and moral issues (anthropocentric, biocentric, and ecocentric) to broad-based principles and objectives of environmental protection (sustainable development, maintaining biological diversity, and habitat protection) and then links these, in turn, to the needs of current environmental management practices, such as environmental exploitation, pollution control, and nature conservation. The relevance of this to radiation is that its effects (such as causing early mortality, morbidity, reduced reproductive success, as well as resulting in observable (scorable) cytogenetic damage) are those that may have a bearing on these same environmental management practices. The devise that would appear to be most useful to bridge the gap between our disparate data on radiation effects and the needs of environmental management, is that of adding to the concept of Reference Man in the shape of a small set of Reference Animals and Plants. This approach has now been adopted by the ICRP, adding new dynamics-the motive forces, both moral and physical-to the subject. The way is now clear for rapid progress to be made on a number of fronts.
Comparison of end-of-life tire treatment technologies: a Chinese case study.
Li, Xingfu; Xu, He; Gao, Yingnan; Tao, Yijun
2010-11-01
The aim of this paper is to compare different end-of-life tire (ELT) treatment technologies in China from an environmental and economic perspective. Four treatment technologies were evaluated: ambient grinding, devulcanization, pyrolysis and illegal tire oil extraction. Life cycle assessment (LCA) was applied to evaluate the potential environmental impact of each treatment based on the Eco-indicator 99 (Hierarchist approach) method provided by GaBi 4 software. The final result shows that pyrolysis represents the environmentally benign option while illegal tire oil extraction caused the worst damages. For the three legal treatments, although high credit was obtained when considering avoided impacts from recycled materials and energy, they have great impact as to respiratory effects (inorganic) dominantly contributed by energy production stage, which implies that the emphasis on environmental policies related to ELT treatment should shift from the control of emissions from treatment process to the reduction of energy consumption. A simplified comparison of net benefits and total impacts shows that the most eco-effective ELT treatment technology is pyrolysis, followed by dynamic devulcanization and ambient grinding. The illegal tire oil extraction, however, must be prohibited immediately because of its highest environmental pollution and lowest net benefit. Copyright © 2010 Elsevier Ltd. All rights reserved.
Narayanapillai, Sreekanth; Agarwal, Chapla; Deep, Gagan; Agarwal, Rajesh
2014-06-01
Recent studies have demonstrated silibinin efficacy against ultraviolet B (UVB)-induced skin carcinogenesis via different mechanisms in cell lines and animal models; however, its role in regulating interleukin-12 (IL-12), an immunomodulatory cytokine that reduces UVB-induced DNA damage and apoptosis, is not known. Here, we report that UVB irradiation causes caspase 3 and PARP cleavage and apoptosis, and addition of recombinant IL-12 or silibinin immediately after UVB significantly protects UVB-induced apoptosis in JB6 cells. IL-12 antibody-mediated blocking of IL-12 activity compromised the protective effects of both IL-12 and silibinin. Both silibinin and IL-12 also accelerated the repair of UVB-caused cyclobutane-pyrimidine dimers (CPDs) in JB6 cells. Additional studies confirmed that indeed silibinin causes a significant increase in IL-12 levels in UVB-irradiated JB6 cells as well as in mouse skin epidermis, and that similar to cell-culture findings, silibinin topical application immediately after UVB exposure causes a strong protection against UVB-induced TUNEL positive cells in epidermis possibly through a significantly accelerated repair of UVB-caused CPDs. Together, these findings for the first time provide an important insight regarding the pharmacological mechanism wherein silibinin induces endogenous IL-12 in its efficacy against UVB-caused skin damages. In view of the fact that an enhanced endogenous IL-12 level could effectively remove UVB-caused DNA damage and associated skin cancer, our findings suggest that the use of silibinin in UVB-damaged human skin would also be a practical and translational strategy to manage solar radiation-caused skin damages as well as skin cancer. © 2013 Wiley Periodicals, Inc.
Zhang, Donghui; Li, Yifei; Heims-Waldron, Danielle; Bezzerides, Vassilios; Guatimosim, Silvia; Guo, Yuxuan; Gu, Fei; Zhou, Pingzhu; Lin, Zhiqiang; Ma, Qing; Liu, Jianming; Wang, Da-Zhi; Pu, William T
2018-01-05
Although mitochondrial diseases often cause abnormal myocardial development, the mechanisms by which mitochondria influence heart growth and function are poorly understood. To investigate these disease mechanisms, we studied a genetic model of mitochondrial dysfunction caused by inactivation of Tfam (transcription factor A, mitochondrial), a nuclear-encoded gene that is essential for mitochondrial gene transcription and mitochondrial DNA replication. Tfam inactivation by Nkx2.5 Cre caused mitochondrial dysfunction and embryonic lethal myocardial hypoplasia. Tfam inactivation was accompanied by elevated production of reactive oxygen species (ROS) and reduced cardiomyocyte proliferation. Mosaic embryonic Tfam inactivation confirmed that the block to cardiomyocyte proliferation was cell autonomous. Transcriptional profiling by RNA-seq demonstrated the activation of the DNA damage pathway. Pharmacological inhibition of ROS or the DNA damage response pathway restored cardiomyocyte proliferation in cultured fetal cardiomyocytes. Neonatal Tfam inactivation by AAV9-cTnT-Cre caused progressive, lethal dilated cardiomyopathy. Remarkably, postnatal Tfam inactivation and disruption of mitochondrial function did not impair cardiomyocyte maturation. Rather, it elevated ROS production, activated the DNA damage response pathway, and decreased cardiomyocyte proliferation. We identified a transient window during the first postnatal week when inhibition of ROS or the DNA damage response pathway ameliorated the detrimental effect of Tfam inactivation. Mitochondrial dysfunction caused by Tfam inactivation induced ROS production, activated the DNA damage response, and caused cardiomyocyte cell cycle arrest, ultimately resulting in lethal cardiomyopathy. Normal mitochondrial function was not required for cardiomyocyte maturation. Pharmacological inhibition of ROS or DNA damage response pathways is a potential strategy to prevent cardiac dysfunction caused by some forms of mitochondrial dysfunction. © 2017 American Heart Association, Inc.
Low cycle fatigue of PM/HIP astroloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choe, S.J.; Stoloff, N.S.; Duquette, D.J.
Low cycle fatigue and creep-fatigue-environment interactions of PM/HIP Astrology were studied at 650 C and 725 C. Total strain range was varied from 1.5% to 2.7% at a frequency of 0.3Hz. Creep-fatigue tests were performed with 2 min. or 5 min. tensile hold times. All tests were run in high purity argon in an attempt to minimize environmental effects. Employing a tensile hold was more damaging than raising temperature by 75 C. Slopes of Coffin-Manson plots were nearly independent of temperature and hold time. Raising temperature from 650 C to 725 C did not change the transgranular (TG) crack propagationmore » mode, whereas employing hold times caused TG+IG propagation. All samples displayed multiple fracture origins associated with inclusions located at the specimen surface; pre-existing pores did not affect fatigue crack initiation. Examination of secondary cracks showed no apparent creep damage. Oxidation in high purity argon appeared to be the major factor in LCF life degradation due to hold times.« less
Influence of the bond-slip relationship on the flexural capacity of R.C. joints damaged by corrosion
NASA Astrophysics Data System (ADS)
Imperatore, Stefania
2016-06-01
In moderate and aggressive environmental condition, old reinforced concrete structures are often subjected to corrosive phenomena. Corrosion causes cracking, loss of diameter in reinforcement and variation of the bond behavior between steel and concrete. Then, in presence of cyclic actions like the seismic ones, old R.C. elements vary their ultimate drift, ductility, plastic rotation capacity and energy dissipation with the corrosion level. The problem is of current interest: the issue has been introduced in some paragraph of the Model Code 2010 and a committee is now drafting a new document on assessment strategies on existing concrete structures also damaged by corrosion. In this work, a first step on the analysis of the impact of the corrosion on the seismic behavior of R.C. elements is assessed: by mean FEM analyses, of a poor detailed column/foundation joint is analyzed in a parametric way in order to evaluate the influence of the bond-slip degradation by corrosion on the element flexural capacity.
Managing heat and immune stress in athletes with evidence-based strategies.
Pyne, David B; Guy, Joshua H; Edwards, Andrew M
2014-09-01
Heat and immune stress can affect athletes in a wide range of sports and environmental conditions. The classical thermoregulatory model of heat stress has been well characterized, as has a wide range of practical strategies largely centered on cooling and heat-acclimation training. In the last decade evidence has emerged of an inflammatory pathway that can also contribute to heat stress. Studies are now addressing the complex and dynamic interplay between hyperthermia, the coagulation cascade, and a systemic inflammatory response occurring after transient damage to the gastrointestinal tract. Damage to the intestinal mucosal membrane increases permeability, resulting in leakage of endotoxins into the circulation. Practical strategies that target both thermoregulatory and inflammatory causes of heat stress include precooling; short-term heat-acclimation training; nutritional countermeasures including hydration, energy replacement, and probiotic supplementation; pacing strategies during events; and postevent cooling measures. Cooperation between international, national, and local sporting organizations is required to ensure that heat-management policies and strategies are implemented effectively to promote athletes' well-being and performance.
Neural-Fuzzy model Based Steel Pipeline Multiple Cracks Classification
NASA Astrophysics Data System (ADS)
Elwalwal, Hatem Mostafa; Mahzan, Shahruddin Bin Hj.; Abdalla, Ahmed N.
2017-10-01
While pipes are cheaper than other means of transportation, this cost saving comes with a major price: pipes are subject to cracks, corrosion etc., which in turn can cause leakage and environmental damage. In this paper, Neural-Fuzzy model for multiple cracks classification based on Lamb Guide Wave. Simulation results for 42 sample were collected using ANSYS software. The current research object to carry on the numerical simulation and experimental study, aiming at finding an effective way to detection and the localization of cracks and holes defects in the main body of pipeline. Considering the damage form of multiple cracks and holes which may exist in pipeline, to determine the respective position in the steel pipe. In addition, the technique used in this research a guided lamb wave based structural health monitoring method whereas piezoelectric transducers will use as exciting and receiving sensors by Pitch-Catch method. Implementation of simple learning mechanism has been developed specially for the ANN for fuzzy the system represented.
Interaction between HSP 70 and iNOS in skeletal muscle injury and repair.
Kim, Kijeong
2015-10-01
Muscle injuries are frequently occurred in various sports. The biological process and mechanism of muscle repair after injury are well known through the many studies. This study aimed at presenting heat shock protein and nitric oxide synthase are to respond to muscle damage and repair. This section discusses the results obtained through many articles. Heat shock proteins (HSPs) are considered to play an essential role in protecting cells from damage, preparing them to survive on new environmental challenges. In addition, exercise-induced changes such as heat shock, oxidative, metabolic, muscular, and cytokine stress seem to be responsible for the HSP response to exercise. Also, inducible nitric oxide synthase (iNOS) generates nitric oxide (NO) for prolonged period and causes pathophysiological effects. Furthermore, iNOS is involved in processes such as cell injury, wound repair, embryogenesis, tissue differentiation, and suppression of tumorigenesis. In conclusion, the inhibition of HSP 70 on caspase-3 and apoptosis is associated with its inhibition on iNOS that leads to less NO production.
Time-Restricted Feeding Shifts the Skin Circadian Clock and Alters UVB-Induced DNA Damage.
Wang, Hong; van Spyk, Elyse; Liu, Qiang; Geyfman, Mikhail; Salmans, Michael L; Kumar, Vivek; Ihler, Alexander; Li, Ning; Takahashi, Joseph S; Andersen, Bogi
2017-08-01
The epidermis is a highly regenerative barrier protecting organisms from environmental insults, including UV radiation, the main cause of skin cancer and skin aging. Here, we show that time-restricted feeding (RF) shifts the phase and alters the amplitude of the skin circadian clock and affects the expression of approximately 10% of the skin transcriptome. Furthermore, a large number of skin-expressed genes are acutely regulated by food intake. Although the circadian clock is required for daily rhythms in DNA synthesis in epidermal progenitor cells, RF-induced shifts in clock phase do not alter the phase of DNA synthesis. However, RF alters both diurnal sensitivity to UVB-induced DNA damage and expression of the key DNA repair gene, Xpa. Together, our findings indicate regulation of skin function by time of feeding and emphasize a link between circadian rhythm, food intake, and skin health. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Genotoxicity Studies Performed in the Ecuadorian Population
Paz-y-Miño, César; Cumbal, Nadia; Sánchez, María Eugenia
2012-01-01
Genotoxicity studies in Ecuador have been carried out during the past two decades. The focuses of the research were mainly the area of environmental issues, where the populations have been accidentally exposed to contaminants and the area of occupational exposure of individuals at the workplace. This paper includes studies carried out in the population of the Amazon region, a zone known for its rich biodiversity as well as for the ecological damage caused by oil spills and chemical sprayings whose consequences continue to be controversial. Additionally, we show the results of studies comprised of individuals occupationally exposed to toxic agents in two very different settings: flower plantation workers exposed to pesticide mixtures and X-ray exposure of hospital workers. The results from these studies confirm that genotoxicity studies can help evaluate current conditions and prevent further damage in the populations exposed to contaminants. As such, they are evidence of the need for biomonitoring employers at risk, stricter law enforcement regarding the use of pesticides, and increasingly conscientious oil extraction activities. PMID:22496977
PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN
Plasmid DNA damage caused by methylated arsenicals, ascorbic acid and human liver ferritin.
Arsenic causes cancer in human skin, urinary bladder, lung, liver and kidney and is a significant world-wide public health problem. Although the metabolism of inorganic arsenic is ...
Genotoxic effect of ethacrynic acid and impact of antioxidants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, William M.; Hoffman, Jared D.; Loo, George, E-mail: g_loo@uncg.edu
It is known that ethacrynic acid (EA) decreases the intracellular levels of glutathione. Whether the anticipated oxidative stress affects the structural integrity of DNA is unknown. Therefore, DNA damage was assessed in EA-treated HCT116 cells, and the impact of several antioxidants was also determined. EA caused both concentration-dependent and time-dependent DNA damage that eventually resulted in cell death. Unexpectedly, the DNA damage caused by EA was intensified by either ascorbic acid or trolox. In contrast, EA-induced DNA damage was reduced by N-acetylcysteine and by the iron chelator, deferoxamine. In elucidating the DNA damage, it was determined that EA increased themore » production of reactive oxygen species, which was inhibited by N-acetylcysteine and deferoxamine but not by ascorbic acid and trolox. Also, EA decreased glutathione levels, which were inhibited by N-acetylcysteine. But, ascorbic acid, trolox, and deferoxamine neither inhibited nor enhanced the capacity of EA to decrease glutathione. Interestingly, the glutathione synthesis inhibitor, buthionine sulfoxime, lowered glutathione to a similar degree as EA, but no noticeable DNA damage was found. Nevertheless, buthionine sulfoxime potentiated the glutathione-lowering effect of EA and intensified the DNA damage caused by EA. Additionally, in examining redox-sensitive stress gene expression, it was found that EA increased HO-1, GADD153, and p21mRNA expression, in association with increased nuclear localization of Nrf-2 and p53 proteins. In contrast to ascorbic acid, trolox, and deferoxamine, N-acetylcysteine suppressed the EA-induced upregulation of GADD153, although not of HO-1. Overall, it is concluded that EA has genotoxic properties that can be amplified by certain antioxidants. - Highlights: • Ethacrynic acid (EA) caused cellular DNA damage. • EA-induced DNA damage was potentiated by ascorbic acid or trolox. • EA increased ROS production, not inhibited by ascorbic acid or trolox. • EA decreased glutathione levels, not prevented by ascorbic acid or trolox. • Buthionine sulfoxime intensified the DNA damage caused by EA.« less
Changes in translation rate modulate stress-induced damage of diverse proteins
Kim, Heejung
2013-01-01
Proteostasis is the maintenance of the proper function of cellular proteins. Hypertonic stress disrupts proteostasis and causes rapid and widespread protein aggregation and misfolding in the nematode Caenorhabditis elegans. Optimal survival in hypertonic environments requires degradation of damaged proteins. Inhibition of protein synthesis occurs in response to diverse environmental stressors and may function in part to minimize stress-induced protein damage. We recently tested this idea directly and demonstrated that translation inhibition by acute exposure to cycloheximide suppresses hypertonicity-induced aggregation of polyglutamine::YFP (Q35::YFP) in body wall muscle cells. In this article, we further characterized the relationship between protein synthesis and hypertonic stress-induced protein damage. We demonstrate that inhibition of translation reduces hypertonic stress-induced formation and growth of Q35::YFP, Q44::YFP, and α-synuclein aggregates; misfolding of paramyosin and ras GTPase; and aggregation of multiple endogenous proteins expressed in diverse cell types. Activation of general control nonderepressible-2 (GCN-2) kinase signaling during hypertonic stress inhibits protein synthesis via phosphorylation of eukaryotic initiation factor-2α (eIF-2α). Inhibition of GCN-2 activation prevents the reduction in translation rate and greatly exacerbates the formation and growth of Q35::YFP aggregates and the aggregation of endogenous proteins. The current studies together with our previous work provide the first direct demonstration that hypertonic stress-induced reduction in protein synthesis minimizes protein aggregation and misfolding. Reduction in translation rate also serves as a signal that activates osmoprotective gene expression. The cellular proteostasis network thus plays a critical role in minimizing hypertonic stress-induced protein damage, in degrading stress-damaged proteins, and in cellular osmosensing and signaling. PMID:24153430
NASA Astrophysics Data System (ADS)
Worden, K.; Cross, E. J.
2018-01-01
Structural Health Monitoring (SHM) is the engineering discipline of diagnosing damage and estimating safe remaining life for structures and systems. Often, SHM is accomplished by detecting changes in measured quantities from the structure of interest; if there are no competing explanations for the changes, one infers that they are the result of damage. If the structure of interest is subject to changes in its environmental or operational conditions, one must understand the effects of these changes in order that one does not falsely claim that damage has occurred when changes in measured quantities are observed. This problem - the problem of confounding influences - is particularly pressing for civil infrastructure where the given structure is usually openly exposed to the weather and may be subject to strongly varying operational conditions. One approach to understanding confounding influences is to construct a data-based response surface model that can represent measurement variations as a function of environmental and operational variables. The models can then be used to remove environmental and operational variations so that change detection algorithms signal the occurrence of damage alone. The current paper is concerned with such response surface models in the case of SHM of bridges. In particular, classes of response surface models that can switch discontinuously between regimes are discussed. Recently, it has been shown that Gaussian Process (GP) models are an effective means of developing response surface or surrogate models. However, the GP approach runs into difficulties if changes in the latent variables cause the structure of interest to abruptly switch between regimes. A good example here, which is well known in the SHM literature, is given by the Z24 Bridge in Switzerland which completely changed its dynamical behaviour when it cooled below zero degrees Celsius as the asphalt of the deck stiffened. The solution proposed here is to adopt the recently-proposed Treed Gaussian Process (TGP) model as an alternative. The approach is illustrated here on the Z24 bridge and also on data from the Tamar Bridge in the UK which shows marked switching behaviour in certain of its dynamical characteristics when its ambient wind conditions change. It is shown that treed GPs provide an effective approach to response surface modelling and that in the Tamar case, a linear model is in fact sufficient to solve the problem.