Neoplastic cell transformation by high-LET radiation - Molecular mechanisms
NASA Technical Reports Server (NTRS)
Yang, Tracy Chui-Hsu; Craise, Laurie M.; Tobias, Cornelius A.; Mei, Man-Tong
1989-01-01
Quantitative data were collected on dose-response curves of cultured mouse-embryo cells (C3H10T1/2) irradiated with heavy ions of various charges and energies. Results suggests that two breaks formed on DNA within 80 A may cause cell transformation and that two DNA breaks formed within 20 A may be lethal. From results of experiments with restriction enzymes which produce DNA damages at specific sites, it was found that DNA double strand breaks are important primary lesions for radiogenic cell transformation and that blunt-ended double-strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship for high-LET radiation is similar to that for HGPRT locus mutation, chromosomal deletion, and cell transformation, indicating that common lesions may be involved in these radiation effects.
Delaney, Kamila; Mailler, Jonathan; Wenda, Joanna M; Gabus, Caroline; Steiner, Florian A
2018-04-10
Replication-independent variant histones replace canonical histones in nucleosomes and act as important regulators of chromatin function. H3.3 is a major variant of histone H3 that is remarkably conserved across all taxa and is distinguished from canonical H3 by just four key amino acids. Most genomes contain two or more genes expressing H3.3, and complete loss of the protein usually causes sterility or embryonic lethality. Here we investigated the developmental expression pattern of the five Caenorhabditis elegans H3.3 homologues and identified two previously uncharacterized homologues to be restricted to the germ line. We demonstrate an essential role for the conserved histone chaperone HIRA in the nucleosomal loading of all H3.3 variants. This requirement can be bypassed by mutation of the H3.3-specific residues to those found in H3. Analysis of H3.3 knockout mutants revealed a surprising absence of developmental phenotypes. While removal of all H3.3 homologues did not result in lethality, it led to reduced fertility and viability in response to high temperature stress. Our results thus show that H3.3 is non-essential in C. elegans , but is critical for ensuring adequate response to stress. Copyright © 2018, Genetics.
Psikal, I; Smíd, B; Rodák, L; Valícek, L; Bendová, J
2003-08-01
Atypical form of myxomatosis, which caused non-lethal and clinically mild disease in domestic rabbits 1 month after immunization with a commercially available vaccine MXT, is described. The isolated myxoma virus designated as Litovel 2 (Li-2) did not induce systemic disease following subcutaneous and intradermal applications in susceptible experimental rabbits but led to the immune response demonstrated by ELISA. No severe disease was induced in those Li-2 inoculated rabbits by challenge with the virulent strains Lausanne (Lu) or Sanar (SA), while the control animals showed nodular form of myxomatosis with lethal course of the illness. Restriction fragment length polymorphism (RFLP) of genomic DNA with KpnI and BamHI endonucleases was used for genetic characterization of the Li-2 isolate, the vaccine strain MXT and both virulent strains Lu and SA, respectively. In general, RFLP analysis has shown to be informative for inferring genetic relatedness between myxoma viruses. Based on restriction endonuclease DNA fragment size distribution, it was evident that the pathogenic strain SA is genetically related to the reference strain Lu and the isolate Li-2 is more related, but not identical, to the vaccination strain MXT.
Castañaga, Luis A; Asorey, Cynthia M; Sandoval, María T; Pérez-Coll, Cristina S; Argibay, Teresa I; Herkovits, Jorge
2009-02-01
The adverse effects of ultraviolet B radiation from 547.2 to 30,096 J/m2 on morphogenesis, cell differentiation, and lethality of amphibian embryos at six developmental stages were evaluated from 24 up to 168 h postexposure. The ultraviolet B radiation lethal dose 10, 50, and 90 values were obtained for all developmental stages evaluated. The lethal dose 50 values, considered as the dose causing lethality in the 50% of the organisms exposed, in J/m2 at 168 h postexposure, ranged from 2,307 to 18,930; gill circulation and blastula were the most susceptible and resistant stages, respectively. Ultraviolet B radiation caused malformations in all developmental stages but was significantly more teratogenic at the gill circulation and complete operculum stages. Moreover, at the gill circulation stage, even the lowest dose (547.2 J/m2) resulted in malformations to 100% of embryos. The most common malformations were persistent yolk plug, bifid spine, reduced body size, delayed development, asymmetry, microcephaly and anencephaly, tail and body flexures toward the irradiated side, agenesia or partial gill development, abnormal pigment distribution, and hypermotility. The stage-dependent susceptibility to ultraviolet B radiation during amphibian embryogenesis could be explained in the framework of evoecotoxicology, considering ontogenic features as biomarkers of environmental signatures of living forms ancestors during the evolutionary process. The stage-dependent susceptibility to ultraviolet B radiation on Rhinella (Bufo) arenarum embryos for both lethal and teratogenic effects could contribute to a better understanding of the role of the increased ultraviolet B radiation on worldwide amphibian populations decline.
Saitoh, Shohei; Fukunaga, Eri; Ohtani, Hana; Oyama, Yasuo
2015-09-01
4,5-Dichloro-2-octyl-4-isothiazolin-3-one (DCOIT) is an antifouling agent that is an alternative to organotins such as tributyltin (TBT). Because DCOIT decreases catalase activity, it may increase the susceptibility of cells to oxidative stress. We examined the effects of DCOIT on rat thymocytes suffering from oxidative stress induced by H2O2. The simultaneous application of DCOIT and H2O2 induced a synergistic increase in cell lethality that was completely suppressed by chelating intracellular Zn(2+). Intracellular Zn(2+) concentration was increased by DCOIT at concentrations ranging from 0.1 μM to 3 μM. Although the increase in cell lethality produced by DCOIT alone was less than that produced by TBT alone, a synergistic increase was not induced by the combination of TBT and H2O2. Therefore, these results suggest that DCOIT increases vulnerability to oxidative stress and is more cytotoxic than TBT when oxidative stress is induced by H2O2. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sixt, Nathalie; Cardoso, Alicia; Vallier, Agnès; Fayolle, Joël; Buckland, Robin; Wild, T. Fabian
1998-01-01
We have studied the immune responses to the two glycoproteins of the Morbillivirus canine distemper virus (CDV) after DNA vaccination of BALB/c mice. The plasmids coding for both CDV hemagglutinin (H) and fusion protein (F) induce high levels of antibodies which persist for more than 6 months. Intramuscular inoculation of the CDV DNA induces a predominantly immunoglobulin G2a (IgG2a) response (Th1 response), whereas gene gun immunization with CDV H evokes exclusively an IgG1 response (Th2 response). In contrast, the CDV F gene elicited a mixed, IgG1 and IgG2a response. Mice vaccinated (by gene gun) with either the CDV H or F DNA showed a class I-restricted cytotoxic lymphocyte response. Immunized mice challenged intracerebrally with a lethal dose of a neurovirulent strain of CDV were protected. However, approximately 30% of the mice vaccinated with the CDV F DNA became obese in the first 2 months following the challenge. This was not correlated with the serum antibody levels. PMID:9765383
Modeling Powassan virus infection in Peromyscus leucopus, a natural host
Meade-White, Kimberly; Saturday, Greg; Scott, Dana; Bloom, Marshall E.
2017-01-01
The tick-borne flavivirus, Powassan virus (POWV) causes life-threatening encephalitis in humans in North America and Europe. POWV is transmitted by ixodid tick vectors that feed on small to medium-sized mammals, such as Peromyscus leucopus mice, which may serve as either reservoir, bridge or amplification hosts. Intraperitoneal and intracranial inoculation of 4-week old Peromyscus leucopus mice with 103 PFU of POWV did not result in overt clinical signs of disease. However, following intracranial inoculation, infected mice seroconverted to POWV and histopathological examinations revealed that the mice uniformly developed mild lymphocytic perivascular cuffing and microgliosis in the brain and spinal cord from 5 to 15 days post infection (dpi), suggesting an early inflammatory response. In contrast, intracranial inoculation of 4-week old C57BL/6 and BALB/c mice was lethal by 5 dpi. Intraperitoneal inoculation was lethal in BALB/c mice, but 40% (2/5) of C57BL/6 mice survived. We concluded that Peromyscus leucopus mice infected i.c. with a lethal dose of POWV support a limited infection, restricted to the central nervous system and mount an antibody response to the virus. However, they fail to develop clinical signs of disease and are able to control the infection. These results suggest the involvement of restriction factors, and the mechanism by which Peromyscus leucopus mice restrict POWV infection remains under study. PMID:28141800
Modeling Powassan virus infection in Peromyscus leucopus, a natural host.
Mlera, Luwanika; Meade-White, Kimberly; Saturday, Greg; Scott, Dana; Bloom, Marshall E
2017-01-01
The tick-borne flavivirus, Powassan virus (POWV) causes life-threatening encephalitis in humans in North America and Europe. POWV is transmitted by ixodid tick vectors that feed on small to medium-sized mammals, such as Peromyscus leucopus mice, which may serve as either reservoir, bridge or amplification hosts. Intraperitoneal and intracranial inoculation of 4-week old Peromyscus leucopus mice with 103 PFU of POWV did not result in overt clinical signs of disease. However, following intracranial inoculation, infected mice seroconverted to POWV and histopathological examinations revealed that the mice uniformly developed mild lymphocytic perivascular cuffing and microgliosis in the brain and spinal cord from 5 to 15 days post infection (dpi), suggesting an early inflammatory response. In contrast, intracranial inoculation of 4-week old C57BL/6 and BALB/c mice was lethal by 5 dpi. Intraperitoneal inoculation was lethal in BALB/c mice, but 40% (2/5) of C57BL/6 mice survived. We concluded that Peromyscus leucopus mice infected i.c. with a lethal dose of POWV support a limited infection, restricted to the central nervous system and mount an antibody response to the virus. However, they fail to develop clinical signs of disease and are able to control the infection. These results suggest the involvement of restriction factors, and the mechanism by which Peromyscus leucopus mice restrict POWV infection remains under study.
2010-01-01
Background Fusarium head blight is a very important disease of small grain cereals with F. graminearum as one of the most important causal agents. It not only causes reduction in yield and quality but from a human and animal healthcare point of view, it produces mycotoxins such as deoxynivalenol (DON) which can accumulate to toxic levels. Little is known about external triggers influencing DON production. Results In the present work, a combined in vivo/in vitro approach was used to test the effect of sub lethal fungicide treatments on DON production. Using a dilution series of prothioconazole, azoxystrobin and prothioconazole + fluoxastrobin, we demonstrated that sub lethal doses of prothioconazole coincide with an increase in DON production 48 h after fungicide treatment. In an artificial infection trial using wheat plants, the in vitro results of increased DON levels upon sub lethal prothioconazole application were confirmed illustrating the significance of these results from a practical point of view. In addition, further in vitro experiments revealed a timely hyperinduction of H2O2 production as fast as 4 h after amending cultures with prothioconazole. When applying H2O2 directly to germinating conidia, a similar induction of DON-production by F. graminearum was observed. The effect of sub lethal prothioconazole concentrations on DON production completely disappeared when applying catalase together with the fungicide. Conclusions These cumulative results suggest that H2O2 induced by sub lethal doses of the triazole fungicide prothioconazole acts as a trigger of DON biosynthesis. In a broader framework, this work clearly shows that DON production by the plant pathogen F. graminearum is the result of the interaction of fungal genomics and external environmental triggers. PMID:20398299
Assessing Toxicity of Obscurant Grade Pan-Based Carbon Fiber Aquatic Species Chronic Tests
2004-12-01
ASSESSING TOXICITY OF OBSCURANT GRADE PAN-BASED CARBON FIBER: AQUATIC SPECIES CHRONIC TESTS N. A. Chester, M. V. Haley, C. W. Kurnas and R. T...with minimal restrictions. To this end we are investigating the toxicity of PAN-based carbon fibers to the aquatic species Ceriodaphnia dubia (water... toxicity methods to provide ecotoxicological results for both lethal and sub-lethal parameters, including LC50 (24-, 48- and 96-h), IC50, EC20, and
Miliotis, M D; Morris, J G; Cianciosi, S; Wright, A C; Wood, P K; Robins-Browne, R M
1990-08-01
The virulence plasmid (pYV) of Yersinia enterocolitica is necessary for production of conjunctivitis in guinea pigs and for mouse lethality. To identify the genes responsible for production of conjunctivitis in guinea pigs, we subcloned the BamHI and SalI restriction fragments of the virulence plasmid of Y. enterocolitica A2635 (serotype O:8) into derivatives of the broad-host-range plasmid pRK290 and introduced the constructions into plasmid-negative Y. enterocolitica strains. A mild, transient conjunctivitis was evident 24 h after inoculation with strains containing a 2.8-kilobase (kb) BamHI fragment of pYV. These strains were cytotoxic to HEp-2 cells but did not cause death in iron-loaded adult mice. When the 2.8- and adjacent 0.5-kb BamHI fragments were deleted from the virulence plasmid of a fully virulent Y. enterocolitica isolate, the resultant strain did not cause conjunctivitis in guinea pigs and was not cytotoxic to HEp-2 cells. However, the strain with the deletion appeared to be more virulent for mice, with more rapid dissemination after orogastric inoculation, compared with that of the parent strain. When the deletion was complemented by introduction of a plasmid containing the 2.8-kb BamHI fragment, the strain again caused conjunctivitis but had decreased virulence for mice.
Enhanced virulence of clade 2.3.2.1 highly pathogenic avian influenza A H5N1 viruses in ferrets.
Pearce, Melissa B; Pappas, Claudia; Gustin, Kortney M; Davis, C Todd; Pantin-Jackwood, Mary J; Swayne, David E; Maines, Taronna R; Belser, Jessica A; Tumpey, Terrence M
2017-02-01
Sporadic avian to human transmission of highly pathogenic avian influenza (HPAI) A(H5N1) viruses necessitates the analysis of currently circulating and evolving clades to assess their potential risk. Following the spread and sustained circulation of clade 2 viruses across multiple continents, numerous subclades and genotypes have been described. To better understand the pathogenesis associated with the continued diversification of clade 2A(H5N1) influenza viruses, we investigated the relative virulence of eleven human and poultry isolates collected from 2006 to 2013 by determining their ability to cause disease in the ferret model. Numerous clade 2 viruses, including a clade 2.2 avian isolate, a 2.2.2.1 human isolate, and two 2.2.1 human isolates, were found to be of low virulence in the ferret model, though lethality was detected following infection with one 2.2.1 human isolate. In contrast, three of six clade 2.3.2.1 avian isolates tested led to severe disease and death among infected ferrets. Clade 2.3.2.1b and 2.3.2.1c isolates, but not 2.3.2.1a isolates, were associated with ferret lethality. All A(H5N1) viruses replicated efficiently in the respiratory tract of ferrets regardless of their virulence and lethality. However, lethal isolates were characterized by systemic viral dissemination, including detection in the brain and enhanced histopathology in lung tissues. The finding of disparate virulence phenotypes between clade 2A(H5N1) viruses, notably differences between subclades of 2.3.2.1 viruses, suggests there are distinct molecular determinants present within the established subclades, the identification of which will assist in molecular-based surveillance and public health efforts against A(H5N1) viruses. Published by Elsevier Inc.
Enhanced virulence of clade 2.3.2.1 highly pathogenic avian influenza A H5N1 viruses in ferrets
Pearce, Melissa B.; Pappas, Claudia; Gustin, Kortney M.; Davis, C. Todd; Pantin-Jackwood, Mary J.; Swayne, David E.; Maines, Taronna R.; Belser, Jessica A.; Tumpey, Terrence M.
2017-01-01
Sporadic avian to human transmission of highly pathogenic avian influenza (HPAI) A(H5N1) viruses necessitates the analysis of currently circulating and evolving clades to assess their potential risk. Following the spread and sustained circulation of clade 2 viruses across multiple continents, numerous subclades and genotypes have been described. To better understand the pathogenesis associated with the continued diversification of clade 2 A(H5N1) influenza viruses, we investigated the relative virulence of eleven human and poultry isolates collected from 2006 to 2013 by determining their ability to cause disease in the ferret model. Numerous clade 2 viruses, including a clade 2.2 avian isolate, a 2.2.2.1 human isolate, and two 2.2.1 human isolates, were found to be of low virulence in the ferret model, though lethality was detected following infection with one 2.2.1 human isolate. In contrast, three of six clade 2.3.2.1 avian isolates tested led to severe disease and death among infected ferrets. Clade 2.3.2.1b and 2.3.2.1c isolates, but not 2.3.2.1a isolates, were associated with ferret lethality. All A(H5N1) viruses replicated efficiently in the respiratory tract of ferrets regardless of their virulence and lethality. However, lethal isolates were characterized by systemic viral dissemination, including detection in the brain and enhanced histopathology in lung tissues. The finding of disparate virulence phenotypes between clade 2 A(H5N1) viruses, notably differences between subclades of 2.3.2.1 viruses, suggests there are distinct molecular determinants present within the established subclades, the identification of which will assist in molecular-based surveillance and public health efforts against A(H5N1) viruses. PMID:28038412
Ozmen, Murat; Güngördü, Abbas; Erdemoglu, Sema; Ozmen, Nesrin; Asilturk, Meltem
2015-08-01
The toxic effects of two selected xenobiotics, bisphenol A (BPA) and atrazine (ATZ), were evaluated after photocatalytic degradation using nano-sized, Mn-doped TiO2. Undoped and Mn-doped TiO2 nanoparticles were synthesized. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), UV-vis-diffuse reflectance spectra (DRS), X-ray fluorescence spectroscopy (XRF), and BET surface area. The photocatalytic efficiency of the undoped and Mn-doped TiO2 was evaluated for BPA and ATZ. The toxicity of the synthesized photocatalysts and photocatalytic by-products of BPA and ATZ was determined using frog embryos and tadpoles, zebrafish embryos, and bioluminescent bacteria. Possible toxic effects were also evaluated using selected enzyme biomarkers. The results showed that Mn-doped TiO2 nanoparticles did not cause significant lethality in Xenopus laevis embryos and tadpoles, but nonfiltered samples caused lethality in zebrafish. Furthermore, Mn-doping of TiO2 increased the photocatalytic degradation capability of nanoparticles, and it successfully degraded BPA and AZT, but degradation of AZT caused an increase of the lethal effects on both tadpoles and fish embryos. Degradation of BPA caused a significant reduction of lethal effects, especially after 2-4h of degradation. However, biochemical assays showed that both Mn-doped TiO2 and the degradation by-products caused a significant change of selected biomarkers on X. laevis tadpoles; thus, the ecological risks of Mn-doped TiO2 should be considered due to nanomaterial applications and for spilled nanoparticles in an aquatic ecosystem. Also, the risk of nanoparticles should be considered using indicator reference biochemical markers to verify the environmental health impacts. Copyright © 2015 Elsevier B.V. All rights reserved.
Boonnak, Kobporn; Vogel, Leatrice; Feldmann, Friederike; Feldmann, Heinz; Legge, Kevin L.; Subbarao, Kanta
2014-01-01
Although lymphopenia is a hallmark of severe infection with highly pathogenic H5N1 and the newly emerged H7N9 influenza viruses in humans, the mechanism(s) by which lethal H5N1 viruses cause lymphopenia in mammalian hosts remains poorly understood. Because influenza-specific T cell responses are initiated in the lung draining lymph nodes, and lymphocytes subsequently traffic to the lungs or peripheral circulation, we compared the immune responses in the lung draining lymph nodes following infection with a lethal A/HK/483/97 or non-lethal A/HK/486/97 (H5N1) virus in a mouse model. We found that lethal H5N1, but not non-lethal H5N1 virus infection in mice enhances Fas ligand (FasL) expression on plasmacytoid dendritic cells (pDCs), resulting in apoptosis of influenza-specific CD8+ T cells via a Fas-FasL mediated pathway. We also found that pDCs, but not other DC subsets, preferentially accumulate in the lung draining lymph nodes of lethal H5N1 virus-infected mice and that the induction of FasL expression on pDCs correlates with high levels of IL-12p40 monomer/homodimer in the lung draining lymph nodes. Our data suggest that one of the mechanisms of lymphopenia associated with lethal H5N1 virus infection involves a deleterious role for pDCs. PMID:24829418
Lee, Changkeun; Kwon, Bong-Oh; Hong, Seongjin; Noh, Junsung; Lee, Junghyun; Ryu, Jongseong; Kang, Seong-Gil; Khim, Jong Seong
2018-06-06
The potential leakage from marine CO 2 storage sites is of increasing concern, but few studies have evaluated the probable adverse effects on marine organisms. Fish, one of the top predators in marine environments, should be an essential representative species used for water column toxicity testing in response to waterborne CO 2 exposure. In the present study, we conducted fish life cycle toxicity tests to fully elucidate CO 2 toxicity mechanism effects. We tested sub-lethal and lethal toxicities of elevated CO 2 concentrations on marine medaka (Oryzias melastigma) at different developmental stages. At each developmental stage, the test species was exposed to varying concentrations of gaseous CO 2 (control air, 5%, 10%, 20%, and 30%), with 96 h of exposure at 0-4 d (early stage), 4-8 d (middle stage), and 8-12 d (late stage). Sub-lethal and lethal effects, including early developmental delays, cardiac edema, tail abnormalities, abnormal pigmentation, and mortality were monitored daily during the 14 d exposure period. At the embryonic stage, significant sub-lethal and lethal effects were observed at pH < 6.30. Hypercapnia can cause long-term and/or delayed developmental embryonic problems, even after transfer back to clean seawater. At fish juvenile and adult stages, significant mortality was observed at pH < 5.70, indicating elevated CO 2 exposure might cause various adverse effects, even during short-term exposure periods. It should be noted the early embryonic stage was found more sensitive to CO 2 exposure than other developmental stages of the fish life cycle. Overall, the present study provided baseline information for potential adverse effects of high CO 2 concentration exposure on fish developmental processes at different life cycle stages in marine ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Isehunwa, G O; Yusuf, I O; Alada, A Ar
2017-03-06
This study investigated the effects of exposure to petrol on blood glucose, liver and muscle glycogen levels in the common African toad Bufo regularis. A total of 126 adult toads of either sex weighing between 70-100g were used for this study. The experiment was divided into three phases. The phase 1 experiment the acute toxicity test consisted of animals divided into six groups of 10 toads per group and were exposed to water (H2O), H2O + Tween 80, 2ml/l, 3ml/l, 5ml/l, and 10ml/l of petrol respectively for 96 hours using the static renewal bioassay system. In the Phase 2 experiment, the animals were exposed to H2O, H2O + Tween 80, 0.14ml/l, 0.3ml/l, 0.6ml/l, and 1.13ml/l of petrol respectively for 3 days; while in phase 3 experiment they were exposed to petrol solutions for 14 days. After the various exposures, the blood glucose, liver and muscle glycogen contents were determined using standard methods. The results of the study showed that the median lethal concentration of petrol (96 hours LC50) was 4.5ml/l and sub-lethal concentration of petrol caused mortality of animals. Exposure to petrol solutions for 3 days had no significant effect on blood glucose level of the animals but caused significant decrease in the liver and muscle glycogen levels at high concentrations. In the animals exposed to petrol solutions for 14 days, there was a significant increase in glucose levels and significant reduction in liver and muscle glycogen levels at high concentrations when compared with the control. The results show that sub-lethal concentrations of petrol can cause mortality of animals, hyperglycemia and reduction in liver and muscle glycogen levels. The effects of petrol exposure on carbohydrate metabolism depend on the concentration and duration of exposure.
Inefficient transmission of H5N1 influenza viruses in a ferret contact model.
Yen, Hui-Ling; Lipatov, Aleksandr S; Ilyushina, Natalia A; Govorkova, Elena A; Franks, John; Yilmaz, Neziha; Douglas, Alan; Hay, Alan; Krauss, Scott; Rehg, Jerold E; Hoffmann, Erich; Webster, Robert G
2007-07-01
The abilities to infect and transmit efficiently among humans are essential for a novel influenza A virus to cause a pandemic. To evaluate the pandemic potential of widely disseminated H5N1 influenza viruses, a ferret contact model using experimental groups comprised of one inoculated ferret and two contact ferrets was used to study the transmissibility of four human H5N1 viruses isolated from 2003 to 2006. The effects of viral pathogenicity and receptor binding specificity (affinity to synthetic sialosaccharides with alpha2,3 or alpha2,6 linkages) on transmissibility were assessed. A/Vietnam/1203/04 and A/Vietnam/JP36-2/05 viruses, which possess "avian-like" alpha2,3-linked sialic acid (SA) receptor specificity, caused neurological symptoms and death in ferrets inoculated with 10(3) 50% tissue culture infectious doses. A/Hong Kong/213/03 and A/Turkey/65-596/06 viruses, which show binding affinity for "human-like" alpha2,6-linked SA receptors in addition to their affinity for alpha2,3-linked SA receptors, caused mild clinical symptoms and were not lethal to the ferrets. No transmission of A/Vietnam/1203/04 or A/Turkey/65-596/06 virus was detected. One contact ferret developed neutralizing antibodies to A/Hong Kong/213/03 but did not exhibit any clinical signs or detectable virus shedding. In two groups, one of two naïve contact ferrets had detectable virus after 6 to 8 days when housed together with the A/Vietnam/JP36-2/05 virus-inoculated ferrets. Infected contact ferrets showed severe clinical signs, although little or no virus was detected in nasal washes. This limited virus shedding explained the absence of secondary transmission from the infected contact ferret to the other naïve ferret that were housed together. Our results suggest that despite their receptor binding affinity, circulating H5N1 viruses retain molecular determinants that restrict their spread among mammalian species.
Fu, Shulin; Ou, Jiwen; Zhang, Minmin; Xu, Juan; Liu, Huazhen; Liu, Jinlin; Yuan, Fangyan; Chen, Huanchun
2013-01-01
Haemophilus parasuis and Actinobacillus pleuropneumoniae both belong to the family Pasteurellaceae and are major respiratory pathogens that cause large economic losses in the pig industry worldwide. We previously constructed an attenuated A. pleuropneumoniae serovar 1 live vaccine prototype, SLW05 (ΔapxIC ΔapxIIC ΔapxIV-ORF1), which is able to produce nontoxic but immunogenic ApxIA, ApxIIA, and ApxIVA. This triple-deletion mutant strain was shown to elicit protective immunity against virulent A. pleuropneumoniae. In the present study, we investigated whether immunization with SLW05 could also protect against lethal challenge with virulent H. parasuis SH0165 (serovar 5) or MD0322 (serovar 4). The SLW05 strain was found to elicit a strong humoral antibody response in pigs and to confer significant protection against challenge with a lethal dose of H. parasuis SH0165 or MD0322. IgG subtype analysis revealed that SLW05 induces a bias toward a Th1-type immune response and stimulates interleukin 2 (IL-2) and gamma interferon (IFN-γ) production. Moreover, antisera from SLW05-vaccinated pigs efficiently inhibited both A. pleuropneumoniae and H. parasuis growth in a whole-blood assay. This is the first report that a live attenuated A. pleuropneumoniae vaccine with SLW05 can protect against lethal H. parasuis infection, which provides a novel approach for developing an attenuated H. parasuis vaccine. PMID:23220998
Fu, Shulin; Ou, Jiwen; Zhang, Minmin; Xu, Juan; Liu, Huazhen; Liu, Jinlin; Yuan, Fangyan; Chen, Huanchun; Bei, Weicheng
2013-02-01
Haemophilus parasuis and Actinobacillus pleuropneumoniae both belong to the family Pasteurellaceae and are major respiratory pathogens that cause large economic losses in the pig industry worldwide. We previously constructed an attenuated A. pleuropneumoniae serovar 1 live vaccine prototype, SLW05 (ΔapxIC ΔapxIIC ΔapxIV-ORF1), which is able to produce nontoxic but immunogenic ApxIA, ApxIIA, and ApxIVA. This triple-deletion mutant strain was shown to elicit protective immunity against virulent A. pleuropneumoniae. In the present study, we investigated whether immunization with SLW05 could also protect against lethal challenge with virulent H. parasuis SH0165 (serovar 5) or MD0322 (serovar 4). The SLW05 strain was found to elicit a strong humoral antibody response in pigs and to confer significant protection against challenge with a lethal dose of H. parasuis SH0165 or MD0322. IgG subtype analysis revealed that SLW05 induces a bias toward a Th1-type immune response and stimulates interleukin 2 (IL-2) and gamma interferon (IFN-γ) production. Moreover, antisera from SLW05-vaccinated pigs efficiently inhibited both A. pleuropneumoniae and H. parasuis growth in a whole-blood assay. This is the first report that a live attenuated A. pleuropneumoniae vaccine with SLW05 can protect against lethal H. parasuis infection, which provides a novel approach for developing an attenuated H. parasuis vaccine.
Eliminating Legionella by inhibiting BCL-XL to induce macrophage apoptosis.
Speir, Mary; Lawlor, Kate E; Glaser, Stefan P; Abraham, Gilu; Chow, Seong; Vogrin, Adam; Schulze, Keith E; Schuelein, Ralf; O'Reilly, Lorraine A; Mason, Kylie; Hartland, Elizabeth L; Lithgow, Trevor; Strasser, Andreas; Lessene, Guillaume; Huang, David C S; Vince, James E; Naderer, Thomas
2016-02-24
Human pathogenic Legionella replicate in alveolar macrophages and cause a potentially lethal form of pneumonia known as Legionnaires' disease(1). Here, we have identified a host-directed therapeutic approach to eliminate intracellular Legionella infections. We demonstrate that the genetic deletion, or pharmacological inhibition, of the host cell pro-survival protein BCL-XL induces intrinsic apoptosis of macrophages infected with virulent Legionella strains, thereby abrogating Legionella replication. BCL-XL is essential for the survival of Legionella-infected macrophages due to bacterial inhibition of host-cell protein synthesis, resulting in reduced levels of the short-lived, related BCL-2 pro-survival family member, MCL-1. Consequently, a single dose of a BCL-XL-targeted BH3-mimetic therapy, or myeloid cell-restricted deletion of BCL-XL, limits Legionella replication and prevents lethal lung infections in mice. These results indicate that repurposing BH3-mimetic compounds, originally developed to induce cancer cell apoptosis, may have efficacy in treating Legionnaires' and other diseases caused by intracellular microbes.
Lethal mobilization of DDT by cowbirds
Van Velzen, A.C.; Stiles, W.B.; Stickel, L.F.
1972-01-01
This study is an experimental demonstration of lethal mobilization of DDT by brown-headed cowbirds (Molothrus ater) and the effects of food deprivation on the distribution and loss of DDT, DDD, and DDE. The principal experimental group consisted of 20 birds fed a dietary dosage of 100 ppm of DDT for 13 days. After 2 days of full rations of untreated food, they were subjected to food restriction. Food was reduced to 43 percent of normal. Seven of the 20 birds died within 4 days. No birds died in the three control groups, treated as follows: ( 1 ) 20 birds fed 100 ppm DDT for 13 days and full rations of untreated food thereafter, (2) 20 birds fed only untreated food but subjected to food restriction, and (3) 20 birds fed full rations of untreated food throughout. In a pilot study, birds were fed 100, 200, or 300 ppm of DDT and subjected to two periods of food restriction, the first of these immediately after dosage ceased and the second 4 months later. DDT-dosed birds from all dosage levels died in each period of food restriction. Before the weight loss that accompanied food restriction, the brains of DDT-dosed birds had concentrations of DDT and DDD that were far below the lethal range. Concentrations increased rapidly to lethal levels. In these birds, DDT in carcasses decreased while DDD increased. DDT-dosed birds that died during food restriction lost 16 percent of their total body burden of DDT + DDD + DDE, 21 percent of their weight, and 81 percent of their fat. The DDT-dosed birds that were subjected to food restriction but survived lost a significantly greater proportion of their body burden of residues than similarly dosed birds not subjected to weight loss. Brain levels of DDT and DDD in birds that died during food restriction soon after dosage did not differ significantly from brain levels of birds that died in a period of food restriction 4 months after dosage. Concentrations of DDE were significantly higher in the latter group, although they were lower than concentrations considered to be lethal. In contrast, carcass levels of DDT and DDD were significantly lower, and DDE was only slightly higher, in the birds that died in the second period of food restriction. It is concluded that stored DDT residues present a hazard to birds, which utilize stored fat during periods of stress due to reproduction, cold weather, disease, injury, limited food supply, or migration.
Twenhafel, N A; Shaia, C I; Bunton, T E; Shamblin, J D; Wollen, S E; Pitt, L M; Sizemore, D R; Ogg, M M; Johnston, S C
2015-01-01
Eight guinea pigs were aerosolized with guinea pig-adapted Zaire ebolavirus (variant: Mayinga) and developed lethal interstitial pneumonia that was distinct from lesions described in guinea pigs challenged subcutaneously, nonhuman primates challenged by the aerosol route, and natural infection in humans. Guinea pigs succumbed with significant pathologic changes primarily restricted to the lungs. Intracytoplasmic inclusion bodies were observed in many alveolar macrophages. Perivasculitis was noted within the lungs. These changes are unlike those of documented subcutaneously challenged guinea pigs and aerosolized filoviral infections in nonhuman primates and human cases. Similar to findings in subcutaneously challenged guinea pigs, there were only mild lesions in the liver and spleen. To our knowledge, this is the first report of aerosol challenge of guinea pigs with guinea pig-adapted Zaire ebolavirus (variant: Mayinga). Before choosing this model for use in aerosolized ebolavirus studies, scientists and pathologists should be aware that aerosolized guinea pig-adapted Zaire ebolavirus (variant: Mayinga) causes lethal pneumonia in guinea pigs. © The Author(s) 2014.
Svartz, Gabriela; Acquaroni, Mercedes; Pérez Coll, Cristina
2018-06-07
Agricultural fungicide application in Argentina has increased twice since 2008, with Maxim® XL (2.5% fludioxonil +1% metalaxyl-M) as one of the most used fungicide formulation. The toxicity of this pesticide on Rhinella arenarum was assessed by means of continuous (from embryo and larval development) and 24-h pulse exposure standardized bioassays. Lethality was concentration- and exposure time-dependent. Maxim® XL caused a progressive lethal effect along the bioassays with higher toxicity on embryos than larvae, obtaining 50% lethal concentrations at 96, 336, and 504 h of 10.85, 2.89, and 1.71 mg/L for embryos, and 43.94, 11.79, and 5.76 mg/L for larvae respectively. Lethal 504-h no observed effect concentration values for embryos and larvae were 1 and 2.5 mg/L respectively. A stage-dependent toxicity of Maxim® XL was also demonstrated within the embryo development, with early stages more sensitive than the later ones, and blastula as the most sensitive developmental stage. The risk quotients obtained for chronic risk assessment determined a potential threat for the survival and continuity of R. arenarum populations under these conditions. The results indicate that the levels of the fungicide reaching amphibian habitats could be risky for the early development of this amphibian species. This study also emphasizes the necessity to evaluate the chronic effects of fungicides in pesticide risk assessment.
EU2, a Fourth Evolutionary Lineage of Phytophthora ramorum
Kris Van Poucke; Selma Franceschini; Joan Webber; Kurt Heungens; Clive Brasier
2013-01-01
Sudden oak death (SOD), caused by Phytophthora ramorum, is lethal to tanoak (Notholithocarpus densiflorus (Hook. & Arn.) Manos, Cannon & S.H. Oh), and threatens this species throughout its range in Oregon. The disease was first discovered in coastal southwest Oregon forests in July 2001. Since then an interagency team...
Ren, Zhiguang; Zhao, Yongkun; Liu, Jing; Ji, Xianliang; Meng, Lingnan; Wang, Tiecheng; Sun, Weiyang; Zhang, Kun; Sang, Xiaoyu; Yu, Zhijun; Li, Yuanguo; Feng, Na; Wang, Hualei; Yang, Songtao; Yang, Zhengyan; Ma, Yuanfang; Gao, Yuwei; Xia, Xianzhu
2018-05-01
The H7N9 influenza virus epidemic has been associated with a high mortality rate in China. Therefore, to prevent the H7N9 virus from causing further damage, developing a safe and effective vaccine is necessary. In this study, a vaccine candidate consisting of virus-like particles (VLPs) based on H7N9 A/Shanghai/2/2013 and containing hemagglutinin (HA), neuraminidase (NA), and matrix protein (M1) was successfully produced using a baculovirus (BV) expression system. Immunization experiments showed that strong humoral and cellular immune responses could be induced by the developed VLPs when administered via either the intramuscular (IM) or intranasal (IN) immunization routes. Notably, VLPs administered via both immunization routes provided 100% protection against lethal infection caused by the H7N9 virus. The IN immunization with 40μg of H7N9 VLPs induced strong lung IgA and lung tissue resident memory (TRM) cell-mediated local immune responses. These results provide evidence for the development of an effective preventive vaccine against the H7N9 virus based on VLPs administered through both the IM and IN immunization routes. Copyright © 2017. Published by Elsevier B.V.
Bovi, Thaís S; Zaluski, Rodrigo; Orsi, Ricardo O
2018-01-01
This study evaluated the in vitro toxicity and motor activity changes in African-derived adult honey bees (Apis mellifera L.) exposed to lethal or sublethal doses of the insecticides fipronil and imidacloprid. Mortality of bees was assessed to determine the ingestion and contact lethal dose for 24 h using probit analysis. Motor activities in bees exposed to lethal (LD50) and sublethal doses (1/500th of the lethal dose) of both insecticides were evaluated in a behavioral observation box at 1 and 4 h. Ingestion and contact lethal doses of fipronil were 0.2316 ? 0.0626 and 0.0080 ? 0.0021 μg/bee, respectively. Ingestion and contact lethal doses of imidacloprid were 0.1079 ? 0.0375 and 0.0308 ? 0.0218 μg/bee, respectively. Motor function of bees exposed to lethal doses of fipronil and imidacloprid was impaired; exposure to sublethal doses of fipronil but not imidacloprid impaired motor function. The insecticides evaluated in this study were highly toxic to African-derived A. mellifera and caused impaired motor function in these pollinators.
USDA-ARS?s Scientific Manuscript database
African swine fever (ASF) is a lethal hemorrhagic disease of swine caused by a double-stranded DNA virus, African Swine Fever Virus (ASFV). There is no vaccine to prevent the disease and current control measures are limited to culling and restricted animal movement. Swine infected with attenuated st...
Clinical presentations of Ehlers Danlos syndrome type IV.
Pope, F M; Narcisi, P; Nicholls, A C; Liberman, M; Oorthuys, J W
1988-01-01
Ehlers Danlos syndrome type IV is an often lethal disease caused by various mutations of type III collagen genes. It presents in infancy and childhood in several ways, and the symptoms and signs include low birth weight, prematurity, congenital dislocation of the hips, easy inappropriate bruising (sometimes suspected as child battering), and a diagnostic facial phenotype. These features predict a lethal adult disease often complicated by fatal arterial rupture in early or middle adult life. Most affected patients can be diagnosed from radiolabelled collagen protein profiles by polyacrylamide gel electrophoresis. Prenatal diagnosis by specific type III collagen restriction fragment length polymorphisms is possible in some families, and will become increasingly important. Prenatal diagnosis and prevention of the disease in selected families is already possible and will be widely available in the future. Images Fig 1 Fig 2 Fig 3 Fig 4 Fig 5 Fig 6 Fig 7 Fig 8 Fig 9 Fig 10 Fig 11 PMID:3178263
The Klebsiella pneumoniae O Antigen Contributes to Bacteremia and Lethality during Murine Pneumonia
Shankar-Sinha, Sunita; Valencia, Gabriel A.; Janes, Brian K.; Rosenberg, Jessica K.; Whitfield, Chris; Bender, Robert A.; Standiford, Ted J.; Younger, John G.
2004-01-01
Bacterial surface carbohydrates are important pathogenic factors in gram-negative pneumonia infections. Among these factors, O antigen has been reported to protect pathogens against complement-mediated killing. To examine further the role of O antigen, we insertionally inactivated the gene encoding a galactosyltransferase necessary for serotype O1 O-antigen synthesis (wbbO) from Klebsiella pneumoniae 43816. Analysis of the mutant lipopolysaccharide by sodium dodecyl sulfate-polyacrylamide gel electrophoresis confirmed the absence of O antigen. In vitro, there were no detectable differences between wild-type K. pneumoniae and the O-antigen-deficient mutant in regard to avid binding by murine complement C3 or resistance to serum- or whole-blood-mediated killing. Nevertheless, the 72-h 50% lethal dose of the wild-type strain was 30-fold greater than that of the mutant (2 × 103 versus 6 × 104 CFU) after intratracheal injection in ICR strain mice. Despite being less lethal, the mutant organism exhibited comparable intrapulmonary proliferation at 24 h compared to the level of the wild type. Whole-lung chemokine expression (CCL3 and CXCL2) and bronchoalveolar inflammatory cell content were also similar between the two infections. However, whereas the wild-type organism produced bacteremia within 24 h of infection in every instance, bacteremia was not seen in mutant-infected mice. These results suggest that during murine pneumonia caused by K. pneumoniae, O antigen contributes to lethality by increasing the propensity for bacteremia and not by significantly changing the early course of intrapulmonary infection. PMID:14977947
Sharma, Neha; Kubaczka, Caroline; Kaiser, Stephanie; Nettersheim, Daniel; Mughal, Sadaf S; Riesenberg, Stefanie; Hölzel, Michael; Winterhager, Elke; Schorle, Hubert
2016-03-01
Loss of TFAP2C in mouse leads to developmental defects in the extra-embryonic compartment with lethality at embryonic day (E)7.5. To investigate the requirement of TFAP2C in later placental development, deletion of TFAP2C was induced throughout extra-embryonic ectoderm at E6.5, leading to severe placental abnormalities caused by reduced trophoblast population and resulting in embryonic retardation by E8.5. Deletion of TFAP2C in TPBPA(+) progenitors at E8.5 results in growth arrest of the junctional zone. TFAP2C regulates its target genes Cdkn1a (previously p21) and Dusp6, which are involved in repression of MAPK signaling. Loss of TFAP2C reduces activation of ERK1/2 in the placenta. Downregulation of Akt1 and reduced activation of phosphorylated AKT in the mutant placenta are accompanied by impaired glycogen synthesis. Loss of TFAP2C led to upregulation of imprinted gene H19 and downregulation of Slc38a4 and Ascl2. The placental insufficiency post E16.5 causes fetal growth restriction, with 19% lighter mutant pups. Knockdown of TFAP2C in human trophoblast choriocarcinoma JAr cells inhibited MAPK and AKT signaling. Thus, we present a model where TFAP2C in trophoblasts controls proliferation by repressing Cdkn1a and activating the MAPK pathway, further supporting differentiation of glycogen cells by activating the AKT pathway. © 2016. Published by The Company of Biologists Ltd.
The pathogenesis of bornaviral diseases in mammals.
Tizard, Ian; Ball, Judith; Stoica, George; Payne, Susan
2016-12-01
Natural bornavirus infections and their resulting diseases are largely restricted to horses and sheep in Central Europe. The disease also occurs naturally in cats, and can be induced experimentally in laboratory rodents and numerous other mammals. Borna disease virus-1 (BoDV-1), the cause of most cases of mammalian Borna disease, is a negative-stranded RNA virus that replicates within the nucleus of target cells. It causes severe, often lethal, encephalitis in susceptible species. Recent events, especially the discovery of numerous new species of bornaviruses in birds and a report of an acute, lethal bornaviral encephalitis in humans, apparently acquired from squirrels, have revived interest in this remarkable family of viruses. The clinical manifestations of the bornaviral diseases are highly variable. Thus, in addition to acute lethal encephalitis, they can cause persistent neurologic disease associated with diverse behavioral changes. They also cause a severe retinitis resulting in blindness. In this review, we discuss both the pathological lesions observed in mammalian bornaviral disease and the complex pathogenesis of the neurologic disease. Thus infected neurons may be destroyed by T-cell-mediated cytotoxicity. They may die as a result of excessive inflammatory cytokine release from microglia. They may also die as a result of a 'glutaminergic storm' due to a failure of infected astrocytes to regulate brain glutamate levels.
Tooming, Ene; Merivee, Enno; Must, Anne; Sibul, Ivar; Williams, Ingrid
2014-06-01
Sub-lethal effects of pesticides on behavioural endpoints are poorly studied in carabids (Coleoptera: Carabidae) though changes in behaviour caused by chemical stress may affect populations of these non-targeted beneficial insects. General motor activity and locomotion are inherent in many behavioural patterns, and changes in these activities that result from xenobiotic influence mirror an integrated response of the insect to pesticides. Influence of pyrethroid insecticides over a wide range of sub-lethal doses on the motor activities of carabids still remains unclear. Video tracking of Platynus assimilis showed that brief exposure to alpha-cypermethrin at sub-lethal concentrations ranged from 0.01 to 100 mg L(-1) caused initial short-term (< 2 h) locomotor hyperactivity followed by a long-term (>24 h) locomotor hypo-activity. In addition, significant short- and long-term concentration and time-dependent changes occurred in general motor activity patterns and rates. Conspicuous changes in motor activity of Platynus assimilis beetles treated at alpha-cypermethrin concentrations up to 75,000-fold lower than maximum field recommended concentration (MFRC) suggest that many, basic fitness-related behaviours might be severely injured as well. These changes may negatively affect carabid populations in agro-ecosystems. Long-term hypo-activity could directly contribute to decreased trap captures of carabids frequently observed after insecticide application in the field. © 2013 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Simon, Philippe F.; de La Vega, Marc-Antoine; Paradis, Éric; Mendoza, Emelissa; Coombs, Kevin M.; Kobasa, Darwyn; Beauchemin, Catherine A. A.
2016-04-01
Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain’s generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Grace L., E-mail: chengra@niaid.nih.go; Lamirande, Elaine W., E-mail: elamirande@niaid.nih.go; Jin Hong, E-mail: jinh@medimmune.co
We studied the attenuation, immunogenicity and efficacy of the cold-adapted A/Ann Arbor/6/60 (AA ca) (H2N2) virus in mice and ferrets to evaluate its use in the event of an H2 influenza pandemic. The AA ca virus was restricted in replication in the respiratory tract of mice and ferrets. In mice, 2 doses of vaccine elicited a > 4-fold rise in hemagglutination-inhibition (HAI) titer and resulted in complete inhibition of viral replication following lethal homologous wild-type virus challenge. In ferrets, a single dose of the vaccine elicited a > 4-fold rise in HAI titer and conferred complete protection against homologous wild-typemore » virus challenge in the upper respiratory tract. In both mice and ferrets, the AA ca virus provided significant protection from challenge with heterologous H2 virus challenge in the respiratory tract. The AA ca vaccine is safe, immunogenic, and efficacious against homologous and heterologous challenge in mice and ferrets, supporting the evaluation of this vaccine in clinical trials.« less
Susceptibility of Blastomyces dermatitidis strains to products of oxidative metabolism.
Sugar, A M; Chahal, R S; Brummer, E; Stevens, D A
1983-09-01
Three strains of Blastomyces dermatitidis which differ in their virulence for mice were exposed in their yeast form to various components of the peroxidase-hydrogen peroxide-halide system. Susceptibility to H2O2 alone correlated with virulence, with the most virulent strain (ATCC 26199) least susceptible (50% lethal dose, greater than 50 mM) and an avirulent strain (ATCC 26197) most susceptible (50% lethal dose less than 3.3 mM). A strain of intermediate virulence (ATCC 26198) was of intermediate susceptibility (50% lethal dose, 11.5 mM). The addition of a nontoxic concentration of KI (5 X 10(-4) M) did not increase H2O2 toxicity. However, the addition of either myeloperoxidase or horseradish peroxidase and KI markedly decreased the amount of H2O2 required to kill the organisms, with 100 +/- 0% of all strains killed at 5 X 10(-5) M H2O2 and 97 +/- 4, 100 +/- 0, and 94 +/- 8% of ATCC 26199, ATCC 26198, and ATCC 26197 killed, respectively, at 5 X 10(-6) M H2O2. Kinetic studies with H2O2 alone revealed a delayed onset of killing, but virtually 100% of organisms were killed by 120 min of exposure in all strains. By comparison, the peroxidase-hydrogen peroxide-halide system was 100% lethal for all strains at 1 min. The relatively high concentrations of H2O2 required to kill the yeast phase of B. dermatitidis suggest that H2O2 alone does not account for host resistance to the organism. However, the rapidly lethal effect of the peroxidase-hydrogen peroxide-halide system at physiologically relevant concentrations suggests that this may be one mechanism of host defense to B. dermatitidis.
Mewis; Ulrichs
2001-04-01
Environmental and human health problems associated with the use of synthetic pesticides have prompted the demand for non-polluting, biologically specific insecticides. The current study tested the use and action of diatomaceous earth against several stored product pests. Fossil Shield(R) applied to wooden plates was lethal to adult Tenebrio molitor and Tribolium confusum, but larvae of the mealworm were unaffected. Beetles died within 14 days exposure in the absence of food to a dose of 2 and 4 g/m(2), but mortality was reduced in those fed grain bran. Fossil Shield(R) was lethal to first instar larvae of Plodia interpunctella, but not lethal to older larval stages. Two-week old larvae of T. confusum were more sensitive to diatomaceous earth than P. interpunctella at the same age. Contact with diatomaceous earth caused adult Sitophilus granarius, T. molitor and T. confusum to lose weight and reduced their water content, suggesting disruption of "the water barrier". Death of stored product insects treated with diatomaceous earth decreased with increased r.h., due to reduced transpiration through the cuticle. High r.h. delays, or above 60% can prevent, the drying action of diatomaceous earth.
Leung, Ho-Chuen; Chan, Chris Chung-Sing; Poon, Vincent Kwok-Man; Zhao, Han-Jun; Cheung, Chung-Yan; Ng, Fai; Huang, Jian-Dong; Zheng, Bo-Jian
2015-04-01
In March 2013, a patient infected with a novel avian influenza A H7N9 virus was reported in China. Since then, there have been 458 confirmed infection cases and 177 deaths. The virus contains several human-adapted markers, indicating that H7N9 has pandemic potential. The outbreak of this new influenza virus highlighted the need for the development of universal influenza vaccines. Previously, we demonstrated that a tetrameric peptide vaccine based on the matrix protein 2 ectodomain (M2e) of the H5N1 virus (H5N1-M2e) could protect mice from lethal infection with different clades of H5N1 and 2009 pandemic H1N1 influenza viruses. In this study, we investigated the cross-protection of H5N1-M2e against lethal infection with the new H7N9 virus. Although five amino acid differences existed at positions 13, 14, 18, 20, and 21 between M2e of H5N1 and H7N9, H5N1-M2e vaccination with either Freund's adjuvant or the Sigma adjuvant system (SAS) induced a high level of anti-M2e antibody, which cross-reacted with H7N9-M2e peptide. A mouse-adapted H7N9 strain, A/Anhui/01/2013m, was used for lethal challenge in animal experiments. H5N1-M2e vaccination provided potent cross-protection against lethal challenge of the H7N9 virus. Reduced viral replication and histopathological damage of mouse lungs were also observed in the vaccinated mice. Our results suggest that the tetrameric H5N1-M2e peptide vaccine could protect against different subtypes of influenza virus infections. Therefore, this vaccine may be an ideal candidate for developing a universal vaccine to prevent the reemergence of avian influenza A H7N9 virus and the emergence of potential novel reassortants of influenza virus.
Guo, Ling; Xu, Lei; Wu, Tao; Fu, Shulin; Qiu, Yinsheng; Hu, Chien-An Andy; Ren, Xinglong; Liu, Rongrong; Ye, Mengdie
2017-04-01
Haemophilus parasuis can cause a severe membrane inflammation disorder. It has been documented that superoxide dismutase (SOD) is a potential target to treat systemic inflammatory diseases. Therefore, we constructed an experimental H. parasuis subunit vaccine SOD and determined the protective efficacy of SOD using a lethal dose challenge against H. parasuis serovar 4 strain MD0322 and serovar 5 strain SH0165 in a mouse model. The results demonstrated that SOD could induce a strong humoral immune response in mice and provide significant immunoprotection efficacy against a lethal dose of H. parasuis serovar 4 strain MD0322 or serovar 5 strain SH0165 challenge. IgG subtype analysis indicated SOD protein could trigger a bias toward a Th1-type immune response and induce the proliferation of splenocytes and secretion of IL-2 and IFN-γ of splenocytes. In addition, serum in mice from the SOD-immunized group could inhibit the growth of strain MD0322 and strain SH0165 in the whole-blood killing bacteria assay. This is the first report that immunization of mice with SOD protein could provide protective effect against a lethal dose of H. parasuis serovar 4 and serovar 5 challenge in mice, which may provide a novel approach against heterogeneous serovar infection of H. parasuis in future.
Pinto, Amelia K; Richner, Justin M; Poore, Elizabeth A; Patil, Pradnya P; Amanna, Ian J; Slifka, Mark K; Diamond, Michael S
2013-02-01
West Nile virus (WNV) is an emerging pathogen that is now the leading cause of mosquito-borne and epidemic encephalitis in the United States. In humans, a small percentage of infected individuals develop severe neuroinvasive disease, with the greatest relative risk being in the elderly and immunocompromised, two populations that are difficult to immunize effectively with vaccines. While inactivated and subunit-based veterinary vaccines against WNV exist, currently there is no vaccine or therapy available to prevent or treat human disease. Here, we describe the generation and preclinical efficacy of a hydrogen peroxide (H(2)O(2))-inactivated WNV Kunjin strain (WNV-KUNV) vaccine as a candidate for further development. Both young and aged mice vaccinated with H(2)O(2)-inactivated WNV-KUNV produced robust adaptive B and T cell immune responses and were protected against stringent and lethal intracranial challenge with a heterologous virulent North American WNV strain. Our studies suggest that the H(2)O(2)-inactivated WNV-KUNV vaccine is safe and immunogenic and may be suitable for protection against WNV infection in vulnerable populations.
Detection of warfare agents in liquid foods using the brine shrimp lethality assay.
Lumor, Stephen E; Diez-Gonzalez, Francisco; Labuza, Theodore P
2011-01-01
The brine shrimp lethality assay (BSLA) was used for rapid and non-specific detection of biological and chemical warfare agents at concentrations considerably below that which will cause harm to humans. Warfare agents detected include T-2 toxin, trimethylsilyl cyanide, and commercially available pesticides such as dichlorvos, diazinon, dursban, malathion, and parathion. The assay was performed by introducing 50 μL of milk or orange juice contaminated with each analyte into vials containing 10 freshly hatched brine shrimp nauplii in seawater. This was incubated at 28 °C for 24 h, after which mortality was determined. Mortality was converted to probits and the LC(50) was determined for each analyte by plotting probits of mortality against analyte concentration (log(10)). Our findings were the following: (1) the lethal effects of toxins dissolved in milk were observed, with T-2 toxin being the most lethal and malathion being the least, (2) except for parathion, the dosage (based on LC(50)) of analyte in a cup of milk (200 mL) consumed by a 6-y-old (20 kg) was less than the respective published rat LD(50) values, and (3) the BSLA was only suitable for detecting toxins dissolved in orange juice if incubation time was reduced to 6 h. Our results support the application of the BSLA for routine, rapid, and non-specific prescreening of liquid foods for possible sabotage by an employee or an intentional bioterrorist act. Practical Application: The findings of this study strongly indicate that the brine shrimp lethality assay can be adapted for nonspecific detection of warfare agents or toxins in food at any point during food production and distribution.
Tang, Yinghua; Wu, Peipei; Peng, Daxin; Wang, Xiaobo; Wan, Hongquan; Zhang, Pinghu; Long, Jinxue; Zhang, Wenjun; Li, Yanfang; Wang, Wenbin; Zhang, Xiaorong; Liu, Xiufan
2009-12-01
A number of H5N1 influenza outbreaks have occurred in aquatic birds in Asia. As aquatic birds are the natural reservoir of influenza A viruses and do not usually show clinical disease upon infection, the repeated H5N1 outbreaks have highlighted the importance of continuous surveillance on H5N1 viruses in aquatic birds. In the present study we characterized the biological properties of four H5N1 avian influenza viruses, which had been isolated from ducks, in different animal models. In specific pathogen free (SPF) chickens, all four isolates were highly pathogenic. In SPF mice, the S and Y isolates were moderately pathogenic. However, in mallard ducks, two isolates had low pathogenicity, while the other two were highly pathogenic and caused lethal infection. A representative isolate with high pathogenicity in ducks caused systemic infection and replicated effectively in all 10 organs tested in challenged ducks, whereas a representative isolate with low pathogenicity in ducks was only detected in some organs in a few challenged ducks. Comparison of complete genomic sequences from the four isolates showed that the same amino acid residues that have been reported to be associated with virulence and host adaption/restriction of influenza viruses were present in the PB2, HA, NA, M and NS genes, while the amino acid residues at the HA cleavage site were diverse. From these results it appeared that the virulence of H5N1 avian influenza viruses was increased for ducks and that amino acid substitutions at the HA cleavage site might have contributed to the differing pathogenicity of these isolates in mallards. A procedure for the intravenous pathogenicity index test in a mallard model for assessing the virulence of H5/H7 subtype avian influenza viruses in waterfowl is described.
de Léséleuc, Louis; Harris, Greg; KuoLee, Rhonda; Xu, H Howard; Chen, Wangxue
2014-05-01
Bacteremia caused by Acinetobacter baumannii is a highly lethal complication of hospital-acquired pneumonia. In the present study, we investigated the serum resistance, gallium nitrate tolerance and heme consumption of A. baumannii strain LAC-4 which was recently reported to display high virulence in a mouse pneumonia model with extrapulmonary dissemination leading to fatal bacteremia. This strain showed enhanced growth in mouse and fetal bovine serum that was independent of complement and was not observed with regular growth media. The LAC-4 strain was found to possess a high tolerance to gallium nitrate (GaN), whereas serum synergized with GaN in inhibiting A. baumannii strain ATCC 17978. We found that LAC-4 contains a heme oxygenase gene and expresses a highly efficient heme consumption system. This system can be fully blocked in vitro and in vivo by gallium protoporphyrin IX (GaPPIX). Inhibition of heme consumption by GaPPIX completely abrogated the growth advantage of LAC-4 in serum as well as its tolerance to GaN. More importantly, GaPPIX treatment of mice intranasally infected with LAC-4 prevented extrapulmonary dissemination and death. Thus, we propose that heme provides an additional source of iron for LAC-4 to bypass iron restriction caused by serum transferrin, lactoferrin or free gallium salts. Heme consumption systems in A. baumannii may constitute major virulence factors for lethal bacteremic isolates. Copyright © 2014 Crown Copyright and Elsevier Inc. Published by Elsevier GmbH.. All rights reserved.
hERG trafficking inhibition in drug-induced lethal cardiac arrhythmia.
Nogawa, Hisashi; Kawai, Tomoyuki
2014-10-15
Acquired long QT syndrome induced by non-cardiovascular drugs can cause lethal cardiac arrhythmia called torsades de points and is a significant problem in drug development. The prolongation of QT interval and cardiac action potential duration are mainly due to reduced physiological function of the rapidly activating voltage-dependent potassium channels encoded by human ether-a-go-go-related gene (hERG). Structurally diverse groups of drugs are known to directly inhibit hERG channel conductance. Therefore, the ability of acute hERG inhibition is routinely assessed at the preclinical stages in pharmaceutical testing. Recent findings indicated that chronic treatment with various drugs not only inhibits hERG channels but also decreases hERG channel expression in the plasma membrane of cardiomyocytes, which has become another concern in safety pharmacology. The mechanisms involve the disruption of hERG trafficking to the surface membrane or the acceleration of hERG protein degradation. From this perspective, we present a brief overview of mechanisms of drug-induced trafficking inhibition and pathological regulation. Understanding of drug-induced hERG trafficking inhibition may provide new strategies for predicting drug-induced QT prolongation and lethal cardiac arrhythmia in pharmaceutical drug development. Copyright © 2014 Elsevier B.V. All rights reserved.
Differential replication of Foot-and-mouth disease viruses in mice determine lethality.
Cacciabue, Marco; García-Núñez, María Soledad; Delgado, Fernando; Currá, Anabella; Marrero, Rubén; Molinari, Paula; Rieder, Elizabeth; Carrillo, Elisa; Gismondi, María Inés
2017-09-01
Adult C57BL/6J mice have been used to study Foot-and-mouth disease virus (FMDV) biology. In this work, two variants of an FMDV A/Arg/01 strain exhibiting differential pathogenicity in adult mice were identified and characterized: a non-lethal virus (A01NL) caused mild signs of disease, whereas a lethal virus (A01L) caused death within 24-48h independently of the dose used. Both viruses caused a systemic infection with pathological changes in the exocrine pancreas. Virus A01L reached higher viral loads in plasma and organs of inoculated mice as well as increased replication in an ovine kidney cell line. Complete consensus sequences revealed 6 non-synonymous changes between A01L and A10NL genomes that might be linked to replication differences, as suggested by in silico prediction studies. Our results highlight the biological significance of discrete genomic variations and reinforce the usefulness of this animal model to study viral determinants of lethality. Copyright © 2017 Elsevier Inc. All rights reserved.
Sodium Monofluoroacetate (1080) Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review
Eisler, R.
1995-01-01
Sodium monofluoroacetate (CH2FCOONa), also known as 1080, domestic use is currently restricted to livestock-protection collars on sheep and goats to selectively kill depredating coyotes. The chemical is readily absorbed by ingestion or inhalation. At lethal doses, metabolic conversion of fluoroacetate to fluorocitrate results in the accumulation of citrate in the tissues and death within 24 h from ventricular fibrillation or from respiratory failure; no antidote is available. At sublethal doses, the toxic effects of 1080 are reversible. Primary and secondary poisoning of nontarget vertebrates may accompany the use of 1080. The use of 1980 seems warranted in the absence of suitable alternative control methods.
Cell-type–restricted anti-cytokine therapy: TNF inhibition from one pathogenic source
Efimov, Grigory A.; Kruglov, Andrei A.; Khlopchatnikova, Zoya V.; Rozov, Fedor N.; Mokhonov, Vladislav V.; Rose-John, Stefan; Scheller, Jürgen; Gordon, Siamon; Stacey, Martin; Drutskaya, Marina S.; Tillib, Sergei V.; Nedospasov, Sergei A.
2016-01-01
Overexpression of TNF contributes to pathogenesis of multiple autoimmune diseases, accounting for a remarkable success of anti-TNF therapy. TNF is produced by a variety of cell types, and it can play either a beneficial or a deleterious role. In particular, in autoimmunity pathogenic TNF may be derived from restricted cellular sources. In this study we evaluated the feasibility of cell-type–restricted TNF inhibition in vivo. To this end, we engineered MYSTI (Myeloid-Specific TNF Inhibitor)—a recombinant bispecific antibody that binds to the F4/80 surface molecule on myeloid cells and to human TNF (hTNF). In macrophage cultures derived from TNF humanized mice MYSTI could capture the secreted hTNF, limiting its bioavailability. Additionally, as evaluated in TNF humanized mice, MYSTI was superior to an otherwise analogous systemic TNF inhibitor in protecting mice from lethal LPS/D-Galactosamine–induced hepatotoxicity. Our results suggest a novel and more specific approach to inhibiting TNF in pathologies primarily driven by macrophage-derived TNF. PMID:26936954
Divergent Requirements for EZH1 in Heart Development Versus Regeneration.
Ai, Shanshan; Yu, Xianhong; Li, Yumei; Peng, Yong; Li, Chen; Yue, Yanzhu; Tao, Ge; Li, Chuanyun; Pu, William T; He, Aibin
2017-07-07
Polycomb repressive complex 2 is a major epigenetic repressor that deposits methylation on histone H3 on lysine 27 (H3K27me) and controls differentiation and function of many cells, including cardiac myocytes. EZH1 and EZH2 are 2 alternative catalytic subunits with partial functional redundancy. The relative roles of EZH1 and EZH2 in heart development and regeneration are unknown. We compared the roles of EZH1 versus EZH2 in heart development and neonatal heart regeneration. Heart development was normal in Ezh1 -/- ( Ezh 1 knockout) and Ezh2 f/f ::cTNT -Cre ( Ezh 2 knockout) embryos. Ablation of both genes in Ezh1 -/- ::Ezh2 f/f ::cTNT -Cre embryos caused lethal heart malformations, including hypertrabeculation, compact myocardial hypoplasia, and ventricular septal defect. Epigenome and transcriptome profiling showed that derepressed genes were upregulated in a manner consistent with total EZH dose. In neonatal heart regeneration, Ezh1 was required, but Ezh2 was dispensable. This finding was further supported by rescue experiments: cardiac myocyte-restricted re-expression of EZH1 but not EZH2 restored neonatal heart regeneration in Ezh 1 knockout. In myocardial infarction performed outside of the neonatal regenerative window, EZH1 but not EZH2 likewise improved heart function and stimulated cardiac myocyte proliferation. Mechanistically, EZH1 occupied and activated genes related to cardiac growth. Our work unravels divergent mechanisms of EZH1 in heart development and regeneration, which will empower efforts to overcome epigenetic barriers to heart regeneration. © 2017 American Heart Association, Inc.
Kumaki, Yohichi; Salazar, Andres M; Wandersee, Miles K; Barnard, Dale L
2017-03-01
Hiltonol ® , (Poly IC:LC), a potent immunomodulator, is a synthetic, double-stranded polyriboinosinic-polyribocytidylic acid (poly IC) stabilized with Poly-L-lysine and carboxymethyl cellulose (LC). Hiltonol ® was tested for efficacy in a lethal SARS-CoV-infected BALB/c mouse model. Hiltonol ® at 5, 1, 0.5 or 0.25 mg/kg/day by intranasal (i.n.) route resulted in significant survival benefit when administered at selected times 24 h prior to challenge with a lethal dose of mouse-adapted severe acute respiratory syndrome coronavirus (SARS-CoV). The infected BALB/c mice receiving the Hiltonol ® treatments were also significantly effective in protecting mice against weight loss due to infection (p < 0.001). Groups of 20 mice were dosed with Hiltonol ® at 2.5 or 0.75 mg/kg by intranasal instillation 7, 14, and 21 days before virus exposure and a second dose was given 24 h later, prophylactic Hiltonol ® treatments (2.5 mg/kg/day) were completely protective in preventing death, and in causing significant reduction in lung hemorrhage scores, lung weights and lung virus titers. Hiltonol ® was also effective as a therapeutic when give up to 8 h post virus exposure; 100% of the-infected mice were protected against death when Hiltonol ® was administered at 5 mg/kg/day 8 h after infection. Our data suggest that Hiltonol ® treatment of SARS-CoV infection in mice leads to substantial prophylactic and therapeutic effects and could be used for treatment of other virus disease such as those caused by MERS-CoV a related coronavirus. These properties might be therapeutically advantageous if Hiltonol ® is considered for possible clinical use. Published by Elsevier B.V.
Bhattacharya, Sourav; Chakraborty, Mousumi; Mukhopadhyay, Piyasi; Kundu, P. P.; Mishra, Roshnara
2014-01-01
Background Snake bite causes greater mortality than most of the other neglected tropical diseases. Snake antivenom, although effective in minimizing mortality in developed countries, is not equally so in developing countries due to its poor availability in remote snake infested areas as, and when, required. An alternative approach in this direction could be taken by making orally deliverable polyvalent antivenom formulation, preferably under a globally integrated strategy, for using it as a first aid during transit time from remote trauma sites to hospitals. Methodology/Principal Findings To address this problem, multiple components of polyvalent antivenom were entrapped in alginate. Structural analysis, scanning electron microscopy, entrapment efficiency, loading capacity, swelling study, in vitro pH sensitive release, acid digestion, mucoadhesive property and venom neutralization were studied in in vitro and in vivo models. Results showed that alginate retained its mucoadhesive, acid protective and pH sensitive swelling property after entrapping antivenom. After pH dependent release from alginate beads, antivenom (ASVS) significantly neutralized phospholipaseA2 activity, hemolysis, lactate dehydrogenase activity and lethality of venom. In ex vivo mice intestinal preparation, ASVS was absorbed significantly through the intestine and it inhibited venom lethality which indicated that all the components of antivenom required for neutralization of venom lethality were retained despite absorption across the intestinal layer. Results from in vivo studies indicated that orally delivered ASVS can significantly neutralize venom effects, depicted by protection against lethality, decreased hemotoxicity and renal toxicity caused by russell viper venom. Conclusions/Significance Alginate was effective in entrapping all the structural components of ASVS, which on release and intestinal absorption effectively reconstituted the function of antivenom in neutralizing viper and cobra venom. Further research in this direction can strategize to counter such dilemma in snake bite management by promoting control release and oral antivenom rendered as a first aid. PMID:25102172
Tanikawa, Taichiro; Kanehira, Katsushi; Tsunekuni, Ryota; Uchida, Yuko; Takemae, Nobuhiro; Saito, Takehiko
2016-04-01
Poultry outbreaks caused by H5N8 highly pathogenic avian influenza viruses (HPAIVs) occurred in Japan between December 2014 and January 2015. During the same period; H5N8 HPAIVs were isolated from wild birds and the environment in Japan. The hemagglutinin (HA) genes of these isolates were found to belong to clade 2.3.4.4 and three sub-groups were distinguishable within this clade. All of the Japanese isolates from poultry outbreaks belonged to the same sub-group; whereas wild bird isolates belonged to the other sub-groups. To examine whether the difference in pathogenicity to chickens between isolates of different HA sub-groups of clade 2.3.4.4 could explain why the Japanese poultry outbreaks were only caused by a particular sub-group; pathogenicities of A/chicken/Miyazaki/7/2014 (Miyazaki2014; sub-group C) and A/duck/Chiba/26-372-48/2014 (Chiba2014; sub-group A) to chickens were compared and it was found that the lethality of Miyazaki2014 in chickens was lower than that of Chiba2014; according to the 50% chicken lethal dose. This indicated that differences in pathogenicity may not explain why the Japanese poultry outbreaks only involved group C isolates. © 2016 The Societies and John Wiley & Sons Australia, Ltd.
Zabolotskikh, I B; Penzhoian, G A; Musaeva, T S; Goncharenko, S I
2010-01-01
As well as previous epidemics and pandemias of influenza, the 2009 H1N1 influenza pandemia increases the risk of severe illness in pregnant. Data were reported for 28 pregnant and 2 postpartum women who have been hospitalized in ICUs of Krasnodar Region with H1N1 influenza diagnosis. The laboratory tests for H1N1 were negative in 53.3% of suspected cases of H1N1 influenza (16 of 30). The major lethal risk factor in pregnant with H1N1 influenza is a development of septic shock with low PaO2\\FiO2 ratio (less than 140) and high Murray's Acute Lung Injury Score (higher than 2.5). High Apache II, Apache III, SAPS 2, SAPS 3 and SOFA scores are the additional lethal risk factors. Lethal outcomes were more frequent in the end of the second trimester of pregnancy.
Comparative virulence and genomic analysis of 10 strains of Haemophilus parasuis
USDA-ARS?s Scientific Manuscript database
Haemophilus parasuis is the cause of Glasser's disease in swine, which is characterized by systemic infection resulting in polyserositis, meningitis, and arthritis. An enormous difference exists in the severity of disease caused by H. parasuis strains, ranging from lethal systemic disease to asympto...
Armitage, Andrew E.; Deforche, Koen; Chang, Chih-hao; Wee, Edmund; Kramer, Beatrice; Welch, John J.; Gerstoft, Jan; Fugger, Lars; McMichael, Andrew; Rambaut, Andrew; Iversen, Astrid K. N.
2012-01-01
The rapid evolution of Human Immunodeficiency Virus (HIV-1) allows studies of ongoing host–pathogen interactions. One key selective host factor is APOBEC3G (hA3G) that can cause extensive and inactivating Guanosine-to-Adenosine (G-to-A) mutation on HIV plus-strand DNA (termed hypermutation). HIV can inhibit this innate anti-viral defense through binding of the viral protein Vif to hA3G, but binding efficiency varies and hypermutation frequencies fluctuate in patients. A pivotal question is whether hA3G-induced G-to-A mutation is always lethal to the virus or if it may occur at sub-lethal frequencies that could increase viral diversification. We show in vitro that limiting-levels of hA3G-activity (i.e. when only a single hA3G-unit is likely to act on HIV) produce hypermutation frequencies similar to those in patients and demonstrate in silico that potentially non-lethal G-to-A mutation rates are ∼10-fold lower than the lowest observed hypermutation levels in vitro and in vivo. Our results suggest that even a single incorporated hA3G-unit is likely to cause extensive and inactivating levels of HIV hypermutation and that hypermutation therefore is typically a discrete “all or nothing” phenomenon. Thus, therapeutic measures that inhibit the interaction between Vif and hA3G will likely not increase virus diversification but expand the fraction of hypermutated proviruses within the infected host. PMID:22457633
Borowski, A G; Ingham, S C; Ingham, B H
2009-10-01
Ground-and-formed beef jerky can be made easily at home with ground beef and kits that include spice, cure, and jerky-forming equipment. Ground beef poses inherent risks of illness due to Escherichia coli O157:H7 and Salmonella contamination, making adequate pathogen lethality important in jerky manufacturing. We evaluated the effectiveness of drying regimes at eliminating E. coli O157:H7 and Salmonella in seasoned ground-and-formed beef jerky manufactured with three home-style dehydrators and one small commercial unit. Inoculated jerky strips were dried for up to 12 or 24 h in a home-style or the commercial unit, respectively, with target drying temperatures ranging from 51.7 degrees C (125 degrees F) to 71.1 degrees C (160 degrees F). Pathogen lethality varied with seasoning, temperature, and drying time (n = 288 samples). Lethality against E. coli O157:H7 ranged from 1.5 log CFU (Jerky Xpress, 57.2 degrees C [135 degrees F], 4 h) to 6.4 log CFU (Gardenmaster, 68.3 degrees C [155 degrees F], 12 h), and varied with seasoning. Lethality against Salmonella ranged from 1.7 log CFU (Jerky Xpress, 57.2 degrees C [135 degrees F], 4 h) to 6.0 log CFU (Gardenmaster, 68.3 degrees C [155 degrees F], 12 h), and also varied with seasoning. There was a > or =5-log CFU reduction in both pathogens in 0, 10, and 27 % of samples at 4, 8, and 12 h, respectively. Heating jerky for 10 min at 135 degrees C (275 degrees F) 4 or 6 h postdrying increased lethality, on average, 2.99 log CFU for Salmonella and 3.02 log CFU for E. coli O157:H7. The use of a lactic acid bacterium culture (Pediococcus spp.) as a pathogen surrogate accurately predicted safety in 28 % of samples containing E. coli O157:H7 and 78% of Salmonella-inoculated samples.
Maines, Taronna R.; Lu, Xui Hua; Erb, Steven M.; Edwards, Lindsay; Guarner, Jeannette; Greer, Patricia W.; Nguyen, Doan C.; Szretter, Kristy J.; Chen, Li-Mei; Thawatsupha, Pranee; Chittaganpitch, Malinee; Waicharoen, Sunthareeya; Nguyen, Diep T.; Nguyen, Tung; Nguyen, Hanh H. T.; Kim, Jae-Hong; Hoang, Long T.; Kang, Chun; Phuong, Lien S.; Lim, Wilina; Zaki, Sherif; Donis, Ruben O.; Cox, Nancy J.; Katz, Jacqueline M.; Tumpey, Terrence M.
2005-01-01
The spread of highly pathogenic avian influenza H5N1 viruses across Asia in 2003 and 2004 devastated domestic poultry populations and resulted in the largest and most lethal H5N1 virus outbreak in humans to date. To better understand the potential of H5N1 viruses isolated during this epizootic event to cause disease in mammals, we used the mouse and ferret models to evaluate the relative virulence of selected 2003 and 2004 H5N1 viruses representing multiple genetic and geographical groups and compared them to earlier H5N1 strains isolated from humans. Four of five human isolates tested were highly lethal for both mice and ferrets and exhibited a substantially greater level of virulence in ferrets than other H5N1 viruses isolated from humans since 1997. One human isolate and all four avian isolates tested were found to be of low virulence in either animal. The highly virulent viruses replicated to high titers in the mouse and ferret respiratory tracts and spread to multiple organs, including the brain. Rapid disease progression and high lethality rates in ferrets distinguished the highly virulent 2004 H5N1 viruses from the 1997 H5N1 viruses. A pair of viruses isolated from the same patient differed by eight amino acids, including a Lys/Glu disparity at 627 of PB2, previously identified as an H5N1 virulence factor in mice. The virus possessing Glu at 627 of PB2 exhibited only a modest decrease in virulence in mice and was highly virulent in ferrets, indicating that for this virus pair, the K627E PB2 difference did not have a prevailing effect on virulence in mice or ferrets. Our results demonstrate the general equivalence of mouse and ferret models for assessment of the virulence of 2003 and 2004 H5N1 viruses. However, the apparent enhancement of virulence of these viruses in humans in 2004 was better reflected in the ferret. PMID:16140756
Comparative studies of the genome, virulence, and protection of 10 Haemophilus parasuis strains
USDA-ARS?s Scientific Manuscript database
Haemophilus parasuis is the cause of Glässer’s disease in swine, which is characterized by systemic infection resulting in polyserositis, meningitis, and arthritis. An enormous difference exists in the severity of disease caused by H. parasuis strains, ranging from lethal systemic disease to asympto...
Hohmann, Miriam S N; Cardoso, Renato D R; Fattori, Victor; Arakawa, Nilton S; Tomaz, José C; Lopes, Norberto P; Casagrande, Rubia; Verri, Waldiceu A
2015-07-01
Hypericum perforatum is a medicinal plant with anti-inflammatory and antioxidant properties, which is commercially available for therapeutic use in Brazil. Herein the effect of H. perforatum extract on paracetamol (acetaminophen)-induced hepatotoxicity, lethality, inflammation, and oxidative stress in male swiss mice were investigated. HPLC analysis demonstrated the presence of rutin, quercetin, hypericin, pseudohypericin, and hyperforin in H. perforatum extract. Paracetamol (0.15-3.0 g/kg, p.o.) induced dose-dependent mortality. The sub-maximal lethal dose of paracetamol (1.5 g/kg, p.o.) was chosen for the experiments in the study. H. perforatum (30-300 mg/kg, i.p.) dose-dependently reduced paracetamol-induced lethality. Paracetamol-induced increase in plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) concentrations, and hepatic myeloperoxidase activity, IL-1β, TNF-α, and IFN-γ concentrations as well as decreased reduced glutathione (GSH) concentrations and capacity to reduce 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate radical cation; ABTS˙(+) ) were inhibited by H. perforatum (300 mg/kg, i.p.) treatment. Therefore, H. perforatum protects mice against paracetamol-induced lethality and liver damage. This effect seems to be related to the reduction of paracetamol-induced cytokine production, neutrophil recruitment, and oxidative stress. Copyright © 2015 John Wiley & Sons, Ltd.
Saka, Masahiro
2004-04-01
Since 1995, high incidences of deformed frogs have been documented in Kitakyushu, Japan. In this area, relatively high concentrations of DDT, trinitrotoluene (TNT), their metabolites (p,p'-dichlorodiphenyldichloroethylene [DDE], p,p'-dichlorodiphenyldichloroethane [DDD], 2-amino-4,6-dinitrotoluene [2ADNT], and 4-amino-2,6-dinitrotoluene [4ADNT]), and benzo[a]pyrene [BaP]) have been identified from field samples. I used a standardized assay with Xenopus laevis embryos (frog embryo teratogenesis assay--Xenopus, FETAX) to examine the developmental toxicity of these compounds. Both DDE and BaP were considered nearly nontoxic in embryonic development because they induced low (< 10%) mortality and malformation incidence even at the highest concentrations tested (DDE, 393 microM; BaP, 13.2 microM). The DDD (96-h median lethal concentration [LC50] = 44.1 microM, 96-h median effective concentration [EC50] for malformation = 14.9 microM) was more lethal and teratogenic than its parent compound, DDT (96-h LC50 = 101 microM, 96-h EC50 = 41.5 microM). Predominant symptoms observed were axial malformations (DDT and DDD) and irregular gut coiling (DDT). However, DDT and DDD should not act as major lethal or teratogenic toxicants in the aquatic environment within a short-term exposure via water because their 96-h LC50 and 96-h EC50 values were extremely high, considering their low solubility in water. The TNT (96-h LC50 = 16.7 microM) was more lethal than 2ADNT (96-h LC50 = 166 microM) or 4ADNT (96-h LC50 = 115 microM). Although 4ADNT (96-h EC50 = 85.8 microM) induced various tadpole malformations, it was a weak teratogen compared with TNT (96-h EC50 = 9.78 microM) and 2ADNT (96-h EC50 = 16.9 microM). The most typical malformations observed were axial malformations, eye abnormalities (TNT), edema, and irregular gut coiling (2ADNT and 4ADNT). The 96-h LC50 and 96-h EC50 values of TNT, 2ADNT, and 4ADNT were lower than their saturated concentrations in water. Therefore, these nitroaromatic compounds may show lethal or teratogenic effects on aquatic animals if their habitats are severely contaminated with TNT.
Johnson, Scott; Dlugolenski, Daniel; Phan, Shannon; Tompkins, S. Mark; He, Biao
2015-01-01
H7N9 has caused fatal infections in humans. A safe and effective vaccine is the best way to prevent large-scale outbreaks in the human population. Parainfluenza virus 5 (PIV5), an avirulent paramyxovirus, is a promising vaccine vector. In this work, we generated a recombinant PIV5 expressing the HA gene of H7N9 (PIV5-H7) and tested its efficacy against infection with influenza virus A/Anhui/1/2013 (H7N9) in mice and guinea pigs. PIV5-H7 protected the mice against lethal H7N9 challenge. Interestingly, the protection did not require antibody since PIV5-H7 protected JhD mice that do not produce antibody against lethal H7N9 challenge. Furthermore, transfer of anti-H7 serum did not protect mice against H7N9 challenge. PIV5-H7 generated high HAI titers in guinea pigs, however it did not protect against H7N9 infection or transmission. Intriguingly, immunization of guinea pigs with PIV5-H7 and PIV5 expressing NP of influenza A virus H5N1 (PIV5-NP) conferred protection against H7N9 infection and transmission. Thus, we have obtained a H7N9 vaccine that protected both mice and guinea pigs against lethal H7N9 challenge and infection respectively. PMID:25803697
Wood, J M; Kawaoka, Y; Newberry, L A; Bordwell, E; Webster, R G
1985-01-01
The hemagglutinin concentration of beta-propiolactone-inactivated influenza vaccine containing A/Duck/N.Y./189/82 (H5N2) virus was measured by single-radial-immunodiffusion (SRD) test. After administration of vaccine to chickens in Freund's complete adjuvant, vaccine efficacy was assessed by challenge with lethal A/Chicken/Penn./1370/83 (H5N2) virus. SRD potency values correlated with post-vaccination antibody levels and protection against infection.
Restricting youth suicide: behavioral health patients in an urban pediatric emergency department.
Rogers, Steven C; DiVietro, Susan; Borrup, Kevin; Brinkley, Ashika; Kaminer, Yifrah; Lapidus, Garry
2014-09-01
Suicide is the third leading cause of death among individuals age 10 years to 19 years in the United States. Adolescents with suicidal behaviors are often cared for in emergency departments (EDs)/trauma centers and are at an increased risk for subsequent suicide. Many institutions do not have standard procedures to prevent future self-harm. Lethal means restriction (LMR) counseling is an evidence-based suicide prevention strategy that informs families to restrict access to potentially fatal items and has demonstrated efficacy in preventing suicide. The objectives of this study were to examine suicidal behavior among behavioral health patients in a pediatric ED and to assess the use of LMR by hospital staff. A sample of 298 pediatric patients was randomly selected from the population of behavioral health patients treated at the ED from January 1 through December 31, 2012 (n = 2,294). Descriptive data include demographics (age, sex, race/ethnicity, etc,), chief complaint, current and past psychiatric history, primary diagnosis, disposition, alcohol/drug abuse, and documentation of any LMR counseling provided in the ED. Of the 298 patients, 52% were female, 47% were white, and 76% were in the custody of their parents. Behavior/out of control was the most common chief complaint (43%). The most common diagnoses were mood disorder (25%) and depression (20%). Thirty-four percent of the patients had suicidal ideation, 22% had a suicide plan, 32% had documented suicidal behavior, and 25% of the patients reported having access to lethal means. However, only 4% of the total patient population received any LMR counseling, and only 15% of those with access to lethal means had received LMR counseling. Providing a safe environment for adolescents at risk for suicidal behaviors should be a priority for all families/caretakers and should be encouraged by health care providers. The ED is a key point of entry into services for suicidal youth and presents an opportunity to implement effective secondary prevention strategies. The low rate of LMR counseling found in this study suggests a need for improved LMR counseling for all at-risk youth.
NASA Astrophysics Data System (ADS)
Kämpf, Kerstin; Kremmling, Beke; Vogel, Michael
2014-03-01
Using a combination of H2 nuclear magnetic resonance (NMR) methods, we study internal rotational dynamics of the perdeuterated protein C-phycocyanin (CPC) in dry and hydrated states over broad temperature and dynamic ranges with high angular resolution. Separating H2 NMR signals from methyl deuterons, we show that basically all backbone deuterons exhibit highly restricted motion occurring on time scales faster than microseconds. The amplitude of this motion increases when a hydration shell exists, while it decreases upon cooling and vanishes near 175 K. We conclude that the vanishing of the highly restricted motion marks a dynamical transition, which is independent of the time window and of a fundamental importance. This conclusion is supported by results from experimental and computational studies of the proteins myoglobin and elastin. In particular, we argue based on findings in molecular dynamics simulations that the behavior of the highly restricted motion of proteins at the dynamical transition resembles that of a characteristic secondary relaxation of liquids at the glass transition, namely the nearly constant loss. Furthermore, H2 NMR studies on perdeuterated CPC reveal that, in addition to highly restricted motion, small fractions of backbone segments exhibit weakly restricted dynamics when temperature and hydration are sufficiently high.
Yu, Zhijun; Cheng, Kaihui; Sun, Weiyang; Zhang, Xinghai; Xia, Xianzhu; Gao, Yuwei
2018-01-15
A novel H5N8 highly pathogenic avian influenza virus (HPAIV) caused poultry outbreaks in the Republic of Korea in 2014. The novel H5N8 HPAIV has spread to Asia, Europe, and North America and caused great public concern from then on. Here, we generated mouse-adapted variants of a wild waterfowl-origin H5N8 HPAIV to identify adaptive mutants that confer enhanced pathogenicity in mammals. The mouse lethal doses (MLD 50 ) of the mouse-adapted variants were reduced 31623-fold compared to the wild-type (WT) virus. Mouse-adapted variants displayed enhanced replication in vitro and in vivo, and expanded tissue tropism in mice. Sequence analysis revealed four amino acid substitutions in the PB2 (E627K), PA (F35S), HA (R227H), and NA (I462V) proteins. These data suggest that multiple amino acid substitutions collaboratively increase the virulence of a wild bird-origin reassortant H5N8 HPAIV and cause severe disease in mice. Copyright © 2017 Elsevier B.V. All rights reserved.
Sutton, Troy C.; Lamirande, Elaine W.; Bock, Kevin W.; Moore, Ian N.; Koudstaal, Wouter; Rehman, Muniza; Weverling, Gerrit Jan; Goudsmit, Jaap
2017-01-01
ABSTRACT Influenza viruses of the H1N1, H2N2, and H3N2 subtypes have caused previous pandemics. H2 influenza viruses represent a pandemic threat due to continued circulation in wild birds and limited immunity in the human population. In the event of a pandemic, antiviral agents are the mainstay for treatment, but broadly neutralizing antibodies (bNAbs) may be a viable alternative for short-term prophylaxis or treatment. The hemagglutinin stem binding bNAbs CR6261 and CR9114 have been shown to protect mice from severe disease following challenge with H1N1 and H5N1 and with H1N1, H3N2, and influenza B viruses, respectively. Early studies with CR6261 and CR9114 showed weak in vitro activity against human H2 influenza viruses, but the in vivo efficacy against H2 viruses is unknown. Therefore, we evaluated these antibodies against human- and animal-origin H2 viruses A/Ann Arbor/6/1960 (H2N2) (AA60) and A/swine/MO/4296424/06 (H2N3) (Sw06). In vitro, CR6261 neutralized both H2 viruses, while CR9114 only neutralized Sw06. To evaluate prophylactic efficacy, mice were given CR6261 or CR9114 and intranasally challenged 24 h later with lethal doses of AA60 or Sw06. Both antibodies reduced mortality, weight loss, airway inflammation, and pulmonary viral load. Using engineered bNAb variants, antibody-mediated cell cytotoxicity reporter assays, and Fcγ receptor-deficient (Fcer1g−/−) mice, we show that the in vivo efficacy of CR9114 against AA60 is mediated by Fcγ receptor-dependent mechanisms. Collectively, these findings demonstrate the in vivo efficacy of CR6261 and CR9114 against H2 viruses and emphasize the need for in vivo evaluation of bNAbs. IMPORTANCE bNAbs represent a strategy to prevent or treat infection by a wide range of influenza viruses. The evaluation of these antibodies against H2 viruses is important because H2 viruses caused a pandemic in 1957 and could cross into humans again. We demonstrate that CR6261 and CR9114 are effective against infection with H2 viruses of both human and animal origin in mice, despite the finding that CR9114 did not display in vitro neutralizing activity against the human H2 virus. These findings emphasize the importance of in vivo evaluation and testing of bNAbs. PMID:29046448
A selfish gene chastened: Tribolium castaneum Medea M4 is silenced by a complementary gene.
Thomson, M Scott
2014-04-01
Maternal-effect dominant embryonic arrest (Medea) of Tribolium castaneum are autosomal factors that act maternally to cause the death of any progeny that do not inherit them. This selfish behavior is thought to result from a maternally expressed poison and zygotically expressed antidote. Medea factors and the hybrid incompatibility factor, H, have a negative interaction consistent with complementary genes of the Dobzhansky-Muller model for post-zygotic isolation. This negative interaction may result from H suppression of Medea zygotic antidote, leaving zygotes incompletely protected from maternal poison. I report here a test of the hypothesis that H also suppresses the Medea maternal poison. Viable F1 females were generated from a cross of Medea M4 strain males to H strain females. These females, heterozygous for both M4 and H, failed to express M4 maternal lethal activity when crossed to their male sibs. Transmission of non-M4 homologues from these females was confirmed using a dominant transgenic enhanced green fluorescent protein eye color marker, tightly linked in cis to M4. M4 beetles, lacking H, were selected from the F2 population. Female descendants of these clearly expressed M4 maternal lethal activity, indicating restoration of this activity after H was segregated away. I conclude that H, or a factor tightly linked to H, suppresses Medea M4 maternal poison.
Kandadi, Machender R; Frankel, Arthur E; Ren, Jun
2012-01-01
BACKGROUND AND PURPOSE Anthrax lethal toxin (LeTx) is known to induce circulatory shock and death, although the underlying mechanisms have not been elucidated. This study was designed to evaluate the role of toll-like receptor 4 (TLR4) in anthrax lethal toxin-induced cardiac contractile dysfunction. EXPERIMENTAL APPROACH Wild-type (WT) and TLR4 knockout (TLR−/−) mice were challenged with lethal toxin (2 µg·g−1, i.p.), and cardiac function was assessed 18 h later using echocardiography and edge detection. Small interfering RNA (siRNA) was employed to knockdown TLR4 receptor or class III PI3K in H9C2 myoblasts. GFP–LC3 puncta was used to assess autophagosome formation. Western blot analysis was performed to evaluate autophagy (LC3, Becline-1, Agt5 and Agt7) and endoplasmic reticulum (ER) stress (BiP, eIF2α and calreticulin). KEY RESULTS In WT mice, lethal toxin exposure induced cardiac contractile dysfunction, as evidenced by reduced fractional shortening, peak shortening, maximal velocity of shortening/re-lengthening, prolonged re-lengthening duration and intracellular Ca2+ derangement. These effects were significantly attenuated or absent in the TLR4 knockout mice. In addition, lethal toxin elicited autophagy in the absence of change in ER stress. Knockdown of TLR4 or class III PI3 kinase using siRNA but not the autophagy inhibitor 3-methyladenine significantly attenuated or inhibited lethal toxin-induced autophagy in H9C2 cells. CONCLUSION AND IMPLICATIONS Our results suggest that TLR4 may be pivotal in mediating the lethal cardiac toxicity induced by anthrax possibly through induction of autophagy. These findings suggest that compounds that negatively modulate TLR4 signalling and autophagy could be used to treat anthrax infection-induced cardiovascular complications. PMID:22612289
Throsby, Mark; van den Brink, Edward; Jongeneelen, Mandy; Poon, Leo L. M.; Alard, Philippe; Cornelissen, Lisette; Bakker, Arjen; Cox, Freek; van Deventer, Els; Guan, Yi; Cinatl, Jindrich; ter Meulen, Jan; Lasters, Ignace; Carsetti, Rita; Peiris, Malik; de Kruif, John; Goudsmit, Jaap
2008-01-01
Background The hemagglutinin (HA) glycoprotein is the principal target of protective humoral immune responses to influenza virus infections but such antibody responses only provide efficient protection against a narrow spectrum of HA antigenic variants within a given virus subtype. Avian influenza viruses such as H5N1 are currently panzootic and pose a pandemic threat. These viruses are antigenically diverse and protective strategies need to cross protect against diverse viral clades. Furthermore, there are 16 different HA subtypes and no certainty the next pandemic will be caused by an H5 subtype, thus it is important to develop prophylactic and therapeutic interventions that provide heterosubtypic protection. Methods and Findings Here we describe a panel of 13 monoclonal antibodies (mAbs) recovered from combinatorial display libraries that were constructed from human IgM+ memory B cells of recent (seasonal) influenza vaccinees. The mAbs have broad heterosubtypic neutralizing activity against antigenically diverse H1, H2, H5, H6, H8 and H9 influenza subtypes. Restriction to variable heavy chain gene IGHV1-69 in the high affinity mAb panel was associated with binding to a conserved hydrophobic pocket in the stem domain of HA. The most potent antibody (CR6261) was protective in mice when given before and after lethal H5N1 or H1N1 challenge. Conclusions The human monoclonal CR6261 described in this study could be developed for use as a broad spectrum agent for prophylaxis or treatment of human or avian influenza infections without prior strain characterization. Moreover, the CR6261 epitope could be applied in targeted vaccine strategies or in the design of novel antivirals. Finally our approach of screening the IgM+ memory repertoire could be applied to identify conserved and functionally relevant targets on other rapidly evolving pathogens. PMID:19079604
Lethal photosensitization of Helicobacter species
NASA Astrophysics Data System (ADS)
Millson, Charles E.; Wilson, Michael; MacRobert, Alexander J.; Thurrell, Wendy; Mlkvy, Peter; Davies, Claire; Bown, Stephen G.
1995-01-01
Helicobacter pylori (H. pylori) is associated with a large number of gastroduodenal disorders. Clearance of the bacteria has been shown to benefit patients with duodenal ulcers, gastric ulcers, and certain rare types of gastric tumors. Broad-spectrum antibiotics are the mainstay of current treatment strategies but side-effects, poor compliance, and drug resistance limit their usefulness. We sensitized H. pylori with toluidine blue, haematoporphyrin derivative, aluminum disulphonated phthalocyanine, methylene blue or protoporphyrin IX prior to exposure to low-power laser light from either a gallium aluminum arsenide laser or a helium neon gas laser. All 5 sensitizers caused reductions of greater than 1000-fold in the number of viable bacteria. Light alone had no effect and only HpD caused a significant decrease in bacterial numbers without laser light. Next, we sensitized H. mustelae on explanted ferret gastric mucosa (ex vivo) with the same sensitizers and exposed them to light from a copper vapor pumped dye laser tuned appropriately. MB caused significant reductions in bacterial counts. Successful lethal photosensitization of Helicobacter pylori both in vitro and ex vivo raises the possibility of a local method for eradicating the bacteria, especially as the bacteria are only found in those parts of the upper gastrointestinal tract that are accessible to the endoscope.
Lee, Changkeun; Hong, Seongjin; Kwon, Bong-Oh; Lee, Jung-Ho; Ryu, Jongseong; Park, Young-Gyu; Kang, Seong-Gil; Khim, Jong Seong
2016-08-01
Concern about leakage of carbon dioxide (CO2) from deep-sea storage in geological reservoirs is increasing because of its possible adverse effects on marine organisms locally or at nearby coastal areas both in sediment and water column. In the present study, we examined how elevated CO2 affects various intertidal epibenthic (benthic copepod), intertidal endobenthic (Manila clam and Venus clam), sub-tidal benthic (brittle starfish), and free-living (marine medaka) organisms in areas expected to be impacted by leakage. Acute lethal and sub-lethal effects were detected in the adult stage of all test organisms exposed to varying concentrations of CO2, due to the associated decline in pH (8.3 to 5.2) during 96-h exposure. However, intertidal organisms (such as benthic copepods and clams) showed remarkable resistance to elevated CO2, with the Venus clam being the most tolerant (LpH50 = 5.45). Sub-tidal species (such as brittle starfish [LpH50 = 6.16] and marine medaka [LpH50 = 5.91]) were more sensitive to elevated CO2 compared to intertidal species, possibly because they have fewer defensive capabilities. Of note, the exposure duration might regulate the degree of acute sub-lethal effects, as evidenced by the Venus clam, which showed a time-dependent effect to elevated CO2. Finally, copper was chosen as a model toxic element to find out the synergistic or antagonistic effects between ocean acidification and metal pollution. Combination of CO2 and Cu exposure enhances the adverse effects to organisms, generally supporting a synergistic effect scenario. Overall, the significant variation in the degree to which CO2 adversely affected organisms (viz., working range and strength) was clearly observed, supporting the general concept of species-dependent effects of elevated CO2.
Plata-Rueda, Angelica; Martínez, Luis Carlos; Santos, Marcelo Henrique Dos; Fernandes, Flávio Lemes; Wilcken, Carlos Frederico; Soares, Marcus Alvarenga; Serrão, José Eduardo; Zanuncio, José Cola
2017-04-20
This study evaluated the insecticidal activity of garlic, Allium sativum Linnaeus (Amaryllidaceae) essential oil and their principal constituents on Tenebrio molitor. Garlic essential oil, diallyl disulfide, and diallyl sulfide oil were used to compare the lethal and repellent effects on larvae, pupae and adults of T. molitor. Six concentrations of garlic essential oil and their principal constituents were topically applied onto larvae, pupae and adults of this insect. Repellent effect and respiration rate of each constituent was evaluated. The chemical composition of garlic essential oil was also determined and primary compounds were dimethyl trisulfide (19.86%), diallyl disulfide (18.62%), diallyl sulfide (12.67%), diallyl tetrasulfide (11.34%), and 3-vinyl-[4H]-1,2-dithiin (10.11%). Garlic essential oil was toxic to T. molitor larva, followed by pupa and adult. In toxic compounds, diallyl disulfide was the most toxic than diallyl sulfide for pupa > larva > adult respectively and showing lethal effects at different time points. Garlic essential oil, diallyl disulfide and diallyl sulfide induced symptoms of intoxication and necrosis in larva, pupa, and adult of T. molitor between 20-40 h after exposure. Garlic essential oil and their compounds caused lethal and sublethal effects on T. molitor and, therefore, have the potential for pest control.
Plata-Rueda, Angelica; Martínez, Luis Carlos; Santos, Marcelo Henrique Dos; Fernandes, Flávio Lemes; Wilcken, Carlos Frederico; Soares, Marcus Alvarenga; Serrão, José Eduardo; Zanuncio, José Cola
2017-01-01
This study evaluated the insecticidal activity of garlic, Allium sativum Linnaeus (Amaryllidaceae) essential oil and their principal constituents on Tenebrio molitor. Garlic essential oil, diallyl disulfide, and diallyl sulfide oil were used to compare the lethal and repellent effects on larvae, pupae and adults of T. molitor. Six concentrations of garlic essential oil and their principal constituents were topically applied onto larvae, pupae and adults of this insect. Repellent effect and respiration rate of each constituent was evaluated. The chemical composition of garlic essential oil was also determined and primary compounds were dimethyl trisulfide (19.86%), diallyl disulfide (18.62%), diallyl sulfide (12.67%), diallyl tetrasulfide (11.34%), and 3-vinyl-[4H]-1,2-dithiin (10.11%). Garlic essential oil was toxic to T. molitor larva, followed by pupa and adult. In toxic compounds, diallyl disulfide was the most toxic than diallyl sulfide for pupa > larva > adult respectively and showing lethal effects at different time points. Garlic essential oil, diallyl disulfide and diallyl sulfide induced symptoms of intoxication and necrosis in larva, pupa, and adult of T. molitor between 20–40 h after exposure. Garlic essential oil and their compounds caused lethal and sublethal effects on T. molitor and, therefore, have the potential for pest control. PMID:28425475
Ashburner, Michael
1982-01-01
A lethal locus (l(2)br7;35B6-10), near Adh on chromosome arm 2L of D. melanogaster, is identified with Plunkett's dominant suppressor of Hairless (H). Of eight new alleles, seven act as dominant suppressors of H, the eighth is a dominant enhancer of H. One of the suppressor alleles is both a leaky lethal and a weak suppressor of H. Confirming Nash (1970), deletions of l(2)br7 are dominant suppressors, and duplications are dominant enhancers of H. A simple model is proposed to account for the interaction of l(2)br7 and H, assuming that amorphic (or hypomorphic) alleles of l(2)br7 suppress H and that hypermorphic alleles enhance H. PMID:6816670
Reanalysis of parabiosis of obesity mutants in the age of leptin.
Zeng, Wenwen; Lu, Yi-Hsueh; Lee, Jonah; Friedman, Jeffrey M
2015-07-21
In this study we set out to explain the differing effects of parabiosis with genetically diabetic (db) mice versus administration of recombinant leptin. Parabiosis of db mutant, which overexpress leptin, to wildtype (WT) or genetically obese (ob) mice has been reported to cause death by starvation, whereas leptin infusions do not produce lethality at any dose or mode of delivery tested. Leptin is not posttranslationally modified other than a single disulphide bond, raising the possibility that it might require additional factor(s) to exert the maximal appetite-suppressing effect. We reconfirmed the lethal effect of parabiosis of db mutant on WT mice and further showed that this lethality could not be rescued by administration of ghrelin or growth hormone. We then initiated a biochemical fractionation of a high-molecular-weight leptin complex from human plasma and identified clusterin as a major component of this leptin-containing complex. However, in contrast to previous reports, we failed to observe a leptin-potentiating effect of either exogenous or endogenous clusterin, and parabiosis of db clusterin(-/-) double-mutant to WT mice still caused lethality. Intriguingly, in parabiotic pairs of two WT mice, leptin infusion into one of the mice led to an enhanced starvation response during calorie restriction as evidenced by increased plasma ghrelin and growth-hormone levels. Moreover, leptin treatment resulted in death of the parabiotic pairs. These data suggest that the appetite suppression in WT mice after parabiosis to db mutants is the result of induced hyperleptinemia combined with the stress or other aspect(s) of the parabiosis procedure.
Reanalysis of parabiosis of obesity mutants in the age of leptin
Zeng, Wenwen; Lu, Yi-Hsueh; Lee, Jonah; Friedman, Jeffrey M.
2015-01-01
In this study we set out to explain the differing effects of parabiosis with genetically diabetic (db) mice versus administration of recombinant leptin. Parabiosis of db mutant, which overexpress leptin, to wildtype (WT) or genetically obese (ob) mice has been reported to cause death by starvation, whereas leptin infusions do not produce lethality at any dose or mode of delivery tested. Leptin is not posttranslationally modified other than a single disulphide bond, raising the possibility that it might require additional factor(s) to exert the maximal appetite-suppressing effect. We reconfirmed the lethal effect of parabiosis of db mutant on WT mice and further showed that this lethality could not be rescued by administration of ghrelin or growth hormone. We then initiated a biochemical fractionation of a high-molecular-weight leptin complex from human plasma and identified clusterin as a major component of this leptin-containing complex. However, in contrast to previous reports, we failed to observe a leptin-potentiating effect of either exogenous or endogenous clusterin, and parabiosis of db clusterin−/− double-mutant to WT mice still caused lethality. Intriguingly, in parabiotic pairs of two WT mice, leptin infusion into one of the mice led to an enhanced starvation response during calorie restriction as evidenced by increased plasma ghrelin and growth-hormone levels. Moreover, leptin treatment resulted in death of the parabiotic pairs. These data suggest that the appetite suppression in WT mice after parabiosis to db mutants is the result of induced hyperleptinemia combined with the stress or other aspect(s) of the parabiosis procedure. PMID:26150485
Antiviral activity of formyl peptide receptor 2 antagonists against influenza viruses.
Courtin, Noémie; Fotso, Aurélien Fotso; Fautrad, Pierre; Mas, Floriane; Alessi, Marie-Christine; Riteau, Béatrice
2017-07-01
Influenza viruses are one of the most important respiratory pathogens worldwide, causing both epidemic and pandemic infections. The aim of the study was to evaluate the effect of FPR2 antagonists PBP10 and BOC2 on influenza virus replication. We determined that these molecules exhibit antiviral effects against influenza A (H1N1, H3N2, H6N2) and B viruses. FPR2 antagonists used in combination with oseltamivir showed additive antiviral effects. Mechanistically, the antiviral effect of PBP10 and BOC2 is mediated through early inhibition of virus-induced ERK activation. Finally, our preclinical studies showed that FPR2 antagonists protected mice from lethal infections induced by influenza, both in a prophylactic and therapeutic manner. Thus, FPR2 antagonists might be explored for novel treatments against influenza. Copyright © 2017 Elsevier B.V. All rights reserved.
Kandadi, Machender R; Frankel, Arthur E; Ren, Jun
2012-10-01
Anthrax lethal toxin (LeTx) is known to induce circulatory shock and death, although the underlying mechanisms have not been elucidated. This study was designed to evaluate the role of toll-like receptor 4 (TLR4) in anthrax lethal toxin-induced cardiac contractile dysfunction. Wild-type (WT) and TLR4 knockout (TLR⁻/⁻) mice were challenged with lethal toxin (2 µg·g⁻¹, i.p.), and cardiac function was assessed 18 h later using echocardiography and edge detection. Small interfering RNA (siRNA) was employed to knockdown TLR4 receptor or class III PI3K in H9C2 myoblasts. GFP-LC3 puncta was used to assess autophagosome formation. Western blot analysis was performed to evaluate autophagy (LC3, Becline-1, Agt5 and Agt7) and endoplasmic reticulum (ER) stress (BiP, eIF2α and calreticulin). In WT mice, lethal toxin exposure induced cardiac contractile dysfunction, as evidenced by reduced fractional shortening, peak shortening, maximal velocity of shortening/re-lengthening, prolonged re-lengthening duration and intracellular Ca²⁺ derangement. These effects were significantly attenuated or absent in the TLR4 knockout mice. In addition, lethal toxin elicited autophagy in the absence of change in ER stress. Knockdown of TLR4 or class III PI3 kinase using siRNA but not the autophagy inhibitor 3-methyladenine significantly attenuated or inhibited lethal toxin-induced autophagy in H9C2 cells. Our results suggest that TLR4 may be pivotal in mediating the lethal cardiac toxicity induced by anthrax possibly through induction of autophagy. These findings suggest that compounds that negatively modulate TLR4 signalling and autophagy could be used to treat anthrax infection-induced cardiovascular complications. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
Xu, Wenting; Zheng, Mei; Zhou, Feng
2015-01-01
In 2009, a global epidemic of influenza A(H1N1) virus caused the death of tens of thousands of people. Vaccination is the most effective means of controlling an epidemic of influenza and reducing the mortality rate. In this study, the long-term immunogenicity of influenza A/California/7/2009 (H1N1) split vaccine was observed as long as 15 months (450 days) after immunization in a mouse model. Female BALB/c mice were immunized intraperitoneally with different doses of aluminum-adjuvanted vaccine. The mice were challenged with a lethal dose (10× 50% lethal dose [LD50]) of homologous virus 450 days after immunization. The results showed that the supplemented aluminum adjuvant not only effectively enhanced the protective effect of the vaccine but also reduced the immunizing dose of the vaccine. In addition, the aluminum adjuvant enhanced the IgG antibody level of mice immunized with the H1N1 split vaccine. The IgG level was correlated to the survival rate of the mice. Aluminum-adjuvanted inactivated split-virion 2009 pandemic influenza A H1N1 vaccine has good immunogenicity and provided long-term protection against lethal influenza virus challenge in mice. PMID:25589552
Huang, Xiumei; Dong, Ying; Bey, Erik A; Kilgore, Jessica A; Bair, Joseph S; Li, Long-Shan; Patel, Malina; Parkinson, Elizabeth I; Wang, Yiguang; Williams, Noelle S; Gao, Jinming; Hergenrother, Paul J; Boothman, David A
2012-06-15
Agents, such as β-lapachone, that target the redox enzyme, NAD(P)H:quinone oxidoreductase 1 (NQO1), to induce programmed necrosis in solid tumors have shown great promise, but more potent tumor-selective compounds are needed. Here, we report that deoxynyboquinone kills a wide spectrum of cancer cells in an NQO1-dependent manner with greater potency than β-lapachone. Deoxynyboquinone lethality relies on NQO1-dependent futile redox cycling that consumes oxygen and generates extensive reactive oxygen species (ROS). Elevated ROS levels cause extensive DNA lesions, PARP1 hyperactivation, and severe NAD+ /ATP depletion that stimulate Ca2+ -dependent programmed necrosis, unique to this new class of NQO1 "bioactivated" drugs. Short-term exposure of NQO1+ cells to deoxynyboquinone was sufficient to trigger cell death, although genetically matched NQO1- cells were unaffected. Moreover, siRNA-mediated NQO1 or PARP1 knockdown spared NQO1+ cells from short-term lethality. Pretreatment of cells with BAPTA-AM (a cytosolic Ca2+ chelator) or catalase (enzymatic H2O2 scavenger) was sufficient to rescue deoxynyboquinone-induced lethality, as noted with β-lapachone. Investigations in vivo showed equivalent antitumor efficacy of deoxynyboquinone to β-lapachone, but at a 6-fold greater potency. PARP1 hyperactivation and dramatic ATP loss were noted in the tumor, but not in the associated normal lung tissue. Our findings offer preclinical proof-of-concept for deoxynyboquinone as a potent chemotherapeutic agent for treatment of a wide spectrum of therapeutically challenging solid tumors, such as pancreatic and lung cancers.
Agrahari, P; Singh, D K
2013-11-01
Laboratory evaluation was made to access the seasonal variations in abiotic environmental factors temperature, pH, dissolved oxygen, carbon dioxide, electrical conductivity and ferulic acid toxicity in snail-attractant pellets (SAP) against the intermediate host snail Lymnaea acuminata in each month of the years 2010 and 2011. On the basis of a 24-h toxicity assay, it was noted that lethal concentration values of 4.03, 3.73% and 4.45% in SAP containing starch and 4.16, 4.23% and 4.29% in SAP containing proline during the months of May, June and September, respectively, were most effective in killing the snails, while SAP containing starch/proline + ferulic acid was least effective in the month of January/February (24-h lethal concentration value was 7.67%/7.63% in SAP). There was a significant positive correlation between lethal concentration value of ferulic acid containing SAP and levels of dissolved O2 /pH of water in corresponding months. On the contrary, a negative correlation was observed between lethal concentration value and dissolved CO2 /temperature of test water in the same months. To ascertain that such a relationship between toxicity and abiotic factors is not co-incidental, the nervous tissue of treated (40% and 80% of 24-h lethal concentration value) and control group of snails was assayed for the activity of acetylcholinesterase (AChE) in each of the 12 months of the same year. There was a maximum inhibition of 58.43% of AChE, in snails exposed to 80% of the 24-h lethal concentration value of ferulic acid + starch in the month of May. This work shows conclusively that the best time to control snail population with SAP containing ferulic acid is during the months of May, June and September. © 2012 Blackwell Verlag GmbH.
Kuribayashi, Saya; Sakoda, Yoshihiro; Kawasaki, Takeshi; Tanaka, Tomohisa; Yamamoto, Naoki; Okamatsu, Masatoshi; Isoda, Norikazu; Tsuda, Yoshimi; Sunden, Yuji; Umemura, Takashi; Nakajima, Noriko; Hasegawa, Hideki; Kida, Hiroshi
2013-01-01
Highly pathogenic avian influenza viruses (HPAIVs) cause lethal infection in chickens. Severe cases of HPAIV infections have been also reported in mammals, including humans. In both mammals and birds, the relationship between host cytokine response to the infection with HPAIVs and lethal outcome has not been well understood. In the present study, the highly pathogenic avian influenza viruses A/turkey/Italy/4580/1999 (H7N1) (Ty/Italy) and A/chicken/Netherlands/2586/2003 (H7N7) (Ck/NL) and the low pathogenic avian influenza virus (LPAIV) A/chicken/Ibaraki/1/2005 (H5N2) (Ck/Ibaraki) were intranasally inoculated into chickens. Ty/Italy replicated more extensively than Ck/NL in systemic tissues of the chickens, especially in the brain, and induced excessive mRNA expression of inflammatory and antiviral cytokines (IFN-γ, IL-1β, IL-6, and IFN-α) in proportion to its proliferation. Using in situ hybridization, IL-6 mRNA was detected mainly in microglial nodules in the brain of the chickens infected with Ty/Italy. Capillary leakage assessed by Evans blue staining was observed in multiple organs, especially in the brains of the chickens infected with Ty/Italy, and was not observed in those infected with Ck/NL. In contrast, LPAIV caused only local infection in the chickens, with neither apparent cytokine expression nor capillary leakage in any tissue of the chickens. The present results indicate that an excessive cytokine response is induced by rapid and extensive proliferation of HPAIV and causes fatal multiple organ failure in chickens. PMID:23874602
Beuchat, Larry R; Pettigrew, Charles A; Tremblay, Mario E; Roselle, Brian J; Scouten, Alan J
2004-08-01
Chlorine, ClO2, and a commercial raw fruit and vegetable sanitizer were evaluated for their effectiveness in killing vegetative cells and spores of Bacillus cereus and spores of Bacillus thuringiensis. The ultimate goal was to use one or both species as a potential surrogate(s) for Bacillus anthracis in studies that focus on determining the efficacy of sanitizers in killing the pathogen on food contact surfaces and foods. Treatment with alkaline (pH 10.5 to 11.0) ClO2 (200 microg/ml) produced by electrochemical technologies reduced populations of a five-strain mixture of vegetative cells and a five-strain mixture of spores of B. cereus by more than 5.4 and more than 6.4 log CFU/ml respectively, within 5 min. This finding compares with respective reductions of 4.5 and 1.8 log CFU/ml resulting from treatment with 200 microg/ml of chlorine. Treatment with a 1.5% acidified (pH 3.0) solution of Fit powder product was less effective, causing 2.5- and 0.4-log CFU/ml reductions in the number of B. cereus cells and spores, respectively. Treatment with alkaline ClO2 (85 microg/ml), acidified (pH 3.4) ClO2 (85 microg/ml), and a mixture of ClO2 (85 microg/ml) and Fit powder product (0.5%) (pH 3.5) caused reductions in vegetative cell/spore populations of more than 5.3/5.6, 5.3/5.7, and 5.3/6.0 log CFU/ml, respectively. Treatment of B. cereus and B. thuringiensis spores in a medium (3.4 mg/ml of organic and inorganic solids) in which cells had grown and produced spores with an equal volume of alkaline (pH 12.1) ClO2 (400 microg/ml) for 30 min reduced populations by 4.6 and 5.2 log CFU/ml, respectively, indicating high lethality in the presence of materials other than spores that would potentially react with and neutralize the sporicidal activity of ClO2.
Khoriaty, Rami; Everett, Lesley; Chase, Jennifer; Zhu, Guojing; Hoenerhoff, Mark; McKnight, Brooke; Vasievich, Matthew P.; Zhang, Bin; Tomberg, Kärt; Williams, John; Maillard, Ivan; Ginsburg, David
2016-01-01
In humans, loss of function mutations in SEC23B result in Congenital Dyserythropoietic Anemia type II (CDAII), a disease limited to defective erythroid development. Patients with two nonsense SEC23B mutations have not been reported, suggesting that complete SEC23B deficiency might be lethal. We previously reported that SEC23B-deficient mice die perinatally, exhibiting massive pancreatic degeneration and that mice with hematopoietic SEC23B deficiency do not exhibit CDAII. We now show that SEC23B deficiency restricted to the pancreas is sufficient to explain the lethality observed in mice with global SEC23B-deficiency. Immunohistochemical stains demonstrate an acinar cell defect but normal islet cells. Mammalian genomes contain two Sec23 paralogs, Sec23A and Sec23B. The encoded proteins share ~85% amino acid sequence identity. We generate mice with pancreatic SEC23A deficiency and demonstrate that these mice survive normally, exhibiting normal pancreatic weights and histology. Taken together, these data demonstrate that SEC23B but not SEC23A is essential for murine pancreatic development. We also demonstrate that two BAC transgenes spanning Sec23b rescue the lethality of mice homozygous for a Sec23b gene trap allele, excluding a passenger gene mutation as the cause of the pancreatic lethality, and indicating that the regulatory elements critical for Sec23b pancreatic function reside within the BAC transgenes. PMID:27297878
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doud, Devin F. R.; Angenent, Largus T.
Rhodopseudomonas palustris has emerged as a model microbe for the anaerobic metabolism of p-coumarate, which is an aromatic compound and a primary component of lignin. However, under an aerobic conditions, R.palustris must actively eliminate excess reducing equivalents through a number of known strategies (e.g., CO 2 fixation, H 2 evolution) to avoid lethal redox imbalance. Others had hypothesized that to ease the burden of this redox imbalance, a clonal population of R.palustris could functionally differentiate into a pseudo-consortium. Within this pseudo-consortium, one sub-population would perform the aromatic moiety degradation into acetate, while the other sub-population would oxidize acetate, resulting inmore » a single-genotype syntrophy through acetate sharing. Here, the objective was to test this hypothesis by utilizing microbial lelectrochemistry as a research tool with the extrac ellular-electron-transferring bacterium Geobacter sulfurreducens as a reporter strain replacing the hypothesized acetate-oxidizing sub-population. We used a 2×4 experimental design with pure cultures of R. palustris in serum bottles and co-cultures of R. palustris and G.sulfurreducens in bioelectrochemical systems.This experimental design included growth medium with and without bicarbonate to induce non-lethal and lethal redox imbalance conditions, respectively, in R. palustris. Finally, the design also included a mutant strain (NifA*) of R. palustris, which constitutively produces H 2, to serve both as a positive control for metabolite secretion (H 2) to G. sulfurreducens, and as a non-lethal redox control for without bicarbonate conditions. Our results demonstrate that acetate sharing between different sub-populations of R. palustris does not occur while degrading p-coumarate under either non-lethal or lethal redox imbalance conditions. Furthermore, this work highlights the strength of microbial electrochemistry as a tool for studying microbial syntrophy.« less
Kyewski, B A; Travis, M; Kaplan, H S
1984-09-01
We analyzed the genetic restriction of direct cell-cell interactions between thymocytes and a) cortical epithelial cells, b) macrophages, and c) medullary dendritic cells in the mouse thymus. Thymectomized (C3H X C57BL/Ka)F1 hybrid mice were doubly grafted with P1 and P2 neonatal thymus grafts, were lethally irradiated, and were reconstituted with a mixture of P1 and P2 bone marrow cells which differed in the Thy-1 locus. The contributions of both parental inocula to the composition of the free and stromal cell-associated T cell compartments were analyzed separately in thymic grafts of each parental strain. The lymphoid composition in both compartments essentially reflected the peripheral T cell-chimerism in the host. The development of lymphostromal complexes was not restricted by the genotype of the partner cells. Statistical analysis of the distributions of P1 and P2 T cells among free thymocytes and within individual lymphostromal complexes, however, suggests that the T cells of an individual complex are the progeny of oligoclonal proliferation. Thus, both epithelial cells and bone marrow-derived stromal cells seem to be involved in different stages of intrathymic lymphopoiesis.
Humbert, Olivier; Salama, Nina R.
2008-01-01
The naturally competent organism Helicobacter pylori encodes a large number of restriction–modification (R–M) systems that consist of a restriction endonuclease and a DNA methyltransferase. R–M systems are not only believed to limit DNA exchange among bacteria but may also have other cellular functions. We report a previously uncharacterized H. pylori type II R–M system, M.HpyAXII/R.HpyAXII. We show that this system targets GTAC sites, which are rare in the H. pylori chromosome but numerous in ribosomal RNA genes. As predicted, this type II R–M system showed attributes of a selfish element. Deletion of the methyltransferase M.HpyAXII is lethal when associated with an active endonuclease R.HpyAXII unless compensated by adaptive mutation or gene amplification. R.HpyAXII effectively restricted both unmethylated plasmid and chromosomal DNA during natural transformation and was predicted to belong to the novel ‘half pipe’ structural family of endonucleases. Analysis of a panel of clinical isolates revealed that R.HpyAXII was functional in a small number of H. pylori strains (18.9%, n = 37), whereas the activity of M.HpyAXII was highly conserved (92%, n = 50), suggesting that GTAC methylation confers a selective advantage to H. pylori. However, M.HpyAXII activity did not enhance H. pylori fitness during stomach colonization of a mouse infection model. PMID:18978016
Impacts of neonicotinoid use on long-term population changes in wild bees in England.
Woodcock, Ben A; Isaac, Nicholas J B; Bullock, James M; Roy, David B; Garthwaite, David G; Crowe, Andrew; Pywell, Richard F
2016-08-16
Wild bee declines have been ascribed in part to neonicotinoid insecticides. While short-term laboratory studies on commercially bred species (principally honeybees and bumblebees) have identified sub-lethal effects, there is no strong evidence linking these insecticides to losses of the majority of wild bee species. We relate 18 years of UK national wild bee distribution data for 62 species to amounts of neonicotinoid use in oilseed rape. Using a multi-species dynamic Bayesian occupancy analysis, we find evidence of increased population extinction rates in response to neonicotinoid seed treatment use on oilseed rape. Species foraging on oilseed rape benefit from the cover of this crop, but were on average three times more negatively affected by exposure to neonicotinoids than non-crop foragers. Our results suggest that sub-lethal effects of neonicotinoids could scale up to cause losses of bee biodiversity. Restrictions on neonicotinoid use may reduce population declines.
Impacts of neonicotinoid use on long-term population changes in wild bees in England
NASA Astrophysics Data System (ADS)
Woodcock, Ben A.; Isaac, Nicholas J. B.; Bullock, James M.; Roy, David B.; Garthwaite, David G.; Crowe, Andrew; Pywell, Richard F.
2016-08-01
Wild bee declines have been ascribed in part to neonicotinoid insecticides. While short-term laboratory studies on commercially bred species (principally honeybees and bumblebees) have identified sub-lethal effects, there is no strong evidence linking these insecticides to losses of the majority of wild bee species. We relate 18 years of UK national wild bee distribution data for 62 species to amounts of neonicotinoid use in oilseed rape. Using a multi-species dynamic Bayesian occupancy analysis, we find evidence of increased population extinction rates in response to neonicotinoid seed treatment use on oilseed rape. Species foraging on oilseed rape benefit from the cover of this crop, but were on average three times more negatively affected by exposure to neonicotinoids than non-crop foragers. Our results suggest that sub-lethal effects of neonicotinoids could scale up to cause losses of bee biodiversity. Restrictions on neonicotinoid use may reduce population declines.
Impacts of neonicotinoid use on long-term population changes in wild bees in England
Woodcock, Ben A.; Isaac, Nicholas J. B.; Bullock, James M.; Roy, David B.; Garthwaite, David G.; Crowe, Andrew; Pywell, Richard F.
2016-01-01
Wild bee declines have been ascribed in part to neonicotinoid insecticides. While short-term laboratory studies on commercially bred species (principally honeybees and bumblebees) have identified sub-lethal effects, there is no strong evidence linking these insecticides to losses of the majority of wild bee species. We relate 18 years of UK national wild bee distribution data for 62 species to amounts of neonicotinoid use in oilseed rape. Using a multi-species dynamic Bayesian occupancy analysis, we find evidence of increased population extinction rates in response to neonicotinoid seed treatment use on oilseed rape. Species foraging on oilseed rape benefit from the cover of this crop, but were on average three times more negatively affected by exposure to neonicotinoids than non-crop foragers. Our results suggest that sub-lethal effects of neonicotinoids could scale up to cause losses of bee biodiversity. Restrictions on neonicotinoid use may reduce population declines. PMID:27529661
Assisted suicide of a selfish gene.
Thomson, M S; Beeman, R W
1999-01-01
Medea (M) factors and the hybrid incompatibility factor (H) are involved in two incompatibility systems in flour beetles that were previously thought to be independent. M factors are a novel class of selfish genes that act by maternal lethality to nonself. The H factor causes the death of hybrids with a paternally derived H gene and previously uncharacterized maternal cofactors. We now find that M factors exhibit their selfish behavior only in the absence of the H factor. Furthermore, we show that the previously uncharacterized maternal cofactors required for H-associated hybrid inviability are identical to M factors. We propose that incompatibility between H strains and M strains is due to suppression by the H factor of the self-rescuing activity of the lethal M genes. This interaction has the effect of converting M elements from selfish into self-destructive or "suicidal" genes. M factors are globally widespread, but are conspicuously absent from India, the only country where the H factor is known to occur. Such a mechanism could prevent the spread of selfish M elements by establishing an absolute barrier to hybridization in the boundary between M and non-M zones.
Pokatayev, Vladislav; Hasin, Naushaba; Chon, Hyongi; Cerritelli, Susana M.; Sakhuja, Kiran; Ward, Jerrold M.; Morris, H. Douglas; Yan, Nan
2016-01-01
The neuroinflammatory autoimmune disease Aicardi-Goutières syndrome (AGS) develops from mutations in genes encoding several nucleotide-processing proteins, including RNase H2. Defective RNase H2 may induce accumulation of self-nucleic acid species that trigger chronic type I interferon and inflammatory responses, leading to AGS pathology. We created a knock-in mouse model with an RNase H2 AGS mutation in a highly conserved residue of the catalytic subunit, Rnaseh2aG37S/G37S (G37S), to understand disease pathology. G37S homozygotes are perinatal lethal, in contrast to the early embryonic lethality previously reported for Rnaseh2b- or Rnaseh2c-null mice. Importantly, we found that the G37S mutation led to increased expression of interferon-stimulated genes dependent on the cGAS–STING signaling pathway. Ablation of STING in the G37S mice results in partial rescue of the perinatal lethality, with viable mice exhibiting white spotting on their ventral surface. We believe that the G37S knock-in mouse provides an excellent animal model for studying RNASEH2-associated autoimmune diseases. PMID:26880576
Ohya, Y.; Botstein, D.
1994-01-01
Conditional-lethal mutations of the single calmodulin gene in Saccharomyces cerevisiae have been very difficult to isolate by random and systematic methods, despite the fact that deletions cause recessive lethality. We report here the isolation of numerous conditional-lethal mutants that were recovered by systematically altering phenylalanine residues. The phenylalanine residues of calmodulin were implicated in function both by structural studies of calmodulin bound to target peptides and by their extraordinary conservation in evolution. Seven single and 26 multiple Phe -> Ala mutations were constructed. Mutant phenotypes were examined in a haploid cmd1 disrupted strain under three conditions: single copy, low copy, and overexpressed. Whereas all but one of the single mutations caused no obvious phenotype, most of the multiple mutations caused obvious growth phenotypes. Five were lethal, 6 were lethal only in synthetic medium, 13 were temperature-sensitive lethal and 2 had no discernible phenotypic consequences. Overexpression of some of the mutant genes restored the phenotype to nearly wild type. Several temperature-sensitive calmodulin mutations were suppressed by elevated concentration of CaCl(2) in the medium. Mutant calmodulin protein was detected at normal levels in extracts of most of the lethal mutant cells, suggesting that the deleterious phenotypes were due to loss of the calmodulin function and not protein instability. Analysis of diploid strains heterozygous for all combinations of cmd1-ts alleles revealed four intragenic complementation groups. The contributions of individual phe->ala changes to mutant phenotypes support the idea of internal functional redundancy in the symmetrical calmodulin protein molecule. These results suggest that the several phenylalanine residues in calmodulin are required to different extents in different combinations in order to carry out each of the several essential tasks. PMID:7896089
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siu, W.P.; Pun, Pamela Boon Li; Latchoumycandane, Calivarathan
2008-03-15
Diclofenac, a widely used nonsteroidal anti-inflammatory drug, has been associated with rare but severe cases of clinical hepatotoxicity. Diclofenac causes concentration-dependent cell death in human hepatocytes (after 24-48 h) by mitochondrial permeabilization via poorly defined mechanisms. To explore whether the cyclophilin D (CyD)-dependent mitochondrial permeability transition (mPT) and/or the mitochondrial outer membrane permeabilization (MOMP) was primarily involved in mediating cell death, we exposed immortalized human hepatocytes (HC-04) to apoptogenic concentrations of diclofenac (> 500 {mu}M) in the presence or absence of inhibitors of upstream mediators. The CyD inhibitor, cyclosporin A (CsA, 2 {mu}M) fully inhibited diclofenac-induced cell injury, suggesting thatmore » mPT was involved. However, CyD gene silencing using siRNA left the cells susceptible to diclofenac toxicity, and CsA still protected the CyD-negative cells from lethal injury. Diclofenac induced early (9 h) activation of Bax and Bak and caused mitochondrial translocation of Bax, indicating that MOMP was involved in cell death. Inhibition of Bax protein expression by using siRNA significantly protected HC-04 from diclofenac-induced cell injury. Diclofenac also induced early Bid activation (tBid formation, 6 h), which is an upstream mechanism that initiates Bax activation and mitochondrial translocation. Bid activation was sensitive to the Ca{sup 2+} chelator, BAPTA. In conclusion, we found that Bax/Bak-mediated MOMP is a key mechanism of diclofenac-induced lethal cell injury in human hepatocytes, and that CsA can prevent MOMP through inhibition of Bax activation. These data support our concept that the Ca{sup 2+}-Bid-Bax-MOMP axis is a critical pathway in diclofenac (metabolite)-induced hepatocyte injury.« less
Metal Ions, Not Metal-Catalyzed Oxidative Stress, Cause Clay Leachate Antibacterial Activity
Otto, Caitlin C.; Koehl, Jennifer L.; Solanky, Dipesh; Haydel, Shelley E.
2014-01-01
Aqueous leachates prepared from natural antibacterial clays, arbitrarily designated CB-L, release metal ions into suspension, have a low pH (3.4–5), generate reactive oxygen species (ROS) and H2O2, and have a high oxidation-reduction potential. To isolate the role of pH in the antibacterial activity of CB clay mixtures, we exposed three different strains of Escherichia coli O157:H7 to 10% clay suspensions. The clay suspension completely killed acid-sensitive and acid-tolerant E. coli O157:H7 strains, whereas incubation in a low-pH buffer resulted in a minimal decrease in viability, demonstrating that low pH alone does not mediate antibacterial activity. The prevailing hypothesis is that metal ions participate in redox cycling and produce ROS, leading to oxidative damage to macromolecules and resulting in cellular death. However, E. coli cells showed no increase in DNA or protein oxidative lesions and a slight increase in lipid peroxidation following exposure to the antibacterial leachate. Further, supplementation with numerous ROS scavengers eliminated lipid peroxidation, but did not rescue the cells from CB-L-mediated killing. In contrast, supplementing CB-L with EDTA, a broad-spectrum metal chelator, reduced killing. Finally, CB-L was equally lethal to cells in an anoxic environment as compared to the aerobic environment. Thus, ROS were not required for lethal activity and did not contribute to toxicity of CB-L. We conclude that clay-mediated killing was not due to oxidative damage, but rather, was due to toxicity associated directly with released metal ions. PMID:25502790
Highly Pathogenic Influenza A(H5Nx) Viruses with Altered H5 Receptor-Binding Specificity
Guo, Hongbo; de Vries, Erik; McBride, Ryan; Dekkers, Jojanneke; Peng, Wenjie; Bouwman, Kim M.; Nycholat, Corwin; Verheije, M. Helene; Paulson, James C.; van Kuppeveld, Frank J.M.
2017-01-01
Emergence and intercontinental spread of highly pathogenic avian influenza A(H5Nx) virus clade 2.3.4.4 is unprecedented. H5N8 and H5N2 viruses have caused major economic losses in the poultry industry in Europe and North America, and lethal human infections with H5N6 virus have occurred in Asia. Knowledge of the evolution of receptor-binding specificity of these viruses, which might affect host range, is urgently needed. We report that emergence of these viruses is accompanied by a change in receptor-binding specificity. In contrast to ancestral clade 2.3.4 H5 proteins, novel clade 2.3.4.4 H5 proteins bind to fucosylated sialosides because of substitutions K222Q and S227R, which are unique for highly pathogenic influenza virus H5 proteins. North American clade 2.3.4.4 virus isolates have retained only the K222Q substitution but still bind fucosylated sialosides. Altered receptor-binding specificity of virus clade 2.3.4.4 H5 proteins might have contributed to emergence and spread of H5Nx viruses. PMID:27869615
Estimations of the lethal and exposure doses for representative methanol symptoms in humans.
Moon, Chan-Seok
2017-01-01
The aim of this review was to estimate the lethal and exposure doses of a representative symptom (blindness) of methanol exposure in humans by reviewing data from previous articles. Available articles published from 1970 to 2016 that investigated the dose-response relationship for methanol exposure (i.e., the exposure concentration and the biological markers/clinical symptoms) were evaluated; the MEDLINE and RISS (Korean search engine) databases were searched. The available data from these articles were carefully selected to estimate the range and median of a lethal human dose. The regression equation and correlation coefficient (between the exposure level and urinary methanol concentration as a biological exposure marker) were assumed from the previous data. The lethal human dose of pure methanol was estimated at 15.8-474 g/person as a range and as 56.2 g/person as the median. The dose-response relationship between methanol vapor in ambient air and urinary methanol concentrations was thought to be correlated. An oral intake of 3.16-11.85 g/person of pure methanol could cause blindness. The lethal dose from respiratory intake was reported to be 4000-13,000 mg/l. The initial concentration of optic neuritis and blindness were shown to be 228.5 and 1103 mg/l, respectively, for a 12-h exposure. The concentration of biological exposure indices and clinical symptoms for methanol exposure might have a dose-response relationship according to previous articles. Even a low dose of pure methanol through oral or respiratory exposure might be lethal or result in blindness as a clinical symptom.
NASA Technical Reports Server (NTRS)
Prasad, T. K.; Cline, M. G.
1985-01-01
Mechanical perturbation (MP, rubbing) or internodes of Pharbitis nil shoots initiates release of lateral buds (LB) from apical dominance within 48 h. Evidence is presented which suggests that MP promotion of LB outgrowth is mediated by ethylene-induced restriction of main shoot growth. Ethylene production in the internodes is stimulated by MP within 2 h. Effects of MP are mimicked by treatments with 1-aminocyclopropane-1-carboxylic acid (ACC) and are negated by the inhibitors of ethylene production or action, aminoethoxy vinylglycine (AVG) and AgNO3. The fact that effects of MP, ACC, and ethylene inhibitors are observed to occur on main shoot growth at least 24 h before they are observed to occur on LB growth suggests a possible cause and effect relationship. MP also causes an increase in internode diameter. MP stimulation of ethylene production appears to be mediated by ACC synthase. The results of this study and our previous studies suggest that apical dominance may be released by any mechanism which induces ethylene restriction of main shoot growth.
Tondo, María Laura; Delprato, María Laura; Kraiselburd, Ivana; Fernández Zenoff, María Verónica; Farías, María Eugenia; Orellano, Elena G
2016-01-01
Xanthomonas citri subsp. citri (Xcc) is the bacterium responsible for citrus canker. This bacterium is exposed to reactive oxygen species (ROS) at different points during its life cycle, including those normally produced by aerobic respiration or upon exposition to ultraviolet (UV) radiation. Moreover, ROS are key components of the host immune response. Among enzymatic ROS-detoxifying mechanisms, catalases eliminate H2O2, avoiding the potential damage caused by this specie. Xcc genome includes four catalase genes. In this work, we studied the physiological role of KatG, the only bifunctional catalase of Xcc, through the construction and characterization of a modified strain (XcckatG), carrying an insertional mutation in the katG gene. First, we evaluated the involvement of KatG in the bacterial adaptive response to H2O2. XcckatG cultures exhibited lower catalase activity than those of the wild-type strain, and this activity was not induced upon treatment with sub-lethal doses of H2O2. Moreover, the KatG-deficient mutant exhibited decreased tolerance to H2O2 toxicity compared to wild-type cells and accumulated high intracellular levels of peroxides upon exposure to sub-lethal concentrations of H2O2. To further study the role of KatG in Xcc physiology, we evaluated bacterial survival upon exposure to UV-A or UV-B radiation. In both conditions, XcckatG showed a high mortality in comparison to Xcc wild-type. Finally, we studied the development of bacterial biofilms. While structured biofilms were observed for the Xcc wild-type, the development of these structures was impaired for XcckatG. Based on these results, we demonstrated that KatG is responsible for Xcc adaptive response to H2O2 and a key component of the bacterial response to oxidative stress. Moreover, this enzyme plays an important role during Xcc epiphytic survival, being essential for biofilm formation and UV resistance.
Tondo, María Laura; Delprato, María Laura; Kraiselburd, Ivana; Fernández Zenoff, María Verónica; Farías, María Eugenia; Orellano, Elena G.
2016-01-01
Xanthomonas citri subsp. citri (Xcc) is the bacterium responsible for citrus canker. This bacterium is exposed to reactive oxygen species (ROS) at different points during its life cycle, including those normally produced by aerobic respiration or upon exposition to ultraviolet (UV) radiation. Moreover, ROS are key components of the host immune response. Among enzymatic ROS-detoxifying mechanisms, catalases eliminate H2O2, avoiding the potential damage caused by this specie. Xcc genome includes four catalase genes. In this work, we studied the physiological role of KatG, the only bifunctional catalase of Xcc, through the construction and characterization of a modified strain (XcckatG), carrying an insertional mutation in the katG gene. First, we evaluated the involvement of KatG in the bacterial adaptive response to H2O2. XcckatG cultures exhibited lower catalase activity than those of the wild-type strain, and this activity was not induced upon treatment with sub-lethal doses of H2O2. Moreover, the KatG-deficient mutant exhibited decreased tolerance to H2O2 toxicity compared to wild-type cells and accumulated high intracellular levels of peroxides upon exposure to sub-lethal concentrations of H2O2. To further study the role of KatG in Xcc physiology, we evaluated bacterial survival upon exposure to UV-A or UV-B radiation. In both conditions, XcckatG showed a high mortality in comparison to Xcc wild-type. Finally, we studied the development of bacterial biofilms. While structured biofilms were observed for the Xcc wild-type, the development of these structures was impaired for XcckatG. Based on these results, we demonstrated that KatG is responsible for Xcc adaptive response to H2O2 and a key component of the bacterial response to oxidative stress. Moreover, this enzyme plays an important role during Xcc epiphytic survival, being essential for biofilm formation and UV resistance. PMID:26990197
Cross-protection among lethal H5N2 influenza viruses induced by DNA vaccine to the hemagglutinin.
Kodihalli, S; Haynes, J R; Robinson, H L; Webster, R G
1997-01-01
Inoculation of mice with hemagglutinin (HA)-expressing DNA affords reliable protection against lethal influenza virus infection, while in chickens the same strategy has yielded variable results. Here we show that gene gun delivery of DNA encoding an H5 HA protein confers complete immune protection to chickens challenged with lethal H5 viruses. In tests of the influence of promoter selection on vaccine efficacy, close correlations were obtained between immune responses and the dose of DNA administered, whether a cytomegalovirus (CMV) immediate-early promoter or a chicken beta-actin promoter was used. Perhaps most important, the HA-DNA vaccine conferred 95% cross-protection against challenge with lethal antigenic variants that differed from the primary antigen by 11 to 13% (HA1 amino acid sequence homology). Overall, the high levels of protection seen with gene gun delivery of HA-DNA were as good as, if not better than, those achieved with a conventional whole-virus vaccine, with fewer instances of morbidity and death. The absence of detectable antibody titers after primary immunization, together with the rapid appearance of high titers immediately after challenge, implicates efficient B-cell priming as the principal mechanism of DNA-mediated immune protection. Our results suggest that the efficacy of HA-DNA influenza virus vaccine in mice extends to chickens and probably to other avian species as well. Indeed, the H5 preparation we describe offers an attractive means to protect the domestic poultry industry in the United States from lethal H5N2 viruses, which continue to circulate in Mexico. PMID:9094608
Bradley, Derek; McNeil, Brian; Laffey, John G; Rowan, Neil J
2012-06-01
The effects of mild conventional food-processing conditions on Listeria monocytogenes survival to pulsed UV (PUV) irradiation and virulence-associated characteristics were investigated. Specifically, this study describes the inability of 10 strains representative of 3 different culture forms or morphotypes of L. monocytogenes to adapt to normally lethal levels of PUV-irradiation after exposure to sub-lethal concentrations of salt (7.5% (w/v) NaCl for 1 h), acid (pH 5.5 for 1 h), heating (48 °C for 1 h) or PUV (UV dose 0.08 μJ/cm(2)). Findings showed that the order of increasing sensitivity of L. monocytogenes of non-adapted and stressed morphotypes to low pH (pH 3.5 for 5 h, adjusted with lactic), high salt (17.5% w/v NaCl for 5 h), heating (60 °C for 1 h) and PUV-irradiation (100 pulses at 7.2 J and 12.8 J, equivalent to UV doses of 2.7 and 8.4 μJ/cm(2) respectively) was typical wild-type smooth (S/WT), atypical filamentous rough (FR) and atypical multiple-cell-chain (MCR) variants. Exposure of L. monocytogenes cells to sub-lethal acid, salt or heating conditions resulted in similar or increased susceptibility to PUV treatments. Only prior exposure to mild heat stressing significantly enhanced invasion of Caco-2 cells, whereas subjection of L. monocytogenes cells to combined sub-lethal salt, acid and heating conditions produced the greatest reduction in invasiveness. Implications of these findings are discussed. This constitutes the first study to show that pre-exposure to mild conventional food-processing stresses enhances sensitivity of different culture morphotypes of L. monocytogenes to PUV, which is growing in popularity as an alternative or complementary approach for decontamination in the food environment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice.
Li, Kun; Wohlford-Lenane, Christine L; Channappanavar, Rudragouda; Park, Jung-Eun; Earnest, James T; Bair, Thomas B; Bates, Amber M; Brogden, Kim A; Flaherty, Heather A; Gallagher, Tom; Meyerholz, David K; Perlman, Stanley; McCray, Paul B
2017-04-11
The Middle East respiratory syndrome (MERS) emerged in Saudi Arabia in 2012, caused by a zoonotically transmitted coronavirus (CoV). Over 1,900 cases have been reported to date, with ∼36% fatality rate. Lack of autopsies from MERS cases has hindered understanding of MERS-CoV pathogenesis. A small animal model that develops progressive pulmonary manifestations when infected with MERS-CoV would advance the field. As mice are restricted to infection at the level of DPP4, the MERS-CoV receptor, we generated mice with humanized exons 10-12 of the mouse Dpp4 locus. Upon inoculation with MERS-CoV, human DPP4 knockin (KI) mice supported virus replication in the lungs, but developed no illness. After 30 serial passages through the lungs of KI mice, a mouse-adapted virus emerged (MERS MA ) that grew in lungs to over 100 times higher titers than the starting virus. A plaque-purified MERS MA clone caused weight loss and fatal infection. Virus antigen was observed in airway epithelia, pneumocytes, and macrophages. Pathologic findings included diffuse alveolar damage with pulmonary edema and hyaline membrane formation associated with accumulation of activated inflammatory monocyte-macrophages and neutrophils in the lungs. Relative to the parental MERS-CoV, MERS MA viruses contained 13-22 mutations, including several within the spike (S) glycoprotein gene. S-protein mutations sensitized viruses to entry-activating serine proteases and conferred more rapid entry kinetics. Recombinant MERS MA bearing mutant S proteins were more virulent than the parental virus in hDPP4 KI mice. The hDPP4 KI mouse and the MERS MA provide tools to investigate disease causes and develop new therapies.
Heinrichs, Katherina; Székely, András; Tóth, Mónika Ditta; Coyne, James; Quintão, Sónia; Arensman, Ella; Coffey, Claire; Maxwell, Margaret; Värnik, Airi; van Audenhove, Chantal; McDaid, David; Sarchiapone, Marco; Schmidtke, Armin; Genz, Axel; Gusmão, Ricardo; Hegerl, Ulrich
2015-01-01
Background In Europe, men have lower rates of attempted suicide compared to women and at the same time a higher rate of completed suicides, indicating major gender differences in lethality of suicidal behaviour. The aim of this study was to analyse the extent to which these gender differences in lethality can be explained by factors such as choice of more lethal methods or lethality differences within the same suicide method or age. In addition, we explored gender differences in the intentionality of suicide attempts. Methods and Findings Methods. Design: Epidemiological study using a combination of self-report and official data. Setting: Mental health care services in four European countries: Germany, Hungary, Ireland, and Portugal. Data basis: Completed suicides derived from official statistics for each country (767 acts, 74.4% male) and assessed suicide attempts excluding habitual intentional self-harm (8,175 acts, 43.2% male). Main Outcome Measures and Data Analysis. We collected data on suicidal acts in eight regions of four European countries participating in the EU-funded “OSPI-Europe”-project (www.ospi-europe.com). We calculated method-specific lethality using the number of completed suicides per method * 100 / (number of completed suicides per method + number of attempted suicides per method). We tested gender differences in the distribution of suicidal acts for significance by using the χ2-test for two-by-two tables. We assessed the effect sizes with phi coefficients (φ). We identified predictors of lethality with a binary logistic regression analysis. Poisson regression analysis examined the contribution of choice of methods and method-specific lethality to gender differences in the lethality of suicidal acts. Findings Main Results Suicidal acts (fatal and non-fatal) were 3.4 times more lethal in men than in women (lethality 13.91% (regarding 4106 suicidal acts) versus 4.05% (regarding 4836 suicidal acts)), the difference being significant for the methods hanging, jumping, moving objects, sharp objects and poisoning by substances other than drugs. Median age at time of suicidal behaviour (35–44 years) did not differ between males and females. The overall gender difference in lethality of suicidal behaviour was explained by males choosing more lethal suicide methods (odds ratio (OR) = 2.03; 95% CI = 1.65 to 2.50; p < 0.000001) and additionally, but to a lesser degree, by a higher lethality of suicidal acts for males even within the same method (OR = 1.64; 95% CI = 1.32 to 2.02; p = 0.000005). Results of a regression analysis revealed neither age nor country differences were significant predictors for gender differences in the lethality of suicidal acts. The proportion of serious suicide attempts among all non-fatal suicidal acts with known intentionality (NFSAi) was significantly higher in men (57.1%; 1,207 of 2,115 NFSAi) than in women (48.6%; 1,508 of 3,100 NFSAi) (χ2 = 35.74; p < 0.000001). Main limitations of the study Due to restrictive data security regulations to ensure anonymity in Ireland, specific ages could not be provided because of the relatively low absolute numbers of suicide in the Irish intervention and control region. Therefore, analyses of the interaction between gender and age could only be conducted for three of the four countries. Attempted suicides were assessed for patients presenting to emergency departments or treated in hospitals. An unknown rate of attempted suicides remained undetected. This may have caused an overestimation of the lethality of certain methods. Moreover, the detection of attempted suicides and the registration of completed suicides might have differed across the four countries. Some suicides might be hidden and misclassified as undetermined deaths. Conclusions Men more often used highly lethal methods in suicidal behaviour, but there was also a higher method-specific lethality which together explained the large gender differences in the lethality of suicidal acts. Gender differences in the lethality of suicidal acts were fairly consistent across all four European countries examined. Males and females did not differ in age at time of suicidal behaviour. Suicide attempts by males were rated as being more serious independent of the method used, with the exceptions of attempted hanging, suggesting gender differences in intentionality associated with suicidal behaviour. These findings contribute to understanding of the spectrum of reasons for gender differences in the lethality of suicidal behaviour and should inform the development of gender specific strategies for suicide prevention. PMID:26147965
Dierschke, Sarah; Ingham, Steven C; Ingham, Barbara H
2010-11-01
Adequate lethality in jerky manufacture destroys appropriate levels of Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Staphylococcus aureus. Our goal was to evaluate the lethality of four home-style dehydrator processes against these pathogens. Whole-muscle beef strips were inoculated with L. monocytogenes (five strains), S. aureus (five strains), or a mixed inoculum of E. coli O157:H7 (five strains) and Salmonella (eight strains). After allowing for attachment, strips were marinated in Colorado-, Original-, or Teriyaki-seasoned marinade for 22 to 24 h and dried in three home-style dehydrators (Garden Master, Excalibur, and Jerky Xpress) at 57.2 to 68.3°C. Samples were taken postmarination; after 4, 6, and 8 h of drying; and after drying, followed by heating for 10 min in a 135°C oven. Surviving inocula were enumerated. With a criterion of ≥ 5.0-log CFU/cm² reduction as the standard for adequate process lethality, none of the samples achieved the target lethality for any pathogen after 4 h of drying, even though all samples appeared "done" (water activity of less than 0.85). A postdehydration oven-heating step increased the proportion of samples meeting the target lethality after 4 h of drying to 71.9, 88.9, 55.6, and 77.8% for L. monocytogenes-, S. aureus-, E. coli O157:H7-, and Salmonella-inoculated samples, respectively, and after an 8-h drying to 90.6, 94.4, 83.3, and 91.7% of samples, respectively. Significantly greater lethality was seen with higher dehydrator temperature and significantly lower with Teriyaki-marinated samples. Heating jerky dried in a home-style dehydrator for 10 min in a 135°C oven would be an effective way to help ensure safety of this product.
Gamma Radiation Reduced Toxicity of Azoxystrobin Tested on Artemia franciscana.
Dvorak, P; Zdarsky, M; Benova, K; Falis, M; Tomko, M
2016-06-01
Fungicide azoxystrobin toxicity was monitored by means of a 96-h biotest with Artemia franciscana nauplius stages after exposure to solutions with concentrations of 0.2, 0.4, 0.6 and 0.8 mg L(-1) irradiated with (60)Co gamma radiation with doses of 1, 2.5, 5 and 10 kGy. The effects of ionization radiation on azoxystrobin toxicity were mainly manifested by a statistically significant reduction of lethality after 72- and 96-h exposure. A maximum reduction of lethality of 72 % was achieved using doses of 1-5 kGy for an azoxystrobin initial concentration of 0.4 mg L(-1) and after 72 h of exposure. At a 96-h exposure, a difference of lethal effects reached up to 70 % for a dose of 10 kGy. The observed effect of gamma ionizing radiation on azoxystrobin toxicity suggest that this approach can be applied as an alternative for a reduction of azoxystrobin residua in food.
Pikarsky, Eli; Ronen, Ariel; Abramowitz, Julia; Levavi-Sivan, Berta; Hutoran, Marina; Shapira, Yechiam; Steinitz, Michael; Perelberg, Ayana; Soffer, Dov; Kotler, Moshe
2004-09-01
A lethal disease of koi and common carp (species Cyprinus carpio) has afflicted many fish farms worldwide since 1998, causing severe financial losses. Morbidity and mortality are restricted to common carp and koi and appear in spring and autumn, when water temperatures are 18 to 28 degrees C. We have isolated the virus causing the disease from sick fish, propagated it in koi fin cell culture, and shown that virus from a single clone causes lethal disease in carp and koi upon infection. Intraperitoneal virus injection or bathing the fish in virus-containing water kills 85 to 100% of the fish within 7 to 21 days. This virus is similar to the previously reported koi herpesvirus; however, it has characteristics inconsistent with the herpesvirus family, and thus we have called it carp interstitial nephritis and gill necrosis virus. We examined the pathobiology of this disease in carp by using immunohistochemistry and PCR. We found large amounts of the virus in the kidneys of sick fish and smaller amounts in liver and brain. A rapid increase in the viral load in the kidneys was detected by using both immunofluorescence and semiquantitative PCR. Histological analyses of fish at various times after infection revealed signs of interstitial nephritis as early as 2 days postinfection, which increased in severity up to 10 days postinfection. There was severe gill disease evidenced by loss of villi with accompanying inflammation in the gill rakers. Minimal focal inflammation was noted in livers and brains. This report describes the etiology and pathology of a recently described viral agent in fish.
Pikarsky, Eli; Ronen, Ariel; Abramowitz, Julia; Levavi-Sivan, Berta; Hutoran, Marina; Shapira, Yechiam; Steinitz, Michael; Perelberg, Ayana; Soffer, Dov; Kotler, Moshe
2004-01-01
A lethal disease of koi and common carp (species Cyprinus carpio) has afflicted many fish farms worldwide since 1998, causing severe financial losses. Morbidity and mortality are restricted to common carp and koi and appear in spring and autumn, when water temperatures are 18 to 28°C. We have isolated the virus causing the disease from sick fish, propagated it in koi fin cell culture, and shown that virus from a single clone causes lethal disease in carp and koi upon infection. Intraperitoneal virus injection or bathing the fish in virus-containing water kills 85 to 100% of the fish within 7 to 21 days. This virus is similar to the previously reported koi herpesvirus; however, it has characteristics inconsistent with the herpesvirus family, and thus we have called it carp interstitial nephritis and gill necrosis virus. We examined the pathobiology of this disease in carp by using immunohistochemistry and PCR. We found large amounts of the virus in the kidneys of sick fish and smaller amounts in liver and brain. A rapid increase in the viral load in the kidneys was detected by using both immunofluorescence and semiquantitative PCR. Histological analyses of fish at various times after infection revealed signs of interstitial nephritis as early as 2 days postinfection, which increased in severity up to 10 days postinfection. There was severe gill disease evidenced by loss of villi with accompanying inflammation in the gill rakers. Minimal focal inflammation was noted in livers and brains. This report describes the etiology and pathology of a recently described viral agent in fish. PMID:15308746
In vitro detection and quantification of botulinum neurotoxin type E activity in avian blood
Piazza, T.M.; Blehert, D.S.; Dunning, F.M.; Berlowski-Zier, B. M.; Zeytin, F.N.; Samuel, M.D.; Tucker, W.C.
2011-01-01
Botulinum neurotoxin serotype E (BoNT/E) outbreaks in the Great Lakes region cause large annual avian mortality events, with an estimated 17,000 bird deaths reported in 2007 alone. During an outbreak investigation, blood collected from bird carcasses is tested for the presence of BoNT/E using the mouse lethality assay. While sensitive, this method is labor-intensive and low throughput and can take up to 7 days to complete. We developed a rapid and sensitive in vitro assay, the BoTest Matrix E assay, that combines immunoprecipitation with high-affinity endopeptidase activity detection by F??rster resonance energy transfer (FRET) to rapidly quantify BoNT/E activity in avian blood with detection limits comparable to those of the mouse lethality assay. On the basis of the analysis of archived blood samples (n = 87) collected from bird carcasses during avian mortality investigations, BoTest Matrix E detected picomolar quantities of BoNT/E following a 2-h incubation and femtomolar quantities of BoNT/E following extended incubation (24 h) with 100% diagnostic specificity and 91% diagnostic sensitivity. ?? 2011, American Society for Microbiology.
In vitro detection and quantification of botulinum neurotoxin type E activity in avian blood
Piazza, Timothy M.; Blehert, David S.; Dunning, F. Mark; Berlowski-Zier, Brenda M.; Zeytin, Fusun N.; Samuel, Michael D.; Tucker, Ward C.
2011-01-01
Botulinum neurotoxin serotype E (BoNT/E) outbreaks in the Great Lakes region cause large annual avian mortality events, with an estimated 17,000 bird deaths reported in 2007 alone. During an outbreak investigation, blood collected from bird carcasses is tested for the presence of BoNT/E using the mouse lethality assay. While sensitive, this method is labor-intensive and low throughput and can take up to 7 days to complete. We developed a rapid and sensitive in vitro assay, the BoTest Matrix E assay, that combines immunoprecipitation with high-affinity endopeptidase activity detection by Förster resonance energy transfer (FRET) to rapidly quantify BoNT/E activity in avian blood with detection limits comparable to those of the mouse lethality assay. On the basis of the analysis of archived blood samples (n = 87) collected from bird carcasses during avian mortality investigations, BoTest Matrix E detected picomolar quantities of BoNT/E following a 2-h incubation and femtomolar quantities of BoNT/E following extended incubation (24 h) with 100% diagnostic specificity and 91% diagnostic sensitivity.
In Vitro Detection and Quantification of Botulinum Neurotoxin Type E Activity in Avian Blood▿
Piazza, Timothy M.; Blehert, David S.; Dunning, F. Mark; Berlowski-Zier, Brenda M.; Zeytin, Füsûn N.; Samuel, Michael D.; Tucker, Ward C.
2011-01-01
Botulinum neurotoxin serotype E (BoNT/E) outbreaks in the Great Lakes region cause large annual avian mortality events, with an estimated 17,000 bird deaths reported in 2007 alone. During an outbreak investigation, blood collected from bird carcasses is tested for the presence of BoNT/E using the mouse lethality assay. While sensitive, this method is labor-intensive and low throughput and can take up to 7 days to complete. We developed a rapid and sensitive in vitro assay, the BoTest Matrix E assay, that combines immunoprecipitation with high-affinity endopeptidase activity detection by Förster resonance energy transfer (FRET) to rapidly quantify BoNT/E activity in avian blood with detection limits comparable to those of the mouse lethality assay. On the basis of the analysis of archived blood samples (n = 87) collected from bird carcasses during avian mortality investigations, BoTest Matrix E detected picomolar quantities of BoNT/E following a 2-h incubation and femtomolar quantities of BoNT/E following extended incubation (24 h) with 100% diagnostic specificity and 91% diagnostic sensitivity. PMID:21908624
Newton, Teresa; Boogaard, Michael A.; Gray, Brian R.; Hubert, Terrance D.; Schloesser, Nicholas
2017-01-01
The invasive sea lamprey (Petromyzon marinus) poses a substantial threat to fish communities in the Great Lakes. Efforts to control sea lamprey populations typically involve treating tributary streams with lampricides on a recurring cycle. The presence of a substantial population of larval sea lampreys in the aquatic corridor between Lakes Huron and Erie prompted managers to propose a treatment using the granular formulation of Bayluscide® that targets larval sea lampreys that reside in sediments. However, these treatments could cause adverse effects on native freshwater mussels—imperiled animals that also reside in sediments. We estimated the risk of mortality and sub-lethal effects among eight species of adult and sub-adult mussels exposed to Bayluscide® for durations up to 8 h to mimic field applications. Mortality was appreciable in some species, especially in sub-adults (range, 23–51%). The lethal and sub-lethal effects were positively associated with the duration of exposure in most species and life stage combinations. Estimates of the median time of exposure that resulted in lethal and sub-lethal effects suggest that sub-adults were often affected by Bayluscide® earlier than adults. Siphoning activity and burrowing position of mussels during exposure may have moderated the uptake of Bayluscide® and may have influenced lethal and sub-lethal responses. Given that the various species and life stages were differentially affected, it will be difficult to predict the effects of Bayluscide® treatments on mussels.
Effective lethal mutagenesis of influenza virus by three nucleoside analogs.
Pauly, Matthew D; Lauring, Adam S
2015-04-01
Lethal mutagenesis is a broad-spectrum antiviral strategy that exploits the high mutation rate and low mutational tolerance of many RNA viruses. This approach uses mutagenic drugs to increase viral mutation rates and burden viral populations with mutations that reduce the number of infectious progeny. We investigated the effectiveness of lethal mutagenesis as a strategy against influenza virus using three nucleoside analogs, ribavirin, 5-azacytidine, and 5-fluorouracil. All three drugs were active against a panel of seasonal H3N2 and laboratory-adapted H1N1 strains. We found that each drug increased the frequency of mutations in influenza virus populations and decreased the virus' specific infectivity, indicating a mutagenic mode of action. We were able to drive viral populations to extinction by passaging influenza virus in the presence of each drug, indicating that complete lethal mutagenesis of influenza virus populations can be achieved when a sufficient mutational burden is applied. Population-wide resistance to these mutagenic agents did not arise after serial passage of influenza virus populations in sublethal concentrations of drug. Sequencing of these drug-passaged viral populations revealed genome-wide accumulation of mutations at low frequency. The replicative capacity of drug-passaged populations was reduced at higher multiplicities of infection, suggesting the presence of defective interfering particles and a possible barrier to the evolution of resistance. Together, our data suggest that lethal mutagenesis may be a particularly effective therapeutic approach with a high genetic barrier to resistance for influenza virus. Influenza virus is an RNA virus that causes significant morbidity and mortality during annual epidemics. Novel therapies for RNA viruses are needed due to the ease with which these viruses evolve resistance to existing therapeutics. Lethal mutagenesis is a broad-spectrum strategy that exploits the high mutation rate and the low mutational tolerance of most RNA viruses. It is thought to possess a higher barrier to resistance than conventional antiviral strategies. We investigated the effectiveness of lethal mutagenesis against influenza virus using three different drugs. We showed that influenza virus was sensitive to lethal mutagenesis by demonstrating that all three drugs induced mutations and led to an increase in the generation of defective viral particles. We also found that it may be difficult for resistance to these drugs to arise at a population-wide level. Our data suggest that lethal mutagenesis may be an attractive anti-influenza strategy that warrants further investigation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Balmus, Gabriel; Zhu, Min; Mukherjee, Sucheta; Lyndaker, Amy M.; Hume, Kelly R.; Lee, Jaesung; Riccio, Mark L.; Reeves, Anthony P.; Sutter, Nathan B.; Noden, Drew M.; Peters, Rachel M.; Weiss, Robert S.
2012-01-01
The human genomic instability syndrome ataxia telangiectasia (A-T), caused by mutations in the gene encoding the DNA damage checkpoint kinase ATM, is characterized by multisystem defects including neurodegeneration, immunodeficiency and increased cancer predisposition. ATM is central to a pathway that responds to double-strand DNA breaks, whereas the related kinase ATR leads a parallel signaling cascade that is activated by replication stress. To dissect the physiological relationship between the ATM and ATR pathways, we generated mice defective for both. Because complete ATR pathway inactivation causes embryonic lethality, we weakened the ATR mechanism to different degrees by impairing HUS1, a member of the 911 complex that is required for efficient ATR signaling. Notably, simultaneous ATM and HUS1 defects caused synthetic lethality. Atm/Hus1 double-mutant embryos showed widespread apoptosis and died mid-gestationally. Despite the underlying DNA damage checkpoint defects, increased DNA damage signaling was observed, as evidenced by H2AX phosphorylation and p53 accumulation. A less severe Hus1 defect together with Atm loss resulted in partial embryonic lethality, with the surviving double-mutant mice showing synergistic increases in genomic instability and specific developmental defects, including dwarfism, craniofacial abnormalities and brachymesophalangy, phenotypes that are observed in several human genomic instability disorders. In addition to identifying tissue-specific consequences of checkpoint dysfunction, these data highlight a robust, cooperative configuration for the mammalian DNA damage response network and further suggest HUS1 and related genes in the ATR pathway as candidate modifiers of disease severity in A-T patients. PMID:22575700
Dvoráková, Dagmar; Dvoráková, Katerina; Bláha, Ludek; Marsálek, Blahoslav; Knotková, Zora
2002-12-01
Xenopus laevis (African clawed frog) embryos in a 96-h teratogenesis assay (FETAX) were exposed to 0-250 microg/L and 500 microg/L of purified microcystin-LR (MCYST-LR) for the estimation of lethality, as well as to equivalent concentrations of biomass containing MCYST-LR (natural water bloom dominated by Microcystis aeruginosa) and biomass without MCYST-LR (bloom dominated by Microcystis wesenbergii). The highest tested concentrations of purified MCYST-LR caused up to 30% lethality after a 96-h exposure, corresponding to a LC(25) of 380 microg/L. Cyanobacterial biomass containing MCYST-LR caused significant lethality up to 50% at the highest tested concentrations (300 mg/L, i.e., 250 microg/L of MCYST-LR). The estimated 96-h LC(25) values varied from 125 mg/L (biomass containing MCYST-LR) up to 232 mg/L (biomass without MCYST-LR). A statistically significant increase in the number of malformed embryos was observed after exposure to cyanobacterial samples. Purified MCYST-LR at and above 25 microg/L significantly increased the number of malformations, with 53% of surviving embryos malformed in the highest tested concentration, 250 microg/L (EC(25) = 27 microg/L). Exposure to the highest concentration of MCYST-LR containing biomass resulted in more than 60% of the embryos being malformed and an EC(25) of 52 mg/L (i.e., 43 microg of MCYST-LR/L). Cyanobacterial biomass with no natural microcystin also induced substantial malformations-about 50% aberrant embryos at the highest concentration, 300 mg/L (EC(25) = 75 mg/L). External additions of purified MCYST-LR to the biomass that was originally without microcystins resulted in a slight additional increase in the rate of malformations (80% at the highest concentration, 300 mg of biomass plus 250 microg of MCYST-LR per liter). A comparison of lethality and effects on malformations (teratogenic index, TI = LC(25)/EC(25)) showed that all samples had significant teratogenic potential in the FETAX assay (TI(MCYST-LR) = 14; TI for biomass with and without microcystin ranged between 2.4 and 3.1, respectively). We conclude that cyanobacterial water blooms can significantly alter the normal development of amphibian embryos. Copyright 2002 Wiley Periodicals, Inc.
Phytophthora ramorum regulatory program: present, past, and future direction
Prakash Hebbar; Scott Pfister; Stacy Scott; Anthony Man-Son-Hing; Russ Bulluck
2013-01-01
Sudden oak death (SOD), caused by Phytophthora ramorum, is lethal to tanoak (Notholithocarpus densiflorus (Hook. & Arn.) Manos, Cannon & S.H. Oh), and threatens this species throughout its range in Oregon. The disease was first discovered in coastal southwest Oregon forests in July 2001. Since then an interagency team...
Detection and eradication of Phytophthora ramorum from Oregon forests, 2001-2011
Alan Kanaskie; Everett Hansen; Ellen Michaels Goheen; Nancy Osterbauer; Michael McWilliams; Jon Laine; Michael Thompson; Stacy Savona; Harvey Timeus; Bill Woosley; Randall Wiese; Wendy Sutton; Paul Reeser; Joe Hulbert; Rick Shultz; Dan Hilburn
2013-01-01
Sudden oak death (SOD), caused by Phytophthora ramorum, is lethal to tanoak (Notholithocarpus densiflorus (Hook. & Arn.) Manos, Cannon & S.H. Oh), and threatens this species throughout its range in Oregon. The disease was first discovered in coastal southwest Oregon forests in July 2001. Since then an interagency team...
The new Phytophthora ramorum dynamic in Europe: spread to larch
Anna Harris; Joan Webber
2013-01-01
Sudden oak death (SOD), caused by Phytophthora ramorum, is lethal to tanoak (Notholithocarpus densiflorus (Hook. & Arn.) Manos, Cannon & S.H. Oh), and threatens this species throughout its range in Oregon. The disease was first discovered in coastal southwest Oregon forests in July 2001. Since then an interagency team...
An Overview of Phytophthora ramorum in Washington State
Gary A. Chastagner; Katie Coats; Marianne Elliott
2013-01-01
Sudden oak death (SOD), caused by Phytophthora ramorum, is lethal to tanoak (Notholithocarpus densiflorus (Hook. & Arn.) Manos, Cannon & S.H. Oh), and threatens this species throughout its range in Oregon. The disease was first discovered in coastal southwest Oregon forests in July 2001. Since then an interagency team...
Ren, Huanhuan; Wang, Guiqin; Wang, Shuangshuang; Chen, Honglin; Chen, Zhiwei; Hu, Hongxing; Cheng, Genhong; Zhou, Paul
2016-01-01
Newly emerging highly pathogenic avian influenza (HPAI) H5N2, H5N3, H5N5, H5N6, H5N8 and H5N9 viruses have been spreading in poultry and wild birds. The H5N6 viruses have also caused 10 human infections with 4 fatal cases in China. Here, we assessed the cross-neutralization and cross-protection of human and mouse monoclonal antibodies against 2 viruses: a HPAI H5N8 virus, A/chicken/Netherlands/14015526/2014 (NE14) and a HPAI H5N6 virus, A/Sichuan/26221/2014 (SC14). The former was isolated from an infected chicken in Netherlands in 2014 and the latter was isolated from an infected human patient in Sichuan, China. We show that antibodies FLA5.10, FLD21.140, 100F4 and 65C6, but not AVFluIgG01, AVFluIgG03, S139/1 and the VRC01 control, potently cross-neutralize the H5N8 NE14 and H5N6 SC14 viruses. Furthermore, we show that a single injection of >1 mg/kg of antibody 100F4 at 4 hours before, or 20 mg/kg antibody 100F4 at 72 hours after, a lethal dose of H5N8 NE14 enables mice to withstand the infection. Finally, we show that a single injection of 0.5 or 1 mg/kg antibody 100F4 prophylactically or 10 mg/kg 100F4 therapeutically outperforms a 5-day course of 10 mg/kg/day oseltamivir treatment against lethal H5N8 NE14 or H5N6 SC14 infection in mice. Our results suggest that further preclinical evaluation of human monoclonal antibodies against newly emerging H5 viruses is warranted.
Ren, Huanhuan; Wang, Guiqin; Wang, Shuangshuang; Chen, Honglin; Chen, Zhiwei; Hu, Hongxing; Cheng, Genhong; Zhou, Paul
2016-01-01
ABSTRACT Newly emerging highly pathogenic avian influenza (HPAI) H5N2, H5N3, H5N5, H5N6, H5N8 and H5N9 viruses have been spreading in poultry and wild birds. The H5N6 viruses have also caused 10 human infections with 4 fatal cases in China. Here, we assessed the cross-neutralization and cross-protection of human and mouse monoclonal antibodies against 2 viruses: a HPAI H5N8 virus, A/chicken/Netherlands/14015526/2014 (NE14) and a HPAI H5N6 virus, A/Sichuan/26221/2014 (SC14). The former was isolated from an infected chicken in Netherlands in 2014 and the latter was isolated from an infected human patient in Sichuan, China. We show that antibodies FLA5.10, FLD21.140, 100F4 and 65C6, but not AVFluIgG01, AVFluIgG03, S139/1 and the VRC01 control, potently cross-neutralize the H5N8 NE14 and H5N6 SC14 viruses. Furthermore, we show that a single injection of >1 mg/kg of antibody 100F4 at 4 hours before, or 20 mg/kg antibody 100F4 at 72 hours after, a lethal dose of H5N8 NE14 enables mice to withstand the infection. Finally, we show that a single injection of 0.5 or 1 mg/kg antibody 100F4 prophylactically or 10 mg/kg 100F4 therapeutically outperforms a 5-day course of 10 mg/kg/day oseltamivir treatment against lethal H5N8 NE14 or H5N6 SC14 infection in mice. Our results suggest that further preclinical evaluation of human monoclonal antibodies against newly emerging H5 viruses is warranted. PMID:27167234
Sheen, Shiowshuh; Huang, Chi-Yun; Ramos, Rommel; Chien, Shih-Yung; Scullen, O Joseph; Sommers, Christopher
2018-03-01
Pathogenic Escherichia coli, intestinal (O157:H7) as well as extraintestinal types (for example, Uropathogenic E. coli [UPEC]) are commonly found in many foods including raw chicken meat. The resistance of E. coli O157:H7 to UPEC in chicken meat under the stresses of high hydrostatic Pressure (HHP, also known as HPP-high pressure processing) and trans-cinnamaldehyde (an essential oil) was investigated and compared. UPEC was found slightly less resistant than O157:H7 in our test parameter ranges. With the addition of trans-cinnamaldehyde as an antimicrobial to meat, HPP lethality enhanced both O157:H7 and UPEC inactivation. To facilitate the predictive model development, a central composite design (CCD) was used to assess the 3-parameter effects, that is, pressure (300 to 400 MPa), trans-cinnamaldehyde dose (0.2 to 0.5%, w/w), and pressure-holding time (15 to 25 min), on the inactivation of E. coli O157:H7 and UPEC in ground chicken. Linear models were developed to estimate the lethality of E. coli O157:H7 (R 2 = 0.86) and UPEC (R 2 = 0.85), as well as dimensionless nonlinear models. All models were validated with data obtained from separated CCD combinations. Because linear models of O157:H7 and UPEC had similar R 2 and the significant lethality difference of CCD points was only 9 in 20; all data were combined to generate models to include both O157:H7 and UPEC. The results provide useful information/tool to predict how pathogenic E. coli may survive HPP in the presence of trans-cinnamaldehyde and to achieve a great than 5 log CFU/g reduction in chicken meat. The models may be used for process optimization, product development and to assist the microbial risk assessment. The study provided an effective means to reduce the high hydrostatic pressure level with incorporation of antimicrobial compound to achieve a 5-log reduction of pathogenic E. coli without damaging the raw meat quality. The developed models may be used to predict the high pressure processing lethality (and process optimization), product development (ingredient selection), and to assist the microbial risk assessment. © 2018 Institute of Food Technologists®.
Effects of polystyrene microbeads in marine planktonic crustaceans.
Gambardella, Chiara; Morgana, Silvia; Ferrando, Sara; Bramini, Mattia; Piazza, Veronica; Costa, Elisa; Garaventa, Francesca; Faimali, Marco
2017-11-01
Plastic debris accumulates in the marine environment, fragmenting into microplastics (MP), causing concern about their potential toxic effects when ingested by marine organisms. The aim of this study was to verify whether 0.1µm polystyrene beads are likely to trigger lethal and sub-lethal responses in marine planktonic crustaceans. MP build-up, mortality, swimming speed alteration and enzyme activity (cholinesterases, catalase) were investigated in the larval stages of Amphibalanus amphitrite barnacle and of Artemia franciscana brine shrimp exposed to a wide range of MP concentrations (from 0.001 to 10mgL -1 ) for 24 and 48h. The results show that MP were accumulated in crustaceans, without affecting mortality. Swimming activity was significantly altered in crustaceans exposed to high MP concentrations (> 1mgL -1 ) after 48h. Enzyme activities were significantly affected in all organisms exposed to all the above MP concentrations, indicating that neurotoxic effects and oxidative stress were induced after MP treatment. These findings provide new insight into sub-lethal MP effects on marine crustaceans. Copyright © 2017 Elsevier Inc. All rights reserved.
Doud, Devin F. R.; Angenent, Largus T.
2016-07-14
Rhodopseudomonas palustris has emerged as a model microbe for the anaerobic metabolism of p-coumarate, which is an aromatic compound and a primary component of lignin. However, under an aerobic conditions, R.palustris must actively eliminate excess reducing equivalents through a number of known strategies (e.g., CO 2 fixation, H 2 evolution) to avoid lethal redox imbalance. Others had hypothesized that to ease the burden of this redox imbalance, a clonal population of R.palustris could functionally differentiate into a pseudo-consortium. Within this pseudo-consortium, one sub-population would perform the aromatic moiety degradation into acetate, while the other sub-population would oxidize acetate, resulting inmore » a single-genotype syntrophy through acetate sharing. Here, the objective was to test this hypothesis by utilizing microbial lelectrochemistry as a research tool with the extrac ellular-electron-transferring bacterium Geobacter sulfurreducens as a reporter strain replacing the hypothesized acetate-oxidizing sub-population. We used a 2×4 experimental design with pure cultures of R. palustris in serum bottles and co-cultures of R. palustris and G.sulfurreducens in bioelectrochemical systems.This experimental design included growth medium with and without bicarbonate to induce non-lethal and lethal redox imbalance conditions, respectively, in R. palustris. Finally, the design also included a mutant strain (NifA*) of R. palustris, which constitutively produces H 2, to serve both as a positive control for metabolite secretion (H 2) to G. sulfurreducens, and as a non-lethal redox control for without bicarbonate conditions. Our results demonstrate that acetate sharing between different sub-populations of R. palustris does not occur while degrading p-coumarate under either non-lethal or lethal redox imbalance conditions. Furthermore, this work highlights the strength of microbial electrochemistry as a tool for studying microbial syntrophy.« less
Sala, Miquel; Faria, Melissa; Sarasúa, Ignacio; Barata, Carlos; Bonada, Núria; Brucet, Sandra; Llenas, Laia; Ponsá, Sergio; Prat, Narcís; Soares, Amadeu M V M; Cañedo-Arguelles, Miguel
2016-10-01
The rivers and streams of the world are becoming saltier due to human activities. In spite of the potential damage that salt pollution can cause on freshwater ecosystems, this is an issue that is currently poorly managed. Here we explored intraspecific differences in the sensitivity of freshwater fauna to two major ions (Cl(-) and SO4(2-)) using the net-spinning caddisfly Hydropsyche exocellata Dufour 1841 (Trichoptera, Hydropsychidae) as a model organism. We exposed H. exocellata to saline solutions (reaching a conductivity of 2.5mScm(-1)) with Cl(-):SO4(2-) ratios similar to those occurring in effluents coming from the meat, mining and paper industries, which release dissolved salts to rivers and streams in Spain. We used two different populations, coming from low and high conductivity streams. To assess toxicity, we measured sub-lethal endpoints: locomotion, symmetry of the food-capturing nets and oxidative stress biomarkers. According to biomarkers and net building, the population historically exposed to lower conductivities (B10) showed higher levels of stress than the population historically exposed to higher conductivities (L102). However, the differences between populations were not strong. For example, net symmetry was lower in the B10 than in the L102 only 48h after treatment was applied, and biomarkers showed a variety of responses, with no discernable pattern. Also, treatment effects were rather weak, i.e. only some endpoints, and in most cases only in the B10 population, showed a significant response to treatment. The lack of consistent differences between populations and treatments could be related to the high salt tolerance of H. exocellata, since both populations were collected from streams with relatively high conductivities. The sub-lethal effects tested in this study can offer an interesting and promising tool to monitor freshwater salinization by combining physiological and behavioural bioindicators. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of flooring and restricted freestall access on behavior and claw health of dairy heifers.
Ouweltjes, W; van der Werf, J T N; Frankena, K; van Leeuwen, J L
2011-02-01
Claw health, locomotion, feed intake, milk yield, body weight, activity, and lying and standing behavior of dairy heifers were monitored in a single dairy herd during the first 3 mo after calving. During the first 8 wk after calving, 2 treatments were applied: restricted freestall access by closing the stalls between 2300 h and 0500 h (yes or no) and alley flooring (concrete or rubber topped slatted floors). Apart from treatments, housing was identical. The animals were kept in small groups (n=4 to 6) in adjacent barn pens. Thereafter, the animals were kept in 1 group in a freestall section with concrete slatted floor and unrestricted access to the stalls for 5 wk. All animals were fed the same partial mixed ration. We hypothesized that (1) hard flooring causes high mechanical load of the claws and (2) restricted freestall access causes prolonged standing bouts and reinforced effects of hard flooring on claws. The heifers had only minor claw lesions before first calving, and the prevalence and severity of sole hemorrhages increased during the first 3 mo after calving (from 0.24 ± 0.08 to 1.18 ± 0.14 and from 0.04 ± 0.01 to 0.24 ± 0.02, respectively), particularly in the outer hind claws. Animals kept on rubber alley flooring had lower average hemorrhage scores in wk 9 (0.13 ± 0.03 vs. 0.21 ± 0.03) and wk 14 (0.20 ± 0.03 vs. 0.27 ± 0.03) after calving, had a slower feed intake (3.05 ± 0.14 vs. 3.46 ± 0.14 g/s) and spent more time feeding (7.3 ± 0.3 vs. 6.6 ± 0.3 min/h) than animals kept on hard concrete alley floors. Restricted freestall access resulted in fewer standing bouts per day (14.4 ± 1.0 vs. 17.9 ± 1.0) and more strides per hour (99.8 ± 5.4 vs. 87.2 ± 5.4) without changing overall standing time (15.0 ± 0.3 vs. 14.7 ± 0.3 h/d) and did not affect the occurrence of sole hemorrhages. The animals with no overnight freestall access spent more time standing (55.9 ± 0.9 vs. 35.8 ± 0.9 min/h) and feeding (7.8 ± 0.3 vs. 4.3 ± 0.3 min/h) between 2300 and 0500 h and less during the rest of the 24-h period (31.3 ± 0.8 vs. 37.0 ± 0.8 min/h and 6.8 ± 0.3 vs. 7.6 ± 0.3 min/h). Thus, the animals adapted to restricted freestall access, that caused increased overnight standing, by additional lying down during the day and used part of the extra standing time at night for feeding. The restrictions probably had only a minor effect on the mechanical load of their claws. Therefore, the first part of the hypothesis was confirmed and the second part was rejected. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Luiz, Wilson B.; Rodrigues, Juliana F.; Crabb, Joseph H.
2015-01-01
Globally, enterotoxigenic Escherichia coli (ETEC) is a leading cause of childhood and travelers' diarrhea, for which an effective vaccine is needed. Prevalent intestinal colonization factors (CFs) such as CFA/I fimbriae and heat-labile enterotoxin (LT) are important virulence factors and protective antigens. We tested the hypothesis that donor strand-complemented CfaE (dscCfaE), a stabilized form of the CFA/I fimbrial tip adhesin, is a protective antigen, using a lethal neonatal mouse ETEC challenge model and passive dam vaccination. For CFA/I-ETEC strain H10407, which has been extensively studied in volunteers, an inoculum of 2 × 107 bacteria resulted in 50% lethal doses (LD50) in neonatal DBA/2 mice. Vaccination of female DBA/2 mice with CFA/I fimbriae or dscCfaE, each given with a genetically attenuated LT adjuvant (LTK63) by intranasal or orogastric delivery, induced high antigen-specific serum IgG and fecal IgA titers and detectable milk IgA responses. Neonates born to and suckled by dams antenatally vaccinated with each of these four regimens showed 78 to 93% survival after a 20× LD50 challenge with H10407, compared to 100% mortality in pups from dams vaccinated with sham vaccine or LTK63 only. Crossover experiments showed that high pup survival rates after ETEC challenge were associated with suckling but not birthing from vaccinated dams, suggesting that vaccine-specific milk antibodies are protective. In corroboration, preincubation of the ETEC inoculum with antiadhesin and antifimbrial bovine colostral antibodies conferred a dose-dependent increase in pup survival after challenge. These findings indicate that the dscCfaE fimbrial tip adhesin serves as a protective passive vaccine antigen in this small animal model and merits further evaluation. PMID:26371126
Expression of Hygromycin Phosphotransferase Alters Virulence of Histoplasma capsulatum▿
Smulian, A. George; Gibbons, Reta S.; Demland, Jeffery A.; Spaulding, Deborah T.; Deepe, George S.
2007-01-01
The Escherichia coli hygromycin phosphotransferase (hph) gene, which confers hygromycin resistance, is commonly used as a dominant selectable marker in genetically modified bacteria, fungi, plants, insects, and mammalian cells. Expression of the hph gene has rarely been reported to induce effects other than those expected. Hygromycin B is the most common dominant selectable marker used in the molecular manipulation of Histoplasma capsulatum in the generation of knockout strains of H. capsulatum or as a marker in mutant strains. hph-expressing organisms appear to have no defect in long-term in vitro growth and survival and have been successfully used to exploit host-parasite interaction in short-term cell culture systems and animal experiments. We introduced the hph gene as a selectable marker together with the gene encoding green fluorescent protein into wild-type strains of H. capsulatum. Infection of mice with hph-expressing H. capsulatum yeast cells at sublethal doses resulted in lethality. The lethality was not attributable to the site of integration of the hph construct into the genomes or to the method of integration and was not H. capsulatum strain related. Death of mice was not caused by altered cytokine profiles or an overwhelming fungal burden. The lethality was dependent on the kinase activity of hygromycin phosphotransferase. These results should raise awareness of the potential detrimental effects of the hph gene. PMID:17873086
Expression of hygromycin phosphotransferase alters virulence of Histoplasma capsulatum.
Smulian, A George; Gibbons, Reta S; Demland, Jeffery A; Spaulding, Deborah T; Deepe, George S
2007-11-01
The Escherichia coli hygromycin phosphotransferase (hph) gene, which confers hygromycin resistance, is commonly used as a dominant selectable marker in genetically modified bacteria, fungi, plants, insects, and mammalian cells. Expression of the hph gene has rarely been reported to induce effects other than those expected. Hygromycin B is the most common dominant selectable marker used in the molecular manipulation of Histoplasma capsulatum in the generation of knockout strains of H. capsulatum or as a marker in mutant strains. hph-expressing organisms appear to have no defect in long-term in vitro growth and survival and have been successfully used to exploit host-parasite interaction in short-term cell culture systems and animal experiments. We introduced the hph gene as a selectable marker together with the gene encoding green fluorescent protein into wild-type strains of H. capsulatum. Infection of mice with hph-expressing H. capsulatum yeast cells at sublethal doses resulted in lethality. The lethality was not attributable to the site of integration of the hph construct into the genomes or to the method of integration and was not H. capsulatum strain related. Death of mice was not caused by altered cytokine profiles or an overwhelming fungal burden. The lethality was dependent on the kinase activity of hygromycin phosphotransferase. These results should raise awareness of the potential detrimental effects of the hph gene.
Nash, Evelyn E.; Peters, Brian M.; Palmer, Glen E.; Fidel, Paul L.
2014-01-01
Intra-abdominal polymicrobial infections cause significant morbidity and mortality. An established experimental mouse model of Staphylococcus aureus-Candida albicans intra-abdominal infection results in ∼60% mortality within 48 h postinoculation, concomitant with amplified local inflammatory responses, while monomicrobial infections are avirulent. The purpose of this study was to characterize early local and systemic innate responses during coinfection and determine the role of C. albicans morphogenesis in lethality, a trait involved in virulence and physical interaction with S. aureus. Local and systemic proinflammatory cytokines were significantly elevated during coinfection at early time points (4 to 12 h) compared to those in monoinfection. In contrast, microbial burdens in the organs and peritoneal lavage fluid were similar between mono- and coinfected animals through 24 h, as was peritoneal neutrophil infiltration. After optimizing the model for 100% mortality within 48 h, using 3.5 × 107 C. albicans (5× increase), coinfection with C. albicans yeast-locked or hypha-locked mutants showed similar mortality, dissemination, and local and systemic inflammation to the isogenic control. However, coinfection with the yeast-locked C. albicans mutant given intravenously (i.v.) and S. aureus given intraperitoneally (i.p.) failed to induce mortality. These results suggest a unique intra-abdominal interaction between the host and C. albicans-S. aureus that results in strong inflammatory responses, dissemination, and lethal sepsis, independent of C. albicans morphogenesis. PMID:24891104
The effect of less-lethal weapons on injuries in police use-of-force events.
MacDonald, John M; Kaminski, Robert J; Smith, Michael R
2009-12-01
We investigated the effect of the use of less-lethal weapons, conductive energy devices (CEDs), and oleoresin capsicum (OC) spray on the prevalence and incidence of injuries to police officers and civilians in encounters involving the use of force. We analyzed data from 12 police departments that documented injuries to officers and civilians in 24,380 cases. We examined monthly injury rates for 2 police departments before and after their adoption of CEDs. Odds of injury to civilians and officers were significantly lower when police used CED weapons, after control for differences in case attributes and departmental policies restricting use of these weapons. Monthly incidence of injury in 2 police departments declined significantly, by 25% to 62%, after adoption of CED devices. Injuries sustained during police use-of-force events affect thousands of police officers and civilians in the United States each year. Incidence of these injuries can be reduced dramatically when law enforcement agencies responsibly employ less-lethal weapons in lieu of physical force.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herkovits, J.; Herkovits, F.D.; Perez-Coll
As a result of their aquatic embryonic and larval development, many species of amphibians are potentially affected by adverse environmental conditions. In this study the possibility of reducing the lethal effect of aluminum (ALC13, Mallinckrodt) in Bufo arenarum embryos by means of simultaneous zinc (ZnSO4) treatment is reported. The aluminum hazard was evaluated in a 7 day renewal toxicity testing study conducted with batches of 10 individuals (by quadruplicate) in six concentrations of aluminum plus the control at 20 C. The pH of the experimental solutions were measured. The LC100 expressed as Al(3 +) mg/L at 24 and up tillmore » 168 hours of treatment were 0.9 (the pH of the solution was 6.2 while in control Holtfreter solution the pH was 6.8). Therefore, aluminum exert a lethal effect on amphibian embryos in concentrations which reduce only slightly the pH of the maintaining solution. The lethal effect of aluminum could be reduced 100% by means of simultaneous treatment with 2 mg Zn(2 +)/L. The results point out the high sensibility of the amphibian embryos to aluminum (LC100/24hs:0.9mg Al(3 +)/L) and therefore, episodic increases in dissolved aluminum, usually concomitant with surface water pH decreases, could produce very harmful effects during embryonic stages of amphibians. The noteworthy beneficial effect of zinc against the lethal effect of aluminum could be of practical value in reducing the harmful effects exerted by aluminum. The conspicuous Al-Zn antagonism points out the need of biological test systems for recording the integrated effects of substances released to the environment.« less
Schmidts, Miriam; Arts, Heleen H; Bongers, Ernie M H F; Yap, Zhimin; Oud, Machteld M; Antony, Dinu; Duijkers, Lonneke; Emes, Richard D; Stalker, Jim; Yntema, Jan-Bart L; Plagnol, Vincent; Hoischen, Alexander; Gilissen, Christian; Forsythe, Elisabeth; Lausch, Ekkehart; Veltman, Joris A; Roeleveld, Nel; Superti-Furga, Andrea; Kutkowska-Kazmierczak, Anna; Kamsteeg, Erik-Jan; Elçioğlu, Nursel; van Maarle, Merel C; Graul-Neumann, Luitgard M; Devriendt, Koenraad; Smithson, Sarah F; Wellesley, Diana; Verbeek, Nienke E; Hennekam, Raoul C M; Kayserili, Hulya; Scambler, Peter J; Beales, Philip L; Knoers, Nine VAM; Roepman, Ronald; Mitchison, Hannah M
2013-01-01
Background Jeune asphyxiating thoracic dystrophy (JATD) is a rare, often lethal, recessively inherited chondrodysplasia characterised by shortened ribs and long bones, sometimes accompanied by polydactyly, and renal, liver and retinal disease. Mutations in intraflagellar transport (IFT) genes cause JATD, including the IFT dynein-2 motor subunit gene DYNC2H1. Genetic heterogeneity and the large DYNC2H1 gene size have hindered JATD genetic diagnosis. Aims and methods To determine the contribution to JATD we screened DYNC2H1 in 71 JATD patients JATD patients combining SNP mapping, Sanger sequencing and exome sequencing. Results and conclusions We detected 34 DYNC2H1 mutations in 29/71 (41%) patients from 19/57 families (33%), showing it as a major cause of JATD especially in Northern European patients. This included 13 early protein termination mutations (nonsense/frameshift, deletion, splice site) but no patients carried these in combination, suggesting the human phenotype is at least partly hypomorphic. In addition, 21 missense mutations were distributed across DYNC2H1 and these showed some clustering to functional domains, especially the ATP motor domain. DYNC2H1 patients largely lacked significant extra-skeletal involvement, demonstrating an important genotype–phenotype correlation in JATD. Significant variability exists in the course and severity of the thoracic phenotype, both between affected siblings with identical DYNC2H1 alleles and among individuals with different alleles, which suggests the DYNC2H1 phenotype might be subject to modifier alleles, non-genetic or epigenetic factors. Assessment of fibroblasts from patients showed accumulation of anterograde IFT proteins in the ciliary tips, confirming defects similar to patients with other retrograde IFT machinery mutations, which may be of undervalued potential for diagnostic purposes. PMID:23456818
Heat shock modulates the subcellular localization, stability, and activity of HIPK2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Mamta; Bhadauriya, Pratibha; Ganesh, Subramaniam, E-mail: sganesh@iitk.ac.in
2016-04-15
The homeodomain-interacting protein kinase-2 (HIPK2) is a highly conserved serine/threonine kinase and is involved in transcriptional regulation. HIPK2 is a highly unstable protein, and is kept at a low level under normal physiological conditions. However, exposure of cells to physiological stress – such as hypoxia, oxidative stress, or UV damage – is known to stabilize HIPK2, leading to the HIPK2-dependent activation of p53 and the cell death pathway. Therefore HIPK2 is also known as a stress kinase and as a stress-activated pro-apoptotic factor. We demonstrate here that exposure of cells to heat shock results in the stabilization of HIPK2 andmore » the stabilization is mediated via K63-linked ubiquitination. Intriguingly, a sub-lethal heat shock (42 °C, 1 h) results in the cytoplasmic localization of HIPK2, while a lethal heat shock (45 °C, 1 h) results in its nuclear localization. Cells exposed to the lethal heat shock showed significantly higher levels of the p53 activity than those exposed to the sub-lethal thermal stress, suggesting that both the level and the nuclear localization are essential for the pro-apoptotic activity of HIPK2 and that the lethal heat shock could retain the HIPK2 in the nucleus to promote the cell death. Taken together our study underscores the importance of HIPK2 in stress mediated cell death, and that the HIPK2 is a generic stress kinase that gets activated by diverse set of physiological stressors.« less
Blewett, Tamzin A; Wood, Chris M
2015-12-01
Nickel (Ni) is a metal of environmental concern, known to cause toxicity to freshwater organisms by impairing ionoregulation and/or respiratory gas exchange, and by inducing oxidative stress. However, little is known regarding how nickel toxicity is influenced by salinity. In the current study we investigated the salinity-dependence and mechanisms of sub-lethal Ni toxicity in a euryhaline crab (Carcinus maenas). Crabs were acclimated to three experimental salinities--20, 60 and 100% seawater (SW)--and exposed to 3mg/L Ni for 24h or 96 h. Tissues were dissected for analysis of Ni accumulation, gills were taken for oxidative stress analysis (catalase activity and protein carbonyl content), haemolymph ions were analysed for ionoregulatory disturbance, and oxygen consumption was determined in exercised crabs after 96 h of Ni exposure. Total Ni accumulation was strongly dependant on salinity, with crabs from 20% SW displaying the highest tissue Ni burdens after both 24 and 96-h exposures. After 96 h of exposure, the highest accumulation of Ni occurred in the posterior (ionoregulatory) gills at the lowest salinity, 20% SW. Posterior gill 8 exhibited elevated protein carbonyl levels and decreased catalase activity after Ni exposure, but only in 20% SW. Similarly, decreased levels of haemolymph Mg and K and an increased level of Ca were recorded but only in crabs exposed to Ni for 96 h in 20% SW. Oxygen consumption after exercise was also inhibited in crabs exposed to Ni in 20% SW. These data show for the first time the simultaneous presence of all three modes of sub-lethal Ni toxicity in exposed animals, and indicate a strong salinity dependence of sub-lethal Ni toxicity to the euryhaline crab, C. maenas, a pattern that corresponded to tissue Ni accumulation. Copyright © 2015 Elsevier Inc. All rights reserved.
Li, Ke; Yan, Huaying; Guo, Wenhao; Tang, Mei; Zhao, Xinyu; Tong, Aiping; Peng, Yong; Li, Qintong; Yuan, Zhu
2018-05-01
PTEN deficiency often causes defects in DNA damage repair. Currently, effective therapies for breast cancer are lacking. ATM is an attractive target for cancer treatment. Previous studies suggested a synthetic lethality between PTEN and PARP. However, the synthetically lethal interaction between PTEN and ATM in breast cancer has not been reported. Moreover, the mechanism remains elusive. Here, using KU-60019, an ATM kinase inhibitor, we investigated ATM inhibition as a synthetically lethal strategy to target breast cancer cells with PTEN defects. We found that KU-60019 preferentially sensitizes PTEN-deficient MDA-MB-468 breast cancer cells to cisplatin, though it also slightly enhances sensitivity of PTEN wild-type breast cancer cells. The increased cytotoxic sensitivity is associated with apoptosis, as evidenced by flow cytometry and PARP cleavage. Additionally, the increase of DNA damage accumulation due to the decreased capability of DNA repair, as indicated by γ-H2AX and Rad51 foci, also contributed to this selective cytotoxicity. Mechanistically, compared with PTEN wild-type MDA-MB-231 cells, PTEN-deficient MDA-MB-468 cells have lower level of Rad51, higher ATM kinase activity, and display the elevated level of DNA damage. Moreover, these differences could be further enlarged by cisplatin. Our findings suggest that ATM is a promising target for PTEN-defective breast cancer. Copyright © 2018 Elsevier Inc. All rights reserved.
Haolla, Filipe A; Claser, Carla; de Alencar, Bruna C G; Tzelepis, Fanny; de Vasconcelos, José Ronnie; de Oliveira, Gabriel; Silvério, Jaline C; Machado, Alexandre V; Lannes-Vieira, Joseli; Bruna-Romero, Oscar; Gazzinelli, Ricardo T; dos Santos, Ricardo Ribeiro; Soares, Milena B P; Rodrigues, Mauricio M
2009-09-18
Immunisation with Amastigote Surface Protein 2 (asp-2) and trans-sialidase (ts) genes induces protective immunity in highly susceptible A/Sn mice, against infection with parasites of the Y strain of Trypanosoma cruzi. Based on immunological and biological strain variations in T. cruzi parasites, our goal was to validate our vaccination results using different parasite strains. Due to the importance of the CD8(+) T cells in protective immunity, we initially determined which strains expressed the immunodominant H-2K(k)-restricted epitope TEWETGQI. We tested eight strains, four of which elicited immune responses to this epitope (Y, G, Colombian and Colombia). We selected the Colombian and Colombia strains for our studies. A/Sn mice were immunised with different regimens using both T. cruzi genes (asp-2 and ts) simultaneously and subsequently challenged with blood trypomastigotes. Immune responses before the challenge were confirmed by the presence of specific antibodies and peptide-specific T cells. Genetic vaccination did not confer protective immunity against acute infection with a lethal dose of the Colombian strain. In contrast, we observed a drastic reduction in parasitemia and a significant increase in survival, following challenge with an otherwise lethal dose of the Colombia strain. In many surviving animals with late-stage chronic infection, we observed alterations in the heart's electrical conductivity, compared to naive mice. In summary, we concluded that immunity against T. cruzi antigens, similar to viruses and bacteria, may be strain-specific and have a negative impact on vaccine development.
Warren, Travis K; Whitehouse, Chris A; Wells, Jay; Welch, Lisa; Charleston, Jay S; Heald, Alison; Nichols, Donald K; Mattix, Marc E; Palacios, Gustavo; Kugleman, Jeffrey R; Iversen, Patrick L; Bavari, Sina
2016-02-01
Marburg virus (MARV) is an Ebola-like virus in the family Filovirdae that causes sporadic outbreaks of severe hemorrhagic fever with a case fatality rate as high as 90%. AVI-7288, a positively charged antisense phosphorodiamidate morpholino oligomer (PMOplus) targeting the viral nucleoprotein gene, was evaluated as a potential therapeutic intervention for MARV infection following delayed treatment of 1, 24, 48, and 96 h post-infection (PI) in a nonhuman primate lethal challenge model. A total of 30 cynomolgus macaques were divided into 5 groups of 6 and infected with 1,830 plaque forming units of MARV subcutaneously. AVI-7288 was administered by bolus infusion daily for 14 days at 15 mg/kg body weight. Survival was the primary endpoint of the study. While none (0 of 6) of the saline group survived, 83-100% of infected monkeys survived when treatment was initiated 1, 24, 48, or 96 h post-infection (PI). The antisense treatment also reduced serum viremia and inflammatory cytokines in all treatment groups compared to vehicle controls. The antibody immune response to virus was preserved and tissue viral antigen was cleared in AVI-7288 treated animals. These data show that AVI-7288 protects NHPs against an otherwise lethal MARV infection when treatment is initiated up to 96 h PI.
Li, Zhuo; Mooney, Alaina J.; Gabbard, Jon D.; Gao, Xiudan; Xu, Pei; Place, Ryan J.; Hogan, Robert J.; Tompkins, S. Mark
2013-01-01
A safe and effective vaccine is the best way to prevent large-scale highly pathogenic avian influenza virus (HPAI) H5N1 outbreaks in the human population. The current FDA-approved H5N1 vaccine has serious limitations. A more efficacious H5N1 vaccine is urgently needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, is not known to cause any illness in humans. PIV5 is an attractive vaccine vector. In our studies, a single dose of a live recombinant PIV5 expressing a hemagglutinin (HA) gene of H5N1 (rPIV5-H5) from the H5N1 subtype provided sterilizing immunity against lethal doses of HPAI H5N1 infection in mice. Furthermore, we have examined the effect of insertion of H5N1 HA at different locations within the PIV5 genome on the efficacy of a PIV5-based vaccine. Interestingly, insertion of H5N1 HA between the leader sequence, the de facto promoter of PIV5, and the first viral gene, nucleoprotein (NP), did not lead to a viable virus. Insertion of H5N1 HA between NP and the next gene, V/phosphorprotein (V/P), led to a virus that was defective in growth. We have found that insertion of H5N1 HA at the junction between the small hydrophobic (SH) gene and the hemagglutinin-neuraminidase (HN) gene gave the best immunity against HPAI H5N1 challenge: a dose as low as 1,000 PFU was sufficient to protect against lethal HPAI H5N1 challenge in mice. The work suggests that recombinant PIV5 expressing H5N1 HA has great potential as an HPAI H5N1 vaccine. PMID:23077314
Kristensson, Krister; Nygård, Mikael; Bertini, Giuseppe; Bentivoglio, Marina
2010-06-01
The extracellular parasite Trypanosoma brucei causes human African trypanosomiasis (HAT), also known as sleeping sickness. Trypanosomes are transmitted by tsetse flies and HAT occurs in foci in sub-Saharan Africa. The disease, which is invariably lethal if untreated, evolves in a first hemo-lymphatic stage, progressing to a second meningo-encephalitic stage when the parasites cross the blood-brain barrier. At first, trypanosomes are restricted to circumventricular organs and choroid plexus in the brain outside the blood-brain barrier, and to dorsal root ganglia. Later, parasites cross the blood-brain barrier at post-capillary venules, through a multi-step process similar to that of lymphocytes. Accumulation of parasites in the brain is regulated by cytokines and chemokines. Trypanosomes can alter neuronal function and the most prominent manifestation is represented by sleep alterations. These are characterized, in HAT and experimental rodent infections, by disruption of the sleep-wake 24h cycle and internal sleep structure. Trypanosome infections alter also some, but not all, other endogenous biological rhythms. A number of neural pathways and molecules may be involved in such effects. Trypanosomes secrete prostaglandins including the somnogenic PGD2, and they interact with the host's immune system to cause release of pro-inflammatory cytokines. From the sites of early localization of parasites in the brain and meninges, such molecules could affect adjacent brain areas implicated in sleep-wakefulness regulation, including the suprachiasmatic nucleus and its downstream targets, to cause the changes characteristic of the disease. This raises challenging issues on the effects of cytokines on synaptic functions potentially involved in sleep-wakefulness alterations. (c) 2009 Elsevier Ltd. All rights reserved.
Kreijtz, J H C M; Bodewes, R; van den Brand, J M A; de Mutsert, G; Baas, C; van Amerongen, G; Fouchier, R A M; Osterhaus, A D M E; Rimmelzwaan, G F
2009-08-06
The transmission of highly pathogenic avian influenza (HPAI) A viruses of the H5N1 subtype from poultry to man and the high case fatality rate fuels the fear for a pandemic outbreak caused by these viruses. However, prior infections with seasonal influenza A/H1N1 and A/H3N2 viruses induce heterosubtypic immunity that could afford a certain degree of protection against infection with the HPAI A/H5N1 viruses, which are distantly related to the human influenza A viruses. To assess the protective efficacy of such heterosubtypic immunity mice were infected with human influenza virus A/Hong Kong/2/68 (H3N2) 4 weeks prior to a lethal infection with HPAI virus A/Indonesia/5/05 (H5N1). Prior infection with influenza virus A/Hong Kong/2/68 reduced clinical signs, body weight loss, mortality and virus replication in the lungs as compared to naive mice infected with HPAI virus A/Indonesia/5/05. Priming by infection with respiratory syncytial virus, a non-related virus did not have a beneficial effect on the outcome of A/H5N1 infections, indicating that adaptive immune responses were responsible for the protective effect. In mice primed by infection with influenza A/H3N2 virus cytotoxic T lymphocytes (CTL) specific for NP(366-374) epitope ASNENMDAM and PA(224-232) SCLENFRAYV were observed. A small proportion of these CTL was cross-reactive with the peptide variant derived from the influenza A/H5N1 virus (ASNENMEVM and SSLENFRAYV respectively) and upon challenge infection with the influenza A/H5N1 virus cross-reactive CTL were selectively expanded. These CTL, in addition to those directed to conserved epitopes, shared by the influenza A/H3N2 and A/H5N1 viruses, most likely contributed to accelerated clearance of the influenza A/H5N1 virus infection. Although also other arms of the adaptive immune response may contribute to heterosubtypic immunity, the induction of virus-specific CTL may be an attractive target for development of broad protective vaccines. Furthermore the existence of pre-existing heterosubtypic immunity may dampen the impact a future influenza pandemic may have.
What Makes a Natural Clay Antibacterial?
Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Poret-Peterson, Amisha T.
2011-01-01
Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (<200 nm), illite-smectite and reduced iron phases. The role of clay minerals in the bactericidal process is to buffer the aqueous pH and oxidation state to conditions that promote Fe2+ solubility. Chemical analyses of E. coli killed by aqueous leachates of an antibacterial clay show that intracellular concentrations of Fe and P are elevated relative to controls. Phosphorus uptake by the cells supports a regulatory role of polyphosphate or phospholipids in controlling Fe2+. Fenton reaction products can degrade critical cell components, but we deduce that extracellular processes do not cause cell death. Rather, Fe2+ overwhelms outer membrane regulatory proteins and is oxidized when it enters the cell, precipitating Fe3+ and producing lethal hydroxyl radicals. PMID:21413758
Ferree, Patrick M; Gomez, Karina; Rominger, Peter; Howard, Dagnie; Kornfeld, Hannah; Barbash, Daniel A
2014-04-01
Some circularized X-Y chromosomes in Drosophila melanogaster are mitotically unstable and induce early embryonic lethality, but the genetic basis is unknown. Our experiments suggest that a large region of X-linked satellite DNA causes anaphase bridges and lethality when placed into a new heterochromatic environment within certain circularized X-Y chromosomes. These results reveal that repetitive sequences can be incompatible with one another in cis. The lethal phenotype also bears a remarkable resemblance to a case of interspecific hybrid lethality.
Anti-bacterial immunity to Listeria monocytogenes in allogeneic bone marrow chimera in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onoe, K.; Good, R.A.; Yamamoto, K.
1986-06-01
Protection and delayed-type hypersensitivity (DTH) to the facultative intracellular bacterium Listeria monocytogenes (L.m.) were studied in allogeneic and syngeneic bone marrow chimeras. Lethally irradiated AKR (H-2k) mice were successfully reconstituted with marrow cells from C57BL/10 (B10) (H-2b), B10 H-2-recombinant strains or syngeneic mice. Irradiated AKR mice reconstituted with marrow cells from H-2-compatible B10.BR mice, (BR----AKR), as well as syngeneic marrow cells, (AKR----AKR), showed a normal level of responsiveness to the challenge stimulation with the listeria antigens when DTH was evaluated by footpad reactions. These mice also showed vigorous activities in acquired resistance to the L.m. By contrast, chimeric mice thatmore » had total or partial histoincompatibility at the H-2 determinants between donor and recipient, (B10----AKR), (B10.AQR----AKR), (B10.A(4R)----AKR), or (B10.A(5R)----AKR), were almost completely unresponsive in DTH and antibacterial immunity. However, when (B10----AKR) H-2-incompatible chimeras had been immunized with killed L.m. before challenge with live L.m., these mice manifested considerable DTH and resistance to L.m. These observations suggest that compatibility at the entire MHC between donor and recipient is required for bone marrow chimeras to be able to manifest DTH and protection against L.m. after a short-term immunization schedule. However, this requirement is overcome by a preceding or more prolonged period of immunization with L.m. antigens. These antigens, together with marrow-derived antigen-presenting cells, can then stimulate and expand cell populations that are restricted to the MHC (H-2) products of the donor type.« less
Hutler Wolkowicz, Ianina R; Aronzon, Carolina M; Pérez Coll, Cristina S
2013-12-15
Lethal and sublethal toxicity of the major chemical used in epoxide compounds, epichlorohydrin (ECH) was evaluated on the early life cycle of the common South American toad, Rhinella arenarum (Anura, Bufonidae). The stages evaluated were (according to Del Conte and Sirlin): early blastula (S.3-S.4), gastrula (S.10-S.12), rotation (S.15), tail bud (S.17), muscular response (S.18), gill circulation (S.20), open mouth (S.21), opercular folds (S.23) and complete operculum (S.25). The LC50 and EC50 values for lethal and sublethal effects were calculated. The early blastula was the most sensitive stage to ECH both for continuously and pulse-exposures (LC50-24h=50.9 mg L(-1)), while S.20 was the most resistant (LC50-24h=104.9 mg L(-1)). Among sublethal effects, early blastula was also the most sensitive stage (LOEC-48 h=20 mg L(-1)) and it has a Teratogenic Index of 2.5, which indicates the teratogenic potential of the substance. The main abnormalities were persistent yolk plugs, cell dissociation, tumors, hydropsy, oral malformations, axial/tail flexures, delayed development and reduced body size. ECH also caused neurotoxicity including scarce response to stimuli, reduction in the food intake, general weakness, spasms and shortening, erratic or circular swimming. Industrial contamination is considered an important factor on the decline of amphibian populations. Considering the available information about ECH's toxicity and its potential hazard to the environment, this work shows the first results of its developmental toxicity on a native amphibian species, Rhinella arenarum. Copyright © 2013 Elsevier B.V. All rights reserved.
Vermeulen, C J; Sørensen, P; Kirilova Gagalova, K; Loeschcke, V
2013-09-01
In sexually reproducing species, increased homozygosity often causes a decline in fitness, called inbreeding depression. Recently, researchers started describing the functional genomic changes that occur during inbreeding, both in benign conditions and under environmental stress. To further this aim, we have performed a genome-wide gene expression study of inbreeding depression, manifesting as cold sensitivity and conditional lethality. Our focus was to describe general patterns of gene expression during inbreeding depression and to identify specific processes affected in our line. There was a clear difference in gene expression between the stressful restrictive environment and the benign permissive environment in both the affected inbred line and the inbred control line. We noted a strong inbreeding-by-environment interaction, whereby virtually all transcriptional differences between lines were found in the restrictive environment. Functional annotation showed enrichment of transcripts coding for serine proteases and their inhibitors (serpins and BPTI/Kunitz family), which indicates activation of the innate immune response. These genes have previously been shown to respond transcriptionally to cold stress, suggesting the conditional lethal effect is associated with an exaggerated cold stress response. The set of differentially expressed genes significantly overlapped with those found in three other studies of inbreeding depression, demonstrating that it is possible to detect a common signature across different genetic backgrounds. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Zhang, Ji-Ying; Zhao, Xiao-Ya; Wang, Gui-Ying; Wang, Chun-Ming; Zhao, Zhi-Jun
2016-05-01
It has been suggested that the up-regulation of uncoupling proteins (UCPs) decreases reactive oxygen species (ROS) production, in which case there should be a negative relationship between UCPs expression and ROS levels. In this study, the effects of temperature and food restriction on ROS levels and metabolic rate, UCP1 mRNA expression and antioxidant levels were examined in the brown adipose tissue (BAT) of the striped hamsters (Cricetulus barabensis). The metabolic rate and food intake of hamsters which had been restricted to 80% of ad libitum food intake, and acclimated to a warm temperature (30°C), decreased significantly compared to a control group. Hydrogen peroxide (H2O2) levels were 42.9% lower in food restricted hamsters than in the control. Malonadialdehyde (MDA) levels of hamsters acclimated to 30°C that were fed ad libitum were significantly higher than those of the control group, but 60.1% lower than hamsters that had been acclimated to the same temperature but subject to food restriction. There were significantly positive correlations between H2O2 and, MDA levels, catalase activity, and total antioxidant capacity. Cytochrome c oxidase activity and UCP1 mRNA expression significantly decreased in food restricted hamsters compared to the control. These results suggest that warmer temperatures increase oxidative stress in BAT by causing the down-regulation of UCP1 expression and decreased antioxidant activity, but food restriction may attenuate the effects. Copyright © 2016 Elsevier Ltd. All rights reserved.
Photodynamic toxicity and its prevention by antioxidative agents in Bufo arenarum embryos.
Stockert, Juan C; Herkovits, Jorge
2003-11-05
In this work we describe an experimental model to evaluate the photodynamic toxicity on amphibian embryos, as well as the protective effect of antioxidants against the lethal oxidative stress induced by photosensitization. Bufo arenarum embryos were treated with 10 mg/l methylene blue (MB) in AMPHITOX solution for 72 h and then irradiated with a red laser or white light for variable times. Both light sources affected the survival of MB-treated animals and lethal effects occurred within the initial 12 h post-irradiation. For white light irradiation, the most effective phototoxic condition in our study, the LD10, 50 and 90 at 6 h post-irradiation corresponded to 13.57, 19.87 and 29.10 J/cm2, respectively. To explore the action of antioxidants against the photogenerated oxidative stress, MB-treated embryos were incubated with 1mM glutathione (GSH) or ascorbic acid (AA) during 48 h before irradiation. For GSH and 21.6 J/cm2 irradiation, the survival increased from 20 to 90%, whereas 100% survival was achieved with AA even after 43.2 J/cm2 irradiation. These results indicate that both the lethal photodynamic effect and its prevention by antioxidants can be evaluated by means of a simple toxicity test employing amphibian embryos.
Suicide and Firearm Means Restriction: Can Training Make a Difference?
ERIC Educational Resources Information Center
Slovak, Karen; Brewer, Thomas W.
2010-01-01
Along with physician education in depression recognition and treatment, restricting lethal methods is an effective suicide prevention strategy. The present study surveyed a random sample (N = 697) of Ohio licensed social workers regarding client firearm assessment and safety counseling. Analyses sought to determine what independent factors would…
Darvish, Maryam; Ebrahimi, Soltan Ahmad; Shahbazzadeh, Delavar; Bagheri, Kamran-Pooshang; Behdani, Mahdi; Shokrgozar, Mohammad Ali
2016-04-01
Scorpion envenoming is a serious health problem which can cause a variety of clinical toxic effects. Of the many scorpion species native to Iran, Hottentotta saulcyi is important because its venom can produce toxic effects in man. Nowadays, antivenom derived from hyper immune horses is the only effective treatment for sever scorpion stings. Current limitations of immunotherapy urgently require an efficient alternative with high safety, target affinity and more promising venom neutralizing capability. Recently, heavy chain-only antibodies (HC-Abs) found naturally in camelid serum met the above mentioned advantages. In this study, immuno-reactivities of polyclonal antibodies were tested after successful immunization of camel using H. saulcyi scorpion crude venom. The lethal potency of scorpion venom in C57BL/6 mice injected intraperitoneally was determined to be 2.7 mg/kg. These results were followed by the efficient neutralization of lethal activity of H. saulcyi scorpion venom by injection of antivenom and purified IgG fractions into mice intraperitonelly or intravenously, respectively. HC-Ab camelid antivenom could be considered as a useful serotherapeutics instead of present treatment for scorpion envenomation. Copyright © 2016. Published by Elsevier Ltd.
Valli, M; Barnes, A M; Gallanti, A; Cabral, W A; Viglio, S; Weis, M A; Makareeva, E; Eyre, D; Leikin, S; Antoniazzi, F; Marini, J C; Mottes, M
2012-11-01
Deficiency of any component of the ER-resident collagen prolyl 3-hydroxylation complex causes recessive osteogenesis imperfecta (OI). The complex modifies the α1(I)Pro986 residue and contains cartilage-associated protein (CRTAP), prolyl 3-hydroxylase 1 (P3H1) and cyclophilin B (CyPB). Fibroblasts normally secrete about 10% of CRTAP. Most CRTAP mutations cause a null allele and lethal type VII OI. We identified a 7-year-old Egyptian boy with non-lethal type VII OI and investigated the effects of his null CRTAP mutation on collagen biochemistry, the prolyl 3-hydroxylation complex, and collagen in extracellular matrix. The proband is homozygous for an insertion/deletion in CRTAP (c.118_133del16insTACCC). His dermal fibroblasts synthesize fully overmodified type I collagen, and 3-hydroxylate only 5% of α1(I)Pro986. CRTAP transcripts are 10% of control. CRTAP protein is absent from proband cells, with residual P3H1 and normal CyPB levels. Dermal collagen fibril diameters are significantly increased. By immunofluorescence of long-term cultures, we identified a severe deficiency (10-15% of control) of collagen deposited in extracellular matrix, with disorganization of the minimal fibrillar network. Quantitative pulse-chase experiments corroborate deficiency of matrix deposition, rather than increased matrix turnover. We conclude that defects of extracellular matrix, as well as intracellular defects in collagen modification, contribute to the pathology of type VII OI. © 2011 John Wiley & Sons A/S.
Bey, Erik A.; Reinicke, Kathryn E.; Srougi, Melissa C.; Varnes, Marie; Anderson, Vernon; Pink, John J.; Li, Long Shan; Patel, Malina; Cao, Lifen; Moore, Zachary; Rommel, Amy; Boatman, Michael; Lewis, Cheryl; Euhus, David M.; Bornmann, William G.; Buchsbaum, Donald J.; Spitz, Douglas R.; Gao, Jinming; Boothman, David A.
2013-01-01
Improving patient outcome by personalized therapy involves a thorough understanding of an agent’s mechanism of action. β-Lapachone (clinical forms, Arq501/Arq761) has been developed to exploit dramatic cancer-specific elevations in the phase II detoxifying enzyme, NAD(P)H:quinone oxidoreductase (NQO1). NQO1 is dramatically elevated in solid cancers, including primary and metastatic (e.g., triple-negative (ER-, PR-, Her2/Neu-)) breast cancers. To define cellular factors that influence the efficacy of β-lapachone using knowledge of its mechanism of action, we confirmed that NQO1 was required for lethality and mediated a futile redox cycle where ~120 moles of superoxide were formed per mole of β-lapachone in 5 min. β-Lapachone induced reactive oxygen species (ROS), stimulated DNA single strand break-dependent PARP1 hyperactivation, caused dramatic loss of essential nucleotides (NAD+/ATP) and elicited programmed necrosis in breast cancer cells. While PARP1 hyperactivation and NQO1 expression were major determinants of β-lapachone-induced lethality, alterations in catalase expression, including treatment with exogenous enzyme, caused marked cytoprotection. Thus, catalase is an important resistance factor, and highlights H2O2 as an obligate ROS for cell death from this agent. Exogenous superoxide dismutase (SOD) enhanced catalase-induced cytoprotection. β-Lapachone-induced cell death included AIF translocation from mitochondria to nuclei, TUNEL+ staining, atypical PARP1 cleavage, and GAPDH S-nitrosylation, which were abrogated by catalase. We predict that the ratio of NQO1:catalase activities in breast cancer versus associated normal tissue are likely to be the major determinants affecting the therapeutic window of β-lapachone and other NQO1 bioactivatable drugs. PMID:23883585
Deng, Huai; Cai, Weili; Wang, Chao; Lerach, Stephanie; Delattre, Marion; Girton, Jack; Johansen, Jørgen; Johansen, Kristen M.
2010-01-01
The essential JIL-1 histone H3S10 kinase is a key regulator of chromatin structure that functions to maintain euchromatic domains while counteracting heterochromatization and gene silencing. In the absence of the JIL-1 kinase, two of the major heterochromatin markers H3K9me2 and HP1a spread in tandem to ectopic locations on the chromosome arms. Here we address the role of the third major heterochromatin component, the zinc-finger protein Su(var)3-7. We show that the lethality but not the chromosome morphology defects associated with the null JIL-1 phenotype to a large degree can be rescued by reducing the dose of the Su(var)3-7 gene and that Su(var)3-7 and JIL-1 loss-of-function mutations have an antagonistic and counterbalancing effect on position-effect variegation (PEV). Furthermore, we show that in the absence of JIL-1 kinase activity, Su(var)3-7 gets redistributed and upregulated on the chromosome arms. Reducing the dose of the Su(var)3-7 gene dramatically decreases this redistribution; however, the spreading of H3K9me2 to the chromosome arms was unaffected, strongly indicating that ectopic Su(var)3-9 activity is not a direct cause of lethality. These observations suggest a model where Su(var)3-7 functions as an effector downstream of Su(var)3-9 and H3K9 dimethylation in heterochromatic spreading and gene silencing that is normally counteracted by JIL-1 kinase activity. PMID:20457875
Lin, Xiaolin; Zhao, Wentao; Jia, Junshuang; Lin, Taoyan; Xiao, Gaofang; Wang, Shengchun; Lin, Xia; Liu, Yu; Chen, Li; Qin, Yujuan; Li, Jing; Zhang, Tingting; Hao, Weichao; Chen, Bangzhu; Xie, Raoying; Cheng, Yushuang; Xu, Kang; Yao, Kaitai; Huang, Wenhua; Xiao, Dong; Sun, Yan
2016-01-01
Targeted disruption of Cripto-1 in mice caused embryonic lethality at E7.5, whereas we unexpectedly found that ectopic Cripto-1 expression in mouse embryos also led to embryonic lethality, which prompted us to characterize the causes and mechanisms underlying embryonic death due to ectopic Cripto-1 expression. RCLG/EIIa-Cre embryos displayed complex phenotypes between embryonic day 14.5 (E14.5) and E17.5, including fatal hemorrhages (E14.5-E15.5), embryo resorption (E14.5-E17.5), pale body surface (E14.5-E16.5) and no abnormal appearance (E14.5-E16.5). Macroscopic and histological examination revealed that ectopic expression of Cripto-1 transgene in RCLG/EIIa-Cre embryos resulted in lethal cardiac defects, as evidenced by cardiac malformations, myocardial thinning, failed assembly of striated myofibrils and lack of heartbeat. In addition, Cripto-1 transgene activation beginning after E8.5 also caused the aforementioned lethal cardiac defects in mouse embryos. Furthermore, ectopic Cripto-1 expression in embryonic hearts reduced the expression of cardiac transcription factors, which is at least partially responsible for the aforementioned lethal cardiac defects. Our results suggest that hemorrhages and cardiac abnormalities are two important lethal factors in Cripto-1 transgenic mice. Taken together, these findings are the first to demonstrate that sustained Cripto-1 transgene expression after E11.5 causes fatal hemorrhages and lethal cardiac defects, leading to embryonic death at E14.5-17.5. PMID:27687577
ATRX, IDH1-R132H and Ki-67 immunohistochemistry as a classification scheme for astrocytic tumors.
Cai, Jinquan; Zhang, Chuanbao; Zhang, Wei; Wang, Guangzhi; Yao, Kun; Wang, Zhiliang; Li, Guanzhang; Qian, Zenghui; Li, Yongli; Jiang, Tao; Jiang, Chuanlu
2016-01-01
Recurrence and progression to higher grade lesions are key biological events and characteristic behaviors in the evolution process of glioma. Malignant astrocytic tumors such as glioblastoma (GBM) are the most lethal intracranial tumors. However, the clinical practicability and significance of molecular parameters for the diagnostic and prognostic prediction of astrocytic tumors is still limited. In this study, we detected ATRX, IDH1-R132H and Ki-67 by immunohistochemistry and observed the association of IDH1-R132H with ATRX and Ki-67 expression. There was a strong association between ATRX loss and IDH1-R132H (p<0.0001). However, Ki-67 high expression restricted in the tumors with IDH1-R132H negative (p=0.0129). Patients with IDH1-R132H positive or ATRX loss astrocytic tumors had a longer progressive- free survival (p<0.0001, p=0.0044, respectively). High Ki-67 expression was associated with shorter PFS in patients with astrocytic tumors (p=0.002). Then we characterized three prognostic subgroups of astrocytic tumors (referred to as A1, A2 and A3). The new model demonstrated a remarkable separation of the progression interval in the three molecular subgroups and the distribution of patients' age in the A1-A2-A3 model was also significant different. This model will aid predicting the overall survival and progressive time of astrocytic tumors' patients.
ATRX, IDH1-R132H and Ki-67 immunohistochemistry as a classification scheme for astrocytic tumors
Zhang, Wei; Wang, Guangzhi; Yao, Kun; Wang, Zhiliang; Li, Guanzhang; Qian, Zenghui; Li, Yongli; Jiang, Tao; Jiang, Chuanlu
2016-01-01
Recurrence and progression to higher grade lesions are key biological events and characteristic behaviors in the evolution process of glioma. Malignant astrocytic tumors such as glioblastoma (GBM) are the most lethal intracranial tumors. However, the clinical practicability and significance of molecular parameters for the diagnostic and prognostic prediction of astrocytic tumors is still limited. In this study, we detected ATRX, IDH1-R132H and Ki-67 by immunohistochemistry and observed the association of IDH1-R132H with ATRX and Ki-67 expression. There was a strong association between ATRX loss and IDH1-R132H (p<0.0001). However, Ki-67 high expression restricted in the tumors with IDH1-R132H negative (p=0.0129). Patients with IDH1-R132H positive or ATRX loss astrocytic tumors had a longer progressive- free survival (p<0.0001, p=0.0044, respectively). High Ki-67 expression was associated with shorter PFS in patients with astrocytic tumors (p=0.002). Then we characterized three prognostic subgroups of astrocytic tumors (referred to as A1, A2 and A3). The new model demonstrated a remarkable separation of the progression interval in the three molecular subgroups and the distribution of patients’ age in the A1-A2-A3 model was also significant different. This model will aid predicting the overall survival and progressive time of astrocytic tumors’ patients. PMID:27713914
Schreier, Tina B; Antoine, Cléry; Schläfli, Michael; Galbier, Florian; Stadler, Martha; Demarsy, Emilie; Albertini, Daniele; Maier, Benjamin A; Kessler, Felix; Hörtensteiner, Stefan; Zeeman, Samuel C; Kötting, Oliver
2018-06-22
Malate dehydrogenases (MDH) convert malate to oxaloacetate using NAD(H) or NADP(H) as a cofactor. Arabidopsis thaliana mutants lacking plastidial NAD-dependent MDH (pdnad-mdh) are embryo-lethal, and constitutive silencing (miR-mdh-1) causes a pale, dwarfed phenotype. The reason for these severe phenotypes is unknown. Here, we rescued the embryo lethality of pdnad-mdh via embryo-specific expression of pdNAD-MDH. Rescued seedlings developed white leaves with aberrant chloroplasts and failed to reproduce. Inducible silencing of pdNAD-MDH at the rosette stage also resulted in white newly emerging leaves. These data suggest that pdNAD-MDH is important for early plastid development, which is consistent with the reductions in major plastidial galactolipid, carotenoid and protochlorophyllide levels in miR-mdh-1 seedlings. Surprisingly, the targeting of other NAD-dependent MDH isoforms to the plastid did not complement the embryo lethality of pdnad-mdh, while expression of enzymatically inactive pdNAD-MDH did. These complemented plants grew indistinguishably from the wild type. Both active and inactive forms of pdNAD-MDH interact with a heteromeric AAA-ATPase complex at the inner membrane of the chloroplast envelope. Silencing the expression of FtsH12, a key member of this complex, resulted in a phenotype that strongly resembles miR-mdh-1. We propose that pdNAD-MDH is essential for chloroplast development due to its moonlighting role in stabilizing FtsH12, distinct from its enzymatic function. © 2018 American Society of Plant Biologists. All rights reserved.
Lee, Chun-Yi; Wu, Ya-Wen; Chen, Chih-Ken; Wang, Liang-Jen
2014-01-01
Understanding lethality and risk factors of suicide methods is an initial step in suicide prevention. To investigate the fatality rate and demographic characteristics of various suicide methods. This study enrolled consecutive individuals with episodes of suicide attempts registered in a surveillance database in a city with a high rate of suicide mortality in Taiwan, from January 1, 2006, to December 31, 2010. In total, 3,089 suicide attempt events (including 2,583 nonfatal suicides and 506 completed suicides) occurred during the study period. Overall, the fatality rate of suicides was 16.4%. Charcoal burning accounted for the most suicide deaths (37.6%), with a fatality rate of 50.1%. Suicide by hanging carried the highest fatality rate (81.2%). Males tended to choose more lethal methods and had higher fatality rates compared with females. Elders and married persons were less likely to attempt suicide by charcoal burning. The case fatality ratio increased along with age among suicide attempts, but not in those using charcoal burning. The choice of suicide methods and lethality might be influenced by one's demographic characteristics. RESULTS from this study may provide clues for establishing suicide prevention strategies such as restricting access to common lethal suicide methods in the high-risk group.
Cardiomyocyte H9c2 cells present a valuable alternative to fish lethal testing for azoxystrobin.
Rodrigues, Elsa T; Pardal, Miguel Â; Laizé, Vincent; Cancela, M Leonor; Oliveira, Paulo J; Serafim, Teresa L
2015-11-01
The present study aims at identifying, among six mammalian and fish cell lines, a sensitive cell line whose in vitro median inhibitory concentration (IC50) better matches the in vivo short-term Sparus aurata median lethal concentration (LC50). IC50s and LC50 were assessed after exposure to the widely used fungicide azoxystrobin (AZX). Statistical results were relevant for most cell lines after 48 h of AZX exposure, being H9c2 the most sensitive cells, as well as the ones which provided the best prediction of fish toxicity, with a LC50,96h/IC50,48h = 0.581. H9c2 cell proliferation upon 72 h of AZX exposure revealed a LC50,96h/IC50,72h = 0.998. Therefore, identical absolute sensitivities were attained for both in vitro and in vivo assays. To conclude, the H9c2 cell-based assay is reliable and represents a suitable ethical alternative to conventional fish assays for AZX, and could be used to get valuable insights into the toxic effects of other pesticides. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dilkes, Brian P; Spielman, Melissa; Weizbauer, Renate; Watson, Brian; Burkart-Waco, Diana; Scott, Rod J; Comai, Luca
2008-12-09
The molecular mechanisms underlying lethality of F1 hybrids between diverged parents are one target of speciation research. Crosses between diploid and tetraploid individuals of the same genotype can result in F1 lethality, and this dosage-sensitive incompatibility plays a role in polyploid speciation. We have identified variation in F1 lethality in interploidy crosses of Arabidopsis thaliana and determined the genetic architecture of the maternally expressed variation via QTL mapping. A single large-effect QTL, DR. STRANGELOVE 1 (DSL1), was identified as well as two QTL with epistatic relationships to DSL1. DSL1 affects the rate of postzygotic lethality via expression in the maternal sporophyte. Fine mapping placed DSL1 in an interval encoding the maternal effect transcription factor TTG2. Maternal parents carrying loss-of-function mutations in TTG2 suppressed the F1 lethality caused by paternal excess interploidy crosses. The frequency of cellularization in the endosperm was similarly affected by both natural variation and ttg2 loss-of-function mutants. The simple genetic basis of the natural variation and effects of single-gene mutations suggests that F1 lethality in polyploids could evolve rapidly. Furthermore, the role of the sporophytically active TTG2 gene in interploidy crosses indicates that the developmental programming of the mother regulates the viability of interploidy hybrid offspring.
Hormone-Dependence of Sarin Lethality in Rats: Sex Differences and Stage of the Estrous Cycle
2015-06-12
that causes numerous physiological events including miosis, salivation , respiratory failure, tremors, seizures, and death. Treatment regimens that...into 96-well plates. The reactions were initiated by the addition of 290 μL of 50 mM sodium phosphate buffer ( pH 8.0) containing one of the following...buffer containing 50mMHEPES pH 7.4 in a total volume of 280 μL. Treat- ed samples were loaded into a 96-microtiter plate well, and the reaction was
Brunelli, Elvira
2018-02-01
Mounting evidence suggests that amphibians are globally and currently the most threatened group of vertebrates and different causes might be responsible for this phenomenon. Acidification of water bodies is a global environmental issue that has been proposed as a possible cause for amphibian populations decline. Indeed, it has been widely demonstrated that low pH may exert harmful effects on amphibians, either directly or by increasing the adverse effects of other stressors. Surprisingly only few studies documented the response of amphibian integument to acidic pH conditions and no data are available on the effects of a non-lethal level of pH onto the amphibian larval epidermis. The present study showed that acidic pH (4.5) condition has severe effects on the epidermis of the Italian newt (Lissotriton italicus, formerly Triturus italicus) inducing both morphological and functional alterations. The increase of mucus is the first evident effect of acid injury, followed by the flattening of the epithelium and the appearance of a keratinized shedding layer. The immunolabeling of cytokeratins substantially changes acquiring an adult-like pattern. Also aquaporin 3 and iNOS expression modify their distribution according to a change of the histological features of the epidermis. These results clearly indicate that a short-term exposure to a sub-lethal pH disrupts the epidermis morphology and function in L. italicus larvae. Since the skin exerts a prominent role in both respiration and osmoregulation, the described alterations may adversely affect the overall ionic balance, with a long chain of cascading effects significantly decreasing newts survival probabilities when environmental pH lowering occurs. Copyright © 2018 Elsevier GmbH. All rights reserved.
The Effect of Less-Lethal Weapons on Injuries in Police Use-of-Force Events
Kaminski, Robert J.; Smith, Michael R.
2009-01-01
Objectives. We investigated the effect of the use of less-lethal weapons, conductive energy devices (CEDs), and oleoresin capsicum (OC) spray on the prevalence and incidence of injuries to police officers and civilians in encounters involving the use of force. Methods. We analyzed data from 12 police departments that documented injuries to officers and civilians in 24 380 cases. We examined monthly injury rates for 2 police departments before and after their adoption of CEDs. Results. Odds of injury to civilians and officers were significantly lower when police used CED weapons, after control for differences in case attributes and departmental policies restricting use of these weapons. Monthly incidence of injury in 2 police departments declined significantly, by 25% to 62%, after adoption of CED devices. Conclusions. Injuries sustained during police use-of-force events affect thousands of police officers and civilians in the United States each year. Incidence of these injuries can be reduced dramatically when law enforcement agencies responsibly employ less-lethal weapons in lieu of physical force. PMID:19846686
Chien, Shih-Yung; Sheen, Shiowshuh; Sommers, Christopher H.; Sheen, Lee-Yan
2016-01-01
Disease causing Escherichia coli commonly found in meat and poultry include intestinal pathogenic E. coli (iPEC) as well as extraintestinal types such as the Uropathogenic E. coli (UPEC). In this study we compared the resistance of iPEC (O157:H7) to UPEC in chicken meat using High Pressure Processing (HPP) in with (the hurdle concept) and without thymol essential oil as a sensitizer. UPEC was found slightly more resistant than E. coli O157:H7 (iPEC O157:H7) at 450 and 500 MPa. A central composite experimental design was used to evaluate the effect of pressure (300–400 MPa), thymol concentration (100–200 ppm), and pressure-holding time (10–20 min) on the inactivation of iPEC O157:H7 and UPEC in ground chicken. The hurdle approach reduced the high pressure levels and thymol doses imposed on the food matrices and potentially decreased food quality damaged after treatment. The quadratic equations were developed to predict the impact (lethality) on iPEC O157:H7 (R2 = 0.94) and UPEC (R2 = 0.98), as well as dimensionless non-linear models [Pr > F (<0.0001)]. Both linear and non-linear models were validated with data obtained from separated experiment points. All models may predict the inactivation/lethality within the same order of accuracy. However, the dimensionless non-linear models showed potential applications with parameters outside the central composite design ranges. The results provide useful information of both iPEC O157:H7 and UPEC in regard to how they may survive HPP in the presence or absence of thymol. The models may further assist regulatory agencies and food industry to assess the potential risk of iPEC O157:H7 and UPEC in ground chicken. PMID:27379050
Effects of BCG infection on the susceptibility of mouse macrophages to endotoxin.
Peavy, D L; Baughn, R E; Musher, D M; Musher, D M
1979-01-01
Mice infected intravenously with Mycobacterium bovis (BCG) are 100 to 1,000 times more sensitive to the lethal effects of bacterial lipopolysaccharides (LPS). Since BCG infection results in macrophage activation and LPS may cause pathophysiological effects through interaction with this cell type, it was of interest to determine whether macrophages from BCG-infected animals were more susceptible to the toxic effects of LPS in vitro. When LPS-susceptible, C57BL/6 mice were infected with BCG, a significant reduction in the 50% lethal dose of LPS was first observed after 7 days and persisted for several weeks. Macrophages from these animals had greatly increased susceptibility to LPS in vitro, which correlated with the development of acquired cellular resistance as determined by their ability to inhibit the growth of Listeria monocytogenes. In contrast, BCG infection of C3H/HeJ mice, a strain resistant to LPS, did not alter the 50% lethal dose of LPS for these animals or increase the sensitivity of their peritoneal macrophages to LPS in vitro. These results indicate that susceptibility of BCG-infected mice to the lethal effects of LPS parallels the susceptibility of their macrophages in vitro; release of vasoactive substances from LPS-susceptible activated macrophages in vivo may be, in part, responsible for lethality. PMID:378847
Kreidler, Anna-Maria; Benz, Roland; Barth, Holger
2017-03-01
The pathogenic bacteria Clostridium botulinum and Bacillus anthracis produce the binary protein toxins C2 and lethal toxin (LT), respectively. These toxins consist of a binding/transport (B 7 ) component that delivers the separate enzyme (A) component into the cytosol of target cells where it modifies its specific substrate and causes cell death. The B 7 components of C2 toxin and LT, C2IIa and PA 63 , respectively, are ring-shaped heptamers that bind to their cellular receptors and form complexes with their A components C2I and lethal factor (LF), respectively. After receptor-mediated endocytosis of the toxin complexes, C2IIa and PA 63 insert into the membranes of acidified endosomes and form trans-membrane pores through which C2I and LF translocate across endosomal membranes into the cytosol. C2IIa and PA 63 also form channels in planar bilayer membranes, and we used this approach earlier to identify chloroquine as a potent blocker of C2IIa and PA 63 pores. Here, a series of chloroquine derivatives was investigated to identify more efficient toxin inhibitors with less toxic side effects. Chloroquine, primaquine, quinacrine, and fluphenazine blocked C2IIa and PA 63 pores in planar lipid bilayers and in membranes of living epithelial cells and macrophages, thereby preventing the pH-dependent membrane transport of the A components into the cytosol and protecting cells from intoxication with C2 toxin and LT. These potent inhibitors of toxin entry underline the central role of the translocation pores for cellular uptake of binary bacterial toxins and as relevant drug targets, and might be lead compounds for novel pharmacological strategies against severe enteric diseases and anthrax.
Loss of the tumor suppressor BAP1 causes myeloid transformation
Dey, Anwesha; Seshasayee, Dhaya; Noubade, Rajkumar; French, Dorothy M.; Liu, Jinfeng; Chaurushiya, Mira S.; Kirkpatrick, Donald S.; Pham, Victoria C.; Lill, Jennie R.; Bakalarski, Corey E.; Wu, Jiansheng; Phu, Lilian; Katavolos, Paula; Saunders, Lindsay M.; Abdel-Wahab, Omar; Modrusan, Zora; Seshagiri, Somasekar; Dong, Ken; Lin, Zhonghua; Balazs, Mercedesz; Suriben, Rowena; Newton, Kim; Hymowitz, Sarah; Garcia-Manero, Guillermo; Martin, Flavius; Levine, Ross L.; Dixit, Vishva M.
2016-01-01
Deubiquitinating enzyme BAP1 is mutated in a hereditary cancer syndrome with increased risk of mesothelioma and uveal melanoma. Somatic BAP1 mutations occur in various malignancies. We show that mouse Bap1 gene deletion is lethal during embryogenesis, but systemic or hematopoietic-restricted deletion in adults recapitulates features of human myelodysplastic syndrome (MDS). Knock-in mice expressing BAP1 with a 3xFlag tag revealed that BAP1 interacts with HCF-1, OGT, and the polycomb group proteins ASXL1 and ASXL2 in vivo. OGT and HCF-1 levels were decreased by Bap1 deletion, indicating a critical role for BAP1 in stabilizing these epigenetic regulators. Human ASXL1 is mutated frequently in chronic myelomonocytic leukemia (CMML) so an ASXL/BAP1 complex may suppress CMML. A novel BAP1 catalytic mutation found in a MDS patient implies that BAP1 loss of function has similar consequences in mouse and man. PMID:22878500
Leukotriene B4 receptor type 2 protects against pneumolysin-dependent acute lung injury.
Shigematsu, Misako; Koga, Tomoaki; Ishimori, Ayako; Saeki, Kazuko; Ishii, Yumiko; Taketomi, Yoshitaka; Ohba, Mai; Jo-Watanabe, Airi; Okuno, Toshiaki; Harada, Norihiro; Harayama, Takeshi; Shindou, Hideo; Li, Jian-Dong; Murakami, Makoto; Hoka, Sumio; Yokomizo, Takehiko
2016-10-05
Although pneumococcal infection is a serious problem worldwide and has a high mortality rate, the molecular mechanisms underlying the lethality caused by pneumococcus remain elusive. Here, we show that BLT2, a G protein-coupled receptor for leukotriene B 4 and 12(S)-hydroxyheptadecatrienoic acid (12-HHT), protects mice from lung injury caused by a pneumococcal toxin, pneumolysin (PLY). Intratracheal injection of PLY caused lethal acute lung injury (ALI) in BLT2-deficient mice, with evident vascular leakage and bronchoconstriction. Large amounts of cysteinyl leukotrienes (cysLTs), classically known as a slow reactive substance of anaphylaxis, were detected in PLY-treated lungs. PLY-dependent vascular leakage, bronchoconstriction, and death were markedly ameliorated by treatment with a CysLT1 receptor antagonist. Upon stimulation by PLY, mast cells produced cysLTs that activated CysLT1 expressed in vascular endothelial cells and bronchial smooth muscle cells, leading to lethal vascular leakage and bronchoconstriction. Treatment of mice with aspirin or loxoprofen inhibited the production of 12-HHT and increased the sensitivity toward PLY, which was also ameliorated by the CysLT1 antagonist. Thus, the present study identifies the molecular mechanism underlying PLY-dependent ALI and suggests the possible use of CysLT1 antagonists as a therapeutic tool to protect against ALI caused by pneumococcal infection.
Leukotriene B4 receptor type 2 protects against pneumolysin-dependent acute lung injury
Shigematsu, Misako; Koga, Tomoaki; Ishimori, Ayako; Saeki, Kazuko; Ishii, Yumiko; Taketomi, Yoshitaka; Ohba, Mai; Jo-Watanabe, Airi; Okuno, Toshiaki; Harada, Norihiro; Harayama, Takeshi; Shindou, Hideo; Li, Jian-Dong; Murakami, Makoto; Hoka, Sumio; Yokomizo, Takehiko
2016-01-01
Although pneumococcal infection is a serious problem worldwide and has a high mortality rate, the molecular mechanisms underlying the lethality caused by pneumococcus remain elusive. Here, we show that BLT2, a G protein-coupled receptor for leukotriene B4 and 12(S)-hydroxyheptadecatrienoic acid (12-HHT), protects mice from lung injury caused by a pneumococcal toxin, pneumolysin (PLY). Intratracheal injection of PLY caused lethal acute lung injury (ALI) in BLT2-deficient mice, with evident vascular leakage and bronchoconstriction. Large amounts of cysteinyl leukotrienes (cysLTs), classically known as a slow reactive substance of anaphylaxis, were detected in PLY-treated lungs. PLY-dependent vascular leakage, bronchoconstriction, and death were markedly ameliorated by treatment with a CysLT1 receptor antagonist. Upon stimulation by PLY, mast cells produced cysLTs that activated CysLT1 expressed in vascular endothelial cells and bronchial smooth muscle cells, leading to lethal vascular leakage and bronchoconstriction. Treatment of mice with aspirin or loxoprofen inhibited the production of 12-HHT and increased the sensitivity toward PLY, which was also ameliorated by the CysLT1 antagonist. Thus, the present study identifies the molecular mechanism underlying PLY-dependent ALI and suggests the possible use of CysLT1 antagonists as a therapeutic tool to protect against ALI caused by pneumococcal infection. PMID:27703200
Stittelaar, Koert J; Neyts, Johan; Naesens, Lieve; van Amerongen, Geert; van Lavieren, Rob F; Holý, Antonin; De Clercq, Erik; Niesters, Hubert G M; Fries, Edwin; Maas, Chantal; Mulder, Paul G H; van der Zeijst, Ben A M; Osterhaus, Albert D M E
2006-02-09
There is concern that variola virus, the aetiological agent of smallpox, may be used as a biological weapon. For this reason several countries are now stockpiling (vaccinia virus-based) smallpox vaccine. Although the preventive use of smallpox vaccination has been well documented, little is known about its efficacy when used after exposure to the virus. Here we compare the effectiveness of (1) post-exposure smallpox vaccination and (2) antiviral treatment with either cidofovir (also called HPMPC or Vistide) or with a related acyclic nucleoside phosphonate analogue (HPMPO-DAPy) after lethal intratracheal infection of cynomolgus monkeys (Macaca fascicularis) with monkeypox virus (MPXV). MPXV causes a disease similar to human smallpox and this animal model can be used to measure differences in the protective efficacies of classical and new-generation candidate smallpox vaccines. We show that initiation of antiviral treatment 24 h after lethal intratracheal MPXV infection, using either of the antiviral agents and applying various systemic treatment regimens, resulted in significantly reduced mortality and reduced numbers of cutaneous monkeypox lesions. In contrast, when monkeys were vaccinated 24 h after MPXV infection, using a standard human dose of a currently recommended smallpox vaccine (Elstree-RIVM), no significant reduction in mortality was observed. When antiviral therapy was terminated 13 days after infection, all surviving animals had virus-specific serum antibodies and antiviral T lymphocytes. These data show that adequate preparedness for a biological threat involving smallpox should include the possibility of treating exposed individuals with antiviral compounds such as cidofovir or other selective anti-poxvirus drugs.
Utilization of ICU Data to Improve 30 and 60 Day HENRE Mortality Models, Revision 1
2017-05-12
Acute Radiation Syndrome , Mortality, Burn Combined Injury, Lethality, Small Intestine, Ordinary...a large dose of radiation in a short period of time (high dose rate) causes acute radiation syndrome (ARS). Depending on the radiation dose, an...individual may experience the hematopoietic acute radiation syndrome (H-ARS) or the gastrointestinal acute radiation syndrome (GI-ARS) (reviewed in
Saiki, M.K.; Monda, D.P.; Bellerud, B.L.
1999-01-01
Resource managers hypothesize that occasional fish kills during summer-early fall in Upper Klamath Lake, Oregon, may be linked to unfavorable water quality conditions created by massive algal blooms. In a preliminary effort to address this concern, short-term (96-h-long) laboratory tests were conducted with larval and juvenile Lost River (Deltistes luxatus) and shortnose (Chasmistes brevirostris) suckers to determine the upper median lethal concentrations (LC50s; also referred to as median tolerance limits) for pH, un-ionized ammonia, and water temperature, and the lower LC50s for dissolved oxygen. The mean LC50s varied among species and life stages as follows: for pH, 10.30-10.39; for un-ionized ammonia, 0.48-1.06 mg litre-1; for temperature, 30.35-31.82??C; and for dissolved oxygen, 1.34-2.10 mg litre-1. Comparisons of 95% confidence limits indicated that, on average, the 96-h LC50s were not significantly different from those computed for shorter exposure times (i.e., 24 h, 48 h, and 72 h). According to two-way analysis of variance, LC50s for the four water quality variables did not vary significantly (p > 0.05) between fish species. However, LC50s for pH (exposure times of 24 h and 48 h) and dissolved oxygen (exposure times of 48 h, 72 h, and 96 h) differed significantly (p ??? 0.05) between life stages, whereas LC50s for un-ionized ammonia and water temperature did not exhibit significant differences. In general, larvae were more sensitive than juveniles to high pH and low dissolved oxygen concentrations. When compared to ambient water quality conditions in Upper Klamath Lake, our results strongly suggest that near-anoxic conditions associated with the senescence phase of algal blooms are most likely to cause high mortalities of larval and juvenile suckers.
Effects of Decay of Incorporated H3-Thymidine on Bacteria
Person, Stanley; Leah Lewis, Hazel
1962-01-01
The killing efficiency due to the decay of incorporated H3-thymidine in three mutants of E. coli strain 15: 15T-, 15T-L-, and 15T-U- has been determined. This efficiency is comparable to that previously determined by others for P32 decay. The killing efficiency has been determined as a function of H3-thymidine specific activity, storage media and storage temperature. We have observed a latent killing effect that causes lethality under certain conditions. The kinetics of latent killing have been examined at several temperatures. Finally, mutation production induced by H3-thymidine decays was shown to occur. The results are consistent with the idea that inactivation and mutations may be caused by a process in the nuclear transmutation that is not associated with β-particle ionization damage. PMID:19431318
Bhat, Supriya V; Kamencic, Belma; Körnig, André; Shahina, Zinnat; Dahms, Tanya E S
2018-01-01
Escherichia coli is a robust, easily adaptable and culturable bacterium in vitro , and a model bacterium for studying the impact of xenobiotics in the environment. We have used correlative atomic force - laser scanning confocal microscopy (AFM-LSCM) to characterize the mechanisms of cellular response to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). One of the most extensively used herbicides world-wide, 2,4-D is known to cause hazardous effects in diverse non-target organisms. Sub-lethal concentrations of 2,4-D caused DNA damage in E. coli WM1074 during short exposure periods which increased significantly over time. In response to 2,4-D, FtsZ and FtsA relocalized within seconds, coinciding with the complete inhibition of cell septation and cell elongation. Exposure to 2,4-D also resulted in increased activation of the SOS response. Changes to cell division were accompanied by concomitant changes to surface roughness, elasticity and adhesion in a time-dependent manner. This is the first study describing the mechanistic details of 2,4-D at sub-lethal levels in bacteria. Our study suggests that 2,4-D arrests E. coli cell division within seconds after exposure by disrupting the divisome complex, facilitated by dissipation of membrane potential. Over longer exposures, 2,4-D causes filamentation as a result of an SOS response to oxidative stress induced DNA damage.
Pezzoni, Magdalena; Tribelli, Paula M; Pizarro, Ramón A; López, Nancy I; Costa, Cristina S
2016-05-01
Solar UVA radiation is one of the main environmental stress factors for Pseudomonas aeruginosa. Exposure to high UVA doses produces lethal effects by the action of the reactive oxygen species (ROS) it generates. P. aeruginosa has several enzymes, including KatA and KatB catalases, which provide detoxification of ROS. We have previously demonstrated that KatA is essential in defending P. aeruginosa against high UVA doses. In order to analyse the mechanisms involved in the adaptation of this micro-organism to UVA, we investigated the effect of exposure to low UVA doses on KatA and KatB activities, and the physiological consequences. Exposure to UVA induced total catalase activity; assays with non-denaturing polyacrylamide gels showed that both KatA and KatB activities were increased by radiation. This regulation occurred at the transcriptional level and depended, at least partly, on the increase in H2O2 levels. We demonstrated that exposure to low UVA produced a protective effect against subsequent lethal doses of UVA, sodium hypochlorite and H2O2. Protection against lethal UVA depends on katA, whilst protection against sodium hypochlorite depends on katB, demonstrating that different mechanisms are involved in the defence against these oxidative agents, although both genes can be involved in the global cellular response. Conversely, protection against lethal doses of H2O2 could depend on induction of both genes and/or (an)other defensive factor(s). A better understanding of the adaptive response of P. aeruginosa to UVA is relevant from an ecological standpoint and for improving disinfection strategies that employ UVA or solar irradiation.
Junges, Celina M; Vidal, Eduardo E; Attademo, Andrés M; Mariani, Melisa L; Cardell, Leandro; Negro, Antonio C; Cassano, Alberto; Peltzer, Paola M; Lajmanovich, Rafael C; Zalazar, Cristina S
2013-01-01
The H(2)O(2)/UVC process was applied to the photodegradation of a commercial formulation of glyphosate in water. Two organisms (Vibrio fischeri bacteria and Rhinella arenarum tadpoles) were used to investigate the toxicity of glyphosate in samples M(1,) M(2), and M(3) following different photodegradation reaction times (120, 240 and 360 min, respectively) that had differing amounts of residual H(2)O(2). Subsamples of M(1), M(2), and M(3) were then used to create samples M(1,E), M(2,E) and M(3,E) in which the H(2)O(2) had been removed. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were measured in tadpoles to determine possible sub-lethal effects. In V. fischeri, M(1,E), which was collected early in the photodegradation process, caused 52% inhibition, while M(3,E), which was collected at the end of the photodegradation process, caused only 17% inhibition. Survival of tadpoles was 100% in samples M(2), M(3), and in M(1,E), M(2,E) and M(3,E). The lowest percentages of enzymatic inhibition were observed in samples without removal of H(2)O(2): 13.96% (AChE) and 16% (BChE) for M(2), and 24.12% (AChE) and 13.83% (BChE) for M(3). These results show the efficiency of the H(2)O(2)/UVC process in reducing the toxicity of water or wastewater polluted by commercial formulations of glyphosate. According to the ecotoxicity assays, the conditions corresponding to M(2) (11 ± 1 mg a.e. L(-1) glyphosate and 11 ± 1 mg L(-1) H(2)O(2)) could be used as a final point for glyphosate treatment with the H(2)O(2)/UV process.
Krebs, Philippe; Fan, Weiwei; Chen, Yen-Hui; Tobita, Kimimasa; Downes, Michael R.; Wood, Malcolm R.; Sun, Lei; Xia, Yu; Ding, Ning; Spaeth, Jason M.; Moresco, Eva Marie Y.; Boyer, Thomas G.; Lo, Cecilia Wen Ya; Yen, Jeffrey; Evans, Ronald M.; Beutler, Bruce
2011-01-01
Deficiencies of subunits of the transcriptional regulatory complex Mediator generally result in embryonic lethality, precluding study of its physiological function. Here we describe a missense mutation in Med30 causing progressive cardiomyopathy in homozygous mice that, although viable during lactation, show precipitous lethality 2–3 wk after weaning. Expression profiling reveals pleiotropic changes in transcription of cardiac genes required for oxidative phosphorylation and mitochondrial integrity. Weaning mice to a ketogenic diet extends viability to 8.5 wk. Thus, we establish a mechanistic connection between Mediator and induction of a metabolic program for oxidative phosphorylation and fatty acid oxidation, in which lethal cardiomyopathy is mitigated by dietary intervention. PMID:22106289
Suguitan, Amorsolo L.; Matsuoka, Yumiko; Lau, Yuk-Fai; Santos, Celia P.; Vogel, Leatrice; Cheng, Lily I.; Orandle, Marlene
2012-01-01
Highly pathogenic avian influenza (HPAI) viruses of the H5 and H7 subtypes typically possess multiple basic amino acids around the cleavage site (MBS) of their hemagglutinin (HA) protein, a recognized virulence motif in poultry. To determine the importance of the H5 HA MBS as a virulence factor in mammals, recombinant wild-type HPAI A/Vietnam/1203/2004 (H5N1) viruses that possessed (H5N1) or lacked (ΔH5N1) the H5 HA MBS were generated and evaluated for their virulence in BALB/c mice, ferrets, and African green monkeys (AGMs) (Chlorocebus aethiops). The presence of the H5 HA MBS was associated with lethality, significantly higher virus titers in the respiratory tract, virus dissemination to extrapulmonary organs, lymphopenia, significantly elevated levels of proinflammatory cytokines and chemokines, and inflammation in the lungs of mice and ferrets. In AGMs, neither H5N1 nor ΔH5N1 virus was lethal and neither caused clinical symptoms. The H5 HA MBS was associated with mild enhancement of replication and delayed virus clearance. Thus, the contribution of H5 HA MBS to the virulence of the HPAI H5N1 virus varies among mammalian hosts and is most significant in mice and ferrets and less remarkable in nonhuman primates. PMID:22205751
Maia, Jader Braga; Carvalho, Geraldo Andrade; Medina, Pilar; Garzón, Agustín; Gontijo, Pablo da Costa; Viñuela, Elisa
2016-07-01
The predator Chrysoperla carnea is a model species for the study of non-target effects of pesticides under different scenarios: registration of plant protection products under the European Union and effects of the Bt toxin. Laboratory and persistence studies were carried out with six pesticides currently used in corn crops in Spain that were applied at their maximum field recommended concentrations. The assessed end-points were larval mortality, survivorship until adult stage, duration of the larval and pupal periods, fecundity, fertility and sex ratio of the emerged adults. Based on the total effect (lethal and sublethal) caused to L3 larvae in contact with fresh residues in the laboratory, pendimethalin was harmless (IOBC 1), lambda-cyhalothrin, abamectin, and hexythiazox were slightly harmful (IOBC 2), deltamethrin was moderately harmful (IOBC 3) and chlorpyrifos was harmful (IOBC 4). Afterwards, the residues of the two most toxic pesticides in the lab (deltamethrin and chlorpyrifos) were aged under greenhouse conditions (22 ± 2 °C, 40 ± 10 % R.H., 16.9 μmol m(-2) s(-1) UV radiation) in the presence and absence of artificial rainfall (10 l m(-2) h(-1), applied 24 h after pesticide application). Deltamethrin was classified as short lived (IOBC A) in both cases. However, degradation of chlorpyrifos residues was accelerated in the presence of rainfall, leading to the classification as slightly persistent (IOBC B), while in absence of rainfall it behaved as persistent (IOBC D). Every pesticide can be recommended for inclusion in corn IPM programs where the predator is present except chlorpyrifos that exhibited high direct toxicity in the lab and prolonged residual action even in the presence of rainfall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philip, Binu K.; Anand, Sathanandam S.; Palkar, Prajakta S.
2006-10-01
Protection offered by pre-exposure priming with a small dose of a toxicant against the toxic and lethal effects of a subsequently administered high dose of the same toxicant is autoprotection. Although autoprotection has been extensively studied with diverse toxicants in acute exposure regimen, not much is known about autoprotection after priming with repeated exposure. The objective of this study was to investigate this concept following repeated exposure to a common water contaminant, chloroform. Swiss Webster (SW) mice, exposed continuously to either vehicle (5% Emulphor, unprimed) or chloroform (150 mg/kg/day po, primed) for 30 days, were challenged with a normally lethalmore » dose of chloroform (750 mg chloroform/kg po) 24 h after the last exposure. As expected, 90% of the unprimed mice died between 48 and 96 h after administration of the lethal dose in contrast to 100% survival of mice primed with chloroform. Time course studies indicated lower hepato- and nephrotoxicity in primed mice as compared to unprimed mice. Hepatic CYP2E1, glutathione levels (GSH), and covalent binding of {sup 14}C-chloroform-derived radiolabel did not differ between livers of unprimed and primed mice after lethal dose exposure, indicating that protection in liver is neither due to decreased bioactivation nor increased detoxification. Kidney GSH and glutathione reductase activity were upregulated, with a concomitant reduction in oxidized glutathione in the primed mice following lethal dose challenge, leading to decreased renal covalent binding of {sup 14}C-chloroform-derived radiolabel, in the absence of any change in CYP2E1 levels. Buthionine sulfoximine (BSO) intervention led to 70% mortality in primed mice challenged with lethal dose. These data suggest that higher detoxification may play a role in the lower initiation of kidney injury observed in primed mice. Exposure of primed mice to a lethal dose of chloroform led to 40% lower chloroform levels (AUC{sub 15-360min}) in the systemic circulation. Exhalation of {sup 14}C-chloroform was unchanged in primed as compared to unprimed mice (AUC{sub 1-6h}). Urinary excretion of {sup 14}C-chloroform was higher in primed mice after administration of the lethal dose. However, neither slightly higher urinary elimination nor unchanged expiration can account for the difference in systemic levels of chloroform. Liver and kidney regeneration was inhibited by the lethal dose in unprimed mice leading to progressive injury, organ failure, and 90% mortality. In contrast, sustained and highly stimulated compensatory hepato- and nephrogenic repair prevented the progression of injury resulting in 100% survival of primed mice challenged with the lethal dose. These findings affirm the critical role of tissue regeneration and favorable detoxification (only in kidney) of the lethal dose of chloroform in subchronic chloroform priming-induced autoprotection.« less
Albanese, Adriana; Sacerdoti, Flavia; Seyahian, E Abril; Amaral, Maria Marta; Fiorentino, Gabriela; Fernandez Brando, Romina; Vilte, Daniel A; Mercado, Elsa C; Palermo, Marina S; Cataldi, Angel; Zotta, Elsa; Ibarra, Cristina
2018-03-20
E. coli O157:H7 is a foodborne pathogen responsible for bloody diarrhea, hemorrhagic colitis and hemolytic uremic syndrome (HUS). The objective of the present work was to evaluate the ability of colostral IgG obtained from Stx2-immunized cows to prevent against E. coli O157:H7 infection and Stx2 cytotoxicity. Hyperimmune colostrum (HC) was obtained from cows intramuscularly immunized with inactivated Stx2 or vehicle for controls. Colostral IgG was purified by affinity chromatography. Specific IgG antibodies against Stx2 and bovine lactoferrin (bLF) levels in HC and the corresponding IgG (HC-IgG/bLF) were determined by ELISA. The protective effects of HC-IgG/bLF against Stx2 cytotoxicity and adhesion of E. coli O157:H7 and its Stx2-negative mutant were analyzed in HCT-8 cells. HC-IgG/bLF prevention against E. coli O157:H7 was studied in human colon and rat colon loops. Protection against a lethal dose of E. coli O157:H7 was evaluated in a weaned mice model. HC-IgG/bLF showed high anti-Stx2 titers and high bLF levels that were able to neutralize the cytotoxic effects of Stx2 in vitro and in vivo. Furthermore, HC-IgG/bLF avoided the inhibition of water absorption induced by E. coli O157:H7 in human colon and also the pathogenicity of E. coli O157:H7 and E. coli O157:H7Δstx2 in rat colon loops. Finally, HC-IgG/bLF prevented in a 100% the lethality caused by E. coli O157:H7 in a weaned mice model. Our study suggests that HC-IgG/bLF have protective effects against E. coli O157:H7 infection. These beneficial effects may be due to specific anti-Stx2 neutralizing antibodies in combination with high bLF levels. These results allow us to consider HC-IgG/bLF as a nutraceutical tool which could be used in combination with balanced supportive diets to prevent HUS. However further studies are required before recommendations can be made for therapeutic and clinical applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lotufo, G.R.
1995-12-31
Adult females of the meiobenthic copepod Schizopera knabeni were exposed to sediment-associated fluoranthene for 3, 6, 12, 24, 96, and 240 h. Sediment concentrations ranged from 25 to 1,661 nmol (5--336 {micro}g)/gdw and the TOC was 1.5%. Body burden increased to an apparent steady state after only 6 h. Elimination half-lives were 4.6 and 3.2 h in uncontaminated water and sediment, respectively. Toxic effects were only detected after 240 h as increased mortality and decreased offspring production. Significant mortality was observed only at the highest concentration; the LC50 was 1,011 nmol (204 {micro}g)/dgw. In contrast, offspring production was decreased atmore » much lower concentrations, yielding an IC25 value of 148 nmol (30 {micro}g)/dgw. Lethal critical body residue (CBR) was determined as a 10-d LD50 of 15.5 {micro}mol/g dry tissue. By measuring PAH concentrations in the body and eggs of females, CBRs for reproductive output were determined as IC25 values of 2 and 3.1 {micro}mol/gdw, respectively. PAH sublethal effects on feeding rate were also investigated Adult copepods were exposed to {sup 14}C sediment-associated fluoranthene for 24 h were fed {sup 3}H-labeled algae for 3 h. Ingestion rate was significantly decreased at tissue concentrations as low as 1 {micro}mol/gdw and yielded an IC25 value of 0.6 {micro}mol/gdw. Similar findings were obtained using another species of estuarine copepod, Coullana sp. Non-polar narcotic compounds such as PAH cause a nonspecific disturbance of the functioning of cell membrane which results in decreased overall activity. Measurement of CBR associated with decreased feeding is proposed as a direct method to quantify sublethal narcotizing effects of organic compounds.« less
How Ebola virus counters the interferon system.
Kühl, A; Pöhlmann, S
2012-09-01
Zoonotic transmission of Ebola virus (EBOV) to humans causes a severe haemorrhagic fever in afflicted individuals with high case-fatality rates. Neither vaccines nor therapeutics are at present available to combat EBOV infection, making the virus a potential threat to public health. To devise antiviral strategies, it is important to understand which components of the immune system could be effective against EBOV infection. The interferon (IFN) system constitutes a key innate defence against viral infections and prevents development of lethal disease in mice infected with EBOV strains not adapted to this host. Recent research revealed that expression of the host cell IFN-inducible transmembrane proteins 1-3 (IFITM1-3) and tetherin is induced by IFN and restricts EBOV infection, at least in cell culture model systems. IFITMs, tetherin and other effector molecules of the IFN system could thus pose a potent barrier against EBOV spread in humans. However, EBOV interferes with signalling events required for human cells to express these proteins. Here, we will review the strategies employed by EBOV to fight the IFN system, and we will discuss how IFITM proteins and tetherin inhibit EBOV infection. © 2012 Blackwell Verlag GmbH.
Genázio Pereira, Patrícia Christina; Reimão, Roberta Valoura; Pavesi, Thelma; Saggioro, Enrico Mendes; Moreira, Josino Costa; Veríssimo Correia, Fábio
2017-09-01
The Indigo carmine (IC) dye has been widely used in textile industries, even though it has been considered toxic for rats, pigs and humans. Owing to its toxicity, wastes containing this compound should be treated to minimize or eliminate their toxic effects on the biota. As an alternative to wastewater treatment, advanced oxidative processes (AOPs) have been highlighted due to their high capacity to destruct organic molecules. In this context, this study aimed to evaluate Indigo Carmine toxicity to soil organisms using the earthworm Eisenia andrei as a model-organism and also verify the efficiency of AOP in reducing its toxicity to these organisms. To this end, lethal (mortality) and sub-lethal (loss or gain of biomass, reproduction, behavior, morphological changes and immune system cells) effects caused by this substance and its degradation products in these annelids were evaluated. Morphological changes were observed even in organisms exposed to low concentrations, while mortality was the major effect observed in individuals exposed to high levels of indigo carmine dye. The organisms exposed to the IC during the contact test showed mortality after 72h of exposure (LC 50 = 75.79mgcm - 2 ), while those exposed to photoproducts showed mortality after 48h (LC 50 = 243min). In the chronic study, the organisms displayed a mortality rate of 14%, while those exposed to the photoproduct reached up to 32.7%. A negative influence of the dye on the reproduction rate was observed, while by-products affected juvenile survival. A loss of viability and alterations in the cellular proportion was verified during the chronic test. However, the compounds did not alter the behavior of the annelids in the leak test (RL ranged from 20% to 30%). Although photocatalysis has been presented as an alternative technology for the treatment of waste containing the indigo carmine dye, this process produced byproducts even more toxic than the original compounds to E. andrei. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dongxu; Wang, Yijun; Wan, Xiaochun
(−)-Epigallocatechin-3-gallate (EGCG), a constituent of green tea, has been suggested to have numerous health-promoting effects. On the other hand, high-dose EGCG is able to evoke hepatotoxicity. In the present study, we elucidated the responses of hepatic major antioxidant enzymes and nuclear factor erythroid 2-related factor 2 (Nrf2) rescue pathway to high-dose levels of EGCG in Kunming mice. At a non-lethal toxic dose (75 mg/kg, i.p.), repeated EGCG treatments markedly decreased the levels of superoxide dismutase, catalase, and glutathione peroxidase. As a rescue response, the nuclear distribution of Nrf2 was significantly increased; a battery of Nrf2-target genes, including heme oxygenase 1more » (HO1), NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione S-transferase (GST), and those involved in glutathione and thioredoxin systems, were all up-regulated. At the maximum tolerated dose (45 mg/kg, i.p.), repeated EGCG treatments did not disturb the major antioxidant defense. Among the above-mentioned genes, only HO1, NQO1, and GST genes were significantly but modestly up-regulated, suggesting a comprehensive and extensive activation of Nrf2-target genes principally occurs at toxic levels of EGCG. At a lethal dose (200 mg/kg, i.p.), a single EGCG treatment dramatically decreased not only the major antioxidant defense but also the Nrf2-target genes, demonstrating that toxic levels of EGCG are able to cause a biphasic response of Nrf2. Overall, the mechanism of EGCG-triggered hepatotoxicity involves suppression of major antioxidant enzymes, and the Nrf2 rescue pathway plays a vital role for counteracting EGCG toxicity. - Highlights: • EGCG at maximum tolerated dose does not disturb hepatic major antioxidant defense. • EGCG at maximum tolerated dose modestly upregulates hepatic Nrf2 target genes. • EGCG at toxic dose suppresses hepatic major antioxidant enzymes. • EGCG at non-lethal toxic dose pronouncedly activates hepatic Nrf2 rescue response. • EGCG at lethal dose substantially suppresses hepatic Nrf2 pathway.« less
Luiz, Wilson B; Rodrigues, Juliana F; Crabb, Joseph H; Savarino, Stephen J; Ferreira, Luis C S
2015-12-01
Globally, enterotoxigenic Escherichia coli (ETEC) is a leading cause of childhood and travelers' diarrhea, for which an effective vaccine is needed. Prevalent intestinal colonization factors (CFs) such as CFA/I fimbriae and heat-labile enterotoxin (LT) are important virulence factors and protective antigens. We tested the hypothesis that donor strand-complemented CfaE (dscCfaE), a stabilized form of the CFA/I fimbrial tip adhesin, is a protective antigen, using a lethal neonatal mouse ETEC challenge model and passive dam vaccination. For CFA/I-ETEC strain H10407, which has been extensively studied in volunteers, an inoculum of 2 × 10(7) bacteria resulted in 50% lethal doses (LD50) in neonatal DBA/2 mice. Vaccination of female DBA/2 mice with CFA/I fimbriae or dscCfaE, each given with a genetically attenuated LT adjuvant (LTK63) by intranasal or orogastric delivery, induced high antigen-specific serum IgG and fecal IgA titers and detectable milk IgA responses. Neonates born to and suckled by dams antenatally vaccinated with each of these four regimens showed 78 to 93% survival after a 20× LD50 challenge with H10407, compared to 100% mortality in pups from dams vaccinated with sham vaccine or LTK63 only. Crossover experiments showed that high pup survival rates after ETEC challenge were associated with suckling but not birthing from vaccinated dams, suggesting that vaccine-specific milk antibodies are protective. In corroboration, preincubation of the ETEC inoculum with antiadhesin and antifimbrial bovine colostral antibodies conferred a dose-dependent increase in pup survival after challenge. These findings indicate that the dscCfaE fimbrial tip adhesin serves as a protective passive vaccine antigen in this small animal model and merits further evaluation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Dulay, Rich Milton R; Kalaw, Sofronio P; Reyes, Renato G; Alfonso, Noel F; Eguchi, Fumio
2012-01-01
This paper highlights the teratogenic and toxic effects of Ganoderma lucidum (Lingzhi or Reishi mushroom) extract on zebrafish embryos. Hatchability, malformations, and lethality rate of zebrafish embryos were assessed to provide valuable information regarding the potential teratogenic activity of G. lucidum. Hatching was completed 48 h post treatment application (hpta) at 1% or lower concentrations of extract and embryo water. The hatching rate of embryos treated with 5% or higher concentrations was significantly lower (p> 0.05) than the control. Tail malformation was the most marked morphological abnormality in embryos at 72 hpta, which was obviously caused by 1% extract (55.56% tail malformation) and was observed in all embryos exposed to 5% of extract. Growth retardation was evident in embryos exposed to 5%, 10%, and 20%. However, lethal effect of extract of G. lucidum was dependent on dose and time of exposure. Mortality rates of embryos treated with 5% (44.44%) or higher concentrations of the extract was significantly higher (p > 0.05) than that of the control embryos at 72 hpta. These results suggest that G. lucidum extract has lethal and sub-lethal effects on zebrafish embryos.
Genetics and biological property analysis of Korea lineage of influenza A H9N2 viruses.
Kang, Min; Jang, Hyung-Kwan
2017-05-01
H9N2 influenza viruses have been detected from wild and domestic avian species including chickens and ducks worldwide. Few studies have compared the biological properties of different H9N2 lineages or determined whether certain lineages might pose a higher risk to mammals, especially H9N2 viruses of Korean lineage. The objective of this study was to characterize the genetic and biological properties of 22 Korean H9N2 viruses and assess their potential risks to mammals. Their complete genomes were analyzed. Some Korean H9N2 viruses were found to carry mammalian host-specific mutations. Based on genomic diversities, these H9N2 viruses were divided into 12 genotypes. All 22 showed preferential binding to human-like receptor. Two of eight H9N2 viruses were highly lethal to mice, causing 90-100% mortality without prior adaptation and severe respiratory syndromes associated with diffuse lung injury, severe pneumonia, and alveolar damage. These findings suggest that recent Korean H9N2 viruses might have established a stable sublineage with enhanced pathogenicity to mice. Various H9N2 strains pathogenic to mice were endemic in wild bird, poultry farm, and live bird markets, suggesting that Korean H9N2 viruses could evolve to become a threat to humans. The findings emphasize the necessity of careful, continuous, and thorough surveillance paired with risk-assessment for circulating H9N2 influenza viruses. Copyright © 2017 Elsevier B.V. All rights reserved.
Weyler, Linda; Engelbrecht, Mattias; Mata Forsberg, Manuel; Brehwens, Karl; Vare, Daniel; Vielfort, Katarina; Wojcik, Andrzej; Aro, Helena
2014-01-01
The host epithelium is both a barrier against, and the target for microbial infections. Maintaining regulated cell growth ensures an intact protective layer towards microbial-induced cellular damage. Neisseria gonorrhoeae infections disrupt host cell cycle regulation machinery and the infection causes DNA double strand breaks that delay progression through the G2/M phase. We show that intracellular gonococci upregulate and release restriction endonucleases that enter the nucleus and damage human chromosomal DNA. Bacterial lysates containing restriction endonucleases were able to fragment genomic DNA as detected by PFGE. Lysates were also microinjected into the cytoplasm of cells in interphase and after 20 h, DNA double strand breaks were identified by 53BP1 staining. In addition, by using live-cell microscopy and NHS-ester stained live gonococci we visualized the subcellular location of the bacteria upon mitosis. Infected cells show dysregulation of the spindle assembly checkpoint proteins MAD1 and MAD2, impaired and prolonged M-phase, nuclear swelling, micronuclei formation and chromosomal instability. These data highlight basic molecular functions of how gonococcal infections affect host cell cycle regulation, cause DNA double strand breaks and predispose cellular malignancies. PMID:25460012
Weyler, Linda; Engelbrecht, Mattias; Mata Forsberg, Manuel; Brehwens, Karl; Vare, Daniel; Vielfort, Katarina; Wojcik, Andrzej; Aro, Helena
2014-01-01
The host epithelium is both a barrier against, and the target for microbial infections. Maintaining regulated cell growth ensures an intact protective layer towards microbial-induced cellular damage. Neisseria gonorrhoeae infections disrupt host cell cycle regulation machinery and the infection causes DNA double strand breaks that delay progression through the G2/M phase. We show that intracellular gonococci upregulate and release restriction endonucleases that enter the nucleus and damage human chromosomal DNA. Bacterial lysates containing restriction endonucleases were able to fragment genomic DNA as detected by PFGE. Lysates were also microinjected into the cytoplasm of cells in interphase and after 20 h, DNA double strand breaks were identified by 53BP1 staining. In addition, by using live-cell microscopy and NHS-ester stained live gonococci we visualized the subcellular location of the bacteria upon mitosis. Infected cells show dysregulation of the spindle assembly checkpoint proteins MAD1 and MAD2, impaired and prolonged M-phase, nuclear swelling, micronuclei formation and chromosomal instability. These data highlight basic molecular functions of how gonococcal infections affect host cell cycle regulation, cause DNA double strand breaks and predispose cellular malignancies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ammann, H.M.; Bradow, F.; Fennell, D.
Hydrogen sulfide is a highly toxic gas which is immediately lethal in concentrations greater than 2000 ppm. The toxic end-point is due to anoxia to brain and heart tissues which results from its interaction with the celluar enzyme cytochrome oxidase. Inhibition of the enzyme halts oxidative metabolism which is the primary energy source for cells. A second toxic end-point is the irritative effect of hydrogen sulfide on mucous membranes, particularly edema at sublethal doses (250 to 500 ppm) in which sufficient exposure occurs before conciousness is lost. Recovered victims of exposure report neurologic symptoms such as headache, fatigue, irritability, vertigo,more » and loss of libido. Long-term effects are similar to those caused by anoxia due to other toxic agents like CO, and probably are not due to specific H/sub 2/S effects. H/sub 2/S is not a cumulative poison. No mutagenic, carcinogenic, reproductive, or teratogenic effects have been reported in the literature.« less
Ikeda, Terumasa; Albin, John S.; Li, Ming; Thali, Markus
2018-01-01
HIV-1 replication normally requires Vif-mediated neutralization of APOBEC3 antiviral enzymes. Viruses lacking Vif succumb to deamination-dependent and -independent restriction processes. Here, HIV-1 adaptation studies were leveraged to ask whether viruses with an irreparable vif deletion could develop resistance to restrictive levels of APOBEC3G. Several resistant viruses were recovered with multiple amino acid substitutions in Env, and these changes alone are sufficient to protect Vif-null viruses from APOBEC3G-dependent restriction in T cell lines. Env adaptations cause decreased fusogenicity, which results in higher levels of Gag-Pol packaging. Increased concentrations of packaged Pol in turn enable faster virus DNA replication and protection from APOBEC3G-mediated hypermutation of viral replication intermediates. Taken together, these studies reveal that a moderate decrease in one essential viral activity, namely Env-mediated fusogenicity, enables the virus to change other activities, here, Gag-Pol packaging during particle production, and thereby escape restriction by the antiviral factor APOBEC3G. We propose a new paradigm in which alterations in viral homeostasis, through compensatory small changes, constitute a general mechanism used by HIV-1 and other viral pathogens to escape innate antiviral responses and other inhibitions including antiviral drugs. PMID:29677220
Utilization of ICU Data to Improve 30 and 60 Day Mortality Models
2017-01-06
Acute Radiation Syndrome , Mortality, Burn Combined Injury, Lethality, Small Intestine, Ordinary Differential...short period of time (high dose rate) causes acute radiation syndrome (ARS). Depending on the radiation dose, an individual may experience the...hematopoietic acute radiation syndrome (H-ARS) or the gastrointestinal acute radiation syndrome (GI-ARS) (reviewed in Maciàă I Garau et al., 2011). For acute
Li, Yuanyuan; Kong, Shaofan; Yang, Fujun; Xu, Wenqing
2018-05-21
Ionizing radiation (IR) acts as an external stimulating factor, when it acts on the body, it will activate NF- κ B and cause the up-regulation of inducible nitric oxide synthase (iNOS) and induce a large amount of nitric oxide (NO) production. NO and other reactive nitrogen and oxygen species (RNS and ROS) can cause damage to biological molecules and affect their physiological functions. Our study investigated the protective role of 2-amino-5,6-dihydro-4 H -1,3-thiazine hydrobromide (2-ADT) and 2-acetylamino-5,6-dihydro-4 H -1,3-thiazine hydrobromide (2-AADT), two nitric oxide synthase inhibitors, against radiation-induced hematopoietic and intestinal injury in mice. Pretreatment with 2-ADT and 2-AADT improved the survival of mice exposed to a lethal dose of radiation, especially, the survival rate of the 2-ADT 20 mg/kg group was significantly higher than that of the vehicle group ( p < 0.001). Our findings indicated that the radioprotective actions of 2-ADT and 2-AADT are achieved via accelerating hematopoietic system recovery, decreasing oxidative and nitrosative stress by enhancing the antioxidant defense system and reducing NO as well as peroxynitrite (ONOO − ) content, and mitigating the radiation-induced DNA damage evaluated by comet assay. These results suggest that 2-ADT and 2-AADT may have great application potential in ameliorating the damages of radiotherapy.
Zhang, Anna J. X.; To, Kelvin K. W.; Lee, Andrew C. Y.; Zhu, Houshun; Wu, Hazel W. L.; Chan, Jasper F. W.; Chen, Honglin; Hung, Ivan F. N.; Li, Lanjuan; Yuen, Kwok-Yung
2014-01-01
Background Human infection caused by the avian influenza A H7N9 virus has a case-fatality rate of over 30%. Systematic study of the pathogenesis of avian H7N9 isolate and effective therapeutic strategies are needed. Methods BALB/c mice were inoculated intranasally with an H7N9 virus isolated from a chicken in a wet market epidemiologically linked to a fatal human case, (A/chicken/Zhejiang/DTID-ZJU01/2013 [CK1]), and with an H7N9 virus isolated from a human (A/Anhui/01/2013 [AH1]). The pulmonary viral loads, cytokine/chemokine profiles and histopathological changes of the infected mice were compared. The therapeutic efficacy of a non-steroidal anti-inflammatory drug (NSAID), celecoxib, was assessed. Results Without prior adaptation, intranasal inoculation of 106 plaque forming units (PFUs) of CK1 caused a mortality rate of 82% (14/17) in mice. Viral nucleoprotein and RNA expression were limited to the respiratory system and no viral RNA could be detected from brain, liver and kidney tissues. CK1 caused heavy alveolar inflammatory exudation and pulmonary hemorrhage, associated with high pulmonary levels of proinflammatory cytokines. In the mouse lung cell line LA-4, CK1 also induced high levels of interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) mRNA. Administration of the antiviral zanamivir did not significantly improve survival in mice infected with CK1, but co-administration of the non-steroidal anti-inflammatory drug (NSAID) celecoxib in combination with zanamivir improved survival and lung pathology. Conclusions Our findings suggested that H7N9 viruses isolated from chicken without preceding trans-species adaptation can cause lethal mammalian pulmonary infection. The severe proinflammatory responses might be a factor contributing to the mortality. Treatment with combination of antiviral and NSAID could ameliorate pulmonary inflammation and may improve survival. PMID:25232731
Zheng, Lei; Pan, Luqing; Lin, Pengfei; Miao, Jingjing; Wang, Xiufen; Lin, Yufei; Wu, Jiangyue
2017-12-01
Hazardous and noxious substances (HNS) spill in the marine environment is an issue of growing concern, and it will mostly continue to do so in the future owing to the increase of high chemical traffic. Nevertheless, the effects of HNS spill on marine environment, especially on aquatic organisms are unclear. Consequently, it is emergent to provide valuable information for the toxicities to marine biota caused by HNS spill. Accordingly, the acute toxicity of three preferential HNS and sub-lethal effects of acrylonitrile on Brachionus plicatilis were evaluated. The median lethal concentration (LC 50 ) at 24 h were 47.2 mg acrylonitrile L -1 , 276.9 mg styrene L -1 , and 488.3 mg p-xylene L -1 , respectively. Sub-lethal toxicity effects of acrylonitrile on feeding behavior, development, and reproduction parameters of B. plicatilis were also evaluated. Results demonstrated that rates of filtration and ingestion were significantly reduced at 2.0, 4.0, and 8.0 mg L -1 of acrylonitrile. Additionally, reproductive period, fecundity, and life span were significantly decreased at high acrylonitrile concentrations. Conversely, juvenile period was significantly increased at the highest two doses and no effects were observed on embryonic development and post-reproductive period. Meanwhile, we found that ingestion rate decline could be a good predictor of reproduction toxicity in B. plicatilis and ecologically relevant endpoint for toxicity assessment. These data will be useful to assess and deal with marine HNS spillages.
Wu, Luling; Wang, Yang; James, Tony D; Jia, Nengqin; Huang, Chusen
2018-05-29
Heat stroke is a lethal condition which can cause dysfunction in the central nervous system, multi-organ damage and even death. However, there is still limited knowledge of the detailed mechanism about the roles of lysosomes in heat stroke due to lack of effective tools. Herein, we introduce our previously developed hemicyanine with a large D-π-A structure as the key fluorophore to develop a new fluorescent probe (CPY) for ratiometric mapping of lysosomal pH changes in live cells under a heat shock stimulus.
Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells.
Hirsch, Matthew L; Fagan, B Matthew; Dumitru, Raluca; Bower, Jacquelyn J; Yadav, Swati; Porteus, Matthew H; Pevny, Larysa H; Samulski, R Jude
2011-01-01
Human embryonic stem cells (hESCs) are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV) single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication.
2017-01-01
Due to the increased frequency of interspecies transmission of avian influenza viruses, studies designed to identify the molecular determinants that could lead to an expansion of the host range have been increased. A variety of mouse-based mammalian-adaptation studies of avian influenza viruses have provided insight into the genetic alterations of various avian influenza subtypes that may contribute to the generation of a pandemic virus. To date, the studies have focused on avian influenza subtypes H5, H6, H7, H9, and H10 which have recently caused human infection. Although mice cannot fully reflect the course of human infection with avian influenza, these mouse studies can be a useful method for investigating potential mammalian adaptive markers against newly emerging avian influenza viruses. In addition, due to the lack of appropriate vaccines against the diverse emerging influenza viruses, the generation of mouse-adapted lethal variants could contribute to the development of effective vaccines or therapeutic agents. Within this review, we will summarize studies that have demonstrated adaptations of avian influenza viruses that result in an altered pathogenicity in mice which may suggest the potential application of mouse-lethal strains in the development of influenza vaccines and/or therapeutics in preclinical studies. PMID:28775972
Bhuiyan, Mohammad Iqbal Hossain; Jung, Seo Yun; Kim, Hyoung Ja; Lee, Yong Sup; Jin, Changbae
2011-06-01
Ischemic preconditioning can provide protection to neurons from subsequent lethal ischemia. The molecular mechanisms of neuronal ischemic tolerance, however, are still not well-known. The present study, therefore, examined the role of MAPK and PI3K/Akt pathways in ischemic tolerance induced by preconditioning with sublethal oxygen-glucose deprivation (OGD) in cultured rat cortical neurons. Ischemic tolerance was simulated by preconditioning of the neurons with sublethal 1-h OGD imposed 12 h before lethal 3-h OGD. The time-course studies of relative phosphorylation and expression levels of ERK1/2, JNK and p38 MAPK showed lack of their involvement in ischemic tolerance. However, there were significant increases in Akt phosphorylation levels during the reperfusion period following preconditioned lethal OGD. In addition, Bcl-2 associated death promoter (Bad) and GSK-3β were also found to be inactivated during that reperfusion period. Finally, treatment with an inhibitor of PI3K, wortmannin, applied from 15 min before and during lethal OGD abolished not only the preconditioning-induced neuroprotection but also the Akt activation. Concomitant with blockade of the Akt activation, PI3K inhibition also resulted in activation of Bad and GSK-3β. The results suggest that ischemic tolerance induced by sublethal OGD preconditioning is primarily mediated through activation of the PI3K/Akt pathway, but not the MAPK pathway, in rat cortical neurons.
Iqbal, Junaid; Dufendach, Kevin R; Wellons, John C; Kuba, Maria G; Nickols, Hilary H; Gómez-Duarte, Oscar G; Wynn, James L
2016-01-01
Neonatal meningitis is a rare but devastating condition. Multi-drug resistant (MDR) bacteria represent a substantial global health risk. This study reports on an aggressive case of lethal neonatal meningitis due to a MDR Escherichia coli (serotype O75:H5:K1). Serotyping, MDR pattern and phylogenetic typing revealed that this strain is an emergent and highly virulent neonatal meningitis E. coli isolate. The isolate was resistant to both ampicillin and gentamicin; antibiotics currently used for empiric neonatal sepsis treatment. The strain was also positive for multiple virulence genes including K1 capsule, fimbrial adhesion fimH, siderophore receptors iroN, fyuA and iutA, secreted autotransporter toxin sat, membrane associated proteases ompA and ompT, type II polysaccharide synthesis genes (kpsMTII) and pathogenicity-associated island (PAI)-associated malX gene. The presence of highly-virulent MDR organisms isolated in neonates underscores the need to implement rapid drug resistance diagnostic methods and should prompt consideration of alternate empiric therapy in neonates with Gram negative meningitis.
Tzelepis, Fanny; de Alencar, Bruna C G; Penido, Marcus L O; Claser, Carla; Machado, Alexandre V; Bruna-Romero, Oscar; Gazzinelli, Ricardo T; Rodrigues, Mauricio M
2008-02-01
Interference or competition between CD8(+) T cells restricted by distinct MHC-I molecules can be a powerful means to establish an immunodominant response. However, its importance during infections is still questionable. In this study, we describe that following infection of mice with the human pathogen Trypanosoma cruzi, an immunodominant CD8(+) T cell immune response is developed directed to an H-2K(b)-restricted epitope expressed by members of the trans-sialidase family of surface proteins. To determine whether this immunodominance was exerted over other non-H-2K(b)-restricted epitopes, we measured during infection of heterozygote mice, immune responses to three distinct epitopes, all expressed by members of the trans-sialidase family, recognized by H-2K(b)-, H-2K(k)-, or H-2K(d)-restricted CD8(+) T cells. Infected heterozygote or homozygote mice displayed comparably strong immune responses to the H-2K(b)-restricted immunodominant epitope. In contrast, H-2K(k)- or H-2K(d)-restricted immune responses were significantly impaired in heterozygote infected mice when compared with homozygote ones. This interference was not dependent on the dose of parasite or the timing of infection. Also, it was not seen in heterozygote mice immunized with recombinant adenoviruses expressing T. cruzi Ags. Finally, we observed that the immunodominance was circumvented by concomitant infection with two T. cruzi strains containing distinct immunodominant epitopes, suggesting that the operating mechanism most likely involves competition of T cells for limiting APCs. This type of interference never described during infection with a human parasite may represent a sophisticated strategy to restrict priming of CD8(+) T cells of distinct specificities, avoiding complete pathogen elimination by host effector cells, and thus favoring host parasitism.
Bhat, Supriya V.; Kamencic, Belma; Körnig, André; Shahina, Zinnat; Dahms, Tanya E. S.
2018-01-01
Escherichia coli is a robust, easily adaptable and culturable bacterium in vitro, and a model bacterium for studying the impact of xenobiotics in the environment. We have used correlative atomic force – laser scanning confocal microscopy (AFM-LSCM) to characterize the mechanisms of cellular response to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). One of the most extensively used herbicides world-wide, 2,4-D is known to cause hazardous effects in diverse non-target organisms. Sub-lethal concentrations of 2,4-D caused DNA damage in E. coli WM1074 during short exposure periods which increased significantly over time. In response to 2,4-D, FtsZ and FtsA relocalized within seconds, coinciding with the complete inhibition of cell septation and cell elongation. Exposure to 2,4-D also resulted in increased activation of the SOS response. Changes to cell division were accompanied by concomitant changes to surface roughness, elasticity and adhesion in a time-dependent manner. This is the first study describing the mechanistic details of 2,4-D at sub-lethal levels in bacteria. Our study suggests that 2,4-D arrests E. coli cell division within seconds after exposure by disrupting the divisome complex, facilitated by dissipation of membrane potential. Over longer exposures, 2,4-D causes filamentation as a result of an SOS response to oxidative stress induced DNA damage. PMID:29472899
USDA-ARS?s Scientific Manuscript database
A major production restriction on sand pear (Pyrus pyrifolia) is black spot disease caused by the necrotrophic fungus Alternaria alternata. However, pear response mechanism to A. alternata is unknown at molecular level. Here, host responses of a resistant cultivar Cuiguan (CG) and a susceptible cult...
Ahmed, Haroon; Sousa, Sérgio Ramalho; Simsek, Sami; Anastácio, Sofia; Kilinc, Seyma Gunyakti
2017-12-01
Hypoderma spp. larvae cause subcutaneous myiasis in several animal species. The objective of the present investigation was to identify and characterize morphologically and molecularly the larvae of Hypoderma spp. collected from cattle (Bos taurus taurus) and red deer (Cervus elaphus) in the district of Castelo Branco, Portugal. For this purpose, a total of 8 larvae were collected from cattle (n=2) and red deer (n=6). After morphological identification of Hypoderma spp. larvae, molecular characterization was based on PCR-RFLP and mitochondrial CO1 gene sequence analysis. All larvae were morphologically characterized as the third instar larvae (L3) of H. actaeon. Two restriction enzymes were used for molecular identification of the larvae. TaqI restriction enzyme was not able to cut H. actaeon. However, MboII restriction enzyme differentiated Hypoderma species showing 210 and 450 bp bands in H. actaeon. Furthermore, according to the alignment of the mt-CO1 gene sequences of Hypoderma species and to PCR-RFLP findings, all the identified Hypoderma larvae were confirmed as H. actaeon. This is the first report of identification of Hypoderma spp. (Diptera; Oestridae) from cattle and red deer in Portugal, based on morphological and molecular analyses.
Basallote, M Dolores; De Orte, Manoela R; DelValls, T Ángel; Riba, Inmaculada
2014-01-01
Carbon capture and storage is increasingly being considered one of the most efficient approaches to mitigate the increase of CO2 in the atmosphere associated with anthropogenic emissions. However, the environmental effects of potential CO2 leaks remain largely unknown. The amphipod Ampelisca brevicornis was exposed to environmental sediments collected in different areas of the Gulf of Cádiz and subjected to several pH treatments to study the effects of CO2-induced acidification on sediment toxicity. After 10 days of exposure, the results obtained indicated that high lethal effects were associated with the lowest pH treatments, except for the Ría of Huelva sediment test. The mobility of metals from sediment to the overlying seawater was correlated to a pH decrease. The data obtained revealed that CO2-related acidification would lead to lethal effects on amphipods as well as the mobility of metals, which could increase sediment toxicity.
Dumard, Carlos Henrique; Barroso, Shana P C; Santos, Ana Clara V; Alves, Nathalia S; Couceiro, José Nelson S S; Gomes, Andre M O; Santos, Patricia S; Silva, Jerson L; Oliveira, Andréa C
2017-12-01
Avian influenza A viruses can cross naturally into mammals and cause severe diseases, as observed for H5N1. The high lethality of human infections causes major concerns about the real risk of a possible pandemic of severe diseases to which human susceptibility may be high and universal. High hydrostatic pressure (HHP) is a valuable tool for studies regarding the folding of proteins and the assembly of macromolecular structures such as viruses; furthermore, HHP has already been demonstrated to promote viral inactivation. Here, we investigated the structural stability of avian and human influenza viruses using spectroscopic and light-scattering techniques. We found that both particles have similar structural stabilities and that HHP promotes structural changes. HHP induced slight structural changes to both human and avian influenza viruses, and these changes were largely reversible when the pressure returned to its initial level. The spectroscopic data showed that H3N2 was more pressure-sensitive than H3N8. Structural changes did not predict changes in protein function, as H3N2 fusion activity was not affected, while H3N8 fusion activity drastically decreased. The fusion activity of H1N1 was also strongly affected by HHP. In all cases, HHP caused inactivation of the different influenza viruses. HHP may be a useful tool for vaccine development, as it induces minor and reversible structural changes that may be associated with partial preservation of viral biological activities and may potentiate their immunogenic response while abolishing their infectivity. We also confirmed that, although pressure does not promote drastic changes in viral particle structure, it can distinctly affect viral fusion activity. Copyright © 2017 Elsevier B.V. All rights reserved.
HSP70 expression in Biomphalaria glabrata snails exposed to cadmium.
da Silva Cantinha, Rebeca; Borrely, Sueli Ivone; Oguiura, Nancy; de Bragança Pereira, Carlos Alberto; Rigolon, Marcela M; Nakano, Eliana
2017-06-01
In this study, the effects of the heavy metal cadmium on the stress protein HSP70 are investigated in freshwater mollusks Biomphalaria glabrata. Adult snails were exposed for 96h to CdCl 2 at concentrations ranging from 0.09 to 0.7mgL -1 (LC 50/96h =0.34 (0.30-0.37). Time and concentration-dependent increases in the expression of HSP70 were observed at sub-lethal levels in the immunoblotting assay. Further, an increased survival to a lethal heat shock was observed in animals pre-exposed to a nonlethal concentration of cadmium, evidencing the induction of acquired tolerance. The present study demonstrated the inducibility of B. glabrata HSP70 by cadmium, a relevant environmental contaminant, at non-lethal levels, providing evidences that the assessment of HSP70 in B. glabrata can be regarded as a suitable biomarker for ecotoxicological studies. Copyright © 2017 Elsevier Inc. All rights reserved.
PPIB mutations cause severe osteogenesis imperfecta.
van Dijk, Fleur S; Nesbitt, Isabel M; Zwikstra, Eline H; Nikkels, Peter G J; Piersma, Sander R; Fratantoni, Silvina A; Jimenez, Connie R; Huizer, Margriet; Morsman, Alice C; Cobben, Jan M; van Roij, Mirjam H H; Elting, Mariet W; Verbeke, Jonathan I M L; Wijnaendts, Liliane C D; Shaw, Nick J; Högler, Wolfgang; McKeown, Carole; Sistermans, Erik A; Dalton, Ann; Meijers-Heijboer, Hanne; Pals, Gerard
2009-10-01
Deficiency of cartilage-associated protein (CRTAP) or prolyl 3-hydroxylase 1(P3H1) has been reported in autosomal-recessive lethal or severe osteogenesis imperfecta (OI). CRTAP, P3H1, and cyclophilin B (CyPB) form an intracellular collagen-modifying complex that 3-hydroxylates proline at position 986 (P986) in the alpha1 chains of collagen type I. This 3-prolyl hydroxylation is decreased in patients with CRTAP and P3H1 deficiency. It was suspected that mutations in the PPIB gene encoding CyPB would also cause OI with decreased collagen 3-prolyl hydroxylation. To our knowledge we present the first two families with recessive OI caused by PPIB gene mutations. The clinical phenotype is compatible with OI Sillence type II-B/III as seen with COL1A1/2, CRTAP, and LEPRE1 mutations. The percentage of 3-hydroxylated P986 residues in patients with PPIB mutations is decreased in comparison to normal, but it is higher than in patients with CRTAP and LEPRE1 mutations. This result and the fact that CyPB is demonstrable independent of CRTAP and P3H1, along with reported decreased 3-prolyl hydroxylation due to deficiency of CRTAP lacking the catalytic hydroxylation domain and the known function of CyPB as a cis-trans isomerase, suggest that recessive OI is caused by a dysfunctional P3H1/CRTAP/CyPB complex rather than by the lack of 3-prolyl hydroxylation of a single proline residue in the alpha1 chains of collagen type I.
A Neuron-Specific Antiviral Mechanism Prevents Lethal Flaviviral Infection of Mosquitoes
Xiao, Xiaoping; Zhang, Rudian; Pang, Xiaojing; Liang, Guodong; Wang, Penghua; Cheng, Gong
2015-01-01
Mosquitoes are natural vectors for many etiologic agents of human viral diseases. Mosquito-borne flaviviruses can persistently infect the mosquito central nervous system without causing dramatic pathology or influencing the mosquito behavior and lifespan. The mechanism by which the mosquito nervous system resists flaviviral infection is still largely unknown. Here we report that an Aedes aegypti homologue of the neural factor Hikaru genki (AaHig) efficiently restricts flavivirus infection of the central nervous system. AaHig was predominantly expressed in the mosquito nervous system and localized to the plasma membrane of neural cells. Functional blockade of AaHig enhanced Dengue virus (DENV) and Japanese encephalitis virus (JEV), but not Sindbis virus (SINV), replication in mosquito heads and consequently caused neural apoptosis and a dramatic reduction in the mosquito lifespan. Consistently, delivery of recombinant AaHig to mosquitoes reduced viral infection. Furthermore, the membrane-localized AaHig directly interfaced with a highly conserved motif in the surface envelope proteins of DENV and JEV, and consequently interrupted endocytic viral entry into mosquito cells. Loss of either plasma membrane targeting or virion-binding ability rendered AaHig nonfunctional. Interestingly, Culex pipien pallens Hig also demonstrated a prominent anti-flavivirus activity, suggesting a functionally conserved function for Hig. Our results demonstrate that an evolutionarily conserved antiviral mechanism prevents lethal flaviviral infection of the central nervous system in mosquitoes, and thus may facilitate flaviviral transmission in nature. PMID:25915054
Wang, Feng-Xue; Zhang, Shu-Qin; Zhu, Hong-Wei; Yang, Yong; Sun, Na; Tan, Bin; Li, Zhen-Guang; Cheng, Shi-Peng; Fu, Zhen F; Wen, Yong-Jun
2014-12-05
The rabies virus (RV) vector LBNSE expressing foreign antigens have shown considerable promise as vaccines against viral and bacteria diseases, which is effective and safe. We produced a new RV-based vaccine vehicle expressing 1.824 kb hemagglutinin (H) gene of the canine distemper virus (CDV) by reverse genetics technology. The recombinant virus LBNSE-CDV-H retained growth properties similar to those of vector LBNSE both in BSR and mNA cell culture. The H gene of CDV was expressed and detected by immunostaining. To compare the immunogenicity of LBNSE-CDV-H, dogs were immunized with each of these recombinant viruses by intramuscular (i.m.). The dogs were bled at third weeks after the immunization for the measurement of virus neutralizing antibody (VNA) and then challenged with virulent virus (ZJ 7) at fourth weeks. The parent virus (LBNSE) without expression of any foreign molecules was included for comparison. Dogs inoculated with LBNSE-CDV-H showed no any signs of disease and exhibited seroconversion against both RV and CDV H protein. The LBNSE-CDV-H did not cause disease in dogs and conferred protection from challenge with a lethal wild type CDV strain, demonstrating its potential value for wildlife conservation efforts. Together, these studies suggest that recombinant RV expressing H protein from CDV stimulated high levels of adaptive immune responses (VNA), and protected all dogs challenge infection. Copyright © 2014 Elsevier B.V. All rights reserved.
Shannon, Maeve; Green, Brian; Willars, Gary; Wilson, Jodie; Matthews, Natalie; Lamb, Joanna; Gillespie, Anna; Connolly, Lisa
2017-01-04
Monosodium glutamate (MSG) is a suspected obesogen with epidemiological evidence positively correlating consumption to increased body mass index and higher prevalence of metabolic syndrome. ELISA and high content analysis (HCA) were employed to examine the disruptive effects of MSG on the secretion of enteroendocrine hormone glucagon-like peptide-1 (GLP-1) and GLP-1 receptor (GLP-1R), respectively. Following 3h MSG exposure of the enteroendocrine pGIP/neo: STC-1 cell line model (500μg/ml) significantly increased GLP-1 secretion (1.8 fold; P≤0.001), however, 72h exposure (500μg/ml) caused a 1.8 fold decline (P≤0.05). Also, 3h MSG exposure (0.5-500μg/ml) did not induce any cytotoxicity (including multiple pre-lethal markers) but 72h exposure at 250-500μg/ml, decreased cell number (11.8-26.7%; P≤0.05), increased nuclear area (23.9-29.8%; P≤0.001) and decreased mitochondrial membrane potential (13-21.6%; P≤0.05). At 500μg/ml, MSG increased mitochondrial mass by 16.3% (P≤0.01). MSG did not agonise or antagonise internalisation of the GLP-1R expressed recombinantly in U2OS cells, following GLP-1 stimulation. In conclusion, 72h exposure of an enteroendocrine cell line at dietary levels of MSG, results in pre-lethal cytotoxicity and decline in GLP-1 secretion. These adverse events may play a role in the pathogenesis of obesity as outlined in the obesogen hypothesis by impairing GLP-1 secretion, related satiety responses and glucose-stimulated insulin release. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
2012-01-01
Background Outbreaks of infectious diseases by microbial pathogens can cause substantial losses of stock in aquaculture systems. There are several ways to eliminate these pathogens including the use of antibiotics, biocides and conventional disinfectants, but these leave undesirable chemical residues. Conversely, using sunlight for disinfection has the advantage of leaving no chemical residue and is particularly suited to countries with sunny climates. Titanium dioxide (TiO2) is a photocatalyst that increases the effectiveness of solar disinfection. In recent years, several different types of solar photocatalytic reactors coated with TiO2 have been developed for waste water and drinking water treatment. In this study a thin-film fixed-bed reactor (TFFBR), designed as a sloping flat plate reactor coated with P25 DEGUSSA TiO2, was used. Results The level of inactivation of the aquaculture pathogen Aeromonas hydrophila ATCC 35654 was determined after travelling across the TFFBR under various natural sunlight conditions (300-1200 W m-2), at 3 different flow rates (4.8, 8.4 and 16.8 L h-1). Bacterial numbers were determined by conventional plate counting using selective agar media, cultured (i) under conventional aerobic conditions to detect healthy cells and (ii) under conditions designed to neutralise reactive oxygen species (agar medium supplemented with the peroxide scavenger sodium pyruvate at 0.05% w/v, incubated under anaerobic conditions), to detect both healthy and sub-lethally injured (oxygen-sensitive) cells. The results clearly demonstrate that high sunlight intensities (≥ 600 W m-2) and low flow rates (4.8 L h-1) provided optimum conditions for inactivation of A. hydrophila ATCC 3564, with greater overall inactivation and fewer sub-lethally injured cells than at low sunlight intensities or high flow rates. Low sunlight intensities resulted in reduced overall inactivation and greater sub-lethal injury at all flow rates. Conclusions This is the first demonstration of the effectiveness of the TFFBR in the inactivation of Aeromonas hydrophila at high sunlight intensities, providing proof-of-concept for the application of solar photocatalysis in aquaculture systems. PMID:22243515
Sun, Ying; Yang, Chenghuai; Li, Junping; Li, Ling; Cao, Minghui; Li, Qihong; Li, Huijiao
2017-01-01
H9 subtype avian influenza viruses (AIVs) remain a significant burden in the poultry industry and are considered to be one of the most likely causes of any new influenza pandemic in humans. As ducks play an important role in the maintenance of H9 viruses in nature, successful control of the spread of H9 AIVs in ducks will have significant beneficial effects on public health. Duck enteritis virus (DEV) may be a promising candidate viral vector for aquatic poultry vaccination. In this study, we constructed a recombinant DEV, rDEV-∆UL2-HA, inserting the hemagglutinin (HA) gene from duck-origin H9N2 AIV into the UL2 gene by homologous recombination. One-step growth analyses showed that the HA gene insertion had no effect on viral replication and suggested that the UL2 gene was nonessential for virus growth in vitro. In vivo tests further showed that the insertion of the HA gene in place of the UL2 gene did not affect the immunogenicity of the virus. Moreover, a single dose of 10 3 TCID 50 of rDEV-∆UL2-HA induced solid protection against lethal DEV challenge and completely prevented H9N2 AIV viral shedding. To our knowledge, this is the first report of a DEV-vectored vaccine providing robust protection against both DEV and H9N2 AIV virus infections in ducks.
[Bactericidal effect of soybean peroxidase-hydrogen peroxide-potassium iodide system].
Jin, Jianling; Zhang, Weican; Li, Yu; Zhao, Yue; Wang, Fei; Gao, Peiji
2011-03-01
To study the bactericidal effect and the possible mechanisms of the three components system [soybean peroxidases (SBP)-hydrogen peroxide (H2O2)-potassium iodide (KI), SBP-H2O2-KI]. The inhibition and bactericidal effect of SBP-H2O2-KI system to bacteria was detected by OD600 and the number of live bacteria (CFU). The sensitivity was tested by comparing the minimum inhibitory concentration (MIC) of bacterial cultures before and after cultured under sub-lethal dose of SBP-H2O2-KI system. Oxidizing activity groups were detected with physical and chemical methods in order to explain the bactericidal mechanisms of SBP-H2O2-KI system. SBP-H2O2-KI ternary system had rapid and high efficient bactericidal effect to a variety of bacterial strains in just several minutes. The MICs had no significant changes when bacterial cultures continuously cultured in sub-lethal dose of SBP-H2O2-KI system, and no resistance/tolerance mutant strains could be isolated from them. Both physical and chemical test results showed that no hydroxyl radical produced in SBP- H2O2-KI reaction system, chemical test results showed that no superoxide anion but a singlet oxygen and iodine produced in SBP-H2O2-KI reaction system. These results suggested that singlet oxygen and iodine or the iodine intermediate state may possible be the main sterilization factors for SBP-H2O2-KI system, and hydroxyl radical and superoxide anion not. In addition, the both characteristics of SBP-H2O2-KI system: rapid and high efficient bactericidal effect, and bacteria difficultly resisting to it, indicated it would have a good potential application in medical and plant protection area.
Molecular Analysis of an Outbreak of Lethal Postpartum Sepsis Caused by Streptococcus pyogenes
Turner, Claire E.; Dryden, Matthew; Holden, Matthew T. G.; Davies, Frances J.; Lawrenson, Richard A.; Farzaneh, Leili; Bentley, Stephen D.; Efstratiou, Androulla
2013-01-01
Sepsis is now the leading direct cause of maternal death in the United Kingdom, and Streptococcus pyogenes is the leading pathogen. We combined conventional and genomic analyses to define the duration and scale of a lethal outbreak. Two postpartum deaths caused by S. pyogenes occurred within 24 h; one was characterized by bacteremia and shock and the other by hemorrhagic pneumonia. The women gave birth within minutes of each other in the same maternity unit 2 days earlier. Seven additional infections in health care and household contacts were subsequently detected and treated. All cluster-associated S. pyogenes isolates were genotype emm1 and were initially indistinguishable from other United Kingdom emm1 isolates. Sequencing of the virulence gene sic revealed that all outbreak isolates had the same unique sic type. Genome sequencing confirmed that the cluster was caused by a unique S. pyogenes clone. Transmission between patients occurred on a single day and was associated with casual contact only. A single isolate from one patient demonstrated a sequence change in sic consistent with longer infection duration. Transmission to health care workers was traced to single clinical contacts with index cases. The last case was detected 18 days after the first case. Following enhanced surveillance, the outbreak isolate was not detected again. Mutations in bacterial regulatory genes played no detectable role in this outbreak, illustrating the intrinsic ability of emm1 S. pyogenes to spread while retaining virulence. This fast-moving outbreak highlights the potential of S. pyogenes to cause a range of diseases in the puerperium with rapid transmission, underlining the importance of immediate recognition and response by clinical infection and occupational health teams. PMID:23616448
Prophage Induction Is Enhanced and Required for Renal Disease and Lethality in an EHEC Mouse Model
Reynolds, Jared L.; Alteri, Christopher J.; Skinner, Katherine G.; Friedman, Jonathan H.; Eaton, Kathryn A.; Friedman, David I.
2013-01-01
Enterohemorrhagic Escherichia coli (EHEC), particularly serotype O157:H7, causes hemorrhagic colitis, hemolytic uremic syndrome, and even death. In vitro studies showed that Shiga toxin 2 (Stx2), the primary virulence factor expressed by EDL933 (an O157:H7 strain), is encoded by the 933W prophage. And the bacterial subpopulation in which the 933W prophage is induced is the producer of Stx2. Using the germ-free mouse, we show the essential role 933W induction plays in the virulence of EDL933 infection. An EDL933 derivative with a single mutation in its 933W prophage, resulting specifically in that phage being uninducible, colonizes the intestines, but fails to cause any of the pathological changes seen with the parent strain. Hence, induction of the 933W prophage is the primary event leading to disease from EDL933 infection. We constructed a derivative of EDL933, SIVET, with a biosensor that specifically measures induction of the 933W prophage. Using this biosensor to measure 933W induction in germ-free mice, we found an increase three logs greater than was expected from in vitro results. Since the induced population produces and releases Stx2, this result indicates that an activity in the intestine increases Stx2 production. PMID:23555250
Jones, Frank R.; Gabitzsch, Elizabeth S.; Xu, Younong; Balint, Joseph P.; Borisevich, Viktoriya; Smith, Jennifer; Smith, Jeanon; Peng, Bi-Hung; Walker, Aida; Salazar, Magda; Paessler, Slobodan
2013-01-01
Vaccines against emerging pathogens such as the 2009 H1N1 pandemic virus can benefit from current technologies such as rapid genomic sequencing to construct the most biologically relevant vaccine. A novel platform (Ad5 [E1-, E2b-]) has been utilized to induce immune responses to various antigenic targets. We employed this vector platform to express hemagglutinin (HA) and neuraminidase (NA) genes from 2009 H1N1 pandemic viruses. Inserts were consensuses sequences designed from viral isolate sequences and the vaccine was rapidly constructed and produced. Vaccination induced H1N1 immune responses in mice, which afforded protection from lethal virus challenge. In ferrets, vaccination protected from disease development and significantly reduced viral titers in nasal washes. H1N1 cell mediated immunity as well as antibody induction correlated with the prevention of disease symptoms and reduction of virus replication. The Ad5 [E1-, E2b-] should be evaluated for the rapid development of effective vaccines against infectious diseases. PMID:21821082
McGee, K.A.; Gerlach, T.M.
1998-01-01
Time-series sensor data reveal significant short-term and seasonal variations of magmatic CO2 in soil over a 12 month period in 1995-1996 at the largest tree-kill site on Mammoth Mountain, central-eastern California. Short-term variations leading to ground-level soil CO2 concentrations hazardous and lethal to humans were triggered by shallow faulting in the absence of increased seismicity or intrusion, consistent with tapping a reservoir of accumulated CO2, rather than direct magma degassing. Hydrologic processes closely modulated seasonal variations in CO2 concentrations, which rose to 65%-100% in soil gas under winter snowpack and plunged more than 25% in just days as the CO2 dissolved in spring snowmelt. The high efflux of CO2 through the tree-kill soils acts as an open-system CO2 buffer causing infiltration of waters with pH values commonly of < 4.2, acid loading of up to 7 keqH+.ha-1.yr-1, mobilization of toxic Al3+, and long-term decline of soil fertility.
1986-01-01
We have examined requirements for antigen presentation to a panel of MHC class I-and class II-restricted, influenza virus-specific CTL clones by controlling the form of virus presented on the target cell surface. Both H-2K/D- and I region-restricted CTL recognize target cells exposed to infectious virus, but only the I region-restricted clones efficiently lysed histocompatible target cells pulsed with inactivated virus preparations. The isolated influenza hemagglutinin (HA) polypeptide also could sensitize target cells for recognition by class II-restricted, HA-specific CTL, but not by class I-restricted, HA- specific CTL. Inhibition of nascent viral protein synthesis abrogated the ability of target cells to present viral antigen relevant for class I-restricted CTL recognition. Significantly, presentation for class II- restricted recognition was unaffected in target cells exposed to preparations of either inactivated or infectious virus. This differential sensitivity suggested that these H-2I region-restricted CTL recognized viral polypeptides derived from the exogenously introduced virions, rather than viral polypeptides newly synthesized in the infected cell. In support of this contention, treatment of the target cells with the lysosomotropic agent chloroquine abolished recognition of infected target cells by class II-restricted CTL without diminishing class I-restricted recognition of infected target cells. Furthermore, when the influenza HA gene was introduced into target cells without exogenous HA polypeptide, the target cells that expressed the newly synthesized protein product of the HA gene were recognized only by H-2K/D-restricted CTL. These observations suggest that important differences may exist in requirements for antigen presentation between H-2K/D and H-2I region-restricted CTL. These differences may reflect the nature of the antigenic epitopes recognized by these two CTL subsets. PMID:3485173
Molecular Epidemiology of Adenovirus Type 7 in the United States, 1966–20001
Xu, Wanhong; Gerber, Susan I.; Gray, Gregory C.; Schnurr, David; Kajon, Adriana E.; Anderson, Larry J.
2002-01-01
Genetic variation among 166 isolates of human adenovirus 7 (Ad7) obtained from 1966 to 2000 from the United States and Eastern Ontario, Canada, was determined by genome restriction analysis. Most (65%) isolates were identified as Ad7b. Two genome types previously undocumented in North America were also identified: Ad7d2 (28%), which first appeared in 1993 and was later identified throughout the Midwest and Northeast of the United States and in Canada; and Ad7h (2%), which was identified only in the U.S. Southwest in 1998 and 2000. Since 1996, Ad7d2 has been responsible for several civilian outbreaks of Ad7 disease and was the primary cause of a large outbreak of respiratory illness at a military recruit training center. The appearance of Ad7d2 and Ad7h in North America represents recent introduction of these viruses from previously geographically restricted areas and may herald a shift in predominant genome type circulating in the United States. PMID:11927024
Mason, Jane A; Aung, Hnin T; Nandini, Adayapalam; Woods, Rickie G; Fairbairn, David J; Rowell, John A; Young, David; Susman, Rachel D; Brown, Simon A; Hyland, Valentine J; Robertson, Jeremy D
2018-05-01
We report a kindred referred for molecular investigation of severe hemophilia A in a young female in which extremely skewed X-inactivation was observed in both the proband and her clinically normal mother. Bidirectional Sanger sequencing of all F8 gene coding regions and exon/intron boundaries was undertaken. Methylation-sensitive restriction enzymes were utilized to investigate skewed X-inactivation using both a classical human androgen receptor (HUMARA) assay, and a novel method targeting differential methylation patterns in multiple informative X-chromosome SNPs. Illumina Whole-Genome Infinium microarray analysis was performed in the case-parent trio (proband and both parents), and the proband's maternal grandmother. The proband was a cytogenetically normal female with severe hemophilia A resulting from a heterozygous F8 pathogenic variant inherited from her similarly affected father. No F8 mutation was identified in the proband's mother, however, both the proband and her mother both demonstrated completely skewed X-chromosome inactivation (100%) in association with a previously unreported 2.3 Mb deletion at Xp22.2. At least three disease-associated genes (FANCB, AP1S2, and PIGA) were contained within the deleted region. We hypothesize that true "extreme" skewing of X-inactivation (≥95%) is a rare occurrence, but when defined correctly there is a high probability of finding an X-chromosome disease-causing variant or larger deletion resulting in X-inactivation through a survival disadvantage or cell lethal mechanism. We postulate that the 2.3 Mb Xp22.2 deletion identified in our kindred arose de novo in the proband's mother (on the grandfather's homolog), and produced extreme skewing of X-inactivation via a "cell lethal" mechanism. We introduce a novel multitarget approach for X-inactivation analysis using multiple informative differentially methylated SNPs, as an alternative to the classical single locus (HUMARA) method. We propose that for females with unexplained severe phenotypic expression of an X-linked recessive disorder trio-SNP microarray should be undertaken in combination with X-inactivation analysis. © 2018 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.
Suppressing bullfrog larvae with carbon dioxide
Gross, Jackson A.; Ray, Andrew; Sepulveda, Adam J.; Watten, Barnaby J.; Densmore, Christine L.; Layhee, Megan J.; Mark Abbey-Lambert,; ,
2014-01-01
Current management strategies for the control and suppression of the American Bullfrog (Lithobates catesbeianus = Rana catesbeiana Shaw) and other invasive amphibians have had minimal effect on their abundance and distribution. This study evaluates the effects of carbon dioxide (CO2) on pre- and prometamorphic Bullfrog larvae. Bullfrogs are a model organism for evaluating potential suppression agents because they are a successful invader worldwide. From experimental trials we estimated that the 24-h 50% and 99% lethal concentration (LC50 and LC99) values for Bullfrog larvae were 371 and 549 mg CO2/L, respectively. Overall, larvae that succumbed to experimental conditions had a lower body condition index than those that survived. We also documented sublethal changes in blood chemistry during prolonged exposure to elevated CO2. Specifically, blood pH decreased by more than 0.5 pH units after 9 h of exposure and both blood partial pressure of CO2 (pCO2) and blood glucose increased. These findings suggest that CO2 treatments can be lethal to Bullfrog larvae under controlled laboratory conditions. We believe this work represents the necessary foundation for further consideration of CO2 as a potential suppression agent for one of the most harmful invaders to freshwater ecosystems.
Lallawmawma, H; Sathishkumar, Gnanasekar; Sarathbabu, Subburayan; Ghatak, Souvik; Sivaramakrishnan, Sivaperumal; Gurusubramanian, Guruswami; Kumar, Nachimuthu Senthil
2015-11-01
Silver and gold nanoparticles of Jasminum nervosum L. had unique optical properties such as broad absorbance band in the visible region of the electromagnetic spectrum. Characterization of the nanoparticles using UV spectrophotometer, Fourier transform infrared spectroscopy, X-ray diffraction, and transmission electron microscopy confirmed that the particles were silver (AgNPs) and gold (AuNPs) ranging between 4-22 and 2-20 nm with an average particles size of 9.4 and 10 nm, respectively. AgNPs and AuNPs of J. nervosum had high larvicidal activity on the filarial and arboviral vector, Culex quinquefasciatus, than the leaf aqueous extract. Observed lethal concentrations (LC50 and LC95) against the third instar larvae were 57.40 and 144.36 μg/ml for AgNPs and 82.62 and 254.68 μg/ml for AuNPs after 24 h treatment, respectively. The lethal time to kill 50% of C. quinquefasciatus larvae were 2.24 and 4.51 h at 150 μg/ml of AgNPs and AuNPs, respectively, while in the case of aqueous leaf extract of J. nervosum it was 9.44 h at 500 μg/ml (F 2,14 = 397.51, P < 0.0001). The principal component analysis plot presented differential clustering of the aqueous leaf extract, AgNP and AuNPs in relation to lethal dose and lethal time. It is concluded from the present findings that the biosynthesised AgNPs and AuNPs using leaf aqueous extract of J. nervosum could be an environmentally safer nanobiopesticide, and provided potential larvicidal effect on C. quinquefasciatus larvae which could be used for prevention of several dreadful diseases.
Hooper, Andrea T.; Butler, Jason M.; Nolan, Daniel J; Kranz, Andrea; Iida, Kaoruko; Kobayashi, Mariko; Kopp, Hans-Georg; Shido, Koji; Petit, Isabelle; Yanger, Kilangsungla; James, Daylon; Witte, Larry; Zhu, Zhenping; Wu, Yan; Pytowski, Bronislaw; Rosenwaks, Zev; Mittal, Vivek; Sato, Thomas N.; Rafii, Shahin
2011-01-01
SUMMARY The phenotypic attributes and molecular determinants for the regeneration of bone marrow (BM) sinusoidal endothelial cells (SECs) and their contribution to hematopoiesis are unknown. We show that after myelosuppression VEGFR2 activation promotes reassembly of regressed SECs, reconstituting hematopoietic stem and progenitor cells (HSPCs). VEGFR2 and VEGFR3 expression are restricted to BM vasculature, demarcating a continuous network of VEGFR2+VEGFR3+Sca1− SECs and VEGFR2+VEGFR3−Sca1+ arterioles. While chemotherapy (5FU) and sublethal irradiation (650 rad) induce minor SEC regression, lethal irradiation (950 rad) induces severe regression of SECs requiring BM transplantation (BMT) for regeneration. Conditional deletion of VEGFR2 in adult mice blocks regeneration of SECs in sublethally irradiated animals, preventing hematopoietic reconstitution. Inhibition of VEGFR2 signaling in lethally irradiated wild type mice rescued with BMT severely impairs SEC reconstruction, preventing engraftment and reconstitution of HSPCs. Therefore, activation of VEGFR2 is critical for regeneration of VEGFR3+Sca1− SECs that are essential for engraftment and restoration of HSPCs and hematopoiesis. PMID:19265665
[Gunshot wounds caused by non-lethal ammunition on the porcine model post-mortem].
Jabrocký, Peter; Pivko, Juraj; Vondráková, Mária; Tažký, Boris
2013-10-01
In this article we focus on the effects of so called non-lethal ammunition. We studied possible mechanism of firearm injury formation as a consequence of using firearm on the body, to present a more comprehensive material in wound ballistics. We pointed out possible actions of a projectile causes on human, respectively other animal organisms, as well as to a manner in which an injury is caused by rifles or shotguns using non-lethal ammunition with rubber projectiles. In the experiment, we have focused on macroscopic analysis of the tissue penetrated by a rubber projectile fired from a long firearm and pump-action shotgun while focusing on the anatomical-morphological analysis of entry wounds to determine the effectiveness respectively, the wounding potential of the projectile. The results of the experiment based on the macroscopic analysis of entry wounds, cavities and exit wounds, show that when a rubber projectile penetrates the body it causes loss of the tissue (i.e. the minus effect) and mechanical disruption of the tissue similar to lethal projectile. Based on the measures and ballistic computations we concluded that in specific cases, like for example in a close range hit, a penetration of vital organs can cause serious or even lethal injuries.
SCHISTOSOMIASIS: AGE OF SNAILS AND SUSCEPTIBILITY TO X-IRRADIATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szumlewicz, A.P.
1964-04-17
Studies on sensitivity of Australorbis glabratus to x rays have defined the chronological and physiological age at which the snail is most sensitive to radiation damage. Results showed that the dose producing 50-percent mortality at 30 days after irradiation increased with age but that at 90 days it was practically constant from 2 to 210 days of age. In view of the avaiIable data on recovery from radiation damage caused by doses from 6000 to 9000 roentgens it is suggested that doses above those causing 50% lethality at 60 days but below those causing 50% lethality for 30 days shouldmore » be considered in setting up radiation barriers to cortrol snails in water-distribution systems. (auth)« less
Wu, Si; Lu, Jianhong; Rui, Qi; Yu, Shunhui; Cai, Ting; Wang, Dayong
2011-01-01
Toxicity of Al(2)O(3)-NPs, as compared to that of Al(2)O(3), to L1-larval, L4-larval or young adult nematodes was evaluated. When exposure was performed at L1-larval stage, the significant increases of lethality, stress response, and intestinal lipofuscin autofluorescence were observed in 6.3-203.9 mg/L of Al(2)O(3)-NPs exposed nematodes. In contrast, when exposure was performed at L4-larval or young adult stage, the significant increases of lethality and intestinal lipofuscin autofluorescence were observed in 12.7-203.9 mg/L of Al(2)O(3)-NPs exposed nematodes, and the significant inductions of stress response were detected in 25.5-203.9 mg/L of Al(2)O(3)-NPs exposed nematodes. Moreover, the lethality was significantly correlated with the stress response and the intestinal lipofuscin autofluorescence in Al(2)O(3)-NPs exposed nematodes. These data imply that Al(2)O(3)-NPs exposure in L1 larvae causes more severe lethality toxicity than in L4 larvae or young adults by strengthening the formation of stress response and intestinal lipofuscin accumulation in nematodes. Copyright © 2010 Elsevier B.V. All rights reserved.
Insights into the CuO nanoparticle ecotoxicity with suitable marine model species.
Rotini, A; Gallo, A; Parlapiano, I; Berducci, M T; Boni, R; Tosti, E; Prato, E; Maggi, C; Cicero, A M; Migliore, L; Manfra, L
2018-01-01
Metal oxide nanoparticles, among them copper oxide nanoparticles (CuO NPs), are widely used in different applications (e.g. batteries, gas sensors, superconductors, plastics and metallic coatings), increasing their potential release in the environment. In aquatic matrix, the behavior of CuO NPs may strongly change, depending on their surface charge and some physical-chemical characteristics of the medium (e.g. ionic strength, salinity, pH and natural organic matter content). Ecotoxicity of CuO NPs to aquatic organisms was mainly studied on freshwater species, few tests being performed on marine biota. The aim of this study was to assess the toxicity of CuO NPs on suitable indicator species, belonging to the ecologically relevant level of consumers. The selected bioassays use reference protocols to identify Effect/Lethal Concentrations (E(L)C), by assessing lethal and sub-lethal endpoints. Mortality tests were performed on rotifer (Brachionus plicatilis), shrimp (Artemia franciscana) and copepod (Tigriopus fulvus). While moult release failure and fertilization rate were studied, as sub-lethal endpoints, on T. fulvus and sea urchin (Paracentrotus lividus), respectively. The size distribution and sedimentation rates of CuO NPs, together with the copper dissolution, were also analyzed in the exposure media. The CuO NP ecotoxicity assessment showed a concentration-dependent response for all species, indicating similar mortality for B. plicatilis (48hLC 50 = 16.94 ± 2.68mg/l) and T. fulvus (96hLC 50 = 12.35 ± 0.48mg/l), followed by A. franciscana (48hLC 50 = 64.55 ± 3.54mg/l). Comparable EC 50 values were also obtained for the sub-lethal endpoints in P. lividus (EC 50 = 2.28 ± 0.06mg/l) and T. fulvus (EC 50 = 2.38 ± 0.20mg/l). Copper salts showed higher toxicity than CuO NPs for all species, with common sensitivity trend as follows: P. lividus ≥ T. fulvus (sublethal endpoint) ≥ B. plicatilis >T. fulvus (lethal endpoint) >A. franciscana. CuO NP micrometric aggregates and high sedimentation rates were observed in the exposure media, with different particle size distributions depending on the medium. The copper dissolution was about 0.16% of the initial concentration, comparable to literature values. The integrated ecotoxicological-physicochemical approach was used to better describe CuO NP toxicity and behavior. In particular, the successful application of ecotoxicological reference protocols allowed to produce reliable L(E)C data useful to identify thresholds and assess potential environmental hazard due to NPs. Copyright © 2017 Elsevier Inc. All rights reserved.
Vargas, Marcelo R.; Burton, Neal C.; Gan, Li; Johnson, Delinda A.; Schäfer, Matthias; Werner, Sabine; Johnson, Jeffrey A.
2013-01-01
The nuclear factor erythroid 2-related factor 2 (Nrf2) governs the expression of antioxidant and phase II detoxifying enzymes. Nrf2 activation can prevent or reduce cellular damage associated with several types of injury in many different tissues and organs. Dominant mutations in Cu/Zn-superoxide dismutase (SOD1) cause familial forms of amyotrophic lateral sclerosis (ALS), a fatal disorder characterized by the progressive loss of motor neurons and subsequent muscular atrophy. We have previously shown that Nrf2 activation in astrocytes delays neurodegeneration in ALS mouse models. To further investigate the role of Nrf2 in ALS we determined the effect of absence of Nrf2 or its restricted overexpression in neurons or type II skeletal muscle fibers on symptoms onset and survival in mutant hSOD1 expressing mice. We did not observe any detrimental effect associated with the lack of Nrf2 in two different mutant hSOD1 animal models of ALS. However, restricted Nrf2 overexpression in neurons or type II skeletal muscle fibers delayed disease onset but failed to extend survival in hSOD1G93A mice. These results highlight the concept that not only the pharmacological target but also the cell type targeted may be relevant when considering a Nrf2-mediated therapeutic approach for ALS. PMID:23418589
Vargas, Marcelo R; Burton, Neal C; Kutzke, Jennifer; Gan, Li; Johnson, Delinda A; Schäfer, Matthias; Werner, Sabine; Johnson, Jeffrey A
2013-01-01
The nuclear factor erythroid 2-related factor 2 (Nrf2) governs the expression of antioxidant and phase II detoxifying enzymes. Nrf2 activation can prevent or reduce cellular damage associated with several types of injury in many different tissues and organs. Dominant mutations in Cu/Zn-superoxide dismutase (SOD1) cause familial forms of amyotrophic lateral sclerosis (ALS), a fatal disorder characterized by the progressive loss of motor neurons and subsequent muscular atrophy. We have previously shown that Nrf2 activation in astrocytes delays neurodegeneration in ALS mouse models. To further investigate the role of Nrf2 in ALS we determined the effect of absence of Nrf2 or its restricted overexpression in neurons or type II skeletal muscle fibers on symptoms onset and survival in mutant hSOD1 expressing mice. We did not observe any detrimental effect associated with the lack of Nrf2 in two different mutant hSOD1 animal models of ALS. However, restricted Nrf2 overexpression in neurons or type II skeletal muscle fibers delayed disease onset but failed to extend survival in hSOD1(G93A) mice. These results highlight the concept that not only the pharmacological target but also the cell type targeted may be relevant when considering a Nrf2-mediated therapeutic approach for ALS.
Lethal infection by a novel reassortant H5N1 avian influenza A virus in a zoo-housed tiger.
He, Shang; Shi, Jianzhong; Qi, Xian; Huang, Guoqing; Chen, Hualan; Lu, Chengping
2015-01-01
In early 2013, a Bengal tiger (Panthera tigris) in a zoo died of respiratory distress. All specimens from the tiger were positive for HPAI H5N1, which were detected by real-time PCR, including nose swab, throat swab, tracheal swab, heart, liver, spleen, lung, kidney, aquae pericardii and cerebrospinal fluid. One stain of virus, A/Tiger/JS/1/2013, was isolated from the lung sample. Pathogenicity experiments showed that the isolate was able to replicate and cause death in mice. Phylogenetic analysis indicated that HA and NA of A/Tiger/JS/1/2013 clustered with A/duck/Vietnam/OIE-2202/2012 (H5N1), which belongs to clade 2.3.2.1. Interestingly, the gene segment PB2 shared 98% homology with A/wild duck/Korea/CSM-28/20/2010 (H4N6), which suggested that A/Tiger/JS/1/2013 is a novel reassortant H5N1 subtype virus. Immunohistochemical analysis also confirmed that the tiger was infected by this new reassortant HPAI H5N1 virus. Overall, our results showed that this Bengal tiger was infected by a novel reassortant H5N1, suggesting that the H5N1 virus can successfully cross species barriers from avian to mammal through reassortment. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
van den Pol, Anthony N; Mao, Guochao; Chattopadhyay, Anasuya; Rose, John K; Davis, John N
2017-03-15
Recombinant vesicular stomatitis virus (VSV)-based chimeric viruses that include genes from other viruses show promise as vaccines and oncolytic viruses. However, the critical safety concern is the neurotropic nature conveyed by the VSV glycoprotein. VSVs that include the VSV glycoprotein (G) gene, even in most recombinant attenuated strains, can still show substantial adverse or lethal actions in the brain. Here, we test 4 chimeric viruses in the brain, including those in which glycoprotein genes from Nipah, chikungunya (CHIKV), and influenza H5N1 viruses were substituted for the VSV glycoprotein gene. We also test a virus-like vesicle (VLV) in which the VSV glycoprotein gene is expressed from a replicon encoding the nonstructural proteins of Semliki Forest virus. VSVΔG-CHIKV, VSVΔG-H5N1, and VLV were all safe in the adult mouse brain, as were VSVΔG viruses expressing either the Nipah F or G glycoprotein. In contrast, a complementing pair of VSVΔG viruses expressing Nipah G and F glycoproteins were lethal within the brain within a surprisingly short time frame of 2 days. Intranasal inoculation in postnatal day 14 mice with VSVΔG-CHIKV or VLV evoked no adverse response, whereas VSVΔG-H5N1 by this route was lethal in most mice. A key immune mechanism underlying the safety of VSVΔG-CHIKV, VSVΔG-H5N1, and VLV in the adult brain was the type I interferon response; all three viruses were lethal in the brains of adult mice lacking the interferon receptor, suggesting that the viruses can infect and replicate and spread in brain cells if not blocked by interferon-stimulated genes within the brain. IMPORTANCE Vesicular stomatitis virus (VSV) shows considerable promise both as a vaccine vector and as an oncolytic virus. The greatest limitation of VSV is that it is highly neurotropic and can be lethal within the brain. The neurotropism can be mostly attributed to the VSV G glycoprotein. Here, we test 4 chimeric viruses of VSV with glycoprotein genes from Nipah, chikungunya, and influenza viruses and nonstructural genes from Semliki Forest virus. Two of the four, VSVΔG-CHIKV and VLV, show substantially attenuated neurotropism and were safe in the healthy adult mouse brain. VSVΔG-H5N1 was safe in the adult brain but lethal in the younger brain. VSVΔG Nipah F+G was even more neurotropic than wild-type VSV, evoking a rapid lethal response in the adult brain. These results suggest that while chimeric VSVs show promise, each must be tested with both intranasal and intracranial administration to ensure the absence of lethal neurotropism. Copyright © 2017 American Society for Microbiology.
Mao, Guochao; Chattopadhyay, Anasuya; Rose, John K.; Davis, John N.
2017-01-01
ABSTRACT Recombinant vesicular stomatitis virus (VSV)-based chimeric viruses that include genes from other viruses show promise as vaccines and oncolytic viruses. However, the critical safety concern is the neurotropic nature conveyed by the VSV glycoprotein. VSVs that include the VSV glycoprotein (G) gene, even in most recombinant attenuated strains, can still show substantial adverse or lethal actions in the brain. Here, we test 4 chimeric viruses in the brain, including those in which glycoprotein genes from Nipah, chikungunya (CHIKV), and influenza H5N1 viruses were substituted for the VSV glycoprotein gene. We also test a virus-like vesicle (VLV) in which the VSV glycoprotein gene is expressed from a replicon encoding the nonstructural proteins of Semliki Forest virus. VSVΔG-CHIKV, VSVΔG-H5N1, and VLV were all safe in the adult mouse brain, as were VSVΔG viruses expressing either the Nipah F or G glycoprotein. In contrast, a complementing pair of VSVΔG viruses expressing Nipah G and F glycoproteins were lethal within the brain within a surprisingly short time frame of 2 days. Intranasal inoculation in postnatal day 14 mice with VSVΔG-CHIKV or VLV evoked no adverse response, whereas VSVΔG-H5N1 by this route was lethal in most mice. A key immune mechanism underlying the safety of VSVΔG-CHIKV, VSVΔG-H5N1, and VLV in the adult brain was the type I interferon response; all three viruses were lethal in the brains of adult mice lacking the interferon receptor, suggesting that the viruses can infect and replicate and spread in brain cells if not blocked by interferon-stimulated genes within the brain. IMPORTANCE Vesicular stomatitis virus (VSV) shows considerable promise both as a vaccine vector and as an oncolytic virus. The greatest limitation of VSV is that it is highly neurotropic and can be lethal within the brain. The neurotropism can be mostly attributed to the VSV G glycoprotein. Here, we test 4 chimeric viruses of VSV with glycoprotein genes from Nipah, chikungunya, and influenza viruses and nonstructural genes from Semliki Forest virus. Two of the four, VSVΔG-CHIKV and VLV, show substantially attenuated neurotropism and were safe in the healthy adult mouse brain. VSVΔG-H5N1 was safe in the adult brain but lethal in the younger brain. VSVΔG Nipah F+G was even more neurotropic than wild-type VSV, evoking a rapid lethal response in the adult brain. These results suggest that while chimeric VSVs show promise, each must be tested with both intranasal and intracranial administration to ensure the absence of lethal neurotropism. PMID:28077641
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiueh, C.C.; Andoh, Tsugunobu; Chock, P. Boon
2005-09-01
Hormesis, a stress tolerance, can be induced by ischemic preconditioning stress. In addition to preconditioning, it may be induced by other means, such as gas anesthetics. Preconditioning mechanisms, which may be mediated by reprogramming survival genes and proteins, are obscure. A known neurotoxicant, 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), causes less neurotoxicity in the mice that are preconditioned. Pharmacological evidences suggest that the signaling pathway of {center_dot}NO-cGMP-PKG (protein kinase G) may mediate preconditioning phenomenon. We developed a human SH-SY5Y cell model for investigating {sup {center_dot}}NO-mediated signaling pathway, gene regulation, and protein expression following a sublethal preconditioning stress caused by a brief 2-h serum deprivation.more » Preconditioned human SH-SY5Y cells are more resistant against severe oxidative stress and apoptosis caused by lethal serum deprivation and 1-mehtyl-4-phenylpyridinium (MPP{sup +}). Both sublethal and lethal oxidative stress caused by serum withdrawal increased neuronal nitric oxide synthase (nNOS/NOS1) expression and {sup {center_dot}}NO levels to a similar extent. In addition to free radical scavengers, inhibition of nNOS, guanylyl cyclase, and PKG blocks hormesis induced by preconditioning. S-nitrosothiols and 6-Br-cGMP produce a cytoprotection mimicking the action of preconditioning tolerance. There are two distinct cGMP-mediated survival pathways: (i) the up-regulation of a redox protein thioredoxin (Trx) for elevating mitochondrial levels of antioxidant protein Mn superoxide dismutase (MnSOD) and antiapoptotic protein Bcl-2, and (ii) the activation of mitochondrial ATP-sensitive potassium channels [K(ATP)]. Preconditioning induction of Trx increased tolerance against MPP{sup +}, which was blocked by Trx mRNA antisense oligonucleotide and Trx reductase inhibitor. It is concluded that Trx plays a pivotal role in {sup {center_dot}}NO-dependent preconditioning hormesis against MPTP/MPP{sup +}.« less
Elliott, Diane G.; McKibben, Constance L.; Conway, Carla M.; Purcell, Maureen K.; Chase, Dorothy M.; Applegate, Lynn M.
2015-01-01
Non-lethal pathogen testing can be a useful tool for fish disease research and management. Our research objectives were to determine if (1) fin clips, gill snips, surface mucus scrapings, blood draws, or kidney biopsies could be obtained non-lethally from 3 to 15 g Chinook salmon Oncorhynchus tshawytscha, (2) non-lethal samples could accurately discriminate between fish exposed to the bacterial kidney disease agent Renibacterium salmoninarum and non-exposed fish, and (3) non-lethal samples could serve as proxies for lethal kidney samples to assess infection intensity. Blood draws and kidney biopsies caused ≥5% post-sampling mortality (Objective 1) and may be appropriate only for larger fish, but the other sample types were non-lethal. Sampling was performed over 21 wk following R. salmoninarum immersion challenge of fish from 2 stocks (Objectives 2 and 3), and nested PCR (nPCR) and real-time quantitative PCR (qPCR) results from candidate non-lethal samples were compared with kidney tissue analysis by nPCR, qPCR, bacteriological culture, enzyme-linked immunosorbent assay (ELISA), fluorescent antibody test (FAT) and histopathology/immunohistochemistry. R. salmoninarum was detected by PCR in >50% of fin, gill, and mucus samples from challenged fish. Mucus qPCR was the only non-lethal assay exhibiting both diagnostic sensitivity and specificity estimates >90% for distinguishing between R. salmoninarum-exposed and non-exposed fish and was the best candidate for use as an alternative to lethal kidney sample testing. Mucus qPCR R. salmoninarum quantity estimates reflected changes in kidney bacterial load estimates, as evidenced by significant positive correlations with kidney R. salmoninaruminfection intensity scores at all sample times and in both fish stocks, and were not significantly impacted by environmentalR. salmoninarum concentrations.
Howe, P L; Reichelt-Brushett, A J; Krassoi, R; Micevska, T
2015-09-01
The sea anemone Exaiptasia pallida (formally Aiptasia pulchella) has been identified as a valuable test species for tropical marine ecotoxicology. Here, the sensitivities of newly developed endpoints for E. pallida to two unidentified whole effluents were compared to a standard suite of temperate toxicity test species and endpoints that are commonly used in toxicological risk assessments for tropical marine environments. For whole effluent 1 (WE1), a 96-h lethal concentration 50 % (LC50) of 40 (95 % confidence intervals, 30-54) % v/v and a 12-day LC50 of 12 (9-15) % v/v were estimated for E. pallida, exhibiting a significantly higher sensitivity than standard sub-lethal endpoints in Allorchestes compressa (96-h effective concentration 50 % (EC50) of >100 % v/v for immobilisation) and Hormosira banksii (72-h EC50 of >100 % v/v for germination), and a similar sensitivity to Mytilus edulis galloprovincialis larval development with a 48-h LC50 of 29 (28-30) % v/v. Sub-lethal effects of whole effluent 2 (WE2) on E. pallida pedal lacerate development resulted in an 8-day EC50 of 7 (3-11) % v/v, demonstrating comparable sensitivity of this endpoint to standardised sub-lethal endpoints in H. banksii (72-h EC50 of 11 (10-11) % v/v for germination), M. edulis galloprovincialis (48-h EC50 for larval development of 12 (9-14) % v/v) and Heliocidaris tuberculata (1-h EC50 of 13 (12-14) % v/v for fertilisation; 72-h EC50 of 26 (25-27) % v/v for larval development) and a significantly higher sensitivity than A. compressa immobilisation (96-h EC50 of >100 % v/v). The sensitivity of E. pallida compared to a standard test species suite highlights the value in standardising the newly developed toxicity test methods for inclusion in routine toxicological risk assessment of complex whole effluents. Importantly, this species provides an additional taxonomic group to the test species that are currently available for tropical marine ecotoxicology and, being a cnidarian, may represent important tropical marine environments including coral reefs.
Affonso, E G; Rantin, F T
2005-07-01
The present study analyzes the respiratory responses of the neotropical air-breathing fish Hoplosternum littorale to graded hypoxia and increased sulfide concentrations. The oxygen uptake (VO2), critical O2 tension (PcO2), respiratory (fR) and air-breathing (fRA) frequencies in response to graded hypoxia were determined for fish acclimated to 28 degrees C. H. littorale was able to maintain a constant VO2 down to a PcO2 of 50 mm Hg, below which fish became dependent on the environmental O2 even with significant increases in fR. The fRA was kept constant around 1 breath h(-1) above 50 mm Hg and increased significantly below 40 mm Hg, reaching maximum values (about 4.5 breaths h(-1)) at 10 mm Hg. The lethality to sulfide concentrations under normoxic and hypoxic conditions were also determined along with the fRA. For the normoxic fish the sulfide lethal limit was about 70 microM, while in the hypoxic ones this limit increased to 87 muM. The high sulfide tolerance of H. littorale may be attributed to the air-breathing capability, which is stimulated by this compound.
A screen to identify Drosophila genes required for integrin-mediated adhesion.
Walsh, E P; Brown, N H
1998-01-01
Drosophila integrins have essential adhesive roles during development, including adhesion between the two wing surfaces. Most position-specific integrin mutations cause lethality, and clones of homozygous mutant cells in the wing do not adhere to the apposing surface, causing blisters. We have used FLP-FRT induced mitotic recombination to generate clones of randomly induced mutations in the F1 generation and screened for mutations that cause wing blisters. This phenotype is highly selective, since only 14 lethal complementation groups were identified in screens of the five major chromosome arms. Of the loci identified, 3 are PS integrin genes, 2 are blistered and bloated, and the remaining 9 appear to be newly characterized loci. All 11 nonintegrin loci are required on both sides of the wing, in contrast to integrin alpha subunit genes. Mutations in 8 loci only disrupt adhesion in the wing, similar to integrin mutations, while mutations in the 3 other loci cause additional wing defects. Mutations in 4 loci, like the strongest integrin mutations, cause a "tail-up" embryonic lethal phenotype, and mutant alleles of 1 of these loci strongly enhance an integrin mutation. Thus several of these loci are good candidates for genes encoding cytoplasmic proteins required for integrin function. PMID:9755209
Synergistic Lethality of Mifepristone and LY294002 in Ovarian Cancer Cells
Wempe, Stacy L.; Gamarra-Luques, Carlos D.; Telleria, Carlos M.
2013-01-01
We have previously shown that the antiprogestin and antiglucocorticoid mifepristone inhibits the growth of ovarian cancer cells. In this work, we hypothesized that cellular stress caused by mifepristone is limited to cytostasis and that cell killing is avoided as a consequence of the persistent activity of the PI3K/Akt survival pathway. To investigate the role of this pathway in mifepristone-induced growth inhibition, human ovarian cancer cells of various histological subtypes and genetic backgrounds were exposed to cytostatic doses of mifepristone in the presence or absence of the PI3K inhibitor, LY294002. The activation of Akt in ovarian cancer cells, as marked by its phosphorylation on Ser473, was not modified by cytostatic concentrations of mifepristone, but it was blocked upon treatment with LY294002. The combination mifepristone/LY294002, but not the individual drugs, killed ovarian cancer cells via apoptosis, as attested by genomic DNA fragmentation and cleavage of caspase-3, and the concomitant downregulation of antiapoptotic proteins Bcl-2 and XIAP. From a pharmacological standpoint, when assessing cell growth inhibition using a median-dose analysis algorithm, the interaction between mifepristone and LY294002 was synergistic. The lethality caused by the combination mifepristone/LY294004 in 2-dimensional cell cultures was recapitulated in organized, 3-dimensional spheroids. This study demonstrates that mifepristone and LY294002 when used individually cause cell growth arrest; yet, when combined, they cause lethality. PMID:23420486
Sen, Aditya; Karasik, Agnes; Shanmuganathan, Aranganathan; Mirkovic, Elena; Koutmos, Markos; Cox, Rachel T
2016-07-27
Proteins encoded by mitochondrial DNA are translated using mitochondrially encoded tRNAs and rRNAs. As with nuclear encoded tRNAs, mitochondrial tRNAs must be processed to become fully functional. The mitochondrial form of ribonuclease P (mt:RNase P) is responsible for 5'-end maturation and is comprised of three proteins; mitochondrial RNase P protein (MRPP) 1 and 2 together with proteinaceous RNase P (PRORP). However, its mechanism and impact on development is not yet known. Using homology searches, we have identified the three proteins composing Drosophila mt:RNase P: Mulder (PRORP), Scully (MRPP2) and Roswell (MRPP1). Here, we show that each protein is essential and localizes with mitochondria. Furthermore, reducing levels of each causes mitochondrial deficits, which appear to be due at least in part to defective mitochondrial tRNA processing. Overexpressing two members of the complex, Mulder and Roswell, is also lethal, and in the case of Mulder, causes abnormal mitochondrial morphology. These data are the first evidence that defective mt:RNase P causes mitochondrial dysfunction, lethality and aberrant mitochondrial tRNA processing in vivo, underscoring its physiological importance. This in vivo mt:RNase P model will advance our understanding of how loss of mitochondrial tRNA processing causes tissue failure, an important aspect of human mitochondrial disease. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Marini, Joan C.; Forlino, Antonella; Cabral, Wayne A.; Barnes, Aileen M.; San Antonio, James D.; Milgrom, Sarah; Hyland, James C.; Körkkö, Jarmo; Prockop, Darwin J.; De Paepe, Anne; Coucke, Paul; Symoens, Sofie; Glorieux, Francis H.; Roughley, Peter J.; Lund, Alan M.; Kuurila-Svahn, Kaija; Hartikka, Heini; Cohn, Daniel H.; Krakow, Deborah; Mottes, Monica; Schwarze, Ulrike; Chen, Diana; Yang, Kathleen; Kuslich, Christine; Troendle, James; Dalgleish, Raymond; Byers, Peter H.
2014-01-01
Osteogenesis imperfecta (OI) is a generalized disorder of connective tissue characterized by fragile bones and easy susceptibility to fracture. Most cases of OI are caused by mutations in type I collagen. We have identified and assembled structural mutations in type I collagen genes (COL1A1 and COL1A2, encoding the proα1(I) and proα2(I) chains, respectively) that result in OI. Quantitative defects causing type I OI were not included. Of these 832 independent mutations, 682 result in substitution for glycine residues in the triple helical domain of the encoded protein and 150 alter splice sites. Distinct genotype–phenotype relationships emerge for each chain. One-third of the mutations that result in glycine substitutions in α1(I) are lethal, especially when the substituting residues are charged or have a branched side chain. Substitutions in the first 200 residues are nonlethal and have variable outcome thereafter, unrelated to folding or helix stability domains. Two exclusively lethal regions (helix positions 691–823 and 910–964) align with major ligand binding regions (MLBRs), suggesting crucial interactions of collagen monomers or fibrils with integrins, matrix metalloproteinases (MMPs), fibronectin, and cartilage oligomeric matrix protein (COMP). Mutations in COL1A2 are predominantly nonlethal (80%). Lethal substitutions are located in eight regularly spaced clusters along the chain, supporting a regional model. The lethal regions align with proteoglycan binding sites along the fibril, suggesting a role in fibril–matrix interactions. Recurrences at the same site in α2(I) are generally concordant for outcome, unlike α1(I). Splice site mutations comprise 20% of helical mutations identified in OI patients, and may lead to exon skipping, intron inclusion, or the activation of cryptic splice sites. Splice site mutations in COL1A1 are rarely lethal; they often lead to frameshifts and the mild type I phenotype. In α2(I), lethal exon skipping events are located in the carboxyl half of the chain. Our data on genotype–phenotype relationships indicate that the two collagen chains play very different roles in matrix integrity and that phenotype depends on intracellular and extracellular events. PMID:17078022
Verberk, Wilco C E P; Durance, Isabelle; Vaughan, Ian P; Ormerod, Steve J
2016-05-01
Aquatic ecological responses to climatic warming are complicated by interactions between thermal effects and other environmental stressors such as organic pollution and hypoxia. Laboratory experiments have demonstrated how oxygen limitation can set heat tolerance for some aquatic ectotherms, but only at unrealistic lethal temperatures and without field data to assess whether oxygen shortages might also underlie sublethal warming effects. Here, we test whether oxygen availability affects both lethal and nonlethal impacts of warming on two widespread Eurasian mayflies, Ephemera danica, Müller 1764 and Serratella ignita (Poda 1761). Mayfly nymphs are often a dominant component of the invertebrate assemblage in streams, and play a vital role in aquatic and riparian food webs. In the laboratory, lethal impacts of warming were assessed under three oxygen conditions. In the field, effects of oxygen availability on nonlethal impacts of warming were assessed from mayfly occurrence in 42 293 UK stream samples where water temperature and biochemical oxygen demand were measured. Oxygen limitation affected both lethal and sublethal impacts of warming in each species. Hypoxia lowered lethal limits by 5.5 °C (±2.13) and 8.2 °C (±0.62) for E. danica and S. ignita respectively. Field data confirmed the importance of oxygen limitation in warmer waters; poor oxygenation drastically reduced site occupancy, and reductions were especially pronounced under warm water conditions. Consequently, poor oxygenation lowered optimal stream temperatures for both species. The broad concordance shown here between laboratory results and extensive field data suggests that oxygen limitation not only impairs survival at thermal extremes but also restricts species abundance in the field at temperatures well below upper lethal limits. Stream oxygenation could thus control the vulnerability of aquatic ectotherms to global warming. Improving water oxygenation and reducing pollution can provide key facets of climate change adaptation for running waters. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
[Mutagenic and antimutagenic properties of bemitil].
Seredenin, S B; Bobkov, Iu G; Durnev, A D; Dubovskaia, O Iu
1986-07-01
Complex research of the genetic activity of a new 2-mercaptobenzimidazole derivative bemythyl has shown that the drug failed to induce recessive, age-related lethal mutations in drosophila, dominant lethal mutations in germ mammalian cells and chromosomal damage in murine bone marrow cells and human peripheral blood cell cultures. The experiments on mice have demonstrated that therapeutic bemythyl doses caused a two-fold decrease in the level of aberrant cells induced by alkylating agents--fotrin and fopurin.
Hsiao, Wan-Ling; Ho, Wei-Li; Chou, Cheng-Chun
2010-12-15
Cronobacter spp., formerly Enterobacter sakazakii, are considered emerging opportunistic pathogens and the etiological agent of life-threatening bacterial infections in infants. In the present study, C. sakazakii BCRC 13988 was first subjected to sub-lethal heat treatment at 47°C for 15min. Survival rates of the heat-shocked and non-shocked C. sakazakii cells in phosphate buffer solution (PBS, pH 4.0) containing organic acids (e.g. acetic, propionic, citric, lactic or tartaric acid), simulated gastric juice (pH 2.0-4.0), and bile solution (0.5 and 2.0%) were examined. Results revealed that sub-lethal heat treatment enhanced the test organism's tolerance to organic acids, although the extent of increased acid tolerance varied with the organic acid examined. Compared with the control cells, heat-shocked C. sakazakii cells after 120-min of exposure, exhibited the largest increase in tolerance in the lactic acid-containing PBS. Furthermore, although heat shock did not affect the behavior of C. sakazakii in bile solution, it increased the test organism's survival when exposed to simulated gastric juice with a pH of 3.0-4.0. Copyright © 2010. Published by Elsevier B.V.
Methyl Farnesoate Plays a Dual Role in Regulating Drosophila Metamorphosis
Wen, Di; Rivera-Perez, Crisalejandra; Abdou, Mohamed; Jia, Qiangqiang; He, Qianyu; Liu, Xi; Zyaan, Ola; Xu, Jingjing; Bendena, William G.; Tobe, Stephen S.; Noriega, Fernando G.; Palli, Subba R.; Wang, Jian; Li, Sheng
2015-01-01
Corpus allatum (CA) ablation results in juvenile hormone (JH) deficiency and pupal lethality in Drosophila. The fly CA produces and releases three sesquiterpenoid hormones: JH III bisepoxide (JHB3), JH III, and methyl farnesoate (MF). In the whole body extracts, MF is the most abundant sesquiterpenoid, followed by JHB3 and JH III. Knockout of JH acid methyl transferase (jhamt) did not result in lethality; it decreased biosynthesis of JHB3, but MF biosynthesis was not affected. RNAi-mediated reduction of 3-hydroxy-3-methylglutaryl CoA reductase (hmgcr) expression in the CA decreased biosynthesis and titers of the three sesquiterpenoids, resulting in partial lethality. Reducing hmgcr expression in the CA of the jhamt mutant further decreased MF titer to a very low level, and caused complete lethality. JH III, JHB3, and MF function through Met and Gce, the two JH receptors, and induce expression of Kr-h1, a JH primary-response gene. As well, a portion of MF is converted to JHB3 in the hemolymph or peripheral tissues. Topical application of JHB3, JH III, or MF precluded lethality in JH-deficient animals, but not in the Met gce double mutant. Taken together, these experiments show that MF is produced by the larval CA and released into the hemolymph, from where it exerts its anti-metamorphic effects indirectly after conversion to JHB3, as well as acting as a hormone itself through the two JH receptors, Met and Gce. PMID:25774983
Comparative Killing Efficiencies for Decays of Tritiated Compounds Incorporated into E. coli
Person, Stanley
1963-01-01
The killing efficiencies due to the decay of incorporated H3-thymidine, H3-uridine, and H3-histidine in E. coli 15T-L- have been determined. Decays from H3-thymidine are 2.0 times as effective in producing lethality as those from H3-uridine and 2.5 times as effective as those from H3-histidine. Therefore, it seems that the greater part of damage from H3-thymidine decays is due to chemical changes associated with nuclear transmutation. PMID:19431323
USDA-ARS?s Scientific Manuscript database
Protective immunity against highly pathogenic avian influenza (HPAI) largely depends on the development of an antibody response against a subtype-specific lineage of challenge virus. In the poultry industry, inactivated AI vaccines are typically produced with indigenous AI isolates to provide the b...
Rea, Alexandre; Tempone, Andre G.; Pinto, Erika G.; Mesquita, Juliana T.; Rodrigues, Eliana; Silva, Luciana Grus M.; Sartorelli, Patricia; Lago, João Henrique G.
2013-01-01
Chagas disease is caused by the parasitic protozoan Trypanosoma cruzi. It has high mortality as well as morbidity rates and usually affects the poorer sections of the population. The development of new, less harmful and more effective drugs is a promising research target, since current standard treatments are highly toxic and administered for long periods. Fractioning of methanol (MeOH) extract of the stem bark of Calophyllum brasiliense (Clusiaceae) resulted in the isolation of the coumarin soulamarin, which was characterized by one- and two-dimensional 1H- and 13C NMR spectroscopy as well as ESI mass spectrometry. All data obtained were consistent with a structure of 6-hydroxy-4-propyl-5-(3-hydroxy-2-methyl-1-oxobutyl)-6″,6″-dimethylpyrane-[2″,3″:8,7]-benzopyran-2-one for soulamarin. Colorimetric MTT assays showed that soulamarin induces trypanocidal effects, and is also active against trypomastigotes. Hemolytic activity tests showed that soulamarin is unable to induce any observable damage to erythrocytes (cmax. = 1,300 µM). The lethal action of soulamarin against T. cruzi was investigated by using amino(4-(6-(amino(iminio)methyl)-1H-indol-2-yl)phenyl)methaniminium chloride (SYTOX Green and 1H,5H,11H,15H-Xantheno[2,3,4-ij:5,6,7-i′j′]diquinolizin-18-ium, 9-[4-(chloromethyl)phenyl]-2,3,6,7,12,13,16,17-octahydro-chloride (MitoTracker Red) as fluorimetric probes. With the former, soulamarin showed dose-dependent permeability of the plasma membrane, relative to fully permeable Triton X-100-treated parasites. Spectrofluorimetric and fluorescence microscopy with the latter revealed that soulamarin also induced a strong depolarization (ca. 97%) of the mitochondrial membrane potential. These data demonstrate that the lethal action of soulamarin towards T. cruzi involves damages to the plasma membrane of the parasite and mitochondrial dysfunction without the additional generation of reactive oxygen species, which may have also contributed to the death of the parasites. Considering the unique mitochondrion of T. cruzi, secondary metabolites of plants affecting the bioenergetic system as soulamarin may contribute as scaffolds for the design of novel and selective drug candidates for neglected diseases, mainly Chagas disease. PMID:24340110
Zhang, Yanhe; Li, Gang; Xie, Fang; Liu, Siguo; Wang, Chunlai
2017-01-24
The virulent strains of Haemophilus parasuis are the causative agents of Glässer's disease, which can cause systemic infection and result in polyserositis, meningitis and arthritis. The development of novel, effective vaccines would be beneficial to preventing H. parasuis infections. Here, we report a novel immunogenic protein, glutathione-binding protein A (GbpA), which can elicit a significant humoral antibody response and confer significant protection against challenge with a lethal dose of a highly virulent H. parasuis strain. The H. parasuis strain can be fully eliminated in the immunized mice. The results indicate that GbpA has the potential to be used as an effective component of a new vaccine against H. parasuis.
Temperature-dependent acute toxicity of methomyl pesticide on larvae of 3 Asian amphibian species.
Lau, Edward Tak Chuen; Karraker, Nancy Elizabeth; Leung, Kenneth Mei Yee
2015-10-01
Relative to other animal taxa, ecotoxicological studies on amphibians are scarce, even though amphibians are experiencing global declines and pollution has been identified as an important threat. Agricultural lands provide important habitats for many amphibians, but often these lands are contaminated with pesticides. The authors determined the acute toxicity, in terms of 96-h median lethal concentrations, of the carbamate pesticide methomyl on larvae of 3 Asian amphibian species, the Asian common toad (Duttaphrynus melanostictus), the brown tree frog (Polypedates megacephalus), and the marbled pygmy frog (Microhyla pulchra), at 5 different temperatures (15 °C, 20 °C, 25 °C, 30 °C, and 35 °C) to examine the relationships between temperature and toxicity. Significant interspecific variation in methomyl sensitivity and 2 distinct patterns of temperature-dependent toxicity were found. Because high proportions of malformation among the surviving tadpoles were observed, a further test was carried out on the tree frog to determine effect concentrations using malformation as the endpoint. Concentrations as low as 1.4% of the corresponding 96-h median lethal concentrations at 25 °C were sufficient to cause malformation in 50% of the test population. As the toxicity of pesticides may be significantly amplified at higher temperatures, temperature effects should not be overlooked in ecotoxicological studies and derivation of safety limits in environmental risk assessment and management. © 2015 SETAC.
Nang, Nguyen Tai; Song, Byung Min; Kang, Young Myong; Kim, Heui Man; Kim, Hyun Soo; Seo, Sang Heui
2012-01-01
Please cite this paper as: Nang et al. (2013) Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both Highly Pathogenic H5N1 and H9N2 Influenza Viruses. Influenza and Other Respiratory Viruses 7(2) 120–131. Background The highly pathogenic H5N1 and H9N2 influenza viruses are endemic in many countries around the world and have caused considerable economic loss to the poultry industry. Objectives We aimed to study whether a live attenuated H5N1 vaccine comprising internal genes from a cold‐adapted H9N2 influenza virus could protect chickens from infection by both H5N1 and H9N2 viruses. Methods We developed a cold‐adapted H9N2 vaccine virus expressing hemagglutinin and neuraminidase derived from the highly pathogenic H5N1 influenza virus using reverse genetics. Results and Conclusions Chickens immunized with the vaccine were protected from lethal infections with homologous and heterologous H5N1 or H9N2 influenza viruses. Specific antibody against H5N1 virus was detected up to 11 weeks after vaccination (the endpoint of this study). In vaccinated chickens, IgA and IgG antibody subtypes were induced in lung and intestinal tissue, and CD4+ and CD8+ T lymphocytes expressing interferon‐gamma were induced in the splenocytes. These data suggest that a live attenuated H5N1 vaccine with cold‐adapted H9N2 internal genes can protect chickens from infection with H5N1 and H9N2 influenza viruses by eliciting humoral and cellular immunity. PMID:22487301
Lata, M; Prasad, J; Singh, S; Kumar, R; Singh, L; Chaudhary, P; Arora, R; Chawla, R; Tyagi, S; Soni, N L; Sagar, R K; Devi, M; Sharma, R K; Puri, S C; Tripathi, R P
2009-01-01
The current study has concentrated on assessment of the radioprotective potential of REC-2001, a semi-purified fraction of rhizomes of Podophyllum hexandrum, in Swiss albino Strain 'A' mice exposed to 10 Gy whole-body gamma radiation. Animals were treated with 10 and 15 mg/kg b wt (i.p.) of REC-2001 1h prior to exposure to a lethal dose of gamma-radiation (10 Gy) and observed upto 30 days. For analysis of maximum tolerable dose (MTD), LD(50) and acute toxic dose, different concentrations of the extract were administered to animals and their mortality and morbidity status was observed upto 72 h and one week, respectively. Dose reduction factor (DRF) was determined by exposing REC-2001 pre-treated mice to supra-lethal doses of gamma-radiation. Endogenous spleen colony forming units (CFU), DNA strand breaks in thymocytes (alkaline halo assay) and lipid degradation was studied to understand the mechanism of radioprotection. A single dose of REC-2001 (10 and 15 mg/kg b wt i.p.) exhibited >90% survival in the pre-treated irradiated group versus no survival in radiation control group. Single doses of upto 75 mg/kg b wt (i.p.) did not cause any mortality (MTD) in mice. REC-2001, a dose of 90 mg/kg b wt, resulted in 50% mortality (LD(50)), while the LD(100) was 115 mg/kg b wt REC-2001 exhibited a DRF of 1.62. CFU counts in the REC-2001 treated group were found significantly high (5.33/spleen) as compared to controls. Exposure of thymocytes to 10 Gy radiation resulted in increased halo diameter (45+/-3 microm) in comparison to untreated controls (8+/-1 microm). REC-2001 administration (500 microg/ml) decreased the halo diameter to 15+/-2 microm. Radiation-induced lipid degradation was also inhibited by REC-2001. The present study has revealed that REC-2001 is a promising radioprotective fraction that can be effectively used against lethal doses of gamma-radiation after further investigations in higher animal models.
NASA Astrophysics Data System (ADS)
Cambridge, M. L.; Breeman, A. M.; Kraak, S.; van den Hoek, C.
1987-09-01
The relationship between distribution boundaries and temperature responses of some North Atlantic Cladophora species (Chlorophyta) was experimentally examined under various regimes of temperature, light and daylength. Experimentally determined critical temperature intervals, in which survival, growth or reproduction was limited, were compared with annual temperature regimes (monthly means and extremes) at sites inside and outside distribution boundaries. The species tested belonged to two phytogeographic groups: (1) the tropical West Atlantic group ( C. submarina: isolate from Curaçao) and (2) the amphiatlantic tropical to warm temperate group ( C. prolifera: isolate from Corsica; C. coelothrix: isolates from Brittany and Curaçao; and C. laetevirens: isolates from deep and shallow water in Corsica and from Brittany). In accordance with distribution from tropical to warm temperate regions, each of the species grew well between 20 30°C and reproduction and growth were limited at and below 15°C. The upper survival limit in long days was <35°C in all species but high or maximum growth rates occurred at 30°C. C. prolifera, restricted to the tropical margins, had the most limited survival at 35°C. Experimental evidence suggests that C. submarina is restricted to the Caribbean and excluded from the more northerly American mainland and Gulf of Mexico coasts by sporadic low winter temperatures in the nearshore waters, when cold northerly weather penetrates far south every few years. Experimental evidence suggests that C. prolifera, C. coelothrix and C. laetevirens are restricted to their northern European boundaries by summer temperatures too low for sufficient growth and/or reproduction. Their progressively more northerly located boundaries were accounted for by differences in growth rates over the critical 10 15°C interval. C. prolifera and C. coelothrix are excluded or restricted in distribution on North Sea coasts by lethal winter temperatures, again differences in cold tolerance accounting for differences in their distribution patterns. On the American coast, species were probably restricted by lethal winter temperatures in the nearshore and, in some cases, by the absence of suitable hard substrates in the more equable offshore waters. Isolates from two points along the European coast (Brittany, Corsica) of C. laetevirens showed no marked differences in their temperature tolerance but the Caribbean and European isolates of C. coelothrix differed markedly in their tolerance to low temperatures, the lethal limit of the Caribbean isolate lying more than 5°C higher (at ca 5°C).
Acute toxic responses of the freshwater planarian, Dugesia dorotocephala, to methylmercury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Best, J.B.; Morita, M.; Ragin, J.
1981-07-01
Toxic responses of planaria to various aquatic habitat concentrations of methylmercury chloride (MMC) were investigated. One hundred percent lethality occurred within 5 h in 2 ppM MMC, 24 h in 1 ppM MMC, and 5 days in 0.5 ppM MMC. No deaths occurred in 0.2 ppM MMC over a 10 day period, however, non-lethal toxic responses were observed. Varying degrees of head resorption, progressing caudally from the snout were observed. With continuing exposure, partial head regeneration and recovery toward more normal appearance occurred by 10 days. Teratogenic effects were observed in surgical decapitation experiments. Head regeneration was retarded in 0.1more » and 0.2 ppM MMC. Malformations, visible lesions, or gross behavioral abnormalities were produced by 2 week exposure of planaria to concentrations of 20 ppB MMC or lower. (RJC)« less
Kamble, Nitin Machindra; Hajam, Irshad Ahmed; Lee, John Hwa
2017-03-01
Pre-stimulation of toll-like receptors (TLRs) by agonists has been shown to increase protection against influenza virus infection. In this study, we evaluated the protective response generated against influenza A/Puerto Rico/8/1934 (PR8; H1N1) virus by oral and nasal administration of live attenuated Salmonella enterica serovar Typhimurium, JOL911 strain, in mice. Oral and nasal inoculation of JOL911 significantly increased the mRNA copy number of TLR-2, TLR4 and TLR5, and downstream type I interferon (IFN) molecules, IFN-α and IFN-β, both in peripheral blood mononuclear cells (PBMCs) and in lung tissue. Similarly, the mRNA copy number of interferon-inducible genes (ISGs), Mx and ISG15, were significantly increased in both the orally and the nasally inoculated mice. Post PR8 virus lethal challenge, the nasal JOL911 and the PBS control group mice showed significant loss of body weight with 70% and 100% mortality, respectively, compared to only 30% mortality in the oral JOL911 group mice. Post sub-lethal challenge, the significant reduction in PR8 virus copy number in lung tissue was observed in oral [on day 4 and 6 post-challenge (dpc)] and nasal (on 4dpc) than the PBS control group mice. The lethal and sub-lethal challenge showed that the generated stimulated innate resistance (StIR) in JOL911 inoculated mice conferred resistance to acute and initial influenza infection but might not be sufficient to prevent the PR8 virus invasion and replication in the lung. Overall, the present study indicates that oral administration of attenuated S. Typhimurium can pre-stimulate multiple TLR pathways in mice to provide immediate early StIR against a lethal H1N1 virus challenge. Copyright © 2017 Elsevier B.V. All rights reserved.
Barbieri, Edison; Moreira, Priscila; Luchini, Luiz Alberto; Hidalgo, Karla Ruiz; Muñoz, Alejandro
2016-01-01
Carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl methylcarbamate; C12H15NO3) is one of the most toxic carbamate pesticides. For acute toxicity of carbofuran, juveniles of Macrobrachium olfersii were exposed to different concentrations of carbofuran using the static renewal method at different temperature levels (15, 20 and 25°C) at pH 7.0. The main purpose of the present study was to detect the acute toxicity of carbofuran to M. olfersii and investigate its effects on oxygen consumption and ammonium excretion; these tests have not been carried out in this species before. First, the acute toxicity - median lethal concentration - of carbofuran to M. olfersii for 24, 48, 72 and 96 h was examined, which resulted in the following values: 1.64, 1.22, 0.86 and 0.42 mg L(-1), respectively. Furthermore, we also found that carbofuran caused an inhibition in oxygen consumption of 60.6, 65.3 and 66.2% with respect to the control. In addition, after separate exposures to carbofuran, elevations in ammonium excretion were more than 500% with respect to the control. © The Author(s) 2013.
Nash, Evelyn E.; Peters, Brian M.; Fidel, Paul L.
2015-01-01
Intra-abdominal polymicrobial infections cause significant morbidity and mortality. An experimental mouse model of Candida albicans-Staphylococcus aureus intra-abdominal infection (IAI) results in 100% mortality by 48 to 72 h postinoculation, while monomicrobial infections are avirulent. Mortality is associated with robust local and systemic inflammation without a requirement for C. albicans morphogenesis. However, the contribution of virulence factors coregulated during the yeast-to-hypha transition is unknown. This also raised the question of whether other Candida species that are unable to form hyphae are as virulent as C. albicans during polymicrobial IAI. Therefore, the purpose of this study was to evaluate the ability of non-albicans Candida (NAC) species with various morphologies and C. albicans transcription factor mutants (efg1/efg1 and cph1/cph1) to induce synergistic mortality and the accompanying inflammation. Results showed that S. aureus coinoculated with C. krusei or C. tropicalis was highly lethal, similar to C. albicans, while S. aureus-C. dubliniensis, S. aureus-C. parapsilosis, and S. aureus-C. glabrata coinoculations resulted in little to no mortality. Local and systemic interleukin-6 (IL-6) and prostaglandin E2 (PGE2) levels were significantly elevated during symptomatic and/or lethal coinfections, and hypothermia strongly correlated with mortality. Coinoculation with C. albicans strains deficient in the transcription factor Efg1 but not Cph1 reversed the lethal outcome. These results support previous findings and demonstrate that select Candida species, without reference to any morphological requirement, induce synergistic mortality, with IL-6 and PGE2 acting as key inflammatory factors. Mechanistically, signaling pathways controlled by Efg1 are critical for the ability of C. albicans to induce mortality from an intra-abdominal polymicrobial infection. PMID:26483410
Nash, Evelyn E; Peters, Brian M; Fidel, Paul L; Noverr, Mairi C
2016-01-01
Intra-abdominal polymicrobial infections cause significant morbidity and mortality. An experimental mouse model of Candida albicans-Staphylococcus aureus intra-abdominal infection (IAI) results in 100% mortality by 48 to 72 h postinoculation, while monomicrobial infections are avirulent. Mortality is associated with robust local and systemic inflammation without a requirement for C. albicans morphogenesis. However, the contribution of virulence factors coregulated during the yeast-to-hypha transition is unknown. This also raised the question of whether other Candida species that are unable to form hyphae are as virulent as C. albicans during polymicrobial IAI. Therefore, the purpose of this study was to evaluate the ability of non-albicans Candida (NAC) species with various morphologies and C. albicans transcription factor mutants (efg1/efg1 and cph1/cph1) to induce synergistic mortality and the accompanying inflammation. Results showed that S. aureus coinoculated with C. krusei or C. tropicalis was highly lethal, similar to C. albicans, while S. aureus-C. dubliniensis, S. aureus-C. parapsilosis, and S. aureus-C. glabrata coinoculations resulted in little to no mortality. Local and systemic interleukin-6 (IL-6) and prostaglandin E2 (PGE2) levels were significantly elevated during symptomatic and/or lethal coinfections, and hypothermia strongly correlated with mortality. Coinoculation with C. albicans strains deficient in the transcription factor Efg1 but not Cph1 reversed the lethal outcome. These results support previous findings and demonstrate that select Candida species, without reference to any morphological requirement, induce synergistic mortality, with IL-6 and PGE2 acting as key inflammatory factors. Mechanistically, signaling pathways controlled by Efg1 are critical for the ability of C. albicans to induce mortality from an intra-abdominal polymicrobial infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Sy, Kaye V; McWatters, Kay H; Beuchat, Larry R
2005-06-01
Gaseous chlorine dioxide (ClO2) was tested for its effectiveness in killing Salmonella, yeasts, and molds on blueberries, strawberries, and red raspberries. An inoculum (100 microl, 6.0 to 6.8 log CFU/g of fruit) that contained five serotypes of Salmonella enterica was deposited on the skin, calyx tissue, or stem scar tissue of blueberries, skin or stem scar tissue of strawberries, and skin of red raspberries, dried for 2 h at 22 degrees C, then held for 20 h at 4 degrees C and 2 h at 22 degrees C before treatment. Sachets that contained reactant chemicals were formulated to release gaseous ClO2 at concentrations of 4.1, 6.2, and 8.0 mg/ liter of air within treatment times of 30, 60, and 120 min, respectively, at 23 +/- 1 degrees C. Lethality of ClO2 to Salmonella, yeasts, and molds was measured when fruits were in an atmosphere that contained 75 to 90% relative humidity. Treatment with 8.0 mg/liter of ClO2 significantly (alpha = 0.05) reduced the population of Salmonella on blueberries by 2.4 to 3.7 log CFU/g. Lethality was higher to cells in inoculum placed on the skin compared with the stem scar tissue. Populations of Salmonella on strawberries treated with 8.0 mg/liter of ClO2 were reduced by 3.8 to 4.4 log CFU/g; a significant reduction of 1.5 log CFU/g of raspberries was achieved. Treatment with 4.1 to 8.0 mg/liter of ClO2 caused reductions in populations of yeast and molds on blueberries, strawberries, and raspberries of 1.4 to 2.5, 1.4 to 4.2, and 2.6 to 3.0 log CFU/g, respectively. Treatment with 4.1 mg/liter of ClO2 did not markedly affect the sensory quality of fruits stored for up to 10 days at 8 degrees C. Results indicate that gaseous ClO2 has promise as a sanitizer for small fruits.
NASA Astrophysics Data System (ADS)
Kang, Kyoung Ho; Zhang, Litao; Zhang, Zhifeng; Sui, Zhenghong; Hur, Junwook
2013-01-01
The polychaete Perinereis aibuhitensis, a key species in estuarine ecosystems, can improve the culture condition of sediment. Endosulfan is an organochlorine pesticide used globally to control insects and mites; however, it is a source of pollution in aquaculture as a result of runoff or accidental release. In this study, we evaluated the toxicity of endosulfan to polychaeta and its ability to improve polluted sediment. Specifically, the effects of a series of endosulfan concentrations (0, 1.25, 2.5, 5, 10, 15, and 20 mg/L) were investigated, and the results indicated that the 24-h median lethal concentration (24-h LC50) was 55.57 mg/L, while the 48-h median lethal concentration (48-h LC50) was 15.56 mg/L, and the safe concentration was about 1.556 mg/L. In a 30-d exposure experiment, the animal specimen could decompose endosulfan effectively while improving endosulfan-polluted aquatic sediment.
Gene expression responses of HeLa cells to chemical species generated by an atmospheric plasma flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokoyama, Mayo, E-mail: yokoyama@plasma.ifs.tohoku.ac.jp; Johkura, Kohei, E-mail: kohei@shinshu-u.ac.jp; Sato, Takehiko, E-mail: sato@ifs.tohoku.ac.jp
2014-08-08
Highlights: • Response of HeLa cells to a plasma-irradiated medium was revealed by DNA microarray. • Gene expression pattern was basically different from that in a H{sub 2}O{sub 2}-added medium. • Prominently up-/down-regulated genes were partly shared by the two media. • Gene ontology analysis showed both similar and different responses in the two media. • Candidate genes involved in response to ROS were detected in each medium. - Abstract: Plasma irradiation generates many factors able to affect the cellular condition, and this feature has been studied for its application in the field of medicine. We previously reported that hydrogenmore » peroxide (H{sub 2}O{sub 2}) was the major cause of HeLa cell death among the chemical species generated by high level irradiation of a culture medium by atmospheric plasma. To assess the effect of plasma-induced factors on the response of live cells, HeLa cells were exposed to a medium irradiated by a non-lethal plasma flow level, and their gene expression was broadly analyzed by DNA microarray in comparison with that in a corresponding concentration of 51 μM H{sub 2}O{sub 2}. As a result, though the cell viability was sufficiently maintained at more than 90% in both cases, the plasma-medium had a greater impact on it than the H{sub 2}O{sub 2}-medium. Hierarchical clustering analysis revealed fundamentally different cellular responses between these two media. A larger population of genes was upregulated in the plasma-medium, whereas genes were downregulated in the H{sub 2}O{sub 2}-medium. However, a part of the genes that showed prominent differential expression was shared by them, including an immediate early gene ID2. In gene ontology analysis of upregulated genes, the plasma-medium showed more diverse ontologies than the H{sub 2}O{sub 2}-medium, whereas ontologies such as “response to stimulus” were common, and several genes corresponded to “response to reactive oxygen species.” Genes of AP-1 proteins, e.g., JUN and FOS, were detected and notably elevated in the plasma-medium. These results showed that the medium irradiated with a non-lethal level of plasma flow altered various gene expressions of HeLa cells by giving not only common effects with H{sub 2}O{sub 2} but also some distinctive actions. This study suggests that in addition to H{sub 2}O{sub 2}, other chemical species able to affect the cellular responses exist in the plasma-irradiated medium and provide unique features for it, probably increasing the oxidative stress level.« less
Cui, Xianlan; Zhao, Yan; Shi, Xingming; Li, Qiaoling; Yan, Shuai; Gao, Ming; Wang, Mei; Liu, Changjun; Wang, Yunfeng
2013-01-01
Background Herpesvirus of turkey (HVT) as a vector to express the haemagglutinin (HA) of avian influenza virus (AIV) H5 was developed and its protection against lethal Marek’s disease virus (MDV) and highly pathogenic AIV (HPAIV) challenges was evaluated previously. It is well-known that avirulemt MDV type 1 vaccines are more effective than HVT in prevention of lethal MDV infection. To further increase protective efficacy against HPAIV and lethal MDV, a recombinant MDV type 1 strain 814 was developed to express HA gene of HPAIV H5N1. Methodology/Principal Findings A recombinant MDV-1 strain 814 expressing HA gene of HPAIV H5N1 virus A/goose/Guangdong/3/96 at the US2 site (rMDV-HA) was developed under the control of a human CMV immediate-early promoter. The HA expression in the rMDV-HA was tested by immunofluorescence and Western blot analyses, and in vitro and in vivo growth properties of rMDV-HA were also analyzed. Furthermore, we evaluated and compared the protective immunity of rMDV-HA and previously constructed rHVT-HA against HPAIV and lethal MDV. Vaccination of chickens with rMDV-HA induced 80% protection against HPAIV, which was better than the protection rate by rHVT-HA (66.7%). In the animal study with MDV challenge, chickens immunized with rMDV-HA were completely protected against virulent MDV strain J-1 whereas rHVT-HA only induced 80% protection with the same challenge dose. Conclusions/Significance The rMDV-HA vaccine was more effective than rHVT-HA vaccine for protection against lethal MDV and HPAIV challenges. Therefore, avirulent MDV type 1 vaccine is a better vector than HVT for development of a recombinant live virus vaccine against virulent MDV and HPAIV in poultry. PMID:23301062
Bang, Jihyun; Choi, Moonhak; Son, Hyeri; Beuchat, Larry R; Kim, Yoonsook; Kim, Hoikyung; Ryu, Jee-Hoon
2016-11-21
Sanitizing radish seeds intended for edible sprout production was achieved by applying simultaneous treatments with gaseous chlorine dioxide (ClO 2 ), high relative humidity (RH, 100%), and mild heat (55°C). Gaseous ClO 2 was produced from aqueous ClO 2 (0.66ml) by mixing sulfuric acid (5% w/v) with sodium chlorite (10 mg/mL) in a sealed container (1.8L). Greater amounts of gaseous ClO 2 were measured at 23% RH (144ppm after 6h) than at 100% RH (66ppm after 6h); however, the lethal activity of gaseous ClO 2 against naturally occurring mesophilic aerobic bacteria (MAB) on radish seeds was significantly enhanced at 100% RH. For example, when exposed to gaseous ClO 2 at 23% RH, the number of MAB on radish seeds decreased from 3.7logCFU/g to 2.6logCFU/g after 6h. However, when exposed to gaseous ClO 2 at 100% RH for 6h, the MAB population decreased to 0.7logCFU/g after 6h. Gaseous ClO 2 was produced in higher amounts at 55°C than at 25°C, but decreased more rapidly over time at 55°C than at 25°C. The lethal activity of gaseous ClO 2 against MAB on radish seeds was greater at 55°C than at 25°C. When radish seeds were treated with gaseous ClO 2 (peak concentration: 195ppm) at 100% RH and 55°C, MAB were reduced to populations below the detectable level (<-0.7logCFU/g) within 2h without decreasing the seed germination rate (97.7%). The lethality of combined treatments against artificially inoculated Escherichia coli O157:H7 was also evaluated. When exposed to gaseous ClO 2 at 100% RH and 55°C for 6h, the initial number of E. coli O157:H7 (3.5logCFU/g) on radish seeds decreased to below the detection limit (0.7logCFU/g) by direct plating but it was not eliminated from seeds. The germination rate of radish seeds was not significantly (P>0.05) decreased after treatment for 6h. The information reported here will be useful when developing decontamination strategies for producing microbiologically safe radish seed sprouts. Copyright © 2016. Published by Elsevier B.V.
Toxicity study of Vernonia cinerea.
Latha, L Yoga; Darah, I; Jain, K; Sasidharan, S
2010-01-01
The methanol extract of Vernonia cinerea Less (Asteraceae), which exhibited antimicrobial activity, was tested for toxicity. In an acute toxicity study using mice, the median lethal dose (LD(50)) of the extract was greater than 2000 mg/kg, and we found no pathological changes in macroscopic examination by necropsy of mice treated with extract. As well as the oral acute toxicity study, the brine shrimp lethality test was also done. Brine shrimp test LC(50) values were 3.87 mg/mL (6 h) and 2.72 mg/mL (24 h), exhibiting no significant toxicity result. In conclusion, the methanol extract of V. cinerea did not produce toxic effects in mice and brine shrimp.
Yadav, Ram P.; Singh, Ajay
2014-01-01
The effect of sub-lethal doses (40% and 80% of LC50/24h) of plant derived molluscicides of singly, binary (1:1) and tertiary (1:1:1) combinations of the Rutin, Ellagic acid, Betulin and taraxerol with J. gossypifolia latex, leaf and stem bark powder extracts and their active component on the reproduction of freshwater snail Lymnaea acuminata have been studied. It was observed that the J. gossypifolia latex, stem bark, individual leaf and their combinations with other plant derived active molluscicidal components caused a significant reduction in fecundity, hatchability and survival of young snails. It is believed that sub-lethal exposure of these molluscicides on snail reproduction is a complex process involving more than one factor in reducing the reproductive capacity. PMID:25229223
Chronic Exposure of Corals to Fine Sediments: Lethal and Sub-Lethal Impacts
Flores, Florita; Hoogenboom, Mia O.; Smith, Luke D.; Cooper, Timothy F.; Abrego, David; Negri, Andrew P.
2012-01-01
Understanding the sedimentation and turbidity thresholds for corals is critical in assessing the potential impacts of dredging projects in tropical marine systems. In this study, we exposed two species of coral sampled from offshore locations to six levels of total suspended solids (TSS) for 16 weeks in the laboratory, including a 4 week recovery period. Dose-response relationships were developed to quantify the lethal and sub-lethal thresholds of sedimentation and turbidity for the corals. The sediment treatments affected the horizontal foliaceous species (Montipora aequituberculata) more than the upright branching species (Acropora millepora). The lowest sediment treatments that caused full colony mortality were 30 mg l−1 TSS (25 mg cm−2 day−1) for M. aequituberculata and 100 mg l−1 TSS (83 mg cm−2 day−1) for A. millepora after 12 weeks. Coral mortality generally took longer than 4 weeks and was closely related to sediment accumulation on the surface of the corals. While measurements of damage to photosystem II in the symbionts and reductions in lipid content and growth indicated sub-lethal responses in surviving corals, the most reliable predictor of coral mortality in this experiment was long-term sediment accumulation on coral tissue. PMID:22662225
Interleukin-10 protects neonatal mice from lethal group B streptococcal infection.
Cusumano, V; Genovese, F; Mancuso, G; Carbone, M; Fera, M T; Teti, G
1996-01-01
We investigated the role of interleukin-10 (IL-10) in a neonatal mouse model of lethal group B streptococci (GBS) sepsis. Plasma IL-10 levels significantly increased at 24 and 48 h after GBS inoculation. Neutralization of IL-10 with specific antibodies had no effect on lethality. Administration of recombinant IL-10 at 20 or 4 h before challenge, but not at later times, resulted in decreased tumor necrosis factor alpha levels and improved survival. IL-10 could be potentially useful for the treatment of GBS sepsis. PMID:8698523
NASA Technical Reports Server (NTRS)
Martins, B. I.
1971-01-01
The effects of monochromatic ultrasonic waves of 0.1, 0.5, 1.0, 2.0 and, 3.3 MHz frequency on the colony-forming ability of mammalian cells (M3-1,V79, Chang's and T-1) cultured in vitro have been studied to determine the nature of the action of ultrasonic energy on biological systems at the cellular level. The combined effect of ultrasound and X-rays has also been studied. It is concluded: (1) Ultrasonic irradiation causes both lethal and sublethal damage. (2) There is a threshold dose rate for lethal effects. (3) The effectiveness of ultrasonic waves in causing cell death probably depends on the frequency and the amplitude of the waves for a given cell line, indicating a possible resonance phenomenon.
Rattner, B.A.; Franson, J.C.
1984-01-01
Physiological and toxicological effects of p.o. methyl parathion (0.375-3.0 mg/kg) or fenvalerate (1000-4000 mg/kg) were examined over a 10-h period in American kestrels (Falco sparverius) maintained in thermoneutral (22?C) and cold (-5?C) environments. Methyl parathion was highly toxic (estimated median lethal dose of 3.08 mg/kg, 95% confidence limits of 2.29 -4.14 mg/kg), producing dose-dependent inhibition of brain and plasma cholinesterase activity, hyperglycemia, and elevated plasma corticosterone concentration. Brain and plasma cholinesterase inhibition in excess of 50% was associated with transient but pronounced hypothermia 2 h after intubation, although the magnitude of this response was yariable. Fenvalerate, at doses far exceeding those encountered in the environment, caused mild intoxication and elevated plasma alanine aminotransferase activity. Cold intensified methyl parathion toxicity, but did not affect that of fenvalerate. Thus, it would appear that organophosphorus insecticides pose far greater hazard than pyrethroids to raptorial birds.
Williams, John Russell; Rayburn, James R; Cline, George R; Sauterer, Roger; Friedman, Mendel
2014-08-06
The embryo toxicities of two food-processing-induced toxic compounds, acrylamide and furan, with and without added L-cysteine were examined individually and in mixtures using the frog embryo teratogenesis assay-Xenopus (FETAX). The following measures of developmental toxicity were used: (a) 96 h LC50, the median concentration causing 50% embryo lethality; (b) 96 h EC50, the median concentration causing 50% malformations of the surviving embryos; and (c) teratogenic index (96 h LC50/96 h EC50), an estimate of teratogenic risk. Calculations of toxic units (TU) were used to assess possible antagonism, synergism, or response addition of several mixtures. The evaluated compounds demonstrated counterintuitive effects. Furan had lower than expected toxicity in Xenopus embryos and, unlike acrylamide, does not seem to be teratogenic. However, the short duration of the tests may not show the full effects of furan if it is truly primarily genotoxic and carcinogenic. L-Cysteine showed unexpected properties in the delay of hatching of the embryos. The results from the interaction studies between combination of two or three components (acrylamide plus L-cysteine; furan plus L-cysteine; acrylamide plus furan; acrylamide plus furan and L-cysteine) show that furan and acrylamide seem to have less than response addition at 1:1 toxic unit ratio in lethality. Acrylamide and L-cysteine show severe antagonism even at low 19 acrylamide/1 L-cysteine TU ratios. Data from the mixture of acrylamide, furan, and L-cysteine show a slight antagonism, less than would have been expected from binary mixture exposures. Bioalkylation mechanisms and their prevention are discussed. There is a need to study the toxicological properties of mixtures of acrylamide and furan concurrently formed in heat-processed food.
Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance.
Rasmussen, Angela L; Okumura, Atsushi; Ferris, Martin T; Green, Richard; Feldmann, Friederike; Kelly, Sara M; Scott, Dana P; Safronetz, David; Haddock, Elaine; LaCasse, Rachel; Thomas, Matthew J; Sova, Pavel; Carter, Victoria S; Weiss, Jeffrey M; Miller, Darla R; Shaw, Ginger D; Korth, Marcus J; Heise, Mark T; Baric, Ralph S; de Villena, Fernando Pardo-Manuel; Feldmann, Heinz; Katze, Michael G
2014-11-21
Existing mouse models of lethal Ebola virus infection do not reproduce hallmark symptoms of Ebola hemorrhagic fever, neither delayed blood coagulation and disseminated intravascular coagulation nor death from shock, thus restricting pathogenesis studies to nonhuman primates. Here we show that mice from the Collaborative Cross panel of recombinant inbred mice exhibit distinct disease phenotypes after mouse-adapted Ebola virus infection. Phenotypes range from complete resistance to lethal disease to severe hemorrhagic fever characterized by prolonged coagulation times and 100% mortality. Inflammatory signaling was associated with vascular permeability and endothelial activation, and resistance to lethal infection arose by induction of lymphocyte differentiation and cellular adhesion, probably mediated by the susceptibility allele Tek. These data indicate that genetic background determines susceptibility to Ebola hemorrhagic fever. Copyright © 2014, American Association for the Advancement of Science.
New genes often acquire male-specific functions but rarely become essential in Drosophila.
Kondo, Shu; Vedanayagam, Jeffrey; Mohammed, Jaaved; Eizadshenass, Sogol; Kan, Lijuan; Pang, Nan; Aradhya, Rajaguru; Siepel, Adam; Steinhauer, Josefa; Lai, Eric C
2017-09-15
Relatively little is known about the in vivo functions of newly emerging genes, especially in metazoans. Although prior RNAi studies reported prevalent lethality among young gene knockdowns, our phylogenomic analyses reveal that young Drosophila genes are frequently restricted to the nonessential male reproductive system. We performed large-scale CRISPR/Cas9 mutagenesis of "conserved, essential" and "young, RNAi-lethal" genes and broadly confirmed the lethality of the former but the viability of the latter. Nevertheless, certain young gene mutants exhibit defective spermatogenesis and/or male sterility. Moreover, we detected widespread signatures of positive selection on young male-biased genes. Thus, young genes have a preferential impact on male reproductive system function. © 2017 Kondo et al.; Published by Cold Spring Harbor Laboratory Press.
USDA-ARS?s Scientific Manuscript database
Vaccination is an important tool in the protection of poultry against avian influenza (AI). For field use, the overwhelming majority of AI vaccines produced are inactivated whole virus formulated into an oil emulsion. However, recombinant vectored vaccines (e.g. expressing AI genes) are gaining us...
Improving on Army Field Gauze for Lethal Vascular Injuries: Challenges in Dressing Development
USDA-ARS?s Scientific Manuscript database
Accounting for half of all deaths, uncontrolled hemorrhage remains the leading cause of death on the battlefield. Gaining hemostatic control of lethal vascular injuries sustained in combat using topical agents remains a challenge. Recent animal testing using a lethal arterial injury model compared a...
Kim, Se Mi; Kim, Young-Il; Park, Su-Jin; Kim, Eun-Ha; Kwon, Hyeok-il; Si, Young-Jae; Lee, In-Won; Song, Min-Suk
2017-01-01
ABSTRACT In order to produce a dually effective vaccine against H9 and H5 avian influenza viruses that aligns with the DIVA (differentiating infected from vaccinated animals) strategy, we generated a chimeric H9/H5N2 recombinant vaccine that expressed the whole HA1 region of A/CK/Korea/04163/04 (H9N2) and the HA2 region of recent highly pathogenic avian influenza (HPAI) A/MD/Korea/W452/14 (H5N8) viruses. The chimeric H9/H5N2 virus showed in vitro and in vivo growth properties and virulence that were similar to those of the low-pathogenic avian influenza (LPAI) H9 virus. An inactivated vaccine based on this chimeric virus induced serum neutralizing (SN) antibodies against both H9 and H5 viruses but induced cross-reactive hemagglutination inhibition (HI) antibody only against H9 viruses. Thus, this suggests its compatibility for use in the DIVA strategy against H5 strains. Furthermore, the chimeric H9/H5N2 recombinant vaccine protected immunized chickens against lethal challenge by HPAI H5N8 viruses and significantly attenuated virus shedding after infection by both H9N2 and HPAI H5N8 viruses. In mice, serological analyses confirmed that HA1- and HA2 stalk-specific antibody responses were induced by vaccination and that the DIVA principle could be employed through the use of an HI assay against H5 viruses. Furthermore, each HA1- and HA2 stalk-specific antibody response was sufficient to inhibit viral replication and protect the chimeric virus-immunized mice from lethal challenge with both mouse-adapted H9N2 and wild-type HPAI H5N1 viruses, although differences in vaccine efficacy against a homologous H9 virus (HA1 head domain immune-mediated protection) and a heterosubtypic H5 virus (HA2 stalk domain immune-mediated protection) were observed. Taken together, these results demonstrate that the novel chimeric H9/H5N2 recombinant virus is a low-pathogenic virus, and this chimeric vaccine is suitable for a DIVA vaccine with broad-spectrum neutralizing antibody against H5 avian influenza viruses. IMPORTANCE Current influenza virus killed vaccines predominantly induce antihemagglutinin (anti-HA) antibodies that are commonly strain specific in that the antibodies have potent neutralizing activity against homologous strains but do not cross-react with HAs of other influenza virus subtypes. In contrast, the HA2 stalk domain is relatively well conserved among subtypes, and recently, broadly neutralizing antibodies against this domain have been isolated. Therefore, in light of the need for a vaccine strain that applies the DIVA strategy utilizing an HI assay and induces broad cross-protection against H5N1 and H9N2 viruses, we generated a novel chimeric H9/H5N1 virus that expresses the entire HA1 portion from the H9N2 virus and the HA2 region of the heterosubtypic H5N8 virus. The chimeric H9/H5N2 recombinant vaccine protected immunized hosts against lethal challenge with H9N2 and HPAI H5N1 viruses with significantly attenuated virus shedding in immunized hosts. Therefore, this chimeric vaccine is suitable as a DIVA vaccine against H5 avian influenza viruses. PMID:28077631
Dorandeu, Frederic; Baille, Valerie; Mikler, John; Testylier, Guy; Lallement, Guy; Sawyer, Thomas; Carpentier, Pierre
2007-05-20
Soman poisoning is known to induce full-blown tonic-clonic seizures, status epilepticus (SE), seizure-related brain damage (SRBD) and lethality. Previous studies in guinea-pigs have shown that racemic ketamine (KET), with atropine sulfate (AS), is very effective in preventing death, stopping seizures and protecting sensitive brain areas when given up to 1h after a supra-lethal challenge of soman. The active ketamine isomer, S(+) ketamine (S-KET), is more potent than the racemic mixture and it also induces less side-effects. To confirm the efficacy of KET and to evaluate the potential of S-KET for delayed medical treatment of soman-induced SE, we studied different S-KET dose regimens using the same paradigm used with KET. Guinea-pigs received pyridostigmine (26 microg/kg, IM) 30min before soman (62 microg/kg, 2 LD(50), IM), followed by therapy consisting of atropine methyl nitrate (AMN) (4 mg/kg, IM) 1min following soman exposure. S-KET, with AS (10mg/kg), was then administered IM at different times after the onset of seizures, starting at 1h post-soman exposure. The protective efficacy of S-KET proved to be comparable to KET against lethality and SRBD, but at doses two to three times lower. As with KET, delaying treatment by 2h post-poisoning greatly reduced efficacy. Conditions that may have led to an increased S-KET brain concentration (increased doses or number of injections, adjunct treatment with the oxime HI-6) did not prove to be beneficial. In summary, these observations confirm that ketamine, either racemic or S-KET, in association with AS and possibly other drugs, could be highly effective in the delayed treatment of severe soman intoxication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grandic, Marjana; Sepcic, Kristina; Turk, Tom
2011-08-15
APS12-2 is one in a series of synthetic analogs of the polymeric alkylpyridinium salts isolated from the marine sponge Reniera sarai. As it is a potential candidate for treating non small cell lung cancer (NSCLC), we have studied its possible toxic and lethal effects in vivo. The median lethal dose (LD{sub 50}) of APS12-2 in mice was determined to be 11.5 mg/kg. Electrocardiograms, arterial blood pressure and respiratory activity were recorded under general anesthesia in untreated, pharmacologically vagotomized and artificially ventilated rats injected with APS12-2. In one group, the in vivo effects of APS12-2 were studied on nerve-evoked muscle contraction.more » Administration of APS12-2 at a dose of 8 mg/kg caused a progressive reduction of arterial blood pressure to a mid-circulatory value, accompanied by bradycardia, myocardial ischemia, ventricular extrasystoles, and second degree atrio-ventricular block. Similar electrocardiogram and arterial blood pressure changes caused by APS12-2 (8 mg/kg) were observed in animals pretreated with atropine and in artificially ventilated animals, indicating that hypoxia and cholinergic effects do not play a crucial role in the toxicity of APS12-2. Application of APS12-2 at sublethal doses (4 and 5.5 mg/kg) caused a decrease of arterial blood pressure, followed by an increase slightly above control values. We found that APS12-2 causes lysis of rat erythrocytes in vitro, therefore it is reasonable to expect the same effect in vivo. Indeed, hyperkalemia was observed in the blood of experimental animals. Hyperkalemia probably plays an important role in APS12-2 cardiotoxicity since no evident changes in histopathology of the heart were found. However, acute lesions were observed in the pulmonary vessels of rats after application of 8 mg/kg APS12-2. Predominant effects were dilation of interalveolar blood vessels and lysis of aggregated erythrocytes within their lumina. - Highlights: > LD{sub 50} estimated in mice (11.5 mg/kg) revealed that toxicity of APS12-2 is low. > APS12-2 causes dose dependent hemolysis of rat erythrocytes in vivo and in vitro. > Cardiac arrest by APS12-2 is caused by the high blood potassium concentration. > APS12-2 causes mild acute pulmonary edema.« less
Amusan, A A S; Idowu, A B; Arowolo, F S
2005-09-01
The ethanolic extracts of the orange peel (Citrus sinensis) and bush tea leaves (Hyptis suaveolens) were compared for their toxicity effect on the larvae of the yellow fever mosquito Aedes aegypti collected from disused tyres beside College of Natural Sciences building University of Agriculture, Abeokuta, Nigeria. Eight graded concentrations, 0.9ppm, 0.8ppm, 0.7ppm, 0.6ppm, 0.5ppm, 0.4ppm, 0.3ppm and 0.2ppm of both plant extracts were tested on the larvae. The mean lethal dose LD10, was 0.15 ppm for C. sinensis, 0.01 for H. suaveolens, while LD50 for C. sinensis was 0.4ppm, H. suaveolens 0.60ppm and LD90 for C. sinensis was 0.9ppm and H. suaveolens was 1.45ppm. LD10 for the control 0.65ppm, LD50 0.9ppm and LD90 2.0 ppm. The extract of C. sinensis peel caused higher mortality rate at concentrations 0.8ppm (95%) and 0.3ppm (90%) of the larvae while the extract of H. suaveolens caused high mortality rate on the larvae at concentrations of 0.9ppm (80%) and 0.3ppm (80%). Significant differences were observed between untreated and treated larvae (exposed to either of the extract) at the various concentrations (P< 0.05).
Widman, James C; Meseck, Shannon L; Sennefelder, George; Veilleux, David J
2008-04-01
Juvenile bay scallops (7.2-26.4 mm) were exposed for 72 h to different concentrations of un-ionized ammonia, nitrite, or nitrate. Using the Trimmed Spearman Karber method, 50% lethal concentrations (LC(50)) and 95% confidence limits were calculated individually for each. Un-ionized ammonia concentrations above 1.0 mg N-NH(3)/L resulted in 100% scallop mortality within 72 h. The 72-h LC(50) for un-ionized ammonia was calculated at 0.43 mg N/L. At nitrite concentrations of 800 mg N/L or higher 100% mortality was observed. The 72-h LC(50) for nitrite was calculated at 345 mg N/L. Nitrate was the least toxic, with 100% mortality observed at a concentration of 5000 mg N/L. The calculated nitrate 72-h LC(50) was 4453 mg N/L. Our results indicate that un-ionized ammonia is the most lethal nitrogenous waste component to bay scallops.
Suicide, guns, and public policy.
Lewiecki, E Michael; Miller, Sara A
2013-01-01
Suicide is a serious public health concern that is responsible for almost 1 million deaths each year worldwide. It is commonly an impulsive act by a vulnerable individual. The impulsivity of suicide provides opportunities to reduce the risk of suicide by restricting access to lethal means. In the United States, firearms, particularly handguns, are the most common means of suicide. Despite strong empirical evidence that restriction of access to firearms reduces suicides, access to firearms in the United States is generally subject to few restrictions. Implementation and evaluation of measures such as waiting periods and permit requirements that restrict access to handguns should be a top priority for reducing deaths from impulsive suicide in the United States.
Suicide, Guns, and Public Policy
Miller, Sara A.
2013-01-01
Suicide is a serious public health concern that is responsible for almost 1 million deaths each year worldwide. It is commonly an impulsive act by a vulnerable individual. The impulsivity of suicide provides opportunities to reduce the risk of suicide by restricting access to lethal means. In the United States, firearms, particularly handguns, are the most common means of suicide. Despite strong empirical evidence that restriction of access to firearms reduces suicides, access to firearms in the United States is generally subject to few restrictions. Implementation and evaluation of measures such as waiting periods and permit requirements that restrict access to handguns should be a top priority for reducing deaths from impulsive suicide in the United States. PMID:23153127
Wang, Tao; Chen, Pingyang; Bian, Dujun; Chen, Juncao
2017-04-01
Proton magnetic resonance spectroscopy ( 1 H-MRS) measurement of liver metabolism in intrauterine growth restriction rats has seldom been reported. This study investigated the application of 1 H-MRS in assessing liver metabolism in newborn pups that experienced intrauterine growth restriction. Intra-uterine growth restriction was established by feeding rats low-protein diets during pregnancy. Newborn pups received conventional magnetic resonance imaging and 1 H-MRS using a 3.0T whole body MR scanner at 3, 8 and 12 weeks post birth. The success rate of 1 H-MRS was 83.33%. Significantly lower body weight, BMI and body length at 3 weeks as well as significantly lower body weight, BMI and waist circumference at 8 and 12 weeks were observed in newborn pups of IUGR rats compared with pups of control rats. Significant differences in ACho/H 2 O, ACr/H 2 O, AGlx/H 2 O and ALipid/H 2 O at 3 and 8 weeks as well as significant differences in ACr/H 2 O, ALipid/H 2 O and AGlx/H 2 O at 12 weeks were observed between pups of control rats and pups of IUGR rats. 1 H-MRS allows noninvasive assessment of liver metabolism in the rat and demonstrated the poor liver development of rats that experienced IUGR.
H2S induced coma and cardiogenic shock in the rat: Effects of phenothiazinium chromophores
SONOBE, TAKASHI; HAOUZI, PHILIPPE
2015-01-01
Context Hydrogen sulfide (H2S) intoxication produces an acute depression in cardiac contractility-induced circulatory failure, which has been shown to be one of the major contributors to the lethality of H2S intoxication or to the neurological sequelae in surviving animals. Methylene blue (MB), a phenothiazinium dye, can antagonize the effects of the inhibition of mitochondrial electron transport chain, a major effect of H2S toxicity. Objectives We investigated whether MB could affect the immediate outcome of H2S-induced coma in unanesthetized animals. Second, we sought to characterize the acute cardiovascular effects of MB and two of its demethylated metabolites—azure B and thionine—in anesthetized rats during lethal infusion of H2S. Materials and methods First, MB (4 mg/kg, intravenous [IV]) was administered in non-sedated rats during the phase of agonal breathing, following NaHS (20 mg/kg, IP)-induced coma. Second, in 4 groups of urethane-anesthetized rats, NaHS was infused at a rate lethal within 10 min (0.8 mg/min, IV). Whenever cardiac output (CO) reached 40% of its baseline volume, MB, azure B, thionine, or saline were injected, while sulfide infusion was maintained until cardiac arrest occurred. Results Seventy-five percent of the comatose rats that received saline (n = 8) died within 7 min, while all the 7 rats that were given MB survived (p = 0.007). In the anesthetized rats, arterial, left ventricular pressures and CO decreased during NaHS infusion, leading to a pulseless electrical activity within 530 s. MB produced a significant increase in CO and dP/dtmax for about 2 min. A similar effect was produced when MB was also injected in the pre-mortem phase of sulfide exposure, significantly increasing survival time. Azure B produced an even larger increase in blood pressure than MB, while thionine had no effect. Conclusion MB can counteract NaHS-induced acute cardiogenic shock; this effect is also produced by azure B, but not by thionine, suggesting that the presence of methyl groups is a prerequisite for producing this protective effect. PMID:25965774
Liu, Jinxiong; Chen, Pucheng; Jiang, Yongping; Wu, Li; Zeng, Xianying; Tian, Guobin; Ge, Jinying; Kawaoka, Yoshihiro; Bu, Zhigao; Chen, Hualan
2011-01-01
Ducks play an important role in the maintenance of highly pathogenic H5N1 avian influenza viruses (AIVs) in nature, and the successful control of AIVs in ducks has important implications for the eradication of the disease in poultry and its prevention in humans. The inactivated influenza vaccine is expensive, labor-intensive, and usually needs 2 to 3 weeks to induce protective immunity in ducks. Live attenuated duck enteritis virus (DEV; a herpesvirus) vaccine is used routinely to control lethal DEV infections in many duck-producing areas. Here, we first established a system to generate the DEV vaccine strain by using the transfection of overlapping fosmid DNAs. Using this system, we constructed two recombinant viruses, rDEV-ul41HA and rDEV-us78HA, in which the hemagglutinin (HA) gene of the H5N1 virus A/duck/Anhui/1/06 was inserted and stably maintained within the ul41 gene or between the us7 and us8 genes of the DEV genome. Duck studies indicated that rDEV-us78HA had protective efficacy similar to that of the live DEV vaccine against lethal DEV challenge; importantly, a single dose of 106 PFU of rDEV-us78HA induced complete protection against a lethal H5N1 virus challenge in as little as 3 days postvaccination. The protective efficacy against both lethal DEV and H5N1 challenge provided by rDEV-ul41HA inoculation in ducks was slightly weaker than that provided by rDEV-us78HA. These results demonstrate, for the first time, that recombinant DEV is suitable for use as a bivalent live attenuated vaccine, providing rapid protection against both DEV and H5N1 virus infection in ducks. PMID:21865383
Liu, Jinxiong; Chen, Pucheng; Jiang, Yongping; Wu, Li; Zeng, Xianying; Tian, Guobin; Ge, Jinying; Kawaoka, Yoshihiro; Bu, Zhigao; Chen, Hualan
2011-11-01
Ducks play an important role in the maintenance of highly pathogenic H5N1 avian influenza viruses (AIVs) in nature, and the successful control of AIVs in ducks has important implications for the eradication of the disease in poultry and its prevention in humans. The inactivated influenza vaccine is expensive, labor-intensive, and usually needs 2 to 3 weeks to induce protective immunity in ducks. Live attenuated duck enteritis virus (DEV; a herpesvirus) vaccine is used routinely to control lethal DEV infections in many duck-producing areas. Here, we first established a system to generate the DEV vaccine strain by using the transfection of overlapping fosmid DNAs. Using this system, we constructed two recombinant viruses, rDEV-ul41HA and rDEV-us78HA, in which the hemagglutinin (HA) gene of the H5N1 virus A/duck/Anhui/1/06 was inserted and stably maintained within the ul41 gene or between the us7 and us8 genes of the DEV genome. Duck studies indicated that rDEV-us78HA had protective efficacy similar to that of the live DEV vaccine against lethal DEV challenge; importantly, a single dose of 10(6) PFU of rDEV-us78HA induced complete protection against a lethal H5N1 virus challenge in as little as 3 days postvaccination. The protective efficacy against both lethal DEV and H5N1 challenge provided by rDEV-ul41HA inoculation in ducks was slightly weaker than that provided by rDEV-us78HA. These results demonstrate, for the first time, that recombinant DEV is suitable for use as a bivalent live attenuated vaccine, providing rapid protection against both DEV and H5N1 virus infection in ducks.
USDA-ARS?s Scientific Manuscript database
The HA protein of the 2009 pandemic H1N1viruses (14 H1N1pdm) is antigenically closely related to the HA of classical North American swine H1N1 influenza viruses (cH1N1). Since 1998, through reassortment and incorporation of HA genes from human H3N2 and H1N1 influenza viruses, swine influenza strains...
Fairchild, James F; Allert, Ann; Sappington, Linda S; Nelson, Karen J; Valle, Janet
2008-03-01
We conducted 96-h static acute toxicity studies to evaluate the relative sensitivity of juveniles of the threatened bull trout (Salvelinus confluentus) and the standard cold-water surrogate rainbow trout (Onchorhyncus mykiss) to three rangeland herbicides commonly used for controlling invasive weeds in the northwestern United States. Relative species sensitivity was compared using three procedures: standard acute toxicity testing, fractional estimates of lethal concentrations, and accelerated life testing chronic estimation procedures. The acutely lethal concentrations (ALC) resulting in 50% mortality at 96 h (96-h ALC50s) were determined using linear regression and indicated that the three herbicides were toxic in the order of picloram acid > 2,4-D acid > clopyralid acid. The 96-h ALC50 values for rainbow trout were as follows: picloram, 41 mg/L; 2.4-D, 707 mg/L; and clopyralid, 700 mg/L. The 96-h ALC50 values for bull trout were as follows: picloram, 24 mg/L; 2.4-D, 398 mg/L; and clopyralid, 802 mg/L. Fractional estimates of safe concentrations, based on 5% of the 96-h ALC50, were conservative (overestimated toxicity) of regression-derived 96-h ALC5 values by an order of magnitude. Accelerated life testing procedures were used to estimate chronic lethal concentrations (CLC) resulting in 1% mortality at 30 d (30-d CLC1) for the three herbicides: picloram (1 mg/L rainbow trout, 5 mg/L bull trout), 2,4-D (56 mg/L rainbow trout, 84 mg/L bull trout), and clopyralid (477 mg/L rainbow trout; 552 mg/L bull trout). Collectively, the results indicated that the standard surrogate rainbow trout is similar in sensitivity to bull trout. Accelerated life testing procedures provided cost-effective, statistically defensible methods for estimating safe chronic concentrations (30-d CLC1s) of herbicides from acute toxicity data because they use statistical models based on the entire mortality:concentration:time data matrix.
Fairchild, J.F.; Allert, A.; Sappington, L.S.; Nelson, K.J.; Valle, J.
2008-01-01
We conducted 96-h static acute toxicity studies to evaluate the relative sensitivity of juveniles of the threatened bull trout (Salvelinus confluentus) and the standard cold-water surrogate rainbow trout (Onchorhyncus mykiss) to three rangeland herbicides commonly used for controlling invasive weeds in the northwestern United States. Relative species sensitivity was compared using three procedures: standard acute toxicity testing, fractional estimates of lethal concentrations, and accelerated life testing chronic estimation procedures. The acutely lethal concentrations (ALC) resulting in 50% mortality at 96 h (96-h ALC50s) were determined using linear regression and indicated that the three herbicides were toxic in the order of picloram acid > 2,4-D acid > clopyralid acid. The 96-h ALC50 values for rainbow trout were as follows: picloram, 41 mg/L; 2.4-D, 707 mg/L; and clopyralid, 700 mg/L. The 96-h ALC50 values for bull trout were as follows: picloram, 24 mg/L; 2.4-D, 398 mg/L; and clopyralid, 802 mg/L. Fractional estimates of safe concentrations, based on 5% of the 96-h ALC50, were conservative (overestimated toxicity) of regression-derived 96-h ALC5 values by an order of magnitude. Accelerated life testing procedures were used to estimate chronic lethal concentrations (CLC) resulting in 1% mortality at 30 d (30-d CLC1) for the three herbicides: picloram (1 mg/L rainbow trout, 5 mg/L bull trout), 2,4-D (56 mg/L rainbow trout, 84 mg/L bull trout), and clopyralid (477 mg/L rainbow trout; 552 mg/L bull trout). Collectively, the results indicated that the standard surrogate rainbow trout is similar in sensitivity to bull trout. Accelerated life testing procedures provided cost-effective, statistically defensible methods for estimating safe chronic concentrations (30-d CLC1s) of herbicides from acute toxicity data because they use statistical models based on the entire mortality:concentration: time data matrix. ?? 2008 SETAC.
Improving on army field gauze for lethal vascular injuries: a progress report
USDA-ARS?s Scientific Manuscript database
Uncontrolled hemorrhage is the leading cause of death on the battlefield and second leading cause of death in civilian trauma. Recent animal testing using a lethal arterial injury model compared a variety of woven and non woven products with granular products, and found only one product (WoundStat)...
Metal bioavailability and toxicity to fish in low-alkalinity lakes: A critical review
Spry, D.J.; Wiener, James G.
1991-01-01
Fish in low-alkalinity lakes having pH of 6·0–6·5 or less often have higher body or tissue burdens of mercury, cadmium, and lead than do fish in nearby lakes with higher pH. The greater bioaccumulation of these metals in such waters seems to result partly from the greater aqueous abundances of biologically available forms (CH3 Hg+, Cd2+, and Pb2+) at low pH. In addition, the low concentrations of aqueous calcium in low-alkalinity lakes increase the permeability of biological membranes to these metals, which in fish may cause greater uptake from both water and food. Fish exposed to aqueous inorganic aluminum in the laboratory and field accumulate the metal in and on the epithelial cells of the gills; however, there is little accumulation of aluminum in the blood or internal organs. In low-pH water, both sublethal and lethal toxicity of aluminum has been clearly demonstrated in both laboratory and field studies at environmental concentrations. In contrast, recently measured aqueous concentrations of total mercury, methylmercury, cadmium, and lead in low-alkalinity lakes are much lower than the aqueous concentrations known to cause acute or chronic toxicity in fish, although the vast majority of toxicological research has involved waters with much higher ionic strength than that in low-alkalinity lakes. Additional work with fish is needed to better assess (1) the toxicity of aqueous metals in low-alkalinity waters, and (2) the toxicological significance of dietary methylmercury and cadmium.
Yu, Yang; Li, Quan-Feng; Zhang, Jin-Ping; Zhang, Fan; Zhou, Yan-Fei; Feng, Yan-Zhao; Chen, Yue-Qin; Zhang, Yu-Chan
2017-01-01
Seed setting rate is one of the most important components of rice grain yield. To date, only several genes regulating setting rate have been identified in plant. In this study, we showed that laccase-13 ( OsLAC13 ), a member of laccase family genes which are known for their roles in modulating phenylpropanoid pathway and secondary lignification in cell wall, exerts a regulatory function in rice seed setting rate. OsLAC13 expressed in anthers and promotes hydrogen peroxide production both in vitro and in the filaments and anther connectives. Knock-out of OsLAC13 showed significantly increased seed setting rate, while overexpression of this gene exhibited induced mitochondrial damage and suppressed sugar transportation in anthers, which in turn affected seed setting rate. OsLAC13 also induced H 2 O 2 production and mitochondrial damage in the root tip cells which caused the lethal phenotype. We also showed that high abundant of OsmiR397, the suppressor of OsLAC13 mRNA, increased the seed setting rate of rice plants, and restrains H 2 O 2 accumulation in roots during oxidative stress. Our results suggested a novel regulatory role of OsLAC13 gene in regulating seed setting rate by affecting H 2 O 2 dynamics and mitochondrial integrity in rice.
The phototoxic effects of fluoranthene on bullfrog tadpoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, S.E.; Taylor, D.H.; Oris, J.T.
1995-12-31
The objective of this study was to determine the phototoxic effects of fluoranthene on bullfrog larvae by examining the relationship between median time to death and fluoranthene concentration and by examining the effects of short-term sublethal fluoranthene exposure on behavior and body condition. To determine the relationship between median time to death and fluoranthene concentration, tadpoles were exposed to either 0, 60, 80, 100 or 120 mg fluoranthene/L, and monitored for 144h under SUVR (40--50 mW/cm{sup 2} UVA, 4--6 mW/cm{sup 2} UVB). To examine the effects of fluoranthene on behavior and body condition, 20 tadpoles were exposed to either 0,more » 10, or 40 mg fluoranthene/L with simulated SUVR for either 48 or 96 h. At either 48 or 96 h ten individuals were removed and their locomotor activity was monitored and the body length and mass determined. Median time to death decreased with increased fluoranthene concentration and appears to do so in a linear fashion. Body condition was determined using a ratio index (mass/length{sup 3}) and a residual index was determined using the residuals of a regression of body length and body mass. Both exposure time and concentration affected both condition indices. Body burden was significantly affected at 10 mg fluoranthene/L. Exposure to fluoranthene for 48 h caused no significant effect on locomotor activity. However, at 96 h hyperactivity was noted in the highest fluoranthene exposure concentration. These results indicate that exposure to fluoranthene under environmentally realistic conditions can cause both lethal and sublethal effects on amphibian larvae.« less
[Screening of full human anthrax lethal factor neutralizing antibody in transgenic mice].
Wang, Xiaolin; Chi, Xiangyang; Liu, Ju; Liu, Weicen; Liu, Shuling; Qiu, Shunfang; Wen, Zhonghua; Fan, Pengfei; Liu, Kun; Song, Xiaohong; Fu, Ling; Zhang, Jun; Yu, Changming
2016-11-25
Anthrax is a highly lethal infectious disease caused by the spore-forming bacterium Bacillus anthracis. The major virulence factor of B. anthracis consists of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA binds with LF to form lethal toxin (LT), and PA binds with EF to form edema toxin (ET). Antibiotics is hard to work in advanced anthrax infections, because injuries and deaths of the infected are mainly caused by lethal toxin (LT). Thus, the therapeutic neutralizing antibody is the most effective treatment of anthrax. Currently most of the anthrax toxin antibodies are monoclonal antibodies (MAbs) for PA and US FDA has approved ABTHRAX humanized PA monoclonal antibody for the treatment of inhalational anthrax. Once B. anthracis was artificially reconstructed or PA had mutations within recognized neutralization epitopes, anti-PA MAbs would no longer be effective. Therefore, anti-LF MAbs is an important supplement for anthrax treatment. Most of the anti-LF antibodies are murine or chimeric antibodies. By contrast, fully human MAbs can avoid the high immunogenicity of murine antibodies. First, we used LF to immunize the transgenic mice and used fluorescent cell sorting to get antigen-specific memory B cells from transgenic mice spleen lymphocytes. By single cell PCR method, we quickly found two strains of anti-LF MAbs with binding activity, 1D7 and 2B9. Transiently transfected Expi 293F cells to obtain MAbs protein after purification. Both 1D7 and 2B9 efficiently neutralized LT in vitro, and had good synergistic effect when mixed with anti-PA MAbs. In summary, combining the advantages of transgenic mice, fluorescent cell sorting and single-cell PCR methods, this study shows new ideas and methods for the rapid screening of fully human monoclonal antibodies.
Zhang, Xue-Qian; Sonobe, Takashi; Song, Jianliang; Rannals, Matthew D.; Wang, JuFang; Tubbs, Nicole; Cheung, Joseph Y.; Haouzi, Philippe
2016-01-01
We have previously reported that methylene blue (MB) can counteract hydrogen sulfide (H2S) intoxication-induced circulatory failure. Because of the multifarious effects of high concentrations of H2S on cardiac function, as well as the numerous properties of MB, the nature of this interaction, if any, remains uncertain. The aim of this study was to clarify 1) the effects of MB on H2S-induced cardiac toxicity and 2) whether L-type Ca2+ channels, one of the targets of H2S, could transduce some of the counteracting effects of MB. In sedated rats, H2S infused at a rate that would be lethal within 5 min (24 μM·kg−1·min−1), produced a rapid fall in left ventricle ejection fraction, determined by echocardiography, leading to a pulseless electrical activity. Blood concentrations of gaseous H2S reached 7.09 ± 3.53 μM when cardiac contractility started to decrease. Two to three injections of MB (4 mg/kg) transiently restored cardiac contractility, blood pressure, and V̇o2, allowing the animals to stay alive until the end of H2S infusion. MB also delayed PEA by several minutes following H2S-induced coma and shock in unsedated rats. Applying a solution containing lethal levels of H2S (100 μM) on isolated mouse cardiomyocytes significantly reduced cell contractility, intracellular calcium concentration ([Ca2+]i) transient amplitudes, and L-type Ca2+ currents (ICa) within 3 min of exposure. MB (20 mg/l) restored the cardiomyocyte function, ([Ca2+]i) transient, and ICa. The present results offer a new approach for counteracting H2S toxicity and potentially other conditions associated with acute inhibition of L-type Ca2+ channels. PMID:26962024
Ahmed, Seemin Seher; Li, Huapeng; Cao, Chunyan; Sikoglu, Elif M; Denninger, Andrew R; Su, Qin; Eaton, Samuel; Liso Navarro, Ana A; Xie, Jun; Szucs, Sylvia; Zhang, Hongwei; Moore, Constance; Kirschner, Daniel A; Seyfried, Thomas N; Flotte, Terence R; Matalon, Reuben; Gao, Guangping
2013-01-01
Canavan's disease (CD) is a fatal pediatric leukodystrophy caused by mutations in aspartoacylase (AspA) gene. Currently, there is no effective treatment for CD; however, gene therapy is an attractive approach to ameliorate the disease. Here, we studied progressive neuropathology and gene therapy in short-lived (≤1 month) AspA−/− mice, a bona-fide animal model for the severest form of CD. Single intravenous (IV) injections of several primate-derived recombinant adeno-associated viruses (rAAVs) as late as postnatal day 20 (P20) completely rescued their early lethality and alleviated the major disease symptoms, extending survival in P0-injected rAAV9 and rAAVrh8 groups to as long as 2 years thus far. We successfully used microRNA (miRNA)-mediated post-transcriptional detargeting for the first time to restrict therapeutic rAAV expression in the central nervous system (CNS) and minimize potentially deleterious effects of transgene overexpression in peripheral tissues. rAAV treatment globally improved CNS myelination, although some abnormalities persisted in the content and distribution of myelin-specific and -enriched lipids. We demonstrate that systemically delivered and CNS-restricted rAAVs can serve as efficacious and sustained gene therapeutics in a model of a severe neurodegenerative disorder even when administered as late as P20. PMID:23817205
Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity.
Jin, Rongsheng; Rummel, Andreas; Binz, Thomas; Brunger, Axel T
2006-12-21
Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and cause the neuroparalytic syndrome of botulism. With a lethal dose of 1 ng kg(-1), they pose a biological hazard to humans and a serious potential bioweapon threat. BoNTs bind with high specificity at neuromuscular junctions and they impair exocytosis of synaptic vesicles containing acetylcholine through specific proteolysis of SNAREs (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors), which constitute part of the synaptic vesicle fusion machinery. The molecular details of the toxin-cell recognition have been elusive. Here we report the structure of a BoNT in complex with its protein receptor: the receptor-binding domain of botulinum neurotoxin serotype B (BoNT/B) bound to the luminal domain of synaptotagmin II, determined at 2.15 A resolution. On binding, a helix is induced in the luminal domain which binds to a saddle-shaped crevice on a distal tip of BoNT/B. This crevice is adjacent to the non-overlapping ganglioside-binding site of BoNT/B. Synaptotagmin II interacts with BoNT/B with nanomolar affinity, at both neutral and acidic endosomal pH. Biochemical and neuronal ex vivo studies of structure-based mutations indicate high specificity and affinity of the interaction, and high selectivity of BoNT/B among synaptotagmin I and II isoforms. Synergistic binding of both synaptotagmin and ganglioside imposes geometric restrictions on the initiation of BoNT/B translocation after endocytosis. Our results provide the basis for the rational development of preventive vaccines or inhibitors against these neurotoxins.
Activation of Hedgehog signaling by loss of GNAS causes heterotopic ossification
Regard, Jean B.; Malhotra, Deepti; Gvozdenovic-Jeremic, Jelena; Josey, Michelle; Chen, Min; Weinstein, Lee S.; Lu, Jianming; Shore, Eileen M.; Kaplan, Frederick S.; Yang, Yingzi
2014-01-01
Bone formation is exquisitely controlled in space and time. Heterotopic ossification (HO), the pathologic formation of extra-skeletal bone, occurs as a common complication of trauma or in genetic disorders and can be disabling and lethal. However, the underlying molecular mechanisms are largely unknown. Here we demonstrate that Gαs restricts bone formation to the skeleton by inhibiting Hedgehog (Hh) signaling in mesenchymal progenitor cells. In progressive osseous heteroplasia (POH), a human disease caused by null mutations in GNAS that encodes Gαs, HH signaling is upregulated in ectopic osteoblasts and progenitor cells. Ectopic Hh signaling is sufficient to induce HO, while Hh signaling inhibition blocks HO in animal models. As our previous work has shown that GNAS gain of function mutations upregulate WNT/β-Catenin signaling in fibrous dysplasia (FD), our findings identify Gαs as a critical regulator of osteoblast differentiation by maintaining a balance between two key signaling pathways: Wnt/β-catenin and Hh. HH signaling inhibitors developed for cancer therapy may be repurposed to treat HO and other diseases caused by GNAS inactivation. PMID:24076664
Genetics Home Reference: platyspondylic lethal skeletal dysplasia, Torrance type
... type of collagen in the body. Instead of forming collagen molecules, the abnormal COL2A1 protein builds up ... Y, Nagai T, Yamaguchi T, Kosaki R, Ohashi H, Makita Y, Ikegawa S. Identification of COL2A1 mutations in ...
9 CFR 121.13 - Restricted experiments.
Code of Federal Regulations, 2014 CFR
2014-01-01
... naturally, if such acquisition could compromise the control of disease agents in humans, veterinary medicine... such acquisition could compromise the control of disease agents in humans, veterinary medicine, or... of select toxins lethal for vertebrates at an LD[50] body weight) resulting from, the...
9 CFR 121.13 - Restricted experiments.
Code of Federal Regulations, 2013 CFR
2013-01-01
... naturally, if such acquisition could compromise the control of disease agents in humans, veterinary medicine... such acquisition could compromise the control of disease agents in humans, veterinary medicine, or... of select toxins lethal for vertebrates at an LD[50] body weight) resulting from, the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giggleman, M.A.; Fitzpatrick, L.C.; Goven, A.J.
Earthworms, Lumbricus terrestris, exposed for 96 h to filter paper saturated with five nominal concentrations of pentachlorophenol, exhibited a 50% lethal concentration (LC50) of 25.0 {micro}g PCP/cm{sup 2} and corresponding whole worm body burden-based 50% lethal dose (LD50) of 877.7 {micro}g PCP/g dry mass. Linear regression modeling showed that worms increased body concentrations (BC = {micro}g PCP/g dry tissue mass) with increasing exposure concentrations (EC) according to BC = 113.5 + 29.5EC. Phagocytosis of yeast cells by immunoactive coelomocytes was suppressed only at body concentrations (863.3 {micro}g PCP/g dry mass) that approximated the calculated LD50 and overlapped those demonstrating lethality,more » indicating a sharp transition between sublethal and lethal toxicity. An exposure concentration of 15 {micro}g PCP/cm{sup 2} produced significant suppression of phagocytosis of yeast cells by immunoactive coelomocytes. However, the average measured body burden from this group approximated the estimated LD50, indicating a sharp toxic response slope. Exposure to 10 {micro}g PCP/cm{sup 2} with a corresponding body concentration of 501.3 {micro}g PCP/g dry mass did not affect phagocytosis. The importance of body burden data is emphasized.« less
Pathogenesis and transmission of avian influenza A (H7N9) virus in ferrets and mice.
Belser, Jessica A; Gustin, Kortney M; Pearce, Melissa B; Maines, Taronna R; Zeng, Hui; Pappas, Claudia; Sun, Xiangjie; Carney, Paul J; Villanueva, Julie M; Stevens, James; Katz, Jacqueline M; Tumpey, Terrence M
2013-09-26
On 29 March 2013, the Chinese Center for Disease Control and Prevention confirmed the first reported case of human infection with an avian influenza A(H7N9) virus. The recent human infections with H7N9 virus, totalling over 130 cases with 39 fatalities to date, have been characterized by severe pulmonary disease and acute respiratory distress syndrome (ARDS). This is concerning because H7 viruses have typically been associated with ocular disease in humans, rather than severe respiratory disease. This recent outbreak underscores the need to better understand the pathogenesis and transmission of these viruses in mammals. Here we assess the ability of A/Anhui/1/2013 and A/Shanghai/1/2013 (H7N9) viruses, isolated from fatal human cases, to cause disease in mice and ferrets and to transmit to naive animals. Both H7N9 viruses replicated to higher titre in human airway epithelial cells and in the respiratory tract of ferrets compared to a seasonal H3N2 virus. Moreover, the H7N9 viruses showed greater infectivity and lethality in mice compared to genetically related H7N9 and H9N2 viruses. The H7N9 viruses were readily transmitted to naive ferrets through direct contact but, unlike the seasonal H3N2 virus, did not transmit readily by respiratory droplets. The lack of efficient respiratory droplet transmission was corroborated by low receptor-binding specificity for human-like α2,6-linked sialosides. Our results indicate that H7N9 viruses have the capacity for efficient replication in mammals and human airway cells and highlight the need for continued public health surveillance of this emerging virus.
Cases of death caused by gas or warning firearms.
Rothschild, M A; Maxeiner, H; Schneider, V
1994-01-01
Five cases of lethal injuries caused by gas or warning firearms are discussed. In one suicide case a modified weapon (elongated barrel) and steel bullets were used to fire a shot into the head, the bullets lodged in the skull and lethal bleeding resulted. In the other cases conventional gas weapons without evidence of alteration were used for contact shots; injuries were caused by the effect of propelling powder gases. Two of these cases were suicides (temporal contact shot and back of the neck contact shot), one was an accident (inguinal contact shot with lethal bleeding), and one was an attack by another person with a contact shot against the neck with bilateral tears of the hypopharynx. After successful surgery, a delayed death occurred 12 days later caused by bleeding into the airways from the ruptured external carotid artery.
Ahmed, Shaimaa; Bott, Debbie; Gomez, Alvin; Tamblyn, Laura; Rasheed, Adil; Cho, Tiffany; MacPherson, Laura; Sugamori, Kim S.; Yang, Yang; Grant, Denis M.; Cummins, Carolyn L.; Matthews, Jason
2015-01-01
The aryl hydrocarbon receptor (AHR) mediates the toxic effects of the environmental contaminant dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin; TCDD). Dioxin causes a range of toxic responses, including hepatic damage, steatohepatitis, and a lethal wasting syndrome; however, the mechanisms are still unknown. Here, we show that the loss of TCDD-inducible poly(ADP-ribose) polymerase (Tiparp), an ADP-ribosyltransferase and AHR repressor, increases sensitivity to dioxin-induced toxicity, steatohepatitis, and lethality. Tiparp−/− mice given a single injection of 100 μg/kg dioxin did not survive beyond day 5; all Tiparp+/+ mice survived the 30-day treatment. Dioxin-treated Tiparp−/− mice exhibited increased liver steatosis and hepatotoxicity. Tiparp ADP-ribosylated AHR but not its dimerization partner, the AHR nuclear translocator, and the repressive effects of TIPARP on AHR were reversed by the macrodomain containing mono-ADP-ribosylase MACROD1 but not MACROD2. These results reveal previously unidentified roles for Tiparp, MacroD1, and ADP-ribosylation in AHR-mediated steatohepatitis and lethality in response to dioxin. PMID:25975270
Lethality of First Contact Dysentery Epidemics on Pacific Islands
Shanks, G. Dennis
2016-01-01
Infectious diseases depopulated many isolated Pacific islands when they were first exposed to global pathogen circulation from the 18th century. Although the mortality was great, the lack of medical observers makes determination of what happened during these historical epidemics largely speculative. Bacillary dysentery caused by Shigella is the most likely infection causing some of the most lethal island epidemics. The fragmentary historical record is reviewed to gain insight into the possible causes of the extreme lethality that was observed during first-contact epidemics in the Pacific. Immune aspects of the early dysentery epidemics and postmeasles infection resulting in subacute inflammatory enteric disease suggest that epidemiologic isolation was the major lethality risk factor on Pacific islands in the 19th century. Other possible risk factors include human leukocyte antigen homogeneity from a founder effect and pathogen-induced derangement of immune tolerance to gut flora. If this analysis is correct, then Pacific islands are currently at no greater risk of emerging disease epidemics than other developing countries despite their dark history. PMID:27185765
Johnson, Timothy J.; Liu, Cindy M.; Sokurenko, Evgeni; Kisiela, Dagmara I.; Paul, Sandip; Andersen, Paal; Johnson, James R.; Price, Lance B.
2016-01-01
We report here the complete genome sequence, including five plasmid sequences, of Escherichia coli sequence type 131 (ST131) strain JJ1887. The strain was isolated in 2007 in the United States from a patient with recurrent cystitis, whose caregiver sister died from urosepsis caused by a nearly identical strain. PMID:27174264
Tomnikov, A Iu; Shub, G M
1990-02-01
High chemotherapeutic efficacy of the compound 1929, a new derivative of 5-alkyl-3H-furanones was shown in albino mice with experimental staphylococcal infection caused by intraperitoneal administration to the animals. The efficacy was found to be higher than that of furagin used for comparison. The average therapeutic dose (AD50) of the compound for intraperitoneal administration amounted to 40 mg/kg while the average lethal dose (LD50) was 3000 mg/kg.
Pejovic, Slobodanka; Basta, Maria; Vgontzas, Alexandros N; Kritikou, Ilia; Shaffer, Michele L; Tsaoussoglou, Marina; Stiffler, David; Stefanakis, Zacharias; Bixler, Edward O; Chrousos, George P
2013-10-01
One workweek of mild sleep restriction adversely impacts sleepiness, performance, and proinflammatory cytokines. Many individuals try to overcome these adverse effects by extending their sleep on weekends. To assess whether extended recovery sleep reverses the effects of mild sleep restriction on sleepiness/alertness, inflammation, and stress hormones, 30 healthy young men and women (mean age ± SD, 24.7 ± 3.5 yr; mean body mass index ± SD, 23.6 ± 2.4 kg/m(2)) participated in a sleep laboratory experiment of 13 nights [4 baseline nights (8 h/night), followed by 6 sleep restriction nights (6 h/night) and 3 recovery nights (10 h/night)]. Twenty-four-hour profiles of circulating IL-6 and cortisol, objective and subjective daytime sleepiness (Multiple Sleep Latency Test and Stanford Sleepiness Scale), and performance (Psychomotor Vigilance Task) were assessed on days 4 (baseline), 10 (after 1 wk of sleep restriction), and 13 (after 2 nights of recovery sleep). Serial 24-h IL-6 plasma levels increased significantly during sleep restriction and returned to baseline after recovery sleep. Serial 24-h cortisol levels during restriction did not change compared with baseline, but after recovery they were significantly lower. Subjective and objective sleepiness increased significantly after restriction and returned to baseline after recovery. In contrast, performance deteriorated significantly after restriction and did not improve after recovery. Extended recovery sleep over the weekend reverses the impact of one work week of mild sleep restriction on daytime sleepiness, fatigue, and IL-6 levels, reduces cortisol levels, but does not correct performance deficits. The long-term effects of a repeated sleep restriction/sleep recovery weekly cycle in humans remain unknown.
Pejovic, Slobodanka; Basta, Maria; Kritikou, Ilia; Shaffer, Michele L.; Tsaoussoglou, Marina; Stiffler, David; Stefanakis, Zacharias; Bixler, Edward O.; Chrousos, George P.
2013-01-01
One workweek of mild sleep restriction adversely impacts sleepiness, performance, and proinflammatory cytokines. Many individuals try to overcome these adverse effects by extending their sleep on weekends. To assess whether extended recovery sleep reverses the effects of mild sleep restriction on sleepiness/alertness, inflammation, and stress hormones, 30 healthy young men and women (mean age ± SD, 24.7 ± 3.5 yr; mean body mass index ± SD, 23.6 ± 2.4 kg/m2) participated in a sleep laboratory experiment of 13 nights [4 baseline nights (8 h/night), followed by 6 sleep restriction nights (6 h/night) and 3 recovery nights (10 h/night)]. Twenty-four-hour profiles of circulating IL-6 and cortisol, objective and subjective daytime sleepiness (Multiple Sleep Latency Test and Stanford Sleepiness Scale), and performance (Psychomotor Vigilance Task) were assessed on days 4 (baseline), 10 (after 1 wk of sleep restriction), and 13 (after 2 nights of recovery sleep). Serial 24-h IL-6 plasma levels increased significantly during sleep restriction and returned to baseline after recovery sleep. Serial 24-h cortisol levels during restriction did not change compared with baseline, but after recovery they were significantly lower. Subjective and objective sleepiness increased significantly after restriction and returned to baseline after recovery. In contrast, performance deteriorated significantly after restriction and did not improve after recovery. Extended recovery sleep over the weekend reverses the impact of one work week of mild sleep restriction on daytime sleepiness, fatigue, and IL-6 levels, reduces cortisol levels, but does not correct performance deficits. The long-term effects of a repeated sleep restriction/sleep recovery weekly cycle in humans remain unknown. PMID:23941878
Xu, Guanlong; Zhang, Xuxiao; Gao, Weihua; Wang, Chenxi; Wang, Jinliang; Sun, Honglei; Sun, Yipeng; Guo, Lu; Zhang, Rui; Chang, Kin-Chow; Liu, Jinhua; Pu, Juan
2016-09-15
Adaptation of the viral polymerase complex comprising PB1, PB2, and PA is necessary for efficient influenza A virus replication in new host species. We found that PA mutation K356R (PA-K356R) has become predominant since 2014 in avian H9N2 viruses in China as with seasonal human H1N1 viruses. The same mutation is also found in most human isolates of emergent avian H7N9 and H10N8 viruses whose six internal gene segments are derived from the H9N2 virus. We further demonstrated the mammalian adaptive functionality of the PA-K356R mutation. Avian H9N2 virus with the PA-K356R mutation in human A549 cells showed increased nuclear accumulation of PA and increased viral polymerase activity that resulted in elevated levels of viral transcription and virus output. The same mutant virus in mice also enhanced virus replication and caused lethal infection. In addition, combined mutation of PA-K356R and PB2-E627K, a well-known mammalian adaptive marker, in the H9N2 virus showed further cooperative increases in virus production and severity of infection in vitro and in vivo In summary, PA-K356R behaves as a novel mammalian tropism mutation, which, along with other mutations such as PB2-E627K, might render avian H9N2 viruses adapted for human infection. Mutations of the polymerase complex (PB1, PB2, and PA) of influenza A virus are necessary for viral adaptation to new hosts. This study reports a novel and predominant mammalian adaptive mutation, PA-K356R, in avian H9N2 viruses and human isolates of emergent H7N9 and H10N8 viruses. We found that PA-356R in H9N2 viruses causes significant increases in virus replication and severity of infection in human cells and mice and that PA-K356R cooperates with the PB2-E627K mutation, a well-characterized human adaptive marker, to exacerbate mammalian infection in vitro and in vivo Therefore, the PA-K356R mutation is a significant adaptation in H9N2 viruses and related H7N9 and H10N8 reassortants toward human infectivity. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Xu, Guanlong; Zhang, Xuxiao; Gao, Weihua; Wang, Chenxi; Wang, Jinliang; Sun, Honglei; Sun, Yipeng; Guo, Lu; Zhang, Rui; Chang, Kin-Chow; Liu, Jinhua
2016-01-01
ABSTRACT Adaptation of the viral polymerase complex comprising PB1, PB2, and PA is necessary for efficient influenza A virus replication in new host species. We found that PA mutation K356R (PA-K356R) has become predominant since 2014 in avian H9N2 viruses in China as with seasonal human H1N1 viruses. The same mutation is also found in most human isolates of emergent avian H7N9 and H10N8 viruses whose six internal gene segments are derived from the H9N2 virus. We further demonstrated the mammalian adaptive functionality of the PA-K356R mutation. Avian H9N2 virus with the PA-K356R mutation in human A549 cells showed increased nuclear accumulation of PA and increased viral polymerase activity that resulted in elevated levels of viral transcription and virus output. The same mutant virus in mice also enhanced virus replication and caused lethal infection. In addition, combined mutation of PA-K356R and PB2-E627K, a well-known mammalian adaptive marker, in the H9N2 virus showed further cooperative increases in virus production and severity of infection in vitro and in vivo. In summary, PA-K356R behaves as a novel mammalian tropism mutation, which, along with other mutations such as PB2-E627K, might render avian H9N2 viruses adapted for human infection. IMPORTANCE Mutations of the polymerase complex (PB1, PB2, and PA) of influenza A virus are necessary for viral adaptation to new hosts. This study reports a novel and predominant mammalian adaptive mutation, PA-K356R, in avian H9N2 viruses and human isolates of emergent H7N9 and H10N8 viruses. We found that PA-356R in H9N2 viruses causes significant increases in virus replication and severity of infection in human cells and mice and that PA-K356R cooperates with the PB2-E627K mutation, a well-characterized human adaptive marker, to exacerbate mammalian infection in vitro and in vivo. Therefore, the PA-K356R mutation is a significant adaptation in H9N2 viruses and related H7N9 and H10N8 reassortants toward human infectivity. PMID:27384648
Physiological and biochemical aspects of ozone toxicity to rainbow trout (Salmo gairdneri)
Wedemeyer, Gary A.; Nelson, Nancy C.; Yasutake, William T.
1979-01-01
An acute toxicity curve for dissolved ozone (O3) in soft water at 10 °C, using 10–13-cm rainbow trout (Salmo gairdneri) as the test species was calculated. The 96-h LC50 (95%, confidence interval) was 9.3 (8.1–10.6) μg/L. The lethal threshold level was about 8 μg/L mandating that a conservative margin of safety be used if ozone is employed as a fish disease control agent. Death apparently results from massive destruction of the gill lamellar epithelium together with a severe hydromineral imbalance. In partial chronic (3-mo) testing, 2 μg/L caused no significant biological damage while 5 μg/L caused some gill pathological changes and reduced feeding behavior. Accordingly, 2 μg/L is suggested as a provisional maximum safe exposure level, pending completion of life cycle studies. Thus, if ozone-treated water is discharged into the environment, dissolved O3 should be reduced to at least the 2 μg/L level to minimize adverse impacts on salmonids in receiving waters.
Guemez-Gamboa, Alicia; Nguyen, Long N; Yang, Hongbo; Zaki, Maha S; Kara, Majdi; Ben-Omran, Tawfeg; Akizu, Naiara; Rosti, Rasim Ozgur; Rosti, Basak; Scott, Eric; Schroth, Jana; Copeland, Brett; Vaux, Keith K; Cazenave-Gassiot, Amaury; Quek, Debra Q Y; Wong, Bernice H; Tan, Bryan C; Wenk, Markus R; Gunel, Murat; Gabriel, Stacey; Chi, Neil C; Silver, David L; Gleeson, Joseph G
2015-07-01
Docosahexanoic acid (DHA) is the most abundant omega-3 fatty acid in brain, and, although it is considered essential, deficiency has not been linked to disease. Despite the large mass of DHA in phospholipids, the brain does not synthesize it. DHA is imported across the blood-brain barrier (BBB) through the major facilitator superfamily domain-containing 2a (MFSD2A) protein. MFSD2A transports DHA as well as other fatty acids in the form of lysophosphatidylcholine (LPC). We identify two families displaying MFSD2A mutations in conserved residues. Affected individuals exhibited a lethal microcephaly syndrome linked to inadequate uptake of LPC lipids. The MFSD2A mutations impaired transport activity in a cell-based assay. Moreover, when expressed in mfsd2aa-morphant zebrafish, mutants failed to rescue microcephaly, BBB breakdown and lethality. Our results establish a link between transport of DHA and LPCs by MFSD2A and human brain growth and function, presenting the first evidence of monogenic disease related to transport of DHA in humans.
Keating, Rachael; Hertz, Tomer; Wehenkel, Marie; Harris, Tarsha L.; Edwards, Benjamin A.; McClaren, Jennifer L.; Brown, Scott A.; Surman, Sherri; Wilson, Zachary S.; Bradley, Philip; Hurwitz, Julia; Chi, Hongbo; Doherty, Peter C.; Thomas, Paul G.; McGargill, Maureen A.
2013-01-01
Highly pathogenic avian influenza viruses pose a continuing global threat. Current vaccines will not protect against novel pandemic viruses. Creating “universal” vaccines has been unsuccessful because the immunological mechanisms promoting heterosubtypic immunity are incompletely defined. We show that rapamycin, an immunosuppressive drug that inhibits mTOR, promotes cross-strain protection against lethal H5N1 and H7N9 infections when administered during H3N2 virus immunization. Rapamycin reduced germinal center formation and inhibited B cell class-switching, yielding a unique repertoire of antibodies that mediated heterosubtypic protection. Our data establish a requirement for mTORC1 in B cell class-switching and demonstrate that rapamycin skews the antibody response away from high affinity variant epitopes, targeting more conserved elements of hemagglutinin. These findings have intriguing implications for influenza vaccine design. PMID:24141387
Zhang, Hui; Wu, Shengyong; Xing, Zhenlong; Wang, Xiaoqing; Lei, Zhongren
2016-12-01
When flies were dipped in 1 × 10 8 conidia/ml conidia suspensions and then kept in the incubator (22 ± 1 °C, 70 ± 5% RH), scanning electron microscope observations revealed that, at 2 h, the majority of adhering Beauveria bassiana conidia were attached to either the wing surface or the interstitial area between the macrochaetae on the thorax and abdomen of the onion maggot adults. Germ tubes were being produced and had oriented toward the cuticle by 18 h. Penetration of the insect cuticle had occurred by 36 h, and by 48 h, germ tubes had completely penetrated the cuticle. Fungal mycelia had emerged from the insect body and were proliferating after 72 h. The superficial area and structure of the wings and macrochaetae may facilitate the attachment of conidia and enable effective penetration. The susceptibility of adults to 12 isolates, at a concentration of 1 × 10 7 conidia/ml, was tested in laboratory experiments. Eight of the more potent strains caused in excess of 85% adult mortality 8 d post inoculation, while the median lethal time (LT 50 ) of these strains was <6 d. The virulence of the more effective strains was further tested, and the median lethal concentrations (LC 50 ) were calculated by exposing adults to doses ranging from 10 3 -10 7 conidia/ml. The lowest LC 50 value, found in the isolate XJWLMQ-32, for the adults was 3.87 × 10 3 conidia/ml. These results demonstrate that some B. bassiana strains are highly virulent to onion maggot adults and should be considered as potential biocontrol agents against the adult flies. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hsu, Po-Yuan; Lee, Kuo-Kau; Hu, Chih-Chuang; Liu, Ping-Chung
2014-09-01
Toxicity of the extracellular products (ECPs) and the lethal attributes of phospholipase secreted by pathogenic Photobacterium damselae subsp. piscicida from cobia Rachycentron canadum was studied. An extracellular lethal toxin in the ECPs was partially purified by using Fast Protein Liquid Chromatography system. A protein band (27 kDa) exhibited phospholipase activity on Native-PAGE (by 0.3% egg yolk agar-overlay), was excised and eluted. The pI value of the purified phospholipase was determined as 3.65 and was determined as a phospholipase C by using the Amplex™ Red phosphatidylcholine -Specific phospholipase C Assay kit. The phospholipase showed maximum activity at temperature around 4-40 °C and maximal activity at pH between 8 and 9. The enzyme was inhibited by ethylenediamine-tetraacetic acid (EDTA) and sodium dodecyl sulfate (SDS); but was activated by Ca(2+) and Mg(2+) and inactivated by Zn(2+) and Cu(2+) . Both the ECPs and phospholipase were hemolytic against erythrocytes of cobia and lethal to the fish with LD50 values of 3.25 and 0.91 µg protein g(-1) fish, respectively. In toxicity neutralization test, the rabbit antisera against the phospholipase could neutralize the toxicity of ECPs, indicating that the phospholipase is a major extracellular toxin produced by the bacterium. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Shih-Hung; Kuo, Ting-Chun; Wu, Hsu; Guo, Jhe-Cyuan; Hsu, Chiun; Hsu, Chih-Hung; Tien, Yu-Wen; Yeh, Kun-Huei; Cheng, Ann-Lii; Kuo, Sung-Hsin
2016-01-01
Pancreatic cancer is highly lethal. Current research that combines radiation with targeted therapy may dramatically improve prognosis. Cancerous cells are characterized by unstable genomes and activation of DNA repair pathways, which are indicated by increased phosphorylation of numerous factors, including H2AX, ATM, ATR, Chk1, Chk2, DNA-PKcs, Rad51, and Ku70/Ku80 heterodimers. Radiotherapy causes DNA damage. Cancer cells can be made more sensitive to the effects of radiation (radiosensitization) through inhibition of DNA repair pathways. The synergistic effects, of two or more combined non-lethal treatments, led to co-administration of chemotherapy and radiosensitization in BRCA-defective cells and patients, with promising results. ATM/Chk2 and ATR/Chk1 pathways are principal regulators of cell cycle arrest, following DNA double-strand or single-strand breaks. DNA double-stranded breaks activate DNA-dependent protein kinase, catalytic subunit (DNA-PKcs). It forms a holoenzyme with Ku70/Ku80 heterodimers, called DNA-PK, which catalyzes the joining of nonhomologous ends. This is the primary repair pathway utilized in human cells after exposure to ionizing radiation. Radiosensitization, induced by inhibitors of ATM, ATR, Chk1, Chk2, Wee1, PP2A, or DNA-PK, has been demonstrated in preclinical pancreatic cancer studies. Clinical trials are underway. Development of agents that inhibit DNA repair pathways to be clinically used in combination with radiotherapy is warranted for the treatment of pancreatic cancer. PMID:27621574
Polarity-defective mutants of Aspergillus nidulans.
Osherov, N; Mathew, J; May, G S
2000-12-01
We have identified two polarity-defective (pod) mutants in Aspergillus nidulans from a collection of heat-sensitive lethal mutants. At restrictive temperature, these mutants are capable of nuclear division but are unable to establish polar hyphal growth. We cloned the two pod genes by complementation of their heat-sensitive lethal phenotypes. The libraries used to clone the pod genes are under the control of the bidirectional niaD and niiA promoters. Complementation of the pod mutants is dependent on growth on inducing medium. We show that rescue of the heat-sensitive phenotype on inducing media is independent of the orientation of the gene relative to the niaD or niiA promoters, demonstrating that the intergenic region between the niaD and the niiA genes functions as an orientation-independent enhancer and repressor that is capable of functioning over long distances. The products of the podG and the podH genes were identified as homologues of the alpha subunit of yeast mitochondrial phenylalanyl--tRNA synthetase and transcription factor IIF interacting component of the CTD phosphatase. Neither of these gene products would have been predicted to produce a pod mutant phenotype based on studies of cellular polarity mutants in other organisms. The implications of these results are discussed. Copyright 2000 Academic Press.
Belser, Jessica A.; Davis, C. Todd; Balish, Amanda; Edwards, Lindsay E.; Zeng, Hui; Maines, Taronna R.; Gustin, Kortney M.; Martínez, Irma López; Fasce, Rodrigo; Cox, Nancy J.; Katz, Jacqueline M.
2013-01-01
H7 subtype influenza A viruses, responsible for numerous outbreaks in land-based poultry in Europe and the Americas, have caused over 100 cases of confirmed or presumed human infection over the last decade. The emergence of a highly pathogenic avian influenza H7N3 virus in poultry throughout the state of Jalisco, Mexico, resulting in two cases of human infection, prompted us to examine the virulence of this virus (A/Mexico/InDRE7218/2012 [MX/7218]) and related avian H7 subtype viruses in mouse and ferret models. Several high- and low-pathogenicity H7N3 and H7N9 viruses replicated efficiently in the respiratory tract of mice without prior adaptation following intranasal inoculation, but only MX/7218 virus caused lethal disease in this species. H7N3 and H7N9 viruses were also detected in the mouse eye following ocular inoculation. Virus from both H7N3 and H7N9 subtypes replicated efficiently in the upper and lower respiratory tracts of ferrets; however, only MX/7218 virus infection caused clinical signs and symptoms and was capable of transmission to naive ferrets in a direct-contact model. Similar to other highly pathogenic H7 viruses, MX/7218 replicated to high titers in human bronchial epithelial cells, yet it downregulated numerous genes related to NF-κB-mediated signaling transduction. These findings indicate that the recently isolated North American lineage H7 subtype virus associated with human conjunctivitis is capable of causing severe disease in mice and spreading to naive-contact ferrets, while concurrently retaining the ability to replicate within ocular tissue and allowing the eye to serve as a portal of entry. PMID:23487452
Oda, Shinya; Otaki, Kei; Yashima, Nozomi; Kurota, Misato; Matsushita, Sachiko; Kumasaka, Airi; Kurihara, Hutaba; Kawamae, Kaneyuki
2016-08-01
Noninvasive positive pressure ventilation (NPPV) using a helmet is expected to cause inspiratory trigger delay due to the large collapsible and compliant chamber. We compared the work of breathing (WOB) of NPPV using a helmet or a full face-mask with that of invasive ventilation by tracheal intubation. We used a lung model capable of simulating spontaneous breathing (LUNGOO; Air Water Inc., Japan). LUNGOO was set at compliance (C) = 50 mL/cmH2O and resistance (R) = 5 cmH2O/L/s for normal lung simulation, C = 20 mL/cmH2O and R = 5 cmH2O/L/s for restrictive lung, and C = 50 mL/cmH2O and R = 20 cmH2O/L/s for obstructive lung. Muscle pressure was fixed at 25 cmH2O and respiratory rate at 20 bpm. Pressure support ventilation and continuous positive airway pressure were performed with each interface placed on a dummy head made of reinforced plastic that was connected to LUNGOO. We tested the inspiratory WOB difference between the interfaces with various combinations of ventilator settings (positive end-expiratory pressure 5 cmH2O; pressure support 0, 5, and 10 cmH2O). In the normal lung and restrictive lung models, WOB decreased more with the face-mask than the helmet, especially when accompanied by the level of pressure support. In the obstructive lung model, WOB with the helmet decreased compared with the other two interfaces. In the mixed lung model, there were no significant differences in WOB between the three interfaces. NPPV using a helmet is more effective than the other interfaces for WOB in obstructive lung disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Tobias; Bertermann, Rüdiger; Rusch, George M.
2,3,3,3-Tetrafluoropropene (HFO-1234yf) is a novel refrigerant intended for use in mobile air conditioning. It showed a low potential for toxicity in rodents studies with most NOAELs well above 10,000 ppm in guideline compliant toxicity studies. However, a developmental toxicity study in rabbits showed mortality at exposure levels of 5,500 ppm and above. No lethality was observed at exposure levels of 2,500 and 4,000 ppm. Nevertheless, increased subacute inflammatory heart lesions were observed in rabbits at all exposure levels. Since the lethality in pregnant animals may be due to altered biotransformation of HFO-1234yf and to evaluate the potential risk to pregnantmore » women facing a car crash, this study compared the acute toxicity and biotransformation of HFO-1234yf in male, female and pregnant female rabbits. Animals were exposed to 50,000 ppm and 100,000 ppm for 1 h. For metabolite identification by {sup 19}F NMR and LC/MS-MS, urine was collected for 48 h after inhalation exposure. In all samples, the predominant metabolites were S-(3,3,3-trifluoro-2-hydroxypropanyl)-mercaptolactic acid and N-acetyl-S-(3,3,3-trifluoro-2-hydroxypropanyl)-L-cysteine. Since no major differences in urinary metabolite pattern were observed between the groups, only N-acetyl-S-(3,3,3-trifluoro-2-hydroxypropanyl)-L-cysteine excretion was quantified. No significant differences in recovery between non-pregnant (43.10 ± 22.35 μmol) and pregnant female (50.47 ± 19.72 μmol) rabbits were observed, male rabbits exposed to 100,000 ppm for one hour excreted 86.40 ± 38.87 μmol. Lethality and clinical signs of toxicity were not observed in any group. The results suggest that the lethality of HFO-1234yf in pregnant rabbits unlikely is due to changes in biotransformation patterns or capacity in pregnant rabbits. -- Highlights: ► No lethality and clinical signs were observed. ► No differences in metabolic pattern between pregnant and non-pregnant rabbits. ► Rapid and similar metabolite excretion in all groups. ► Very low amount of biotransformation in all groups (< 0.1%).« less
2014-01-01
Background The role of lycopene in prostate cancer prevention remains controversial. We examined the associations between dietary lycopene intake and prostate cancer, paying particular attention to the influence of prostate-specific antigen screening, and evaluated tissue biomarkers in prostate cancers in relation to lycopene intake. Methods Among 49898 male health professionals, we obtained dietary information through questionnaires and ascertained total and lethal prostate cancer cases from 1986 through January 31, 2010. Cox regression was used to estimate multivariable hazard ratios (HRs) and 95% confidence intervals (CIs). Tissue microarrays and immunohistochemistry were used to assess tumor biomarker expression in a subset of men. Two-sided χ2 tests were used to calculate the P values. Results Higher lycopene intake was inversely associated with total prostate cancer and more strongly with lethal prostate cancer (top vs bottom quintile: HR = 0.72; 95% CI = 0.56 to 0.94; P trend = .04). In a restricted population of screened participants, the inverse associations became markedly stronger (for lethal prostate cancer: HR = 0.47; 95% CI = 0.29 to 0.75; P trend = .009). Comparing different measures of dietary lycopene, early intake, but not recent intake, was inversely associated with prostate cancer. Higher lycopene intake was associated with biomarkers in the cancer indicative of less angiogenic potential. Conclusions Dietary intake of lycopene was associated with reduced risk of lethal prostate cancer and with a lesser degree of angiogenesis in the tumor. Because angiogenesis is a strong progression factor, an endpoint of lethal prostate cancer may be more relevant than an endpoint of indolent prostate cancer for lycopene in the era of highly prevalent prostate-specific antigen screening. PMID:24463248
Nachbagauer, Raffael; Shore, David; Yang, Hua; Johnson, Scott K; Gabbard, Jon D; Tompkins, S Mark; Wrammert, Jens; Wilson, Patrick C; Stevens, James; Ahmed, Rafi; Krammer, Florian; Ellebedy, Ali H
2018-06-13
Broadly cross-reactive antibodies that recognize conserved epitopes within the influenza virus hemagglutinin (HA) stalk domain are of particular interest for their potential use as therapeutic and prophylactic agents against multiple influenza virus subtypes including zoonotic virus strains. Here, we characterized four human HA stalk-reactive monoclonal antibodies (mAbs) for their binding breadth and affinity, in vitro neutralization capacity, and in vivo protective potential against an highly pathogenic avian influenza virus. The monoclonal antibodies were isolated from individuals shortly following infection with (70-1F02 and 1009-3B05) or vaccination against (05-2G02 and 09-3A01) A(H1N1)pdm09. Three of the mAbs bound HAs from multiple strains of group 1 viruses, and one mAb, 05-2G02, bound to both group 1 and group 2 influenza A HAs. All four antibodies prophylactically protected mice against a lethal challenge with the highly pathogenic A/Vietnam/1203/04 (H5N1) strain. Two mAbs, 70-1F02 and 09-3A01, were further tested for their therapeutic efficacy against the same strain and showed good efficacy in this setting as well. One mAb, 70-1F02, was co-crystallized with H5 HA and showed similar heavy chain only interactions as a the previously described anti-stalk antibody CR6261. Finally, we showed that antibodies that compete with these mAbs are prevalent in serum from an individual recently infected with A(H1N1)pdm09 virus. The antibodies described here can be developed into broad-spectrum antiviral therapeutics that could be used to combat infections with zoonotic or emerging pandemic influenza viruses. IMPORTANCE The rise in zoonotic infections of humans with emerging influenza viruses is a worldwide public health concern. The majority of recent zoonotic human influenza cases were caused by H7N9 and H5Nx viruses and were associated with high morbidity and mortality. In addition, seasonal influenza viruses are estimated to cause up to 650,000 deaths annually worldwide. Currently available anti-viral treatment options include only neuraminidase inhibitors, but some influenza viruses are naturally resistant to these drugs, and others quickly develop resistance-conferring mutations. Alternative therapeutics are urgently needed. Broadly protective antibodies that target the conserved 'stalk' domain of the hemagglutinin represent potential potent antiviral prophylactic and therapeutic agents that can assist pandemic preparedness. Here, we describe four human monoclonal antibodies that target conserved regions of influenza HA and characterize their binding spectrum, as well as their protective capacity in prophylactic and therapeutic settings against a lethal challenge with a zoonotic influenza virus. Copyright © 2018 American Society for Microbiology.
Systemic and Cerebral Iron Homeostasis in Ferritin Knock-Out Mice
Li, Wei; Garringer, Holly J.; Goodwin, Charles B.; Richine, Briana; Acton, Anthony; VanDuyn, Natalia; Muhoberac, Barry B.; Irimia-Dominguez, Jose; Chan, Rebecca J.; Peacock, Munro; Nass, Richard; Ghetti, Bernardino; Vidal, Ruben
2015-01-01
Ferritin, a 24-mer heteropolymer of heavy (H) and light (L) subunits, is the main cellular iron storage protein and plays a pivotal role in iron homeostasis by modulating free iron levels thus reducing radical-mediated damage. The H subunit has ferroxidase activity (converting Fe(II) to Fe(III)), while the L subunit promotes iron nucleation and increases ferritin stability. Previous studies on the H gene (Fth) in mice have shown that complete inactivation of Fth is lethal during embryonic development, without ability to compensate by the L subunit. In humans, homozygous loss of the L gene (FTL) is associated with generalized seizure and atypical restless leg syndrome, while mutations in FTL cause a form of neurodegeneration with brain iron accumulation. Here we generated mice with genetic ablation of the Fth and Ftl genes. As previously reported, homozygous loss of the Fth allele on a wild-type Ftl background was embryonic lethal, whereas knock-out of the Ftl allele (Ftl-/-) led to a significant decrease in the percentage of Ftl-/- newborn mice. Analysis of Ftl-/- mice revealed systemic and brain iron dyshomeostasis, without any noticeable signs of neurodegeneration. Our findings indicate that expression of the H subunit can rescue the loss of the L subunit and that H ferritin homopolymers have the capacity to sequester iron in vivo. We also observed that a single allele expressing the H subunit is not sufficient for survival when both alleles encoding the L subunit are absent, suggesting the need of some degree of complementation between the subunits as well as a dosage effect. PMID:25629408
Itoh, Yasushi; Yoshida, Reiko; Shichinohe, Shintaro; Higuchi, Megumi; Ishigaki, Hirohito; Nakayama, Misako; Pham, Van Loi; Ishida, Hideaki; Kitano, Mitsutaka; Arikata, Masahiko; Kitagawa, Naoko; Mitsuishi, Yachiyo; Ogasawara, Kazumasa; Tsuchiya, Hideaki; Hiono, Takahiro; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Kida, Hiroshi; Ito, Mutsumi; Quynh Mai, Le; Kawaoka, Yoshihiro; Miyamoto, Hiroko; Ishijima, Mari; Igarashi, Manabu; Suzuki, Yasuhiko; Takada, Ayato
2014-06-01
Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype often cause severe pneumonia and multiple organ failure in humans, with reported case fatality rates of more than 60%. To develop a clinical antibody therapy, we generated a human-mouse chimeric monoclonal antibody (MAb) ch61 that showed strong neutralizing activity against H5N1 HPAI viruses isolated from humans and evaluated its protective potential in mouse and nonhuman primate models of H5N1 HPAI virus infections. Passive immunization with MAb ch61 one day before or after challenge with a lethal dose of the virus completely protected mice, and partial protection was achieved when mice were treated 3 days after the challenge. In a cynomolgus macaque model, reduced viral loads and partial protection against lethal infection were observed in macaques treated with MAb ch61 intravenously one and three days after challenge. Protective effects were also noted in macaques under immunosuppression. Though mutant viruses escaping from neutralization by MAb ch61 were recovered from macaques treated with this MAb alone, combined treatment with MAb ch61 and peramivir reduced the emergence of escape mutants. Our results indicate that antibody therapy might be beneficial in reducing viral loads and delaying disease progression during H5N1 HPAI virus infection in clinical cases and combined treatment with other antiviral compounds should improve the protective effects of antibody therapy against H5N1 HPAI virus infection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu Meizhen; Fang Fang; Chen Yan
2006-05-19
Avian influenza viruses of H9N2 subtype are widely spread in avian species. The viruses have recently been transmitted to mammalian species, including humans, accelerating the efforts to devise protective strategies against them. In this study, an avian influenza H9N2 virus strain (A/Chicken/Jiangsu/7/2002), isolated in Jiangsu Province, China, was used to infect BALB/c mice for adaptation. After five lung-to-lung passages, the virus was stably proliferated in a large quantity in the murine lung and caused the deaths of mice. In addition, we explored the protection induced by H9N2 virus hemagglutinin (HA)- and neuraminidase (NA)-expressing DNAs in BALB/c mice. Female BALB/c micemore » aged 6-8 weeks were immunized once or twice at a 3-week interval with HA-DNA and NA-DNA by electroporation, respectively, each at a dose of 3, 10 or 30 {mu}g. The mice were challenged with a lethal dose (40x LD{sub 5}) of influenza H9N2 virus four weeks after immunization once or one week after immunization twice. The protections of DNA vaccines were evaluated by the serum antibody titers, residual lung virus titers, and survival rates of the mice. The result showed that immunization once with not less than 10 {mu}g or twice with 3 {mu}g HA-DNA or NA-DNA provided effective protection against homologous avian influenza H9N2 virus.« less
Shrivastava, Jyotsna; Sinha, Amit Kumar; Datta, Surjya Narayan; Blust, Ronny; De Boeck, Gudrun
2016-11-01
We tested whether exposing fish to low ammonia concentrations induced acclimation processes and helped fish to tolerate subsequent (sub)lethal ammonia exposure by activating ammonia excretory pathways. Common carp (Cyprinus carpio) were pre-exposed to 0.27mM ammonia (∼10% 96h LC 50 ) for 3, 7 and 14days. Thereafter, each of these pre-exposed and parallel naïve groups were exposed to 1.35mM high environmental ammonia (HEA, ∼50% 96h LC 50 ) for 12h and 48h to assess the occurrence of ammonia acclimation based on sub-lethal end-points, and to lethal ammonia concentrations (2.7mM, 96h LC 50 ) in order to assess improved survival time. Results show that fish pre-exposed to ammonia for 3 and 7days had a longer survival time than the ammonia naïve fish. However, this effect disappeared after prolonged (14days) pre-exposure. Ammonia excretion rate (J amm ) was strongly inhibited (or even reversed) in the unacclimated groups during HEA. On the contrary, after 3days the pre-exposure fish maintained J amm while after 7days these pre-acclimated fish were able to increase J amm efficiently. Again, this effect disappeared after 14days of pre-acclimation. The efficient ammonia efflux in pre-acclimated fish was associated with the up-regulation of branchial mRNA expression of ammonia transporters and exchangers. Pre-exposure with ammonia for 3-7days stimulated an increment in the transcript level of gill Rhcg-a and Rhcg-b mRNA relative to the naïve control group and the up-regulation of these two Rhcg homologs was reinforced during subsequent HEA exposure. No effect of pre-exposure was noted for Rhbg. Relative to unacclimated fish, the transcript level of Na + /H + exchangers (NHE-3) was raised in 3-7days pre-acclimated fish and remained higher during the subsequent HEA exposure while gill H + -ATPase activities and mRNA levels were not affected by pre-acclimation episodes. Likewise, ammonia pre-acclimated fish with or without HEA exposure displayed pronounced up-regulation in Na + /K + -ATPase activity and mRNA expression relative to the corresponding ammonia naïve groups. Overall, these data suggest that ammonia acclimation was evident for both lethal and the sub-lethal endpoints through priming mechanisms in ammonia excretory transcriptional processes, but these acclimation effects were transient and disappeared after prolonged pre-exposure. Copyright © 2016 Elsevier B.V. All rights reserved.
Páleníček, Tomáš; Lhotková, Eva; Žídková, Monika; Balíková, Marie; Kuchař, Martin; Himl, Michal; Mikšátková, Petra; Čegan, Martin; Valeš, Karel; Tylš, Filip; Horsley, Rachel R
2016-08-01
MDAI (5,6-Methylenedioxy-2-aminoindane) has a reputation as a non-neurotoxic ecstasy replacement amongst recreational users, however the drug has been implicated in some severe and lethal intoxications. Due to this, and the fact that the drug is almost unexplored scientifically we investigated a broad range of effects of acute MDAI administration: pharmacokinetics (in sera, brain, liver and lung); behaviour (open field; prepulse inhibition, PPI); acute effects on thermoregulation (in group-/individually-housed rats); and systemic toxicity (median lethal dose, LD50) in Wistar rats. Pharmacokinetics of MDAI was rapid, maximum median concentration in serum and brain was attained 30min and almost returned to zero 6h after subcutaneous (sc.) administration of 10mg/kg MDAI; brain/serum ratio was ~4. MDAI particularly accumulated in lung tissue. In the open field, MDAI (5, 10, 20 and 40mg/kg sc.) increased exploratory activity, induced signs of behavioural serotonin syndrome and reduced locomotor habituation, although by 60min some effects had diminished. All doses of MDAI significantly disrupted PPI and the effect was present during the onset of its action as well as 60min after treatment. Unexpectedly, 40mg/kg MDAI killed 90% of animals in the first behavioural test, hence LD50 tests were conducted which yielded 28.33mg/kg sc. and 35mg/kg intravenous but was not established up to 40mg/kg after gastric administration. Disseminated intravascular coagulopathy (DIC) with brain oedema was concluded as a direct cause of death in sc. treated animals. Finally, MDAI (10, 20mg/kg sc.) caused hyperthermia and perspiration in group-housed rats. In conclusion, the drug had fast pharmacokinetics and accumulated in lipohilic tissues. Behavioural findings were consistent with mild, transient stimulation with anxiolysis and disruption of sensorimotor processing. Together with hyperthermia, the drug had a similar profile to related entactogens, especially 3,4-metyhlenedioxymethamphetamine (MDMA, ecstasy) and paramethoxymethamphetamine (PMMA). Surprisingly subcutaneous MDAI appears to be more lethal than previously thought and its serotonergic toxicity is likely exacerbated by group housing conditions. MDAI therefore poses greater risks to physical and mental health than recognised hitherto. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhang, Donghui; Li, Yifei; Heims-Waldron, Danielle; Bezzerides, Vassilios; Guatimosim, Silvia; Guo, Yuxuan; Gu, Fei; Zhou, Pingzhu; Lin, Zhiqiang; Ma, Qing; Liu, Jianming; Wang, Da-Zhi; Pu, William T
2018-01-05
Although mitochondrial diseases often cause abnormal myocardial development, the mechanisms by which mitochondria influence heart growth and function are poorly understood. To investigate these disease mechanisms, we studied a genetic model of mitochondrial dysfunction caused by inactivation of Tfam (transcription factor A, mitochondrial), a nuclear-encoded gene that is essential for mitochondrial gene transcription and mitochondrial DNA replication. Tfam inactivation by Nkx2.5 Cre caused mitochondrial dysfunction and embryonic lethal myocardial hypoplasia. Tfam inactivation was accompanied by elevated production of reactive oxygen species (ROS) and reduced cardiomyocyte proliferation. Mosaic embryonic Tfam inactivation confirmed that the block to cardiomyocyte proliferation was cell autonomous. Transcriptional profiling by RNA-seq demonstrated the activation of the DNA damage pathway. Pharmacological inhibition of ROS or the DNA damage response pathway restored cardiomyocyte proliferation in cultured fetal cardiomyocytes. Neonatal Tfam inactivation by AAV9-cTnT-Cre caused progressive, lethal dilated cardiomyopathy. Remarkably, postnatal Tfam inactivation and disruption of mitochondrial function did not impair cardiomyocyte maturation. Rather, it elevated ROS production, activated the DNA damage response pathway, and decreased cardiomyocyte proliferation. We identified a transient window during the first postnatal week when inhibition of ROS or the DNA damage response pathway ameliorated the detrimental effect of Tfam inactivation. Mitochondrial dysfunction caused by Tfam inactivation induced ROS production, activated the DNA damage response, and caused cardiomyocyte cell cycle arrest, ultimately resulting in lethal cardiomyopathy. Normal mitochondrial function was not required for cardiomyocyte maturation. Pharmacological inhibition of ROS or DNA damage response pathways is a potential strategy to prevent cardiac dysfunction caused by some forms of mitochondrial dysfunction. © 2017 American Heart Association, Inc.
Hano, Takeshi; Ohkubo, Nobuyuki; Mochida, Kazuhiko
2017-04-01
The present study was performed to evaluate the toxic effect of the dithiocarbamate fungicide polycarbamate (PC) on the hepatic metabolic profiles of three marine fish species, red sea bream (Pagrus major), spotted halibut (Verasper variegatus), and marbled flounder (Pleuronectes yokohamae). First, juvenile fish were exposed to graded concentrations of PC for 96h; the 96-h LC 50 values obtained were 22-29, 239-553, and 301-364µgL -1 for red sea bream, spotted halibut, and marbled flounder, respectively, indicating that red sea bream possessed higher sensitivity to PC than the two benthic species. Second, the fish were exposed to lethal-equivalent concentration (H group) or sub-lethal (one-tenth of the H group concentrations; L group) for 24 and 96h and gas-chromatography based metabolomics approach was employed to explore the crucial biomarker metabolite associated with lethal toxicity. Of the 53 metabolites identified, only reduced glutathione (GSH) was consistently elevated in the H group for the three fish species at 96h. The calculated cut-off value of GSH (mM) based on receiver operating curve analysis between H group and the other treatment groups (control, solvent control, and L group) was obtained at 0.56mM, which allowed to distinguish between the groups with high confidence for the three fish species. These results are the first to demonstrate the potential of using GSH as a possible biomarker metabolite and its usefulness of threshold cut-off value for diagnosing life-threatening health conditions of fish. Copyright © 2016 Elsevier Inc. All rights reserved.
Lankadurai, Brian P.; Furdui, Vasile I.; Reiner, Eric J.; Simpson, André J.; Simpson, Myrna J.
2013-01-01
1H NMR-based metabolomics was used to measure the response of Eisenia fetida earthworms after exposure to sub-lethal concentrations of perfluorooctane sulfonate (PFOS) in soil. Earthworms were exposed to a range of PFOS concentrations (five, 10, 25, 50, 100 or 150 mg/kg) for two, seven and fourteen days. Earthworm tissues were extracted and analyzed by 1H NMR. Multivariate statistical analysis of the metabolic response of E. fetida to PFOS exposure identified time-dependent responses that were comprised of two separate modes of action: a non-polar narcosis type mechanism after two days of exposure and increased fatty acid oxidation after seven and fourteen days of exposure. Univariate statistical analysis revealed that 2-hexyl-5-ethyl-3-furansulfonate (HEFS), betaine, leucine, arginine, glutamate, maltose and ATP are potential indicators of PFOS exposure, as the concentrations of these metabolites fluctuated significantly. Overall, NMR-based metabolomic analysis suggests elevated fatty acid oxidation, disruption in energy metabolism and biological membrane structure and a possible interruption of ATP synthesis. These conclusions obtained from analysis of the metabolic profile in response to sub-lethal PFOS exposure indicates that NMR-based metabolomics is an excellent discovery tool when the mode of action (MOA) of contaminants is not clearly defined. PMID:24958147
Pérez-Aguilar, Daniel Alberto; Soares, Marianne Araújo; Passos, Luis Clepf; Martínez, Ana Mabel; Pineda, Samuel; Carvalho, Geraldo Andrade
2018-06-19
The mirid Engytatus varians (Distant) is a promising biological control agent of the tomato borer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), one of the most destructive pests of tomato (Solanum lycopersicum L.). The effects of five insecticides commonly used on tomato crops in Brazil were evaluated on E. varians in laboratory and semifield conditions. Glass Petri dish with residues of chlorfenapyr, thiamethoxam, and abamectin caused ˃90% mortality in both stages of the predator 72 h post-treatment, except imidacloprid that caused 78% of nymphs mortality. Teflubenzuron caused 24 and 66% mortality on adults and nymphs, respectively. The offspring of females derived from treated nymphs with teflubenzuron was significantly lower than the control but not when females were treated as adults. Longevity of males derived from nymphs treated with teflubenzuron was significantly reduced, but no effects were observed on females. When males and females were treated as adults with teflubenzuron there were no effects on their longevity. In the greenhouse-aged tomato plants, the 2 h-old residues of thiamethoxam, chlorfenapyr, and abamectin caused more than 70% of mortality of third instar of E. varians at 72 h post-treatment, 12 day-old residues of all three compounds caused a mortality lower than 30%. These data suggest that teflubenzuron can be associated with releases of E. varians adults, while the use of other evaluated pesticides should be avoided in this situation. Although, the low persistence of these products indicate that their spraying and later releases of E. varians adults on tomato crops are a possible strategy to control T. absoluta.
Anti-H-Y responses of H-2b mutant mice.
Simpson, E; Gordon, R D; Chandler, P R; Bailey, D
1978-10-01
Two strains of H-2b mutant mice, H-2ba and H-2bf, in which the mutational event took place at H-2K, make anti-H-Y cytotoxic T cell responses which are H-2-restricted, Db-associated and indistinguishable in target cell specificity from those of H-2b mice. Thus, alteration of the H-2K molecule affects neither the Ir gene controlling the response, nor the associative antigen. On the other hand, one H-2Db mutant strain, H-2bo, although it makes a good anti-H-Y cytotoxic response, shows target cell specificity restricted to its own Dbo antigen(s), and neither H-2b, H-2ba or H-2bf anti-H-Y cytotoxic cells kill H-2bo male target cells. Thus, the alteration of the H-2Db molecule does not affect the Ir gene of H-2b mice, but it does alter the H-2Db-associative antigen.
Yoon, K. S.; Strycharz, J. P.; Baek, J. H.; Sun, W.; Kim, J.H.; Kang, J.S.; Pittendrigh, B. R.; Lee, S. H.; Clark, J. M.
2011-01-01
Transcriptional profiling results, using our non-invasive induction assay [short exposure intervals (2–5 h) to sub-lethal amounts of insecticides (
Vidanapathirana, Muditha; Ruwanpura, Rohan P; Amararatne, Sriyantha Rrg; Ratnaweera, Ajith Rhi
2016-01-01
"Injuries due to lethal weapons" has emerged as a subject of public discussion in Sri Lanka. This study was conducted to describe the nature and characteristics of injuries due to lethal weapons during civil strife and to compare those with injuries after civil strife. A cross-sectional study was conducted on patients reported with injuries caused by lethal weapons from 2004 to 2014. Periods before and after May 19, 2009 were considered as during and after civil strife periods, respectively. A total of 21,210 medico-legal examination forms were studied. There were 358 (1.7%) injuries caused by lethal weapons. Of them, 41% (n = 148) were during and 59% (n = 210) were after the civil strife. During civil strife, 63% occurred during daytime (P < 0.05). Types of lethal weapons that caused injuries were sharp weapons (n = 282), explosives (n = 49), and firearms (n = 27). Of them, 32% of during and 01% of after civil strife were explosive injuries (P < 0.01). Regarding severity, 73% of during and 57% of after civil strife injuries were severe (P < 0.05). During civil strife, 34% injuries were in lower limbs (P < 0.01) and after civil strife, 37% were in upper limbs (P < 0.05). The presence of many similarities indicated that both groups learnt their basis in a society that breeds violence. During civil strife, more injuries occurred during daytime, to lower limbs by explosive weapons and after the civil strife during nighttime, to upper limbs by nonexplosive weapons. Nonexplosive lethal weapon use after civil strife needs further investigation to develop evidence-based interventions.
Vidanapathirana, Muditha; Ruwanpura, Rohan P; Amararatne, Sriyantha RRG; Ratnaweera, Ajith RHI
2016-01-01
Background and Aims: “Injuries due to lethal weapons” has emerged as a subject of public discussion in Sri Lanka. This study was conducted to describe the nature and characteristics of injuries due to lethal weapons during civil strife and to compare those with injuries after civil strife. Methods: A cross-sectional study was conducted on patients reported with injuries caused by lethal weapons from 2004 to 2014. Periods before and after May 19, 2009 were considered as during and after civil strife periods, respectively. A total of 21,210 medico-legal examination forms were studied. Results: There were 358 (1.7%) injuries caused by lethal weapons. Of them, 41% (n = 148) were during and 59% (n = 210) were after the civil strife. During civil strife, 63% occurred during daytime (P < 0.05). Types of lethal weapons that caused injuries were sharp weapons (n = 282), explosives (n = 49), and firearms (n = 27). Of them, 32% of during and 01% of after civil strife were explosive injuries (P < 0.01). Regarding severity, 73% of during and 57% of after civil strife injuries were severe (P < 0.05). During civil strife, 34% injuries were in lower limbs (P < 0.01) and after civil strife, 37% were in upper limbs (P < 0.05). Conclusions: The presence of many similarities indicated that both groups learnt their basis in a society that breeds violence. During civil strife, more injuries occurred during daytime, to lower limbs by explosive weapons and after the civil strife during nighttime, to upper limbs by nonexplosive weapons. Nonexplosive lethal weapon use after civil strife needs further investigation to develop evidence-based interventions. PMID:27127743
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenberg, C.R.; Taylor, C.D.; Haworth, J.C.
The authors have discovered a single homoallelic nucleotide substitution as the putative cause of the perinatal (lethal) form of hypophosphatasia in Canadian Mennonites. Previous linkage and haplotype analysis in this population suggested that a single mutational event was responsible for this autosomal recessive form of hypophosphatasia. The mutation is a guanosine-to-adenosine substitution at nucleotide position 1177 in exon 10 of the tissue nonspecific (liver/bone/kidney) alkaline phosphatase gene. This Gly[sup 317] [yields] Asp mutation segregates exclusively with the heterozygote phenotype previously assigned by biochemical testing (maximum combined lod score of 18.24 at [theta] = 0.00). This putative disease-causing mutation has notmore » been described in controls nor in other non-Mennonite probands with both lethal and nonlethal forms of hypophosphatasia studied to date. This Gly[sup 317] [yields] Asp mutation changes a polar glycine to an acidic aspartate at amino acid position 317 within the highly conserved active site region of the 507-amino-acid polypeptide. Carrier screening for this lethal mutation in a high-risk population is now feasible. 15 refs., 2 figs.« less
Camacho, Jessica; Truong, Lisa; Kurt, Zeyneb; Chen, Yen-Wei; Morselli, Marco; Gutierrez, Gerardo; Pellegrini, Matteo; Yang, Xia; Allard, Patrick
2018-05-22
How artificial environmental cues are biologically integrated and transgenerationally inherited is still poorly understood. Here, we investigate the mechanisms of inheritance of reproductive outcomes elicited by the model environmental chemical Bisphenol A in C. elegans. We show that Bisphenol A (BPA) exposure causes the derepression of an epigenomically silenced transgene in the germline for 5 generations, regardless of ancestral response. Chromatin immunoprecipitation sequencing (ChIP-seq), histone modification quantitation, and immunofluorescence assays revealed that this effect is associated with a reduction of the repressive marks H3K9me3 and H3K27me3 in whole worms and in germline nuclei in the F3, as well as with reproductive dysfunctions, including germline apoptosis and embryonic lethality. Furthermore, targeting of the Jumonji demethylases JMJD-2 and JMJD-3/UTX-1 restores H3K9me3 and H3K27me3 levels, respectively, and it fully alleviates the BPA-induced transgenerational effects. Together, our results demonstrate the central role of repressive histone modifications in the inheritance of reproductive defects elicited by a common environmental chemical exposure. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
López, Juan D.; Latheef, M. A.; Hoffmann, W. C.
2010-01-01
Newly emerged corn earworm adults, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) require a carbohydrate source from plant or other exudates and nectars for dispersal and reproduction. Adults actively seek and forage at feeding sites upon eclosion in the habitat of the larval host plant or during dispersal to, or colonization of, a suitable reproductive habitat. This nocturnal behavior of H. zea has potential for exploitation as a pest management strategy for suppression using an adult feeding approach. This approach entails the use of a feeding attractant and stimulant in combination with a toxicant that when ingested by the adult will either reduce fecundity/fertility at sub-lethal dosages or kill the adult. The intent of this study was to assess reproductive inhibition and toxicity of emamectin benzoate on H. zea when ingested by the adults when mixed in ppm active ingredient (wt:vol) with 2.5 M sucrose as a feeding stimulant. Because the mixture has to be ingested to function, the effect of emamectin benzoate was also evaluated at sub-lethal and lethal concentrations on proboscis extension and gustatory response of H. zea in the laboratory. Feral males captured in sex pheromone-baited traps in the field were used for toxicity evaluations because they were readily available and were more representative of the field populations than laboratory-reared adults. Laboratory-reared female moths were used for reproduction effects because it is very difficult to collect newly emerged feral females from the field. Emamectin benzoate was highly toxic to feral H. zea males with LC50 values (95% CL) being 0.718 (0.532–0.878), 0.525 (0.316–0.751), and 0.182 (0.06–0.294) ppm for 24, 48 and 72 h responses, respectively. Sub-lethal concentrations of emamectin benzoate did not significantly reduce proboscis extension response of feral males and gustatory response of female H. zea. Sublethal concentrations of emamectin benzoate significantly reduced percent larval hatch of eggs and mating frequency of female H. zea. Larval survival to the pupal stage was also significantly reduced by ingestion of emamectin benzoate by female H. zea. These data suggest that emamectin benzoate is a useful toxicant in an attract-and-kill control strategy against H. zea. Field studies are warranted to validate the results reported in this study. PMID:20673074
López, Juan D; Latheef, M A; Hoffmann, W C
2010-01-01
Newly emerged corn earworm adults, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) require a carbohydrate source from plant or other exudates and nectars for dispersal and reproduction. Adults actively seek and forage at feeding sites upon eclosion in the habitat of the larval host plant or during dispersal to, or colonization of, a suitable reproductive habitat. This nocturnal behavior of H. zea has potential for exploitation as a pest management strategy for suppression using an adult feeding approach. This approach entails the use of a feeding attractant and stimulant in combination with a toxicant that when ingested by the adult will either reduce fecundity/fertility at sub-lethal dosages or kill the adult. The intent of this study was to assess reproductive inhibition and toxicity of emamectin benzoate on H. zea when ingested by the adults when mixed in ppm active ingredient (wt:vol) with 2.5 M sucrose as a feeding stimulant. Because the mixture has to be ingested to function, the effect of emamectin benzoate was also evaluated at sub-lethal and lethal concentrations on proboscis extension and gustatory response of H. zea in the laboratory. Feral males captured in sex pheromone-baited traps in the field were used for toxicity evaluations because they were readily available and were more representative of the field populations than laboratory-reared adults. Laboratory-reared female moths were used for reproduction effects because it is very difficult to collect newly emerged feral females from the field. Emamectin benzoate was highly toxic to feral H. zea males with LC(50) values (95% CL) being 0.718 (0.532-0.878), 0.525 (0.316-0.751), and 0.182 (0.06-0.294) ppm for 24, 48 and 72 h responses, respectively. Sub-lethal concentrations of emamectin benzoate did not significantly reduce proboscis extension response of feral males and gustatory response of female H. zea. Sublethal concentrations of emamectin benzoate significantly reduced percent larval hatch of eggs and mating frequency of female H. zea. Larval survival to the pupal stage was also significantly reduced by ingestion of emamectin benzoate by female H. zea. These data suggest that emamectin benzoate is a useful toxicant in an attract-and-kill control strategy against H. zea. Field studies are warranted to validate the results reported in this study.
Ehrich, Kathryn; Farsides, Bobbie; Williams, Clare; Scott, Rosamund
2011-06-01
An Ethics & Policy Workshop was held with 20 invited UK stakeholders to consider whether embryo donors should be able to restrict the future use of human embryonic stem cells (hESCs) created from their embryos. Participants cited tensions between pure altruism and a more reciprocal basis for donation; and between basic research (in which genetic material would never form part of another living being) and treatment applications. Two restriction models were suggested to acknowledge specific ethical issues raised by hESCs' use in research and treatments: (1) a two tier system: hESCs with unrestricted consent could go to the UK Stem Cell Bank; those with restricted consent could be used in individual labs which could guarantee to honour the restrictions, and Bank deposit would not be required. (2) a three category system: restrictions could include (i) basic hESC research; (ii) hESC research and treatment; no gamete derivation (iii) 'unrestricted' hESC research and treatment.
Repeating patterns of sleep restriction and recovery: Do we get used to it?
Simpson, Norah S; Diolombi, Moussa; Scott-Sutherland, Jennifer; Yang, Huan; Bhatt, Vrushank; Gautam, Shiva; Mullington, Janet; Haack, Monika
2016-11-01
Despite its prevalence in modern society, little is known about the long-term impact of restricting sleep during the week and 'catching up' on weekends. This common sleep pattern was experimentally modeled with three weeks of 5 nights of sleep restricted to 4h followed by two nights of 8-h recovery sleep. In an intra-individual design, 14 healthy adults completed both the sleep restriction and an 8-h control condition, and the subjective impact and the effects on physiological markers of stress (cortisol, the inflammatory marker IL-6, glucocorticoid receptor sensitivity) were assessed. Sleep restriction was not perceived to be subjectively stressful and some degree of resilience or resistance to the effects of sleep restriction was observed in subjective domains. In contrast, physiological stress response systems remain activated with repeated exposures to sleep restriction and limited recovery opportunity. Morning IL-6 expression in monocytes was significantly increased during week 2 and 3 of sleep restriction, and remained increased after recovery sleep in week 2 (p<0.05) and week 3 (p<0.09). Serum cortisol showed a significantly dysregulated 24h-rhythm during weeks 1, 2, and 3 of sleep restriction, with elevated morning cortisol, and decreased cortisol in the second half of the night. Glucocorticoid sensitivity of monocytes was increased, rather than decreased, during the sleep restriction and sleep recovery portion of each week. These results suggest a disrupted interplay between the hypothalamic-pituitary-adrenal and inflammatory systems in the context of repeated exposure to sleep restriction and recovery. The observed dissociation between subjective and physiological responses may help explain why many individuals continue with the behavior pattern of restricting and recovering sleep over long time periods, despite a cumulative deleterious physiological effect. Copyright © 2016 Elsevier Inc. All rights reserved.
Prevention of suicidal behavior
Hegerl, Ulrich
2016-01-01
More than 800 000 people die every year from suicide, and about 20 times more attempt suicide. In most countries, suicide risk is highest in older males, and risk of attempted suicide is highest in younger females. The higher lethal level of suicidal acts in males is explained by the preference for more lethal methods, as well as other factors. In the vast majority of cases, suicidal behavior occurs in the context of psychiatric disorders, depression being the most important one. Improving the treatment of depression, restricting access to lethal means, and avoiding the Werther effect (imitation suicide) are central aspects of suicide prevention programs. In several European regions, the four-level intervention concept of the European Alliance Against Depression (www.EAAD.net), simultaneously targeting depression and suicidal behavior, has been found to have preventive effects on suicidal behavior. It has already been implemented in more than 100 regions in Europe. PMID:27489458
Ren, Xiaomeng; Ustiyan, Vladimir; Pradhan, Arun; Cai, Yuqi; Havrilak, Jamie A; Bolte, Craig S; Shannon, John M; Kalin, Tanya V; Kalinichenko, Vladimir V
2014-09-26
Inactivating mutations in the Forkhead Box transcription factor F1 (FOXF1) gene locus are frequently found in patients with alveolar capillary dysplasia with misalignment of pulmonary veins, a lethal congenital disorder, which is characterized by severe abnormalities in the respiratory, cardiovascular, and gastrointestinal systems. In mice, haploinsufficiency of the Foxf1 gene causes alveolar capillary dysplasia and developmental defects in lung, intestinal, and gall bladder morphogenesis. Although FOXF1 is expressed in multiple mesenchyme-derived cell types, cellular origins and molecular mechanisms of developmental abnormalities in FOXF1-deficient mice and patients with alveolar capillary dysplasia with misalignment of pulmonary veins remain uncharacterized because of lack of mouse models with cell-restricted inactivation of the Foxf1 gene. In the present study, the role of FOXF1 in endothelial cells was examined using a conditional knockout approach. A novel mouse line harboring Foxf1-floxed alleles was generated by homologous recombination. Tie2-Cre and Pdgfb-CreER transgenes were used to delete Foxf1 from endothelial cells. FOXF1-deficient embryos exhibited embryonic lethality, growth retardation, polyhydramnios, cardiac ventricular hypoplasia, and vascular abnormalities in the lung, placenta, yolk sac, and retina. Deletion of FOXF1 from endothelial cells reduced endothelial proliferation, increased apoptosis, inhibited vascular endothelial growth factor signaling, and decreased expression of endothelial genes critical for vascular development, including vascular endothelial growth factor receptors Flt1 and Flk1, Pdgfb, Pecam1, CD34, integrin β3, ephrin B2, Tie2, and the noncoding RNA Fendrr. Chromatin immunoprecipitation assay demonstrated that Flt1, Flk1, Pdgfb, Pecam1, and Tie2 genes are direct transcriptional targets of FOXF1. FOXF1 is required for the formation of embryonic vasculature by regulating endothelial genes critical for vascular development and vascular endothelial growth factor signaling. © 2014 American Heart Association, Inc.
Wan, Wenhan; Shimizu, Shoji; Ikawa, Hiromichi; Sugiyama, Kiyosh; Yamaguchi, Nobuo
2002-10-01
We have previously reported that the immunization of pregnant mice with T-dependent antigens successfully induced suppression of the antigen-specific plaque-forming cell (PFC) response to the relevant antigens in the offspring. This suppression was not caused by the administered antigens, the antibodies produced by the pregnant mother, or lactational transfer, but was dependent on the presence of the intact maternal T cells. It was major histocompatibility complex (MHC)-restricted manner tolerance, which continued for at least one-sixth of the murine life. Traditionally, the placenta acts as a natural barrier, not allowing the cells to pass through. However, the results presented strongly suggested that maternal T cells pass through the placenta and subsequently induce tolerance. In this present study, we attempted to substantiate the presence of maternal cells in the fetal circulation through the use of molecular techniques. We found that a highly polymorphic microsatellite sequence within the class II Eb gene of the H-2 complex is useful for the molecular detection of various H-2 alleles. DNA polymorphic analysis was used for tracking maternal H-2 alleles in the spleens of baby mice. The main procedure involved polymerase chain reaction amplification and restriction fragment length polymorphism analysis of the DNA sequence encompassing the H-2-specific microsatellite from the genomic DNA of baby mice. The results indicated that maternal T cells of immunized pregnant mice cross the placenta into the fetus, eventually inducing antigen-specific immunological tolerance in the offspring.
Role of interleukin 12 in experimental neonatal sepsis caused by group B streptococci.
Mancuso, G; Cusumano, V; Genovese, F; Gambuzza, M; Beninati, C; Teti, G
1997-01-01
Cytokines are suspected to play an important role in systemic infections by group B streptococci (GBS), an important cause of neonatal sepsis. This work was undertaken to determine if interleukin 12 (IL-12) is produced in mouse pups infected with GBS and has a role in this sepsis model. IL-12 elevations were measured by both an enzyme-linked immunosorbent assay and a bioassay in plasma samples obtained from 12 to 72 h after GBS challenge. Pretreatment with neutralizing anti-IL-12 antibodies significantly increased lethality and blood CFU (P < 0.05). Conversely, either prophylactically or therapeutically administered recombinant IL-12 (rIL-12) significantly improved survival time and decreased blood CFU. Since these beneficial effects were associated with increased spleen gamma interferon (IFN-gamma) production, we examined whether the latter cytokine mediated the observed rIL-12 effects. Pretreatment with neutralizing anti-IFN-gamma monoclonal antibodies significantly counteracted the beneficial effects of rIL-12 on lethality. Our data indicate that rIL-12 is a possible candidate for treatment of GBS sepsis and that its activities in this model are at least partially mediated by IFN-gamma. PMID:9284145
Icebox, a recessive X-linked mutation in Drosophila causing low sexual receptivity.
Kerr, C; Ringo, J; Dowse, H; Johnson, E
1997-11-01
The X-linked recessive mutation icebox (ibx; 1-23, 7F1) of Drosophila melanogaster lowers the sexual receptivity of females. The probability of mating with mature wild-type males is reduced in ibx homozygotes, and the frequency of rejection behavior (rate per minute) towards courting males is increased. ibx fails to complement In(1)RA35, which is a lethal allele of Neuroglian (Nrg, which encodes a transmembrane protein found in embryonic tissues including the nervous system) due to a breakpoint in that gene; however, both l(1)B4 and l(1)VA142, other lethal mutations of Nrg, do complement ibx. 12-h ibx embryos exhibit a normal pattern of staining for the Neuroglian-specific antibody, Mab BP104. Males and females mutant for ibx have normal egg-to-adult survival and appear normal in several "general" behavioral traits including olfaction, phototaxis, locomotor activity, and heartbeat. ibx males court normally, and are successful in mating. These characteristics suggest that ibx does not cause sensory or motor defects. Ovarian growth and sperm storage are wild-type in ibx/ibx females. Treatment with the JH analog methoprene increases the receptivity of ibx/ibx females.
Qu, Xiaosheng; Fan, LanLan; Zhong, Taozheng; Li, Gang; Xia, Xianghua; Long, Hairong; Huang, Danna; Shu, Wei
2016-02-01
The present work investigated the effects of the nematocysts venom (NV) from the Chrysaora helvola Brandt (C. helvola) jellyfish on the human nasopharyngeal carcinoma cell line, CNE-2. The medium lethal concentration (LC50), quantified by MTT assays, was 1.7 ± 0.53 μg/mL (n = 5). An atypical apoptosis-like cell death was confirmed by LDH release assay and Annexin V-FITC/PI staining-based flow cytometry. Interestingly, activation of caspase-4 other than caspase-3, -8, -9 and -1 was observed. Moreover, the NV stimuli caused a time-dependent loss of mitochondrial membrane potential (ΔΨm) as was an intracellular ROS burst. These results indicated that there was uncoupling of oxidative phosphorylation (UOP). An examination of the intracellular pH value by a pH-sensitive fluorescent probe, BCECF, suggested that the UOP was due to the time-dependent increase in the intracellular pH. This is the first report that jellyfish venom can induce UOP. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pontier-Bres, Rodolphe; Rampal, Patrick; Peyron, Jean-François; Munro, Patrick; Lemichez, Emmanuel; Czerucka, Dorota
2015-10-30
The probiotic yeast Saccharomyces boulardii (S. boulardii) has been prescribed for the prophylaxis and treatment of several infectious diarrheal diseases. Gastrointestinal anthrax causes fatal systemic disease. In the present study, we investigated the protective effects conferred by Saccharomyces boulardii CNCM I-745 strain on polarized T84 columnar epithelial cells intoxicated by the lethal toxin (LT) of Bacillus anthracis. Exposure of polarized T84 cells to LT affected cell monolayer integrity, modified the morphology of tight junctions and induced the formation of actin stress fibers. Overnight treatment of cells with S. boulardii before incubation with LT maintained the integrity of the monolayers, prevented morphological modification of tight junctions, restricted the effects of LT on actin remodeling and delayed LT-induced MEK-2 cleavage. Mechanistically, we demonstrated that in the presence of S. boulardii, the medium is depleted of both LF and PA sub-units of LT and the appearance of a cleaved form of PA. Our study highlights the potential of the S. boulardii CNCM I-745 strain as a prophylactic agent against the gastrointestinal form of anthrax.
Pontier-Bres, Rodolphe; Rampal, Patrick; Peyron, Jean-François; Munro, Patrick; Lemichez, Emmanuel; Czerucka, Dorota
2015-01-01
The probiotic yeast Saccharomyces boulardii (S. boulardii) has been prescribed for the prophylaxis and treatment of several infectious diarrheal diseases. Gastrointestinal anthrax causes fatal systemic disease. In the present study, we investigated the protective effects conferred by Saccharomyces boulardii CNCM I-745 strain on polarized T84 columnar epithelial cells intoxicated by the lethal toxin (LT) of Bacillus anthracis. Exposure of polarized T84 cells to LT affected cell monolayer integrity, modified the morphology of tight junctions and induced the formation of actin stress fibers. Overnight treatment of cells with S. boulardii before incubation with LT maintained the integrity of the monolayers, prevented morphological modification of tight junctions, restricted the effects of LT on actin remodeling and delayed LT-induced MEK-2 cleavage. Mechanistically, we demonstrated that in the presence of S. boulardii, the medium is depleted of both LF and PA sub-units of LT and the appearance of a cleaved form of PA. Our study highlights the potential of the S. boulardii CNCM I-745 strain as a prophylactic agent against the gastrointestinal form of anthrax. PMID:26529015
Choi, Eun-hye; Song, Min-Suk; Park, Su-Jin; Pascua, Philippe Noriel Q; Baek, Yun Hee; Kwon, Hyeok-il; Kim, Eun-Ha; Kim, Semi; Jang, Hyung-Kwan; Poo, Haryoung; Kim, Chul-Joong; Choi, Young Ki
2015-07-01
An increasing number of outbreaks of avian influenza H5N1 and H9N2 viruses in poultry have caused serious economic losses and raised concerns for human health due to the risk of zoonotic transmission. However, licensed H5N1 and H9N2 vaccines for animals and humans have not been developed. Thus, to develop a dual H5N1 and H9N2 live-attenuated influenza vaccine (LAIV), the HA and NA genes from a virulent mouse-adapted avian H5N2 (A/WB/Korea/ma81/06) virus and a recently isolated chicken H9N2 (A/CK/Korea/116/06) virus, respectively, were introduced into the A/Puerto Rico/8/34 backbone expressing truncated NS1 proteins (NS1-73, NS1-86, NS1-101, NS1-122) but still possessing a full-length NS gene. Two H5N2/NS1-LAIV viruses (H5N2/NS1-86 and H5N2/NS1-101) were highly attenuated compared with the full-length and remaining H5N2/NS-LAIV viruses in a mouse model. Furthermore, viruses containing NS1 modifications were found to induce more IFN-β activation than viruses with full-length NS1 proteins and were correspondingly attenuated in mice. Intranasal vaccination with a single dose (10(4.0) PFU/ml) of these viruses completely protected mice from a lethal challenge with the homologous A/WB/Korea/ma81/06 (H5N2), heterologous highly pathogenic A/EM/Korea/W149/06 (H5N1), and heterosubtypic highly virulent mouse-adapted H9N2 viruses. This study clearly demonstrates that the modified H5N2/NS1-LAIV viruses attenuated through the introduction of mutations in the NS1 coding region display characteristics that are desirable for live attenuated vaccines and hold potential as vaccine candidates for mammalian hosts.
Immune Protection against Lethal Fungal-Bacterial Intra-Abdominal Infections
Lilly, Elizabeth A.; Ikeh, Melanie; Nash, Evelyn E.; Fidel, Paul L.
2018-01-01
ABSTRACT Polymicrobial intra-abdominal infections (IAIs) are clinically prevalent and cause significant morbidity and mortality, especially those involving fungi. Our laboratory developed a mouse model of IAI and demonstrated that intraperitoneal inoculation with Candida albicans or other virulent non-albicans Candida (NAC) species plus Staphylococcus aureus resulted in 70 to 80% mortality in 48 to 72 h due to robust local and systemic inflammation (sepsis). Surprisingly, inoculation with Candida dubliniensis or Candida glabrata with S. aureus resulted in minimal mortality, and rechallenge of these mice with lethal C. albicans/S. aureus (i.e., coninfection) resulted in >90% protection. The purpose of this study was to define requirements for C. dubliniensis/S. aureus-mediated protection and interrogate the mechanism of the protective response. Protection was conferred by C. dubliniensis alone or by killed C. dubliniensis plus live S. aureus. S. aureus alone was not protective, and killed S. aureus compromised C. dubliniensis-induced protection. C. dubliniensis/S. aureus also protected against lethal challenge by NAC plus S. aureus and could protect for a long-term duration (60 days between primary challenge and C. albicans/S. aureus rechallenge). Unexpectedly, mice deficient in T and B cells (Rag-1 knockouts [KO]) survived both the initial C. dubliniensis/S. aureus challenge and the C. albicans/S. aureus rechallenge, indicating that adaptive immunity did not play a role. Similarly, mice depleted of macrophages prior to rechallenge were also protected. In contrast, protection was associated with high numbers of Gr-1hi polymorphonuclear leukocytes (PMNLs) in peritoneal lavage fluid within 4 h of rechallenge, and in vivo depletion of Gr-1+ cells prior to rechallenge abrogated protection. These results suggest that Candida species can induce protection against a lethal C. albicans/S. aureus IAI that is mediated by PMNLs and postulated to be a unique form of trained innate immunity. PMID:29339423
Rodríguez-Martínez, Rosalia; Mendoza-de-Gives, Pedro; Aguilar-Marcelino, Liliana; López-Arellano, María Eugenia; Gamboa-Angulo, Marcela; Hanako Rosas-Saito, Greta; Reyes-Estébanez, Manuela; Guadalupe García-Rubio, Virginia
2018-01-01
This study was aimed to evaluate the in vitro lethal activity of the nematophagous fungi Clonostachys rosea against 5 nematodes species belonging to different taxa. Two groups of 35 Petri dishes (PD) each were divided into 5 series of 7 (PD). Group 1 (series 1, 2, 3, 4, and 5) contained only water agar; meanwhile group 2 plates (series 6, 7, 8, 9, and 10) contained C. rosea cultures growth on water agar. Every plate from the two groups was added with 500 nematodes corresponding to the following genera/specie: Haemonchus contortus , Caenorhabditis elegans, Rhabditis sp., Panagrellus redivivus , and Butlerius sp. After 5-day incubation at room temperature, free (nontrapped) larvae were recovered from plates using the Baermann funnel technique. Recovered nematodes were counted and compared with their proper controls. Results shown an important reduction percentage of the nematode population attributed to the fungal lethal activity as follows: H. contortus (L 3 ) 87.7%; C. elegans 94.7%; Rhabditis sp. 71.9%; P. redivivus 92.7%; and Butlerius sp. 100% ( p ≤ 0.05). The activity showed by C. rosea against the H. contortus can be crucial for further studies focused to the biological control of sheep haemonchosis, although the environmental impact against beneficial nematodes should be evaluated.
An improved brine shrimp larvae lethality microwell test method.
Zhang, Yi; Mu, Jun; Han, Jinyuan; Gu, Xiaojie
2012-01-01
This article described an improved brine shrimp larvae lethality microwell test method. A simply designed connecting vessel with alternative photoperiod was used to culture and collect high yield of active Artemia parthenogenetica nauplii for brine shrimp larvae lethality microwell test. Using this method, pure A. parthenogenetica nauplii suspension was easily cultured and harvested with high density about 100-150 larvae per milliliter and the natural mortality was reduced to near zero by elimination of unnecessary artificial disturbance. And its sensitivity was validated by determination of LC(50)-24 h of different reference toxicants including five antitumor agents, two pesticides, three organic pollutants, and four heavy metals salts, most of which exhibited LC(50)-24 h between 0.07 and 58.43 mg/L except for bleomycin and mitomycin C with LC(50)-24 h over 300 mg/L.
HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism
Conrad, E; Polonio-Vallon, T; Meister, M; Matt, S; Bitomsky, N; Herbel, C; Liebl, M; Greiner, V; Kriznik, B; Schumacher, S; Krieghoff-Henning, E; Hofmann, T G
2016-01-01
Upon severe DNA damage a cellular signalling network initiates a cell death response through activating tumour suppressor p53 in association with promyelocytic leukaemia (PML) nuclear bodies. The deacetylase Sirtuin 1 (SIRT1) suppresses cell death after DNA damage by antagonizing p53 acetylation. To facilitate efficient p53 acetylation, SIRT1 function needs to be restricted. How SIRT1 activity is regulated under these conditions remains largely unclear. Here we provide evidence that SIRT1 activity is limited upon severe DNA damage through phosphorylation by the DNA damage-responsive kinase HIPK2. We found that DNA damage provokes interaction of SIRT1 and HIPK2, which phosphorylates SIRT1 at Serine 682 upon lethal damage. Furthermore, upon DNA damage SIRT1 and HIPK2 colocalize at PML nuclear bodies, and PML depletion abrogates DNA damage-induced SIRT1 Ser682 phosphorylation. We show that Ser682 phosphorylation inhibits SIRT1 activity and impacts on p53 acetylation, apoptotic p53 target gene expression and cell death. Mechanistically, we found that DNA damage-induced SIRT1 Ser682 phosphorylation provokes disruption of the complex between SIRT1 and its activator AROS. Our findings indicate that phosphorylation-dependent restriction of SIRT1 activity by HIPK2 shapes the p53 response. PMID:26113041
Dere, Ekrem; Dahm, Liane; Lu, Derek; Hammerschmidt, Kurt; Ju, Anes; Tantra, Martesa; Kästner, Anne; Chowdhury, Kamal; Ehrenreich, Hannelore
2014-01-01
Autism-spectrum disorders (ASD) are heterogeneous, highly heritable neurodevelopmental conditions affecting around 0.5% of the population across cultures, with a male/female ratio of approximately 4:1. Phenotypically, ASD are characterized by social interaction and communication deficits, restricted interests, repetitive behaviors, and reduced cognitive flexibility. Identified causes converge at the level of the synapse, ranging from mutation of synaptic genes to quantitative alterations in synaptic protein expression, e.g., through compromised transcriptional or translational control. We wondered whether reduced turnover and degradation of synapses, due to deregulated autophagy, would lead to similar phenotypical consequences. Ambra1, strongly expressed in cortex, hippocampus, and striatum, is a positive regulator of Beclin1, a principal player in autophagosome formation. While homozygosity of the Ambra1 null mutation causes embryonic lethality, heterozygous mice with reduced Ambra1 expression are viable, reproduce normally, and lack any immediately obvious phenotype. Surprisingly, comprehensive behavioral characterization of these mice revealed an autism-like phenotype in Ambra1+/− females only, including compromised communication and social interactions, a tendency of enhanced stereotypies/repetitive behaviors, and impaired cognitive flexibility. Reduced ultrasound communication was found in adults as well as pups, which achieved otherwise normal neurodevelopmental milestones. These features were all absent in male Ambra1+/− mice. As a first hint explaining this gender difference, we found a much stronger reduction of Ambra1 protein in the cortex of Ambra1+/− females compared to males. To conclude, Ambra1 deficiency can induce an autism-like phenotype. The restriction to the female gender of autism-generation by a defined genetic trait is unique thus far and warrants further investigation. PMID:24904333
Dere, Ekrem; Dahm, Liane; Lu, Derek; Hammerschmidt, Kurt; Ju, Anes; Tantra, Martesa; Kästner, Anne; Chowdhury, Kamal; Ehrenreich, Hannelore
2014-01-01
Autism-spectrum disorders (ASD) are heterogeneous, highly heritable neurodevelopmental conditions affecting around 0.5% of the population across cultures, with a male/female ratio of approximately 4:1. Phenotypically, ASD are characterized by social interaction and communication deficits, restricted interests, repetitive behaviors, and reduced cognitive flexibility. Identified causes converge at the level of the synapse, ranging from mutation of synaptic genes to quantitative alterations in synaptic protein expression, e.g., through compromised transcriptional or translational control. We wondered whether reduced turnover and degradation of synapses, due to deregulated autophagy, would lead to similar phenotypical consequences. Ambra1, strongly expressed in cortex, hippocampus, and striatum, is a positive regulator of Beclin1, a principal player in autophagosome formation. While homozygosity of the Ambra1 null mutation causes embryonic lethality, heterozygous mice with reduced Ambra1 expression are viable, reproduce normally, and lack any immediately obvious phenotype. Surprisingly, comprehensive behavioral characterization of these mice revealed an autism-like phenotype in Ambra1 (+/-) females only, including compromised communication and social interactions, a tendency of enhanced stereotypies/repetitive behaviors, and impaired cognitive flexibility. Reduced ultrasound communication was found in adults as well as pups, which achieved otherwise normal neurodevelopmental milestones. These features were all absent in male Ambra1 (+/-) mice. As a first hint explaining this gender difference, we found a much stronger reduction of Ambra1 protein in the cortex of Ambra1 (+/-) females compared to males. To conclude, Ambra1 deficiency can induce an autism-like phenotype. The restriction to the female gender of autism-generation by a defined genetic trait is unique thus far and warrants further investigation.
Brown, Tanya; Rodriguez-Lanetty, Mauricio
2015-01-01
Cnidarians, in general, are long-lived organisms and hence may repeatedly encounter common pathogens during their lifespans. It remains unknown whether these early diverging animals possess some type of immunological reaction that strengthens the defense response upon repeated infections, such as that described in more evolutionary derived organisms. Here we show results that sea anemones that had previously encountered a pathogen under sub-lethal conditions had a higher survivorship during a subsequently lethal challenge than naïve anemones that encountered the pathogen for the first time. Anemones subjected to the lethal challenge two and four weeks after the sub-lethal exposure presented seven- and five-fold increases in survival, respectively, compared to the naïve anemones. However, anemones challenged six weeks after the sub-lethal exposure showed no increase in survivorship. We argue that this short-lasting priming of the defense response could be ecologically relevant if pathogen encounters are restricted to short seasons characterized by high stress. Furthermore, we discovered significant changes in proteomic profiles between naïve sea anemones and those primed after pathogen exposure suggesting a clear molecular signature associated with immunological priming in cnidarians. Our findings reveal that immunological priming may have evolved much earlier in the tree of life than previously thought. PMID:26628080
Rao, Srinivas S.; Kong, Wing-Pui; Wei, Chih-Jen; Van Hoeven, Neal; Gorres, J. Patrick; Nason, Martha; Andersen, Hanne; Tumpey, Terrence M.; Nabel, Gary J.
2010-01-01
Efforts to develop a broadly protective vaccine against the highly pathogenic avian influenza A (HPAI) H5N1 virus have focused on highly conserved influenza gene products. The viral nucleoprotein (NP) and ion channel matrix protein (M2) are highly conserved among different strains and various influenza A subtypes. Here, we investigate the relative efficacy of NP and M2 compared to HA in protecting against HPAI H5N1 virus. In mice, previous studies have shown that vaccination with NP and M2 in recombinant DNA and/or adenovirus vectors or with adjuvants confers protection against lethal challenge in the absence of HA. However, we find that the protective efficacy of NP and M2 diminishes as the virulence and dose of the challenge virus are increased. To explore this question in a model relevant to human disease, ferrets were immunized with DNA/rAd5 vaccines encoding NP, M2, HA, NP+M2 or HA+NP+M2. Only HA or HA+NP+M2 vaccination conferred protection against a stringent virus challenge. Therefore, while gene-based vaccination with NP and M2 may provide moderate levels of protection against low challenge doses, it is insufficient to confer protective immunity against high challenge doses of H5N1 in ferrets. These immunogens may require combinatorial vaccination with HA, which confers protection even against very high doses of lethal viral challenge. PMID:20352112
Osano, Odipo; Admiraal, Wim; Otieno, Dismas
2002-02-01
Pesticides are known to transform in the environment, but so far the study of their effects in the environment has concentrated on the parent compounds, thereby neglecting the effects of the degradation products. The embryotoxic, developmental, and teratogenic effects of chloroacetanilide herbicides and their environmentally stable aniline degradation products were investigated in this study in view of the massive application of alachlor and metolachlor. Embryos at midblastula to early gastrula stages of a locally abundant African clawed frog Xenopus laevis were used as test organisms. The embryos were exposed to the test chemicals for 96 h in each experiment. Alachlor is more embryotoxic (the concentration causing 50% embryo lethality, 96-h LC50 = 23 microM [6.1 mg/L]) and teratogenic (teratogenic index [TI] = 1.7) than metolachlor (96-h LC50 = 48 microM [13.6 mg/L], TI = 0.2). The degradation products of alachlor and metolachlor, respectively, 2,6-diethylaniline (96-h LC50 = 13 microM [19.4 mg/L], TI = 2.1) and 2-ethyl-6-methyaniline (96-h LC50 = 509 microM [68.8 mg/L], TI = 2.7), are less embryotoxic but more teratogenic than their parent compounds. The most common teratogenic effects observed were edema for alachlor as opposed to axial flexures and eye abnormalities for 2,6-diethylaniline and 2-ethyl-6-methylaniline. Metolachlor is found to be an example of a nonteratogenic herbicide that upon degradation loses toxicity but gains teratogenicity, and both the herbicides, metolachlor and alachlor, are potential sources of teratogenic transformation products.
Lethality of First Contact Dysentery Epidemics on Pacific Islands.
Shanks, G Dennis
2016-08-03
Infectious diseases depopulated many isolated Pacific islands when they were first exposed to global pathogen circulation from the 18th century. Although the mortality was great, the lack of medical observers makes determination of what happened during these historical epidemics largely speculative. Bacillary dysentery caused by Shigella is the most likely infection causing some of the most lethal island epidemics. The fragmentary historical record is reviewed to gain insight into the possible causes of the extreme lethality that was observed during first-contact epidemics in the Pacific. Immune aspects of the early dysentery epidemics and postmeasles infection resulting in subacute inflammatory enteric disease suggest that epidemiologic isolation was the major lethality risk factor on Pacific islands in the 19th century. Other possible risk factors include human leukocyte antigen homogeneity from a founder effect and pathogen-induced derangement of immune tolerance to gut flora. If this analysis is correct, then Pacific islands are currently at no greater risk of emerging disease epidemics than other developing countries despite their dark history. © The American Society of Tropical Medicine and Hygiene.
Koštál, Vladimír; Korbelová, Jaroslava; Rozsypal, Jan; Zahradníčková, Helena; Cimlová, Jana; Tomčala, Aleš; Šimek, Petr
2011-01-01
Background Drosophila melanogaster is a chill-susceptible insect. Previous studies on this fly focused on acute direct chilling injury during cold shock and showed that lower lethal temperature (LLT, approximately −5°C) exhibits relatively low plasticity and that acclimations, both rapid cold hardening (RCH) and long-term cold acclimation, shift the LLT by only a few degrees at the maximum. Principal Findings We found that long-term cold acclimation considerably improved cold tolerance in fully grown third-instar larvae of D. melanogaster. A comparison of the larvae acclimated at constant 25°C with those acclimated at constant 15°C followed by constant 6°C for 2 d (15°C→6°C) showed that long-term cold acclimation extended the lethal time for 50% of the population (Lt50) during exposure to constant 0°C as much as 630-fold (from 0.137 h to 86.658 h). Such marked physiological plasticity in Lt50 (in contrast to LLT) suggested that chronic indirect chilling injury at 0°C differs from that caused by cold shock. Long-term cold acclimation modified the metabolomic profiles of the larvae. Accumulations of proline (up to 17.7 mM) and trehalose (up to 36.5 mM) were the two most prominent responses. In addition, restructuring of the glycerophospholipid composition of biological membranes was observed. The relative proportion of glycerophosphoethanolamines (especially those with linoleic acid at the sn-2 position) increased at the expense of glycerophosphocholines. Conclusion Third-instar larvae of D. melanogaster improved their cold tolerance in response to long-term cold acclimation and showed metabolic potential for the accumulation of proline and trehalose and for membrane restructuring. PMID:21957472
Wang, Kimberley C W; Zhang, Lei; McMillen, I Caroline; Botting, Kimberley J; Duffield, Jaime A; Zhang, Song; Suter, Catherine M; Brooks, Doug A; Morrison, Janna L
2011-10-01
Reduced growth in fetal life together with accelerated growth in childhood, results in a ~50% greater risk of coronary heart disease in adult life. It is unclear why changes in patterns of body and heart growth in early life can lead to an increased risk of cardiovascular disease in adulthood. We aimed to investigate the role of the insulin-like growth factors in heart growth in the growth-restricted fetus and lamb. Hearts were collected from control and placentally restricted (PR) fetuses at 137-144 days gestation and from average (ABW) and low (LBW) birth weight lambs at 21 days of age. We quantified cardiac mRNA expression of IGF-1, IGF-2 and their receptors, IGF-1R and IGF-2R, using real-time RT-PCR and protein expression of IGF-1R and IGF-2R using Western blotting. Combined bisulphite restriction analysis was used to assess DNA methylation in the differentially methylated region (DMR) of the IGF-2/H19 locus and of the IGF-2R gene. In PR fetal sheep, IGF-2, IGF-1R and IGF-2R mRNA expression was increased in the heart compared to controls. LBW lambs had a greater left ventricle weight relative to body weight as well as increased IGF-2 and IGF-2R mRNA expression in the heart, when compared to ABW lambs. No changes in the percentage of methylation of the DMRs of IGF-2/H19 or IGF-2R were found between PR and LBW when compared to their respective controls. In conclusion, a programmed increased in cardiac gene expression of IGF-2 and IGF-2R may represent an adaptive response to reduced substrate supply (e.g. glucose and/or oxygen) in order to maintain heart growth and may be the underlying cause for increased ventricular hypertrophy and the associated susceptibility of cardiomyocytes to ischaemic damage later in life.
A bioluminescent imaging mouse model for Marburg virus based on a pseudovirus system.
Zhang, Li; Li, Qianqian; Liu, Qiang; Huang, Weijin; Nie, Jianhui; Wang, Youchun
2017-08-03
Marburg virus (MARV) can cause lethal hemorrhagic fever in humans. Handling of MARV is restricted to high-containment biosafety level 4 (BSL-4) facilities, which greatly impedes research into this virus. In this study, a high titer of MARV pseudovirus was generated through optimization of the HIV backbone vectors, the ratio of backbone vector to MARV glycoprotein expression vector, and the transfection reagents. An in vitro neutralization assay and an in vivo bioluminescent imaging mouse model for MARV were developed based on the pseudovirus. Protective serum against MARV was successfully induced in guinea pigs, which showed high neutralization activity in vitro and could also protect Balb/c mice from MARV pseudovirus infection in vivo. This system could be a convenient tool to enable the evaluation of vaccines and therapeutic drugs against MARV in non-BSL-4 laboratories.
2015-07-01
coagulation defects using fresh plasma and other blood prod- ucts in near equivalent ratios (38), along with prohemostatic agents such as tranexamic ... acid (39). This approach also rec- ommends restricting fluids to limit hemodilution (40) and other deleterious effects of the lethal triad (41). Still
Queffelec, Clémence; Ribière, Patrice; Montchamp, Jean-Luc
2009-01-01
P,N-Heterocycles (3-hydroxy-1,3-azaphospholane and 3-hydroxy-1,3-azaphosphorinane-3-oxide) are synthesized in moderate yield from readily available ω-amino-H-phosphinates and aldehydes or ketones via an intramolecular Kabachnik-Fields reaction. The products are conformationally restricted phosphinic analogs of α-amino acids. The multi-gram scale syntheses of the H2N(CH2)nPO2H2 phosphinic precursors (n = 1, 2, 3) and some derivatives are also described. PMID:18855477
Mariel, Aronzon Carolina; Alejandra, Babay Paola; Silvia, Pérez Coll Cristina
2014-09-01
The toxicity of Nonylphenol, an emerging pollutant, on the common South American toad Rhinella arenarum was stage and time dependent, thus Median Lethal Concentrations (LC50) for acute (96h), short-term chronic (168h) and chronic exposure (336h) were 1.06; 0.96 and 0.17mgNP/L from embryonic period (S.4), whereas for exposure from larvae (S.25), LC50 remained constant at 0.37mgNP/L from 96h to 168h, decreasing to 0.11mgNP/L at 336h. NOEC-168h for exposure from embryos was 0.025mgNP/L. The Teratogenic Potential (NOEC-lethality/NOEC-sublethal effects) was 23 times higher than the threshold value, indicating a high risk for embryos to be malformed in absence of significant lethality and representing a threat for the species conservation. By comparing with other amphibians, the early development of R. arenarum was very sensitive to NP. The results highlight the relevance of extending the exposure time and look for the most sensitive stage in order to perform the bioassays for conservation purposes. Copyright © 2014 Elsevier B.V. All rights reserved.
Rutkoski, Camila F; Macagnan, Natani; Kolcenti, Cassiane; Vanzetto, Guilherme V; Sturza, Paola F; Hartmann, Paulo A; Hartmann, Marilia T
2018-05-01
Water sources used as reproductive sites by crying frog, Physalaemus gracilis, are extensively associated with agroecosystems in which the herbicide atrazine is employed. To evaluate the lethal and sublethal effects of atrazine commercial formulation, acute and chronic toxicity tests were performed in the embryonic phase and the beginning of the larval phase of P. gracilis. Tests were started on stage 19 of Gosner (Herpetologica 16:183-190, 1960) and performed in 24-well cell culture plates. Acute tests had a duration of 96 h with embryo mortality monitoring every 24 h. Chronic assays contemplated the transition from the embryonic to larval stages and lasted 168 h. Every 24 h the embryos/larvae were observed for mortality, mobility, and malformations. The LC50 of atrazine determined for P. gracilis embryos was 229.34 mg L -1 . The sublethal concentrations did not affect the development of the larvae but were observed effects on mobility and malformations, such as spasmodic contractions, reduced mobility, malformations in mouth and intestine, and edema arising. From 1 mg L -1 atrazine, the exposed larvae began to have changes in mobility and malformations. The atrazine commercial formulation has caused early life effects of P. gracilis that may compromise the survival of this species but at higher concentrations than recorded in the environment, so P. gracilis can be considered tolerant to this herbicide at environmentally relevant concentrations.
Resveratrol Antagonizes Antimicrobial Lethality and Stimulates Recovery of Bacterial Mutants
Liu, Yuanli; Zhou, Jinan; Qu, Yilin; Yang, Xinguang; Shi, Guojing; Wang, Xiuhong; Hong, Yuzhi; Drlica, Karl; Zhao, Xilin
2016-01-01
Reactive oxygen species (ROS; superoxide, peroxide, and hydroxyl radical) are thought to contribute to the rapid bactericidal activity of diverse antimicrobial agents. The possibility has been raised that consumption of antioxidants in food may interfere with the lethal action of antimicrobials. Whether nutritional supplements containing antioxidant activity are also likely to interfere with antimicrobial lethality is unknown. To examine this possibility, resveratrol, a popular antioxidant dietary supplement, was added to cultures of Escherichia coli and Staphylococcus aureus that were then treated with antimicrobial and assayed for bacterial survival and the recovery of mutants resistant to an unrelated antimicrobial, rifampicin. Resveratrol, at concentrations likely to be present during human consumption, caused a 2- to 3-fold reduction in killing during a 2-hr treatment with moxifloxacin or kanamycin. At higher, but still subinhibitory concentrations, resveratrol reduced antimicrobial lethality by more than 3 orders of magnitude. Resveratrol also reduced the increase in reactive oxygen species (ROS) characteristic of treatment with quinolone (oxolinic acid). These data support the general idea that the lethal activity of some antimicrobials involves ROS. Surprisingly, subinhibitory concentrations of resveratrol promoted (2- to 6-fold) the recovery of rifampicin-resistant mutants arising from the action of ciprofloxacin, kanamycin, or daptomycin. This result is consistent with resveratrol reducing ROS to sublethal levels that are still mutagenic, while the absence of resveratrol allows ROS levels to high enough to kill mutagenized cells. Suppression of antimicrobial lethality and promotion of mutant recovery by resveratrol suggests that the antioxidant may contribute to the emergence of resistance to several antimicrobials, especially if new derivatives and/or formulations of resveratrol markedly increase bioavailability. PMID:27045517
Colomer-Poveda, David; Romero-Arenas, Salvador; Vera-Ibáñez, Antonio; Viñuela-García, Manuel; Márquez, Gonzalo
2017-07-01
To test the effects of 4 weeks of unilateral low-load resistance training (LLRT), with and without blood flow restriction (BFR), on maximal voluntary contraction (MVC), muscle thickness, volitional wave (V wave), and Hoffmann reflex (H reflex) of the soleus muscle. Twenty-two males were randomly distributed into three groups: a control group (CTR; n = 8); a low-load blood flow restriction resistance training group (BFR-LLRT; n = 7), who were an inflatable cuff to occlude blood flow; and a low-load resistance training group without blood flow restriction (LLRT; n = 7). The training consisted of four sets of unilateral isometric LLRT (25% of MVC) three times a week over 4 weeks. MVC increased 33% (P < 0.001) and 22% (P < 0.01) in the trained leg of both BFR-LLRT and LLRT groups, respectively. The soleus thickness increased 9.5% (P < 0.001) and 6.5% (P < 0.01) in the trained leg of both BFR-LLRT and LLRT groups, respectively. However, neither MVC nor thickness changed in either of the legs tested in the CTR group (MVC -1 and -5%, and muscle thickness 1.9 and 1.2%, for the control and trained leg, respectively). Moreover, V wave and H reflex did not change significantly in all the groups studied (V wave /M wave ratio -7.9 and -2.6%, and H max /M max ratio -3.8 and -4%, for the control and trained leg, respectively). Collectively, the present data suggest that in spite of the changes occurring in soleus strength and thickness, 4 weeks of low-load resistance training, with or without BFR, does not cause any change in neural drive or motoneuronal excitability.
Turnbull, Trey T.; Cain, James W.; Roemer, Gary W.
2013-01-01
Concerns regarding the potential negative impacts of regulated furbearer trapping to reintroduced Mexican gray wolves (Canis lupus baileyi), led to an executive order prohibiting trapping in the New Mexico, USA, portion of the Blue Range Wolf Recovery Area. This ban was to last for 6 months and required an evaluation of the risk posed to wolves by traps and snares legally permitted in New Mexico. We reviewed potential threats to wolves in the Blue Range Wolf Recovery Area, including threats associated with regulated furbearer trapping. One hundred Mexican gray wolf mortalities have been documented during the reintroduction effort (1998–2011). Of those mortalities with a known cause, >81% were human-caused resulting from illegal shooting (n = 43), vehicle collisions (n = 14), lethal removal by the United States Fish and Wildlife Service (USFWS; n = 12), non-project-related trapping (n = 2), project-related trapping (n = 1), and legal shooting by the public (n = 1). Ten wolves died due to unknown causes. The remaining 17 mortalities were a result of natural causes (e.g., starvation, disease). An additional 23 wolves were permanently, but non-lethally, removed from the wild by the USFWS. Of 13 trapping incidents in New Mexico that involved non-project trappers (i.e., trappers not associated with USFWS or U.S. Department of Agriculture-Wildlife Services), 7 incidents are known to have resulted in injuries to wolves: 2 wolves sustained injuries severe enough to result in leg amputations and 2 additional wolves died as a result of injuries sustained. Foothold traps with rubber-padded jaws and properly set snares may reduce trap-related injuries to Mexican gray wolves; however, impacts caused by trapping are overshadowed by other anthropogenic impacts (e.g., illegal shooting, non-lethal permanent removal, and vehicle collisions).
The phylogenetic roots of human lethal violence.
Gómez, José María; Verdú, Miguel; González-Megías, Adela; Méndez, Marcos
2016-10-13
The psychological, sociological and evolutionary roots of conspecific violence in humans are still debated, despite attracting the attention of intellectuals for over two millennia. Here we propose a conceptual approach towards understanding these roots based on the assumption that aggression in mammals, including humans, has a significant phylogenetic component. By compiling sources of mortality from a comprehensive sample of mammals, we assessed the percentage of deaths due to conspecifics and, using phylogenetic comparative tools, predicted this value for humans. The proportion of human deaths phylogenetically predicted to be caused by interpersonal violence stood at 2%. This value was similar to the one phylogenetically inferred for the evolutionary ancestor of primates and apes, indicating that a certain level of lethal violence arises owing to our position within the phylogeny of mammals. It was also similar to the percentage seen in prehistoric bands and tribes, indicating that we were as lethally violent then as common mammalian evolutionary history would predict. However, the level of lethal violence has changed through human history and can be associated with changes in the socio-political organization of human populations. Our study provides a detailed phylogenetic and historical context against which to compare levels of lethal violence observed throughout our history.
Kulshreshtha, Parul; Tiwari, Ashutosh; Priyanka; Joon, Shikha; Sinha, Subrata; Bhatnagar, Rakesh
2015-12-01
Hybridomas were created using spleen of mice that were actively immunized with rLFn (recombinant N-terminal domain of lethal factor). Later on, separate group of mice were immunized with rLFn to obtain a polyclonal control for passive immunization studies of monoclonal antibodies. This led to the identification of one cohort of rLFn-immnized mice that harboured disease-enhancing polyclonal antibodies. At the same time, the monoclonal antibodies secreted by all the hybridomas were being tested. Two hybridomas secreted monoclonal antibodies (H10 and H8) that were cross-reactive with EF (edema factor) and LF (lethal factor), while the other two hybridomas secreted LF-specific antibodies (H7 and H11). Single chain variable fragment (LETscFv) was derived from H10 hybridoma. H11 was found to have disease-enhancing property. Combination of H11 with protective monoclonal antibodies (H8 and H10) reduced its disease enhancing nature. This in vitro abrogation of disease-enhancement provides the proof of concept that in polyclonal sera the disease enhancing character of a fraction of antibodies is overshadowed by the protective nature of the rest of the antibodies generated on active immunization. Copyright © 2015. Published by Elsevier Ltd.
Abal, Paula; Louzao, M Carmen; Cifuentes, José Manuel; Vilariño, Natalia; Rodriguez, Ines; Alfonso, Amparo; Vieytes, Mercedes R; Botana, Luis M
2017-04-01
Ingestion of shellfish with dinophysistoxin-2 (DTX2) can lead to diarrheic shellfish poisoning (DSP). The official control method of DSP toxins in seafood is the liquid chromatography-mass spectrometry analysis (LC-MS). However in order to calculate the total toxicity of shellfish, the concentration of each compound must be multiplied by individual Toxicity Equivalency Factor (TEF). Considering that TEFs caused some controversy and the scarce information about DTX2 toxicity, the aim of this study was to characterize the oral toxicity of DTX2 in mice. A 4-Level Up and Down Procedure allowed the characterization of DTX2 effects and the estimation of DTX2 oral TEF based on determination of the lethal dose 50 (LD50). DTX2 passed the gastrointestinal barrier and was detected in urine and feces. Acute toxicity symptoms include diarrhea and motionless, however anatomopathology study and ultrastructural images restricted the toxin effects to the gastrointestinal tract. Nevertheless enterocytes microvilli and tight junctions were not altered, disconnecting DTX2 diarrheic effects from paracellular epithelial permeability. This is the first report of DTX2 oral LD 50 (2262 μg/kg BW) indicating that its TEF is about 0.4. This result suggests reevaluation of the present TEFs for the DSP toxins to better determine the actual risk to seafood consumers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ruiz de Arcaute, C; Soloneski, S; Larramendy, M L
2016-06-01
Acute toxicity and genotoxicity of the 54.8% 2,4-D-based commercial herbicide DMA® were assayed on Cnesterodon decemmaculatus (Pisces, Poeciliidae). Whereas lethal effect was used as the end point for mortality, frequency of micronuclei (MNs), other nuclear abnormalities and primary DNA damage evaluated by the single cell gel electrophoresis (SCGE) assay were employed as end points for genotoxicity. Mortality studies demonstrated an LC50 96 h value of 1008 mg/L (range, 929-1070) of 2,4-D. Behavioral changes, e.g., gathering at the bottom of the aquarium, slowness in motion, slow reaction and abnormal swimming were observed. Exposure to 2,4-D within the 252-756 mg/L range increased the frequency of MNs in fish exposed for both 48 and 96 h. Whereas blebbed nuclei were induced in treatments lasting for 48 and 96 h, notched nuclei were only induced in fish exposed for 96 h. Regardless of both concentration and exposure time, 2,4-D did not induce lobed nuclei and binucleated erythrocytes. In addition, we found that exposure to 2,4-D within the 252-756 mg/L range increased the genetic damage index in treatments lasting for either 48 and 96 h. The results represent the first experimental evidence of the lethal and several sublethal effects, including behavioral alterations and two genotoxic properties namely the induction of MNs and primary DNA strand breaks, exerted by 2,4-D on an endemic organism as C. decemmaculatus. Copyright © 2016 Elsevier Inc. All rights reserved.
28 CFR 26.2 - Proposed Judgment and Order.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of a lethal substance or substances in a quantity sufficient to cause death; (3) The sentence shall... 26.2 Judicial Administration DEPARTMENT OF JUSTICE DEATH SENTENCES PROCEDURES Implementation of Death... (4) The prisoner under sentence of death shall be committed to the custody of the Attorney General or...
Chandrasekhar, Y; D'Occhio, M J; Setchell, B P
1986-03-01
Over a period of 8 weeks ram lambs (16 weeks old) were made hyperthyroidal (serum thyroxine approximately equal to 150 ng/ml, compared with control approximately equal to 48 ng/ml) by daily subcutaneous injections of thyroxine or maintained at a constant body weight by restriction of the feed intake. Hyperthyroidal and restricted-intake lambs remained at a constant body weight during the period of treatment whilst control rams gained body weight. Testicular growth was normal in restricted-intake lambs but was suppressed in hyperthyroidal animals. Hyperthyroidism, but not feed restriction, was also associated with decrease in LH pulse frequency (1.3 +/- 0.3/12 h compared with controls 4.8 +/- 0.9/12 h. Hyperthyroidal lambs showed normal LH responses to exogenous LHRH. After cessation of treatment testicular growth continued to be suppressed for up to 16 weeks in previously hyperthyroidic rams; thereafter testes began to increase in size but at 30 weeks after treatment were still smaller than those of control rams. It is concluded that elevated thyroxine concentrations directly influence sexual maturation in ram lambs through actions at hypothalamic and/or higher brain centres which control LH secretion. Transient hyperthyroidism during sexual maturation may cause permanent impairment of sexual development.
Espina, Laura; Gelaw, Tilahun K.; de Lamo-Castellví, Sílvia; Pagán, Rafael; García-Gonzalo, Diego
2013-01-01
This work explores the bactericidal effect of (+)-limonene, the major constituent of citrus fruits' essential oils, against E. coli. The degree of E. coli BJ4 inactivation achieved by (+)-limonene was influenced by the pH of the treatment medium, being more bactericidal at pH 4.0 than at pH 7.0. Deletion of rpoS and exposure to a sub-lethal heat or an acid shock did not modify E. coli BJ4 resistance to (+)-limonene. However, exposure to a sub-lethal cold shock decreased its resistance to (+)-limonene. Although no sub-lethal injury was detected in the cell envelopes after exposure to (+)-limonene by the selective-plating technique, the uptake of propidium iodide by inactivated E. coli BJ4 cells pointed out these structures as important targets in the mechanism of action. Attenuated Total Reflectance Infrared Microspectroscopy (ATR-IRMS) allowed identification of altered E. coli BJ4 structures after (+)-limonene treatments as a function of the treatment pH: β-sheet proteins at pH 4.0 and phosphodiester bonds at pH 7.0. The increased sensitivity to (+)-limonene observed at pH 4.0 in an E. coli MC4100 lptD4213 mutant with an increased outer membrane permeability along with the identification of altered β-sheet proteins by ATR-IRMS indicated the importance of this structure in the mechanism of action of (+)-limonene. The study of mechanism of inactivation by (+)-limonene led to the design of a synergistic combined process with heat for the inactivation of the pathogen E. coli O157:H7 in fruit juices. These results show the potential of (+)-limonene in food preservation, either acting alone or in combination with lethal heat treatments. PMID:23424676
Espina, Laura; Gelaw, Tilahun K; de Lamo-Castellví, Sílvia; Pagán, Rafael; García-Gonzalo, Diego
2013-01-01
This work explores the bactericidal effect of (+)-limonene, the major constituent of citrus fruits' essential oils, against E. coli. The degree of E. coli BJ4 inactivation achieved by (+)-limonene was influenced by the pH of the treatment medium, being more bactericidal at pH 4.0 than at pH 7.0. Deletion of rpoS and exposure to a sub-lethal heat or an acid shock did not modify E. coli BJ4 resistance to (+)-limonene. However, exposure to a sub-lethal cold shock decreased its resistance to (+)-limonene. Although no sub-lethal injury was detected in the cell envelopes after exposure to (+)-limonene by the selective-plating technique, the uptake of propidium iodide by inactivated E. coli BJ4 cells pointed out these structures as important targets in the mechanism of action. Attenuated Total Reflectance Infrared Microspectroscopy (ATR-IRMS) allowed identification of altered E. coli BJ4 structures after (+)-limonene treatments as a function of the treatment pH: β-sheet proteins at pH 4.0 and phosphodiester bonds at pH 7.0. The increased sensitivity to (+)-limonene observed at pH 4.0 in an E. coli MC4100 lptD4213 mutant with an increased outer membrane permeability along with the identification of altered β-sheet proteins by ATR-IRMS indicated the importance of this structure in the mechanism of action of (+)-limonene. The study of mechanism of inactivation by (+)-limonene led to the design of a synergistic combined process with heat for the inactivation of the pathogen E. coli O157:H7 in fruit juices. These results show the potential of (+)-limonene in food preservation, either acting alone or in combination with lethal heat treatments.
Gonzalez-Rodriguez, Pablo; Cantu, Jessica; O'Neil, Derek; Seferovic, Maxim D; Goodspeed, Danielle M; Suter, Melissa A; Aagaard, Kjersti M
2016-05-01
The H19/IGF2 imprinted loci have attracted recent attention because of their role in cellular differentiation and proliferation, heritable gene regulation, and in utero or early postnatal growth and development. Expression from the imprinted H19/IGF2 locus involves a complex interplay of 3 means of epigenetic regulation: proper establishment of DNA methylation, promoter occupancy of CTCF, and expression of microRNA-675. We have demonstrated previously in a multigenerational rat model of intrauterine growth restriction the epigenetic heritability of adult metabolic syndrome in a F2 generation. We have further demonstrated abrogation of the F2 adult metabolic syndrome phenotype with essential nutrient supplementation of intermediates along the 1-carbon pathway and shown that alterations in the metabolome precede the adult onset of metabolic syndrome. The upstream molecular and epigenomic mediators underlying these observations, however, have yet to be elucidated fully. In the current study, we sought to characterize the impact of the intrauterine growth-restricted lineage and essential nutrient supplementation on both levels and molecular mediators of H19 and IGF2 gene expression in the F2 generation. F2 intrauterine growth-restricted and sham lineages were obtained by exposing P1 (grandmaternal) pregnant dams to bilateral uterine artery ligation or sham surgery at gestational day 19.5. F1 pups were allocated to the essential nutrient supplemented or control diet at postnatal day 21, and bred at 6-7 weeks of age. Hepatic tissues from the resultant F2 offspring at birth and at weaning (day 21) were obtained. Bisulfite modification and sequencing was employed for methylation analysis. H19 and IGF2 expression was measured by quantitative polymerase chain reaction. Promoter occupancy was quantified by the use of chromatin immunoprecipitation, or ChIP, against CTCF insulator proteins. Growth-restricted F2 on control diet demonstrated significant down-regulation in H19 expression compared with sham lineage (0.7831 vs 1.287; P < .05); however, essential nutrient supplementation diet abrogates this difference (4.995 vs 5.100; P > .05). Conversely, Igf2 was up-regulated by essential nutrient supplemented diet on the sham lineage (2.0 fold, P = .01), an effect that was not observed in the growth restricted offspring. A significant differential methylation was observed in the promoter region of region H19 among the intrauterine growth-restricted lineage (18% vs 25%; P < .05) on a control diet, whereas the essential nutrient supplemented diet was alternately associated with hypermethylation in both lineages (sham: 50%; intrauterine growth restriction: 84%, P < .05). Consistent with essential nutrient supplementation impacting the epigenome, a decrease of CTCF promoter occupancy was observed in CTCF4 of the growth restricted lineage (2.45% vs 0.56%; P < .05) on the control diet, an effect that was repressed with essential nutrient supplementation. Heritable growth restriction is associated with changes in H19 gene expression; these changes are reversible with diet supplementation to favorably impact adult metabolic syndrome. Copyright © 2016. Published by Elsevier Inc.
Ricin as a weapon of mass terror--separating fact from fiction.
Schep, Leo J; Temple, Wayne A; Butt, Grant A; Beasley, Michael D
2009-11-01
In recent years there has been an increased concern regarding the potential use of chemical and biological weapons for mass urban terror. In particular, there are concerns that ricin could be employed as such an agent. This has been reinforced by recent high profile cases involving ricin, and its use during the cold war to assassinate a high profile communist dissident. Nevertheless, despite these events, does it deserve such a reputation? Ricin is clearly toxic, though its level of risk depends on the route of entry. By ingestion, the pathology of ricin is largely restricted to the gastrointestinal tract where it may cause mucosal injuries; with appropriate treatment, most patients will make a full recovery. As an agent of terror, it could be used to contaminate an urban water supply, with the intent of causing lethality in a large urban population. However, a substantial mass of pure ricin powder would be required. Such an exercise would be impossible to achieve covertly and would not guarantee success due to variables such as reticulation management, chlorination, mixing, bacterial degradation and ultra-violet light. By injection, ricin is lethal; however, while parenteral delivery is an ideal route for assassination, it is not realistic for an urban population. Dermal absorption of ricin has not been demonstrated. Ricin is also lethal by inhalation. Low doses can lead to progressive and diffuse pulmonary oedema with associated inflammation and necrosis of the alveolar pneumocytes. However, the risk of toxicity is dependent on the aerodynamic equivalent diameter (AED) of the ricin particles. The AED, which is an indicator of the aerodynamic behaviour of a particle, must be of sufficiently low micron size as to target the human alveoli and thereby cause major toxic effects. To target a large population would also necessitate a quantity of powder in excess of several metric tons. The technical and logistical skills required to formulate such a mass of powder to the required size is beyond the ability of terrorists who typically operate out of a kitchen in a small urban dwelling or in a small ill-equipped laboratory. Ricin as a toxin is deadly but as an agent of bioterror it is unsuitable and therefore does not deserve the press attention and subsequent public alarm that has been created.
Preliminary performance and life evaluations of a 2-kW arcjet
NASA Technical Reports Server (NTRS)
Morren, W. Earl; Curran, Francis M.
1991-01-01
The first results of a program to expand the operational envelope of low-power arcjets to higher specific impulse and power levels are presented. The performance of a kW-class laboratory model arcjet thruster was characterized at three mass flow rates of a 2:1 mixture of hydrogen and nitrogen at power levels ranging from 1.0 to 2.0 kW. This same thruster was then operated for a total of 300 h at a specific impulse and power level of 550 s and 2.0 kW, respectively, in three continuous 100-h sessions. Thruster operation during the three test segments was stable, and no measurable performance degradation was observed during the test series. Substantial cathode erosion was observed during an inspection following the second 100-h test segment. Most notable was the migration of material from the center of the cathode tip to a ring around a large crater. The anode sustained no significant damage during the endurance test segments. Some difficulty was encountered during start-up after disassembly and inspection following the second 100-h test segment, which caused constrictor erosion. This resulted in a reduced flow restriction and arc chamber pressure, which in turn caused a reduction in the arc impedance.
Rosenzweig, Jason A; Brackman, Sheri M; Kirtley, Michelle L; Sha, Jian; Erova, Tatiana E; Yeager, Linsey A; Peterson, Johnny W; Xu, Ze-Qi; Chopra, Ashok K
2011-11-01
The Gram-negative plague bacterium, Yersinia pestis, has historically been regarded as one of the deadliest pathogens known to mankind, having caused three major pandemics. After being transmitted by the bite of an infected flea arthropod vector, Y. pestis can cause three forms of human plague: bubonic, septicemic, and pneumonic, with the latter two having very high mortality rates. With increased threats of bioterrorism, it is likely that a multidrug-resistant Y. pestis strain would be employed, and, as such, conventional antibiotics typically used to treat Y. pestis (e.g., streptomycin, tetracycline, and gentamicin) would be ineffective. In this study, cethromycin (a ketolide antibiotic which inhibits bacterial protein synthesis and is currently in clinical trials for respiratory tract infections) was evaluated for antiplague activity in a rat model of pneumonic infection and compared with levofloxacin, which operates via inhibition of bacterial topoisomerase and DNA gyrase. Following a respiratory challenge of 24 to 30 times the 50% lethal dose of the highly virulent Y. pestis CO92 strain, 70 mg of cethromycin per kg of body weight (orally administered twice daily 24 h postinfection for a period of 7 days) provided complete protection to animals against mortality without any toxic effects. Further, no detectable plague bacilli were cultured from infected animals' blood and spleens following cethromycin treatment. The antibiotic was most effective when administered to rats 24 h postinfection, as the animals succumbed to infection if treatment was further delayed. All cethromycin-treated survivors tolerated 2 subsequent exposures to even higher lethal Y. pestis doses without further antibiotic treatment, which was related, in part, to the development of specific antibodies to the capsular and low-calcium-response V antigens of Y. pestis. These data demonstrate that cethromycin is a potent antiplague drug that can be used to treat pneumonic plague.
Grillo-Hill, Bree K; Choi, Changhoon; Jimenez-Vidal, Maite; Barber, Diane L
2015-01-01
Intracellular pH (pHi) dynamics is increasingly recognized as an important regulator of a range of normal and pathological cell behaviors. Notably, increased pHi is now acknowledged as a conserved characteristic of cancers and in cell models is confirmed to increase proliferation and migration as well as limit apoptosis. However, the significance of increased pHi for cancer in vivo remains unresolved. Using Drosophila melanogaster, we show that increased pHi is sufficient to induce dysplasia in the absence of other transforming cues and potentiates growth and invasion with oncogenic Ras. Using a genetically encoded biosensor we also confirm increased pHi in situ. Moreover, in Drosophila models and clonal human mammary cells we show that limiting H+ efflux with oncogenic Raf or Ras induces acidosis and synthetic lethality. Further, we show lethality in invasive primary tumor cell lines with inhibiting H+ efflux. Synthetic lethality with reduced H+ efflux and activated oncogene expression could be exploited therapeutically to restrain cancer progression while limiting off-target effects. DOI: http://dx.doi.org/10.7554/eLife.03270.001 PMID:25793441
Machouart, M; Larché, J; Burton, K; Collomb, J; Maurer, P; Cintrat, A; Biava, M F; Greciano, S; Kuijpers, A F A; Contet-Audonneau, N; de Hoog, G S; Gérard, A; Fortier, B
2006-03-01
Mucormycosis is a rare and opportunistic infection caused by fungi belonging to the order Mucorales. Recent reports have demonstrated an increasing incidence of mucormycosis, which is frequently lethal, especially in patients suffering from severe underlying conditions such as immunodeficiency. In addition, even though conventional mycology and histopathology assays allow for the identification of Mucorales, they often fail in offering a species-specific diagnosis. Due to the lack of other laboratory tests, a precise identification of these molds is thus notoriously difficult. In this study we aimed to develop a molecular biology tool to identify the main Mucorales involved in human pathology. A PCR strategy selectively amplifies genomic DNA from molds belonging to the genera Absidia, Mucor, Rhizopus, and Rhizomucor, excluding human DNA and DNA from other filamentous fungi and yeasts. A subsequent digestion step identified the Mucorales at genus and species level. This technique was validated using both fungal cultures and retrospective analyses of clinical samples. By enabling a rapid and precise identification of Mucorales strains in infected patients, this PCR-restriction fragment length polymorphism-based method should help clinicians to decide on the appropriate treatment, consequently decreasing the mortality of mucormycosis.
Machouart, M.; Larché, J.; Burton, K.; Collomb, J.; Maurer, P.; Cintrat, A.; Biava, M. F.; Greciano, S.; Kuijpers, A. F. A.; Contet-Audonneau, N.; de Hoog, G. S.; Gérard, A.; Fortier, B.
2006-01-01
Mucormycosis is a rare and opportunistic infection caused by fungi belonging to the order Mucorales. Recent reports have demonstrated an increasing incidence of mucormycosis, which is frequently lethal, especially in patients suffering from severe underlying conditions such as immunodeficiency. In addition, even though conventional mycology and histopathology assays allow for the identification of Mucorales, they often fail in offering a species-specific diagnosis. Due to the lack of other laboratory tests, a precise identification of these molds is thus notoriously difficult. In this study we aimed to develop a molecular biology tool to identify the main Mucorales involved in human pathology. A PCR strategy selectively amplifies genomic DNA from molds belonging to the genera Absidia, Mucor, Rhizopus, and Rhizomucor, excluding human DNA and DNA from other filamentous fungi and yeasts. A subsequent digestion step identified the Mucorales at genus and species level. This technique was validated using both fungal cultures and retrospective analyses of clinical samples. By enabling a rapid and precise identification of Mucorales strains in infected patients, this PCR-restriction fragment length polymorphism-based method should help clinicians to decide on the appropriate treatment, consequently decreasing the mortality of mucormycosis. PMID:16517858
Furuta, Takahiro; Mukai, Ayumi; Ohishi, Akihiro; Nishida, Kentaro; Nagasawa, Kazuki
2017-12-01
Neuron-glia communication mediated by neuro- and glio-transmitters such as ATP and zinc is crucial for the maintenance of brain homeostasis, and its dysregulation is found under pathological conditions. It is reported that under oxidative stress-loaded conditions, astrocytes exhibit increased intra- and extra-cellular labile zinc, the latter triggering microglial M1 activation, while the pathophysiological role of the former remains unrevealed. In this study, we examined whether the oxidative stress-induced increase of intracellular labile zinc is involved in the P2X7 receptor (P2X7R)-mediated regulation of astrocytic engulfing activity. The exposure of cultured astrocytes to sub-lethal oxidative stress through their treatment with 400 μM H 2 O 2 increased intracellular labile zinc, of which the concentration reached a peak level of approximately 2 μM at 2 h after the treatment. In astrocytes under sub-lethal oxidative stress, the uptake of YO-PRO-1 and latex beads as markers for P2X7R channel/pore activity and astrocytic engulfing activity, respectively, was decreased, and these decreased activities were accompanied by decreased expression of P2X7R at the plasma membrane via intracellular labile zinc-mediated translocation of it. With the oxidative stress, the expression level of full length P2X7R relative to that of its splice variants in astrocytes was decreased, leading to a decrease of the relative expression of the trimer consisting of full length P2X7R. Collectively, sub-lethal oxidative stress induces an astrocytic modal shift from the normal resting engulfing mode to the activated astrogliosis mode via an intracellular labile zinc-mediated decrease of the functional expression of P2X7R.
Toxic shock syndrome toxin-1, not α-toxin, mediated Bundaberg fatalities.
Mueller, Elizabeth A; Merriman, Joseph A; Schlievert, Patrick M
2015-12-01
The 1928 Bundaberg disaster is one of the greatest vaccine tragedies in history. Of 21 children immunized with a diphtheria toxin-antitoxin preparation contaminated with Staphylococcus aureus, 18 developed life-threatening disease and 12 died within 48 h. Historically, the deaths have been attributed to α-toxin, a secreted cytotoxin produced by most S. aureus strains, yet the ability of the Bundaberg contaminant microbe to produce the toxin has never been verified. For the first time, the ability of the original strain to produce α-toxin and other virulence factors is investigated. The study investigates the genetic and regulatory loci mediating α-toxin expression by PCR and assesses production of the cytotoxin in vitro using an erythrocyte haemolysis assay. This analysis is extended to other secreted virulence factors produced by the strain, and their sufficiency to cause lethality in New Zealand white rabbits is determined. Although the strain possesses a wild-type allele for α-toxin, it must have a defective regulatory system, which is responsible for the strain's minimal α-toxin production. The strain encodes and produces staphylococcal superantigens, including toxic shock syndrome toxin-1 (TSST-1), which is sufficient to cause lethality in patients. The findings cast doubt on the belief that α-toxin is the major virulence factor responsible for the Bundaberg fatalities and point to the superantigen TSST-1 as the cause of the disaster.
Westbrook, Reyhan; Bonkowski, Michael S; Arum, Oge; Strader, April D; Bartke, Andrzej
2014-01-01
Mutations causing decreased somatotrophic signaling are known to increase insulin sensitivity and extend life span in mammals. Caloric restriction and every other day (EOD) dietary regimens are associated with similar improvements to insulin signaling and longevity in normal mice; however, these interventions fail to increase insulin sensitivity or life span in growth hormone receptor knockout (GHRKO) mice. To investigate the interactions of the GHRKO mutation with caloric restriction and EOD dietary interventions, we measured changes in the metabolic parameters oxygen consumption (VO2) and respiratory quotient produced by either long-term caloric restriction or EOD in male GHRKO and normal mice. GHRKO mice had increased VO2, which was unaltered by diet. In normal mice, EOD diet caused a significant reduction in VO2 compared with ad libitum (AL) mice during fed and fasted conditions. In normal mice, caloric restriction increased both the range of VO2 and the difference in minimum VO2 between fed and fasted states, whereas EOD diet caused a relatively static VO2 pattern under fed and fasted states. No diet significantly altered the range of VO2 of GHRKO mice under fed conditions. This provides further evidence that longevity-conferring diets cause major metabolic changes in normal mice, but not in GHRKO mice.
Yang, Lijuan; Sanchez, Anthony; Ward, Jerrold M; Murphy, Brian R; Collins, Peter L; Bukreyev, Alexander
2008-08-01
Ebola virus (EBOV) causes outbreaks of a highly lethal hemorrhagic fever in humans. The virus can be transmitted by direct contact as well as by aerosol and is considered a potential bioweapon. Because direct immunization of the respiratory tract should be particularly effective against infection of mucosal surfaces, we previously developed an intranasal vaccine based on replication-competent human parainfluenza virus type 3 (HPIV3) expressing EBOV glycoprotein GP (HPIV3/EboGP) and showed that it is immunogenic and protective against a high dose parenteral EBOV challenge. However, because the adult human population has considerable immunity to HPIV3, which is a common human pathogen, replication and immunogenicity of the vaccine in this population might be greatly restricted. Indeed, in the present study, replication of the vaccine in the respiratory tract of HPIV3-immune guinea pigs was found to be restricted to undetectable levels. This restriction appeared to be based on both neutralizing antibodies and cellular or other components of the immunity to HPIV3. Surprisingly, even though replication of HPIV3/EboGP was highly restricted in HPIV3-immune animals, it induced a high level of EBOV-specific antibodies that nearly equaled that obtained in HPIV3-naive animals. We also show that the previously demonstrated presence of functional GP in the vector particle was not associated with increased replication in the respiratory tract nor with spread beyond the respiratory tract of HPIV3-naive guinea pigs, indicating that expression and functional incorporation of the attachment/penetration glycoprotein of this systemic virus did not mediate a change in tissue tropism.
Kopanakis, Konstantinos; Tzepi, Ira-Maria; Pistiki, Aikaterini; Carrer, Dionyssia-Pinelopi; Netea, Mihai G; Georgitsi, Marianna; Lymperi, Maria; Droggiti, Dionyssia-Irini; Liakakos, Theodoros; Machairas, Anastasios; Giamarellos-Bourboulis, Evangelos J
2013-06-01
Although LPS tolerance is well-characterized, it remains unknown if it is achieved even with single doses of lipopolysaccharide (LPS) and if it offers protection against lethal bacterial infections. To this end, C57B6 mice were assigned to groups A (sham); B (saline i.p followed after 24h by i.p 30mg/kg LPS); and C (3mg/kg LPS i.p followed after 24h by i.p 30mg/kg LPS). Survival was monitored and animals were sacrificed early after lethal challenge for measurement of tumour necrosis factor-alpha (TNFα) in serum; isolation of splenocytes and cytokine stimulation; and flow-cytometry for apoptosis and TREM-1. Experiments were repeated with mice infected i.p by Escherichia coli after challenging with saline or LPS. Mortality of group B was 72.2% compared with 38.9% of group C (p: 0.020). Serum TNFα of group C was lower than group B. Expression of TREM-1 of group C on monocytes/neutrophils was greater than group B. Release of TNFα, of IFNγ and of IL-17 from splenocytes of group C was lower than group B and the opposite happened for IL-10 showing evidence of cellular reprogramming. In parallel, apoptosis of circulating lymphocytes and of splenocytes of group C was greater compared with group B. Pre-treatment of mice challenged by E. coli with low dose LPS led to 0% mortality compared with 90% of saline pre-treated mice; in these mice, splenocytes improved over-time their capacity for release of IFNγ. It is concluded that single low doses of LPS lead to early reprogramming of the innate immune response and prolong survival after lethal E. coli challenge. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nelson, Michelle; Salguero, Francisco J; Dean, Rachel E; Ngugi, Sarah A; Smither, Sophie J; Atkins, Timothy P; Lever, Mark S
2014-12-01
Glanders and melioidosis are caused by two distinct Burkholderia species and have generally been considered to have similar disease progression. While both of these pathogens are HHS/CDC Tier 1 agents, natural infection with both these pathogens is primarily through skin inoculation. The common marmoset (Callithrix jacchus) was used to compare disease following experimental subcutaneous challenge. Acute, lethal disease was observed in marmosets following challenge with between 26 and 1.2 × 10(8) cfu Burkholderia pseudomallei within 22-85 h. The reproducibility and progression of the disease were assessed following a challenge of 1 × 10(2) cfu of B. pseudomallei. Melioidosis was characterised by high levels of bacteraemia, focal microgranuloma progressing to non-necrotic multifocal solid lesions in the livers and spleens and multi-organ failure. Lethal disease was observed in 93% of animals challenged with Burkholderia mallei, occurring between 5 and 10.6 days. Following challenge with 1 × 10(2) cfu of B. mallei, glanders was characterised with lymphatic spread of the bacteria and non-necrotic, multifocal solid lesions progressing to a multifocal lesion with severe necrosis and pneumonia. The experimental results confirmed that the disease pathology and presentation is strikingly different between the two pathogens. The marmoset provides a model of the human syndrome for both diseases facilitating the development of medical countermeasures. © 2014 Crown copyright. International Journal of Experimental Pathology © 2014 Company of the International Journal of Experimental Pathology (CIJEP).
Price, Joseph A; Sanny, Charles G
2007-05-01
One problem in the development and refinement of anti-venoms is ascertaining both overall anti-venom reactivity and which key toxins are neutralized. Here we show by SE-HPLC that the in vitro reaction of CroFab anti-venin with Crotalus atrox venom asymptotically nears completion (>95%) by 11 min at 4 degrees C by following the change in area under chromatographic peaks. The peaks for reactants decrease and the formation of high molecular weight complexes increases with time. To assay the large number of samples a new microplate format phospholipase A(2) (PLA(2)) assay at an initial pH of 7.5 was developed using phosphotidyl choline as the substrate. The change in absorbance is due to the pH change caused by release of fatty acids, and is linear with dilution of enzyme. This choice of substrate limits detection to PLA(2) and nonspecific esterase (if any) activities. The neutralization mixtures show a dose dependent (CroFab anti-venin) inactivation of C. atrox PLA(2) activity approaching a maximum of 85% neutralization. This approach of revealing antibody binding to venom components coupled with enzyme activity measurements is effective and may lead to greater in vitro assessment of antivenin activity in product development, and less routine use of mouse lethality assays.
H7N9 Influenza Virus Is More Virulent in Ferrets than 2009 Pandemic H1N1 Influenza Virus.
Yum, Jung; Ku, Keun Bon; Kim, Hyun Soo; Seo, Sang Heui
2015-12-01
The novel H7N9 influenza virus has been infecting humans in China since February 2013 and with a mortality rate of about 40%. This study compared the pathogenicity of the H7N9 and 2009 pandemic H1N1 influenza viruses in a ferret model, which shows similar symptoms to those of humans infected with influenza viruses. The H7N9 influenza virus caused a more severe disease than did the 2009 pandemic H1N1 influenza virus. All of the ferrets infected with the H7N9 influenza virus had died by 6 days after infection, while none of those infected with the 2009 pandemic H1N1 influenza virus died. Ferrets infected with the H7N9 influenza virus had higher viral titers in their lungs than did those infected with the 2009 pandemic H1N1 influenza virus. Histological findings indicated that hemorrhagic pneumonia was caused by infection with the H7N9 influenza virus, but not with the 2009 pandemic H1N1 influenza virus. In addition, the lung tissues of ferrets infected with the H7N9 influenza virus contained higher levels of chemokines than did those of ferrets infected with the 2009 pandemic H1N1 influenza virus. This study suggests that close monitoring is needed to prevent human infection by the lethal H7N9 influenza virus.
Sargent, Charli; Zhou, Xuan; Matthews, Raymond W; Darwent, David; Roach, Gregory D
2016-01-29
The impact of sleep restriction on the endogenous circadian rhythms of hunger and satiety were examined in 28 healthy young men. Participants were scheduled to 2 × 24-h days of baseline followed by 8 × 28-h days of forced desynchrony during which sleep was either moderately restricted (equivalent to 6 h in bed/24 h; n = 14) or severely restricted (equivalent to 4 h in bed/24 h; n = 14). Self-reported hunger and satisfaction were assessed every 2.5 h during wake periods using visual analogue scales. Participants were served standardised meals and snacks at regular intervals and were not permitted to eat ad libitum. Core body temperature was continuously recorded with rectal thermistors to determine circadian phase. Both hunger and satiety exhibited a marked endogenous circadian rhythm. Hunger was highest, and satiety was lowest, in the biological evening (i.e., ~17:00-21:00 h) whereas hunger was lowest, and satiety was highest in the biological night (i.e., 01:00-05:00 h). The results are consistent with expectations based on previous reports and may explain in some part the decrease in appetite that is commonly reported by individuals who are required to work at night. Interestingly, the endogenous rhythms of hunger and satiety do not appear to be altered by severe--as compared to moderate--sleep restriction.
Kaushal, Nidhi; Seminerio, Michael J.; Robson, Matthew J.; McCurdy, Christopher R.; Matsumoto, Rae R.
2013-01-01
Methamphetamine is a highly addictive psychostimulant drug of abuse, causing hyperthermia and neurotoxicity at high doses. Currently, there is no clinically proven pharmacotherapy to treat these effects of methamphetamine, necessitating identification of potential novel therapeutic targets. Earlier studies showed that methamphetamine binds to sigma (σ) receptors in the brain at physiologically relevant concentrations, where it acts in part as an agonist. SN79 (6-acetyl-3-(4-(4-(4-florophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one) was synthesized as a putative σ receptor antagonist with nanomolar affinity and selectivity for σ receptors over 57 other binding sites. SN79 pretreatment afforded protection against methamphetamine-induced hyperthermia and striatal dopaminergic and serotonergic neurotoxicity in male, Swiss Webster mice (measured as depletions in striatal dopamine and serotonin levels, and reductions in striatal dopamine and serotonin transporter expression levels). In contrast, di-o-tolylguanidine (DTG), a well established σ receptor agonist, increased the lethal effects of methamphetamine, although it did not further exacerbate methamphetamine-induced hyperthermia. Together, the data implicate σ receptors in the direct modulation of some effects of methamphetamine such as lethality, while having a modulatory role which can mitigate other methamphetamine-induced effects such as hyperthermia and neurotoxicity. PMID:22921523
Kaushal, Nidhi; Seminerio, Michael J; Robson, Matthew J; McCurdy, Christopher R; Matsumoto, Rae R
2013-08-01
Methamphetamine is a highly addictive psychostimulant drug of abuse, causing hyperthermia and neurotoxicity at high doses. Currently, there is no clinically proven pharmacotherapy to treat these effects of methamphetamine, necessitating identification of potential novel therapeutic targets. Earlier studies showed that methamphetamine binds to sigma (σ) receptors in the brain at physiologically relevant concentrations, where it "acts in part as an agonist." SN79 (6-acetyl-3-(4-(4-(4-florophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one) was synthesized as a putative σ receptor antagonist with nanomolar affinity and selectivity for σ receptors over 57 other binding sites. SN79 pretreatment afforded protection against methamphetamine-induced hyperthermia and striatal dopaminergic and serotonergic neurotoxicity in male, Swiss Webster mice (measured as depletions in striatal dopamine and serotonin levels, and reductions in striatal dopamine and serotonin transporter expression levels). In contrast, di-o-tolylguanidine (DTG), a well established σ receptor agonist, increased the lethal effects of methamphetamine, although it did not further exacerbate methamphetamine-induced hyperthermia. Together, the data implicate σ receptors in the direct modulation of some effects of methamphetamine such as lethality, while having a modulatory role which can mitigate other methamphetamine-induced effects such as hyperthermia and neurotoxicity. Copyright © 2012 Elsevier B.V. and ECNP. All rights reserved.
Dasmahapatra, Girija; Lembersky, Dmitry; Son, Minkyeong P.; Attkisson, Elisa; Dent, Paul; Fisher, Richard. I.; Friedberg, Jonathan W.; Grant, Steven
2011-01-01
Interactions between the proteasome inhibitor carfilzomib and the HDAC inhibitors vorinostat and SNDX-275 were examined in mantle cell lymphoma (MCL) cells in vitro and in vivo. Co-administration of very low, marginally toxic carfilzomib concentrations (e.g., 3–4 nM) with minimally lethal vorinostat or SNDX-275 concentrations induced sharp increases in mitochondrial injury and apoptosis in multiple MCL cell lines and primary MCL cells. Enhanced lethalitly was associated with JNK1/2 activation, increased DNA damage (induction of λH2A.X), and ERK1/2 and AKT1/2 inactivation. Co-administration of carfilzomib and HDACIs induced a marked increase in ROS generation, and G2M arrest. Significantly, the free radical scavenger TBAP blocked carfilzomib/HDACI-mediated ROS generation, λH2A.X formation, JNK1/2 activation, and lethality. Genetic (shRNA) knock down of JNK1/2 significantly attenuated carfilzomib/HDACI-induced apoptosis, but did not prevent ROS generation or DNA damage. Carfilzomib/HDACI regimens were also active against bortezomib-resistant MCL cells. Finally, carfilzomib/vorinostat co-administrationo resulted in a pronounced reduction in tumor growth compared to single agent treatment in a MCL xenograft model associated with enhanced apoptosis, λH2A.X formation, and JNK activation. Collectively, these findings suggest that carfilzomib/HDACI regimens warrants attention in MCL. PMID:21750224
Marrow transplantation in the treatment of a murine heritable hemolytic anemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, J.E.; McFarland-Starr, E.C.
1989-05-15
Mice with hemolytic anemia, sphha/sphha, have extremely fragile RBCs with a lifespan of approximately one day. Neither splenectomy nor simple transplantation of normal marrow after lethal irradiation cures the anemia but instead causes rapid deterioration and death of the mutant unless additional prophylactic procedures are used. In this report, we show that normal marrow transplantation preceded by sublethal irradiation increases but does not normalize RBC count. The mutant RBCs but not all the WBCs are replaced by donor cells. Splenectomy of the improved recipient causes a dramatic decrease in RBC count, indicating that the mutant spleen is a site ofmore » donor-origin erythropoiesis as well as of RBC destruction. Injections of iron dextran did not improve RBC counts. Transplantation of primary recipient marrow cells into a secondary host with a heritable stem cell deficiency (W/Wv) corrects the defect caused by residence of the normal cells in the sphha/sphha host. The original +/+ donor cells replace the RBCs of the secondary host, and the RBC count is normalized. Results indicate that the environment in the sphha/sphha host is detrimental to normal (as well as mutant) erythroid cells but the restriction is not transmitted.« less
Du, Lanying; Jin, Lei; Zhao, Guangyu; Sun, Shihui; Li, Junfeng; Yu, Hong; Li, Ye; Zheng, Bo-Jian; Liddington, Robert C.
2013-01-01
The unabated circulation of the highly pathogenic avian influenza A virus/H5N1 continues to be a serious threat to public health worldwide. Because of the high frequency of naturally occurring mutations, the emergence of H5N1 variants with high virulence has raised great concerns about the potential transmissibility of the virus in humans. Recent studies have shown that laboratory-mutated or reassortant H5N1 viruses could be efficiently transmitted among mammals, particularly ferrets, the best animal model for humans. Thus, it is critical to establish effective strategies to combat future H5N1 pandemics. In this study, we identified a broadly neutralizing monoclonal antibody (MAb), HA-7, that potently neutralized all tested strains of H5N1 covering clades 0, 1, 2.2, 2.3.4, and 2.3.2.1 and completely protected mice against lethal challenges of H5N1 viruses from clades 1 and 2.3.4. HA-7 specifically targeted the globular head of the H5N1 virus hemagglutinin (HA). Using electron microscopy technology with three-dimensional reconstruction (3D-EM), we discovered that HA-7 bound to a novel and highly conserved conformational epitope that was centered on residues 81 to 83 and 117 to 122 of HA1 (H5 numbering). We further demonstrated that HA-7 inhibited viral entry during postattachment events but not at the receptor-binding step, which is fully consistent with the 3D-EM result. Taken together, we propose that HA-7 could be humanized as an effective passive immunotherapeutic agent for antiviral stockpiling for future influenza pandemics caused by emerging unpredictable H5N1 strains. Our study also provides a sound foundation for the rational design of vaccines capable of inducing broad-spectrum immunity against H5N1. PMID:23221567
Current situation of H9N2 subtype avian influenza in China.
Gu, Min; Xu, Lijun; Wang, Xiaoquan; Liu, Xiufan
2017-09-15
In China, H9N2 subtype avian influenza outbreak is firstly reported in Guangdong province in 1992. Subsequently, the disease spreads into vast majority regions nationwide and has currently become endemic there. Over vicennial genetic evolution, the viral pathogenicity and transmissibility have showed an increasing trend as year goes by, posing serious threat to poultry industry. In addition, H9N2 has demonstrated significance to public health as it could not only directly infect mankind, but also donate partial or even whole cassette of internal genes to generate novel human-lethal reassortants like H5N1, H7N9, H10N8 and H5N6 viruses. In this review, we mainly focused on the epidemiological dynamics, biological characteristics, molecular phylogeny and vaccine strategy of H9N2 subtype avian influenza virus in China to present an overview of the situation of H9N2 in China.
Lin, Johnson; Sharma, Vikas; Milase, Ridwaan; Mbhense, Ntuthuko
2016-06-01
Phenol degradation enhancement of Acinetobacter strain V2 by a step-wise continuous acclimation process was investigated. At the end of 8 months, three stable adapted strains, designated as R, G, and Y, were developed with the sub-lethal concentration of phenol at 800, 1100, and 1400 mg/L, respectively, from 400 mg/L of V2 parent strain. All strains degraded phenol at their sub-lethal level within 24 h, their growth rate increased as the acclimation process continued and retained their degradation properties even after storing at -80 °C for more than 3 years. All adapted strains appeared coccoid with an ungranulated surface under electron microscope compared to typical rod-shaped parental strain V2 . The adapted Y strain also possessed superior degradation ability against aniline, benzoate, and toluene. This study demonstrated the use of long term acclimation process to develop efficient and better pollutant degrading bacterial strains with potentials in industrial and environmental bioremediation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Iminosugar UV-4 is a Broad Inhibitor of Influenza A and B Viruses ex Vivo and in Mice
Warfield, Kelly L.; Barnard, Dale L.; Enterlein, Sven G.; Smee, Donald F.; Khaliq, Mansoora; Sampath, Aruna; Callahan, Michael V.; Ramstedt, Urban; Day, Craig W.
2016-01-01
Iminosugars that are competitive inhibitors of endoplasmic reticulum (ER) α-glucosidases have been demonstrated to have antiviral activity against a diverse set of viruses. A novel iminosugar, UV-4B, has recently been shown to provide protection against lethal infections with dengue and influenza A (H1N1) viruses in mice. In the current study, the breadth of activity of UV-4B against influenza was examined ex vivo and in vivo. Efficacy of UV-4B against influenza A and B viruses was shown in primary human bronchial epithelial cells, a principal target tissue for influenza. Efficacy of UV-4B against influenza A (H1N1 and H3N2 subtypes) and influenza B was demonstrated using multiple lethal mouse models with readouts including mortality and weight loss. Clinical trials are ongoing to demonstrate safety of UV-4B and future studies to evaluate antiviral activity against influenza in humans are planned. PMID:27072420
Postprandial Glucose Surges after Extremely Low Carbohydrate Diet in Healthy Adults.
Kanamori, Koji; Ihana-Sugiyama, Noriko; Yamamoto-Honda, Ritsuko; Nakamura, Tomoka; Sobe, Chie; Kamiya, Shigemi; Kishimoto, Miyako; Kajio, Hiroshi; Kawano, Kimiko; Noda, Mitsuhiko
2017-09-01
Carbohydrate-restricted diets are prevalent not only in obese people but also in the general population to maintain appropriate body weight. Here, we report that extreme carbohydrate restriction for one day affects the subsequent blood glucose levels in healthy adults. Ten subjects (median age 30.5 years, BMI 21.1 kg/m 2 , and HbA1c 5.5%), wearing with a continuous glucose monitoring device, were given isoenergetic test meals for 4 consecutive days. On day 1, day 2 (D2), and day 4 (D4), they consumed normal-carbohydrate (63-66% carbohydrate) diet, while on day 3, they took low-carbohydrate/high-fat (5% carbohydrate) diet. The daily energy intake was 2,200 kcal for males and 1,700 kcal for females. On D2 and D4, we calculated the mean 24-hr blood glucose level (MEAN/24h) and its standard deviation (SD/24h), the area under the curve (AUC) for glucose over 140 mg/dL within 4 hours after each meal (AUC/4h/140), the mean amplitude of the glycemic excursions (MAGE), the incremental AUC of 24-hr blood glucose level above the mean plus one standard deviation (iAUC/MEAN+SD). Indexes for glucose fluctuation on D4 were significantly greater than those on D2 (SD/24h; p = 0.009, MAGE; p = 0.013, AUC/4h/140 after breakfast and dinner; p = 0.006 and 0.005, and iAUC/MEAN+SD; p = 0.007). The value of MEAN/24h and AUC/4h/140 after lunch on D4 were greater than those on D2, but those differences were not statistically significant. In conclusion, consumption of low-carbohydrate/high-fat diet appears to cause higher postprandial blood glucose on subsequent normal-carbohydrate diet particularly after breakfast and dinner in healthy adults.
The genetic origin of minor histocompatibility antigens.
Roopenian, D C; Christianson, G J; Davis, A P; Zuberi, A R; Mobraaten, L E
1993-01-01
The purpose of this study was to elucidate the genetic origin of minor histocompatibility (H) antigens. Toward this end common inbred mouse strains, distinct subspecies, and species of the subgenus Mus were examined for expression of various minor H antigens. These antigens were encoded by the classical minor H loci H-3 and H-4 or by newly identified minor H antigens detected as a consequence of mutation. Both minor H antigens that stimulate MHC class I-restricted cytotoxic T cells (Tc) and antigens that stimulate MHC class II-restricted helper T cells (Th) were monitored. The results suggested that strains of distinct ancestry commonly express identical or cross-reactive antigens. Moreover, a correlation between the lack of expression of minor H antigens and ancestral heritage was observed. To address whether the antigens found on unrelated strains were allelic with the sensitizing minor H antigens or a consequence of antigen cross-reactivity, classical genetic segregation analysis was carried out. Even in distinct subspecies and species, the minor H antigens always mapped to the site of the appropriate minor H locus. Together the results suggest: 1) minor H antigen sequences are evolutionarily stable in that their pace of antigenic change is slow enough to predate subspeciation and speciation; 2) the minor H antigens originated in the inbred strains as a consequence of a rare polymorphism or loss mutation carried in a founder mouse stock that caused the mouse to perceive the wild-type protein as foreign; 3) there is a remarkable lack of antigenic cross-reactivity between the defined minor H antigens and other gene products.
Menon, Debashish U; Coarfa, Cristian; Xiao, Weimin; Gunaratne, Preethi H; Meller, Victoria H
2014-11-18
Highly differentiated sex chromosomes create a lethal imbalance in gene expression in one sex. To accommodate hemizygosity of the X chromosome in male fruit flies, expression of X-linked genes increases twofold. This is achieved by the male- specific lethal (MSL) complex, which modifies chromatin to increase expression. Mutations that disrupt the X localization of this complex decrease the expression of X-linked genes and reduce male survival. The mechanism that restricts the MSL complex to X chromatin is not understood. We recently reported that the siRNA pathway contributes to localization of the MSL complex, raising questions about the source of the siRNAs involved. The X-linked 1.688 g/cm(3) satellite related repeats (1.688(X) repeats) are restricted to the X chromosome and produce small RNA, making them an attractive candidate. We tested RNA from these repeats for a role in dosage compensation and found that ectopic expression of single-stranded RNAs from 1.688(X) repeats enhanced the male lethality of mutants with defective X recognition. In contrast, expression of double-stranded hairpin RNA from a 1.688(X) repeat generated abundant siRNA and dramatically increased male survival. Consistent with improved survival, X localization of the MSL complex was largely restored in these males. The striking distribution of 1.688(X) repeats, which are nearly exclusive to the X chromosome, suggests that these are cis-acting elements contributing to identification of X chromatin.
USDA-ARS?s Scientific Manuscript database
Ongoing regulatory changes are eliminating or restricting the use of broad-spectrum insecticides in fruit crops in the USA, and current IPM programs for plum curculio, Conotrachelus nenuphar (Herbst), in highbush blueberries, Vaccinium corymbosum L, need to address these changes. To assist in this ...
Robidoux, Pierre Yves; Sunahara, Geoffrey I; Savard, Kathleen; Berthelot, Yann; Dodard, Sabine; Martel, Majorie; Gong, Ping; Hawari, Jalal
2004-04-01
Monocyclic nitramine explosives such as 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) are toxic to a number of ecological receptors, including earthworms. The polycyclic nitramine CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) is a powerful explosive that may replace RDX and HMX, but its toxicity is not known. In the present study, the lethal and sublethal toxicities of CL-20 to the earthworm (Eisenia andrei) are evaluated. Two natural soils, a natural sandy forest soil (designated RacFor2002) taken in the Montreal area (QC, Canada; 20% organic carbon, pH 7.2) and a Sassafras sandy loam soil (SSL) taken on the property of U.S. Army Aberdeen Proving Ground (Edgewood, MD, USA; 0.33% organic carbon, pH 5.1), were used. Results showed that CL-20 was not lethal at concentrations of 125 mg/kg or less in the RacFor2002 soil but was lethal at concentrations of 90.7 mg/kg or greater in the SSL soil. Effects on the reproduction parameters such as a decrease in the number of juveniles after 56 d of exposure were observed at the initial CL-20 concentration of 1.6 mg/kg or greater in the RacFor2002 soil, compared to 0.2 mg/kg or greater in the SSL soil. Moreover, low concentrations of CL-20 in SSL soil (approximately 0.1 mg/kg; nominal concentration) were found to reduce the fertility of earthworms. Taken together, the present results show that CL-20 is a reproductive toxicant to the earthworm, with lethal effects at higher concentrations. Its toxicity can be decreased in soils favoring CL-20 adsorption (high organic carbon content).
Levofloxacin Cures Experimental Pneumonic Plague in African Green Monkeys
McDonald, Jacob D.; Brasel, Trevor L.; Barr, Edward B.; Gigliotti, Andrew P.; Koster, Frederick
2011-01-01
Background Yersinia pestis, the agent of plague, is considered a potential bioweapon due to rapid lethality when delivered as an aerosol. Levofloxacin was tested for primary pneumonic plague treatment in a nonhuman primate model mimicking human disease. Methods and Results Twenty-four African Green monkeys (AGMs, Chlorocebus aethiops) were challenged via head-only aerosol inhalation with 3–145 (mean = 65) 50% lethal (LD50) doses of Y. pestis strain CO92. Telemetered body temperature >39°C initiated intravenous infusions to seven 5% dextrose controls or 17 levofloxacin treated animals. Levofloxacin was administered as a “humanized” dose regimen of alternating 8 mg/kg and 2 mg/kg 30-min infusions every 24-h, continuing until animal death or 20 total infusions, followed by 14 days of observation. Fever appeared at 53–165 h and radiographs found multilobar pneumonia in all exposed animals. All control animals died of severe pneumonic plague within five days of aerosol exposure. All 16 animals infused with levofloxacin for 10 days survived. Levofloxacin treatment abolished bacteremia within 24 h in animals with confirmed pre-infusion bacteremia, and reduced tachypnea and leukocytosis but not fever during the first 2 days of infusions. Conclusion Levofloxacin cures established pneumonic plague when treatment is initiated after the onset of fever in the lethal aerosol-challenged AGM nonhuman primate model, and can be considered for treatment of other forms of plague. Levofloxacin may also be considered for primary presumptive-use, multi-agent antibiotic in bioterrorism events prior to identification of the pathogen. PMID:21347450
Hutler Wolkowicz, Ianina; Svartz, Gabriela V; Aronzon, Carolina M; Pérez Coll, Christina
2016-12-01
Bisphenol A diglycidyl ether (BADGE) is used in packaging materials, in epoxy adhesives, and as an additive for plastics, but it is also a potential industrial wastewater contaminant. The aim of the present study was to evaluate the adverse effects of BADGE on Rhinella arenarum by means of standardized bioassays at embryo-larval development. The results showed that BADGE was more toxic to embryos than to larvae at all exposure times. At acute exposure, lethality rates of embryos exposed to concentrations of 0.0005 mg/L BADGE and greater were significantly higher than rates in the vehicle control, whereas lethality rates of larvae were significantly higher in concentrations of 10 mg/L BADGE and greater. The toxicity then increased significantly, with 96-h median lethal concentrations (LC50s) of 0.13 mg/L and 6.9 mg/L BADGE for embryos and larvae, respectively. By the end of the chronic period, the 336-h LC50s were 0.04 mg/L and 2.2 mg/L BADGE for embryos and larvae, respectively. This differential sensitivity was also ascertained by the 24-h pulse exposure experiments, in which embryos showed a stage-dependent toxicity, with blastula being the most sensitive stage and S.23 the most resistant. The most important sublethal effects in embryos were cell dissociation and delayed development, whereas the main abnormalities observed in larvae related to neurotoxicity, as scare response to stimuli and narcotic effect. Environ Toxicol Chem 2016;35:3031-3038. © 2016 SETAC. © 2016 SETAC.
Smith, Tracey J; Wilson, Marques A; Karl, J Philip; Orr, Jeb; Smith, Carl D; Cooper, Adam D; Heaton, Kristin J; Young, Andrew J; Montain, Scott J
2018-01-01
Systemic immune function is impaired by sleep restriction. However, the impact of sleep restriction on local immune responses and to what extent any impairment can be mitigated by nutritional supplementation is unknown. We assessed the effect of 72-h sleep restriction (2-h nightly sleep) on local immune function and skin barrier restoration of an experimental wound, and determined the influence of habitual protein intake (1.5 g·kg -1 ·day -1 ) supplemented with arginine, glutamine, zinc sulfate, vitamin C, vitamin D3, and omega-3 fatty acids compared with lower protein intake (0.8 g·kg -1 ·day -1 ) without supplemental nutrients on these outcomes. Wounds were created in healthy adults by removing the top layer of less than or equal to eight forearm blisters induced via suction, after adequate sleep (AS) or 48 h of a 72-h sleep restriction period (SR; 2-h nightly sleep). A subset of participants undergoing sleep restriction received supplemental nutrients during and after sleep restriction (SR+). Wound fluid was serially sampled 48 h postblistering to assess local cytokine responses. The IL-8 response of wound fluid was higher for AS compared with SR [area-under-the-curve (log 10 ), 5.1 ± 0.2 and 4.9 ± 0.2 pg/ml, respectively; P = 0.03]; and both IL-6 and IL-8 concentrations were higher for SR+ compared with SR ( P < 0.0001), suggestive of a potentially enhanced early wound healing response. Skin barrier recovery was shorter for AS (4.2 ± 0.9 days) compared with SR (5.0 ± 0.9 days) ( P = 0.02) but did not differ between SR and SR+ ( P = 0.18). Relatively modest sleep disruption delays wound healing. Supplemental nutrition may mitigate some decrements in local immune responses, without detectable effects on wound healing rate. NEW & NOTEWORTHY The data herein characterizes immune function in response to sleep restriction in healthy volunteers with and without nutrition supplementation. We used a unique skin wound model to show that sleep restriction delays skin barrier recovery, and nutrition supplementation attenuates decrements in local immune responses produced by sleep restriction. These findings support the beneficial effects of adequate sleep on immune function. Additional studies are necessary to characterize practical implications for populations where sleep restriction is unavoidable.
Hiquet, Jean; Gromb-Monnoyeur, Sophie
2016-07-01
The use of Flash-Ball® as a non-lethal weapon by several special units within the police and police forces started in France in 1995. Little literature is available concerning injuries caused by Flash-Ball® shooting. However, we report the case of a healthy 34-year-old male victim of a Flash-Ball® shooting during a riot following a sports event. This young man presented serious craniocerebral injuries with a left temporal fracture, moderate cerebral oedema, fronto-temporal haemorrhagic contusion along with an extra-dural hematoma and subarachnoid hemorrhage requiring neurological and rehabilitation care for two months leaving important sequelae. Although the risk is obviously lower than with firearms, Flash-Ball® is nonetheless potentially lethal and may cause serious physical injuries, particularly after a shot to the head. © The Author(s) 2015.
Wongsariya, Karn; Phanthong, Phanida; Bunyapraphatsara, Nuntavan; Srisukh, Vimol; Chomnawang, Mullika Traidej
2014-03-01
Citrus hystrix de Candolle (Rutaceae), an edible plant regularly used as a food ingredient, possesses antibacterial activity, but there is no current data on the activity against bacteria causing periodontal diseases. C. hystrix essential oil from leaves and peel were investigated for antibiofilm formation and mode of action against bacteria causing periodontal diseases. In vitro antibacterial and antibiofilm formation activities were determined by broth microdilution and time kill assay. Mode of action of essential oil was observed by SEM and the active component was identified by bioautography and GC/MS. C. hystrix leaves oil exhibited antibacterial activity at the MICs of 1.06 mg/mL for P. gingivalis and S. mutans and 2.12 mg/mL for S. sanguinis. Leaf oil at 4.25 mg/mL showed antibiofilm formation activity with 99% inhibition. The lethal effects on P. gingivalis were observed within 2 and 4 h after treated with 4 × MIC and 2 × MIC, respectively. S. sanguinis and S. mutans were completely killed within 4 and 8 h after exposed to 4 × MIC and 2 × MIC of oil. MICs of tested strains showed 4 times reduction suggesting synergistic interaction of oil and chlorhexidine. Bacterial outer membrane was disrupted after treatment with leaves oil. Additionally, citronellal was identified as the major active compound of C. hystrix oil. C. hystrix leaf oil could be used as a natural active compound or in combination with chlorhexidine in mouthwash preparations to prevent the growth of bacteria associated with periodontal diseases and biofilm formation.
Evolution of high-level resistance during low-level antibiotic exposure.
Wistrand-Yuen, Erik; Knopp, Michael; Hjort, Karin; Koskiniemi, Sanna; Berg, Otto G; Andersson, Dan I
2018-04-23
It has become increasingly clear that low levels of antibiotics present in many environments can select for resistant bacteria, yet the evolutionary pathways for resistance development during exposure to low amounts of antibiotics remain poorly defined. Here we show that Salmonella enterica exposed to sub-MIC levels of streptomycin evolved high-level resistance via novel mechanisms that are different from those observed during lethal selections. During lethal selection only rpsL mutations are found, whereas at sub-MIC selection resistance is generated by several small-effect resistance mutations that combined confer high-level resistance via three different mechanisms: (i) alteration of the ribosomal RNA target (gidB mutations), (ii) reduction in aminoglycoside uptake (cyoB, nuoG, and trkH mutations), and (iii) induction of the aminoglycoside-modifying enzyme AadA (znuA mutations). These results demonstrate how the strength of the selective pressure influences evolutionary trajectories and that even weak selective pressures can cause evolution of high-level resistance.
Bonnecaze, Alex K; Stephens, Sarah Ellen Elza; Miller, Peter John
2016-08-03
Clostridium sordellii is a spore-forming anaerobic Gram-positive rod that has rarely been reported to cause disease in humans. Resultant mortality from infection is estimated at nearly 70% and is most often correlated with gynaecological procedures, intravenous drug abuse or trauma. C. sordellii infection often presents similarly to toxic shock syndrome (TSS); notable features of infection include refractory hypotension, haemoconcentration and marked leucocytosis. Although clinically similar to TSS, a notable difference is C. sordellii infections rarely involve fever. The organism's major toxins include haemorrhagic (TcsH) and lethal factor (TcsL), which function to disrupt cytoskeletal integrity. Current literature suggests treating C. sordelli infection with a broad-spectrum penicillin, metronidazole and clindamycin. We present a case of C. sordellii bacteraemia and septic shock in an immunocompromised patient who was recently diagnosed with pleomorphic gluteal sarcoma. Despite presenting in critical condition, the patient improved after aggressive hemodynamic resuscitation, source control and intravenous antibiotic therapy. 2016 BMJ Publishing Group Ltd.
Mesfin, Mahlet N.; von Reyn, Catherine R.; Mott, Rosalind E.; Putt, Mary E.
2012-01-01
Abstract Striatal-enriched tyrosine phosphatase (STEP) has been identified as a component of physiological and pathophysiological signaling pathways mediated by N-methyl-d-aspartate (NMDA) receptor/calcineurin/calpain activation. Activation of these pathways produces a subsequent change in STEP isoform expression or activation via dephosphorylation. In this study, we evaluated changes in STEP phosphorylation and proteolysis in dissociated cortical neurons after sublethal and lethal mechanical injury using an in vitro stretch injury device. Sublethal stretch injury produces minimal changes in STEP phosphorylation at early time points, and increased STEP phosphorylation at 24 h that is blocked by the NMDA-receptor antagonist APV, the calcineurin-inhibitor FK506, and the sodium channel blocker tetrodotoxin. Lethal stretch injury produces rapid STEP dephosphorylation via NR2B-containing NMDA receptors, but not calcineurin, and a subsequent biphasic phosphorylation pattern. STEP61 expression progressively increases after sublethal stretch with no change in calpain-mediated STEP33 formation, while lethal stretch injury results in STEP33 formation via a NR2B-containing NMDA receptor pathway within 1 h of injury. Blocking calpain activation in the initial 30 min after stretch injury increases the ratio of active STEP in cells and blocks STEP33 formation, suggesting that STEP is an early substrate of calpain after mechanical injury. There is a strong correlation between the amount of STEP33 formed and the degree of cell death observed after lethal stretch injury. In summary, these data demonstrate that previously characterized pathways of STEP regulation via the NMDA receptor are generally conserved in mechanical injury, and suggest that calpain-mediated cleavage of STEP33 should be further examined as an early marker of neuronal fate after stretch injury. PMID:22435660
Yoon, K S; Strycharz, J P; Baek, J H; Sun, W; Kim, J H; Kang, J S; Pittendrigh, B R; Lee, S H; Clark, J M
2011-12-01
Transcriptional profiling results, using our non-invasive induction assay {short exposure intervals (2-5 h) to sublethal amounts of insecticides [< lethal concentration 3% (LC(3)) at 24 h] administered by stress-reducing means (contact vs. immersion screen) and with induction assessed in a time frame when tolerance is still present [~lethal concentration 90% (LC(90)) in 2-4 h]}, showed that ivermectin-induced detoxification genes from body lice are identified by quantitative real-time PCR analyses. Of the cytochrome P450 monooxygenase and ATP binding cassette transporter genes induced by ivermectin, CYP6CJ1, CYP9AG1, CYP9AG2 and PhABCC4 were respectively most significantly over-expressed, had high basal expression levels and were most closely related to genes from other organisms that metabolized insecticides, including ivermectin. Injection of double-stranded RNAs (dsRNAs) against either CYP9AG2 or PhABCC4 into non-induced female lice reduced their respective transcript level and resulted in increased sensitivity to ivermectin, indicating that these two genes are involved in the xenobiotic metabolism of ivermectin and in the production of tolerance. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.
Targeting SOD1 induces synthetic lethal killing in BLM- and CHEK2-deficient colorectal cancer cells
Sajesh, Babu V.; McManus, Kirk J.
2015-01-01
Cancer is a major cause of death throughout the world, and there is a large need for better and more personalized approaches to combat the disease. Over the past decade, synthetic lethal approaches have been developed that are designed to exploit the aberrant molecular origins (i.e. defective genes) that underlie tumorigenesis. BLM and CHEK2 are two evolutionarily conserved genes that are somatically altered in a number of tumor types. Both proteins normally function in preserving genome stability through facilitating the accurate repair of DNA double strand breaks. Thus, uncovering synthetic lethal interactors of BLM and CHEK2 will identify novel candidate drug targets and lead chemical compounds. Here we identify an evolutionarily conserved synthetic lethal interaction between SOD1 and both BLM and CHEK2 in two distinct cell models. Using quantitative imaging microscopy, real-time cellular analyses, colony formation and tumor spheroid models we show that SOD1 silencing and inhibition (ATTM and LCS-1 treatments), or the induction of reactive oxygen species (2ME2 treatment) induces selective killing within BLM- and CHEK2-deficient cells relative to controls. We further show that increases in reactive oxygen species follow SOD1 silencing and inhibition that are associated with the persistence of DNA double strand breaks, and increases in apoptosis. Collectively, these data identify SOD1 as a novel candidate drug target in BLM and CHEK2 cancer contexts, and further suggest that 2ME2, ATTM and LCS-1 are lead therapeutic compounds warranting further pre-clinical study. PMID:26318585
Targeting SOD1 induces synthetic lethal killing in BLM- and CHEK2-deficient colorectal cancer cells.
Sajesh, Babu V; McManus, Kirk J
2015-09-29
Cancer is a major cause of death throughout the world, and there is a large need for better and more personalized approaches to combat the disease. Over the past decade, synthetic lethal approaches have been developed that are designed to exploit the aberrant molecular origins (i.e. defective genes) that underlie tumorigenesis. BLM and CHEK2 are two evolutionarily conserved genes that are somatically altered in a number of tumor types. Both proteins normally function in preserving genome stability through facilitating the accurate repair of DNA double strand breaks. Thus, uncovering synthetic lethal interactors of BLM and CHEK2 will identify novel candidate drug targets and lead chemical compounds. Here we identify an evolutionarily conserved synthetic lethal interaction between SOD1 and both BLM and CHEK2 in two distinct cell models. Using quantitative imaging microscopy, real-time cellular analyses, colony formation and tumor spheroid models we show that SOD1 silencing and inhibition (ATTM and LCS-1 treatments), or the induction of reactive oxygen species (2ME2 treatment) induces selective killing within BLM- and CHEK2-deficient cells relative to controls. We further show that increases in reactive oxygen species follow SOD1 silencing and inhibition that are associated with the persistence of DNA double strand breaks, and increases in apoptosis. Collectively, these data identify SOD1 as a novel candidate drug target in BLM and CHEK2 cancer contexts, and further suggest that 2ME2, ATTM and LCS-1 are lead therapeutic compounds warranting further pre-clinical study.
Kumar, Saurav; Raman, R P; Kumar, Kundan; Pandey, P K; Kumar, Neeraj; Mohanty, Snatashree; Kumar, Abhay
2012-05-01
Argulus is one of the most common and predominant ectoparasites which cause serious parasitic disease and is a potent carrier of viruses and bacteria in the ornamental fish industry. In recent years, organic (herbs)-based medicines are widely used to cure the disease, and neem (Sarbaroganibarini) medicine is very popular and effective throughout the world. The present study was conducted to find the effects of Azadirachtin against Argulus spp. on Carassius auratus under in vitro and in vivo conditions. The 96-h median lethal concentration (LC(50)) for Azadirachtin EC 25% against Carassius auratus was found to be 82.115 mg L(-1). The antiparasitic activity test under in vitro and in vivo was evaluated at 1 (T1), 5 (T2), 10 (T3), 15 (T4) and 20 mg L(-1) (T5) to treat Argulus for 3 h and 72 h, respectively. In vitro effect of Azadirachtin solution led to 100% mortality of Argulus at 20 and 15 mg L(-1) for 2.5 and 3 h, respectively. Whereas, under in vivo test, the 100% antiparasitic efficacy of Azadirachtin solution was found at 15 and 20 mg L(-1) for 72 and 48 h, respectively. The EC(50) for 48 h was 20 mg L(-1), and thus, therapeutic index is 4.10. The results provided evidence that Azadirachtin can be used as a potential agent for controlling Argulus.
Risks of non-lethal weapon use: case studies of three French victims of stinger grenades.
Scolan, V; Herry, C; Carreta, M; Stahl, C; Barret, L; Romanet, J P; Paysant, F
2012-11-30
The development of non-lethal weapons started in the 1960s. In France, they have been used by the police for about 10 years. We relate the cases of three French women, victims of stinger grenades, non-lethal weapons recently adopted by the French law enforcement to distract and disperse crowds. The three victims presented serious injuries requiring emergency surgical care. One lost her eye. Based on these cases, we discuss the lethal character of these weapons and propose measures to be taken to prevent their dramatic consequences. Although the danger is obviously less than for firearms, stinger grenades are nonetheless potentially lethal and cause serious physical injuries. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Thullier, Philippe; Avril, Arnaud; Mathieu, Jacques; Behrens, Christian K; Pellequer, Jean-Luc; Pelat, Thibaut
2013-01-01
The lethal toxin (LT) of Bacillus anthracis, composed of the protective antigen (PA) and the lethal factor (LF), plays an essential role in anthrax pathogenesis. PA also interacts with the edema factor (EF, 20% identity with LF) to form the edema toxin (ET), which has a lesser role in anthrax pathogenesis. The first recombinant antibody fragment directed against LF was scFv 2LF; it neutralizes LT by blocking the interaction between PA and LF. Here, we report that scFv 2LF cross-reacts with EF and cross-neutralizes ET, and we present an in silico method taking advantage of this cross-reactivity to map the epitope of scFv 2LF on both LF and EF. This method identified five epitope candidates on LF, constituted of a total of 32 residues, which were tested experimentally by mutating the residues to alanine. This combined approach precisely identified the epitope of scFv 2LF on LF as five residues (H229, R230, Q234, L235 and Y236), of which three were missed by the consensus epitope candidate identified by pre-existing in silico methods. The homolog of this epitope on EF (H253, R254, E258, L259 and Y260) was experimentally confirmed to constitute the epitope of scFv 2LF on EF. Other inhibitors, including synthetic molecules, could be used to target these epitopes for therapeutic purposes. The in silico method presented here may be of more general interest.
Kim, Sang-Soon; Choi, Won; Kang, Dong-Hyun
2017-05-01
The purpose of this study was to inactivate foodborne pathogens effectively by ohmic heating in buffered peptone water and tomato juice without causing electrode corrosion and quality degradation. Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes were used as representative foodborne pathogens and MS-2 phage was used as a norovirus surrogate. Buffered peptone water and tomato juice inoculated with pathogens were treated with pulsed ohmic heating at different frequencies (0.06-1 kHz). Propidium iodide uptake values of bacterial pathogens were significantly (p < 0.05) larger at 0.06-0.5 kHz than at 1 kHz, and sub-lethal injury of pathogenic bacteria was reduced by decreasing frequency. MS-2 phage was inactivated more effectively at low frequency, and was more sensitive to acidic conditions than pathogenic bacteria. Electrode corrosion and quality degradation of tomato juice were not observed regardless of frequency. This study suggests that low frequency pulsed ohmic heating is applicable to inactivate foodborne pathogens effectively without causing electrode corrosion and quality degradation in tomato juice. Copyright © 2016. Published by Elsevier Ltd.
Identifying the causes of oil sands coke leachate toxicity to aquatic invertebrates.
Puttaswamy, Naveen; Liber, Karsten
2011-11-01
A previous study found that coke leachates (CL) collected from oil sands field sites were acutely toxic to Ceriodaphnia dubia; however, the cause of toxicity was not known. Therefore, the purpose of this study was to generate CL in the laboratory to evaluate the toxicity response of C. dubia and perform chronic toxicity identification evaluation (TIE) tests to identify the causes of CL toxicity. Coke was subjected to a 15-d batch leaching process at pH 5.5 and 9.5. Leachates were filtered on day 15 and used for chemical and toxicological characterization. The 7-d median lethal concentration (LC50) was 6.3 and 28.7% (v/v) for pH 5.5 and 9.5 CLs, respectively. Trace element characterization of the CLs showed Ni and V levels to be well above their respective 7-d LC50s for C. dubia. Addition of ethylenediaminetetraacetic acid significantly (p ≤ 0.05) improved survival and reproduction in pH 5.5 CL, but not in pH 9.5 CL. Cationic and anionic resins removed toxicity of pH 5.5 CL only. Conversely, the toxicity of pH 9.5 CL was completely removed with an anion resin alone, suggesting that the pH 9.5 CL contained metals that formed oxyanions. Toxicity reappeared when Ni and V were added back to anion resin-treated CLs. The TIE results combined with the trace element chemistry suggest that both Ni and V are the cause of toxicity in pH 5.5 CL, whereas V appears to be the primary cause of toxicity in pH 9.5 CL. Environmental monitoring and risk assessments should therefore focus on the fate and toxicity of metals, especially Ni and V, in coke-amended oil sands reclamation landscapes. Copyright © 2011 SETAC.
White, W. H.; Johnson, D. I.
1997-01-01
Cdc24p is the guanine-nucleotide exchange factor for the Cdc42p GTPase, which controls cell polarity in Saccharomyces cerevisiae. To identify new genes that may affect cell polarity, we characterized six UV-induced csl (CDC24 synthetic-lethal) mutants that exhibited synthetic-lethality with cdc24-4(ts) at 23°. Five mutants were not complemented by plasmid-borne CDC42, RSR1, BUD5, BEM1, BEM2, BEM3 or CLA4 genes, which are known to play a role in cell polarity. The csl3 mutant displayed phenotypes similar to those observed with calcium-sensitive, Pet(-) vma mutants defective in vacuole function. CSL5 was allelic to VMA5, the vacuolar H(+)-ATPase subunit C, and one third of csl5 cdc24-4(ts) cells were elongated or had misshapen buds. A cdc24-4(ts) Δvma5::LEU2 double mutant did not exhibit synthetic lethality, suggesting that the csl5/vma5 cdc24-4(ts) synthetic-lethality was not simply due to altered vacuole function. The cdc24-4(ts) mutant, like Δvma5::LEU2 and csl3 mutants, was sensitive to high levels of Ca(2+) as well as Na(+) in the growth media, which did not appear to be a result of a fragile cell wall because the phenotypes were not remedied by 1 M sorbitol. Our results indicated that Cdc24p was required in one V-ATPase mutant and another mutant affecting vacuole morphology, and also implicated Cdc24p in Na(+) tolerance. PMID:9286667
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subramaniam, Sudhakar R.; Ellis, Elizabeth M., E-mail: elizabeth.ellis@strath.ac.uk
Esculetin (6,7-dihydroxy coumarin), is a potent antioxidant that is present in several plant species. The aim of this study was to investigate the mechanism of protection of esculetin in human hepatoma HepG2 cells against reactive oxygen species (ROS) induced by hydrogen peroxide. Cell viability, cell integrity, intracellular glutathione levels, generation of reactive oxygen species and expression of antioxidant enzymes were used as markers to measure cellular oxidative stress and response to ROS. The protective effect of esculetin was compared to a well-characterized chemoprotective compound quercetin. Pre-treatment of HepG2 cells with sub-lethal (10-25 {mu}M) esculetin for 8 h prevented cell deathmore » and maintained cell integrity following exposure to 0.9 mM hydrogen peroxide. An increase in the generation of ROS following hydrogen peroxide treatment was significantly attenuated by 8 h pre-treatment with esculetin. In addition, esculetin ameliorated the decrease in intracellular glutathione caused by hydrogen peroxide exposure. Moreover, treatment with 25 {mu}M esculetin for 8 h increased the expression of NAD(P)H: quinone oxidoreductase (NQO1) at both protein and mRNA levels significantly, by 12-fold and 15-fold, respectively. Esculetin treatment also increased nuclear accumulation of Nrf2 by 8-fold indicating that increased NQO1 expression is Nrf2-mediated. These results indicate that esculetin protects human hepatoma HepG2 cells from hydrogen peroxide induced oxidative injury and that this protection is provided through the induction of protective enzymes as part of an adaptive response mediated by Nrf2 nuclear accumulation.« less
Sano, Michael B.; Fan, Richard E.; Xing, Lei
2017-01-01
Irreversible electroporation (IRE) is a promising non-thermal treatment for inoperable tumors which uses short (50–100 μs) high voltage monopolar pulses to disrupt the membranes of cells within a well-defined volume. Challenges with IRE include complex treatment planning and the induction of intense muscle contractions. High frequency IRE (H-FIRE) uses bursts of ultrashort (0.25–5 μs) alternating polarity pulses to produce more predictable ablations and alleviate muscle contractions associated with IRE. However, H-FIRE generally ablates smaller volumes of tissue than IRE. This study shows that asymmetric H-FIRE waveforms can be used to create ablation volumes equivalent to standard IRE treatments. Lethal thresholds (LT) of 505 V/cm and 1316 V/cm were found for brain cancer cells when 100 μs IRE and 2 μs symmetric H-FIRE waveforms were used. In contrast, LT as low as 536 V/cm were found for 2 μs asymmetric H-FIRE waveforms. Reversible electroporation thresholds were 54% lower than LTs for symmetric waveforms and 33% lower for asymmetric waveforms indicating that waveform symmetry can be used to tune the relative sizes of reversible and irreversible ablation zones. Numerical simulations predicted that asymmetric H-FIRE waveforms are capable of producing ablation volumes which were 5.8–6.3x larger than symmetric H-FIRE waveforms indicating that in vivo investigation of asymmetric waveforms is warranted. PMID:28106146
NASA Astrophysics Data System (ADS)
Sano, Michael B.; Fan, Richard E.; Xing, Lei
2017-01-01
Irreversible electroporation (IRE) is a promising non-thermal treatment for inoperable tumors which uses short (50-100 μs) high voltage monopolar pulses to disrupt the membranes of cells within a well-defined volume. Challenges with IRE include complex treatment planning and the induction of intense muscle contractions. High frequency IRE (H-FIRE) uses bursts of ultrashort (0.25-5 μs) alternating polarity pulses to produce more predictable ablations and alleviate muscle contractions associated with IRE. However, H-FIRE generally ablates smaller volumes of tissue than IRE. This study shows that asymmetric H-FIRE waveforms can be used to create ablation volumes equivalent to standard IRE treatments. Lethal thresholds (LT) of 505 V/cm and 1316 V/cm were found for brain cancer cells when 100 μs IRE and 2 μs symmetric H-FIRE waveforms were used. In contrast, LT as low as 536 V/cm were found for 2 μs asymmetric H-FIRE waveforms. Reversible electroporation thresholds were 54% lower than LTs for symmetric waveforms and 33% lower for asymmetric waveforms indicating that waveform symmetry can be used to tune the relative sizes of reversible and irreversible ablation zones. Numerical simulations predicted that asymmetric H-FIRE waveforms are capable of producing ablation volumes which were 5.8-6.3x larger than symmetric H-FIRE waveforms indicating that in vivo investigation of asymmetric waveforms is warranted.
Essential Role of Cyclin-G–associated Kinase (Auxilin-2) in Developing and Mature Mice
Lee, Dong-won; Zhao, Xiaohong; Yim, Yang-In; Eisenberg, Evan
2008-01-01
Hsc70 with its cochaperone, either auxilin or GAK, not only uncoats clathrin-coated vesicles but also acts as a chaperone during clathrin-mediated endocytosis. However, because synaptojanin is also involved in uncoating, it is not clear whether GAK is an essential gene. To answer this question, GAK conditional knockout mice were generated and then mated to mice expressing Cre recombinase under the control of the nestin, albumin, or keratin-14 promoters, all of which turn on during embryonic development. Deletion of GAK from brain, liver, or skin dramatically altered the histology of these tissues, causing the mice to die shortly after birth. Furthermore, by expressing a tamoxifen-inducible promoter to express Cre recombinase we showed that deletion of GAK caused lethality in adult mice. Mouse embryonic fibroblasts in which the GAK was disrupted showed a lack of clathrin-coated pits and a complete block in clathrin-mediated endocytosis. We conclude that GAK deletion blocks development and causes lethality in adult animals by disrupting clathrin-mediated endocytosis. PMID:18434600
(Highly pathogenic) avian influenza as a zoonotic agent.
Kalthoff, Donata; Globig, Anja; Beer, Martin
2010-01-27
Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence by mutation after transmission and adaptation to susceptible gallinaceous poultry. Those so-called highly pathogenic avian influenza viruses (HPAIV) then cause mass die-offs in susceptible birds and lead to tremendous economical losses when poultry is affected. Besides a number of avian influenza virus subtypes that have sporadically infected mammals, the HPAIV H5N1 Asia shows strong zoonotic characteristics and it was transmitted from birds to different mammalian species including humans. Theoretically, pandemic viruses might derive directly from avian influenza viruses or arise after genetic reassortment between viruses of avian and mammalian origin. So far, HPAIV H5N1 already meets two conditions for a pandemic virus: as a new subtype it has been hitherto unseen in the human population and it has infected at least 438 people, and caused severe illness and high lethality in 262 humans to date (August 2009). The acquisition of efficient human-to-human transmission would complete the emergence of a new pandemic virus. Therefore, fighting H5N1 at its source is the prerequisite to reduce pandemic risks posed by this virus. Other influenza viruses regarded as pandemic candidates derive from subtypes H2, H7, and H9 all of which have infected humans in the past. Here, we will give a comprehensive overview on avian influenza viruses in concern to their zoonotic potential. Copyright 2009 Elsevier B.V. All rights reserved.
The effect of lonidamine (LND) on radiation and thermal responses of human and rodent cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raaphorst, G.P.; Feeley, M.M.; Danjoux, C.E.
1991-03-01
Rodent and human cells were tested for response to Lonidamine (LND) (1-(2,4 dichlorobenzyl) 1-indazol-3-carboxylic acid) combined with radiation or hyperthermia. Lonidamine exposure before, during, and after irradiation caused varying degrees of inhibition of potentially lethal damage (PLD) repair which was cell line dependent. In human glioma, melanoma, squamous cell carcinoma, and fibroblasts, LND exposure did not inhibit or only partially inhibited repair of potentially lethal damage. LND up to 100 micrograms/ml produced only a low level of toxicity in these cells and only slightly inhibited glucose consumption at the maximum concentration. In human glioma cells, LND treatment alone did notmore » inhibit PLD repair, but when combined with hyperthermia treatment at moderate levels easily achievable in the clinic, there was complete inhibition of potentially lethal damage repair. These data suggest that LND effectiveness is cell type dependent. Combinations of LND, hyperthermia, and radiation may be effective in cancer therapy especially in tumors such as glioma in which repair of potentially lethal damage may be extensive.« less
Oliveira, Rhaul; McDonough, Sakchai; Ladewig, Jessica C L; Soares, Amadeu M V M; Nogueira, António J A; Domingues, Inês
2013-11-01
Antibiotics have been widely used in human and veterinary medicine to treat or prevent diseases. Residues of antibiotics have been found in aquatic environments, but their effects on fish have been not properly investigated. This work aimed to assess the sub-lethal effects of oxytetracycline and amoxicillin on zebrafish development and biomarkers. Embryos and adults were exposed during 96 h to amoxicillin and oxytetracycline following OECD guidelines. Tissues of adults and pools of embryos were used for catalase, glutathione-S-transferases and lactate dehydrogenase determinations. Amoxicillin caused premature hatching (48 h-EC50=132.4 mg/l) whereas oxytetracycline cause delayed hatching of embryos (72 h-EC50=127.6 mg/l). Moreover, both antibiotics inhibited catalase and induced glutathione-S-transferases in zebrafish adults. However, only oxytetracycline induced lactate dehydrogenase. Short-term effects of antibiotics were observed at high doses (mg/l) indicating that physiological impairment in fish populations is unlike to occur. However, effects of chronic exposures to low doses of ABs must be investigated. Copyright © 2013 Elsevier B.V. All rights reserved.
Chromosomal Effects on Mutability in the P-M System of Hybrid Dysgenesis in DROSOPHILA MELANOGASTER
Simmons, Michael J.; Raymond, John D.; Laverty, Todd R.; Doll, Rhonda F.; Raymond, Nancy C.; Kocur, Gordon J.; Drier, Eric A.
1985-01-01
Two manifestations of hybrid dysgenesis were studied in flies with chromosomes derived from two different P strains. In one set of experiments, the occurrence of recessive X-linked lethal mutations in the germ cells of dysgenic males was monitored. In the other, the behavior of an X-linked P-element insertion mutation, sn w, was studied in dysgenic males and also in dysgenic females. The chromosomes of one P strain were more proficient at causing dysgenesis in both sets of experiments. However, there was variation among the chromosomes of each strain in regard to the ability to induce lethals or to destabilize snw. The X chromosome, especially when it came from the stronger P strain, had a pronounced effect on both measures of dysgenesis, but in combination with the major autosomes, these effects were reduced. For the stronger P strain, the autosomes by themselves contributed significantly to the production of X-linked lethals and also had large effects on the behavior of snw, but they did not act additively on these two characters. For this strain, the effects of the autosomes on the X-linked lethal mutation rate suggest that only 1/100 P element transpositions causes a recessive lethal mutation. For the weaker P strain, the autosomes had only slight effects on the behavior of snw and appeared to have negligible effects on the X-linked lethal mutation rate. Combinations of chromosomes from either the strong or the weak P strain affected both aspects of dysgenesis in a nonadditive fashion, suggesting that the P elements on these chromosomes competed with each other for transposase, the P-encoded function that triggers P element activity. Age and sex also influenced the ability of chromosomes and combinations of chromosomes to cause dysgenesis. PMID:3934034
Korolev, M P; Urakcheev, Sh K; Shlosser, K V
2012-01-01
Results of surgical treatment of 69 patients with injuries of the duodenum were analyzed. The most frequent causes of the injury were stab-incised wound of the abdomen (43 patients), gunshot wounds (2 patients), closed injury of the abdomen. Postoperative complications developed in 18 (26%) cases. Lethality was 20.3% (14 patients died). Injuries caused by the closed trauma were considerably more severe than those caused by wounds of the duodenum; lethality was 37.5% and 11.1% respectively. The authors discuss questions of the special diagnostics and surgical strategy for open and closed injuries of the duodenum. Causes of the development of unfavorable outcomes were pyo-septic complications associated with progressing retroperitoneal phlegmons, peritonitis, development of traumatic pancreatitis, incompetent sutures of the duodenum with a formed duodenal fistula. Therefore, the effective prophylactics of incompetent sutures of the duodenum is its decompression with aspiration of the duodenal contents as well as decreased secretion by means of drainage of the bile excreting ducts and medicamental suppression of synthesis of the digestion enzymes of the pancreas and duodenum using Octreatid which allowed considerable decrease of the number of postoperative complications.
Lithium-methomyl induced seizures in rats: A new model of status epilepticus?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaminski, Rafal M.; Blaszczak, Piotr; Dekundy, Andrzej
2007-03-15
Behavioral, electroencephalographic (EEG) and neuropathological effects of methomyl, a carbamate insecticide reversibly inhibiting acetylcholinesterase activity, were studied in naive or lithium chloride (24 h, 3 mEq/kg, s.c.) pretreated male Wistar rats. In naive animals, methomyl with equal potency produced motor limbic seizures and fatal status epilepticus. Thus, the CD50 values (50% convulsant dose) for these seizure endpoints were almost equal to the LD50 (50% lethal dose) of methomyl (13 mg/kg). Lithium pretreated rats were much more susceptible to convulsant, but not lethal effect of methomyl. CD50 values of methomyl for motor limbic seizures and status epilepticus were reduced by lithiummore » pretreatment to 3.7 mg/kg (a 3.5-fold decrease) and 5.2 mg/kg (a 2.5-fold decrease), respectively. In contrast, lithium pretreatment resulted in only 1.3-fold decrease of LD50 value of methomyl (9.9 mg/kg). Moreover, lithium-methomyl treated animals developed a long-lasting status epilepticus, which was not associated with imminent lethality observed in methomyl-only treated rats. Scopolamine (10 mg/kg) or diazepam (10 mg/kg) protected all lithium-methomyl treated rats from convulsions and lethality. Cortical and hippocampal EEG recordings revealed typical epileptic discharges that were consistent with behavioral seizures observed in lithium-methomyl treated rats. In addition, convulsions induced by lithium-methomyl treatment were associated with widespread neurodegeneration of limbic structures. Our observations indicate that lithium pretreatment results in separation between convulsant and lethal effects of methomyl in rats. As such, seizures induced by lithium-methomyl administration may be an alternative to lithium-pilocarpine model of status epilepticus, which is associated with high lethality.« less
Kapczynski, Darrell R; Pantin-Jackwood, Mary J; Spackman, Erica; Chrzastek, Klaudia; Suarez, David L; Swayne, David E
2017-11-01
From December 2014 to June 2015, a novel H5 Eurasian A/goose/Guangdong (Gs/GD) lineage clade 2.3.4.4 high pathogenicity avian influenza (HPAI) virus caused the largest animal health emergency in US history resulting in mortality or culling of greater than 48 million poultry. The outbreak renewed interest in developing intervention strategies, including vaccines, for these newly emergent HPAI viruses. In these studies, several existing H5 vaccines or vaccine seed strains with varying genetic relatedness (85-100%) to the 2.3.4.4 HPAI viruses were evaluated for protection in poultry. Chickens received a single dose of either an inactivated whole H5 AI vaccine, or a recombinant fowl poxvirus or turkey herpesvirus-vectored vaccines with H5 AI hemagglutinin gene inserts followed by challenge with either a U.S. wild bird H5N8 (A/gyrfalcon/Washington/40188-6/2014) or H5N2 (A/northern pintail/Washington/40964/2014) clade 2.3.4.4 isolate. Results indicate that most inactivated H5 vaccines provided 100% protection from lethal effects of H5N8 or H5N2 challenge. In contrast, the recombinant live vectored vaccines only provided partial protection which ranged from 40 to 70%. Inactivated vaccine groups, in general, had lower number of birds shedding virus and at lower virus titers then the recombinant vaccine groups. Interestingly, prechallenge antibody titers using the HPAI challenge viruses as antigen in heterologous vaccine groups were typically low (≤2 log 2 ), yet the majority of these birds survived challenge. Taken together, these studies suggest that existing vaccines when used in a single immunization strategy may not provide adequate protection in poultry against the 2.3.4.4 HPAI viruses. Updating the H5 hemagglutinin to be genetically closer to the outbreak virus and/or using a prime-boost strategy may be necessary for optimal protection. Published by Elsevier Ltd.
Anaerobic Killing of Oral Streptococci by Reduced, Transition Metal Cations
Dunning, J. C.; Ma, Y.; Marquis, R. E.
1998-01-01
Reduced, transition metal cations commonly enhance oxidative damage to cells caused by hydroperoxides formed as a result of oxygen metabolism or added externally. As expected, the cations Fe2+ and Cu+ enhanced killing of Streptococcus mutans GS-5 by hydroperoxides. However, unexpectedly, they also induced lethal damage under fully anaerobic conditions in a glove box with no exposure to O2 or hydroperoxides from initial treatment with the cations. Sensitivities to anaerobic killing by Fe2+ varied among the organisms tested. The oral streptococci Streptococcus gordonii ATCC 10558, Streptococcus rattus FA-1, and Streptococcus sanguis NCTC 10904 were approximately as sensitive as S. mutans GS-5. Enterococcus hirae ATCC 9790, Actinomyces viscosus OMZ105E, and Actinomyces naeslundii WVU45 had intermediate sensitivity, while Lactobacillus casei ATCC 4646 and Escherichia coli B were insensitive. Killing of S. mutans GS-5 in response to millimolar levels of added Fe2+ occurred over a wide range of temperatures and pH. The organism was able to take up ferrous iron, but ferric reductase activity could not be detected. Chelators, uric acid, and thiocyanate were not effective inhibitors of the lethal damage. Sulfhydryl compounds, ferricyanide, and ferrocyanide were protective if added prior to Fe2+ exposure. Fe2+, but not Fe3+, acted to reduce the acid tolerance of glycolysis by intact cells of S. mutans. The reduction in acid tolerance appeared to be related directly to Fe2+ inhibition of F-ATPase, which could be assayed with permeabilized cells, isolated membranes, or F1 enzyme separated from membranes. Cu+ and Cu2+ also inhibited F-ATPase and sensitized glycolysis by intact cells to acid. All of these damaging actions occurred anaerobically and thus did not appear to involve reactive oxygen species. PMID:9435058
Wound-induced Oxidative Responses in Mountain Birch Leaves
RUUHOLA, TEIJA; YANG, SHIYONG
2006-01-01
• Aims The aim of the study was to examine oxidative responses in subarctic mountain birch, Betula pubescens subsp. czerepanovii, induced by herbivory and manual wounding. • Methods Herbivory-induced changes in polyphenoloxidase, peroxidase and catalase activities in birch leaves were determined. A cytochemical dye, 3,3-diaminobenzidine, was used for the in situ and in vivo detection of H2O2 accumulation as a response to herbivory and wounding. To localize peroxidase activity in leaves, 10 mm H2O2 was applied to the dye reagent. • Key Results Feeding by autumnal moth, Epirrita autumnata, larvae caused an induction in polyphenoloxidase and peroxidase activities within 24 h, and a concomitant decrease in the activity of antioxidative catalases in wounded leaves. Wounding also induced H2O2 accumulation, which may have both direct and indirect defensive properties against herbivores. Wound sites and guard cells showed a high level of peroxidase activity, which may efficiently restrict invasion by micro-organisms. • Conclusion Birch oxidases together with their substrates may form an important front line in defence against herbivores and pathogens. PMID:16254021
Drugging the Cancers Addicted to DNA Repair.
Nickoloff, Jac A; Jones, Dennie; Lee, Suk-Hee; Williamson, Elizabeth A; Hromas, Robert
2017-11-01
Defects in DNA repair can result in oncogenic genomic instability. Cancers occurring from DNA repair defects were once thought to be limited to rare inherited mutations (such as BRCA1 or 2). It now appears that a clinically significant fraction of cancers have acquired DNA repair defects. DNA repair pathways operate in related networks, and cancers arising from loss of one DNA repair component typically become addicted to other repair pathways to survive and proliferate. Drug inhibition of the rescue repair pathway prevents the repair-deficient cancer cell from replicating, causing apoptosis (termed synthetic lethality). However, the selective pressure of inhibiting the rescue repair pathway can generate further mutations that confer resistance to the synthetic lethal drugs. Many such drugs currently in clinical use inhibit PARP1, a repair component to which cancers arising from inherited BRCA1 or 2 mutations become addicted. It is now clear that drugs inducing synthetic lethality may also be therapeutic in cancers with acquired DNA repair defects, which would markedly broaden their applicability beyond treatment of cancers with inherited DNA repair defects. Here we review how each DNA repair pathway can be attacked therapeutically and evaluate DNA repair components as potential drug targets to induce synthetic lethality. Clinical use of drugs targeting DNA repair will markedly increase when functional and genetic loss of repair components are consistently identified. In addition, future therapies will exploit artificial synthetic lethality, where complementary DNA repair pathways are targeted simultaneously in cancers without DNA repair defects. © The Author 2017. Published by Oxford University Press.
Treatment of Experimental Anthrax with Recombinant Capsule Depolymerase
2007-12-01
infected with Cryptococcus neoformans (15), and the recent work of Mushtaq et al. demonstrated that a capsule-degrading endosialidase could be used to...treatment to remove microbial capsules has been suc- cessfully used to treat existing infections with pneumococci, Cryptococcus , and E. coli (2, 15, 31) in...macrophage sensitivity and resistance to anthrax lethal toxin. Infect. Immun. 61:245–252. 15. Gadebusch, H. H. 1960. Specific degradation of Cryptococcus
Diminished but Not Abolished Effect of Two His351 Mutants of Anthrax Edema Factor in a Murine Model
Zhao, Taoran; Zhao, Xinghui; Liu, Ju; Meng, Yingying; Feng, Yingying; Fang, Ting; Zhang, Jinlong; Yang, Xiuxu; Li, Jianmin; Xu, Junjie; Chen, Wei
2016-01-01
Edema toxin (ET), which is composed of a potent adenylate cyclase (AC), edema factor (EF), and protective antigen (PA), is one of the major toxicity factors of Bacillus anthracis. In this study, we introduced mutations in full-length EF to generate alanine EF(H351A) and arginine EF(H351R) variants. In vitro activity analysis displayed that the adenylyl cyclase activity of both the mutants was significantly diminished compared with the wild-type EF. When the native and mutant toxins were administered subcutaneously in a mouse footpad edema model, severe acute swelling was evoked by wild-type ET, while the symptoms induced by mutant toxins were very minor. Systemic administration of these EF variants caused non-lethal hepatotoxicity. In addition, EF(H351R) exhibited slightly higher activity in causing more severe edema than EF(H351A). Our findings demonstrate that the toxicity of ET is not abolished by substitution of EF residue His351 by alanine or arginine. These results also indicate the potential of the mouse footpad edema model as a sensitive method for evaluating both ET toxicity and the efficacy of candidate therapeutic agents. PMID:26848687
Zeng, Xianying; Chen, Pucheng; Liu, Liling; Deng, Guohua; Li, Yanbing; Shi, Jianzhong; Kong, Huihui; Feng, Huapeng; Bai, Jie; Li, Xin; Shi, Wenjun; Tian, Guobin; Chen, Hualan
2016-05-01
The Goose/Guangdong-lineage H5 viruses have evolved into diverse clades and subclades based on their hemagglutinin (HA) gene during their circulation in wild birds and poultry. Since late 2013, the clade 2.3.4.4 viruses have become widespread in poultry and wild bird populations around the world. Different subtypes of the clade 2.3.4.4 H5 viruses, including H5N1, H5N2, H5N6, and H5N8, have caused vast disease outbreaks in poultry in Asia, Europe, and North America. In this study, we developed a new H5N1 inactivated vaccine by using a seed virus (designated as Re-8) that contains the HA and NA genes from a clade 2.3.4.4 virus, A/chicken/Guizhou/4/13(H5N1) (CK/GZ/4/13), and its six internal genes from the high-growth A/Puerto Rico/8/1934 (H1N1) virus. We evaluated the protective efficacy of this vaccine in chickens challenged with one H5N1 clade 2.3.2.1b virus and six different subtypes of clade 2.3.4.4 viruses, including H5N1, H5N2, H5N6, and H5N8 strains. In the clade 2.3.2.1b virus DK/GX/S1017/13-challenged groups, half of the vaccinated chickens shed virus through the oropharynx and two birds (20%) died during the observation period. All of the control chickens shed viruses and died within 6 days of infection with challenge virus. All of the vaccinated chickens remained healthy following challenge with the six clade 2.3.4.4 viruses, and virus shedding was not detected from any of these birds; however, all of the control birds shed viruses and died within 4 days of challenge with the clade 2.3.4.4 viruses. Our results indicate that the Re-8 vaccine provides protection against different subtypes of clade 2.3.4.4 H5 viruses.
Russo, L. M.; Melton-Celsa, A. R.; Smith, M. A.; Smith, M. J.
2014-01-01
Shiga toxin (Stx)-producing Escherichia coli (STEC) strains cause food-borne outbreaks of hemorrhagic colitis and, less commonly, a serious kidney-damaging sequela called the hemolytic uremic syndrome (HUS). Stx, the primary virulence factor expressed by STEC, is an AB5 toxin with two antigenically distinct forms, Stx1a and Stx2a. Although both toxins have similar biological activities, Stx2a is more frequently produced by STEC strains that cause HUS than is Stx1a. Here we asked whether Stx1a and Stx2a act differently when delivered orally by gavage. We found that Stx2a had a 50% lethal dose (LD50) of 2.9 μg, but no morbidity occurred after oral intoxication with up to 157 μg of Stx1a. We also compared several biochemical and histological parameters in mice intoxicated orally versus intraperitoneally with Stx2a. We discovered that both intoxication routes caused similar increases in serum creatinine and blood urea nitrogen, indicative of kidney damage, as well as electrolyte imbalances and weight loss in the animals. Furthermore, kidney sections from Stx2a-intoxicated mice revealed multifocal, acute tubular necrosis (ATN). Of particular note, we detected Stx2a in kidney sections from orally intoxicated mice in the same region as the epithelial cell type in which ATN was detected. Lastly, we showed reduced renal damage, as determined by renal biomarkers and histopathology, and full protection of orally intoxicated mice with monoclonal antibody (MAb) 11E10 directed against the toxin A subunit; conversely, an irrelevant MAb had no therapeutic effect. Orally intoxicated mice could be rescued by MAb 11E10 6 h but not 24 h after Stx2a delivery. PMID:24379294
Crystal Structure of Protein Reveals Target for Drugs Against Lethal MERS Virus | FNLCR Staging
A research team of scientists from the National Cancer Institute and the Frederick National Laboratory for Cancer Research recently identified the structure of a key protein of the virus that causes the highly lethal Middle East Respiratory Syndrome.
Ong, Ju Lynn; Lo, June C; Gooley, Joshua J; Chee, Michael W L
2016-06-01
To investigate sleep EEG changes in adolescents across 7 nights of sleep restriction to 5 h time in bed [TIB]) and 3 recovery nights of 9 h TIB. A parallel-group design, quasi-laboratory study was conducted in a boarding school. Fifty-five healthy adolescents (25 males, age = 15-19 y) who reported habitual TIBs of approximately 6 h on week nights (group average) but extended their sleep on weekends were randomly assigned to Sleep Restriction (SR) or Control groups. Participants underwent a 2-week protocol comprising 3 baseline nights (TIB = 9 h), 7 nights of sleep opportunity manipulation (TIB = 5 h for the SR and 9 h for the Control group), and 3 nights of recovery sleep (TIB = 9 h). Polysomnography was obtained on two baseline, three manipulation, and two recovery nights. Across the sleep restriction nights, total SWS duration was preserved relative to the 9 h baseline sleep opportunity, while other sleep stages were reduced. Considering only the first 5 h of sleep opportunity, SR participants had reduced N1 duration and wake after sleep onset (WASO), and increased total sleep time (TST), rapid eye movement (REM) sleep, and slow wave sleep (SWS) relative to baseline. Total REM sleep, N2, and TST duration remained above baseline levels by the third recovery sleep episode. In spite of preservation of SWS duration over multiple nights of sleep restriction, adolescents accustomed to curtailing nocturnal sleep on school day nights evidence residual effects on sleep macro-structure, even after three nights of recovery sleep. Older teenagers may not be as resilient to successive nights of sleep restriction as is commonly believed. © 2016 Associated Professional Sleep Societies, LLC.
Propst, Crystal N.; Pylypko, Stephanie L.; Blower, Ryan J.; Ahmad, Saira; Mansoor, Mohammad; van Hoek, Monique L.
2016-01-01
Francisella (F.) philomiragia is a Gram-negative bacterium with a preference for brackish environments that has been implicated in causing bacterial infections in near-drowning victims. The purpose of this study was to characterize the ability of F. philomiragia to infect cultured mammalian cells, a commonly used invertebrate model, and, finally, to characterize the ability of F. philomiragia to infect BALB/c mice via the pulmonary (intranasal) route of infection. This study shows that F. philomiragia infects J774A.1 murine macrophage cells, HepG2 cells and A549 human Type II alveolar epithelial cells. However, replication rates vary depending on strain at 24 h. F. philomiragia infection after 24 h was found to be cytotoxic in human U937 macrophage-like cells and J774A.1 cells. This is in contrast to the findings that F. philomiragia was non-cytotoxic to human hepatocellular carcinoma cells, HepG2 cells and A549 cells. Differential cytotoxicity is a point for further study. Here, it was demonstrated that F. philomiragia grown in host-adapted conditions (BHI, pH 6.8) is sensitive to levofloxacin but shows increased resistance to the human cathelicidin LL-37 and murine cathelicidin mCRAMP when compared to related the Francisella species, F. tularensis subsp. novicida and F. tularensis subsp. LVS. Previous findings that LL-37 is strongly upregulated in A549 cells following F. tularensis subsp. novicida infection suggest that the level of antimicrobial peptide expression is not sufficient in cells to eradicate the intracellular bacteria. Finally, this study demonstrates that F. philomiragia is lethal in two in vivo models; Galleria mellonella via hemocoel injection, with a LD50 of 1.8 × 103, and BALB/c mice by intranasal infection, with a LD50 of 3.45 × 103. In conclusion, F. philomiragia may be a useful model organism to study the genus Francisella, particularly for those researchers with interest in studying microbial ecology or environmental strains of Francisella. Additionally, the Biosafety level 2 status of F. philomiragia makes it an attractive model for virulence and pathogenesis studies. PMID:27252681
Triazole-induced toxicity in developing rare minnow (Gobiocypris rarus) embryos.
Zhu, Bin; Liu, Lei; Gong, Yu-Xin; Ling, Fei; Wang, Gao-Xue
2014-12-01
Using rare minnow (Gobiocypris rarus) at early-life stages as experimental models, the developmental toxicity of five widely used triazole fungicides (myclobutanil, fluconazole, flusilazole, triflumizole, and epoxiconazole) were investigated following exposure to 1-15 mg/L for 72 h. Meanwhile, morphological parameters (body length, body weight, and heart rate), enzyme activities (superoxide dismutase (SOD), glutathione S-transferase (GST), adenosine triphosphatase (ATPase), and acetyl cholinesterase (AChE)), and mRNA levels (hsp70, mstn, mt, apaf1, vezf1, and cyp1a) were also recorded following exposure to 0.2, 1.0, and 5.0 mg/L for 72 h. Results indicated that increased malformation and mortality, decreased body length, body weight, and heart rate provide a concentration-dependent pattern; values of 72 h LC50 (median lethal concentration) and EC50 (median effective concentration) ranged from 3 to 12 mg/L. Most importantly, the results of the present study suggest that even at the lowest concentration, 0.2 mg/L, five triazole fungicides also caused notable changes in enzyme activities and mRNA levels. Overall, the present study points out that those five triazole fungicides are highly toxic to the early development of G. rarus embryos. The information presented in this study will be helpful in better understanding the toxicity induced by triazole fungicides in fish embryos.
Lima, Ingrid L. B.; Rodrigues, Aline F. A. C.; Bergamaschi, Cássia T.; Campos, Ruy R.; Hirata, Aparecida E.; Tufik, Sergio; Xylaras, Beatriz D. P.; Visniauskas, Bruna; Chagas, Jair R.; Gomes, Guiomar N.
2014-01-01
Changes in the maternal environment can induce fetal adaptations that result in the progression of chronic diseases in the offspring. The objective of the present study was to evaluate the effects of maternal chronic sleep restriction on blood pressure, renal function and cardiac baroreflex response on male offspring at adult age. Female 3-month-old Wistar rats were divided in two experimental groups: control (C) and chronic sleep restricted (CSR). Pregnancy was confirmed by vaginal smear. Chronic sleep restricted females were subjected to sleep restriction by the multiple platform technique for 20 h daily, between the 1st and 20th day of pregnancy. After birth, the litters were reduced to 6 rats per mother, and were designated as offspring from control (OC) and offspring from chronic sleep restricted (OCSR). Indirect blood pressure (BPi – tail cuff) was measured by plethysmography in male offspring at 3 months old. Following, the renal function and cardiac baroreflex response were analyzed. Values of BPi in OCSR were significantly higher compared to OC [OC: 127±2.6 (19); OCSR: 144±2.5 (17) mmHg]. The baroreflex sensitivity to the increase of blood pressure was reduced in OCSR [Slope: OC: −2.6±0.15 (9); OCRS: −1.6±0.13 (9)]. Hypothalamic activity of ACE2 was significantly reduced in OCSR compared to OC [OC: 97.4±15 (18); OSR: 60.2±3.6 (16) UAF/min/protein mg]. Renal function alteration was noticed by the increase in glomerular filtration rate (GFR) observed in OCSR [OC: 6.4±0.2 (10); OCSR: 7.4±0.3 (7)]. Chronic sleep restriction during pregnancy caused in the offspring hypertension, altered cardiac baroreflex response, reduced ACE-2 activity in the hypothalamus and renal alterations. Our data suggest that the reduction of sleeping time along the pregnancy is able to modify maternal homeostasis leading to functional alterations in offspring. PMID:25405471
Lima, Ingrid L B; Rodrigues, Aline F A C; Bergamaschi, Cássia T; Campos, Ruy R; Hirata, Aparecida E; Tufik, Sergio; Xylaras, Beatriz D P; Visniauskas, Bruna; Chagas, Jair R; Gomes, Guiomar N
2014-01-01
Changes in the maternal environment can induce fetal adaptations that result in the progression of chronic diseases in the offspring. The objective of the present study was to evaluate the effects of maternal chronic sleep restriction on blood pressure, renal function and cardiac baroreflex response on male offspring at adult age. Female 3-month-old Wistar rats were divided in two experimental groups: control (C) and chronic sleep restricted (CSR). Pregnancy was confirmed by vaginal smear. Chronic sleep restricted females were subjected to sleep restriction by the multiple platform technique for 20 h daily, between the 1st and 20th day of pregnancy. After birth, the litters were reduced to 6 rats per mother, and were designated as offspring from control (OC) and offspring from chronic sleep restricted (OCSR). Indirect blood pressure (BPi - tail cuff) was measured by plethysmography in male offspring at 3 months old. Following, the renal function and cardiac baroreflex response were analyzed. Values of BPi in OCSR were significantly higher compared to OC [OC: 127 ± 2.6 (19); OCSR: 144 ± 2.5 (17) mmHg]. The baroreflex sensitivity to the increase of blood pressure was reduced in OCSR [Slope: OC: -2.6 ± 0.15 (9); OCRS: -1.6 ± 0.13 (9)]. Hypothalamic activity of ACE2 was significantly reduced in OCSR compared to OC [OC: 97.4 ± 15 (18); OSR: 60.2 ± 3.6 (16) UAF/min/protein mg]. Renal function alteration was noticed by the increase in glomerular filtration rate (GFR) observed in OCSR [OC: 6.4 ± 0.2 (10); OCSR: 7.4 ± 0.3 (7)]. Chronic sleep restriction during pregnancy caused in the offspring hypertension, altered cardiac baroreflex response, reduced ACE-2 activity in the hypothalamus and renal alterations. Our data suggest that the reduction of sleeping time along the pregnancy is able to modify maternal homeostasis leading to functional alterations in offspring.
Lo, Men-Tzung; Chiang, Wei-Yin; Hsieh, Wan-Hsin; Escobar, Carolina; Buijs, Ruud M; Hu, Kun
2016-01-01
One evolutionary adaptation in motor activity control of animals is the anticipation of food that drives foraging under natural conditions and is mimicked in laboratory with daily scheduled food availability. Food anticipation is characterized by increased activity a few hours before the feeding period. Here we report that 2-h food availability during the normal inactive phase of rats not only increases activity levels before the feeding period but also alters the temporal organization of motor activity fluctuations over a wide range of time scales from minutes up to 24 h. We demonstrate this multiscale alteration by assessing fractal patterns in motor activity fluctuations-similar fluctuation structure at different time scales-that are robust in intact animals with ad libitum food access but are disrupted under food restriction. In addition, we show that fractal activity patterns in rats with ad libitum food access are also perturbed by lesion of the dorsomedial hypothalamic (DMH)-a neural node that is involved in food anticipatory behavior. Instead of further disrupting fractal regulation, food restriction restores the disrupted fractal patterns in these animals after the DMH lesion despite the persistence of the 24-h rhythms. This compensatory effect of food restriction is more clearly pronounced in the same animals after the additional lesion of the suprachiasmatic nucleus (SCN)-the central master clock in the circadian system that generates and orchestrates circadian rhythms in behavior and physiological functions in synchrony with day-night cycles. Moreover, all observed influences of food restriction persist even when data during the food anticipatory and feeding period are excluded. These results indicate that food restriction impacts dynamics of motor activity at different time scales across the entire circadian/daily cycle, which is likely caused by the competition between the food-induced time cue and the light-entrained circadian rhythm of the SCN. The differential impacts of food restriction on fractal activity control in intact and DMH-lesioned animals suggest that the DMH plays a crucial role in integrating these different time cues to the circadian network for multiscale regulation of motor activity.
2007-01-01
A study was carried out to investigate the effect of restricting silage feeding on time of calving and calving performance in Holstein-Friesian cows. In the treatment group (n = 1,248 cows, 12 herds) silage feeding commenced in the evening (17:00 to 20:00 h), after a period of restricted access (2 to 10 h) while in the control group ad-libitum access to silage was provided over the 24 h period (n = 1,193 cows, 12 herds). Daytime and nighttime calvings were defined as calvings occurring between the hours of 06:30 and 00:29 and between 00:30 and 06:29, respectively. Restricting access to silage resulted in less calvings at night compared to cows with ad-libitum access to silage (18 vs 22%, P < 0.05). Cows with restricted access to silage had a higher percentage of difficult calvings (11 vs 7%, P < 0.001) and stillbirths (7 vs 5%, P < 0.05) compared to cows in the control group. The percentage of calvings at night was lower (13%) when access to silage was restricted for 10 h compared to 2, 4 or 6 h (22, 18, 25%, respectively) (P < 0.001). Calf sire breed, calf gender or cow parity did not influence time of calving. In conclusion, offering silage to pregnant Holstein-Friesian cows in the evening, after a period of restricted access, reduced the incidence of nighttime calvings, but increased the incidence of dystocia and stillbirth. PMID:21851689
Roles of HAUSP-mediated p53 regulation in central nervous system development.
Kon, N; Zhong, J; Kobayashi, Y; Li, M; Szabolcs, M; Ludwig, T; Canoll, P D; Gu, W
2011-08-01
The deubiquitinase HAUSP (herpesvirus-associated ubiquitin-specific protease; also called USP7) has a critical role in regulating the p53-Mdm2 (murine double minute 2) pathway. By using the conventional knockout approach, we previously showed that hausp inactivation leads to early embryonic lethality. To fully understand the physiological functions of hausp, we have generated mice lacking hausp specifically in the brain and examined the impacts of this manipulation on brain development. We found that deletion of hausp in neural cells resulted in neonatal lethality. The brains from these mice displayed hypoplasia and deficiencies in development, which were mainly caused by p53-mediated apoptosis. Detailed analysis also showed an increase of both p53 levels and p53-dependent transcriptional activation in hausp knockout brains. Notably, neural cell survival and brain development of hausp-mutant mice can largely be restored in the p53-null background. Nevertheless, in contrast to the case of mdm2- and mdm4 (murine double minute 4)-mutant mice, inactivation of p53 failed to completely rescue the neonatal lethality of these hausp-mutant mice. These results indicate that HAUSP-mediated p53 regulation is crucial for brain development, and also suggest that both the p53-dependent and the p53-independent functions of HAUSP contribute to the neonatal lethality of hausp-mutant mice.
Economic assessment of wild bird mortality induced by the use of lead gunshot in European wetlands.
Andreotti, Alessandro; Guberti, Vittorio; Nardelli, Riccardo; Pirrello, Simone; Serra, Lorenzo; Volponi, Stefano; Green, Rhys E
2018-01-01
In European wetlands, at least 40 bird species are exposed to the risk of lead poisoning caused by ingestion of spent lead gunshot. Adopting a methodology developed in North America, we estimated that about 700,000 individuals of 16 waterbird species die annually in the European Union (EU) (6.1% of the wintering population) and one million in whole Europe (7.0%) due to acute effects of lead poisoning. Furthermore, threefold more birds suffer sub-lethal effects. We assessed the economic loss due to this lead-induced mortality of these 16 species by calculating the costs of replacing lethally poisoned wild birds by releasing captive-bred ones. We assessed the cost of buying captive-bred waterbirds for release from market surveys and calculated how many captive-bred birds would have to be released to compensate for the loss, taking into account the high mortality rate of captive birds (72.7%) in the months following release into the wild. Following this approach, the annual cost of waterbird mortality induced by lead shot ingestion is estimated at 105 million euros per year in the EU countries and 142 million euros in the whole of Europe. An alternative method, based upon lost opportunities for hunting caused by deaths due to lead poisoning, gave similar results of 129 million euros per year in the EU countries and 185 million euros per year in the whole of Europe. For several reasons these figures should be regarded as conservative. Inclusion of deaths of species for which there were insufficient data and delayed deaths caused indirectly by lead poisoning and effects on reproduction would probably increase the estimated losses substantially. Nevertheless, our results suggest that the benefits of a restriction on the use of lead gunshot over wetlands could exceed the cost of adapting to non-lead ammunition. Copyright © 2017 Elsevier B.V. All rights reserved.
Reward and Toxicity of Cocaine Metabolites Generated by Cocaine Hydrolase.
Murthy, Vishakantha; Geng, Liyi; Gao, Yang; Zhang, Bin; Miller, Jordan D; Reyes, Santiago; Brimijoin, Stephen
2015-08-01
Butyrylcholinesterase (BChE) gene therapy is emerging as a promising concept for treatment of cocaine addiction. BChE levels after gene transfer can rise 1000-fold above those in untreated mice, making this enzyme the second most abundant plasma protein. For months or years, gene transfer of a BChE mutated into a cocaine hydrolase (CocH) can maintain enzyme levels that destroy cocaine within seconds after appearance in the blood stream, allowing little to reach the brain. Rapid enzyme action causes a sharp rise in plasma levels of two cocaine metabolites, benzoic acid (BA) and ecgonine methyl ester (EME), a smooth muscle relaxant that is mildly hypotensive and, at best, only weakly rewarding. The present study, utilizing Balb/c mice, tested reward effects and cardiovascular effects of administering EME and BA together at molar levels equivalent to those generated by a given dose of cocaine. Reward was evaluated by conditioned place preference. In this paradigm, cocaine (20 mg/kg) induced a robust positive response but the equivalent combined dose of EME + BA failed to induce either place preference or aversion. Likewise, mice that had undergone gene transfer with mouse CocH (mCocH) showed no place preference or aversion after repeated treatments with a near-lethal 80 mg/kg cocaine dose. Furthermore, a single administration of that same high cocaine dose failed to affect blood pressure as measured using the noninvasive tail-cuff method. These observations confirm that the drug metabolites generated after CocH gene transfer therapy are safe even after a dose of cocaine that would ordinarily be lethal.
Qiu, Xiangguo; Fernando, Lisa; Melito, P Leno; Audet, Jonathan; Feldmann, Heinz; Kobinger, Gary; Alimonti, Judie B; Jones, Steven M
2012-01-01
Ebola virus (EBOV) causes acute hemorrhagic fever in humans and non-human primates with mortality rates up to 90%. So far there are no effective treatments available. This study evaluates the protective efficacy of 8 monoclonal antibodies (MAbs) against Ebola glycoprotein in mice and guinea pigs. Immunocompetent mice or guinea pigs were given MAbs i.p. in various doses individually or as pools of 3-4 MAbs to test their protection against a lethal challenge with mouse- or guinea pig-adapted EBOV. Each of the 8 MAbs (100 µg) protected mice from a lethal EBOV challenge when administered 1 day before or after challenge. Seven MAbs were effective 2 days post-infection (dpi), with 1 MAb demonstrating partial protection 3 dpi. In the guinea pigs each MAb showed partial protection at 1 dpi, however the mean time to death was significantly prolonged compared to the control group. Moreover, treatment with pools of 3-4 MAbs completely protected the majority of animals, while administration at 2-3 dpi achieved 50-100% protection. This data suggests that the MAbs generated are capable of protecting both animal species against lethal Ebola virus challenge. These results indicate that MAbs particularly when used as an oligoclonal set are a potential therapeutic for post-exposure treatment of EBOV infection.
Kim, Je Hyoung; Hajam, Irshad Ahmed; Lee, John Hwa
2018-02-01
Attenuated Salmonella strains constitute a promising technology for the development of efficient protein-based influenza vaccines. H7N9, a low pathogenic avian influenza (LPAI) virus, is a major public health concern and currently there are no effective vaccines against this subtype. Herein, we constructed a novel attenuated Salmonella Typhimurium strain for the delivery and expression of H7N9 hemagglutinin (HA), neuraminidase (NA) or the conserved extracellular domain of the matrix protein 2 (M2e). We demonstrated that the constructed Salmonella strains exhibited efficient HA, NA and M2e expressions, respectively, and the constructs were safe and immunogenic in chickens. Our results showed that chickens immunized once orally with Salmonella (Sal) mutants encoding HA (Sal-HA), M2e (Sal-M2e) or NA (Sal-NA), administered either alone or in combination, induced both antigen-specific humoral and cell mediated immune (CMI) responses, and protected chickens against the lethal H7N9 challenge. However, chickens immunized with Sal-HA+Sal-M2e+Sal-NA vaccine constructs exhibited efficient mucosal and CMI responses compared to the chickens that received only Sal-HA, Sal-M2e or Sal-M2e+Sal-NA vaccine. Further, chickens immunized with Sal-HA+Sal-M2e+Sal-NA constructs cleared H7N9 infection at a faster rate compared to the chickens that were vaccinated with Sal-HA, Sal-M2e or Sal-M2e+Sal-NA, as indicated by the reduced viral shedding in cloacal swabs of the immunized chickens. We conclude that this vaccination strategy, based on HA, M2e and NA, stimulated efficient induction of immune protection against the lethal H7N9 LPAI virus and, therefore, further studies are warranted to develop this approach as a potential prophylaxis against LPAI viruses affecting poultry birds.
Asjad, H. M. Mazhar; Kasture, Ameya; El-Kasaby, Ali; Sackel, Michael; Hummel, Thomas; Freissmuth, Michael; Sucic, Sonja
2017-01-01
Point mutations in the gene encoding the human dopamine transporter (hDAT, SLC6A3) cause a syndrome of infantile/juvenile dystonia and parkinsonism. To unravel the molecular mechanism underlying these disorders and investigate possible pharmacological therapies, here we examined 13 disease-causing DAT mutants that were retained in the endoplasmic reticulum when heterologously expressed in HEK293 cells. In three of these mutants, i.e. hDAT-V158F, hDAT-G327R, and hDAT-L368Q, the folding deficit was remedied with the pharmacochaperone noribogaine or the heat shock protein 70 (HSP70) inhibitor pifithrin-μ such that endoplasmic reticulum export of and radioligand binding and substrate uptake by these DAT mutants were restored. In Drosophila melanogaster, DAT deficiency results in reduced sleep. We therefore exploited the power of targeted transgene expression of mutant hDAT in Drosophila to explore whether these hDAT mutants could also be pharmacologically rescued in an intact organism. Noribogaine or pifithrin-μ treatment supported hDAT delivery to the presynaptic terminals of dopaminergic neurons and restored sleep to normal length in DAT-deficient (fumin) Drosophila lines expressing hDAT-V158F or hDAT-G327R. In contrast, expression of hDAT-L368Q in the Drosophila DAT mutant background caused developmental lethality, indicating a toxic action not remedied by pharmacochaperoning. Our observations identified those mutations most likely amenable to pharmacological rescue in the affected children. In addition, our findings also highlight the challenges of translating insights from pharmacochaperoning in cell culture to the clinical situation. Because of the evolutionary conservation in dopaminergic neurotransmission between Drosophila and people, pharmacochaperoning of DAT in D. melanogaster may allow us to bridge that gap. PMID:28972153
Soares, Hellen Maria; Jacob, Cynthia Renata Oliveira; Carvalho, Stephan Malfitano; Nocelli, Roberta Cornélio Ferreira; Malaspina, Osmar
2015-06-01
The stingless bee Scaptotrigona postica is an important pollinator of native and cultivated plants in Brazil. Among the factors affecting the survival of these insects is the indiscriminate use of insecticides, including the neonicotinoid imidacloprid. This work determined the toxicity of imidacloprid as the topical median lethal dose (LD50) and the oral median lethal concentration (LC50) as tools for assessing the effects of this insecticide. The 24 and 48 h LD50 values were 25.2 and 24.5 ng of active ingredient (a.i.)/bee, respectively. The 24 and 48 h LC50 values were 42.5 and 14.3 ng a.i./µL of diet, respectively. Ours results show the hazard of imidacloprid and the vulnerability of stingless bees to it, providing relevant toxicological data that can used in mitigation programs to ensure the conservation of this species.
Antibiotics induce redox-related physiological alterations as part of their lethality
Dwyer, Daniel J.; Belenky, Peter A.; Yang, Jason H.; MacDonald, I. Cody; Martell, Jeffrey D.; Takahashi, Noriko; Chan, Clement T. Y.; Lobritz, Michael A.; Braff, Dana; Schwarz, Eric G.; Ye, Jonathan D.; Pati, Mekhala; Vercruysse, Maarten; Ralifo, Paul S.; Allison, Kyle R.; Khalil, Ahmad S.; Ting, Alice Y.; Walker, Graham C.; Collins, James J.
2014-01-01
Deeper understanding of antibiotic-induced physiological responses is critical to identifying means for enhancing our current antibiotic arsenal. Bactericidal antibiotics with diverse targets have been hypothesized to kill bacteria, in part by inducing production of damaging reactive species. This notion has been supported by many groups but has been challenged recently. Here we robustly test the hypothesis using biochemical, enzymatic, and biophysical assays along with genetic and phenotypic experiments. We first used a novel intracellular H2O2 sensor, together with a chemically diverse panel of fluorescent dyes sensitive to an array of reactive species to demonstrate that antibiotics broadly induce redox stress. Subsequent gene-expression analyses reveal that complex antibiotic-induced oxidative stress responses are distinct from canonical responses generated by supraphysiological levels of H2O2. We next developed a method to quantify cellular respiration dynamically and found that bactericidal antibiotics elevate oxygen consumption, indicating significant alterations to bacterial redox physiology. We further show that overexpression of catalase or DNA mismatch repair enzyme, MutS, and antioxidant pretreatment limit antibiotic lethality, indicating that reactive oxygen species causatively contribute to antibiotic killing. Critically, the killing efficacy of antibiotics was diminished under strict anaerobic conditions but could be enhanced by exposure to molecular oxygen or by the addition of alternative electron acceptors, indicating that environmental factors play a role in killing cells physiologically primed for death. This work provides direct evidence that, downstream of their target-specific interactions, bactericidal antibiotics induce complex redox alterations that contribute to cellular damage and death, thus supporting an evolving, expanded model of antibiotic lethality. PMID:24803433
Kim, Hye-Ryoung; Kwon, Yong-Kuk; Jang, Il; Lee, Youn-Jeong; Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Lee, Hee-Soo; Joo, Yi-Seok; Lee, Kyung-Hyun; Lee, Hyun-Kyoung; Baek, Kang-Hyun; Bae, You-Chan
2015-05-01
In January 2014, an outbreak of infection with highly pathogenic avian influenza (HPAI) A(H5N8) virus began on a duck farm in South Korea and spread to other poultry farms nearby. During this outbreak, many sick or dead wild birds were found around habitats frequented by migratory birds. To determine the causes of death, we examined 771 wild bird carcasses and identified HPAI A(H5N8) virus in 167. Gross and histologic lesions were observed in pancreas, lung, brain, and kidney of Baikal teals, bean geese, and whooper swans but not mallard ducks. Such lesions are consistent with lethal HPAI A(H5N8) virus infection. However, some HPAI-positive birds had died of gunshot wounds, peritonitis, or agrochemical poisoning rather than virus infection. These findings suggest that susceptibility to HPAI A(H5N8) virus varies among species of migratory birds and that asymptomatic migratory birds could be carriers of this virus.
Sports participation in long QT syndrome.
Aziz, Peter F; Saarel, Elizabeth V
2017-01-01
Untreated congenital long QT syndrome may result in potentially lethal ventricular tachycardia. In the most common type, risk of such an event has been linked to exercise. This originally resulted in very restrictive guidelines for sports participation in affected individuals. Although the complex interactions of a specific genotype, modifying cofactors, and risk are only now being explored, scientific evidence based on clinical experience now suggests that in many instances such restrictive guidelines are unwarranted. In particular, patients with this condition who are compliant with β-blocker therapy and who have never had symptoms during exertion are now enjoying the benefits of athletic activity.
Photodynamic impact induces ischemic tolerance in models in vivo and in vitro
NASA Astrophysics Data System (ADS)
Demyanenko, Svetlana; Sharifulina, Svetlana; Berezhnaya, Elena; Kovaleva, Vera; Neginskaya, Maria; Zhukovskaya, Ludmila
2016-04-01
Ischemic tolerance determines resistance to lethal ischemia gained by a prior sublethal stimulus (i.e., preconditioning). We reproduced this effect in two variants. In vitro the preliminary short (5 s) photodynamic treatment (PDT) (photosensitizer Photosens, 10 nM, 30 min preincubation; laser: 670 nm, 100 mW/cm2) significantly reduced the necrosis of neurons and glial cells in the isolated crayfish stretch receptor, which was caused by following 30-min PDT by 66% and 46%, respectively. In vivo PDT of the rat cerebral cortex with hydrophilic photosensitizer Rose Bengal (i.v. administration, laser irradiation: 532 nm, 60 mW/cm2, 3 mm beam diameter, 30 min) caused occlusion of small brain vessels and local photothrombotic infarct (PTI). It is a model of ischemic stroke. Cerebral tissue edema and global necrosis of neurons and glial cells occurred in the infarction core, which was surrounded by a 1.5 mm transition zone, penumbra. The maximal pericellular edema, hypo- and hyperchromia of neurons were observed in penumbra 24 h after PTI. The repeated laser irradiation of the contralateral cerebral cortex also caused PTI but lesser as compared with single PDT. Preliminary unilateral PTI provided ischemic tolerance: at 14 day after second exposure the PTI volume significantly decreased by 24% than in the case of a single exposure. Sensorimotor deficits in PDT-treated rats was registered using the behavioral tests. The preliminary PTI caused the preconditioning effect.
Kon, Ayana; Yamazaki, Satoshi; Nannya, Yasuhito; Kataoka, Keisuke; Ota, Yasunori; Nakagawa, Masahiro Marshall; Yoshida, Kenichi; Shiozawa, Yusuke; Morita, Maiko; Yoshizato, Tetsuichi; Sanada, Masashi; Nakayama, Manabu; Koseki, Haruhiko; Nakauchi, Hiromitsu; Ogawa, Seishi
2018-02-08
Splicing factor mutations are characteristic of myelodysplastic syndromes (MDS) and related myeloid neoplasms and implicated in their pathogenesis, but their roles in the development of MDS have not been fully elucidated. In the present study, we investigated the consequence of mutant Srsf2 expression using newly generated Vav1-Cre -mediated conditional knockin mice. Mice carrying a heterozygous Srsf2 P95H mutation showed significantly reduced numbers of hematopoietic stem and progenitor cells (HSPCs) and differentiation defects both in the steady-state condition and transplantation settings. Srsf2 -mutated hematopoietic stem cells (HSCs) showed impaired long-term reconstitution compared with control mice in competitive repopulation assays. Although the Srsf2 mutant mice did not develop MDS under the steady-state condition, when their stem cells were transplanted into lethally irradiated mice, the recipients developed anemia, leukopenia, and erythroid dysplasia, which suggests the role of replicative stress in the development of an MDS-like phenotype in Srsf2 -mutated mice. RNA sequencing of the Srsf2 -mutated HSPCs revealed a number of abnormal splicing events and differentially expressed genes, including several potential targets implicated in the pathogenesis of hematopoietic malignancies, such as Csf3r , Fyn , Gnas , Nsd1 , Hnrnpa2b1 , and Trp53bp1 Among the mutant Srsf2 -associated splicing events, most commonly observed were the enhanced inclusion and/or exclusion of cassette exons, which were caused by the altered consensus motifs for the recognition of exonic splicing enhancers. Our findings suggest that the mutant Srsf2 leads to a compromised HSC function by causing abnormal RNA splicing and expression, contributing to the deregulated hematopoiesis that recapitulates the MDS phenotypes, possibly as a result of additional genetic and/or environmental insults. © 2018 by The American Society of Hematology.
Developing Non-Lethal Weapons: The Human Effects Characterization Process
2015-06-01
countered more than a dozen, rock-throwing locals. After a Marine fired a 12 - gauge , non-lethal warning munition, the rock throwers fled. Similarly...extended human electromuscular incapacitation (ef- fects similar to those caused by TASER devices used by law enforcement). However, confidence must be
USDA-ARS?s Scientific Manuscript database
We evaluated the knockdown effect caused by four insecticides: alpha-cypermethrin, chlorfenapyr, pirimiphos-methyl and fipronil against Tribolium confusum and Oryzaephilus surinamensis adults. Furthermore, for the same species and insecticides, we developed a “lethality index”, to assess knockdown p...
Genetic characterization of H5N1 influenza A viruses isolated from zoo tigers in Thailand.
Amonsin, Alongkorn; Payungporn, Sunchai; Theamboonlers, Apiradee; Thanawongnuwech, Roongroje; Suradhat, Sanipa; Pariyothorn, Nuananong; Tantilertcharoen, Rachod; Damrongwantanapokin, Sudarat; Buranathai, Chantanee; Chaisingh, Arunee; Songserm, Thaweesak; Poovorawan, Yong
2006-01-20
The H5N1 avian influenza virus outbreak among zoo tigers in mid-October 2004, with 45 animals dead, indicated that the avian influenza virus could cause lethal infection in a large mammalian species apart from humans. In this outbreak investigation, six H5N1 isolates were identified and two isolates (A/Tiger/Thailand/CU-T3/04 and A/Tiger/Thailand/CU-T7/04) were selected for whole genome analysis. Phylogenetic analysis of the 8 gene segments showed that the viruses clustered within the lineage of H5N1 avian isolates from Thailand and Vietnam. The hemagglutinin (HA) gene of the viruses displayed polybasic amino acids at the cleavage site, identical to those of the 2004 H5N1 isolates, which by definition are highly pathogenic avian influenza (HPAI). In addition, sequence analyses revealed that the viruses isolated from tigers harbored few genetic changes compared with the viruses having infected chicken, humans, tigers and a leopard isolated from the early 2004 H5N1 outbreaks. Sequence analyses also showed that the tiger H5N1 isolated in October 2004 was more closely related to the chicken H5N1 isolated in July than that from January. Interestingly, all the 6 tiger H5N1 isolates contained a lysine substitution at position 627 of the PB2 protein similar to the human, but distinct from the original avian isolates.
Svensson, Malin; Fast, Jonas; Mossberg, Ann-Kristin; Düringer, Caroline; Gustafsson, Lotta; Hallgren, Oskar; Brooks, Charles L; Berliner, Lawrence; Linse, Sara; Svanborg, Catharina
2003-12-01
HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a complex of human alpha-lactalbumin and oleic acid (C18:1:9 cis) that kills tumor cells by an apoptosis-like mechanism. Previous studies have shown that a conformational change is required to form HAMLET from alpha-lactalbumin, and that a partially unfolded conformation is maintained in the HAMLET complex. This study examined if unfolding of alpha-lactalbumin is sufficient to induce cell death. We used the bovine alpha-lactalbumin Ca(2+) site mutant D87A, which is unable to bind Ca(2+), and thus remains partially unfolded regardless of solvent conditions. The D87A mutant protein was found to be inactive in the apoptosis assay, but could readily be converted to a HAMLET-like complex in the presence of oleic acid. BAMLET (bovine alpha-lactalbumin made lethal to tumor cells) and D87A-BAMLET complexes were both able to kill tumor cells. This activity was independent of the Ca(2+)site, as HAMLET maintained a high affinity for Ca(2+) but D87A-BAMLET was active with no Ca(2+) bound. We conclude that partial unfolding of alpha-lactalbumin is necessary but not sufficient to trigger cell death, and that the activity of HAMLET is defined both by the protein and the lipid cofactor. Furthermore, a functional Ca(2+)-binding site is not required for conversion of alpha-lactalbumin to the active complex or to cause cell death. This suggests that the lipid cofactor stabilizes the altered fold without interfering with the Ca(2+)site.
Bang, Jihyun; Hong, Ayoung; Kim, Hoikyung; Beuchat, Larry R; Rhee, Min Suk; Kim, Younghoon; Ryu, Jee-Hoon
2014-11-17
We investigated the efficacy of sequential treatments of aqueous chlorine and chlorine dioxide and drying in killing Escherichia coli O157:H7 in biofilms formed on stainless steel, glass, plastic, and wooden surfaces. Cells attached to and formed a biofilm on wooden surfaces at significantly (P ≤ 0.05) higher levels compared with other surface types. The lethal activities of sodium hypochlorite (NaOCl) and aqueous chlorine dioxide (ClO₂) against E. coli O157:H7 in a biofilm on various food-contact surfaces were compared. Chlorine dioxide generally showed greater lethal activity than NaOCl against E. coli O157:H7 in a biofilm on the same type of surface. The resistance of E. coli O157:H7 to both sanitizers increased in the order of wood>plastic>glass>stainless steel. The synergistic lethal effects of sequential ClO₂ and drying treatments on E. coli O157:H7 in a biofilm on wooden surfaces were evaluated. When wooden surfaces harboring E. coli O157:H7 biofilm were treated with ClO₂ (200 μg/ml, 10 min), rinsed with water, and subsequently dried at 43% relative humidity and 22 °C, the number of E. coli O157:H7 on the surface decreased by an additional 6.4 CFU/coupon within 6 h of drying. However, when the wooden surface was treated with water or NaOCl and dried under the same conditions, the pathogen decreased by only 0.4 or 1.0 log CFU/coupon, respectively, after 12 h of drying. This indicates that ClO₂ treatment of food-contact surfaces results in residual lethality to E. coli O157:H7 during the drying process. These observations will be useful when selecting an appropriate type of food-contact surfaces, determining a proper sanitizer for decontamination, and designing an effective sanitization program to eliminate E. coli O157:H7 on food-contact surfaces in food processing, distribution, and preparation environments. Copyright © 2014 Elsevier B.V. All rights reserved.
Effects of sleep restriction on adiponectin levels in healthy men and women.
Simpson, Norah S; Banks, Siobhan; Arroyo, Sylmarie; Dinges, David F
2010-12-02
Population studies have consistently found that shorter sleep durations are associated with obesity and cardiovascular disease, particularly among women. Adiponectin is an adipocyte-derived, anti-inflammatory hormone that is related to cardiovascular disease risk. We hypothesized that sleep restriction would reduce adiponectin levels in healthy young adults. 74 healthy adults (57% men, 63% African American, mean age 29.9years) completed 2 nights of baseline sleep at 10h time in bed (TIB) per night followed by 5 nights of sleep restricted to 4h TIB per night. An additional 8 participants were randomized to a control group that received 10h TIB per night throughout the study. Plasma adiponectin levels were measured following the second night of baseline sleep and the fifth night of sleep restriction or control sleep. Sleep restriction resulted in a decrease in plasma adiponectin levels among Caucasian women (Z=-2.19, p=0.028), but an increase among African American women (Z=-2.73, p=0.006). No significant effects of sleep restriction on adiponectin levels were found among men. A 2×2 between-group analysis of covariance on adiponectin change scores controlling for BMI confirmed significant interactions between sleep restriction and race/ethnicity [F(1,66)=13.73, p<0.001], as well as among sleep restriction, race/ethnicity and sex [F(1,66)=4.27, p=0.043)]. Inflammatory responses to sleep loss appear to be moderated by sex and race/ethnicity; observed decreases in adiponectin following sleep restriction may be one avenue by which reduced sleep duration promotes cardiovascular risk in Caucasian women. Copyright © 2010 Elsevier Inc. All rights reserved.
Rimkus, Stacey A; Wassarman, David A
2018-01-01
Ataxia-telangiectasia (A-T) is a neurodegenerative disease caused by mutation of the A-T mutated (ATM) gene. ATM encodes a protein kinase that is activated by DNA damage and phosphorylates many proteins, including those involved in DNA repair, cell cycle control, and apoptosis. Characteristic biological and molecular functions of ATM observed in mammals are conserved in Drosophila melanogaster. As an example, conditional loss-of-function ATM alleles in flies cause progressive neurodegeneration through activation of the innate immune response. However, unlike in mammals, null alleles of ATM in flies cause lethality during development. With the goals of understanding biological and molecular roles of ATM in a whole animal and identifying candidate therapeutics for A-T, we performed a screen of 2400 compounds, including FDA-approved drugs, natural products, and bioactive compounds, for modifiers of the developmental lethality caused by a temperature-sensitive ATM allele (ATM8) that has reduced kinase activity at non-permissive temperatures. Ten compounds reproducibly suppressed the developmental lethality of ATM8 flies, including Ronnel, which is an organophosphate. Ronnel and other suppressor compounds are known to cause mitochondrial dysfunction or to inhibit the enzyme acetylcholinesterase, which controls the levels of the neurotransmitter acetylcholine, suggesting that detrimental consequences of reduced ATM kinase activity can be rescued by inhibiting the function of mitochondria or increasing acetylcholine levels. We carried out further studies of Ronnel because, unlike the other compounds that suppressed the developmental lethality of homozygous ATM8 flies, Ronnel was toxic to the development of heterozygous ATM8 flies. Ronnel did not affect the innate immune response of ATM8 flies, and it further increased the already high levels of DNA damage in brains of ATM8 flies, but its effects were not harmful to the lifespan of rescued ATM8 flies. These results provide new leads for understanding the biological and molecular roles of ATM and for the treatment of A-T.
Lu, Weiwei; Xu, Qiujing; Zhu, Jun; Liu, Chen; Ge, Linquan; Yang, Guoqing; Liu, Fang
2017-08-01
The miridbug, Cyrtorhinus lividipennis, is a significant predacious enemy of rice planthoppers. The effects of sub-lethal concentrations of triazophos, deltamethrin and imidacloprid on fecundity, egg hatchability, expression levels of genes associated with reproduction, and population growth in C. lividipennis were investigated. The fecundities for three pair combinations (♀ c × ♂ t , ♀ t × ♂ c and ♀ t × ♂ t ) treated with sub-lethal concentrations of the insecticides triazophos, deltamethrin and imidacloprid (LC 10 and LC 20 ) showed a significant increase compared to the untreated pairs (♀ c × ♂ c ). However, sub-lethal concentration treatments did not affect the egg hatchability. The ClVg expression levels of female adults exposed to triazophos, deltamethrin and imidacloprid (LC 20 ) increased by 52.6, 48.9 and 91.2%, respectively. The ClSPATA13 expression level of adult males exposed to triazophos, deltamethrim and imidacloprid (LC 20 ) increased by 80.7, 41.3 and 48.3%, respectively. Furthermore, sub-lethal concentrations of insecticides (LC 20 ) caused increased population numbers in C. lividipennis. Sub-lethal concentrations of triazophos, deltamethrin and imidacloprid stimulated reproduction and enhanced population growth of C. lividipennis. The reproductive stimulation might result from the up-regulation of ClVg or ClSPATA13. These findings may be useful in mediating populations of planthoppers. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Structure and selectivity in bestrophin ion channels
Yang, Tingting; Liu, Qun; Kloss, Brian; ...
2014-09-25
Human bestrophin 1 (hBest1) is a calcium-activated chloride channel from the retinal pigment epithelium, where it can suffer mutations associated with vitelliform macular degeneration, or Best disease. We describe the structure of a bacterial homolog (KpBest) of hBest1 and functional characterizations of both channels. KpBest is a pentamer that forms a five-helix transmembrane pore, closed by three rings of conserved hydrophobic residues, and has a cytoplasmic cavern with a restricted exit. From electrophysiological analysis of structure-inspired mutations in KpBest and hBest1, we find a subtle control of ion selectivity in the bestrophins, including reversal of anion/cation selectivity, and dramatic activationmore » by mutations at the exit restriction. Lastly, a homology model of hBest1 shows the locations of disease-causing mutations and suggests possible roles in regulation.« less
Brockmeier, Susan L.; Register, Karen B.; Kuehn, Joanna S.; Nicholson, Tracy L.; Loving, Crystal L.; Bayles, Darrell O.; Shore, Sarah M.; Phillips, Gregory J.
2014-01-01
Haemophilus parasuis is the cause of Glässer's disease in swine, which is characterized by systemic infection resulting in polyserositis, meningitis, and arthritis. Investigation of this animal disease is complicated by the enormous differences in the severity of disease caused by H. parasuis strains, ranging from lethal systemic disease to subclinical carriage. To identify differences in genotype that could account for virulence phenotypes, we established the virulence of, and performed whole genome sequence analysis on, 11 H. parasuis strains. Virulence was assessed by evaluating morbidity and mortality following intranasal challenge of Caesarean-derived, colostrum-deprived (CDCD) pigs. Genomic DNA from strains Nagasaki (serotype 5), 12939 (serotype 1), SW140 (serotype 2), 29755 (serotype 5), MN-H (serotype 13), 84-15995 (serotype 15), SW114 (serotype 3), H465 (serotype 11), D74 (serotype 9), and 174 (serotype 7) was used to generate Illumina paired-end libraries for genomic sequencing and de novo assembly. H. parasuis strains Nagasaki, 12939, SH0165 (serotype 5), SW140, 29755, and MN-H exhibited a high level of virulence. Despite minor differences in expression of disease among these groups, all pigs challenged with these strains developed clinical signs consistent with Glässer's disease between 1–7 days post-challenge. H. parasuis strains 84-15995 and SW114 were moderately virulent, in that approximately half of the pigs infected with each developed Glässer's disease. H. parasuis strains H465, D74, and 174 were minimally virulent or avirulent in the CDCD pig model. Comparative genomic analysis among strains identified several noteworthy differences in coding regions. These coding regions include predicted outer membrane, metabolism, and pilin or adhesin related genes, some of which likely contributed to the differences in virulence and systemic disease observed following challenge. These data will be useful for identifying H. parasuis virulence factors and vaccine targets. PMID:25137096
Brockmeier, Susan L; Register, Karen B; Kuehn, Joanna S; Nicholson, Tracy L; Loving, Crystal L; Bayles, Darrell O; Shore, Sarah M; Phillips, Gregory J
2014-01-01
Haemophilus parasuis is the cause of Glässer's disease in swine, which is characterized by systemic infection resulting in polyserositis, meningitis, and arthritis. Investigation of this animal disease is complicated by the enormous differences in the severity of disease caused by H. parasuis strains, ranging from lethal systemic disease to subclinical carriage. To identify differences in genotype that could account for virulence phenotypes, we established the virulence of, and performed whole genome sequence analysis on, 11 H. parasuis strains. Virulence was assessed by evaluating morbidity and mortality following intranasal challenge of Caesarean-derived, colostrum-deprived (CDCD) pigs. Genomic DNA from strains Nagasaki (serotype 5), 12939 (serotype 1), SW140 (serotype 2), 29755 (serotype 5), MN-H (serotype 13), 84-15995 (serotype 15), SW114 (serotype 3), H465 (serotype 11), D74 (serotype 9), and 174 (serotype 7) was used to generate Illumina paired-end libraries for genomic sequencing and de novo assembly. H. parasuis strains Nagasaki, 12939, SH0165 (serotype 5), SW140, 29755, and MN-H exhibited a high level of virulence. Despite minor differences in expression of disease among these groups, all pigs challenged with these strains developed clinical signs consistent with Glässer's disease between 1-7 days post-challenge. H. parasuis strains 84-15995 and SW114 were moderately virulent, in that approximately half of the pigs infected with each developed Glässer's disease. H. parasuis strains H465, D74, and 174 were minimally virulent or avirulent in the CDCD pig model. Comparative genomic analysis among strains identified several noteworthy differences in coding regions. These coding regions include predicted outer membrane, metabolism, and pilin or adhesin related genes, some of which likely contributed to the differences in virulence and systemic disease observed following challenge. These data will be useful for identifying H. parasuis virulence factors and vaccine targets.
Mazel-Sanchez, B; Boal-Carvalho, I; Silva, F; Dijkman, R; Schmolke, M
2018-06-01
Highly pathogenic influenza A viruses (IAV) from avian hosts were first reported to directly infect humans 20 years ago. However, such infections are rare events, and our understanding of factors promoting or restricting zoonotic transmission is still limited. One accessory protein of IAV, PB1-F2, was associated with pathogenicity of pandemic and zoonotic IAV. This short (90-amino-acid) peptide does not harbor an enzymatic function. We thus identified host factors interacting with H5N1 PB1-F2, which could explain its importance for virulence. PB1-F2 binds to HCLS1-associated protein X1 (HAX-1), a recently identified host restriction factor of the PA subunit of IAV polymerase complexes. We demonstrate that the PA of a mammal-adapted H1N1 IAV is resistant to HAX-1 imposed restriction, while the PA of an avian-origin H5N1 IAV remains sensitive. We also showed HAX-1 sensitivity for PAs of A/Brevig Mission/1/1918 (H1N1) and A/Shanghai/1/2013 (H7N9), two avian-origin zoonotic IAV. Inhibition of H5N1 polymerase by HAX-1 can be alleviated by its PB1-F2 through direct competition. Accordingly, replication of PB1-F2-deficient H5N1 IAV is attenuated in the presence of large amounts of HAX-1. Mammal-adapted H1N1 and H3N2 viruses do not display this dependence on PB1-F2 for efficient replication in the presence of HAX-1. We propose that PB1-F2 plays a key role in zoonotic transmission of avian H5N1 IAV into humans. IMPORTANCE Aquatic and shore birds are the natural reservoir of influenza A viruses from which the virus can jump into a variety of bird and mammal host species, including humans. H5N1 influenza viruses are a good model for this process. They pose an ongoing threat to human and animal health due to their high mortality rates. However, it is currently unclear what restricts these interspecies jumps on the host side or what promotes them on the virus side. Here we show that a short viral peptide, PB1-F2, helps H5N1 bird influenza viruses to overcome a human restriction factor of the viral polymerase complex HAX-1. Interestingly, we found that human influenza A virus polymerase complexes are already adapted to HAX-1 and do not require this function of PB1-F2. We thus propose that a functional full-length PB1-F2 supports direct transmission of bird viruses into humans. Copyright © 2018 Mazel-Sanchez et al.
Wesley-Smith, James; Walters, Christina; Pammenter, N. W.
2015-01-01
Background and Aims Conservation of the genetic diversity afforded by recalcitrant seeds is achieved by cryopreservation, in which excised embryonic axes (or, where possible, embryos) are treated and stored at temperatures lower than −180 °C using liquid nitrogen. It has previously been shown that intracellular ice forms in rapidly cooled embryonic axes of Acer saccharinum (silver maple) but this is not necessarily lethal when ice crystals are small. This study seeks to understand the nature and extent of damage from intracellular ice, and the course of recovery and regrowth in surviving tissues. Methods Embryonic axes of A. saccharinum, not subjected to dehydration or cryoprotection treatments (water content was 1·9 g H2O g−1 dry mass), were cooled to liquid nitrogen temperatures using two methods: plunging into nitrogen slush to achieve a cooling rate of 97 °C s−1 or programmed cooling at 3·3 °C s−1. Samples were thawed rapidly (177 °C s−1) and cell structure was examined microscopically immediately, and at intervals up to 72 h in vitro. Survival was assessed after 4 weeks in vitro. Axes were processed conventionally for optical microscopy and ultrastructural examination. Key Results Immediately following thaw after cryogenic exposure, cells from axes did not show signs of damage at an ultrastructural level. Signs that cells had been damaged were apparent after several hours of in vitro culture and appeared as autophagic decomposition. In surviving tissues, dead cells were sloughed off and pockets of living cells were the origin of regrowth. In roots, regrowth occurred from the ground meristem and procambium, not the distal meristem, which became lethally damaged. Regrowth of shoots occurred from isolated pockets of surviving cells of peripheral and pith meristems. The size of these pockets may determine the possibility for, the extent of and the vigour of regrowth. Conclusions Autophagic degradation and ultimately autolysis of cells following cryo-exposure and formation of small (0·2–0·4 µm) intracellular ice crystals challenges current ideas that ice causes immediate physical damage to cells. Instead, freezing stress may induce a signal for programmed cell death (PCD). Cells that form more ice crystals during cooling have faster PCD responses. PMID:25808653
Oukkache, Naoual; Ahmad Rusmili, Muhamad Rusdi; Othman, Iekhsan; Ghalim, Noreddine; Chgoury, Fatima; Boussadda, Lofti; Elmdaghri, Naima; Sabatier, Jean-Marc
2015-03-01
Scorpion venoms contain complex mixtures of molecules, including peptides. These peptides specifically bind to various targets, in particular ion channels. Toxins modulating Na(+), K(+), Ca(2+) and Cl(-) currents were described from venoms. The Androctonus and Buthus geni of scorpions are widely distributed in Morocco. Their stings can cause pain, inflammation, necrosis, muscle paralysis and death. The myotoxicity is predominantly associated with neurotoxic effects and is a cause of mortality and morbidity. In this study, pharmacological effects of venoms were investigated in vitro on neuromuscular transmission. Effects of Androctonus mauretanicus (Am) and Buthus occitanus (Bo) venoms were investigated using the chick biventer cervicis nerve-muscle preparations. The protective activity of antivenom was also investigated. The antivenom was made from serum of horse that was hyperimmunized with Bo and Androctonus australis hector (Aah) venoms and one venom from Middle East species (Lq). The protective activity of the antivenom was assessed on the neuromuscular system by using stimulated chick nerve-muscle. The results were compared with lethal activity neutralization in mice. Am and Bo venoms contain myotoxins and postsynaptic neurotoxins. In agreement with lethal potencies of these venoms in mice, Am venom displays greater neurotoxicity and myotoxicity. The antivenom prevented lethality caused by Am, Bo and Aah venoms. The antivenom did not prevent toxic effects caused by Am venom whereas it neutralized Bo venom. Am and Bo venoms contain distinct toxins that are responsible for myotoxicity and neurotoxicity. It would be appropriate to add Am venom to produce more efficient antivenom. Copyright © 2015 Elsevier Inc. All rights reserved.
Teti, G; Mancuso, G; Tomasello, F
1993-01-01
Cytokines are suspected of playing an important role in the pathophysiology of septic shock. This study was undertaken to determine whether tumor necrosis factor alpha (TNF-alpha) induces the production of other cytokines and mediates mortality in a neonatal rat model of sepsis caused by group B streptococci (GBS). We have measured TNF-alpha, interleukin-1 alpha (IL-1 alpha), interleukin-6 (IL-6), and gamma interferon (IFN-gamma) levels in neonatal rats infected with different strains (H738, 259, and 90) and doses (1 50% lethal dose [LD50] and 5 90% lethal doses [LD90]) of type III GBS. TNF-alpha and IL-6 were detected by the L929 cytotoxicity and the B9 proliferation assays, respectively, in serial plasma samples. IL-1 alpha and IFN-gamma were measured in spleen homogenates by enzyme-linked immunosorbent assay kits by using antibodies raised against the corresponding mouse cytokines. Plasma TNF-alpha levels significantly rose above baseline values within 12 h after intraperitoneal challenge with 5 LD90 of GBS strain H738, corresponding to 3 x 10(3) CFU. A mean peak TNF-alpha concentration of 232 +/- 124 U/ml was reached at 20 h. Peak IL-1 alpha and IL-6 levels of 766 +/- 404 U/g and 1,033 +/- 520 U/ml, respectively, were reached at 24 h after bacterial challenge. Maximal spleen concentrations of IFN-gamma (449 +/- 283 U/g) were measured at 36 h. Concentrations of TNF-alpha, but not other cytokines, remained significantly elevated at 72 h, a time when mortality approached 100%. Significant correlations were found between concentrations of each of the cytokines tested and the logs of CFU concentrations in the blood. In order to ascertain whether TNF-alpha influenced the production of other cytokines, rat pups received two injections of anti-murine TNF-alpha or normal rabbit serum at 2 h before and at 26 h after challenge with live GBS. Plasma TNF-alpha bioactivity was undetectable in anti-TNF-alpha-treated animals, while IL-6 and IFN-gamma, but not IL-1 alpha, levels were significantly reduced, compared with normal serum controls. Rat pups pretreated with anti-TNF-alpha serum and infected with 1 and 5 LD90 of strains H738 and 259 showed enhanced early (48 to 72 h) survival. However, by 96 h this protection was no longer apparent. PMID:8418044
Sudden oronasal bleeding in a young child.
Hey, Edmund
2008-10-01
Sudden severe upper-airway obstruction occurring in a hospital setting can sometimes precipitate an episode of acute haemorrhagic pulmonary oedema. A review of 197 published case reports shows that the presenting feature is almost always the sudden appearance of blood stained fluid coming up through the larynx or out through the mouth and nose of an adult or child in obvious respiratory distress. Such overt features are seen in 10-15% of cases of sudden severe, but sub-lethal, upper-airway obstruction. Signs normally appear within minutes once the obstruction is relieved but are occasionally only recognized after 1-4 h. All signs and symptoms usually resolve within 12-24 h. Other causes of acute pulmonary haemorrhage are rare in young children. If what looks like blood is seen in, or coming from, the mouth or nose of a previously healthy young child who has suddenly become distressed and started to struggle for breath, that child has most probably suffered an episode of acute pulmonary oedema, and the commonest precipitating cause is sudden upper-airway obstruction.
Role of HIV-2 envelope in Lv2-mediated restriction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reuter, Sandra; Kaumanns, Patrick; Buschhorn, Sabine B.
2005-02-05
We have characterized envelope protein pseudotyped HIV-2 particles derived from two HIV-2 isolates termed prCBL23 and CBL23 in order to define the role of the envelope protein for the Lv2-mediated restriction to infection. Previously, it has been described that the primary isolate prCBL23 is restricted to infection of several human cell types, whereas the T cell line adapted isolate CBL23 is not restricted in these cell types. Molecular cloning of the two isolates revealed that the env and the gag gene are responsible for the observed phenotype and that this restriction is mediated by Lv2, which is distinct from Ref1/Lv1more » (Schmitz, C., Marchant, D., Neil, S.J., Aubin, K., Reuter, S., Dittmar, M.T., McKnight, A., Kizhatil, K., Albritton, L.M., 2004. Lv2, a novel postentry restriction, is mediated by both capsid and envelope. J. Virol. 78 (4), 2006-2016). We generated pseudotyped viruses consisting of HIV-2 (ROD-A{delta}env-GFP, ROD-A{delta}env-RFP, or ROD-A{delta}env-REN) and the prCBL23 or CBL23 envelope proteins as well as chimeric proteins between these envelopes. We demonstrate that a single amino acid exchange at position 74 in the surface unit of CBL23-Env confers restriction to infection. This single point mutation causes tighter CD4 binding, resulting in a less efficient fusion into the cytosol of the restricted cell line. Prevention of endosome formation and prevention of endosome acidification enhance infectivity of the restricted particles for GHOST/X4 cells indicating a degradative lysosomal pathway as a cause for the reduced cytosolic entry. The described restriction to infection of the primary isolate prCBL23 is therefore largely caused by an entry defect. A remaining restriction to infection (19-fold) is preserved when endosomal acidification is prevented. This restriction to infection is also dependent on the presence of the point mutation at position 74 (G74E)« less
Röhrs, Susanne; Kalthoff, Donata; Beer, Martin
2014-05-07
Highly pathogenic avian influenza viruses of subtype H5N1 sporadically cause severe disease in humans and involve the risk of inducing a pandemic by gaining the ability for human-to-human transmission. In naïve poultry, primarily gallinaceous birds, the virus induces fatal disease and the used inactivated vaccines occasionally are unable to provide efficient and early onset of protection. Therefore, optimized vaccines must be developed and evaluated in model systems. In our study, we tested a novel H5 neuraminidase-deleted influenza A virus variant to analyze the induction of a very early onset of immunity. Ferrets, mice and chickens were each immunized with a single vaccine dose seven, three and one day before lethal challenge infection, respectively. Sound protection was conferred in 100% of animals immunized seven days prior to challenge infection. In these animals, no clinical signs were observed, and no challenge virus RNA was detected by real-time RT-PCR analyses of swabs, nasal washings, and organ samples. Moreover, the attenuated modified-live virus variant protected all chickens, mice, and ferrets as early as three days after vaccination against severe clinical signs. Chickens and ferrets developed hemagglutinin-specific antibodies after seven days, but no neuraminidase-specific antibodies, making this kind of neuraminidase-negative strain suitable for the DIVA ("differentiating vaccinated from infected animals") strategy. Copyright © 2014 Elsevier Ltd. All rights reserved.
Beneficial effects of interleukin-6 in neonatal mouse models of group B streptococcal disease.
Mancuso, G; Tomasello, F; Migliardo, M; Delfino, D; Cochran, J; Cook, J A; Teti, G
1994-01-01
Previous studies have shown that tumor necrosis factor alpha (TNF-alpha) plays a pathophysiologic role in sepsis induced in rat pups by group B streptococci (GBS). In this model, TNF-alpha is also partially responsible for the induction of interleukin-6 (IL-6). The present study was undertaken to investigate the role of IL-6 in neonatal BALB/c mice infected with type III GBS. The effect of anti-IL-6 monoclonal antibodies and recombinant IL-6 on lethality and TNF-alpha production was investigated. In mouse pups infected with GBS strain COH1, plasma IL-6 reached levels of 3,067 +/- 955 and 1,923 +/- 891 U/ml when measured at 22 and 48 h, respectively (P < 0.05 compared with uninfected controls). Pretreatment with 25 micrograms of anti-IL-6 antibodies totally prevented the increase in circulating IL-6 bioactivity at both 22 and 48 h after infection (P < 0.05). Treatment with anti-IL-6 also induced a moderate decrease in survival time of mice infected with lethal doses of strains COH1 and COH31, as evidenced by increased lethality (P < 0.05) at 24 to 48 h but not at 96 h. Mouse recombinant IL-6 (12,500 U) given 6 h before challenge with strains COH1 and COH31 consistently increased survival time, as evidenced by decreased (P < 0.05) lethality at 48 to 72 h but not at 96 h. The effects of IL-6 pretreatment were dose dependent, since no protection was observed with doses lower than 12,500 U. In addition, no effects on lethality were noted when IL-6 was given at the time of challenge or at later times. TNF-alpha elevations (P < 0.05 compared with uninfected controls) were measured at 12, 22, and 48 h after challenge with strain COH1 (68 +/- 28, 233 +/- 98, and 98 +/- 34 U, respectively). Pretreatment with IL-6 significantly (P < 0.05) decreased plasma TNF-alpha levels at 12 and 22 h, with 55 and 69% inhibitions, respectively. Anti-IL-6 had an opposite effect, as evidenced by a 145% increase (P < 0.05) in TNF-alpha levels at 48 h after challenge. Collectively, our data are compatible with the hypothesis that IL-6 is involved in negative feedback regulation of plasma TNF-alpha levels in experimental GBS sepsis. In this model, IL-6 pretreatment can increase survival time. Future studies will be needed to investigate the mechanisms underlying this effect. PMID:7927780
The lethal injection quandary: how medicine has dismantled the death penalty.
Denno, Deborah W
2007-10-01
On February 20, 2006, Michael Morales was hours away from execution in California when two anesthesiologists declined to participate in his lethal injection procedure, thereby halting all state executions. The events brought to the surface the long-running schism between law and medicine, raising the question of whether any beneficial connection between the professions ever existed in the execution context. History shows it seldom did. Decades of botched executions prove it. This Article examines how states ended up with such constitutionally vulnerable lethal injection procedures, suggesting that physician participation in executions, though looked upon with disdain, is more prevalent--and perhaps more necessary--than many would like to believe. The Article also reports the results of this author's unique nationwide study of lethal injection protocols and medical participation. The study demonstrates that states have continued to produce grossly inadequate protocols that severely restrict sufficient understanding of how executions are performed and heighten the likelihood of unconstitutionality. The analysis emphasizes in particular the utter lack of medical or scientific testing of lethal injection despite the early and continuous involvement of doctors but ongoing detachment of medical societies. Lastly, the Article discusses the legal developments that led up to the current rush of lethal injection lawsuits as well as the strong and rapid reverberations that followed, particularly with respect to medical involvement. This Article concludes with two recommendations. First, much like what occurred in this country when the first state switched to electrocution, there should be a nationwide study of proper lethal injection protocols. An independent commission consisting of a diverse group of qualified individuals, including medical personnel, should conduct a thorough assessment of lethal injection, especially the extent of physician participation. Second, this Article recommends that states take their execution procedures out of hiding. Such visibility would increase public scrutiny, thereby enhancing the likelihood of constitutional executions. By clarifying the standards used for determining what is constitutional in Baze v. Rees, the U.S. Supreme Court can then provide the kind of Eighth Amendment guidance states need to conduct humane lethal injections.
Genetics Home Reference: Amish lethal microcephaly
... occurs in approximately 1 in 500 newborns in the Old Order Amish population of Pennsylvania. It has not been found outside this population. Related Information What information about a genetic condition can statistics provide? Why ... in the SLC25A19 gene cause Amish lethal microcephaly . The SLC25A19 ...
Enteroaggregative Escherichia coli O78:H10, the Cause of an Outbreak of Urinary Tract Infection
Scheutz, Flemming; Andersen, Rebecca L.; Menard, Megan; Boisen, Nadia; Johnston, Brian; Hansen, Dennis S.; Krogfelt, Karen A.; Nataro, James P.; Johnson, James R.
2012-01-01
In 1991, multiresistant Escherichia coli O78:H10 strains caused an outbreak of urinary tract infections in Copenhagen, Denmark. The phylogenetic origin, clonal background, and virulence characteristics of the outbreak isolates, and their relationship to nonoutbreak O78:H10 strains according to these traits and resistance profiles, are unknown. Accordingly, we extensively characterized 51 archived E. coli O78:H10 isolates (48 human isolates from seven countries, including 19 Copenhagen outbreak isolates, and 1 each of calf, avian, and unknown-source isolates), collected from 1956 through 2000. E. coli O78:H10 was clonally heterogeneous, comprising one dominant clonal group (61% of isolates, including all 19 outbreak isolates) from ST10 (phylogenetic group A) plus several minor clonal groups (phylogenetic groups A and D). All ST10 isolates, versus 25% of non-ST10 isolates, were identified by molecular methods as enteroaggregative E. coli (EAEC) (P < 0.001). Genes present in >90% of outbreak isolates included fimH (type 1 fimbriae; ubiquitous in E. coli); fyuA, traT, and iutA (associated with extraintestinal pathogenic E. coli [ExPEC]); and sat, pic, aatA, aggR, aggA, ORF61, aaiC, aap, and ORF3 (associated with EAEC). An outbreak isolate was lethal in a murine subcutaneous sepsis model and exhibited characteristic EAEC “stacked brick” adherence to cultured epithelial cells. Thus, the 1991 Copenhagen outbreak was caused by a tight, non-animal-associated subset within a broadly disseminated O78:H10 clonal group (ST10; phylogenetic group A), members of which exhibit both ExPEC and EAEC characteristics, whereas O78:H10 isolates overall are phylogenetically diverse. Whether ST10 O78:H10 EAEC strains are both uropathogenic and diarrheagenic warrants further investigation. PMID:22972830
Enteroaggregative Escherichia coli O78:H10, the cause of an outbreak of urinary tract infection.
Olesen, Bente; Scheutz, Flemming; Andersen, Rebecca L; Menard, Megan; Boisen, Nadia; Johnston, Brian; Hansen, Dennis S; Krogfelt, Karen A; Nataro, James P; Johnson, James R
2012-11-01
In 1991, multiresistant Escherichia coli O78:H10 strains caused an outbreak of urinary tract infections in Copenhagen, Denmark. The phylogenetic origin, clonal background, and virulence characteristics of the outbreak isolates, and their relationship to nonoutbreak O78:H10 strains according to these traits and resistance profiles, are unknown. Accordingly, we extensively characterized 51 archived E. coli O78:H10 isolates (48 human isolates from seven countries, including 19 Copenhagen outbreak isolates, and 1 each of calf, avian, and unknown-source isolates), collected from 1956 through 2000. E. coli O78:H10 was clonally heterogeneous, comprising one dominant clonal group (61% of isolates, including all 19 outbreak isolates) from ST10 (phylogenetic group A) plus several minor clonal groups (phylogenetic groups A and D). All ST10 isolates, versus 25% of non-ST10 isolates, were identified by molecular methods as enteroaggregative E. coli (EAEC) (P < 0.001). Genes present in >90% of outbreak isolates included fimH (type 1 fimbriae; ubiquitous in E. coli); fyuA, traT, and iutA (associated with extraintestinal pathogenic E. coli [ExPEC]); and sat, pic, aatA, aggR, aggA, ORF61, aaiC, aap, and ORF3 (associated with EAEC). An outbreak isolate was lethal in a murine subcutaneous sepsis model and exhibited characteristic EAEC "stacked brick" adherence to cultured epithelial cells. Thus, the 1991 Copenhagen outbreak was caused by a tight, non-animal-associated subset within a broadly disseminated O78:H10 clonal group (ST10; phylogenetic group A), members of which exhibit both ExPEC and EAEC characteristics, whereas O78:H10 isolates overall are phylogenetically diverse. Whether ST10 O78:H10 EAEC strains are both uropathogenic and diarrheagenic warrants further investigation.
Properties of proteolytic toxin of Vibrio anguilolarum from diseased flounder
NASA Astrophysics Data System (ADS)
Mo, Zhao-Lan; Chen, Shi-Yong; Zhang, Pei-Jun
2002-12-01
Extracellular products (ECP) produced by Vibrio anguillarum strain M3 originally isolated from diseased flounder ( Paralichthys olivaceus) were prepared. ECP of M3 showed gelatinase, casinase, amylase and haemolytic activity on agarose plates. High protease activity against azocasin was detected. Bacterium M2 showed highest growth and protease activity at 25°C. The protease present in ECP showed maximal activity at pH 8 and 55°C; was completely inactivated by application of 80°C heat for 30 min; was completely inhibited by EDTA and HgCl2, and was partially inhibited by PMSF, SDS, MnCl2 and iodoacetic acid; but not inhibited by CaCl2 and MgCl2. The ECP was toxic to flounder fish at LD50 values of 3.1 μg protein/g body weight. The addition of HgCl2 and application of heat at 50°C decreased the lethal toxicity of ECP. When heated at 100°C, ECP lethality to flounder was completely inhibited. After intramuscular injection of ECP into flounder, it showed evident histopathological changes including necrosis of muscle, extensive deposition of haemosiderin in the spleen, dilated blood vessels congested with numerious lymphocytes in the liver. These results showed that ECP protease was a lethal factor produced by the bacterium V. anguillarum M3.
Direct Dynamics Simulation of Dissociation of the [CH3--I--OH]- Ion-Molecule Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Jing; McClellan, Miranda; Sun, Rui
Direct dynamics simulations were used to study dissociation of the [CH3--I--OH]- complex ion, which was observed in a previous study of the OH- + CH3I gas phase reaction (J. Phys. Chem. A 2013, 117, 7162). Restricted B97-1 simulations were performed to study dissociation at 65, 75 and 100 kcal/mol and the [CH3--I--OH]- ion dissociated exponentially, in accord with RRKM theory. For these energies the major dissociation products are CH3I + OH-, CH2I- + H2O, and CH3OH + I-. Unrestricted B97-1 and restricted and unrestricted CAM-B3LYP simulations were also performed at 100 kcal/mol to compare with the restricted B97-1 results. Themore » {CH3I + OH-}:{CH2I- + H2O}:{CH3OH + I-} product ratio is 0.72 : 0.15 : 0.13, 0.81 : 0.05 : 0.14, 0.71 : 0.19 : 0.10 , and 0.83 : 0.13 : 0.04 for the restricted B97-1, unrestricted B97-1, restricted CAM-B3LYP, and unrestricted CAM-B3LYP simulations, respectively. Other product channels found are CH2 + I- + H2O, CH2 + I-(H2O), CH4 + IO-, CH3 - + IOH, and CH3 + IOH-. The CH3 - + IOH singlet products are only given by the restricted B97-1 simulation and the lower energy CH3 + IOH- doublet products are only formed by the unrestricted B97-1 simulation. Also studied were the direct and indirect atomic-level mechanisms for forming CH3I + OH-, CH2I- + H2O, and CH3OH + I-. The majority of CH3I + OH- were formed through a direct mechanism. For both CH2I- + H2O and CH3OH + I-, the direct mechanism is overall more important than the indirect mechanisms, with the round-about like mechanism the most important indirect mechanism at high excitation energies. Mechanism comparisons between the B97-1 and CAM-B3LYP simulations showed that formation of the CH3OH---I- complex is favored for the B97-1 simulations, while formation of the HO----HCH2I complex is favored for the CAM-B3LYP simulations. The unrestricted simulations give a higher percentage of indirect mechanisms than the restricted simulations. The possible role of the self-interaction error in the simulations is also discussed. The work presented here gives a detailed picture of the [CH3--I--OH]- dissociation dynamics, and is very important for unraveling the role of [CH3--I--OH]- in the dynamics of the OH-(H2O)n=1,2 + CH3I reactions.« less
Besser, J.M.; Brumbaugh, W.G.; Kemble, N.E.; May, T.W.; Ingersoll, C.G.
2004-01-01
We evaluated the influence of sediment characteristics, acid-volatile sulfide (AVS) and organic matter (OM), on the toxicity of chromium (Cr) in freshwater sediments. We conducted chronic (28-42-d) toxicity tests with the amphipod Hyalella azteca exposed to Cr(VI) and Cr(III) in water and in spiked sediments. Waterborne Cr(VI) caused reduced survival of amphipods with a median lethal concentration (LC50) of 40 ??g/L. Cr(VI) spiked into test sediments with differing levels of AVS resulted in graded decreases in AVS and sediment OM. Only Cr(VI)-spiked sediments with low AVS concentrations (<1 ??mol/g) caused significant amphipod mortality. Waterborne Cr(III) concentrations near solubility limits caused decreased survival of amphipods at pH 7 and pH 8 but not at pH 6. Sediments spiked with high levels of Cr(III) did not affect amphipod survival but had minor effects on growth and inconsistent effects on reproduction. Pore waters of some Cr(III)-spiked sediments contained measurable concentrations of Cr(VI), but observed toxic effects did not correspond closely to Cr concentrations in sediment or pore waters. Our results indicate that risks of Cr toxicity are low in freshwater sediments containing substantial concentrations of AVS.
Rattner, Barnett A; Horak, Katherine E; Lazarus, Rebecca S; Eisenreich, Karen M; Meteyer, Carol U; Volker, Steven F; Campton, Christopher M; Eisemann, John D; Johnston, John J
2012-04-01
In the United States, new regulatory restrictions have been placed on the use of some second-generation anticoagulant rodenticides. This action may be offset by expanded use of first-generation compounds (e.g., diphacinone; DPN). Single-day acute oral exposure of adult Eastern screech-owls (Megascops asio) to DPN evoked overt signs of intoxication, coagulopathy, histopathological lesions (e.g., hemorrhage, hepatocellular vacuolation), and/or lethality at doses as low as 130 mg/kg body weight, although there was no dose-response relation. However, this single-day exposure protocol does not mimic the multiple-day field exposures required to cause mortality in rodent pest species and non-target birds and mammals. In 7-day feeding trials, similar toxic effects were observed in owls fed diets containing 2.15, 9.55 or 22.6 ppm DPN, but at a small fraction (<5%) of the acute oral dose. In the dietary trial, the average lowest-observed-adverse-effect-level for prolonged clotting time was 1.68 mg DPN/kg owl/week (0.24 mg/kg owl/day; 0.049 mg/owl/day) and the lowest lethal dose was 5.75 mg DPN/kg owl/week (0.82 mg/kg owl/day). In this feeding trial, DPN concentration in liver ranged from 0.473 to 2.21 μg/g wet weight, and was directly related to the daily and cumulative dose consumed by each owl. A probabilistic risk assessment indicated that daily exposure to as little as 3-5 g of liver from DPN-poisoned rodents for 7 days could result in prolonged clotting time in the endangered Hawaiian short-eared owl (Asio flammeus sandwichensis) and Hawaiian hawk (Buteo solitarius), and daily exposure to greater quantities (9-13 g of liver) could result in low-level mortality. These findings can assist natural resource managers in weighing the costs and benefits of anticoagulant rodenticide use in pest control and eradication programs.
Rattner, Barnett A.; Horak, Katherine E.; Lazarus, Rebecca S.; Eisenreich, Karen M.; Meteyer, Carol U.; Volker, Steven F.; Campton, Christopher M.; Eisemann, John D.; Johnston, John J.
2012-01-01
In the United States, new regulatory restrictions have been placed on the use of some second-generation anticoagulant rodenticides. This action may be offset by expanded use of first-generation compounds (e.g., diphacinone; DPN). Single-day acute oral exposure of adult Eastern screech-owls (Megascops asio) to DPN evoked overt signs of intoxication, coagulopathy, histopathological lesions (e.g., hemorrhage, hepatocellular vacuolation), and/ or lethality at doses as low as 130 mg/kg body weight, although there was no dose-response relation. However, this single-day exposure protocol does not mimic the multiple-day field exposures required to cause mortality in rodent pest species and non-target birds and mammals. In 7-day feeding trials, similar toxic effects were observed in owls fed diets containing 2.15, 9.55 or 22.6 ppm DPN, but at a small fraction (<5%) of the acute oral dose. In the dietary trial, the average lowest-observed-adverse-effect-level for prolonged clotting time was 1.68 mg DPN/kg owl/week (0.24 mg/kg owl/day; 0.049 mg/owl/day) and the lowest lethal dose was 5.75 mg DPN/kg owl/week (0.82 mg/kg owl/day). In this feeding trial, DPN concentration in liver ranged from 0.473 to 2.21 μg/g wet weight, and was directly related to the daily and cumulative dose consumed by each owl. A probabilistic risk assessment indicated that daily exposure to as little as 3-5 g of liver from DPN-poisoned rodents for 7 days could result in prolonged clotting time in the endangered Hawaiian shorteared owl (Asio flammeus sandwichensis) and Hawaiian hawk (Buteo solitarius), and daily exposure to greater quantities (9-13 g of liver) could result in low-level mortality. These findings can assist natural resource managers in weighing the costs and benefits of anticoagulant rodenticide use in pest control and eradication programs.
Stalking influenza by vaccination with pre-fusion headless HA mini-stem.
Valkenburg, Sophie A; Mallajosyula, V Vamsee Aditya; Li, Olive T W; Chin, Alex W H; Carnell, George; Temperton, Nigel; Varadarajan, Raghavan; Poon, Leo L M
2016-03-07
Inaccuracies in prediction of circulating viral strain genotypes and the possibility of novel reassortants causing a pandemic outbreak necessitate the development of an anti-influenza vaccine with increased breadth of protection and potential for rapid production and deployment. The hemagglutinin (HA) stem is a promising target for universal influenza vaccine as stem-specific antibodies have the potential to be broadly cross-reactive towards different HA subtypes. Here, we report the design of a bacterially expressed polypeptide that mimics a H5 HA stem by protein minimization to focus the antibody response towards the HA stem. The HA mini-stem folds as a trimer mimicking the HA prefusion conformation. It is resistant to thermal/chemical stress, and it binds to conformation-specific, HA stem-directed broadly neutralizing antibodies with high affinity. Mice vaccinated with the group 1 HA mini-stems are protected from morbidity and mortality against lethal challenge by both group 1 (H5 and H1) and group 2 (H3) influenza viruses, the first report of cross-group protection. Passive transfer of immune serum demonstrates the protection is mediated by stem-specific antibodies. Furthermore, antibodies induced by these HA stems have broad HA reactivity, yet they do not have antibody-dependent enhancement activity.
Farese, Ann M; Brown, Cassandra R; Smith, Cassandra P; Gibbs, Allison M; Katz, Barry P; Johnson, Cynthia S; Prado, Karl L; MacVittie, Thomas J
2014-01-01
The identification of the optimal administration schedule for an effective medical countermeasure is critical for the effective treatment of individuals exposed to potentially lethal doses of radiation. The efficacy of filgrastim (Neupogen®), a potential medical countermeasure, to improve survival when initiated at 48 h following total body irradiation in a non-human primate model of the hematopoietic syndrome of the acute radiation syndrome was investigated. Animals were exposed to total body irradiation, antero-posterior exposure, total midline tissue dose of 7.5 Gy, (target lethal dose 50/60) delivered at 0.80 Gy min, using linear accelerator-derived 6 MV photons. All animals were administered medical management. Following irradiation on day 0, filgrastim (10 μg kg d) or the control (5% dextrose in water) was administered subcutaneously daily through effect (absolute neutrophil count ≥ 1,000 cells μL for three consecutive days). The study (n = 80) was powered to demonstrate a 25% improvement in survival following the administration of filgrastim or control beginning at 48 ± 4 h post-irradiation. Survival analysis was conducted on the intention-to-treat population using a two-tailed null hypothesis at a 5% significance level. Filgrastim, initiated 48 h after irradiation, did not improve survival (2.5% increase, p = 0.8230). These data demonstrate that efficacy of a countermeasure to mitigate lethality in the hematopoietic syndrome of the acute radiation syndrome can be dependent on the interval between irradiation and administration of the medical countermeasure.
Li, Bing; Xie, Yi; Cheng, Zhe; Cheng, Jie; Hu, Rengping; Cui, Yaling; Gong, Xiaolan; Shen, Weide; Hong, Fashui
2012-06-01
One of the most important agents causing lethal disease in the silkworm is the Bombyx mori nucleopolyhedrovirus (BmNPV), while low-dose rare earths are demonstrated to increase immune capacity in animals. However, very little is known about the effects of added CeCl(3) on decreasing BmNPV infection of silkworm. The present study investigated the effects of added CeCl(3) to an artificial diet on resistance of fifth-instar larvae of silkworm to BmNPV infection. Our findings indicated that added CeCl(3) significantly decreased inhibition of growth and mortality of fifth-instar larvae caused by BmNPV infection. Furthermore, the added CeCl(3) obviously decreased lipid peroxidation level and accumulation of reactive oxygen species such as O(2)(-), H(2)O(2), (·)OH, and NO and increased activities of the antioxidant enzymes including superoxide dismutase, catalase, ascorbate peroxidase, glutathione peroxidase, ascorbate, and glutathione contents in the BmNPV-infected fifth-instar larvae. In addition, the added CeCl(3) could significantly promote acetylcholine esterase activity and attenuate the activity of inducible nitric oxide synthase in the BmNPV-infected fifth-instar larvae. These findings suggested that added CeCl(3) may relieve oxidative damage and neurotoxicity of silkworm caused by BmNPV infection via increasing antioxidant capacity and acetylcholine esterase activity.
Liu, Ping-Chung; Chuang, Wen-Hsiao; Lee, Kuo-Kau
2011-01-01
The aim of the present study was to purify and characterize a toxic protease secreted by the pathogenic Photobacterium damselae subsp. piscicida strain CP1 originally isolated from diseased cobia (Rachycentron canadum). The toxin isolated by anion exchange chromatography, was a metalloprotease, inhibited by L-cysteine, ethylenediaminetetraacetic acid (EDTA), ethylene glycol-bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA), 1,10-phenanthroline, N-tosyl-L-phenylalanine-chloromethyl ketone (TPCK), and N-alpha-p-tosyl-L-lysine-chloromethyl ketone (TLCK), and showed maximal activity at pH 6.0-8.0 and an apparent molecular mass of about 34.3 kDa. The toxin was also completely inhibited by HgCl2, and partially by sodium dodecyl sulfate (SDS) and CuCl2. The extracellular products and the partially purified protease were lethal to cobia with LD50 values of 1.26 and 6.8 microg protein/g body weight, respectively. The addition of EDTA completely inhibited the lethal toxicity of the purified protease, indicating that this metalloprotease was a lethal toxin produced by the bacterium.
Purification and biophysical characterization of the core protease domain of anthrax lethal factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gkazonis, Petros V.; Dalkas, Georgios A.; Chasapis, Christos T.
2010-06-04
Anthrax lethal toxin (LeTx) stands for the major virulence factor of the anthrax disease. It comprises a 90 kDa highly specific metalloprotease, the anthrax lethal factor (LF). LF possesses a catalytic Zn{sup 2+} binding site and is highly specific against MAPK kinases, thus representing the most potent native biomolecule to alter and inactivate MKK [MAPK (mitogen-activated protein kinase) kinases] signalling pathways. Given the importance of the interaction between LF and substrate for the development of anti-anthrax agents as well as the potential treatment of nascent tumours, the analysis of the structure and dynamic properties of the LF catalytic site aremore » essential to elucidate its enzymatic properties. Here we report the recombinant expression and purification of a C-terminal part of LF (LF{sub 672-776}) that harbours the enzyme's core protease domain. The biophysical characterization and backbone assignments ({sup 1}H, {sup 13}C, {sup 15}N) of the polypeptide revealed a stable, well folded structure even in the absence of Zn{sup 2+}, suitable for high resolution structural analysis by NMR.« less
Sarathy, Vanessa V; White, Mellodee; Li, Li; Gorder, Summer R; Pyles, Richard B; Campbell, Gerald A; Milligan, Gregg N; Bourne, Nigel; Barrett, Alan D T
2015-01-15
The mosquito-borne disease dengue (DEN) is caused by four serologically and genetically related viruses, termed DENV-1 to DENV-4. Infection with one DENV usually leads to acute illness and results in lifelong homotypic immunity, but individuals remain susceptible to infection by the other three DENVs. The lack of a small-animal model that mimics systemic DEN disease without neurovirulence has been an obstacle, but DENV-2 models that resemble human disease have been recently developed in AG129 mice (deficient in interferon alpha/beta and interferon gamma receptor signaling). However, comparable DENV-1, -3, and -4 models have not been developed. We utilized a non-mouse-adapted DENV-3 Thai human isolate to develop a lethal infection model in AG129 mice. Intraperitoneal inoculation of six to eight-week-old animals with strain C0360/94 led to rapid, fatal disease. Lethal C0360/94 infection resulted in physical signs of illness, high viral loads in the spleen, liver, and large intestine, histological changes in the liver and spleen tissues, and increased serum cytokine levels. Importantly, the animals developed vascular leakage, thrombocytopenia, and leukopenia. Overall, we have developed a lethal DENV-3 murine infection model, with no evidence of neurotropic disease based on a non-mouse-adapted human isolate, which can be used to investigate DEN pathogenesis and to evaluate candidate vaccines and antivirals. This suggests that murine models utilizing non-mouse-adapted isolates can be obtained for all four DENVs. Dengue (DEN) is a mosquito-borne disease caused by four DENV serotypes (DENV-1, -2, -3, and -4) that have no treatments or vaccines. Primary infection with one DENV usually leads to acute illness followed by lifelong homotypic immunity, but susceptibility to infection by the other three DENVs remains. Therefore, a vaccine needs to protect from all four DENVs simultaneously. To date a suitable animal model to mimic systemic human illness exists only for DENV-2 in immunocompromised mice using passaged viruses; however, models are still needed for the remaining serotypes. This study describes establishment of a lethal systemic DENV-3 infection model with a human isolate in immunocompromised mice and is the first report of lethal infection by a nonadapted clinical DENV isolate without evidence of neurological disease. Our DENV-3 model provides a relevant platform to test DEN vaccines and antivirals. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Fatal combination of moclobemide overdose and whisky.
Bleumink, G S; van Vliet, A C M; van der Tholen, A; Stricker, B H Ch
2003-03-01
The antidepressant moclobemide (Aurorix) is a reversible inhibitor of monoamine oxidase-A. Pure moclobemide overdose is considered to be relatively safe. Mixed drug overdoses including moclobemide are potentially lethal, especially when serotonergical drugs are involved. So far, only one fatality due to moclobemide mono-overdose has been reported. We report here on a fatality following the ingestion of a moclobemide overdose in combination with half a bottle of whisky. Although dietary restrictions during moclobemide therapy are not considered necessary, the combination of large quantities of moclobemide and tyramine-containing products seems to be lethal, probably because monoamine oxidase-A selectivity is overwhelmed after massive overdoses. Since there is no specific antidote and treatment is only symptomatic, the severity of an overdose with moclobemide must not be underestimated.
A familial case of Keratitis-Ichthyosis-Deafness (KID) syndrome with the GJB2 mutation G45E.
Jonard, Laurence; Feldmann, Delphine; Parsy, Christophe; Freitag, Sylvie; Sinico, Martine; Koval, Céleste; Grati, Mhamed; Couderc, Remy; Denoyelle, Françoise; Bodemer, Christine; Marlin, Sandrine; Hadj-Rabia, Smail
2008-01-01
Keratitis-Ichthyosis-Deafness (KID) syndrome (OMIM 148210) is a congenital ectodermal defect. KID consists of an atypical ichthyosiform erythroderma associated with congenital sensorineural deafness. A rare form of the KID syndrome is a fatal course in the first year of life due to severe skin lesion infections and septicaemia. KID appears to be genetically heterogeneous and may be caused by mutations in connexin 26 or connexin 30 genes. GJB2 mutations in the connexin 26 gene are the main cause of the disease. Most of the cases caused by GJB2 mutations are sporadic, but dominant transmission has also been described. To date, the rare lethal form of the disease has been only observed in two Caucasian sporadic patients with the GJB2 mutation, with the p.Gly45Glu (G45E) arising de novo. We have reported an African family with dizygotic twins suffering from a lethal form of KID. The dizygosity of the twins was confirmed by microsatellite markers. The two patients were heterozygous for the G45E mutation of GJB2, whereas the mutation was not detected in the two parents. The unusual transmission of the disease observed in this family could be explained by the occurrence of a somatic or more probably a germinal mosaic in one of the parents.
2014-01-01
Background Lethal amanitas (Amanita section Phalloideae) are a group of wild, fatal mushrooms causing many poisoning cases worldwide. However, the diversity and evolutionary history of these lethal mushrooms remain poorly known due to the limited sampling and insufficient gene fragments employed for phylogenetic analyses. In this study, five gene loci (nrLSU, ITS, rpb2, ef1-α and β-tubulin) with a widely geographic sampling from East and South Asia, Europe, North and Central America, South Africa and Australia were analysed with maximum-likelihood, maximum-parsimony and Bayesian inference methods. Biochemical analyses were also conducted with intention to detect amatoxins and phalloidin in 14 representative samples. Result Lethal amanitas were robustly supported to be a monophyletic group after excluding five species that were provisionally defined as lethal amanitas based on morphological studies. In lethal amanitas, 28 phylogenetic species were recognised by integrating molecular phylogenetic analyses with morphological studies, and 14 of them represented putatively new species. The biochemical analyses indicated a single origin of cyclic peptide toxins (amatoxins and phalloidin) within Amanita and suggested that this kind of toxins seemed to be a synapomorphy of lethal amanitas. Molecular dating through BEAST and biogeographic analyses with LAGRANGE and RASP indicated that lethal amanitas most likely originated in the Palaeotropics with the present crown group dated around 64.92 Mya in the early Paleocene, and the East Asia–eastern North America or Eurasia–North America–Central America disjunct distribution patterns were primarily established during the middle Oligocene to Miocene. Conclusion The cryptic diversity found in this study indicates that the species diversity of lethal amanitas is strongly underestimated under the current taxonomy. The intercontinental sister species or sister groups relationships among East Asia and eastern North America or Eurasia–North America–Central America within lethal amanitas are best explained by the diversification model of Palaeotropical origin, dispersal via the Bering Land Bridge, followed by regional vicariance speciation resulting from climate change during the middle Oligocene to the present. These findings indicate the importance of both dispersal and vicariance in shaping the intercontinental distributions of these ectomycorrhizal fungi. PMID:24950598