Sample records for causing human genetic

  1. Water as Source of Francisella tularensis Infection in Humans, Turkey

    PubMed Central

    Kilic, Selcuk; Birdsell, Dawn N.; Karagöz, Alper; Çelebi, Bekir; Bakkaloglu, Zekiye; Arikan, Muzaffer; Sahl, Jason W.; Mitchell, Cedar; Rivera, Andrew; Maltinsky, Sara; Keim, Paul; Üstek, Duran; Durmaz, Rıza

    2015-01-01

    Francisella tularensis DNA extractions and isolates from the environment and humans were genetically characterized to elucidate environmental sources that cause human tularemia in Turkey. Extensive genetic diversity consistent with genotypes from human outbreaks was identified in environmental samples and confirmed water as a source of human tularemia in Turkey. PMID:26583383

  2. Using whole-exome sequencing to identify variants inherited from mosaic parents

    PubMed Central

    Rios, Jonathan J; Delgado, Mauricio R

    2015-01-01

    Whole-exome sequencing (WES) has allowed the discovery of genes and variants causing rare human disease. This is often achieved by comparing nonsynonymous variants between unrelated patients, and particularly for sporadic or recessive disease, often identifies a single or few candidate genes for further consideration. However, despite the potential for this approach to elucidate the genetic cause of rare human disease, a majority of patients fail to realize a genetic diagnosis using standard exome analysis methods. Although genetic heterogeneity contributes to the difficulty of exome sequence analysis between patients, it remains plausible that rare human disease is not caused by de novo or recessive variants. Multiple human disorders have been described for which the variant was inherited from a phenotypically normal mosaic parent. Here we highlight the potential for exome sequencing to identify a reasonable number of candidate genes when dominant disease variants are inherited from a mosaic parent. We show the power of WES to identify a limited number of candidate genes using this disease model and how sequence coverage affects identification of mosaic variants by WES. We propose this analysis as an alternative to discover genetic causes of rare human disorders for which typical WES approaches fail to identify likely pathogenic variants. PMID:24986828

  3. Genetics of Human and Canine Dilated Cardiomyopathy

    PubMed Central

    Simpson, Siobhan; Edwards, Jennifer; Ferguson-Mignan, Thomas F. N.; Cobb, Malcolm; Mongan, Nigel P.; Rutland, Catrin S.

    2015-01-01

    Cardiovascular disease is a leading cause of death in both humans and dogs. Dilated cardiomyopathy (DCM) accounts for a large number of these cases, reported to be the third most common form of cardiac disease in humans and the second most common in dogs. In human studies of DCM there are more than 50 genetic loci associated with the disease. Despite canine DCM having similar disease progression to human DCM studies into the genetic basis of canine DCM lag far behind those of human DCM. In this review the aetiology, epidemiology, and clinical characteristics of canine DCM are examined, along with highlighting possible different subtypes of canine DCM and their potential relevance to human DCM. Finally the current position of genetic research into canine and human DCM, including the genetic loci, is identified and the reasons many studies may have failed to find a genetic association with canine DCM are reviewed. PMID:26266250

  4. Genetics of Human and Canine Dilated Cardiomyopathy.

    PubMed

    Simpson, Siobhan; Edwards, Jennifer; Ferguson-Mignan, Thomas F N; Cobb, Malcolm; Mongan, Nigel P; Rutland, Catrin S

    2015-01-01

    Cardiovascular disease is a leading cause of death in both humans and dogs. Dilated cardiomyopathy (DCM) accounts for a large number of these cases, reported to be the third most common form of cardiac disease in humans and the second most common in dogs. In human studies of DCM there are more than 50 genetic loci associated with the disease. Despite canine DCM having similar disease progression to human DCM studies into the genetic basis of canine DCM lag far behind those of human DCM. In this review the aetiology, epidemiology, and clinical characteristics of canine DCM are examined, along with highlighting possible different subtypes of canine DCM and their potential relevance to human DCM. Finally the current position of genetic research into canine and human DCM, including the genetic loci, is identified and the reasons many studies may have failed to find a genetic association with canine DCM are reviewed.

  5. Genetic responses to rapid change in the environment during the anthropocene

    USGS Publications Warehouse

    Tallmon, David A.; Kovach, Ryan

    2017-01-01

    Humans have greatly affected the genetic composition of many different organisms during the Anthropocene. Humans cause genetic changes by affecting the direction and magnitude of evolutionary forces that act to create the Earth's biota. In many cases, we expect the outcome of human actions to be extinction and hybridization of existing species, but other outcomes, such as adaptation, also occur. Given the reach of humans throughout the globe, and recent biotechnology advances that make it possible to move individual genes between species or to remove them, it is likely that human influence on the genetic composition of other organisms will become even more widespread as the Anthropocene progresses.

  6. Mutations in HYAL2, Encoding Hyaluronidase 2, Cause a Syndrome of Orofacial Clefting and Cor Triatriatum Sinister in Humans and Mice

    PubMed Central

    Hasan, S. Naimul; Mark, Brian; Harlalka, Gaurav V.; Patton, Michael A.; Ishida, Miho; Sharma, Sanjay; Faqeih, Eissa; Blakley, Brian; Jackson, Mike; Lees, Melissa; Dolinsky, Vernon; Cross, Leroy; Stanier, Philip; Salter, Claire; Baple, Emma L.; Crosby, Andrew H.

    2017-01-01

    Orofacial clefting is amongst the most common of birth defects, with both genetic and environmental components. Although numerous studies have been undertaken to investigate the complexities of the genetic etiology of this heterogeneous condition, this factor remains incompletely understood. Here, we describe mutations in the HYAL2 gene as a cause of syndromic orofacial clefting. HYAL2, encoding hyaluronidase 2, degrades extracellular hyaluronan, a critical component of the developing heart and palatal shelf matrix. Transfection assays demonstrated that the gene mutations destabilize the molecule, dramatically reducing HYAL2 protein levels. Consistent with the clinical presentation in affected individuals, investigations of Hyal2-/- mice revealed craniofacial abnormalities, including submucosal cleft palate. In addition, cor triatriatum sinister and hearing loss, identified in a proportion of Hyal2-/- mice, were also found as incompletely penetrant features in affected humans. Taken together our findings identify a new genetic cause of orofacial clefting in humans and mice, and define the first molecular cause of human cor triatriatum sinister, illustrating the fundamental importance of HYAL2 and hyaluronan turnover for normal human and mouse development. PMID:28081210

  7. Potential treatments for genetic hearing loss in humans: current conundrums.

    PubMed

    Minoda, R; Miwa, T; Ise, M; Takeda, H

    2015-08-01

    Genetic defects are a major cause of hearing loss in newborns. Consequently, hearing loss has a profound negative impact on human daily living. Numerous causative genes for genetic hearing loss have been identified. However, presently, there are no truly curative treatments for this condition. There have been several recent reports on successful treatments in mice using embryonic gene therapy, neonatal gene therapy and neonatal antisense oligonucleotide therapy. Herein, we describe state-of-the-art research on genetic hearing loss treatment through gene therapy and discuss the obstacles to overcome in curative treatments of genetic hearing loss in humans.

  8. Genetic relationship between the Echinococcus granulosus sensu stricto cysts located in lung and liver of hosts.

    PubMed

    Oudni-M'rad, Myriam; Cabaret, Jacques; M'rad, Selim; Chaâbane-Banaoues, Raja; Mekki, Mongi; Zmantar, Sofien; Nouri, Abdellatif; Mezhoud, Habib; Babba, Hamouda

    2016-10-01

    G1 genotype of Echinococcus granulosus sensu stricto is the major cause of hydatidosis in Northern Africa, Tunisia included. The genetic relationship between lung and liver localization were studied in ovine, bovine and human hydatid cysts in Tunisia. Allozyme variation and single strand conformation polymorphism were used for genetic differentiation. The first cause of genetic differentiation was the host species and the second was the localization (lung or liver). The reticulated genetic relationship between the liver or the lung human isolates and isolates from bovine lung, is indicative of recombination (sexual reproduction) or lateral genetic transfer. The idea of two specialized populations (one for the lung one for the liver) that are more or less successful according to host susceptibility is thus proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Determinants of virulence of influenza A virus

    PubMed Central

    Schrauwen, Eefje J.A.; de Graaf, Miranda; Herfst, Sander; Rimmelzwaan, Guus F.; Osterhaus, Albert D.M.E.; Fouchier, Ron A.M.

    2013-01-01

    Influenza A viruses cause yearly seasonal epidemics and occasional global pandemics in humans. In the last century, four human influenza A virus pandemics have occured. Ocasionally, influenza A viruses that circulate in other species, cross the species barrier and infect humans. Virus re-assortment (i.e. mixing of gene segments of multiple viruses) and the accumulation of mutations contribute to the emergence of new influenza A virus variants. Fortunately, most of these variants do not have the ability to spread among humans and subsequently cause a pandemic. In this review we focus on the threat of animal influenza A viruses which have shown the ability to infect humans. In addition, genetic factors which could alter the virulence of influenza A viruses are discussed. Identification and characterization of these factors may provide insights into genetic traits which change virulence and help us to understand which genetic determinants are of importance for the pandemic potential of animal influenza A viruses. PMID:24078062

  10. Genetic and flow anomalies in congenital heart disease.

    PubMed

    Rugonyi, Sandra

    2016-01-01

    Congenital heart defects are the most common malformations in humans, affecting approximately 1% of newborn babies. While genetic causes of congenital heart disease have been studied, only less than 20% of human cases are clearly linked to genetic anomalies. The cause for the majority of the cases remains unknown. Heart formation is a finely orchestrated developmental process and slight disruptions of it can lead to severe malformations. Dysregulation of developmental processes leading to heart malformations are caused by genetic anomalies but also environmental factors including blood flow. Intra-cardiac blood flow dynamics plays a significant role regulating heart development and perturbations of blood flow lead to congenital heart defects in animal models. Defects that result from hemodynamic alterations, however, recapitulate those observed in human babies, even those due to genetic anomalies and toxic teratogen exposure. Because important cardiac developmental events, such as valve formation and septation, occur under blood flow conditions while the heart is pumping, blood flow regulation of cardiac formation might be a critical factor determining cardiac phenotype. The contribution of flow to cardiac phenotype, however, is frequently ignored. More research is needed to determine how blood flow influences cardiac development and the extent to which flow may determine cardiac phenotype.

  11. [Ethical challenges of genetic manipulation and research with animals].

    PubMed

    Rodríguez Yunta, Eduardo

    2012-01-01

    Research with animals presents ethical questions both for being used as models of human diseases and for being a prerequisite for trials in humans, as in the introduction of genetic modifications. Some of these questions refer to the fact that, as models, they do not fully represent the human condition; that conducting toxicity tests causes great harm to animals; that their nature is altered by genetic modifications and that introducing genetically modified organisms is a risk. The use of animals in research for the benefit of humans imposes the moral responsibility to respect them, not making them suffer unnecessarily, since they are living beings capable of feeling.

  12. Using human genetics to predict the effects and side-effects of drugs.

    PubMed

    Stender, Stefan; Tybjærg-Hansen, Anne

    2016-04-01

    'Genetic proxies' are increasingly being used to predict the effects of drugs. We present an up-to-date overview of the use of human genetics to predict effects and adverse effects of lipid-targeting drugs. LDL cholesterol lowering variants in HMG-Coenzyme A reductase and Niemann-Pick C1-like protein 1, the targets for statins and ezetimibe, protect against ischemic heart disease (IHD). However, HMG-Coenzyme A reductase and Niemann-Pick C1-Like Protein 1-variants also increase the risk of type 2 diabetes and gallstone disease, respectively. Mutations in proprotein convertase subtilisin kexin 9 (PCSK9), apolipoprotein B, and microsomal triglyceride transfer protein cause low LDL cholesterol and protect against IHD. In addition, mutations in apolipoprotein B and microsomal triglyceride transfer protein cause hepatic steatosis, in concordance with drugs that inhibit these targets. Both mutations in PCSK9 and PCSK9-inhibition seem without adverse effects. Mutations in APOC3 cause low triglycerides and protect against IHD, and recent pharmacological APOC3-inhibition reported major reductions in plasma triglycerides. Human genetics support that low lipoprotein(a) protects against IHD, without adverse effects, and the first trial of lipoprotein(a) inhibition reduced lipoprotein(a) up to 78%. Recent genetic studies have confirmed the efficacy of statins and ezetimibe in protecting against IHD. Results from human genetics support that several lipid-lowering drugs currently under development are likely to prove efficacious in protecting against IHD, without major adverse effects.

  13. Genetics Home Reference: Caffey disease

    MedlinePlus

    ... ethnic groups? Genetic Changes A mutation in the COL1A1 gene causes Caffey disease . The COL1A1 gene provides instructions for making part of a ... form of collagen in the human body. The COL1A1 gene mutation that causes Caffey disease replaces the ...

  14. Genetic Variation and Adaptation in Africa: Implications for Human Evolution and Disease

    PubMed Central

    Gomez, Felicia; Hirbo, Jibril; Tishkoff, Sarah A.

    2014-01-01

    Because modern humans originated in Africa and have adapted to diverse environments, African populations have high levels of genetic and phenotypic diversity. Thus, genomic studies of diverse African ethnic groups are essential for understanding human evolutionary history and how this leads to differential disease risk in all humans. Comparative studies of genetic diversity within and between African ethnic groups creates an opportunity to reconstruct some of the earliest events in human population history and are useful for identifying patterns of genetic variation that have been influenced by recent natural selection. Here we describe what is currently known about genetic variation and evolutionary history of diverse African ethnic groups. We also describe examples of recent natural selection in African genomes and how these data are informative for understanding the frequency of many genetic traits, including those that cause disease susceptibility in African populations and populations of recent African descent. PMID:24984772

  15. Human genome and philosophy: what ethical challenge will human genome studies bring to the medical practices in the 21st century?

    PubMed

    Renzong, Q

    2001-12-01

    A human being or person cannot be reduced to a set of human genes, or human genome. Genetic essentialism is wrong, because as a person the entity should have self-conscious and social interaction capacity which is grown in an interpersonal relationship. Genetic determinism is wrong too, the relationship between a gene and a trait is not a linear model of causation, but rather a non-linear one. Human genome is a complexity system and functions in a complexity system of human body and a complexity of systems of natural/social environment. Genetic determinism also caused the issue of how much responsibility an agent should take for her/his action, and how much degrees of freedom will a human being have. Human genome research caused several conceptual issues. Can we call a gene 'good' or 'bad', 'superior' of 'inferior'? Is a boy who is detected to have the gene of Huntington's chorea or Alzheimer disease a patient? What should the term 'eugenics' mean? What do the terms such as 'gene therapy', 'treatment' and 'enhancement' and 'human cloning' mean etc.? The research of human genome and its application caused and will cause ethical issues. Can human genome research and its application be used for eugenics, or only for the treatment and prevention of diseases? Must the principle of informed consent/choice be insisted in human genome research and its application? How to protecting gene privacy and combating the discrimination on the basis of genes? How to promote the quality between persons, harmony between ethnic groups and peace between countries? How to establish a fair, just, equal and equitable relationship between developing and developed countries in regarding to human genome research and its application?

  16. Genetic causes and gene–nutrient interactions in mammalian zinc deficiencies: acrodermatitis enteropathica and transient neonatal zinc deficiency as examples.

    PubMed

    Kasana, Shakhenabat; Din, Jamila; Maret, Wolfgang

    2015-01-01

    Discovering genetic causes of zinc deficiency has been a remarkable scientific journey. It started with the description of a rare skin disease, its treatment with various agents, the successful therapy with zinc, and the identification of mutations in a zinc transporter causing the disease. The journey continues with defining the molecular and cellular pathways that lead to the symptoms caused by zinc deficiency. Remarkably, at least two zinc transporters from separate protein families are now known to be involved in the genetics of zinc deficiency. One is ZIP4, which is involved in intestinal zinc uptake. Its mutations can cause acrodermatitis enteropathica (AE) with autosomal recessive inheritance. The other one is ZnT2, the transporter responsible for supplying human milk with zinc. Mutations in this transporter cause transient neonatal zinc deficiency (TNZD) with symptoms similar to AE but with autosomal dominant inheritance. The two diseases can be distinguished in affected infants. AE is fatal if zinc is not supplied to the infant after weaning, whereas TNZD is a genetic defect of the mother limiting the supply of zinc in the milk, and therefore the infant usually will obtain enough zinc once weaned. Although these diseases are relatively rare, the full functional consequences of the numerous mutations in ZIP4 and ZnT2 and their interactions with dietary zinc are not known. In particular, it remains unexplored whether some mutations cause milder disease phenotypes or increase the risk for other diseases if dietary zinc requirements are not met or exceeded. Thus, it is not known whether widespread zinc deficiency in human populations is based primarily on a nutritional deficiency or determined by genetic factors as well. This consideration becomes even more significant with regard to mutations in the other 22 human zinc transporters, where associations with a range of diseases, including diabetes, heart disease, and mental illnesses have been observed. Therefore, clinical tests for genetic disorders of zinc metabolism need to be developed.

  17. [Genes and discrimination].

    PubMed

    Abrisqueta Zarrabe, J A

    1999-01-01

    The Human Genome Project (HGP) is the greatest scientific adventure in modern human biology, and the genetic map that is going to be revealed through this Project is going to be an important basis of the medicine of the future. Human beings do not however depend solely on their genes. In order to comprehend human pathology, it is essential to focus on the genetic factors and on the environmental factors. Genetic diagnoses, being fostered by the HGP, make it possible to know genetic predisposition and the risks of the onset of a given disorder. Predictive medicine offers great hopes, but is giving rise to major concerns and is causing ethics-related dilemmas. Confidentiality, the moral imperative of medicine, is necessary to prevent discriminatory deviations. As is stated in the UNESCO's Universal Declaration on the Human Genome and Human Rights, no one shall be subjected to discrimination based on genetic characteristics.

  18. Reifying human difference: the debate on genetics, race, and health.

    PubMed

    Braun, Lundy

    2006-01-01

    The causes of racial and ethnic inequalities in health and the most appropriate categories to use to address health inequality have been the subject of heated debate in recent years. At the same time, genetic explanations for racial disparities have figured prominently in the scientific and popular press since the announcement of the sequencing of the human genome. To understand how such explanations assumed prominence, this essay analyzes the circulation of ideas about race and genetics and the rhetorical strategies used by authors of key texts to shape the debate. The authority of genetic accounts for racial and ethnic difference in disease, the author argues, is rooted in a broad cultural faith in the promise of genetics to solve problems of human disease and the inner truth of human beings that is intertwined with historical meanings attached to race. Such accounts are problematic for a variety of reasons. Importantly, they produce, reify, and naturalize notions of racial difference, provide a scientific rationale for racially targeted medical care, and distract attention from research that probes the complex ways in which political, economic, social, and biological factors, especially those of inequality and racism, cause health disparities.

  19. Cystic fibrosis genetics: from molecular understanding to clinical application.

    PubMed

    Cutting, Garry R

    2015-01-01

    The availability of the human genome sequence and tools for interrogating individual genomes provide an unprecedented opportunity to apply genetics to medicine. Mendelian conditions, which are caused by dysfunction of a single gene, offer powerful examples that illustrate how genetics can provide insights into disease. Cystic fibrosis, one of the more common lethal autosomal recessive Mendelian disorders, is presented here as an example. Recent progress in elucidating disease mechanism and causes of phenotypic variation, as well as in the development of treatments, demonstrates that genetics continues to play an important part in cystic fibrosis research 25 years after the discovery of the disease-causing gene.

  20. Cystic fibrosis genetics: from molecular understanding to clinical application

    PubMed Central

    Cutting, Garry R.

    2015-01-01

    The availability of the human genome sequence and tools for interrogating individual genomes provide an unprecedented opportunity to apply genetics to medicine. Mendelian conditions, which are caused by dysfunction of a single gene, offer powerful examples that illustrate how genetics can provide insights into disease. Cystic fibrosis, one of the more common lethalautosomal recessive Mendelian disorders, is presented here as an example. Recent progress in elucidating disease mechanism and causes of phenotypic variation, as well as in the development of treatments, demonstrates that genetics continues to play an important part in cystic fibrosis research 25 years after the d iscove1y of the disease-causing gene. PMID:25404111

  1. The Genetics of Infertility: Current Status of the Field

    PubMed Central

    Zorrilla, Michelle; Yatsenko, Alexander N

    2013-01-01

    Infertility is a relatively common health condition, affecting nearly 7% of all couples. Clinically, it is a highly heterogeneous pathology with a complex etiology that includes environmental and genetic factors. It has been estimated that nearly 50% of infertility cases are due to genetic defects. Hundreds of studies with animal knockout models convincingly showed infertility to be caused by gene defects, single or multiple. However, despite enormous efforts, progress in translating basic research findings into clinical studies has been challenging. The genetic causes remain unexplained for the vast majority of male or female infertility patients. A particular difficulty is the huge number of candidate genes to be studied; there are more than 2,300 genes expressed in the testis alone, and hundreds of those genes influence reproductive function in humans and could contribute to male infertility. At present, there are only a handful of genes or genetic defects that have been shown to cause, or to be strongly associated with, primary infertility. Yet, with completion of the human genome and progress in personalized medicine, the situation is rapidly changing. Indeed, there are 10-15 new gene tests, on average, being added to the clinical genetic testing list annually. PMID:24416713

  2. cis-Regulatory Mutations Are a Genetic Cause of Human Limb Malformations

    PubMed Central

    VanderMeer, Julia E.; Ahituv, Nadav

    2011-01-01

    The underlying mutations that cause human limb malformations are often difficult to determine, particularly for limb malformations that occur as isolated traits. Evidence from a variety of studies shows that cis-regulatory mutations, specifically in enhancers, can lead to some of these isolated limb malformations. Here, we provide a review of human limb malformations that have been shown to be caused by enhancer mutations and propose that cis-regulatory mutations will continue to be identified as the cause of additional human malformations as our understanding of regulatory sequences improves. PMID:21509892

  3. Dissection of Host Susceptibility to Bacterial Infections and Its Toxins.

    PubMed

    Nashef, Aysar; Agbaria, Mahmoud; Shusterman, Ariel; Lorè, Nicola Ivan; Bragonzi, Alessandra; Wiess, Ervin; Houri-Haddad, Yael; Iraqi, Fuad A

    2017-01-01

    Infection is one of the leading causes of human mortality and morbidity. Exposure to microbial agents is obviously required. However, also non-microbial environmental and host factors play a key role in the onset, development and outcome of infectious disease, resulting in large of clinical variability between individuals in a population infected with the same microbe. Controlled and standardized investigations of the genetics of susceptibility to infectious disease are almost impossible to perform in humans whereas mouse models allow application of powerful genomic techniques to identify and validate causative genes underlying human diseases with complex etiologies. Most of current animal models used in complex traits diseases genetic mapping have limited genetic diversity. This limitation impedes the ability to create incorporated network using genetic interactions, epigenetics, environmental factors, microbiota, and other phenotypes. A novel mouse genetic reference population for high-resolution mapping and subsequently identifying genes underlying the QTL, namely the Collaborative Cross (CC) mouse genetic reference population (GRP) was recently developed. In this chapter, we discuss a variety of approaches using CC mice for mapping genes underlying quantitative trait loci (QTL) to dissect the host response to polygenic traits, including infectious disease caused by bacterial agents and its toxins.

  4. Forensic genetics and ethical, legal and social implications beyond the clinic

    PubMed Central

    Cho, Mildred K; Sankar, Pamela

    2008-01-01

    Data on human genetic variation help scientists to understand human origins, susceptibility to illness and genetic causes of disease. Destructive episodes in the history of genetic research make it crucial to consider the ethical and social implications of research in genomics, especially human genetic variation. The analysis of ethical, legal and social implications should be integrated into genetic research, with the participation of scientists who can anticipate and monitor the full range of possible applications of the research from the earliest stages. The design and implementation of research directs the ways in which its results can be used, and data and technology, rather than ethical considerations or social needs, drive the use of science in unintended ways. Here we examine forensic genetics and argue that all geneticists should anticipate the ethical and social issues associated with nonmedical applications of genetic variation research. PMID:15510102

  5. Bartonellae are Prevalent and Diverse in Costa Rican Bats and Bat Flies.

    PubMed

    Judson, S D; Frank, H K; Hadly, E A

    2015-12-01

    Species in the bacterial genus, Bartonella, can cause disease in both humans and animals. Previous reports of Bartonella in bats and ectoparasitic bat flies suggest that bats could serve as mammalian hosts and bat flies as arthropod vectors. We compared the prevalence and genetic similarity of bartonellae in individual Costa Rican bats and their bat flies using molecular and sequencing methods targeting the citrate synthase gene (gltA). Bartonellae were more prevalent in bat flies than in bats, and genetic variants were sometimes, but not always, shared between bats and their bat flies. The detected bartonellae genetic variants were diverse, and some were similar to species known to cause disease in humans and other mammals. The high prevalence and sharing of bartonellae in bat flies and bats support a role for bat flies as a potential vector for Bartonella, while the genetic diversity and similarity to known species suggest that bartonellae could spill over into humans and animals sharing the landscape. © 2015 Blackwell Verlag GmbH.

  6. What is in a cause? Exploring the relationship between genetic cause and felt stigma

    PubMed Central

    Sankar, Pamela; Cho, Mildred K.; Wolpe, Paul Root; Schairer, Cynthia

    2008-01-01

    Purpose Concern over stigma as a consequence of genetic testing has grown in response to the recent increase in genetic research and testing resulting from the Human Genome Project. However, whether a genetic or hereditary basis necessarily confers a stigma to a condition remains unexamined. Methods We performed a qualitative interview study with 86 individuals with one of four conditions: deafness or hearing loss, breast cancer, sickle cell disease, and cystic fibrosis. The first two groups were divided approximately between people who ascribed their conditions to a genetic or hereditary cause and those who did not. Results Respondents interpreted genetic or hereditary causes and nongenetic causes in a variety of ways. Subjects with breast cancer reported the most consistently negative interpretation of genetic cause. This response concerned future ill health, not an enduring sense of stigma. Deaf and hard of hearing subjects provided the most consistently positive comments about a genetic or hereditary basis to their condition, casting familial hearing loss as a vital component of group and individual identity. Respondents with sickle cell disease and cystic fibrosis offered similar and positive interpretations of the genetic cause of their condition insofar as it meant their conditions were not contagious. Conclusions Although some subjects report feeling stigmatized as a result of their condition, this stigmatization is not uniformly associated with the condition’s cause, genetic or otherwise. Instead, stigma emerges from a variety of sources in the context of the lived experience of a particular condition. PMID:16418597

  7. [ROLE OF GENETIC POLYMORPHISM AND DIFFERENCES IN THE DETOXIFICATION OF CHEMICAL SUBSTANCES IN THE HUMAN BODY].

    PubMed

    Mogilenkova, L A; Rembovskiy V R

    2016-01-01

    There are given modern views on the role of genetic polymorphism on the detoxification of chemical substances and individual sensitivity in workers to the development of diseases associated with xenobiotics metabolism disorders. In the search for genetic markers of occupationally caused diseases it is promising to study allelomorphs of genes responsible for the polyfunctional response of the human body, including genes involved in xenobiotic biotransformation. There is substantiated the expediency of compilation and introduction of genetic passports for stuff occupied at hazardous chemical enterprises.

  8. Evolutionary medicine.

    PubMed

    Swynghedauw, B

    2004-04-01

    Nothing in biology makes sense except in the light of evolution. Evolutionary, or darwinian, medicine takes the view that contemporary diseases result from incompatibility between the conditions under which the evolutionary pressure had modified our genetic endowment and the lifestyle and dietary habits in which we are currently living, including the enhanced lifespan, the changes in dietary habits and the lack of physical activity. An evolutionary trait express a genetic polymorphism which finally improve fitness, it needs million years to become functional. A limited genetic diversity is a necessary prerequisite for evolutionary medicine. Nevertheless, search for a genetic endowment would become nearly impossible if the human races were genetically different. From a genetic point of view, homo sapiens, is homogeneous, and the so-called human races have only a socio-economic definition. Historically, Heart Failure, HF, had an infectious origin and resulted from mechanical overload which triggered mechanoconversion by using phylogenically ancient pleiotropic pathways. Adaptation was mainly caused by negative inotropism. Recently, HF was caused by a complex remodelling caused by the trophic effects of mechanics, ischemia, senescence, diabetes and, neurohormones. The generally admitted hypothesis is that cancers were largely caused by a combination of modern reproductive and dietary lifestyles mismatched with genotypic traits, plus the longer time available for a confrontation. Such a concept is illustrated for skin and breast cancers, and also for the link between cancer risk and dietary habits.

  9. [Spontaneous models of human diseases in dogs: ichthyoses as an example].

    PubMed

    André, Catherine; Grall, Anaïs; Guaguere, Éric; Thomas, Anne; Galibert, Francis

    2013-06-01

    Ichthyoses encompass a heterogeneous group of genodermatoses characterized by abnormal desquamation over the entire body due to defects of the terminal differentiation of keratinocytes and desquamation, which occur in the upper layer of the epidermis. Even though in humans more than 40 genes have already been identified, the genetic causes of several forms remain unknown and are difficult to identify in Humans. Strikingly, several purebred dogs are also affected by specific forms of ichthyoses. In the Golden retriever dog breed, an autosomal recessive form of ichthyosis, resembling human autosomal recessive congenital ichthyoses, has recently been diagnosed with a high incidence. We first characterized the disease occurring in the golden retriever breed and collected cases and controls. A genome-wide association study on 40 unrelated Golden retriever dogs, using the canine 49.000 SNPs (single nucleotide polymorphisms) array (Affymetrix v2), followed by statistical analyses and candidate gene sequencing, allowed to identify the causal mutation in the lipase coding PNPLA1 gene (patatin-like phospholipase domain-containing protein). Screening for alterations in the human ortholog gene in 10 autosomal recessive congenital ichthyoses families, for which no genetic cause has been identified thus far, allowed to identify two recessive mutations in the PNPLA1 protein in two families. This collaborative work between "human" and "canine" geneticists, practicians, histopathologists, biochemists and electron microscopy experts not only allowed to identify, in humans, an eighth gene for autosomal recessive congenital ichthyoses, but also allowed to highlight the function of this as-yet-unknown skin specific lipase in the lipid metabolism of the skin barrier. For veterinary medicine and breeding practices, a genetic test has been developed. These findings illustrate the importance of the discovery of relevant human orthologous canine genetic diseases, whose causes can be tracked in dog breeds more easily than in humans. Indeed, due to the selection and breeding practices applied to purebred dogs, the dog constitutes a unique species for unravelling phenotype/genotype relationships and providing new insights into human genetic diseases. This work paves the way for the identification of rare gene variants in humans that may be responsible for other keratinisation and epidermal barrier defects.

  10. Determinism and mass-media portrayals of genetics.

    PubMed Central

    Condit, C M; Ofulue, N; Sheedy, K M

    1998-01-01

    Scholars have expressed concern that the introduction of substantial coverage of "medical genetics" in the mass media during the past 2 decades represents an increase in biological determinism in public discourse. To test this contention, we analyzed the contents of a randomly selected, structured sample of American public newspapers (n=250) and magazines (n=722) published during 1919-95. Three coders, using three measures, all with intercoder reliability >85%, were employed. Results indicate that the introduction of the discourse of medical genetics is correlated with both a statistically significant decrease in the degree to which articles attribute human characteristics to genetic causes (P<.001) and a statistically significant increase in the differentiation of attributions to genetic and other causes among various conditions or outcomes (P<. 016). There has been no statistically significant change in the relative proportions of physical phenomena attributed to genetic causes, but there has been a statistically significant decrease in the number of articles assigning genetic causes to mental (P<.002) and behavioral (P<.000) characteristics. These results suggest that the current discourse of medical genetics is not accurately described as more biologically deterministic than its antecedents. PMID:9529342

  11. Recent developments in genetics and medically assisted reproduction: from research to clinical applications.

    PubMed

    Harper, J C; Aittomäki, K; Borry, P; Cornel, M C; de Wert, G; Dondorp, W; Geraedts, J; Gianaroli, L; Ketterson, K; Liebaers, I; Lundin, K; Mertes, H; Morris, M; Pennings, G; Sermon, K; Spits, C; Soini, S; van Montfoort, A P A; Veiga, A; Vermeesch, J R; Viville, S; Macek, M

    2018-01-01

    Two leading European professional societies, the European Society of Human Genetics and the European Society for Human Reproduction and Embryology, have worked together since 2004 to evaluate the impact of fast research advances at the interface of assisted reproduction and genetics, including their application into clinical practice. In September 2016, the expert panel met for the third time. The topics discussed highlighted important issues covering the impacts of expanded carrier screening, direct-to-consumer genetic testing, voiding of the presumed anonymity of gamete donors by advanced genetic testing, advances in the research of genetic causes underlying male and female infertility, utilisation of massively parallel sequencing in preimplantation genetic testing and non-invasive prenatal screening, mitochondrial replacement in human oocytes, and additionally, issues related to cross-generational epigenetic inheritance following IVF and germline genome editing. The resulting paper represents a consensus of both professional societies involved.

  12. A major insertion accounts for a significant proportion of mutations underlying human lipoprotein lipase deficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langlois, S.; Kastelein, J.J.; Hayden, M.R.

    1989-02-01

    Lipoprotein lipase is an important enzyme involved in triacylglycerol metabolism. Primary LPL deficiency is a genetic disorder that is usually manifested by a severe elevation in triacylglycerol levels. The authors have used a recently isolated LPL cDNA clone to study 15 probands from 11 families with this inherited disorder. Surprisingly, 7 of the probands from 4 families, of different ancestries, had a similar insertion in their LPL gene. In contrast to other human genetic disorders, where insertions are rare causes of mutation, this insertion accounts for a significant proportion of the alleles causing LPL deficiency. Detailed restriction mapping of themore » insertion revealed that it was unlikely to be a duplication of neighboring DNA and that it was not similar to the consensus sequence of human L1 repetitive elements. This suggests that there must be other mechanisms of insertional mutagenesis in human genetic disease besides transposition of mobile L1 repetitive elements.« less

  13. Genetic Mechanisms Involved in the Phenotype of Down Syndrome

    ERIC Educational Resources Information Center

    Patterson, David

    2007-01-01

    Down syndrome (DS) is the most common genetic cause of significant intellectual disability in the human population, occurring in roughly 1 in 700 live births. The ultimate cause of DS is trisomy of all or part of the set of genes located on chromosome 21. How this trisomy leads to the phenotype of DS is unclear. The completion of the DNA…

  14. Human mitochondrial DNA replication machinery and disease

    PubMed Central

    Young, Matthew J.; Copeland, William C.

    2016-01-01

    The human mitochondrial genome is replicated by DNA polymerase γ in concert with key components of the mitochondrial DNA (mtDNA) replication machinery. Defects in mtDNA replication or nucleotide metabolism cause deletions, point mutations, or depletion of mtDNA. The resulting loss of cellular respiration ultimately induces mitochondrial genetic diseases, including mtDNA depletion syndromes such as Alpers or early infantile hepatocerebral syndromes, and mtDNA deletion disorders such as progressive external ophthalmoplegia, ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy. Here we review the current literature regarding human mtDNA replication and heritable disorders caused by genetic changes of the POLG, POLG2, Twinkle, RNASEH1, DNA2 and MGME1 genes. PMID:27065468

  15. Clear genetic distinctiveness between human- and pig-derived Trichuris based on analyses of mitochondrial datasets.

    PubMed

    Liu, Guo-Hua; Gasser, Robin B; Su, Ang; Nejsum, Peter; Peng, Lifei; Lin, Rui-Qing; Li, Ming-Wei; Xu, Min-Jun; Zhu, Xing-Quan

    2012-01-01

    The whipworm, Trichuris trichiura, causes trichuriasis in ∼600 million people worldwide, mainly in developing countries. Whipworms also infect other animal hosts, including pigs (T. suis), dogs (T. vulpis) and non-human primates, and cause disease in these hosts, which is similar to trichuriasis of humans. Although Trichuris species are considered to be host specific, there has been considerable controversy, over the years, as to whether T. trichiura and T. suis are the same or distinct species. Here, we characterised the entire mitochondrial genomes of human-derived Trichuris and pig-derived Trichuris, compared them and then tested the hypothesis that the parasites from these two host species are genetically distinct in a phylogenetic analysis of the sequence data. Taken together, the findings support the proposal that T. trichiura and T. suis are separate species, consistent with previous data for nuclear ribosomal DNA. Using molecular analytical tools, employing genetic markers defined herein, future work should conduct large-scale studies to establish whether T. trichiura is found in pigs and T. suis in humans in endemic regions.

  16. Clear Genetic Distinctiveness between Human- and Pig-Derived Trichuris Based on Analyses of Mitochondrial Datasets

    PubMed Central

    Liu, Guo-Hua; Gasser, Robin B.; Su, Ang; Nejsum, Peter; Peng, Lifei; Lin, Rui-Qing; Li, Ming-Wei; Xu, Min-Jun; Zhu, Xing-Quan

    2012-01-01

    The whipworm, Trichuris trichiura, causes trichuriasis in ∼600 million people worldwide, mainly in developing countries. Whipworms also infect other animal hosts, including pigs (T. suis), dogs (T. vulpis) and non-human primates, and cause disease in these hosts, which is similar to trichuriasis of humans. Although Trichuris species are considered to be host specific, there has been considerable controversy, over the years, as to whether T. trichiura and T. suis are the same or distinct species. Here, we characterised the entire mitochondrial genomes of human-derived Trichuris and pig-derived Trichuris, compared them and then tested the hypothesis that the parasites from these two host species are genetically distinct in a phylogenetic analysis of the sequence data. Taken together, the findings support the proposal that T. trichiura and T. suis are separate species, consistent with previous data for nuclear ribosomal DNA. Using molecular analytical tools, employing genetic markers defined herein, future work should conduct large-scale studies to establish whether T. trichiura is found in pigs and T. suis in humans in endemic regions. PMID:22363831

  17. Genetics of renal hypoplasia: insights into the mechanisms controlling nephron endowment.

    PubMed

    Cain, Jason E; Di Giovanni, Valeria; Smeeton, Joanna; Rosenblum, Norman D

    2010-08-01

    Renal hypoplasia, defined as abnormally small kidneys with normal morphology and reduced nephron number, is a common cause of pediatric renal failure and adult-onset disease. Genetic studies performed in humans and mutant mice have implicated a number of critical genes, in utero environmental factors and molecular mechanisms that regulate nephron endowment and kidney size. Here, we review current knowledge regarding the genetic contributions to renal hypoplasia with particular emphasis on the mechanisms that control nephron endowment in humans and mice.

  18. Induced mutations in mice and genetic risk assessment in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selby, P.B.

    1980-01-01

    In studies on mice, in contrast to studies on humans, it is possible to perform carefully controlled experiments with the exposures one desires. The necessity for having separate mammalian tests for looking at the induction of gene mutations and small deficiencies, and at the induction of chromosomal aberrations, is obvious. Mutagens can differ as to which of these types of damage they are more likely to cause. The reason for focusing attention on the mouse in a discussion of hazard from induced gene mutations and small deficiencies is the existence of techniques in this mammal for readily studying the inductionmore » of such genetic effects. Many mutations at the molecular level cause no apparent changes at the gene-product level and many mutations that cause changes at the gene-product level cause no detectable phenotypic changes in heterozygotes. Many dominant mutations that change the phenotype cause no serious handicap. For these reasons, risk estimation for important chemicals must rely heavily on studies on the induction of those germinal mutations in mammals that are easily related to human dominant disorders, such as skeletal and cataract mutations. Molecular or enzyme studies cannot provide definitive answers about risk. The specific-locus method should help greatly in assessing the genetic risks to humans from chemicals. The new sensitive-indicator method should complement it in providing a tool for attacking the question of what treatments induce gene mutations and small deficiencies and for approximating first-generation damage to the skeleton. (ERB)« less

  19. Can mutation-mediated effects occurring early in development cause long-term seizure susceptibility in genetic generalized epilepsies?

    PubMed

    Reid, Christopher Alan; Rollo, Ben; Petrou, Steven; Berkovic, Samuel F

    2018-05-01

    Epilepsy has a strong genetic component, with an ever-increasing number of disease-causing genes being discovered. Most epilepsy-causing mutations are germ line and thus present from conception. These mutations are therefore well positioned to have a deleterious impact during early development. Here we review studies that investigate the role of genetic lesions within the early developmental window, specifically focusing on genetic generalized epilepsy (GGE). Literature on the potential pathogenic role of sub-mesoscopic structural changes in GGE is also reviewed. Evidence from rodent models of genetic epilepsy support the idea that functional and structural changes can occur in early development, leading to altered seizure susceptibility into adulthood. Both animal and human studies suggest that sub-mesoscopic structural changes occur in GGE. The existence of sub-mesoscopic structural changes prior to seizure onset may act as biomarkers of excitability in genetic epilepsies. We also propose that presymptomatic treatment may be essential for limiting the long-term consequences of disease-causing mutations in genetic epilepsies. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.

  20. The Human Epilepsy Mutation GABRG2(Q390X) Causes Chronic Subunit Accumulation and Neurodegeneration

    PubMed Central

    Kang, Jing-Qiong; Shen, Wangzhen; Zhou, Chengwen; Xu, Dong; Macdonald, Robert L.

    2015-01-01

    Genetic epilepsy and neurodegenerative diseases are two common neurological disorders conventionally viewed as being unrelated. A subset of patients with severe genetic epilepsies with impaired development and often death respond poorly to anticonvulsant drug therapy, suggesting a need for new therapeutic targets. Previously, we reported that multiple GABAA receptor epilepsy mutations caused protein misfolding and abnormal receptor trafficking. Here we establish in a novel model of a severe human genetic epileptic encephalopathy, the Gabrg2+/Q390X knock-in mouse, that in addition to impairing inhibitory neurotransmission, mutant GABAA receptor γ2(Q390X) subunits accumulated and aggregated intracellularly, activated caspase 3 and caused widespread, age-dependent neurodegeneration. These novel findings suggest that the fundamental protein metabolism and cellular consequences of the epilepsy-associated mutant γ2(Q390X) ion channel subunit are not fundamentally different from those associated with neurodegeneration. The study has far-reaching significance for identification of conserved pathological cascades and mechanism-based therapies that overlap genetic epilepsies and neurodegenerative diseases. PMID:26005849

  1. Multilocus Sequence Analysis of Streptococcus canis Confirms the Zoonotic Origin of Human Infections and Reveals Genetic Exchange with Streptococcus dysgalactiae subsp. equisimilis

    PubMed Central

    Pinho, M. D.; Matos, S. C.; Pomba, C.; Lübke-Becker, A.; Wieler, L. H.; Preziuso, S.; Melo-Cristino, J.

    2013-01-01

    Streptococcus canis is an animal pathogen that occasionally causes human infections. Isolates recovered from infections of animals (n = 78, recovered from 2000 to 2010 in three European countries, mainly from house pets) and humans (n = 7, recovered from 2006 to 2010 in Portugal) were identified by phenotypic and genotypic methods and characterized by antimicrobial susceptibility testing, multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and emm typing. S. canis isolates presented considerable variability in biochemical profiles and 16S rRNA. Resistance to antimicrobial agents was low, with the most significant being tet(M)- and tet(O)-mediated tetracycline resistance. MLST analysis revealed a polyclonal structure of the S. canis population causing infections, where the same genetic lineages were found infecting house pets and humans and were disseminated in distinct geographic locations. Phylogenetic analysis indicated that S. canis was a divergent taxon of the sister species Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis and found evidence of acquisition of genetic material by S. canis from S. dysgalactiae subsp. equisimilis. PFGE confirmed the MLST findings, further strengthening the similarity between animal and human isolates. The presence of emm-like genes was restricted to a few isolates and correlated with some MLST-based genetic lineages, but none of the human isolates could be emm typed. Our data show that S. canis isolates recovered from house pets and humans constitute a single population and demonstrate that isolates belonging to the main genetic lineages identified have the ability to infect the human host, providing strong evidence for the zoonotic nature of S. canis infection. PMID:23345291

  2. Multilocus sequence analysis of Streptococcus canis confirms the zoonotic origin of human infections and reveals genetic exchange with Streptococcus dysgalactiae subsp. equisimilis.

    PubMed

    Pinho, M D; Matos, S C; Pomba, C; Lübke-Becker, A; Wieler, L H; Preziuso, S; Melo-Cristino, J; Ramirez, M

    2013-04-01

    Streptococcus canis is an animal pathogen that occasionally causes human infections. Isolates recovered from infections of animals (n = 78, recovered from 2000 to 2010 in three European countries, mainly from house pets) and humans (n = 7, recovered from 2006 to 2010 in Portugal) were identified by phenotypic and genotypic methods and characterized by antimicrobial susceptibility testing, multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and emm typing. S. canis isolates presented considerable variability in biochemical profiles and 16S rRNA. Resistance to antimicrobial agents was low, with the most significant being tet(M)- and tet(O)-mediated tetracycline resistance. MLST analysis revealed a polyclonal structure of the S. canis population causing infections, where the same genetic lineages were found infecting house pets and humans and were disseminated in distinct geographic locations. Phylogenetic analysis indicated that S. canis was a divergent taxon of the sister species Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis and found evidence of acquisition of genetic material by S. canis from S. dysgalactiae subsp. equisimilis. PFGE confirmed the MLST findings, further strengthening the similarity between animal and human isolates. The presence of emm-like genes was restricted to a few isolates and correlated with some MLST-based genetic lineages, but none of the human isolates could be emm typed. Our data show that S. canis isolates recovered from house pets and humans constitute a single population and demonstrate that isolates belonging to the main genetic lineages identified have the ability to infect the human host, providing strong evidence for the zoonotic nature of S. canis infection.

  3. The Loss and Gain of Functional Amino Acid Residues Is a Common Mechanism Causing Human Inherited Disease

    PubMed Central

    Lugo-Martinez, Jose; Pejaver, Vikas; Pagel, Kymberleigh A.; Mort, Matthew; Cooper, David N.; Mooney, Sean D.; Radivojac, Predrag

    2016-01-01

    Elucidating the precise molecular events altered by disease-causing genetic variants represents a major challenge in translational bioinformatics. To this end, many studies have investigated the structural and functional impact of amino acid substitutions. Most of these studies were however limited in scope to either individual molecular functions or were concerned with functional effects (e.g. deleterious vs. neutral) without specifically considering possible molecular alterations. The recent growth of structural, molecular and genetic data presents an opportunity for more comprehensive studies to consider the structural environment of a residue of interest, to hypothesize specific molecular effects of sequence variants and to statistically associate these effects with genetic disease. In this study, we analyzed data sets of disease-causing and putatively neutral human variants mapped to protein 3D structures as part of a systematic study of the loss and gain of various types of functional attribute potentially underlying pathogenic molecular alterations. We first propose a formal model to assess probabilistically function-impacting variants. We then develop an array of structure-based functional residue predictors, evaluate their performance, and use them to quantify the impact of disease-causing amino acid substitutions on catalytic activity, metal binding, macromolecular binding, ligand binding, allosteric regulation and post-translational modifications. We show that our methodology generates actionable biological hypotheses for up to 41% of disease-causing genetic variants mapped to protein structures suggesting that it can be reliably used to guide experimental validation. Our results suggest that a significant fraction of disease-causing human variants mapping to protein structures are function-altering both in the presence and absence of stability disruption. PMID:27564311

  4. The Loss and Gain of Functional Amino Acid Residues Is a Common Mechanism Causing Human Inherited Disease.

    PubMed

    Lugo-Martinez, Jose; Pejaver, Vikas; Pagel, Kymberleigh A; Jain, Shantanu; Mort, Matthew; Cooper, David N; Mooney, Sean D; Radivojac, Predrag

    2016-08-01

    Elucidating the precise molecular events altered by disease-causing genetic variants represents a major challenge in translational bioinformatics. To this end, many studies have investigated the structural and functional impact of amino acid substitutions. Most of these studies were however limited in scope to either individual molecular functions or were concerned with functional effects (e.g. deleterious vs. neutral) without specifically considering possible molecular alterations. The recent growth of structural, molecular and genetic data presents an opportunity for more comprehensive studies to consider the structural environment of a residue of interest, to hypothesize specific molecular effects of sequence variants and to statistically associate these effects with genetic disease. In this study, we analyzed data sets of disease-causing and putatively neutral human variants mapped to protein 3D structures as part of a systematic study of the loss and gain of various types of functional attribute potentially underlying pathogenic molecular alterations. We first propose a formal model to assess probabilistically function-impacting variants. We then develop an array of structure-based functional residue predictors, evaluate their performance, and use them to quantify the impact of disease-causing amino acid substitutions on catalytic activity, metal binding, macromolecular binding, ligand binding, allosteric regulation and post-translational modifications. We show that our methodology generates actionable biological hypotheses for up to 41% of disease-causing genetic variants mapped to protein structures suggesting that it can be reliably used to guide experimental validation. Our results suggest that a significant fraction of disease-causing human variants mapping to protein structures are function-altering both in the presence and absence of stability disruption.

  5. Genetic recombination as a major cause of mutagenesis in the human globin gene clusters.

    PubMed

    Borg, Joseph; Georgitsi, Marianthi; Aleporou-Marinou, Vassiliki; Kollia, Panagoula; Patrinos, George P

    2009-12-01

    Homologous recombination is a frequent phenomenon in multigene families and as such it occurs several times in both the alpha- and beta-like globin gene families. In numerous occasions, genetic recombination has been previously implicated as a major mechanism that drives mutagenesis in the human globin gene clusters, either in the form of unequal crossover or gene conversion. Unequal crossover results in the increase or decrease of the human globin gene copies, accompanied in the majority of cases with minor phenotypic consequences, while gene conversion contributes either to maintaining sequence homogeneity or generating sequence diversity. The role of genetic recombination, particularly gene conversion in the evolution of the human globin gene families has been discussed elsewhere. Here, we summarize our current knowledge and review existing experimental evidence outlining the role of genetic recombination in the mutagenic process in the human globin gene families.

  6. First Case of Human Rabies in Chile Caused by an Insectivorous Bat Virus Variant

    PubMed Central

    Favi, Myriam; Yung, Verónica; Chala, Evelyn; López, Luis R.

    2002-01-01

    The first human rabies case in Chile since 1972 occurred in March 1996 in a patient without history of known exposure. Antigenic and genetic characterization of the rabies isolate indicated that its reservoir was the insectivorous bat Tadarida brasiliensis. This is the first human rabies case caused by an insectivorous bat rabies virus variant reported in Latin America. PMID:11749754

  7. Genetic modification of human trabecular meshwork with lentiviral vectors.

    PubMed

    Loewen, N; Fautsch, M P; Peretz, M; Bahler, C K; Cameron, J D; Johnson, D H; Poeschla, E M

    2001-11-20

    Glaucoma, a group of optic neuropathies, is the leading cause of irreversible blindness. Neuronal apoptosis in glaucoma is primarily associated with high intraocular pressure caused by chronically impaired outflow of aqueous humor through the trabecular meshwork, a reticulum of mitotically inactive endothelial-like cells located in the angle of the anterior chamber. Anatomic, genetic, and expression profiling data suggest the possibility of using gene transfer to treat glaucomatous intraocular pressure dysregulation, but this approach will require stable genetic modification of the differentiated aqueous outflow tract. We injected transducing unit-normalized preparations of either of two lentiviral vectors or an oncoretroviral vector as a single bolus into the aqueous circulation of cultured human donor eyes, under perfusion conditions that mimicked natural anterior chamber flow and maintained viability ex vivo. Reporter gene expression was assessed in trabecular meshwork from 3 to 16 days after infusion of 1.0 x 10(8) transducing units of each vector. The oncoretroviral vector failed to transduce the trabecular meshwork. In contrast, feline immunodeficiency virus and human immunodeficiency virus vectors produced efficient, localized transduction of the trabecular meshwork in situ. The results demonstrate that lentiviral vectors permit efficient genetic modification of the human trabecular meshwork when delivered via the afferent aqueous circulation, a clinically accessible route. In addition, controlled comparisons in this study establish that feline and human immunodeficiency virus vectors are equivalently efficacious in delivering genes to this terminally differentiated human tissue.

  8. Scientific rationality, uncertainty and the governance of human genetics: an interview study with researchers at deCODE genetics.

    PubMed

    Hjörleifsson, Stefán; Schei, Edvin

    2006-07-01

    Technology development in human genetics is fraught with uncertainty, controversy and unresolved moral issues, and industry scientists are sometimes accused of neglecting the implications of their work. The present study was carried out to elicit industry scientists' reflections on the relationship between commercial, scientific and ethical dimensions of present day genetics and the resources needed for robust governance of new technologies. Interviewing scientists of the company deCODE genetics in Iceland, we found that in spite of optimism, the informants revealed ambiguity and uncertainty concerning the use of human genetic technologies for the prevention of common diseases. They concurred that uncritical marketing of scientific success might cause exaggerated public expectations of health benefits from genetics, with the risk of backfiring and causing resistance to genetics in the population. On the other hand, the scientists did not address dilemmas arising from the commercial nature of their own employer. Although the scientists tended to describe public fear as irrational, they identified issues where scepticism might be well founded and explored examples where they, despite expert knowledge, held ambiguous or tentative personal views on the use of predictive genetic technologies. The rationality of science was not seen as sufficient to ensure beneficial governance of new technologies. The reflexivity and suspension of judgement demonstrated in the interviews exemplify productive features of moral deliberation in complex situations. Scientists should take part in dialogues concerning the governance of genetic technologies, acknowledge any vested interests, and use their expertise to highlight, not conceal the technical and moral complexity involved.

  9. Genetic mechanisms of multidrug resistance among Klebsiella pneumoniae isolates from food-producing animals and humans in Lagos, Nigeria

    USDA-ARS?s Scientific Manuscript database

    Klebsiella pneumoniae is an opportunistic pathogen that commonly causes hospital and community acquired bacterial infections in humans. The emergence and rapid spread of multi- drug resistant (MDR) K. pneumoniae is causing drug therapy failure amid patients leading to poor antibiotic management glob...

  10. New Technologies for the Identification of Novel Genetic Markers of Disorders of Sex Development (DSD)

    PubMed Central

    Bashamboo, A.; Ledig, S.; Wieacker, P.; Achermann, J.; McElreavey, K.

    2010-01-01

    Although the genetic basis of human sexual determination and differentiation has advanced considerably in recent years, the fact remains that in most subjects with disorders of sex development (DSD) the underlying genetic cause is unknown. Where pathogenic mutations have been identified, the phenotype can be highly variable, even within families, suggesting that other genetic variants are influencing the expression of the phenotype. This situation is likely to change, as more powerful and affordable tools become widely available for detailed genetic analyses. Here, we describe recent advances in comparative genomic hybridisation, sequencing by hybridisation and next generation sequencing, and we describe how these technologies will have an impact on our understanding of the genetic causes of DSD. PMID:20820110

  11. What Causes Rett Syndrome?

    MedlinePlus

    ... early-onset seizure variant of Rett syndrome. Human Molecular Genetics , Jul 15;14(14), 1935–1946. Retrieved June ... Dragich, J., & Schanen, C. (2003). Rett Syndrome: Clinical-Molecular Correlates. In G. Fisch (Ed.), Genetics and neurobehavioral disorders (pp. 391–418). Totowa, NJ: ...

  12. KDNA Genetic Signatures Obtained by LSSP-PCR Analysis of Leishmania (Leishmania) infantum Isolated from the New and the Old World

    PubMed Central

    Alvarenga, Janaína Sousa Campos; Ligeiro, Carla Maia; Gontijo, Célia Maria Ferreira; Cortes, Sofia; Campino, Lenea; Vago, Annamaria Ravara; Melo, Maria Norma

    2012-01-01

    Background Visceral Leishmaniasis (VL) caused by species from the Leishmania donovani complex is the most severe form of the disease, lethal if untreated. VL caused by Leishmania infantum is a zoonosis with an increasing number of human cases and millions of dogs infected in the Old and the New World. In this study, L. infantum (syn. L.chagasi) strains were isolated from human and canine VL cases. The strains were obtained from endemic areas from Brazil and Portugal and their genetic polymorphism was ascertained using the LSSP-PCR (Low-Stringency Single Specific Primer PCR) technique for analyzing the kinetoplastid DNA (kDNA) minicircles hypervariable region. Principal Findings KDNA genetic signatures obtained by minicircle LSSP-PCR analysis of forty L. infantum strains allowed the grouping of strains in several clades. Furthermore, LSSP-PCR profiles of L. infantum subpopulations were closely related to the host origin (human or canine). To our knowledge this is the first study which used this technique to compare genetic polymorphisms among strains of L. infantum originated from both the Old and the New World. Conclusions LSSP-PCR profiles obtained by analysis of L. infantum kDNA hypervariable region of parasites isolated from human cases and infected dogs from Brazil and Portugal exhibited a genetic correlation among isolates originated from the same reservoir, human or canine. However, no association has been detected among the kDNA signatures and the geographical origin of L. infantum strains. PMID:22912862

  13. [The development of molecular human genetics and its significance for perspectives of modern medicine].

    PubMed

    Coutelle, C; Speer, A; Grade, K; Rosenthal, A; Hunger, H D

    1989-01-01

    The introduction of molecular human genetics has become a paradigma for the application of genetic engineering in medicine. The main principles of this technology are the isolation of molecular probes, their application in hybridization reactions, specific gene-amplification by the polymerase chain reaction, and DNA sequencing reactions. These methods are used for the analysis of monogenic diseases by linkage studies and the elucidation of the molecular defect causing these conditions, respectively. They are also the basis for genomic diagnosis of monogenic diseases, introduced into the health care system of the GDR by a national project on Duchenne/Becker muscular dystrophy, Cystic Fibrosis and Phenylketonuria. The rapid development of basic research on the molecular analysis of the human genome and genomic diagnosis indicates, that human molecular genetics is becoming a decisive basic discipline of modern medicine.

  14. [An overview on swine influenza viruses].

    PubMed

    Yang, Shuai; Zhu, Wen-Fei; Shu, Yue-Long

    2013-05-01

    Swine influenza viruses (SIVs) are respiratory pathogens of pigs. They cause both economic bur den in livestock-dependent industries and serious global public health concerns in humans. Because of their dual susceptibility to human and avian influenza viruses, pigs are recognized as intermediate hosts for genetic reassortment and interspecies transmission. Subtypes H1N1, H1N2, and H3N2 circulate in swine populations around the world, with varied origin and genetic characteristics among different continents and regions. In this review, the role of pigs in evolution of influenza A viruses, the genetic evolution of SIVs and interspecies transmission of SIVs are described. Considering the possibility that pigs might produce novel influenza viruses causing more outbreaks and pandemics, routine epidemiological surveillance of influenza viruses in pig populations is highly recommended.

  15. Behavioral Phenotyping Assays for Genetic Mouse Models of Neurodevelopmental, Neurodegenerative, and Psychiatric Disorders.

    PubMed

    Sukoff Rizzo, Stacey J; Crawley, Jacqueline N

    2017-02-08

    Animal models offer heuristic research tools to understand the causes of human diseases and to identify potential treatments. With rapidly evolving genetic engineering technologies, mutations identified in a human disorder can be generated in the mouse genome. Phenotypic outcomes of the mutation are then explicated to confirm hypotheses about causes and to discover effective therapeutics. Most neurodevelopmental, neurodegenerative, and psychiatric disorders are diagnosed primarily by their prominent behavioral symptoms. Mouse behavioral assays analogous to the human symptoms have been developed to analyze the consequences of mutations and to evaluate proposed therapeutics preclinically. Here we describe the range of mouse behavioral tests available in the established behavioral neuroscience literature, along with examples of their translational applications. Concepts presented have been successfully used in other species, including flies, worms, fish, rats, pigs, and nonhuman primates. Identical strategies can be employed to test hypotheses about environmental causes and gene × environment interactions.

  16. New Insights into Human Cryptosporidiosis

    PubMed Central

    Clark, Douglas P.

    1999-01-01

    Cryptosporidium parvum is an important cause of diarrhea worldwide. Cryptosporidium causes a potentially life-threatening disease in people with AIDS and contributes significantly to morbidity among children in developing countries. In immunocompetent adults, Cryptosporidium is often associated with waterborne outbreaks of acute diarrheal illness. Recent studies with human volunteers have indicated that Cryptosporidium is highly infectious. Diagnosis of infection with this parasite has relied on identification of acid-fast oocysts in stool; however, new immunoassays or PCR-based assays may increase the sensitivity of detection. Although the mechanism by which Cryptosporidium causes diarrhea is still poorly understood, the parasite and the immune response to it probably combine to impair absorption and enhance secretion within the intestinal tract. Important genetic studies suggest that humans can be infected by at least two genetically distinct types of Cryptosporidium, which may vary in virulence. This may, in part, explain the clinical variability seen in patients with cryptosporidiosis. PMID:10515902

  17. Human male infertility and its genetic causes.

    PubMed

    Miyamoto, Toshinobu; Minase, Gaku; Shin, Takeshi; Ueda, Hiroto; Okada, Hiroshi; Sengoku, Kazuo

    2017-04-01

    Infertility affects about 15% of couples who wish to have children and half of these cases are associated with male factors. Genetic causes of azoospermia include chromosomal abnormalities, Y chromosome microdeletions, and specific mutations/deletions of several Y chromosome genes. Many researchers have analyzed genes in the AZF region on the Y chromosome; however, in 2003 the SYCP3 gene on chromosome 12 (12q23) was identified as causing azoospermia by meiotic arrest through a point mutation. We mainly describe the SYCP3 and PLK4 genes that we have studied in our laboratory, and add comments on other genes associated with human male infertility. Up to now, The 17 genes causing male infertility by their mutation have been reported in human. Infertility caused by nonobstructive azoospermia (NOA) is very important in the field of assisted reproductive technology. Even with the aid of chromosomal analysis, ultrasonography of the testis, and detailed endocrinology, only MD-TESE can confirm the presence of immature spermatozoa in the testes. We strongly hope that these studies help clinics avoid ineffective MD-TESE procedures.

  18. Cerebellar Development and Disease

    PubMed Central

    Gleeson, Joseph G.

    2008-01-01

    Recent Advances The molecular control of cell type specification within the developing cerebellum as well as the genetic causes of the most common human developmental cerebellar disorders have long remained mysterious. Recent genetic lineage and loss-of-function data from mice have revealed unique and non-overlapping anatomical origins for GABAergic neurons from ventricular zone precursors and glutamatergic cell from rhombic lip precursors, mirroring distinct origins for these neurotransmitter-specific cell types in the cerebral cortex. Mouse studies elucidating the role of Ptf1a as a cerebellar ventricular zone GABerigic fate switch were actually preceded by the recognition that PTF1A mutations in humans cause cerebellar agenesis, a birth defect of the human cerebellum. Indeed, several genes for congenital human cerebellar malformations have recently been identified, including genes causing Joubert syndrome, Dandy-Walker malformation and Ponto-cerebellar hypoplasia. These studies have pointed to surprisingly complex roles for transcriptional regulation, mitochondrial function and neuronal cilia in patterning, homeostasis and cell proliferation during cerebellar development. Together mouse and human studies are synergistically advancing our understanding of the developmental mechanisms that generate the uniquely complex mature cerebellum. PMID:18513948

  19. Human susceptibility to legionnaires' disease.

    PubMed

    Berrington, William R; Hawn, Thomas R

    2013-01-01

    Legionella pneumophila is a facultative intracellular pathogen that is an important cause of pneumonia. Although host factors that may predispose to acquisition of Legionnaire's Disease (LD) include comorbid illnesses (e.g., diabetes, chronic lung disease), age, male sex, and smoking, many individuals have no identifiable risk factors. Some studies suggest that genetic factors may enhance susceptibility to LD. In this chapter we discuss current techniques and scientific methods to identify genetic susceptibility factors. These genetic studies provide insight into the human immune response to intracellular pathogens and may improve strategies for treatment and vaccine development.

  20. The bee microbiome: impact on bee health and model for evolution and ecology of host-microbe interactions

    USDA-ARS?s Scientific Manuscript database

    Fanconi anemia (FA) is a rare genetic disorder caused by defects in DNA damage repair. FA patients often develop squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) are known to cause cancer, including the cervix. However, SCCs found in human FA patients are often HP...

  1. Harnessing genomics to identify environmental determinants of heritable disease

    EPA Science Inventory

    De novo mutation is increasingly being recognized as the cause for a range of human genetic diseases and disorders. Important examples of this include inherited genetic disorders such as autism, schizophrenia, mental retardation, epilepsy, and a broad range of adverse reproductiv...

  2. The need for interaction between assisted reproduction technology and genetics: recommendations of the European Societies of Human Genetics and Human Reproduction and Embryology.

    PubMed

    2006-08-01

    Infertility and reproductive genetic risk are both increasing in our societies because of lifestyle changes and possibly environmental factors. Owing to the magnitude of the problem, they have implications not only at the individual and family levels but also at the community level. This leads to an increasing demand for access to assisted reproduction technology (ART) and genetic services, especially when the cause of infertility may be genetic in origin. The increasing application of genetics in reproductive medicine and vice versa requires closer collaboration between the two disciplines. ART and genetics are rapidly evolving fields where new technologies are currently introduced without sufficient knowledge of their potential long-term effects. As for any medical procedures, there are possible unexpected effects which need to be envisaged to make sure that the balance between benefits and risks is clearly on the benefit side. The development of ART and genetics as scientific activities is creating an opportunity to understand the early stages of human development, which is leading to new and challenging findings/knowledge. However, there are opinions against investigating the early stages of development in humans who deserve respect and attention. For all these reasons, these two societies, European Society of Human Genetics (ESHG) and European Society of Human Reproduction and Embryology (ESHRE), have joined efforts to explore the issues at stake and to set up recommendations to maximize the benefit for the couples in need and for the community.

  3. Variation in recombination rate may bias human genetic disease mapping studies.

    PubMed

    Boyle, A Susannah; Noor, Mohamed A F

    2004-11-01

    The availability of the human genome sequence and variability information (as from the International HapMap project) will enhance our ability to map genetic disorders and choose targets for therapeutic intervention. However, several factors, such as regional variation in recombination rate, can bias conclusions from genetic mapping studies. Here, we examine the impact of regional variation in recombination rate across the human genome. Through computer simulations and literature surveys, we conclude that genetic disorders have been mapped to regions of low recombination more often than expected if such diseases were randomly distributed across the genome. This concentration in low recombination regions may be an artifact, and disorders appearing to be caused by a few genes of large effect may be polygenic. Future genetic mapping studies should be conscious of this potential complication by noting the regional recombination rate of regions implicated in diseases.

  4. Of mice and men: molecular genetics of congenital heart disease.

    PubMed

    Andersen, Troels Askhøj; Troelsen, Karin de Linde Lind; Larsen, Lars Allan

    2014-04-01

    Congenital heart disease (CHD) affects nearly 1 % of the population. It is a complex disease, which may be caused by multiple genetic and environmental factors. Studies in human genetics have led to the identification of more than 50 human genes, involved in isolated CHD or genetic syndromes, where CHD is part of the phenotype. Furthermore, mapping of genomic copy number variants and exome sequencing of CHD patients have led to the identification of a large number of candidate disease genes. Experiments in animal models, particularly in mice, have been used to verify human disease genes and to gain further insight into the molecular pathology behind CHD. The picture emerging from these studies suggest that genetic lesions associated with CHD affect a broad range of cellular signaling components, from ligands and receptors, across down-stream effector molecules to transcription factors and co-factors, including chromatin modifiers.

  5. The emergence of human-evolutionary medical genomics

    PubMed Central

    Crespi, Bernard J

    2011-01-01

    In this review, I describe how evolutionary genomics is uniquely suited to spearhead advances in understanding human disease risk, owing to the privileged position of genes as fundamental causes of phenotypic variation, and the ability of population genetic and phylogenetic methods to robustly infer processes of natural selection, drift, and mutation from genetic variation at the levels of family, population, species, and clade. I first provide an overview of models for the origins and maintenance of genetically based disease risk in humans. I then discuss how analyses of genetic disease risk can be dovetailed with studies of positive and balancing selection, to evaluate the degree to which the ‘genes that make us human’ also represent the genes that mediate risk of polygenic disease. Finally, I present four basic principles for the nascent field of human evolutionary medical genomics, each of which represents a process that is nonintuitive from a proximate perspective. Joint consideration of these principles compels novel forms of interdisciplinary analyses, most notably studies that (i) analyze tradeoffs at the level of molecular genetics, and (ii) identify genetic variants that are derived in the human lineage or in specific populations, and then compare individuals with derived versus ancestral alleles. PMID:25567974

  6. Clonorchis sinensis and Clonorchiasis: The Relevance of Exploring Genetic Variation.

    PubMed

    Wang, Daxi; Young, Neil D; Korhonen, Pasi K; Gasser, Robin B

    2018-01-01

    Parasitic trematodes (flukes) cause substantial mortality and morbidity in humans. The Chinese liver fluke, Clonorchis sinensis, is one of the most destructive parasitic worms in humans in China, Vietnam, Korea and the Russian Far East. Although C. sinensis infection can be controlled relatively well using anthelmintics, the worm is carcinogenic, inducing cholangiocarcinoma and causing major suffering in ~15 million people in Asia. This chapter provides an account of C. sinensis and clonorchiasis research-covering aspects of biology, epidemiology, pathogenesis and immunity, diagnosis, treatment and control, genetics and genomics. It also describes progress in the area of molecular biology (genetics, genomics, transcriptomics and proteomics) and highlights challenges associated with comparative genomics and population genetics. It then reviews recent advances in the sequencing and characterisation of the mitochondrial and nuclear genomes for a Korean isolate of C. sinensis and summarises salient comparative genomic work and the implications thereof. The chapter concludes by considering how advances in genomic and informatics will enable research on the genetics of C. sinensis and related parasites, as well as the discovery of new fluke-specific intervention targets. © 2018 Elsevier Ltd All rights reserved.

  7. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws

    PubMed Central

    Šmajs, David; Norris, Steven J.; Weinstock, George M.

    2013-01-01

    Pathogenic uncultivable treponemes, similar to syphilis-causing Treponema pallidum subspecies pallidum, include T. pallidum ssp. pertenue, T. pallidum ssp. endemicum and Treponema carateum, which cause yaws, bejel and pinta, respectively. Genetic analyses of these pathogens revealed striking similarity among these bacteria and also a high degree of similarity to the rabbit pathogen, T. paraluiscuniculi, a treponeme not infectious to humans. Genome comparisons between pallidum and non-pallidum treponemes revealed genes with potential involvement in human infectivity, whereas comparisons between pallidum and pertenue treponemes identified genes possibly involved in the high invasivity of syphilis treponemes. Genetic variability within syphilis strains is considered as the basis of syphilis molecular epidemiology with potential to detect more virulent strains, whereas genetic variability within a single strain is related to its ability to elude the immune system of the host. Genome analyses also shed light on treponemal evolution and on chromosomal targets for molecular diagnostics of treponemal infections. PMID:22198325

  8. Genetic diversity of Vibrio parahaemolyticus strains isolated from farmed Pacific white shrimp and ambient pond water affected by acute hepatopancreatic necrosis disease outbreak in Thailand.

    PubMed

    Chonsin, Kaknokrat; Matsuda, Shigeaki; Theethakaew, Chonchanok; Kodama, Toshio; Junjhon, Jiraphan; Suzuki, Yasuhiko; Suthienkul, Orasa; Iida, Tetsuya

    2016-01-01

    Acute hepatopancreatic necrosis disease (AHPND) is an emerging shrimp disease that causes massive die-offs in farmed shrimps. Recent outbreaks of AHPND in Asia have been causing great losses for shrimp culture and have become a serious socioeconomic problem. The causative agent of AHPND is Vibrio parahaemolyticus, which is typically known to cause food-borne gastroenteritis in humans. However, there have been few reports of the epidemiology of V. parahaemolyticus AHPND strains, and the genetic relationship among AHPND strains is unclear. Here, we report the genetic characterization of V. parahaemolyticus strains isolated from AHPND outbreaks in Thailand. We found eight isolates from AHPND-suspected shrimps and pond water that were positive for AHPND markers AP1 and AP2. PCR analysis confirmed that none of these eight AP-positive AHPND strains possesses the genes for the conventional virulence factors affecting to humans, such as thermostable direct hemolysin (TDH), TDH-related hemolysin (TRH) and type III secretion system 2. Phylogenetic analysis by multilocus sequence typing showed that the AHPND strains are genetically diverse, suggesting that AHPND strains were not derived from a single genetic lineage. Our study represents the first report of molecular epidemiology of AHPND-causing V. parahaemolyticus strains using multilocus sequence typing, and provides an insight into their evolutionary mechanisms. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Disrupting evolutionary processes: the effect of habitat fragmentation on collared lizards in the Missouri Ozarks.

    PubMed

    Templeton, A R; Robertson, R J; Brisson, J; Strasburg, J

    2001-05-08

    Humans affect biodiversity at the genetic, species, community, and ecosystem levels. This impact on genetic diversity is critical, because genetic diversity is the raw material of evolutionary change, including adaptation and speciation. Two forces affecting genetic variation are genetic drift (which decreases genetic variation within but increases genetic differentiation among local populations) and gene flow (which increases variation within but decreases differentiation among local populations). Humans activities often augment drift and diminish gene flow for many species, which reduces genetic variation in local populations and prevents the spread of adaptive complexes outside their population of origin, thereby disrupting adaptive processes both locally and globally within a species. These impacts are illustrated with collared lizards (Crotaphytus collaris) in the Missouri Ozarks. Forest fire suppression has reduced habitat and disrupted gene flow in this lizard, thereby altering the balance toward drift and away from gene flow. This balance can be restored by managed landscape burns. Some have argued that, although human-induced fragmentation disrupts adaptation, it will also ultimately produce new species through founder effects. However, population genetic theory and experiments predict that most fragmentation events caused by human activities will facilitate not speciation, but local extinction. Founder events have played an important role in the macroevolution of certain groups, but only when ecological opportunities are expanding rather than contracting. The general impact of human activities on genetic diversity disrupts or diminishes the capacity for adaptation, speciation, and macroevolutionary change. This impact will ultimately diminish biodiversity at all levels.

  10. Clinical mitochondrial genetics

    PubMed Central

    Chinnery, P.; Howell, N.; Andrews, R.; Turnbull, D.

    1999-01-01

    The last decade has been an age of enlightenment as far as mitochondrial pathology is concerned. Well established nuclear genetic diseases, such as Friedreich's ataxia,12 Wilson disease,3 and autosomal recessive hereditary spastic paraplegia,4 have been shown to have a mitochondrial basis, and we are just starting to unravel the complex nuclear genetic disorders which directly cause mitochondrial dysfunction (table 1). However, in addition to the 3 billion base pair nuclear genome, each human cell typically contains thousands of copies of a small, 16.5 kb circular molecule of double stranded DNA (fig 1). Mitochondrial DNA (mtDNA) accounts for only 1% of the total cellular nucleic acid content. It encodes for 13 polypeptides which are essential for aerobic metabolism and defects of the mitochondrial genome are an important cause of human disease.9293 Since the characterisation of the first pathogenic mtDNA defects in 1988,513 over 50 point mutations and well over 100 rearrangements of the mitochondrial genome have been associated with human disease9495 (http://www.gen.emory.edu/mitomap.html). These disorders form the focus of this article.


Keywords: mitochondrial DNA; mitochondrial disease; heteroplasmy; genetic counselling PMID:10874629

  11. Association of human height-related genetic variants with familial short stature in Han Chinese in Taiwan.

    PubMed

    Lin, Ying-Ju; Liao, Wen-Ling; Wang, Chung-Hsing; Tsai, Li-Ping; Tang, Chih-Hsin; Chen, Chien-Hsiun; Wu, Jer-Yuarn; Liang, Wen-Miin; Hsieh, Ai-Ru; Cheng, Chi-Fung; Chen, Jin-Hua; Chien, Wen-Kuei; Lin, Ting-Hsu; Wu, Chia-Ming; Liao, Chiu-Chu; Huang, Shao-Mei; Tsai, Fuu-Jen

    2017-07-25

    Human height can be described as a classical and inherited trait model. Genome-wide association studies (GWAS) have revealed susceptible loci and provided insights into the polygenic nature of human height. Familial short stature (FSS) represents a suitable trait for investigating short stature genetics because disease associations with short stature have been ruled out in this case. In addition, FSS is caused only by genetically inherited factors. In this study, we explored the correlations of FSS risk with the genetic loci associated with human height in previous GWAS, alone and cumulatively. We systematically evaluated 34 known human height single nucleotide polymorphisms (SNPs) in relation to FSS in the additive model (p < 0.00005). A cumulative effect was observed: the odds ratios gradually increased with increasing genetic risk score quartiles (p < 0.001; Cochran-Armitage trend test). Six affected genes-ZBTB38, ZNF638, LCORL, CABLES1, CDK10, and TSEN15-are located in the nucleus and have been implicated in embryonic, organismal, and tissue development. In conclusion, our study suggests that 13 human height GWAS-identified SNPs are associated with FSS risk both alone and cumulatively.

  12. Molecular Genetics of Pigment Dispersion Syndrome and Pigmentary Glaucoma: New Insights into Mechanisms

    PubMed Central

    2018-01-01

    We explore the ideas and advances surrounding the genetic basis of pigment dispersion syndrome (PDS) and pigmentary glaucoma (PG). As PG is the leading cause of nontraumatic blindness in young adults and current tailored interventions have proven ineffective, a better understanding of the underlying causes of PDS, PG, and their relationship is essential. Despite PDS being a subclinical disease, a large proportion of patients progress to PG with associated vision loss. Decades of research have supported a genetic component both for PDS and conversion to PG. We review the body of evidence supporting a genetic basis in humans and animal models and reevaluate classical mechanisms of PDS/PG considering this new evidence. PMID:29780638

  13. Molecular Genetics of Pigment Dispersion Syndrome and Pigmentary Glaucoma: New Insights into Mechanisms.

    PubMed

    Lahola-Chomiak, Adrian A; Walter, Michael A

    2018-01-01

    We explore the ideas and advances surrounding the genetic basis of pigment dispersion syndrome (PDS) and pigmentary glaucoma (PG). As PG is the leading cause of nontraumatic blindness in young adults and current tailored interventions have proven ineffective, a better understanding of the underlying causes of PDS, PG, and their relationship is essential. Despite PDS being a subclinical disease, a large proportion of patients progress to PG with associated vision loss. Decades of research have supported a genetic component both for PDS and conversion to PG. We review the body of evidence supporting a genetic basis in humans and animal models and reevaluate classical mechanisms of PDS/PG considering this new evidence.

  14. Introduction to Focus Issue: Genetic Interactions

    NASA Astrophysics Data System (ADS)

    Segrè, Daniel; Marx, Christopher J.

    2010-06-01

    The perturbation of a gene in an organism's genome often causes changes in the organism's observable properties or phenotypes. It is not obvious a priori whether the simultaneous perturbation of two genes produces a phenotypic change that is easily predictable from the changes caused by individual perturbations. In fact, this is often not the case: the nonlinearity and interdependence between genetic variants in determining phenotypes, also known as epistasis, is a prevalent phenomenon in biological systems. This focus issue presents recent developments in the study of epistasis and genetic interactions, emphasizing the broad implications of this phenomenon in evolutionary biology, functional genomics, and human diseases.

  15. Researchers uncover cause of genetic anomaly linked to cancer | Center for Cancer Research

    Cancer.gov

    In a new study in Nature, Shiv Grewal’s team has identified a process that drives a genetic anomaly linked to cancer and other diseases. This work could open new avenues for treatment of cancer and other human diseases. Learn more...

  16. University Students' Knowledge and Attitude about Genetic Engineering

    ERIC Educational Resources Information Center

    Bal, Senol; Samanci, Nilay Keskin; Bozkurt, Orçun

    2007-01-01

    Genetic engineering and biotechnology made possible of gene transfer without discriminating microorganism, plant, animal or human. However, although these scientific techniques have benefits, they cause arguments because of their ethical and social impacts. The arguments about ethical ad social impacts of biotechnology made clear that not only…

  17. Genomic Insights into Growth and Its Disorders: An Update

    PubMed Central

    de Bruin, Christiaan; Dauber, Andrew

    2016-01-01

    Purpose of review To provide an update of the most striking new developments in the field of growth genetics over the past 12 months Recent findings A number of large genome-wide association studies have identified new genetic loci and pathways associated to human growth and adult height as well as related traits and comorbidities. New genetic etiologies of primordial dwarfism and several short stature syndromes have been elucidated. Moreover, a breakthrough finding of Xq26 microduplications as a cause of pituitary gigantism was made. Several new developments in imprinted growth-related genes (including the first human mutation in IGF-II) and novel insights into the epigenetic regulation of growth have been reported. Summary Genomic investigations continue to provide new insights into the genetic basis of human growth as well as its disorders. PMID:26702851

  18. Genetic modifications of pigs for medicine and agriculture

    PubMed Central

    Whyte, Jeffrey J.; Prather, Randall S.

    2011-01-01

    SUMMARY Genetically modified swine hold great promise in the fields of agriculture and medicine. Currently, these swine are being used to optimize production of quality meat, to improve our understanding of the biology of disease resistance, and to reduced waste. In the field of biomedicine, swine are anatomically and physiologically analogous to humans. Alterations of key swine genes in disease pathways provide model animals to improve our understanding of the causes and potential treatments of many human genetic disorders. The completed sequencing of the swine genome will significantly enhance the specificity of genetic modifications, and allow for more accurate representations of human disease based on syntenic genes between the two species. Improvements in both methods of gene alteration and efficiency of model animal production are key to enabling routine use of these swine models in medicine and agriculture. PMID:21671302

  19. Long-Distance Dispersal Shaped Patterns of Human Genetic Diversity in Eurasia

    PubMed Central

    Alves, Isabel; Arenas, Miguel; Currat, Mathias; Sramkova Hanulova, Anna; Sousa, Vitor C.; Ray, Nicolas; Excoffier, Laurent

    2016-01-01

    Most previous attempts at reconstructing the past history of human populations did not explicitly take geography into account or considered very simple scenarios of migration and ignored environmental information. However, it is likely that the last glacial maximum (LGM) affected the demography and the range of many species, including our own. Moreover, long-distance dispersal (LDD) may have been an important component of human migrations, allowing fast colonization of new territories and preserving high levels of genetic diversity. Here, we use a high-quality microsatellite data set genotyped in 22 populations to estimate the posterior probabilities of several scenarios for the settlement of the Old World by modern humans. We considered models ranging from a simple spatial expansion to others including LDD and a LGM-induced range contraction, as well as Neolithic demographic expansions. We find that scenarios with LDD are much better supported by data than models without LDD. Nevertheless, we show evidence that LDD events to empty habitats were strongly prevented during the settlement of Eurasia. This unexpected absence of LDD ahead of the colonization wave front could have been caused by an Allee effect, either due to intrinsic causes such as an inbreeding depression built during the expansion or due to extrinsic causes such as direct competition with archaic humans. Overall, our results suggest only a relatively limited effect of the LGM contraction on current patterns of human diversity. This is in clear contrast with the major role of LDD migrations, which have potentially contributed to the intermingled genetic structure of Eurasian populations. PMID:26637555

  20. Molecular genetics of human obesity: A comprehensive review.

    PubMed

    Singh, Rajan Kumar; Kumar, Permendra; Mahalingam, Kulandaivelu

    2017-02-01

    Obesity and its related health complications is a major problem worldwide. Hypothalamus and their signalling molecules play a critical role in the intervening and coordination with energy balance and homeostasis. Genetic factors play a crucial role in determining an individual's predisposition to the weight gain and being obese. In the past few years, several genetic variants were identified as monogenic forms of human obesity having success over common polygenic forms. In the context of molecular genetics, genome-wide association studies (GWAS) approach and their findings signified a number of genetic variants predisposing to obesity. However, the last couple of years, it has also been noticed that alterations in the environmental and epigenetic factors are one of the key causes of obesity. Hence, this review might be helpful in the current scenario of molecular genetics of human obesity, obesity-related health complications (ORHC), and energy homeostasis. Future work based on the clinical discoveries may play a role in the molecular dissection of genetic approaches to find more obesity-susceptible gene loci. Copyright © 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  1. Danish dementia mice suggest that loss of function and not the amyloid cascade causes synaptic plasticity and memory deficits

    PubMed Central

    Tamayev, Robert; Matsuda, Shuji; Fà, Mauro; Arancio, Ottavio; D’Adamio, Luciano

    2010-01-01

    According to the prevailing “amyloid cascade hypothesis,” genetic dementias such as Alzheimer’s disease and familial Danish dementia (FDD) are caused by amyloid deposits that trigger tauopathy, neurodegeneration, and behavioral/cognitive alterations. To efficiently reproduce amyloid lesions, murine models of human dementias invariably use transgenic expression systems. However, recent FDD transgenic models showed that Danish amyloidosis does not cause memory defects, suggesting that other mechanisms cause Danish dementia. We studied an animal knock-in model of FDD (FDDKI/+) genetically congruous with human cases. FDDKI/+ mice present reduced Bri2 levels, impaired synaptic plasticity and severe hippocampal memory deficits. These animals show no cerebral lesions that are reputed characteristics of human dementia, such as tangles or amyloid plaques. Bri2+/− mice exhibit synaptic and memory deficits similar to FDDKI/+ mice, and memory loss of FDDKI/+ mice is prevented by expression of WT BRI2, indicating that Danish dementia is caused by loss of BRI2 function. Together, the data suggest that clinical dementia in Danish patients occurs via a loss of function mechanism and not as a result of amyloidosis and tauopathy. PMID:21098268

  2. Danish dementia mice suggest that loss of function and not the amyloid cascade causes synaptic plasticity and memory deficits.

    PubMed

    Tamayev, Robert; Matsuda, Shuji; Fà, Mauro; Arancio, Ottavio; D'Adamio, Luciano

    2010-11-30

    According to the prevailing "amyloid cascade hypothesis," genetic dementias such as Alzheimer's disease and familial Danish dementia (FDD) are caused by amyloid deposits that trigger tauopathy, neurodegeneration, and behavioral/cognitive alterations. To efficiently reproduce amyloid lesions, murine models of human dementias invariably use transgenic expression systems. However, recent FDD transgenic models showed that Danish amyloidosis does not cause memory defects, suggesting that other mechanisms cause Danish dementia. We studied an animal knock-in model of FDD (FDD(KI/+)) genetically congruous with human cases. FDD(KI/+) mice present reduced Bri2 levels, impaired synaptic plasticity and severe hippocampal memory deficits. These animals show no cerebral lesions that are reputed characteristics of human dementia, such as tangles or amyloid plaques. Bri2(+/-) mice exhibit synaptic and memory deficits similar to FDD(KI/+) mice, and memory loss of FDD(KI/+) mice is prevented by expression of WT BRI2, indicating that Danish dementia is caused by loss of BRI2 function. Together, the data suggest that clinical dementia in Danish patients occurs via a loss of function mechanism and not as a result of amyloidosis and tauopathy.

  3. Oncogenes in retroviruses and cells

    NASA Astrophysics Data System (ADS)

    Kurth, Reinhard

    1983-09-01

    Oncogenes are genes that cause cancer. Retroviruses contain oncogenes and cause cancer in animals and, perhaps, in man. The viruses have appropriated their oncogenes from normal cellular DNA by genetic recombination. Correspondingly, uninfected vertebrate cells contain a family of evolutionary conserved cellular oncogenes. Retrovirus infection, introducing additional viral oncogenes into the cells, as well as carcinogen-mediated activation of cellular oncogenes may both lead to increased synthesis of oncogene encoded transforming proteins which convert normal cells to tumor cells. Unique retroviruses of human origin have recently been identified. They may, on occasion, directly cause tumors in man. However, the general significance of retroviruses may better be illustrated by their remarkable genetic composition which allows them to promote tumor growth by a variety of genetic mechanisms.

  4. LINE dancing in the human genome: transposable elements and disease.

    PubMed

    Belancio, Victoria P; Deininger, Prescott L; Roy-Engel, Astrid M

    2009-10-27

    Transposable elements (TEs) have been consistently underestimated in their contribution to genetic instability and human disease. TEs can cause human disease by creating insertional mutations in genes, and also contributing to genetic instability through non-allelic homologous recombination and introduction of sequences that evolve into various cis-acting signals that alter gene expression. Other outcomes of TE activity, such as their potential to cause DNA double-strand breaks or to modulate the epigenetic state of chromosomes, are less fully characterized. The currently active human transposable elements are members of the non-LTR retroelement families, LINE-1, Alu (SINE), and SVA. The impact of germline insertional mutagenesis by TEs is well established, whereas the rate of post-insertional TE-mediated germline mutations and all forms of somatic mutations remain less well quantified. The number of human diseases discovered to be associated with non-allelic homologous recombination between TEs, and particularly between Alu elements, is growing at an unprecedented rate. Improvement in the technology for detection of such events, as well as the mounting interest in the research and medical communities in resolving the underlying causes of the human diseases with unknown etiology, explain this increase. Here, we focus on the most recent advances in understanding of the impact of the active human TEs on the stability of the human genome and its relevance to human disease.

  5. Bartonella spp. in Bats, Guatemala

    PubMed Central

    Kosoy, Michael; Recuenco, Sergio; Alvarez, Danilo; Moran, David; Turmelle, Amy; Ellison, James; Garcia, Daniel L.; Estevez, Alejandra; Lindblade, Kim; Rupprecht, Charles

    2011-01-01

    To better understand the role of bats as reservoirs of Bartonella spp., we estimated Bartonella spp. prevalence and genetic diversity in bats in Guatemala during 2009. We found prevalence of 33% and identified 21 genetic variants of 13 phylogroups. Vampire bat–associated Bartonella spp. may cause undiagnosed illnesses in humans. PMID:21762584

  6. Yellowstone bison genetics: let us move forward

    USGS Publications Warehouse

    Halbert, Natalie D.; Gogan, Peter J.P.; Hedrick, Philip W.; Wahl, Jacquelyn M.; Derr, James N.

    2012-01-01

    White and Wallen (2012) disagree with the conclusions and suggestions made in our recent assessment of population structure among Yellowstone National Park (YNP) bison based on 46 autosomal microsatellite loci in 661 animals (Halbert et al. 2012). First, they suggest that "the existing genetic substructure (that we observed) was artificially created." Specifically, they suggest that the substructure observed between the northern and central populations is the result of human activities, both historical and recent. In fact, the genetic composition of all known existing bison herds was created by, or has been influenced by, anthropogenic activities, although this obviously does not reduce the value of these herds for genetic conservation (Dratch and Gogan 2010). As perspective, many, if not most, species of conservation concern have been influenced by human actions and as a result currently exist as isolated populations. However, it is quite difficult to distinguish between genetic differences caused by human actions and important ancestral variation contained in separate populations without data from early time periods. Therefore, to not lose genetic variation that may be significant or indicative of important genetic variation, the generally acceptable management approach is to attempt to retain this variation based on the observed population genetic subdivision (Hedrick et al. 1986).

  7. The genetics of anophthalmia and microphthalmia.

    PubMed

    Bardakjian, Tanya M; Schneider, Adele

    2011-09-01

    To summarize recent breakthroughs regarding the genes known to play a role in normal ocular development in humans and to elucidate the role mutations in these genes play in anophthalmia and microphthalmia. The main themes discussed within this article are the various documented genetic advances in identifying the various causes of anophthalmia and microphthalmia. In addition, the complex interplay of these genes during critical embryonic development will be addressed. The recent identification of many eye development genes has changed the ability to identify a cause of anophthalmia and microphthalmia in many individuals. Syndrome identification and the availability of genetic testing underscores the desirability of evaluation by a geneticist for all individuals with anophthalmia and microphthalmia in order to provide appropriate management, long-term guidance, and genetic counseling.

  8. Retroviruses.

    ERIC Educational Resources Information Center

    Varmus, Harold

    1988-01-01

    Discusses the growth, development, and unusual parasitic nature of the retrovirus community. Reviews these infectious cancer-causing agents as models for the study of fundamental biological problems, tools for genetic manipulations, and problems posed by their pathogenic potential in humans and animal hosts where they cause diseases such as…

  9. Culture Collections and Public Health Research

    USDA-ARS?s Scientific Manuscript database

    Listeria monocytogenes is a foodborne pathogen capable of causing serious invasive illness in humans and other animals, and a leading cause of food recalls. The establishment and growth of a research collection of Listeria isolates has been critical in developing an evolutionary genetic framework, n...

  10. Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans

    PubMed Central

    Cenik, Can; Cenik, Elif Sarinay; Byeon, Gun W.; Grubert, Fabian; Candille, Sophie I.; Spacek, Damek; Alsallakh, Bilal; Tilgner, Hagen; Araya, Carlos L.; Tang, Hua; Ricci, Emiliano; Snyder, Michael P.

    2015-01-01

    Elucidating the consequences of genetic differences between humans is essential for understanding phenotypic diversity and personalized medicine. Although variation in RNA levels, transcription factor binding, and chromatin have been explored, little is known about global variation in translation and its genetic determinants. We used ribosome profiling, RNA sequencing, and mass spectrometry to perform an integrated analysis in lymphoblastoid cell lines from a diverse group of individuals. We find significant differences in RNA, translation, and protein levels suggesting diverse mechanisms of personalized gene expression control. Combined analysis of RNA expression and ribosome occupancy improves the identification of individual protein level differences. Finally, we identify genetic differences that specifically modulate ribosome occupancy—many of these differences lie close to start codons and upstream ORFs. Our results reveal a new level of gene expression variation among humans and indicate that genetic variants can cause changes in protein levels through effects on translation. PMID:26297486

  11. Canine echinococcosis: genetic diversity of Echinococcus granulosus sensu stricto (s.s.) from definitive hosts.

    PubMed

    Boufana, B; Lett, W; Lahmar, S; Griffiths, A; Jenkins, D J; Buishi, I; Engliez, S A; Alrefadi, M A; Eljaki, A A; Elmestiri, F M; Reyes, M M; Pointing, S; Al-Hindi, A; Torgerson, P R; Okamoto, M; Craig, P S

    2015-11-01

    Canids, particularly dogs, constitute the major source of cystic echinococcosis (CE) infection to humans, with the majority of cases being caused by Echinococcus granulosus (G1 genotype). Canine echinococcosis is an asymptomatic disease caused by adult tapeworms of E. granulosus sensu lato (s.l.). Information on the population structure and genetic variation of adult E. granulosus is limited. Using sequenced data of the mitochondrial cytochrome c oxidase subunit 1 (cox1) we examined the genetic diversity and population structure of adult tapeworms of E. granulosus (G1 genotype) from canid definitive hosts originating from various geographical regions and compared it to that reported for the larval metacestode stage from sheep and human hosts. Echinococcus granulosus (s.s) was identified from adult tapeworm isolates from Kenya, Libya, Tunisia, Australia, China, Kazakhstan, United Kingdom and Peru, including the first known molecular confirmation from Gaza and the Falkland Islands. Haplotype analysis showed a star-shaped network with a centrally positioned common haplotype previously described for the metacestode stage from sheep and humans, and the neutrality indices indicated population expansion. Low Fst values suggested that populations of adult E. granulosus were not genetically differentiated. Haplotype and nucleotide diversities for E. granulosus isolates from sheep and human origin were twice as high as those reported from canid hosts. This may be related to self-fertilization of E. granulosus and/or to the longevity of the parasite in the respective intermediate and definitive hosts. Improved nuclear single loci are required to investigate the discrepancies in genetic variation seen in this study.

  12. Genetic characterization of an epidemic of Plasmodium falciparum malaria among Yanomami Amerindians.

    PubMed

    Laserson, K F; Petralanda, I; Almera, R; Barker, R H; Spielman, A; Maguire, J H; Wirth, D F

    1999-12-01

    Malaria parasites are genetically diverse at all levels of endemicity. In contrast, the merozoite surface protein (MSP) alleles in samples from 2 isolated populations of Yanomami Amerindians during an epidemic of Plasmodium falciparum were identical. The nonvariable restriction fragment length polymorphism patterns further suggested that the sequential outbreak comprised only a single P. falciparum genotype. By examination of serial samples from single human infections, the MSP characteristics were found to remain constant throughout the course of infection. An apparent clonal population structure of parasites seemed to cause outbreaks in small isolated villages. The use of standard molecular epidemiologic methods to measure genetic diversity in malaria revealed the occurrence of a genetically monomorphic population of P. falciparum within a human community.

  13. Mouse forward genetics in the study of the peripheral nervous system and human peripheral neuropathy

    PubMed Central

    Douglas, Darlene S.; Popko, Brian

    2009-01-01

    Forward genetics, the phenotype-driven approach to investigating gene identity and function, has a long history in mouse genetics. Random mutations in the mouse transcend bias about gene function and provide avenues towards unique discoveries. The study of the peripheral nervous system is no exception; from historical strains such as the trembler mouse, which led to the identification of PMP22 as a human disease gene causing multiple forms of peripheral neuropathy, to the more recent identification of the claw paw and sprawling mutations, forward genetics has long been a tool for probing the physiology, pathogenesis, and genetics of the PNS. Even as spontaneous and mutagenized mice continue to enable the identification of novel genes, provide allelic series for detailed functional studies, and generate models useful for clinical research, new methods, such as the piggyBac transposon, are being developed to further harness the power of forward genetics. PMID:18481175

  14. Human Sociobiology: Wilson's Fallacy.

    ERIC Educational Resources Information Center

    Lehrman, Nathaniel S.

    1981-01-01

    Presents an introduction to and a critique of E.O. Wilson's new science of sociobiology, which focuses on explaining the social behavior of species as diverse as ants, apes, and humans. Suggests that Wilson has gone beyond his data in claiming that complex human behaviors such as altruism are caused to any extent by genetic, as opposed to…

  15. Genetics of human hydrocephalus

    PubMed Central

    Williams, Michael A.; Rigamonti, Daniele

    2006-01-01

    Human hydrocephalus is a common medical condition that is characterized by abnormalities in the flow or resorption of cerebrospinal fluid (CSF), resulting in ventricular dilatation. Human hydrocephalus can be classified into two clinical forms, congenital and acquired. Hydrocephalus is one of the complex and multifactorial neurological disorders. A growing body of evidence indicates that genetic factors play a major role in the pathogenesis of hydrocephalus. An understanding of the genetic components and mechanism of this complex disorder may offer us significant insights into the molecular etiology of impaired brain development and an accumulation of the cerebrospinal fluid in cerebral compartments during the pathogenesis of hydrocephalus. Genetic studies in animal models have started to open the way for understanding the underlying pathology of hydrocephalus. At least 43 mutants/loci linked to hereditary hydrocephalus have been identified in animal models and humans. Up to date, 9 genes associated with hydrocephalus have been identified in animal models. In contrast, only one such gene has been identified in humans. Most of known hydrocephalus gene products are the important cytokines, growth factors or related molecules in the cellular signal pathways during early brain development. The current molecular genetic evidence from animal models indicate that in the early development stage, impaired and abnormal brain development caused by abnormal cellular signaling and functioning, all these cellular and developmental events would eventually lead to the congenital hydrocephalus. Owing to our very primitive knowledge of the genetics and molecular pathogenesis of human hydrocephalus, it is difficult to evaluate whether data gained from animal models can be extrapolated to humans. Initiation of a large population genetics study in humans will certainly provide invaluable information about the molecular and cellular etiology and the developmental mechanisms of human hydrocephalus. This review summarizes the recent findings on this issue among human and animal models, especially with reference to the molecular genetics, pathological, physiological and cellular studies, and identifies future research directions. PMID:16773266

  16. GENES, IN ADDITION TO TOLL-LIKE RECEPTOR 2, PLAY A ROLE IN ANTIBACTERIAL DEFENSE TO STREPTOCOCCAL PNEUMONIA

    EPA Science Inventory

    Streptococcus infection in human populations continues to be a major cause of morbidity and mortality. To evaluate the effect of genetic background and toll-like receptor 2 (TLR2) on antibacterial defense to streptococcal infection, eight genetically diverse strains of mic...

  17. Complete genome sequences of two Staphylococcus aureus ST5 isolates from California, USA

    USDA-ARS?s Scientific Manuscript database

    Staphylococcus aureus is a bacteria that can cause disease in humans and animals. S. aureus bacteria can transfer or exchange segments of genetic material with other bacteria. These segments are known as mobile genetic elements and in some instances they can encode for factors that increase the abil...

  18. Draft genome sequences of 14 Staphylococcus aureus ST5 isolates from California, USA

    USDA-ARS?s Scientific Manuscript database

    Staphylococcus aureus is a bacteria that can cause disease in humans and animals. S. aureus bacteria can transfer or exchange segments of genetic material with other bacteria. These segments are known as mobile genetic elements and in some instances they can encode for factors that increase the abil...

  19. Recent advances in understanding the role of nutrition in human genome evolution.

    PubMed

    Ye, Kaixiong; Gu, Zhenglong

    2011-11-01

    Dietary transitions in human history have been suggested to play important roles in the evolution of mankind. Genetic variations caused by adaptation to diet during human evolution could have important health consequences in current society. The advance of sequencing technologies and the rapid accumulation of genome information provide an unprecedented opportunity to comprehensively characterize genetic variations in human populations and unravel the genetic basis of human evolution. Series of selection detection methods, based on various theoretical models and exploiting different aspects of selection signatures, have been developed. Their applications at the species and population levels have respectively led to the identification of human specific selection events that distinguish human from nonhuman primates and local adaptation events that contribute to human diversity. Scrutiny of candidate genes has revealed paradigms of adaptations to specific nutritional components and genome-wide selection scans have verified the prevalence of diet-related selection events and provided many more candidates awaiting further investigation. Understanding the role of diet in human evolution is fundamental for the development of evidence-based, genome-informed nutritional practices in the era of personal genomics.

  20. The human epilepsy mutation GABRG2(Q390X) causes chronic subunit accumulation and neurodegeneration.

    PubMed

    Kang, Jing-Qiong; Shen, Wangzhen; Zhou, Chengwen; Xu, Dong; Macdonald, Robert L

    2015-07-01

    Genetic epilepsy and neurodegenerative diseases are two common neurological disorders that are conventionally viewed as being unrelated. A subset of patients with severe genetic epilepsies who have impaired development and often go on to die of their disease respond poorly to anticonvulsant drug therapy, suggesting a need for new therapeutic targets. Previously, we reported that multiple GABAA receptor epilepsy mutations result in protein misfolding and abnormal receptor trafficking. We have now developed a model of a severe human genetic epileptic encephalopathy, the Gabrg2(+/Q390X) knock-in mouse. We found that, in addition to impairing inhibitory neurotransmission, mutant GABAA receptor γ2(Q390X) subunits accumulated and aggregated intracellularly, activated caspase 3 and caused widespread, age-dependent neurodegeneration. These findings suggest that the fundamental protein metabolism and cellular consequences of the epilepsy-associated mutant γ2(Q390X) ion channel subunit are not fundamentally different from those associated with neurodegeneration. Our results have far-reaching relevance for the identification of conserved pathological cascades and mechanism-based therapies that are shared between genetic epilepsies and neurodegenerative diseases.

  1. Long-Distance Dispersal Shaped Patterns of Human Genetic Diversity in Eurasia.

    PubMed

    Alves, Isabel; Arenas, Miguel; Currat, Mathias; Sramkova Hanulova, Anna; Sousa, Vitor C; Ray, Nicolas; Excoffier, Laurent

    2016-04-01

    Most previous attempts at reconstructing the past history of human populations did not explicitly take geography into account or considered very simple scenarios of migration and ignored environmental information. However, it is likely that the last glacial maximum (LGM) affected the demography and the range of many species, including our own. Moreover, long-distance dispersal (LDD) may have been an important component of human migrations, allowing fast colonization of new territories and preserving high levels of genetic diversity. Here, we use a high-quality microsatellite data set genotyped in 22 populations to estimate the posterior probabilities of several scenarios for the settlement of the Old World by modern humans. We considered models ranging from a simple spatial expansion to others including LDD and a LGM-induced range contraction, as well as Neolithic demographic expansions. We find that scenarios with LDD are much better supported by data than models without LDD. Nevertheless, we show evidence that LDD events to empty habitats were strongly prevented during the settlement of Eurasia. This unexpected absence of LDD ahead of the colonization wave front could have been caused by an Allee effect, either due to intrinsic causes such as an inbreeding depression built during the expansion or due to extrinsic causes such as direct competition with archaic humans. Overall, our results suggest only a relatively limited effect of the LGM contraction on current patterns of human diversity. This is in clear contrast with the major role of LDD migrations, which have potentially contributed to the intermingled genetic structure of Eurasian populations. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. 75 FR 39030 - Eunice Kennedy Shriver National Institute of Child Health and Human Development; Notice of Closed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... National Institute of Child Health and Human Development; Notice of Closed Meeting Pursuant to section 10(d... Institute of Child Health and Human Development Special Emphasis Panel, Genetic Causes And The Role Of The... Institute of Child Health and Human Development, 6100 Executive Boulevard, Room 5B01G, Bethesda, MD 20892...

  3. Plasmodium vivax merozoite surface protein-3 alpha: a high-resolution marker for genetic diversity studies.

    PubMed

    Prajapati, Surendra Kumar; Joshi, Hema; Valecha, Neena

    2010-06-01

    Malaria, an ancient human infectious disease caused by five species of Plasmodium, among them Plasmodium vivax is the most widespread human malaria species and causes huge morbidity to its host. Identification of genetic marker to resolve higher genetic diversity for an ancient origin organism is a crucial task. We have analyzed genetic diversity of P. vivax field isolates using highly polymorphic antigen gene merozoite surface protein-3 alpha (msp-3 alpha) and assessed its suitability as high-resolution genetic marker for population genetic studies. 27 P. vivax field isolates collected during chloroquine therapeutic efficacy study at Chennai were analyzed for genetic diversity. PCR-RFLP was employed to assess the genetic variations using highly polymorphic antigen gene msp-3 alpha. We observed three distinct PCR alleles at msp-3 alpha, and among them allele A showed significantly high frequency (53%, chi2 = 8.22, p = 0.001). PCR-RFLP analysis revealed 14 and 17 distinct RFLP patterns for Hha1 and Alu1 enzymes respectively. Further, RFLP analysis revealed that allele A at msp-3 alpha is more diverse in the population compared with allele B and C. Combining Hha1 and Alu1 RFLP patterns revealed 21 distinct genotypes among 22 isolates reflects higher diversity resolution power of msp-3 alpha in the field isolates. P. vivax isolates from Chennai region revealed substantial amount of genetic diversity and comparison of allelic diversity with other antigen genes and microsatellites suggesting that msp-3 alpha could be a high-resolution marker for genetic diversity studies among P. vivax field isolates.

  4. Human genome project and sickle cell disease.

    PubMed

    Norman, Brenda J; Miller, Sheila D

    2011-01-01

    Sickle cell disease is one of the most common genetic blood disorders in the United States that affects 1 in every 375 African Americans. Sickle cell disease is an inherited condition caused by abnormal hemoglobin in the red blood cells. The Human Genome Project has provided valuable insight and extensive research advances in the understanding of the human genome and sickle cell disease. Significant progress in genetic knowledge has led to an increase in the ability for researchers to map and sequence genes for diagnosis, treatment, and prevention of sickle cell disease and other chronic illnesses. This article explores some of the recent knowledge and advances about sickle cell disease and the Human Genome Project.

  5. Human genetics after the bomb: Archives, clinics, proving grounds and board rooms.

    PubMed

    Lindee, Susan

    2016-02-01

    In this paper I track the history of post-1945 human genetics and genomics emphasizing the importance of ideas about risk to the scientific study and medical management of human heredity. Drawing on my own scholarship as it is refracted through important new work by other scholars both junior and senior, I explore how radiation risk and then later disease risk mattered to the development of genetics and genomics, particularly in the United States. In this context I excavate one of the central ironies of post-war human genetics: while studies of DNA as the origin and cause of diseases have been lavishly supported by public institutions and private investment around the world, the day-to-day labor of intensive clinical innovation has played a far more important role in the actual human experience of genetic disease and genetic risk for affected families. This has implications for the archival record, where clinical interactions are less readily accessible to historians. This paper then suggests that modern genomics grew out of radiation risk; that it was and remains a risk assessment science; that it is temporally embedded as a form of both prediction and historical reconstruction; and that it has become a big business focused more on risk and prediction (which can be readily marketed) than on effective clinical intervention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Genomic Insights into Cardiomyopathies: A Comparative Cross-Species Review

    PubMed Central

    Simpson, Siobhan; Rutland, Paul; Rutland, Catrin Sian

    2017-01-01

    In the global human population, the leading cause of non-communicable death is cardiovascular disease. It is predicted that by 2030, deaths attributable to cardiovascular disease will have risen to over 20 million per year. This review compares the cardiomyopathies in both human and non-human animals and identifies the genetic associations for each disorder in each species/taxonomic group. Despite differences between species, advances in human medicine can be gained by utilising animal models of cardiac disease; likewise, gains can be made in animal medicine from human genomic insights. Advances could include undertaking regular clinical checks in individuals susceptible to cardiomyopathy, genetic testing prior to breeding, and careful administration of breeding programmes (in non-human animals), further development of treatment regimes, and drugs and diagnostic techniques. PMID:29056678

  7. Seamless correction of the sickle cell disease mutation of the HBB gene in human induced pluripotent stem cells using TALENs.

    PubMed

    Sun, Ning; Zhao, Huimin

    2014-05-01

    Sickle cell disease (SCD) is the most common human genetic disease which is caused by a single mutation of human β-globin (HBB) gene. The lack of long-term treatment makes the development of reliable cell and gene therapies highly desirable. Disease-specific patient-derived human induced pluripotent stem cells (hiPSCs) have great potential for developing novel cell and gene therapies. With the disease-causing mutations corrected in situ, patient-derived hiPSCs can restore normal cell functions and serve as a renewable autologous cell source for the treatment of genetic disorders. Here we successfully utilized transcription activator-like effector nucleases (TALENs), a recently emerged novel genome editing tool, to correct the SCD mutation in patient-derived hiPSCs. The TALENs we have engineered are highly specific and generate minimal off-target effects. In combination with piggyBac transposon, TALEN-mediated gene targeting leaves no residual ectopic sequences at the site of correction and the corrected hiPSCs retain full pluripotency and a normal karyotype. Our study demonstrates an important first step of using TALENs for the treatment of genetic diseases such as SCD, which represents a significant advance toward hiPSC-based cell and gene therapies. © 2013 Wiley Periodicals, Inc.

  8. Nonsense-mediated mRNA decay: inter-individual variability and human disease

    PubMed Central

    Nguyen, Lam Son; Wilkinson, Miles; Gecz, Jozef

    2013-01-01

    Nonsense-Mediated mRNA Decay (NMD) is a regulatory pathway that functions to degrade transcripts containing premature termination codons (PTCs) and to maintain normal transcriptome homeostasis. Nonsense and frameshift mutations that generate PTCs cause approximately one-third of all known human genetic diseases and thus NMD has a potentially important role in human disease. In genetic disorders in which the affected genes carry PTC-generating mutations, NMD acts as a double-edge sword. While it can benefit the patient by degrading PTC-containing mRNAs that encode detrimental, dominant-negative truncated proteins, it can also make the disease worse when a PTC-containing mRNA is degraded that encodes a mutant but still functional protein. There is evidence that the magnitude of NMD varies between individuals, which, in turn, has been shown to correlate with both clinical presentations and the patients’ responses to drugs that promote read-through of PTCs. In this review, we examine the evidence supporting the existence of inter-individual variability in NMD efficiency and discuss the genetic factors that underlie this variability. We propose that inter-individual variability in NMD efficiency is a common phenomenon in human populations and that an individual’s NMD efficiency should be taken into consideration when testing, developing, and making therapeutic decisions for diseases caused by genes harboring PTCs. PMID:24239855

  9. Erosion of Brassica incana Genetic Resources: Causes and Effects

    NASA Astrophysics Data System (ADS)

    Muscolo, A.; Settineri, G.; Mallamaci, C.; Papalia, T.; Sidari, M.

    2017-07-01

    Brassica incana Ten., possessing a number of useful agronomic traits, represents a precious genetic resource to be used in plant breeding programs to broaden the genetic base in most Brassica crop species. B. incana that grows on limestone cliffs is at risk of genetic erosion for environmental constraints and human activities. We studied the pedological conditions of a Calabrian site where the B. incana grows, and we correlated the soil properties to the physiological and biochemical aspects of B. incana to identify the causes and effects of the genetic erosion of this species. Our results evidenced that physical soil conditions did not affect B. incana growth and nutraceutical properties; conversely, biological soil properties modified its properties. We identified leaf pigments and secondary metabolites that can be used routinely as early warning indicators of plant threat, to evaluate in a short term the dynamic behavior of plants leading to species extinction.

  10. The spatial genetic differentiation of the legume pod borer, Maruca vitrata F. (Lepidoptera: Pyralidae) populations in West Africa

    USDA-ARS?s Scientific Manuscript database

    The legume pod borer, Maruca vitrata, is an endemic insect pest that causes significant yield loss to the cowpea crop in West Africa, and contributes to food shortages and malnutrition in native human populations. The genetic structure of Maruca vitrata was investigated among five sites from Burkin...

  11. Analysis of protein-coding genetic variation in 60,706 humans.

    PubMed

    Lek, Monkol; Karczewski, Konrad J; Minikel, Eric V; Samocha, Kaitlin E; Banks, Eric; Fennell, Timothy; O'Donnell-Luria, Anne H; Ware, James S; Hill, Andrew J; Cummings, Beryl B; Tukiainen, Taru; Birnbaum, Daniel P; Kosmicki, Jack A; Duncan, Laramie E; Estrada, Karol; Zhao, Fengmei; Zou, James; Pierce-Hoffman, Emma; Berghout, Joanne; Cooper, David N; Deflaux, Nicole; DePristo, Mark; Do, Ron; Flannick, Jason; Fromer, Menachem; Gauthier, Laura; Goldstein, Jackie; Gupta, Namrata; Howrigan, Daniel; Kiezun, Adam; Kurki, Mitja I; Moonshine, Ami Levy; Natarajan, Pradeep; Orozco, Lorena; Peloso, Gina M; Poplin, Ryan; Rivas, Manuel A; Ruano-Rubio, Valentin; Rose, Samuel A; Ruderfer, Douglas M; Shakir, Khalid; Stenson, Peter D; Stevens, Christine; Thomas, Brett P; Tiao, Grace; Tusie-Luna, Maria T; Weisburd, Ben; Won, Hong-Hee; Yu, Dongmei; Altshuler, David M; Ardissino, Diego; Boehnke, Michael; Danesh, John; Donnelly, Stacey; Elosua, Roberto; Florez, Jose C; Gabriel, Stacey B; Getz, Gad; Glatt, Stephen J; Hultman, Christina M; Kathiresan, Sekar; Laakso, Markku; McCarroll, Steven; McCarthy, Mark I; McGovern, Dermot; McPherson, Ruth; Neale, Benjamin M; Palotie, Aarno; Purcell, Shaun M; Saleheen, Danish; Scharf, Jeremiah M; Sklar, Pamela; Sullivan, Patrick F; Tuomilehto, Jaakko; Tsuang, Ming T; Watkins, Hugh C; Wilson, James G; Daly, Mark J; MacArthur, Daniel G

    2016-08-18

    Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes.

  12. The genetic architecture of long QT syndrome: A critical reappraisal.

    PubMed

    Giudicessi, John R; Wilde, Arthur A M; Ackerman, Michael J

    2018-03-30

    Collectively, the completion of the Human Genome Project and subsequent development of high-throughput next-generation sequencing methodologies have revolutionized genomic research. However, the rapid sequencing and analysis of thousands upon thousands of human exomes and genomes has taught us that most genes, including those known to cause heritable cardiovascular disorders such as long QT syndrome, harbor an unexpected background rate of rare, and presumably innocuous, non-synonymous genetic variation. In this Review, we aim to reappraise the genetic architecture underlying both the acquired and congenital forms of long QT syndrome by examining how the clinical phenotype associated with and background genetic variation in long QT syndrome-susceptibility genes impacts the clinical validity of existing gene-disease associations and the variant classification and reporting strategies that serve as the foundation for diagnostic long QT syndrome genetic testing. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Blindness Clues

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Age-related macular degeneration is the leading cause of blindness in older adults, yet researchers are still in the dark about many of the factors that cause this incurable disease. But new insight from University of Florida (UF) and German researchers about a genetic link between rhesus monkeys with macular degeneration and humans could unlock…

  14. Antimicrobial resistance, virulence determinants, and genetic profiles of clinical and nonclinical Enterococcus cecorum from poultry

    USDA-ARS?s Scientific Manuscript database

    Although enterococci are considered commensal bacteria, they are capable of causing disease in humans and animals. Enterococcus cecorum has been implicated as a possible cause of disease in poultry across the world. However, the characteristics that contribute to pathogenesis of E. cecorum in poul...

  15. Update on Powassan virus: emergence of a North American tick-borne flavivirus.

    PubMed

    Ebel, Gregory D

    2010-01-01

    Powassan virus (POW) (Flaviviridae: Flavivirus) is the cause of rare but severe neuroinvasive disease in North America and Russia. The virus is transmitted among small- and medium-sized mammals by ixodid ticks. Human infections occur via spillover from the main transmission cycle(s). Since the late 1990s, the incidence of human disease seems to be increasing. In addition, POW constitutes a genetically diverse group of virus genotypes, including Deer tick virus, that are maintained in distinct enzootic transmission cycles. This review highlights recent research into POW, focusing on virus genetics and ecology and human disease. Important directions for future research are also discussed.

  16. Preservation of Long-Term Memory and Synaptic Plasticity Despite Short-Term Impairments in the Tc1 Mouse Model of Down Syndrome

    ERIC Educational Resources Information Center

    Morice, Elise; Andreae, Laura C.; Cooke, Sam F.; Vanes, Lesley; Fisher, Elizabeth M. C.; Tybulewicz, Victor L. J.; Bliss, Timothy V. P.

    2008-01-01

    Down syndrome (DS) is a genetic disorder arising from the presence of a third copy of the human chromosome 21 (Hsa21). Recently, O'Doherty and colleagues in an earlier study generated a new genetic mouse model of DS (Tc1) that carries an almost complete Hsa21. Since DS is the most common genetic cause of mental retardation, we have undertaken a…

  17. Mutations in SULT2B1 Cause Autosomal-Recessive Congenital Ichthyosis in Humans.

    PubMed

    Heinz, Lisa; Kim, Gwang-Jin; Marrakchi, Slaheddine; Christiansen, Julie; Turki, Hamida; Rauschendorf, Marc-Alexander; Lathrop, Mark; Hausser, Ingrid; Zimmer, Andreas D; Fischer, Judith

    2017-06-01

    Ichthyoses are a clinically and genetically heterogeneous group of genodermatoses associated with abnormal scaling of the skin over the whole body. Mutations in nine genes are known to cause non-syndromic forms of autosomal-recessive congenital ichthyosis (ARCI). However, not all genetic causes for ARCI have been discovered to date. Using whole-exome sequencing (WES) and multigene panel screening, we identified 6 ARCI-affected individuals from three unrelated families with mutations in Sulfotransferase family 2B member 1 (SULT2B1), showing their causative association with ARCI. Cytosolic sulfotransferases form a large family of enzymes that are involved in the synthesis and metabolism of several steroids in humans. We identified four distinct mutations including missense, nonsense, and splice site mutations. We demonstrated the loss of SULT2B1 expression at RNA and protein levels in keratinocytes from individuals with ARCI by functional analyses. Furthermore, we succeeded in reconstructing the morphologic skin alterations in a 3D organotypic tissue culture model with SULT2B1-deficient keratinocytes and fibroblasts. By thin layer chromatography (TLC) of extracts from these organotypic cultures, we could show the absence of cholesterol sulfate, the metabolite of SULT2B1, and an increased level of cholesterol, indicating a disturbed cholesterol metabolism of the skin upon loss-of-function mutation in SULT2B1. In conclusion, our study reveals an essential role for SULT2B1 in the proper development of healthy human skin. Mutation in SULT2B1 leads to an ARCI phenotype via increased proliferation of human keratinocytes, thickening of epithelial layers, and altered epidermal cholesterol metabolism. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. Thinking positively: The genetics of high intelligence

    PubMed Central

    Shakeshaft, Nicholas G.; Trzaskowski, Maciej; McMillan, Andrew; Krapohl, Eva; Simpson, Michael A.; Reichenberg, Avi; Cederlöf, Martin; Larsson, Henrik; Lichtenstein, Paul; Plomin, Robert

    2015-01-01

    High intelligence (general cognitive ability) is fundamental to the human capital that drives societies in the information age. Understanding the origins of this intellectual capital is important for government policy, for neuroscience, and for genetics. For genetics, a key question is whether the genetic causes of high intelligence are qualitatively or quantitatively different from the normal distribution of intelligence. We report results from a sibling and twin study of high intelligence and its links with the normal distribution. We identified 360,000 sibling pairs and 9000 twin pairs from 3 million 18-year-old males with cognitive assessments administered as part of conscription to military service in Sweden between 1968 and 2010. We found that high intelligence is familial, heritable, and caused by the same genetic and environmental factors responsible for the normal distribution of intelligence. High intelligence is a good candidate for “positive genetics” — going beyond the negative effects of DNA sequence variation on disease and disorders to consider the positive end of the distribution of genetic effects. PMID:25593376

  19. Studies on nonsense mediated decay reveal novel therapeutic options for genetic diseases.

    PubMed

    Bashyam, Murali D

    2009-01-01

    Scientific breakthroughs have often led to commercially viable patents mainly in the field of engineering. Commercialization in the field of medicine has been restricted mostly to machinery and engineering on the one hand and therapeutic drugs for common chronic ailments such as cough, cold, headache, etc, on the other. Sequencing of the human genome has attracted the attention of pharmaceutical companies and now biotechnology has become a goldmine for commercialization of products and processes. Recent advances in our understanding of basic biological processes have resulted in the opening of new avenues for treatment of human genetic diseases, especially single gene disorders. A significant proportion of human genetic disorders have been shown to be caused due to degradation of transcripts for specific genes through a process called nonsense mediated decay (NMD). The modulation of NMD provides a viable therapeutic option for treatment of several genetic disorders and therefore has been a good prospect for patenting and commercialization. In this review the molecular basis for NMD and attempts to treat genetic diseases which result from NMD are discussed.

  20. Genetic basis of human left-right asymmetry disorders.

    PubMed

    Deng, Hao; Xia, Hong; Deng, Sheng

    2015-01-27

    Humans and other vertebrates exhibit left-right (LR) asymmetric arrangement of the internal organs, and failure to establish normal LR asymmetry leads to internal laterality disorders, including situs inversus and heterotaxy. Situs inversus is complete mirror-imaged arrangement of the internal organs along LR axis, whereas heterotaxy is abnormal arrangement of the internal thoraco-abdominal organs across LR axis of the body, most of which are associated with complex cardiovascular malformations. Both disorders are genetically heterogeneous with reduced penetrance, presumably because of monogenic, polygenic or multifactorial causes. Research in genetics of LR asymmetry disorders has been extremely prolific over the past 17 years, and a series of loci and disease genes involved in situs inversus and heterotaxy have been described. The review highlights the classification, chromosomal abnormalities, pathogenic genes and the possible mechanism of human LR asymmetry disorders.

  1. Genetically engineered livestock: ethical use for food and medical models.

    PubMed

    Garas, Lydia C; Murray, James D; Maga, Elizabeth A

    2015-01-01

    Recent advances in the production of genetically engineered (GE) livestock have resulted in a variety of new transgenic animals with desirable production and composition changes. GE animals have been generated to improve growth efficiency, food composition, and disease resistance in domesticated livestock species. GE animals are also used to produce pharmaceuticals and as medical models for human diseases. The potential use of these food animals for human consumption has prompted an intense debate about food safety and animal welfare concerns with the GE approach. Additionally, public perception and ethical concerns about their use have caused delays in establishing a clear and efficient regulatory approval process. Ethically, there are far-reaching implications of not using genetically engineered livestock, at a detriment to both producers and consumers, as use of this technology can improve both human and animal health and welfare.

  2. Human mutagens: evidence from paternal exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narod, S.A.; Douglas, G.R.; Nestmann, E.R.

    1988-01-01

    The importance of inherited mutations as a cause of human disease has been established clearly through examples of well-defined genetic anomalies, such as Down syndrome and retinoblastoma. Furthermore, it is suspected that environmental contaminants induce mutations resulting in increased risk for such defects in subsequent generations of persons exposed. The present lack of direct evidence for induced inherited genetic disorders in human beings hampers the development of risk estimation techniques for extrapolation from animal models. The most extensive prospective epidemiologic studies of inherited genetic effects have involved survivors of atomic bomb detonations and patients treated with cancer chemotherapy. In neithermore » case has a significant elevation in inherited genetic effects or cancer been detected in the offspring of exposed individuals. Epidemiologic studies of subjects receiving chronic exposure may be confounded by the effect of maternal exposure during pregnancy. Consideration of only paternal exposure can minimize the confounding influence of teratogenicity, enhancing the resolving power of studies for inherited effects. Using this approach, retrospective (case-control) studies of childhood cancer patients have provided limited but suggestive evidence for inheritance of induced effects. Endpoints, such as congenital malformations and spontaneous abortion following paternal exposure, can also be considered as indicators of heritable mutagenic effects. For example, there is limited evidence suggesting that paternal exposure to anaesthetic gases may cause miscarriage and congenital abnormalities as a result of induced male germ cell mutations. 104 references.« less

  3. Pathogen-driven selection in the human genome.

    PubMed

    Cagliani, Rachele; Sironi, Manuela

    2013-01-01

    Infectious diseases and epidemics have always accompanied and characterized human history, representing one of the main causes of death. Even today, despite progress in sanitation and medical research, infections are estimated to account for about 15% of deaths. The hypothesis whereby infectious diseases have been acting as a powerful selective pressure was formulated long ago, but it was not until the availability of large-scale genetic data and the development of novel methods to study molecular evolution that we could assess how pervasively infectious agents have shaped human genetic diversity. Indeed, recent evidences indicated that among the diverse environmental factors that acted as selective pressures during the evolution of our species, pathogen load had the strongest influence. Beside the textbook example of the major histocompatibility complex, selection signatures left by pathogen-exerted pressure can be identified at several human loci, including genes not directly involved in immune response. In the future, high-throughput technologies and the availability of genetic data from different populations are likely to provide novel insights into the evolutionary relationships between the human host and its pathogens. Hopefully, this will help identify the genetic determinants modulating the susceptibility to infectious diseases and will translate into new treatment strategies.

  4. Co-evolution of Mycobacterium tuberculosis and Homo sapiens

    PubMed Central

    Brites, Daniela; Gagneux, Sebastien

    2015-01-01

    The causative agent of human tuberculosis (TB), Mycobacterium tuberculosis, is an obligate pathogen that evolved to exclusively persist in human populations. For M. tuberculosis to transmit from person to person, it has to cause pulmonary disease. Therefore, M. tuberculosis virulence has likely been a significant determinant of the association between M. tuberculosis and humans. Indeed, the evolutionary success of some M. tuberculosis genotypes seems at least partially attributable to their increased virulence. The latter possibly evolved as a consequence of human demographic expansions. If co-evolution occurred, humans would have counteracted to minimize the deleterious effects of M. tuberculosis virulence. The fact that human resistance to infection has a strong genetic basis is a likely consequence of such a counter-response. The genetic architecture underlying human resistance to M. tuberculosis remains largely elusive. However, interactions between human genetic polymorphisms and M. tuberculosis genotypes have been reported. Such interactions are consistent with local adaptation and allow for a better understanding of protective immunity in TB. Future ‘genome-to-genome’ studies, in which locally associated human and M. tuberculosis genotypes are interrogated in conjunction, will help identify new protective antigens for the development of better TB vaccines. PMID:25703549

  5. Genetic Causes of Human NK Cell Deficiency and Their Effect on NK Cell Subsets

    PubMed Central

    Mace, Emily M.; Orange, Jordan S.

    2016-01-01

    Human NK cells play critical roles in human host defense, particularly the control of viral infection and malignancy, and patients with congenital immunodeficiency affecting NK cell function or number can suffer from severe illness. The importance of NK cell function is particularly underscored in patients with primary immunodeficiency in which NK cells are the primary or sole affected population (NK cell deficiency, NKD). While NKD may lead to the absence of NK cells, we are also gaining an increasing appreciation of the effect that NKD may have on the generation of specific NK cell subsets. In turn, this leads to improved insights into the requirements for human NK cell subset generation, as well as their importance in immune homeostasis. The presence of inherently abnormally developed or functionally impaired NK cells, in particular, appears to be problematic in the way of interfering with normal human host defense and may be more impactful than low numbers of NK cells alone. Here, we review the known genetic causes of NKD and the insight that is derived by these into the requirements for human subset generation and, by extension, for NK cell-mediated immunity. PMID:27994588

  6. Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans.

    PubMed

    Cenik, Can; Cenik, Elif Sarinay; Byeon, Gun W; Grubert, Fabian; Candille, Sophie I; Spacek, Damek; Alsallakh, Bilal; Tilgner, Hagen; Araya, Carlos L; Tang, Hua; Ricci, Emiliano; Snyder, Michael P

    2015-11-01

    Elucidating the consequences of genetic differences between humans is essential for understanding phenotypic diversity and personalized medicine. Although variation in RNA levels, transcription factor binding, and chromatin have been explored, little is known about global variation in translation and its genetic determinants. We used ribosome profiling, RNA sequencing, and mass spectrometry to perform an integrated analysis in lymphoblastoid cell lines from a diverse group of individuals. We find significant differences in RNA, translation, and protein levels suggesting diverse mechanisms of personalized gene expression control. Combined analysis of RNA expression and ribosome occupancy improves the identification of individual protein level differences. Finally, we identify genetic differences that specifically modulate ribosome occupancy--many of these differences lie close to start codons and upstream ORFs. Our results reveal a new level of gene expression variation among humans and indicate that genetic variants can cause changes in protein levels through effects on translation. © 2015 Cenik et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Virus evolution and transmission in an ever more connected world

    PubMed Central

    Pybus, Oliver G.; Tatem, Andrew J.; Lemey, Philippe

    2015-01-01

    The frequency and global impact of infectious disease outbreaks, particularly those caused by emerging viruses, demonstrate the need for a better understanding of how spatial ecology and pathogen evolution jointly shape epidemic dynamics. Advances in computational techniques and the increasing availability of genetic and geospatial data are helping to address this problem, particularly when both information sources are combined. Here, we review research at the intersection of evolutionary biology, human geography and epidemiology that is working towards an integrated view of spatial incidence, host mobility and viral genetic diversity. We first discuss how empirical studies have combined viral spatial and genetic data, focusing particularly on the contribution of evolutionary analyses to epidemiology and disease control. Second, we explore the interplay between virus evolution and global dispersal in more depth for two pathogens: human influenza A virus and chikungunya virus. We discuss the opportunities for future research arising from new analyses of human transportation and trade networks, as well as the associated challenges in accessing and sharing relevant spatial and genetic data. PMID:26702033

  8. Advances in molecular identification, taxonomy, genetic variation and diagnosis of Toxocara spp.

    PubMed

    Chen, Jia; Zhou, Dong-Hui; Nisbet, Alasdair J; Xu, Min-Jun; Huang, Si-Yang; Li, Ming-Wei; Wang, Chun-Ren; Zhu, Xing-Quan

    2012-10-01

    The genus Toxocara contains parasitic nematodes of human and animal health significance, such as Toxocara canis, Toxocara cati and Toxocara vitulorum. T. canis and T. cati are among the most prevalent parasites of dogs and cats with a worldwide distribution. Human infection with T. canis and T. cati, which can cause a number of clinical manifestations such as visceral larva migrans (VLMs), ocular larva migrans (OLMs), eosinophilic meningoencephalitis (EME), covert toxocariasis (CT) and neurotoxocariasis, is considered the most prevalent neglected helminthiasis in industrialized countries. The accurate identification Toxocara spp. and their unequivocal differentiation from each other and from other ascaridoid nematodes causing VLMs and OLMs has important implications for studying their taxonomy, epidemiology, population genetics, diagnosis and control. Due to the limitations of traditional (morphological) approaches for identification and diagnosis of Toxocara spp., PCR-based techniques utilizing a range of genetic markers in the nuclear and mitochondrial genomes have been developed as useful alternative approaches because of their high sensitivity, specificity, rapidity and utility. In this article, we summarize the current state of knowledge and advances in molecular identification, taxonomy, genetic variation and diagnosis of Toxocara spp. with prospects for further studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Disease induction by human microbial pathogens in plant-model systems: potential, problems and prospects.

    PubMed

    van Baarlen, Peter; van Belkum, Alex; Thomma, Bart P H J

    2007-02-01

    Relatively simple eukaryotic model organisms such as the genetic model weed plant Arabidopsis thaliana possess an innate immune system that shares important similarities with its mammalian counterpart. In fact, some human pathogens infect Arabidopsis and cause overt disease with human symptomology. In such cases, decisive elements of the plant's immune system are likely to be targeted by the same microbial factors that are necessary for causing disease in humans. These similarities can be exploited to identify elementary microbial pathogenicity factors and their corresponding targets in a green host. This circumvents important cost aspects that often frustrate studies in humans or animal models and, in addition, results in facile ethical clearance.

  10. Connecting the Human Variome Project to nutrigenomics.

    PubMed

    Kaput, Jim; Evelo, Chris T; Perozzi, Giuditta; van Ommen, Ben; Cotton, Richard

    2010-12-01

    Nutrigenomics is the science of analyzing and understanding gene-nutrient interactions, which because of the genetic heterogeneity, varying degrees of interaction among gene products, and the environmental diversity is a complex science. Although much knowledge of human diversity has been accumulated, estimates suggest that ~90% of genetic variation has not yet been characterized. Identification of the DNA sequence variants that contribute to nutrition-related disease risk is essential for developing a better understanding of the complex causes of disease in humans, including nutrition-related disease. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) is an international effort to systematically identify genes, their mutations, and their variants associated with phenotypic variability and indications of human disease or phenotype. Since nutrigenomic research uses genetic information in the design and analysis of experiments, the HVP is an essential collaborator for ongoing studies of gene-nutrient interactions. With the advent of next generation sequencing methodologies and the understanding of the undiscovered variation in human genomes, the nutrigenomic community will be generating novel sequence data and results. The guidelines and practices of the HVP can guide and harmonize these efforts.

  11. Connecting the Human Variome Project to nutrigenomics

    PubMed Central

    Evelo, Chris T.; Perozzi, Giuditta; van Ommen, Ben; Cotton, Richard

    2010-01-01

    Nutrigenomics is the science of analyzing and understanding gene–nutrient interactions, which because of the genetic heterogeneity, varying degrees of interaction among gene products, and the environmental diversity is a complex science. Although much knowledge of human diversity has been accumulated, estimates suggest that ~90% of genetic variation has not yet been characterized. Identification of the DNA sequence variants that contribute to nutrition-related disease risk is essential for developing a better understanding of the complex causes of disease in humans, including nutrition-related disease. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) is an international effort to systematically identify genes, their mutations, and their variants associated with phenotypic variability and indications of human disease or phenotype. Since nutrigenomic research uses genetic information in the design and analysis of experiments, the HVP is an essential collaborator for ongoing studies of gene–nutrient interactions. With the advent of next generation sequencing methodologies and the understanding of the undiscovered variation in human genomes, the nutrigenomic community will be generating novel sequence data and results. The guidelines and practices of the HVP can guide and harmonize these efforts. PMID:28300226

  12. Mouse Models for Investigating the Developmental Bases of Human Birth Defects

    PubMed Central

    MOON, ANNE M.

    2006-01-01

    Clinicians and basic scientists share an interest in discovering how genetic or environmental factors interact to perturb normal development and cause birth defects and human disease. Given the complexity of such interactions, it is not surprising that 4% of human infants are born with a congenital malformation, and cardiovascular defects occur in nearly 1%. Our research is based on the fundamental hypothesis that an understanding of normal and abnormal development will permit us to generate effective strategies for both prevention and treatment of human birth defects. Animal models are invaluable in these efforts because they allow one to interrogate the genetic, molecular and cellular events that distinguish normal from abnormal development. Several features of the mouse make it a particularly powerful experimental model: it is a mammalian system with similar embryology, anatomy and physiology to humans; genes, proteins and regulatory programs are largely conserved between human and mouse; and finally, gene targeting in murine embryonic stem cells has made the mouse genome amenable to sophisticated genetic manipulation currently unavailable in any other model organism. PMID:16641221

  13. Genetic architecture of body size in mammals

    PubMed Central

    2012-01-01

    Much of the heritability for human stature is caused by mutations of small-to-medium effect. This is because detrimental pleiotropy restricts large-effect mutations to very low frequencies. PMID:22546202

  14. Genetic Diversity of Ascaris in China Assessed Using Simple Sequence Repeat Markers.

    PubMed

    Zhou, Chunhua; Jian, Shaoqing; Peng, Weidong; Li, Min

    2018-04-01

    The giant roundworm Ascaris infects pigs and people worldwide and causes serious diseases. The taxonomic relationship between Ascaris suum and Ascaris lumbricoides is still unclear. The purpose of the present study was to investigate the genetic diversity and population genetic structure of 258 Ascaris specimens from humans and pigs from 6 sympatric regions in Ascaris -endemic regions of China using existing simple sequence repeat data. The microsatellite markers showed a high level of allelic richness and genetic diversity in the samples. Each of the populations demonstrated excess homozygosity (Ho0). According to a genetic differentiation index (Fst=0.0593), there was a high-level of gene flow in the Ascaris populations. A hierarchical analysis on molecular variance revealed remarkably high levels of variation within the populations. Moreover, a population structure analysis indicated that Ascaris populations fell into 3 main genetic clusters, interpreted as A. suum , A. lumbricoides , and a hybrid of the species. We speculated that humans can be infected with A. lumbricoides , A. suum , and the hybrid, but pigs were mainly infected with A. suum . This study provided new information on the genetic diversity and population structure of Ascaris from human and pigs in China, which can be used for designing Ascaris control strategies. It can also be beneficial to understand the introgression of host affiliation.

  15. Genetics of Human Sexual Behavior: Where We Are, Where We Are Going.

    PubMed

    Jannini, Emmanuele A; Burri, Andrea; Jern, Patrick; Novelli, Giuseppe

    2015-04-01

    One of the never-ending debates in the developing field of sexual medicine is the extent to which genetics and experiences (i.e., "nature and nurture") contribute to sexuality. The debate continues despite the fact that these two sides have different abilities to create a scientific environment to support their cause. Contemporary genetics has produced plenty of recent evidence, however, not always confirmed or sufficiently robust. On the other hand, the more traditional social theorists, frequently without direct evidence confirming their positions, criticize, sometimes with good arguments, the methods and results of the other side. The aim of this article is to critically evaluate existent evidence that used genetic approaches to understand human sexuality. An expert in sexual medicine (E.A.J.), an expert in medical genetics (G.N.), and two experts in genetic epidemiology and quantitative genetics, with particular scientific experience in female sexual dysfunction (A.B.) and in premature ejaculation (P.J.), contributed to this review. Expert opinion supported by critical review of the currently available literature. The existing literature on human sexuality provides evidence that many sexuality-related behaviors previously considered to be the result of cultural influences (such as mating strategies, attractiveness and sex appeal, propensity to fidelity or infidelity, and sexual orientation) or dysfunctions (such as premature ejaculation or female sexual dysfunction) seem to have a genetic component. Current evidence from genetic epidemiologic studies underlines the existence of biological and congenital factors regulating male and female sexuality. However, these relatively recent findings ask for replication in methodologically more elaborated studies. Clearly, increased research efforts are needed to further improve understanding the genetics of human sexuality. Jannini EA, Burri A, Jern P, and Novelli G. Genetics of human sexual behavior: Where we are, where we are going. Sex Med Rev 2015;3:65-77. Copyright © 2015 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  16. Genome sequence analysis of emm89 Streptococcus pyogenes strains causing infections in Scotland, 2010-2016.

    PubMed

    Beres, Stephen B; Olsen, Randall J; Ojeda Saavedra, Matthew; Ure, Roisin; Reynolds, Arlene; Lindsay, Diane S J; Smith, Andrew J; Musser, James M

    2017-12-01

    Strains of type emm89 Streptococcus pyogenes have recently increased in frequency as a cause of human infections in several countries in Europe and North America. This increase has been molecular epidemiologically linked with the emergence of a new genetically distinct clone, designated clade 3. We sought to extend our understanding of this epidemic behavior by the genetic characterization of type emm89 strains responsible in recent years for an increased frequency of infections in Scotland. We sequenced the genomes of a retrospective cohort of 122 emm89 strains recovered from patients with invasive and noninvasive infections throughout Scotland during 2010 to 2016. All but one of the 122 emm89 infection isolates are of the recently emerged epidemic clade 3 clonal lineage. The Scotland isolates are closely related to and not genetically distinct from recent emm89 strains from England, they constitute a single genetic population. The clade 3 clone causes virtually all-contemporary emm89 infections in Scotland. These findings add Scotland to a growing list of countries of Europe and North America where, by whole genome sequencing, emm89 clade 3 strains have been demonstrated to be the cause of an ongoing epidemic of invasive infections and to be genetically related due to descent from a recent common progenitor.

  17. Draft genome sequences of 1 MSSA and 7 MRSA ST5 isolates obtained from California

    USDA-ARS?s Scientific Manuscript database

    Staphylococcus aureus is a commensal of humans that can cause a spectrum of diseases. An isolate’s capacity to cause disease is partially attributed to the acquisition of novel mobile genetic elements. This report provides the draft genome sequence of one methicillin susceptible and seven methicilli...

  18. THE ROLE OF GENETIC SUSCEPTIBILITY IN EXPERIMENTAL INDUCTION CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD) AND PARTICULATE MATTER (PM) HEALTH EFFECTS.

    EPA Science Inventory

    Human COPD represents the 4th common cause of mortality worldwide and is characterized by presence of chronic bronchitis/inflammation and emphysema. The primary cause is cigarette smoking, as nearly all COPD patients are smokers. However, only about 10% of smokers develop this di...

  19. Genetic characterization of human-pathogenic Cyclospora cayetanensis parasites from three endemic regions at the 18S ribosomal RNA locus.

    PubMed

    Sulaiman, Irshad M; Ortega, Ynes; Simpson, Steven; Kerdahi, Khalil

    2014-03-01

    Cyclospora cayetanensis is an apicocomplexan parasite that infects the gastrointestinal tract and causes acute diarrheal disease in humans. In recent years, this human-pathogenic parasite has led to several foodborne outbreaks in the United States and Canada, mostly associated with imported produce. Understanding the biology and epidemiology of C. cayetanensis is difficult because little is known about its origin, possible zoonotic reservoirs, and genetic relationships with other coccidian parasites. Recently, we developed a 70kDa heat shock protein (HSP70) gene based nested PCR protocol for detection of C. cayetanensis parasite and sequenced the PCR products of 16 human isolates from Nepal, Mexico, and Peru. In this study, we have characterized the regions of 18S ribosomal RNA (rRNA) gene of 17 human C. cayetanensis isolates for molecular detection, and also to ascertain the genetic diversity of this parasite. The 18S rRNA primer sets were further tested by PCR amplification followed by nucleotide sequencing of the PCR amplified products of previously characterized C. cayetanensis isolates from three endemic regions at HSP70 locus. Although no genetic polymorphism was observed at the regions of HSP70 locus characterized in our previous study, the data analysis of this study revealed a minor genetic diversity at the 18S rRNA locus among the C. cayetanensis isolates. The 18S rRNA gene-based nested PCR protocol provides a useful genetic marker for the detection of C. cayetanensis parasite and confirms it as a genetically distinct species in genus Cyclospora. The results also supported lack of geographic segregation and existence of genetically homogeneous population for the C. cayetanensis parasites both at the HSP70 as well as at the18S rRNA loci. Published by Elsevier B.V.

  20. DNA Polymorphism Assay Distinguishes Isolates of Leishmania donovani That Cause Kala-Azar from Those That Cause Post-Kala-Azar Dermal Leishmaniasis in Humans

    PubMed Central

    Sreenivas, Gannavaram; Subba Raju, B. V.; Singh, Ruchi; Selvapandiyan, Angamuthu; Duncan, Robert; Sarkar, Dwijen; Nakhasi, Hira L.; Salotra, Poonam

    2004-01-01

    Leishmania donovani in India causes visceral infection (kala-azar) and dermal infection (post-kala-azar dermal leishmaniasis). We report here the identification of polymorphism in a well-defined genetic locus among the Leishmania parasites causing the visceral and dermal manifestations, in a comparison of 15 post-kala-azar dermal leishmaniasis and 12 kala-azar patient isolates. PMID:15071036

  1. Genetic and pathogenic difference between Streptococcus agalactiae serotype Ia fish and human isolates.

    PubMed

    Chu, Chishih; Huang, Pei-Yu; Chen, Hung-Ming; Wang, Ying-Hsiang; Tsai, I-An; Lu, Chih-Cheng; Chen, Che-Chun

    2016-08-02

    Streptococcus agalactiae (GBS) is a common pathogen to infect newborn, woman, the elderly, and immuno-compromised human and fish. 37 fish isolates and 554 human isolates of the GBS in 2007-2012 were investigated in serotypes, antibiotic susceptibility, genetic difference and pathogenicity to tilapia. PCR serotyping determined serotype Ia for all fish GBS isolates and only in 3.2 % (3-4.2 %) human isolates. For fish isolates, all consisted a plasmid less than 6 kb and belonged to ST7 type, which includes mainly pulsotypes I and Ia, with a difference in a deletion at the largest DNA fragment. These fish isolates were susceptible to all antimicrobials tested in 2007 and increased in non-susceptibility to penicillin, and resistance to clindamycin and ceftriaxone in 2011. Differing in pulsotype and lacking plasmid from fish isolates, human serotype Ia isolates were separated into eight pulsotypes II-IX. Main clone ST23 included pulsotypes II and IIa (50 %) and ST483 consisted of pulsotype III. Human serotype Ia isolates were all susceptible to ceftriaxone and penicillin and few were resistant to erythromycin, azithromycin, clindamycin, levofloxacin and moxifloxacine with the resistant rate of 20 % or less. Using tilapia to analyze the pathogenesis, fish isolates could cause more severe symptoms, including hemorrhage of the pectoral fin, hemorrhage of the gill, and viscous black and common scites, and mortality (>95 % for pulsotype I) than the human isolates (<30 %); however, the fish pulostype Ia isolate 912 with deletion caused less symptoms and the lowest mortality (<50 %) than pulsotype I isolates. Genetic, pathogenic, and antimicrobial differences demonstrate diverse origin of human and fish serotype Ia isolates. The pulsotype Ia of fish serotype Ia isolates may be used as vaccine strains to prevent the GBS infection in fish.

  2. Walking backwards into the future: the need for a holistic evolutionary approach in Pacific health research.

    PubMed

    Matisoo-Smith, Elizabeth; Gosling, Anna L

    2018-05-01

    The Pacific region has had a complex human history. It has been subject to multiple major human dispersal and colonisation events, including some of the earliest Out-of-Africa migrations, the so-called Austronesian expansion of people out of Island Southeast Asia, and the more recent arrival of Europeans. Despite models of island isolation, evidence suggests significant levels of interconnectedness that vary in direction and frequency over time. The Pacific Ocean covers a vast area and its islands provide an array of different physical environments with variable pathogen loads and subsistence opportunities. These diverse environments likely caused Pacific peoples to adapt (both genetically and culturally) in unique ways. Differences in genetic background, in combination with adaptation, likely affect their susceptibility to non-communicable diseases. Here we provide an overview of some of the key issues in the natural and human history of the Pacific region which are likely to impact human health. We argue that understanding the evolutionary and cultural history of Pacific peoples is essential for the generation of testable hypotheses surrounding potential causes of elevated disease susceptibility among Pacific peoples.

  3. Currently recognized clinically relevant and known genes for human reproduction and related infertility with representation on high-resolution chromosome ideograms.

    PubMed

    Butler, Merlin G; Rafi, Syed K; McGuire, Austen; Manzardo, Ann M

    2016-01-01

    To provide an update of currently recognized clinically relevant candidate and known genes for human reproduction and related infertility plotted on high resolution chromosome ideograms (850 band level) and represented alphabetically in tabular form. Descriptive authoritative computer-based website and peer-reviewed medical literature searches used pertinent keywords representing human reproduction and related infertility along with genetics and gene mutations. A master list of genes associated with human reproduction and related infertility was generated with a visual representation of gene locations on high resolution chromosome ideograms. GeneAnalytics pathway analysis was carried out on the resulting list of genes to assess underlying genetic architecture for infertility. Advances in genetic technology have led to the discovery of genes responsible for reproduction and related infertility. Genes identified (N=371) in our search primarily impact ovarian steroidogenesis through sex hormone biology, germ cell production, genito-urinary or gonadal development and function, and related peptide production, receptors and regulatory factors. The location of gene symbols plotted on high resolution chromosome ideograms forms a conceptualized image of the distribution of human reproduction genes. The updated master list can be used to promote better awareness of genetics of reproduction and related infertility and advance discoveries on genetic causes and disease mechanisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The molecular basis of α-thalassemia.

    PubMed

    Higgs, Douglas R

    2013-01-01

    The globin gene disorders including the thalassemias are among the most common human genetic diseases with more than 300,000 severely affected individuals born throughout the world every year. Because of the easy accessibility of purified, highly specialized, mature erythroid cells from peripheral blood, the hemoglobinopathies were among the first tractable human molecular diseases. From the 1970s onward, the analysis of the large repertoire of mutations underlying these conditions has elucidated many of the principles by which mutations occur and cause human genetic diseases. This work will summarize our current knowledge of the α-thalassemias, illustrating how detailed analysis of this group of diseases has contributed to our understanding of the general molecular mechanisms underlying many orphan and common diseases.

  5. An approach to congenital malformations of the head and neck.

    PubMed

    Isaacson, Glenn

    2007-02-01

    It is easy to be overwhelmed when faced with the hundreds of cataloged anomalies of the head and neck region. For any individual defect there may be variation in phenotype, associated anomalies, and cause. To help organize these various disorders, dysmorphologists have grouped them into "syndromes", "sequences" and "associations" based on our level of understanding of their etiologies. Recently, completion of the human genome project has added a new level of complexity to the study of human malformations by providing a flood of new information about the genetic origins of established syndromes. The article describes the dysmorphologist's approach to the child with one or more anomalies and provides a glimpse into the future of human genetics.

  6. Evolution, revolution and heresy in the genetics of infectious disease susceptibility

    PubMed Central

    Hill, Adrian V. S.

    2012-01-01

    Infectious pathogens have long been recognized as potentially powerful agents impacting on the evolution of human genetic diversity. Analysis of large-scale case–control studies provides one of the most direct means of identifying human genetic variants that currently impact on susceptibility to particular infectious diseases. For over 50 years candidate gene studies have been used to identify loci for many major causes of human infectious mortality, including malaria, tuberculosis, human immunodeficiency virus/acquired immunodeficiency syndrome, bacterial pneumonia and hepatitis. But with the advent of genome-wide approaches, many new loci have been identified in diverse populations. Genome-wide linkage studies identified a few loci, but genome-wide association studies are proving more successful, and both exome and whole-genome sequencing now offer a revolutionary increase in power. Opinions differ on the extent to which the genetic component to common disease susceptibility is encoded by multiple high frequency or rare variants, and the heretical view that most infectious diseases might even be monogenic has been advocated recently. Review of findings to date suggests that the genetic architecture of infectious disease susceptibility may be importantly different from that of non-infectious diseases, and it is suggested that natural selection may be the driving force underlying this difference. PMID:22312051

  7. Candidate genes for idiopathic epilepsy in four dog breeds.

    PubMed

    Ekenstedt, Kari J; Patterson, Edward E; Minor, Katie M; Mickelson, James R

    2011-04-25

    Idiopathic epilepsy (IE) is a naturally occurring and significant seizure disorder affecting all dog breeds. Because dog breeds are genetically isolated populations, it is possible that IE is attributable to common founders and is genetically homogenous within breeds. In humans, a number of mutations, the majority of which are genes encoding ion channels, neurotransmitters, or their regulatory subunits, have been discovered to cause rare, specific types of IE. It was hypothesized that there are simple genetic bases for IE in some purebred dog breeds, specifically in Vizslas, English Springer Spaniels (ESS), Greater Swiss Mountain Dogs (GSMD), and Beagles, and that the gene(s) responsible may, in some cases, be the same as those already discovered in humans. Candidate genes known to be involved in human epilepsy, along with selected additional genes in the same gene families that are involved in murine epilepsy or are expressed in neural tissue, were examined in populations of affected and unaffected dogs. Microsatellite markers in close proximity to each candidate gene were genotyped and subjected to two-point linkage in Vizslas, and association analysis in ESS, GSMD and Beagles. Most of these candidate genes were not significantly associated with IE in these four dog breeds, while a few genes remained inconclusive. Other genes not included in this study may still be causing monogenic IE in these breeds or, like many cases of human IE, the disease in dogs may be likewise polygenic.

  8. Network-based analysis of genotype-phenotype correlations between different inheritance modes.

    PubMed

    Hao, Dapeng; Li, Chuanxing; Zhang, Shaojun; Lu, Jianping; Jiang, Yongshuai; Wang, Shiyuan; Zhou, Meng

    2014-11-15

    Recent studies on human disease have revealed that aberrant interaction between proteins probably underlies a substantial number of human genetic diseases. This suggests a need to investigate disease inheritance mode using interaction, and based on which to refresh our conceptual understanding of a series of properties regarding inheritance mode of human disease. We observed a strong correlation between the number of protein interactions and the likelihood of a gene causing any dominant diseases or multiple dominant diseases, whereas no correlation was observed between protein interaction and the likelihood of a gene causing recessive diseases. We found that dominant diseases are more likely to be associated with disruption of important interactions. These suggest inheritance mode should be understood using protein interaction. We therefore reviewed the previous studies and refined an interaction model of inheritance mode, and then confirmed that this model is largely reasonable using new evidences. With these findings, we found that the inheritance mode of human genetic diseases can be predicted using protein interaction. By integrating the systems biology perspectives with the classical disease genetics paradigm, our study provides some new insights into genotype-phenotype correlations. haodapeng@ems.hrbmu.edu.cn or biofomeng@hotmail.com Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Genetic mutation analysis of human gastric adenocarcinomas using ion torrent sequencing platform.

    PubMed

    Xu, Zhi; Huo, Xinying; Ye, Hua; Tang, Chuanning; Nandakumar, Vijayalakshmi; Lou, Feng; Zhang, Dandan; Dong, Haichao; Sun, Hong; Jiang, Shouwen; Zhang, Guangchun; Liu, Zhiyuan; Dong, Zhishou; Guo, Baishuai; He, Yan; Yan, Chaowei; Wang, Lu; Su, Ziyi; Li, Yangyang; Gu, Dongying; Zhang, Xiaojing; Wu, Xiaomin; Wei, Xiaowei; Hong, Lingzhi; Zhang, Yangmei; Yang, Jinsong; Gong, Yonglin; Tang, Cuiju; Jones, Lindsey; Huang, Xue F; Chen, Si-Yi; Chen, Jinfei

    2014-01-01

    Gastric cancer is the one of the major causes of cancer-related death, especially in Asia. Gastric adenocarcinoma, the most common type of gastric cancer, is heterogeneous and its incidence and cause varies widely with geographical regions, gender, ethnicity, and diet. Since unique mutations have been observed in individual human cancer samples, identification and characterization of the molecular alterations underlying individual gastric adenocarcinomas is a critical step for developing more effective, personalized therapies. Until recently, identifying genetic mutations on an individual basis by DNA sequencing remained a daunting task. Recent advances in new next-generation DNA sequencing technologies, such as the semiconductor-based Ion Torrent sequencing platform, makes DNA sequencing cheaper, faster, and more reliable. In this study, we aim to identify genetic mutations in the genes which are targeted by drugs in clinical use or are under development in individual human gastric adenocarcinoma samples using Ion Torrent sequencing. We sequenced 737 loci from 45 cancer-related genes in 238 human gastric adenocarcinoma samples using the Ion Torrent Ampliseq Cancer Panel. The sequencing analysis revealed a high occurrence of mutations along the TP53 locus (9.7%) in our sample set. Thus, this study indicates the utility of a cost and time efficient tool such as Ion Torrent sequencing to screen cancer mutations for the development of personalized cancer therapy.

  10. Antimicrobial Functions of Lactoferrin Promote Genetic Conflicts in Ancient Primates and Modern Humans.

    PubMed

    Barber, Matthew F; Kronenberg, Zev; Yandell, Mark; Elde, Nels C

    2016-05-01

    Lactoferrin is a multifunctional mammalian immunity protein that limits microbial growth through sequestration of nutrient iron. Additionally, lactoferrin possesses cationic protein domains that directly bind and inhibit diverse microbes. The implications for these dual functions on lactoferrin evolution and genetic conflicts with microbes remain unclear. Here we show that lactoferrin has been subject to recurrent episodes of positive selection during primate divergence predominately at antimicrobial peptide surfaces consistent with long-term antagonism by bacteria. An abundant lactoferrin polymorphism in human populations and Neanderthals also exhibits signatures of positive selection across primates, linking ancient host-microbe conflicts to modern human genetic variation. Rapidly evolving sites in lactoferrin further correspond to molecular interfaces with opportunistic bacterial pathogens causing meningitis, pneumonia, and sepsis. Because microbes actively target lactoferrin to acquire iron, we propose that the emergence of antimicrobial activity provided a pivotal mechanism of adaptation sparking evolutionary conflicts via acquisition of new protein functions.

  11. Association of a Bacteriophage with Meningococcal Disease in Young Adults

    PubMed Central

    Gray, Stephen J.; Kaczmarski, Edward B.; McCarthy, Noel D.; Nassif, Xavier; Maiden, Martin C. J.; Tinsley, Colin R.

    2008-01-01

    Despite being the agent of life-threatening meningitis, Neisseria meningitidis is usually carried asymptomatically in the nasopharynx of humans and only occasionally causes disease. The genetic bases for virulence have not been entirely elucidated and the search for new virulence factors in this species is hampered by the lack of an animal model representative of the human disease. As an alternative strategy we employ a molecular epidemiological approach to establish a statistical association of a candidate virulence gene with disease in the human population. We examine the distribution of a previously-identified genetic element, a temperate bacteriophage, in 1288 meningococci isolated from cases of disease and asymptomatic carriage. The phage was over-represented in disease isolates from young adults indicating that it may contribute to invasive disease in this age group. Further statistical analysis indicated that between 20% and 45% of the pathogenic potential of the five most common disease-causing meningococcal groups was linked to the presence of the phage. In the absence of an animal model of human disease, this molecular epidemiological approach permitted the estimation of the influence of the candidate virulence factor. Such an approach is particularly valuable in the investigation of exclusively human diseases. PMID:19065260

  12. New genes emerging for colorectal cancer predisposition.

    PubMed

    Esteban-Jurado, Clara; Garre, Pilar; Vila, Maria; Lozano, Juan José; Pristoupilova, Anna; Beltrán, Sergi; Abulí, Anna; Muñoz, Jenifer; Balaguer, Francesc; Ocaña, Teresa; Castells, Antoni; Piqué, Josep M; Carracedo, Angel; Ruiz-Ponte, Clara; Bessa, Xavier; Andreu, Montserrat; Bujanda, Luis; Caldés, Trinidad; Castellví-Bel, Sergi

    2014-02-28

    Colorectal cancer (CRC) is one of the most frequent neoplasms and an important cause of mortality in the developed world. This cancer is caused by both genetic and environmental factors although 35% of the variation in CRC susceptibility involves inherited genetic differences. Mendelian syndromes account for about 5% of the total burden of CRC, with Lynch syndrome and familial adenomatous polyposis the most common forms. Excluding hereditary forms, there is an important fraction of CRC cases that present familial aggregation for the disease with an unknown germline genetic cause. CRC can be also considered as a complex disease taking into account the common disease-commom variant hypothesis with a polygenic model of inheritance where the genetic components of common complex diseases correspond mostly to variants of low/moderate effect. So far, 30 common, low-penetrance susceptibility variants have been identified for CRC. Recently, new sequencing technologies including exome- and whole-genome sequencing have permitted to add a new approach to facilitate the identification of new genes responsible for human disease predisposition. By using whole-genome sequencing, germline mutations in the POLE and POLD1 genes have been found to be responsible for a new form of CRC genetic predisposition called polymerase proofreading-associated polyposis.

  13. Genetic update on inflammatory factors in ulcerative colitis: Review of the current literature

    PubMed Central

    Sarlos, Patricia; Kovesdi, Erzsebet; Magyari, Lili; Banfai, Zsolt; Szabo, Andras; Javorhazy, Andras; Melegh, Bela

    2014-01-01

    Ulcerative colitis (UC) is one of the main types of inflammatory bowel disease, which is caused by dysregulated immune responses in genetically predisposed individuals. Several genetic factors, including interleukin and interleukin receptor gene polymorphisms and other inflammation-related genes play central role in mediating and modulating the inflammation in the human body, thereby these can be the main cause of development of the disease. It is clear these data are very important for understanding the base of the disease, especially in terms of clinical utility and validity, but summarized literature is exiguous for challenge health specialist that can used in the clinical practice nowadays. This review summarizes the current literature on inflammation-related genetic polymorphisms which are associated with UC. We performed an electronic search of Pubmed Database among publications of the last 10 years, using the following medical subject heading terms: UC, ulcerative colitis, inflammation, genes, polymorphisms, and susceptibility. PMID:25133031

  14. The Human Genome Project and Mental Retardation: An Educational Program. Final Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Sharon

    The Arc, a national organization on mental retardation, conducted an educational program for members, many of whom have a family member with a genetic condition causing mental retardation. The project informed members about the Human Genome scientific efforts, conducted training regarding ethical, legal and social implications and involved members in issue discussions. Short reports and fact sheets on genetic and ELSI topics were disseminated to 2,200 of the Arc's leaders across the country and to other interested individuals. Materials produced by the project can e found on the Arc's web site, TheArc.org.

  15. [Dilated cardiomyopathy (DCM) in dogs--pathological, clinical, diagnosis and genetic aspects].

    PubMed

    Broschk, C; Distl, O

    2005-10-01

    Dilated cardiomyopathy (DCM) is a heart disease which is often found in humans and animals. The age of onset of this progressive disease varies between 3 and 7 years of age. A juvenile form of DCM has been found in Portuguese Water Dogs and Doberman Pinscher Dogs. Some breeds such as Doberman pinscher, Newfoundland, Portuguese Water dog, Boxer, Great Dane, Cocker Spaniel and Irish Wolfhound exhibit a higher prevalence to DCM. There also seems to be a sex predisposition as male dogs are affected more often than female dogs and in Great Danes an X-linked recessive inheritance is likely. In Newfoundland and Boxer an autosomal dominant inheritance was found whereas an autosomal recessive inheritance was described in Portuguese Water Dogs. Atrial fibrillation as a cause or consequence of DCM is assumed for certain breeds. The causes of DCM are widely unknown in dogs. A genetic basis for this heart disease seems to exist. Apart from a few exceptions the mode of inheritance and the possible underlying gene mutations are not known for DCM in dogs. In humans mutations in several genes responsible for DCM have been identified. Comparative genetic analyses in dogs using genes causing DCM in men and a genome-wide scan with anonymus markers were not able to detect causative mutations or genomic regions harboring gene loci linked to DCM. The investigation of the genetic basis of canine DCM may lead to new insights into the pathogenesis of DCM and may result in new therapeutic approaches and breeding strategies.

  16. Leishmania major: Genetic Profiles of the Parasites Isolated from Chabahar, Southeastern Iran by PPIP-PCR

    PubMed Central

    SHARIFI-RAD, Mehdi; DABIRZADEH, Mansour; SHARIFI, Iraj; BABAEI, Zahra

    2016-01-01

    Background: Leishmaniasis is important vector-borne parasitic disease worldwide, caused by the genus Leishmania. The objective of the current study was to identify genetic polymorphism in L. major, one of the species causing cutaneous leishmaniasis (CL), isolated from southeastern Iran, using Permissively Primed Intergenic Polymorphic-Polymerase Chain Reaction (PPIP-PCR) method. Methods: Overall, 340 patients with suspected CL were examined. They referred to the Central Laboratory in Chabahar, Iran during Apr 2013 to Feb 2014. Microscopic examination of Giemsa-stained slides from lesions as well as aspirates cultured in Novy- Mac Neal-Nicolle (NNN) Media was employed in order to diagnose CL in these patients. Our analyses detected 86 suspected subjects as having CL from which 35 isolates were cultured successfully. PPIP-PCR method was performed on extracted genomic DNA from selected isolates in order to determine the genetic polymorphism among L. major isolates. Results: The electrophoresis patterns demonstrated two genetic profiles including A or A1 patterns between all samples tested. Frequency of A and A1 sub-types were 33 (94.3%) and two (5.7%), respectively. Conclusion: Both host and parasite factors may contribute to the clinical profile of human leishmaniasis in the endemic foci of the disease. Here we showed that genetic variations pertaining to the Leishmania parasites might determine, in part, the clinical outcomes of human leishmaniasis. PMID:28127333

  17. Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs.

    PubMed

    Park, Chul-Yong; Kim, Jungeun; Kweon, Jiyeon; Son, Jeong Sang; Lee, Jae Souk; Yoo, Jeong-Eun; Cho, Sung-Rae; Kim, Jong-Hoon; Kim, Jin-Soo; Kim, Dong-Wook

    2014-06-24

    Hemophilia A, one of the most common genetic bleeding disorders, is caused by various mutations in the blood coagulation factor VIII (F8) gene. Among the genotypes that result in hemophilia A, two different types of chromosomal inversions that involve a portion of the F8 gene are most frequent, accounting for almost half of all severe hemophilia A cases. In this study, we used a transcription activator-like effector nuclease (TALEN) pair to invert a 140-kbp chromosomal segment that spans the portion of the F8 gene in human induced pluripotent stem cells (iPSCs) to create a hemophilia A model cell line. In addition, we reverted the inverted segment back to its normal orientation in the hemophilia model iPSCs using the same TALEN pair. Importantly, we detected the F8 mRNA in cells derived from the reverted iPSCs lines, but not in those derived from the clones with the inverted segment. Thus, we showed that TALENs can be used both for creating disease models associated with chromosomal rearrangements in iPSCs and for correcting genetic defects caused by chromosomal inversions. This strategy provides an iPSC-based novel therapeutic option for the treatment of hemophilia A and other genetic diseases caused by chromosomal inversions.

  18. Genetic Considerations in Recurrent Pregnancy Loss

    PubMed Central

    Hyde, Kassie J.; Schust, Danny J.

    2015-01-01

    Human reproduction is remarkably inefficient; nearly 70% of human conceptions do not survive to live birth. Spontaneous fetal aneuploidy is the most common cause for spontaneous loss, particularly in the first trimester of pregnancy. Although losses owing to de novo fetal aneuploidy occur at similar frequencies among women with sporadic and recurrent losses, some couples with recurrent pregnancy loss have additional associated genetic factors and some have nongenetic etiologies. Genetic testing of the products of conception from couples experiencing two or more losses may aid in defining the underlying etiology and in counseling patients about prognosis in a subsequent pregnancy. Parental karyotyping of couples who have experienced recurrent pregnancy loss (RPL) will detect some couples with an increased likelihood of recurrent fetal aneuploidy; this may direct interventions. The utility of preimplantation genetic analysis in couples with RPL is unproven, but new approaches to this testing show great promise. PMID:25659378

  19. Genetic considerations in recurrent pregnancy loss.

    PubMed

    Hyde, Kassie J; Schust, Danny J

    2015-02-06

    Human reproduction is remarkably inefficient; nearly 70% of human conceptions do not survive to live birth. Spontaneous fetal aneuploidy is the most common cause for spontaneous loss, particularly in the first trimester of pregnancy. Although losses owing to de novo fetal aneuploidy occur at similar frequencies among women with sporadic and recurrent losses, some couples with recurrent pregnancy loss have additional associated genetic factors and some have nongenetic etiologies. Genetic testing of the products of conception from couples experiencing two or more losses may aid in defining the underlying etiology and in counseling patients about prognosis in a subsequent pregnancy. Parental karyotyping of couples who have experienced recurrent pregnancy loss (RPL) will detect some couples with an increased likelihood of recurrent fetal aneuploidy; this may direct interventions. The utility of preimplantation genetic analysis in couples with RPL is unproven, but new approaches to this testing show great promise. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  20. Human ETS2 gene on chromosome 21 is not rearranged in Alzheimer disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sacchi, N.; Nalbantoglu, J.; Sergovich, F.R.

    1988-10-01

    The human ETS2 gene, a member of the ETS gene family, with sequence homology with the retroviral ets sequence of the avian erythroblastosis retrovirus E26 is located on chromosome 21. Molecular genetic analysis of Down syndrome (DS) patients with partial trisomy 21 allowed us to reinforce the supposition that ETS2 may be a gene of the minimal DS genetic region. It was originally proposed that a duplication of a portion of the DS region represents the genetic basis of Alzheimer disease, a condition associated also with DS. No evidence of either rearrangements or duplications of ETS2 could be detected inmore » DNA from fibroblasts and brain tissue of Alzheimer disease patients with either the sporadic or the familiar form of the disease. Thus, an altered ETS2 gene dosage does not seem to be a genetic cause or component of Alzheimer disease.« less

  1. Genetic diversity and virulence potential of shiga toxin-producing Escherichia coli O113:H21 strains isolated from clinical, environmental, and food sources.

    PubMed

    Feng, Peter C H; Delannoy, Sabine; Lacher, David W; Dos Santos, Luis Fernando; Beutin, Lothar; Fach, Patrick; Rivas, Marta; Hartland, Elizabeth L; Paton, Adrienne W; Guth, Beatriz E C

    2014-08-01

    Shiga toxin-producing Escherichia coli strains of serotype O113:H21 have caused severe human diseases, but they are unusual in that they do not produce adherence factors coded by the locus of enterocyte effacement. Here, a PCR microarray was used to characterize 65 O113:H21 strains isolated from the environment, food, and clinical infections from various countries. In comparison to the pathogenic strains that were implicated in hemolytic-uremic syndrome in Australia, there were no clear differences between the pathogens and the environmental strains with respect to the 41 genetic markers tested. Furthermore, all of the strains carried only Shiga toxin subtypes associated with human infections, suggesting that the environmental strains have the potential to cause disease. Most of the O113:H21 strains were closely related and belonged in the same clonal group (ST-223), but CRISPR analysis showed a great degree of genetic diversity among the O113:H21 strains. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Chromosomal disorders and male infertility

    PubMed Central

    Harton, Gary L; Tempest, Helen G

    2012-01-01

    Infertility in humans is surprisingly common occurring in approximately 15% of the population wishing to start a family. Despite this, the molecular and genetic factors underlying the cause of infertility remain largely undiscovered. Nevertheless, more and more genetic factors associated with infertility are being identified. This review will focus on our current understanding of the chromosomal basis of male infertility specifically: chromosomal aneuploidy, structural and numerical karyotype abnormalities and Y chromosomal microdeletions. Chromosomal aneuploidy is the leading cause of pregnancy loss and developmental disabilities in humans. Aneuploidy is predominantly maternal in origin, but concerns have been raised regarding the safety of intracytoplasmic sperm injection as infertile men have significantly higher levels of sperm aneuploidy compared to their fertile counterparts. Males with numerical or structural karyotype abnormalities are also at an increased risk of producing aneuploid sperm. Our current understanding of how sperm aneuploidy translates to embryo aneuploidy will be reviewed, as well as the application of preimplantation genetic diagnosis (PGD) in such cases. Clinical recommendations where possible will be made, as well as discussion of the use of emerging array technology in PGD and its potential applications in male infertility. PMID:22120929

  3. Chromosomal disorders and male infertility.

    PubMed

    Harton, Gary L; Tempest, Helen G

    2012-01-01

    Infertility in humans is surprisingly common occurring in approximately 15% of the population wishing to start a family. Despite this, the molecular and genetic factors underlying the cause of infertility remain largely undiscovered. Nevertheless, more and more genetic factors associated with infertility are being identified. This review will focus on our current understanding of the chromosomal basis of male infertility specifically: chromosomal aneuploidy, structural and numerical karyotype abnormalities and Y chromosomal microdeletions. Chromosomal aneuploidy is the leading cause of pregnancy loss and developmental disabilities in humans. Aneuploidy is predominantly maternal in origin, but concerns have been raised regarding the safety of intracytoplasmic sperm injection as infertile men have significantly higher levels of sperm aneuploidy compared to their fertile counterparts. Males with numerical or structural karyotype abnormalities are also at an increased risk of producing aneuploid sperm. Our current understanding of how sperm aneuploidy translates to embryo aneuploidy will be reviewed, as well as the application of preimplantation genetic diagnosis (PGD) in such cases. Clinical recommendations where possible will be made, as well as discussion of the use of emerging array technology in PGD and its potential applications in male infertility.

  4. Controlled fire use in early humans might have triggered the evolutionary emergence of tuberculosis.

    PubMed

    Chisholm, Rebecca H; Trauer, James M; Curnoe, Darren; Tanaka, Mark M

    2016-08-09

    Tuberculosis (TB) is caused by the Mycobacterium tuberculosis complex (MTBC), a wildly successful group of organisms and the leading cause of death resulting from a single bacterial pathogen worldwide. It is generally accepted that MTBC established itself in human populations in Africa and that animal-infecting strains diverged from human strains. However, the precise causal factors of TB emergence remain unknown. Here, we propose that the advent of controlled fire use in early humans created the ideal conditions for the emergence of TB as a transmissible disease. This hypothesis is supported by mathematical modeling together with a synthesis of evidence from epidemiology, evolutionary genetics, and paleoanthropology.

  5. Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery.

    PubMed

    Scott, Eric M; Halees, Anason; Itan, Yuval; Spencer, Emily G; He, Yupeng; Azab, Mostafa Abdellateef; Gabriel, Stacey B; Belkadi, Aziz; Boisson, Bertrand; Abel, Laurent; Clark, Andrew G; Alkuraya, Fowzan S; Casanova, Jean-Laurent; Gleeson, Joseph G

    2016-09-01

    The Greater Middle East (GME) has been a central hub of human migration and population admixture. The tradition of consanguinity, variably practiced in the Persian Gulf region, North Africa, and Central Asia, has resulted in an elevated burden of recessive disease. Here we generated a whole-exome GME variome from 1,111 unrelated subjects. We detected substantial diversity and admixture in continental and subregional populations, corresponding to several ancient founder populations with little evidence of bottlenecks. Measured consanguinity rates were an order of magnitude above those in other sampled populations, and the GME population exhibited an increased burden of runs of homozygosity (ROHs) but showed no evidence for reduced burden of deleterious variation due to classically theorized 'genetic purging'. Applying this database to unsolved recessive conditions in the GME population reduced the number of potential disease-causing variants by four- to sevenfold. These results show variegated genetic architecture in GME populations and support future human genetic discoveries in Mendelian and population genetics.

  6. Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery

    PubMed Central

    Scott, Eric M.; Halees, Anason; Itan, Yuval; Spencer, Emily G.; He, Yupeng; Azab, Mostafa Abdellateef; Gabriel, Stacey B.; Belkadi, Aziz; Boisson, Bertrand; Abel, Laurent; Clark, Andrew G.; Alkuraya, Fowzan S.; Casanova, Jean-Laurent; Gleeson, Joseph G.

    2016-01-01

    The Greater Middle East (GME) has been a central hub of human migration and population admixture. The tradition of consanguinity, variably practiced in the Gulf region, North Africa, and Central Asia 1–3, has resulted in an elevated burden of recessive disease4. Here we generated a whole exome GME variome from 1,111 unrelated subjects. We detected substantial diversity from sub-geographies, continental and subregional admixture, several ancient founder populations with little evidence of bottlenecks. Measured consanguinity was an order-of-magnitude above that of other sampled populations, and included an increased burden of runs of homozygosity (ROH), but no evidence for reduced burden of deleterious variation due to classically theorized ‘genetic purging’. Applying this database to unsolved GME recessive conditions reduced the number of potential disease-causing variants by 4–7-fold. These results reveal the variegated GME genetic architecture and support future human genetic discoveries in Mendelian and population genetics. PMID:27428751

  7. Genetics Home Reference: X-linked lymphoproliferative disease

    MedlinePlus

    ... infects most humans. In some people it causes infectious mononucleosis (commonly known as "mono"). Normally, after initial infection, ... severe susceptibility to EBV infection severe susceptibility to infectious mononucleosis X-linked lymphoproliferative syndrome XLP Related Information How ...

  8. Human heredity and politics: A comparative institutional study of the Eugenics Record Office at Cold Spring Harbor (United States), the Kaiser Wilhelm Institute for Anthropology, Human Heredity, and Eugenics (Germany), and the Maxim Gorky Medical Genetics Institute (USSR).

    PubMed

    Adams, Mark B; Allen, Garland E; Weiss, Sheila Faith

    2005-01-01

    Despite the fact that much has been written in recent years about the science of heredity under the Third Reich, there is as yet no satisfying analysis of two central questions: What, if anything, was peculiarly "Nazi" about human genetics under National Socialism? How, under whatever set of causes, did at least some of Germany's most well-known and leading biomedical practioners become engaged in entgrenzte Wissenschaft (science without moral boundaries)? This paper attempts to provide some answers to these two questions comparing three institutes that studied eugenics and human heredity in the 1920s and 1930s: the Eugenics Record Office at Cold Spring Harbor, New York, directed by Charles B. Davenport; the Kaiser Wilhelm Institute for Anthropology, Human Heredity and Eugenics, in Berlin, directed by Eugen Fischer; and the Maxim Gorky Medical Genetics Institute in Moscow, directed by Solomon G. Levit. The institutes are compared on the basis of the kind and quality of their research in eugenics and medical genetics, organizational structure, leadership, patronage (private or state), and the economic-social-political context in which they functioned.

  9. From Human Genetics and Genomics to Pharmacogenetics and Pharmacogenomics: Past Lessons, Future Directions

    PubMed Central

    Nebert, Daniel W.; Zhang, Ge; Vesell, Elliot S.

    2009-01-01

    A brief history of human genetics and genomics is provided, comparing recent progress in those fields with that in pharmacogenetics and pharmacogenomics, which are subsets of genetics and genomics, respectively. Sequencing of the entire human genome, the mapping of common haplotypes of single-nucleotide polymorphisms (SNPs), and cost-effective genotyping technologies leading to genome-wide association (GWA) studies—have combined convincingly in the past several years to demonstrate the requirements needed to separate true associations from the plethora of false positives. While research in human genetics has moved from monogenic to oligogenic to complex diseases, its pharmacogenetics branch has followed, usually a few years behind. The continuous discoveries, even today, of new surprises about our genome cause us to question reviews declaring that “personalized medicine is almost here” or that “individualized drug therapy will soon be a reality.” As summarized herein, numerous reasons exist to show that an “unequivocal genotype” or even an “unequivocal phenotype” is virtually impossible to achieve in current limited-size studies of human populations. This problem (of insufficiently stringent criteria) leads to a decrease in statistical power and, consequently, equivocal interpretation of most genotype-phenotype association studies. It remains unclear whether personalized medicine or individualized drug therapy will ever be achievable by means of DNA testing alone. PMID:18464043

  10. Murine genetically engineered and human xenograft models of chronic lymphocytic leukemia.

    PubMed

    Chen, Shih-Shih; Chiorazzi, Nicholas

    2014-07-01

    Chronic lymphocytic leukemia (CLL) is a genetically complex disease, with multiple factors having an impact on onset, progression, and response to therapy. Genetic differences/abnormalities have been found in hematopoietic stem cells from patients, as well as in B lymphocytes of individuals with monoclonal B-cell lymphocytosis who may develop the disease. Furthermore, after the onset of CLL, additional genetic alterations occur over time, often causing disease worsening and altering patient outcomes. Therefore, being able to genetically engineer mouse models that mimic CLL or at least certain aspects of the disease will help us understand disease mechanisms and improve treatments. This notwithstanding, because neither the genetic aberrations responsible for leukemogenesis and progression nor the promoting factors that support these are likely identical in character or influences for all patients, genetically engineered mouse models will only completely mimic CLL when all of these factors are precisely defined. In addition, multiple genetically engineered models may be required because of the heterogeneity in susceptibility genes among patients that can have an effect on genetic and environmental characteristics influencing disease development and outcome. For these reasons, we review the major murine genetically engineered and human xenograft models in use at the present time, aiming to report the advantages and disadvantages of each. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Going forward with genetics: recent technological advances and forward genetics in mice.

    PubMed

    Moresco, Eva Marie Y; Li, Xiaohong; Beutler, Bruce

    2013-05-01

    Forward genetic analysis is an unbiased approach for identifying genes essential to defined biological phenomena. When applied to mice, it is one of the most powerful methods to facilitate understanding of the genetic basis of human biology and disease. The speed at which disease-causing mutations can be identified in mutagenized mice has been markedly increased by recent advances in DNA sequencing technology. Creating and analyzing mutant phenotypes may therefore become rate-limiting in forward genetic experimentation. We review the forward genetic approach and its future in the context of recent technological advances, in particular massively parallel DNA sequencing, induced pluripotent stem cells, and haploid embryonic stem cells. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Beaver Fever: Whole-Genome Characterization of Waterborne Outbreak and Sporadic Isolates To Study the Zoonotic Transmission of Giardiasis.

    PubMed

    Tsui, Clement K-M; Miller, Ruth; Uyaguari-Diaz, Miguel; Tang, Patrick; Chauve, Cedric; Hsiao, William; Isaac-Renton, Judith; Prystajecky, Natalie

    2018-04-25

    Giardia causes the diarrheal disease known as giardiasis; transmission through contaminated surface water is common. The protozoan parasite's genetic diversity has major implications for human health and epidemiology. To determine the extent of transmission from wildlife through surface water, we performed whole-genome sequencing (WGS) to characterize 89 Giardia duodenalis isolates from both outbreak and sporadic infections: 29 isolates from raw surface water, 38 from humans, and 22 from veterinary sources. Using single nucleotide variants (SNVs), combined with epidemiological data, relationships contributing to zoonotic transmission were described. Two assemblages, A and B, were identified in surface water, human, and veterinary isolates. Mixes of zoonotic assemblages A and B were seen in all the community waterborne outbreaks in British Columbia (BC), Canada, studied. Assemblage A was further subdivided into assemblages A1 and A2 based on the genetic variation observed. The A1 assemblage was highly clonal; isolates of surface water, human, and veterinary origins from Canada, United States, and New Zealand clustered together with minor variation, consistent with this being a panglobal zoonotic lineage. In contrast, assemblage B isolates were variable and consisted of several clonal lineages relating to waterborne outbreaks and geographic locations. Most human infection isolates in waterborne outbreaks clustered with isolates from surface water and beavers implicated to be outbreak sources by public health. In-depth outbreak analysis demonstrated that beavers can act as amplification hosts for human infections and can act as sources of surface water contamination. It is also known that other wild and domesticated animals, as well as humans, can be sources of waterborne giardiasis. This study demonstrates the utility of WGS in furthering our understanding of Giardia transmission dynamics at the water-human-animal interface. IMPORTANCE Giardia duodenalis causes large numbers of gastrointestinal illness in humans. Its transmission through the contaminated surface water/wildlife intersect is significant, and the water-dwelling rodents beavers have been implicated as one important reservoir. To trace human infections to their source, we used genome techniques to characterize genetic relationships among 89 Giardia isolates from surface water, humans, and animals. Our study showed the presence of two previously described genetic assemblages, A and B, with mixed infections detected from isolates collected during outbreaks. Study findings also showed that while assemblage A could be divided into A1 and A2, A1 showed little genetic variation among animal and human hosts in isolates collected from across the globe. Assemblage B, the most common type found in the study surface water samples, was shown to be highly variable. Our study demonstrates that the beaver is a possible source of human infections from contaminated surface water, while acknowledging that theirs is only one role in the complex cycle of zoonotic spread. Mixes of parasite groups have been detected in waterborne outbreaks. More information on Giardia diversity and its evolution using genomics will further the understanding of the epidemiology of spread of this disease-causing protozoan. © Crown copyright 2018.

  13. The Role of Abcb5 Alleles in Susceptibility to Haloperidol-Induced Toxicity in Mice and Humans

    PubMed Central

    Zheng, Ming; Zhang, Haili; Dill, David L.; Clark, J. David; Tu, Susan; Yablonovitch, Arielle L.; Tan, Meng How; Zhang, Rui; Rujescu, Dan; Wu, Manhong; Tessarollo, Lino; Vieira, Wilfred; Gottesman, Michael M.; Deng, Suhua; Eberlin, Livia S.; Zare, Richard N.; Billard, Jean-Martin; Gillet, Jean-Pierre; Li, Jin Billy; Peltz, Gary

    2015-01-01

    Background We know very little about the genetic factors affecting susceptibility to drug-induced central nervous system (CNS) toxicities, and this has limited our ability to optimally utilize existing drugs or to develop new drugs for CNS disorders. For example, haloperidol is a potent dopamine antagonist that is used to treat psychotic disorders, but 50% of treated patients develop characteristic extrapyramidal symptoms caused by haloperidol-induced toxicity (HIT), which limits its clinical utility. We do not have any information about the genetic factors affecting this drug-induced toxicity. HIT in humans is directly mirrored in a murine genetic model, where inbred mouse strains are differentially susceptible to HIT. Therefore, we genetically analyzed this murine model and performed a translational human genetic association study. Methods and Findings A whole genome SNP database and computational genetic mapping were used to analyze the murine genetic model of HIT. Guided by the mouse genetic analysis, we demonstrate that genetic variation within an ABC-drug efflux transporter (Abcb5) affected susceptibility to HIT. In situ hybridization results reveal that Abcb5 is expressed in brain capillaries, and by cerebellar Purkinje cells. We also analyzed chromosome substitution strains, imaged haloperidol abundance in brain tissue sections and directly measured haloperidol (and its metabolite) levels in brain, and characterized Abcb5 knockout mice. Our results demonstrate that Abcb5 is part of the blood-brain barrier; it affects susceptibility to HIT by altering the brain concentration of haloperidol. Moreover, a genetic association study in a haloperidol-treated human cohort indicates that human ABCB5 alleles had a time-dependent effect on susceptibility to individual and combined measures of HIT. Abcb5 alleles are pharmacogenetic factors that affect susceptibility to HIT, but it is likely that additional pharmacogenetic susceptibility factors will be discovered. Conclusions ABCB5 alleles alter susceptibility to HIT in mouse and humans. This discovery leads to a new model that (at least in part) explains inter-individual differences in susceptibility to a drug-induced CNS toxicity. PMID:25647612

  14. Genetics Home Reference: deafness and myopia syndrome

    MedlinePlus

    ... This Page Aruga J, Yokota N, Mikoshiba K. Human SLITRK family genes: genomic organization and expression profiling in normal brain ... AH. SLITRK6 mutations cause myopia and deafness in humans and mice. J Clin Invest. 2013 May;123(5):2094-102. doi: 10.1172/JCI65853. Epub ... are genome editing and CRISPR-Cas9? What is precision medicine? What ...

  15. Variability in human body size

    NASA Technical Reports Server (NTRS)

    Annis, J. F.

    1978-01-01

    The range of variability found among homogeneous groups is described and illustrated. Those trends that show significantly marked differences between sexes and among a number of racial/ethnic groups are also presented. Causes of human-body size variability discussed include genetic endowment, aging, nutrition, protective garments, and occupation. The information is presented to aid design engineers of space flight hardware and equipment.

  16. Modeling a model: Mouse genetics, 22q11.2 Deletion Syndrome, and disorders of cortical circuit development

    PubMed Central

    Meechan, Daniel W.; Maynard, Thomas M.; Fernandez, Alejandra; Karpinski, Beverly A.; Rothblat, Lawrence A.; LaMantia, Anthony S.

    2015-01-01

    Understanding the developmental etiology of autistic spectrum disorders, attention deficit/hyperactivity disorder and schizophrenia remains a major challenge for establishing new diagnostic and therapeutic approaches to these common, difficult-to-treat diseases that compromise neural circuits in the cerebral cortex. One aspect of this challenge is the breadth and overlap of ASD, ADHD, and SCZ deficits; another is the complexity of mutations associated with each, and a third is the difficulty of analyzing disrupted development in at-risk or affected human fetuses. The identification of distinct genetic syndromes that include behavioral deficits similar to those in ASD, ADHC and SCZ provides a critical starting point for meeting this challenge. We summarize clinical and behavioral impairments in children and adults with one such genetic syndrome, the 22q11.2 Deletion Syndrome, routinely called 22q11DS, caused by micro-deletions of between 1.5 and 3.0 MB on human chromosome 22. Among many syndromic features, including cardiovascular and craniofacial anomalies, 22q11DS patients have a high incidence of brain structural, functional, and behavioral deficits that reflect cerebral cortical dysfunction and fall within the spectrum that defines ASD, ADHD, and SCZ. We show that developmental pathogenesis underlying this apparent genetic “model” syndrome in patients can be defined and analyzed mechanistically using genomically accurate mouse models of the deletion that causes 22q11DS. We conclude that “modeling a model”, in this case 22q11DS as a model for idiopathic ASD, ADHD and SCZ, as well as other behavioral disorders like anxiety frequently seen in 22q11DS patients, in genetically engineered mice provides a foundation for understanding the causes and improving diagnosis and therapy for these disorders of cortical circuit development. PMID:25866365

  17. dbWGFP: a database and web server of human whole-genome single nucleotide variants and their functional predictions.

    PubMed

    Wu, Jiaxin; Wu, Mengmeng; Li, Lianshuo; Liu, Zhuo; Zeng, Wanwen; Jiang, Rui

    2016-01-01

    The recent advancement of the next generation sequencing technology has enabled the fast and low-cost detection of all genetic variants spreading across the entire human genome, making the application of whole-genome sequencing a tendency in the study of disease-causing genetic variants. Nevertheless, there still lacks a repository that collects predictions of functionally damaging effects of human genetic variants, though it has been well recognized that such predictions play a central role in the analysis of whole-genome sequencing data. To fill this gap, we developed a database named dbWGFP (a database and web server of human whole-genome single nucleotide variants and their functional predictions) that contains functional predictions and annotations of nearly 8.58 billion possible human whole-genome single nucleotide variants. Specifically, this database integrates 48 functional predictions calculated by 17 popular computational methods and 44 valuable annotations obtained from various data sources. Standalone software, user-friendly query services and free downloads of this database are available at http://bioinfo.au.tsinghua.edu.cn/dbwgfp. dbWGFP provides a valuable resource for the analysis of whole-genome sequencing, exome sequencing and SNP array data, thereby complementing existing data sources and computational resources in deciphering genetic bases of human inherited diseases. © The Author(s) 2016. Published by Oxford University Press.

  18. [Human genetic data from a data protection law perspective].

    PubMed

    Schulte In den Bäumen, Tobias

    2007-02-01

    The collection and use of genetic data have caused much concern in the German population. Data protection is widely seen as the tool to address these fears. The term genetic data is not self-explanatory, as it depends on the different types of genetic diseases. The protection of genetic data as defined with regard to the different sets of diseases needs to fit into the preexisting data protection legislation. Still, the particularities of genetic data such as the multipersonal impact need to be considered. A balance between the information needs of society and the right to privacy requires a medically driven criteria. The medical term of indication which corresponds with the data protection term of purpose should serve as a tool in order to balance the rights of the patients and their relatives or between clients and third persons involved. Some countries have set up new legislative acts to address the challenges of human genetics. The current state of German data protection law leaves citizen rather unprotected as long as the data are used for medical purposes in a wider sense. A special law on the collection of genetic data has been discussed for several years, but it should be questioned whether the scope of a sector-specific law would serve citizens better. It seems to be preferable to adjust the existing Data Protection Act rather than drafting a specific law which covers the field of human genetics. This adaptation should reflect upon the different technical ways in which genetic data are collected and used.

  19. Genetic determination of height-mediated mate choice.

    PubMed

    Tenesa, Albert; Rawlik, Konrad; Navarro, Pau; Canela-Xandri, Oriol

    2016-01-19

    Numerous studies have reported positive correlations among couples for height. This suggests that humans find individuals of similar height attractive. However, the answer to whether the choice of a mate with a similar phenotype is genetically or environmentally determined has been elusive. Here we provide an estimate of the genetic contribution to height choice in mates in 13,068 genotyped couples. Using a mixed linear model we show that 4.1% of the variation in the mate height choice is determined by a person's own genotype, as expected in a model where one's height determines the choice of mate height. Furthermore, the genotype of an individual predicts their partners' height in an independent dataset of 15,437 individuals with 13% accuracy, which is 64% of the theoretical maximum achievable with a heritability of 0.041. Theoretical predictions suggest that approximately 5% of the heritability of height is due to the positive covariance between allelic effects at different loci, which is caused by assortative mating. Hence, the coupling of alleles with similar effects could substantially contribute to the missing heritability of height. These estimates provide new insight into the mechanisms that govern mate choice in humans and warrant the search for the genetic causes of choice of mate height. They have important methodological implications and contribute to the missing heritability debate.

  20. Comparative Population Genomics Analysis of the Mammalian Fungal Pathogen Pneumocystis.

    PubMed

    Cissé, Ousmane H; Ma, Liang; Wei Huang, Da; Khil, Pavel P; Dekker, John P; Kutty, Geetha; Bishop, Lisa; Liu, Yueqin; Deng, Xilong; Hauser, Philippe M; Pagni, Marco; Hirsch, Vanessa; Lempicki, Richard A; Stajich, Jason E; Cuomo, Christina A; Kovacs, Joseph A

    2018-05-08

    Pneumocystis species are opportunistic mammalian pathogens that cause severe pneumonia in immunocompromised individuals. These fungi are highly host specific and uncultivable in vitro Human Pneumocystis infections present major challenges because of a limited therapeutic arsenal and the rise of drug resistance. To investigate the diversity and demographic history of natural populations of Pneumocystis infecting humans, rats, and mice, we performed whole-genome and large-scale multilocus sequencing of infected tissues collected in various geographic locations. Here, we detected reduced levels of recombination and variations in historical demography, which shape the global population structures. We report estimates of evolutionary rates, levels of genetic diversity, and population sizes. Molecular clock estimates indicate that Pneumocystis species diverged before their hosts, while the asynchronous timing of population declines suggests host shifts. Our results have uncovered complex patterns of genetic variation influenced by multiple factors that shaped the adaptation of Pneumocystis populations during their spread across mammals. IMPORTANCE Understanding how natural pathogen populations evolve and identifying the determinants of genetic variation are central issues in evolutionary biology. Pneumocystis , a fungal pathogen which infects mammals exclusively, provides opportunities to explore these issues. In humans, Pneumocystis can cause a life-threatening pneumonia in immunosuppressed individuals. In analysis of different Pneumocystis species infecting humans, rats, and mice, we found that there are high infection rates and that natural populations maintain a high level of genetic variation despite low levels of recombination. We found no evidence of population structuring by geography. Our comparisons of the times of divergence of these species to their respective hosts suggest that Pneumocystis may have undergone recent host shifts. The results demonstrate that Pneumocystis strains are widely disseminated geographically and provide a new understanding of the evolution of these pathogens.

  1. Identification of a herpes simplex labialis susceptibility region on human chromosome 21.

    PubMed

    Hobbs, Maurine R; Jones, Brandt B; Otterud, Brith E; Leppert, Mark; Kriesel, John D

    2008-02-01

    Most of the United States population is infected with either herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2, or both. Reactivations of HSV-1 infection cause herpes simplex labialis (HSL; cold sores or fever blisters), which is the most common recurring viral infection in humans. To investigate the possibility of a human genetic component conferring resistance or susceptibility to cold sores (i.e., a HSL susceptibility gene), we conducted a genetic linkage analysis that included serotyping and phenotyping 421 individuals from 39 families enrolled in the Utah Genetic Reference Project. Linkage analysis identified a 2.5-Mb nonrecombinant region of interest on the long arm of human chromosome 21, with a multipoint logarithm of odds score of 3.9 noted near marker abmc65 (D21S409). Nonparametric linkage analysis of the data also provided strong evidence for linkage (P = .0005). This region of human chromosome 21 contains 6 candidate genes for herpes susceptibility. The development of frequent cold sores is associated with a region on the long arm of human chromosome 21. This region contains several candidate genes that could influence the frequency of outbreaks of HSL.

  2. Meiotic abnormalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  3. Mouse Models for Down Syndrome-Associated Developmental Cognitive Disabilities

    PubMed Central

    Liu, Chunhong; Belichenko, Pavel V.; Zhang, Li; Fu, Dawei; Kleschevnikov, Alexander M.; Baldini, Antonio; Antonarakis, Stylianos E.; Mobley, William C.; Yu, Y. Eugene

    2011-01-01

    Down syndrome (DS) is mainly caused by the presence of an extra copy of human chromosome 21 (Hsa21) and is a leading genetic cause for developmental cognitive disabilities in humans. The mouse is a premier model organism for DS because the regions on Hsa21 are syntenically conserved with three regions in the mouse genome, which are located on mouse chromosome 10 (Mmu10), Mmu16 and Mmu17. With the advance of chromosomal manipulation technologies, new mouse mutants have been generated to mimic DS at both the genotypic and phenotypic levels. Further mouse-based molecular genetic studies in the future may lead to the unraveling of the mechanisms underlying DS-associated developmental cognitive disabilities, which would lay the groundwork for developing effective treatments for this phenotypic manifestation. In this review, we will discuss recent progress and future challenges in modeling DS-associated developmental cognitive disability in mice with an emphasis on hippocampus-related phenotypes. PMID:21865664

  4. [Advances in congenital vertebral malformation caused by genomic copy number variation].

    PubMed

    Liu, Zhenlei; Wu, Nan; Wu, Zhihong; Zuo, Yuzhi; Qiu, Guixing

    2016-04-01

    Congenital vertebral malformation (CVM) is a congenital vertebral structural deformity caused by abnormal somitogenesis during embryonic development, of which the reason lies in gene mutation or abnormal regulation of the genes that coordinate somitogenesis during embryonic period. ICVAS had proposed a new classification algorithm for CVM, which facilitated exploration for its genetic etiology. Genomic Copy Number Variation (CNV) is a kind of DNA mutation, which is important for human evolution, phenotype polymorphism and diseases. Series of advances have been made on genetic causes of CVM, especially on CVM caused by CNV. CNVs of chromosome 16p11.2, 10q24.31, 17p11.2, 20p11, 22q11.2 and a few other regions are associated with CVM, indicating that gene dosage may play important roles in the development of the spinal cord.

  5. Autophagy and Human Neurodegenerative Diseases-A Fly's Perspective.

    PubMed

    Kim, Myungjin; Ho, Allison; Lee, Jun Hee

    2017-07-23

    Neurodegenerative diseases in humans are frequently associated with prominent accumulation of toxic protein inclusions and defective organelles. Autophagy is a process of bulk lysosomal degradation that eliminates these harmful substances and maintains the subcellular environmental quality. In support of autophagy's importance in neuronal homeostasis, several genetic mutations that interfere with autophagic processes were found to be associated with familial neurodegenerative disorders. In addition, genetic mutations in autophagy-regulating genes provoked neurodegenerative phenotypes in animal models. The Drosophila model significantly contributed to these recent developments, which led to the theory that autophagy dysregulation is one of the major underlying causes of human neurodegenerative disorders. In the current review, we discuss how studies using Drosophila enhanced our understanding of the relationship between autophagy and neurodegenerative processes.

  6. Complex Genetics and the Etiology of Human Congenital Heart Disease

    PubMed Central

    Gelb, Bruce D.; Chung, Wendy K.

    2014-01-01

    Congenital heart disease (CHD) is the most common birth defect. Despite considerable advances in care, CHD remains a major contributor to newborn mortality and is associated with substantial morbidities and premature death. Genetic abnormalities appear to be the primary cause of CHD, but identifying precise defects has proven challenging, principally because CHD is a complex genetic trait. Mainly because of recent advances in genomic technology such as next-generation DNA sequencing, scientists have begun to identify the genetic variants underlying CHD. In this article, the roles of modifier genes, de novo mutations, copy number variants, common variants, and noncoding mutations in the pathogenesis of CHD are reviewed. PMID:24985128

  7. Aggregation of population‐based genetic variation over protein domain homologues and its potential use in genetic diagnostics

    PubMed Central

    Wiel, Laurens; Venselaar, Hanka; Veltman, Joris A.; Vriend, Gert

    2017-01-01

    Abstract Whole exomes of patients with a genetic disorder are nowadays routinely sequenced but interpretation of the identified genetic variants remains a major challenge. The increased availability of population‐based human genetic variation has given rise to measures of genetic tolerance that have been used, for example, to predict disease‐causing genes in neurodevelopmental disorders. Here, we investigated whether combining variant information from homologous protein domains can improve variant interpretation. For this purpose, we developed a framework that maps population variation and known pathogenic mutations onto 2,750 “meta‐domains.” These meta‐domains consist of 30,853 homologous Pfam protein domain instances that cover 36% of all human protein coding sequences. We find that genetic tolerance is consistent across protein domain homologues, and that patterns of genetic tolerance faithfully mimic patterns of evolutionary conservation. Furthermore, for a significant fraction (68%) of the meta‐domains high‐frequency population variation re‐occurs at the same positions across domain homologues more often than expected. In addition, we observe that the presence of pathogenic missense variants at an aligned homologous domain position is often paired with the absence of population variation and vice versa. The use of these meta‐domains can improve the interpretation of genetic variation. PMID:28815929

  8. The epigenetic lorax: gene–environment interactions in human health

    PubMed Central

    Latham, Keith E; Sapienza, Carmen; Engel, Nora

    2012-01-01

    Over the last decade, we have witnessed an explosion of information on genetic factors underlying common human diseases and disorders. This ‘human genomics’ information revolution has occurred as a backdrop to a rapid increase in the rates of many human disorders and diseases. For example, obesity, Type 2 diabetes, asthma, autism spectrum disorder and attention deficit hyperactivity disorder have increased at rates that cannot be due to changes in the genetic structure of the population, and are difficult to ascribe to changes in diagnostic criteria or ascertainment. A likely cause of the increased incidence of these disorders is increased exposure to environmental factors that modify gene function. Many environmental factors that have epidemiological association with common human disorders are likely to exert their effects through epigenetic alterations. This general mechanism of gene–environment interaction poses special challenges for individuals, educators, scientists and public policy makers in defining, monitoring and mitigating exposures. PMID:22920179

  9. Travel and the emergence of infectious diseases.

    PubMed Central

    Wilson, M. E.

    1995-01-01

    Travel is a potent force in the emergence of disease. Migration of humans has been the pathway for disseminating infectious diseases throughout recorded history and will continue to shape the emergence, frequency, and spread of infections in geographic areas and populations. The current volume, speed, and reach of travel are unprecedented. The consequences of travel extend beyond the traveler to the population visited and the ecosystem. When they travel, humans carry their genetic makeup, immunologic sequelae of past infections, cultural preferences, customs, and behavioral patterns. Microbes, animals, and other biologic life also accompany them. Today's massive movement of humans and materials sets the stage for mixing diverse genetic pools at rates and in combinations previously unknown. Concomitant changes in the environment, climate, technology, land use, human behavior, and demographics converge to favor the emergence of infectious diseases caused by a broad range of organisms in humans, as well as in plants and animals. PMID:8903157

  10. Tumor-Protective Mechanism Identified from Premature Aging Disease | Center for Cancer Research

    Cancer.gov

    Hutchinson-Gilford Progeria Syndrome (HGPS) is an extraordinarily rare genetic disorder caused by a mutation in the LMNA gene, which encodes architectural proteins of the human cell nucleus. The mutation causes the production of a mutant protein called progerin. Patients with HGPS display signs of premature aging, such as hair loss, slowed growth, weakening of bone and joint

  11. Toenail infection by Cladophialophora boppii.

    PubMed

    Brasch, J; Dressel, S; Müller-Wening, K; Hügel, R; von Bremen, D; de Hoog, G S

    2011-02-01

    Cladophialophora boppii is a black yeast-like fungus that up to now has been only rarely described as a cause of human infection and whose role as a pathogen was not established despite its repeated isolation and genetic identification in these reports. Here we report the first case of a verified toenail infection caused by this fungus in a woman without any systemic disease or evidence of immunodeficiency. Identical dark molds were isolated from the same toenail at three points of time. Species identification was performed by scrutinizing the isolates morphologic, physiologic and genetic characteristics which resulted in their identification as Cladophialophora boppii. Oral treatment with terbinafin plus topical ciclopiroxolamine was effective.

  12. Biodiversity and emerging diseases.

    PubMed

    Maillard, Jean-Charles; Gonzalez, Jean-Paul

    2006-10-01

    First we remind general considerations concerning biodiversity on earth and particularly the loss of genetic biodiversity that seems irreversible whether its origin is directly or indirectly linked to human activities. Urgent and considerable efforts must be made from now on to cataloge, understand, preserve, and enhance the value of biodiversity while ensuring food safety and human and animal health. Ambitious integrated and multifield research programs must be implemented in order to understand the causes and anticipate the consequences of loss of biodiversity. Such losses are a serious threat to sustainable development and to the quality of life of future generations. They have an influence on the natural balance of global biodiversity in particularly in reducing the capability of species to adapt rapidly by genetic mutations to survive in modified ecosystems. Usually, the natural immune systems of mammals (both human and animal), are highly polymorphic and able to adapt rapidly to new situations. We more specifically discuss the fact that if the genetic diversity of the affected populations is low the invading microorganisms, will suddenly expand and create epidemic outbreaks with risks of pandemic. So biodiversity appears to function as an important barrier (buffer), especially against disease-causing organisms, which can function in different ways. Finally, we discuss the importance of preserving biodiversity mainly in the wildlife ecosystems as an integrated and sustainable approach among others in order to prevent and control the emergence or reemergence of diseases in animals and humans (zoonosis). Although plants are also part of this paradigm, they fall outside our field of study.

  13. Nature and Nurture: the complex genetics of myopia and refractive error

    PubMed Central

    Wojciechowski, Robert

    2010-01-01

    The refractive errors, myopia and hyperopia, are optical defects of the visual system that can cause blurred vision. Uncorrected refractive errors are the most common causes of visual impairment worldwide. It is estimated that 2.5 billion people will be affected by myopia alone with in the next decade. Experimental, epidemiological and clinical research has shown that refractive development is influenced by both environmental and genetic factors. Animal models have demonstrated that eye growth and refractive maturation during infancy are tightly regulated by visually-guided mechanisms. Observational data in human populations provide compelling evidence that environmental influences and individual behavioral factors play crucial roles in myopia susceptibility. Nevertheless, the majority of the variance of refractive error within populations is thought to be due to hereditary factors. Genetic linkage studies have mapped two dozen loci, while association studies have implicated more than 25 different genes in refractive variation. Many of these genes are involved in common biological pathways known to mediate extracellular matrix composition and regulate connective tissue remodeling. Other associated genomic regions suggest novel mechanisms in the etiology of human myopia, such as mitochondrial-mediated cell death or photoreceptor-mediated visual signal transmission. Taken together, observational and experimental studies have revealed the complex nature of human refractive variation, which likely involves variants in several genes and functional pathways. Multiway interactions between genes and/or environmental factors may also be important in determining individual risks of myopia, and may help explain the complex pattern of refractive error in human populations. PMID:21155761

  14. A Genetic Basis for Mechanosensory Traits in Humans

    PubMed Central

    Frenzel, Henning; Bohlender, Jörg; Pinsker, Katrin; Wohlleben, Bärbel; Tank, Jens; Lechner, Stefan G.; Schiska, Daniela; Jaijo, Teresa; Rüschendorf, Franz; Saar, Kathrin; Jordan, Jens; Millán, José M.; Gross, Manfred; Lewin, Gary R.

    2012-01-01

    In all vertebrates hearing and touch represent two distinct sensory systems that both rely on the transformation of mechanical force into electrical signals. There is an extensive literature describing single gene mutations in humans that cause hearing impairment, but there are essentially none for touch. Here we first asked if touch sensitivity is a heritable trait and second whether there are common genes that influence different mechanosensory senses like hearing and touch in humans. Using a classical twin study design we demonstrate that touch sensitivity and touch acuity are highly heritable traits. Quantitative phenotypic measures of different mechanosensory systems revealed significant correlations between touch and hearing acuity in a healthy human population. Thus mutations in genes causing deafness genes could conceivably negatively influence touch sensitivity. In agreement with this hypothesis we found that a proportion of a cohort of congenitally deaf young adults display significantly impaired measures of touch sensitivity compared to controls. In contrast, blind individuals showed enhanced, not diminished touch acuity. Finally, by examining a cohort of patients with Usher syndrome, a genetically well-characterized deaf-blindness syndrome, we could show that recessive pathogenic mutations in the USH2A gene influence touch acuity. Control Usher syndrome cohorts lacking demonstrable pathogenic USH2A mutations showed no impairment in touch acuity. Our study thus provides comprehensive evidence that there are common genetic elements that contribute to touch and hearing and has identified one of these genes as USH2A. PMID:22563300

  15. Causes of death in Prader-Willi syndrome: Prader-Willi Syndrome Association (USA) 40-year mortality survey.

    PubMed

    Butler, Merlin G; Manzardo, Ann M; Heinemann, Janalee; Loker, Carolyn; Loker, James

    2017-06-01

    Prader-Willi syndrome (PWS) is a rare, complex, neurodevelopmental genetic disorder that is associated with hyperphagia and morbid obesity in humans and leads to a shortened life expectancy. This report summarizes the primary causes of death and evaluates mortality trends in a large cohort of individuals with PWS. The US Prader-Willi Syndrome Association (PWSA (USA)) syndrome-specific database of death reports was collected through a cursory bereavement program for PWSA (USA) families using a brief survey created in 1999. Causes of death were descriptively characterized and statistically examined using Cox proportional hazards. A total of 486 deaths were reported (263 males, 217 females, 6 unknown) between 1973 and 2015, with mean age of 29.5 ± 16 years (2 months-67 years); 70% occurred in adulthood. Respiratory failure was the most common cause, accounting for 31% of all deaths. Males were at increased risk for presumed hyperphagia-related accidents/injuries and cardiopulmonary factors compared to females. PWS maternal disomy 15 genetic subtype showed an increased risk of death from cardiopulmonary factors compared to the deletion subtype. These findings highlight the heightened vulnerability to obesity and hyperphagia-related mortality in PWS. Future research is needed to address critical vulnerabilities such as gender and genetic subtype in the cause of death in PWS.Genet Med advance online publication 17 November 2016.

  16. Genetic evolution of recently emerged novel human-like swine H3 influenza A viruses (IAV) in United States swine

    USDA-ARS?s Scientific Manuscript database

    Introduction Influenza A virus (IAV) is a major cause of respiratory disease in swine. IAV transmission from humans to swine is a major contributor to swine IAV diversity. In 2012, a novel H3N2 with an HA (hu-H3) and NA derived from human seasonal H3N2 was detected in United States (US) swine. The h...

  17. Forest Fragmentation as Cause of Bacterial Transmission among Nonhuman Primates, Humans, and Livestock, Uganda

    PubMed Central

    Gillespie, Thomas R.; Rwego, Innocent B.; Estoff, Elizabeth L.; Chapman, Colin A.

    2008-01-01

    We conducted a prospective study of bacterial transmission among humans, nonhuman primates (primates hereafter), and livestock in western Uganda. Humans living near forest fragments harbored Escherichia coli bacteria that were ≈75% more similar to bacteria from primates in those fragments than to bacteria from primates in nearby undisturbed forests. Genetic similarity between human/livestock and primate bacteria increased ≈3-fold as anthropogenic disturbance within forest fragments increased from moderate to high. Bacteria harbored by humans and livestock were approximately twice as similar to those of red-tailed guenons, which habitually enter human settlements to raid crops, than to bacteria of other primate species. Tending livestock, experiencing gastrointestinal symptoms, and residing near a disturbed forest fragment increased genetic similarity between a participant’s bacteria and those of nearby primates. Forest fragmentation, anthropogenic disturbance within fragments, primate ecology, and human behavior all influence bidirectional, interspecific bacterial transmission. Targeted interventions on any of these levels should reduce disease transmission and emergence. PMID:18760003

  18. Defects in Mitochondrial DNA Replication and Human Disease

    PubMed Central

    Copeland, William C.

    2011-01-01

    Mitochondrial DNA (mtDNA) is replicated by the DNA polymerase γ in concert with accessory proteins such as the mitochondrial DNA helicase, single stranded DNA binding protein, topoisomerase, and initiating factors. Nucleotide precursors for mtDNA replication arise from the mitochondrial salvage pathway originating from transport of nucleosides, or alternatively from cytoplasmic reduction of ribonucleotides. Defects in mtDNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mtDNA deletions, point mutations, or depletion which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mtDNA depletion syndromes (MDS) such as Alpers or early infantile hepatocerebral syndromes, and mtDNA deletion disorders, such as progressive external ophthalmoplegia (PEO), ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). This review focuses on our current knowledge of genetic defects of mtDNA replication (POLG, POLG2, C10orf2) and nucleotide metabolism (TYMP, TK2, DGOUK, and RRM2B) that cause instability of mtDNA and mitochondrial disease. PMID:22176657

  19. Speciation reversal and biodiversity dynamics with hybridization in changing environments.

    PubMed

    Seehausen, Ole; Takimoto, Gaku; Roy, Denis; Jokela, Jukka

    2008-01-01

    A considerable fraction of the world's biodiversity is of recent evolutionary origin and has evolved as a by-product of, and is maintained by, divergent adaptation in heterogeneous environments. Conservationists have paid attention to genetic homogenization caused by human-induced translocations (e.g. biological invasions and stocking), and to the importance of environmental heterogeneity for the ecological coexistence of species. However, far less attention has been paid to the consequences of loss of environmental heterogeneity to the genetic coexistence of sympatric species. Our review of empirical observations and our theoretical considerations on the causes and consequences of interspecific hybridization suggest that a loss of environmental heterogeneity causes a loss of biodiversity through increased genetic admixture, effectively reversing speciation. Loss of heterogeneity relaxes divergent selection and removes ecological barriers to gene flow between divergently adapted species, promoting interspecific introgressive hybridization. Since heterogeneity of natural environments is rapidly deteriorating in most biomes, the evolutionary ecology of speciation reversal ought to be fully integrated into conservation biology.

  20. Two Distinct Yersinia pestis Populations Causing Plague among Humans in the West Nile Region of Uganda.

    PubMed

    Respicio-Kingry, Laurel B; Yockey, Brook M; Acayo, Sarah; Kaggwa, John; Apangu, Titus; Kugeler, Kiersten J; Eisen, Rebecca J; Griffith, Kevin S; Mead, Paul S; Schriefer, Martin E; Petersen, Jeannine M

    2016-02-01

    Plague is a life-threatening disease caused by the bacterium, Yersinia pestis. Since the 1990s, Africa has accounted for the majority of reported human cases. In Uganda, plague cases occur in the West Nile region, near the border with Democratic Republic of Congo. Despite the ongoing risk of contracting plague in this region, little is known about Y. pestis genotypes causing human disease. During January 2004-December 2012, 1,092 suspect human plague cases were recorded in the West Nile region of Uganda. Sixty-one cases were culture-confirmed. Recovered Y. pestis isolates were analyzed using three typing methods, single nucleotide polymorphisms (SNPs), pulsed field gel electrophoresis (PFGE), and multiple variable number of tandem repeat analysis (MLVA) and subpopulations analyzed in the context of associated geographic, temporal, and clinical data for source patients. All three methods separated the 61 isolates into two distinct 1.ANT lineages, which persisted throughout the 9 year period and were associated with differences in elevation and geographic distribution. We demonstrate that human cases of plague in the West Nile region of Uganda are caused by two distinct 1.ANT genetic subpopulations. Notably, all three typing methods used, SNPs, PFGE, and MLVA, identified the two genetic subpopulations, despite recognizing different mutation types in the Y. pestis genome. The geographic and elevation differences between the two subpopulations is suggestive of their maintenance in highly localized enzootic cycles, potentially with differing vector-host community composition. This improved understanding of Y. pestis subpopulations in the West Nile region will be useful for identifying ecologic and environmental factors associated with elevated plague risk.

  1. Single-nucleotide polymorphisms in the SEPTIN12 gene may be a genetic risk factor for Japanese patients with Sertoli cell-only syndrome.

    PubMed

    Miyakawa, Hiroe; Miyamoto, Toshinobu; Koh, Eitetsu; Tsujimura, Akira; Miyagawa, Yasushi; Saijo, Yasuaki; Namiki, Mikio; Sengoku, Kazuo

    2012-01-01

    Genetic mechanisms have been implicated as a cause of some cases of male infertility. Recently, 10 novel genes involved in human spermatogenesis, including human SEPTIN12, were identified by expression microarray analysis of human testicular tissue. Septin12 is a member of the septin family of conserved cytoskeletal GTPases that form heteropolymeric filamentous structures in interphase cells. It is expressed specifically in the testis. Therefore, we hypothesized that mutation or polymorphisms of SEPTIN12 participate in male infertility, especially Sertoli cell-only syndrome (SCOS). To investigate whether SEPTIN12 gene defects are associated with azoospermia caused by SCOS, mutational analysis was performed in 100 Japanese patients by direct sequencing of coding regions. Statistical analysis was performed in patients with SCOS and in 140 healthy control men. No mutations were found in SEPTIN12 ; however, 8 coding single-nucleotide polymorphisms (SNP1-SNP8) could be detected in the patients with SCOS. The genotype and allele frequencies in SNP3, SNP4, and SNP6 were notably higher in the SCOS group than in the control group (P < .001). These results suggest that SEPTIN12 might play a critical role in human spermatogenesis.

  2. GENETIC DIVERSITY AND THE ORIGINS OF CULTURAL FRAGMENTATION

    PubMed Central

    Ashraf, Quamrul; Galor, Oded

    2013-01-01

    Despite the importance attributed to the effects of diversity on the stability and prosperity of nations, the origins of the uneven distribution of ethnic and cultural fragmentation across countries have been underexplored. Building on the role of deeply-rooted biogeographical forces in comparative development, this research empirically demonstrates that genetic diversity, predominantly determined during the prehistoric “out of Africa” migration of humans, is an underlying cause of various existing manifestations of ethnolinguistic heterogeneity. Further exploration of this uncharted territory may revolutionize the understanding of the effects of deeply-rooted factors on economic development and the composition of human capital across the globe. PMID:25506084

  3. Biological characterization of highly pathogenic avian influenza H5N1 viruses that infected humans in Egypt in 2014-2015.

    PubMed

    El-Shesheny, Rabeh; Mostafa, Ahmed; Kandeil, Ahmed; Mahmoud, Sara H; Bagato, Ola; Naguib, Amel; Refaey, Samir El; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2017-03-01

    Highly pathogenic avian influenza (HPAI) H5N1 influenza viruses emerged as a human pathogen in 1997 with expected potential to undergo sustained human-to-human transmission and pandemic viral spread. HPAI H5N1 is endemic in Egyptian poultry and has caused sporadic human infection. The first outbreak in early 2006 was caused by clade 2.2 viruses that rapidly evolved genetically and antigenically. A sharp increase in the number of human cases was reported in Egypt in the 2014/2015 season. In this study, we analyzed and characterized three isolates of HPAI H5N1 viruses isolated from infected humans in Egypt in 2014/2015. Phylogenetic analysis demonstrated that the nucleotide sequences of eight segments of the three isolates were clustered with those of members of clade 2.2.1.2. We also found that the human isolates from 2014/2015 had a slight, non-significant difference in their affinity for human-like sialic acid receptors. In contrast, they showed significant differences in their replication kinetics in MDCK, MDCK-SIAT, and A549 cells as well as in embryonated chicken eggs. An antiviral bioassay study revealed that all of the isolates were susceptible to amantadine. Therefore, further investigation and monitoring is required to correlate the genetic and/or antigenic changes of the emerging HPAI H5N1 viruses with possible alteration in their characteristics and their potential to become a further threat to public health.

  4. Combined zebrafish-yeast chemical-genetic screens reveal gene-copper-nutrition interactions that modulate melanocyte pigmentation.

    PubMed

    Ishizaki, Hironori; Spitzer, Michaela; Wildenhain, Jan; Anastasaki, Corina; Zeng, Zhiqiang; Dolma, Sonam; Shaw, Michael; Madsen, Erik; Gitlin, Jonathan; Marais, Richard; Tyers, Mike; Patton, E Elizabeth

    2010-01-01

    Hypopigmentation is a feature of copper deficiency in humans, as caused by mutation of the copper (Cu(2+)) transporter ATP7A in Menkes disease, or an inability to absorb copper after gastric surgery. However, many causes of copper deficiency are unknown, and genetic polymorphisms might underlie sensitivity to suboptimal environmental copper conditions. Here, we combined phenotypic screens in zebrafish for compounds that affect copper metabolism with yeast chemical-genetic profiles to identify pathways that are sensitive to copper depletion. Yeast chemical-genetic interactions revealed that defects in intracellular trafficking pathways cause sensitivity to low-copper conditions; partial knockdown of the analogous Ap3s1 and Ap1s1 trafficking components in zebrafish sensitized developing melanocytes to hypopigmentation in low-copper environmental conditions. Because trafficking pathways are essential for copper loading into cuproproteins, our results suggest that hypomorphic alleles of trafficking components might underlie sensitivity to reduced-copper nutrient conditions. In addition, we used zebrafish-yeast screening to identify a novel target pathway in copper metabolism for the small-molecule MEK kinase inhibitor U0126. The zebrafish-yeast screening method combines the power of zebrafish as a disease model with facile genome-scale identification of chemical-genetic interactions in yeast to enable the discovery and dissection of complex multigenic interactions in disease-gene networks.

  5. Identification of a Novel Mutation in BRD4 that Causes Autosomal Dominant Syndromic Congenital Cataracts Associated with Other Neuro-Skeletal Anomalies

    PubMed Central

    Jin, Hyun-Seok; Kim, Jeonhyun; Kwak, Woori; Jeong, Hyeonsoo; Lim, Gyu-Bin

    2017-01-01

    Congenital cataracts can occur as a non-syndromic isolated ocular disease or as a part of genetic syndromes accompanied by a multi-systemic disease. Approximately 50% of all congenital cataract cases have a heterogeneous genetic basis. Here, we describe three generations of a family with an autosomal dominant inheritance pattern and common complex phenotypes, including bilateral congenital cataracts, short stature, macrocephaly, and minor skeletal anomalies. We did not find any chromosomal aberrations or gene copy number abnormalities using conventional genetic tests; accordingly, we conducted whole-exome sequencing (WES) to identify disease-causing genetic alterations in this family. Based on family WES data, we identified a novel BRD4 missense mutation as a candidate causal variant and performed cell-based experiments by ablation of endogenous BRD4 expression in human lens epithelial cells. The protein expression levels of connexin 43, p62, LC3BII, and p53 differed significantly between control cells and cells in which endogenous BRD4 expression was inhibited. We inferred that a BRD4 missense mutation was the likely disease-causing mutation in this family. Our findings may improve the molecular diagnosis of congenital cataracts and support the use of WES to clarify the genetic basis of complex diseases. PMID:28076398

  6. Broadening the application of evolutionarily based genetic pest management.

    PubMed

    Gould, Fred

    2008-02-01

    Insect- and tick-vectored diseases such as malaria, dengue fever, and Lyme disease cause human suffering, and current approaches for prevention are not adequate. Invasive plants and animals such as Scotch broom, zebra mussels, and gypsy moths continue to cause environmental damage and economic losses in agriculture and forestry. Rodents transmit diseases and cause major pre- and postharvest losses, especially in less affluent countries. Each of these problems might benefit from the developing field of Genetic Pest Management that is conceptually based on principles of evolutionary biology. This article briefly describes the history of this field, new molecular tools in this field, and potential applications of those tools. There will be a need for evolutionary biologists to interact with researchers and practitioners in a variety of other fields to determine the most appropriate targets for genetic pest management, the most appropriate methods for specific targets, and the potential of natural selection to diminish the effectiveness of genetic pest management. In addition to producing environmentally sustainable pest management solutions, research efforts in this area could lead to new insights about the evolution of selfish genetic elements in natural systems and will provide students with the opportunity to develop a more sophisticated understanding of the role of evolutionary biology in solving societal problems.

  7. The CDC Hemophilia B mutation project mutation list: a new online resource.

    PubMed

    Li, Tengguo; Miller, Connie H; Payne, Amanda B; Craig Hooper, W

    2013-11-01

    Hemophilia B (HB) is caused by mutations in the human gene F9. The mutation type plays a pivotal role in genetic counseling and prediction of inhibitor development. To help the HB community understand the molecular etiology of HB, we have developed a listing of all F9 mutations that are reported to cause HB based on the literature and existing databases. The Centers for Disease Control and Prevention (CDC) Hemophilia B Mutation Project (CHBMP) mutation list is compiled in an easily accessible format of Microsoft Excel and contains 1083 unique mutations that are reported to cause HB. Each mutation is identified using Human Genome Variation Society (HGVS) nomenclature standards. The mutation types and the predicted changes in amino acids, if applicable, are also provided. Related information including the location of mutation, severity of HB, the presence of inhibitor, and original publication reference are listed as well. Therefore, our mutation list provides an easily accessible resource for genetic counselors and HB researchers to predict inhibitors. The CHBMP mutation list is freely accessible at http://www.cdc.gov/hemophiliamutations.

  8. Nutrigenomics in cardiovascular disease: implications for the future.

    PubMed

    Engler, Mary B

    2009-12-01

    Cardiovascular disease (CVD), the leading cause of morbidity and mortality worldwide, is a complex multifactorial disease which is influenced by environmental and genetic factors. There is substantial evidence on the relationship between diet and CVD risk. An understanding of how genetic variation interacts with the diet to influence CVD risk is a rapidly evolving area of research. Since diet is the mainstay of risk factor modification, it is important to consider potential genetic influences on CVD risk. Nutrigenomics is the study of the interaction between diet and an individual's genetic makeup. Single nucleotide polymorphisms are the key factors in human genetic variation and provide a molecular basis for phenotypic differences between individuals. Whole genome and candidate gene association studies are two main approaches used in cardiovascular genetics to identify disease-causing genes. Recent nutrigenomics studies show the influence of genotype on the responsiveness to dietary factors or nutrients that may reduce CVD risk. Nutrigenomics research is expected to provide the scientific evidence for genotype-based personalized nutrition to promote health and prevent chronic disease, including CVD. It is imperative that healthcare providers, including cardiovascular nurses, are trained in genetics to foster delivery of competent genetic- and genomic-focused care and to facilitate incorporation of this new knowledge into current clinical practice, education, and research.

  9. Current issues in medically assisted reproduction and genetics in Europe: research, clinical practice, ethics, legal issues and policy. European Society of Human Genetics and European Society of Human Reproduction and Embryology.

    PubMed

    Harper, Joyce C; Geraedts, Joep; Borry, Pascal; Cornel, Martina C; Dondorp, Wybo; Gianaroli, Luca; Harton, Gary; Milachich, Tanya; Kääriäinen, Helena; Liebaers, Inge; Morris, Michael; Sequeiros, Jorge; Sermon, Karen; Shenfield, Françoise; Skirton, Heather; Soini, Sirpa; Spits, Claudia; Veiga, Anna; Vermeesch, Joris Robert; Viville, Stéphane; de Wert, Guido; Macek, Milan

    2013-11-01

    In March 2005, a group of experts from the European Society of Human Genetics and European Society of Human Reproduction and Embryology met to discuss the interface between genetics and assisted reproductive technology (ART), and published an extended background paper, recommendations and two Editorials. Seven years later, in March 2012, a follow-up interdisciplinary workshop was held, involving representatives of both professional societies, including experts from the European Union Eurogentest2 Coordination Action Project. The main goal of this meeting was to discuss developments at the interface between clinical genetics and ARTs. As more genetic causes of reproductive failure are now recognised and an increasing number of patients undergo testing of their genome before conception, either in regular health care or in the context of direct-to-consumer testing, the need for genetic counselling and preimplantation genetic diagnosis (PGD) may increase. Preimplantation genetic screening (PGS) thus far does not have evidence from randomised clinical trials to substantiate that the technique is both effective and efficient. Whole-genome sequencing may create greater challenges both in the technological and interpretational domains, and requires further reflection about the ethics of genetic testing in ART and PGD/PGS. Diagnostic laboratories should be reporting their results according to internationally accepted accreditation standards (International Standards Organisation - ISO 15189). Further studies are needed in order to address issues related to the impact of ART on epigenetic reprogramming of the early embryo. The legal landscape regarding assisted reproduction is evolving but still remains very heterogeneous and often contradictory. The lack of legal harmonisation and uneven access to infertility treatment and PGD/PGS fosters considerable cross-border reproductive care in Europe and beyond. The aim of this paper is to complement previous publications and provide an update of selected topics that have evolved since 2005.

  10. Debunking 'race' and asserting social determinants as primary causes of cancer health disparities: outcomes of a science education activity for teens.

    PubMed

    Márquez-Magaña, Leticia; Samayoa, Cathy; Umanzor, Carol

    2013-06-01

    Cancer health disparities are often described as the unequal burden of cancer deaths in one racial/ethnic group compared to another. For example, national cancer statistics in the USA shows that Blacks die the most for 9 of the top 10 cancers in men and women. When asked about the underlying causes for this disparity, teen participants speculated that it is primarily due to genetics or biology. This speculation appears to be based on a false concept of 'race.' A science activity was created to counter the false concept that genetics/biology underlie the categorization of humans into different 'races.' This activity provided teen participants with first-hand evidence of how they are all related at one genetic locus, and how they are more genetically related across racial/ethnic groups than within them. Results of surveys given before and after the activity show that they change their perceptions of 'race.' Before the activity, they view themselves as most related at the genetic level to 1-2 well-known individuals (i.e., celebrities) who they perceive as members of their own 'race' mainly because of similar appearance. After the activity, they view themselves as related to more/all the celebrities or they state that they do not know to whom they are most related. This increased awareness of the uncertainty between the apparent 'race' of an individual and their genetics drives teens to dismiss genetics or biology as the primary cause of racial/ethnic disparities in cancer outcomes. Instead, they consider the unequal distribution of the social determinants of health as the primary cause of cancer disparities.

  11. Gene therapy for inherited muscle diseases: where genetics meets rehabilitation medicine.

    PubMed

    Braun, Robynne; Wang, Zejing; Mack, David L; Childers, Martin K

    2014-11-01

    The development of clinical vectors to correct genetic mutations that cause inherited myopathies and related disorders of skeletal muscle is advancing at an impressive rate. Adeno-associated virus vectors are attractive for clinical use because (1) adeno-associated viruses do not cause human disease and (2) these vectors are able to persist for years. New vectors are now becoming available as gene therapy delivery tools, and recent preclinical experiments have demonstrated the feasibility, safety, and efficacy of gene therapy with adeno-associated virus for long-term correction of muscle pathology and weakness in myotubularin-deficient canine and murine disease models. In this review, recent advances in the application of gene therapies to treat inherited muscle disorders are presented, including Duchenne muscular dystrophy and x-linked myotubular myopathy. Potential areas for therapeutic synergies between rehabilitation medicine and genetics are also discussed.

  12. Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum.

    PubMed

    Vinayak, Sumiti; Pawlowic, Mattie C; Sateriale, Adam; Brooks, Carrie F; Studstill, Caleb J; Bar-Peled, Yael; Cipriano, Michael J; Striepen, Boris

    2015-07-23

    Recent studies into the global causes of severe diarrhoea in young children have identified the protozoan parasite Cryptosporidium as the second most important diarrhoeal pathogen after rotavirus. Diarrhoeal disease is estimated to be responsible for 10.5% of overall child mortality. Cryptosporidium is also an opportunistic pathogen in the contexts of human immunodeficiency virus (HIV)-caused AIDS and organ transplantation. There is no vaccine and only a single approved drug that provides no benefit for those in gravest danger: malnourished children and immunocompromised patients. Cryptosporidiosis drug and vaccine development is limited by the poor tractability of the parasite, which includes a lack of systems for continuous culture, facile animal models, and molecular genetic tools. Here we describe an experimental framework to genetically modify this important human pathogen. We established and optimized transfection of C. parvum sporozoites in tissue culture. To isolate stable transgenics we developed a mouse model that delivers sporozoites directly into the intestine, a Cryptosporidium clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system, and in vivo selection for aminoglycoside resistance. We derived reporter parasites suitable for in vitro and in vivo drug screening, and we evaluated the basis of drug susceptibility by gene knockout. We anticipate that the ability to genetically engineer this parasite will be transformative for Cryptosporidium research. Genetic reporters will provide quantitative correlates for disease, cure and protection, and the role of parasite genes in these processes is now open to rigorous investigation.

  13. Molecular concept in human oral cancer.

    PubMed

    Krishna, Akhilesh; Singh, Shraddha; Kumar, Vijay; Pal, U S

    2015-01-01

    The incidence of oral cancer remains high in both Asian and Western countries. Several risk factors associated with development of oral cancer are now well-known, including tobacco chewing, smoking, and alcohol consumption. Cancerous risk factors may cause many genetic events through chromosomal alteration or mutations in genetic material and lead to progression and development of oral cancer through histological progress, carcinogenesis. Oral squamous carcinogenesis is a multistep process in which multiple genetic events occur that alter the normal functions of proto-oncogenes/oncogenes and tumor suppressor genes. Furthermore, these gene alterations can deregulate the normal activity such as increase in the production of growth factors (transforming growth factor-α [TGF-α], TGF-β, platelet-derived growth factor, etc.) or numbers of cell surface receptors (epidermal growth factor receptor, G-protein-coupled receptor, etc.), enhanced intracellular messenger signaling and mutated production of transcription factors (ras gene family, c-myc gene) which results disturb to tightly regulated signaling pathways of normal cell. Several oncogenes and tumor suppressor genes have been implicated in oral cancer especially cyclin family, ras, PRAD-1, cyclin-dependent kinase inhibitors, p53 and RB1. Viral infections, particularly with oncogenic human papilloma virus subtype (16 and 18) and Epstein-Barr virus have tumorigenic effect on oral epithelia. Worldwide, this is an urgent need to initiate oral cancer research programs at molecular and genetic level which investigates the causes of genetic and molecular defect, responsible for malignancy. This approach may lead to development of target dependent tumor-specific drugs and appropriate gene therapy.

  14. Molecular concept in human oral cancer

    PubMed Central

    Krishna, Akhilesh; Singh, Shraddha; Kumar, Vijay; Pal, U. S.

    2015-01-01

    The incidence of oral cancer remains high in both Asian and Western countries. Several risk factors associated with development of oral cancer are now well-known, including tobacco chewing, smoking, and alcohol consumption. Cancerous risk factors may cause many genetic events through chromosomal alteration or mutations in genetic material and lead to progression and development of oral cancer through histological progress, carcinogenesis. Oral squamous carcinogenesis is a multistep process in which multiple genetic events occur that alter the normal functions of proto-oncogenes/oncogenes and tumor suppressor genes. Furthermore, these gene alterations can deregulate the normal activity such as increase in the production of growth factors (transforming growth factor-α [TGF-α], TGF-β, platelet-derived growth factor, etc.) or numbers of cell surface receptors (epidermal growth factor receptor, G-protein-coupled receptor, etc.), enhanced intracellular messenger signaling and mutated production of transcription factors (ras gene family, c-myc gene) which results disturb to tightly regulated signaling pathways of normal cell. Several oncogenes and tumor suppressor genes have been implicated in oral cancer especially cyclin family, ras, PRAD-1, cyclin-dependent kinase inhibitors, p53 and RB1. Viral infections, particularly with oncogenic human papilloma virus subtype (16 and 18) and Epstein-Barr virus have tumorigenic effect on oral epithelia. Worldwide, this is an urgent need to initiate oral cancer research programs at molecular and genetic level which investigates the causes of genetic and molecular defect, responsible for malignancy. This approach may lead to development of target dependent tumor-specific drugs and appropriate gene therapy. PMID:26668446

  15. In Genes We Trust: Germline Engineering, Eugenics, and the Future of the Human Genome.

    PubMed

    Powell, Russell

    2015-12-01

    Liberal proponents of genetic engineering maintain that developing human germline modification technologies is morally desirable because it will result in a net improvement in human health and well-being. Skeptics of germline modification, in contrast, fear evolutionary harms that could flow from intervening in the human germline, and worry that such programs, even if well intentioned, could lead to a recapitulation of the scientifically and morally discredited projects of the old eugenics. Some bioconservatives have appealed as well to the value of retaining our "given" human biological nature as a reason for restraining the development and use of human genetic modification technologies even where they would tend to increase well-being. In this article, I argue that germline intervention will be necessary merely to sustain the levels of genetic health that we presently enjoy for future generations-a goal that should appeal to bioliberals and bioconservatives alike. This is due to the population-genetic consequences of relaxed selection pressures in human populations caused by the increasing efficacy and availability of conventional medicine. This heterodox conclusion, which I present as a problem of intergenerational justice, has been overlooked in medicine and bioethics due to certain misconceptions about human evolution, which I attempt to rectify, as well as the sordid history of Darwinian approaches to medicine and social policy, which I distinguish from the present argument. © The Author 2015. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Extent, Causes, and Consequences of Small RNA Expression Variation in Human Adipose Tissue

    PubMed Central

    Knights, Andrew J.; Abreu-Goodger, Cei; van de Bunt, Martijn; Guerra-Assunção, José Afonso; Bartonicek, Nenad; van Dongen, Stijn; Mägi, Reedik; Nisbet, James; Barrett, Amy; Rantalainen, Mattias; Nica, Alexandra C.; Quail, Michael A.; Small, Kerrin S.; Glass, Daniel; Enright, Anton J.; Winn, John; Deloukas, Panos; Dermitzakis, Emmanouil T.; McCarthy, Mark I.; Spector, Timothy D.; Durbin, Richard; Lindgren, Cecilia M.

    2012-01-01

    Small RNAs are functional molecules that modulate mRNA transcripts and have been implicated in the aetiology of several common diseases. However, little is known about the extent of their variability within the human population. Here, we characterise the extent, causes, and effects of naturally occurring variation in expression and sequence of small RNAs from adipose tissue in relation to genotype, gene expression, and metabolic traits in the MuTHER reference cohort. We profiled the expression of 15 to 30 base pair RNA molecules in subcutaneous adipose tissue from 131 individuals using high-throughput sequencing, and quantified levels of 591 microRNAs and small nucleolar RNAs. We identified three genetic variants and three RNA editing events. Highly expressed small RNAs are more conserved within mammals than average, as are those with highly variable expression. We identified 14 genetic loci significantly associated with nearby small RNA expression levels, seven of which also regulate an mRNA transcript level in the same region. In addition, these loci are enriched for variants significant in genome-wide association studies for body mass index. Contrary to expectation, we found no evidence for negative correlation between expression level of a microRNA and its target mRNAs. Trunk fat mass, body mass index, and fasting insulin were associated with more than twenty small RNA expression levels each, while fasting glucose had no significant associations. This study highlights the similar genetic complexity and shared genetic control of small RNA and mRNA transcripts, and gives a quantitative picture of small RNA expression variation in the human population. PMID:22589741

  17. Protection of genetic heritage in the era of cloning

    PubMed Central

    de Oliveira Júnior, Eudes Quintino; de Oliveira, Pedro Bellentani Quintino

    2012-01-01

    Research on human beings has expanded greatly due to progress and the evolution of society as well as customs. Not only the unceasing development of research on human beings, but also interference in the beginning and end of life with homologous and heterogonous human reproduction, surrogate motherhood, cloning, gene therapies, eugenics, euthanasia, dysthanasia, orthothanasia, assisted suicide, genetic engineering, reassignment surgery in cases of transsexuality, the use of recombinant DNA technology and embryonic stem cells, transplantation of human organs and tissues, biotechnology and many other scientific advances. Scientific progress goes faster than the real needs of human beings, who are the final recipient of the entire evolutionary progress. Hence, there is the need to scrutinize whether new technologies are necessary, suitable and timely so that humanity can achieve its postulate of bene vivere. Human cloning, as an abrupt scientific fact, has presented itself to the world community as a procedure that can be performed with relative success and with little difficulty, since it achieved its objectives with the cloning of Dolly the sheep. This issue became the topic of discussion not only in the scientific community but in the lay population, and it received from both, global disapproval. The conclusion is that the human being is unique, with a life cycle defined by the rules of nature. Reversal will cause a violation of the genetic heritage and, above all, will confront the constitutional principle of human dignity. PMID:23323071

  18. Protection of genetic heritage in the era of cloning.

    PubMed

    de Oliveira Júnior, Eudes Quintino; de Oliveira, Pedro Bellentani Quintino

    2012-01-01

    Research on human beings has expanded greatly due to progress and the evolution of society as well as customs. Not only the unceasing development of research on human beings, but also interference in the beginning and end of life with homologous and heterogonous human reproduction, surrogate motherhood, cloning, gene therapies, eugenics, euthanasia, dysthanasia, orthothanasia, assisted suicide, genetic engineering, reassignment surgery in cases of transsexuality, the use of recombinant DNA technology and embryonic stem cells, transplantation of human organs and tissues, biotechnology and many other scientific advances. Scientific progress goes faster than the real needs of human beings, who are the final recipient of the entire evolutionary progress. Hence, there is the need to scrutinize whether new technologies are necessary, suitable and timely so that humanity can achieve its postulate of bene vivere. Human cloning, as an abrupt scientific fact, has presented itself to the world community as a procedure that can be performed with relative success and with little difficulty, since it achieved its objectives with the cloning of Dolly the sheep.This issue became the topic of discussion not only in the scientific community but in the lay population, and it received from both, global disapproval. The conclusion is that the human being is unique, with a life cycle defined by the rules of nature. Reversal will cause a violation of the genetic heritage and, above all, will confront the constitutional principle of human dignity.

  19. Molecular Diversity of Trypanosoma cruzi Detected in the Vector Triatoma protracta from California, USA.

    PubMed

    Shender, Lisa A; Lewis, Michael D; Rejmanek, Daniel; Mazet, Jonna A K

    2016-01-01

    Trypanosoma cruzi, causative agent of Chagas disease in humans and dogs, is a vector-borne zoonotic protozoan parasite that can cause fatal cardiac disease. While recognized as the most economically important parasitic infection in Latin America, the incidence of Chagas disease in the United States of America (US) may be underreported and even increasing. The extensive genetic diversity of T. cruzi in Latin America is well-documented and likely influences disease progression, severity and treatment efficacy; however, little is known regarding T. cruzi strains endemic to the US. It is therefore important to expand our knowledge on US T. cruzi strains, to improve upon the recognition of and response to locally acquired infections. We conducted a study of T. cruzi molecular diversity in California, augmenting sparse genetic data from southern California and for the first time investigating genetic sequences from northern California. The vector Triatoma protracta was collected from southern (Escondido and Los Angeles) and northern (Vallecito) California regions. Samples were initially screened via sensitive nuclear repetitive DNA and kinetoplast minicircle DNA PCR assays, yielding an overall prevalence of approximately 28% and 55% for southern and northern California regions, respectively. Positive samples were further processed to identify discrete typing units (DTUs), revealing both TcI and TcIV lineages in southern California, but only TcI in northern California. Phylogenetic analyses (targeting COII-ND1, TR and RB19 genes) were performed on a subset of positive samples to compare Californian T. cruzi samples to strains from other US regions and Latin America. Results indicated that within the TcI DTU, California sequences were similar to those from the southeastern US, as well as to several isolates from Latin America responsible for causing Chagas disease in humans. Triatoma protracta populations in California are frequently infected with T. cruzi. Our data extend the northern limits of the range of TcI and identify a novel genetic exchange event between TcI and TcIV. High similarity between sequences from California and specific Latin American strains indicates US strains may be equally capable of causing human disease. Additional genetic characterization of Californian and other US T. cruzi strains is recommended.

  20. Male infertility and its genetic causes.

    PubMed

    Miyamoto, Toshinobu; Minase, Gaku; Okabe, Kimika; Ueda, Hiroto; Sengoku, Kazuo

    2015-10-01

    Infertility is a serious social problem in advanced nations, with male factor infertility accounting for approximately half of all cases of infertility. Here, we aim to discuss our laboratory results in the context of recent literature on critical genes residing on the Y chromosome or autosomes that play important roles in human spermatogenesis. The PubMed database was systematically searched using the following keywords: 'genetics of male factor infertility'; 'male infertility genes', 'genetics of spermatogenesis' to retrieve information for this review. Striking progress has recently been made in the elucidation of mechanisms of spermatogenesis using knockout mouse models. This information has, in many cases, not been directly translatable to humans. Nevertheless, mutations in several critical genes have been shown to cause male infertility. We discuss here the contribution to male factor infertility of a number of genes identified in the azoospermia factor (AZF) region on the Y chromosome, as well as the autosomally located genes: SYKP3, KLHL10, AURKC and SPATA16. Non-obstructive azoospermia is the most severe form of azoospermia. However, the presence of spermatozoa can only be confirmed through procedures, which may prove to be unnecessary. Elucidation of the genes underlying male factor infertility, and thereby a better understanding of the mechanisms that cause it, will result in more tailored, evidence-based decisions in treatment of patients. © 2015 Japan Society of Obstetrics and Gynecology.

  1. Disease modeling and drug screening for neurological diseases using human induced pluripotent stem cells.

    PubMed

    Xu, Xiao-hong; Zhong, Zhong

    2013-06-01

    With the general decline of pharmaceutical research productivity, there are concerns that many components of the drug discovery process need to be redesigned and optimized. For example, the human immortalized cell lines or animal primary cells commonly used in traditional drug screening may not faithfully recapitulate the pathological mechanisms of human diseases, leading to biases in assays, targets, or compounds that do not effectively address disease mechanisms. Recent advances in stem cell research, especially in the development of induced pluripotent stem cell (iPSC) technology, provide a new paradigm for drug screening by permitting the use of human cells with the same genetic makeup as the patients without the typical quantity constraints associated with patient primary cells. In this article, we will review the progress made to date on cellular disease models using human stem cells, with a focus on patient-specific iPSCs for neurological diseases. We will discuss the key challenges and the factors that associated with the success of using stem cell models for drug discovery through examples from monogenic diseases, diseases with various known genetic components, and complex diseases caused by a combination of genetic, environmental and other factors.

  2. The humankind genome: from genetic diversity to the origin of human diseases.

    PubMed

    Belizário, Jose E

    2013-12-01

    Genome-wide association studies have failed to establish common variant risk for the majority of common human diseases. The underlying reasons for this failure are explained by recent studies of resequencing and comparison of over 1200 human genomes and 10 000 exomes, together with the delineation of DNA methylation patterns (epigenome) and full characterization of coding and noncoding RNAs (transcriptome) being transcribed. These studies have provided the most comprehensive catalogues of functional elements and genetic variants that are now available for global integrative analysis and experimental validation in prospective cohort studies. With these datasets, researchers will have unparalleled opportunities for the alignment, mining, and testing of hypotheses for the roles of specific genetic variants, including copy number variations, single nucleotide polymorphisms, and indels as the cause of specific phenotypes and diseases. Through the use of next-generation sequencing technologies for genotyping and standardized ontological annotation to systematically analyze the effects of genomic variation on humans and model organism phenotypes, we will be able to find candidate genes and new clues for disease's etiology and treatment. This article describes essential concepts in genetics and genomic technologies as well as the emerging computational framework to comprehensively search websites and platforms available for the analysis and interpretation of genomic data.

  3. A study on the relationship between genetic and environmental factors of type 2 diabetes mellitus in humans.

    PubMed

    Chen, Yu; Zhou, Ling; Xu, Yaochu; Shen, Hongbing; Niu, Juying

    2002-05-01

    To study the relationship between the inheritable factor and environmental factors of type 2 diabetes mellitus in humans. A case-control study based on 154 type 2 diabetes mellitus and 130 healthy controls was carried out in Jiangsu Province in 1997. The age, family history of diabetes mellitus, hypertension history, high waist/hip ratio (WHR), high systolic blood pressure, huge fetus history, and the genotype of beta(3)-adrenergic receptor (beta(3)-AR) were the risk factors of type 2 diabetes mellitus; while occupational physical activity was protective factor of type 2 diabetes mellitus. The risk for diabetes mellitus distinctly increased while genetic factor and obesity, beta(3)-AR mutation were coexisting. Type 2 diabetes mellitus is caused by the effect of both genetic and environmental factors.

  4. Recommendations for genetic variation data capture in developing countries to ensure a comprehensive worldwide data collection.

    PubMed

    Patrinos, George P; Al Aama, Jumana; Al Aqeel, Aida; Al-Mulla, Fahd; Borg, Joseph; Devereux, Andrew; Felice, Alex E; Macrae, Finlay; Marafie, Makia J; Petersen, Michael B; Qi, Ming; Ramesar, Rajkumar S; Zlotogora, Joel; Cotton, Richard G H

    2011-01-01

    Developing countries have significantly contributed to the elucidation of the genetic basis of both common and rare disorders, providing an invaluable resource of cases due to large family sizes, consanguinity, and potential founder effects. Moreover, the recognized depth of genomic variation in indigenous African populations, reflecting the ancient origins of humanity on the African continent, and the effect of selection pressures on the genome, will be valuable in understanding the range of both pathological and nonpathological variations. The involvement of these populations in accurately documenting the extant genetic heterogeneity is more than essential. Developing nations are regarded as key contributors to the Human Variome Project (HVP; http://www.humanvariomeproject.org), a major effort to systematically collect mutations that contribute to or cause human disease and create a cyber infrastructure to tie databases together. However, biomedical research has not been the primary focus in these countries even though such activities are likely to produce economic and health benefits for all. Here, we propose several recommendations and guidelines to facilitate participation of developing countries in genetic variation data documentation, ensuring an accurate and comprehensive worldwide data collection. We also summarize a few well-coordinated genetic data collection initiatives that would serve as paradigms for similar projects.

  5. Common genetic variants influence human subcortical brain structures.

    PubMed

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-09

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  6. Does Biology Justify Ideology? The Politics of Genetic Attribution

    PubMed Central

    Suhay, Elizabeth; Jayaratne, Toby Epstein

    2013-01-01

    Conventional wisdom suggests that political conservatives are more likely than liberals to endorse genetic explanations for many human characteristics and behaviors. Whether and to what extent this is true has received surprisingly limited systematic attention. We examine evidence from a large U.S. public opinion survey that measured the extent to which respondents believed genetic explanations account for a variety of differences among individuals as well as groups in society. We find that conservatives were indeed more likely than liberals to endorse genetic explanations for perceived race and class differences in characteristics often associated with socioeconomic inequality (intelligence, math skills, drive, and violence). Different ideological divisions emerged, however, with respect to respondents’ explanations for sexual orientation. Here, liberals were more likely than conservatives to say that sexual orientation is due to genes and less likely to say that it is due to choice or the environment. These patterns suggest that conservative and liberal ideologues will tend to endorse genetic explanations where their policy positions are bolstered by “naturalizing” human differences. That said, debates over genetic influence may be more politicized with respect to race, class, and sexual orientation than population differences generally: We find that left/right political ideology was not significantly associated with genetic (or other) attributions for individual differences in intelligence, math skills, drive, or violence. We conclude that conceptions of the proper role of government are closely intertwined with assumptions about the causes of human difference, but that this relationship is a complex one. PMID:26379311

  7. Does Biology Justify Ideology? The Politics of Genetic Attribution.

    PubMed

    Suhay, Elizabeth; Jayaratne, Toby Epstein

    2013-01-01

    Conventional wisdom suggests that political conservatives are more likely than liberals to endorse genetic explanations for many human characteristics and behaviors. Whether and to what extent this is true has received surprisingly limited systematic attention. We examine evidence from a large U.S. public opinion survey that measured the extent to which respondents believed genetic explanations account for a variety of differences among individuals as well as groups in society. We find that conservatives were indeed more likely than liberals to endorse genetic explanations for perceived race and class differences in characteristics often associated with socioeconomic inequality (intelligence, math skills, drive, and violence). Different ideological divisions emerged, however, with respect to respondents' explanations for sexual orientation. Here, liberals were more likely than conservatives to say that sexual orientation is due to genes and less likely to say that it is due to choice or the environment. These patterns suggest that conservative and liberal ideologues will tend to endorse genetic explanations where their policy positions are bolstered by "naturalizing" human differences. That said, debates over genetic influence may be more politicized with respect to race, class, and sexual orientation than population differences generally: We find that left/right political ideology was not significantly associated with genetic (or other) attributions for individual differences in intelligence, math skills, drive, or violence. We conclude that conceptions of the proper role of government are closely intertwined with assumptions about the causes of human difference, but that this relationship is a complex one.

  8. Genetic forms of neurohypophyseal diabetes insipidus.

    PubMed

    Rutishauser, Jonas; Spiess, Martin; Kopp, Peter

    2016-03-01

    Neurohypophyseal diabetes insipidus is characterized by polyuria and polydipsia owing to partial or complete deficiency of the antidiuretic hormone, arginine vasopressin (AVP). Although in most patients non-hereditary causes underlie the disorder, genetic forms have long been recognized and studied both in vivo and in vitro. In most affected families, the disease is transmitted in an autosomal dominant manner, whereas autosomal recessive forms are much less frequent. Both phenotypes can be caused by mutations in the vasopressin-neurophysin II (AVP) gene. In transfected cells expressing dominant mutations, the mutated hormone precursor is retained in the endoplasmic reticulum, where it forms fibrillar aggregates. Autopsy studies in humans and a murine knock-in model suggest that the dominant phenotype results from toxicity to vasopressinergic neurons, but the mechanisms leading to cell death remain unclear. Recessive transmission results from AVP with reduced biologic activity or the deletion of the locus. Genetic neurohypophyseal diabetes insipidus occurring in the context of diabetes mellitus, optic atrophy, and deafness is termed DIDMOAD or Wolfram syndrome, a genetically and phenotypically heterogeneous autosomal recessive disorder caused by mutations in the wolframin (WFS 1) gene. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Undiagnosed Small-Fiber Polyneuropathy - Is it a Component of Gulf-War Illness

    DTIC Science & Technology

    2013-07-01

    causes of SFPN in the young (dysim- mune, genetic, and infectious ) were more common than causes of SFPN in maturity (eg, diabetes, cancer, vitamin...pertussis, Mycobacterium tuberculosis, group A Streptococcus, mononucleosis , in- fluenza, and parvovirus. Among the 11 documented injuries shortly preceding...immunofixation Urine tests: Heavy metals, protein immunofixation, porphyrins, amino and organic acids Infectious tests: Hepatitis C, syphilis, human

  10. Undiagnosed Small-Fiber Polyneuropathy: Is it a Component of Gulf War Illness?

    DTIC Science & Technology

    2014-09-01

    known causes of SFPN in the young (dysim- mune, genetic, and infectious ) were more common than causes of SFPN in maturity (eg, diabetes, cancer, vitamin...group A Streptococcus, mononucleosis , in- fluenza, and parvovirus. Among the 11 documented injuries shortly preceding onset of widespread pain, 10...metals, protein immunofixation, porphyrins, amino and organic acids Infectious tests: Hepatitis C, syphilis, human immunodeficiency virus, deer-associated

  11. Insights from genomic comparisons of genetically monomorphic bacterial pathogens

    PubMed Central

    Achtman, Mark

    2012-01-01

    Some of the most deadly bacterial diseases, including leprosy, anthrax and plague, are caused by bacterial lineages with extremely low levels of genetic diversity, the so-called ‘genetically monomorphic bacteria’. It has only become possible to analyse the population genetics of such bacteria since the recent advent of high-throughput comparative genomics. The genomes of genetically monomorphic lineages contain very few polymorphic sites, which often reflect unambiguous clonal genealogies. Some genetically monomorphic lineages have evolved in the last decades, e.g. antibiotic-resistant Staphylococcus aureus, whereas others have evolved over several millennia, e.g. the cause of plague, Yersinia pestis. Based on recent results, it is now possible to reconstruct the sources and the history of pandemic waves of plague by a combined analysis of phylogeographic signals in Y. pestis plus polymorphisms found in ancient DNA. Different from historical accounts based exclusively on human disease, Y. pestis evolved in China, or the vicinity, and has spread globally on multiple occasions. These routes of transmission can be reconstructed from the genealogy, most precisely for the most recent pandemic that was spread from Hong Kong in multiple independent waves in 1894. PMID:22312053

  12. Epilepsy Genetics—Past, Present, and Future

    PubMed Central

    Poduri, Annapurna; Lowenstein, Daniel

    2014-01-01

    Human epilepsy is a common and heterogeneous condition in which genetics play an important etiological role. We begin by reviewing the past history of epilepsy genetics, a field that has traditionally included studies of pedigrees with epilepsy caused by defects in ion channels and neurotransmitters. We highlight important recent discoveries that have expanded the field beyond the realm of channels and neurotransmitters and that have challenged the notion that single genes produce single disorders. Finally, we project toward an exciting future for epilepsy genetics as large-scale collaborative phenotyping studies come face to face with new technologies in genomic medicine. PMID:21277190

  13. Y chromosome microdeletions and alterations of spermatogenesis, patient approach and genetic counseling.

    PubMed

    Rives, Nathalie

    2014-05-01

    Infertility affects 15% of couples at reproductive age and human male infertility appears frequently idiopathic. The main genetic causes of spermatogenesis defect responsible for non-obstructive azoospermia and severe oligozoospermia are constitutional chromosomal abnormalities and microdeletions in the azoospermia factor region of the Y chromosome. The improvement of the Yq microdeletion screening method gave new insights in the mechanism responsible for the genesis of Yq microdeletions and for the consequences of the management of male infertility and genetic counselling in case of assisted reproductive technology. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. A Canonical Correlation Analysis of AIDS Restriction Genes and Metabolic Pathways Identifies Purine Metabolism as a Key Cooperator.

    PubMed

    Ye, Hanhui; Yuan, Jinjin; Wang, Zhengwu; Huang, Aiqiong; Liu, Xiaolong; Han, Xiao; Chen, Yahong

    2016-01-01

    Human immunodeficiency virus causes a severe disease in humans, referred to as immune deficiency syndrome. Studies on the interaction between host genetic factors and the virus have revealed dozens of genes that impact diverse processes in the AIDS disease. To resolve more genetic factors related to AIDS, a canonical correlation analysis was used to determine the correlation between AIDS restriction and metabolic pathway gene expression. The results show that HIV-1 postentry cellular viral cofactors from AIDS restriction genes are coexpressed in human transcriptome microarray datasets. Further, the purine metabolism pathway comprises novel host factors that are coexpressed with AIDS restriction genes. Using a canonical correlation analysis for expression is a reliable approach to exploring the mechanism underlying AIDS.

  15. Avian influenza virus transmission to mammals.

    PubMed

    Herfst, S; Imai, M; Kawaoka, Y; Fouchier, R A M

    2014-01-01

    Influenza A viruses cause yearly epidemics and occasional pandemics. In addition, zoonotic influenza A viruses sporadically infect humans and may cause severe respiratory disease and fatalities. Fortunately, most of these viruses do not have the ability to be efficiently spread among humans via aerosols or respiratory droplets (airborne transmission) and to subsequently cause a pandemic. However, adaptation of these zoonotic viruses to humans by mutation or reassortment with human influenza A viruses may result in airborne transmissible viruses with pandemic potential. Although our knowledge of factors that affect mammalian adaptation and transmissibility of influenza viruses is still limited, we are beginning to understand some of the biological traits that drive airborne transmission of influenza viruses among mammals. Increased understanding of the determinants and mechanisms of airborne transmission may aid in assessing the risks posed by avian influenza viruses to human health, and preparedness for such risks. This chapter summarizes recent discoveries on the genetic and phenotypic traits required for avian influenza viruses to become airborne transmissible between mammals.

  16. Comprehensive Review of Human Sapoviruses

    PubMed Central

    Katayama, Kazuhiko; Saif, Linda J.

    2015-01-01

    SUMMARY Sapoviruses cause acute gastroenteritis in humans and animals. They belong to the genus Sapovirus within the family Caliciviridae. They infect and cause disease in humans of all ages, in both sporadic cases and outbreaks. The clinical symptoms of sapovirus gastroenteritis are indistinguishable from those caused by noroviruses, so laboratory diagnosis is essential to identify the pathogen. Sapoviruses are highly diverse genetically and antigenically. Currently, reverse transcription-PCR (RT-PCR) assays are widely used for sapovirus detection from clinical specimens due to their high sensitivity and broad reactivity as well as the lack of sensitive assays for antigen detection or cell culture systems for the detection of infectious viruses. Sapoviruses were first discovered in 1976 by electron microscopy in diarrheic samples of humans. To date, sapoviruses have also been detected from several animals: pigs, mink, dogs, sea lions, and bats. In this review, we focus on genomic and antigenic features, molecular typing/classification, detection methods, and clinical and epidemiological profiles of human sapoviruses. PMID:25567221

  17. Microbial and human heat shock proteins as 'danger signals' in sarcoidosis.

    PubMed

    Dubaniewicz, Anna

    2013-12-01

    In the light of the Matzinger's model of immune response, human heat shock proteins (HSPs) as main 'danger signals' (tissue damage-associated molecular patterns-DAMPs) or/and microbial HSPs as pathogen-associated molecular patterns (PAMPs) recognized by pattern recognition receptors (PRR), may induce sarcoid granuloma by both infectious and non-infectious factors in genetically different predisposed host. Regarding infectious causes of sarcoid models, low-virulence strains of, e.g. mycobacteria and propionibacteria recognized through changed PRR and persisting in altered host phagocytes, generate increased release of both human and microbial HSPs with their molecular and functional homology. High chronic spread of human and microbial HSPs altering cytokines, co-stimulatory molecules, and Tregs expression, apoptosis, oxidative stress, induces the autoimmunity, considered in sarcoidosis. Regarding non-infectious causes of sarcoidosis, human HSPs may be released at high levels during chronic low-grade exposure to misfolding amyloid precursor protein in stressed cells, phagocyted metal fumes, pigments with/without aluminum in tattoos, and due to heat shock in firefighters. Therefore, human HSPs as DAMPs and/or microbial HSPs as PAMPs produced as a result of non-infectious and infectious factors may induce different models of sarcoidosis, depending on the genetic background of the host. The number/expression of PRRs/ligands may influence the occurrence of sarcoidosis in particular organs. Copyright © 2013 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  18. Conservation genetics of extremely isolated urban populations of the northern dusky salamander (Desmognathus fuscus) in New York City

    PubMed Central

    Zak, Yana; Pehek, Ellen

    2013-01-01

    Urbanization is a major cause of amphibian decline. Stream-dwelling plethodontid salamanders are particularly susceptible to urbanization due to declining water quality and hydrological changes, but few studies have examined these taxa in cities. The northern dusky salamander (Desmognathus fuscus) was once common in the New York City metropolitan area, but has substantially declined throughout the region in recent decades. We used five tetranucleotide microsatellite loci to examine population differentiation, genetic variation, and bottlenecks among five remnant urban populations of dusky salamanders in NYC. These genetic measures provide information on isolation, prevalence of inbreeding, long-term prospects for population persistence, and potential for evolutionary responses to future environmental change. All populations were genetically differentiated from each other, and the most isolated populations in Manhattan have maintained very little genetic variation (i.e. <20% heterozygosity). A majority of the populations also exhibited evidence of genetic bottlenecks. These findings contrast with published estimates of high genetic variation within and lack of structure between populations of other desmognathine salamanders sampled over similar or larger spatial scales. Declines in genetic variation likely resulted from population extirpations and the degradation of stream and terrestrial paths for dispersal in NYC. Loss of genetic variability in populations isolated by human development may be an underappreciated cause and/or consequence of the decline of this species in urbanized areas of the northeast USA. PMID:23646283

  19. Cardiovascular pharmacogenetics: a promise for genomically-guided therapy and personalized medicine.

    PubMed

    Zaiou, M; El Amri, H

    2017-03-01

    Cardiovascular disease (CVD) is the leading cause of death worldwide. The basic causes of CVD are not fully understood yet. Substantial evidence suggests that genetic predisposition plays a vital role in the physiopathology of this complex disease. Hence, identification of genetic contributors to CVD will likely add diagnostic accuracy and better prediction of an individual's risk. With high-throughput genetics and genomics technology and newer genome-wide study approaches, a number of genetic variations across the human genome were uncovered. Evidence suggests that genetic defects could influence CVD development and inter-individual responses to widely used cardiovascular drugs like clopidogrel, aspirin, warfarin, and statins, and therefore, they may be integrated into clinical practice. If clinically validated, better understanding of these genetic variations may provide new opportunities for personalized diagnostic, pharmacogenetic-based drug selection and best treatment in personalized medicine. However, numerous gaps remain unsolved due to the lack of underlying pathological mechanisms for how genetic predisposition could contribute to CVD. This review provides an overview of the extraordinary scientific progress in our understanding of genetic and genomic basis of CVD as well as the development of relevant genetic biomarkers for this disease. Some of the actual limitations to the promise of these markers and their translation for the benefit of patients will be discussed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. A HapMap harvest of insights into the genetics of common disease

    PubMed Central

    Manolio, Teri A.; Brooks, Lisa D.; Collins, Francis S.

    2008-01-01

    The International HapMap Project was designed to create a genome-wide database of patterns of human genetic variation, with the expectation that these patterns would be useful for genetic association studies of common diseases. This expectation has been amply fulfilled with just the initial output of genome-wide association studies, identifying nearly 100 loci for nearly 40 common diseases and traits. These associations provided new insights into pathophysiology, suggesting previously unsuspected etiologic pathways for common diseases that will be of use in identifying new therapeutic targets and developing targeted interventions based on genetically defined risk. In addition, HapMap-based discoveries have shed new light on the impact of evolutionary pressures on the human genome, suggesting multiple loci important for adapting to disease-causing pathogens and new environments. In this review we examine the origin, development, and current status of the HapMap; its prospects for continued evolution; and its current and potential future impact on biomedical science. PMID:18451988

  1. The Genome of a Mongolian Individual Reveals the Genetic Imprints of Mongolians on Modern Human Populations

    PubMed Central

    Wu, Qizhu; Yin, Ye; Zhou, Huanmin

    2014-01-01

    Mongolians have played a significant role in modern human evolution, especially after the rise of Genghis Khan (1162[?]–1227). Although the social cultural impacts of Genghis Khan and the Mongolian population have been well documented, explorations of their genome structure and genetic imprints on other human populations have been lacking. We here present the genome of a Mongolian male individual. The genome was de novo assembled using a total of 130.8-fold genomic data produced from massively parallel whole-genome sequencing. We identified high-confidence variation sets, including 3.7 million single nucleotide polymorphisms (SNPs) and 756,234 short insertions and deletions. Functional SNP analysis predicted that the individual has a pathogenic risk for carnitine deficiency. We located the patrilineal inheritance of the Mongolian genome to the lineage D3a through Y haplogroup analysis and inferred that the individual has a common patrilineal ancestor with Tibeto-Burman populations and is likely to be the progeny of the earliest settlers in East Asia. We finally investigated the genetic imprints of Mongolians on other human populations using different approaches. We found varying degrees of gene flows between Mongolians and populations living in Europe, South/Central Asia, and the Indian subcontinent. The analyses demonstrate that the genetic impacts of Mongolians likely resulted from the expansion of the Mongolian Empire in the 13th century. The genome will be of great help in further explorations of modern human evolution and genetic causes of diseases/traits specific to Mongolians. PMID:25377941

  2. Stem Cell Technology for (Epi)genetic Brain Disorders.

    PubMed

    Riemens, Renzo J M; Soares, Edilene S; Esteller, Manel; Delgado-Morales, Raul

    2017-01-01

    Despite the enormous efforts of the scientific community over the years, effective therapeutics for many (epi)genetic brain disorders remain unidentified. The common and persistent failures to translate preclinical findings into clinical success are partially attributed to the limited efficiency of current disease models. Although animal and cellular models have substantially improved our knowledge of the pathological processes involved in these disorders, human brain research has generally been hampered by a lack of satisfactory humanized model systems. This, together with our incomplete knowledge of the multifactorial causes in the majority of these disorders, as well as a thorough understanding of associated (epi)genetic alterations, has been impeding progress in gaining more mechanistic insights from translational studies. Over the last years, however, stem cell technology has been offering an alternative approach to study and treat human brain disorders. Owing to this technology, we are now able to obtain a theoretically inexhaustible source of human neural cells and precursors in vitro that offer a platform for disease modeling and the establishment of therapeutic interventions. In addition to the potential to increase our general understanding of how (epi)genetic alterations contribute to the pathology of brain disorders, stem cells and derivatives allow for high-throughput drugs and toxicity testing, and provide a cell source for transplant therapies in regenerative medicine. In the current chapter, we will demonstrate the validity of human stem cell-based models and address the utility of other stem cell-based applications for several human brain disorders with multifactorial and (epi)genetic bases, including Parkinson's disease (PD), Alzheimer's disease (AD), fragile X syndrome (FXS), Angelman syndrome (AS), Prader-Willi syndrome (PWS), and Rett syndrome (RTT).

  3. The Human Microbiome and the Missing Heritability Problem

    PubMed Central

    Sandoval-Motta, Santiago; Aldana, Maximino; Martínez-Romero, Esperanza; Frank, Alejandro

    2017-01-01

    The “missing heritability” problem states that genetic variants in Genome-Wide Association Studies (GWAS) cannot completely explain the heritability of complex traits. Traditionally, the heritability of a phenotype is measured through familial studies using twins, siblings and other close relatives, making assumptions on the genetic similarities between them. When this heritability is compared to the one obtained through GWAS for the same traits, a substantial gap between both measurements arise with genome wide studies reporting significantly smaller values. Several mechanisms for this “missing heritability” have been proposed, such as epigenetics, epistasis, and sequencing depth. However, none of them are able to fully account for this gap in heritability. In this paper we provide evidence that suggests that in order for the phenotypic heritability of human traits to be broadly understood and accounted for, the compositional and functional diversity of the human microbiome must be taken into account. This hypothesis is based on several observations: (A) The composition of the human microbiome is associated with many important traits, including obesity, cancer, and neurological disorders. (B) Our microbiome encodes a second genome with nearly a 100 times more genes than the human genome, and this second genome may act as a rich source of genetic variation and phenotypic plasticity. (C) Human genotypes interact with the composition and structure of our microbiome, but cannot by themselves explain microbial variation. (D) Microbial genetic composition can be strongly influenced by the host's behavior, its environment or by vertical and horizontal transmissions from other hosts. Therefore, genetic similarities assumed in familial studies may cause overestimations of heritability values. We also propose a method that allows the compositional and functional diversity of our microbiome to be incorporated to genome wide association studies. PMID:28659968

  4. Who should know about our genetic makeup and why?

    PubMed Central

    Takala, T.; Gylling, H. A.

    2000-01-01

    Recent developments in biology have made it possible to acquire more and more precise information concerning our genetic makeup. Although the most far-reaching effects of these developments will probably be felt only after the Human Genome Project has been completed in a few years' time, scientists can even today identify a number of genetic disorders which may cause illness and disease in their carriers. The improved knowledge regarding the human genome will, it is predicted, in the near future make diagnoses more accurate and treatments more effective, and thereby considerably reduce and prevent unnecessary suffering. On the other hand, however, the knowledge can also be, depending on the case, futile, distressing or plainly harmful. This is why we propose to answer in this paper the dual question: who should know about our genetic makeup and why? Through an analysis of prudential, moral and legal grounds for acquiring the information, we conclude that, at least on the levels of law and social policy, practically nobody is either duty-bound to receive or entitled to have that knowledge. Key Words: Genetic testing • genetic screening • law • ethics • duties PMID:10860207

  5. Enteric infections, diarrhea, and their impact on function and development

    PubMed Central

    Petri, William A.; Miller, Mark; Binder, Henry J.; Levine, Myron M.; Dillingham, Rebecca; Guerrant, Richard L.

    2008-01-01

    Enteric infections, with or without overt diarrhea, have profound effects on intestinal absorption, nutrition, and childhood development as well as on global mortality. Oral rehydration therapy has reduced the number of deaths from dehydration caused by infection with an enteric pathogen, but it has not changed the morbidity caused by such infections. This Review focuses on the interactions between enteric pathogens and human genetic determinants that alter intestinal function and inflammation and profoundly impair human health and development. We also discuss specific implications for novel approaches to interventions that are now opened by our rapidly growing molecular understanding. PMID:18382740

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narod, S.A.; Douglas, G.R.; Nestmann, E.R.

    The importance of inherited mutations as a cause of human disease has been established clearly through examples of well-defined genetic anomalies, such as Down syndrome and retinoblastoma. Furthermore, it is suspected that environmental contaminants induce mutations resulting in increased risk for such defects in subsequent generations of persons exposed. The present lack of direct evidence for induced inherited genetic disorders in human beings hampers the development of risk estimation techniques for extrapolation from animal models. The most extensive prospective epidemiologic studies of inherited genetic effects have involved survivors of atomic bomb detonations and patients treated with cancer chemotherapy. In neithermore » case has a significant elevation in inherited genetic effects or cancer been detected in the offspring of exposed individuals. Epidemiologic studies of subjects receiving chronic exposure may be confounded by the effect of maternal exposure during pregnancy. Consideration of only paternal exposure can minimize the confounding influence of teratogenicity, enhancing the resolving power of studies for inherited effects. Using this approach, retrospective (case-control) studies of childhood cancer patients have provided limited but suggestive evidence for inheritance of induced effects. Endpoints, such as congenital malformations and spontaneous abortion following paternal exposure, can also be considered as indicators of heritable mutagenic effects. For example, there is limited evidence suggesting that paternal exposure to anaesthetic gases may cause miscarriage and congenital abnormalities as a result of induced male germ cell mutations. 104 references.« less

  7. Genetic analysis shows low levels of hybridization between African wildcats (Felis silvestris lybica) and domestic cats (F. s. catus) in South Africa

    PubMed Central

    Le Roux, Johannes J; Foxcroft, Llewellyn C; Herbst, Marna; MacFadyen, Sandra

    2015-01-01

    Hybridization between domestic and wild animals is a major concern for biodiversity conservation, and as habitats become increasingly fragmented, conserving biodiversity at all levels, including genetic, becomes increasingly important. Except for tropical forests and true deserts, African wildcats occur across the African continent; however, almost no work has been carried out to assess its genetic status and extent of hybridization with domestic cats. For example, in South Africa it has been argued that the long-term viability of maintaining pure wildcat populations lies in large protected areas only, isolated from human populations. Two of the largest protected areas in Africa, the Kgalagadi Transfrontier and Kruger National Parks, as well as the size of South Africa and range of landscape uses, provide a model situation to assess how habitat fragmentation and heterogeneity influences the genetic purity of African wildcats. Using population genetic and home range data, we examined the genetic purity of African wildcats and their suspected hybrids across South Africa, including areas within and outside of protected areas. Overall, we found African wildcat populations to be genetically relatively pure, but instances of hybridization and a significant relationship between the genetic distinctiveness (purity) of wildcats and human population pressure were evident. The genetically purest African wildcats were found in the Kgalagadi Transfrontier Park, while samples from around Kruger National Park showed cause for concern, especially combined with the substantial human population density along the park's boundary. While African wildcat populations in South Africa generally appear to be genetically pure, with low levels of hybridization, our genetic data do suggest that protected areas may play an important role in maintaining genetic purity by reducing the likelihood of contact with domestic cats. We suggest that approaches such as corridors between protected areas are unlikely to remain effective for wildcat conservation, as the proximity to human settlements around these areas is projected to increase the wild/domestic animal interface. Thus, large, isolated protected areas will become increasingly important for wildcat conservation and efforts need to be made to prevent introduction of domestic cats into these areas. PMID:25691958

  8. Genetic analysis shows low levels of hybridization between African wildcats (Felis silvestris lybica) and domestic cats (F. s. catus) in South Africa.

    PubMed

    Le Roux, Johannes J; Foxcroft, Llewellyn C; Herbst, Marna; MacFadyen, Sandra

    2015-01-01

    Hybridization between domestic and wild animals is a major concern for biodiversity conservation, and as habitats become increasingly fragmented, conserving biodiversity at all levels, including genetic, becomes increasingly important. Except for tropical forests and true deserts, African wildcats occur across the African continent; however, almost no work has been carried out to assess its genetic status and extent of hybridization with domestic cats. For example, in South Africa it has been argued that the long-term viability of maintaining pure wildcat populations lies in large protected areas only, isolated from human populations. Two of the largest protected areas in Africa, the Kgalagadi Transfrontier and Kruger National Parks, as well as the size of South Africa and range of landscape uses, provide a model situation to assess how habitat fragmentation and heterogeneity influences the genetic purity of African wildcats. Using population genetic and home range data, we examined the genetic purity of African wildcats and their suspected hybrids across South Africa, including areas within and outside of protected areas. Overall, we found African wildcat populations to be genetically relatively pure, but instances of hybridization and a significant relationship between the genetic distinctiveness (purity) of wildcats and human population pressure were evident. The genetically purest African wildcats were found in the Kgalagadi Transfrontier Park, while samples from around Kruger National Park showed cause for concern, especially combined with the substantial human population density along the park's boundary. While African wildcat populations in South Africa generally appear to be genetically pure, with low levels of hybridization, our genetic data do suggest that protected areas may play an important role in maintaining genetic purity by reducing the likelihood of contact with domestic cats. We suggest that approaches such as corridors between protected areas are unlikely to remain effective for wildcat conservation, as the proximity to human settlements around these areas is projected to increase the wild/domestic animal interface. Thus, large, isolated protected areas will become increasingly important for wildcat conservation and efforts need to be made to prevent introduction of domestic cats into these areas.

  9. Equine recurrent uveitis: Human and equine perspectives.

    PubMed

    Malalana, Fernando; Stylianides, Amira; McGowan, Catherine

    2015-10-01

    Equine recurrent uveitis (ERU) is a spontaneous disease characterised by repeated episodes of intraocular inflammation. The epidemiology of ERU has not been fully elucidated, but the condition appears to be much more common in horses than is recurrent uveitis in humans, especially in certain breeds and geographical regions. Both humans and horses show a similarly altered immune response and a marked autoimmune response as the primary disease pathophysiology. However, an inciting cause is not always clear. Potential inciting factors in horses include microbial agents such as Leptospira spp. Microbial factors and genetic predisposition to the disease may provide clues as to why the horse appears so susceptible to this disease. The aim of this review is to discuss the immunology and genetics of ERU, compare the disease in horses with autoimmune anterior uveitis in humans, and discuss potential reasons for the increased prevalence in the horse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Cardiovascular Nursing on Human Genomics: What do cardiovascular nurses need to know about congestive heart failure?

    PubMed Central

    Frazier, Lorraine; Wung, Shu-Fen; Sparks, Elizabeth; Eastwood, Cathy

    2009-01-01

    This paper presents the main causes of heart failure (HF) and an update on the genetics studies on each cause. The review includes a delineation of the etiology and fundamental pathophysiology of HF and provides rational for treatment for the patient and family. Various cardiomyopathies are discussed, includingprimary cardiomyopathies, mixed cardiomyopathies, cardiomyopathies that involve altered cardiac muscle along with generalized multi-organ disorders, and various cardiovascular conditions, such as coronary artery disease (ischemic cardiomyopathy) and hypertension (hypertensive cardiomyopathy).1 A brief review of pharmacogenetics and HF is presented. The application of the genetic components of cardiomyopathy and pharmacogenetics is included to enhance cardiovascular nursing care. PMID:19737164

  11. Phylogenomic and biogeographic reconstruction of the Trichinella complex

    USDA-ARS?s Scientific Manuscript database

    Trichinellosis is a globally important food-borne parasitic disease of humans. It is caused by roundworms of the Trichinella complex. Extensive biodiversity is reflected in substantial ecological and genetic variability within and among taxa, and major controversy surrounds the systematics of this c...

  12. Genetics Home Reference: CATSPER1-related nonsyndromic male infertility

    MedlinePlus

    ... Avenarius MR, Hildebrand MS, Zhang Y, Meyer NC, Smith LL, Kahrizi K, Najmabadi H, Smith RJ. Human male infertility caused by mutations in ... article on PubMed Central Hildebrand MS, Avenarius MR, Smith RJH. CATSPER-Related Male Infertility. 2009 Dec 3 [ ...

  13. Challenges in reproducibility of genetic association studies: lessons learned from the obesity field.

    PubMed

    Li, A; Meyre, D

    2013-04-01

    A robust replication of initial genetic association findings has proved to be difficult in human complex diseases and more specifically in the obesity field. An obvious cause of non-replication in genetic association studies is the initial report of a false positive result, which can be explained by a non-heritable phenotype, insufficient sample size, improper correction for multiple testing, population stratification, technical biases, insufficient quality control or inappropriate statistical analyses. Replication may, however, be challenging even when the original study describes a true positive association. The reasons include underpowered replication samples, gene × gene, gene × environment interactions, genetic and phenotypic heterogeneity and subjective interpretation of data. In this review, we address classic pitfalls in genetic association studies and provide guidelines for proper discovery and replication genetic association studies with a specific focus on obesity.

  14. Genetic and phenotypic variations of inherited retinal diseases in dogs: the power of within- and across-breed studies

    PubMed Central

    Acland, Gregory M.

    2014-01-01

    Considerable clinical and molecular variations have been known in retinal blinding diseases in man and also in dogs. Different forms of retinal diseases occur in specific breed(s) caused by mutations segregating within each isolated breeding population. While molecular studies to find genes and mutations underlying retinal diseases in dogs have benefited largely from the phenotypic and genetic uniformity within a breed, within- and across-breed variations have often played a key role in elucidating the molecular basis. The increasing knowledge of phenotypic, allelic, and genetic heterogeneities in canine retinal degeneration has shown that the overall picture is rather more complicated than initially thought. Over the past 20 years, various approaches have been developed and tested to search for genes and mutations underlying genetic traits in dogs, depending on the availability of genetic tools and sample resources. Candidate gene, linkage analysis, and genome-wide association studies have so far identified 24 mutations in 18 genes underlying retinal diseases in at least 58 dog breeds. Many of these genes have been associated with retinal diseases in humans, thus providing opportunities to study the role in pathogenesis and in normal vision. Application in therapeutic interventions such as gene therapy has proven successful initially in a naturally occurring dog model followed by trials in human patients. Other genes whose human homologs have not been associated with retinal diseases are potential candidates to explain equivalent human diseases and contribute to the understanding of their function in vision. PMID:22065099

  15. Host genetics of Epstein-Barr virus infection, latency and disease.

    PubMed

    Houldcroft, Charlotte J; Kellam, Paul

    2015-03-01

    Epstein-Barr virus (EBV) infects 95% of the adult population and is the cause of infectious mononucleosis. It is also associated with 1% of cancers worldwide, such as nasopharyngeal carcinoma, Hodgkin's lymphoma and Burkitt's lymphoma. Human and cancer genetic studies are now major forces determining gene variants associated with many cancers, including nasopharyngeal carcinoma and Hodgkin's lymphoma. Host genetics is also important in infectious disease; however, there have been no large-scale efforts towards understanding the contribution that human genetic variation plays in primary EBV infection and latency. This review covers 25 years of studies into host genetic susceptibility to EBV infection and disease, from candidate gene studies, to the first genome-wide association study of EBV antibody response, and an EBV-status stratified genome-wide association study of Hodgkin's lymphoma. Although many genes are implicated in EBV-related disease, studies are often small, not replicated or followed up in a different disease. Larger, appropriately powered genomic studies to understand the host response to EBV will be needed to move our understanding of the biology of EBV infection beyond the handful of genes currently identified. Fifty years since the discovery of EBV and its identification as a human oncogenic virus, a glimpse of the future is shown by the first whole-genome and whole-exome studies, revealing new human genes at the heart of the host-EBV interaction. © 2014 The Authors Reviews in Medical Virology published by John Wiley & Sons Ltd.

  16. Genetic and phenotypic variations of inherited retinal diseases in dogs: the power of within- and across-breed studies.

    PubMed

    Miyadera, Keiko; Acland, Gregory M; Aguirre, Gustavo D

    2012-02-01

    Considerable clinical and molecular variations have been known in retinal blinding diseases in man and also in dogs. Different forms of retinal diseases occur in specific breed(s) caused by mutations segregating within each isolated breeding population. While molecular studies to find genes and mutations underlying retinal diseases in dogs have benefited largely from the phenotypic and genetic uniformity within a breed, within- and across-breed variations have often played a key role in elucidating the molecular basis. The increasing knowledge of phenotypic, allelic, and genetic heterogeneities in canine retinal degeneration has shown that the overall picture is rather more complicated than initially thought. Over the past 20 years, various approaches have been developed and tested to search for genes and mutations underlying genetic traits in dogs, depending on the availability of genetic tools and sample resources. Candidate gene, linkage analysis, and genome-wide association studies have so far identified 24 mutations in 18 genes underlying retinal diseases in at least 58 dog breeds. Many of these genes have been associated with retinal diseases in humans, thus providing opportunities to study the role in pathogenesis and in normal vision. Application in therapeutic interventions such as gene therapy has proven successful initially in a naturally occurring dog model followed by trials in human patients. Other genes whose human homologs have not been associated with retinal diseases are potential candidates to explain equivalent human diseases and contribute to the understanding of their function in vision.

  17. Host genetics of Epstein–Barr virus infection, latency and disease

    PubMed Central

    Houldcroft, Charlotte J; Kellam, Paul

    2015-01-01

    Epstein–Barr virus (EBV) infects 95% of the adult population and is the cause of infectious mononucleosis. It is also associated with 1% of cancers worldwide, such as nasopharyngeal carcinoma, Hodgkin's lymphoma and Burkitt's lymphoma. Human and cancer genetic studies are now major forces determining gene variants associated with many cancers, including nasopharyngeal carcinoma and Hodgkin's lymphoma. Host genetics is also important in infectious disease; however, there have been no large-scale efforts towards understanding the contribution that human genetic variation plays in primary EBV infection and latency. This review covers 25 years of studies into host genetic susceptibility to EBV infection and disease, from candidate gene studies, to the first genome-wide association study of EBV antibody response, and an EBV-status stratified genome-wide association study of Hodgkin's lymphoma. Although many genes are implicated in EBV-related disease, studies are often small, not replicated or followed up in a different disease. Larger, appropriately powered genomic studies to understand the host response to EBV will be needed to move our understanding of the biology of EBV infection beyond the handful of genes currently identified. Fifty years since the discovery of EBV and its identification as a human oncogenic virus, a glimpse of the future is shown by the first whole-genome and whole-exome studies, revealing new human genes at the heart of the host–EBV interaction. © 2014 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd. PMID:25430668

  18. Genomics and transcriptomics in drug discovery.

    PubMed

    Dopazo, Joaquin

    2014-02-01

    The popularization of genomic high-throughput technologies is causing a revolution in biomedical research and, particularly, is transforming the field of drug discovery. Systems biology offers a framework to understand the extensive human genetic heterogeneity revealed by genomic sequencing in the context of the network of functional, regulatory and physical protein-drug interactions. Thus, approaches to find biomarkers and therapeutic targets will have to take into account the complex system nature of the relationships of the proteins with the disease. Pharmaceutical companies will have to reorient their drug discovery strategies considering the human genetic heterogeneity. Consequently, modeling and computational data analysis will have an increasingly important role in drug discovery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Sequence type 1 group B Streptococcus, an emerging cause of invasive disease in adults, evolves by small genetic changes

    PubMed Central

    Flores, Anthony R.; Galloway-Peña, Jessica; Sahasrabhojane, Pranoti; Saldaña, Miguel; Yao, Hui; Su, Xiaoping; Ajami, Nadim J.; Holder, Michael E.; Petrosino, Joseph F.; Thompson, Erika; Margarit Y Ros, Immaculada; Rosini, Roberto; Grandi, Guido; Horstmann, Nicola; Teatero, Sarah; McGeer, Allison; Fittipaldi, Nahuel; Rappuoli, Rino; Baker, Carol J.; Shelburne, Samuel A.

    2015-01-01

    The molecular mechanisms underlying pathogen emergence in humans is a critical but poorly understood area of microbiologic investigation. Serotype V group B Streptococcus (GBS) was first isolated from humans in 1975, and rates of invasive serotype V GBS disease significantly increased starting in the early 1990s. We found that 210 of 229 serotype V GBS strains (92%) isolated from the bloodstream of nonpregnant adults in the United States and Canada between 1992 and 2013 were multilocus sequence type (ST) 1. Elucidation of the complete genome of a 1992 ST-1 strain revealed that this strain had the highest homology with a GBS strain causing cow mastitis and that the 1992 ST-1 strain differed from serotype V strains isolated in the late 1970s by acquisition of cell surface proteins and antimicrobial resistance determinants. Whole-genome comparison of 202 invasive ST-1 strains detected significant recombination in only eight strains. The remaining 194 strains differed by an average of 97 SNPs. Phylogenetic analysis revealed a temporally dependent mode of genetic diversification consistent with the emergence in the 1990s of ST-1 GBS as major agents of human disease. Thirty-one loci were identified as being under positive selective pressure, and mutations at loci encoding polysaccharide capsule production proteins, regulators of pilus expression, and two-component gene regulatory systems were shown to affect the bacterial phenotype. These data reveal that phenotypic diversity among ST-1 GBS is mainly driven by small genetic changes rather than extensive recombination, thereby extending knowledge into how pathogens adapt to humans. PMID:25941374

  20. Dysregulation of the PDGFRA gene causes inflow tract anomalies including TAPVR: integrating evidence from human genetics and model organisms

    PubMed Central

    Bleyl, Steven B.; Saijoh, Yukio; Bax, Noortje A.M.; Gittenberger-de Groot, Adriana C.; Wisse, Lambertus J.; Chapman, Susan C.; Hunter, Jennifer; Shiratori, Hidetaka; Hamada, Hiroshi; Yamada, Shigehito; Shiota, Kohei; Klewer, Scott E.; Leppert, Mark F.; Schoenwolf, Gary C.

    2010-01-01

    Total anomalous pulmonary venous return (TAPVR) is a congenital heart defect inherited via complex genetic and/or environmental factors. We report detailed mapping in extended TAPVR kindreds and mutation analysis in TAPVR patients that implicate the PDGFRA gene in the development of TAPVR. Gene expression studies in mouse and chick embryos for both the Pdgfra receptor and its ligand Pdgf-a show temporal and spatial patterns consistent with a role in pulmonary vein (PV) development. We used an in ovo function blocking assay in chick and a conditional knockout approach in mouse to knock down Pdgfra expression in the developing venous pole during the period of PV formation. We observed that loss of PDGFRA function in both organisms causes TAPVR with low penetrance (∼7%) reminiscent of that observed in our human TAPVR kindreds. Intermediate inflow tract anomalies occurred in a higher percentage of embryos (∼30%), suggesting that TAPVR occurs at one end of a spectrum of defects. We show that the anomalous pulmonary venous connection seen in chick and mouse is highly similar to TAPVR discovered in an abnormal early stage embryo from the Kyoto human embryo collection. Whereas the embryology of the normal venous pole and PV is becoming understood, little is known about the embryogenesis or molecular pathogenesis of TAPVR. These models of TAPVR provide important insight into the pathogenesis of PV defects. Taken together, these data from human genetics and animal models support a role for PDGF-signaling in normal PV development, and in the pathogenesis of TAPVR. PMID:20071345

  1. Sequence type 1 group B Streptococcus, an emerging cause of invasive disease in adults, evolves by small genetic changes.

    PubMed

    Flores, Anthony R; Galloway-Peña, Jessica; Sahasrabhojane, Pranoti; Saldaña, Miguel; Yao, Hui; Su, Xiaoping; Ajami, Nadim J; Holder, Michael E; Petrosino, Joseph F; Thompson, Erika; Margarit Y Ros, Immaculada; Rosini, Roberto; Grandi, Guido; Horstmann, Nicola; Teatero, Sarah; McGeer, Allison; Fittipaldi, Nahuel; Rappuoli, Rino; Baker, Carol J; Shelburne, Samuel A

    2015-05-19

    The molecular mechanisms underlying pathogen emergence in humans is a critical but poorly understood area of microbiologic investigation. Serotype V group B Streptococcus (GBS) was first isolated from humans in 1975, and rates of invasive serotype V GBS disease significantly increased starting in the early 1990s. We found that 210 of 229 serotype V GBS strains (92%) isolated from the bloodstream of nonpregnant adults in the United States and Canada between 1992 and 2013 were multilocus sequence type (ST) 1. Elucidation of the complete genome of a 1992 ST-1 strain revealed that this strain had the highest homology with a GBS strain causing cow mastitis and that the 1992 ST-1 strain differed from serotype V strains isolated in the late 1970s by acquisition of cell surface proteins and antimicrobial resistance determinants. Whole-genome comparison of 202 invasive ST-1 strains detected significant recombination in only eight strains. The remaining 194 strains differed by an average of 97 SNPs. Phylogenetic analysis revealed a temporally dependent mode of genetic diversification consistent with the emergence in the 1990s of ST-1 GBS as major agents of human disease. Thirty-one loci were identified as being under positive selective pressure, and mutations at loci encoding polysaccharide capsule production proteins, regulators of pilus expression, and two-component gene regulatory systems were shown to affect the bacterial phenotype. These data reveal that phenotypic diversity among ST-1 GBS is mainly driven by small genetic changes rather than extensive recombination, thereby extending knowledge into how pathogens adapt to humans.

  2. Genetic Correction and Hepatic Differentiation of Hemophilia B-specific Human Induced Pluripotent Stem Cells.

    PubMed

    He, Qiong; Wang, Hui-Hui; Cheng, Tao; Yuan, Wei-Ping; Ma, Yu-Po; Jiang, Yong-Ping; Ren, Zhi-Hua

    2017-09-27

    Objective To genetically correct a disease-causing point mutation in human induced pluripotent stem cells (iPSCs) derived from a hemophilia B patient. Methods First, the disease-causing mutation was detected by sequencing the encoding area of human coagulation factor IX (F IX) gene. Genomic DNA was extracted from the iPSCs, and the primers were designed to amplify the eight exons of F IX. Next, the point mutation in those iPSCs was genetically corrected using CRISPR/Cas9 technology in the presence of a 129-nucleotide homologous repair template that contained two synonymous mutations. Then, top 8 potential off-target sites were subsequently analyzed using Sanger sequencing. Finally, the corrected clones were differentiated into hepatocyte-like cells, and the secretion of F IX was validated by immunocytochemistry and ELISA assay. Results The cell line bore a missense mutation in the 6 th coding exon (c.676 C>T) of F IX gene. Correction of the point mutation was achieved via CRISPR/Cas9 technology in situ with a high efficacy at about 22% (10/45) and no off-target effects detected in the corrected iPSC clones. F IX secretion, which was further visualized by immunocytochemistry and quantified by ELISA in vitro, reached about 6 ng/ml on day 21 of differentiation procedure. Conclusions Mutations in human disease-specific iPSCs could be precisely corrected by CRISPR/Cas9 technology, and corrected cells still maintained hepatic differentiation capability. Our findings might throw a light on iPSC-based personalized therapies in the clinical application, especially for hemophilia B.

  3. Mining the human genome after Association for Molecular Pathology v. Myriad Genetics

    PubMed Central

    Evans, Barbara J

    2014-01-01

    The Supreme Court's recent decision in Association for Molecular Pathology v. Myriad Genetics portrays the human genome as a product of nature. This frames medical genetics as an extractive industry that mines a natural resource to produce valuable goods and services. Natural resource law offers insights into problems medical geneticists can expect after this decision and suggests possible solutions. Increased competition among clinical laboratories offers various benefits but threatens to increase fragmentation of genetic data resources, potentially causing waste in the form of lost opportunities to discover the clinical significance of particular gene variants. The solution lies in addressing legal barriers to appropriate data sharing. Sustainable discovery in the field of medical genetics can best be achieved through voluntary data sharing rather than command-and-control tactics, but voluntary mechanisms must be conceived broadly to include market-based approaches as well as donative and publicly funded data commons. The recently revised Health Insurance Portability and Accountability Act Privacy Rule offers an improved—but still imperfect—framework for market-oriented data sharing. This article explores strategies for addressing the Privacy Rule's remaining defects. America is close to having a legal framework that can reward innovators, protect privacy, and promote needed data sharing to advance medical genetics. Genet Med 16 7, 504–509. PMID:24357850

  4. Experimental evolution reveals hidden diversity in evolutionary pathways.

    PubMed

    Lind, Peter A; Farr, Andrew D; Rainey, Paul B

    2015-03-25

    Replicate populations of natural and experimental organisms often show evidence of parallel genetic evolution, but the causes are unclear. The wrinkly spreader morph of Pseudomonas fluorescens arises repeatedly during experimental evolution. The mutational causes reside exclusively within three pathways. By eliminating these, 13 new mutational pathways were discovered with the newly arising WS types having fitnesses similar to those arising from the commonly passaged routes. Our findings show that parallel genetic evolution is strongly biased by constraints and we reveal the genetic bases. From such knowledge, and in instances where new phenotypes arise via gene activation, we suggest a set of principles: evolution proceeds firstly via pathways subject to negative regulation, then via promoter mutations and gene fusions, and finally via activation by intragenic gain-of-function mutations. These principles inform evolutionary forecasting and have relevance to interpreting the diverse array of mutations associated with clinically identical instances of disease in humans.

  5. The role of epigenetics in genetic and environmental epidemiology.

    PubMed

    Ladd-Acosta, Christine; Fallin, M Daniele

    2016-02-01

    Epidemiology is the branch of science that investigates the causes and distribution of disease in populations in order to provide preventative measures and promote human health. The fields of genetic and environmental epidemiology primarily seek to identify genetic and environmental risk factors for disease, respectively. Epigenetics is emerging as an important piece of molecular data to include in these studies because it can provide mechanistic insights into genetic and environmental risk factors for disease, identify potential intervention targets, provide biomarkers of exposure, illuminate gene-environment interactions and help localize disease-relevant genomic regions. Here, we describe the importance of including epigenetics in genetic and environmental epidemiology studies, provide a conceptual framework when considering epigenetic data in population-based studies and touch upon the many challenges that lie ahead.

  6. Phylogeographic patterns of Lygus pratensis (Hemiptera: Miridae): Evidence for weak genetic structure and recent expansion in northwest China.

    PubMed

    Zhang, Li-Juan; Cai, Wan-Zhi; Luo, Jun-Yu; Zhang, Shuai; Wang, Chun-Yi; Lv, Li-Min; Zhu, Xiang-Zhen; Wang, Li; Cui, Jin-Jie

    2017-01-01

    Lygus pratensis (L.) is an important cotton pest in China, especially in the northwest region. Nymphs and adults cause serious quality and yield losses. However, the genetic structure and geographic distribution of L. pratensis is not well known. We analyzed genetic diversity, geographical structure, gene flow, and population dynamics of L. pratensis in northwest China using mitochondrial and nuclear sequence datasets to study phylogeographical patterns and demographic history. L. pratensis (n = 286) were collected at sites across an area spanning 2,180,000 km2, including the Xinjiang and Gansu-Ningxia regions. Populations in the two regions could be distinguished based on mitochondrial criteria but the overall genetic structure was weak. The nuclear dataset revealed a lack of diagnostic genetic structure across sample areas. Phylogenetic analysis indicated a lack of population level monophyly that may have been caused by incomplete lineage sorting. The Mantel test showed a significant correlation between genetic and geographic distances among the populations based on the mtDNA data. However the nuclear dataset did not show significant correlation. A high level of gene flow among populations was indicated by migration analysis; human activities may have also facilitated insect movement. The availability of irrigation water and ample cotton hosts makes the Xinjiang region well suited for L. pratensis reproduction. Bayesian skyline plot analysis, star-shaped network, and neutrality tests all indicated that L. pratensis has experienced recent population expansion. Climatic changes and extensive areas occupied by host plants have led to population expansion of L. pratensis. In conclusion, the present distribution and phylogeographic pattern of L. pratensis was influenced by climate, human activities, and availability of plant hosts.

  7. An update on molecular genetics of Alkaptonuria (AKU).

    PubMed

    Zatkova, Andrea

    2011-12-01

    Alkaptonuria (AKU) is an autosomal recessive disorder caused by a deficiency of homogentisate 1,2 dioxygenase (HGD) and characterized by homogentisic aciduria, ochronosis, and ochronotic arthritis. The defect is caused by mutations in the HGD gene, which maps to the human chromosome 3q21-q23. AKU shows a very low prevalence (1:100,000-250,000) in most ethnic groups, but there are countries such as Slovakia and the Dominican Republic in which the incidence of this disorder rises to as much as 1:19,000. In this work, we summarize the genetic aspects of AKU in general and the distribution of all known disease-causing mutations reported so far. We focus on special features of AKU in Slovakia, which is one of the countries with an increased incidence of this rare metabolic disorder.

  8. Elephant behaviour and conservation: social relationships, the effects of poaching, and genetic tools for management.

    PubMed

    Archie, Elizabeth A; Chiyo, Patrick I

    2012-02-01

    Genetic tools are increasingly valuable for understanding the behaviour, evolution, and conservation of social species. In African elephants, for instance, genetic data provide basic information on the population genetic causes and consequences of social behaviour, and how human activities alter elephants' social and genetic structures. As such, African elephants provide a useful case study to understand the relationships between social behaviour and population genetic structure in a conservation framework. Here, we review three areas where genetic methods have made important contributions to elephant behavioural ecology and conservation: (1) understanding kin-based relationships in females and the effects of poaching on the adaptive value of elephant relationships, (2) understanding patterns of paternity in elephants and how poaching can alter these patterns, and (3) conservation genetic tools to census elusive populations, track ivory, and understand the behavioural ecology of crop-raiding. By comparing studies from populations that have experienced a range of poaching intensities, we find that human activities have a large effect on elephant behaviour and genetic structure. Poaching disrupts kin-based association patterns, decreases the quality of elephant social relationships, and increases male reproductive skew, with important consequences for population health and the maintenance of genetic diversity. In addition, we find that genetic tools to census populations or gather forensic information are almost always more accurate than non-genetic alternatives. These results contribute to a growing understanding of poaching on animal behaviour, and how genetic tools can be used to understand and conserve social species. © 2011 Blackwell Publishing Ltd.

  9. A Drosophila Model of HPV E6-Induced Malignancy Reveals Essential Roles for Magi and the Insulin Receptor

    PubMed Central

    Padash Barmchi, Mojgan; Gilbert, Mary; Thomas, Miranda; Banks, Lawrence; Zhang, Bing; Auld, Vanessa J.

    2016-01-01

    Cervical cancer is one of the leading causes of cancer death in women worldwide. The causative agents of cervical cancers, high-risk human papillomaviruses (HPVs), cause cancer through the action of two oncoproteins, E6 and E7. The E6 oncoprotein cooperates with an E3 ubiquitin ligase (UBE3A) to target the p53 tumour suppressor and important polarity and junctional PDZ proteins for proteasomal degradation, activities that are believed to contribute towards malignancy. However, the causative link between degradation of PDZ proteins and E6-mediated malignancy is largely unknown. We have developed an in vivo model of HPV E6-mediated cellular transformation using the genetic model organism, Drosophila melanogaster. Co-expression of E6 and human UBE3A in wing and eye epithelia results in severe morphological abnormalities. Furthermore, E6, via its PDZ-binding motif and in cooperation with UBE3A, targets a suite of PDZ proteins that are conserved in human and Drosophila, including Magi, Dlg and Scribble. Similar to human epithelia, Drosophila Magi is a major degradation target. Magi overexpression rescues the cellular abnormalities caused by E6+UBE3A coexpression and this activity of Magi is PDZ domain-dependent. Drosophila p53 was not targeted by E6+UBE3A, and E6+UBE3A activity alone is not sufficient to induce tumorigenesis, which only occurs when E6+UBE3A are expressed in conjunction with activated/oncogenic forms of Ras or Notch. Finally, through a genetic screen we have identified the insulin receptor signaling pathway as being required for E6+UBE3A induced hyperplasia. Our results suggest a highly conserved mechanism of HPV E6 mediated cellular transformation, and establish a powerful genetic model to identify and understand the cellular mechanisms that underlie HPV E6-induced malignancy. PMID:27537218

  10. Causes of Death in Prader-Willi Syndrome: Prader-Willi Syndrome Association (USA) 40-Year Mortality Survey

    PubMed Central

    Butler, Merlin G.; Manzardo, Ann M.; Heinemann, Janalee; Loker, Carolyn; Loker, James

    2016-01-01

    Background Prader-Willi syndrome (PWS) is a rare complex neurodevelopmental genetic disorder that is associated with hyperphagia and morbid obesity in humans leading to a shortened life expectancy. This report summarizes the primary causes of death and evaluates mortality trends in a large cohort of individuals with PWS. Methods PWSA (USA) mortality syndrome-specific database of death reports was collected through a cursory bereavement program for PWSA(USA) families using a brief survey created in 1999. Causes of death were descriptively characterized and statistically examined using Cox Proportional Hazards. Results A total of 486 deaths were reported (263 males, 217 females, 6 unknown) between 1973 and 2015 with mean age of 29.5 ± 16 years (2mo–67yrs), 70% occurring in adulthood. Respiratory failure was the most common cause accounting for 31% of all deaths. Males were at increased risk for presumed hyperphagia-related accidents/injuries compared to females and cardiopulmonary factors. PWS maternal disomy 15 genetic subtype showed an increased risk of death from cardiopulmonary factors compared to the deletion subtype. Conclusions These findings highlight the heightened vulnerability towards obesity and hyperphagia-related mortality in PWS. Future research is needed to address critical vulnerabilities such as gender and genetic subtype in the cause of death in PWS. PMID:27854358

  11. Current issues in medically assisted reproduction and genetics in Europe: research, clinical practice, ethics, legal issues and policy.

    PubMed

    Harper, Joyce; Geraedts, Joep; Borry, Pascal; Cornel, Martina C; Dondorp, Wybo J; Gianaroli, Luca; Harton, Gary; Milachich, Tanya; Kääriäinen, Helena; Liebaers, Inge; Morris, Michael; Sequeiros, Jorge; Sermon, Karen; Shenfield, Françoise; Skirton, Heather; Soini, Sirpa; Spits, Claudia; Veiga, Anna; Vermeesch, Joris Robert; Viville, Stéphane; de Wert, Guido; Macek, Milan

    2014-08-01

    How has the interface between genetics and assisted reproduction technology (ART) evolved since 2005? The interface between ART and genetics has become more entwined as we increase our understanding about the genetics of infertility and we are able to perform more comprehensive genetic testing. In March 2005, a group of experts from the European Society of Human Genetics and European Society of Human Reproduction and Embryology met to discuss the interface between genetics and ART and published an extended background paper, recommendations and two Editorials. An interdisciplinary workshop was held, involving representatives of both professional societies and experts from the European Union Eurogentest2 Coordination Action Project. In March 2012, a group of experts from the European Society of Human Genetics, the European Society of Human Reproduction and Embryology and the EuroGentest2 Coordination Action Project met to discuss developments at the interface between clinical genetics and ART. As more genetic causes of reproductive failure are now recognized and an increasing number of patients undergo testing of their genome prior to conception, either in regular health care or in the context of direct-to-consumer testing, the need for genetic counselling and PGD may increase. Preimplantation genetic screening (PGS) thus far does not have evidence from RCTs to substantiate that the technique is both effective and efficient. Whole genome sequencing may create greater challenges both in the technological and interpretational domains, and requires further reflection about the ethics of genetic testing in ART and PGD/PGS. Diagnostic laboratories should be reporting their results according to internationally accepted accreditation standards (ISO 15189). Further studies are needed in order to address issues related to the impact of ART on epigenetic reprogramming of the early embryo. The legal landscape regarding assisted reproduction is evolving, but still remains very heterogeneous and often contradictory. The lack of legal harmonization and uneven access to infertility treatment and PGD/PGS fosters considerable cross-border reproductive care in Europe, and beyond. This continually evolving field requires communication between the clinical genetics and IVF teams and patients to ensure that they are fully informed and can make well-considered choices. Funding was received from ESHRE, ESHG and EuroGentest2 European Union Coordination Action project (FP7 - HEALTH-F4-2010-26146) to support attendance at this meeting. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations

    DOE PAGES

    Adebali, Ogun; Reznik, Alexander O.; Ory, Daniel S.; ...

    2016-02-18

    Here, predicting the phenotypic effects of mutations has become an important application in clinical genetic diagnostics. Computational tools evaluate the behavior of the variant over evolutionary time and assume that variations seen during the course of evolution are probably benign in humans. However, current tools do not take into account orthologous/paralogous relationships. Paralogs have dramatically different roles in Mendelian diseases. For example, whereas inactivating mutations in the NPC1 gene cause the neurodegenerative disorder Niemann-Pick C, inactivating mutations in its paralog NPC1L1 are not disease-causing and, moreover, are implicated in protection from coronary heart disease. Methods: We identified major events inmore » NPC1 evolution and revealed and compared orthologs and paralogs of the human NPC1 gene through phylogenetic and protein sequence analyses. We predicted whether an amino acid substitution affects protein function by reducing the organism s fitness. As a result, removing the paralogs and distant homologs improved the overall performance of categorizing disease-causing and benign amino acid substitutions. In conclusion, the results show that a thorough evolutionary analysis followed by identification of orthologs improves the accuracy in predicting disease-causing missense mutations. We anticipate that this approach will be used as a reference in the interpretation of variants in other genetic diseases as well.« less

  13. Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adebali, Ogun; Reznik, Alexander O.; Ory, Daniel S.

    Here, predicting the phenotypic effects of mutations has become an important application in clinical genetic diagnostics. Computational tools evaluate the behavior of the variant over evolutionary time and assume that variations seen during the course of evolution are probably benign in humans. However, current tools do not take into account orthologous/paralogous relationships. Paralogs have dramatically different roles in Mendelian diseases. For example, whereas inactivating mutations in the NPC1 gene cause the neurodegenerative disorder Niemann-Pick C, inactivating mutations in its paralog NPC1L1 are not disease-causing and, moreover, are implicated in protection from coronary heart disease. Methods: We identified major events inmore » NPC1 evolution and revealed and compared orthologs and paralogs of the human NPC1 gene through phylogenetic and protein sequence analyses. We predicted whether an amino acid substitution affects protein function by reducing the organism s fitness. As a result, removing the paralogs and distant homologs improved the overall performance of categorizing disease-causing and benign amino acid substitutions. In conclusion, the results show that a thorough evolutionary analysis followed by identification of orthologs improves the accuracy in predicting disease-causing missense mutations. We anticipate that this approach will be used as a reference in the interpretation of variants in other genetic diseases as well.« less

  14. Host genetics of HIV acquisition and viral control.

    PubMed

    Shea, Patrick R; Shianna, Kevin V; Carrington, Mary; Goldstein, David B

    2013-01-01

    Since the discovery of HIV as the cause of AIDS, numerous insights have been gained from studies of its natural history and epidemiology. It has become clear that there are substantial interindividual differences in the risk of HIV acquisition and course of disease. Meanwhile, the field of human genetics has undergone a series of rapid transitions that have fundamentally altered the approach to studying HIV host genetics. We aim to describe the field as it has transitioned from the era of candidate-gene studies and the era of genome-wide association studies (GWAS) to its current state in the infancy of comprehensive sequencing. In some ways the field has come full circle, having evolved from being driven almost exclusively by our knowledge of immunology, to a bias-free GWAS approach, to a point where our ability to catalogue human variation far outstrips our ability to biologically interpret it.

  15. Advancing epilepsy treatment through personalized genetic zebrafish models.

    PubMed

    Griffin, A; Krasniak, C; Baraban, S C

    2016-01-01

    With an increase in the number of disease causing genetic mutations identified from epilepsy cohorts, zebrafish are proving to be an attractive vertebrate model for functional analysis of these allele variants. Not only do zebrafish have conserved gene functions, but larvae harboring mutations in identified human epileptic genes show spontaneous seizure activity and mimic the convulsive behavioral movements observed in humans. With zebrafish being compatible with medium to high-throughput screening, they are also proving to be a unique and powerful system for early preclinical drug screening, including novel target identification, pharmacology, and toxicology. Additionally, with recent advances in genomic engineering technologies, it is now possible to study the precise pathophysiology of patient-specific gene mutations in zebrafish. The following sections highlight how the unique attributes of zebrafish, in combination with genetic modifications, are continuing to transform our understanding of epilepsy and help identify personalized therapeutics for specific patient cohorts. © 2016 Elsevier B.V. All rights reserved.

  16. The genetics of multiple sclerosis: review of current and emerging candidates

    PubMed Central

    Muñoz-Culla, Maider; Irizar, Haritz; Otaegui, David

    2013-01-01

    Multiple sclerosis (MS) is a complex disease in which environmental, genetic, and epigenetic factors determine the risk of developing the disease. The human leukocyte antigen region is the strongest susceptibility locus linked to MS, but it does not explain the whole heritability of the disease. To find other non-human leukocyte antigen loci associated with the disease, high-throughput genotyping, sequencing, and gene-expression studies have been performed, producing a valuable quantity of information. An overview of the genomic and expression studies is provided in this review, as well as microRNA-expression studies, highlighting the importance of combining all the layers of information in order to elucidate the causes or pathological mechanisms occurring in the disease. Genetics in MS is a promising field that is presumably going to be very productive in the next decade understanding the cross talk between all the factors contributing to the development of MS. PMID:24019748

  17. Autism spectrum disorder causes, mechanisms, and treatments: focus on neuronal synapses

    PubMed Central

    Won, Hyejung; Mah, Won; Kim, Eunjoon

    2013-01-01

    Autism spectrum disorder (ASD) is a group of developmental disabilities characterized by impairments in social interaction and communication and restricted and repetitive interests/behaviors. Advances in human genomics have identified a large number of genetic variations associated with ASD. These associations are being rapidly verified by a growing number of studies using a variety of approaches, including mouse genetics. These studies have also identified key mechanisms underlying the pathogenesis of ASD, many of which involve synaptic dysfunctions, and have investigated novel, mechanism-based therapeutic strategies. This review will try to integrate these three key aspects of ASD research: human genetics, animal models, and potential treatments. Continued efforts in this direction should ultimately reveal core mechanisms that account for a larger fraction of ASD cases and identify neural mechanisms associated with specific ASD symptoms, providing important clues to efficient ASD treatment. PMID:23935565

  18. Identification of species and genetic variation in Taenia isolates from human and swine of North India.

    PubMed

    Singh, Satyendra K; Prasad, Kashi N; Singh, Aloukick K; Gupta, Kamlesh K; Chauhan, Ranjeet S; Singh, Amrita; Singh, Avinash; Rai, Ravi P; Pati, Binod K

    2016-10-01

    Taenia solium is the major cause of taeniasis and cysticercosis/neurocysticercosis (NCC) in the developing countries including India, but the existence of other Taenia species and genetic variation have not been studied in India. So, we studied the existence of different Taenia species, and sequence variation in Taenia isolates from human (proglottids and cysticerci) and swine (cysticerci) in North India. Amplification of cytochrome c oxidase subunit 1 gene (cox1) was done by polymerase chain reaction (PCR) followed by sequencing and phylogenetic analysis. We identified two species of Taenia i.e. T. solium and Taenia asiatica in our isolates. T. solium isolates showed similarity with Asian genotype and nucleotide variations from 0.25 to 1.01 %, whereas T. asiatica displayed nucleotide variations ranged from 0.25 to 0.5 %. These findings displayed the minimal genetic variations in North Indian isolates of T. solium and T. asiatica.

  19. Shadows of complexity: what biological networks reveal about epistasis and pleiotropy

    PubMed Central

    Tyler, Anna L.; Asselbergs, Folkert W.; Williams, Scott M.; Moore, Jason H.

    2011-01-01

    Pleiotropy, in which one mutation causes multiple phenotypes, has traditionally been seen as a deviation from the conventional observation in which one gene affects one phenotype. Epistasis, or gene-gene interaction, has also been treated as an exception to the Mendelian one gene-one phenotype paradigm. This simplified perspective belies the pervasive complexity of biology and hinders progress toward a deeper understanding of biological systems. We assert that epistasis and pleiotropy are not isolated occurrences, but ubiquitous and inherent properties of biomolecular networks. These phenomena should not be treated as exceptions, but rather as fundamental components of genetic analyses. A systems level understanding of epistasis and pleiotropy is, therefore, critical to furthering our understanding of human genetics and its contribution to common human disease. Finally, graph theory offers an intuitive and powerful set of tools with which to study the network bases of these important genetic phenomena. PMID:19204994

  20. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Fenster, Ariel E.; And Others

    1988-01-01

    Identifies a technique using methylene blue and glucose to explain a genetically related enzyme shortage causing blue skin in humans. Offers a laser technique to study solubility of silver salts of chloride and chromate. Encourages the use of models and class participation in the study of chirality and enantiomers. (ML)

  1. Genetic approaches to defining pathogenesis of Toxoplasma gondii

    USDA-ARS?s Scientific Manuscript database

    Toxoplasma gondii is a widespread parasite of warm-blooded vertebrates that also causes opportunistic infections in humans. Rodents are a natural host for transmission to cats, which serve as the definitive host for sexual development. The laboratory mouse provides a model to study pathogenesis. Str...

  2. Chikungunya Virus–Vector Interactions

    PubMed Central

    Coffey, Lark L.; Failloux, Anna-Bella; Weaver, Scott C.

    2014-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya fever, a severe, debilitating disease that often produces chronic arthralgia. Since 2004, CHIKV has emerged in Africa, Indian Ocean islands, Asia, Europe, and the Americas, causing millions of human infections. Central to understanding CHIKV emergence is knowledge of the natural ecology of transmission and vector infection dynamics. This review presents current understanding of CHIKV infection dynamics in mosquito vectors and its relationship to human disease emergence. The following topics are reviewed: CHIKV infection and vector life history traits including transmission cycles, genetic origins, distribution, emergence and spread, dispersal, vector competence, vector immunity and microbial interactions, and co-infection by CHIKV and other arboviruses. The genetics of vector susceptibility and host range changes, population heterogeneity and selection for the fittest viral genomes, dual host cycling and its impact on CHIKV adaptation, viral bottlenecks and intrahost diversity, and adaptive constraints on CHIKV evolution are also discussed. The potential for CHIKV re-emergence and expansion into new areas and prospects for prevention via vector control are also briefly reviewed. PMID:25421891

  3. Mutations in PCYT1A cause spondylometaphyseal dysplasia with cone-rod dystrophy.

    PubMed

    Yamamoto, Guilherme L; Baratela, Wagner A R; Almeida, Tatiana F; Lazar, Monize; Afonso, Clara L; Oyamada, Maria K; Suzuki, Lisa; Oliveira, Luiz A N; Ramos, Ester S; Kim, Chong A; Passos-Bueno, Maria Rita; Bertola, Débora R

    2014-01-02

    Spondylometaphyseal dysplasia with cone-rod dystrophy is a rare autosomal-recessive disorder characterized by severe short stature, progressive lower-limb bowing, flattened vertebral bodies, metaphyseal involvement, and visual impairment caused by cone-rod dystrophy. Whole-exome sequencing of four individuals affected by this disorder from two Brazilian families identified two previously unreported homozygous mutations in PCYT1A. This gene encodes the alpha isoform of the phosphate cytidylyltransferase 1 choline enzyme, which is responsible for converting phosphocholine into cytidine diphosphate-choline, a key intermediate step in the phosphatidylcholine biosynthesis pathway. A different enzymatic defect in this pathway has been previously associated with a muscular dystrophy with mitochondrial structural abnormalities that does not have cartilage and/or bone or retinal involvement. Thus, the deregulation of the phosphatidylcholine pathway may play a role in multiple genetic diseases in humans, and further studies are necessary to uncover its precise pathogenic mechanisms and the entirety of its phenotypic spectrum. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  4. Integrin Alpha 8 Recessive Mutations Are Responsible for Bilateral Renal Agenesis in Humans

    PubMed Central

    Humbert, Camille; Silbermann, Flora; Morar, Bharti; Parisot, Mélanie; Zarhrate, Mohammed; Masson, Cécile; Tores, Frédéric; Blanchet, Patricia; Perez, Marie-José; Petrov, Yuliya; Khau Van Kien, Philippe; Roume, Joelle; Leroy, Brigitte; Gribouval, Olivier; Kalaydjieva, Luba; Heidet, Laurence; Salomon, Rémi; Antignac, Corinne; Benmerah, Alexandre; Saunier, Sophie; Jeanpierre, Cécile

    2014-01-01

    Renal hypodysplasia (RHD) is a heterogeneous condition encompassing a spectrum of kidney development defects including renal agenesis, hypoplasia, and (cystic) dysplasia. Heterozygous mutations of several genes have been identified as genetic causes of RHD with various severity. However, these genes and mutations are not associated with bilateral renal agenesis, except for RET mutations, which could be involved in a few cases. The pathophysiological mechanisms leading to total absence of kidney development thus remain largely elusive. By using a whole-exome sequencing approach in families with several fetuses with bilateral renal agenesis, we identified recessive mutations in the integrin α8-encoding gene ITGA8 in two families. Itga8 homozygous knockout in mice is known to result in absence of kidney development. We provide evidence of a damaging effect of the human ITGA8 mutations. These results demonstrate that mutations of ITGA8 are a genetic cause of bilateral renal agenesis and that, at least in some cases, bilateral renal agenesis is an autosomal-recessive disease. PMID:24439109

  5. Usutu virus: an emerging flavivirus in Europe.

    PubMed

    Ashraf, Usama; Ye, Jing; Ruan, Xindi; Wan, Shengfeng; Zhu, Bibo; Cao, Shengbo

    2015-01-19

    Usutu virus (USUV) is an African mosquito-borne flavivirus belonging to the Japanese encephalitis virus serocomplex. USUV is closely related to Murray Valley encephalitis virus, Japanese encephalitis virus, and West Nile virus. USUV was discovered in South Africa in 1959. In Europe, the first true demonstration of circulation of USUV was reported in Austria in 2001 with a significant die-off of Eurasian blackbirds. In the subsequent years, USUV expanded to neighboring countries, including Italy, Germany, Spain, Hungary, Switzerland, Poland, England, Czech Republic, Greece, and Belgium, where it caused unusual mortality in birds. In 2009, the first two human cases of USUV infection in Europe have been reported in Italy, causing meningoencephalitis in immunocompromised patients. This review describes USUV in terms of its life cycle, USUV surveillance from Africa to Europe, human cases, its cellular tropism and pathogenesis, its genetic relationship with other flaviviruses, genetic diversity among USUV strains, its diagnosis, and a discussion of the potential future threat to Asian countries.

  6. Biflorin induces cytotoxicity by DNA interaction in genetically different human melanoma cell lines.

    PubMed

    Ralph, Ana Carolina Lima; Calcagno, Danielle Queiroz; da Silva Souza, Luciana Gregório; de Lemos, Telma Leda Gomes; Montenegro, Raquel Carvalho; de Arruda Cardoso Smith, Marília; de Vasconcellos, Marne Carvalho

    2016-08-01

    Cancer is a public health problem and the second leading cause of death worldwide. The incidence of cutaneous melanoma has been notably increasing, resulting in high aggressiveness and poor survival rates. Taking into account the antitumor activity of biflorin, a substance isolated from Capraria biflora L. roots that is cytotoxic in vitro and in vivo, this study aimed to demonstrate the action of biflorin against three established human melanoma cell lines that recapitulate the molecular landscape of the disease in terms of genetic alterations and mutations, such as the TP53, NRAS and BRAF genes. The results presented here indicate that biflorin reduces the viability of melanoma cell lines by DNA interactions. Biflorin causes single and double DNA strand breaks, consequently inhibiting cell cycle progression, replication and DNA repair and promoting apoptosis. Our data suggest that biflorin could be considered as a future therapeutic option for managing melanoma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Investigation of the Causes of Breast Cancer at the Cellular Level: Isolation of In Vivo Binding Sites of the Human Origin Recognition Complex

    DTIC Science & Technology

    2000-08-01

    The coordination between cellular DNA replication and mitosis is critical to ensure controlled cell proliferation and accurate transmission of the...proteins involved in the initiation of DNA replication . Preliminary results are presented....genetic information as cells divide -two aspects of cellular life tipically lost in cancer. In order to unravel the molecular mechanisms of human DNA

  8. Neural correlates of genetically abnormal social cognition in Williams syndrome.

    PubMed

    Meyer-Lindenberg, Andreas; Hariri, Ahmad R; Munoz, Karen E; Mervis, Carolyn B; Mattay, Venkata S; Morris, Colleen A; Berman, Karen Faith

    2005-08-01

    Williams-Beuren syndrome (WBS), caused by a microdeletion of approximately 21 genes on chromosome 7q11.23, is characterized by unique hypersociability combined with increased non-social anxiety. Using functional neuroimaging, we found reduced amygdala activation in individuals with WBS for threatening faces but increased activation for threatening scenes, relative to matched normal controls. Activation and interactions of prefrontal regions linked to amygdala, especially orbitofrontal cortex, were abnormal, suggesting a genetically controlled neural circuitry for regulating human social behavior.

  9. Notch and the awesome power of genetics.

    PubMed

    Greenwald, Iva

    2012-07-01

    Notch is a receptor that mediates cell-cell interactions in animal development, and aberrations in Notch signal transduction can cause cancer and other human diseases. Here, I describe the major advances in the Notch field from the identification of the first mutant in Drosophila almost a century ago through the elucidation of the unusual mechanism of signal transduction a little over a decade ago. As an essay for the GENETICS Perspectives series, it is my personal and critical commentary as well as an historical account of discovery.

  10. Intergenerational effects of endocrine-disrupting compounds: a review of the Michigan polybrominated biphenyl registry.

    PubMed

    Curtis, Sarah W; Conneely, Karen N; Marder, Mary E; Terrell, Metrecia L; Marcus, Michele; Smith, Alicia K

    2018-06-11

    Endocrine-disrupting compounds (EDCs) are a broad class of chemicals present in many residential products that can disrupt hormone signaling and cause health problems in humans. Multigenerational cohorts, like the Michigan polybrominated biphenyl registry, are ideal for studying the effects of intergenerational exposure. Registry participants report hormone-related health problems, particularly in those exposed before puberty or those in the second generation exposed through placental transfer or breastfeeding. However, more research is needed to determine how EDCs cause health problems and the mechanisms underlying intergenerational exposure. Utilizing existing data in this registry, along with genetic and epigenetic approaches, could provide insight to how EDCs cause human disease and help to determine the risk to exposed populations and future generations.

  11. Radiation Effect on Human Tissue

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.; Cruz, Angela; Bors, Karen; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Predicting the occurrence of human cancer following exposure of an epidemiologic population to any agent causing genetic damage is a difficult task. To an approximation, this is because the uncertainty of uniform exposure to the damaging agent, and the uncertainty of uniform processing of that damage within a complex set of biological variables, degrade the confidence of predicting the delayed expression of cancer as a relatively rare event within clinically normal individuals. This situation begs the need for alternate controlled experimental models that are predictive for the development of human cancer following exposures to agents causing genetic damage. Such models historically have not been of substantial proven value. It is more recently encouraging, however, that developments in molecular and cell biology have led to an expanded knowledge of human carcinogenesis, and of molecular markers associated with that process. It is therefore appropriate to consider new laboratory models developed to accomodate that expanded knowledge in order to assess the cancer risks associated with exposures to genotoxic agents. When ionizing radiation of space is the genotoxic agent, then a series of additional considerations for human cancer risk assessment must also be applied. These include the dose of radiation absorbed by tissue at different locations in the body, the quality of the absorbed radiation, the rate at which absorbed dose accumulates in tissue, the way in which absorbed dose is measured and calculated, and the alterations in incident radiation caused by shielding materials. It is clear that human cancer risk assessment for damage caused by ionizing radiation is a multidisciplinary responsibility, and that within this responsibility no single discipline can hold disproportionate sway if a risk assessment model of radiation-induced human cancer is to be developed that has proven value. Biomolecular and cellular markers from the work reported here are considered for use in assessing human cancer risk related to exposure to space radiation. This potential use must be integrated within the specified multidisciplinary context in order to create a new tool of molecular epidemiology that can hopefully then realistically assess this cancer risk.

  12. Avian Influenza.

    PubMed

    Zeitlin, Gary Adam; Maslow, Melanie Jane

    2005-05-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate more than 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantining, and disinfection. To prepare for and prevent an increase in human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short-interfering RNAs and new vaccine strategies that use plasmid-based genetic systems, offer promise should a pandemic occur.

  13. Single-nucleotide polymorphisms in the LRWD1 gene may be a genetic risk factor for Japanese patients with Sertoli cell-only syndrome.

    PubMed

    Miyamoto, T; Koh, E; Tsujimura, A; Miyagawa, Y; Saijo, Y; Namiki, M; Sengoku, K

    2014-04-01

    Genetic mechanisms have been implicated as a cause of some cases of male infertility. Recently, ten novel genes involved in human spermatogenesis, including human LRWD1, have been identified by expression microarray analysis of human testictissue. The human LRWD1 protein mediates the origin recognition complex in chromatin, which is critical for the initiation of pre-replication complex assembly in G1 and chromatin organization in post-G1 cells. The Lrwd1 gene expression is specific to the testis in mice. Therefore, we hypothesized that mutation or polymorphisms of LRWD1 participate in male infertility, especially azoospermia. To investigate whether LRWD1 gene defects are associated with azoospermia caused by SCOS and meiotic arrest (MA), mutational analysis was performed in 100 and 30 Japanese patients by direct sequencing of the coding regions, respectively. Statistical analysis was performed for patients with SCOS and MA and in 100 healthy control men. No mutations were found in LRWD1; however, three coding single-nucleotide polymorphisms (SNP1-SNP3) could be detected in the patients. The genotype and allele frequencies in SNP1 and SNP2 were notably higher in the SCOS group than in the control group (P < 0.05). These results suggest the critical role of LRWD1 in human spermatogenesis. © 2013 Blackwell Verlag GmbH.

  14. Lionel Penrose and the concept of normal variation in human intelligence.

    PubMed

    Valles, Sean A

    2012-03-01

    Lionel Penrose (1898-1972) was an important leader during the mid-20th century decline of eugenics and the development of modern medical genetics. However, historians have paid little attention to his radical theoretical challenges to mainline eugenic concepts of mental disease. Working from a classification system developed with his colleague, E. O. Lewis, Penrose developed a statistically sophisticated and clinically grounded refutation of the popular position that low intelligence is inherently a disease state. In the early 1930s, Penrose advocated dividing "mental defect" (low intelligence) into two categories: "pathological mental defect," which is a disease state that can be traced to a distinct genetic or environmental cause, and "subcultural mental defect," which is not an inherent disease state, but rather a statistically necessary manifestation of human variation in intelligence. I explore the historical context and theoretical import of this contribution, discussing its rejection of typological thinking and noting that it preceded Theodosius Dobzhansky's better-known defense of human diversity. I illustrate the importance of Penrose's contribution with a discussion of an analogous situation in contemporary medicine, the controversial practice of using human growth hormone injections to treat "idiopathic short stature" (mere diminutive height, with no distinct cause). I show how Penrose's contributions to understanding human variation make such treatments appear quite misguided. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Titin Mutations in iPS cells Define Sarcomere Insufficiency as a Cause of Dilated Cardiomyopathy

    PubMed Central

    Hinson, John T.; Chopra, Anant; Nafissi, Navid; Polacheck, William J.; Benson, Craig C.; Swist, Sandra; Gorham, Joshua; Yang, Luhan; Schafer, Sebastian; Sheng, Calvin C.; Haghighi, Alireza; Homsy, Jason; Hubner, Norbert; Church, George; Cook, Stuart A.; Linke, Wolfgang A.; Chen, Christopher S.; Seidman, J. G.; Seidman, Christine E.

    2015-01-01

    Human mutations that truncate the massive sarcomere protein titin (TTNtv) are the most common genetic cause for dilated cardiomyopathy (DCM), a major cause of heart failure and premature death. Here we show that cardiac microtissues engineered from human induced pluripotent stem (iPS) cells are a powerful system for evaluating the pathogenicity of titin gene variants. We found that certain missense mutations, like TTNtv, diminish contractile performance and are pathogenic. By combining functional analyses with RNAseq, we explain why truncations in the A-band domain of TTN cause DCM while truncations in the I-band are better tolerated. Finally, we demonstrate that mutant titin protein in iPS-cardiomyocytes results in sarcomere insufficiency, impaired responses to mechanical and β-adrenergic stress, and attenuated growth factor and cell signaling activation. Our findings indicate that titin mutations cause DCM by disrupting critical linkages between sarcomerogenesis and adaptive remodelling. PMID:26315439

  16. Novel Insights into the Pathogenesis of Monogenic Congenital Anomalies of the Kidney and Urinary Tract.

    PubMed

    van der Ven, Amelie T; Vivante, Asaf; Hildebrandt, Friedhelm

    2018-01-01

    Congenital anomalies of the kidneys and urinary tract (CAKUT) comprise a large spectrum of congenital malformations ranging from severe manifestations, such as renal agenesis, to potentially milder conditions, such as vesicoureteral reflux. CAKUT causes approximately 40% of ESRD that manifests within the first three decades of life. Several lines of evidence indicate that CAKUT is often caused by recessive or dominant mutations in single (monogenic) genes. To date, approximately 40 monogenic genes are known to cause CAKUT if mutated, explaining 5%-20% of patients. However, hundreds of different monogenic CAKUT genes probably exist. The discovery of novel CAKUT-causing genes remains challenging because of this pronounced heterogeneity, variable expressivity, and incomplete penetrance. We here give an overview of known genetic causes for human CAKUT and shed light on distinct renal morphogenetic pathways that were identified as relevant for CAKUT in mice and humans. Copyright © 2018 by the American Society of Nephrology.

  17. Human Mendelian pain disorders: a key to discovery and validation of novel analgesics.

    PubMed

    Goldberg, Y P; Pimstone, S N; Namdari, R; Price, N; Cohen, C; Sherrington, R P; Hayden, M R

    2012-10-01

    We have utilized a novel application of human genetics, illuminating the important role that rare genetic disorders can play in the development of novel drugs that may be of relevance for the treatment of both rare and common diseases. By studying a very rare Mendelian disorder of absent pain perception, congenital indifference to pain, we have defined Nav1.7 (endocded by SCN9A) as a critical and novel target for analgesic development. Strong human validation has emerged with SCN9A gain-of-function mutations causing inherited erythromelalgia (IEM) and paroxysmal extreme pain disorder, both Mendelian disorder of spontaneous or easily evoked pain. Furthermore, variations in the Nav1.7 channel also modulate pain perception in healthy subjects as well as in painful conditions such as osteoarthritis and Parkinson disease. On the basis of this, we have developed a novel compound (XEN402) that exhibits potent, voltage-dependent block of Nav1.7. In a small pilot study, we showed that XEN402 blocks Nav1.7 mediated pain associated with IEM thereby demonstrating the use of rare genetic disorders with mutant target channels as a novel approach to rapid proof-of-concept. Our approach underscores the critical role that human genetics can play by illuminating novel and critical pathways pertinent for drug discovery. © 2012 John Wiley & Sons A/S.

  18. Fungal-derived semiochemical 1-octen-3-ol disrupts dopamine packaging and causes neurodegeneration

    PubMed Central

    Inamdar, Arati A.; Hossain, Muhammad M.; Bernstein, Alison I.; Miller, Gary W.; Richardson, Jason R.; Bennett, Joan Wennstrom

    2013-01-01

    Parkinson disease (PD) is the most common movement disorder and, although the exact causes are unknown, recent epidemiological and experimental studies indicate that several environmental agents may be significant risk factors. To date, these suspected environmental risk factors have been man-made chemicals. In this report, we demonstrate via genetic, biochemical, and immunological studies that the common volatile fungal semiochemical 1-octen-3-ol reduces dopamine levels and causes dopamine neuron degeneration in Drosophila melanogaster. Overexpression of the vesicular monoamine transporter (VMAT) rescued the dopamine toxicity and neurodegeneration, whereas mutations decreasing VMAT and tyrosine hydroxylase exacerbated toxicity. Furthermore, 1-octen-3-ol also inhibited uptake of dopamine in human cell lines expressing the human plasma membrane dopamine transporter (DAT) and human VMAT ortholog, VMAT2. These data demonstrate that 1-octen-3-ol exerts toxicity via disruption of dopamine homeostasis and may represent a naturally occurring environmental agent involved in parkinsonism. PMID:24218591

  19. Missing heritability and strategies for finding the underlying causes of complex disease

    PubMed Central

    Eichler, Evan E.; Flint, Jonathan; Gibson, Greg; Kong, Augustine; Leal, Suzanne M.; Moore, Jason H.; Nadeau, Joseph H.

    2010-01-01

    Although recent genome-wide studies have provided valuable insights into the genetic basis of human disease, they have explained relatively little of the heritability of most complex traits, and the variants identified through these studies have small effect sizes. This has led to the important and hotly debated issue of where the ‘missing heritability’ of complex diseases might be found. Here, seven leading geneticists offer their opinion about where this heritability is likely to lie, what this could tell us about the underlying genetic architecture of common diseases and how this could inform research strategies for uncovering genetic risk factors. PMID:20479774

  20. Changing Paradigms in Down Syndrome: The First International Conference of the Trisomy 21 Research Society.

    PubMed

    Delabar, Jean-Maurice; Allinquant, Bernadette; Bianchi, Diana; Blumenthal, Tom; Dekker, Alain; Edgin, Jamie; O'Bryan, John; Dierssen, Mara; Potier, Marie-Claude; Wiseman, Frances; Guedj, Faycal; Créau, Nicole; Reeves, Roger; Gardiner, Katheleen; Busciglio, Jorge

    2016-10-01

    Down syndrome (DS) is the most common genetic cause of intellectual disability (ID) in humans with an incidence of ∼1:1,000 live births worldwide. It is caused by the presence of an extra copy of all or a segment of the long arm of human chromosome 21 (trisomy 21). People with DS present with a constellation of phenotypic alterations involving most organs and organ systems. ID is present in all people with DS, albeit with variable severity. DS is also the most frequent genetic cause of Alzheimer's disease (AD), and ∼50% of those with DS will develop AD-related dementia. In the last few years, significant progress has been made in understanding the crucial genotype-phenotype relationships in DS, in identifying the alterations in molecular pathways leading to the various clinical conditions present in DS, and in preclinical evaluations of potential therapies to improve the overall health and well-being of individuals with DS. In June 2015, 230 scientists, advocates, patients, and family members met in Paris for the 1st International Conference of the Trisomy 21 Research Society. Here, we report some of the most relevant presentations that took place during the meeting.

  1. The Genetic Diversity and Structure of Linkage Disequilibrium of the MTHFR Gene in Populations of Northern Eurasia.

    PubMed

    Trifonova, E A; Eremina, E R; Urnov, F D; Stepanov, V A

    2012-01-01

    The structure of the haplotypes and linkage disequilibrium (LD) of the methylenetetrahydrofolate reductase gene (MTHFR) in 9 population groups from Northern Eurasia and populations of the international HapMap project was investigated in the present study. The data suggest that the architecture of LD in the human genome is largely determined by the evolutionary history of populations; however, the results of phylogenetic and haplotype analyses seems to suggest that in fact there may be a common "old" mechanism for the formation of certain patterns of LD. Variability in the structure of LD and the level of diversity of MTHFRhaplotypes cause a certain set of tagSNPs with an established prognostic significance for each population. In our opinion, the results obtained in the present study are of considerable interest for understanding multiple genetic phenomena: namely, the association of interpopulation differences in the patterns of LD with structures possessing a genetic susceptibility to complex diseases, and the functional significance of the pleiotropicMTHFR gene effect. Summarizing the results of this study, a conclusion can be made that the genetic variability analysis with emphasis on the structure of LD in human populations is a powerful tool that can make a significant contribution to such areas of biomedical science as human evolutionary biology, functional genomics, genetics of complex diseases, and pharmacogenomics.

  2. Recommendations for Genetic Variation Data Capture in Developing Countries to Ensure a Comprehensive Worldwide Data Collection

    PubMed Central

    Patrinos, George P; Al Aama, Jumana; Al Aqeel, Aida; Al-Mulla, Fahd; Borg, Joseph; Devereux, Andrew; Felice, Alex E; Macrae, Finlay; Marafie, Makia J; Petersen, Michael B; Qi, Ming; Ramesar, Rajkumar S; Zlotogora, Joel; Cotton, Richard GH

    2011-01-01

    Developing countries have significantly contributed to the elucidation of the genetic basis of both common and rare disorders, providing an invaluable resource of cases due to large family sizes, consanguinity, and potential founder effects. Moreover, the recognized depth of genomic variation in indigenous African populations, reflecting the ancient origins of humanity on the African continent, and the effect of selection pressures on the genome, will be valuable in understanding the range of both pathological and nonpathological variations. The involvement of these populations in accurately documenting the extant genetic heterogeneity is more than essential. Developing nations are regarded as key contributors to the Human Variome Project (HVP; http://www.humanvariomeproject.org), a major effort to systematically collect mutations that contribute to or cause human disease and create a cyber infrastructure to tie databases together. However, biomedical research has not been the primary focus in these countries even though such activities are likely to produce economic and health benefits for all. Here, we propose several recommendations and guidelines to facilitate participation of developing countries in genetic variation data documentation, ensuring an accurate and comprehensive worldwide data collection. We also summarize a few well-coordinated genetic data collection initiatives that would serve as paradigms for similar projects. Hum Mutat 31:1–8, 2010. © 2010 Wiley-Liss, Inc. PMID:21089065

  3. Distinct signatures of diversifying selection revealed by genome analysis of respiratory tract and invasive bacterial populations.

    PubMed

    Shea, Patrick R; Beres, Stephen B; Flores, Anthony R; Ewbank, Amy L; Gonzalez-Lugo, Javier H; Martagon-Rosado, Alexandro J; Martinez-Gutierrez, Juan C; Rehman, Hina A; Serrano-Gonzalez, Monica; Fittipaldi, Nahuel; Ayers, Stephen D; Webb, Paul; Willey, Barbara M; Low, Donald E; Musser, James M

    2011-03-22

    Many pathogens colonize different anatomical sites, but the selective pressures contributing to survival in the diverse niches are poorly understood. Group A Streptococcus (GAS) is a human-adapted bacterium that causes a range of infections. Much effort has been expended to dissect the molecular basis of invasive (sterile-site) infections, but little is known about the genomes of strains causing pharyngitis (streptococcal "sore throat"). Additionally, there is essentially nothing known about the genetic relationships between populations of invasive and pharyngitis strains. In particular, it is unclear if invasive strains represent a distinct genetic subpopulation of strains that cause pharyngitis. We compared the genomes of 86 serotype M3 GAS pharyngitis strains with those of 215 invasive M3 strains from the same geographical location. The pharyngitis and invasive groups were highly related to each other and had virtually identical phylogenetic structures, indicating they belong to the same genetic pool. Despite the overall high degree of genetic similarity, we discovered that strains from different host environments (i.e., throat, normally sterile sites) have distinct patterns of diversifying selection at the nucleotide level. In particular, the pattern of polymorphisms in the hyaluronic acid capsule synthesis operon was especially different between the two strain populations. This finding was mirrored by data obtained from full-genome analysis of strains sequentially cultured from nonhuman primates. Our results answer the long-standing question of the genetic relationship between GAS pharyngitis and invasive strains. The data provide previously undescribed information about the evolutionary history of pathogenic microbes that cause disease in different anatomical sites.

  4. Genetic studies of Age-related macular degeneration: lessons, challenges and opportunities for disease management

    PubMed Central

    Ratna Priya, Rinki; Chew, Emily Y.; Swaroop, Anand

    2012-01-01

    Age-related macular degeneration (AMD) is a common cause of visual impairment in individuals over 55 years of age worldwide. The varying clinical phenotypes of AMD result from contributions of genetic, epigenetic and non-genetic (environmental) factors. Genetic studies of AMD have come of age as a direct result of tremendous gains from human genome project, genomewide association studies and identification of numerous susceptibility loci. These findings have implicated immune response, high-density lipoprotein cholesterol metabolism, extracellular matrix, and angiogenesis signaling pathways in disease pathophysiology. Here, we address how the wealth of genetic findings in AMD is expected to impact the practice of medicine, providing opportunities for improved risk assessment, molecular diagnosis, preventive and therapeutic intervention. We propose that the potential of using genetic variants for monitoring treatment response (pharmacogenetics) may usher a new era of personalized medicine in the clinical management of AMD. PMID:23009893

  5. Blood metabolome profiles of cattle colonized with Escherichia coli O157

    USDA-ARS?s Scientific Manuscript database

    Metabolomics is being increasingly used for diagnosis of asymptomatic/difficult-to-diagnose diseases in humans including parasitic (i.e. protozoan, schistosomal), viral (i.e. cytomegalovirus), bacterial (i.e. cystic fibrosis caused by Pseudomonas), genetic (i.e. autism) and cancer (i.e. gastric canc...

  6. Toxoplasmosis in animals and humans

    USDA-ARS?s Scientific Manuscript database

    T. gondii is one of the most studied parasites.It causes disease in virtually all warm blooded animals Many scientists use T. gondii to investigate problems in cell biology and genetics. The book is divided into 19 chapters. Chapter 1 deals with biology. Chapter 2, which deals with toxoplasmosis...

  7. CARDIOVASCULAR DISEASES, SUSCEPTIBILITY TO OXIDATIVE INJURY AND COMPENSATORY MECHANISMS: INSIGHTS FROM RODENT MODELS

    EPA Science Inventory

    Cardiovascular diseases (CVD) are the number one cause for human mortality and nearly 25% of the population develops chronic CVD at an age of 65 years or older. Environmental and genetic interactions govern pathogenesis. Increased oxidative stress and compromised antioxidant stat...

  8. Genetics Home Reference: congenital sucrase-isomaltase deficiency

    MedlinePlus

    ... Leeb T, Naim HY. Novel mutations in the human sucrase-isomaltase gene (SI) that cause congenital carbohydrate malabsorption. Hum Mutat. 2006 Jan;27(1):119. Citation on PubMed Sibley E. Carbohydrate intolerance. Curr Opin Gastroenterol. 2004 Mar;20(2):162-7. Citation on PubMed More ...

  9. The genome of a Mongolian individual reveals the genetic imprints of Mongolians on modern human populations.

    PubMed

    Bai, Haihua; Guo, Xiaosen; Zhang, Dong; Narisu, Narisu; Bu, Junjie; Jirimutu, Jirimutu; Liang, Fan; Zhao, Xiang; Xing, Yanping; Wang, Dingzhu; Li, Tongda; Zhang, Yanru; Guan, Baozhu; Yang, Xukui; Yang, Zili; Shuangshan, Shuangshan; Su, Zhe; Wu, Huiguang; Li, Wenjing; Chen, Ming; Zhu, Shilin; Bayinnamula, Bayinnamula; Chang, Yuqi; Gao, Ying; Lan, Tianming; Suyalatu, Suyalatu; Huang, Hui; Su, Yan; Chen, Yujie; Li, Wenqi; Yang, Xu; Feng, Qiang; Wang, Jian; Yang, Huanming; Wang, Jun; Wu, Qizhu; Yin, Ye; Zhou, Huanmin

    2014-11-05

    Mongolians have played a significant role in modern human evolution, especially after the rise of Genghis Khan (1162[?]-1227). Although the social cultural impacts of Genghis Khan and the Mongolian population have been well documented, explorations of their genome structure and genetic imprints on other human populations have been lacking. We here present the genome of a Mongolian male individual. The genome was de novo assembled using a total of 130.8-fold genomic data produced from massively parallel whole-genome sequencing. We identified high-confidence variation sets, including 3.7 million single nucleotide polymorphisms (SNPs) and 756,234 short insertions and deletions. Functional SNP analysis predicted that the individual has a pathogenic risk for carnitine deficiency. We located the patrilineal inheritance of the Mongolian genome to the lineage D3a through Y haplogroup analysis and inferred that the individual has a common patrilineal ancestor with Tibeto-Burman populations and is likely to be the progeny of the earliest settlers in East Asia. We finally investigated the genetic imprints of Mongolians on other human populations using different approaches. We found varying degrees of gene flows between Mongolians and populations living in Europe, South/Central Asia, and the Indian subcontinent. The analyses demonstrate that the genetic impacts of Mongolians likely resulted from the expansion of the Mongolian Empire in the 13th century. The genome will be of great help in further explorations of modern human evolution and genetic causes of diseases/traits specific to Mongolians. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Gain-of-function mutations in SCN11A cause familial episodic pain.

    PubMed

    Zhang, Xiang Yang; Wen, Jingmin; Yang, Wei; Wang, Cheng; Gao, Luna; Zheng, Liang Hong; Wang, Tao; Ran, Kaikai; Li, Yulei; Li, Xiangyang; Xu, Ming; Luo, Junyu; Feng, Shenglei; Ma, Xixiang; Ma, Hongying; Chai, Zuying; Zhou, Zhuan; Yao, Jing; Zhang, Xue; Liu, Jing Yu

    2013-11-07

    Many ion channel genes have been associated with human genetic pain disorders. Here we report two large Chinese families with autosomal-dominant episodic pain. We performed a genome-wide linkage scan with microsatellite markers after excluding mutations in three known genes (SCN9A, SCN10A, and TRPA1) that cause similar pain syndrome to our findings, and we mapped the genetic locus to a 7.81 Mb region on chromosome 3p22.3-p21.32. By using whole-exome sequencing followed by conventional Sanger sequencing, we identified two missense mutations in the gene encoding voltage-gated sodium channel Nav1.9 (SCN11A): c.673C>T (p.Arg225Cys) and c.2423C>G (p.Ala808Gly) (one in each family). Each mutation showed a perfect cosegregation with the pain phenotype in the corresponding family, and neither of them was detected in 1,021 normal individuals. Both missense mutations were predicted to change a highly conserved amino acid residue of the human Nav1.9 channel. We expressed the two SCN11A mutants in mouse dorsal root ganglion (DRG) neurons and showed that both mutations enhanced the channel's electrical activities and induced hyperexcitablity of DRG neurons. Taken together, our results suggest that gain-of-function mutations in SCN11A can be causative of an autosomal-dominant episodic pain disorder. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  11. Reshaping the folding energy landscape of human carbonic anhydrase II by a single point genetic mutation Pro237His.

    PubMed

    Jiang, Yan; Su, Jing-Tan; Zhang, Jun; Wei, Xiang; Yan, Yong-Bin; Zhou, Hai-Meng

    2008-01-01

    Human carbonic anhydrase (HCA) II participates in a variety of important biological processes, and it has long been known that genetic mutations of HCA II are closely correlated to human disease. In this research, we investigated the effects of a genetic single point mutation P237, which is located on the surface of the molecule and does not participate in the HCA II catalysis, on HCA II activity, stability and folding. Spectroscopic studies revealed that the mutation caused more buried Trp residues to become accessible by solvent and caused the NMR signals to become less dispersed, but did not affect the secondary structure or the hydrophobic exposure of the protein. The mutant was less stable than the wild type enzyme against heat- and GdnHCl-induced inactivation, but its pH adaptation was similar to the wild type. The mutation slightly decreased the stability of the molten globular intermediate, but gradually affected the stability of the native state by a 10-fold reduction of the Gibbs free energy for the transition from the native state to the intermediate. This might have led to an accumulation of the aggregation-prone molten globular intermediate, which further trapped the proteins into the off-pathway aggregates during refolding and reduced the levels of active enzyme in vivo. The results herein suggested that the correct positioning of the long loop around P237 might be crucial to the folding of HCA II, particularly the formation of the active site.

  12. Ancient DNA reveals substantial genetic diversity in the California Condor (Gymnogyps californianus) prior to a population bottleneck

    USGS Publications Warehouse

    D'Elia, Jesse; Haig, Susan M.; Mullins, Thomas D.; Miller, Mark P.

    2016-01-01

    Critically endangered species that have undergone severe population bottlenecks often have little remaining genetic variation, making it difficult to reconstruct population histories to apply in reintroduction and recovery strategies. By using ancient DNA techniques, it is possible to combine genetic evidence from the historical population with contemporary samples to provide a more complete picture of a species' genetic variation across its historical range and through time. Applying this approach, we examined changes in the mitochondrial DNA (mtDNA) control region (526 base pairs) of the endangered California Condor (Gymnogyps californianus). Results showed a >80% reduction in unique haplotypes over the past 2 centuries. We found no spatial sorting of haplotypes in the historical population; the periphery of the range contained haplotypes that were common throughout the historical range. Direct examination of mtDNA from California Condor museum specimens provided a new window into historical population connectivity and genetic diversity showing: (1) a substantial loss of haplotypes, which is consistent with the hypothesis that condors were relatively abundant in the nineteenth century, but declined rapidly as a result of human-caused mortality; and (2) no evidence of historical population segregation, meaning that the available genetic data offer no cause to avoid releasing condors in unoccupied portions of their historical range.

  13. A novel mutation in SCN9A in a child with congenital insensitivity to pain.

    PubMed

    Shorer, Zamir; Wajsbrot, Einav; Liran, Tamir-Hostovsky; Levy, Jacov; Parvari, Ruti

    2014-01-01

    [corrected] Congenital insensitivity to pain (CIP) is a rare condition in which patients have no pain perception and anosmia but are otherwise essentially normal (OMIM 243000). The recent discovery of the genetic defects underlying 3 monogenic pain disorders has provided additional and important insights about some components of human pain. Genetic studies in families demonstrating recessively inherited channelopathy-associated insensitivity to pain have identified nonsense mutations that result in truncation of the voltage-gated sodium channel type IX subunit (SCN9A), a 113.5-kb gene comprising coding 26 exons. Here we describe a patient with CIP with a new mutation in SCN9A not described yet. All exons were sequenced. All 26 coding exons were sequenced and two changes were identified in homozygosity in exon 10: c.1126 A > C causing K376Q and c.1124delG causing p.G375Afs* frame shift. We report a novel, loss-of-function mutation in homozygosity that causes congenital insensitivity to pain and provide a comprehensive clinical description of the patient. This contributes to the clinical and neurophysiological characteristic of the sodium channel Nav1.7 channelopathy and expand our genetic knowledge which might provide more accurate and comprehensive clinical electrophysiological and genetic information. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Genetic syndromes associated with overgrowth in childhood

    PubMed Central

    2013-01-01

    Overgrowth syndromes comprise a diverse group of conditions with unique clinical, behavioral and molecular genetic features. While considerable overlap in presentation sometimes exists, advances in identification of the precise etiology of specific overgrowth disorders continue to improve clinicians' ability to make an accurate diagnosis. Among them, this paper introduces two classic genetic overgrowth syndromes: Sotos syndrome and Beckwith-Wiedemann syndrome. Historically, the diagnosis was based entirely on clinical findings. However, it is now understood that Sotos syndrome is caused by a variety of molecular genetic alterations resulting in haploinsufficiency of the NSD1 gene at chromosome 5q35 and that Beckwith-Wiedemann syndrome is caused by heterogeneous abnormalities in the imprinting of a number of growth regulatory genes within chromosome 11p15 in the majority of cases. Interestingly, the 11p15 imprinting region is also associated with Russell-Silver syndrome which is a typical growth retardation syndrome. Opposite epigenetic alterations in 11p15 result in opposite clinical features shown in Beckwith-Wiedemann syndrome and Russell-Silver syndrome. Although the exact functions of the causing genes have not yet been completely understood, these overgrowth syndromes can be good models to clarify the complex basis of human growth and help to develop better-directed therapies in the future. PMID:24904861

  15. Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus.

    PubMed

    Lowder, Bethan V; Guinane, Caitriona M; Ben Zakour, Nouri L; Weinert, Lucy A; Conway-Morris, Andrew; Cartwright, Robyn A; Simpson, A John; Rambaut, Andrew; Nübel, Ulrich; Fitzgerald, J Ross

    2009-11-17

    The impact of globalization on the emergence and spread of pathogens is an important veterinary and public health issue. Staphylococcus aureus is a notorious human pathogen associated with serious nosocomial and community-acquired infections. In addition, S. aureus is a major cause of animal diseases including skeletal infections of poultry, which are a large economic burden on the global broiler chicken industry. Here, we provide evidence that the majority of S. aureus isolates from broiler chickens are the descendants of a single human-to-poultry host jump that occurred approximately 38 years ago (range, 30 to 63 years ago) by a subtype of the worldwide human ST5 clonal lineage unique to Poland. In contrast to human subtypes of the ST5 radiation, which demonstrate strong geographic clustering, the poultry ST5 clade was distributed in different continents, consistent with wide dissemination via the global poultry industry distribution network. The poultry ST5 clade has undergone genetic diversification from its human progenitor strain by acquisition of novel mobile genetic elements from an avian-specific accessory gene pool, and by the inactivation of several proteins important for human disease pathogenesis. These genetic events have resulted in enhanced resistance to killing by chicken heterophils, reflecting avian host-adaptive evolution. Taken together, we have determined the evolutionary history of a major new animal pathogen that has undergone rapid avian host adaptation and intercontinental dissemination. These data provide a new paradigm for the impact of human activities on the emergence of animal pathogens.

  16. Ergot: from witchcraft to biotechnology.

    PubMed

    Haarmann, Thomas; Rolke, Yvonne; Giesbert, Sabine; Tudzynski, Paul

    2009-07-01

    The ergot diseases of grasses, caused by members of the genus Claviceps, have had a severe impact on human history and agriculture, causing devastating epidemics. However, ergot alkaloids, the toxic components of Claviceps sclerotia, have been used intensively (and misused) as pharmaceutical drugs, and efficient biotechnological processes have been developed for their in vitro production. Molecular genetics has provided detailed insight into the genetic basis of ergot alkaloid biosynthesis and opened up perspectives for the design of new alkaloids and the improvement of production strains; it has also revealed the refined infection strategy of this biotrophic pathogen, opening up the way for better control. Nevertheless, Claviceps remains an important pathogen worldwide, and a source for potential new drugs for central nervous system diseases.

  17. Kinetoplastids: related protozoan pathogens, different diseases

    PubMed Central

    Stuart, Ken; Brun, Reto; Croft, Simon; Fairlamb, Alan; Gürtler, Ricardo E.; McKerrow, Jim; Reed, Steve; Tarleton, Rick

    2008-01-01

    Kinetoplastids are a group of flagellated protozoans that include the species Trypanosoma and Leishmania, which are human pathogens with devastating health and economic effects. The sequencing of the genomes of some of these species has highlighted their genetic relatedness and underlined differences in the diseases that they cause. As we discuss in this Review, steady progress using a combination of molecular, genetic, immunologic, and clinical approaches has substantially increased understanding of these pathogens and important aspects of the diseases that they cause. Consequently, the paths for developing additional measures to control these “neglected diseases” are becoming increasingly clear, and we believe that the opportunities for developing the drugs, diagnostics, vaccines, and other tools necessary to expand the armamentarium to combat these diseases have never been better. PMID:18382742

  18. Prevalence of Antibiotic Resistance Genes among Human Gut-Derived Bifidobacteria.

    PubMed

    Duranti, Sabrina; Lugli, Gabriele Andrea; Mancabelli, Leonardo; Turroni, Francesca; Milani, Christian; Mangifesta, Marta; Ferrario, Chiara; Anzalone, Rosaria; Viappiani, Alice; van Sinderen, Douwe; Ventura, Marco

    2017-02-01

    The microbiota of the human gastrointestinal tract (GIT) may regularly be exposed to antibiotics, which are used to prevent and treat infectious diseases caused by bacteria and fungi. Bacterial communities of the gut retain a reservoir of antibiotic resistance (AR) genes, and antibiotic therapy thus positively selects for those microorganisms that harbor such genetic features, causing microbiota modulation. During the first months following birth, bifidobacteria represent some of the most dominant components of the human gut microbiota, although little is known about their AR gene complement (or resistome). In the current study, we assessed the resistome of the Bifidobacterium genus based on phenotypic and genotypic data of members that represent all currently recognized bifidobacterial (sub)species. Moreover, a comparison between the bifidobacterial resistome and gut metagenome data sets from adults and infants shows that the bifidobacterial community present at the first week following birth possesses a reduced AR arsenal compared to that present in the infant bifidobacterial population in subsequent weeks of the first year of life. Our findings reinforce the concept that the early infant gut microbiota is more susceptible to disturbances by antibiotic treatment than the gut microbiota developed at a later life stage. The spread of resistance to antibiotics among bacterial communities has represented a major concern since their discovery in the last century. The risk of genetic transfer of resistance genes between microorganisms has been extensively investigated due to its relevance to human health. In contrast, there is only limited information available on antibiotic resistance among human gut commensal microorganisms such as bifidobacteria, which are widely exploited by the food industry as health-promoting microorganisms or probiotic ingredients. In the current study, we explored the occurrence of antibiotic resistance genes in the genomes of bifidobacteria and evaluated their genetic mobility to other human gut commensal microorganisms. Copyright © 2017 American Society for Microbiology.

  19. TDP-43 Is Not a Common Cause of Sporadic Amyotrophic Lateral Sclerosis

    PubMed Central

    Guerreiro, Rita J.; Schymick, Jennifer C.; Crews, Cynthia; Singleton, Andrew; Hardy, John; Traynor, Bryan J.

    2008-01-01

    Background TAR DNA binding protein, encoded by TARDBP, was shown to be a central component of ubiquitin-positive, tau-negative inclusions in frontotemporal lobar degeneration (FTLD-U) and amyotrophic lateral sclerosis (ALS). Recently, mutations in TARDBP have been linked to familial and sporadic ALS. Methodology/Principal Findings To further examine the frequency of mutations in TARDBP in sporadic ALS, 279 ALS cases and 806 neurologically normal control individuals of European descent were screened for sequence variants, copy number variants, genetic and haplotype association with disease. An additional 173 African samples from the Human Gene Diversity Panel were sequenced as this population had the highest likelihood of finding changes. No mutations were found in the ALS cases. Several genetic variants were identified in controls, which were considered as non-pathogenic changes. Furthermore, pathogenic structural variants were not observed in the cases and there was no genetic or haplotype association with disease status across the TARDBP locus. Conclusions Our data indicate that genetic variation in TARDBP is not a common cause of sporadic ALS in North American. PMID:18545701

  20. African origins and chronic kidney disease susceptibility in the human immunodeficiency virus era

    PubMed Central

    Kasembeli, Alex N; Duarte, Raquel; Ramsay, Michèle; Naicker, Saraladevi

    2015-01-01

    Chronic kidney disease (CKD) is a major public health problem worldwide with the estimated incidence growing by approximately 6% annually. There are striking ethnic differences in the prevalence of CKD such that, in the United States, African Americans have the highest prevalence of CKD, four times the incidence of end stage renal disease when compared to Americans of European ancestry suggestive of genetic predisposition. Diabetes mellitus, hypertension and human immunodeficiency virus (HIV) infection are the major causes of CKD. HIV-associated nephropathy (HIVAN) is an irreversible form of CKD with considerable morbidity and mortality and is present predominantly in people of African ancestry. The APOL1 G1 and G2 alleles were more strongly associated with the risk for CKD than the previously examined MYH9 E1 risk haplotype in individuals of African ancestry. A strong association was reported in HIVAN, suggesting that 50% of African Americans with two APOL1 risk alleles, if untreated, would develop HIVAN. However these two variants are not enough to cause disease. The prevailing belief is that modifying factors or second hits (including genetic hits) underlie the pathogenesis of kidney disease. This work reviews the history of genetic susceptibility of CKD and outlines current theories regarding the role for APOL1 in CKD in the HIV era. PMID:25949944

  1. A Bioreactor Method to Generate High-titer, Genetically Stable, Clinical-isolate Human Cytomegalovirus.

    PubMed

    Saykally, Victoria R; Rast, Luke I; Sasaki, Jeff; Jung, Seung-Yong; Bolovan-Fritts, Cynthia; Weinberger, Leor S

    2017-11-05

    Human cytomegalovirus (HCMV) infection is a major cause of morbidity and mortality in transplant patients and a leading cause of congenital birth defects (Saint Louis, 2016). Vaccination and therapeutic studies often require scalable cell culture production of wild type virus, represented by clinical isolates. Obtaining sufficient stocks of wild-type clinical HCMV is often labor intensive and inefficient due to low yield and genetic loss, presenting a barrier to studies of clinical isolates. Here we report a bioreactor method based on continuous infection, where retinal pigment epithelial (ARPE-19) cells adhered to microcarrier beads are infected in a bioreactor and used to produce high-titers of clinical isolate HCMV that maintain genetic integrity of key viral tropism factors and the viral genome. In this bioreactor, an end-stage infection can be maintained by regular addition of uninfected ARPE-19 cells, providing convenient preparation of 10 7 -10 8 pfu/ml of concentrated TB40/E IE2-EYFP stocks without daily cell passaging or trypsinization. Overall, this represents a 100-fold increase in gain of virus production of 100-times compared to conventional static-culture plates, while requiring 90% less handling time. Moreover, this continuous infection environment has the potential to monitor infection dynamics with applications for real-time tracking of viral evolution.

  2. Rotavirus Diversity and Evolution in the Post-Vaccine World

    PubMed Central

    Patton, John T.

    2013-01-01

    Rotaviruses (RVs) are a large genetically diverse population of segmented double-stranded (ds) RNA viruses that are important causes of gastroenteritis in many animal species. The human RVs are responsible for the deaths of nearly 450,000 infants and young children each year, most occurring in developing countries. Recent large-scale sequencing efforts have revealed that the genomes of human RVs typically consist of phylogenetically linked constellations of eleven dsRNA segments. The presence of such preferred constellations indicate that the human RV genes have co-evolved to produce protein sets that work optimally together to support virus replication. Two of the viral genes encode virion outer capsid proteins (VP7 and VP4) whose antigenic properties define the G/P type of the virus. From year-to-year and place-to-place, the G/P type of human RVs associated with disease can fluctuate dramatically, phenomena that can be associated with the presence and behavior of genetically distinct RV clades. The recent introduction of two live attenuated RV vaccines (RotaReq™ and Rotarix™) into the childhood vaccination programs of various countries has been highly effective in reducing the incidence of RV diarrheal disease. Whether the widespread use of these vaccines will introduce selective pressures on human RVs, triggering genetic and antigenic changes that undermine the effectiveness of vaccinations programs, is uncertain and will require continued surveillance of human RVs. PMID:22284787

  3. Histone Lysine Methylases and Demethylases in the Landscape of Human Developmental Disorders.

    PubMed

    Faundes, Víctor; Newman, William G; Bernardini, Laura; Canham, Natalie; Clayton-Smith, Jill; Dallapiccola, Bruno; Davies, Sally J; Demos, Michelle K; Goldman, Amy; Gill, Harinder; Horton, Rachel; Kerr, Bronwyn; Kumar, Dhavendra; Lehman, Anna; McKee, Shane; Morton, Jenny; Parker, Michael J; Rankin, Julia; Robertson, Lisa; Temple, I Karen; Banka, Siddharth

    2018-01-04

    Histone lysine methyltransferases (KMTs) and demethylases (KDMs) underpin gene regulation. Here we demonstrate that variants causing haploinsufficiency of KMTs and KDMs are frequently encountered in individuals with developmental disorders. Using a combination of human variation databases and existing animal models, we determine 22 KMTs and KDMs as additional candidates for dominantly inherited developmental disorders. We show that KMTs and KDMs that are associated with, or are candidates for, dominant developmental disorders tend to have a higher level of transcription, longer canonical transcripts, more interactors, and a higher number and more types of post-translational modifications than other KMT and KDMs. We provide evidence to firmly associate KMT2C, ASH1L, and KMT5B haploinsufficiency with dominant developmental disorders. Whereas KMT2C or ASH1L haploinsufficiency results in a predominantly neurodevelopmental phenotype with occasional physical anomalies, KMT5B mutations cause an overgrowth syndrome with intellectual disability. We further expand the phenotypic spectrum of KMT2B-related disorders and show that some individuals can have severe developmental delay without dystonia at least until mid-childhood. Additionally, we describe a recessive histone lysine-methylation defect caused by homozygous or compound heterozygous KDM5B variants and resulting in a recognizable syndrome with developmental delay, facial dysmorphism, and camptodactyly. Collectively, these results emphasize the significance of histone lysine methylation in normal human development and the importance of this process in human developmental disorders. Our results demonstrate that systematic clinically oriented pathway-based analysis of genomic data can accelerate the discovery of rare genetic disorders. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  4. Mining the human genome after Association for Molecular Pathology v. Myriad Genetics.

    PubMed

    Evans, Barbara J

    2014-07-01

    The Supreme Court's recent decision in Association for Molecular Pathology v. Myriad Genetics portrays the human genome as a product of nature. This frames medical genetics as an extractive industry that mines a natural resource to produce valuable goods and services. Natural resource law offers insights into problems medical geneticists can expect after this decision and suggests possible solutions. Increased competition among clinical laboratories offers various benefits but threatens to increase fragmentation of genetic data resources, potentially causing waste in the form of lost opportunities to discover the clinical significance of particular gene variants. The solution lies in addressing legal barriers to appropriate data sharing. Sustainable discovery in the field of medical genetics can best be achieved through voluntary data sharing rather than command-and-control tactics, but voluntary mechanisms must be conceived broadly to include market-based approaches as well as donative and publicly funded data commons. The recently revised Health Insurance Portability and Accountability Act Privacy Rule offers an improved--but still imperfect--framework for market-oriented data sharing. This article explores strategies for addressing the Privacy Rule's remaining defects. America is close to having a legal framework that can reward innovators, protect privacy, and promote needed data sharing to advance medical genetics.

  5. Postnatal human genetic enhancement and the parens patriae doctrine

    PubMed Central

    Tamir, Sivan

    2016-01-01

    Abstract This paper explores the role of the state, acting as parens patriae, with respect to the future-looking technology of postnatal human genetic enhancement (PoGE), applied to minors by their parents or the state. Considering postnatal rather than prenatal genetic enhancement (PGE) allows us to explore the putative obligations of the state with respect to actual persons, in contrast to future persons the subjects of speculative investigation in the traditionally studied case of PGE. Part I features PoGE, mostly by analogy to PGE and other (non-genetic) postnatal enhancements. Part II examines the nature and scope of the parens patriae doctrine, distinguishing between its protective and substitutive facets. I conclude, drawing on contemporary legal constructions, that: a) the state's interference in parental genetic enhancement (GE) discretion, under its protective role, should generally be minimal, reserved to extreme cases where grave harm to the child has been caused or is reasonably foreseeable; and b) since we cannot readily find parents obligated to genetically enhance their offspring, the state as parens patriae, under its substitutive role, will be respectively exempt from such duty towards state-dependent-children, save for certain GEs considered a sine qua non necessity, equally obligating parents and state to provide children with. PMID:28852539

  6. Mutations in TRAPPC12 Manifest in Progressive Childhood Encephalopathy and Golgi Dysfunction.

    PubMed

    Milev, Miroslav P; Grout, Megan E; Saint-Dic, Djenann; Cheng, Yong-Han Hank; Glass, Ian A; Hale, Christopher J; Hanna, David S; Dorschner, Michael O; Prematilake, Keshika; Shaag, Avraham; Elpeleg, Orly; Sacher, Michael; Doherty, Dan; Edvardson, Simon

    2017-08-03

    Progressive childhood encephalopathy is an etiologically heterogeneous condition characterized by progressive central nervous system dysfunction in association with a broad range of morbidity and mortality. The causes of encephalopathy can be either non-genetic or genetic. Identifying the genetic causes and dissecting the underlying mechanisms are critical to understanding brain development and improving treatments. Here, we report that variants in TRAPPC12 result in progressive childhood encephalopathy. Three individuals from two unrelated families have either a homozygous deleterious variant (c.145delG [p.Glu49Argfs ∗ 14]) or compound-heterozygous variants (c.360dupC [p.Glu121Argfs ∗ 7] and c.1880C>T [p. Ala627Val]). The clinical phenotypes of the three individuals are strikingly similar: severe disability, microcephaly, hearing loss, spasticity, and characteristic brain imaging findings. Fibroblasts derived from all three individuals showed a fragmented Golgi that could be rescued by expression of wild-type TRAPPC12. Protein transport from the endoplasmic reticulum to and through the Golgi was delayed. TRAPPC12 is a member of the TRAPP protein complex, which functions in membrane trafficking. Variants in several other genes encoding members of the TRAPP complex have been associated with overlapping clinical presentations, indicating shared and distinct functions for each complex member. Detailed understanding of the TRAPP-opathies will illuminate the role of membrane protein transport in human disease. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. Human Genome Sequencing in Health and Disease

    PubMed Central

    Gonzaga-Jauregui, Claudia; Lupski, James R.; Gibbs, Richard A.

    2013-01-01

    Following the “finished,” euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing technologies is making possible the era of personalized human genomics. Personal diploid human genome sequences have been generated, and each has contributed to our better understanding of variation in the human genome. We have consequently begun to appreciate the vastness of individual genetic variation from single nucleotide to structural variants. Translation of genome-scale variation into medically useful information is, however, in its infancy. This review summarizes the initial steps undertaken in clinical implementation of personal genome information, and describes the application of whole-genome and exome sequencing to identify the cause of genetic diseases and to suggest adjuvant therapies. Better analysis tools and a deeper understanding of the biology of our genome are necessary in order to decipher, interpret, and optimize clinical utility of what the variation in the human genome can teach us. Personal genome sequencing may eventually become an instrument of common medical practice, providing information that assists in the formulation of a differential diagnosis. We outline herein some of the remaining challenges. PMID:22248320

  8. Complement C2 receptor inhibitor trispanning: from man to schistosome.

    PubMed

    Inal, Jameel M

    2005-11-01

    Horizontal gene transfer (HGT), in relation to genetic transfer between hosts and parasites, is a little described mechanism. Since the complement inhibitor CRIT was first discovered in the human Schistosoma parasite (the causative agent of Bilharzia) and in Trypanosoma cruzi (a parasite causing Chagas' disease), it has been found to be distributed amongst various species, ranging from the early teleost cod to rats and humans. In terms of evolutionary distance, as measured in a phylogenetic analysis of these CRIT genes at nucleotide level, the parasitic species are as removed from their human host as is the rat sequence, suggesting HGT. The hypotheses that CRIT in humans and schistosomes is orthologous and that the presence of CRIT in schistosomes occurs as a result of host-to-parasite HGT are presented in the light of empirical data and the growing body of data on mobile genetic elements in human and schistosome genomes. In summary, these data indicate phylogenetic proximity between Schistosoma and human CRIT, identity of function, high nucleotide/amino acid identity and secondary protein structure, as well as identical genomic organization.

  9. Meiotic recombination and male infertility: from basic science to clinical reality?

    PubMed Central

    Hann, Michael C; Lau, Patricio E; Tempest, Helen G

    2011-01-01

    Infertility is a common problem that affects approximately 15% of the population. Although many advances have been made in the treatment of infertility, the molecular and genetic causes of male infertility remain largely elusive. This review will present a summary of our current knowledge on the genetic origin of male infertility and the key events of male meiosis. It focuses on chromosome synapsis and meiotic recombination and the problems that arise when errors in these processes occur, specifically meiotic arrest and chromosome aneuploidy, the leading cause of pregnancy loss in humans. In addition, meiosis-specific candidate genes will be discussed, including a discussion on why we have been largely unsuccessful at identifying disease-causing mutations in infertile men. Finally clinical applications of sperm aneuploidy screening will be touched upon along with future prospective clinical tests to better characterize male infertility in a move towards personalized medicine. PMID:21297654

  10. Meiotic recombination and male infertility: from basic science to clinical reality?

    PubMed

    Hann, Michael C; Lau, Patricio E; Tempest, Helen G

    2011-03-01

    Infertility is a common problem that affects approximately 15% of the population. Although many advances have been made in the treatment of infertility, the molecular and genetic causes of male infertility remain largely elusive. This review will present a summary of our current knowledge on the genetic origin of male infertility and the key events of male meiosis. It focuses on chromosome synapsis and meiotic recombination and the problems that arise when errors in these processes occur, specifically meiotic arrest and chromosome aneuploidy, the leading cause of pregnancy loss in humans. In addition, meiosis-specific candidate genes will be discussed, including a discussion on why we have been largely unsuccessful at identifying disease-causing mutations in infertile men. Finally clinical applications of sperm aneuploidy screening will be touched upon along with future prospective clinical tests to better characterize male infertility in a move towards personalized medicine.

  11. Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly

    PubMed Central

    Lettice, Laura A.; Horikoshi, Taizo; Heaney, Simon J. H.; van Baren, Marijke J.; van der Linde, Herma C.; Breedveld, Guido J.; Joosse, Marijke; Akarsu, Nurten; Oostra, Ben A.; Endo, Naoto; Shibata, Minoru; Suzuki, Mikio; Takahashi, Eiichi; Shinka, Toshikatsu; Nakahori, Yutaka; Ayusawa, Dai; Nakabayashi, Kazuhiko; Scherer, Stephen W.; Heutink, Peter; Hill, Robert E.; Noji, Sumihare

    2002-01-01

    Preaxial polydactyly (PPD) is a common limb malformation in human. A number of polydactylous mouse mutants indicate that misexpression of Shh is a common requirement for generating extra digits. Here we identify a translocation breakpoint in a PPD patient and a transgenic insertion site in the polydactylous mouse mutant sasquatch (Ssq). The genetic lesions in both lie within the same respective intron of the LMBR1/Lmbr1 gene, which resides ≈1 Mb away from Shh. Genetic analysis of Ssq reveals that the Lmbr1 gene is incidental to the phenotype and that the mutation directly interrupts a cis-acting regulator of Shh. This regulator is most likely the target for generating PPD mutations in human. PMID:12032320

  12. Designing Methuselah: an ethical argument against germline genetic modification to prolong human longevity.

    PubMed

    Robertson, Isabelle L

    2017-09-01

    Precise editing of the human germline has been considered an unlikely and an unethical proposition. Recently, tools to edit the human germline have been developed and it is now a realistic prospect. Consequently, the ethical arguments around prohibiting human genome editing need to be re-evaluated. It is anticipatable that using it to eradicate disease-causing mutations will be acceptable if clinical risks can be shown to be sufficiently low. Some go further and advocate that genetically 'enhancing' humans will also be permissible. Here I argue that there are instances where human germline editing should be prohibited because harms can be anticipated from the results of studies of aspects of human psychology. The example I have chosen to illustrate this argument is prolongation of the human lifespan. Cohort and longitudinal studies demonstrate that a vital ingredient of human contentment and health is being integrated into a cohort of similarly aged people and experiencing life's trials and tribulations contemporaneously. A person genetically engineered to live longer than their peers will experience the loss of their cohort and many from the generation following them-an established risk factor for discontentment and ill health. Since germline genome editing precludes obtaining the consent of the individual in question, and that such a predictable harm will be commonly encountered, it is questionable that human germline editing to extend lifespan can ever be considered an ethical practice. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. Gene co-expression network analysis identifies porcine genes associated with variation in Salmonella shedding

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serovar Typhimurium is a gram-negative bacterium that can colonize the gut of humans and several species of food producing farm animals to cause enteric or septicaemic salmonellosis. While many studies have looked into the host genetic response to Salmonella infection, relatively...

  14. Evaluation of Eukaryotic Cell Invasion on a Library of Genetically Diverse Campylobacter spp. Isolates.

    USDA-ARS?s Scientific Manuscript database

    Campylobacter spp. are the largest cause of sporadic bacterial gastrointestinal infection in the industrialized world. Epithelial cell invasion is thought to be necessary to bring about infection in humans. Invasion studies have shown that different Campylobacter jejuni isolates may differ in thei...

  15. The Neuroanatomy and Neuroendocrinology of Fragile X Syndrome

    ERIC Educational Resources Information Center

    Hessl, David; Rivera, Susan M.; Reiss, Allan L.

    2004-01-01

    Fragile X syndrome (FXS), caused by a single gene mutation on the X chromosome, offers a unique opportunity for investigation of gene-brain-behavior relationships. Recent advances in molecular genetics, human brain imaging, and behavioral studies have started to unravel the complex pathways leading to the cognitive, psychiatric, and physical…

  16. Chemical and HTS Profiling of 63 Cleft Palate Teratogens from ToxCast (FutureTox III)

    EPA Science Inventory

    Cleft palate is a common human birth defect that has been linked to both genetic and environmental factors. To characterize the potential molecular targets and biological processes across mechanistically diverse teratogens that cause cleft palate, we mined the ToxCast high-throug...

  17. We Are All Mutants

    ERIC Educational Resources Information Center

    Timson, David J.

    2017-01-01

    Mutations can cause genetic diseases and the vast majority of these have no effective treatment. They raise some difficult questions on the boundaries of science and social science. Selective breeding to "improve" the human race (eugenics) is often regarded as a Victorian relic or Nazi fantasy. Yet, three fetuses with Down syndrome are…

  18. Molecular Diversity of Trypanosoma cruzi Detected in the Vector Triatoma protracta from California, USA

    PubMed Central

    Shender, Lisa A.; Lewis, Michael D.; Rejmanek, Daniel; Mazet, Jonna A. K.

    2016-01-01

    Background Trypanosoma cruzi, causative agent of Chagas disease in humans and dogs, is a vector-borne zoonotic protozoan parasite that can cause fatal cardiac disease. While recognized as the most economically important parasitic infection in Latin America, the incidence of Chagas disease in the United States of America (US) may be underreported and even increasing. The extensive genetic diversity of T. cruzi in Latin America is well-documented and likely influences disease progression, severity and treatment efficacy; however, little is known regarding T. cruzi strains endemic to the US. It is therefore important to expand our knowledge on US T. cruzi strains, to improve upon the recognition of and response to locally acquired infections. Methodology/Principle Findings We conducted a study of T. cruzi molecular diversity in California, augmenting sparse genetic data from southern California and for the first time investigating genetic sequences from northern California. The vector Triatoma protracta was collected from southern (Escondido and Los Angeles) and northern (Vallecito) California regions. Samples were initially screened via sensitive nuclear repetitive DNA and kinetoplast minicircle DNA PCR assays, yielding an overall prevalence of approximately 28% and 55% for southern and northern California regions, respectively. Positive samples were further processed to identify discrete typing units (DTUs), revealing both TcI and TcIV lineages in southern California, but only TcI in northern California. Phylogenetic analyses (targeting COII-ND1, TR and RB19 genes) were performed on a subset of positive samples to compare Californian T. cruzi samples to strains from other US regions and Latin America. Results indicated that within the TcI DTU, California sequences were similar to those from the southeastern US, as well as to several isolates from Latin America responsible for causing Chagas disease in humans. Conclusions/Significance Triatoma protracta populations in California are frequently infected with T. cruzi. Our data extend the northern limits of the range of TcI and identify a novel genetic exchange event between TcI and TcIV. High similarity between sequences from California and specific Latin American strains indicates US strains may be equally capable of causing human disease. Additional genetic characterization of Californian and other US T. cruzi strains is recommended. PMID:26797311

  19. HSP90 Shapes the Consequences of Human Genetic Variation.

    PubMed

    Karras, Georgios I; Yi, Song; Sahni, Nidhi; Fischer, Máté; Xie, Jenny; Vidal, Marc; D'Andrea, Alan D; Whitesell, Luke; Lindquist, Susan

    2017-02-23

    HSP90 acts as a protein-folding buffer that shapes the manifestations of genetic variation in model organisms. Whether HSP90 influences the consequences of mutations in humans, potentially modifying the clinical course of genetic diseases, remains unknown. By mining data for >1,500 disease-causing mutants, we found a strong correlation between reduced phenotypic severity and a dominant (HSP90 ≥ HSP70) increase in mutant engagement by HSP90. Examining the cancer predisposition syndrome Fanconi anemia in depth revealed that mutant FANCA proteins engaged predominantly by HSP70 had severely compromised function. In contrast, the function of less severe mutants was preserved by a dominant increase in HSP90 binding. Reducing HSP90's buffering capacity with inhibitors or febrile temperatures destabilized HSP90-buffered mutants, exacerbating FA-related chemosensitivities. Strikingly, a compensatory FANCA somatic mutation from an "experiment of nature" in monozygotic twins both prevented anemia and reduced HSP90 binding. These findings provide one plausible mechanism for the variable expressivity and environmental sensitivity of genetic diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Studying the Effect of Radiation in the Context of Deep Space Travel

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Gilbert, Rachel R.; Lo, Rachel

    2017-01-01

    While it has been shown that decades of astronauts and cosmonauts can suffer from illnesses both during and after spaceflight, the underlying causes are still poorly understood, due in part to the fact that there are so many variables to consider when investigating the human immune system in a complex environment. Invertebrates have become popular models for studying human disease because they are cheap, highly amenable to experimental manipulation, and have innate immune systems with a high genetic similarity to humans. Fruit flies (Drosophila melanogaster) have been shown to experience a dramatic shift in immune gene expression following spaceflight, but are still able to fight off infections when exposed to bacteria. However, the common bacterial pathogen Serratia marcescens was shown to become more lethal to fruit flies after being cultured in space, suggesting that not only do we need to consider host changes in susceptibility, but also changes in the pathogen itself after spaceflight conditions. Being able to simulate spaceflight conditions in a controlled environment on the ground gives us the ability to not only evaluate the effects of microgravity on the host immune system, but also how the microorganisms that cause immune disorders are being affected by these drastic environmental shifts. In this study, I use a ground-based simulated microgravity environment to examine the genetic changes associated with increased S. marcescens virulence in order to understand how microgravity is affecting this pathogen, as well as how these genetic changes influence and interact with the host immune system. This study will provide us with more directed approaches to studying the effects of spaceflight on human beings, with the ultimate goal of being able to counteract immune dysfunction in future space exploration.

  1. Effects of Simulated Microgravity on a Host-Pathogen System

    NASA Technical Reports Server (NTRS)

    Gilbert, Rachel; Lo, Rachel; Bhattacharya, Sharmila

    2017-01-01

    While it has been shown that decades of astronauts and cosmonauts can suffer from illnesses both during and after spaceflight, the underlying causes are still poorly understood, due in part to the fact that there are so many variables to consider when investigating the human immune system in a complex environment. Invertebrates have become popular models for studying human disease because they are cheap, highly amenable to experimental manipulation, and have innate immune systems with a high genetic similarity to humans. Fruit flies (Drosophila melanogaster) have been shown to experience a dramatic shift in immune gene expression following spaceflight, but are still able to fight off infections when exposed to bacteria. However, the common bacterial pathogen Serratia marcescens was shown to become more lethal to fruit flies after being cultured in space, suggesting that not only do we need to consider host changes in susceptibility, but also changes in the pathogen itself after spaceflight conditions. Being able to simulate spaceflight conditions in a controlled environment on the ground gives us the ability to not only evaluate the effects of microgravity on the host immune system, but also how the microorganisms that cause immune disorders are being affected by these drastic environmental shifts. In this study, I use a ground-based simulated microgravity environment to examine the genetic changes associated with increased S. marcescens virulence in order to understand how microgravity is affecting this pathogen, as well as how these genetic changes influence and interact with the host immune system. This study will provide us with more directed approaches to studying the effects of spaceflight on human beings, with the ultimate goal of being able to counteract immune dysfunction in future space exploration.

  2. The genesis and correction of unprofessional behavior in surgeons: The role of society, education and genetics.

    PubMed

    Talati, Jamsheer Jehangir

    2016-05-01

    Most surgeons are ethical. Increasingly, however, a variety of unprofessional behaviors are surfacing. Awareness of these behaviors and their causation is required to plan their eradication. To (i) identify the prevalent causes of unprofessional behaviors amongst surgeons; and (ii) suggest corrective interventions. Literature was searched and models constructed to interpret interrelationships between causes. Unprofessional behaviors extend beyond those frequently discussed, necessitating the term 'dysprofessionalism'. Causal influences arise from (i) an overpowering society; (ii) limited education and (iii) the underdeveloped state of human nature at birth. Societies corrupt by role-modeling avarice and encouraging industry-despite consequent pollution. Society brooks no interference. Surgeons are loath to oppose, resulting in an unprofessional silence. Surgical education based on best evidence is an indoctrination, with little opportunity to deploy alternatives. Evidence based guidelines increasingly risk errors, as publication fraud increases. Effective interaction with government/legislation is not taught. Human nature and our brain remain arrested in a stage of strongly stabilized evolutionary selection. Humans are born with larval brains requiring intense educational interventions. Genetic modification holds promise as it can circumvent birth in undeveloped states, and facilitate trans-generational transfer of knowledge. CRISPR/Cas-9 techniques make this possible, necessitating ethical discussion-an urgent issue. Reforming society would otherwise be an impossible task as behaviors cannot be taught in classrooms. Instances of dysprofessionalism are unlikely to diminish using current approaches. Discussion of the ethics of genetically modifying embryos is urgently needed, as this could provide a possible shortcut to positive changes in human behavior, but risks unwanted changes and misuse. Copyright © 2016 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  3. Oncogenic Viruses and Breast Cancer: Mouse Mammary Tumor Virus (MMTV), Bovine Leukemia Virus (BLV), Human Papilloma Virus (HPV), and Epstein-Barr Virus (EBV).

    PubMed

    Lawson, James S; Salmons, Brian; Glenn, Wendy K

    2018-01-01

    Although the risk factors for breast cancer are well established, namely female gender, early menarche and late menopause plus the protective influence of early pregnancy, the underlying causes of breast cancer remain unknown. The development of substantial recent evidence indicates that a handful of viruses may have a role in breast cancer. These viruses are mouse mammary tumor virus (MMTV), bovine leukemia virus (BLV), human papilloma viruses (HPVs), and Epstein-Barr virus (EBV-also known as human herpes virus type 4). Each of these viruses has documented oncogenic potential. The aim of this review is to inform the scientific and general community about this recent evidence. MMTV and human breast cancer-the evidence is detailed and comprehensive but cannot be regarded as conclusive. BLV and human breast cancer-the evidence is limited. However, in view of the emerging information about BLV in human breast cancer, it is prudent to encourage the elimination of BLV in cattle, particularly in the dairy industry. HPVs and breast cancer-the evidence is substantial but not conclusive. The availability of effective preventive vaccines is a major advantage and their use should be encouraged. EBV and breast cancer-the evidence is also substantial but not conclusive. Currently, there are no practical means of either prevention or treatment. Although there is evidence of genetic predisposition, and cancer in general is a culmination of events, there is no evidence that inherited genetic traits are causal. The influence of oncogenic viruses is currently the major plausible hypothesis for a direct cause of human breast cancer.

  4. Pathway-based discovery of genetic interactions in breast cancer

    PubMed Central

    Xu, Zack Z.; Boone, Charles; Lange, Carol A.

    2017-01-01

    Breast cancer is the second largest cause of cancer death among U.S. women and the leading cause of cancer death among women worldwide. Genome-wide association studies (GWAS) have identified several genetic variants associated with susceptibility to breast cancer, but these still explain less than half of the estimated genetic contribution to the disease. Combinations of variants (i.e. genetic interactions) may play an important role in breast cancer susceptibility. However, due to a lack of statistical power, the current tests for genetic interactions from GWAS data mainly leverage prior knowledge to focus on small sets of genes or SNPs that are known to have an association with breast cancer. Thus, many genetic interactions, particularly among novel variants, remain understudied. Reverse-genetic interaction screens in model organisms have shown that genetic interactions frequently cluster into highly structured motifs, where members of the same pathway share similar patterns of genetic interactions. Based on this key observation, we recently developed a method called BridGE to search for such structured motifs in genetic networks derived from GWAS studies and identify pathway-level genetic interactions in human populations. We applied BridGE to six independent breast cancer cohorts and identified significant pathway-level interactions in five cohorts. Joint analysis across all five cohorts revealed a high confidence consensus set of genetic interactions with support in multiple cohorts. The discovered interactions implicated the glutathione conjugation, vitamin D receptor, purine metabolism, mitotic prometaphase, and steroid hormone biosynthesis pathways as major modifiers of breast cancer risk. Notably, while many of the pathways identified by BridGE show clear relevance to breast cancer, variants in these pathways had not been previously discovered by traditional single variant association tests, or single pathway enrichment analysis that does not consider SNP-SNP interactions. PMID:28957314

  5. Pluripotent Stem Cells and Gene Therapy

    PubMed Central

    Simara, Pavel; Motl, Jason A.; Kaufman, Dan S.

    2013-01-01

    Human pluripotent stem cells represent an accessible cell source for novel cell-based clinical research and therapies. With the realization of induced pluripotent stem cells (iPSCs), it is possible to produce almost any desired cell type from any patient's cells. Current developments in gene modification methods have opened the possibility for creating genetically corrected human iPSCs for certain genetic diseases that could be used later in autologous transplantation. Promising preclinical studies have demonstrated correction of disease-causing mutations in a number of hematological, neuronal and muscular disorders. This review aims to summarize these recent advances with a focus on iPSC generation techniques, as well as gene modification methods. We will then further discuss some of the main obstacles remaining to be overcome before successful application of human pluripotent stem cell-based therapy arrives in the clinic and what the future of stem cell research may look like. PMID:23353080

  6. Male infertility and its causes in human.

    PubMed

    Miyamoto, Toshinobu; Tsujimura, Akira; Miyagawa, Yasushi; Koh, Eitetsu; Namiki, Mikio; Sengoku, Kazuo

    2012-01-01

    Infertility is one of the most serious social problems facing advanced nations. In general, approximate half of all cases of infertility are caused by factors related to the male partner. To date, various treatments have been developed for male infertility and are steadily producing results. However, there is no effective treatment for patients with nonobstructive azoospermia, in which there is an absence of mature sperm in the testes. Although evidence suggests that many patients with male infertility have a genetic predisposition to the condition, the cause has not been elucidated in the vast majority of cases. This paper discusses the environmental factors considered likely to be involved in male infertility and the genes that have been clearly shown to be involved in male infertility in humans, including our recent findings.

  7. Understanding bat SARS-like coronaviruses for the preparation of future coronavirus outbreaks - Implications for coronavirus vaccine development.

    PubMed

    Ng, Oi-Wing; Tan, Yee-Joo

    2017-01-02

    The severe acute respiratory syndrome coronavirus (SARS-CoV) first emerged in 2003, causing the SARS epidemic which resulted in a 10% fatality rate. The advancements in metagenomic techniques have allowed the identification of SARS-like coronaviruses (SL-CoVs) sequences that share high homology to the human SARS-CoV epidemic strains from wildlife bats, presenting concrete evidence that bats are the origin and natural reservoir of SARS-CoV. The application of reverse genetics further enabled that characterization of these bat CoVs and the prediction of their potential to cause disease in humans. The knowledge gained from such studies is valuable in the surveillance and preparation of a possible future outbreak caused by a spill-over of these bat SL-CoVs.

  8. Genetic aspects of population policy.

    PubMed

    Morton, N E

    1999-08-01

    Every science begins in folklore and matures as it reacts against dogma and myth. Astronomy developed in the Neolithic, but it did not outgrow astrology until the sixteenth century. Chemistry discarded alchemy at about the same time. On the contrary, the short history of genetics has been concurrent with the pseudo-science of eugenics, which, at times, has been widely accepted and incorporated in population policy and directive genetic counselling, with rare opposition by geneticists. Societal pressures are likely to increase with the power of genetic technology, the fear it generates and the perception that population growth threatens human welfare. Without a pertinent ethical code, geneticists are vulnerable to both temptation and opprobrium. The intrusion of eugenics into genetic counselling has been a recent source of concern to societies and congresses of genetics. This review traces the causes of this concern and the manner of its expression in the absence of an international voice for genetics that could address ethical and other common interests.

  9. Rfx6 Directs Islet Formation and Insulin Production in Mice and Humans

    PubMed Central

    Smith, Stuart B.; Qu, Hui-Qi; Taleb, Nadine; Kishimoto, Nina; Scheel, David W.; Lu, Yang; Patch, Ann-Marie; Grabs, Rosemary; Wang, Juehu; Lynn, Francis C.; Miyatsuka, Takeshi; Mitchell, John; Seerke, Rina; Désir, Julie; Eijnden, Serge Vanden; Abramowicz, Marc; Kacet, Nadine; Weill, Jacques; Renard, Marie-Éve; Gentile, Mattia; Hansen, Inger; Dewar, Ken; Hattersley, Andrew T.; Wang, Rennian; Wilson, Maria E.; Johnson, Jeffrey D.; Polychronakos, Constantin; German, Michael S.

    2009-01-01

    Insulin from the β-cells of the pancreatic islets of Langerhans controls energy homeostasis in vertebrates, and its deficiency causes diabetes mellitus. During embryonic development, the transcription factor Neurogenin3 initiates the differentiation of the β-cells and other islet cell types from pancreatic endoderm, but the genetic program that subsequently completes this differentiation remains incompletely understood. Here we show that the transcription factor Rfx6 directs islet cell differentiation downstream of Neurogenin3. Mice lacking Rfx6 failed to generate any of the normal islet cell types except for pancreatic-polypeptide-producing cells. In human infants with a similar autosomal recessive syndrome of neonatal diabetes, genetic mapping and subsequent sequencing identified mutations in the human RFX6 gene. These studies demonstrate a unique position for Rfx6 in the hierarchy of factors that coordinate pancreatic islet development in both mice and humans. Rfx6 could prove useful in efforts to generate β-cells for patients with diabetes. PMID:20148032

  10. The Library of Integrated Network-Based Cellular Signatures NIH Program: System-Level Cataloging of Human Cells Response to Perturbations.

    PubMed

    Keenan, Alexandra B; Jenkins, Sherry L; Jagodnik, Kathleen M; Koplev, Simon; He, Edward; Torre, Denis; Wang, Zichen; Dohlman, Anders B; Silverstein, Moshe C; Lachmann, Alexander; Kuleshov, Maxim V; Ma'ayan, Avi; Stathias, Vasileios; Terryn, Raymond; Cooper, Daniel; Forlin, Michele; Koleti, Amar; Vidovic, Dusica; Chung, Caty; Schürer, Stephan C; Vasiliauskas, Jouzas; Pilarczyk, Marcin; Shamsaei, Behrouz; Fazel, Mehdi; Ren, Yan; Niu, Wen; Clark, Nicholas A; White, Shana; Mahi, Naim; Zhang, Lixia; Kouril, Michal; Reichard, John F; Sivaganesan, Siva; Medvedovic, Mario; Meller, Jaroslaw; Koch, Rick J; Birtwistle, Marc R; Iyengar, Ravi; Sobie, Eric A; Azeloglu, Evren U; Kaye, Julia; Osterloh, Jeannette; Haston, Kelly; Kalra, Jaslin; Finkbiener, Steve; Li, Jonathan; Milani, Pamela; Adam, Miriam; Escalante-Chong, Renan; Sachs, Karen; Lenail, Alex; Ramamoorthy, Divya; Fraenkel, Ernest; Daigle, Gavin; Hussain, Uzma; Coye, Alyssa; Rothstein, Jeffrey; Sareen, Dhruv; Ornelas, Loren; Banuelos, Maria; Mandefro, Berhan; Ho, Ritchie; Svendsen, Clive N; Lim, Ryan G; Stocksdale, Jennifer; Casale, Malcolm S; Thompson, Terri G; Wu, Jie; Thompson, Leslie M; Dardov, Victoria; Venkatraman, Vidya; Matlock, Andrea; Van Eyk, Jennifer E; Jaffe, Jacob D; Papanastasiou, Malvina; Subramanian, Aravind; Golub, Todd R; Erickson, Sean D; Fallahi-Sichani, Mohammad; Hafner, Marc; Gray, Nathanael S; Lin, Jia-Ren; Mills, Caitlin E; Muhlich, Jeremy L; Niepel, Mario; Shamu, Caroline E; Williams, Elizabeth H; Wrobel, David; Sorger, Peter K; Heiser, Laura M; Gray, Joe W; Korkola, James E; Mills, Gordon B; LaBarge, Mark; Feiler, Heidi S; Dane, Mark A; Bucher, Elmar; Nederlof, Michel; Sudar, Damir; Gross, Sean; Kilburn, David F; Smith, Rebecca; Devlin, Kaylyn; Margolis, Ron; Derr, Leslie; Lee, Albert; Pillai, Ajay

    2018-01-24

    The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program that catalogs how human cells globally respond to chemical, genetic, and disease perturbations. Resources generated by LINCS include experimental and computational methods, visualization tools, molecular and imaging data, and signatures. By assembling an integrated picture of the range of responses of human cells exposed to many perturbations, the LINCS program aims to better understand human disease and to advance the development of new therapies. Perturbations under study include drugs, genetic perturbations, tissue micro-environments, antibodies, and disease-causing mutations. Responses to perturbations are measured by transcript profiling, mass spectrometry, cell imaging, and biochemical methods, among other assays. The LINCS program focuses on cellular physiology shared among tissues and cell types relevant to an array of diseases, including cancer, heart disease, and neurodegenerative disorders. This Perspective describes LINCS technologies, datasets, tools, and approaches to data accessibility and reusability. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses.

    PubMed

    Su, Shuo; Wong, Gary; Shi, Weifeng; Liu, Jun; Lai, Alexander C K; Zhou, Jiyong; Liu, Wenjun; Bi, Yuhai; Gao, George F

    2016-06-01

    Human coronaviruses (HCoVs) were first described in the 1960s for patients with the common cold. Since then, more HCoVs have been discovered, including those that cause severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), two pathogens that, upon infection, can cause fatal respiratory disease in humans. It was recently discovered that dromedary camels in Saudi Arabia harbor three different HCoV species, including a dominant MERS HCoV lineage that was responsible for the outbreaks in the Middle East and South Korea during 2015. In this review we aim to compare and contrast the different HCoVs with regard to epidemiology and pathogenesis, in addition to the virus evolution and recombination events which have, on occasion, resulted in outbreaks amongst humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Temporal genetic change in the last remaining population of woolly mammoth

    PubMed Central

    Nyström, Veronica; Dalén, Love; Vartanyan, Sergey; Lidén, Kerstin; Ryman, Nils; Angerbjörn, Anders

    2010-01-01

    During the Late Pleistocene, the woolly mammoth (Mammuthus primigenius) experienced a series of local extinctions generally attributed to human predation or environmental change. Some small and isolated populations did however survive far into the Holocene. Here, we investigated the genetic consequences of the isolation of the last remaining mammoth population on Wrangel Island. We analysed 741 bp of the mitochondrial DNA and found a loss of genetic variation in relation to the isolation event, probably caused by a demographic bottleneck or a founder event. However, in spite of ca 5000 years of isolation, we did not detect any further loss of genetic variation. Together with the relatively high number of mitochondrial haplotypes on Wrangel Island near the final disappearance, this suggests a sudden extinction of a rather stable population. PMID:20356891

  13. Cortical interneuron dysfunction in epilepsy associated with autism spectrum disorders.

    PubMed

    Jacob, John

    2016-02-01

    Autism and epilepsy are two associated disorders that are highly prevalent, share common developmental origins, and demonstrate substantial heritability. In this review, cross-disciplinary data in a rapidly evolving field that bridges neurology and psychiatry are synthesized to identify shared biologic mechanisms. The relationship between these debilitating, lifelong conditions is examined at the clinical, genetic, and neurophysiologic levels in humans and in animal models. Scopus and PubMed searches were used to identify relevant literature. Clinical observations have prompted speculation about the interdependence of autism and epilepsy, but causal relationships have proved difficult to determine. Despite their heritability, the genetic basis of autism spectrum disorder (ASD) and epilepsy has remained largely elusive until the advent of next-generation sequencing. This approach has revealed that mutations that are either causal or confer an increased disease risk are found in numerous different genes, any one of which accounts for only a small percentage of cases. Conversely, even cases with identical clinical phenotypes can be genetically heterogeneous. Candidate gene identification has facilitated the development of mouse genetic models, which in parallel with human studies have implicated shared brain regions and circuits that mediate disease expression. Diverse genetic causes of ASD and epilepsy converge on cortical interneuron circuits as one important mediator of both disorders. Cortical interneurons are among the most diverse cell types in the brain and their unique chemical and electrical coupling exert a powerful inhibitory influence on excitatory neurons via the release of the neurotransmitter, γ-aminobutyric acid (GABA). These multifaceted approaches have validated theories derived from the field of developmental neurobiology, which propose that the neurologic and neuropsychiatric manifestations are caused by an altered ratio of excitation to inhibition in the cortex. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  14. How the Effects of Aging and Stresses of Life Are Integrated in Mortality Rates: Insights for Genetic Studies of Human Health and Longevity

    PubMed Central

    Yashin, Anatoliy I.; Arbeev, Konstantin G.; Arbeeva, Liubov S.; Wu, Deqing; Akushevich, Igor; Kovtun, Mikhail; Yashkin, Arseniy; Kulminski, Alexander; Culminskaya, Irina; Stallard, Eric; Li, Miaozhu; Ukraintseva, Svetlana V.

    2015-01-01

    Background Increasing proportions of elderly individuals in developed countries combined with substantial increases in related medical expenditures make the improvement of the health of the elderly a high priority today. If the process of aging by individuals is a major cause of age related health declines then postponing aging could be an efficient strategy for improving the health of the elderly. Implementing this strategy requires a better understanding of genetic and non-genetic connections among aging, health, and longevity. Data and methods We review progress and problems in research areas whose development may contribute to analyses of such connections. These include genetic studies of human aging and longevity, the heterogeneity of populations with respect to their susceptibility to disease and death, forces that shape age patterns of human mortality, secular trends in mortality decline, and integrative mortality modeling using longitudinal data. Results The dynamic involvement of genetic factors in (i) morbidity/mortality risks, (ii) responses to stresses of life, (iii) multi-morbidities of many elderly individuals, (iv) trade-offs for diseases, (v) genetic heterogeneity, and (vi) other relevant aging-related health declines, underscores the need for a comprehensive, integrated approach to analyze the genetic connections for all of the above aspects of aging-related changes. Conclusion The dynamic relationships among aging, health, and longevity traits would be better understood if one linked several research fields within one conceptual framework that allowed for efficient analyses of available longitudinal data using the wealth of available knowledge about aging, health, and longevity already accumulated in the research field. PMID:26280653

  15. ASHG activities relative to education: Human genetics as a component of medical school curricula: A report to the American society of human genetics

    PubMed Central

    Riccardi, Vincent M.; Schmickel, Roy D.

    1988-01-01

    In recent years, there has been a remarkable increase in both the rate of acquiring new information about human genetics and the importance of human genetics for modern health care. As a result, human genetics educators have queried whether the teaching of human genetics in North-American medical schools has kept pace with these increases. To address this question, a survey of these medical schools was undertaken to assess how human geneticists perceive the teaching of human genetics in their respective institutions. The results of the survey, begun and completed in 1985, indicate the following: (1) the teaching of human genetics in medical schools is extremely variable from one institution to another, with some schools having no identifiable human genetics teaching at all; (2) the relevance of human genetics to other basic science and clinical disciplines apparently leads to noncategorical or fragmented teaching of human genetics, which may also contribute to the absence of a specific medical school course in the subject; and (3) there is a need for closer collaboration between human genetics educators and their respective medical school administrators and curriculum committees. PMID:17948585

  16. How's the Flu Getting Through? Landscape genetics suggests both humans and birds spread H5N1 in Egypt.

    PubMed

    Young, Sean G; Carrel, Margaret; Kitchen, Andrew; Malanson, George P; Tamerius, James; Ali, Mohamad; Kayali, Ghazi

    2017-04-01

    First introduced to Egypt in 2006, H5N1 highly pathogenic avian influenza has resulted in the death of millions of birds and caused over 350 infections and at least 117 deaths in humans. After a decade of viral circulation, outbreaks continue to occur and diffusion mechanisms between poultry farms remain unclear. Using landscape genetics techniques, we identify the distance models most strongly correlated with the genetic relatedness of the viruses, suggesting the most likely methods of viral diffusion within Egyptian poultry. Using 73 viral genetic sequences obtained from infected birds throughout northern Egypt between 2009 and 2015, we calculated the genetic dissimilarity between H5N1 viruses for all eight gene segments. Spatial correlation was evaluated using Mantel tests and correlograms and multiple regression of distance matrices within causal modeling and relative support frameworks. These tests examine spatial patterns of genetic relatedness, and compare different models of distance. Four models were evaluated: Euclidean distance, road network distance, road network distance via intervening markets, and a least-cost path model designed to approximate wild waterbird travel using niche modeling and circuit theory. Samples from backyard farms were most strongly correlated with least cost path distances. Samples from commercial farms were most strongly correlated with road network distances. Results were largely consistent across gene segments. Results suggest wild birds play an important role in viral diffusion between backyard farms, while commercial farms experience human-mediated diffusion. These results can inform avian influenza surveillance and intervention strategies in Egypt. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The Value of Extended Pedigrees for Next-Generation Analysis of Complex Disease in the Rhesus Macaque

    PubMed Central

    Vinson, Amanda; Prongay, Kamm; Ferguson, Betsy

    2013-01-01

    Complex diseases (e.g., cardiovascular disease and type 2 diabetes, among many others) pose the biggest threat to human health worldwide and are among the most challenging to investigate. Susceptibility to complex disease may be caused by multiple genetic variants (GVs) and their interaction, by environmental factors, and by interaction between GVs and environment, and large study cohorts with substantial analytical power are typically required to elucidate these individual contributions. Here, we discuss the advantages of both power and feasibility afforded by the use of extended pedigrees of rhesus macaques (Macaca mulatta) for genetic studies of complex human disease based on next-generation sequence data. We present these advantages in the context of previous research conducted in rhesus macaques for several representative complex diseases. We also describe a single, multigeneration pedigree of Indian-origin rhesus macaques and a sample biobank we have developed for genetic analysis of complex disease, including power of this pedigree to detect causal GVs using either genetic linkage or association methods in a variance decomposition approach. Finally, we summarize findings of significant heritability for a number of quantitative traits that demonstrate that genetic contributions to risk factors for complex disease can be detected and measured in this pedigree. We conclude that the development and application of an extended pedigree to analysis of complex disease traits in the rhesus macaque have shown promising early success and that genome-wide genetic and higher order -omics studies in this pedigree are likely to yield useful insights into the architecture of complex human disease. PMID:24174435

  18. Androgens trigger different growth responses in genetically identical human hair follicles in organ culture that reflect their epigenetic diversity in life.

    PubMed

    Miranda, Benjamin H; Charlesworth, Matthew R; Tobin, Desmond J; Sharpe, David T; Randall, Valerie A

    2018-02-01

    Male sex hormones-androgens-regulate male physique development. Without androgen signaling, genetic males appear female. During puberty, increasing androgens harness the hair follicle's unique regenerative ability to replace many tiny vellus hairs with larger, darker terminal hairs ( e.g., beard). Follicle response is epigenetically varied: some remain unaffected ( e.g., eyelashes) or are inhibited, causing balding. How sex steroid hormones alter such developmental processes is unclear, despite high incidences of hormone-driven cancer, hirsutism, and alopecia. Unfortunately, existing development models are not androgen sensitive. Here, we use hair follicles to establish an androgen-responsive human organ culture model. We show that women's intermediate facial follicles respond to men's higher androgen levels by synthesizing more hair over several days, unlike donor-matched, androgen-insensitive, terminal follicles. We demonstrate that androgen receptors-androgen-activated gene transcription regulators-are required and are present in vivo within these follicles. This is the first human organ that involves multiple cell types that responds appropriately to hormones in prolonged culture, in a way which mirrors its natural behavior. Thus, intermediate hair follicles offer a hormone-switchable human model with exceptional, unique availability of genetically identical, but epigenetically hormone-insensitive, terminal follicles. This should enable advances in understanding sex steroid hormone signaling, gene regulation, and developmental and regenerative systems and facilitate better therapies for hormone-dependent disorders.-Miranda, B. H., Charlesworth, M. R., Tobin, D. J., Sharpe, D. T., Randall, V. A. Androgens trigger different growth responses in genetically identical human hair follicles in organ culture that reflect their epigenetic diversity in life.

  19. Is the child 'father of the man'? evaluating the stability of genetic influences across development.

    PubMed

    Ronald, Angelica

    2011-11-01

    This selective review considers findings in genetic research that have shed light on how genes operate across development. We will address the question of whether the child is 'father of the Man' from a genetic perspective. In other words, do the same genetic influences affect the same traits across development? Using a 'taster menu' approach and prioritizing newer findings on cognitive and behavioral traits, examples from the following genetic disciplines will be discussed: (a) developmental quantitative genetics (such as longitudinal twin studies), (b) neurodevelopmental genetic syndromes with known genetic causes (such as Williams syndrome), (c) developmental candidate gene studies (such as those that link infant and adult populations), (d) developmental genome-wide association studies (GWAS), and (e) DNA resequencing. Evidence presented here suggests that there is considerable genetic stability of cognitive and behavioral traits across development, but there is also evidence for genetic change. Quantitative genetic studies have a long history of assessing genetic continuity and change across development. It is now time for the newer, more technology-enabled fields such as GWAS and DNA resequencing also to take on board the dynamic nature of human behavior. 2011 Blackwell Publishing Ltd.

  20. Genetic variants associated with neurodegenerative Alzheimer disease in natural models.

    PubMed

    Salazar, Claudia; Valdivia, Gonzalo; Ardiles, Álvaro O; Ewer, John; Palacios, Adrián G

    2016-02-26

    The use of transgenic models for the study of neurodegenerative diseases has made valuable contributions to the field. However, some important limitations, including protein overexpression and general systemic compensation for the missing genes, has caused researchers to seek natural models that show the main biomarkers of neurodegenerative diseases during aging. Here we review some of these models-most of them rodents, focusing especially on the genetic variations in biomarkers for Alzheimer diseases, in order to explain their relationships with variants associated with the occurrence of the disease in humans.

  1. Notch and the Awesome Power of Genetics

    PubMed Central

    Greenwald, Iva

    2012-01-01

    Notch is a receptor that mediates cell–cell interactions in animal development, and aberrations in Notch signal transduction can cause cancer and other human diseases. Here, I describe the major advances in the Notch field from the identification of the first mutant in Drosophila almost a century ago through the elucidation of the unusual mechanism of signal transduction a little over a decade ago. As an essay for the GENETICS Perspectives series, it is my personal and critical commentary as well as an historical account of discovery. PMID:22785620

  2. West Nile virus population genetics and evolution

    PubMed Central

    Pesko, Kendra N.; Ebel, Gregory D.

    2015-01-01

    West Nile virus (WNV) (Flaviviridae: Flavivirus) is transmitted from mosquitoes to birds, but can cause fatal encephalitis in infected humans. Since its introduction into North America in New York in 1999, it has spread throughout the western hemisphere. Multiple outbreaks have also occurred in Europe over the last 20 years. This review highlights recent efforts to understand how host pressures impact viral population genetics, genotypic and phenotypic changes which have occurred in the WNV genome as it adapts to this novel environment, and molecular epidemiology of WNV worldwide. Future research directions are also discussed. PMID:22226703

  3. Experimental evolution reveals hidden diversity in evolutionary pathways

    PubMed Central

    Lind, Peter A; Farr, Andrew D; Rainey, Paul B

    2015-01-01

    Replicate populations of natural and experimental organisms often show evidence of parallel genetic evolution, but the causes are unclear. The wrinkly spreader morph of Pseudomonas fluorescens arises repeatedly during experimental evolution. The mutational causes reside exclusively within three pathways. By eliminating these, 13 new mutational pathways were discovered with the newly arising WS types having fitnesses similar to those arising from the commonly passaged routes. Our findings show that parallel genetic evolution is strongly biased by constraints and we reveal the genetic bases. From such knowledge, and in instances where new phenotypes arise via gene activation, we suggest a set of principles: evolution proceeds firstly via pathways subject to negative regulation, then via promoter mutations and gene fusions, and finally via activation by intragenic gain-of-function mutations. These principles inform evolutionary forecasting and have relevance to interpreting the diverse array of mutations associated with clinically identical instances of disease in humans. DOI: http://dx.doi.org/10.7554/eLife.07074.001 PMID:25806684

  4. Genetic studies of human neuropathic pain conditions: a review

    PubMed Central

    Zorina-Lichtenwalter, Katerina; Parisien, Marc; Diatchenko, Luda

    2018-01-01

    Abstract Numerous studies have shown associations between genetic variants and neuropathic pain disorders. Rare monogenic disorders are caused by mutations of substantial effect size in a single gene, whereas common disorders are likely to have a contribution from multiple genetic variants of mild effect size, representing different biological pathways. In this review, we survey the reported genetic contributors to neuropathic pain and submit them for validation in a 150,000-participant sample of the U.K. Biobank cohort. Successfully replicated association with a neuropathic pain construct for 2 variants in IL10 underscores the importance of neuroimmune interactions, whereas genome-wide significant association with low back pain (P = 1.3e-8) and false discovery rate 5% significant associations with hip, knee, and neck pain for variant rs7734804 upstream of the MAT2B gene provide evidence of shared contributing mechanisms to overlapping pain conditions at the molecular genetic level. PMID:29240606

  5. Clinically relevant genetic biomarkers from the brain in alcoholism with representation on high resolution chromosome ideograms.

    PubMed

    Manzardo, Ann M; McGuire, Austen; Butler, Merlin G

    2015-04-15

    Alcoholism arises from combined effects of multiple biological factors including genetic and non-genetic causes with gene/environmental interaction. Intensive research and advanced genetic technology has generated a long list of genes and biomarkers involved in alcoholism neuropathology. These markers reflect complex overlapping and competing effects of possibly hundreds of genes which impact brain structure, function, biochemical alcohol processing, sensitivity and risk for dependence. We compiled a tabular list of clinically relevant genetic biomarkers for alcoholism targeting expression disturbances in the human brain through an extensive search of keywords related to alcoholism, alcohol abuse, and genetics from peer reviewed medical research articles and related nationally sponsored websites. Gene symbols were then placed on high resolution human chromosome ideograms with gene descriptions in tabular form. We identified 337 clinically relevant genetic biomarkers and candidate genes for alcoholism and alcohol-responsiveness from human brain research. Genetic biomarkers included neurotransmitter pathways associated with brain reward processes for dopaminergic (e.g., DRD2, MAOA, and COMT), serotoninergic (e.g., HTR3A, HTR1B, HTR3B, and SLC6A4), GABAergic (e.g., GABRA1, GABRA2, and GABRG1), glutaminergic (GAD1, GRIK3, and GRIN2C) and opioid (e.g., OPRM1, OPRD1, and OPRK1) pathways which presumably impact reinforcing properties of alcohol. Gene level disturbances in cellular and molecular networks impacted by alcohol and alcoholism pathology include transketolase (TKT), transferrin (TF), and myelin (e.g., MBP, MOBP, and MOG). High resolution chromosome ideograms provide investigators, physicians, geneticists and counselors a convenient visual image of the distribution of alcoholism genetic biomarkers from brain research with alphabetical listing of genes in tabular form allowing comparison between alcoholism-related phenotypes, and clinically-relevant alcoholism gene(s) at the chromosome band level to guide research, diagnosis, and treatment. Chromosome ideograms may facilitate gene-based personalized counseling of alcohol dependent individuals and their families. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Polymerase γ gene POLG determines the risk of sodium valproate-induced liver toxicity.

    PubMed

    Stewart, Joanna D; Horvath, Rita; Baruffini, Enrico; Ferrero, Iliana; Bulst, Stefanie; Watkins, Paul B; Fontana, Robert J; Day, Christopher P; Chinnery, Patrick F

    2010-11-01

    Sodium valproate (VPA) is widely used throughout the world to treat epilepsy, migraine, chronic headache, bipolar disorder, and as adjuvant chemotherapy. VPA toxicity is an uncommon but potentially fatal cause of idiosyncratic liver injury. Rare mutations in POLG, which codes for the mitochondrial DNA polymerase γ (polγ), cause Alpers-Huttenlocher syndrome (AHS). AHS is a neurometabolic disorder associated with an increased risk of developing fatal VPA hepatotoxicity. We therefore set out to determine whether common genetic variants in POLG explain why some otherwise healthy individuals develop VPA hepatotoxicity. We carried out a prospective study of subjects enrolled in the Drug Induced Liver Injury Network (DILIN) from 2004 to 2008 through five US centers. POLG was sequenced and the functional consequences of VPA and novel POLG variants were evaluated in primary human cell lines and the yeast model system Saccharomyces cerevisiae. Heterozygous genetic variation in POLG was strongly associated with VPA-induced liver toxicity (odds ratio = 23.6, 95% confidence interval [CI] = 8.4-65.8, P = 5.1 × 10⁻⁷). This was principally due to the p.Q1236H substitution which compromised polγ function in yeast. Therapeutic doses of VPA inhibited human cellular proliferation and high doses caused nonapoptotic cell death, which was not mediated through mitochondrial DNA depletion, mutation, or a defect of fatty acid metabolism. These findings implicate impaired liver regeneration in VPA toxicity and show that prospective genetic testing of POLG will identify individuals at high risk of this potentially fatal consequence of treatment.

  7. POLG determines the risk of sodium valproate induced liver toxicity

    PubMed Central

    Stewart, Joanna D.; Horvath, Rita; Baruffini, Enrico; Ferrero, Iliana; Bulst, Stefanie; Watkins, Paul B.; Fontana, Robert J.; Day, Christopher P.; Chinnery, Patrick F.

    2013-01-01

    Sodium valproate (VPA) is widely used throughout the world to treat epilepsy, migraine, chronic headache, bipolar disorder, and as adjuvant chemotherapy. VPA toxicity is an uncommon but potentially fatal cause of idiosyncratic liver injury. Rare mutations in POLG, which codes for the mitochondrial DNA polymerase γ (polγ), cause the Alpers-Huttenlocher syndrome (AHS). AHS is a neurometabolic disorder associated with an increased risk of developing fatal VPA-hepatotoxicity. We therefore set out to determine whether common genetic variants in POLG explain why some otherwise healthy individuals develop VPA-hepatotoxicity. We carried out a prospective study of subjects enrolled in the Drug Induced Liver Injury Network (DILIN) from 2004 to 2008 through five US centres. POLG was sequenced and the functional consequences of VPA and novel POLG variants were evaluated in primary human cell lines and the yeast model system Saccharomyces cerevisiae. Heterozygous genetic variation in POLG was strongly associated with VPA-induced liver toxicity (odds ratio = 23.6, 95% CI = 8.4 – 65.8, P = 5.1 × 10−7). This was principally due to the p.Q1236H substitution which compromised polγ function in yeast. Therapeutic doses of VPA inhibited human cellular proliferation, and high doses caused non-apoptotic cell death which was not mediated through mitochondrial DNA depletion, mutation, or a defect of fatty acid metabolism. These findings implicate impaired liver regeneration in VPA toxicity, and show that prospective genetic testing of POLG will identify individuals at high risk of this potentially fatal consequence of treatment. PMID:21038416

  8. Increasing our understanding of human cognition through the study of Fragile X Syndrome.

    PubMed

    Cook, Denise; Nuro, Erin; Murai, Keith K

    2014-02-01

    Fragile X Syndrome (FXS) is considered the most common form of inherited intellectual disability. It is caused by reductions in the expression level or function of a single protein, the Fragile X Mental Retardation Protein (FMRP), a translational regulator which binds to approximately 4% of brain messenger RNAs. Accumulating evidence suggests that FXS is a complex disorder of cognition, involving interactions between genetic and environmental influences, leading to difficulties in acquiring key life skills including motor skills, language, and proper social behaviors. Since many FXS patients also present with one or more features of autism spectrum disorders (ASDs), insights gained from studying the monogenic basis of FXS could pave the way to a greater understanding of underlying features of multigenic ASDs. Here we present an overview of the FXS and FMRP field with the goal of demonstrating how loss of a single protein involved in translational control affects multiple stages of brain development and leads to debilitating consequences on human cognition. We also focus on studies which have rescued or improved FXS symptoms in mice using genetic or therapeutic approaches to reduce protein expression. We end with a brief description of how deficits in translational control are implicated in FXS and certain cases of ASDs, with many recent studies demonstrating that ASDs are likely caused by increases or decreases in the levels of certain key synaptic proteins. The study of FXS and its underlying single genetic cause offers an invaluable opportunity to study how a single gene influences brain development and behavior. Copyright © 2013 Wiley Periodicals, Inc.

  9. Determining causes of genetic isolation in a large carnivore (Ursus americanus) population to direct contemporary conservation measures

    PubMed Central

    Obbard, Martyn E.; Harnden, Matthew; McConnell, Sabine; Howe, Eric J.; Burrows, Frank G.; White, Bradley N.; Kyle, Christopher J.

    2017-01-01

    The processes leading to genetic isolation influence a population’s local extinction risk, and should thus be identified before conservation actions are implemented. Natural or human-induced circumstances can result in historical or contemporary barriers to gene flow and/or demographic bottlenecks. Distinguishing between these hypotheses can be achieved by comparing genetic diversity and differentiation in isolated vs. continuous neighboring populations. In Ontario, American black bears (Ursus americanus) are continuously distributed, genetically diverse, and exhibit an isolation-by-distance structuring pattern, except on the Bruce Peninsula (BP). To identify the processes that led to the genetic isolation of BP black bears, we modelled various levels of historical and contemporary migration and population size reductions using forward simulations. We compared simulation results with empirical genetic indices from Ontario black bear populations under different levels of geographic isolation, and conducted additional simulations to determine if translocations could help achieve genetic restoration. From a genetic standpoint, conservation concerns for BP black bears are warranted because our results show that: i) a recent demographic bottleneck associated with recently reduced migration best explains the low genetic diversity on the BP; and ii) under sustained isolation, BP black bears could lose between 70% and 80% of their rare alleles within 100 years. Although restoring migration corridors would be the most effective method to enhance long-term genetic diversity and prevent inbreeding, it is unrealistic to expect connectivity to be re-established. Current levels of genetic diversity could be maintained by successfully translocating 10 bears onto the peninsula every 5 years. Such regular translocations may be more practical than landscape restoration, because areas connecting the peninsula to nearby mainland black bear populations have been irreversibly modified by humans, and form strong barriers to movement. PMID:28235066

  10. Computational identification of gene–social environment interaction at the human IL6 locus

    PubMed Central

    Cole, Steven W.; Arevalo, Jesusa M. G.; Takahashi, Rie; Sloan, Erica K.; Lutgendorf, Susan K.; Sood, Anil K.; Sheridan, John F.; Seeman, Teresa E.

    2010-01-01

    To identify genetic factors that interact with social environments to impact human health, we used a bioinformatic strategy that couples expression array–based detection of environmentally responsive transcription factors with in silico discovery of regulatory polymorphisms to predict genetic loci that modulate transcriptional responses to stressful environments. Tests of one predicted interaction locus in the human IL6 promoter (SNP rs1800795) verified that it modulates transcriptional response to β-adrenergic activation of the GATA1 transcription factor in vitro. In vivo validation studies confirmed links between adverse social conditions and increased transcription of GATA1 target genes in primary neural, immune, and cancer cells. Epidemiologic analyses verified the health significance of those molecular interactions by documenting increased 10-year mortality risk associated with late-life depressive symptoms that occurred solely for homozygous carriers of the GATA1-sensitive G allele of rs1800795. Gating of depression-related mortality risk by IL6 genotype pertained only to inflammation-related causes of death and was associated with increased chronic inflammation as indexed by plasma C-reactive protein. Computational modeling of molecular interactions, in vitro biochemical analyses, in vivo animal modeling, and human molecular epidemiologic analyses thus converge in identifying β-adrenergic activation of GATA1 as a molecular pathway by which social adversity can alter human health risk selectively depending on individual genetic status at the IL6 locus. PMID:20176930

  11. Genomic epidemiology of Salmonella enterica serotype Enteritidis based on population structure of prevalent lineages

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serotype Enteritidis (SE) is one of the most commonly reported causes of human salmonellosis. The low genetic diversity of SE measured by fingerprinting methods has made subtyping a challenge. In this study, we used whole genome sequencing to characterize a total of 125 SE and Sa...

  12. Virtual Transgenics: Using a Molecular Biology Simulation to Impact Student Academic Achievement and Attitudes

    ERIC Educational Resources Information Center

    Shegog, Ross; Lazarus, Melanie M.; Murray, Nancy G.; Diamond, Pamela M.; Sessions, Nathalie; Zsigmond, Eva

    2012-01-01

    The transgenic mouse model is useful for studying the causes and potential cures for human genetic diseases. Exposing high school biology students to laboratory experience in developing transgenic animal models is logistically prohibitive. Computer-based simulation, however, offers this potential in addition to advantages of fidelity and reach.…

  13. Limited antigenic diversity in contemporary H7 avian-origin influenza A viruses from North America

    USDA-ARS?s Scientific Manuscript database

    Subtype H7 avian–origin influenza A viruses (AIVs) have caused at least 500 confirmed human infections since 2003 and culling of >75 million birds in recent years. Understanding the antigenic diversity and genetic evolution of H7 AIVs is critical for developing effective strategies for disease prev...

  14. Grain chemical composition as affected by genetic backgrounds and toxigenic Aspergillus flavus inoculation in corn hybrids

    USDA-ARS?s Scientific Manuscript database

    Mycotoxins are secondary metabolites commonly found in corn and known to cause health issues to human and animals. The relationship between corn grain inoculated with mycotoxins and grain nutrients (protein, oil, fatty acids, sugars, and amino acids) corn hybrids, especially stacked-gene hybrids is...

  15. Transgenes for tea?

    PubMed

    Heritage, John

    2005-01-01

    So far, no compelling scientific evidence has been found to suggest that the consumption of transgenic or genetically modified (GM) plants by animals or humans is more likely to cause harm than is the consumption of their conventional counterparts. Despite this lack of scientific evidence, the economic prospects for GM plants are probably limited in the short term and there is public opposition to the technology. Now is a good time to address several issues concerning GM plants, including the potential for transgenes to migrate from GM plants to gut microbes or to animal or human tissues, the consequences of consuming GM crops, either as fresh plants or as silage, and the problems caused by current legislation on GM labelling and beyond.

  16. Fine-scale population structure and the era of next-generation sequencing.

    PubMed

    Henn, Brenna M; Gravel, Simon; Moreno-Estrada, Andres; Acevedo-Acevedo, Suehelay; Bustamante, Carlos D

    2010-10-15

    Fine-scale population structure characterizes most continents and is especially pronounced in non-cosmopolitan populations. Roughly half of the world's population remains non-cosmopolitan and even populations within cities often assort along ethnic and linguistic categories. Barriers to random mating can be ecologically extreme, such as the Sahara Desert, or cultural, such as the Indian caste system. In either case, subpopulations accumulate genetic differences if the barrier is maintained over multiple generations. Genome-wide polymorphism data, initially with only a few hundred autosomal microsatellites, have clearly established differences in allele frequency not only among continental regions, but also within continents and within countries. We review recent evidence from the analysis of genome-wide polymorphism data for genetic boundaries delineating human population structure and the main demographic and genomic processes shaping variation, and discuss the implications of population structure for the distribution and discovery of disease-causing genetic variants, in the light of the imminent availability of sequencing data for a multitude of diverse human genomes.

  17. CRISPR/Cas9-mediated correction of human genetic disease.

    PubMed

    Men, Ke; Duan, Xingmei; He, Zhiyao; Yang, Yang; Yao, Shaohua; Wei, Yuquan

    2017-05-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) protein 9 system (CRISPR/Cas9) provides a powerful tool for targeted genetic editing. Directed by programmable sequence-specific RNAs, this system introduces cleavage and double-stranded breaks at target sites precisely. Compared to previously developed targeted nucleases, the CRISPR/Cas9 system demonstrates several promising advantages, including simplicity, high specificity, and efficiency. Several broad genome-editing studies with the CRISPR/Cas9 system in different species in vivo and ex vivo have indicated its strong potential, raising hopes for therapeutic genome editing in clinical settings. Taking advantage of non-homologous end-joining (NHEJ) and homology directed repair (HDR)-mediated DNA repair, several studies have recently reported the use of CRISPR/Cas9 to successfully correct disease-causing alleles ranging from single base mutations to large insertions. In this review, we summarize and discuss recent preclinical studies involving the CRISPR/Cas9-mediated correction of human genetic diseases.

  18. Iron, dopamine, genetics, and hormones in the pathophysiology of restless legs syndrome.

    PubMed

    Khan, Farhan H; Ahlberg, Caitlyn D; Chow, Christopher A; Shah, Divya R; Koo, Brian B

    2017-08-01

    Restless legs syndrome (RLS) is a common, chronic neurologic condition, which causes a persistent urge to move the legs in the evening that interferes with sleep. Human and animal studies have been used to study the pathophysiologic state of RLS and much has been learned about the iron and dopamine systems in relation to RLS. Human neuropathologic and imaging studies have consistently shown decreased iron in different brain regions including substantia nigra and thalamus. These same areas also demonstrate a state of relative dopamine excess. While it is not known how these changes in dopamine or iron produce the symptoms of RLS, genetic and hormone studies of RLS have identified other biologic systems or genes, such as the endogenous opioid and melanocortin systems and BTBD9 and MEIS1, that may explain some of the iron or dopamine changes in relation to RLS. This manuscript will review what is known about the pathophysiology of RLS, especially as it relates to changes in iron, dopamine, genetics, and hormonal systems.

  19. Dysregulated LRRK2 Signaling in Response to Endoplasmic Reticulum Stress Leads to Dopaminergic Neuron Degeneration in C. elegans

    PubMed Central

    Yuan, Yiyuan; Cao, Pengxiu; Smith, Mark A.; Kramp, Kristopher; Huang, Ying; Hisamoto, Naoki; Matsumoto, Kunihiro; Hatzoglou, Maria; Jin, Hui; Feng, Zhaoyang

    2011-01-01

    Mutation of leucine-rich repeat kinase 2 (LRRK2) is the leading genetic cause of Parkinson's Disease (PD), manifested as age-dependent dopaminergic neurodegeneration, but the underlying molecular mechanisms remain unclear. Multiple roles of LRRK2 may contribute to dopaminergic neurodegeneration. Endoplasmic reticulum (ER) stress has also been linked to PD pathogenesis, but its interactive mechanism with PD genetic factors is largely unknown. Here, we used C. elegans, human neuroblastoma cells and murine cortical neurons to determine the role of LRRK2 in maintaining dopaminergic neuron viability. We found that LRRK2 acts to protect neuroblastoma cells and C. elegans dopaminergic neurons from the toxicity of 6-hydroxydopamine and/or human α-synuclein, possibly through the p38 pathway, by supporting upregulation of GRP78, a key cell survival molecule during ER stress. A pathogenic LRRK2 mutant (G2019S), however, caused chronic p38 activation that led to death of murine neurons and age-related dopaminergic-specific neurodegeneration in nematodes. These observations establish a critical functional link between LRRK2 and ER stress. PMID:21857923

  20. The Complete Sequence of a West Nile Virus Lineage 2 Strain Detected in a Hyalomma marginatum marginatum Tick Collected from a Song Thrush (Turdus philomelos) in Eastern Romania in 2013 Revealed Closest Genetic Relationship to Strain Volgograd 2007

    PubMed Central

    Kolodziejek, Jolanta; Marinov, Mihai; Kiss, Botond J.; Alexe, Vasile; Nowotny, Norbert

    2014-01-01

    In this study the first complete sequence of the West Nile virus (WNV) lineage 2 strain currently circulating in Romania was determined. The virus was detected in a Hyalomma marginatum marginatum tick collected from a juvenile song thrush (Turdus philomelos) in the Romanian Danube Delta close to the city of Tulcea, end of August 2013. Our finding emphasizes the role of ticks in introduction and maintenance of WNV infections. Sequence analyses revealed close genetic relationship of the Romanian WNV strain to strain Reb_Volgograd_07_H, which was isolated from human brain tissue during an outbreak of West Nile neuroinvasive disease (WNND) in Russia in 2007. In 2010 the Eastern European lineage 2 WNV caused an outbreak of human WNND in Romania. Partial sequences from subsequent years demonstrated that this WNV strain became endemic in Eastern Europe and has been causing outbreaks of varying sizes in southern Russia since 2007 and in Romania since 2010. PMID:25279973

  1. Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade.

    PubMed

    Tachibana, Shin-Ichiro; Sullivan, Steven A; Kawai, Satoru; Nakamura, Shota; Kim, Hyunjae R; Goto, Naohisa; Arisue, Nobuko; Palacpac, Nirianne M Q; Honma, Hajime; Yagi, Masanori; Tougan, Takahiro; Katakai, Yuko; Kaneko, Osamu; Mita, Toshihiro; Kita, Kiyoshi; Yasutomi, Yasuhiro; Sutton, Patrick L; Shakhbatyan, Rimma; Horii, Toshihiro; Yasunaga, Teruo; Barnwell, John W; Escalante, Ananias A; Carlton, Jane M; Tanabe, Kazuyuki

    2012-09-01

    P. cynomolgi, a malaria-causing parasite of Asian Old World monkeys, is the sister taxon of P. vivax, the most prevalent malaria-causing species in humans outside of Africa. Because P. cynomolgi shares many phenotypic, biological and genetic characteristics with P. vivax, we generated draft genome sequences for three P. cynomolgi strains and performed genomic analysis comparing them with the P. vivax genome, as well as with the genome of a third previously sequenced simian parasite, Plasmodium knowlesi. Here, we show that genomes of the monkey malaria clade can be characterized by copy-number variants (CNVs) in multigene families involved in evasion of the human immune system and invasion of host erythrocytes. We identify genome-wide SNPs, microsatellites and CNVs in the P. cynomolgi genome, providing a map of genetic variation that can be used to map parasite traits and study parasite populations. The sequencing of the P. cynomolgi genome is a critical step in developing a model system for P. vivax research and in counteracting the neglect of P. vivax.

  2. Type 1 diabetes: Through the lens of human genome and metagenome interplay.

    PubMed

    Zununi Vahed, Sepideh; Moghaddas Sani, Hakimeh; Rahbar Saadat, Yalda; Barzegari, Abolfazl; Omidi, Yadollah

    2018-05-15

    Diabetes is a genetic- and epigenetic-related disease from which a large population worldwide suffers. Some genetic factors along with various mutations related to the immune system for disease mechanism(s) have contrastively been determined. However, sometimes mechanisms have not been fully managed for the clarification of the initiation and/or progression of diseases to help patients. In the recent years, due to familiarity with the role of gut microbiota in the health, it has been found that the changes of the microbial balance in the industrialized societies can cause a battery of modern diseases, for which we have no specific definition of how they emerge. This work aims to explore the relationship between the human gut microbiota and the immune system along with their possible role in avoiding/emerging of type 1 diabetes (T1D) accompanied with the relation between genome and metagenome and their imbalance in causing T1D. Moreover, it provides novel view on how to balance the intestinal microbiota by lifestyle to hinder the mechanisms leading to T1D. Copyright © 2018. Published by Elsevier Masson SAS.

  3. Genetic causes of isolated and combined pituitary hormone deficiency.

    PubMed

    Giordano, Mara

    2016-12-01

    Research over the last 20 years has led to the elucidation of the genetic aetiologies of Isolated Growth Hormone Deficiency (IGHD) and Combined Pituitary Hormone Deficiency (CPHD). The pituitary plays a central role in growth regulation, coordinating the multitude of central and peripheral signals to maintain the body's internal balance. Naturally occurring mutation in humans and in mice have demonstrated a role for several factors in the aetiology of IGHD/CPHD. Mutations in the GH1 and GHRHR genes shed light on the phenotype and pathogenesis of IGHD whereas mutations in transcription factors such as HESX1, PROP1, POU1F1, LHX3, LHX4, GLI2 and SOX3 contributed to the understanding of CPHD. Depending upon the expression patterns of these molecules, the phenotype may consist of isolated hypopituitarism, or more complex disorders such as septo-optic dysplasia (SOD) and holoprosencephaly. Although numerous monogenic causes of growth disorders have been identified, most of the patients with IGHD/CPHD remain with an explained aetiology as shown by the relatively low mutation detection rate. The introduction of novel diagnostic approaches is now leading to the disclosure of novel genetic causes in disorders characterized by pituitary hormone defects. Copyright © 2016. Published by Elsevier Ltd.

  4. Photodynamic Treatment versus Antibiotic Treatment on Helicobacter pylori Using RAPD-PCR

    NASA Astrophysics Data System (ADS)

    El-Batanouny, M. H.; Amin, R. M.; Ibrahium, M. K.; El Gohary, S.; Naga, M. I.; Salama, M. S.

    2009-09-01

    Helicobacter pylori is one of the most common causes of chronic bacterial infections in humans and is important in the pathogenesis of gastrointestinal disease, such as duodenal ulcer, gastric ulcer, Gastric adenocarcinoma, and lymphoma. Gastric adenocarcinoma remains one of the leading causes of cancer death in the world. The objective of this study was to assess the effect of photodynamic treatment and medication treatment of Helicobacter pylori using RAPD-PCR. The lethal photosensitization effect was determined by mixing suspensions of H.pylori with Toluidine blue O (TBO) and plating out on blood agar before irradiation with Helium neon (He-Ne) 632.8 nm. The susceptibility of Helicobacter pylori isolates to metronidazole and azithromycin were examined by E-test. Nine random primers were used to screen genetic polymorphism in DNA of different H.pylori groups. Six of them produced RAPD products while three failed to generate any product. The resulting data showed that, although the overall genetic differences between control groups and laser treated groups was higher than that between control groups and azithromycin treated groups yet it still law genetic variability. The main cause of cell death of PDT using TBO as a photosensitizer was mainly cell wall and cytoplasmic membrane.

  5. Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus

    PubMed Central

    Lowder, Bethan V.; Guinane, Caitriona M.; Ben Zakour, Nouri L.; Weinert, Lucy A.; Conway-Morris, Andrew; Cartwright, Robyn A.; Simpson, A. John; Rambaut, Andrew; Nübel, Ulrich; Fitzgerald, J. Ross

    2009-01-01

    The impact of globalization on the emergence and spread of pathogens is an important veterinary and public health issue. Staphylococcus aureus is a notorious human pathogen associated with serious nosocomial and community-acquired infections. In addition, S. aureus is a major cause of animal diseases including skeletal infections of poultry, which are a large economic burden on the global broiler chicken industry. Here, we provide evidence that the majority of S. aureus isolates from broiler chickens are the descendants of a single human-to-poultry host jump that occurred approximately 38 years ago (range, 30 to 63 years ago) by a subtype of the worldwide human ST5 clonal lineage unique to Poland. In contrast to human subtypes of the ST5 radiation, which demonstrate strong geographic clustering, the poultry ST5 clade was distributed in different continents, consistent with wide dissemination via the global poultry industry distribution network. The poultry ST5 clade has undergone genetic diversification from its human progenitor strain by acquisition of novel mobile genetic elements from an avian-specific accessory gene pool, and by the inactivation of several proteins important for human disease pathogenesis. These genetic events have resulted in enhanced resistance to killing by chicken heterophils, reflecting avian host-adaptive evolution. Taken together, we have determined the evolutionary history of a major new animal pathogen that has undergone rapid avian host adaptation and intercontinental dissemination. These data provide a new paradigm for the impact of human activities on the emergence of animal pathogens. PMID:19884497

  6. Exome-wide Association Study Identifies GREB1L Mutations in Congenital Kidney Malformations.

    PubMed

    Sanna-Cherchi, Simone; Khan, Kamal; Westland, Rik; Krithivasan, Priya; Fievet, Lorraine; Rasouly, Hila Milo; Ionita-Laza, Iuliana; Capone, Valentina P; Fasel, David A; Kiryluk, Krzysztof; Kamalakaran, Sitharthan; Bodria, Monica; Otto, Edgar A; Sampson, Matthew G; Gillies, Christopher E; Vega-Warner, Virginia; Vukojevic, Katarina; Pediaditakis, Igor; Makar, Gabriel S; Mitrotti, Adele; Verbitsky, Miguel; Martino, Jeremiah; Liu, Qingxue; Na, Young-Ji; Goj, Vinicio; Ardissino, Gianluigi; Gigante, Maddalena; Gesualdo, Loreto; Janezcko, Magdalena; Zaniew, Marcin; Mendelsohn, Cathy Lee; Shril, Shirlee; Hildebrandt, Friedhelm; van Wijk, Joanna A E; Arapovic, Adela; Saraga, Marijan; Allegri, Landino; Izzi, Claudia; Scolari, Francesco; Tasic, Velibor; Ghiggeri, Gian Marco; Latos-Bielenska, Anna; Materna-Kiryluk, Anna; Mane, Shrikant; Goldstein, David B; Lifton, Richard P; Katsanis, Nicholas; Davis, Erica E; Gharavi, Ali G

    2017-11-02

    Renal agenesis and hypodysplasia (RHD) are major causes of pediatric chronic kidney disease and are highly genetically heterogeneous. We conducted whole-exome sequencing in 202 case subjects with RHD and identified diagnostic mutations in genes known to be associated with RHD in 7/202 case subjects. In an additional affected individual with RHD and a congenital heart defect, we found a homozygous loss-of-function (LOF) variant in SLIT3, recapitulating phenotypes reported with Slit3 inactivation in the mouse. To identify genes associated with RHD, we performed an exome-wide association study with 195 unresolved case subjects and 6,905 control subjects. The top signal resided in GREB1L, a gene implicated previously in Hoxb1 and Shha signaling in zebrafish. The significance of the association, which was p = 2.0 × 10 -5 for novel LOF, increased to p = 4.1 × 10 -6 for LOF and deleterious missense variants combined, and augmented further after accounting for segregation and de novo inheritance of rare variants (joint p = 2.3 × 10 -7 ). Finally, CRISPR/Cas9 disruption or knockdown of greb1l in zebrafish caused specific pronephric defects, which were rescued by wild-type human GREB1L mRNA, but not mRNA containing alleles identified in case subjects. Together, our study provides insight into the genetic landscape of kidney malformations in humans, presents multiple candidates, and identifies SLIT3 and GREB1L as genes implicated in the pathogenesis of RHD. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. The fine-scale genetic structure and evolution of the Japanese population.

    PubMed

    Takeuchi, Fumihiko; Katsuya, Tomohiro; Kimura, Ryosuke; Nabika, Toru; Isomura, Minoru; Ohkubo, Takayoshi; Tabara, Yasuharu; Yamamoto, Ken; Yokota, Mitsuhiro; Liu, Xuanyao; Saw, Woei-Yuh; Mamatyusupu, Dolikun; Yang, Wenjun; Xu, Shuhua; Teo, Yik-Ying; Kato, Norihiro

    2017-01-01

    The contemporary Japanese populations largely consist of three genetically distinct groups-Hondo, Ryukyu and Ainu. By principal-component analysis, while the three groups can be clearly separated, the Hondo people, comprising 99% of the Japanese, form one almost indistinguishable cluster. To understand fine-scale genetic structure, we applied powerful haplotype-based statistical methods to genome-wide single nucleotide polymorphism data from 1600 Japanese individuals, sampled from eight distinct regions in Japan. We then combined the Japanese data with 26 other Asian populations data to analyze the shared ancestry and genetic differentiation. We found that the Japanese could be separated into nine genetic clusters in our dataset, showing a marked concordance with geography; and that major components of ancestry profile of Japanese were from the Korean and Han Chinese clusters. We also detected and dated admixture in the Japanese. While genetic differentiation between Ryukyu and Hondo was suggested to be caused in part by positive selection, genetic differentiation among the Hondo clusters appeared to result principally from genetic drift. Notably, in Asians, we found the possibility that positive selection accentuated genetic differentiation among distant populations but attenuated genetic differentiation among close populations. These findings are significant for studies of human evolution and medical genetics.

  8. Underwhelmed: hyperbole, regulatory policy, and the genetic revolution.

    PubMed

    Caulfield, T

    2000-05-01

    Rapid advances in the field of genetics in recent years have caused some commentators to suggest the emergence of a "genetic revolution." Such advances have been both praised as the "future of medicine" and condemned for encouraging the acceptance in society of laissez-faire eugenics. Yet the effect of technological advances flowing from the science of genetics appear somewhat overstated as few products of the genetic revolution, particularly in the areas of gene therapy and genetic testing, have managed to satisfy scientists' expectations to date. Furthermore, misdirected regulation of such advances can exacerbate the social, legal, and ethical problems associated with genetics, particularly in the context of health care, where issues of human cloning and the use of premature genetic testing technologies dominate current public debate. In this article, the author criticizes the hyperbolic rhetoric surrounding the genetic revolution and calls for a more balanced and informed approach to the development of genetic policies and regulations. Such an approach should include substantial interdisciplinary debate and an active role on the part of government in the identification and communication of accurate information relating to the effects of recent technological advances in the field of genetics.

  9. Natural reservoirs for homologs of hepatitis C virus

    PubMed Central

    Pfaender, Stephanie; Brown, Richard JP; Pietschmann, Thomas; Steinmann, Eike

    2014-01-01

    Hepatitis C virus is considered a major public health problem, infecting 2%–3% of the human population. Hepatitis C virus infection causes acute and chronic liver disease, including chronic hepatitis, cirrhosis and hepatocellular carcinoma. In fact, hepatitis C virus infection is the most frequent indication for liver transplantation and a vaccine is not available. Hepatitis C virus displays a narrow host species tropism, naturally infecting only humans, although chimpanzees are also susceptible to experimental infection. To date, there is no evidence for an animal reservoir of viruses closely related to hepatitis C virus which may have crossed the species barrier to cause disease in humans and resulted in the current pandemic. In fact, due to this restricted host range, a robust immunocompetent small animal model is still lacking, hampering mechanistic analysis of virus pathogenesis, immune control and prophylactic vaccine development. Recently, several studies discovered new viruses related to hepatitis C virus, belonging to the hepaci- and pegivirus genera, in small wild mammals (rodents and bats) and domesticated animals which live in close contact with humans (dogs and horses). Genetic and biological characterization of these newly discovered hepatitis C virus-like viruses infecting different mammals will contribute to our understanding of the origins of hepatitis C virus in humans and enhance our ability to study pathogenesis and immune responses using tractable animal models. In this review article, we start with an introduction on the genetic diversity of hepatitis C virus and then focus on the newly discovered viruses closely related to hepatitis C virus. Finally, we discuss possible theories about the origin of this important viral human pathogen. PMID:26038514

  10. Bi-allelic Mutations in PKD1L1 Are Associated with Laterality Defects in Humans.

    PubMed

    Vetrini, Francesco; D'Alessandro, Lisa C A; Akdemir, Zeynep C; Braxton, Alicia; Azamian, Mahshid S; Eldomery, Mohammad K; Miller, Kathryn; Kois, Chelsea; Sack, Virginia; Shur, Natasha; Rijhsinghani, Asha; Chandarana, Jignesh; Ding, Yan; Holtzman, Judy; Jhangiani, Shalini N; Muzny, Donna M; Gibbs, Richard A; Eng, Christine M; Hanchard, Neil A; Harel, Tamar; Rosenfeld, Jill A; Belmont, John W; Lupski, James R; Yang, Yaping

    2016-10-06

    Disruption of the establishment of left-right (L-R) asymmetry leads to situs anomalies ranging from situs inversus totalis (SIT) to situs ambiguus (heterotaxy). The genetic causes of laterality defects in humans are highly heterogeneous. Via whole-exome sequencing (WES), we identified homozygous mutations in PKD1L1 from three affected individuals in two unrelated families. PKD1L1 encodes a polycystin-1-like protein and its loss of function is known to cause laterality defects in mouse and medaka fish models. Family 1 had one fetus and one deceased child with heterotaxy and complex congenital heart malformations. WES identified a homozygous splicing mutation, c.6473+2_6473+3delTG, which disrupts the invariant splice donor site in intron 42, in both affected individuals. In the second family, a homozygous c.5072G>C (p.Cys1691Ser) missense mutation was detected in an individual with SIT and congenital heart disease. The p.Cys1691Ser substitution affects a highly conserved cysteine residue and is predicted by molecular modeling to disrupt a disulfide bridge essential for the proper folding of the G protein-coupled receptor proteolytic site (GPS) motif. Damaging effects associated with substitutions of this conserved cysteine residue in the GPS motif have also been reported in other genes, namely GPR56, BAI3, and PKD1 in human and lat-1 in C. elegans, further supporting the likely pathogenicity of p.Cys1691Ser in PKD1L1. The identification of bi-allelic PKD1L1 mutations recapitulates previous findings regarding phenotypic consequences of loss of function of the orthologous genes in mice and medaka fish and further expands our understanding of genetic contributions to laterality defects in humans. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  11. MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity.

    PubMed

    Chu, Daniel K W; Hui, Kenrie P Y; Perera, Ranawaka A P M; Miguel, Eve; Niemeyer, Daniela; Zhao, Jincun; Channappanavar, Rudragouda; Dudas, Gytis; Oladipo, Jamiu O; Traoré, Amadou; Fassi-Fihri, Ouafaa; Ali, Abraham; Demissié, Getnet F; Muth, Doreen; Chan, Michael C W; Nicholls, John M; Meyerholz, David K; Kuranga, Sulyman A; Mamo, Gezahegne; Zhou, Ziqi; So, Ray T Y; Hemida, Maged G; Webby, Richard J; Roger, Francois; Rambaut, Andrew; Poon, Leo L M; Perlman, Stanley; Drosten, Christian; Chevalier, Veronique; Peiris, Malik

    2018-03-20

    Middle East respiratory syndrome coronavirus (MERS-CoV) causes a zoonotic respiratory disease of global public health concern, and dromedary camels are the only proven source of zoonotic infection. Although MERS-CoV infection is ubiquitous in dromedaries across Africa as well as in the Arabian Peninsula, zoonotic disease appears confined to the Arabian Peninsula. MERS-CoVs from Africa have hitherto been poorly studied. We genetically and phenotypically characterized MERS-CoV from dromedaries sampled in Morocco, Burkina Faso, Nigeria, and Ethiopia. Viruses from Africa (clade C) are phylogenetically distinct from contemporary viruses from the Arabian Peninsula (clades A and B) but remain antigenically similar in microneutralization tests. Viruses from West (Nigeria, Burkina Faso) and North (Morocco) Africa form a subclade, C1, that shares clade-defining genetic signatures including deletions in the accessory gene ORF4b Compared with human and camel MERS-CoV from Saudi Arabia, virus isolates from Burkina Faso (BF785) and Nigeria (Nig1657) had lower virus replication competence in Calu-3 cells and in ex vivo cultures of human bronchus and lung. BF785 replicated to lower titer in lungs of human DPP4-transduced mice. A reverse genetics-derived recombinant MERS-CoV (EMC) lacking ORF4b elicited higher type I and III IFN responses than the isogenic EMC virus in Calu-3 cells. However, ORF4b deletions may not be the major determinant of the reduced replication competence of BF785 and Nig1657. Genetic and phenotypic differences in West African viruses may be relevant to zoonotic potential. There is an urgent need for studies of MERS-CoV at the animal-human interface. Copyright © 2018 the Author(s). Published by PNAS.

  12. Genome-Scale Multilocus Microsatellite Typing of Trypanosoma cruzi Discrete Typing Unit I Reveals Phylogeographic Structure and Specific Genotypes Linked to Human Infection

    PubMed Central

    Llewellyn, Martin S.; Miles, Michael A.; Carrasco, Hernan J.; Lewis, Michael D.; Yeo, Matthew; Vargas, Jorge; Torrico, Faustino; Diosque, Patricio; Valente, Vera; Valente, Sebastiao A.; Gaunt, Michael W.

    2009-01-01

    Trypanosoma cruzi is the most important parasitic infection in Latin America and is also genetically highly diverse, with at least six discrete typing units (DTUs) reported: Tc I, IIa, IIb, IIc, IId, and IIe. However, the current six-genotype classification is likely to be a poor reflection of the total genetic diversity present in this undeniably ancient parasite. To determine whether epidemiologically important information is “hidden” at the sub-DTU level, we developed a 48-marker panel of polymorphic microsatellite loci to investigate population structure among 135 samples from across the geographic distribution of TcI. This DTU is the major cause of resurgent human disease in northern South America but also occurs in silvatic triatomine vectors and mammalian reservoir hosts throughout the continent. Based on a total dataset of 12,329 alleles, we demonstrate that silvatic TcI populations are extraordinarily genetically diverse, show spatial structuring on a continental scale, and have undergone recent biogeographic expansion into the southern United States of America. Conversely, the majority of human strains sampled are restricted to two distinct groups characterised by a considerable reduction in genetic diversity with respect to isolates from silvatic sources. In Venezuela, most human isolates showed little identity with known local silvatic strains, despite frequent invasion of the domestic setting by infected adult vectors. Multilocus linkage indices indicate predominantly clonal parasite propagation among all populations. However, excess homozygosity among silvatic strains and raised heterozygosity among domestic populations suggest that some level of genetic recombination cannot be ruled out. The epidemiological significance of these findings is discussed. PMID:19412340

  13. Landscape of Pleiotropic Proteins Causing Human Disease: Structural and System Biology Insights.

    PubMed

    Ittisoponpisan, Sirawit; Alhuzimi, Eman; Sternberg, Michael J E; David, Alessia

    2017-03-01

    Pleiotropy is the phenomenon by which the same gene can result in multiple phenotypes. Pleiotropic proteins are emerging as important contributors to rare and common disorders. Nevertheless, little is known on the mechanisms underlying pleiotropy and the characteristic of pleiotropic proteins. We analyzed disease-causing proteins reported in UniProt and observed that 12% are pleiotropic (variants in the same protein cause more than one disease). Pleiotropic proteins were enriched in deleterious and rare variants, but not in common variants. Pleiotropic proteins were more likely to be involved in the pathogenesis of neoplasms, neurological, and circulatory diseases and congenital malformations, whereas non-pleiotropic proteins in endocrine and metabolic disorders. Pleiotropic proteins were more essential and had a higher number of interacting partners compared with non-pleiotropic proteins. Significantly more pleiotropic than non-pleiotropic proteins contained at least one intrinsically long disordered region (P < 0.001). Deleterious variants occurring in structurally disordered regions were more commonly found in pleiotropic, rather than non-pleiotropic proteins. In conclusion, pleiotropic proteins are an important contributor to human disease. They represent a biologically different class of proteins compared with non-pleiotropic proteins and a better understanding of their characteristics and genetic variants can greatly aid in the interpretation of genetic studies and drug design. © 2016 WILEY PERIODICALS, INC.

  14. Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes.

    PubMed

    Macdonald, Lynn E; Karow, Margaret; Stevens, Sean; Auerbach, Wojtek; Poueymirou, William T; Yasenchak, Jason; Frendewey, David; Valenzuela, David M; Giallourakis, Cosmas C; Alt, Frederick W; Yancopoulos, George D; Murphy, Andrew J

    2014-04-08

    Genetic humanization, which involves replacing mouse genes with their human counterparts, can create powerful animal models for the study of human genes and diseases. One important example of genetic humanization involves mice humanized for their Ig genes, allowing for human antibody responses within a mouse background (HumAb mice) and also providing a valuable platform for the generation of fully human antibodies as therapeutics. However, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which they were genetically humanized. Heretofore, most genetic humanizations have involved disruption of the endogenous mouse gene with simultaneous introduction of a human transgene at a new and random location (so-called KO-plus-transgenic humanization). More recent efforts have attempted to replace mouse genes with their human counterparts at the same genetic location (in situ humanization), but such efforts involved laborious procedures and were limited in size and precision. We describe a general and efficient method for very large, in situ, and precise genetic humanization using large compound bacterial artificial chromosome-based targeting vectors introduced into mouse ES cells. We applied this method to genetically humanize 3-Mb segments of both the mouse heavy and κ light chain Ig loci, by far the largest genetic humanizations ever described. This paper provides a detailed description of our genetic humanization approach, and the companion paper reports that the humoral immune systems of mice bearing these genetically humanized loci function as efficiently as those of WT mice.

  15. 'RetinoGenetics': a comprehensive mutation database for genes related to inherited retinal degeneration.

    PubMed

    Ran, Xia; Cai, Wei-Jun; Huang, Xiu-Feng; Liu, Qi; Lu, Fan; Qu, Jia; Wu, Jinyu; Jin, Zi-Bing

    2014-01-01

    Inherited retinal degeneration (IRD), a leading cause of human blindness worldwide, is exceptionally heterogeneous with clinical heterogeneity and genetic variety. During the past decades, tremendous efforts have been made to explore the complex heterogeneity, and massive mutations have been identified in different genes underlying IRD with the significant advancement of sequencing technology. In this study, we developed a comprehensive database, 'RetinoGenetics', which contains informative knowledge about all known IRD-related genes and mutations for IRD. 'RetinoGenetics' currently contains 4270 mutations in 186 genes, with detailed information associated with 164 phenotypes from 934 publications and various types of functional annotations. Then extensive annotations were performed to each gene using various resources, including Gene Ontology, KEGG pathways, protein-protein interaction, mutational annotations and gene-disease network. Furthermore, by using the search functions, convenient browsing ways and intuitive graphical displays, 'RetinoGenetics' could serve as a valuable resource for unveiling the genetic basis of IRD. Taken together, 'RetinoGenetics' is an integrative, informative and updatable resource for IRD-related genetic predispositions. Database URL: http://www.retinogenetics.org/. © The Author(s) 2014. Published by Oxford University Press.

  16. Consequences of severe habitat fragmentation on density, genetics, and spatial capture-recapture analysis of a small bear population.

    PubMed

    Murphy, Sean M; Augustine, Ben C; Ulrey, Wade A; Guthrie, Joseph M; Scheick, Brian K; McCown, J Walter; Cox, John J

    2017-01-01

    Loss and fragmentation of natural habitats caused by human land uses have subdivided several formerly contiguous large carnivore populations into multiple small and often isolated subpopulations, which can reduce genetic variation and lead to precipitous population declines. Substantial habitat loss and fragmentation from urban development and agriculture expansion relegated the Highlands-Glades subpopulation (HGS) of Florida, USA, black bears (Ursus americanus floridanus) to prolonged isolation; increasing human land development is projected to cause ≥ 50% loss of remaining natural habitats occupied by the HGS in coming decades. We conducted a noninvasive genetic spatial capture-recapture study to quantitatively describe the degree of contemporary habitat fragmentation and investigate the consequences of habitat fragmentation on population density and genetics of the HGS. Remaining natural habitats sustaining the HGS were significantly more fragmented and patchier than those supporting Florida's largest black bear subpopulation. Genetic diversity was low (AR = 3.57; HE = 0.49) and effective population size was small (NE = 25 bears), both of which remained unchanged over a period spanning one bear generation despite evidence of some immigration. Subpopulation density (0.054 bear/km2) was among the lowest reported for black bears, was significantly female-biased, and corresponded to a subpopulation size of 98 bears in available habitat. Conserving remaining natural habitats in the area occupied by the small, genetically depauperate HGS, possibly through conservation easements and government land acquisition, is likely the most important immediate step to ensuring continued persistence of bears in this area. Our study also provides evidence that preferentially placing detectors (e.g., hair traps or cameras) primarily in quality habitat across fragmented landscapes poses a challenge to estimating density-habitat covariate relationships using spatial capture-recapture models. Because habitat fragmentation and loss are likely to increase in severity globally, further investigation of the influence of habitat fragmentation and detector placement on estimation of this relationship is warranted.

  17. Consequences of severe habitat fragmentation on density, genetics, and spatial capture-recapture analysis of a small bear population

    PubMed Central

    Guthrie, Joseph M.; Scheick, Brian K.; McCown, J. Walter; Cox, John J.

    2017-01-01

    Loss and fragmentation of natural habitats caused by human land uses have subdivided several formerly contiguous large carnivore populations into multiple small and often isolated subpopulations, which can reduce genetic variation and lead to precipitous population declines. Substantial habitat loss and fragmentation from urban development and agriculture expansion relegated the Highlands-Glades subpopulation (HGS) of Florida, USA, black bears (Ursus americanus floridanus) to prolonged isolation; increasing human land development is projected to cause ≥ 50% loss of remaining natural habitats occupied by the HGS in coming decades. We conducted a noninvasive genetic spatial capture-recapture study to quantitatively describe the degree of contemporary habitat fragmentation and investigate the consequences of habitat fragmentation on population density and genetics of the HGS. Remaining natural habitats sustaining the HGS were significantly more fragmented and patchier than those supporting Florida’s largest black bear subpopulation. Genetic diversity was low (AR = 3.57; HE = 0.49) and effective population size was small (NE = 25 bears), both of which remained unchanged over a period spanning one bear generation despite evidence of some immigration. Subpopulation density (0.054 bear/km2) was among the lowest reported for black bears, was significantly female-biased, and corresponded to a subpopulation size of 98 bears in available habitat. Conserving remaining natural habitats in the area occupied by the small, genetically depauperate HGS, possibly through conservation easements and government land acquisition, is likely the most important immediate step to ensuring continued persistence of bears in this area. Our study also provides evidence that preferentially placing detectors (e.g., hair traps or cameras) primarily in quality habitat across fragmented landscapes poses a challenge to estimating density-habitat covariate relationships using spatial capture-recapture models. Because habitat fragmentation and loss are likely to increase in severity globally, further investigation of the influence of habitat fragmentation and detector placement on estimation of this relationship is warranted. PMID:28738077

  18. Rubinstein-Taybi Syndrome and Epigenetic Alterations.

    PubMed

    Korzus, Edward

    2017-01-01

    Rubinstein-Taybi syndrome (RSTS) is a rare genetic disorder in humans characterized by growth and psychomotor delay, abnormal gross anatomy, and mild to severe mental retardation (Rubinstein and Taybi, Am J Dis Child 105:588-608, 1963, Hennekam et al., Am J Med Genet Suppl 6:56-64, 1990). RSTS is caused by de novo mutations in epigenetics-associated genes, including the cAMP response element-binding protein (CREBBP), the gene-encoding protein referred to as CBP, and the EP300 gene, which encodes the p300 protein, a CBP homologue. Recent studies of the epigenetic mechanisms underlying cognitive functions in mice provide direct evidence for the involvement of nuclear factors (e.g., CBP) in the control of higher cognitive functions. In fact, a role for CBP in higher cognitive function is suggested by the finding that RSTS is caused by heterozygous mutations at the CBP locus (Petrij et al., Nature 376:348-351, 1995). CBP was demonstrated to possess an intrinsic histone acetyltransferase activity (Ogryzko et al., Cell 87:953-959, 1996) that is required for CREB-mediated gene expression (Korzus et al., Science 279:703-707, 1998). The intrinsic protein acetyltransferase activity in CBP might directly destabilize promoter-bound nucleosomes, facilitating the activation of transcription. Due to the complexity of developmental abnormalities and the possible genetic compensation associated with this congenital disorder, however, it is difficult to establish a direct role for CBP in cognitive function in the adult brain. Although aspects of the clinical presentation in RSTS cases have been extensively studied, a spectrum of symptoms found in RSTS patients can be accessed only after birth, and, thus, prenatal genetic tests for this extremely rare genetic disorder are seldom considered. Even though there has been intensive research on the genetic and epigenetic function of the CREBBP gene in rodents, the etiology of this devastating congenital human disorder is largely unknown.

  19. [Genetic profiling of Giardia intestinalis by polimerase chain in human and dogs samples of Colombian Caribean Coast].

    PubMed

    Arroyo-Salgado, Bárbara; Buelvas-Montes, Yaleyvis; Villalba-Vizcaíno, Vivian; Salomón-Arzuza, Octavio

    2014-01-01

    Giardia intestinalis (G. Intestinalis) is a protozoan that causes diarrheal disease and malabsorption syndrome in humans and other mammals. It presents a high genetic diversity evidenced in the recognition of 7 genotypes (A-G). Genotypes A and B are commonly associated to humans and domestic animals such as dogs. The aim of this study was to conduct a preliminary genetic characterization of G. intestinalis in humans and dogs from two cities on the Caribbean coast of Colombia. Sampling areas were selected according to the highest numbers of acute diarrheal disease. Stool samples were collected from children under 7 years old, with positive medical tests for G. intestinalis. Cysts were purified by sucrose gradient and DNA samples were isolated by extraction with organic solvents. Molecular characterization was performed by amplifying the gene triose phosphate isomerase (tpi) by using a semi-nested PCR. A total of 202 samples of DNA were obtained; of these, 111 were positive in coproparasitological analysis (13 dogs and 98 children). Genotype distribution in positive samples was: 5.1% belonged to genotype A and 92.3% to genotype B. Genotype B was present in humans and animals. The most common genotype in both human and animal samples was genotype B, suggesting a zoonotic transmission cycle. Copyright © 2012 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  20. Defects in the cappuccino (cno) gene on mouse chromosome 5 and human 4p cause Hermansky-Pudlak syndrome by an AP-3-independent mechanism.

    PubMed

    Gwynn, B; Ciciotte, S L; Hunter, S J; Washburn, L L; Smith, R S; Andersen, S G; Swank, R T; Dell'Angelica, E C; Bonifacino, J S; Eicher, E M; Peters, L L

    2000-12-15

    Defects in a triad of organelles (melanosomes, platelet granules, and lysosomes) result in albinism, prolonged bleeding, and lysosome abnormalities in Hermansky-Pudlak syndrome (HPS). Defects in HPS1, a protein of unknown function, and in components of the AP-3 complex cause some, but not all, cases of HPS in humans. There have been 15 inherited models of HPS described in the mouse, underscoring its marked genetic heterogeneity. Here we characterize a new spontaneous mutation in the mouse, cappuccino (cno), that maps to mouse chromosome 5 in a region conserved with human 4p15-p16. Melanosomes of cno/cno mice are immature and dramatically decreased in number in the eye and skin, resulting in severe oculocutaneous albinism. Platelet dense body contents (adenosine triphosphate, serotonin) are markedly deficient, leading to defective aggregation and prolonged bleeding. Lysosomal enzyme concentrations are significantly elevated in the kidney and liver. Genetic, immunofluorescence microscopy, and lysosomal protein trafficking studies indicate that the AP-3 complex is intact in cno/cno mice. It was concluded that the cappuccino gene encodes a product involved in an AP-3-independent mechanism critical to the biogenesis of lysosome-related organelles. (Blood. 2000;96:4227-4235)

  1. Whole-genome sequencing for identification of Mendelian disorders in critically ill infants: a retrospective analysis of diagnostic and clinical findings

    PubMed Central

    Willig, Laurel K; Petrikin, Josh E; Smith, Laurie D; Saunders, Carol J; Thiffault, Isabelle; Miller, Neil A; Soden, Sarah E; Cakici, Julie A; Herd, Suzanne M; Twist, Greyson; Noll, Aaron; Creed, Mitchell; Alba, Patria M; Carpenter, Shannon L; Clements, Mark A; Fischer, Ryan T; Hays, J Allyson; Kilbride, Howard; McDonough, Ryan J; Rosterman, Jamie L; Tsai, Sarah L; Zellmer, Lee; Farrow, Emily G; Kingsmore, Stephen F

    2015-01-01

    Summary Background Genetic disorders and congenital anomalies are the leading causes of infant mortality. Diagnosis of most genetic diseases in neonatal and paediatric intensive care units (NICU and PICU) is not sufficiently timely to guide acute clinical management. We used rapid whole-genome sequencing (STATseq) in a level 4 NICU and PICU to assess the rate and types of molecular diagnoses, and the prevalence, types, and effect of diagnoses that are likely to change medical management in critically ill infants. Methods We did a retrospective comparison of STATseq and standard genetic testing in a case series from the NICU and PICU of a large children's hospital between Nov 11, 2011, and Oct 1, 2014. The participants were families with an infant younger than 4 months with an acute illness of suspected genetic cause. The intervention was STATseq of trios (both parents and their affected infant). The main measures were the diagnostic rate, time to diagnosis, and rate of change in management after standard genetic testing and STATseq. Findings 20 (57%) of 35 infants were diagnosed with a genetic disease by use of STATseq and three (9%) of 32 by use of standard genetic testing (p=0·0002). Median time to genome analysis was 5 days (range 3–153) and median time to STATseq report was 23 days (5–912). 13 (65%) of 20 STATseq diagnoses were associated with de-novo mutations. Acute clinical usefulness was noted in 13 (65%) of 20 infants with a STATseq diagnosis, four (20%) had diagnoses with strongly favourable effects on management, and six (30%) were started on palliative care. 120-day mortality was 57% (12 of 21) in infants with a genetic diagnosis. Interpretation In selected acutely ill infants, STATseq had a high rate of diagnosis of genetic disorders. Most diagnoses altered the management of infants in the NICU or PICU. The very high infant mortality rate indicates a substantial need for rapid genomic diagnoses to be allied with a novel framework for precision medicine for infants in NICU and PICU who are diagnosed with genetic diseases to improve outcomes. Funding Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Human Genome Research Institute, and National Center for Advancing Translational Sciences. PMID:25937001

  2. Interaction between DMRT1 function and genetic background modulates signaling and pluripotency to control tumor susceptibility in the fetal germ line

    PubMed Central

    Krentz, Anthony D.; Murphy, Mark W.; Zhang, Teng; Sarver, Aaron L.; Jain, Sanjay; Griswold, Michael D.; Bardwell, Vivian J.; Zarkower, David

    2013-01-01

    Dmrt1(doublesex and mab-3 related transcription factor 1) is a regulator of testis development in vertebrates that has been implicated in testicular germ cell tumors of mouse and human. In the fetal mouse testis Dmrt1 regulates germ cell pluripotency in a strain-dependent manner. Loss of Dmrt1 in 129Sv strain mice results in a >90% incidence of testicular teratomas, tumors consisting cells of multiple germ layers; by contrast, these tumors have never been observed in Dmrt1 mutants of C57BL/6J (B6) or mixed genetic backgrounds. To further investigate the interaction between Dmrt1 and genetic background we compared mRNA expression in wild type and Dmrt1 mutant fetal testes of 129Sv and B6 mice at embryonic day 15.5 (E15.5), prior to overt tumorigenesis. Loss of Dmrt1 caused misexpression of overlapping but distinct sets of mRNAs in the two strains. The mRNAs that were selectively affected included some that changed expression only in one strain or the other and some that changed in both strains but to a greater degree in one versus the other. In particular, loss of Dmrt1 in 129Sv testes caused a more severe failure to silence regulators of pluripotency than in B6 testes. A number of genes misregulated in 129Sv mutant testes also are misregulated in human testicular germ cell tumors (TGCTs), suggesting similar etiology between germ cell tumors in mouse and man. Expression profiling showed that DMRT1 also regulates pluripotency genes in the fetal ovary, although Dmrt1 mutant females do not develop teratomas. Pathway analysis indicated disruption of several signaling pathways in Dmrt1 mutant fetal testes, including Nodal, Notch, and GDNF. We used a Nanos3-cre knock-in allele to perform conditional gene targeting, testing the GDNF coreceptors Gfra1 and Ret for effects on teratoma susceptibility. Conditional deletion of Gfra1 but not Ret in fetal germ cells of animals outcrossed to 129Sv caused a modest but significant elevation in tumor incidence. Despite some variability in genetic background in these crosses, this result is consistent with previous genetic mapping of teratoma susceptibility loci to the region containing Gfra1. Using Nanos3-cre we also uncovered a strong genetic interaction between Dmrt1 and Nanos3, suggesting parallel functions for these two genes in fetal germ cells. Finally, we used chromatin immunoprecipitation (ChIP-seq) analysis to identify a number of potentially direct DMRT1 targets. This analysis suggested that DMRT1 controls pluripotency via transcriptional repression of Esrrb, Nr5a2/Lrh1, and Sox2. Given the strong evidence for involvement of DMRT1 in human TGCT, the downstream genes and pathways identified in this study provide potentially useful candidates for roles in the human disease. PMID:23473982

  3. Effective population size dynamics reveal impacts of historic climatic events and recent anthropogenic pressure in African elephants.

    PubMed

    Okello, J B A; Wittemyer, G; Rasmussen, H B; Arctander, P; Nyakaana, S; Douglas-Hamilton, I; Siegismund, H R

    2008-09-01

    Two hundred years of elephant hunting for ivory, peaking in 1970-1980s, caused local extirpations and massive population declines across Africa. The resulting genetic impacts on surviving populations have not been studied, despite the importance of understanding the evolutionary repercussions of such human-mediated events on this keystone species. Using Bayesian coalescent-based genetic methods to evaluate time-specific changes in effective population size, we analysed genetic variation in 20 highly polymorphic microsatellite loci from 400 elephants inhabiting the greater Samburu-Laikipia region of northern Kenya. This area experienced a decline of between 80% and 90% in the last few decades when ivory harvesting was rampant. The most significant change in effective population size, however, occurred approximately 2500 years ago during a mid-Holocene period of climatic drying in tropical Africa. Contrary to expectations, detailed analyses of four contemporary age-based cohorts showed that the peak poaching epidemic in the 1970s caused detectable temporary genetic impacts, with genetic diversity rebounding as juveniles surviving the poaching era became reproductively mature. This study demonstrates the importance of climatic history in shaping the distribution and genetic history of a keystone species and highlights the utility of coalescent-based demographic approaches in unravelling ancestral demographic events despite a lack of ancient samples. Unique insights into the genetic signature of mid-Holocene climatic change in Africa and effects of recent poaching pressure on elephants are discussed.

  4. Difficulties in diagnosing Marfan syndrome using current FBN1 databases.

    PubMed

    Groth, Kristian A; Gaustadnes, Mette; Thorsen, Kasper; Østergaard, John R; Jensen, Uffe Birk; Gravholt, Claus H; Andersen, Niels H

    2016-01-01

    The diagnostic criteria of Marfan syndrome (MFS) highlight the importance of a FBN1 mutation test in diagnosing MFS. As genetic sequencing becomes better, cheaper, and more accessible, the expected increase in the number of genetic tests will become evident, resulting in numerous genetic variants that need to be evaluated for disease-causing effects based on database information. The aim of this study was to evaluate genetic variants in four databases and review the relevant literature. We assessed background data on 23 common variants registered in ESP6500 and classified as causing MFS in the Human Gene Mutation Database (HGMD). We evaluated data in four variant databases (HGMD, UMD-FBN1, ClinVar, and UniProt) according to the diagnostic criteria for MFS and compared the results with the classification of each variant in the four databases. None of the 23 variants was clearly associated with MFS, even though all classifications in the databases stated otherwise. A genetic diagnosis of MFS cannot reliably be based on current variant databases because they contain incorrectly interpreted conclusions on variants. Variants must be evaluated by time-consuming review of the background material in the databases and by combining these data with expert knowledge on MFS. This is a major problem because we expect even more genetic test results in the near future as a result of the reduced cost and process time for next-generation sequencing.Genet Med 18 1, 98-102.

  5. Medical phycology 2017.

    PubMed

    Todd, John R; Matsumoto, Tadahiko; Ueno, Ryohei; Murugaiyan, Jayaseelan; Britten, Allan; King, John W; Odaka, Yoshinobu; Oberle, Arnold; Weise, Christoph; Roesler, Uwe; Pore, R Scott

    2018-05-15

    In 2014, ISHAM formed a new working group: "Medical Phycology: Protothecosis and Chlorellosis." The purpose of this working group is to help facilitate collaboration and communication among people interested in the pathogenic algae, to share ideas and work together. Here we present reports on recent work we have done in five areas. 1. The history of medical phycology as a branch of science. 2. Aspects of the genetics of Prototheca. 3. Aspects of the proteins of Prototheca. 4. Human infections caused by Prototheca. 5. Dairy cow mastitis caused by Prototheca.

  6. XLID-causing mutations and associated genes challenged in light of data from large-scale human exome sequencing.

    PubMed

    Piton, Amélie; Redin, Claire; Mandel, Jean-Louis

    2013-08-08

    Because of the unbalanced sex ratio (1.3-1.4 to 1) observed in intellectual disability (ID) and the identification of large ID-affected families showing X-linked segregation, much attention has been focused on the genetics of X-linked ID (XLID). Mutations causing monogenic XLID have now been reported in over 100 genes, most of which are commonly included in XLID diagnostic gene panels. Nonetheless, the boundary between true mutations and rare non-disease-causing variants often remains elusive. The sequencing of a large number of control X chromosomes, required for avoiding false-positive results, was not systematically possible in the past. Such information is now available thanks to large-scale sequencing projects such as the National Heart, Lung, and Blood (NHLBI) Exome Sequencing Project, which provides variation information on 10,563 X chromosomes from the general population. We used this NHLBI cohort to systematically reassess the implication of 106 genes proposed to be involved in monogenic forms of XLID. We particularly question the implication in XLID of ten of them (AGTR2, MAGT1, ZNF674, SRPX2, ATP6AP2, ARHGEF6, NXF5, ZCCHC12, ZNF41, and ZNF81), in which truncating variants or previously published mutations are observed at a relatively high frequency within this cohort. We also highlight 15 other genes (CCDC22, CLIC2, CNKSR2, FRMPD4, HCFC1, IGBP1, KIAA2022, KLF8, MAOA, NAA10, NLGN3, RPL10, SHROOM4, ZDHHC15, and ZNF261) for which replication studies are warranted. We propose that similar reassessment of reported mutations (and genes) with the use of data from large-scale human exome sequencing would be relevant for a wide range of other genetic diseases. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. Human SOD1 ALS Mutations in a Drosophila Knock-In Model Cause Severe Phenotypes and Reveal Dosage-Sensitive Gain- and Loss-of-Function Components.

    PubMed

    Şahin, Aslı; Held, Aaron; Bredvik, Kirsten; Major, Paxton; Achilli, Toni-Marie; Kerson, Abigail G; Wharton, Kristi; Stilwell, Geoff; Reenan, Robert

    2017-02-01

    Amyotrophic Lateral Sclerosis (ALS) is the most common adult-onset motor neuron disease and familial forms can be caused by numerous dominant mutations of the copper-zinc superoxide dismutase 1 (SOD1) gene. Substantial efforts have been invested in studying SOD1-ALS transgenic animal models; yet, the molecular mechanisms by which ALS-mutant SOD1 protein acquires toxicity are not well understood. ALS-like phenotypes in animal models are highly dependent on transgene dosage. Thus, issues of whether the ALS-like phenotypes of these models stem from overexpression of mutant alleles or from aspects of the SOD1 mutation itself are not easily deconvolved. To address concerns about levels of mutant SOD1 in disease pathogenesis, we have genetically engineered four human ALS-causing SOD1 point mutations (G37R, H48R, H71Y, and G85R) into the endogenous locus of Drosophila SOD1 (dsod) via ends-out homologous recombination and analyzed the resulting molecular, biochemical, and behavioral phenotypes. Contrary to previous transgenic models, we have recapitulated ALS-like phenotypes without overexpression of the mutant protein. Drosophila carrying homozygous mutations rendering SOD1 protein enzymatically inactive (G85R, H48R, and H71Y) exhibited neurodegeneration, locomotor deficits, and shortened life span. The mutation retaining enzymatic activity (G37R) was phenotypically indistinguishable from controls. While the observed mutant dsod phenotypes were recessive, a gain-of-function component was uncovered through dosage studies and comparisons with age-matched dsod null animals, which failed to show severe locomotor defects or nerve degeneration. We conclude that the Drosophila knock-in model captures important aspects of human SOD1-based ALS and provides a powerful and useful tool for further genetic studies. Copyright © 2017 by the Genetics Society of America.

  8. Genetics of Prader-Willi syndrome and Prader-Will-Like syndrome

    PubMed Central

    2016-01-01

    The Prader-Willi syndrome (PWS) is a human imprinting disorder resulting from genomic alterations that inactivate imprinted, paternally expressed genes in human chromosome region 15q11-q13. This genetic condition appears to be a contiguous gene syndrome caused by the loss of at least 2 of a number of genes expressed exclusively from the paternal allele, including SNRPN, MKRN3, MAGEL2, NDN and several snoRNAs, but it is not yet well known which specific genes in this region are associated with this syndrome. Prader-Will-Like syndrome (PWLS) share features of the PWS phenotype and the gene functions disrupted in PWLS are likely to lie in genetic pathways that are important for the development of PWS phenotype. However, the genetic basis of these rare disorders differs and the absence of a correct diagnosis may worsen the prognosis of these individuals due to the endocrine-metabolic malfunctioning associated with the PWS. Therefore, clinicians face a challenge in determining when to request the specific molecular test used to identify patients with classical PWS because the signs and symptoms of PWS are common to other syndromes such as PWLS. This review aims to provide an overview of current knowledge relating to the genetics of PWS and PWLS, with an emphasis on identification of patients that may benefit from further investigation and genetic screening. PMID:27777904

  9. Genetics of Prader-Willi syndrome and Prader-Will-Like syndrome.

    PubMed

    Cheon, Chong Kun

    2016-09-01

    The Prader-Willi syndrome (PWS) is a human imprinting disorder resulting from genomic alterations that inactivate imprinted, paternally expressed genes in human chromosome region 15q11-q13. This genetic condition appears to be a contiguous gene syndrome caused by the loss of at least 2 of a number of genes expressed exclusively from the paternal allele, including SNRPN , MKRN3 , MAGEL2 , NDN and several snoRNAs , but it is not yet well known which specific genes in this region are associated with this syndrome. Prader-Will-Like syndrome (PWLS) share features of the PWS phenotype and the gene functions disrupted in PWLS are likely to lie in genetic pathways that are important for the development of PWS phenotype. However, the genetic basis of these rare disorders differs and the absence of a correct diagnosis may worsen the prognosis of these individuals due to the endocrine-metabolic malfunctioning associated with the PWS. Therefore, clinicians face a challenge in determining when to request the specific molecular test used to identify patients with classical PWS because the signs and symptoms of PWS are common to other syndromes such as PWLS. This review aims to provide an overview of current knowledge relating to the genetics of PWS and PWLS, with an emphasis on identification of patients that may benefit from further investigation and genetic screening.

  10. Inflammasomes make the case for littermate-controlled experimental design in studying host-microbiota interactions.

    PubMed

    Mamantopoulos, Michail; Ronchi, Francesca; McCoy, Kathy D; Wullaert, Andy

    2018-04-19

    Several human diseases are thought to evolve due to a combination of host genetic mutations and environmental factors that include alterations in intestinal microbiota composition termed dysbiosis. Although in some cases, host genetics may shape the gut microbiota and enable it to provoke disease, experimentally disentangling cause and consequence in such host-microbe interactions requires strict control over non-genetic confounding factors. Mouse genetic studies previously proposed Nlrp6/ASC inflammasomes as innate immunity regulators of the intestinal ecosystem. In contrast, using littermate-controlled experimental setups, we recently showed that Nlrp6/ASC inflammasomes do not alter the gut microbiota composition. Our analyses indicated that maternal inheritance and long-term separate housing are non-genetic confounders that preclude the use of non-littermate mice when analyzing host genetic effects on intestinal ecology. Here, we summarize and discuss our gut microbiota analyses in inflammasome-deficient mice for illustrating the importance of littermate experimental design in studying host-microbiota interactions.

  11. A voyage to Terra Australis: human-mediated dispersal of cats.

    PubMed

    Koch, K; Algar, D; Searle, J B; Pfenninger, M; Schwenk, K

    2015-12-04

    Cats have been transported as human commensals worldwide giving rise to many feral populations. In Australia, feral cats have caused decline and extinction of native mammals, but their time of introduction and origin is unclear. Here, we investigate hypotheses of cat arrival pre- or post-European settlement, and the potential for admixture between cats of different invasion events. We analyse the genetic structure and diversity of feral cats from six locations on mainland Australia, seven Australian islands and samples from Southeast Asia and Europe using microsatellite and mitochondrial DNA data. Our results based on phylogeographic model selection are consistent with a European origin of cats in Australia. We find genetic distinctiveness of Australian mainland samples compared with Dirk Hartog Island, Flinders Island, Tasman Island and Cocos (Keeling) Island samples, and genetic similarities between some of the island populations. Historical records suggest that introduction of cats to these islands occurred at the time of European exploration and/or in connection with the pearling, whaling and sealing trades early in the 19th century. On-going influx of domestic cats into the feral cat population is apparently causing the Australian mainland populations to be genetically differentiated from those island populations, which likely are remnants of the historically introduced cat genotypes. A mainly European origin of feral cats in Australia, with possible secondary introductions from Asia following the initial establishment of cats in Australia is reasonable. The islands surrounding Australia may represent founding populations and are of particular interest. The results of the study provide an important timeframe for the impact of feral cats on native species in Australia.

  12. Decoding the complex genetic causes of heart diseases using systems biology.

    PubMed

    Djordjevic, Djordje; Deshpande, Vinita; Szczesnik, Tomasz; Yang, Andrian; Humphreys, David T; Giannoulatou, Eleni; Ho, Joshua W K

    2015-03-01

    The pace of disease gene discovery is still much slower than expected, even with the use of cost-effective DNA sequencing and genotyping technologies. It is increasingly clear that many inherited heart diseases have a more complex polygenic aetiology than previously thought. Understanding the role of gene-gene interactions, epigenetics, and non-coding regulatory regions is becoming increasingly critical in predicting the functional consequences of genetic mutations identified by genome-wide association studies and whole-genome or exome sequencing. A systems biology approach is now being widely employed to systematically discover genes that are involved in heart diseases in humans or relevant animal models through bioinformatics. The overarching premise is that the integration of high-quality causal gene regulatory networks (GRNs), genomics, epigenomics, transcriptomics and other genome-wide data will greatly accelerate the discovery of the complex genetic causes of congenital and complex heart diseases. This review summarises state-of-the-art genomic and bioinformatics techniques that are used in accelerating the pace of disease gene discovery in heart diseases. Accompanying this review, we provide an interactive web-resource for systems biology analysis of mammalian heart development and diseases, CardiacCode ( http://CardiacCode.victorchang.edu.au/ ). CardiacCode features a dataset of over 700 pieces of manually curated genetic or molecular perturbation data, which enables the inference of a cardiac-specific GRN of 280 regulatory relationships between 33 regulator genes and 129 target genes. We believe this growing resource will fill an urgent unmet need to fully realise the true potential of predictive and personalised genomic medicine in tackling human heart disease.

  13. Methylenetetrahydrofolate reductase and transcobalamin genetic polymorphisms in human spontaneous abortion: biological and clinical implications

    PubMed Central

    Zetterberg, Henrik

    2004-01-01

    The pathogenesis of human spontaneous abortion involves a complex interaction of several genetic and environmental factors. The firm association between increased homocysteine concentration and neural tube defects (NTD) has led to the hypothesis that high concentrations of homocysteine might be embryotoxic and lead to decreased fetal viability. There are several genetic polymorphisms that are associated with defects in folate- and vitamin B12-dependent homocysteine metabolism. The methylenetetrahydrofolate reductase (MTHFR) 677C>T and 1298A>C polymorphisms cause elevated homocysteine concentration and are associated with an increased risk of NTD. Additionally, low concentration of vitamin B12 (cobalamin) or transcobalamin that delivers vitamin B12 to the cells of the body leads to hyperhomocysteinemia and is associated with NTD. This effect involves the transcobalamin (TC) 776C>G polymorphism. Importantly, the biochemical consequences of these polymorphisms can be modified by folate and vitamin B12 supplementation. In this review, I focus on recent studies on the role of hyperhomocysteinemia-associated polymorphisms in the pathogenesis of human spontaneous abortion and discuss the possibility that periconceptional supplementation with folate and vitamin B12 might lower the incidence of miscarriage in women planning a pregnancy. PMID:14969589

  14. Methylenetetrahydrofolate reductase and transcobalamin genetic polymorphisms in human spontaneous abortion: biological and clinical implications.

    PubMed

    Zetterberg, Henrik

    2004-02-17

    The pathogenesis of human spontaneous abortion involves a complex interaction of several genetic and environmental factors. The firm association between increased homocysteine concentration and neural tube defects (NTD) has led to the hypothesis that high concentrations of homocysteine might be embryotoxic and lead to decreased fetal viability. There are several genetic polymorphisms that are associated with defects in folate- and vitamin B12-dependent homocysteine metabolism. The methylenetetrahydrofolate reductase (MTHFR) 677C>T and 1298A>C polymorphisms cause elevated homocysteine concentration and are associated with an increased risk of NTD. Additionally, low concentration of vitamin B12 (cobalamin) or transcobalamin that delivers vitamin B12 to the cells of the body leads to hyperhomocysteinemia and is associated with NTD. This effect involves the transcobalamin (TC) 776C>G polymorphism. Importantly, the biochemical consequences of these polymorphisms can be modified by folate and vitamin B12 supplementation. In this review, I focus on recent studies on the role of hyperhomocysteinemia-associated polymorphisms in the pathogenesis of human spontaneous abortion and discuss the possibility that periconceptional supplementation with folate and vitamin B12 might lower the incidence of miscarriage in women planning a pregnancy.

  15. A general unified framework to assess the sampling variance of heritability estimates using pedigree or marker-based relationships.

    PubMed

    Visscher, Peter M; Goddard, Michael E

    2015-01-01

    Heritability is a population parameter of importance in evolution, plant and animal breeding, and human medical genetics. It can be estimated using pedigree designs and, more recently, using relationships estimated from markers. We derive the sampling variance of the estimate of heritability for a wide range of experimental designs, assuming that estimation is by maximum likelihood and that the resemblance between relatives is solely due to additive genetic variation. We show that well-known results for balanced designs are special cases of a more general unified framework. For pedigree designs, the sampling variance is inversely proportional to the variance of relationship in the pedigree and it is proportional to 1/N, whereas for population samples it is approximately proportional to 1/N(2), where N is the sample size. Variation in relatedness is a key parameter in the quantification of the sampling variance of heritability. Consequently, the sampling variance is high for populations with large recent effective population size (e.g., humans) because this causes low variation in relationship. However, even using human population samples, low sampling variance is possible with high N. Copyright © 2015 by the Genetics Society of America.

  16. The importance of copy number variation in congenital heart disease

    PubMed Central

    Costain, Gregory; Silversides, Candice K; Bassett, Anne S

    2016-01-01

    Congenital heart disease (CHD) is the most common class of major malformations in humans. The historical association with large chromosomal abnormalities foreshadowed the role of submicroscopic rare copy number variations (CNVs) as important genetic causes of CHD. Recent studies have provided robust evidence for these structural variants as genome-wide contributors to all forms of CHD, including CHD that appears isolated without extra-cardiac features. Overall, a CNV-related molecular diagnosis can be made in up to one in eight patients with CHD. These include de novo and inherited variants at established (chromosome 22q11.2), emerging (chromosome 1q21.1), and novel loci across the genome. Variable expression of rare CNVs provides support for the notion of a genetic spectrum of CHD that crosses traditional anatomic classification boundaries. Clinical genetic testing using genome-wide technologies (e.g., chromosomal microarray analysis) is increasingly employed in prenatal, paediatric and adult settings. CNV discoveries in CHD have translated to changes to clinical management, prognostication and genetic counselling. The convergence of findings at individual gene and at pathway levels is shedding light on the mechanisms that govern human cardiac morphogenesis. These clinical and research advances are helping to inform whole-genome sequencing, the next logical step in delineating the genetic architecture of CHD. PMID:28706735

  17. Identification of a Novel GJA8 (Cx50) Point Mutation Causes Human Dominant Congenital Cataracts

    NASA Astrophysics Data System (ADS)

    Ge, Xiang-Lian; Zhang, Yilan; Wu, Yaming; Lv, Jineng; Zhang, Wei; Jin, Zi-Bing; Qu, Jia; Gu, Feng

    2014-02-01

    Hereditary cataracts are clinically and genetically heterogeneous lens diseases that cause a significant proportion of visual impairment and blindness in children. Human cataracts have been linked with mutations in two genes, GJA3 and GJA8, respectively. To identify the causative mutation in a family with hereditary cataracts, family members were screened for mutations by PCR for both genes. Sequencing the coding regions of GJA8, coding for connexin 50, revealed a C > A transversion at nucleotide 264, which caused p.P88T mutation. To dissect the molecular consequences of this mutation, plasmids carrying wild-type and mutant mouse ORFs of Gja8 were generated and ectopically expressed in HEK293 cells and human lens epithelial cells, respectively. The recombinant proteins were assessed by confocal microscopy and Western blotting. The results demonstrate that the molecular consequences of the p.P88T mutation in GJA8 include changes in connexin 50 protein localization patterns, accumulation of mutant protein, and increased cell growth.

  18. AID and Reactive Oxygen Species Can Induce DNA Breaks within Human Chromosomal Translocation Fragile Zones.

    PubMed

    Pannunzio, Nicholas R; Lieber, Michael R

    2017-12-07

    DNA double-strand breaks (DSBs) occurring within fragile zones of less than 200 base pairs account for the formation of the most common human chromosomal translocations in lymphoid malignancies, yet the mechanism of how breaks occur remains unknown. Here, we have transferred human fragile zones into S. cerevisiae in the context of a genetic assay to understand the mechanism leading to DSBs at these sites. Our findings indicate that a combination of factors is required to sensitize these regions. Foremost, DNA strand separation by transcription or increased torsional stress can expose these DNA regions to damage from either the expression of human AID or increased oxidative stress. This damage causes DNA lesions that, if not repaired quickly, are prone to nuclease cleavage, resulting in DSBs. Our results provide mechanistic insight into why human neoplastic translocation fragile DNA sequences are more prone to enzymes or agents that cause longer-lived DNA lesions. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Next-generation sequencing identifies a novel compound heterozygous mutation in MYO7A in a Chinese patient with Usher Syndrome 1B.

    PubMed

    Wei, Xiaoming; Sun, Yan; Xie, Jiansheng; Shi, Quan; Qu, Ning; Yang, Guanghui; Cai, Jun; Yang, Yi; Liang, Yu; Wang, Wei; Yi, Xin

    2012-11-20

    Targeted enrichment and next-generation sequencing (NGS) have been employed for detection of genetic diseases. The purpose of this study was to validate the accuracy and sensitivity of our method for comprehensive mutation detection of hereditary hearing loss, and identify inherited mutations involved in human deafness accurately and economically. To make genetic diagnosis of hereditary hearing loss simple and timesaving, we designed a 0.60 MB array-based chip containing 69 nuclear genes and mitochondrial genome responsible for human deafness and conducted NGS toward ten patients with five known mutations and a Chinese family with hearing loss (never genetically investigated). Ten patients with five known mutations were sequenced using next-generation sequencing to validate the sensitivity of the method. We identified four known mutations in two nuclear deafness causing genes (GJB2 and SLC26A4), one in mitochondrial DNA. We then performed this method to analyze the variants in a Chinese family with hearing loss and identified compound heterozygosity for two novel mutations in gene MYO7A. The compound heterozygosity identified in gene MYO7A causes Usher Syndrome 1B with severe phenotypes. The results support that the combination of enrichment of targeted genes and next-generation sequencing is a valuable molecular diagnostic tool for hereditary deafness and suitable for clinical application. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. The social and economic origins of genetic determinism: a case history of the American Eugenics Movement, 1900-1940 and its lessons for today.

    PubMed

    Allen, G E

    1997-01-01

    Eugenics, the attempt to improve the genetic quality of the human species by 'better breeding', developed as a worldwide movement between 1900 and 1940. It was particularly prominent in the United States, Britain and Germany, and in those countries was based on the then-new science of Mendelian genetics. Eugenicists developed research programs to determine the degree in which traits such as Huntington's chorea, blindness, deafness, mental retardation (feeblemindedness), intelligence, alcoholism, schizophrenia, manic depression, rebelliousness, nomadism, prostitution and feeble inhibition were genetically determined. Eugenicists were also active in the political arena, lobbying in the United States for immigration restriction and compulsory sterilization laws for those deemed genetically unfit; in Britain they lobbied for incarceration of genetically unfit and in Germany for sterilization and eventually euthanasia. In all these countries one of the major arguments was that of efficiency: that it was inefficient to allow genetic defects to be multiplied and then have to try and deal with the consequences of state care for the offspring. National socialists called genetically defective individuals 'useless eaters' and argued for sterilization or euthanasia on economic grounds. Similar arguments appeared in the United States and Britain as well. At the present time (1997) much research and publicity is being given to claims about a genetic basis for all the same behaviors (alcoholism, manic depression, etc.), again in an economic context--care for people with such diseases is costing too much. There is an important lesson to learn from the past: genetic arguments are put forward to mask the true--social and economic--causes of human behavioral defects.

  1. Association of vWA and TPOX Polymorphisms with Venous Thrombosis in Mexican Mestizos

    PubMed Central

    Meraz-Ríos, Marco Antonio; Majluf-Cruz, Abraham; Santana, Carla; Noris, Gino; Camacho-Mejorado, Rafael; Acosta-Saavedra, Leonor C.; Calderón-Aranda, Emma S.; Hernández-Juárez, Jesús; Magaña, Jonathan J.; Gómez, Rocío

    2014-01-01

    Objective. Venous thromboembolism (VTE) is a multifactorial disorder and, worldwide, the most important cause of morbidity and mortality. Genetic factors play a critical role in its aetiology. Microsatellites are the most important source of human genetic variation having more phenotypic effect than many single nucleotide polymorphisms. Hence, we evaluate a possible relationship between VTE and the genetic variants in von Willebrand factor, human alpha fibrinogen, and human thyroid peroxidase microsatellites to identify possible diagnostic markers. Methods. Genotypes were obtained from 177 patients with VTE and 531 nonrelated individuals using validated genotyping methods. The allelic frequencies were compared; Bayesian methods were used to correct population stratification to avoid spurious associations. Results. The vWA-18, TPOX-9, and TPOX-12 alleles were significantly associated with VTE. Moreover, subjects bearing the combination vWA-18/TPOX-12 loci exhibited doubled risk for VTE (95% CI = 1.02–3.64), whereas the combination vWA-18/TPOX-9 showed an OR = 10 (95% CI = 4.93–21.49). Conclusions. The vWA and TPOX microsatellites are good candidate biomarkers in venous thromboembolism diseases and could help to elucidate their origins. Additionally, these polymorphisms could become useful markers for genetic studies of VTE in the Mexican population; however, further studies should be done owing that this data only show preliminary evidence. PMID:25250329

  2. Nature, nurture and evolution of intra-species variation in mosquito arbovirus transmission competence.

    PubMed

    Tabachnick, Walter J

    2013-01-11

    Mosquitoes vary in their competence or ability to transmit arthropod-borne viruses (arboviruses). Many arboviruses cause disease in humans and animals. Identifying the environmental and genetic causes of variation in mosquito competence for arboviruses is one of the great challenges in public health. Progress identifying genetic (nature) and environmental (nurture) factors influencing mosquito competence for arboviruses is reviewed. There is great complexity in the various traits that comprise mosquito competence. The complex interactions between environmental and genetic factors controlling these traits and the factors shaping variation in Nature are largely unknown. The norms of reaction of specific genes influencing competence, their distributions in natural populations and the effects of genetic polymorphism on phenotypic variation need to be determined. Mechanisms influencing competence are not likely due to natural selection because of the direct effects of the arbovirus on mosquito fitness. More likely the traits for mosquito competence for arboviruses are the effects of adaptations for other functions of these competence mechanisms. Determining these other functions is essential to understand the evolution and distributions of competence for arboviruses. This information is needed to assess risk from mosquito-borne disease, predict new mosquito-arbovirus systems, and provide novel strategies to mitigate mosquito-borne arbovirus transmission.

  3. Flexible Job-Shop Scheduling with Dual-Resource Constraints to Minimize Tardiness Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Paksi, A. B. N.; Ma'ruf, A.

    2016-02-01

    In general, both machines and human resources are needed for processing a job on production floor. However, most classical scheduling problems have ignored the possible constraint caused by availability of workers and have considered only machines as a limited resource. In addition, along with production technology development, routing flexibility appears as a consequence of high product variety and medium demand for each product. Routing flexibility is caused by capability of machines that offers more than one machining process. This paper presents a method to address scheduling problem constrained by both machines and workers, considering routing flexibility. Scheduling in a Dual-Resource Constrained shop is categorized as NP-hard problem that needs long computational time. Meta-heuristic approach, based on Genetic Algorithm, is used due to its practical implementation in industry. Developed Genetic Algorithm uses indirect chromosome representative and procedure to transform chromosome into Gantt chart. Genetic operators, namely selection, elitism, crossover, and mutation are developed to search the best fitness value until steady state condition is achieved. A case study in a manufacturing SME is used to minimize tardiness as objective function. The algorithm has shown 25.6% reduction of tardiness, equal to 43.5 hours.

  4. Recessive mutations in ELOVL4 cause ichthyosis, intellectual disability, and spastic quadriplegia.

    PubMed

    Aldahmesh, Mohammed A; Mohamed, Jawahir Y; Alkuraya, Hisham S; Verma, Ishwar C; Puri, Ratna D; Alaiya, Ayodele A; Rizzo, William B; Alkuraya, Fowzan S

    2011-12-09

    Very-long-chain fatty acids (VLCFAs) play important roles in membrane structure and cellular signaling, and their contribution to human health is increasingly recognized. Fatty acid elongases catalyze the first and rate-limiting step in VLCFA synthesis. Heterozygous mutations in ELOVL4, the gene encoding one of the elongases, are known to cause macular degeneration in humans and retinal abnormalities in mice. However, biallelic ELOVL4 mutations have not been observed in humans, and murine models with homozygous mutations die within hours of birth as a result of a defective epidermal water barrier. Here, we report on two human individuals with recessive ELOVL4 mutations revealed by a combination of autozygome analysis and exome sequencing. These individuals exhibit clinical features of ichthyosis, seizures, mental retardation, and spasticity-a constellation that resembles Sjögren-Larsson syndrome (SLS) but presents a more severe neurologic phenotype. Our findings identify recessive mutations in ELOVL4 as the cause of a neuro-ichthyotic disease and emphasize the importance of VLCFA synthesis in brain and cutaneous development. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. A rapid, strong, and convergent genetic response to urban habitat fragmentation in four divergent and widespread vertebrates

    USGS Publications Warehouse

    Delaney, Kathleen Semple; Riley, Seth P.D.; Fisher, Robert N.

    2010-01-01

    Background: Urbanization is a major cause of habitat fragmentation worldwide. Ecological and conservation theory predicts many potential impacts of habitat fragmentation on natural populations, including genetic impacts. Habitat fragmentation by urbanization causes populations of animals and plants to be isolated in patches of suitable habitat that are surrounded by non-native vegetation or severely altered vegetation, asphalt, concrete, and human structures. This can lead to genetic divergence between patches and in turn to decreased genetic diversity within patches through genetic drift and inbreeding. Methodology/Principal Findings: We examined population genetic patterns using microsatellites in four common vertebrate species, three lizards and one bird, in highly fragmented urban southern California. Despite significant phylogenetic, ecological, and mobility differences between these species, all four showed similar and significant reductions in gene flow over relatively short geographic and temporal scales. For all four species, the greatest genetic divergence was found where development was oldest and most intensive. All four animals also showed significant reduction in gene flow associated with intervening roads and freeways, the degree of patch isolation, and the time since isolation. Conclusions/Significance: Despite wide acceptance of the idea in principle, evidence of significant population genetic changes associated with fragmentation at small spatial and temporal scales has been rare, even in smaller terrestrial vertebrates, and especially for birds. Given the striking pattern of similar and rapid effects across four common and widespread species, including a volant bird, intense urbanization may represent the most severe form of fragmentation, with minimal effective movement through the urban matrix.

  6. A Rapid, Strong, and Convergent Genetic Response to Urban Habitat Fragmentation in Four Divergent and Widespread Vertebrates

    PubMed Central

    Delaney, Kathleen Semple; Riley, Seth P. D.; Fisher, Robert N.

    2010-01-01

    Background Urbanization is a major cause of habitat fragmentation worldwide. Ecological and conservation theory predicts many potential impacts of habitat fragmentation on natural populations, including genetic impacts. Habitat fragmentation by urbanization causes populations of animals and plants to be isolated in patches of suitable habitat that are surrounded by non-native vegetation or severely altered vegetation, asphalt, concrete, and human structures. This can lead to genetic divergence between patches and in turn to decreased genetic diversity within patches through genetic drift and inbreeding. Methodology/Principal Findings We examined population genetic patterns using microsatellites in four common vertebrate species, three lizards and one bird, in highly fragmented urban southern California. Despite significant phylogenetic, ecological, and mobility differences between these species, all four showed similar and significant reductions in gene flow over relatively short geographic and temporal scales. For all four species, the greatest genetic divergence was found where development was oldest and most intensive. All four animals also showed significant reduction in gene flow associated with intervening roads and freeways, the degree of patch isolation, and the time since isolation. Conclusions/Significance Despite wide acceptance of the idea in principle, evidence of significant population genetic changes associated with fragmentation at small spatial and temporal scales has been rare, even in smaller terrestrial vertebrates, and especially for birds. Given the striking pattern of similar and rapid effects across four common and widespread species, including a volant bird, intense urbanization may represent the most severe form of fragmentation, with minimal effective movement through the urban matrix. PMID:20862274

  7. Transcriptome Remodeling Contributes to Epidemic Disease Caused by the Human Pathogen Streptococcus pyogenes.

    PubMed

    Beres, Stephen B; Kachroo, Priyanka; Nasser, Waleed; Olsen, Randall J; Zhu, Luchang; Flores, Anthony R; de la Riva, Ivan; Paez-Mayorga, Jesus; Jimenez, Francisco E; Cantu, Concepcion; Vuopio, Jaana; Jalava, Jari; Kristinsson, Karl G; Gottfredsson, Magnus; Corander, Jukka; Fittipaldi, Nahuel; Di Luca, Maria Chiara; Petrelli, Dezemona; Vitali, Luca A; Raiford, Annessa; Jenkins, Leslie; Musser, James M

    2016-05-31

    For over a century, a fundamental objective in infection biology research has been to understand the molecular processes contributing to the origin and perpetuation of epidemics. Divergent hypotheses have emerged concerning the extent to which environmental events or pathogen evolution dominates in these processes. Remarkably few studies bear on this important issue. Based on population pathogenomic analysis of 1,200 Streptococcus pyogenes type emm89 infection isolates, we report that a series of horizontal gene transfer events produced a new pathogenic genotype with increased ability to cause infection, leading to an epidemic wave of disease on at least two continents. In the aggregate, these and other genetic changes substantially remodeled the transcriptomes of the evolved progeny, causing extensive differential expression of virulence genes and altered pathogen-host interaction, including enhanced immune evasion. Our findings delineate the precise molecular genetic changes that occurred and enhance our understanding of the evolutionary processes that contribute to the emergence and persistence of epidemically successful pathogen clones. The data have significant implications for understanding bacterial epidemics and for translational research efforts to blunt their detrimental effects. The confluence of studies of molecular events underlying pathogen strain emergence, evolutionary genetic processes mediating altered virulence, and epidemics is in its infancy. Although understanding these events is necessary to develop new or improved strategies to protect health, surprisingly few studies have addressed this issue, in particular, at the comprehensive population genomic level. Herein we establish that substantial remodeling of the transcriptome of the human-specific pathogen Streptococcus pyogenes by horizontal gene flow and other evolutionary genetic changes is a central factor in precipitating and perpetuating epidemic disease. The data unambiguously show that the key outcome of these molecular events is evolution of a new, more virulent pathogenic genotype. Our findings provide new understanding of epidemic disease. Copyright © 2016 Beres et al.

  8. Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next-generation human artificial chromosomes for Duchenne muscular dystrophy.

    PubMed

    Benedetti, Sara; Uno, Narumi; Hoshiya, Hidetoshi; Ragazzi, Martina; Ferrari, Giulia; Kazuki, Yasuhiro; Moyle, Louise Anne; Tonlorenzi, Rossana; Lombardo, Angelo; Chaouch, Soraya; Mouly, Vincent; Moore, Marc; Popplewell, Linda; Kazuki, Kanako; Katoh, Motonobu; Naldini, Luigi; Dickson, George; Messina, Graziella; Oshimura, Mitsuo; Cossu, Giulio; Tedesco, Francesco Saverio

    2018-02-01

    Transferring large or multiple genes into primary human stem/progenitor cells is challenged by restrictions in vector capacity, and this hurdle limits the success of gene therapy. A paradigm is Duchenne muscular dystrophy (DMD), an incurable disorder caused by mutations in the largest human gene: dystrophin. The combination of large-capacity vectors, such as human artificial chromosomes (HACs), with stem/progenitor cells may overcome this limitation. We previously reported amelioration of the dystrophic phenotype in mice transplanted with murine muscle progenitors containing a HAC with the entire dystrophin locus (DYS-HAC). However, translation of this strategy to human muscle progenitors requires extension of their proliferative potential to withstand clonal cell expansion after HAC transfer. Here, we show that reversible cell immortalisation mediated by lentivirally delivered excisable hTERT and Bmi1 transgenes extended cell proliferation, enabling transfer of a novel DYS-HAC into DMD satellite cell-derived myoblasts and perivascular cell-derived mesoangioblasts. Genetically corrected cells maintained a stable karyotype, did not undergo tumorigenic transformation and retained their migration ability. Cells remained myogenic in vitro (spontaneously or upon MyoD induction) and engrafted murine skeletal muscle upon transplantation. Finally, we combined the aforementioned functions into a next-generation HAC capable of delivering reversible immortalisation, complete genetic correction, additional dystrophin expression, inducible differentiation and controllable cell death. This work establishes a novel platform for complex gene transfer into clinically relevant human muscle progenitors for DMD gene therapy. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  9. Science as a (TRANSITORY?) Phase in Human Evolution

    NASA Astrophysics Data System (ADS)

    Leibowitz, Elia

    One of the key elements of human knowledge in the last 150 years is the recognition that the universe, as well as each of its components, are in a permanent stage of evolution. Mankind and human affairs are of course no exceptions. Human beings owe their biological supremacy to the possession of a form of inheritance quite unlike that of other animals: exogenetic heredity. They have a non genetic channel for transmitting information from one generation to another, namely, the entire apparatus of culture. As information is correlated with brain structure, culture is a non genetic means to create patterns in human brains. It therefore plays a major role in human evolution. This apparatus by itself is however also undergoing a process of evolution. Using examples of astronomical, cosmological and other cultural concepts and argumentations, I shall show that throughout recorded human history, 4 distinct phases can be recognized in the evolution of this non genetic apparatus. The latest phase, the beginning of which is symbolized by the life and work of Galileo, is the "scientific" era. At the turn of the millenium, humankind is possibly at a transition state, from the "scientific" towards a new phase that may be termed a "public relation" or "propaganda" era. Causes for this transition can be found among recent developments in mass media and communications. These, in turn, are correlated with modern, 20th century trends in economy, technology and sociology that are other dominants factors in this transition. The apparent decline of the "scientific" culture may have profound consequences on the future evolution of mankind.

  10. Integrative Analysis of Genetic, Genomic, and Phenotypic Data for Ethanol Behaviors: A Network-Based Pipeline for Identifying Mechanisms and Potential Drug Targets.

    PubMed

    Bogenpohl, James W; Mignogna, Kristin M; Smith, Maren L; Miles, Michael F

    2017-01-01

    Complex behavioral traits, such as alcohol abuse, are caused by an interplay of genetic and environmental factors, producing deleterious functional adaptations in the central nervous system. The long-term behavioral consequences of such changes are of substantial cost to both the individual and society. Substantial progress has been made in the last two decades in understanding elements of brain mechanisms underlying responses to ethanol in animal models and risk factors for alcohol use disorder (AUD) in humans. However, treatments for AUD remain largely ineffective and few medications for this disease state have been licensed. Genome-wide genetic polymorphism analysis (GWAS) in humans, behavioral genetic studies in animal models and brain gene expression studies produced by microarrays or RNA-seq have the potential to produce nonbiased and novel insight into the underlying neurobiology of AUD. However, the complexity of such information, both statistical and informational, has slowed progress toward identifying new targets for intervention in AUD. This chapter describes one approach for integrating behavioral, genetic, and genomic information across animal model and human studies. The goal of this approach is to identify networks of genes functioning in the brain that are most relevant to the underlying mechanisms of a complex disease such as AUD. We illustrate an example of how genomic studies in animal models can be used to produce robust gene networks that have functional implications, and to integrate such animal model genomic data with human genetic studies such as GWAS for AUD. We describe several useful analysis tools for such studies: ComBAT, WGCNA, and EW_dmGWAS. The end result of this analysis is a ranking of gene networks and identification of their cognate hub genes, which might provide eventual targets for future therapeutic development. Furthermore, this combined approach may also improve our understanding of basic mechanisms underlying gene x environmental interactions affecting brain functioning in health and disease.

  11. Early onset of disc degeneration in SM/J mice is associated with changes in ion transport systems and fibrotic events.

    PubMed

    Zhang, Ying; Xiong, Chi; Kudelko, Mateusz; Li, Yan; Wang, Cheng; Wong, Yuk Lun; Tam, Vivian; Rai, Muhammad Farooq; Cheverud, James; Lawson, Heather A; Sandell, Linda; Chan, Wilson C W; Cheah, Kathryn S E; Sham, Pak C; Chan, Danny

    2018-04-09

    Intervertebral disc degeneration (IDD) causes back pain and sciatica, affecting quality of life and resulting in high economic/social burden. The etiology of IDD is not well understood. Along with aging and environmental factors, genetic factors also influence the onset, progression and severity of IDD. Genetic studies of risk factors for IDD using human cohorts are limited by small sample size and low statistical power. Animal models amenable to genetic and functional studies of IDD provide desirable alternatives. Despite differences in size and cellular content as compared to human intervertebral discs (IVDs), the mouse is a powerful model for genetics and assessment of cellular changes relevant to human biology. Here, we provide evidence for early onset disc degeneration in SM/J relative to LG/J mice with poor and good tissue healing capacity respectively. In the first few months of life, LG/J mice maintain a relatively constant pool of notochordal-like cells in the nucleus pulposus (NP) of the IVD. In contrast, chondrogenic events are observed in SM/J mice beginning as early as one-week-old, with progressive fibrotic changes. Further, the extracellular matrix changes in the NP are consistent with IVD degeneration. Leveraging on the genomic data of two parental and two recombinant inbred lines, we assessed the genetic contribution to the NP changes and identified processes linked to the regulation of ion transport systems. Significantly, "transport" system is also in the top three gene ontology (GO) terms from a comparative proteomic analysis of the mouse NP. These findings support the potential of the SM/J, LG/J and their recombinant inbred lines for future genetic and biological analysis in mice and validation of candidate genes and biological relevance in human cohort studies. The proteomic data has been deposited to the ProteomeXchange Consortium via the PRIDE [1] partner repository with the dataset identifier PXD008784. Copyright © 2017. Published by Elsevier B.V.

  12. INTEGRATIVE ANALYSIS OF GENETIC, GENOMIC AND PHENOTYPIC DATA FOR ETHANOL BEHAVIORS: A NETWORK-BASED PIPELINE FOR IDENTIFYING MECHANISMS AND POTENTIAL DRUG TARGETS

    PubMed Central

    Bogenpohl, James W.; Mignogna, Kristin M.; Smith, Maren L.; Miles, Michael F.

    2016-01-01

    Complex behavioral traits, such as alcohol abuse, are caused by an interplay of genetic and environmental factors, producing deleterious functional adaptations in the central nervous system. The long-term behavioral consequences of such changes are of substantial cost to both the individual and society. Substantial progress has been made in the last two decades in understanding elements of brain mechanisms underlying responses to ethanol in animal models and risk factors for alcohol use disorder (AUD) in humans. However, treatments for AUD remain largely ineffective and few medications for this disease state have been licensed. Genome-wide genetic polymorphism analysis (GWAS) in humans, behavioral genetic studies in animal models and brain gene expression studies produced by microarrays or RNA-seq have the potential to produce non-biased and novel insight into the underlying neurobiology of AUD. However, the complexity of such information, both statistical and informational, has slowed progress toward identifying new targets for intervention in AUD. This chapter describes one approach for integrating behavioral, genetic, and genomic information across animal model and human studies. The goal of this approach is to identify networks of genes functioning in the brain that are most relevant to the underlying mechanisms of a complex disease such as AUD. We illustrate an example of how genomic studies in animal models can be used to produce robust gene networks that have functional implications, and to integrate such animal model genomic data with human genetic studies such as GWAS for AUD. We describe several useful analysis tools for such studies: ComBAT, WGCNA and EW_dmGWAS. The end result of this analysis is a ranking of gene networks and identification of their cognate hub genes, which might provide eventual targets for future therapeutic development. Furthermore, this combined approach may also improve our understanding of basic mechanisms underlying gene x environmental interactions affecting brain functioning in health and disease. PMID:27933543

  13. Genetics of Lipid and Lipoprotein Disorders and Traits.

    PubMed

    Dron, Jacqueline S; Hegele, Robert A

    2016-01-01

    Plasma lipids, namely cholesterol and triglyceride, and lipoproteins, such as low-density lipoprotein (LDL) and high-density lipoprotein, serve numerous physiological roles. Perturbed levels of these traits underlie monogenic dyslipidemias, a diverse group of multisystem disorders. We are on the verge of having a relatively complete picture of the human dyslipidemias and their components. Recent advances in genetics of plasma lipids and lipoproteins include the following: (1) expanding the range of genes causing monogenic dyslipidemias, particularly elevated LDL cholesterol; (2) appreciating the role of polygenic effects in such traits as familial hypercholesterolemia and combined hyperlipidemia; (3) accumulating a list of common variants that determine plasma lipids and lipoproteins; (4) applying exome sequencing to identify collections of rare variants determining plasma lipids and lipoproteins that via Mendelian randomization have also implicated gene products such as NPC1L1 , APOC3 , LDLR , APOA5 , and ANGPTL4 as causal for atherosclerotic cardiovascular disease; and (5) using naturally occurring genetic variation to identify new drug targets, including inhibitors of apolipoprotein (apo) C-III, apo(a), ANGPTL3, and ANGPTL4. Here, we compile this disparate range of data linking human genetic variation to plasma lipids and lipoproteins, providing a "one stop shop" for the interested reader.

  14. Assessing the intra-species genetic variability in the clonal pathogen Campylobacter fetus: CRISPRs are highly polymorphic DNA markers.

    PubMed

    Calleros, Lucía; Betancor, Laura; Iraola, Gregorio; Méndez, Alejandra; Morsella, Claudia; Paolicchi, Fernando; Silveyra, Silvia; Velilla, Alejandra; Pérez, Ruben

    2017-01-01

    Campylobacter fetus is a Gram-negative, microaerophilic bacterium that infects animals and humans. The subspecies Campylobacter fetus subsp. fetus (Cff) affects a broad range of vertebrate hosts and induces abortion in cows and sheep. Campylobacter fetus subsp. venerealis (Cfv) is restricted to cattle and causes the endemic disease bovine genital campylobacteriosis, which triggers reproductive problems and is responsible for major economic losses. Campylobacter fetus subsp. testudinum (Cft) has been isolated mostly from apparently healthy reptiles belonging to different species but also from ill snakes and humans. Genotypic differentiation of Cff and Cfv is difficult, and epidemiological information is scarce because there are few methods to study the genetic diversity of the strains. We analyze the efficacy of MLST, ribosomal sequences (23S gene and internal spacer region), and CRISPRs to assess the genetic variability of C. fetus in bovine and human isolates. Sequences retrieved from complete genomes were included in the analysis for comparative purposes. MLST and ribosomal sequences had scarce or null variability, while the CRISPR-cas system structure and the sequence of CRISPR1 locus showed remarkable diversity. None of the sequences here analyzed provided evidence of a genetic differentiation of Cff and Cfv in bovine isolates. Comparison of bovine and human isolates with Cft strains showed a striking divergence. Inter-host differences raise the possibility of determining the original host of human infections using CRISPR sequences. CRISPRs are the most variable sequences analyzed in C. fetus so far, and constitute excellent representatives of a dynamic fraction of the genome. CRISPR typing is a promising tool to characterize isolates and to track the source and transmission route of C. fetus infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Navigation by environmental geometry: the use of zebrafish as a model.

    PubMed

    Lee, Sang Ah; Vallortigara, Giorgio; Flore, Michele; Spelke, Elizabeth S; Sovrano, Valeria A

    2013-10-01

    Sensitivity to environmental shape in spatial navigation has been found, at both behavioural and neural levels, in virtually every species tested, starting early in development. Moreover, evidence that genetic deletions can cause selective deficits in such navigation behaviours suggests a genetic basis to navigation by environmental geometry. Nevertheless, the geometric computations underlying navigation have not been specified in any species. The present study teases apart the geometric components within the traditionally used rectangular enclosure and finds that zebrafish selectively represent distance and directional relationships between extended boundary surfaces. Similar behavioural results in geometric navigation tasks with human children provide prima facie evidence for similar underlying cognitive computations and open new doors for probing the genetic foundations that give rise to these computations.

  16. Zic2-associated holoprosencephaly is caused by a transient defect in the organizer region during gastrulation.

    PubMed

    Warr, Nicholas; Powles-Glover, Nicola; Chappell, Anna; Robson, Joan; Norris, Dominic; Arkell, Ruth M

    2008-10-01

    The putative transcription factor ZIC2 is associated with a defect of forebrain development, known as Holoprosencephaly (HPE), in humans and mouse, yet the mechanism by which aberrant ZIC2 function causes classical HPE is unexplained. The zinc finger domain of all mammalian Zic genes is highly homologous with that of the Gli genes, which are transcriptional mediators of Shh signalling. Mutations in Shh and many other Hh pathway members cause HPE and it has been proposed that Zic2 acts within the Shh pathway to cause HPE. We have investigated the embryological cause of Zic2-associated HPE and the relationship between Zic2 and the Shh pathway using mouse genetics. We show that Zic2 does not interact with Shh to produce HPE. Moreover, molecular defects that are able to account for the HPE phenotype are present in Zic2 mutants before the onset of Shh signalling. Mutation of Zic2 causes HPE via a transient defect in the function of the organizer region at mid-gastrulation which causes an arrest in the development of the prechordal plate (PCP), a structure required for forebrain midline morphogenesis. The analysis provides genetic evidence that Zic2 functions during organizer formation and that the PCP develops via a multi-step process.

  17. Amplified Fragment Length Polymorphism Used to Investigate Genetic Variability of the Stable Fly (Diptera: Muscidae) Across North America

    USDA-ARS?s Scientific Manuscript database

    The stable fly, Stomoxys calcitrans (L), is a cosmopolitan pest of livestock and humans; its pestiferous nature and painful bite cause stress to cattle and other animals. The stress and resulting avoidance behaviors manifest as reductions in weight gain or milk production in cattle; estimated annual...

  18. The Counselor and Genetic Disease: Huntington's Disease as a Model.

    ERIC Educational Resources Information Center

    Wexler, Nancy S.

    This speech offers a brief description of Huntington's Disease (HD): its causes, symptoms, and incidence. It then concentrates on the psychological problems of persons one of whose parents had the disease, and the role of the counselor in helping these humans cope with their fears about contacting it themselves. A relatively detailed case study is…

  19. SNP discovery and development of genetic markers for mapping immune response genes in common carp (Cyprinus carpio)

    USDA-ARS?s Scientific Manuscript database

    Single nucleotide polymorphisms (SNPs) in immune response genes have been reported as markers for susceptibility to infectious diseases in human and livestock. A disease caused by cyprinid herpesvirus 3 (CyHV-3) is highly contagious and virulent in common carp (Cyprinus carpio). With the aim to de...

  20. Recognition of genetically modified product based on affinity propagation clustering and terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jianjun; Kan, Jianquan

    2018-04-01

    In this paper, based on the terahertz spectrum, a new identification method of genetically modified material by support vector machine (SVM) based on affinity propagation clustering is proposed. This algorithm mainly uses affinity propagation clustering algorithm to make cluster analysis and labeling on unlabeled training samples, and in the iterative process, the existing SVM training data are continuously updated, when establishing the identification model, it does not need to manually label the training samples, thus, the error caused by the human labeled samples is reduced, and the identification accuracy of the model is greatly improved.

  1. The pig as a mixing vessel for influenza viruses: Human and veterinary implications

    PubMed Central

    Ma, Wenjun; Kahn, Robert E; Richt, Juergen A

    2009-01-01

    Influenza A viruses are highly infectious respiratory pathogens that can infect many species. Birds are the reservoir for all known influenza A subtypes; and novel influenza viruses can emerge from birds and infect mammalian species including humans. Because swine are susceptible to infection with both avian and human influenza viruses, novel reassortant influenza viruses can be generated in this mammalian species by reassortment of influenza viral segments leading to the “mixing vessel” theory. There is no direct evidence that the reassortment events culminating in the 1918, 1957 or 1968 pandemic influenza viruses originated from pigs. Genetic reassortment among avian, human and/or swine influenza virus gene segments has occurred in pigs and some novel reassortant swine viruses have been transmitted to humans. Notably, novel reassortant H2N3 influenza viruses isolated from the US pigs, most likely infected with avian influenza viruses through surface water collected in ponds for cleaning barns and watering animals, had a similar genetic make-up to early isolates (1957) of the H2N2 human pandemic. These novel H2N3 swine viruses were able to cause disease in swine and mice and were infectious and highly transmissible in swine and ferrets without prior adaptation. The preceding example shows that pigs could transmit novel viruses from an avian reservoir to other mammalian species. Importantly, H2 viruses pose a substantial risk to humans because they have been absent from mammalian species since 1968 and people born after 1968 have little preexisting immunity to the H2 subtype. It is difficult to predict which virus will cause the next human pandemic and when that pandemic might begin. Importantly, the establishment and spread of a reassorted mammalian-adapted virus from pigs to humans could happen anywhere in the world. Therefore, both human and veterinary research needs to give more attention to potential cross-species transmission capacity of influenza A viruses. PMID:19565018

  2. Mitochondrial DNA sequence characteristics modulate the size of the genetic bottleneck.

    PubMed

    Wilson, Ian J; Carling, Phillipa J; Alston, Charlotte L; Floros, Vasileios I; Pyle, Angela; Hudson, Gavin; Sallevelt, Suzanne C E H; Lamperti, Costanza; Carelli, Valerio; Bindoff, Laurence A; Samuels, David C; Wonnapinij, Passorn; Zeviani, Massimo; Taylor, Robert W; Smeets, Hubert J M; Horvath, Rita; Chinnery, Patrick F

    2016-03-01

    With a combined carrier frequency of 1:200, heteroplasmic mitochondrial DNA (mtDNA) mutations cause human disease in ∼1:5000 of the population. Rapid shifts in the level of heteroplasmy seen within a single generation contribute to the wide range in the severity of clinical phenotypes seen in families transmitting mtDNA disease, consistent with a genetic bottleneck during transmission. Although preliminary evidence from human pedigrees points towards a random drift process underlying the shifting heteroplasmy, some reports describe differences in segregation pattern between different mtDNA mutations. However, based on limited observations and with no direct comparisons, it is not clear whether these observations simply reflect pedigree ascertainment and publication bias. To address this issue, we studied 577 mother-child pairs transmitting the m.11778G>A, m.3460G>A, m.8344A>G, m.8993T>G/C and m.3243A>G mtDNA mutations. Our analysis controlled for inter-assay differences, inter-laboratory variation and ascertainment bias. We found no evidence of selection during transmission but show that different mtDNA mutations segregate at different rates in human pedigrees. m.8993T>G/C segregated significantly faster than m.11778G>A, m.8344A>G and m.3243A>G, consistent with a tighter mtDNA genetic bottleneck in m.8993T>G/C pedigrees. Our observations support the existence of different genetic bottlenecks primarily determined by the underlying mtDNA mutation, explaining the different inheritance patterns observed in human pedigrees transmitting pathogenic mtDNA mutations. © The Author 2016. Published by Oxford University Press.

  3. Human, food and animal Campylobacter spp. isolated in Portugal: high genetic diversity and antibiotic resistance rates.

    PubMed

    Duarte, Andreia; Santos, Andrea; Manageiro, Vera; Martins, Ana; Fraqueza, Maria J; Caniça, Manuela; Domingues, Fernanda C; Oleastro, Mónica

    2014-10-01

    Infections by Campylobacter jejuni and Campylobacter coli are considered the major cause of bacterial gastroenteritis in humans, with food being the main source of infection. In this study, a total of 196 Campylobacter strains (125 isolates from humans, 39 from retail food and 32 from food animal sources) isolated in Portugal between 2009 and 2012 were characterised by multilocus sequence typing (MLST) and flaA short variable region (SVR) typing. Susceptibility to six antibiotics as well as the mechanisms underlying antibiotic resistance phenotypes was also studied. Based on MLST typing, C. coli strains were genetically more conserved, with a predominant clonal complex (CC828), than C. jejuni strains. In contrast, C. coli isolates were genetically more variable than C. jejuni with regard to flaA-SVR typing. A high rate of resistance was observed for quinolones (100% to nalidixic acid, >90% to ciprofloxacin) and, in general, resistance was more common among C. coli, especially for erythromycin (40.2% vs. 6.7%). In addition, most isolates (86%) were resistant to multiple antimicrobial families. Besides the expected point mutations associated with antibiotic resistance, detected polymorphisms in the cmeABC locus likely play a role in the multiresistant phenotype. This study provides for the first time an overview of the genetic diversity of Campylobacter strains from Portugal. It also shows a worrying antibiotic multiresistance rate and the emergence of Campylobacter strains resistant to antibiotics of human use. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  4. The Esg Gene Is Involved in Nicotine Sensitivity in Drosophila melanogaster

    PubMed Central

    Reyes-Taboada, José Luis; Covarrubias, Alejandra A; Narvaez-Padilla, Verónica; Reynaud, Enrique

    2015-01-01

    In humans, there is a strong correlation between sensitivity to substances of abuse and addiction risk. This differential tolerance to drugs has a strong genetic component. The identification of human genetic factors that alter drug tolerance has been a difficult task. For this reason and taking advantage of the fact that Drosophila responds similarly to humans to many drugs, and that genetically it has a high degree of homology (sharing at least 70% of genes known to be involved in human genetic diseases), we looked for genes in Drosophila that altered their nicotine sensitivity. We developed an instantaneous nicotine vaporization technique that exposed flies in a reproducible way. The amount of nicotine sufficient to “knock out” half of control flies for 30 minutes was determined and this parameter was defined as Half Recovery Time (HRT). Two fly lines, L4 and L70, whose HRT was significantly longer than control´s were identified. The L4 insertion is a loss of function allele of the transcriptional factor escargot (esg), whereas L70 insertion causes miss-expression of the microRNA cluster miR-310-311-312-313 (miR-310c). In this work, we demonstrate that esg loss of function induces nicotine sensitivity possibly by altering development of sensory organs and neurons in the medial section of the thoracoabdominal ganglion. The ectopic expression of the miR-310c also induces nicotine sensitivity by lowering Esg levels thus disrupting sensory organs and possibly to the modulation of other miR-310c targets. PMID:26222315

  5. The Esg Gene Is Involved in Nicotine Sensitivity in Drosophila melanogaster.

    PubMed

    Sanchez-Díaz, Iván; Rosales-Bravo, Fernando; Reyes-Taboada, José Luis; Covarrubias, Alejandra A; Narvaez-Padilla, Verónica; Reynaud, Enrique

    2015-01-01

    In humans, there is a strong correlation between sensitivity to substances of abuse and addiction risk. This differential tolerance to drugs has a strong genetic component. The identification of human genetic factors that alter drug tolerance has been a difficult task. For this reason and taking advantage of the fact that Drosophila responds similarly to humans to many drugs, and that genetically it has a high degree of homology (sharing at least 70% of genes known to be involved in human genetic diseases), we looked for genes in Drosophila that altered their nicotine sensitivity. We developed an instantaneous nicotine vaporization technique that exposed flies in a reproducible way. The amount of nicotine sufficient to "knock out" half of control flies for 30 minutes was determined and this parameter was defined as Half Recovery Time (HRT). Two fly lines, L4 and L70, whose HRT was significantly longer than control´s were identified. The L4 insertion is a loss of function allele of the transcriptional factor escargot (esg), whereas L70 insertion causes miss-expression of the microRNA cluster miR-310-311-312-313 (miR-310c). In this work, we demonstrate that esg loss of function induces nicotine sensitivity possibly by altering development of sensory organs and neurons in the medial section of the thoracoabdominal ganglion. The ectopic expression of the miR-310c also induces nicotine sensitivity by lowering Esg levels thus disrupting sensory organs and possibly to the modulation of other miR-310c targets.

  6. PROKR2 and PROK2 mutations cause isolated congenital anosmia without gonadotropic deficiency.

    PubMed

    Moya-Plana, Antoine; Villanueva, Carine; Laccourreye, Ollivier; Bonfils, Pierre; de Roux, Nicolas

    2013-01-01

    Isolated congenital anosmia (ICA) is a rare phenotype defined as absent recall of any olfactory sensations since birth and the absence of any disease known to cause anosmia. Although most cases of ICA are sporadic, reports of familial cases suggest a genetic cause. ICA due to olfactory bulb agenesis and associated to hypogonadotropic hypogonadism defines Kallmann syndrome (KS), in which several gene defects have been described. In KS families, the phenotype may be restricted to ICA. We therefore hypothesized that mutations in KS genes cause ICA in patients, even in the absence of family history of reproduction disorders. In 25 patients with ICA and olfactory bulb agenesis, a detailed phenotype analysis was conducted and the coding sequences of KAL1, FGFR1, FGF8, PROKR2, and PROK2 were sequenced. Three PROKR2 mutations previously described in KS and one new PROK2 mutation were found. Investigation of the families showed incomplete penetrance of these mutations. This study is the first to report genetic causes of ICA and indicates that KS genes must be screened in patients with ICA. It also confirms the considerable complexity of GNRH neuron development in humans.

  7. Functional studies of RYR1 mutations in the skeletal muscle ryanodine receptor using human RYR1 complementary DNA.

    PubMed

    Sato, Keisaku; Pollock, Neil; Stowell, Kathryn M

    2010-06-01

    Malignant hyperthermia is associated with mutations within the gene encoding the skeletal muscle ryanodine receptor, the calcium channel that releases Ca from sarcoplasmic reticulum stores triggering muscle contraction, and other metabolic activities. More than 200 variants have been identified in the ryanodine receptor, but only some of these have been shown to functionally affect the calcium channel. To implement genetic testing for malignant hyperthermia, variants must be shown to alter the function of the channel. A number of different ex vivo methods can be used to demonstrate functionality, as long as cells from human patients can be obtained and cultured from at least two unrelated families. Because malignant hyperthermia is an uncommon disorder and many variants seem to be private, including the newly identified H4833Y mutation, these approaches are limited. The authors cloned the human skeletal muscle ryanodine receptor complementary DNA and expressed both normal and mutated forms in HEK-293 cells and carried out functional analysis using ryanodine binding assays in the presence of a specific agonist, 4-chloro-m-cresol, and the antagonist Mg. Transiently expressed human ryanodine receptor proteins colocalized with an endoplasmic reticulum marker in HEK-293 cells. Ryanodine binding assays confirmed that mutations causing malignant hyperthermia resulted in a hypersensitive channel, while those causing central core disease resulted in a hyposensitive channel. The functional assays validate recombinant human skeletal muscle ryanodine receptor for analysis of variants and add an additional mutation (H4833Y) to the repertoire of mutations that can be used for the genetic diagnosis of malignant hyperthermia.

  8. [A brief history of the natural causes of human disease].

    PubMed

    Lips-Castro, Walter

    2015-01-01

    In the study of the causes of disease that have arisen during the development of humankind, one can distinguish three major perspectives: the natural, the supernatural, and the artificial. In this paper we distinguish the rational natural causes of disease from the irrational natural causes. Within the natural and rational causal approaches of disease, we can highlight the Egyptian theory of putrid intestinal materials called "wechdu", the humoral theory, the atomistic theory, the contagious theory, the cellular theory, the molecular (genetic) theory, and the ecogenetic theory. Regarding the irrational, esoteric, and mystic causal approaches to disease, we highlight the astrological, the alchemical, the iatrochemical, the iatromechanical, and others (irritability, solidism, brownism, and mesmerism).

  9. Molecular determinants of Pichinde virus infection of guinea pigs--a small animal model system for arenaviral hemorrhagic fevers.

    PubMed

    Liang, Yuying; Lan, Shuiyun; Ly, Hinh

    2009-09-01

    Arenaviruses are enveloped single-strand RNA viruses that mostly have natural hosts in rodents. Upon infection of humans, several arenaviruses can cause severe hemorrhagic fever diseases, including Lassa fever that is endemic in West Africa. The virulence mechanism of these deadly arenaviruses can be studied in a safe and economical small animal model-guinea pigs infected by a nonpathogenic arenavirus Pichinde virus (PICV), a virulent strain of which can cause similar disease syndromes in guinea pigs as arenaviral hemorrhagic fevers in humans. We have recently developed molecular clones for both the virulent and avirulent strains of PICV. Using the available reverse genetics tools, we are characterizing the molecular determinants of virulent arenavirus infections in vivo.

  10. A novel form of ciliopathy underlies hyperphagia and obesity in Ankrd26 knockout mice.

    PubMed

    Acs, Peter; Bauer, Peter O; Mayer, Balazs; Bera, Tapan; Macallister, Rhonda; Mezey, Eva; Pastan, Ira

    2015-01-01

    Human ciliopathies are genetic disorders caused by mutations in genes responsible for the formation and function of primary cilia. Some are associated with hyperphagia and obesity (e.g., Bardet-Biedl Syndrome, Alström Syndrome), but the mechanisms underlying these problems are not fully understood. The human gene ANKRD26 is located on 10p12, a locus that is associated with some forms of hereditary obesity. Previously, we reported that disruption of this gene causes hyperphagia, obesity and gigantism in mice. In the present study, we looked for the mechanisms that induce hyperphagia in the Ankrd26-/- mice and found defects in primary cilia in regions of the central nervous system that control appetite and energy homeostasis.

  11. A novel mutation in SLITRK6 causes deafness and myopia in a Moroccan family.

    PubMed

    Salime, Sara; Riahi, Zied; Elrharchi, Soukaina; Elkhattabi, Lamiae; Charoute, Hicham; Nahili, Halima; Rouba, Hassan; Kabine, Mostafa; Bonnet, Crystel; Petit, Christine; Barakat, Abdelhamid

    2018-06-15

    Deafness and myopia syndrome is characterized by moderate-profound, bilateral, congenital or prelingual deafness and high myopia. Autosomal recessive non-syndromic hearing loss is one of the most prevalent human genetic sensorineural defects. Myopia is by far the most common human eye disorder that is known to have a clear heritable component. The analysis of the two exons of SLITRK6 gene in a Moroccan family allowed us to identify a novel single deleterious mutation c.696delG, p.Trp232Cysfs*10 at homozygous state in the exon 2 of the SLITRK6, a gene reported to cause deafness and myopia in various populations. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Rapid Generation of Human Genetic Loss-of-Function iPSC Lines by Simultaneous Reprogramming and Gene Editing.

    PubMed

    Tidball, Andrew M; Dang, Louis T; Glenn, Trevor W; Kilbane, Emma G; Klarr, Daniel J; Margolis, Joshua L; Uhler, Michael D; Parent, Jack M

    2017-09-12

    Specifically ablating genes in human induced pluripotent stem cells (iPSCs) allows for studies of gene function as well as disease mechanisms in disorders caused by loss-of-function (LOF) mutations. While techniques exist for engineering such lines, we have developed and rigorously validated a method of simultaneous iPSC reprogramming while generating CRISPR/Cas9-dependent insertions/deletions (indels). This approach allows for the efficient and rapid formation of genetic LOF human disease cell models with isogenic controls. The rate of mutagenized lines was strikingly consistent across experiments targeting four different human epileptic encephalopathy genes and a metabolic enzyme-encoding gene, and was more efficient and consistent than using CRISPR gene editing of established iPSC lines. The ability of our streamlined method to reproducibly generate heterozygous and homozygous LOF iPSC lines with passage-matched isogenic controls in a single step provides for the rapid development of LOF disease models with ideal control lines, even in the absence of patient tissue. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Genotyping of Echinococcus granulosus from domestic animals and humans from Ardabil Province, northwest Iran.

    PubMed

    Pezeshki, A; Akhlaghi, L; Sharbatkhori, M; Razmjou, E; Oormazdi, H; Mohebali, M; Meamar, A R

    2013-12-01

    Cystic echinococcosis is endemic in Iran, particularly in Ardabil Province, where it causes health and economic problems. The genetic pattern of Echinococcus granulosus has been determined in most parts of Iran, except in this area. In the present investigation, 55 larval isolates were collected from humans (11), sheep (19), goats (4) and cattle (21). For analysis of the genetic characteristics of E. granulosus isolates, DNA sequencing of mitochondrial cytochrome c oxidase subunit 1 (cox1) and NADH dehydrogenase subunit 1 (nad1) genes was applied. Fifty isolates were successfully analysed, with 92% (46) and 8% (4) identified as G1 and G3 genotypes, respectively. The sequence analyses of the isolates displayed nine characteristic profiles in cox1 sequences and eight characteristic profiles in nad1 sequences. Based on these results, the sheep strain (G1 genotype) was the most prevalent in humans, sheep, goats and cattle. The buffalo strain (G3 genotype) was not only demonstrated in sheep (1 isolate) and cattle (1 isolate), but also for the first time in two human isolates. These findings will provide information for local control of echinococcosis.

  14. Increasing our Understanding of Human Cognition Through the Study of Fragile X Syndrome

    PubMed Central

    Denise, Cook; Erin, Nuro; Keith, K. Murai

    2014-01-01

    Fragile X Syndrome (FXS) is considered the most common form of inherited intellectual disability. It is caused by reductions in the expression level or function of a single protein, the Fragile X Mental Retardation Protein (FMRP), a translational regulator which binds to approximately 4% of brain messenger RNAs. Accumulating evidence suggests that FXS is a complex disorder of cognition, involving interactions between genetic and environmental influences, leading to difficulties in acquiring key life skills including motor skills, language, and proper social behaviors. Since many FXS patients also present with one or more features of autism spectrum disorders (ASDs), insights gained from studying the monogenic basis of FXS could pave the way to a greater understanding of underlying features of multigenic ASDs. Here we present an overview of the FXS and FMRP field with the goal of demonstrating how loss of a single protein involved in translational control affects multiple stages of brain development and leads to debilitating consequences on human cognition. We also focus on studies which have rescued or improved FXS symptoms in mice using genetic or therapeutic approaches to reduce protein expression. We end with a brief description of how deficits in translational control are implicated in FXS and certain cases of ASDs, with many recent studies demonstrating that ASDs are likely caused by increases or decreases in the levels of certain key synaptic proteins. The study of FXS and its underlying single genetic cause offers an invaluable opportunity to study how a single gene influences brain development and behavior. © 2013 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 74: 147–177, 2014 PMID:23723176

  15. Molecular basis of human body odour formation: insights deduced from corynebacterial genome sequences.

    PubMed

    Barzantny, H; Brune, I; Tauch, A

    2012-02-01

    During the past few decades, there has been an increased interest in the essential role of commensal skin bacteria in human body odour formation. It is now generally accepted that skin bacteria cause body odour by biotransformation of sweat components secreted in the human axillae. Especially, aerobic corynebacteria have been shown to contribute strongly to axillary malodour, whereas other human skin residents seem to have little influence. Analysis of odoriferous sweat components has shown that the major odour-causing substances in human sweat include steroid derivatives, short volatile branched-chain fatty acids and sulphanylalkanols. In this mini-review, we describe the molecular basis of the four most extensively studied routes of human body odour formation, while focusing on the underlying enzymatic processes. Considering the previously reported role of β-oxidation in odour formation, we analysed the genetic repertoire of eight Corynebacterium species concerning fatty acid metabolism. We particularly focused on the metabolic abilities of the lipophilic axillary isolate Corynebacterium jeikeium K411. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  16. Generation of the SCN1A epilepsy mutation in hiPS cells using the TALEN technique

    NASA Astrophysics Data System (ADS)

    Chen, Wanjuan; Liu, Jingxin; Zhang, Longmei; Xu, Huijuan; Guo, Xiaogang; Deng, Sihao; Liu, Lipeng; Yu, Daiguan; Chen, Yonglong; Li, Zhiyuan

    2014-06-01

    Human induced pluripotent stem cells (iPSC) can be used to understand the pathological mechanisms of human disease. These cells are a promising source for cell-replacement therapy. However, such studies require genetically defined conditions. Such genetic manipulations can be performed using the novel Transcription Activator-Like Effector Nucleases (TALENs), which generate site-specific double-strand DNA breaks (DSBs) with high efficiency and precision. Combining the TALEN and iPSC methods, we developed two iPS cell lines by generating the point mutation A5768G in the SCN1A gene, which encodes the voltage-gated sodium channel Nav1.1 α subunit. The engineered iPSC maintained pluripotency and successfully differentiated into neurons with normal functional characteristics. The two cell lines differ exclusively at the epilepsy-susceptibility variant. The ability to robustly introduce disease-causing point mutations in normal hiPS cell lines can be used to generate a human cell model for studying epileptic mechanisms and for drug screening.

  17. Forensic molecular pathology: its impacts on routine work, education and training.

    PubMed

    Maeda, Hitoshi; Ishikawa, Takaki; Michiue, Tomomi

    2014-03-01

    The major role of forensic pathology is the investigation of human death in relevance to social risk management to determine the cause and process of death, especially in violent and unexpected sudden deaths, which involve social and medicolegal issues of ultimate, personal and public concerns. In addition to the identification of victims and biological materials, forensic molecular pathology contributes to general explanation of the human death process and assessment of individual death on the basis of biological molecular evidence, visualizing dynamic functional changes involved in the dying process that cannot be detected by morphology (pathophysiological or molecular biological vital reactions); the genetic background (genomics), dynamics of gene expression (up-/down-regulation: transcriptomics) and vital phenomena, involving activated biological mediators and degenerative products (proteomics) as well as metabolic deterioration (metabolomics), are detected by DNA analysis, relative quantification of mRNA transcripts using real-time reverse transcription-PCR (RT-PCR), and immunohisto-/immunocytochemistry combined with biochemistry, respectively. Thus, forensic molecular pathology involves the application of omic medical sciences to investigate the genetic basis, and cause and process of death at the biological molecular level in the context of forensic pathology, that is, 'advanced molecular autopsy'. These procedures can be incorporated into routine death investigations as well as guidance, education and training programs in forensic pathology for 'dynamic assessment of the cause and process of death' on the basis of autopsy and laboratory data. Postmortem human data can also contribute to understanding patients' critical conditions in clinical management. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Homozygous Mutations in WEE2 Cause Fertilization Failure and Female Infertility.

    PubMed

    Sang, Qing; Li, Bin; Kuang, Yanping; Wang, Xueqian; Zhang, Zhihua; Chen, Biaobang; Wu, Ling; Lyu, Qifeng; Fu, Yonglun; Yan, Zheng; Mao, Xiaoyan; Xu, Yao; Mu, Jian; Li, Qiaoli; Jin, Li; He, Lin; Wang, Lei

    2018-04-05

    Fertilization is a fundamental process of development and is a prerequisite for successful human reproduction. In mice, although several receptor proteins have been shown to play important roles in the process of fertilization, only three genes have been shown to cause fertilization failure and infertility when deleted in vivo. In clinical practice, some infertility case subjects suffer from recurrent failure of in vitro fertilization and intracytoplasmic sperm injection attempts due to fertilization failure, but the genetic basis of fertilization failure in humans remains largely unknown. Wee2 is a key oocyte-specific kinase involved in the control of meiotic arrest in mice, but WEE2 has not been associated with any diseases in humans. In this study, we identified homozygous mutations in WEE2 that are responsible for fertilization failure in humans. All four independent affected individuals had homozygous loss-of-function missense mutations or homozygous frameshift protein-truncating mutations, and the phenotype of fertilization failure was shown to follow a Mendelian recessive inheritance pattern. All four mutations significantly decreased the amount of WEE2 protein in vitro and in affected individuals' oocytes in vivo, and they all led to abnormal serine phosphorylation of WEE2 and reduced tyrosine 15 phosphorylation of Cdc2 in vitro. In addition, injection of WEE2 cRNA into affected individuals' oocytes rescued the fertilization failure phenotype and led to the formation of blastocysts in vitro. This work presents a novel gene responsible for human fertilization failure and has implications for future therapeutic treatments for infertility cases. Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  19. Canine disorder mirrors human disease: exonic deletion in HES7 causes autosomal recessive spondylocostal dysostosis in miniature Schnauzer dogs.

    PubMed

    Willet, Cali E; Makara, Mariano; Reppas, George; Tsoukalas, George; Malik, Richard; Haase, Bianca; Wade, Claire M

    2015-01-01

    Spondylocostal dysostosis is a congenital disorder of the axial skeleton documented in human families from diverse racial backgrounds. The condition is characterised by truncal shortening, extensive hemivertebrae and rib anomalies including malalignment, fusion and reduction in number. Mutations in the Notch signalling pathway genes DLL3, MESP2, LFNG, HES7 and TBX6 have been associated with this defect. In this study, spondylocostal dysostosis in an outbred family of miniature schnauzer dogs is described. Computed tomography demonstrated that the condition mirrors the skeletal defects observed in human cases, but unlike most human cases, the affected dogs were stillborn or died shortly after birth. Through gene mapping and whole genome sequencing, we identified a single-base deletion in the coding region of HES7. The frameshift mutation causes loss of functional domains essential for the oscillatory transcriptional autorepression of HES7 during somitogenesis. A restriction fragment length polymorphism test was applied within the immediate family and supported a highly penetrant autosomal recessive mode of inheritance. The mutation was not observed in wider testing of 117 randomly sampled adult miniature schnauzer and six adult standard schnauzer dogs; providing a significance of association of Praw = 4.759e-36 (genome-wide significant). Despite this apparently low frequency in the Australian population, the allele may be globally distributed based on its presence in two unrelated sires from geographically distant locations. While isolated hemivertebrae have been observed in a small number of other dog breeds, this is the first clinical and genetic diagnosis of spontaneously occurring spondylocostal dysostosis in a non-human mammal and offers an excellent model in which to study this devastating human disorder. The genetic test can be utilized by dog breeders to select away from the disease and avoid unnecessary neonatal losses.

  20. Behavioural responses to human-induced environmental change.

    PubMed

    Tuomainen, Ulla; Candolin, Ulrika

    2011-08-01

    The initial response of individuals to human-induced environmental change is often behavioural. This can improve the performance of individuals under sudden, large-scale perturbations and maintain viable populations. The response can also give additional time for genetic changes to arise and, hence, facilitate adaptation to new conditions. On the other hand, maladaptive responses, which reduce individual fitness, may occur when individuals encounter conditions that the population has not experienced during its evolutionary history, which can decrease population viability. A growing number of studies find human disturbances to induce behavioural responses, both directly and by altering factors that influence fitness. Common causes of behavioural responses are changes in the transmission of information, the concentration of endocrine disrupters, the availability of resources, the possibility of dispersal, and the abundance of interacting species. Frequent responses are alterations in habitat choice, movements, foraging, social behaviour and reproductive behaviour. Behavioural responses depend on the genetically determined reaction norm of the individuals, which evolves over generations. Populations first respond with individual behavioural plasticity, whereafter changes may arise through innovations and the social transmission of behavioural patterns within and across generations, and, finally, by evolution of the behavioural response over generations. Only a restricted number of species show behavioural adaptations that make them thrive in severely disturbed environments. Hence, rapid human-induced disturbances often decrease the diversity of native species, while facilitating the spread of invasive species with highly plastic behaviours. Consequently, behavioural responses to human-induced environmental change can have profound effects on the distribution, adaptation, speciation and extinction of populations and, hence, on biodiversity. A better understanding of the mechanisms of behavioural responses and their causes and consequences could improve our ability to predict the effects of human-induced environmental change on individual species and on biodiversity. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.

  1. The fine-scale genetic structure and evolution of the Japanese population

    PubMed Central

    Katsuya, Tomohiro; Kimura, Ryosuke; Nabika, Toru; Isomura, Minoru; Ohkubo, Takayoshi; Tabara, Yasuharu; Yamamoto, Ken; Yokota, Mitsuhiro; Liu, Xuanyao; Saw, Woei-Yuh; Mamatyusupu, Dolikun; Yang, Wenjun; Xu, Shuhua

    2017-01-01

    The contemporary Japanese populations largely consist of three genetically distinct groups—Hondo, Ryukyu and Ainu. By principal-component analysis, while the three groups can be clearly separated, the Hondo people, comprising 99% of the Japanese, form one almost indistinguishable cluster. To understand fine-scale genetic structure, we applied powerful haplotype-based statistical methods to genome-wide single nucleotide polymorphism data from 1600 Japanese individuals, sampled from eight distinct regions in Japan. We then combined the Japanese data with 26 other Asian populations data to analyze the shared ancestry and genetic differentiation. We found that the Japanese could be separated into nine genetic clusters in our dataset, showing a marked concordance with geography; and that major components of ancestry profile of Japanese were from the Korean and Han Chinese clusters. We also detected and dated admixture in the Japanese. While genetic differentiation between Ryukyu and Hondo was suggested to be caused in part by positive selection, genetic differentiation among the Hondo clusters appeared to result principally from genetic drift. Notably, in Asians, we found the possibility that positive selection accentuated genetic differentiation among distant populations but attenuated genetic differentiation among close populations. These findings are significant for studies of human evolution and medical genetics. PMID:29091727

  2. All y'all need to know 'bout retroelements in cancer.

    PubMed

    Belancio, Victoria P; Roy-Engel, Astrid M; Deininger, Prescott L

    2010-08-01

    Genetic instability is one of the principal hallmarks and causative factors in cancer. Human transposable elements (TE) have been reported to cause human diseases, including several types of cancer through insertional mutagenesis of genes critical for preventing or driving malignant transformation. In addition to retrotransposition-associated mutagenesis, TEs have been found to contribute even more genomic rearrangements through non-allelic homologous recombination. TEs also have the potential to generate a wide range of mutations derivation of which is difficult to directly trace to mobile elements, including double strand breaks that may trigger mutagenic genomic rearrangements. Genome-wide hypomethylation of TE promoters and significantly elevated TE expression in almost all human cancers often accompanied by the loss of critical DNA sensing and repair pathways suggests that the negative impact of mobile elements on genome stability should increase as human tumors evolve. The biological consequences of elevated retroelement expression, such as the rate of their amplification, in human cancers remain obscure, particularly, how this increase translates into disease-relevant mutations. This review is focused on the cellular mechanisms that control human TE-associated mutagenesis in cancer and summarizes the current understanding of TE contribution to genetic instability in human malignancies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. A Point Mutation in the Rhesus Rotavirus VP4 Protein Generated through a Rotavirus Reverse Genetics System Attenuates Biliary Atresia in the Murine Model.

    PubMed

    Mohanty, Sujit K; Donnelly, Bryan; Dupree, Phylicia; Lobeck, Inna; Mowery, Sarah; Meller, Jaroslaw; McNeal, Monica; Tiao, Greg

    2017-08-01

    Rotavirus infection is one of the most common causes of diarrheal illness in humans. In neonatal mice, rhesus rotavirus (RRV) can induce biliary atresia (BA), a disease resulting in inflammatory obstruction of the extrahepatic biliary tract and intrahepatic bile ducts. We previously showed that the amino acid arginine (R) within the sequence SRL (amino acids 445 to 447) in the RRV VP4 protein is required for viral binding and entry into biliary epithelial cells. To determine if this single amino acid (R) influences the pathogenicity of the virus, we generated a recombinant virus with a single amino acid mutation at this site through a reverse genetics system. We demonstrated that the RRV mutant (RRV VP4-R446G ) produced less symptomatology and replicated to lower titers both in vivo and in vitro than those seen with wild-type RRV, with reduced binding in cholangiocytes. Our results demonstrate that a single amino acid change in the RRV VP4 gene influences cholangiocyte tropism and reduces pathogenicity in mice. IMPORTANCE Rotavirus is the leading cause of diarrhea in humans. Rhesus rotavirus (RRV) can also lead to biliary atresia (a neonatal human disease) in mice. We developed a reverse genetics system to create a mutant of RRV (RRV VP4-R446G ) with a single amino acid change in the VP4 protein compared to that of wild-type RRV. In vitro , the mutant virus had reduced binding and infectivity in cholangiocytes. In vivo , it produced fewer symptoms and lower mortality in neonatal mice, resulting in an attenuated form of biliary atresia. Copyright © 2017 American Society for Microbiology.

  4. Pathogenicity of a Human Laminin β2 Mutation Revealed in Models of Alport Syndrome.

    PubMed

    Funk, Steven D; Bayer, Raymond H; Malone, Andrew F; McKee, Karen K; Yurchenco, Peter D; Miner, Jeffrey H

    2018-03-01

    Pierson syndrome is a congenital nephrotic syndrome with eye and neurologic defects caused by mutations in laminin β 2 ( LAMB2 ), a major component of the glomerular basement membrane (GBM). Pathogenic missense mutations in human LAMB2 cluster in or near the laminin amino-terminal (LN) domain, a domain required for extracellular polymerization of laminin trimers and basement membrane scaffolding. Here, we investigated an LN domain missense mutation, LAMB2-S80R, which was discovered in a patient with Pierson syndrome and unusually late onset of proteinuria. Biochemical data indicated that this mutation impairs laminin polymerization, which we hypothesized to be the cause of the patient's nephrotic syndrome. Testing this hypothesis in genetically altered mice showed that the corresponding amino acid change (LAMB2-S83R) alone is not pathogenic. However, expression of LAMB2-S83R significantly increased the rate of progression to kidney failure in a Col4a3 -/- mouse model of autosomal recessive Alport syndrome and increased proteinuria in Col4a5 +/- females that exhibit a mild form of X-linked Alport syndrome due to mosaic deposition of collagen α 3 α 4 α 5(IV) in the GBM. Collectively, these data show the pathogenicity of LAMB2-S80R and provide the first evidence of genetic modification of Alport phenotypes by variation in another GBM component. This finding could help explain the wide range of Alport syndrome onset and severity observed in patients with Alport syndrome, even for family members who share the same COL4 mutation. Our results also show the complexities of using model organisms to investigate genetic variants suspected of being pathogenic in humans. Copyright © 2018 by the American Society of Nephrology.

  5. [Reconstruction of Vehicle-human Crash Accident and Injury Analysis Based on 3D Laser Scanning, Multi-rigid-body Reconstruction and Optimized Genetic Algorithm].

    PubMed

    Sun, J; Wang, T; Li, Z D; Shao, Y; Zhang, Z Y; Feng, H; Zou, D H; Chen, Y J

    2017-12-01

    To reconstruct a vehicle-bicycle-cyclist crash accident and analyse the injuries using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, and to provide biomechanical basis for the forensic identification of death cause. The vehicle was measured by 3D laser scanning technology. The multi-rigid-body models of cyclist, bicycle and vehicle were developed based on the measurements. The value range of optimal variables was set. A multi-objective genetic algorithm and the nondominated sorting genetic algorithm were used to find the optimal solutions, which were compared to the record of the surveillance video around the accident scene. The reconstruction result of laser scanning on vehicle was satisfactory. In the optimal solutions found by optimization method of genetic algorithm, the dynamical behaviours of dummy, bicycle and vehicle corresponded to that recorded by the surveillance video. The injury parameters of dummy were consistent with the situation and position of the real injuries on the cyclist in accident. The motion status before accident, damage process by crash and mechanical analysis on the injury of the victim can be reconstructed using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, which have application value in the identification of injury manner and analysis of death cause in traffic accidents. Copyright© by the Editorial Department of Journal of Forensic Medicine

  6. Genetic heterogeneity and consanguinity lead to a “double hit”: Homozygous mutations of MYO7A and PDE6B in a patient with retinitis pigmentosa

    PubMed Central

    Goldenberg-Cohen, Nitza; Banin, Eyal; Zalzstein, Yael; Cohen, Ben; Rotenstreich, Ygal; Rizel, Leah; Basel-Vanagaite, Lina

    2013-01-01

    Purpose Retinitis pigmentosa (RP), the most genetically heterogeneous disorder in humans, actually represents a group of pigmentary retinopathies characterized by night blindness followed by visual-field loss. RP can appear as either syndromic or nonsyndromic. One of the most common forms of syndromic RP is Usher syndrome, characterized by the combination of RP, hearing loss, and vestibular dysfunction. Methods The underlying cause of the appearance of syndromic and nonsyndromic RP in three siblings from a consanguineous Israeli Muslim Arab family was studied with whole-genome homozygosity mapping followed by whole exome sequencing. Results The family was found to segregate novel mutations of two different genes: myosin VIIA (MYO7A), which causes type 1 Usher syndrome, and phosphodiesterase 6B, cyclic guanosine monophosphate-specific, rod, beta (PDE6B), which causes nonsyndromic RP. One affected child was homozygous for both mutations. Since the retinal phenotype seen in this patient results from overlapping pathologies, one might expect to find severe retinal degeneration. Indeed, he was diagnosed with RP based on an abnormal electroretinogram (ERG) at a young age (9 months). However, this early diagnosis may be biased, as two of his older siblings had already been diagnosed, leading to increased awareness. At the age of 32 months, he had relatively good vision with normal visual fields. Further testing of visual function and structure at different ages in the three siblings is needed to determine whether the two RP-causing genes mutated in this youngest sibling confer increased disease severity. Conclusions This report further supports the genetic heterogeneity of RP, and demonstrates how consanguinity could increase intrafamilial clustering of multiple hereditary diseases. Moreover, this report provides a unique opportunity to study the clinical implications of the coexistence of pathogenic mutations in two RP-causative genes in a human patient. PMID:23882135

  7. Genetic heterogeneity and consanguinity lead to a "double hit": homozygous mutations of MYO7A and PDE6B in a patient with retinitis pigmentosa.

    PubMed

    Goldenberg-Cohen, Nitza; Banin, Eyal; Zalzstein, Yael; Cohen, Ben; Rotenstreich, Ygal; Rizel, Leah; Basel-Vanagaite, Lina; Ben-Yosef, Tamar

    2013-01-01

    Retinitis pigmentosa (RP), the most genetically heterogeneous disorder in humans, actually represents a group of pigmentary retinopathies characterized by night blindness followed by visual-field loss. RP can appear as either syndromic or nonsyndromic. One of the most common forms of syndromic RP is Usher syndrome, characterized by the combination of RP, hearing loss, and vestibular dysfunction. The underlying cause of the appearance of syndromic and nonsyndromic RP in three siblings from a consanguineous Israeli Muslim Arab family was studied with whole-genome homozygosity mapping followed by whole exome sequencing. THE FAMILY WAS FOUND TO SEGREGATE NOVEL MUTATIONS OF TWO DIFFERENT GENES: myosin VIIA (MYO7A), which causes type 1 Usher syndrome, and phosphodiesterase 6B, cyclic guanosine monophosphate-specific, rod, beta (PDE6B), which causes nonsyndromic RP. One affected child was homozygous for both mutations. Since the retinal phenotype seen in this patient results from overlapping pathologies, one might expect to find severe retinal degeneration. Indeed, he was diagnosed with RP based on an abnormal electroretinogram (ERG) at a young age (9 months). However, this early diagnosis may be biased, as two of his older siblings had already been diagnosed, leading to increased awareness. At the age of 32 months, he had relatively good vision with normal visual fields. Further testing of visual function and structure at different ages in the three siblings is needed to determine whether the two RP-causing genes mutated in this youngest sibling confer increased disease severity. This report further supports the genetic heterogeneity of RP, and demonstrates how consanguinity could increase intrafamilial clustering of multiple hereditary diseases. Moreover, this report provides a unique opportunity to study the clinical implications of the coexistence of pathogenic mutations in two RP-causative genes in a human patient.

  8. Treatment of petroleum hydrocarbon polluted environment through bioremediation: a review.

    PubMed

    Singh, Kriti; Chandra, Subhash

    2014-01-01

    Bioremediation play key role in the treatment of petroleum hydrocarbon contaminated environment. Exposure of petroleum hydrocarbon into the environment occurs either due to human activities or accidentally and cause environmental pollution. Petroleum hydrocarbon cause many toxic compounds which are potent immunotoxicants and carcinogenic to human being. Remedial methods for the treatment of petroleum contaminated environment include various physiochemical and biological methods. Due to the negative consequences caused by the physiochemical methods, the bioremediation technology is widely adapted and considered as one of the best technology for the treatment of petroleum contaminated environment. Bioremediation utilizes the natural ability of microorganism to degrade the hazardous compound into simpler and non hazardous form. This paper provides a review on the role of bioremediation in the treatment of petroleum contaminated environment, discuss various hazardous effects of petroleum hydrocarbon, various factors influencing biodegradation, role of various enzymes in biodegradation and genetic engineering in bioremediation.

  9. Conserved genetic pathways associated with microphthalmia, anophthalmia, and coloboma

    PubMed Central

    Reis, Linda M.; Semina, Elena V.

    2016-01-01

    The human eye is a complex organ whose development requires extraordinary coordination of developmental processes. The conservation of ocular developmental steps in vertebrates suggests possible common genetic mechanisms. Genetic diseases involving the eye represent a leading cause of blindness in children and adults. During the last decades, there has been an exponential increase in genetic studies of ocular disorders. In this review, we summarize current success in identification of genes responsible for microphthalmia, anophthalmia and coloboma (MAC) phenotypes, which are associated with early defects in embryonic eye development. Studies in animal models for the orthologous genes identified overlapping phenotypes for most factors confirming the conservation of their function in vertebrate development. These animal models allow for further investigation of the mechanisms of MAC, integration of various identified genes into common developmental pathways and, finally, provide an avenue for the development and testing of therapeutic interventions. PMID:26046913

  10. Conserved genetic pathways associated with microphthalmia, anophthalmia, and coloboma.

    PubMed

    Reis, Linda M; Semina, Elena V

    2015-06-01

    The human eye is a complex organ whose development requires extraordinary coordination of developmental processes. The conservation of ocular developmental steps in vertebrates suggests possible common genetic mechanisms. Genetic diseases involving the eye represent a leading cause of blindness in children and adults. During the last decades, there has been an exponential increase in genetic studies of ocular disorders. In this review, we summarize current success in identification of genes responsible for microphthalmia, anophthalmia, and coloboma (MAC) phenotypes, which are associated with early defects in embryonic eye development. Studies in animal models for the orthologous genes identified overlapping phenotypes for most factors, confirming the conservation of their function in vertebrate development. These animal models allow for further investigation of the mechanisms of MAC, integration of various identified genes into common developmental pathways and finally, provide an avenue for the development and testing of therapeutic interventions. © 2015 Wiley Periodicals, Inc.

  11. Rapid identification of kidney cyst mutations by whole exome sequencing in zebrafish

    PubMed Central

    Ryan, Sean; Willer, Jason; Marjoram, Lindsay; Bagwell, Jennifer; Mankiewicz, Jamie; Leshchiner, Ignaty; Goessling, Wolfram; Bagnat, Michel; Katsanis, Nicholas

    2013-01-01

    Forward genetic approaches in zebrafish have provided invaluable information about developmental processes. However, the relative difficulty of mapping and isolating mutations has limited the number of new genetic screens. Recent improvements in the annotation of the zebrafish genome coupled to a reduction in sequencing costs prompted the development of whole genome and RNA sequencing approaches for gene discovery. Here we describe a whole exome sequencing (WES) approach that allows rapid and cost-effective identification of mutations. We used our WES methodology to isolate four mutations that cause kidney cysts; we identified novel alleles in two ciliary genes as well as two novel mutants. The WES approach described here does not require specialized infrastructure or training and is therefore widely accessible. This methodology should thus help facilitate genetic screens and expedite the identification of mutants that can inform basic biological processes and the causality of genetic disorders in humans. PMID:24130329

  12. Giardia/giardiasis - a perspective on diagnostic and analytical tools.

    PubMed

    Koehler, Anson V; Jex, Aaron R; Haydon, Shane R; Stevens, Melita A; Gasser, Robin B

    2014-01-01

    Giardiasis is a gastrointestinal disease of humans and other animals caused by species of parasitic protists of the genus Giardia. This disease is transmitted mainly via the faecal-oral route (e.g., in water or food) and is of socioeconomic importance worldwide. The accurate detection and genetic characterisation of the different species and population variants (usually referred to as assemblages and/or sub-assemblages) of Giardia are central to understanding their transmission patterns and host spectra. The present article provides a background on Giardia and giardiasis, and reviews some key techniques employed for the identification and genetic characterisation of Giardia in biological samples, the diagnosis of infection and the analysis of genetic variation within and among species of Giardia. Advances in molecular techniques provide a solid basis for investigating the systematics, population genetics, ecology and epidemiology of Giardia species and genotypes as well as the prevention and control of giardiasis. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. High Points of Human Genetics

    ERIC Educational Resources Information Center

    Stern, Curt

    1975-01-01

    Discusses such high points of human genetics as the study of chromosomes, somatic cell hybrids, the population formula: the Hardy-Weinberg Law, biochemical genetics, the single-active X Theory, behavioral genetics and finally how genetics can serve humanity. (BR)

  14. The Human Proteome Project: Unlocking the Mysteries of Human Life and Unleashing Its Potential

    DTIC Science & Technology

    2011-02-16

    Australasian Genetics Resource Book. June 2007. Accessed September 27, 2010. www.genetics.com.au/pdf/factsheets/fs24.pdf. 2 White House, Office of...Project and Beyond." The Australasian Genetics Resource Book. June 2007. Accessed September 27, 2010. www.genetics.com.au/pdf/factsheets/fs24.pdf...9 Centre for Genetics Education. "The Human Genetic Code – The Human Genome Project and Beyond." The Australasian Genetics Resource Book. June

  15. A predictive model for canine dilated cardiomyopathy-a meta-analysis of Doberman Pinscher data.

    PubMed

    Simpson, Siobhan; Edwards, Jennifer; Emes, Richard D; Cobb, Malcolm A; Mongan, Nigel P; Rutland, Catrin S

    2015-01-01

    Dilated cardiomyopathy is a prevalent and often fatal disease in humans and dogs. Indeed dilated cardiomyopathy is the third most common form of cardiac disease in humans, reported to affect approximately 36 individuals per 100,000 individuals. In dogs, dilated cardiomyopathy is the second most common cardiac disease and is most prevalent in the Irish Wolfhound, Doberman Pinscher and Newfoundland breeds. Dilated cardiomyopathy is characterised by ventricular chamber enlargement and systolic dysfunction which often leads to congestive heart failure. Although multiple human loci have been implicated in the pathogenesis of dilated cardiomyopathy, the identified variants are typically associated with rare monogenic forms of dilated cardiomyopathy. The potential for multigenic interactions contributing to human dilated cardiomyopathy remains poorly understood. Consistent with this, several known human dilated cardiomyopathy loci have been excluded as common causes of canine dilated cardiomyopathy, although canine dilated cardiomyopathy resembles the human disease functionally. This suggests additional genetic factors contribute to the dilated cardiomyopathy phenotype.This study represents a meta-analysis of available canine dilated cardiomyopathy genetic datasets with the goal of determining potential multigenic interactions relating the sex chromosome genotype (XX vs. XY) with known dilated cardiomyopathy associated loci on chromosome 5 and the PDK4 gene in the incidence and progression of dilated cardiomyopathy. The results show an interaction between known canine dilated cardiomyopathy loci and an unknown X-linked locus. Our study is the first to test a multigenic contribution to dilated cardiomyopathy and suggest a genetic basis for the known sex-disparity in dilated cardiomyopathy outcomes.

  16. Runaway cultural niche construction

    PubMed Central

    Rendell, Luke; Fogarty, Laurel; Laland, Kevin N.

    2011-01-01

    Cultural niche construction is a uniquely potent source of selection on human populations, and a major cause of recent human evolution. Previous theoretical analyses have not, however, explored the local effects of cultural niche construction. Here, we use spatially explicit coevolutionary models to investigate how cultural processes could drive selection on human genes by modifying local resources. We show that cultural learning, expressed in local niche construction, can trigger a process with dynamics that resemble runaway sexual selection. Under a broad range of conditions, cultural niche-constructing practices generate selection for gene-based traits and hitchhike to fixation through the build up of statistical associations between practice and trait. This process can occur even when the cultural practice is costly, or is subject to counteracting transmission biases, or the genetic trait is selected against. Under some conditions a secondary hitchhiking occurs, through which genetic variants that enhance the capability for cultural learning are also favoured by similar dynamics. We suggest that runaway cultural niche construction could have played an important role in human evolution, helping to explain why humans are simultaneously the species with the largest relative brain size, the most potent capacity for niche construction and the greatest reliance on culture. PMID:21320897

  17. Pitfalls in genetic testing: a case of a SNP in primer-annealing region leading to allele dropout in BRCA1.

    PubMed

    Silva, Felipe Carneiro; Torrezan, Giovana Tardin; Brianese, Rafael Canfield; Stabellini, Raquel; Carraro, Dirce Maria

    2017-07-01

    Hereditary breast and ovarian cancer is characterized by mutations in BRCA1 or BRCA2 genes and PCR-based screening techniques, such as capillary sequencing and next-generation sequencing (NGS), are considered gold standard methods for detection of pathogenic mutations in these genes. Single-nucleotide polymorphisms (SNPs) constitute a vast source of variation in the human genome and represent a risk for misdiagnosis in genetic testing, since the presence of a SNP in primer-annealing sites may cause false negative results due to allele dropout. However, few reports are available and the frequency of this phenomenon in diagnostic assays remains unknown. In this article, we investigated the causes of a false negative capillary sequencing result in BRCA1 involving a mother-daughter dyad. Using several molecular strategies, including different DNA polymerases, primer redesign, allele-specific PCR and NGS, we established that the initial misdiagnosis was caused by a SNP located in the primer-annealing region, leading to allele dropout of the mutated allele. Assuming that this problem can also occur in any PCR-based method that are widely used in diagnostic settings, the clinical report presented here draws attention for one of the limitations of genetic testing in general, for which medical and laboratory communities need to be aware.

  18. Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy.

    PubMed

    Lesage, Suzanne; Drouet, Valérie; Majounie, Elisa; Deramecourt, Vincent; Jacoupy, Maxime; Nicolas, Aude; Cormier-Dequaire, Florence; Hassoun, Sidi Mohamed; Pujol, Claire; Ciura, Sorana; Erpapazoglou, Zoi; Usenko, Tatiana; Maurage, Claude-Alain; Sahbatou, Mourad; Liebau, Stefan; Ding, Jinhui; Bilgic, Basar; Emre, Murat; Erginel-Unaltuna, Nihan; Guven, Gamze; Tison, François; Tranchant, Christine; Vidailhet, Marie; Corvol, Jean-Christophe; Krack, Paul; Leutenegger, Anne-Louise; Nalls, Michael A; Hernandez, Dena G; Heutink, Peter; Gibbs, J Raphael; Hardy, John; Wood, Nicholas W; Gasser, Thomas; Durr, Alexandra; Deleuze, Jean-François; Tazir, Meriem; Destée, Alain; Lohmann, Ebba; Kabashi, Edor; Singleton, Andrew; Corti, Olga; Brice, Alexis

    2016-03-03

    Autosomal-recessive early-onset parkinsonism is clinically and genetically heterogeneous. The genetic causes of approximately 50% of autosomal-recessive early-onset forms of Parkinson disease (PD) remain to be elucidated. Homozygozity mapping and exome sequencing in 62 isolated individuals with early-onset parkinsonism and confirmed consanguinity followed by data mining in the exomes of 1,348 PD-affected individuals identified, in three isolated subjects, homozygous or compound heterozygous truncating mutations in vacuolar protein sorting 13C (VPS13C). VPS13C mutations are associated with a distinct form of early-onset parkinsonism characterized by rapid and severe disease progression and early cognitive decline; the pathological features were striking and reminiscent of diffuse Lewy body disease. In cell models, VPS13C partly localized to the outer membrane of mitochondria. Silencing of VPS13C was associated with lower mitochondrial membrane potential, mitochondrial fragmentation, increased respiration rates, exacerbated PINK1/Parkin-dependent mitophagy, and transcriptional upregulation of PARK2 in response to mitochondrial damage. This work suggests that loss of function of VPS13C is a cause of autosomal-recessive early-onset parkinsonism with a distinctive phenotype of rapid and severe progression. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  19. Major regulatory mechanisms involved in sperm motility

    PubMed Central

    Pereira, Rute; Sá, Rosália; Barros, Alberto; Sousa, Mário

    2017-01-01

    The genetic bases and molecular mechanisms involved in the assembly and function of the flagellum components as well as in the regulation of the flagellar movement are not fully understood, especially in humans. There are several causes for sperm immotility, of which some can be avoided and corrected, whereas other are related to genetic defects and deserve full investigation to give a diagnosis to patients. This review was performed after an extensive literature search on the online databases PubMed, ScienceDirect, and Web of Science. Here, we review the involvement of regulatory pathways responsible for sperm motility, indicating possible causes for sperm immotility. These included the calcium pathway, the cAMP-dependent protein kinase pathway, the importance of kinases and phosphatases, the function of reactive oxygen species, and how the regulation of cell volume and osmolarity are also fundamental components. We then discuss main gene defects associated with specific morphological abnormalities. Finally, we slightly discuss some preventive and treatments approaches to avoid development of conditions that are associated with unspecified sperm immotility. We believe that in the near future, with the development of more powerful techniques, the genetic causes of sperm immotility and the regulatory mechanisms of sperm motility will be better understand, thus enabling to perform a full diagnosis and uncover new therapies. PMID:26680031

  20. Genetic studies of age-related macular degeneration: lessons, challenges, and opportunities for disease management.

    PubMed

    Priya, Rinki Ratna; Chew, Emily Y; Swaroop, Anand

    2012-12-01

    Age-related macular degeneration (AMD) is a common cause of visual impairment in individuals >55 years of age worldwide. The varying clinical phenotypes of AMD result from contributions of genetic, epigenetic, and nongenetic (environmental) factors. Genetic studies of AMD have come of age as a direct result of tremendous gains from the human genome project, genome-wide association studies, and identification of numerous susceptibility loci. These findings have implicated immune response, high-density lipoprotein cholesterol metabolism, extracellular matrix, and angiogenesis signaling pathways in disease pathophysiology. Herein, we address how the wealth of genetic findings in AMD is expected to impact the practice of medicine, providing opportunities for improved risk assessment, molecular diagnosis, preventive, and therapeutic intervention. We propose that the potential of using genetic variants for monitoring treatment response (pharmacogenetics) may usher in a new era of personalized medicine in the clinical management of AMD. Proprietary or commercial disclosures may be found after the references. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  1. Genetic diversity of Trichomonas vaginalis clinical isolates from Henan province in central China.

    PubMed

    Mao, Meng; Liu, Hui Li

    2015-07-01

    Trichomonas vaginalis is a flagellated protozoan parasite that infects the human urogenital tract, causing the most common non-viral, sexually transmitted disease worldwide. In this study, genetic variants of T. vaginalis were identified in Henan Province, China. Fragments of the small subunit of nuclear ribosomal RNA (18S rRNA) were amplified from 32 T. vaginalis isolates obtained from seven regions of Henan Province. Overall, 18 haplotypes were determined from the 18S rRNA sequences. Each sampled population and the total population displayed high haplotype diversity (Hd), accompanied by very low nucleotide diversity (Pi). In these molecular genetic variants, 91.58% genetic variation was derived from intra-regions. Phylogenetic analysis revealed no correlation between phylogeny and geographic distribution. Demographic analysis supported population expansion of T. vaginalis isolates from central China. Our findings showing moderate-to-high genetic variations in the 32 isolates of T. vaginalis provide useful knowledge for monitoring changes in parasite populations for the development of future control strategies.

  2. AB022. Harnessing big data to transform clinical care of cardiovascular diseases

    PubMed Central

    Cutiongco-de la Paz, Eva Maria

    2015-01-01

    Diseases of the heart and vascular system are the leading causes of mortality worldwide. A number of risk factors have already been identified such as obesity, diabetes and smoking; in the recent years, research has shifted its focus on genetic risk factors. Discoveries on the role of genes partnered with the technological developments have enabled advances in the understanding of human genetics and its influence on disease and treatment. There are initiatives now to combine medical records and genetic and other molecular data into a single “knowledge network” to achieve these aptly known as precision medicine. With next generation sequencing readily available at a more affordable cost, it is expected that genetic information of patients will be increasingly available and can be used to guide clinical decisions. Big data generated and stored necessitates broad and extensive interpretation to be valuable in clinical care. Accumulating evidence on the use of such genetic information in the cardiovascular clinics will be presented.

  3. Identification of rheumatoid arthritis biomarkers based on single nucleotide polymorphisms and haplotype blocks: A systematic review and meta-analysis

    PubMed Central

    Saad, Mohamed N.; Mabrouk, Mai S.; Eldeib, Ayman M.; Shaker, Olfat G.

    2015-01-01

    Genetics of autoimmune diseases represent a growing domain with surpassing biomarker results with rapid progress. The exact cause of Rheumatoid Arthritis (RA) is unknown, but it is thought to have both a genetic and an environmental bases. Genetic biomarkers are capable of changing the supervision of RA by allowing not only the detection of susceptible individuals, but also early diagnosis, evaluation of disease severity, selection of therapy, and monitoring of response to therapy. This review is concerned with not only the genetic biomarkers of RA but also the methods of identifying them. Many of the identified genetic biomarkers of RA were identified in populations of European and Asian ancestries. The study of additional human populations may yield novel results. Most of the researchers in the field of identifying RA biomarkers use single nucleotide polymorphism (SNP) approaches to express the significance of their results. Although, haplotype block methods are expected to play a complementary role in the future of that field. PMID:26843965

  4. An integrative, translational approach to understanding rare and orphan genetically based diseases

    PubMed Central

    Hoehndorf, Robert; Schofield, Paul N.; Gkoutos, Georgios V.

    2013-01-01

    PhenomeNet is an approach for integrating phenotypes across species and identifying candidate genes for genetic diseases based on the similarity between a disease and animal model phenotypes. In contrast to ‘guilt-by-association’ approaches, PhenomeNet relies exclusively on the comparison of phenotypes to suggest candidate genes, and can, therefore, be applied to study the molecular basis of rare and orphan diseases for which the molecular basis is unknown. In addition to disease phenotypes from the Online Mendelian Inheritance in Man (OMIM) database, we have now integrated the clinical signs from Orphanet into PhenomeNet. We demonstrate that our approach can efficiently identify known candidate genes for genetic diseases in Orphanet and OMIM. Furthermore, we find evidence that mutations in the HIP1 gene might cause Bassoe syndrome, a rare disorder with unknown genetic aetiology. Our results demonstrate that integration and computational analysis of human disease and animal model phenotypes using PhenomeNet has the potential to reveal novel insights into the pathobiology underlying genetic diseases. PMID:23853703

  5. Rare Disease Mechanisms Identified by Genealogical Proteomics of Copper Homeostasis Mutant Pedigrees.

    PubMed

    Zlatic, Stephanie A; Vrailas-Mortimer, Alysia; Gokhale, Avanti; Carey, Lucas J; Scott, Elizabeth; Burch, Reid; McCall, Morgan M; Rudin-Rush, Samantha; Davis, John Bowen; Hartwig, Cortnie; Werner, Erica; Li, Lian; Petris, Michael; Faundez, Victor

    2018-03-28

    Rare neurological diseases shed light onto universal neurobiological processes. However, molecular mechanisms connecting genetic defects to their disease phenotypes are elusive. Here, we obtain mechanistic information by comparing proteomes of cells from individuals with rare disorders with proteomes from their disease-free consanguineous relatives. We use triple-SILAC mass spectrometry to quantify proteomes from human pedigrees affected by mutations in ATP7A, which cause Menkes disease, a rare neurodegenerative and neurodevelopmental disorder stemming from systemic copper depletion. We identified 214 proteins whose expression was altered in ATP7A -/y fibroblasts. Bioinformatic analysis of ATP7A-mutant proteomes identified known phenotypes and processes affected in rare genetic diseases causing copper dyshomeostasis, including altered mitochondrial function. We found connections between copper dyshomeostasis and the UCHL1/PARK5 pathway of Parkinson disease, which we validated with mitochondrial respiration and Drosophila genetics assays. We propose that our genealogical "omics" strategy can be broadly applied to identify mechanisms linking a genomic locus to its phenotypes. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Patient Susceptibility to Candidiasis—A Potential for Adjunctive Immunotherapy

    PubMed Central

    Davidson, Linda; Netea, Mihai G.; Kullberg, Bart Jan

    2018-01-01

    Candida spp. are colonizing fungi of human skin and mucosae of the gastrointestinal and genitourinary tract, present in 30–50% of healthy individuals in a population at any given moment. The host defense mechanisms prevent this commensal fungus from invading and causing disease. Loss of skin or mucosal barrier function, microbiome imbalances, or defects of immune defense mechanisms can lead to an increased susceptibility to severe mucocutaneous or invasive candidiasis. A comprehensive understanding of the immune defense against Candida is essential for developing adjunctive immunotherapy. The important role of underlying genetic susceptibility to Candida infections has become apparent over the years. In most patients, the cause of increased susceptibility to fungal infections is complex, based on a combination of immune regulation gene polymorphisms together with other non-genetic predisposing factors. Identification of patients with an underlying genetic predisposition could help determine which patients could benefit from prophylactic antifungal treatment or adjunctive immunotherapy. This review will provide an overview of patient susceptibility to mucocutaneous and invasive candidiasis and the potential for adjunctive immunotherapy. PMID:29371502

  7. Influenza A Viruses of Swine (IAV-S) in Vietnam from 2010 to 2015: Multiple Introductions of A(H1N1)pdm09 Viruses into the Pig Population and Diversifying Genetic Constellations of Enzootic IAV-S.

    PubMed

    Takemae, Nobuhiro; Harada, Michiyo; Nguyen, Phuong Thanh; Nguyen, Tung; Nguyen, Tien Ngoc; To, Thanh Long; Nguyen, Tho Dang; Pham, Vu Phong; Le, Vu Tri; Do, Hoa Thi; Vo, Hung Van; Le, Quang Vinh Tin; Tran, Tan Minh; Nguyen, Thanh Duy; Thai, Phuong Duy; Nguyen, Dang Hoang; Le, Anh Quynh Thi; Nguyen, Diep Thi; Uchida, Yuko; Saito, Takehiko

    2017-01-01

    Active surveillance of influenza A viruses of swine (IAV-S) involving 262 farms and 10 slaughterhouses in seven provinces in northern and southern Vietnam from 2010 to 2015 yielded 388 isolates from 32 farms; these viruses were classified into H1N1, H1N2, and H3N2 subtypes. Whole-genome sequencing followed by phylogenetic analysis revealed that the isolates represented 15 genotypes, according to the genetic constellation of the eight segments. All of the H1N1 viruses were entirely A(H1N1)pdm09 viruses, whereas all of the H1N2 and H3N2 viruses were reassortants among 5 distinct ancestral viruses: H1 and H3 triple-reassortant (TR) IAV-S that originated from North American pre-2009 human seasonal H1, human seasonal H3N2, and A(H1N1)pdm09 viruses. Notably, 93% of the reassortant IAV-S retained M genes that were derived from A(H1N1)pdm09, suggesting some advantage in terms of their host adaptation. Bayesian Markov chain Monte Carlo analysis revealed that multiple introductions of A(H1N1)pdm09 and TR IAV-S into the Vietnamese pig population have driven the genetic diversity of currently circulating Vietnamese IAV-S. In addition, our results indicate that a reassortant IAV-S with human-like H3 and N2 genes and an A(H1N1)pdm09 origin M gene likely caused a human case in Ho Chi Minh City in 2010. Our current findings indicate that human-to-pig transmission as well as cocirculation of different IAV-S have contributed to diversifying the gene constellations of IAV-S in Vietnam. This comprehensive genetic characterization of 388 influenza A viruses of swine (IAV-S) isolated through active surveillance of Vietnamese pig farms from 2010 through 2015 provides molecular epidemiological insight into the genetic diversification of IAV-S in Vietnam after the emergence of A(H1N1)pdm09 viruses. Multiple reassortments among A(H1N1)pdm09 viruses and enzootic IAV-S yielded 14 genotypes, 9 of which carried novel gene combinations. The reassortants that carried M genes derived from A(H1N1)pdm09 viruses became predominant, replacing those of the IAV-S that had been endemic in Vietnam since 2011. Notably, one of the novel reassortants likely caused a human case in Vietnam. Given that Vietnam is the second-largest pig-producing country in Asia, continued monitoring of IAV-S is highly important from the viewpoints of both the swine industry and human public health. Copyright © 2016 American Society for Microbiology.

  8. Influenza A Viruses of Swine (IAV-S) in Vietnam from 2010 to 2015: Multiple Introductions of A(H1N1)pdm09 Viruses into the Pig Population and Diversifying Genetic Constellations of Enzootic IAV-S

    PubMed Central

    Takemae, Nobuhiro; Harada, Michiyo; Nguyen, Phuong Thanh; Nguyen, Tung; Nguyen, Tien Ngoc; To, Thanh Long; Nguyen, Tho Dang; Pham, Vu Phong; Le, Vu Tri; Do, Hoa Thi; Vo, Hung Van; Le, Quang Vinh Tin; Tran, Tan Minh; Nguyen, Thanh Duy; Thai, Phuong Duy; Nguyen, Dang Hoang; Le, Anh Quynh Thi; Nguyen, Diep Thi; Uchida, Yuko

    2016-01-01

    ABSTRACT Active surveillance of influenza A viruses of swine (IAV-S) involving 262 farms and 10 slaughterhouses in seven provinces in northern and southern Vietnam from 2010 to 2015 yielded 388 isolates from 32 farms; these viruses were classified into H1N1, H1N2, and H3N2 subtypes. Whole-genome sequencing followed by phylogenetic analysis revealed that the isolates represented 15 genotypes, according to the genetic constellation of the eight segments. All of the H1N1 viruses were entirely A(H1N1)pdm09 viruses, whereas all of the H1N2 and H3N2 viruses were reassortants among 5 distinct ancestral viruses: H1 and H3 triple-reassortant (TR) IAV-S that originated from North American pre-2009 human seasonal H1, human seasonal H3N2, and A(H1N1)pdm09 viruses. Notably, 93% of the reassortant IAV-S retained M genes that were derived from A(H1N1)pdm09, suggesting some advantage in terms of their host adaptation. Bayesian Markov chain Monte Carlo analysis revealed that multiple introductions of A(H1N1)pdm09 and TR IAV-S into the Vietnamese pig population have driven the genetic diversity of currently circulating Vietnamese IAV-S. In addition, our results indicate that a reassortant IAV-S with human-like H3 and N2 genes and an A(H1N1)pdm09 origin M gene likely caused a human case in Ho Chi Minh City in 2010. Our current findings indicate that human-to-pig transmission as well as cocirculation of different IAV-S have contributed to diversifying the gene constellations of IAV-S in Vietnam. IMPORTANCE This comprehensive genetic characterization of 388 influenza A viruses of swine (IAV-S) isolated through active surveillance of Vietnamese pig farms from 2010 through 2015 provides molecular epidemiological insight into the genetic diversification of IAV-S in Vietnam after the emergence of A(H1N1)pdm09 viruses. Multiple reassortments among A(H1N1)pdm09 viruses and enzootic IAV-S yielded 14 genotypes, 9 of which carried novel gene combinations. The reassortants that carried M genes derived from A(H1N1)pdm09 viruses became predominant, replacing those of the IAV-S that had been endemic in Vietnam since 2011. Notably, one of the novel reassortants likely caused a human case in Vietnam. Given that Vietnam is the second-largest pig-producing country in Asia, continued monitoring of IAV-S is highly important from the viewpoints of both the swine industry and human public health. PMID:27795418

  9. Painful Na-channelopathies: an expanding universe.

    PubMed

    Waxman, Stephen G

    2013-07-01

    The universe of painful Na-channelopathies--human disorders caused by mutations in voltage-gated sodium channels--has recently expanded in three dimensions. We now know that mutations of sodium channels cause not only rare genetic 'model disorders' such as inherited erythromelalgia and channelopathy-associated insensitivity to pain but also common painful neuropathies. We have learned that mutations of NaV1.8, as well as mutations of NaV1.7, can cause painful Na-channelopathies. Moreover, recent studies combining atomic level structural models and pharmacogenomics suggest that the goal of genomically guided pain therapy may not be unrealistic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Subdecadal phytolith and charcoal records from Lake Malawi, East Africa imply minimal effects on human evolution from the ∼74 ka Toba supereruption.

    PubMed

    Yost, Chad L; Jackson, Lily J; Stone, Jeffery R; Cohen, Andrew S

    2018-03-01

    The temporal proximity of the ∼74 ka Toba supereruption to a putative 100-50 ka human population bottleneck is the basis for the volcanic winter/weak Garden of Eden hypothesis, which states that the eruption caused a 6-year-long global volcanic winter and reduced the effective population of anatomically modern humans (AMH) to fewer than 10,000 individuals. To test this hypothesis, we sampled two cores collected from Lake Malawi with cryptotephra previously fingerprinted to the Toba supereruption. Phytolith and charcoal samples were continuously collected at ∼3-4 mm (∼8-9 yr) intervals above and below the Toba cryptotephra position, with no stratigraphic breaks. For samples synchronous or proximal to the Toba interval, we found no change in low elevation tree cover, or in cool climate C 3 and warm season C 4 xerophytic and mesophytic grass abundance that is outside of normal variability. A spike in locally derived charcoal and xerophytic C 4 grasses immediately after the Toba eruption indicates reduced precipitation and die-off of at least some afromontane vegetation, but does not signal volcanic winter conditions. A review of Toba tuff petrological and melt inclusion studies suggest a Tambora-like 50 to 100 Mt SO 2 atmospheric injection. However, most Toba climate models use SO 2 values that are one to two orders of magnitude higher, thereby significantly overestimating the amount of cooling. A review of recent genetic studies finds no support for a genetic bottleneck at or near ∼74 ka. Based on these previous studies and our new paleoenvironmental data, we find no support for the Toba catastrophe hypothesis and conclude that the Toba supereruption did not 1) produce a 6-year-long volcanic winter in eastern Africa, 2) cause a genetic bottleneck among African AMH populations, or 3) bring humanity to the brink of extinction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Resequencing microarray probe design for typing genetically diverse viruses: human rhinoviruses and enteroviruses

    PubMed Central

    Wang, Zheng; Malanoski, Anthony P; Lin, Baochuan; Kidd, Carolyn; Long, Nina C; Blaney, Kate M; Thach, Dzung C; Tibbetts, Clark; Stenger, David A

    2008-01-01

    Background Febrile respiratory illness (FRI) has a high impact on public health and global economics and poses a difficult challenge for differential diagnosis. A particular issue is the detection of genetically diverse pathogens, i.e. human rhinoviruses (HRV) and enteroviruses (HEV) which are frequent causes of FRI. Resequencing Pathogen Microarray technology has demonstrated potential for differential diagnosis of several respiratory pathogens simultaneously, but a high confidence design method to select probes for genetically diverse viruses is lacking. Results Using HRV and HEV as test cases, we assess a general design strategy for detecting and serotyping genetically diverse viruses. A minimal number of probe sequences (26 for HRV and 13 for HEV), which were potentially capable of detecting all serotypes of HRV and HEV, were determined and implemented on the Resequencing Pathogen Microarray RPM-Flu v.30/31 (Tessarae RPM-Flu). The specificities of designed probes were validated using 34 HRV and 28 HEV strains. All strains were successfully detected and identified at least to species level. 33 HRV strains and 16 HEV strains could be further differentiated to serotype level. Conclusion This study provides a fundamental evaluation of simultaneous detection and differential identification of genetically diverse RNA viruses with a minimal number of prototype sequences. The results demonstrated that the newly designed RPM-Flu v.30/31 can provide comprehensive and specific analysis of HRV and HEV samples which implicates that this design strategy will be applicable for other genetically diverse viruses. PMID:19046445

  12. The genetic correlation between height and IQ: shared genes or assortative mating?

    PubMed

    Keller, Matthew C; Garver-Apgar, Christine E; Wright, Margaret J; Martin, Nicholas G; Corley, Robin P; Stallings, Michael C; Hewitt, John K; Zietsch, Brendan P

    2013-04-01

    Traits that are attractive to the opposite sex are often positively correlated when scaled such that scores increase with attractiveness, and this correlation typically has a genetic component. Such traits can be genetically correlated due to genes that affect both traits ("pleiotropy") and/or because assortative mating causes statistical correlations to develop between selected alleles across the traits ("gametic phase disequilibrium"). In this study, we modeled the covariation between monozygotic and dizygotic twins, their siblings, and their parents (total N = 7,905) to elucidate the nature of the correlation between two potentially sexually selected traits in humans: height and IQ. Unlike previous designs used to investigate the nature of the height-IQ correlation, the present design accounts for the effects of assortative mating and provides much less biased estimates of additive genetic, non-additive genetic, and shared environmental influences. Both traits were highly heritable, although there was greater evidence for non-additive genetic effects in males. After accounting for assortative mating, the correlation between height and IQ was found to be almost entirely genetic in nature. Model fits indicate that both pleiotropy and assortative mating contribute significantly and about equally to this genetic correlation.

  13. Demographic mechanisms underpinning genetic assimilation of remnant groups of a large carnivore

    USGS Publications Warehouse

    Mikle, Nathaniel; Graves, Tabitha A.; Kovach, Ryan P.; Kendall, Katherine C.; Macleod, Amy C.

    2016-01-01

    Current range expansions of large terrestrial carnivores are occurring following human-induced range contraction. Contractions are often incomplete, leaving small remnant groups in refugia throughout the former range. Little is known about the underlying ecological and evolutionary processes that influence how remnant groups are affected during range expansion. We used data from a spatially explicit, long-term genetic sampling effort of grizzly bears (Ursus arctos) in the Northern Continental Divide Ecosystem (NCDE), USA, to identify the demographic processes underlying spatial and temporal patterns of genetic diversity. We conducted parentage analysis to evaluate how reproductive success and dispersal contribute to spatio-temporal patterns of genetic diversity in remnant groups of grizzly bears existing in the southwestern (SW), southeastern (SE) and east-central (EC) regions of the NCDE. A few reproductively dominant individuals and local inbreeding caused low genetic diversity in peripheral regions that may have persisted for multiple generations before eroding rapidly (approx. one generation) during population expansion. Our results highlight that individual-level genetic and reproductive dynamics play critical roles during genetic assimilation, and show that spatial patterns of genetic diversity on the leading edge of an expansion may result from historical demographic patterns that are highly ephemeral.

  14. Demographic mechanisms underpinning genetic assimilation of remnant groups of a large carnivore

    PubMed Central

    Kovach, Ryan; Kendall, Katherine C.; Macleod, Amy C.

    2016-01-01

    Current range expansions of large terrestrial carnivores are occurring following human-induced range contraction. Contractions are often incomplete, leaving small remnant groups in refugia throughout the former range. Little is known about the underlying ecological and evolutionary processes that influence how remnant groups are affected during range expansion. We used data from a spatially explicit, long-term genetic sampling effort of grizzly bears (Ursus arctos) in the Northern Continental Divide Ecosystem (NCDE), USA, to identify the demographic processes underlying spatial and temporal patterns of genetic diversity. We conducted parentage analysis to evaluate how reproductive success and dispersal contribute to spatio-temporal patterns of genetic diversity in remnant groups of grizzly bears existing in the southwestern (SW), southeastern (SE) and east-central (EC) regions of the NCDE. A few reproductively dominant individuals and local inbreeding caused low genetic diversity in peripheral regions that may have persisted for multiple generations before eroding rapidly (approx. one generation) during population expansion. Our results highlight that individual-level genetic and reproductive dynamics play critical roles during genetic assimilation, and show that spatial patterns of genetic diversity on the leading edge of an expansion may result from historical demographic patterns that are highly ephemeral. PMID:27655768

  15. American Journal of Ophthalmology Contributions to Ophthalmic Genetics.

    PubMed

    MacDonald, Ian M; Sieving, Pamela C

    2018-06-01

    To review the contributions to ophthalmic genetics through the American Journal of Ophthalmology (AJO). Perspective. A literature search to retrieve original articles, letters, editorials, and published lectures from 1966 to 2017, providing a 50-year review. Titles were excluded that gave no reference to genetics or that presented findings related to a nongenetic ocular condition. From a search of the Scopus database, 719 articles were ascertained. Of these, 115 were excluded because the title did not reference a genetic condition or have a focus on genetic factors; 4 were excluded because they described animal phenotypes (1966-1967); and 4 were excluded owing to having received no citations up to and including 2015. The highest number of citations was 283 times for a single article on familial aggregation in age-related macular degeneration. The Web of Science database yielded 771 articles; of these, 118 were excluded owing to not reporting human genetic studies; 55 received no citations. The highest number of citations was 307 for a single article, a 1991 paper on Leber hereditary optic neuropathy. The Journal's contributions to our understanding of the heritability of human ocular traits have been broad and deep, with international reach. The development of new techniques fostered new concepts and new approaches to rapidly expand the number of known single gene disorders with a defined molecular genetic cause. Reports on Mendelian and complex traits in the AJO abound, along with 6 Edward Jackson Memorial Lectures on retinal dystrophies, Leber congenital amaurosis, age-related macular degeneration, and glaucoma. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Whole genome sequence analysis indicates recent diversification of mammal-associated Campylobacter fetus and implicates a genetic factor associated with H2S production

    USDA-ARS?s Scientific Manuscript database

    Campylobacter fetus can cause disease in both humans and animals. C. fetus has been divided into three subspecies: C. fetus subsp. fetus (Cff), C. fetus subsp. venerealis (Cfv) and C. fetus subsp. testudinum. Subspecies identification of C. fetus strains is crucial in the control of Bovine Genital C...

  17. BAG3 Directly Interacts with Mutated alphaB-Crystallin to Suppress Its Aggregation and Toxicity

    PubMed Central

    Hishiya, Akinori; Salman, Mortada Najem; Carra, Serena; Kampinga, Harm H.; Takayama, Shinichi

    2011-01-01

    A homozygous disruption or genetic mutation of the bag3 gene causes progressive myofibrillar myopathy in mouse and human skeletal and cardiac muscle disorder while mutations in the small heat shock protein αB-crystallin gene (CRYAB) are reported to be responsible for myofibrillar myopathy. Here, we demonstrate that BAG3 directly binds to wild-type αB-crystallin and the αB-crystallin mutant R120G, via the intermediate domain of BAG3. Peptides that inhibit this interaction in an in vitro binding assay indicate that two conserved Ile-Pro-Val regions of BAG3 are involved in the interaction with αB-crystallin, which is similar to results showing BAG3 binding to HspB8 and HspB6. BAG3 overexpression increased αB-crystallin R120G solubility and inhibited its intracellular aggregation in HEK293 cells. BAG3 suppressed cell death induced by αB-crystallin R120G overexpression in differentiating C2C12 mouse myoblast cells. Our findings indicate a novel function for BAG3 in inhibiting protein aggregation caused by the genetic mutation of CRYAB responsible for human myofibrillar myopathy. PMID:21423662

  18. Pleiotropic Effects of Immune Responses Explain Variation in the Prevalence of Fibroproliferative Diseases

    PubMed Central

    Russell, Shirley B.; Smith, Joan C.; Huang, Minjun; Trupin, Joel S.; Williams, Scott M.

    2015-01-01

    Many diseases are differentially distributed among human populations. Differential selection on genetic variants in ancestral environments that coincidentally predispose to disease can be an underlying cause of these unequal prevalence patterns. Selected genes may be pleiotropic, affecting multiple phenotypes and resulting in more than one disease or trait. Patterns of pleiotropy may be helpful in understanding the underlying causes of an array of conditions in a population. For example, several fibroproliferative diseases are more prevalent and severe in populations of sub-Saharan ancestry. We propose that this disparity is due to selection for an enhanced Th2 response that confers resistance to helminthic infections, and concurrently increases susceptibility to fibrosis due to the profibrotic action of Th2 cytokines. Many studies on selection of Th2-related genes for host resistance to helminths have been reported, but the pleiotropic impact of this selection on the distribution of fibrotic disorders has not been explicitly investigated. We discuss the disproportionate occurrence of fibroproliferative diseases in individuals of African ancestry and provide evidence that adaptation of the immune system has shaped the genetic structure of these human populations in ways that alter the distribution of multiple fibroproliferative diseases. PMID:26540410

  19. Erythro-megakaryocytic transcription factors associated with hereditary anemia

    PubMed Central

    Weiss, Mitchell J.

    2014-01-01

    Most heritable anemias are caused by mutations in genes encoding globins, red blood cell (RBC) membrane proteins, or enzymes in the glycolytic and hexose monophosphate shunt pathways. A less common class of genetic anemia is caused by mutations that alter the functions of erythroid transcription factors (TFs). Many TF mutations associated with heritable anemia cause truncations or amino acid substitutions, resulting in the production of functionally altered proteins. Characterization of these mutant proteins has provided insights into mechanisms of gene expression, hematopoietic development, and human disease. Mutations within promoter or enhancer regions that disrupt TF binding to essential erythroid genes also cause anemia and heritable variations in RBC traits, such as fetal hemoglobin content. Defining the latter may have important clinical implications for de-repressing fetal hemoglobin synthesis to treat sickle cell anemia and β thalassemia. Functionally important alterations in genes encoding TFs or their cognate cis elements are likely to occur more frequently than currently appreciated, a hypothesis that will soon be tested through ongoing genome-wide association studies and the rapidly expanding use of global genome sequencing for human diagnostics. Findings obtained through such studies of RBCs and associated diseases are likely generalizable to many human diseases and quantitative traits. PMID:24652993

  20. Hypertrophic and dilated cardiomyopathy: four decades of basic research on muscle lead to potential therapeutic approaches to these devastating genetic diseases.

    PubMed

    Spudich, James A

    2014-03-18

    With the advent of technologies to obtain the complete sequence of the human genome in a cost-effective manner, this decade and those to come will see an exponential increase in our understanding of the underlying genetics that lead to human disease. And where we have a deep understanding of the biochemical and biophysical basis of the machineries and pathways involved in those genetic changes, there are great hopes for the development of modern therapeutics that specifically target the actual machinery and pathways altered by individual mutations. Prime examples of such a genetic disease are those classes of hypertrophic and dilated cardiomyopathy that result from single amino-acid substitutions in one of several of the proteins that make up the cardiac sarcomere or from the truncation of myosin binding protein C. Hypertrophic cardiomyopathy alone affects ∼1 in 500 individuals, and it is the leading cause of sudden cardiac death in young adults. Here I describe approaches to understand the molecular basis of the alterations in power output that result from these mutations. Small molecules binding to the mutant sarcomeric protein complex should be able to mitigate the effects of hypertrophic and dilated cardiomyopathy mutations at their sources, leading to possible new therapeutic approaches for these genetic diseases. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

Top