Sample records for cave automatic virtual

  1. A Framework for Aligning Instructional Design Strategies with Affordances of CAVE Immersive Virtual Reality Systems

    ERIC Educational Resources Information Center

    Ritz, Leah T.; Buss, Alan R.

    2016-01-01

    Increasing availability of immersive virtual reality (IVR) systems, such as the Cave Automatic Virtual Environment (CAVE) and head-mounted displays, for use in education contexts is providing new opportunities and challenges for instructional designers. By highlighting the affordances of IVR specific to the CAVE, the authors emphasize the…

  2. The CAVE (TM) automatic virtual environment: Characteristics and applications

    NASA Technical Reports Server (NTRS)

    Kenyon, Robert V.

    1995-01-01

    Virtual reality may best be defined as the wide-field presentation of computer-generated, multi-sensory information that tracks a user in real time. In addition to the more well-known modes of virtual reality -- head-mounted displays and boom-mounted displays -- the Electronic Visualization Laboratory at the University of Illinois at Chicago recently introduced a third mode: a room constructed from large screens on which the graphics are projected on to three walls and the floor. The CAVE is a multi-person, room sized, high resolution, 3D video and audio environment. Graphics are rear projected in stereo onto three walls and the floor, and viewed with stereo glasses. As a viewer wearing a location sensor moves within its display boundaries, the correct perspective and stereo projections of the environment are updated, and the image moves with and surrounds the viewer. The other viewers in the CAVE are like passengers in a bus, along for the ride. 'CAVE,' the name selected for the virtual reality theater, is both a recursive acronym (Cave Automatic Virtual Environment) and a reference to 'The Simile of the Cave' found in Plato's 'Republic,' in which the philosopher explores the ideas of perception, reality, and illusion. Plato used the analogy of a person facing the back of a cave alive with shadows that are his/her only basis for ideas of what real objects are. Rather than having evolved from video games or flight simulation, the CAVE has its motivation rooted in scientific visualization and the SIGGRAPH 92 Showcase effort. The CAVE was designed to be a useful tool for scientific visualization. The Showcase event was an experiment; the Showcase chair and committee advocated an environment for computational scientists to interactively present their research at a major professional conference in a one-to-many format on high-end workstations attached to large projection screens. The CAVE was developed as a 'virtual reality theater' with scientific content and projection that met the criteria of Showcase.

  3. Defense applications of the CAVE (CAVE automatic virtual environment)

    NASA Astrophysics Data System (ADS)

    Isabelle, Scott K.; Gilkey, Robert H.; Kenyon, Robert V.; Valentino, George; Flach, John M.; Spenny, Curtis H.; Anderson, Timothy R.

    1997-07-01

    The CAVE is a multi-person, room-sized, high-resolution, 3D video and auditory environment, which can be used to present very immersive virtual environment experiences. This paper describes the CAVE technology and the capability of the CAVE system as originally developed at the Electronics Visualization Laboratory of the University of Illinois- Chicago and as more recently implemented by Wright State University (WSU) in the Armstrong Laboratory at Wright- Patterson Air Force Base (WPAFB). One planned use of the WSU/WPAFB CAVE is research addressing the appropriate design of display and control interfaces for controlling uninhabited aerial vehicles. The WSU/WPAFB CAVE has a number of features that make it well-suited to this work: (1) 360 degrees surround, plus floor, high resolution visual displays, (2) virtual spatialized audio, (3) the ability to integrate real and virtual objects, and (4) rapid and flexible reconfiguration. However, even though the CAVE is likely to have broad utility for military applications, it does have certain limitations that may make it less well- suited to applications that require 'natural' haptic feedback, vestibular stimulation, or an ability to interact with close detailed objects.

  4. Modeling of luminance distribution in CAVE-type virtual reality systems

    NASA Astrophysics Data System (ADS)

    Meironke, Michał; Mazikowski, Adam

    2017-08-01

    At present, one of the most advanced virtual reality systems are CAVE-type (Cave Automatic Virtual Environment) installations. Such systems are usually consisted of four, five or six projection screens and in case of six screens arranged in form of a cube. Providing the user with a high level of immersion feeling in such systems is largely dependent of optical properties of the system. The modeling of physical phenomena plays nowadays a huge role in the most fields of science and technology. It allows to simulate work of device without a need to make any changes in the physical constructions. In this paper distribution of luminance in CAVE-type virtual reality systems were modelled. Calculations were performed for the model of 6-walled CAVE-type installation, based on Immersive 3D Visualization Laboratory, situated at the Faculty of Electronics, Telecommunications and Informatics at the Gdańsk University of Technology. Tests have been carried out for two different scattering distribution of the screen material in order to check how these characteristicinfluence on the luminance distribution of the whole CAVE. The basis assumption and simplification of modeled CAVE-type installation and results were presented. The brief discussion about the results and usefulness of developed model were also carried out.

  5. Evaluating visual discomfort in stereoscopic projection-based CAVE system with a close viewing distance

    NASA Astrophysics Data System (ADS)

    Song, Weitao; Weng, Dongdong; Feng, Dan; Li, Yuqian; Liu, Yue; Wang, Yongtian

    2015-05-01

    As one of popular immersive Virtual Reality (VR) systems, stereoscopic cave automatic virtual environment (CAVE) system is typically consisted of 4 to 6 3m-by-3m sides of a room made of rear-projected screens. While many endeavors have been made to reduce the size of the projection-based CAVE system, the issue of asthenopia caused by lengthy exposure to stereoscopic images in such CAVE with a close viewing distance was seldom tangled. In this paper, we propose a light-weighted approach which utilizes a convex eyepiece to reduce visual discomfort induced by stereoscopic vision. An empirical experiment was conducted to examine the feasibility of convex eyepiece in a large depth of field (DOF) at close viewing distance both objectively and subjectively. The result shows the positive effects of convex eyepiece on the relief of eyestrain.

  6. Investigation of tracking systems properties in CAVE-type virtual reality systems

    NASA Astrophysics Data System (ADS)

    Szymaniak, Magda; Mazikowski, Adam; Meironke, Michał

    2017-08-01

    In recent years, many scientific and industrial centers in the world developed a virtual reality systems or laboratories. One of the most advanced solutions are Immersive 3D Visualization Lab (I3DVL), a CAVE-type (Cave Automatic Virtual Environment) laboratory. It contains two CAVE-type installations: six-screen installation arranged in a form of a cube, and four-screen installation, a simplified version of the previous one. The user feeling of "immersion" and interaction with virtual world depend on many factors, in particular on the accuracy of the tracking system of the user. In this paper properties of the tracking systems applied in I3DVL was investigated. For analysis two parameters were selected: the accuracy of the tracking system and the range of detection of markers by the tracking system in space of the CAVE. Measurements of system accuracy were performed for six-screen installation, equipped with four tracking cameras for three axes: X, Y, Z. Rotation around the Y axis was also analyzed. Measured tracking system shows good linear and rotating accuracy. The biggest issue was the range of the monitoring of markers inside the CAVE. It turned out, that the tracking system lose sight of the markers in the corners of the installation. For comparison, for a simplified version of CAVE (four-screen installation), equipped with eight tracking cameras, this problem was not occur. Obtained results will allow for improvement of cave quality.

  7. Exploring Learner Acceptance of the Use of Virtual Reality in Medical Education: A Case Study of Desktop and Projection-Based Display Systems

    ERIC Educational Resources Information Center

    Huang, Hsiu-Mei; Liaw, Shu-Sheng; Lai, Chung-Min

    2016-01-01

    Advanced technologies have been widely applied in medical education, including human-patient simulators, immersive virtual reality Cave Automatic Virtual Environment systems, and video conferencing. Evaluating learner acceptance of such virtual reality (VR) learning environments is a critical issue for ensuring that such technologies are used to…

  8. Integrating a Motion Base into a CAVE Automatic Virtual Environment: Phase 1

    DTIC Science & Technology

    2001-07-01

    this, a CAVE system must perform well in the following motion-related areas: visual gaze stability, simulator sickness, realism (or face validity...and performance validity. Visual Gaze Stability Visual gaze stability, the ability to maintain eye fixation on a particular target, depends upon human...reflexes such as the vestibulo-ocular reflex (VOR) and the optokinetic nystagmus (OKN). VOR is a reflex that counter-rotates the eye relative to the

  9. Modeling and performance analysis using extended fuzzy-timing Petri nets for networked virtual environments.

    PubMed

    Zhou, Y; Murata, T; Defanti, T A

    2000-01-01

    Despite their attractive properties, networked virtual environments (net-VEs) are notoriously difficult to design, implement, and test due to the concurrency, real-time and networking features in these systems. Net-VEs demand high quality-of-service (QoS) requirements on the network to maintain natural and real-time interactions among users. The current practice for net-VE design is basically trial and error, empirical, and totally lacks formal methods. This paper proposes to apply a Petri net formal modeling technique to a net-VE-NICE (narrative immersive constructionist/collaborative environment), predict the net-VE performance based on simulation, and improve the net-VE performance. NICE is essentially a network of collaborative virtual reality systems called the CAVE-(CAVE automatic virtual environment). First, we introduce extended fuzzy-timing Petri net (EFTN) modeling and analysis techniques. Then, we present EFTN models of the CAVE, NICE, and transport layer protocol used in NICE: transmission control protocol (TCP). We show the possibility analysis based on the EFTN model for the CAVE. Then, by using these models and design/CPN as the simulation tool, we conducted various simulations to study real-time behavior, network effects and performance (latencies and jitters) of NICE. Our simulation results are consistent with experimental data.

  10. Manually locating physical and virtual reality objects.

    PubMed

    Chen, Karen B; Kimmel, Ryan A; Bartholomew, Aaron; Ponto, Kevin; Gleicher, Michael L; Radwin, Robert G

    2014-09-01

    In this study, we compared how users locate physical and equivalent three-dimensional images of virtual objects in a cave automatic virtual environment (CAVE) using the hand to examine how human performance (accuracy, time, and approach) is affected by object size, location, and distance. Virtual reality (VR) offers the promise to flexibly simulate arbitrary environments for studying human performance. Previously, VR researchers primarily considered differences between virtual and physical distance estimation rather than reaching for close-up objects. Fourteen participants completed manual targeting tasks that involved reaching for corners on equivalent physical and virtual boxes of three different sizes. Predicted errors were calculated from a geometric model based on user interpupillary distance, eye location, distance from the eyes to the projector screen, and object. Users were 1.64 times less accurate (p < .001) and spent 1.49 times more time (p = .01) targeting virtual versus physical box corners using the hands. Predicted virtual targeting errors were on average 1.53 times (p < .05) greater than the observed errors for farther virtual targets but not significantly different for close-up virtual targets. Target size, location, and distance, in addition to binocular disparity, affected virtual object targeting inaccuracy. Observed virtual box inaccuracy was less than predicted for farther locations, suggesting possible influence of cues other than binocular vision. Human physical interaction with objects in VR for simulation, training, and prototyping involving reaching and manually handling virtual objects in a CAVE are more accurate than predicted when locating farther objects.

  11. Investigating the feasibility of Visualising Complex Space Weather Data in a CAVE

    NASA Astrophysics Data System (ADS)

    Loughlin, S.; Habash Krause, L.

    2013-12-01

    The purpose of this study was to investigate the feasibility of visualising complex space weather data in a Cave Automatic Virtual Environment (CAVE). Space weather is increasingly causing disruptions on Earth, such as power outages and disrupting communication to satellites. We wanted to display this space weather data within the CAVE since the data from instruments, models and simulations are typically too complex to understand on their own, especially when they are of 7 dimensions. To accomplish this, I created a VTK to NetCDF converter. NetCDF is a science data format, which stores array oriented scientific data. The format is maintained by the University Corporation for Atmospheric Research, and is used extensively by the atmospheric and space communities.

  12. Using immersive simulation for training first responders for mass casualty incidents.

    PubMed

    Wilkerson, William; Avstreih, Dan; Gruppen, Larry; Beier, Klaus-Peter; Woolliscroft, James

    2008-11-01

    A descriptive study was performed to better understand the possible utility of immersive virtual reality simulation for training first responders in a mass casualty event. Utilizing a virtual reality cave automatic virtual environment (CAVE) and high-fidelity human patient simulator (HPS), a group of experts modeled a football stadium that experienced a terrorist explosion during a football game. Avatars (virtual patients) were developed by expert consensus that demonstrated a spectrum of injuries ranging from death to minor lacerations. A group of paramedics was assessed by observation for decisions made and action taken. A critical action checklist was created and used for direct observation and viewing videotaped recordings. Of the 12 participants, only 35.7% identified the type of incident they encountered. None identified a secondary device that was easily visible. All participants were enthusiastic about the simulation and provided valuable comments and insights. Learner feedback and expert performance review suggests that immersive training in a virtual environment has the potential to be a powerful tool to train first responders for high-acuity, low-frequency events, such as a terrorist attack.

  13. Data sonification and sound visualization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaper, H. G.; Tipei, S.; Wiebel, E.

    1999-07-01

    Sound can help us explore and analyze complex data sets in scientific computing. The authors describe a digital instrument for additive sound synthesis (Diass) and a program to visualize sounds in a virtual reality environment (M4Cave). Both are part of a comprehensive music composition environment that includes additional software for computer-assisted composition and automatic music notation.

  14. Interfacing modeling suite Physics Of Eclipsing Binaries 2.0 with a Virtual Reality Platform

    NASA Astrophysics Data System (ADS)

    Harriett, Edward; Conroy, Kyle; Prša, Andrej; Klassner, Frank

    2018-01-01

    To explore alternate methods for modeling eclipsing binary stars, we extrapolate upon PHOEBE’s (PHysics Of Eclipsing BinariEs) capabilities in a virtual reality (VR) environment to create an immersive and interactive experience for users. The application used is Vizard, a python-scripted VR development platform for environments such as Cave Automatic Virtual Environment (CAVE) and other off-the-shelf VR headsets. Vizard allows the freedom for all modeling to be precompiled without compromising functionality or usage on its part. The system requires five arguments to be precomputed using PHOEBE’s python front-end: the effective temperature, flux, relative intensity, vertex coordinates, and orbits; the user can opt to implement other features from PHOEBE to be accessed within the simulation as well. Here we present the method for making the data observables accessible in real time. An Occulus Rift will be available for a live showcase of various cases of VR rendering of PHOEBE binary systems including detached and contact binary stars.

  15. Stage Cylindrical Immersive Display

    NASA Technical Reports Server (NTRS)

    Abramyan, Lucy; Norris, Jeffrey S.; Powell, Mark W.; Mittman, David S.; Shams, Khawaja S.

    2011-01-01

    Panoramic images with a wide field of view intend to provide a better understanding of an environment by placing objects of the environment on one seamless image. However, understanding the sizes and relative positions of the objects in a panorama is not intuitive and prone to errors because the field of view is unnatural to human perception. Scientists are often faced with the difficult task of interpreting the sizes and relative positions of objects in an environment when viewing an image of the environment on computer monitors or prints. A panorama can display an object that appears to be to the right of the viewer when it is, in fact, behind the viewer. This misinterpretation can be very costly, especially when the environment is remote and/or only accessible by unmanned vehicles. A 270 cylindrical display has been developed that surrounds the viewer with carefully calibrated panoramic imagery that correctly engages their natural kinesthetic senses and provides a more accurate awareness of the environment. The cylindrical immersive display offers a more natural window to the environment than a standard cubic CAVE (Cave Automatic Virtual Environment), and the geometry allows multiple collocated users to simultaneously view data and share important decision-making tasks. A CAVE is an immersive virtual reality environment that allows one or more users to absorb themselves in a virtual environment. A common CAVE setup is a room-sized cube where the cube sides act as projection planes. By nature, all cubic CAVEs face a problem with edge matching at edges and corners of the display. Modern immersive displays have found ways to minimize seams by creating very tight edges, and rely on the user to ignore the seam. One significant deficiency of flat-walled CAVEs is that the sense of orientation and perspective within the scene is broken across adjacent walls. On any single wall, parallel lines properly converge at their vanishing point as they should, and the sense of perspective within the scene contained on only one wall has integrity. Unfortunately, parallel lines that lie on adjacent walls do not necessarily remain parallel. This results in inaccuracies in the scene that can distract the viewer and subtract from the immersive experience of the CAVE.

  16. Automatic Tools for Enhancing the Collaborative Experience in Large Projects

    NASA Astrophysics Data System (ADS)

    Bourilkov, D.; Rodriquez, J. L.

    2014-06-01

    With the explosion of big data in many fields, the efficient management of knowledge about all aspects of the data analysis gains in importance. A key feature of collaboration in large scale projects is keeping a log of what is being done and how - for private use, reuse, and for sharing selected parts with collaborators and peers, often distributed geographically on an increasingly global scale. Even better if the log is automatically created on the fly while the scientist or software developer is working in a habitual way, without the need for extra efforts. This saves time and enables a team to do more with the same resources. The CODESH - COllaborative DEvelopment SHell - and CAVES - Collaborative Analysis Versioning Environment System projects address this problem in a novel way. They build on the concepts of virtual states and transitions to enhance the collaborative experience by providing automatic persistent virtual logbooks. CAVES is designed for sessions of distributed data analysis using the popular ROOT framework, while CODESH generalizes the approach for any type of work on the command line in typical UNIX shells like bash or tcsh. Repositories of sessions can be configured dynamically to record and make available the knowledge accumulated in the course of a scientific or software endeavor. Access can be controlled to define logbooks of private sessions or sessions shared within or between collaborating groups. A typical use case is building working scalable systems for analysis of Petascale volumes of data as encountered in the LHC experiments. Our approach is general enough to find applications in many fields.

  17. A Three Pronged Approach for Improved Data Understanding: 3-D Visualization, Use of Gaming Techniques, and Intelligent Advisory Agents

    DTIC Science & Technology

    2006-10-01

    Pronged Approach for Improved Data Understanding: 3-D Visualization, Use of Gaming Techniques, and Intelligent Advisory Agents. In Visualising Network...University at the start of each fall semester, when numerous new students arrive on campus and begin downloading extensive amounts of audio and...SIGGRAPH ’92 • C. Cruz-Neira, D.J. Sandin, T.A. DeFanti, R.V. Kenyon and J.C. Hart, "The CAVE: Audio Visual Experience Automatic Virtual Environment

  18. Assessment of radiation awareness training in immersive virtual environments

    NASA Astrophysics Data System (ADS)

    Whisker, Vaughn E., III

    The prospect of new nuclear power plant orders in the near future and the graying of the current workforce create a need to train new personnel faster and better. Immersive virtual reality (VR) may offer a solution to the training challenge. VR technology presented in a CAVE Automatic Virtual Environment (CAVE) provides a high-fidelity, one-to-one scale environment where areas of the power plant can be recreated and virtual radiation environments can be simulated, making it possible to safely expose workers to virtual radiation in the context of the actual work environment. The use of virtual reality for training is supported by many educational theories; constructivism and discovery learning, in particular. Educational theory describes the importance of matching the training to the task. Plant access training and radiation worker training, common forms of training in the nuclear industry, rely on computer-based training methods in most cases, which effectively transfer declarative knowledge, but are poor at transferring skills. If an activity were to be added, the training would provide personnel with the opportunity to develop skills and apply their knowledge so they could be more effective when working in the radiation environment. An experiment was developed to test immersive virtual reality's suitability for training radiation awareness. Using a mixed methodology of quantitative and qualitative measures, the subjects' performances before and after training were assessed. First, subjects completed a pre-test to measure their knowledge prior to completing any training. Next they completed unsupervised computer-based training, which consisted of a PowerPoint presentation and a PDF document. After completing a brief orientation activity in the virtual environment, one group of participants received supplemental radiation awareness training in a simulated radiation environment presented in the CAVE, while a second group, the control group, moved directly to the assessment phase of the experiment. The CAVE supplied an activity-based training environment where learners were able to use a virtual survey meter to explore the properties of radiation sources and the effects of time and distance on radiation exposure. Once the training stage had ended, the subjects completed an assessment activity where they were asked to complete four tasks in a simulated radiation environment in the CAVE, which was designed to provide a more authentic assessment than simply testing understanding using a quiz. After the practicum, the subjects completed a post-test. Survey information was also collected to assist the researcher with interpretation of the collected data. Response to the training was measured by completion time, radiation exposure received, successful completion of the four tasks in the practicum, and scores on the post-test. These results were combined to create a radiation awareness score. In addition, observational data was collected as the subjects completed the tasks. The radiation awareness scores of the control group and the group that received supplemental training in the virtual environment were compared. T-tests showed that the effect of the supplemental training was not significant; however, calculation of the effect size showed a small-to-medium effect of the training. The CAVE group received significantly less radiation exposure during the assessment activity, and they completed the activities on an average of one minute faster. These results indicate that the training was effective, primarily for instilling radiation sensitivity. Observational data collected during the assessment supports this conclusion. The training environment provided by the immersive virtual reality recreated a radiation environment where learners could apply knowledge they had been taught by computer-based training. Activity-based training has been shown to be a more effective way to transfer skills because of the similarity between the training environment and the application environment. Virtual reality enables the training environment to look and feel like the application environment. Because of this, radiation awareness training in an immersive virtual environment should be considered by the nuclear industry, which is supported by the results of this experiment.

  19. Venus Quadrangle Geological Mapping: Use of Geoscience Data Visualization Systems in Mapping and Training

    NASA Technical Reports Server (NTRS)

    Head, James W.; Huffman, J. N.; Forsberg, A. S.; Hurwitz, D. M.; Basilevsky, A. T.; Ivanov, M. A.; Dickson, J. L.; Kumar, P. Senthil

    2008-01-01

    We are currently investigating new technological developments in computer visualization and analysis in order to assess their importance and utility in planetary geological analysis and mapping [1,2]. Last year we reported on the range of technologies available and on our application of these to various problems in planetary mapping [3]. In this contribution we focus on the application of these techniques and tools to Venus geological mapping at the 1:5M quadrangle scale. In our current Venus mapping projects we have utilized and tested the various platforms to understand their capabilities and assess their usefulness in defining units, establishing stratigraphic relationships, mapping structures, reaching consensus on interpretations and producing map products. We are specifically assessing how computer visualization display qualities (e.g., level of immersion, stereoscopic vs. monoscopic viewing, field of view, large vs. small display size, etc.) influence performance on scientific analysis and geological mapping. We have been exploring four different environments: 1) conventional desktops (DT), 2) semi-immersive Fishtank VR (FT) (i.e., a conventional desktop with head-tracked stereo and 6DOF input), 3) tiled wall displays (TW), and 4) fully immersive virtual reality (IVR) (e.g., "Cave Automatic Virtual Environment," or Cave system). Formal studies demonstrate that fully immersive Cave environments are superior to desktop systems for many tasks [e.g., 4].

  20. 3D workflow for HDR image capture of projection systems and objects for CAVE virtual environments authoring with wireless touch-sensitive devices

    NASA Astrophysics Data System (ADS)

    Prusten, Mark J.; McIntyre, Michelle; Landis, Marvin

    2006-02-01

    A 3D workflow pipeline is presented for High Dynamic Range (HDR) image capture of projected scenes or objects for presentation in CAVE virtual environments. The methods of HDR digital photography of environments vs. objects are reviewed. Samples of both types of virtual authoring being the actual CAVE environment and a sculpture are shown. A series of software tools are incorporated into a pipeline called CAVEPIPE, allowing for high-resolution objects and scenes to be composited together in natural illumination environments [1] and presented in our CAVE virtual reality environment. We also present a way to enhance the user interface for CAVE environments. The traditional methods of controlling the navigation through virtual environments include: glove, HUD's and 3D mouse devices. By integrating a wireless network that includes both WiFi (IEEE 802.11b/g) and Bluetooth (IEEE 802.15.1) protocols the non-graphical input control device can be eliminated. Therefore wireless devices can be added that would include: PDA's, Smart Phones, TabletPC's, Portable Gaming consoles, and PocketPC's.

  1. Full Immersive Virtual Environment Cave[TM] in Chemistry Education

    ERIC Educational Resources Information Center

    Limniou, M.; Roberts, D.; Papadopoulos, N.

    2008-01-01

    By comparing two-dimensional (2D) chemical animations designed for computer's desktop with three-dimensional (3D) chemical animations designed for the full immersive virtual reality environment CAVE[TM] we studied how virtual reality environments could raise student's interest and motivation for learning. By using the 3ds max[TM], we can visualize…

  2. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 4 Report: Virtual Mockup Maintenance Task Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28

    Task 4 report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. This report focuses on using Full-scale virtual mockups for nuclear power plant training applications.

  3. The future of the CAVE

    NASA Astrophysics Data System (ADS)

    Defanti, Thomas A.; Acevedo, Daniel; Ainsworth, Richard A.; Brown, Maxine D.; Cutchin, Steven; Dawe, Gregory; Doerr, Kai-Uwe; Johnson, Andrew; Knox, Chris; Kooima, Robert; Kuester, Falko; Leigh, Jason; Long, Lance; Otto, Peter; Petrovic, Vid; Ponto, Kevin; Prudhomme, Andrew; Rao, Ramesh; Renambot, Luc; Sandin, Daniel J.; Schulze, Jurgen P.; Smarr, Larry; Srinivasan, Madhu; Weber, Philip; Wickham, Gregory

    2011-03-01

    The CAVE, a walk-in virtual reality environment typically consisting of 4-6 3 m-by-3 m sides of a room made of rear-projected screens, was first conceived and built in 1991. In the nearly two decades since its conception, the supporting technology has improved so that current CAVEs are much brighter, at much higher resolution, and have dramatically improved graphics performance. However, rear-projection-based CAVEs typically must be housed in a 10 m-by-10 m-by-10 m room (allowing space behind the screen walls for the projectors), which limits their deployment to large spaces. The CAVE of the future will be made of tessellated panel displays, eliminating the projection distance, but the implementation of such displays is challenging. Early multi-tile, panel-based, virtual-reality displays have been designed, prototyped, and built for the King Abdullah University of Science and Technology (KAUST) in Saudi Arabia by researchers at the University of California, San Diego, and the University of Illinois at Chicago. New means of image generation and control are considered key contributions to the future viability of the CAVE as a virtual-reality device.

  4. Karst show caves - how DTN technology as used in space assists automatic environmental monitoring and tourist protection - experiment in Postojna cave

    NASA Astrophysics Data System (ADS)

    Gabrovšek, F.; Grašič, B.; Božnar, M. Z.; Mlakar, P.; Udén, M.; Davies, E.

    2013-10-01

    The paper presents an experiment demonstrating a novel and successful application of Delay- and Disruption-Tolerant Networking (DTN) technology for automatic data transfer in a karst cave Early Warning and Measuring System. The experiment took place inside the Postojna Cave in Slovenia, which is open to tourists. Several automatic meteorological measuring stations are set up inside the cave, as an adjunct to the surveillance infrastructure; the regular data transfer provided by the DTN technology allows the surveillance system to take on the role of an Early Warning System (EWS). One of the stations is set up alongside the railway tracks, which allows the tourist to travel inside the cave by train. The experiment was carried out by placing a DTN "data mule" (a DTN-enabled computer with WiFi connection) on the train and by upgrading the meteorological station with a DTN-enabled WiFi transmission system. When the data mule is in the wireless drive-by mode, it collects measurement data from the station over a period of several seconds as the train passes the stationary equipment, and delivers data at the final train station by the cave entrance. This paper describes an overview of the experimental equipment and organisation allowing the use of a DTN system for data collection and an EWS inside karst caves where there is a regular traffic of tourists and researchers.

  5. Karst show caves - how DTN technology as used in space assists automatic environmental monitoring and tourist protection - experiment in Postojna Cave

    NASA Astrophysics Data System (ADS)

    Gabrovšek, F.; Grašič, B.; Božnar, M. Z.; Mlakar, P.; Udén, M.; Davies, E.

    2014-02-01

    The paper presents an experiment demonstrating a novel and successful application of delay- and disruption-tolerant networking (DTN) technology for automatic data transfer in a karst cave early warning and measuring system. The experiment took place inside the Postojna Cave in Slovenia, which is open to tourists. Several automatic meteorological measuring stations are set up inside the cave, as an adjunct to the surveillance infrastructure; the regular data transfer provided by the DTN technology allows the surveillance system to take on the role of an early warning system (EWS). One of the stations is set up alongside the railway tracks, which allows the tourist to travel inside the cave by train. The experiment was carried out by placing a DTN "data mule" (a DTN-enabled computer with WiFi connection) on the train and by upgrading the meteorological station with a DTN-enabled WiFi transmission system. When the data mule is in the wireless drive-by mode, it collects measurement data from the station over a period of several seconds as the train without stopping passes the stationary equipment, and delivers data at the final train station by the cave entrance. This paper describes an overview of the experimental equipment and organization allowing the use of a DTN system for data collection and an EWS inside karst caves where there is regular traffic of tourists and researchers.

  6. Modeling of driver's collision avoidance maneuver based on controller switching model.

    PubMed

    Kim, Jong-Hae; Hayakawa, Soichiro; Suzuki, Tatsuya; Hayashi, Koji; Okuma, Shigeru; Tsuchida, Nuio; Shimizu, Masayuki; Kido, Shigeyuki

    2005-12-01

    This paper presents a modeling strategy of human driving behavior based on the controller switching model focusing on the driver's collision avoidance maneuver. The driving data are collected by using the three-dimensional (3-D) driving simulator based on the CAVE Automatic Virtual Environment (CAVE), which provides stereoscopic immersive virtual environment. In our modeling, the control scenario of the human driver, that is, the mapping from the driver's sensory information to the operation of the driver such as acceleration, braking, and steering, is expressed by Piecewise Polynomial (PWP) model. Since the PWP model includes both continuous behaviors given by polynomials and discrete logical conditions, it can be regarded as a class of Hybrid Dynamical System (HDS). The identification problem for the PWP model is formulated as the Mixed Integer Linear Programming (MILP) by transforming the switching conditions into binary variables. From the obtained results, it is found that the driver appropriately switches the "control law" according to the sensory information. In addition, the driving characteristics of the beginner driver and the expert driver are compared and discussed. These results enable us to capture not only the physical meaning of the driving skill but the decision-making aspect (switching conditions) in the driver's collision avoidance maneuver as well.

  7. Virtual Solar Energy Center: A Case Study of the Use of Advanced Visualization Techniques for the Comprehension of Complex Engineering Products and Processes

    NASA Astrophysics Data System (ADS)

    Ritter, Kenneth August, III

    Industry has a continuing need to train its workforce on recent engineering developments, but many engineering products and processes are hard to explain because of limitations of size, visibility, time scale, cost, and safety. The product or process might be difficult to see because it is either very large or very small, because it is enclosed within an opaque container, or because it happens very fast or very slowly. Some engineering products and processes are also costly or unsafe to use for training purposes, and sometimes the domain expert is not physically available at the training location. All these limitations can potentially be addressed using advanced visualization techniques such as virtual reality. This dissertation describes the development of an immersive virtual reality application using the Six Sigma DMADV process to explain the main equipment and processes used in a concentrating solar power plant. The virtual solar energy center (VEC) application was initially developed and tested in a Cave Automatic Virtual Environment (CAVE) during 2013 and 2014. The software programs used for development were SolidWorks, 3ds Max Design, and Unity 3D. Current hardware and software technologies that could complement this research were analyzed. The NVIDA GRID Visual Computing Appliance (VCA) was chosen as the rendering solution for animating complex CAD models in this application. The MiddleVR software toolkit was selected as the toolkit for VR interactions and CAVE display. A non-immersive 3D version of the VEC application was tested and shown to be an effective training tool in late 2015. An immersive networked version of the VEC allows the user to receive live instruction from a trainer being projected via depth camera imagery from a remote location. Four comparative analysis studies were performed. These studies used the average normalized gain from pre-test scores to determine the effectiveness of the various training methods. With the DMADV approach, solutions were identified and verified during each iteration of the development, which saved valuable time and resulted in better results being achieved in each revision of the application, with the final version having 88% positive responses and same effectiveness as other methods assessed.

  8. Low-Cost, Portable, Multi-Wall Virtual Reality

    NASA Technical Reports Server (NTRS)

    Miller, Samuel A.; Misch, Noah J.; Dalton, Aaron J.

    2005-01-01

    Virtual reality systems make compelling outreach displays, but some such systems, like the CAVE, have design features that make their use for that purpose inconvenient. In the case of the CAVE, the equipment is difficult to disassemble, transport, and reassemble, and typically CAVEs can only be afforded by large-budget research facilities. We implemented a system like the CAVE that costs less than $30,000, weighs about 500 pounds, and fits into a fifteen-passenger van. A team of six people have unpacked, assembled, and calibrated the system in less than two hours. This cost reduction versus similar virtual-reality systems stems from the unique approach we took to stereoscopic projection. We used an assembly of optical chopper wheels and commodity LCD projectors to create true active stereo at less than a fifth of the cost of comparable active-stereo technologies. The screen and frame design also optimized portability; the frame assembles in minutes with only two fasteners, and both it and the screen pack into small bundles for easy and secure shipment.

  9. Computer Assisted Virtual Environment - CAVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Phillip; Podgorney, Robert; Weingartner,

    Research at the Center for Advanced Energy Studies is taking on another dimension with a 3-D device known as a Computer Assisted Virtual Environment. The CAVE uses projection to display high-end computer graphics on three walls and the floor. By wearing 3-D glasses to create depth perception and holding a wand to move and rotate images, users can delve into data.

  10. Computer Assisted Virtual Environment - CAVE

    ScienceCinema

    Erickson, Phillip; Podgorney, Robert; Weingartner,

    2018-05-30

    Research at the Center for Advanced Energy Studies is taking on another dimension with a 3-D device known as a Computer Assisted Virtual Environment. The CAVE uses projection to display high-end computer graphics on three walls and the floor. By wearing 3-D glasses to create depth perception and holding a wand to move and rotate images, users can delve into data.

  11. Using Interactive Visualization to Analyze Solid Earth Data and Geodynamics Models

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.; Kreylos, O.; Billen, M. I.; Hamann, B.; Jadamec, M. A.; Rundle, J. B.; van Aalsburg, J.; Yikilmaz, M. B.

    2008-12-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. Major projects such as EarthScope and GeoEarthScope are producing the data needed to characterize the structure and kinematics of Earth's surface and interior at unprecedented resolution. At the same time, high-performance computing enables high-precision and fine- detail simulation of geodynamics processes, complementing the observational data. To facilitate interpretation and analysis of these datasets, to evaluate models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. VR has traditionally been used primarily as a presentation tool allowing active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for accelerated scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. Our approach to VR takes advantage of the specialized skills of geoscientists who are trained to interpret geological and geophysical data generated from field observations. Interactive tools allow the scientist to explore and interpret geodynamic models, tomographic models, and topographic observations, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulations or field observations. The use of VR technology enables us to improve our interpretation of crust and mantle structure and of geodynamical processes. Mapping tools based on computer visualization allow virtual "field studies" in inaccessible regions, and an interactive tool allows us to construct digital fault models for use in numerical models. Using the interactive tools on a high-end platform such as an immersive virtual reality room known as a Cave Automatic Virtual Environment (CAVE), enables the scientist to stand in data three-dimensional dataset while taking measurements. The CAVE involves three or more projection surfaces arranged as walls in a room. Stereo projectors combined with a motion tracking system and immersion recreates the experience of carrying out research in the field. This high-end system provides significant advantages for scientists working with complex volumetric data. The interactive tools also work on low-cost platforms that provide stereo views and the potential for interactivity such as a Geowall or a 3D enabled TV. The Geowall is also a well-established tool for education, and in combination with the tools we have developed, enables the rapid transfer of research data and new knowledge to the classroom. The interactive visualization tools can also be used on a desktop or laptop with or without stereo capability. Further information about the Virtual Reality User Interface (VRUI), the 3DVisualizer, the Virtual mapping tools, and the LIDAR viewer, can be found on the KeckCAVES website, www.keckcaves.org.

  12. Autocalibration of multiprojector CAVE-like immersive environments.

    PubMed

    Sajadi, Behzad; Majumder, Aditi

    2012-03-01

    In this paper, we present the first method for the geometric autocalibration of multiple projectors on a set of CAVE-like immersive display surfaces including truncated domes and 4 or 5-wall CAVEs (three side walls, floor, and/or ceiling). All such surfaces can be categorized as swept surfaces and multiple projectors can be registered on them using a single uncalibrated camera without using any physical markers on the surface. Our method can also handle nonlinear distortion in the projectors, common in compact setups where a short throw lens is mounted on each projector. Further, when the whole swept surface is not visible from a single camera view, we can register the projectors using multiple pan and tilted views of the same camera. Thus, our method scales well with different size and resolution of the display. Since we recover the 3D shape of the display, we can achieve registration that is correct from any arbitrary viewpoint appropriate for head-tracked single-user virtual reality systems. We can also achieve wallpapered registration, more appropriate for multiuser collaborative explorations. Though much more immersive than common surfaces like planes and cylinders, general swept surfaces are used today only for niche display environments. Even the more popular 4 or 5-wall CAVE is treated as a piecewise planar surface for calibration purposes and hence projectors are not allowed to be overlapped across the corners. Our method opens up the possibility of using such swept surfaces to create more immersive VR systems without compromising the simplicity of having a completely automatic calibration technique. Such calibration allows completely arbitrary positioning of the projectors in a 5-wall CAVE, without respecting the corners.

  13. Import and visualization of clinical medical imagery into multiuser VR environments

    NASA Astrophysics Data System (ADS)

    Mehrle, Andreas H.; Freysinger, Wolfgang; Kikinis, Ron; Gunkel, Andreas; Kral, Florian

    2005-03-01

    The graphical representation of three-dimensional data obtained from tomographic imaging has been the central problem since this technology is available. Neither the representation as a set of two-dimensional slices nor the 2D projection of three-dimensional models yields satisfactory results. In this paper a way is outlined which permits the investigation of volumetric clinical data obtained from standard CT, MR, PET, SPECT or experimental very high resolution CT-scanners in a three dimensional environment within a few worksteps. Volumetric datasets are converted into surface data (segmentation process) using the 3D-Slicer software tool and saved as .vtk files and exported as a collection of primitives in any common file format (.iv, .pfb). Subsequently this files can be displayed and manipulated in the CAVE virtual reality center. The CAVE is a multiuser walkable virtual room consisting of several walls on which stereoscopic images are projected by rear panel beamers. Adequate tracking of the head position and separate image calculation for each eye yields a vivid impression for one or several users. With the use of a seperately tracked 6D joystick manipulations such as rotation, translation, zooming, decomposition or highlighting can be done intuitively. The usage of the CAVE technology opens new possibilities especially in surgical training ("hands-on-effect") and as an educational tool (availability of pathological data). Unlike concurring technologies the CAVE permits a walk-through into the virtual scene but preserves enough physical perception to allow interaction between multiple users, e.g. gestures and movements. By training in a virtual environment on one hand the learning process of students in complex anatomic findings may be improved considerably and on the other hand unaccustomed views such as the one through a microscope or endoscope can be trained in advance. The availability of low-cost PC based CAVE-like systems and the rapidly decreasing price of high-performance video beamers makes the CAVE an affordable alternative to conventional surgical training techniques and without limitations in handling cadavers.

  14. Computer Applications and Virtual Environments (CAVE)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall SPace Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).

  15. ComputerApplications and Virtual Environments (CAVE)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Center (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability providedgeneral visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.

  16. ComputerApplications and Virtual Environments (CAVE)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Centerr (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provided general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.

  17. South-France caves monitoring : present day cave air dynamics characterization,paleoclimatic and archaeological interests

    NASA Astrophysics Data System (ADS)

    Bourges, F.; Genty, D.; Genthon, P.; Mangin, A.; D'Hulst, D.

    2012-04-01

    Cave climatic environment survey covers different sort of analyses on air and water, and has various interests from the conservation of prehistoric caves to the study of paleoclimates. Depending on the purpose, the cave monitoring can be entirely automatic or combine both automatic and manual data acquisitions. Apparatus are adapted to cave environment to measure specific parameters (i.e. drip rate, air humidity, CO2) and during the long-term monitorings, several generations of techniques have been used. We present here examples of cave monitoring (1996 →) from South-France: Chauvet, Orgnac (Ardèche), Esparros (Hautes-Pyrénées) and Villars (Dordogne). In all these sites, we obtained among the longest series of climatic parameters of inside the caves, coupled sometimes with geochemical and isotopic analyses on air and seepage water, which allow to better understand cave air circulation behaviour and their sensitivity to the external climatic and environmental variations. High precision temperature measurements in Orgnac and Chauvet caves, coupled with pCO2 and radon analyses, allowed the reconstruction of seasonal air circulation patterns in each cave. While the Chauvet and Esparros caves are quite confined environments with temperature changes mainly controlled by air pressure variations, the Orgnac cave, like most caves, shows a well marked summer/winter regime alternation. Quantification of air flows of known CO2 concentration allowed the calculation of carbon fluxes toward the earth atmosphere which is estimated to about 340 gm-2yr-1. Since 15 years, the monitoring made in the Villars cave at two different levels has shown that the air temperature displays small seasonal variations in the upper galleries while it is not detectable in the lower ones. Average annual temperature difference between these two levels is of more than 1°C, showing that local differences in a single cave can be significant. A global warming trend likely correlated with local external temperature changes is observed in both levels since the beginning of the monitoring in 1996 which is not the case in Chauvet and Esparros caves. The stable isotope composition of the seepage water of the Villars cave and drip rates measured under several stalactites give precious information about the mixture of the rainfall infiltration signal in the unsaturated zone; these long isotopic series are discussed and compared with the rainfall (quantity and isotopic composition) sampled at this site.

  18. CAVE2: a hybrid reality environment for immersive simulation and information analysis

    NASA Astrophysics Data System (ADS)

    Febretti, Alessandro; Nishimoto, Arthur; Thigpen, Terrance; Talandis, Jonas; Long, Lance; Pirtle, J. D.; Peterka, Tom; Verlo, Alan; Brown, Maxine; Plepys, Dana; Sandin, Dan; Renambot, Luc; Johnson, Andrew; Leigh, Jason

    2013-03-01

    Hybrid Reality Environments represent a new kind of visualization spaces that blur the line between virtual environments and high resolution tiled display walls. This paper outlines the design and implementation of the CAVE2TM Hybrid Reality Environment. CAVE2 is the world's first near-seamless flat-panel-based, surround-screen immersive system. Unique to CAVE2 is that it will enable users to simultaneously view both 2D and 3D information, providing more flexibility for mixed media applications. CAVE2 is a cylindrical system of 24 feet in diameter and 8 feet tall, and consists of 72 near-seamless, off-axisoptimized passive stereo LCD panels, creating an approximately 320 degree panoramic environment for displaying information at 37 Megapixels (in stereoscopic 3D) or 74 Megapixels in 2D and at a horizontal visual acuity of 20/20. Custom LCD panels with shifted polarizers were built so the images in the top and bottom rows of LCDs are optimized for vertical off-center viewing- allowing viewers to come closer to the displays while minimizing ghosting. CAVE2 is designed to support multiple operating modes. In the Fully Immersive mode, the entire room can be dedicated to one virtual simulation. In 2D model, the room can operate like a traditional tiled display wall enabling users to work with large numbers of documents at the same time. In the Hybrid mode, a mixture of both 2D and 3D applications can be simultaneously supported. The ability to treat immersive work spaces in this Hybrid way has never been achieved before, and leverages the special abilities of CAVE2 to enable researchers to seamlessly interact with large collections of 2D and 3D data. To realize this hybrid ability, we merged the Scalable Adaptive Graphics Environment (SAGE) - a system for supporting 2D tiled displays, with Omegalib - a virtual reality middleware supporting OpenGL, OpenSceneGraph and Vtk applications.

  19. Virtual exertions: evoking the sense of exerting forces in virtual reality using gestures and muscle activity.

    PubMed

    Chen, Karen B; Ponto, Kevin; Tredinnick, Ross D; Radwin, Robert G

    2015-06-01

    This study was a proof of concept for virtual exertions, a novel method that involves the use of body tracking and electromyography for grasping and moving projections of objects in virtual reality (VR). The user views objects in his or her hands during rehearsed co-contractions of the same agonist-antagonist muscles normally used for the desired activities to suggest exerting forces. Unlike physical objects, virtual objects are images and lack mass. There is currently no practical physically demanding way to interact with virtual objects to simulate strenuous activities. Eleven participants grasped and lifted similar physical and virtual objects of various weights in an immersive 3-D Cave Automatic Virtual Environment. Muscle activity, localized muscle fatigue, ratings of perceived exertions, and NASA Task Load Index were measured. Additionally, the relationship between levels of immersion (2-D vs. 3-D) was studied. Although the overall magnitude of biceps activity and workload were greater in VR, muscle activity trends and fatigue patterns for varying weights within VR and physical conditions were the same. Perceived exertions for varying weights were not significantly different between VR and physical conditions. Perceived exertion levels and muscle activity patterns corresponded to the assigned virtual loads, which supported the hypothesis that the method evoked the perception of physical exertions and showed that the method was promising. Ultimately this approach may offer opportunities for research and training individuals to perform strenuous activities under potentially safer conditions that mimic situations while seeing their own body and hands relative to the scene. © 2014, Human Factors and Ergonomics Society.

  20. Book Review: Caves and Karst of the Yorkshire Dales

    NASA Astrophysics Data System (ADS)

    Westaway, Rob

    2015-10-01

    The British Cave Research Association (BCRA) is the research division of the British Caving Association (BCA), itself the principal society in Britain for those interested in caving, with activities including provision of training and safety certification for cavers and managing access to caves. Although some UK cave-related research is carried out by academics, this tends to be restricted to archaeological investigations of caves that have served as human habitations, and to be focused more on the occupants than the caves themselves. In contrast, most cave exploration is undertaken as a leisure activity, under the auspices of clubs affiliated to the BCA/BCRA, this being indeed virtually the only field of Earth science where amateur investigators can continue to make significant discoveries. Many cave explorers are also affiliated with academic researchers, such as managers of dating laboratories; the synergy between these two groups is highly productive, having resulted for instance in the discovery and exploration in recent years of the vast Ogof Draenen cave system in South Wales, which probably dates back to the Early Pleistocene (e.g., Farrant et al., 2014).

  1. Envisioning the future of home care: applications of immersive virtual reality.

    PubMed

    Brennan, Patricia Flatley; Arnott Smith, Catherine; Ponto, Kevin; Radwin, Robert; Kreutz, Kendra

    2013-01-01

    Accelerating the design of technologies to support health in the home requires 1) better understanding of how the household context shapes consumer health behaviors and (2) the opportunity to afford engineers, designers, and health professionals the chance to systematically study the home environment. We developed the Living Environments Laboratory (LEL) with a fully immersive, six-sided virtual reality CAVE to enable recreation of a broad range of household environments. We have successfully developed a virtual apartment, including a kitchen, living space, and bathroom. Over 2000 people have visited the LEL CAVE. Participants use an electronic wand to activate common household affordances such as opening a refrigerator door or lifting a cup. Challenges currently being explored include creating natural gesture to interface with virtual objects, developing robust, simple procedures to capture actual living environments and rendering them in a 3D visualization, and devising systematic stable terminologies to characterize home environments.

  2. Application of a cave inventory system to stimulate development of management strategies: the case of west-central Florida, USA.

    PubMed

    Harley, Grant L; Polk, Jason S; North, Leslie A; Reeder, Philip P

    2011-10-01

    The active management of air-filled cave systems is virtually non-existent within the karst landscape of west-central Florida. As in every karst landscape, caves are important because they contain a wide variety of resources (e.g., biota, speleothems) and can act as direct connections between surface and subsurface hydrological processes, potentially exacerbating the pollution of groundwater. Before sound management policies can be drafted, implemented, and enforced, stakeholders must first have knowledge of the management requirements of each cave. However, there is an informational disconnect between researchers, stakeholders, and the recreational caving community. Here, we present a cave inventory system that simplifies the dissemination of resource knowledge to stakeholders so that cave management and protection policies can be drafted and implemented at the state and local level. We inventoried 36 caves in west-central Florida, located on both public and private land, and analyzed cave resource data to provide insights on cave sensitivity and disturbance using two standardized indices. The data revealed that both public and private caves exhibit a wide range of sensitivity and disturbance, and before management strategies can be drafted, the ownership of each cave must be considered. Our inventory geodatabase serves as a link between researchers, landowners, and the public. To ensure the conservation and protection of caves, support from county or state government, combined with cave inventory data, is crucial in developing sound management policy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. High End Computer Network Testbedding at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gary, James Patrick

    1998-01-01

    The Earth & Space Data Computing (ESDC) Division, at the Goddard Space Flight Center, is involved in development and demonstrating various high end computer networking capabilities. The ESDC has several high end super computers. These are used to run: (1) computer simulation of the climate systems; (2) to support the Earth and Space Sciences (ESS) project; (3) to support the Grand Challenge (GC) Science, which is aimed at understanding the turbulent convection and dynamos in stars. GC research occurs in many sites throughout the country, and this research is enabled by, in part, the multiple high performance network interconnections. The application drivers for High End Computer Networking use distributed supercomputing to support virtual reality applications, such as TerraVision, (i.e., three dimensional browser of remotely accessed data), and Cave Automatic Virtual Environments (CAVE). Workstations can access and display data from multiple CAVE's with video servers, which allows for group/project collaborations using a combination of video, data, voice and shared white boarding. The ESDC is also developing and demonstrating the high degree of interoperability between satellite and terrestrial-based networks. To this end, the ESDC is conducting research and evaluations of new computer networking protocols and related technologies which improve the interoperability of satellite and terrestrial networks. The ESDC is also involved in the Security Proof of Concept Keystone (SPOCK) program sponsored by National Security Agency (NSA). The SPOCK activity provides a forum for government users and security technology providers to share information on security requirements, emerging technologies and new product developments. Also, the ESDC is involved in the Trans-Pacific Digital Library Experiment, which aims to demonstrate and evaluate the use of high performance satellite communications and advanced data communications protocols to enable interactive digital library data access between the U. S. Library of Congress, the National Library of Japan and other digital library sites at 155 MegaBytes Per Second. The ESDC participation in this program is the Trans-Pacific access to GLOBE visualizations in real time. ESDC is participating in the Department of Defense's ATDNet with Multiwavelength Optical Network (MONET) a fully switched Wavelength Division Networking testbed. This presentation is in viewgraph format.

  4. Measuring Light Air Ions in a Speleotherapeutic Cave

    NASA Astrophysics Data System (ADS)

    Roubal, Z.; Bartušek, K.; Szabó, Z.; Drexler, P.; Überhuberová, J.

    2017-02-01

    The paper deals with a methodology proposed for measuring the concentration of air ions in the environment of speleotherapeutic caves, and with the implementation of the AK-UTEE-v2 ionmeter. Speleotherapy, in the context of its general definition, is the medical therapy that utilizes the climate of selected caves to treat patients with health problems such as asthma. These spaces are characterized by the presence of high air humidity and they make extreme demands on the execution of the measuring device, the Gerdien tube (GT in the following) in particular, and on the amplifier electronics. The result is an automated measuring system using a GT with low-volume air flow, enabling long-term measuring of air ion concentration and determination of spectral ion characteristics. Interesting from the instrumentation viewpoint are the GT design, active shielding, and execution of the electrometric amplifier. A specific method for the calculation of spectral ion characteristics and the mode of automatic calibration were proposed and a procedure of automatic measurement in the absence of attendants was set up. The measuring system is designed for studying and long-term monitoring of the concentration of light negative ions in dependence on climatic conditions and on the mobility of ions occurring in the cave.

  5. Testing geoscience data visualization systems for geological mapping and training

    NASA Astrophysics Data System (ADS)

    Head, J. W.; Huffman, J. N.; Forsberg, A. S.; Hurwitz, D. M.; Basilevsky, A. T.; Ivanov, M. A.; Dickson, J. L.; Senthil Kumar, P.

    2008-09-01

    Traditional methods of planetary geological mapping have relied on photographic hard copy and light-table tracing and mapping. In the last several decades this has given way to the availability and analysis of multiple digital data sets, and programs and platforms that permit the viewing and manipulation of multiple annotated layers of relevant information. This has revolutionized the ability to incorporate important new data into the planetary mapping process at all scales. Information on these developments and approaches can be obtained at http://astrogeology.usgs. gov/ Technology/. The processes is aided by Geographic Information Systems (GIS) (see http://astrogeology. usgs.gov/Technology/) and excellent analysis packages (such as ArcGIS) that permit co-registration, rapid viewing, and analysis of multiple data sets on desktop displays (see http://astrogeology.usgs.gov/Projects/ webgis/). We are currently investigating new technological developments in computer visualization and analysis in order to assess their importance and utility in planetary geological analysis and mapping. Last year we reported on the range of technologies available and on our application of these to various problems in planetary mapping. In this contribution we focus on the application of these techniques and tools to Venus geological mapping at the 1:5M quadrangle scale. In our current Venus mapping projects we have utilized and tested the various platforms to understand their capabilities and assess their usefulness in defining units, establishing stratigraphic relationships, mapping structures, reaching consensus on interpretations and producing map products. We are specifically assessing how computer visualization display qualities (e.g., level of immersion, stereoscopic vs. monoscopic viewing, field of view, large vs. small display size, etc.) influence performance on scientific analysis and geological mapping. We have been exploring four different environments: 1) conventional desktops (DT), 2) semi-immersive Fishtank VR (FT) (i.e., a conventional desktop with head-tracked stereo and 6DOF input), 3) tiled wall displays (TW), and 4) fully immersive virtual reality (IVR) (e.g., "Cave Automatic Virtual Environment", or Cave system). Formal studies demonstrate that fully immersive Cave environments are superior to desktop systems for many tasks. There is still much to learn and understand, however, about how the varying degrees of immersive displays affect task performance. For example, in using a 1280x1024 desktop monitor to explore an image, the mapper wastes a lot of time in image zooming/panning to balance the analysis-driven need for both detail as well as context. Therefore, we have spent a considerable amount of time exploring higher-resolution media, such as an IBM Bertha display 3840x2400 or a tiled wall with multiple projectors. We have found through over a year of weekly meetings and assessment that they definitely improve the efficiency of analysis and mapping. Here we outline briefly the nature of the major systems and our initial assessment of these in 1:5M Scale NASA-USGS Venus Geological Mapping Program (http://astrogeology.usgs. gov/Projects/PlanetaryMapping/MapStatus/VenusStatus/V enus_Status.html). 1. Immersive Virtual Reality (Cave): ADVISER System Description: Our Cave system is an 8'x8'x8' cube with four projection surfaces (three walls and the floor). Four linux machines (identical in performance to the desktop machine) provide data for the Cave. Users utilize a handheld 3D tracked input device to navigate. Our 3D input device has a joystick and is simple to use. To navigate, the user simply points in the direction he/she wants to fly and pushes the joystick forward or backward to move relative to that direction. The user can push the joystick to the left and right to rotate his/her position in the virtual world. A collision detection algorithm is used to prevent the user from going underneath the surface. We have developed ADVISER (ADvanced VIsualization for Solar system Exploration) [1,2] as a tool for taking planetary geologists virtually "into the field" in the IVR Cave environment in support of several scientific themes and have assessed its application to geological mapping of Venus. ADVISER aims to create a field experience by integrating multiple data sources and presenting them as a unified environment to the scientist. Additionally, we have developed a virtual field kit, tailored to supporting research tasks dictated by scientific and mapping themes. Technically, ADVISER renders high-resolution topographic and image datasets (8192x8192 samples) in stereo at interactive frame-rates (25+ frames-per-second). The system is based on a state-of-the-art terrain rendering system and is highly interactive; for example, vertical exaggeration, lighting geometry, image contrast, and contour lines can be modified by the user in real time. High-resolution image data can be overlaid on the terrain and other data can be rendered in this context. A detailed description and case studies of ADVISER are available.

  6. Providing Interactive Access to Cave Geology for All Students, Regardless of Physical Ability

    NASA Astrophysics Data System (ADS)

    Atchison, C. `; Stredney, D.; Hittle, B.; Irving, K.; Toomey, R. S., III; Lemon, N. N.; Price, A.; Kerwin, T.

    2013-12-01

    Based on an identified need to accommodate students with mobility impairments in field-based instructional experiences, this presentation will discuss current efforts to promote participation, broaden diversity, and impart a historical perspective in the geosciences through the use of an interactive virtual environment. Developed through the integration of emerging simulation technologies, this prototypical virtual environment is created from LIDAR data of the Historic Tour route of Mammoth Cave National Park. The educational objectives of the simulation focus on four primary locations within the tour route that provide evidence of the hydrologic impact on the cave and karst formation. The overall objective is to provide a rich experience of a geological field-based learning for all students, regardless of their physical abilities. Employing a virtual environment that interchangeably uses two and three-dimensional representation of geoscience content, this synthetic field-based cave and karst module will provide an opportunity to assess the effectiveness in engaging the student community, and its efficacy in the curriculum when used as an alternative representation of a traditional field experience. The expected outcome is that based on the level of interactivity, the simulated environment will provide adequate pedagogical representation for content transfer without the need for physical experience in the uncontrolled field environment. Additionally, creating such an environment will impact all able-bodied students by providing supplemental resources that can both precede a traditional field experience and allow for students to re-examine a field site long after a the field experience, in both current formal and informal educational settings.

  7. Virtual reality and interactive 3D as effective tools for medical training.

    PubMed

    Webb, George; Norcliffe, Alex; Cannings, Peter; Sharkey, Paul; Roberts, Dave

    2003-01-01

    CAVE-like displays allow a user to walk in to a virtual environment, and use natural movement to change the viewpoint of virtual objects which they can manipulate with a hand held device. This maps well to many surgical procedures offering strong potential for training and planning. These devices may be networked together allowing geographically remote users to share the interactive experience. This maps to the strong need for distance training and planning of surgeons. Our paper shows how the properties of a CAVE-Like facility can be maximised in order to provide an ideal environment for medical training. The implementation of a large 3D-eye is described. The resulting application is that of an eye that can be manipulated and examined by trainee medics under the guidance of a medical expert. The progression and effects of different ailments can be illustrated and corrective procedures, demonstrated.

  8. Simulation-based evaluation of an in-vehicle smart situation awareness enhancement system.

    PubMed

    Gregoriades, Andreas; Sutcliffe, Alistair

    2018-07-01

    Situation awareness (SA) constitutes a critical factor in road safety, strongly related to accidents. This paper describes the evaluation of a proposed SA enhancement system (SAES) that exploits augmented reality through a head-up display (HUD). Two SAES designs were evaluation (information rich vs. minimal information) using a custom-made simulator and the Situation Awareness Global Assessment Technique with performance and EEG measures. The paper describes the process of assessing the SA of drivers using the SAES, through a series of experiments with participants in a Cave Automatic Virtual Environment. The effectiveness of the SAES was tested in a within-group research design. The results showed that the information rich (radar-style display) was superior to the minimal (arrow hazard indicator) design and that both SAES improved drivers' SA and performance compared to the control (no HUD) design. Practitioner Summary: Even though driver situation awareness is considered as one of the leading causes of road accidents, little has been done to enhance it. The current study demonstrates the positive effect of a proposed situation awareness enhancement system on driver situation awareness, through an experiment using virtual prototyping in a simulator.

  9. Collaborative virtual environments art exhibition

    NASA Astrophysics Data System (ADS)

    Dolinsky, Margaret; Anstey, Josephine; Pape, Dave E.; Aguilera, Julieta C.; Kostis, Helen-Nicole; Tsoupikova, Daria

    2005-03-01

    This panel presentation will exhibit artwork developed in CAVEs and discuss how art methodologies enhance the science of VR through collaboration, interaction and aesthetics. Artists and scientists work alongside one another to expand scientific research and artistic expression and are motivated by exhibiting collaborative virtual environments. Looking towards the arts, such as painting and sculpture, computer graphics captures a visual tradition. Virtual reality expands this tradition to not only what we face, but to what surrounds us and even what responds to our body and its gestures. Art making that once was isolated to the static frame and an optimal point of view is now out and about, in fully immersive mode within CAVEs. Art knowledge is a guide to how the aesthetics of 2D and 3D worlds affect, transform, and influence the social, intellectual and physical condition of the human body through attention to psychology, spiritual thinking, education, and cognition. The psychological interacts with the physical in the virtual in such a way that each facilitates, enhances and extends the other, culminating in a "go together" world. Attention to sharing art experience across high-speed networks introduces a dimension of liveliness and aliveness when we "become virtual" in real time with others.

  10. Demonstration of subsidence monitoring system

    NASA Astrophysics Data System (ADS)

    Conroy, P. J.; Gyarmaty, J. H.; Pearson, M. L.

    1981-06-01

    Data on coal mine subsidence were studied as a basis for the development of subsidence control technology. Installation, monitoring, and evaluation of three subsidence monitoring instrument systems were examined: structure performance, performance of supported systems, and performance of caving systems. Objectives of the instrument program were: (1) to select, test, assemble, install, monitor, and maintain all instrumentation required for implementing the three subsidence monitoring systems; and (2) to evaluate performance of each instrument individually and as part of the appropriate monitoring system or systems. The use of an automatic level and a rod extensometer for measuring structure performance, and the automatic level, steel tape extensometer, FPBX, FPBI, USBM borehole deformation gauge, and vibrating wire stressmeters for measuring the performance of caving systems are recommended.

  11. Amplified Head Rotation in Virtual Reality and the Effects on 3D Search, Training Transfer, and Spatial Orientation.

    PubMed

    Ragan, Eric D; Scerbo, Siroberto; Bacim, Felipe; Bowman, Doug A

    2017-08-01

    Many types of virtual reality (VR) systems allow users to use natural, physical head movements to view a 3D environment. In some situations, such as when using systems that lack a fully surrounding display or when opting for convenient low-effort interaction, view control can be enabled through a combination of physical and virtual turns to view the environment, but the reduced realism could potentially interfere with the ability to maintain spatial orientation. One solution to this problem is to amplify head rotations such that smaller physical turns are mapped to larger virtual turns, allowing trainees to view the entire surrounding environment with small head movements. This solution is attractive because it allows semi-natural physical view control rather than requiring complete physical rotations or a fully-surrounding display. However, the effects of amplified head rotations on spatial orientation and many practical tasks are not well understood. In this paper, we present an experiment that evaluates the influence of amplified head rotation on 3D search, spatial orientation, and cybersickness. In the study, we varied the amount of amplification and also varied the type of display used (head-mounted display or surround-screen CAVE) for the VR search task. By evaluating participants first with amplification and then without, we were also able to study training transfer effects. The findings demonstrate the feasibility of using amplified head rotation to view 360 degrees of virtual space, but noticeable problems were identified when using high amplification with a head-mounted display. In addition, participants were able to more easily maintain a sense of spatial orientation when using the CAVE version of the application, which suggests that visibility of the user's body and awareness of the CAVE's physical environment may have contributed to the ability to use the amplification technique while keeping track of orientation.

  12. The use of virtual reality and physical tools in the development and validation of ease of entry and exit in passenger vehicles.

    PubMed

    Lawson, Glyn; Herriotts, Paul; Malcolm, Louise; Gabrecht, Katharina; Hermawati, Setia

    2015-05-01

    Ease of entry and exit is important for creating a positive first impression of a car and increasing customer satisfaction. Several methods are used within vehicle development to optimise ease of entry and exit, including CAD reviews, benchmarking and buck trials. However, there is an industry trend towards digital methods to reduce the costs and time associated with developing physical prototypes. This paper reports on a study of entry strategy in three properties (buck, car, CAVE) in which inconsistencies were demonstrated by people entering a vehicle representation in the CAVE. In a second study industry practitioners rated the CAVE as worse than physical methods for identifying entry and exit issues, and having lower perceived validity and reliability. However, the resource issues associated with building bucks were recognised. Recommendations are made for developing the CAVE and for combinations of methods for use at different stages of a vehicle's development. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  13. Microgravity and Electrical Resistivity Techniques for Detection of Caves and Clandestine Tunnels

    NASA Astrophysics Data System (ADS)

    Crawford, N. C.; Croft, L. A.; Cesin, G. L.; Wilson, S.

    2006-05-01

    The Center for Cave and Karst Studies, CCKS, has been using microgravity to locate caves from the ground's surface since 1985. The geophysical subsurface investigations began during a period when explosive and toxic vapors were rising from the karst aquifer under Bowling Green into homes, businesses, and schools. The USEPA provided the funding for this Superfund Emergency, and the CCKS was able to drill numerous wells into low-gravity anomalies to confirm and even map the route of caves in the underlying limestone bedrock. In every case, a low-gravity anomaly indicated a bedrock cave, a cave with a collapsed roof or locations where a bedrock cave had collapsed and filled with alluvium. At numerous locations, several wells were cored into microgravity anomalies and in every case, additional wells were drilled on both sides of the anomalies to confirm that the technique was in fact reliable. The wells cored on both sides of the anomalies did not intersect caves but instead intersected virtually solid limestone. Microgravity also easily detected storm sewers and even sanitary sewers, sometimes six meters (twenty feet) beneath the surface. Microgravity has also been used on many occasions to investigate sinkhole collapses. It identified potential collapse areas by detecting voids in the unconsolidated material above bedrock. The system will soon be tested over known tunnels and then during a blind test along a section of the U.S. border at Nogales, Arizona. The CCKS has experimented with other geophysical techniques, particularly ground penetrating radar, seismic and electrical resistivity. In the late 1990s the CCKS started using the Swift/Sting resistivity meter to perform karst geophysical subsurface investigations. The system provides good depth to bedrock data, but it is often difficult to interpret bedrock caves from the modeled data. The system typically used now by the CCKS to perform karst subsurface investigations is to use electrical resistivity traverses followed by microgravity over suspect areas identified on the modeled resistivity data. Some areas of high resistivity indicate caves, but others simply indicate pockets of dry limestone, and the signatures looks virtually identical. Therefore, the CCKS performs microgravity over all suspect areas along the resistivity traverses. A low-gravity anomaly that corresponds with a high-resistivity anomaly indicates a cave location. A high-resistivity anomaly that does not also have a low- gravity anomaly indicates a pocket of dry limestone. Numerous cored wells have been drilled both into the anomalies and on both sides to confirm the cave locations and to establish that the technique is accurate. The September 11, 2001 World Trade Center catastrophe was the catalyst for the formation of a program within the CCKS to use the techniques for locating bedrock caves and voids in unconsolidated materials for search and rescue and for locating clandestine tunnels. We are now into our third year of a grant from the Kentucky Science and Technology Center to develop a robot that will measure microgravity and other geophysical techniques. The robot has the potential for detecting clandestine tunnels under the U.S. border as well as military applications. The system will soon be tested over known tunnels and then during a blind test along a section of the U.S. border at Nogales, Arizona.

  14. Development of Techniques for Visualization of Scalar and Vector Fields in the Immersive Environment

    NASA Technical Reports Server (NTRS)

    Bidasaria, Hari B.; Wilson, John W.; Nealy, John E.

    2005-01-01

    Visualization of scalar and vector fields in the immersive environment (CAVE - Cave Automated Virtual Environment) is important for its application to radiation shielding research at NASA Langley Research Center. A complete methodology and the underlying software for this purpose have been developed. The developed software has been put to use for the visualization of the earth s magnetic field, and in particular for the study of the South Atlantic Anomaly. The methodology has also been put to use for the visualization of geomagnetically trapped protons and electrons within Earth's magnetosphere.

  15. Isotopic tracking of large carnivore palaeoecology in the mammoth steppe

    NASA Astrophysics Data System (ADS)

    Bocherens, Hervé

    2015-06-01

    Isotopic tracking of carnivore palaeoecology is a relatively new approach that yielded important results for the study of the non-analogue mammoth steppe biome. After describing the prerequisite to apply this approach and the possible complications, the main achievements will be described for extinct carnivore species such as scimitar-tooth cat Homotherium serum, cave lion Panthera spelaea, giant short-faced bear Arctodus simus, cave bear Ursus spelaeus s.l., as well as for ancient representatives of extant species such as brown bear Ursus arctos and wolf Canis lupus. Isotopic tracking showed that scimitar-tooth cats in Alaska were not specialist proboscidean predators but rather generalist consumers of other large herbivores. The majority of cave lions analysed so far were focused on reindeer, some individuals were specialized on cave bears, especially in contexts of competition with cave hyenas. Giant short-faced bears in Alaska were not pure herbivores and consumed meat from reindeer, muskoxen and possibly other predators, but may have still incorporated plant resources in their menu. In contrast, all cave bear populations studied so far for which a clear dietary reconstruction could be done were virtually pure herbivores, only a few cases are still unclear. Interestingly, brown bears used the opposite extreme of the dietary spectrum when competing with other large bears such as cave bears and giant short-faced bears, i.e. were more carnivorous in Europe and more herbivorous in Alaska. Finally wolves seem to have been outcompeted by hyenas but became dominant predators during the Lateglacial in Europe to the expense of the last cave lions. The results obtained through this approach are also relevant for improving conservation strategies of endangered extant large carnivores.

  16. Adding Automatic Evaluation to Interactive Virtual Labs

    ERIC Educational Resources Information Center

    Farias, Gonzalo; Muñoz de la Peña, David; Gómez-Estern, Fabio; De la Torre, Luis; Sánchez, Carlos; Dormido, Sebastián

    2016-01-01

    Automatic evaluation is a challenging field that has been addressed by the academic community in order to reduce the assessment workload. In this work we present a new element for the authoring tool Easy Java Simulations (EJS). This element, which is named automatic evaluation element (AEE), provides automatic evaluation to virtual and remote…

  17. Virtual reality hardware for use in interactive 3D data fusion and visualization

    NASA Astrophysics Data System (ADS)

    Gourley, Christopher S.; Abidi, Mongi A.

    1997-09-01

    Virtual reality has become a tool for use in many areas of research. We have designed and built a VR system for use in range data fusion and visualization. One major VR tool is the CAVE. This is the ultimate visualization tool, but comes with a large price tag. Our design uses a unique CAVE whose graphics are powered by a desktop computer instead of a larger rack machine making it much less costly. The system consists of a screen eight feet tall by twenty-seven feet wide giving a variable field-of-view currently set at 160 degrees. A silicon graphics Indigo2 MaxImpact with the impact channel option is used for display. This gives the capability to drive three projectors at a resolution of 640 by 480 for use in displaying the virtual environment and one 640 by 480 display for a user control interface. This machine is also the first desktop package which has built-in hardware texture mapping. This feature allows us to quickly fuse the range and intensity data and other multi-sensory data. The final goal is a complete 3D texture mapped model of the environment. A dataglove, magnetic tracker, and spaceball are to be used for manipulation of the data and navigation through the virtual environment. This system gives several users the ability to interactively create 3D models from multiple range images.

  18. Immersive Visual Data Analysis For Geoscience Using Commodity VR Hardware

    NASA Astrophysics Data System (ADS)

    Kreylos, O.; Kellogg, L. H.

    2017-12-01

    Immersive visualization using virtual reality (VR) display technology offers tremendous benefits for the visual analysis of complex three-dimensional data like those commonly obtained from geophysical and geological observations and models. Unlike "traditional" visualization, which has to project 3D data onto a 2D screen for display, VR can side-step this projection and display 3D data directly, in a pseudo-holographic (head-tracked stereoscopic) form, and does therefore not suffer the distortions of relative positions, sizes, distances, and angles that are inherent in 2D projection. As a result, researchers can apply their spatial reasoning skills to virtual data in the same way they can to real objects or environments. The UC Davis W.M. Keck Center for Active Visualization in the Earth Sciences (KeckCAVES, http://keckcaves.org) has been developing VR methods for data analysis since 2005, but the high cost of VR displays has been preventing large-scale deployment and adoption of KeckCAVES technology. The recent emergence of high-quality commodity VR, spearheaded by the Oculus Rift and HTC Vive, has fundamentally changed the field. With KeckCAVES' foundational VR operating system, Vrui, now running natively on the HTC Vive, all KeckCAVES visualization software, including 3D Visualizer, LiDAR Viewer, Crusta, Nanotech Construction Kit, and ProtoShop, are now available to small labs, single researchers, and even home users. LiDAR Viewer and Crusta have been used for rapid response to geologic events including earthquakes and landslides, to visualize the impacts of sealevel rise, to investigate reconstructed paleooceanographic masses, and for exploration of the surface of Mars. The Nanotech Construction Kit is being used to explore the phases of carbon in Earth's deep interior, while ProtoShop can be used to construct and investigate protein structures.

  19. [Virtual reality therapy in anxiety disorders].

    PubMed

    Mitrousia, V; Giotakos, O

    2016-01-01

    During the last decade a number of studies have been conducted in order to examine if virtual reality exposure therapy can be an alternative form of therapy for the treatment of mental disorders and particularly for the treatment of anxiety disorders. Imaginal exposure therapy, which is one of the components of Cognitive Behavioral Therapy, cannot be easily applied to all patients and in cases like those virtual reality can be used as an alternative or a supportive psychotherapeutic technique. Most studies using virtual reality have focused on anxiety disorders, mainly in specific phobias, but some extend to other disorders such as eating disorders, drug dependence, pain control and palliative care and rehabilitation. Main characteristics of virtual reality therapy are: "interaction", "immersion", and "presence". High levels of "immersion" and "presence" are associated with increased response to exposure therapy in virtual environments, as well as better therapeutic outcomes and sustained therapeutic gains. Typical devices that are used in order patient's immersion to be achieved are the Head-Mounted Displays (HMD), which are only for individual use, and the computer automatic virtual environment (CAVE), which is a multiuser. Virtual reality therapy's disadvantages lie in the difficulties that arise due to the demanded specialized technology skills, devices' cost and side effects. Therapists' training is necessary in order for them to be able to manipulate the software and the hardware and to adjust it to each case's needs. Devices' cost is high but as technology continuously improves it constantly decreases. Immersion during virtual reality therapy can induce mild and temporary side effects such as nausea, dizziness or headache. Until today, however, experience shows that virtual reality offers several advantages. Patient's avoidance to be exposed in phobic stimuli is reduced via the use of virtual reality since the patient is exposed to them as many times as he wishes and under the supervision of the therapist. The technique takes place in the therapist's office which ensures confidentiality and privacy. The therapist is able to control unpredicted events that can occur during patient's exposure in real environments. Mainly the therapist can control the intensity of exposure and adapt it to the patient's needs. Virtual reality can be proven particularly useful in some specific psychological states. For instance, patients with post-traumatic stress disorder (PTSD) who prone to avoid the reminders of the traumatic events. Exposure in virtual reality can solve this problem providing to the patient a large number of stimuli that activate the senses causing the necessary physiological and psychological anxiety reactions, regardless of his willingness or ability to recall in his imagination the traumatic event.

  20. Wireless physiological monitoring and ocular tracking: 3D calibration in a fully-immersive virtual health care environment.

    PubMed

    Zhang, Lelin; Chi, Yu Mike; Edelstein, Eve; Schulze, Jurgen; Gramann, Klaus; Velasquez, Alvaro; Cauwenberghs, Gert; Macagno, Eduardo

    2010-01-01

    Wireless physiological/neurological monitoring in virtual reality (VR) offers a unique opportunity for unobtrusively quantifying human responses to precisely controlled and readily modulated VR representations of health care environments. Here we present such a wireless, light-weight head-mounted system for measuring electrooculogram (EOG) and electroencephalogram (EEG) activity in human subjects interacting with and navigating in the Calit2 StarCAVE, a five-sided immersive 3-D visualization VR environment. The system can be easily expanded to include other measurements, such as cardiac activity and galvanic skin responses. We demonstrate the capacity of the system to track focus of gaze in 3-D and report a novel calibration procedure for estimating eye movements from responses to the presentation of a set of dynamic visual cues in the StarCAVE. We discuss cyber and clinical applications that include a 3-D cursor for visual navigation in VR interactive environments, and the monitoring of neurological and ocular dysfunction in vision/attention disorders.

  1. Paleo-watertable definition using cave ferromanganese stromatolites and associated cave-wall notches (Sierra de Arnero, Spain)

    NASA Astrophysics Data System (ADS)

    Rossi, Carlos; Villalaín, Juan J.; Lozano, Rafael P.; Hellstrom, John

    2016-05-01

    The steeply-dipping-dolostone-hosted caves of the Sierra de Arnero (N Spain) contain low-gradient relict canyons with up to ten mapped levels of ferromanganese stromatolites and associated wall notches over a vertical range of 85 m, the highest occurring 460 m above base level. Despite a plausible speleogenetic contribution by pyrite oxidation, and the irregular cave-wall mesomorphologies suggestive of hypogenic speleogenesis, the Arnero relict caves are dominantly epigenic, as indicated by the conduit pattern and the abundant allogenic sediments. Allogenic input declined over time due to a piracy-related decrease in the drainage area of allogenic streams, explaining the large size of the relict Arnero caves relative to the limited present-day outcrop area of the karstified carbonates. Allogenic-sediment input also explains the observed change from watertable canyons to phreatic conduits in the paleo-downstream direction. Stromatolites and notches arguably formed in cave-stream passages at the watertable. The best-defined paleo-watertables show an overall slope of 1.7°, consistent with the present-day relief of the watertable, with higher-slope segments caused by barriers related to sulfide mineralization. The formation of watertable stromatolites favored wall notching by the combined effect of enhanced acidity by Mn-Fe oxidation and shielding of cave floors against erosion. Abrasive bedload further contributed to notch formation by promoting lateral mechanical erosion and protecting passage floors. The irregular wallrock erosional forms of Arnero caves are related partly to paragenesis and partly to the porous nature of the host dolostones, which favored irregular dissolution near passage walls, generating friable halos. Subsequent mechanical erosion contributed to generate spongework patterns. The dolostone porosity also contributes to explain the paradox that virtually all Arnero caves are developed in dolostone despite being less soluble than adjacent limestone. U-series dating of carbonate speleothems and paleomagnetic data from ferromanganese stromatolites and clastic sediments indicate that the paleo-watertables recorded 320 m above the present-day watertable formed during the Matuyama Chron but prior to 1.5 Ma, implying long-term base-level-lowering rates from 125 to 213 m/Ma. To our knowledge, this is the first attempt of paleomagnetic dating of cave ferromanganese stromatolites. These deposits are excellent geomagnetic recorders and offer a direct way to delineate and date paleo-watertables, especially in caves developed in dolostone.

  2. Continuous multichannel monitoring of cave air carbon dioxide using a pumped non-dispersive infrared analyser

    NASA Astrophysics Data System (ADS)

    Mattey, D.

    2012-04-01

    The concentration of CO2 in cave air is one of the main controls on the rate of degassing of dripwater and on the kinetics of calcite precipitation forming speleothem deposits. Measurements of cave air CO2reveal great complexity in the spatial distribution among interconnected cave chambers and temporal changes on synoptic to seasonal time scales. The rock of Gibraltar hosts a large number of caves distributed over a 300 meter range in altitude and monthly sampling and analysis of air and water combined with continuous logging of temperature, humidity and drip discharge rates since 2004 reveals the importance of density-driven seasonal ventilation which drives large-scale advection of CO2-rich air though the cave systems. Since 2008 we have deployed automatic CO2 monitoring systems that regularly sample cave air from up to 8 locations distributed laterally and vertically in St Michaels Cave located near the top of the rock at 275m asl and Ragged Staff Cave located in the heart of the rock near sea level. The logging system is controlled by a Campbell Scientific CR1000 programmable datalogger which controls an 8 port manifold connected to sampling lines leading to different parts of the cave over a distance of up to 250 meters. The manifold is pumped at a rate of 5l per minute drawing air through 6mm or 8mm id polythene tubing via a 1m Nafion loop to reduce humidity to local ambient conditions. The outlet of the primary pump leads to an open split which is sampled by a second low flow pump which delivers air at 100ml/minute to a Licor 820 CO2 analyser. The software selects the port to be sampled, flushes the line for 2 minutes and CO2 analysed as a set of 5 measurements averaged over 10 second intervals. The system then switches to the next port and when complete shuts down to conserve power after using 20 watts over a 30 minute period of analysis. In the absence of local mains power (eg from the show cave lighting system) two 12v car batteries will power the system for analysis at 4h intervals for about 1 month. Two logging systems sampling cave air from 13 locations over a vertical range of 275m have run continuously for up to 5 years and return a very detailed picture of cave ventilation patterns and their responses to local weather and seasonal change.

  3. Marshall Engineers Use Virtual Reality

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall Spce Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).

  4. Evaluation of navigation interfaces in virtual environments

    NASA Astrophysics Data System (ADS)

    Mestre, Daniel R.

    2014-02-01

    When users are immersed in cave-like virtual reality systems, navigational interfaces have to be used when the size of the virtual environment becomes larger than the physical extent of the cave floor. However, using navigation interfaces, physically static users experience self-motion (visually-induced vection). As a consequence, sensorial incoherence between vision (indicating self-motion) and other proprioceptive inputs (indicating immobility) can make them feel dizzy and disoriented. We tested, in two experimental studies, different locomotion interfaces. The objective was twofold: testing spatial learning and cybersickness. In a first experiment, using first-person navigation with a flystick ®, we tested the effect of sensorial aids, a spatialized sound or guiding arrows on the ground, attracting the user toward the goal of the navigation task. Results revealed that sensorial aids tended to impact negatively spatial learning. Moreover, subjects reported significant levels of cybersickness. In a second experiment, we tested whether such negative effects could be due to poorly controlled rotational motion during simulated self-motion. Subjects used a gamepad, in which rotational and translational displacements were independently controlled by two joysticks. Furthermore, we tested first- versus third-person navigation. No significant difference was observed between these two conditions. Overall, cybersickness tended to be lower, as compared to experiment 1, but the difference was not significant. Future research should evaluate further the hypothesis of the role of passively perceived optical flow in cybersickness, but manipulating the virtual environment'sperrot structure. It also seems that video-gaming experience might be involved in the user's sensitivity to cybersickness.

  5. Solving Wakulla Springs underwater mysteries. Using GPS to map Florida's underground caverns

    USGS Publications Warehouse

    Am, Ende B.

    2002-01-01

    Located in the Woodville Karst Plain stretching south from Tallahassee to the Gulf of Mexico, Florida's Wakulla Springs is one of the largest and deepest freshwater Springs in the world. It is also a gateway into one of the longest underwater cave system in the United States, a system that remained largely unexplored until recently. Soon, however, thanks to one of the world's most extreme scientific and exploration-related diving projects ever undertaken, visitors to Wakulla Springs State Park will be able to take a virtual tour through the Spring's huge underwater labyrinth. Using such cutting-edge technology as a 3D Digital Wall Mapper (DWM) and the Global Positioning System (GPS), the Wakulla 2 Expedition - with 151 volunteer cave divers, scientists and engineers from all over the world - created the world's first three-dimensional digital map of an underwater cave. Underwater caves are priceless treasures, helping supply fresh water to the region as well as acting as 'time capsules' to the past. Home to creatures found in few other places, areas such as Wakulla face threats of pollution and over-development. Wakulla 2 hopes their 3D interactive 'swim through' will help increase the understanding and preservation of these important areas.

  6. A convertor and user interface to import CAD files into worldtoolkit virtual reality systems

    NASA Technical Reports Server (NTRS)

    Wang, Peter Hor-Ching

    1996-01-01

    Virtual Reality (VR) is a rapidly developing human-to-computer interface technology. VR can be considered as a three-dimensional computer-generated Virtual World (VW) which can sense particular aspects of a user's behavior, allow the user to manipulate the objects interactively, and render the VW at real-time accordingly. The user is totally immersed in the virtual world and feel the sense of transforming into that VW. NASA/MSFC Computer Application Virtual Environments (CAVE) has been developing the space-related VR applications since 1990. The VR systems in CAVE lab are based on VPL RB2 system which consists of a VPL RB2 control tower, an LX eyephone, an Isotrak polhemus sensor, two Fastrak polhemus sensors, a folk of Bird sensor, and two VPL DG2 DataGloves. A dynamics animator called Body Electric from VPL is used as the control system to interface with all the input/output devices and to provide the network communications as well as VR programming environment. The RB2 Swivel 3D is used as the modelling program to construct the VW's. A severe limitation of the VPL VR system is the use of RB2 Swivel 3D, which restricts the files to a maximum of 1020 objects and doesn't have the advanced graphics texture mapping. The other limitation is that the VPL VR system is a turn-key system which does not provide the flexibility for user to add new sensors and C language interface. Recently, NASA/MSFC CAVE lab provides VR systems built on Sense8 WorldToolKit (WTK) which is a C library for creating VR development environments. WTK provides device drivers for most of the sensors and eyephones available on the VR market. WTK accepts several CAD file formats, such as Sense8 Neutral File Format, AutoCAD DXF and 3D Studio file format, Wave Front OBJ file format, VideoScape GEO file format, Intergraph EMS stereolithographics and CATIA Stereolithographics STL file formats. WTK functions are object-oriented in their naming convention, are grouped into classes, and provide easy C language interface. Using a CAD or modelling program to build a VW for WTK VR applications, we typically construct the stationary universe with all the geometric objects except the dynamic objects, and create each dynamic object in an individual file.

  7. Combination of minimum enclosing balls classifier with SVM in coal-rock recognition.

    PubMed

    Song, QingJun; Jiang, HaiYan; Song, Qinghui; Zhao, XieGuang; Wu, Xiaoxuan

    2017-01-01

    Top-coal caving technology is a productive and efficient method in modern mechanized coal mining, the study of coal-rock recognition is key to realizing automation in comprehensive mechanized coal mining. In this paper we propose a new discriminant analysis framework for coal-rock recognition. In the framework, a data acquisition model with vibration and acoustic signals is designed and the caving dataset with 10 feature variables and three classes is got. And the perfect combination of feature variables can be automatically decided by using the multi-class F-score (MF-Score) feature selection. In terms of nonlinear mapping in real-world optimization problem, an effective minimum enclosing ball (MEB) algorithm plus Support vector machine (SVM) is proposed for rapid detection of coal-rock in the caving process. In particular, we illustrate how to construct MEB-SVM classifier in coal-rock recognition which exhibit inherently complex distribution data. The proposed method is examined on UCI data sets and the caving dataset, and compared with some new excellent SVM classifiers. We conduct experiments with accuracy and Friedman test for comparison of more classifiers over multiple on the UCI data sets. Experimental results demonstrate that the proposed algorithm has good robustness and generalization ability. The results of experiments on the caving dataset show the better performance which leads to a promising feature selection and multi-class recognition in coal-rock recognition.

  8. Combination of minimum enclosing balls classifier with SVM in coal-rock recognition

    PubMed Central

    Song, QingJun; Jiang, HaiYan; Song, Qinghui; Zhao, XieGuang; Wu, Xiaoxuan

    2017-01-01

    Top-coal caving technology is a productive and efficient method in modern mechanized coal mining, the study of coal-rock recognition is key to realizing automation in comprehensive mechanized coal mining. In this paper we propose a new discriminant analysis framework for coal-rock recognition. In the framework, a data acquisition model with vibration and acoustic signals is designed and the caving dataset with 10 feature variables and three classes is got. And the perfect combination of feature variables can be automatically decided by using the multi-class F-score (MF-Score) feature selection. In terms of nonlinear mapping in real-world optimization problem, an effective minimum enclosing ball (MEB) algorithm plus Support vector machine (SVM) is proposed for rapid detection of coal-rock in the caving process. In particular, we illustrate how to construct MEB-SVM classifier in coal-rock recognition which exhibit inherently complex distribution data. The proposed method is examined on UCI data sets and the caving dataset, and compared with some new excellent SVM classifiers. We conduct experiments with accuracy and Friedman test for comparison of more classifiers over multiple on the UCI data sets. Experimental results demonstrate that the proposed algorithm has good robustness and generalization ability. The results of experiments on the caving dataset show the better performance which leads to a promising feature selection and multi-class recognition in coal-rock recognition. PMID:28937987

  9. Around Marshall

    NASA Image and Video Library

    1993-09-15

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall SPace Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).

  10. Around Marshall

    NASA Image and Video Library

    1993-12-15

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall Spce Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).

  11. Use of terrestrial laser scanning for the documentation of quaternary caves

    NASA Astrophysics Data System (ADS)

    Tyszkowski, Sebastian; Kramkowski, Mateusz; Wiśniewska, Daria; Urban, Jan

    2016-04-01

    Due to the nature of their occurrence and genesis, caves in the Polish Lowlands represent a peculiarity of geological heritage, unique on the European scale. They are developed in Quaternary deposits, mostly at the contact of slabs or irregular bodies of cemented glacial or glaciofluvial deposits: conglomerates and sandstones, with unconsolidated deposits, mostly sands, gravels and clays. So far, 20 such caves have been recorded in Polish Lowlands. Most caves are only several meters long, the largest one is over 60 m long. Regardless of their origins, the character of host rocks is the reason that processes leading to their formation are simultaneously the destroying processes. Thus, the studied caves, as well as other caves of this region, are unstable, gradually evolving objects. The changes taking place in them are continuous and intense enough, therefore the documentation of their shape with the greatest possible accuracy and resolution becomes crucial. Such possibility can provide the technique of laser scanning. In 2014 three caves, including one recently discovered, were scanned using the TLS. Measurements of caves and their surroundings were conducted in May and July 2014 with a scanner RIEGL VZ-4000. Point clouds from several scanner positions were combined using the module Multi Station Adjustment in the RiSCAN software. This module allows to connect point clouds from successive positions without any objects of reference. After the merger of point clouds from individual positions and their filtration, a collection of several million points was obtained. The number of points projected on the wall was over 20 000 per m2. The using of TLS enabled to present the morphometric features impossible to obtain using traditional methods. High density of the point clouds allows registering even small details on the cave walls, as well as monitoring leaching, falling, grinding and flaking processes taking place in them. Thus, the most important advantage of the TLS is the "visual protection" of these objects unstable in geological time-scale. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analyses - ICLEA- of the Helmholtz Association, Grant No VH-VI-415

  12. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments.

    PubMed

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-09-24

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp.

  13. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments

    PubMed Central

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-01-01

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp. PMID:24019490

  14. Visualizing vascular structures in virtual environments

    NASA Astrophysics Data System (ADS)

    Wischgoll, Thomas

    2013-01-01

    In order to learn more about the cause of coronary heart diseases and develop diagnostic tools, the extraction and visualization of vascular structures from volumetric scans for further analysis is an important step. By determining a geometric representation of the vasculature, the geometry can be inspected and additional quantitative data calculated and incorporated into the visualization of the vasculature. To provide a more user-friendly visualization tool, virtual environment paradigms can be utilized. This paper describes techniques for interactive rendering of large-scale vascular structures within virtual environments. This can be applied to almost any virtual environment configuration, such as CAVE-type displays. Specifically, the tools presented in this paper were tested on a Barco I-Space and a large 62x108 inch passive projection screen with a Kinect sensor for user tracking.

  15. Photogrammetry and remote sensing for visualization of spatial data in a virtual reality environment

    NASA Astrophysics Data System (ADS)

    Bhagawati, Dwipen

    2001-07-01

    Researchers in many disciplines have started using the tool of Virtual Reality (VR) to gain new insights into problems in their respective disciplines. Recent advances in computer graphics, software and hardware technologies have created many opportunities for VR systems, advanced scientific and engineering applications being among them. In Geometronics, generally photogrammetry and remote sensing are used for management of spatial data inventory. VR technology can be suitably used for management of spatial data inventory. This research demonstrates usefulness of VR technology for inventory management by taking the roadside features as a case study. Management of roadside feature inventory involves positioning and visualization of the features. This research has developed a methodology to demonstrate how photogrammetric principles can be used to position the features using the video-logging images and GPS camera positioning and how image analysis can help produce appropriate texture for building the VR, which then can be visualized in a Cave Augmented Virtual Environment (CAVE). VR modeling was implemented in two stages to demonstrate the different approaches for modeling the VR scene. A simulated highway scene was implemented with the brute force approach, while modeling software was used to model the real world scene using feature positions produced in this research. The first approach demonstrates an implementation of the scene by writing C++ codes to include a multi-level wand menu for interaction with the scene that enables the user to interact with the scene. The interactions include editing the features inside the CAVE display, navigating inside the scene, and performing limited geographic analysis. The second approach demonstrates creation of a VR scene for a real roadway environment using feature positions determined in this research. The scene looks realistic with textures from the real site mapped on to the geometry of the scene. Remote sensing and digital image processing techniques were used for texturing the roadway features in this scene.

  16. Around Marshall

    NASA Image and Video Library

    1993-09-15

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Centerr (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provided general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.

  17. Around Marshall

    NASA Image and Video Library

    1993-09-15

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Center (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability providedgeneral visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.

  18. Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters.

    PubMed

    Borrego, Adrián; Latorre, Jorge; Llorens, Roberto; Alcañiz, Mariano; Noé, Enrique

    2016-08-09

    Even though virtual reality (VR) is increasingly used in rehabilitation, the implementation of walking navigation in VR still poses a technological challenge for current motion tracking systems. Different metaphors simulate locomotion without involving real gait kinematics, which can affect presence, orientation, spatial memory and cognition, and even performance. All these factors can dissuade their use in rehabilitation. We hypothesize that a marker-based head tracking solution would allow walking in VR with high sense of presence and without causing sickness. The objectives of this study were to determine the accuracy, the jitter, and the lag of the tracking system and its elicited sickness and presence in comparison of a CAVE system. The accuracy and the jitter around the working area at three different heights and the lag of the head tracking system were analyzed. In addition, 47 healthy subjects completed a search task that involved navigation in the walking VR system and in the CAVE system. Navigation was enabled by natural locomotion in the walking VR system and through a specific device in the CAVE system. An HMD was used as display in the walking VR system. After interacting with each system, subjects rated their sickness in a seven-point scale and their presence in the Slater-Usoh-Steed Questionnaire and a modified version of the Presence Questionnaire. Better performance was registered at higher heights, where accuracy was less than 0.6 cm and the jitter was about 6 mm. The lag of the system was 120 ms. Participants reported that both systems caused similar low levels of sickness (about 2.4 over 7). However, ratings showed that the walking VR system elicited higher sense of presence than the CAVE system in both the Slater-Usoh-Steed Questionnaire (17.6 ± 0.3 vs 14.6 ± 0.6 over 21, respectively) and the modified Presence Questionnaire (107.4 ± 2.0 vs 93.5 ± 3.2 over 147, respectively). The marker-based solution provided accurate, robust, and fast head tracking to allow navigation in the VR system by walking without causing relevant sickness and promoting higher sense of presence than CAVE systems, thus enabling natural walking in full-scale environments, which can enhance the ecological validity of VR-based rehabilitation applications.

  19. Collaborative visual analytics of radio surveys in the Big Data era

    NASA Astrophysics Data System (ADS)

    Vohl, Dany; Fluke, Christopher J.; Hassan, Amr H.; Barnes, David G.; Kilborn, Virginia A.

    2017-06-01

    Radio survey datasets comprise an increasing number of individual observations stored as sets of multidimensional data. In large survey projects, astronomers commonly face limitations regarding: 1) interactive visual analytics of sufficiently large subsets of data; 2) synchronous and asynchronous collaboration; and 3) documentation of the discovery workflow. To support collaborative data inquiry, we present encube, a large-scale comparative visual analytics framework. encube can utilise advanced visualization environments such as the CAVE2 (a hybrid 2D and 3D virtual reality environment powered with a 100 Tflop/s GPU-based supercomputer and 84 million pixels) for collaborative analysis of large subsets of data from radio surveys. It can also run on standard desktops, providing a capable visual analytics experience across the display ecology. encube is composed of four primary units enabling compute-intensive processing, advanced visualisation, dynamic interaction, parallel data query, along with data management. Its modularity will make it simple to incorporate astronomical analysis packages and Virtual Observatory capabilities developed within our community. We discuss how encube builds a bridge between high-end display systems (such as CAVE2) and the classical desktop, preserving all traces of the work completed on either platform - allowing the research process to continue wherever you are.

  20. Verification of Emmert's law in actual and virtual environments.

    PubMed

    Nakamizo, Sachio; Imamura, Mariko

    2004-11-01

    We examined Emmert's law by measuring the perceived size of an afterimage and the perceived distance of the surface on which the afterimage was projected in actual and virtual environments. The actual environment consisted of a corridor with ample cues as to distance and depth. The virtual environment was made from the CAVE of a virtual reality system. The afterimage, disc-shaped and one degree in diameter, was produced by flashing with an electric photoflash. The observers were asked to estimate the perceived distance to surfaces located at various physical distances (1 to 24 m) by the magnitude estimation method and to estimate the perceived size of the afterimage projected on the surfaces by a matching method. The results show that the perceived size of the afterimage was directly proportional to the perceived distance in both environments; thus, Emmert's law holds in virtual as well as actual environments. We suggest that Emmert's law is a specific case of a functional principle of distance scaling by the visual system.

  1. A compact field fluorometer and its application to dye tracing in karst environments

    NASA Astrophysics Data System (ADS)

    Poulain, Amaël; Rochez, Gaëtan; Van Roy, Jean-Pierre; Dewaide, Lorraine; Hallet, Vincent; De Sadelaer, Geert

    2017-08-01

    Dye tracing is a classic technique in hydrogeology to investigate surface-water or groundwater flow characteristics, and it is useful for many applications including natural or industrial issues. The Fluo-Green field fluorometer has been successfully tested in a karst environment and is specifically suitable for in-cave karst water monitoring. Karst research often uses dyes to obtain information about groundwater flow in unexplored cave passages. The compact device, alternatively named Fluo-G, meets the requirements of cave media: small (10 × 16 × 21 cm), lightweight (0.75 kg without ballast) and simple in conception. It is easy for cavers to set up and handle compared to other sampling methods. The fluorometer records uranine, turbidity and temperature with a user-defined time-step (1 min - 1 day). Very low energy consumption allows 9,000 measurements with six AA batteries. The device was calibrated and tested in the laboratory and in field conditions in Belgian karst systems. Results are in good fit with other sampling methods: in-situ fluorometers and automatic water sampling plus laboratory analysis. Recording high quality data (breakthrough curves) in karst with in-cave monitoring is valuable to improve knowledge of karst systems. Many hydrological and hydrogeological applications can benefit from such a low-cost and compact device, and finding the best compromise between resources and quality data is essential. Several improvements are possible but preliminary field tests are very promising.

  2. Interactive terrain visualization enables virtual field work during rapid scientific response to the 2010 Haiti earthquake

    USGS Publications Warehouse

    Cowgill, Eric; Bernardin, Tony S.; Oskin, Michael E.; Bowles, Christopher; Yikilmaz, M. Burak; Kreylos, Oliver; Elliott, Austin J.; Bishop, Scott; Gold, Ryan D.; Morelan, Alexander; Bawden, Gerald W.; Hamann, Bernd; Kellogg, Louise

    2012-01-01

    The moment magnitude (Mw) 7.0 12 January 2010 Haiti earthquake is the first major earthquake for which a large-footprint LiDAR (light detection and ranging) survey was acquired within several weeks of the event. Here, we describe the use of virtual reality data visualization to analyze massive amounts (67 GB on disk) of multiresolution terrain data during the rapid scientific response to a major natural disaster. In particular, we describe a method for conducting virtual field work using both desktop computers and a 4-sided, 22 m3 CAVE immersive virtual reality environment, along with KeckCAVES (Keck Center for Active Visualization in the Earth Sciences) software tools LiDAR Viewer, to analyze LiDAR point-cloud data, and Crusta, for 2.5 dimensional surficial geologic mapping on a bare-earth digital elevation model. This system enabled virtual field work that yielded remote observations of the topographic expression of active faulting within an ∼75-km-long section of the eastern Enriquillo–Plantain Garden fault spanning the 2010 epicenter. Virtual field observations indicated that the geomorphic evidence of active faulting and ancient surface rupture varies along strike. Landform offsets of 6–50 m along the Enriquillo–Plantain Garden fault east of the 2010 epicenter and closest to Port-au-Prince attest to repeated recent surface-rupturing earthquakes there. In the west, the fault trace is well defined by displaced landforms, but it is not as clear as in the east. The 2010 epicenter is within a transition zone between these sections that extends from Grand Goâve in the west to Fayette in the east. Within this transition, between L'Acul (lat 72°40′W) and the Rouillone River (lat 72°35′W), the Enriquillo–Plantain Garden fault is undefined along an embayed low-relief range front, with little evidence of recent surface rupture. Based on the geometry of the eastern and western faults that show evidence of recent surface rupture, we propose that the 2010 event occurred within a stepover that appears to have served as a long-lived boundary between rupture segments, explaining the lack of 2010 surface rupture. This study demonstrates how virtual reality–based data visualization has the potential to transform rapid scientific response by enabling virtual field studies and real-time interactive analysis of massive terrain data sets.

  3. NAVO MSRC Navigator. Fall 2001

    DTIC Science & Technology

    2001-01-01

    of the CAVE. A view from the VR Juggler simulator . The particles indicate snow (white) & ice (blue). Rainfall is shown on the terrain, and clouds as...the Cover: Virtual environment built by the NAVO MSRC Visualization Center for the Concurrent Computing Laboratory for Materials Simulation at...Louisiana State University. This application allows the researchers to visualize a million atom simulation of an indentor puncturing a block of gallium

  4. Lidar Investigation of Infiltration Water Heterogeneity in the Tamala Limestone, SW WA

    NASA Astrophysics Data System (ADS)

    Mahmud, K.; Mariethoz, G.; Treble, P. C.; Baker, A.

    2014-12-01

    To better manage groundwater resources in carbonate areas and improve our understanding of speleothem archives, it is important to understand and predict unsaturated zone hydrology in karst. The high level of complexity and spatial heterogeneity of such systems is challenging and requires knowledge of the typical geometry of karstic features. We present an exhaustive characterization of Golgotha Cave, SW Western Australia, based on an extensive LIDAR measurement campaign. The cave is developed in Quaternary age aeolianite (dune limestone) and contains speleothem records. We collect 30 representative 3D scan images from this site using FARO Focus3D, a high-speed 3D laser scanner, to visualize, study and extract 2D and 3D information from various points of view and at different scales. In addition to LIDAR data, 32 automatic drip loggers are installed at this site to measure the distribution and volume of water flow. We perform mathematical morphological analyses on the cave ceiling, to determine statistical information regarding the stalactites widths, lengths and spatial distribution. We determine a relationship between stalactites diameter and length. We perform tests for randomness to investigate the relationship between stalactite distribution and ceiling features such as fractures and apply this to identify different types of possible flow patterns such as fracture flow, solution pipe flow, primary matrix flow etc. We also relate stalactites density variation with topography of the cave ceiling which shows hydraulic gradient deviations. Finally we use Image Quilting, one of the recently developed multiple-point geostatistics methods, with the training images derived from LIDAR data to create a larger cave system to represent not only the caves that are visible, but the entire system which is inaccessible. As a result, an integral geological model is generated which may allow other scientists, geologist, to work on two different levels, integrating different speleothem datasets: (1) a basic level based on the accurate and metric support provided by the laser scanner; and (2) an advanced level using the image-based modelling.

  5. Performance Evaluation of Passive Haptic Feedback for Tactile HMI Design in CAVEs.

    PubMed

    Lassagne, Antoine; Kemeny, Andras; Posselt, Javier; Merienne, Frederic

    2018-01-01

    This article presents a comparison of different haptic systems, which are designed to simulate flat Human Machine Interfaces (HMIs) like touchscreens in virtual environments (VEs) such as CAVEs, and their respective performance. We compare a tangible passive transparent slate to a classic tablet and a sensory substitution system. These systems were tested during a controlled experiment. The performance and impressions from 20 subjects were collected to understand more about the modalities in the given context. The results show that the preferences of the subjects are strongly related to the use-cases and needs. In terms of performance, passive haptics proved to be significantly useful, acting as a space reference and a real-time continuous calibration system, allowing subjects to have lower execution durations and relative errors. Sensory substitution induced perception drifts during the experiment, causing significant performance disparities, demonstrating the low robustness of perception when spatial cues are insufficiently available. Our findings offer a better understanding on the nature of perception drifts and the need of strong multisensory spatial markers for such use-cases in CAVEs. The importance of a relevant haptic modality specifically designed to match a precise use-case is also emphasized.

  6. Virtual reality treatment versus exposure in vivo: a comparative evaluation in acrophobia.

    PubMed

    Emmelkamp, P M G; Krijn, M; Hulsbosch, A M; de Vries, S; Schuemie, M J; van der Mast, C A P G

    2002-05-01

    The aim of the present study was to evaluate the effectiveness of low-budget virtual reality (VR) exposure versus exposure in vivo in a between-group design in 33 patients suffering from acrophobia. The virtual environments used in treatment were exactly copied from the real environments used in the exposure in vivo program. VR exposure was found to be as effective as exposure in vivo on anxiety and avoidance as measured with the Acrophobia Questionnaire (AQ), the Attitude Towards Heights Questionnaire (ATHQ) and the Behavioral Avoidance Test (BAT). Results were maintained up to six months follow-up. The present study shows that VR exposure can be effective with relatively cheap hardware and software on stand-alone computers currently on the market. Further studies into the effectiveness of VR exposure are recommended in other clinical groups as agoraphobics and social phobics and studies in which VR exposure is compared with more emerging virtual worlds as presented in CAVE-type systems.

  7. Computer Vision Assisted Virtual Reality Calibration

    NASA Technical Reports Server (NTRS)

    Kim, W.

    1999-01-01

    A computer vision assisted semi-automatic virtual reality (VR) calibration technology has been developed that can accurately match a virtual environment of graphically simulated three-dimensional (3-D) models to the video images of the real task environment.

  8. Treasure hunt of mineral resources: a serious game in a virtual world

    NASA Astrophysics Data System (ADS)

    Boniello, Annalisa

    2015-04-01

    This posterdescribes a geoscience activities on mineral resources for students of 14-18 years old. The activities are created as a treasure hunt of mineral resources, students must pass test and solve questions, search mineral in different environments: near a volcanos, in the river, in a lake, in a cave, under the sea and on a mountain. The activity is created using a virtual environment a virtual world built with a software, Opensim, a opensource software. In this virtual world every student as avatar, a virtual rapresentation of himself, search information, objects, mineral as in a serious game, a digital serious game. In the serious game buit as a treasure hunt, students interact with environment in a learning by doing, and they interact with other students in a cooperative learning and a collaborative environment. In the hunt there is a challenge that student must overcome: understanding what is a mineral resource collecting data on mineral analyzing environments where they are created so the students can improve motivation and learn, and improve scientific skills.

  9. Foreign language learning in immersive virtual environments

    NASA Astrophysics Data System (ADS)

    Chang, Benjamin; Sheldon, Lee; Si, Mei; Hand, Anton

    2012-03-01

    Virtual reality has long been used for training simulations in fields from medicine to welding to vehicular operation, but simulations involving more complex cognitive skills present new design challenges. Foreign language learning, for example, is increasingly vital in the global economy, but computer-assisted education is still in its early stages. Immersive virtual reality is a promising avenue for language learning as a way of dynamically creating believable scenes for conversational training and role-play simulation. Visual immersion alone, however, only provides a starting point. We suggest that the addition of social interactions and motivated engagement through narrative gameplay can lead to truly effective language learning in virtual environments. In this paper, we describe the development of a novel application for teaching Mandarin using CAVE-like VR, physical props, human actors and intelligent virtual agents, all within a semester-long multiplayer mystery game. Students travel (virtually) to China on a class field trip, which soon becomes complicated with intrigue and mystery surrounding the lost manuscript of an early Chinese literary classic. Virtual reality environments such as the Forbidden City and a Beijing teahouse provide the setting for learning language, cultural traditions, and social customs, as well as the discovery of clues through conversation in Mandarin with characters in the game.

  10. Construction of Blaze at the University of Illinois at Chicago: A Shared, High-Performance, Visual Computer for Next-Generation Cyberinfrastructure-Accelerated Scientific, Engineering, Medical and Public Policy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Maxine D.; Leigh, Jason

    2014-02-17

    The Blaze high-performance visual computing system serves the high-performance computing research and education needs of University of Illinois at Chicago (UIC). Blaze consists of a state-of-the-art, networked, computer cluster and ultra-high-resolution visualization system called CAVE2(TM) that is currently not available anywhere in Illinois. This system is connected via a high-speed 100-Gigabit network to the State of Illinois' I-WIRE optical network, as well as to national and international high speed networks, such as the Internet2, and the Global Lambda Integrated Facility. This enables Blaze to serve as an on-ramp to national cyberinfrastructure, such as the National Science Foundation’s Blue Waters petascalemore » computer at the National Center for Supercomputing Applications at the University of Illinois at Chicago and the Department of Energy’s Argonne Leadership Computing Facility (ALCF) at Argonne National Laboratory. DOE award # DE-SC005067, leveraged with NSF award #CNS-0959053 for “Development of the Next-Generation CAVE Virtual Environment (NG-CAVE),” enabled us to create a first-of-its-kind high-performance visual computing system. The UIC Electronic Visualization Laboratory (EVL) worked with two U.S. companies to advance their commercial products and maintain U.S. leadership in the global information technology economy. New applications are being enabled with the CAVE2/Blaze visual computing system that is advancing scientific research and education in the U.S. and globally, and help train the next-generation workforce.« less

  11. Discovering new methods of data fusion, visualization, and analysis in 3D immersive environments for hyperspectral and laser altimetry data

    NASA Astrophysics Data System (ADS)

    Moore, C. A.; Gertman, V.; Olsoy, P.; Mitchell, J.; Glenn, N. F.; Joshi, A.; Norpchen, D.; Shrestha, R.; Pernice, M.; Spaete, L.; Grover, S.; Whiting, E.; Lee, R.

    2011-12-01

    Immersive virtual reality environments such as the IQ-Station or CAVE° (Cave Automated Virtual Environment) offer new and exciting ways to visualize and explore scientific data and are powerful research and educational tools. Combining remote sensing data from a range of sensor platforms in immersive 3D environments can enhance the spectral, textural, spatial, and temporal attributes of the data, which enables scientists to interact and analyze the data in ways never before possible. Visualization and analysis of large remote sensing datasets in immersive environments requires software customization for integrating LiDAR point cloud data with hyperspectral raster imagery, the generation of quantitative tools for multidimensional analysis, and the development of methods to capture 3D visualizations for stereographic playback. This study uses hyperspectral and LiDAR data acquired over the China Hat geologic study area near Soda Springs, Idaho, USA. The data are fused into a 3D image cube for interactive data exploration and several methods of recording and playback are investigated that include: 1) creating and implementing a Virtual Reality User Interface (VRUI) patch configuration file to enable recording and playback of VRUI interactive sessions within the CAVE and 2) using the LiDAR and hyperspectral remote sensing data and GIS data to create an ArcScene 3D animated flyover, where left- and right-eye visuals are captured from two independent monitors for playback in a stereoscopic player. These visualizations can be used as outreach tools to demonstrate how integrated data and geotechnology techniques can help scientists see, explore, and more adequately comprehend scientific phenomena, both real and abstract.

  12. Development of simulation interfaces for evaluation task with the use of physiological data and virtual reality applied to a vehicle simulator

    NASA Astrophysics Data System (ADS)

    Miranda, Mateus R.; Costa, Henrik; Oliveira, Luiz; Bernardes, Thiago; Aguiar, Carla; Miosso, Cristiano; Oliveira, Alessandro B. S.; Diniz, Alberto C. G. C.; Domingues, Diana Maria G.

    2015-03-01

    This paper aims at describing an experimental platform used to evaluate the performance of individuals at training immersive physiological games. The platform proposed is embedded in an immersive environment in a CAVE of Virtual Reality and consists on a base frame with actuators with three degrees of freedom, sensor array interface and physiological sensors. Physiological data of breathing, galvanic skin resistance (GSR) and pressure on the hand of the user and a subjective questionnaire were collected during the experiments. The theoretical background used in a project focused on Software Engineering, Biomedical Engineering in the field of Ergonomics and Creative Technologies in order to presents this case study, related of an evaluation of a vehicular simulator located inside the CAVE. The analysis of the simulator uses physiological data of the drivers obtained in a period of rest and after the experience, with and without movements at the simulator. Also images from the screen are captured through time at the embedded experience and data collected through physiological data visualization (average frequency and RMS graphics). They are empowered by the subjective questionnaire as strong lived experience provided by the technological apparatus. The performed immersion experience inside the CAVE allows to replicate behaviors from physical spaces inside data space enhanced by physiological properties. In this context, the biocybrid condition is expanded beyond art and entertainment, as it is applied to automotive engineering and biomedical engineering. In fact, the kinesthetic sensations amplified by synesthesia replicates the sensation of displacement in the interior of an automobile, as well as the sensations of vibration and vertical movements typical of a vehicle, different speeds, collisions, etc. The contribution of this work is the possibility to tracing a stress analysis protocol for drivers while operating a vehicle getting affective behaviors coming from physiological data, mixed to embedded simulation in Mixed Reality.

  13. Towards Automatic Processing of Virtual City Models for Simulations

    NASA Astrophysics Data System (ADS)

    Piepereit, R.; Schilling, A.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.

    2016-10-01

    Especially in the field of numerical simulations, such as flow and acoustic simulations, the interest in using virtual 3D models to optimize urban systems is increasing. The few instances in which simulations were already carried out in practice have been associated with an extremely high manual and therefore uneconomical effort for the processing of models. Using different ways of capturing models in Geographic Information System (GIS) and Computer Aided Engineering (CAE), increases the already very high complexity of the processing. To obtain virtual 3D models suitable for simulation, we developed a tool for automatic processing with the goal to establish ties between the world of GIS and CAE. In this paper we introduce a way to use Coons surfaces for the automatic processing of building models in LoD2, and investigate ways to simplify LoD3 models in order to reduce unnecessary information for a numerical simulation.

  14. Students' Evaluation of a Virtual World for Procedural Training in a Tertiary-Education Course

    ERIC Educational Resources Information Center

    Ramírez, Jaime; Rico, Mariano; Riofrío-Luzcando, Diego; Berrocal-Lobo, Marta; de Antonio, Angélica

    2018-01-01

    This article presents an investigation on the educational value of virtual worlds intended for the acquisition of procedural knowledge. This investigation takes as a case of study a virtual laboratory on biotechnology. A remarkable feature in this virtual laboratory is an automatic tutor that supervises student's actions and provides tutoring…

  15. Addition of Olfactory Stimuli to Virtual Reality Simulations for Medical Training Applications

    DTIC Science & Technology

    1996-11-01

    surveyed and a working set of odorants were indentified or developed in sufficient quantities to support further testing. Extensive studies were performed...Olfactory Displays for HMD Systems 8 Ambulatory Olfactory HMD Display 11 Odor Display--Booth Environment 19 Odor Display in CAVE 20 Odor Survey and Odor...HMDs, it may be welcome in some scenarios such as those that might be used for training medics. Odorant Survey and Odor Development A second area of

  16. Critical level setting of continuous air monitor.

    PubMed

    Li, Huibin; Jia, Mingyan; Wang, Kailiang

    2013-01-01

    Algorithms used to compensate the radon and thoron progeny's interference are one of the key technologies for continuous air monitors (CAMs). In this study, a CAM that can automatically change filter was manufactured, and equations used to calculate the transuranic aerosol concentration and the corresponding critical level were derived. The parameters used in calculation were acquired by continuous measurement in a high radon environment. At last, validation of the calculation was tested in a cave where the radon concentration fluctuated frequently, and the results were analysed.

  17. Avatars, Virtual Reality Technology, and the U.S. Military: Emerging Policy Issues

    DTIC Science & Technology

    2008-04-09

    called “ Sentient Worldwide Simulation,” which will “mirror” real life and automatically follow real-world events in real time. Some virtual world...cities, with the final goal of creating a fully functioning virtual model of the entire world, which will be known as the Sentient Worldwide Simulation

  18. CaveCAD: a tool for architectural design in immersive virtual environments

    NASA Astrophysics Data System (ADS)

    Schulze, Jürgen P.; Hughes, Cathleen E.; Zhang, Lelin; Edelstein, Eve; Macagno, Eduardo

    2014-02-01

    Existing 3D modeling tools were designed to run on desktop computers with monitor, keyboard and mouse. To make 3D modeling possible with mouse and keyboard, many 3D interactions, such as point placement or translations of geometry, had to be mapped to the 2D parameter space of the mouse, possibly supported by mouse buttons or keyboard keys. We hypothesize that had the designers of these existing systems had been able to assume immersive virtual reality systems as their target platforms, they would have been able to design 3D interactions much more intuitively. In collaboration with professional architects, we created a simple, but complete 3D modeling tool for virtual environments from the ground up and use direct 3D interaction wherever possible and adequate. In this publication, we present our approaches for interactions for typical 3D modeling functions, such as geometry creation, modification of existing geometry, and assignment of surface materials. We also discuss preliminary user experiences with this system.

  19. The effect on lower spine muscle activation of walking on a narrow beam in virtual reality.

    PubMed

    Antley, Angus; Slater, Mel

    2011-02-01

    To what extent do people behave in immersive virtual environments as they would in similar situations in a physical environment? There are many ways to address this question, ranging from questionnaires, behavioral studies, and the use of physiological measures. Here, we compare the onsets of muscle activity using surface electromyography (EMG) while participants were walking under three different conditions: on a normal floor surface, on a narrow ribbon along the floor, and on a narrow platform raised off the floor. The same situation was rendered in an immersive virtual environment (IVE) Cave-like system, and 12 participants did the three types of walking in a counter-balanced within-groups design. The mean number of EMG activity onsets per unit time followed the same pattern in the virtual environment as in the physical environment-significantly higher for walking on the platform compared to walking on the floor. Even though participants knew that they were in fact really walking at floor level in the virtual environment condition, the visual illusion of walking on a raised platform was sufficient to influence their behavior in a measurable way. This opens up the door for this technique to be used in gait and posture related scenarios including rehabilitation.

  20. Seamless 3D interaction for virtual tables, projection planes, and CAVEs

    NASA Astrophysics Data System (ADS)

    Encarnacao, L. M.; Bimber, Oliver; Schmalstieg, Dieter; Barton, Robert J., III

    2000-08-01

    The Virtual Table presents stereoscopic graphics to a user in a workbench-like setting. This device shares with other large- screen display technologies (such as data walls and surround- screen projection systems) the lack of human-centered unencumbered user interfaces and 3D interaction technologies. Such shortcomings present severe limitations to the application of virtual reality (VR) technology to time- critical applications as well as employment scenarios that involve heterogeneous groups of end-users without high levels of computer familiarity and expertise. Traditionally such employment scenarios are common in planning-related application areas such as mission rehearsal and command and control. For these applications, a high grade of flexibility with respect to the system requirements (display and I/O devices) as well as to the ability to seamlessly and intuitively switch between different interaction modalities and interaction are sought. Conventional VR techniques may be insufficient to meet this challenge. This paper presents novel approaches for human-centered interfaces to Virtual Environments focusing on the Virtual Table visual input device. It introduces new paradigms for 3D interaction in virtual environments (VE) for a variety of application areas based on pen-and-clipboard, mirror-in-hand, and magic-lens metaphors, and introduces new concepts for combining VR and augmented reality (AR) techniques. It finally describes approaches toward hybrid and distributed multi-user interaction environments and concludes by hypothesizing on possible use cases for defense applications.

  1. The Implementation and Validation of a Virtual Environment for Training Powered Wheelchair Manoeuvres.

    PubMed

    John, Nigel W; Pop, Serban R; Day, Thomas W; Ritsos, Panagiotis D; Headleand, Christopher J

    2018-05-01

    Navigating a powered wheelchair and avoiding collisions is often a daunting task for new wheelchair users. It takes time and practice to gain the coordination needed to become a competent driver and this can be even more of a challenge for someone with a disability. We present a cost-effective virtual reality (VR) application that takes advantage of consumer level VR hardware. The system can be easily deployed in an assessment centre or for home use, and does not depend on a specialized high-end virtual environment such as a Powerwall or CAVE. This paper reviews previous work that has used virtual environments technology for training tasks, particularly wheelchair simulation. We then describe the implementation of our own system and the first validation study carried out using thirty three able bodied volunteers. The study results indicate that at a significance level of 5 percent then there is an improvement in driving skills from the use of our VR system. We thus have the potential to develop the competency of a wheelchair user whilst avoiding the risks inherent to training in the real world. However, the occurrence of cybersickness is a particular problem in this application that will need to be addressed.

  2. Virtual memory

    NASA Technical Reports Server (NTRS)

    Denning, P. J.

    1986-01-01

    Virtual memory was conceived as a way to automate overlaying of program segments. Modern computers have very large main memories, but need automatic solutions to the relocation and protection problems. Virtual memory serves this need as well and is thus useful in computers of all sizes. The history of the idea is traced, showing how it has become a widespread, little noticed feature of computers today.

  3. Shifty: A Weight-Shifting Dynamic Passive Haptic Proxy to Enhance Object Perception in Virtual Reality.

    PubMed

    Zenner, Andre; Kruger, Antonio

    2017-04-01

    We define the concept of Dynamic Passive Haptic Feedback (DPHF) for virtual reality by introducing the weight-shifting physical DPHF proxy object Shifty. This concept combines actuators known from active haptics and physical proxies known from passive haptics to construct proxies that automatically adapt their passive haptic feedback. We describe the concept behind our ungrounded weight-shifting DPHF proxy Shifty and the implementation of our prototype. We then investigate how Shifty can, by automatically changing its internal weight distribution, enhance the user's perception of virtual objects interacted with in two experiments. In a first experiment, we show that Shifty can enhance the perception of virtual objects changing in shape, especially in length and thickness. Here, Shifty was shown to increase the user's fun and perceived realism significantly, compared to an equivalent passive haptic proxy. In a second experiment, Shifty is used to pick up virtual objects of different virtual weights. The results show that Shifty enhances the perception of weight and thus the perceived realism by adapting its kinesthetic feedback to the picked-up virtual object. In the same experiment, we additionally show that specific combinations of haptic, visual and auditory feedback during the pick-up interaction help to compensate for visual-haptic mismatch perceived during the shifting process.

  4. Hybrid polylingual object model: an efficient and seamless integration of Java and native components on the Dalvik virtual machine.

    PubMed

    Huang, Yukun; Chen, Rong; Wei, Jingbo; Pei, Xilong; Cao, Jing; Prakash Jayaraman, Prem; Ranjan, Rajiv

    2014-01-01

    JNI in the Android platform is often observed with low efficiency and high coding complexity. Although many researchers have investigated the JNI mechanism, few of them solve the efficiency and the complexity problems of JNI in the Android platform simultaneously. In this paper, a hybrid polylingual object (HPO) model is proposed to allow a CAR object being accessed as a Java object and as vice in the Dalvik virtual machine. It is an acceptable substitute for JNI to reuse the CAR-compliant components in Android applications in a seamless and efficient way. The metadata injection mechanism is designed to support the automatic mapping and reflection between CAR objects and Java objects. A prototype virtual machine, called HPO-Dalvik, is implemented by extending the Dalvik virtual machine to support the HPO model. Lifespan management, garbage collection, and data type transformation of HPO objects are also handled in the HPO-Dalvik virtual machine automatically. The experimental result shows that the HPO model outweighs the standard JNI in lower overhead on native side, better executing performance with no JNI bridging code being demanded.

  5. A New Semi-Automatic Approach to Find Suitable Virtual Electrodes in Arrays Using an Interpolation Strategy.

    PubMed

    Salchow, Christina; Valtin, Markus; Seel, Thomas; Schauer, Thomas

    2016-06-13

    Functional Electrical Stimulation via electrode arrays enables the user to form virtual electrodes (VEs) of dynamic shape, size, and position. We developed a feedback-control-assisted manual search strategy which allows the therapist to conveniently and continuously modify VEs to find a good stimulation area. This works for applications in which the desired movement consists of at least two degrees of freedom. The virtual electrode can be moved to arbitrary locations within the array, and each involved element is stimulated with an individual intensity. Meanwhile, the applied global stimulation intensity is controlled automatically to meet a predefined angle for one degree of freedom. This enables the therapist to concentrate on the remaining degree(s) of freedom while changing the VE position. This feedback-control-assisted approach aims to integrate the user's opinion and the patient's sensation. Therefore, our method bridges the gap between manual search and fully automatic identification procedures for array electrodes. Measurements in four healthy volunteers were performed to demonstrate the usefulness of our concept, using a 24-element array to generate wrist and hand extension.

  6. Methane and Dissolved Organic Carbon Sustain an Ecosystem within a Density Stratified Coastal Aquifer of the Yucatan Peninsula, Mexico. Evidence for a Subterranean Microbial Loop?

    NASA Astrophysics Data System (ADS)

    Brankovits, David; Pohlman, John W.; Niemann, Helge; Leigh, Mary Beth; Casso, Michael; Alvarez Noguera, Fernando; Lehmann, Moritz F.; Iliffe, Thomas M.

    2016-04-01

    In coastal karst terrains, anchialine caves that meander in density stratified aquifers provide an exceptional opportunity for scientists to study in situ biogeochemical processes within the groundwater. The Caribbean coast of Mexico's Yucatan Peninsula contains over 1000 km of mapped cave passages, the densest known accumulation of anchialine caves in the world. A decades-old study based on the simple observation of 13C-depleted biomass in the cave-adapted fauna suggested biogeochemical processes related to methane-linked carbon cycling and/or other chemoautotrophic pathways as a source of energy and carbon. In this study, we utilized cave diving and a novel sampling device (the Octopipi) to obtain cm-scale water column profiles of methane, DOC and DIC concentrations and stable carbon isotope ratios to identify the energy sources and microbial processes that sustain life in these subterranean estuaries. High concentrations (up to 9522 nM) low-δ13C (as low as -67.5 permil) methane near the ceiling of the cave (in the fresh water section of the stratified water column) and evidence for methane oxidation in the brackish water portion of the water column suggest methane availability and consumption. Profiles obtained by the Octopipi demonstrate that virtually all of the methane (˜99%) is oxidized at the interface of anoxic freshwater and hypoxic brackish water masses. The high-methane water mass near the ceiling also contained elevated concentrations of DOC (851 μM) that displayed comparatively high δ13C (-27.8 to -28.2 permil), suggesting terrestrial organic matter input from the overlying soils. Low-methane brackish and saline water was characterized by lower DOC concentration (15 to 97 μM), yet with similar δ13C (-25.9 to -27.2 permil), suggesting significant terrestrial organic matter consumption or removal with increasing depth, from fresh to saline water, within the water column. The presence of 13C-depleted fatty acids (e.g., C16:1ω7c with δ13C-values as low as -54.1 permil) and deuterium-depleted δD values (e.g., as low as δD = -225 permil) from tissues of cave-adapted shrimps suggest that methanotrophic bacteria contributed a substantial fraction of their diet. Molecular microbial community analyses are underway to identify the taxonomic associations and syntrophy effects within a subterranean microbial loop that provides carbon and energy to the anchialine food web. These findings provide novel insight into the carbon cycle and methane dynamics for a largely unknown, yet widespread coastal habitat beneath the Earth's surface.

  7. Robust augmented reality registration method for localization of solid organs' tumors using CT-derived virtual biomechanical model and fluorescent fiducials.

    PubMed

    Kong, Seong-Ho; Haouchine, Nazim; Soares, Renato; Klymchenko, Andrey; Andreiuk, Bohdan; Marques, Bruno; Shabat, Galyna; Piechaud, Thierry; Diana, Michele; Cotin, Stéphane; Marescaux, Jacques

    2017-07-01

    Augmented reality (AR) is the fusion of computer-generated and real-time images. AR can be used in surgery as a navigation tool, by creating a patient-specific virtual model through 3D software manipulation of DICOM imaging (e.g., CT scan). The virtual model can be superimposed to real-time images enabling transparency visualization of internal anatomy and accurate localization of tumors. However, the 3D model is rigid and does not take into account inner structures' deformations. We present a concept of automated AR registration, while the organs undergo deformation during surgical manipulation, based on finite element modeling (FEM) coupled with optical imaging of fluorescent surface fiducials. Two 10 × 1 mm wires (pseudo-tumors) and six 10 × 0.9 mm fluorescent fiducials were placed in ex vivo porcine kidneys (n = 10). Biomechanical FEM-based models were generated from CT scan. Kidneys were deformed and the shape changes were identified by tracking the fiducials, using a near-infrared optical system. The changes were registered automatically with the virtual model, which was deformed accordingly. Accuracy of prediction of pseudo-tumors' location was evaluated with a CT scan in the deformed status (ground truth). In vivo: fluorescent fiducials were inserted under ultrasound guidance in the kidney of one pig, followed by a CT scan. The FEM-based virtual model was superimposed on laparoscopic images by automatic registration of the fiducials. Biomechanical models were successfully generated and accurately superimposed on optical images. The mean measured distance between the estimated tumor by biomechanical propagation and the scanned tumor (ground truth) was 0.84 ± 0.42 mm. All fiducials were successfully placed in in vivo kidney and well visualized in near-infrared mode enabling accurate automatic registration of the virtual model on the laparoscopic images. Our preliminary experiments showed the potential of a biomechanical model with fluorescent fiducials to propagate the deformation of solid organs' surface to their inner structures including tumors with good accuracy and automatized robust tracking.

  8. Using Virtual Reality For Outreach Purposes in Planetology

    NASA Astrophysics Data System (ADS)

    Civet, François; Le Mouélic, Stéphane; Le Menn, Erwan; Beaunay, Stéphanie

    2016-10-01

    2016 has been a year marked by a technological breakthrough : the availability for the first time to the general public of technologically mature virtual reality devices. Virtual Reality consists in visually immerging a user in a 3D environment reproduced either from real and/or imaginary data, with the possibility to move and eventually interact with the different elements. In planetology, most of the places will remain inaccessible to the public for a while, but a fleet of dedicated spacecraft's such as orbiters, landers and rovers allow the possibility to virtually reconstruct the environments, using image processing, cartography and photogrammetry. Virtual reality can then bridge the gap to virtually "send" any user into the place and enjoy the exploration.We are investigating several type of devices to render orbital or ground based data of planetological interest, mostly from Mars. The most simple system consists of a "cardboard" headset, on which the user can simply use his cellphone as the screen. A more comfortable experience is obtained with more complex systems such as the HTC vive or Oculus Rift headsets, which include a tracking system important to minimize motion sickness. The third environment that we have developed is based on the CAVE concept, were four 3D video projectors are used to project on three 2x3m walls plus the ground. These systems can be used for scientific data analysis, but also prove to be perfectly suited for outreach and education purposes.

  9. Sensitivity-based virtual fields for the non-linear virtual fields method

    NASA Astrophysics Data System (ADS)

    Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice

    2017-09-01

    The virtual fields method is an approach to inversely identify material parameters using full-field deformation data. In this manuscript, a new set of automatically-defined virtual fields for non-linear constitutive models has been proposed. These new sensitivity-based virtual fields reduce the influence of noise on the parameter identification. The sensitivity-based virtual fields were applied to a numerical example involving small strain plasticity; however, the general formulation derived for these virtual fields is applicable to any non-linear constitutive model. To quantify the improvement offered by these new virtual fields, they were compared with stiffness-based and manually defined virtual fields. The proposed sensitivity-based virtual fields were consistently able to identify plastic model parameters and outperform the stiffness-based and manually defined virtual fields when the data was corrupted by noise.

  10. Multi-objective evolutionary optimization for constructing neural networks for virtual reality visual data mining: application to geophysical prospecting.

    PubMed

    Valdés, Julio J; Barton, Alan J

    2007-05-01

    A method for the construction of virtual reality spaces for visual data mining using multi-objective optimization with genetic algorithms on nonlinear discriminant (NDA) neural networks is presented. Two neural network layers (the output and the last hidden) are used for the construction of simultaneous solutions for: (i) a supervised classification of data patterns and (ii) an unsupervised similarity structure preservation between the original data matrix and its image in the new space. A set of spaces are constructed from selected solutions along the Pareto front. This strategy represents a conceptual improvement over spaces computed by single-objective optimization. In addition, genetic programming (in particular gene expression programming) is used for finding analytic representations of the complex mappings generating the spaces (a composition of NDA and orthogonal principal components). The presented approach is domain independent and is illustrated via application to the geophysical prospecting of caves.

  11. How Virtual Technology Can Impact Total Ownership Costs on a USN Vessel

    DTIC Science & Technology

    2012-03-01

    Clients (After Lam, 2010) Alternative Solutions Labor $M Hardware $M Software $M Transport $M Power & Cooling $M Virtualization $M...and will hold contractors accountable to ensure energy efficiency targets of new equipment are as advertised . 2. Total Cost of Ownership...automatically placed into Standby by the VMware software and reduced energy consumption by 230 watts. Even though there were 12 virtual desktops online and in

  12. Lightweight scheduling of elastic analysis containers in a competitive cloud environment: a Docked Analysis Facility for ALICE

    NASA Astrophysics Data System (ADS)

    Berzano, D.; Blomer, J.; Buncic, P.; Charalampidis, I.; Ganis, G.; Meusel, R.

    2015-12-01

    During the last years, several Grid computing centres chose virtualization as a better way to manage diverse use cases with self-consistent environments on the same bare infrastructure. The maturity of control interfaces (such as OpenNebula and OpenStack) opened the possibility to easily change the amount of resources assigned to each use case by simply turning on and off virtual machines. Some of those private clouds use, in production, copies of the Virtual Analysis Facility, a fully virtualized and self-contained batch analysis cluster capable of expanding and shrinking automatically upon need: however, resources starvation occurs frequently as expansion has to compete with other virtual machines running long-living batch jobs. Such batch nodes cannot relinquish their resources in a timely fashion: the more jobs they run, the longer it takes to drain them and shut off, and making one-job virtual machines introduces a non-negligible virtualization overhead. By improving several components of the Virtual Analysis Facility we have realized an experimental “Docked” Analysis Facility for ALICE, which leverages containers instead of virtual machines for providing performance and security isolation. We will present the techniques we have used to address practical problems, such as software provisioning through CVMFS, as well as our considerations on the maturity of containers for High Performance Computing. As the abstraction layer is thinner, our Docked Analysis Facilities may feature a more fine-grained sizing, down to single-job node containers: we will show how this approach will positively impact automatic cluster resizing by deploying lightweight pilot containers instead of replacing central queue polls.

  13. Hybrid PolyLingual Object Model: An Efficient and Seamless Integration of Java and Native Components on the Dalvik Virtual Machine

    PubMed Central

    Huang, Yukun; Chen, Rong; Wei, Jingbo; Pei, Xilong; Cao, Jing; Prakash Jayaraman, Prem; Ranjan, Rajiv

    2014-01-01

    JNI in the Android platform is often observed with low efficiency and high coding complexity. Although many researchers have investigated the JNI mechanism, few of them solve the efficiency and the complexity problems of JNI in the Android platform simultaneously. In this paper, a hybrid polylingual object (HPO) model is proposed to allow a CAR object being accessed as a Java object and as vice in the Dalvik virtual machine. It is an acceptable substitute for JNI to reuse the CAR-compliant components in Android applications in a seamless and efficient way. The metadata injection mechanism is designed to support the automatic mapping and reflection between CAR objects and Java objects. A prototype virtual machine, called HPO-Dalvik, is implemented by extending the Dalvik virtual machine to support the HPO model. Lifespan management, garbage collection, and data type transformation of HPO objects are also handled in the HPO-Dalvik virtual machine automatically. The experimental result shows that the HPO model outweighs the standard JNI in lower overhead on native side, better executing performance with no JNI bridging code being demanded. PMID:25110745

  14. Building generic anatomical models using virtual model cutting and iterative registration.

    PubMed

    Xiao, Mei; Soh, Jung; Meruvia-Pastor, Oscar; Schmidt, Eric; Hallgrímsson, Benedikt; Sensen, Christoph W

    2010-02-08

    Using 3D generic models to statistically analyze trends in biological structure changes is an important tool in morphometrics research. Therefore, 3D generic models built for a range of populations are in high demand. However, due to the complexity of biological structures and the limited views of them that medical images can offer, it is still an exceptionally difficult task to quickly and accurately create 3D generic models (a model is a 3D graphical representation of a biological structure) based on medical image stacks (a stack is an ordered collection of 2D images). We show that the creation of a generic model that captures spatial information exploitable in statistical analyses is facilitated by coupling our generalized segmentation method to existing automatic image registration algorithms. The method of creating generic 3D models consists of the following processing steps: (i) scanning subjects to obtain image stacks; (ii) creating individual 3D models from the stacks; (iii) interactively extracting sub-volume by cutting each model to generate the sub-model of interest; (iv) creating image stacks that contain only the information pertaining to the sub-models; (v) iteratively registering the corresponding new 2D image stacks; (vi) averaging the newly created sub-models based on intensity to produce the generic model from all the individual sub-models. After several registration procedures are applied to the image stacks, we can create averaged image stacks with sharp boundaries. The averaged 3D model created from those image stacks is very close to the average representation of the population. The image registration time varies depending on the image size and the desired accuracy of the registration. Both volumetric data and surface model for the generic 3D model are created at the final step. Our method is very flexible and easy to use such that anyone can use image stacks to create models and retrieve a sub-region from it at their ease. Java-based implementation allows our method to be used on various visualization systems including personal computers, workstations, computers equipped with stereo displays, and even virtual reality rooms such as the CAVE Automated Virtual Environment. The technique allows biologists to build generic 3D models of their interest quickly and accurately.

  15. The Science of Exploring Caves.

    ERIC Educational Resources Information Center

    Reid, Frank S.

    1991-01-01

    An introduction to the science of speleology is presented. Discussed is why people explore caves--for the physical challenge, the thrill of discovery, and the joy of viewing their beauty. Cave conservation, cave biology, caving safety, and caving equipment are topics of discussion. A reading list on caves is included. (KR)

  16. Virtual Instrument for Determining Rate Constant of Second-Order Reaction by pX Based on LabVIEW 8.0.

    PubMed

    Meng, Hu; Li, Jiang-Yuan; Tang, Yong-Huai

    2009-01-01

    The virtual instrument system based on LabVIEW 8.0 for ion analyzer which can measure and analyze ion concentrations in solution is developed and comprises homemade conditioning circuit, data acquiring board, and computer. It can calibrate slope, temperature, and positioning automatically. When applied to determine the reaction rate constant by pX, it achieved live acquiring, real-time displaying, automatical processing of testing data, generating the report of results; and other functions. This method simplifies the experimental operation greatly, avoids complicated procedures of manual processing data and personal error, and improves veracity and repeatability of the experiment results.

  17. Numerical simulation of formation and preservation of Ningwu ice cave, Shanxi, China

    NASA Astrophysics Data System (ADS)

    Yang, S.; Shi, Y.

    2015-04-01

    Ice caves exist in locations where annual average temperature in higher than 0 °C. An example is Ningwu ice cave, Shanxi Province, the largest ice cave in China. In order to quantitatively explain the mechanism of formation and preservation of the ice cave, we use Finite Element Method to simulate the heat transfer process at this ice cave. There are two major control factors. First, there is the seasonal asymmetric heat transfer. Heat is transferred into the ice cave from outside, very inefficiently by conduction in spring, summer and fall. In winter, thermal convection occurs that transfers heat very efficiently out of the ice cave, thus cooling it down. Secondly, ice-water phase change provides a heat barrier for heat transfer into the cave in summer. The calculation also helps to evaluate effects of global warming, tourists, etc. for sustainable development of ice cave as tourism resource. In some other ice caves in China, managers installed air-tight doors at these ice caves entrance intending to "protect" these caves, but this prevent cooling down these caves in winters and these cave ices will entirely melt within tens of years.

  18. Geologic controls on cave development in Burnsville Cove, Bath and Highland Counties, Virginia

    USGS Publications Warehouse

    Swezey, Christopher; Haynes, John T.; Lucas, Philip C.; Lambert, Richard A.

    2017-01-01

    Burnsville Cove in Bath and Highland Counties (Virginia, USA) is a karst region in the Valley and Ridge Province of the Appalachian Mountains. The region contains many caves in Silurian to Devonian limestone, and is well suited for examining geologic controls on cave location and cave passage morphology. In Burnsville Cove, many caves are located preferentially near the axes of synclines and anticlines. For example, Butler Cave is an elongate cave where the trunk channel follows the axis of Sinking Creek syncline and most of the side passages follow joints at right angles to the syncline axis. In contrast, the Water Sinks Subway Cave, Owl Cave, and Helictite Cave have abundant maze patterns, and are located near the axis of Chestnut Ridge anticline. The maze patterns may be related to fact that the anticline axis is the site of the greatest amount of flexure, leading to more joints and (or) greater enlargement of joints. Many of the larger caves of Burnsville Cove (e.g., Breathing Cave, Butler Cave–Sinking Creek Cave System, lower parts of the Water Sinks Cave System) are developed in the Silurian Tonoloway Limestone, the stratigraphic unit with the greatest surface exposure in the area. Other caves are developed in the Silurian to Devonian Keyser Limestone of the Helderberg Group (e.g., Owl Cave, upper parts of the Water Sinks Cave System) and in the Devonian Shriver Chert and (or) Licking Creek Limestone of the Helderberg Group (e.g., Helictite Cave). Within the Tonoloway Limestone, the larger caves are developed in the lower member of the Tonoloway Limestone immediately below a bed of silica-cemented sandstone. In contrast, the larger caves in the Keyser Limestone are located preferentially in limestone beds containing stromatoporoid reefs, and some of the larger caves in the Licking Creek Limestone are located in beds of cherty limestone below the Devonian Oriskany Sandstone. Geologic controls on cave passage morphology include joints, bedding planes, and folds. The influence of joints results in tall and narrow cave passages, whereas the influence of bedding planes results in cave passages with flat ceilings and (or) floors. The influence of folds is less common, but a few cave passages follow fold axes and have distinctive arched ceilings.

  19. Martian cave air-movement via Helmholtz resonance

    USGS Publications Warehouse

    Williams, Kaj; Titus, Timothy N.; Okubo, Chris; Cushing, Glen

    2017-01-01

    Infrasonic resonance has previously been measured in terrestrial caves by other researchers, where Helmholtz resonance has been suggested as the plausible mechanism resulting in periodic wind reversals within cave entrances. We extend this reasoning to possible Martian caves, where we examine the characteristics of four atypical pit craters (APCs) on Tharsis, suggested as candidate cave entrance locations. The results show that, for several possible cave air movement periods, we are able to infer the approximate cave volumes. The utility of inferring cave volumes for planetary cave exploration is discussed.

  20. Bubble-induced cave collapse.

    PubMed

    Girihagama, Lakshika; Nof, Doron; Hancock, Cathrine

    2015-01-01

    Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon) physical contact with the cave walls or the aforementioned "natural" instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked) beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m). Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a "collapse". We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section), with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet), and the bubbles were produced using a syringe located at the cave floor.

  1. Automatic Assessment of 3D Modeling Exams

    ERIC Educational Resources Information Center

    Sanna, A.; Lamberti, F.; Paravati, G.; Demartini, C.

    2012-01-01

    Computer-based assessment of exams provides teachers and students with two main benefits: fairness and effectiveness in the evaluation process. This paper proposes a fully automatic evaluation tool for the Graphic and Virtual Design (GVD) curriculum at the First School of Architecture of the Politecnico di Torino, Italy. In particular, the tool is…

  2. Hands-On Experiences of Undergraduate Students in Automatics and Robotics Using a Virtual and Remote Laboratory

    ERIC Educational Resources Information Center

    Jara, Carlos A.; Candelas, Francisco A.; Puente, Santiago T.; Torres, Fernando

    2011-01-01

    Automatics and Robotics subjects are always greatly improved when classroom teaching is supported by adequate laboratory courses and experiments following the "learning by doing" paradigm, which provides students a deep understanding of theoretical lessons. However, expensive equipment and limited time prevent teachers having sufficient…

  3. Evaluation of smartphone-based interaction techniques in a CAVE in the context of immersive digital project review

    NASA Astrophysics Data System (ADS)

    George, Paul; Kemeny, Andras; Colombet, Florent; Merienne, Frédéric; Chardonnet, Jean-Rémy; Thouvenin, Indira Mouttapa

    2014-02-01

    Immersive digital project reviews consist in using virtual reality (VR) as a tool for discussion between various stakeholders of a project. In the automotive industry, the digital car prototype model is the common thread that binds them. It is used during immersive digital project reviews between designers, engineers, ergonomists, etc. The digital mockup is also used to assess future car architecture, habitability or perceived quality requirements with the aim to reduce using physical mockups for optimized cost, delay and quality efficiency. Among the difficulties identified by the users, handling the mockup is a major one. Inspired by current uses of nomad devices (multi-touch gestures, IPhone UI look'n'feel and AR applications), we designed a navigation technique taking advantage of these popular input devices: Space scrolling allows moving around the mockup. In this paper, we present the results of a study we conducted on the usability and acceptability of the proposed smartphone-based interaction metaphor compared to traditional technique and we provide indications of the most efficient choices for different use-cases accordingly. It was carried out in a traditional 4-sided CAVE and its purpose is to assess a chosen set of interaction techniques to be implemented in Renault's new 5-sides 4K x 4K wall high performance CAVE. The proposed new metaphor using nomad devices is well accepted by novice VR users and future implementation should allow an efficient industrial use. Their use is an easy and user friendly alternative of the existing traditional control devices such as a joystick.

  4. In situ study of the Gravettian individual from Cussac cave, locus 2 (Dordogne, France).

    PubMed

    Villotte, Sébastien; Santos, Frédéric; Courtaud, Patrice

    2015-12-01

    Cussac cave, discovered in 2000, is characterized by the exceptional presence of monumental engravings and human remains deposited in bear nests. Both the style of the art and a direct radiocarbon date indicate a Gravettian age. As the cave is protected as a national heritage site, only very limited access to and restricted direct interventions involving the human remains are possible. Here, we present the results of observations and measurements of Cussac L2A, represented by a virtually complete skeleton covered with a layer of clay. A portion of the clay that covered some bones was removed in order to undertake a study of the skeleton in situ. The age-at-death was assessed using several indicators, especially changes on the auricular surface of the ilium. The sex was assessed using the morphology and morphometrics of the coxal bones. Cussac L2A stature, humero-femoral index, and crural index were also estimated. The dimensions of the Cussac L2A skeletal remains are compared with the other European Gravettian and Late Upper Paleolithic human remains using adjusted Z-Scores. The analysis indicates that Cussac L2A is probably a male who died aged between 20 and 50 years. If the sex assessment is correct, with an averaged estimated stature of 1.64 m, Cussac L2A would be one of the shorter Gravettian males. These results raise the importance of the new discoveries to better understand the variability of Upper Paleolithic skeletal morphology and stress the difficulties in marrying heritage preservation and scientific investigations. © 2015 Wiley Periodicals, Inc.

  5. Spotted hyena and steppe lion predation behaviours on cave bears of Europe - ?Late Quaternary cave bear extinction as result of predator stress

    NASA Astrophysics Data System (ADS)

    Diedrich, Cajus G.

    2010-05-01

    Cave bears hibernated in caves all over Eurasia (e.g. Rabeder et al., 2000) including alpine regions using mainly larger caves for this purpose. Late Quaternary spotted hyenas Crocuta crocuta spelaea instead occupied mainly areas close to the cave entrances as their dens (Diedrich and Žák 2006, Diedrich 2010). The largest predator, the steppe lion Panthera leo spelaea was only a sporadic cave dweller (Diedrich 2007b, 2009b). His presence and its remains from caves all over Europe can be recently explained best as result of imported carcasses after killing by their largest antagonists, the Late Quaternary spotted hyenas. In some cases the kill might have happened in the hyena den cave itself during the theft of prey remains by lions (Diedrich 2009a). Another reason of their remains in caves of Europe is the hunting onto the herbivorous cave bears, especially during hibernation times, when megafauna prey was less available in the open environments (Diedrich 2009c). These lion remains from caves of Europe, nearly all of which were from adult animals, provide evidence of active predation by lions onto cave bears even in medium high alpine regions (Diedrich 2009b, in review). Lion skeletons in European cave bear dens were therefore often found amongst originally articulated cave bear skeletons or scattered cave bear remains and even close to their hibernation nests (Diedrich et al. 2009c, in review). Not only lions fed on cave bears documented mainly by the large quantities of chewed, punctured and crushed cave bear long-bones; even damaged skulls reveal that hyenas scavenged primarily on cave bear carcasses which were mainly responsible for the destruction of their carcasses and bones (Diedrich 2005, 2009d). Predation and scavenging on cave bears by the two largest Late Quaternary predators C. c. spelaea and P. l. spelaea explains well the large quantity of fragmented cave bear bones over all European caves in low to medium high mountainous elevations, whereas in high alpine regions the leopard Panthera pardus seem to have used the ecological niche of the absent hyenas (Diedrich 2009d, in review a). At open air sites cave bear scavenging by the largest Late Quaternary predators were proven, too (Diedrich 2006, 2009e). The predation stress caused by the three main and largest Late Quaternary predators seem to have provided cave bears to hibernate often deeply in many European caves, and here especially in larger and longer cave systems (e.g. Diedrich et al 2009, in review, Diedrich and Moldovan 2010) to protect themselves against the largest Quaternary predators. In conflicts with those large felids must have been killed by adult cave bears, which explains why those predator carcasses remained as complete skeletons or as partly disarticulated ones even deep in caves all over Europe which were finally not scavenged by the herbivorous cave bears (Diedrich in review). In such cave bear den caves the amount of lion bones generally take only 1-3% of the total bone amount being highly dominated by cave bear bones (Diedrich 2009c, in review). Lions and hyenas seem to have focussed onto the hunt of cave bears all over Europe, especially with the reduction of the biomass in the open environments at the maximum cold period during around 26.000-24.000 BP (Solutrean). The slow extinction of their largest prey was an important motor of the predation pressure onto cave bears. This might be one reason for the cave bear extinction in the final Late Quaternary (early Late Weichselian, maximum cold period) at least in northern Europe, but it seem to have happened in a combination of climatic change, and also human impact (cf. Diedrich, this volume). References Diedrich, C., 2005. Cracking and nibbling marks as indicators for the Upper Pleistocene spotted hyena as a scavenger of cave bear (Ursus spelaeus Rosenmüller, 1794) carcasses in the Perick Caves den of Northwest Germany. Abhandlungen der Naturhistorischen Gesellschaft Nürnberg, 45, 73-90. Diedrich, C., 2006. Ice age spotted hyenas ?hunting or only scavenging on a cave bear Ursus spelaeus Rosenmüller at the Ice Age spotted hyena freeland den and prey deposit site Bad Wildungen-Biedensteg (Hessia, Germany). Scientific Annals, School of Geology Aristotle University of Thessaloniki (AUTH) special volume, 98, 193-199. Diedrich, C., 2007b. The fairy tale about the "cave lions" Panthera leo spelaea (Goldfuss 1810) of Europe - Late Ice Age spotted hyenas and Ice Age steppe lions in conflict - lion killers and scavengers around Prague (Central Bohemia). Scripta Facultatis Scientiarum Universitatis Masarykianae Geology, 35 (2005), 107-112. Diedrich, C., 2009a. Steppe lion remains imported by Ice Age spotted hyenas into the Late Pleistocene Perick Caves hyena den in Northern Germany. Quaternary Research, 71 (3), 361-374. Diedrich, C., 2009b. Upper Pleistocene Panthera leo spelaea (Goldfuss, 1810) remains from the Bilstein Caves (Sauerland Karst) and contribution to the steppe lion taphonomy, palaeobiology and sexual dimorphism. Annales de Paléontologie, 95, 117-138. Diedrich, C. 2009c. Steppe lion predation - another reason for cave bears to protect during hibernation against carnivores in deepest parts of large cave systems in Europe. Abstractc 15th International Cave Bear Symposium, Spisska Nova Ves Slovakia, 8-9. Diedrich, C., 2009d. Cave bear killers, scavengers between the Scandinavian and Alpine Ice shields - the last hyenas and cave bears in antagonism - and the reason why cave bears hibernated deeply in caves. Stalactite, 58(2), 54-63. Diedrich, C. 2009e. Late Pleistocene Cave bear remains from the open air hyena den Emscher River terrace site Bottrop (NW Germany). - Stalactite, 58 (2): 42-47. Diedrich, C. 2010. The Crocuta crocuta spelaea (GOLDFUSS 1823) population from the Late Pleistocene Rösenbeck Cave den in NW Germany and contribution to the sexual dimorphism and palaeobiogeography of the last hyenas of Europe. - Annales de Paléontologie. Diedrich, C. (in review). Cave bear killers and scavengers from the last European Ice Age. Palaeogeography Palaeoclimatology Palaeoecology. Diedrich, C., Žák, K. 2006. Prey deposits and den sites of the Upper Pleistocene hyena Crocuta crocuta spelaea (Goldfuss, 1823) in horizontal and vertical caves of the Bohemian Karst (Czech Republic). Bulletin of Geosciences, 81 (4), 237-276. Diedrich, C., Robu, M., Dragusin, V., Constantin, S., Moldovan, O., 2009. New Upper Pleistocene steppe lion skeleton finds between the cave bear hibernation plateaus of the Ursilor Cave bear den, Romania. Abstractc 15th International Cave Bear Symposium, Spisska Nova Ves Slovakia, 10. Diedrich, C., Moldovan, O., Constantin, S. 2009. Cave bear tracks, scratch marks, hair traces and hibernation nests in the Ursilor Cave (Transylvania, Romania) - preliminary report from a famous European cave bear den. - Stalactite, 58 (2): 48-52. Diedrich, C., Moldovan, O. 2010. Ichnological and ethological studies in one of Europe's famous bear den in the Ursilor Cave (Carpathians, Romania). - Quarternary International (accepted). Rabeder, G., Nagel, D., Pacher, M., 2000. Der Höhlenbär. Stuttgart: Thorbecke.

  6. Numerical simulation of formation and preservation of Ningwu ice cave, Shanxi, China

    NASA Astrophysics Data System (ADS)

    Yang, S.; Shi, Y.

    2015-10-01

    Ice caves exist in locations where annual average air temperature is higher than 0 °C. An example is Ningwu ice cave, Shanxi Province, the largest ice cave in China. In order to quantitatively investigate the mechanism of formation and preservation of the ice cave, we use the finite-element method to simulate the heat transfer process at this ice cave. There are two major control factors. First, there is the seasonal asymmetric heat transfer. Heat is transferred into the ice cave from outside very inefficiently by conduction in spring, summer and fall. In winter, thermal convection occurs that transfers heat very efficiently out of the ice cave, thus cooling it down. Secondly, ice-water phase change provides a heat barrier for heat transfer into the cave in summer. The calculation also helps to evaluate effects of global warming, tourists, colored lights, climatic conditions, etc. for sustainable development of the ice cave as a tourism resource. In some other ice caves in China, managers have installed airtight doors at these ice caves' entrances with the intention of "protecting" these caves, but this in fact prevents cooling in winter and these cave ices will entirely melt within tens of years.

  7. Sensor supervision and multiagent commanding by means of projective virtual reality

    NASA Astrophysics Data System (ADS)

    Rossmann, Juergen

    1998-10-01

    When autonomous systems with multiple agents are considered, conventional control- and supervision technologies are often inadequate because the amount of information available is often presented in a way that the user is effectively overwhelmed by the displayed data. New virtual reality (VR) techniques can help to cope with this problem, because VR offers the chance to convey information in an intuitive manner and can combine supervision capabilities and new, intuitive approaches to the control of autonomous systems. In the approach taken, control and supervision issues were equally stressed and finally led to the new ideas and the general framework for Projective Virtual Reality. The key idea of this new approach for an intuitively operable man machine interface for decentrally controlled multi-agent systems is to let the user act in the virtual world, detect the changes and have an action planning component automatically generate task descriptions for the agents involved to project actions that have been carried out by users in the virtual world into the physical world, e.g. with the help of robots. Thus the Projective Virtual Reality approach is to split the job between the task deduction in the VR and the task `projection' onto the physical automation components by the automatic action planning component. Besides describing the realized projective virtual reality system, the paper will also describe in detail the metaphors and visualization aids used to present different types of (e.g. sensor-) information in an intuitively comprehensible manner.

  8. Analysis of key technologies for virtual instruments metrology

    NASA Astrophysics Data System (ADS)

    Liu, Guixiong; Xu, Qingui; Gao, Furong; Guan, Qiuju; Fang, Qiang

    2008-12-01

    Virtual instruments (VIs) require metrological verification when applied as measuring instruments. Owing to the software-centered architecture, metrological evaluation of VIs includes two aspects: measurement functions and software characteristics. Complexity of software imposes difficulties on metrological testing of VIs. Key approaches and technologies for metrology evaluation of virtual instruments are investigated and analyzed in this paper. The principal issue is evaluation of measurement uncertainty. The nature and regularity of measurement uncertainty caused by software and algorithms can be evaluated by modeling, simulation, analysis, testing and statistics with support of powerful computing capability of PC. Another concern is evaluation of software features like correctness, reliability, stability, security and real-time of VIs. Technologies from software engineering, software testing and computer security domain can be used for these purposes. For example, a variety of black-box testing, white-box testing and modeling approaches can be used to evaluate the reliability of modules, components, applications and the whole VI software. The security of a VI can be assessed by methods like vulnerability scanning and penetration analysis. In order to facilitate metrology institutions to perform metrological verification of VIs efficiently, an automatic metrological tool for the above validation is essential. Based on technologies of numerical simulation, software testing and system benchmarking, a framework for the automatic tool is proposed in this paper. Investigation on implementation of existing automatic tools that perform calculation of measurement uncertainty, software testing and security assessment demonstrates the feasibility of the automatic framework advanced.

  9. Bubble-Induced Cave Collapse

    PubMed Central

    Girihagama, Lakshika; Nof, Doron; Hancock, Cathrine

    2015-01-01

    Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon) physical contact with the cave walls or the aforementioned “natural” instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked) beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m). Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a “collapse”. We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section), with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet), and the bubbles were produced using a syringe located at the cave floor. PMID:25849088

  10. 36 CFR 290.3 - Nomination, evaluation, and designation of significant caves.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF AGRICULTURE CAVE RESOURCES MANAGEMENT § 290.3 Nomination, evaluation, and designation of... humans, biota, or development of cave resources. (5) Recreational. The cave provides or could provide... consultation with individuals and organizations interested in the management and use of caves and cave...

  11. A multi-method approach for speleogenetic research on alpine karst caves. Torca La Texa shaft, Picos de Europa (Spain)

    NASA Astrophysics Data System (ADS)

    Ballesteros, Daniel; Jiménez-Sánchez, Montserrat; Giralt, Santiago; García-Sansegundo, Joaquín; Meléndez-Asensio, Mónica

    2015-10-01

    Speleogenetic research on alpine caves has advanced significantly during the last decades. These investigations require techniques from different geoscience disciplines that must be adapted to the methodological constraints of working in deep caves. The Picos de Europa mountains are one of the most important alpine karsts, including 14% of the World's Deepest Caves (caves with more than 1 km depth). A speleogenetic research is currently being developed in selected caves in these mountains; one of them, named Torca La Texa shaft, is the main goal of this article. For this purpose, we have proposed both an optimized multi-method approach for speleogenetic research in alpine caves, and a speleogenetic model of the Torca La Texa shaft. The methodology includes: cave surveying, dye-tracing, cave geometry analyses, cave geomorphological mapping, Uranium series dating (234U/230Th) and geomorphological, structural and stratigraphical studies of the cave surroundings. The SpeleoDisc method was employed to establish the structural control of the cavity. Torca La Texa (2653 m length, 215 m depth) is an alpine cave formed by two cave levels, vadose canyons and shafts, soutirage conduits, and gravity-modified passages. The cave was formed prior to the Middle Pleistocene and its development was controlled by the drop of the base level, producing the development of the two cave levels. Coevally to the cave levels formation, soutirage conduits originated connecting phreatic and epiphreatic conduits and vadose canyons and shafts were formed. Most of the shafts were created before the local glacial maximum (43-45 ka) and only two cave passages are related to dolines developed in recent times. The cave development is strongly related to the structure, locating the cave in the core of a gentle fold with the conduits' geometry and orientation controlled by the bedding and five families of joints.

  12. Immersive 3D geovisualisation in higher education

    NASA Astrophysics Data System (ADS)

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2014-05-01

    Through geovisualisation we explore spatial data, we analyse it towards a specific questions, we synthesise results, and we present and communicate them to a specific audience (MacEachren & Kraak 1997). After centuries of paper maps, the means to represent and visualise our physical environment and its abstract qualities have changed dramatically since the 1990s - and accordingly the methods how to use geovisualisation in teaching. Whereas some people might still consider the traditional classroom as ideal setting for teaching and learning geographic relationships and its mapping, we used a 3D CAVE (computer-animated virtual environment) as environment for a problem-oriented learning project called "GEOSimulator". Focussing on this project, we empirically investigated, if such a technological advance like the CAVE make 3D visualisation, including 3D geovisualisation, not only an important tool for businesses (Abulrub et al. 2012) and for the public (Wissen et al. 2008), but also for educational purposes, for which it had hardly been used yet. The 3D CAVE is a three-sided visualisation platform, that allows for immersive and stereoscopic visualisation of observed and simulated spatial data. We examined the benefits of immersive 3D visualisation for geographic research and education and synthesized three fundamental technology-based visual aspects: First, the conception and comprehension of space and location does not need to be generated, but is instantaneously and intuitively present through stereoscopy. Second, optical immersion into virtual reality strengthens this spatial perception which is in particular important for complex 3D geometries. And third, a significant benefit is interactivity, which is enhanced through immersion and allows for multi-discursive and dynamic data exploration and knowledge transfer. Based on our problem-oriented learning project, which concentrates on a case study on flood risk management at the Wilde Weisseritz in Germany, a river that significantly contributed to the hundred-year flooding in Dresden in 2002, we empirically evaluated the usefulness of this immersive 3D technology towards learning success. Results show that immersive 3D geovisualisation have educational and content-related advantages compared to 2D geovisualisations through the mentioned benefits. This innovative way of geovisualisation is thus not only entertaining and motivating for students, but can also be constructive for research studies by, for instance, facilitating the study of complex environments or decision-making processes.

  13. Caving in the Classroom

    ERIC Educational Resources Information Center

    Yoder, Holly

    2010-01-01

    During Cave Week, more than 200 students explore a simulated cave environment and participate in cave-related activities. Active cavers from a local club bring in equipment and photos and speak about their caving experiences. As student groups explore the simulated cave, other groups participate in different activities where they can create bat…

  14. Virtual Instrument for Determining Rate Constant of Second-Order Reaction by pX Based on LabVIEW 8.0

    PubMed Central

    Meng, Hu; Li, Jiang-Yuan; Tang, Yong-Huai

    2009-01-01

    The virtual instrument system based on LabVIEW 8.0 for ion analyzer which can measure and analyze ion concentrations in solution is developed and comprises homemade conditioning circuit, data acquiring board, and computer. It can calibrate slope, temperature, and positioning automatically. When applied to determine the reaction rate constant by pX, it achieved live acquiring, real-time displaying, automatical processing of testing data, generating the report of results; and other functions. This method simplifies the experimental operation greatly, avoids complicated procedures of manual processing data and personal error, and improves veracity and repeatability of the experiment results. PMID:19730752

  15. Virtual reality: a reality for future military pilotage?

    NASA Astrophysics Data System (ADS)

    McIntire, John P.; Martinsen, Gary L.; Marasco, Peter L.; Havig, Paul R.

    2009-05-01

    Virtual reality (VR) systems provide exciting new ways to interact with information and with the world. The visual VR environment can be synthetic (computer generated) or be an indirect view of the real world using sensors and displays. With the potential opportunities of a VR system, the question arises about what benefits or detriments a military pilot might incur by operating in such an environment. Immersive and compelling VR displays could be accomplished with an HMD (e.g., imagery on the visor), large area collimated displays, or by putting the imagery on an opaque canopy. But what issues arise when, instead of viewing the world directly, a pilot views a "virtual" image of the world? Is 20/20 visual acuity in a VR system good enough? To deliver this acuity over the entire visual field would require over 43 megapixels (MP) of display surface for an HMD or about 150 MP for an immersive CAVE system, either of which presents a serious challenge with current technology. Additionally, the same number of sensor pixels would be required to drive the displays to this resolution (and formidable network architectures required to relay this information), or massive computer clusters are necessary to create an entirely computer-generated virtual reality with this resolution. Can we presently implement such a system? What other visual requirements or engineering issues should be considered? With the evolving technology, there are many technological issues and human factors considerations that need to be addressed before a pilot is placed within a virtual cockpit.

  16. The unbalanced signal measuring of automotive brake drum

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Dong; Ye, Sheng-Hua; Zhang, Bang-Cheng

    2005-04-01

    For the purpose of the research and development of automatic balancing system by mass removing, the dissertation deals with the measuring method of the unbalance signal, the design the automatic balance equipment and the software. This paper emphases the testing system of the balancer of automotive brake drum. The paper designs the band-pass filter product with favorable automatic follow of electronic product, and with favorable automatic follow capability, filtration effect and stability. The system of automatic balancing system by mass removing based on virtual instrument is designed in this paper. A lab system has been constructed. The results of contrast experiments indicate the notable effect of 1-plane automatic balance and the high precision of dynamic balance, and demonstrate the application value of the system.

  17. What Do Context Aware Electronic Alerts from Virtual Learning Environments Tell Us about User Time & Location?

    ERIC Educational Resources Information Center

    Crane, Laura; Benachour, Phillip

    2013-01-01

    The paper describes the analysis of user location and time stamp information automatically logged when students receive and interact with electronic updates from the University's virtual learning environment. The electronic updates are sent to students' mobile devices using RSS feeds. The mobile reception of such information can be received in…

  18. Socially Optimized Learning in a Virtual Environment: Reducing Risky Sexual Behavior among Men Who Have Sex with Men

    ERIC Educational Resources Information Center

    Read, Stephen J.; Miller, Lynn C.; Appleby, Paul Robert; Nwosu, Mary E.; Reynaldo, Sadina; Lauren, Ada; Putcha, Anila

    2006-01-01

    A socially optimized learning approach, which integrates diverse theoretical perspectives, places men who have sex with men (MSM) in an interactive virtual environment designed to simulate the emotional, interpersonal, and contextual narrative of an actual sexual encounter while challenging and changing MSM's more automatic patterns of risky…

  19. Hypogene caves of the central Appalachian Shenandoah Valley in Virginia

    USGS Publications Warehouse

    Doctor, Daniel H.; Orndorff, Wil

    2017-01-01

    Several caves in the Shenandoah Valley in Virginia show evidence for early hypogenic conduit development with later-enhanced solution under partly confined phreatic conditions guided by geologic structures. Many (but not all) of these caves have been subsequently invaded by surface waters as a result of erosion and exhumation. Those not so affected are relict phreatic caves, bearing no relation to modern drainage patterns. Field and petrographic evidence shows that carbonate rocks hosting certain relict phreatic caves were dolomitized and/or silicified by early hydrothermal fluid migration in zones that served to locally enhance rock porosity, thus providing preferential pathways for later solution by groundwater flow, and making the surrounding bedrock more resistant to surficial weathering to result in caves that reside within isolated hills on the land surface. Features suggesting that deep phreatic processes dominated the development of these relict caves include (1) cave passage morphologies indicative of ascending fluids, (2) cave plans of irregular pattern, reflecting early maze or anastomosing development, (3) a general lack of cave breakdown and cave streams or cave stream deposits, and (4) calcite wall and pool coatings within isolated caves intersecting the local water table, and within unroofed caves at topographic locations elevated well above the local base level. Episodes of deep karstification were likely separated by long periods of geologic time, encompassing multiple phases of sedimentary fill and excavation within caves, and reflect a complex history of deep fluid migration that set the stage for later shallow speleogenesis that continues today.

  20. Studies of Cave Sediments: Physical and Chemical Records of Paleoclimate (Revised Edition)

    NASA Astrophysics Data System (ADS)

    Baker, Andy

    2007-10-01

    Caves have long fascinated humankind, from prehistory to present-day tourism. Caves are also a subject for a range of scientific investigations, including cave biology, archaeology, paleoclimatology, geology, hydrology, and geomorphology. One of the benefits caves provide is their role as a repository of material that might not otherwise survive on the Earth's surface, due to caves' interiors being protected from physical erosion by nature of their underground locations. Studies of Cave Sediments focuses on this role as a repository, in particular on Quaternary (historic to 1.8 million years old) paleoclimate information preserved in cave sediments.

  1. Acquisition of stereo panoramas for display in VR environments

    NASA Astrophysics Data System (ADS)

    Ainsworth, Richard A.; Sandin, Daniel J.; Schulze, Jurgen P.; Prudhomme, Andrew; DeFanti, Thomas A.; Srinivasan, Madhusudhanan

    2011-03-01

    Virtual reality systems are an excellent environment for stereo panorama displays. The acquisition and display methods described here combine high-resolution photography with surround vision and full stereo view in an immersive environment. This combination provides photographic stereo-panoramas for a variety of VR displays, including the StarCAVE, NexCAVE, and CORNEA. The zero parallax point used in conventional panorama photography is also the center of horizontal and vertical rotation when creating photographs for stereo panoramas. The two photographically created images are displayed on a cylinder or a sphere. The radius from the viewer to the image is set at approximately 20 feet, or at the object of major interest. A full stereo view is presented in all directions. The interocular distance, as seen from the viewer's perspective, displaces the two spherical images horizontally. This presents correct stereo separation in whatever direction the viewer is looking, even up and down. Objects at infinity will move with the viewer, contributing to an immersive experience. Stereo panoramas created with this acquisition and display technique can be applied without modification to a large array of VR devices having different screen arrangements and different VR libraries.

  2. Water-resources reconnaissance of Isle de la Gonave, Haiti

    USGS Publications Warehouse

    Troester, J.W.; Turvey, M.D.

    2004-01-01

    Isle de la Gonave is a 750-km2 island off the coast of Haiti. The depth to the water table ranges from less than 30 m in the Eocene and Upper Miocene limestones to over 60 m in the 300-m-thick Quaternary limestone. Annual precipitation ranges from 800-1,400 mm. Most precipitation is lost through evapotranspiration and there is virtually no surface water. Roughly estimated from chloride mass balance, about 4% of the precipitation recharges the karst aquifer. Cave pools and springs are a common source for water. Hand-dug wells provide water in coastal areas. Few productive wells have been drilled deeper than 60 m. Reconnaissance field analyses indicate that groundwater in the interior is a calcium-bicarbonate type, whereas water at the coast is a sodium-chloride type that exceeds World Health Organization recommended values for sodium and chloride. Tests for the presence of hydrogen sulfide-producing bacteria were negative in most drilled wells, but positive in cave pools, hand-dug wells, and most springs, indicating bacterial contamination of most water sources. Because of the difficulties in obtaining freshwater, the 110,000 inhabitants use an average of only 7 L per person per day.

  3. Virtual reality: new method of teaching anorectal and pelvic floor anatomy.

    PubMed

    Dobson, Howard D; Pearl, Russell K; Orsay, Charles P; Rasmussen, Mary; Evenhouse, Ray; Ai, Zhuming; Blew, Gregory; Dech, Fred; Edison, Marcia I; Silverstein, Jonathan C; Abcarian, Herand

    2003-03-01

    A clear understanding of the intricate spatial relationships among the structures of the pelvic floor, rectum, and anal canal is essential for the treatment of numerous pathologic conditions. Virtual-reality technology allows improved visualization of three-dimensional structures over conventional media because it supports stereoscopic-vision, viewer-centered perspective, large angles of view, and interactivity. We describe a novel virtual reality-based model designed to teach anorectal and pelvic floor anatomy, pathology, and surgery. A static physical model depicting the pelvic floor and anorectum was created and digitized at 1-mm intervals in a CT scanner. Multiple software programs were used along with endoscopic images to generate a realistic interactive computer model, which was designed to be viewed on a networked, interactive, virtual-reality display (CAVE or ImmersaDesk). A standard examination of ten basic anorectal and pelvic floor anatomy questions was administered to third-year (n = 6) and fourth-year (n = 7) surgical residents. A workshop using the Virtual Pelvic Floor Model was then given, and the standard examination was readministered so that it was possible to evaluate the effectiveness of the Digital Pelvic Floor Model as an educational instrument. Training on the Virtual Pelvic Floor Model produced substantial improvements in the overall average test scores for the two groups, with an overall increase of 41 percent (P = 0.001) and 21 percent (P = 0.0007) for third-year and fourth-year residents, respectively. Resident evaluations after the workshop also confirmed the effectiveness of understanding pelvic anatomy using the Virtual Pelvic Floor Model. This model provides an innovative interactive educational framework that allows educators to overcome some of the barriers to teaching surgical and endoscopic principles based on understanding highly complex three-dimensional anatomy. Using this collaborative, shared virtual-reality environment, teachers and students can interact from locations world-wide to manipulate the components of this model to achieve the educational goals of this project along with the potential for virtual surgery.

  4. Comparison of bacterial communities from lava cave microbial mats to overlying surface soils from Lava Beds National Monument, USA

    PubMed Central

    Read, Kaitlyn J. H.; Hughes, Evan M.; Spilde, Michael N.

    2017-01-01

    Subsurface habitats harbor novel diversity that has received little attention until recently. Accessible subsurface habitats include lava caves around the world that often support extensive microbial mats on ceilings and walls in a range of colors. Little is known about lava cave microbial diversity and how these subsurface mats differ from microbial communities in overlying surface soils. To investigate these differences, we analyzed bacterial 16S rDNA from 454 pyrosequencing from three colors of microbial mats (tan, white, and yellow) from seven lava caves in Lava Beds National Monument, CA, USA, and compared them with surface soil overlying each cave. The same phyla were represented in both surface soils and cave microbial mats, but the overlap in shared OTUs (operational taxonomic unit) was only 11.2%. Number of entrances per cave and temperature contributed to observed differences in diversity. In terms of species richness, diversity by mat color differed, but not significantly. Actinobacteria dominated in all cave samples, with 39% from caves and 21% from surface soils. Proteobacteria made up 30% of phyla from caves and 36% from surface soil. Other major phyla in caves were Nitrospirae (7%) followed by minor phyla (7%), compared to surface soils with Bacteroidetes (8%) and minor phyla (8%). Many of the most abundant sequences could not be identified to genus, indicating a high degree of novelty. Surface soil samples had more OTUs and greater diversity indices than cave samples. Although surface soil microbes immigrate into underlying caves, the environment selects for microbes able to live in the cave habitats, resulting in very different cave microbial communities. This study is the first comprehensive comparison of bacterial communities in lava caves with the overlying soil community. PMID:28199330

  5. Late Pleistocene leopards across Europe - northernmost European German population, highest elevated records in the Swiss Alps, complete skeletons in the Bosnia Herzegowina Dinarids and comparison to the Ice Age cave art

    NASA Astrophysics Data System (ADS)

    Diedrich, Cajus G.

    2013-09-01

    European leopard sites in Europe demonstrate Early/Middle Pleistocene out of Africa lowland, and Late Pleistocene Asian alpine migrations being driven by climatic changes. Four different European Pleistocene subspecies are known. The final European Late Pleistocene “Ice Age leopard” Panthera pardus spelaea (Bächler, 1936) is validated taxonomically. The skull shows heavy signs of sexual dimorphism with closest cranial characters to the Caucasian Panthera pardus ciscaucasica (Persian leopard). Late Pleistocene leopards were distributed northernmost, up to S-England with the youngest stratigraphic records by skeletons and cave art in the MIS 2/3 (about 32,000-26,000 BP). The oldest leopard painting left by Late Palaeolithics (Aurignacians/Gravettians) in the Chauvet Cave (S-France) allows the reconstruction of the Ice Age leopard fur spot pattern being close to the snow or Caucasian leopards. The last Ice Age glacial leopard habitat was the mountain/alpine boreal forest (not mammoth steppe lowland), where those hunted even larger prey such as alpine game (Ibex, Chamois). Into some lairs, those imported their prey by short-term cave dwelling (e.g. Baumann's Cave, Harz Mountains, Germany). Only Eurasian Ice Age leopards specialized, similar as other Late Pleistocene large felids (steppe lions), on cave bear predation/scavenging partly very deep in caves. In Vjetrenica Cave (Dinarid Mountains, Bosnia Herzegovina), four adult leopards (two males/two females) of the MIS 3 were found about two km deep from the entrance in a cave bear den, near to one cave bear skeleton, that remained articulated in its nest. Leopards died there, partly being trapped by raising water levels of an active ponor stream, but seem to have been killed possibly either, similar as for lions known, in battles with cave bears in several cave bear den sites of Europe (e.g. Baumann's Cave, Wildkirchli Cave, Vjetrenica Cave). At other large cave sites, with overlap of hyena, wolf and dhole dens at the cave entrances, leopard bones with bite damages indicate their remains to have been imported and consumed by predators in alpine regions due to reduced prey availability. The best models for the competition/taphonomy of large predators - felids, hyenids, canids - within large cave bear dens of Europe is represented in combination of the Zoolithen Cave and Vjetrenica Cave taphonomy.

  6. Characterization of Microbial Community in Lascaux Cave by High Throughput Sequencing

    NASA Astrophysics Data System (ADS)

    Alonso, Lise; Dubost, Audrey; Luis, Patricia; Pommier, Thomas; Moënne-Loccoz, Yvan

    2017-04-01

    The Lascaux Cave in South-Est France is an archeological landmark renowned for its Paleolithic paintings dating back c.18.000 years. Extensive touristic frequenting and repeated chemical treatments have resulted in the development of microbial stains on cave walls, which is a major issue in terms of art conservation. Therefore, it is of prime importance to better understand the microbial ecology of Lascaux Cave. Like many other caves, Lascaux is quite heterogeneous in terms of the nature and surface properties of rock walls within cave rooms, as well as the succession of rooms/galleries from the entrance to deeper areas of the cave. Lascaux Cave displays an additional levels of heterogeneity related to the presence of discontinuous stains on certain types of cave walls. We compared the microbial community (i.e. both prokaryotic and eukaryotic microbial populations) colonizing cave walls of different rooms/galleries, in and outside stains and in different cave layers, in successive years. Quantitative PCR analysis of cave wall samples gave in the order of 102 copies of 18S rRNA genes and 105 copies of 16S rRNA genes per ng of DNA, indicating significant colonization of all cave walls by micro-eukaryotes and especially bacteria. Illumina metagenomic analyses of cave wall samples was carried out based on four ribosomal DNA markers targeting bacteria, archaea, fungi, and other micro-eukaryotes. The results showed that the four microbial communities were highly diverse in and outside stains, as several hundred genera of microorganisms were identified in each. Proteobacteria were more prominent within stains whereas Bacteroidetes and Sordariomycetes were more prominent outside stains. High-throughput sequencing also showed that the nature/surface properties of cave walls were the main factor determining the structure and composition of microbial communities, ahead of the other heterogeneity factors studied i.e. location within the cave, presence of stain and sampling season. This work provides a global view of the microbial community of Lascaux Cave, which could be useful to guide conservation efforts.

  7. Immersive realities: articulating the shift from VR to mobile AR through artistic practice

    NASA Astrophysics Data System (ADS)

    Margolis, Todd; Cornish, Tracy; Berry, Rodney; DeFanti, Thomas A.

    2012-03-01

    Our contemporary imaginings of technological engagement with digital environments has transitioned from flying through Virtual Reality to mobile interactions with the physical world through personal media devices. Experiences technologically mediated through social interactivity within physical environments are now being preferenced over isolated environments such as CAVEs or HMDs. Examples of this trend can be seen in early tele-collaborative artworks which strove to use advanced networking to join multiple participants in shared virtual environments. Recent developments in mobile AR allow untethered access to such shared realities in places far removed from labs and home entertainment environments, and without the bulky and expensive technologies attached to our bodies that accompany most VR. This paper addresses the emerging trend favoring socially immersive artworks via mobile Augmented Reality rather than sensorially immersive Virtual Reality installations. With particular focus on AR as a mobile, locative technology, we will discuss how concepts of immersion and interactivity are evolving with this new medium. Immersion in context of mobile AR can be redefined to describe socially interactive experiences. Having distinctly different sensory, spatial and situational properties, mobile AR offers a new form for remixing elements from traditional virtual reality with physically based social experiences. This type of immersion offers a wide array of potential for mobile AR art forms. We are beginning to see examples of how artists can use mobile AR to create social immersive and interactive experiences.

  8. Designing a Virtual Item Bank Based on the Techniques of Image Processing

    ERIC Educational Resources Information Center

    Liao, Wen-Wei; Ho, Rong-Guey

    2011-01-01

    One of the major weaknesses of the item exposure rates of figural items in Intelligence Quotient (IQ) tests lies in its inaccuracies. In this study, a new approach is proposed and a useful test tool known as the Virtual Item Bank (VIB) is introduced. The VIB combine Automatic Item Generation theory and image processing theory with the concepts of…

  9. Towards Virtual FLS: Development of a Peg Transfer Simulator

    PubMed Central

    Arikatla, Venkata S; Ahn, Woojin; Sankaranarayanan, Ganesh; De, Suvranu

    2014-01-01

    Background Peg transfer is one of five tasks in the Fundamentals of Laparoscopic Surgery (FLS), program. We report the development and validation of a Virtual Basic Laparoscopic Skill Trainer-Peg Transfer (VBLaST-PT©) simulator for automatic real-time scoring and objective quantification of performance. Methods We have introduced new techniques in order to allow bi-manual manipulation of pegs and automatic scoring/evaluation while maintaining high quality of simulation. We performed a preliminary face and construct validation study with 22 subjects divided into two groups: experts (PGY 4–5, fellow and practicing surgeons) and novice (PGY 1–3). Results Face validation shows high scores for all the aspects of the simulation. A two-tailed Mann-Whitney U-test scores showed significant difference between the two groups on completion time (p=0.003), FLS score (p=0.002) and the VBLaST-PT© score (p=0.006). Conclusions VBLaST-PT© is a high quality virtual simulator that showed both face and construct validity. PMID:24030904

  10. Modeling and visualizing borehole information on virtual globes using KML

    NASA Astrophysics Data System (ADS)

    Zhu, Liang-feng; Wang, Xi-feng; Zhang, Bing

    2014-01-01

    Advances in virtual globes and Keyhole Markup Language (KML) are providing the Earth scientists with the universal platforms to manage, visualize, integrate and disseminate geospatial information. In order to use KML to represent and disseminate subsurface geological information on virtual globes, we present an automatic method for modeling and visualizing a large volume of borehole information. Based on a standard form of borehole database, the method first creates a variety of borehole models with different levels of detail (LODs), including point placemarks representing drilling locations, scatter dots representing contacts and tube models representing strata. Subsequently, the level-of-detail based (LOD-based) multi-scale representation is constructed to enhance the efficiency of visualizing large numbers of boreholes. Finally, the modeling result can be loaded into a virtual globe application for 3D visualization. An implementation program, termed Borehole2KML, is developed to automatically convert borehole data into KML documents. A case study of using Borehole2KML to create borehole models in Shanghai shows that the modeling method is applicable to visualize, integrate and disseminate borehole information on the Internet. The method we have developed has potential use in societal service of geological information.

  11. Assessment of Local Recharge Area Characteristics of Four Caves in Northern Arkansas and Northeastern Oklahoma, 2004-07

    USGS Publications Warehouse

    Gillip, Jonathan A.; Galloway, Joel M.; Hart, Rheannon M.

    2009-01-01

    A study was conducted from 2004 to 2007 by the U.S. Geological Survey in cooperation with the U.S. Fish and Wildlife Service to assess the characteristics of the local recharge areas of four caves in northern Arkansas and northeastern Oklahoma that provide habitat for a number of unique organisms. Characterization of the local recharge areas are important because the caves occur in a predominately karst system and because land use proximal to the caves, including areas suspected to lie within the local recharge areas, may include activities with potentially deleterious effects to cave water quality. An integrated approach was used to determine the hydrogeologic characteristics and the extent of the local recharge areas of Civil War Cave, January-Stansbury Cave, Nesbitt Spring Cave, and Wasson's Mud Cave. This approach incorporated methods of hydrology, structural geology, geomorphology, and geochemistry. Continuous water-level and water-temperature data were collected at each cave for various periods to determine recharge characteristics. Field investigations were conducted to determine surficial controls affecting the groundwater flow and connections of the groundwater system to land-surface processes in each study area. Qualitative groundwater tracing also was conducted at each cave to help define the local recharge areas. These independent methods of investigation provided multiple lines of evidence for effectively describing the behavior of these complex hydrologic systems. Civil War Cave is located near the city of Bentonville in Benton County, Arkansas, and provides habitat for the Ozark cavefish. Civil War Cave is developed entirely within the epikarst of the upper Boone Formation, and recharge to Civil War Cave occurs from the Boone Formation (Springfield Plateau aquifer). The daily mean discharge for the period of study was 0.59 cubic feet per second and ranged from 0.19 to 2.8 cubic feet per second. The mean water temperature for Civil War Cave was 14.0 degrees Celsius. The calculated recharge area for Civil War Cave ranged from 0.13 to 2.5 square miles using the water-balance equation to 3.80 square miles using a normalized base-flow method. Tracer tests indicated a portion of the water within Civil War Cave was from across a major topographic divide located to the southwest. January-Stansbury Cave is located in Delaware County in northeastern Oklahoma, and provides habitat for the Oklahoma cave crayfish and the Ozark cavefish. January-Stansbury Cave is developed in the St. Joe Limestone member of the Boone Formation. The daily mean discharge for the period of study was 1.0 cubic foot per second and ranged from 0.35 to 8.7 cubic feet per second. The mean water temperature for January-Stansbury Cave was 14.3 degrees. The calculated recharge area for January-Stansbury Cave using the water-balance equation ranged from approximately 0.04 to 0.83 square miles. Tracer tests generally showed water discharging from January-Stansbury Cave during high flow originates from within the topographic drainage area and from an area outside the topographic drainage area to the southwest. Nesbitt Spring Cave is located near the city of Mountain View in north-central Arkansas and provides habitat for the Hell Creek cave crayfish. Nesbitt Spring Cave is developed in the Plattin Limestone (Ozark aquifer) and is recharged through the Boone Formation (Springfield Plateau aquifer). The mean daily discharge for the period of study was 4.5 cubic feet per second and ranged from 0.39 to 70.7 cubic feet per second. The mean water temperature for Nesbitt Spring Cave was 14.2 degrees Celsius. The calculated recharge area for Nesbitt Spring Cave using the water-balance equation ranged from 0.49 square mile to 4.0 square miles. Tracer tests generally showed a portion of water discharging from Nesbitt Spring during high flow originates from outside the topographic drainage area. Wasson's Mud Cave is located near the city of Springtown

  12. Automatic Assembly of Combined Checkingfixture for Auto-Body Components Based Onfixture Elements Libraries

    NASA Astrophysics Data System (ADS)

    Jiang, Jingtao; Sui, Rendong; Shi, Yan; Li, Furong; Hu, Caiqi

    In this paper 3-D models of combined fixture elements are designed, classified by their functions, and saved in computer as supporting elements library, jointing elements library, basic elements library, localization elements library, clamping elements library, and adjusting elements library etc. Then automatic assembly of 3-D combined checking fixture for auto-body part is presented based on modularization theory. And in virtual auto-body assembly space, Locating constraint mapping technique and assembly rule-based reasoning technique are used to calculate the position of modular elements according to localization points and clamp points of auto-body part. Auto-body part model is transformed from itself coordinate system space to virtual assembly space by homogeneous transformation matrix. Automatic assembly of different functional fixture elements and auto-body part is implemented with API function based on the second development of UG. It is proven in practice that the method in this paper is feasible and high efficiency.

  13. A Full Body Steerable Wind Display for a Locomotion Interface.

    PubMed

    Kulkarni, Sandip D; Fisher, Charles J; Lefler, Price; Desai, Aditya; Chakravarthy, Shanthanu; Pardyjak, Eric R; Minor, Mark A; Hollerbach, John M

    2015-10-01

    This paper presents the Treadport Active Wind Tunnel (TPAWT)-a full-body immersive virtual environment for the Treadport locomotion interface designed for generating wind on a user from any frontal direction at speeds up to 20 kph. The goal is to simulate the experience of realistic wind while walking in an outdoor virtual environment. A recirculating-type wind tunnel was created around the pre-existing Treadport installation by adding a large fan, ducting, and enclosure walls. Two sheets of air in a non-intrusive design flow along the side screens of the back-projection CAVE-like visual display, where they impinge and mix at the front screen to redirect towards the user in a full-body cross-section. By varying the flow conditions of the air sheets, the direction and speed of wind at the user are controlled. Design challenges to fit the wind tunnel in the pre-existing facility, and to manage turbulence to achieve stable and steerable flow, were overcome. The controller performance for wind speed and direction is demonstrated experimentally.

  14. Low-cost telepresence for collaborative virtual environments.

    PubMed

    Rhee, Seon-Min; Ziegler, Remo; Park, Jiyoung; Naef, Martin; Gross, Markus; Kim, Myoung-Hee

    2007-01-01

    We present a novel low-cost method for visual communication and telepresence in a CAVE -like environment, relying on 2D stereo-based video avatars. The system combines a selection of proven efficient algorithms and approximations in a unique way, resulting in a convincing stereoscopic real-time representation of a remote user acquired in a spatially immersive display. The system was designed to extend existing projection systems with acquisition capabilities requiring minimal hardware modifications and cost. The system uses infrared-based image segmentation to enable concurrent acquisition and projection in an immersive environment without a static background. The system consists of two color cameras and two additional b/w cameras used for segmentation in the near-IR spectrum. There is no need for special optics as the mask and color image are merged using image-warping based on a depth estimation. The resulting stereo image stream is compressed, streamed across a network, and displayed as a frame-sequential stereo texture on a billboard in the remote virtual environment.

  15. Magnetostratigraphy of cave sediments, Wyandotte Ridge, Crawford County, southern Indiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pease, P.P.; Gomez, B.; Schmidt, V.A.

    1992-01-01

    The field polarities of 42 sediment samples obtained from 21 sites in Wyandotte Cave, and five smaller satellite caves in Wyandotte Ridge, southern Indiana, have been determined and correlated with magnetostratigraphic data from Mammoth Cave, Kentucky. In Wyandotte Cave sediment samples obtained between 137 m and 162 m in elevation possessed a normal field polarity, while samples obtained between 168 m and 171 m exhibited a field reversal. The reversal was interpreted to represent the most recent polarity change, dating the sediment fill and the end of the active period of the upper level of Wyandotte Cave at ca 0.788more » Ma. There is a temporal correlation between the active period of the upper level in Wyandotte Cave and the C-level in Mammoth Cave, which lies at a similar elevation. Such a correlation is most likely a consequence of the contemporaneous abandonment of passages in the two cave systems during the early Pleistocene reconstruction of the Ohio River system, which acts as the base level control in both caves. Samples from two caves near the top of Wyandotte Ridge, located between elevations of 236 m and 241 m, exhibited a normal polarity. These caves are located at a higher elevation than any of the sample sites in Mammoth Cave and their location suggests that the fill predates sediments from that system. It appears most likely that the fill in these caves is a minimum of ca 2.48 Ma. old and correlates with the residuum of the upper Mitchell Plain surface, not with the fill in the upper (A- or B-levels) in Mammoth Cave.« less

  16. Local adaptation and pronounced genetic differentiation in an extremophile fish, Poecilia mexicana, inhabiting a Mexican cave with toxic hydrogen sulphide.

    PubMed

    Plath, M; Hauswaldt, J S; Moll, K; Tobler, M; García De León, F J; Schlupp, I; Tiedemann, R

    2007-03-01

    We investigated genetic differentiation and migration patterns in a small livebearing fish, Poecilia mexicana, inhabiting a sulfidic Mexican limestone cave (Cueva del Azufre). We examined fish from three different cave chambers, the sulfidic surface creek draining the cave (El Azufre) and a nearby surface creek without the toxic hydrogen sulphide (Arroyo Cristal). Using microsatellite analysis of 10 unlinked loci, we found pronounced genetic differentiation among the three major habitats: Arroyo Cristal, El Azufre and the cave. Genetic differentiation was also found within the cave between different pools. An estimation of first-generation migrants suggests that (i) migration is unidirectional, out of the cave, and (ii) migration among different cave chambers occurs to some extent. We investigated if the pattern of genetic differentiation is also reflected in a morphological trait, eye size. Relatively large eyes were found in surface habitats, small eyes in the anterior cave chambers, and the smallest eyes were detected in the innermost cave chamber (XIII). This pattern shows some congruence with a previously proposed morphocline in eye size. However, our data do not support the proposed mechanism for this morphocline, namely that it would be maintained by migration from both directions into the middle cave chambers. This would have led to an increased variance in eye size in the middle cave chambers, which we did not find. Restricted gene flow between the cave and the surface can be explained by local adaptations to extreme environmental conditions, namely H2S and absence of light. Within the cave system, habitat properties are patchy, and genetic differentiation between cave chambers despite migration could indicate local adaptation at an even smaller scale.

  17. On developing thermal cave detection techniques for earth, the moon and mars

    USGS Publications Warehouse

    Wynne, J. Judson; Titus, Timothy N.; Chong Diaz, Guillermo

    2008-01-01

    The purpose of this study is to (1) demonstrate the viability of detecting terrestrial caves at thermal-infrared wavelengths, (2) improve our understanding of terrestrial cave thermal behavior, (3) identify times of day when cave openings have the maximum thermal contrast with the surrounding surface regolith, and (4) further our understanding of how to detect caves on Earth, the Moon and Mars. We monitored the thermal behavior of two caves in the Atacama Desert of northern Chile. Through this work, we identified times when temperature contrasts between entrance and surface were greatest, thus enabling us to suggest optimal overflight times. The largest thermal contrast for both caves occurred during mid-day. One cave demonstrated thermal behavior at the entrance suggestive of cold-trapping, while the second cave demonstrated temperature shifts suggestive of airflow. We also collected thermograms without knowing optimal detection times; these images suggest both caves may also be detectable during off-peak times. We suggest cave detection using thermal remote sensing on Earth and other planetary objects will be limited by (1) capturing imagery in the appropriate thermal wavelength, (2) the size of cave entrance vs. the sensor's spatial resolution, (3) the viewing angle of the platform in relation to the slope trajectory of the cave entrance, (4) the strength of the thermal signal associated with the cave entrance, and (5) the time of day and season of thermal image capture. Through this and other studies, we will begin to identify the range of conditions under which caves are detectable in the thermal infrared and thus improve our detection capabilities of these features on Earth, the Moon and Mars. ?? 2008 Elsevier B.V.

  18. Teaching with technology: automatically receiving information from the internet and web.

    PubMed

    Wink, Diane M

    2010-01-01

    In this bimonthly series, the author examines how nurse educators can use the Internet and Web-based computer technologies such as search, communication, and collaborative writing tools, social networking and social bookmarking sites, virtual worlds, and Web-based teaching and learning programs. This article presents information and tools related to automatically receiving information from the Internet and Web.

  19. Automatic-repeat-request error control schemes

    NASA Technical Reports Server (NTRS)

    Lin, S.; Costello, D. J., Jr.; Miller, M. J.

    1983-01-01

    Error detection incorporated with automatic-repeat-request (ARQ) is widely used for error control in data communication systems. This method of error control is simple and provides high system reliability. If a properly chosen code is used for error detection, virtually error-free data transmission can be attained. Various types of ARQ and hybrid ARQ schemes, and error detection using linear block codes are surveyed.

  20. Recreational Impacts on the Microclimate of the Gorilla Limestone Cave in Shoushan National Nature Park of Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Chun; Ho, Lih-Der

    2017-04-01

    This study reports a continuous microclimate monitoring carried out in the Gorilla Cave (Kaohsiung, Taiwan) between December 2015 and December 2016. This limestone cave is located in the Mt. Shoushan, which is mainly composed of limestone and mudstone. This study tried to assess the recreational impacts to the microclimate of the cave by monitoring the CO2, temperature, humidity and barometric pressure. Two monitoring stations were set up respectively at the front part (station A) and the end of the cave (station B). We also set up an auto-operated time-lapse camera at the entrance of the cave to record the numbers of tourists, and their entering time and the durations in cave. As carbon dioxide in the limestone cave may have negative impact to both speleothems and visitors, our presentation focuses on the variations of CO2 concentration in the Gorilla Cave. Daily and seasonal fluctuations of CO2 concentration were observed. The fluctuations are closely related with the temperature outside the cave. In summer, when the temperature outside the cave maintained at 30。C, fluctuations of CO2 concentration in the cave will become chaotic. The CO2 concentration would fluctuate around 1000ppm most of the day, but it would be relatively low ( 500ppm) during the noon. In winter, when temperature outside the cave maintained below 25゜C, the fluctuation of CO2 concentration in cave presented a steady state ( 400-500 ppm). Only at the noon, the temperature outside the cave rose above 25 ゜C, the CO2 concentration inside the cave would increase. There were 1,517 tourists entered the cave during the monitoring period. The average number of visitors in a group is 13, and each group averagely stayed for 15 minutes. Over half of the visitors (776 tourists) entered the cave in December, due to lower humidity, drier in the cave and less dripping water in winter. After tourists entered the cave, the CO2 concentration value of station A rose instantly. However, most tourists stayed at the end of the cave longer, so the CO2 concentration of station B would be higher due to the CO2 accumulation. Therefore, it took a long time to return to the background level of CO2 concentration. In summer, because the CO2 concentration in the cave was already high, the value fluctuated less when the tourists entered the cave, but it took a longer time to return to the background CO2 level. On the contrary, the CO2 concentration increased significantly after tourists entered the cave during the winter time, but the recovery time was shorter. Based on the monitoring results, we suggest that (1) the buffering time between each visiting group should be longer in summer, but shorter in winter. (2) Consider to the limited space of the cave, each group should not exceed 20 tourists and stays no longer than 30 minutes to avoid the CO2 concentration exceeding 2400 ppm to discomfort tourists. However, the degradation of speleothems by increasing CO2 concentration in the Gorilla Cave is still unclear and further research is needed.

  1. High resolution pCO2 monitoring reveals ventilation of Bunker Cave (NW Germany) and its impact on speleothem growth

    NASA Astrophysics Data System (ADS)

    Riechelmann, Sylvia; Breitenbach, Sebastian F. M.; Schröder-Ritzrau, Andrea; Immenhauser, Adrian

    2017-04-01

    Understanding the environmental processes that influence geochemical proxies archived in speleothems depends critically on detailed cave monitoring. Cave air pCO2 is one of the most important factors controlling speleothem growth. The pCO2 concentration of cave air depends on (i) the productivity of its source(s), (ii) CO2-transport dynamics through the epikarst and (iii) cave ventilation processes. We monitored the pCO2 concentration ca. 100 m from the lower entrance of the Bunker-Emst-Cave system (NW Germany) with a CORA CO2-logger at a two-hourly resolution between April 2012 and February 2014. Near-atmospheric minimum pCO2 concentrations of 408 ppm are observed in winter, while higher values up to 811 ppm are recorded in summer. Higher summer concentrations are due to increased plant and soil microbial activity, resulting in elevated CO2 in the soil, which is transferred to the cave with infiltrating water. Generally, the front passages of Bunker Cave are well ventilated. Besides the seasonal pattern, pCO2 concentrations vary at diurnal scale. Correlations of pCO2 with the temperature difference between surface and cave air are positive during summer and negative in winter, with no clear pattern for spring and autumn months. Thus, Bunker Cave ventilation is driven by temperature and density differences between cave and surface air, with two entrances at different elevations allowing dynamic ventilation. During summer, relatively cooler cave air flows from the upper to the lower entrance, while in winter this pattern is reversed due to ascending warm cave air. The situation is further complicated by preferential south/southwestern winds that point directly on the cave entrances. Thus, cave ventilation is frequently disturbed, especially during periods of higher wind speed. Modern ventilation systematics only developed when the two cave entrances were artificially opened (1863 and 1926). Before that, ventilation was restricted and cave pCO2 concentrations were presumably higher under natural conditions. Thus, the present-day ventilation system of Bunker Cave is not a direct analogue for natural ventilation conditions. pCO2 concentrations are relatively low compared to other caves, and because the difference between summer and winter pCO2 is relatively low (max. 400 ppm), a significant effect on seasonal speleothem growth rate is unlikely. In case of Bunker Cave, it is rather a combination of the availability of water, and thus of calcium and carbonate ions and pCO2 concentrations that allow higher carbonate precipitation during winter than summer. Holocene speleothems from Bunker Cave display relatively slow growth rates. We suggest that - with absence of major entrances to the cave system during the Holocene - ventilation was minimal and pCO2 concentrations significantly higher, making winterly water supply the governing factor regulating speleothem growth. Thus, stalagmites from Bunker Cave are likely to record a climatic signal biased towards the winter season.

  2. Contextualizing Cave Maps as Geospatial Information: Case Study of Indonesia

    NASA Astrophysics Data System (ADS)

    Reinhart, H.

    2017-12-01

    Caves are the result of solution processes. Because they are happened from geochemical and tectonic activity, they can be considered as geosphere phenomena. As one of the geosphere phenomena, especially at karst landform, caves have spatial dimensions and aspects. Cave’s utilizations and developments are increasing in many sectors such as hydrology, earth science, and tourism industry. However, spatial aspects of caves are poorly concerned dues to the lack of recognition toward cave maps. Many stakeholders have not known significances and importance of cave maps in determining development of a cave. Less information can be considered as the cause. Therefore, it is strongly necessary to put cave maps into the right context in order to make stakeholders realize the significance of it. Also, cave maps will be officially regarded as tools related to policy, development, and conservation act of caves hence they will have regulation in the usages and applications. This paper aims to make the contextualization of cave maps toward legal act. The act which is used is Act Number 4 Year 2011 About Geospatial Information. The contextualization is done by scrutinizing every articles and clauses related to cave maps and seek the contextual elements from both of them. The results are that cave maps can be regarded as geospatial information and classified as thematic geospatial information. The usages of them can be regulated through the Act Number 4 Year 2011. The regulations comprised by data acquisition, database, authorities, surveyor, and the obligation of providing cave maps in planning cave’s development and the environment surrounding.

  3. Gravity for Detecting Caves: Airborne and Terrestrial Simulations Based on a Comprehensive Karstic Cave Benchmark

    NASA Astrophysics Data System (ADS)

    Braitenberg, Carla; Sampietro, Daniele; Pivetta, Tommaso; Zuliani, David; Barbagallo, Alfio; Fabris, Paolo; Rossi, Lorenzo; Fabbri, Julius; Mansi, Ahmed Hamdi

    2016-04-01

    Underground caves bear a natural hazard due to their possible evolution into a sink hole. Mapping of all existing caves could be useful for general civil usages as natural deposits or tourism and sports. Natural caves exist globally and are typical in karst areas. We investigate the resolution power of modern gravity campaigns to systematically detect all void caves of a minimum size in a given area. Both aerogravity and terrestrial acquisitions are considered. Positioning of the gravity station is fastest with GNSS methods the performance of which is investigated. The estimates are based on a benchmark cave of which the geometry is known precisely through a laser-scan survey. The cave is the Grotta Gigante cave in NE Italy in the classic karst. The gravity acquisition is discussed, where heights have been acquired with dual-frequency geodetic GNSS receivers and Total Station. Height acquisitions with non-geodetic low-cost receivers are shown to be useful, although the error on the gravity field is larger. The cave produces a signal of -1.5 × 10-5 m/s2, with a clear elliptic geometry. We analyze feasibility of airborne gravity acquisitions for the purpose of systematically mapping void caves. It is found that observations from fixed wing aircraft cannot resolve the caves, but observations from slower and low-flying helicopters or drones do. In order to detect the presence of caves the size of the benchmark cave, systematic terrestrial acquisitions require a density of three stations on square 500 by 500 m2 tiles. The question has a large impact on civil and environmental purposes, since it will allow planning of urban development at a safe distance from subsurface caves. The survey shows that a systematic coverage of the karst would have the benefit to recover the position of all of the greater existing void caves.

  4. Survey and hydrogeology of Carroll Cave

    USDA-ARS?s Scientific Manuscript database

    Carroll Cave, located in Camden County, Missouri, is the largest known cave formed in the Gasconade Dolomite of the Salem Plateau. Despite extensive visitation over the last 50 years and multiple survey efforts, a comprehensive map of the cave has never been produced. In 2002, the Carroll Cave Conse...

  5. New virtual laboratories presenting advanced motion control concepts

    NASA Astrophysics Data System (ADS)

    Goubej, Martin; Krejčí, Alois; Reitinger, Jan

    2015-11-01

    The paper deals with development of software framework for rapid generation of remote virtual laboratories. Client-server architecture is chosen in order to employ real-time simulation core which is running on a dedicated server. Ordinary web browser is used as a final renderer to achieve hardware independent solution which can be run on different target platforms including laptops, tablets or mobile phones. The provided toolchain allows automatic generation of the virtual laboratory source code from the configuration file created in the open- source Inkscape graphic editor. Three virtual laboratories presenting advanced motion control algorithms have been developed showing the applicability of the proposed approach.

  6. Quantitative evaluation of the underground Geoheritage in karst areas: The Picos de Europa National Park, North Spain

    NASA Astrophysics Data System (ADS)

    Ballesteros, Daniel; Jiménez-Sánchez, Montserrat; José Domínguez-Cuestra, María; García-Sansegundo, Joaquín; Meléndez-Asensio, Mónica

    2014-05-01

    Karst areas show a lot of kilometers of cave conduits with a hidden Geoheritage poorly investigated in previous works that concerning with their cultural, scientific and education values. The evaluation of cave Geoheritage is complex due to methodological constrains. One of the most important karst areas in the World is the Picos de Europa National Park (North Spain) that was declared as a Global Geosite in 2007 and includes 14 % of the World's Deepest Caves. The GEOCAVE research project is being developed in several caves from the Picos de Europa National Park since 2012 in order to characterize geomorphology and geochronology of the cavities, proposing and validating new methodologies adapted to these environments. The aim of this work is to evaluate the Geoheritage of the Picos de Europa caves based on the studies made in nine selected caves. The methodology includes: 1) elaboration of geomorphological maps of the nine selected caves, projecting geomorphological, geological, hydrogeological, paleontological and cultural forms on the caves surveys; and 2) definition and calculation of three indexes useful to evaluate the Geoheritage of the caves. The indexes are: a) Cave Geoheritage Extension Index (CGhEI), defined as the percentage of the area occupied by the entire features divided by the cave area (excluding the forms that represent the conduits themselves), b) Feature Extension Index (FEI), defined as the area occupied by each group of form divided by the cave area, and c) Cave Geodiversity Index (CGdI), defined as the number of forms divided by the cave area. The nine cave geomorphological maps cover 178,639 m2 of caves and include a whole of 14.9 km of karst conduits, representing these caves the 4.1 % of the conduits of the Picos de Europa. The values of the Cave Geoheritage Extension Index range from 22 to 82 %, while the values of the Feature Extension Indexes for each group of features reach the following values: Geomorphological FEI take values of 20-80 % (speleothems FEI is 15-60 %, fluviokarst FEI is 5-25 %, gravity FEI is 10-40 %); Geological FEI is 4-5 %; Hydrogeological FEI is 0-3 %; Paleontological FEI is 0-0.1% and cultural FEI is 0-4 %. the On the other hand, 84 features are recognized into the caves and the Cave Geodiversity Index ranges from 0.3 to 1.1 features/cm2. These results evidence that 22 to 82 % of the cave conduits are occupy with Geoheritage features, being most of them geomorphological forms (speleothems, fluviokarst and gravity forms). The Geodiversity of the karst caves is high, recognizing a whole of 84 features into the caves and showing a high density of forms. Consequently, underground Geoheritage from karst areas can be estimated combining geomorphological maps few selected caves and three indexes based on number and extensions of the features. These indexes allow us to assign a preliminary weight of the geomorphological, geological, hydrogeological, paleontological and cultural features in a karst area.

  7. 43 CFR 37.11 - Nomination, evaluation, and designation of significant caves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... organizations interested in the management and use of cave resources, within the limits imposed by the... caves are afforded protection and will be managed in compliance with approved resource management plans... in part due to cave resources found therein, all caves within the so-designated special management...

  8. Exploring caves: teaching packet for grades K-3

    USGS Publications Warehouse

    ,

    1998-01-01

    "Exploring Caves" is an interdisciplinary set of materials on caves for grades K-3. Caves entail at least five scientific disciplines: earth science, hydrology, mapping, biology, and anthropology. Each of these disciplines involves a unique content area as well as the development of particular intellectual skills. This unit aims at helping teachers to sort and organize the most important ideas in this rich scientific area. Detailed lesson plans serve as ways to pass these ideas on to very young students. Most American caves are big holes that form in limestone rock. The holes begin as cracks in limestone. The cracks get bigger and bigger. They grow into underground streams, rivers, and even lakes. When water drains away, the waterways turn into open cave tunnels, passages, and caverns. It takes 10,000 to 100,000 years to form a cave big enough for people to move around inside. Water drips constantly in caves. The drips dissolve limestone minerals in one part of the cave. As water dries out, the minerals build up in other places. In this way, beautiful cave rock formations and crystals grow over thousands of years. These rock formations change dark limestone caves into hidden fantasy lands.

  9. Magnetic Susceptibility and Heavy Metals in Guano from South Sulawesi Caves

    NASA Astrophysics Data System (ADS)

    Rifai, H.; Putra, R.; Fadila, M. R.; Erni, E.; Wurster, C. M.

    2018-04-01

    Measurement of some magnetic properties have been performed on vertical profile from South Sulawesi caves (Mampu and Bubau) by using low cost, rapid, sensitive and non destructive magnetic method. The aim is to attempt to use magnetic characters as a fingerprint for anthropogenic pollution in the caves. Guano samples were collected every 5 cm at a certain section of Mampu and Bubau cave, South Sulawesi, starting from surface through 300 cm in depth of mampu Cave and 30 cm of Bubau Cave. The magnetic parameters such as magnetic susceptibility and percentage frequency dependence susceptibility were measured using the Bartington MS2-MS2B instruments and supported by X-Ray Fluoroscence (XRF) to know their element composition. The results show that the samples had variations in magnetic susceptibility from 3.5 to 242.6 x 10‑8 m3/kg for Mampu Cave and from 8.6 to 106.5 x 10‑8 m3/kg for Bubau Cave and also magnetic domain. Then, the XRF results show that the caves contain several heavy metals. Magnetic and heavy metal analyses showing that the magnetic minerals in caves are lithogenic (Fe-bearing minerals) in origin and anthropogenic (Zn content) in the caves.

  10. Fish mitigate trophic depletion in marine cave ecosystems.

    PubMed

    Bussotti, Simona; Di Franco, Antonio; Bianchi, Carlo Nike; Chevaldonné, Pierre; Egea, Lea; Fanelli, Emanuela; Lejeusne, Christophe; Musco, Luigi; Navarro-Barranco, Carlos; Pey, Alexis; Planes, Serge; Vieux-Ingrassia, Jean Vincent; Guidetti, Paolo

    2018-06-15

    Dark marine habitats are often characterized by a food-limited condition. Peculiar dark habitats include marine caves, characterized by the absence of light and limited water flow, which lead to reduced fluxes of organic matter for cave-dwelling organisms. We investigated whether the most abundant and common cave-dwelling fish Apogon imberbis has the potential to play the role of trophic vector in Mediterranean marine caves. We first analysed stomach contents to check whether repletion changes according to a nycthemeral cycle. We then identified the prey items, to see whether they belong to species associated with cave habitats or not. Finally, we assessed whether A. imberbis moves outside marine caves at night to feed, by collecting visual census data on A. imberbis density both inside and outside caves, by day and by night. The stomach repletion of individuals sampled early in the morning was significantly higher than later in the day. Most prey were typical of habitats other than caves. A. imberbis was on average more abundant within caves during the day and outside during the night. Our study supports the hypothesis regarding the crucial trophic role of A. imberbis in connecting Mediterranean marine caves with external habitats.

  11. The Unicorn Cave, Southern Harz Mountains, Germany: From known passages to unknown extensions with the help of geophysical surveys

    NASA Astrophysics Data System (ADS)

    Kaufmann, Georg; Nielbock, Ralf; Romanov, Douchko

    2015-12-01

    In soluble rocks (limestone, dolomite, anhydrite, gypsum, …), fissures and bedding partings can be enlarged with time by both physical and chemical dissolution of the host rock. With time, larger cavities evolve, and a network of cave passages can evolve. If the enlarged cave voids are not too deep under the surface, geophysical measurements can be used to detect, identify and trace these karst structures, e.g.: (i) gravity revealing air- and sediment-filled cave voids through negative Bouguer anomalies, (ii) electrical resistivity imaging (ERI) mapping different infillings of cavities either as high resistivities from air-filled voids or dry soft sediments, or low resistivities from saturated sediments, and (iii) groundwater flow through electrical potential differences (SP) arising from dislocated ionic charges from the walls of the underground flow paths. We have used gravity, ERI, and SP methods both in and above the Unicorn Cave located in the southern Harz Mountains in Germany. The Unicorn Cave is a show cave developed in the Werra dolomite formation of the Permian Zechstein sequence, characterised by large trunk passages interrupted by larger rooms. The overburden of the cave is only around 15 m, and passages are filled with sediments reaching infill thicknesses up to 40 m. We present results from our geophysical surveys above the known cave and its northern and southern extension, and from the cave interior. We identify the cave geometry and its infill from gravity and ERI measurements, predict previously unknown parts of the cave, and subsequently confirm the existence of these new passages through drilling. From the wealth of geophysical data acquired we derive a three-dimensional structural model of the Unicorn Cave and its surrounding, especially the cave infill.

  12. Reconciling Mining with the Conservation of Cave Biodiversity: A Quantitative Baseline to Help Establish Conservation Priorities.

    PubMed

    Jaffé, Rodolfo; Prous, Xavier; Zampaulo, Robson; Giannini, Tereza C; Imperatriz-Fonseca, Vera L; Maurity, Clóvis; Oliveira, Guilherme; Brandi, Iuri V; Siqueira, José O

    2016-01-01

    Caves pose significant challenges for mining projects, since they harbor many endemic and threatened species, and must therefore be protected. Recent discussions between academia, environmental protection agencies, and industry partners, have highlighted problems with the current Brazilian legislation for the protection of caves. While the licensing process is long, complex and cumbersome, the criteria used to assign caves into conservation relevance categories are often subjective, with relevance being mainly determined by the presence of obligate cave dwellers (troglobites) and their presumed rarity. However, the rarity of these troglobitic species is questionable, as most remain unidentified to the species level and their habitats and distribution ranges are poorly known. Using data from 844 iron caves retrieved from different speleology reports for the Carajás region (South-Eastern Amazon, Brazil), one of the world's largest deposits of high-grade iron ore, we assess the influence of different cave characteristics on four biodiversity proxies (species richness, presence of troglobites, presence of rare troglobites, and presence of resident bat populations). We then examine how the current relevance classification scheme ranks caves with different biodiversity indicators. Large caves were found to be important reservoirs of biodiversity, so they should be prioritized in conservation programs. Our results also reveal spatial autocorrelation in all the biodiversity proxies assessed, indicating that iron caves should be treated as components of a cave network immersed in the karst landscape. Finally, we show that by prioritizing the conservation of rare troglobites, the current relevance classification scheme is undermining overall cave biodiversity and leaving ecologically important caves unprotected. We argue that conservation efforts should target subterranean habitats as a whole and propose an alternative relevance ranking scheme, which could help simplify the assessment process and channel more resources to the effective protection of overall cave biodiversity.

  13. Ancient lineage, young troglobites: recent colonization of caves by Nesticella spiders.

    PubMed

    Zhang, Yuanyuan; Li, Shuqiang

    2013-09-04

    The evolution and origin of cave organisms is a recurring issue in evolutionary studies, but analyses are often hindered by the inaccessibility of caves, morphological convergence, and complex colonization processes. Here we investigated the evolutionary history of Nesticella cave spiders, which are mainly distributed in the Yunnan-Guizhou Plateau, China. With comprehensive sampling and phylogenetic and coalescent-based analyses, we investigated the tempo and mode of diversification and the origins of these troglobites. We also aimed to determine which factors have influenced the diversification of this little-known group. Coalescent-based species delimitation validated the 18 species recognized by morphological inspection and also suggested the existence of cryptic lineages. Divergence time estimates suggested that Nesticella cave spiders in the Yunnan-Guizhou Plateau constituted a monophyletic troglobite clade that originated in the middle Miocene (11.1-18.6 Ma). Although the Yunnan-Guizhou Plateau clade was composed exclusively of troglobite species, suggesting an ancient common subterranean ancestor, we favor multiple, independent cave colonizations during the Pleistocene over a single ancient cave colonization event to explain the origin of these cave faunas. The diversification of plateau Nesticella has been greatly influenced by the sequential uplift of the plateau and likely reflects multiple cave colonizations over time by epigean ancestors during Pleistocene glacial advances. We concluded that plateau cave Nesticella represent an ancient group of spiders, but with young troglobite lineages that invaded caves only recently. The absence of extant epigean relatives and nearly complete isolation among caves supported their relict status. Our work highlights the importance of comprehensive sampling for studies of subterranean diversity and the evolution of cave organisms. The existence of potentially cryptic species and the relict status of Nesticella highlight the need to conserve these cave spiders.

  14. Ancient lineage, young troglobites: recent colonization of caves by Nesticella spiders

    PubMed Central

    2013-01-01

    Background The evolution and origin of cave organisms is a recurring issue in evolutionary studies, but analyses are often hindered by the inaccessibility of caves, morphological convergence, and complex colonization processes. Here we investigated the evolutionary history of Nesticella cave spiders, which are mainly distributed in the Yunnan–Guizhou Plateau, China. With comprehensive sampling and phylogenetic and coalescent-based analyses, we investigated the tempo and mode of diversification and the origins of these troglobites. We also aimed to determine which factors have influenced the diversification of this little-known group. Results Coalescent-based species delimitation validated the 18 species recognized by morphological inspection and also suggested the existence of cryptic lineages. Divergence time estimates suggested that Nesticella cave spiders in the Yunnan–Guizhou Plateau constituted a monophyletic troglobite clade that originated in the middle Miocene (11.1–18.6 Ma). Although the Yunnan–Guizhou Plateau clade was composed exclusively of troglobite species, suggesting an ancient common subterranean ancestor, we favor multiple, independent cave colonizations during the Pleistocene over a single ancient cave colonization event to explain the origin of these cave faunas. The diversification of plateau Nesticella has been greatly influenced by the sequential uplift of the plateau and likely reflects multiple cave colonizations over time by epigean ancestors during Pleistocene glacial advances. Conclusions We concluded that plateau cave Nesticella represent an ancient group of spiders, but with young troglobite lineages that invaded caves only recently. The absence of extant epigean relatives and nearly complete isolation among caves supported their relict status. Our work highlights the importance of comprehensive sampling for studies of subterranean diversity and the evolution of cave organisms. The existence of potentially cryptic species and the relict status of Nesticella highlight the need to conserve these cave spiders. PMID:24006950

  15. Potential effects of recurrent low oxygen conditions on the Illinois Cave amphipod

    USGS Publications Warehouse

    Panno, S.V.; Hackley, Keith C.; Kelly, W.R.; Hwang, H.-H.; Wilhelm, F.M.; Taylor, S.J.; Stiff, B.J.

    2006-01-01

    The caves of Illinois' sinkhole plain are the sole habitat of the Illinois Cave amphipod (Gammarus acherondytes), a federally endangered species. The sinkhole plain is a hydrologically-connected sequence of karstified limestone that constitutes an extensive karst aquifer which serves as an important source of potable water for area residents. During this investigation, we examined the ground-water quality in caves within two ground-water basins: 1) Illinois Caverns, where the amphipod is now present after previously reported to have been extirpated from the lower reaches, and 2) Stemler Cave, where the amphipod is reported to have been extirpated. The chemical composition of cave streams in Illinois Caverns and Stemler Cave were compared to determine which parameters, if any, could have contributed to the loss of G. acherondytes from Stemler Cave. Stream water in Stemler Cave contained higher concentrations of organic carbon, potassium, silica, chloride, fluoride, sulfate, iron and manganese than Illinois Caverns. Perhaps most importantly, dissolved oxygen (DO) concentrations in Stemler Cave were, during periods of low flow, substantially lower than in Illinois Caverns. Based on land use, there are probably at least eight times more private septic systems in the Stemler Cave ground-water basin than in the Illinois Caverns ground-water basin. Low DO concentrations were likely the result of microbial breakdown of soil organic matter and wastewater treatment system effluent, and the oxidation of pyrite in bedrock. The near-hypoxic DO in Stemler Cave that occurred during low-flow conditions, and, we speculate, a limited range of G. acherondytes within the Stemler Cave ground-water basin due to a metabolic advantage of the stygophilic aquatic invertebrates over the stygobitic G. acherodytes, resulted in the apparent loss of G. acherondytes from Stemler Cave.

  16. Natural-trap ursid mortality and the Kurtén Response.

    PubMed

    Wolverton, Steve

    2006-05-01

    Ursid mortality data have long been used to evaluate associations between cave-bear remains (Ursus deningeri and U. spelaeus) and hominin (Homo sp.) remains. Typically, such ursid assemblages produce mortality patterns that indicate that juvenile and old bears died during hibernation, a pattern that is used to suggest that humans and bears occupied the same caves at different times. However, a different kind of mortality pattern can also be used to suggest human influence on cave bears, particularly under circumstances when bears and humans compete for habitat. In particular, data from Lawson Cave and Jerry Long Cave, Missouri indicate that young-adult North American black bears (Ursus americanus) are prone to capture in natural-trap caves. Similar faunal data from Sima de los Huesos in Spain, where cave-bear and hominin remains are found in the same deposit, might also suggest that the bears died from falling into a natural trap. It is concluded that mortality analysis of ursid remains from caves is a useful tool with which to evaluate accumulation histories of cave deposits and relations between humans, artifacts, and cave-bear remains. In particular, ursid mortality data are relevant to the Kurtén Response, a hypothesis reiterated in the recent literature that implicates human encroachment on ursid habitat (e.g., cave den sites) as a potential cause in cave-bear extinction.

  17. The role of natural ventilation in the exposure to radon in the Postojna Cave

    NASA Astrophysics Data System (ADS)

    Gregorič, A.; Smerajec, M.; Vaupotič, J.

    2012-04-01

    Postojna Cave is the biggest of 21 show caves in Slovenia and one of present day's most visited show caves in the world. Long and branched out cave system, large entrances at different levels, inflow of the Pivka river, and large variation of the outdoor air temperature and precipitation, make the Postojna Cave also a very complex climatic system in which each part shows different conditions. The cave is only naturally ventilated and it is therefore characterised by high radon concentration, which depends on the ventilation regime in different seasons, resulting in typical annual cycles of radon levels in the cave air. Postojna Cave is a typical horizontal cave, where the difference between outside and cave air temperature represents the main driving force for air circulation. In winter, when the cave temperature is higher than outside, cave air is released from the cave into the outdoor atmosphere due to the air draught caused by the 'chimney effect', thus allowing fresh and cold outdoor air to enter the cave through low lying openings. This effect is not operative in summer, when the outside temperature is higher than in the cave, and air draught is minimal or reversed. In addition, air circulation can be locally altered due to other processes, like changing level of Pivka river during the rainy season and local geomorphologic characteristics of cave passages. High radon concentration in the Postojna Cave is the reason for thorough studies of the methodology for dose estimates of the personnel working in the cave. Due to high relative humidity and low air circulation, the cave air is characterised by very low particle concentration, which play an important role in radon dosimetry. Therefore parallel monitoring of radioactive aerosols of radon decay products (RnDP) and general (non-radioactive) aerosols in the particle size range of 10-1100 nm was performed in the air of Postojna Cave at the lowest point of tourist path in summer, winter and both transitional periods (spring and autumn), focusing on the unattached fraction of RnDP (fun), a key parameter in radon dosimetry. Dose conversion factors (DCF) were calculated (using Porstendörfer approach) from measured fun for the four periods and compared with recommended DCF, based on the results of epidemiological studies. Results of calculated DCF are in the range from 8-18 mSV WLM-1, much higher that recommended values, and differ significantly for summer and winter period. The lowest value of DCF was calculated for winter period, when the enhanced inflow of cold outside air introduces outdoor aerosols into the cave and consequently lowers fun. On the other hand, calculated DCF during summer period was significantly higher, caused by high fun, which is the consequence of very low particle concentration in cave air during summer ventilation regime. Taking into account also significantly higher radon concentration during summer, when about 70 % of visits is recorded, it is evident, that personnel receives the highest annual dose during summer months.

  18. Short-term Rn-222 concentration changes in underground spaces with limited air exchange

    NASA Astrophysics Data System (ADS)

    Fijałkowska-Lichwa, Lidia; Przylibski, Tadeusz A.

    2010-05-01

    Authors conducted research on radon concentration in two underground structures located in the vicinity of Kletno (Sudety Mts., SW Poland), which are accessible for visitors. One of these structures is Niedźwiedzia (Bear) Cave, and the second one is the part of former uranium mine - Fluorite Adit. Both selected underground structures are characterized by almost constant temperature, changing within the range from +5 to +7° C and also constant relative humidity, close to 100%. Both these parameters testify that air exchange with the atmosphere is very limited. Air exchange is limited particularly in Niedźwiedzia Cave, which microclimate is protected i.e. by applying of locks at the entrance and exit of tourist route. The measurements were conducted between 16.05.2008. and 15.11.2009., by the use of a new Polish equipment - SRDN-3 devices with semiconductor detector. SRDN-3 device records every hour radon concentration as well as atmospheric parameters - relative humidity and temperature. At the same time authors conducted measurements of basic parameters in the open atmosphere close to Niedźwiedzia Cave. Obtained results of atmospheric parameters measurements may be used for both underground structures; because they are located within the distance of about 1 km. Atmospheric parameters were measured by the use of automatic weather station VantagePro2. On the base of conducted research authors corroborate, that the differences of radon concentration in both underground structures reach three orders of magnitude during a year. In Niedźwiedzia Cave these values are in the range from below 88 Bq/m3 (detection limit of the SRDN-3 device) up to 12 kBq/m3. Related values in Fluorite Adit are between < 88 Bq/m3 and 35 kBq/m3. It was observed also the different course of daily radon concentration changes in both structures. Additionally, authors registered that daily course of radon concentration changes differs due to season of the year. Such changes are observed in both structures. The reasons of these changes are probably connected with the way of air exchange between interior of the structure and the atmosphere. In both cases they are determined by atmospheric air temperature changes in relation with the temperature of the air inside the cave or adit. Authors have been still working on this problem. We can also say, that the character of daily radon concentration changes inside both examined structures differ from typical changes noted in dwelling houses.

  19. Carroll Cave: a Missouri legend

    USDA-ARS?s Scientific Manuscript database

    Carroll Cave is one of the premiere caves of Missouri and the Ozarks region. At over 20 miles of surveyed passage, it is the 2nd longest cave in the state and 33rd longest in the nation. It is also the largest known cave formed in the Ordovician aged (443-485 million years ago) Gasconade Dolomite o...

  20. 16S rRNA Gene-Based Metagenomic Analysis of Ozark Cave Bacteria.

    PubMed

    Oliveira, Cássia; Gunderman, Lauren; Coles, Cathryn A; Lochmann, Jason; Parks, Megan; Ballard, Ethan; Glazko, Galina; Rahmatallah, Yasir; Tackett, Alan J; Thomas, David J

    2017-09-01

    The microbial diversity within cave ecosystems is largely unknown. Ozark caves maintain a year-round stable temperature (12-14 °C), but most parts of the caves experience complete darkness. The lack of sunlight and geological isolation from surface-energy inputs generate nutrient-poor conditions that may limit species diversity in such environments. Although microorganisms play a crucial role in sustaining life on Earth and impacting human health, little is known about their diversity, ecology, and evolution in community structures. We used five Ozark region caves as test sites for exploring bacterial diversity and monitoring long-term biodiversity. Illumina MiSeq sequencing of five cave soil samples and a control sample revealed a total of 49 bacterial phyla, with seven major phyla: Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, Chloroflexi, Bacteroidetes, and Nitrospirae. Variation in bacterial composition was observed among the five caves studied. Sandtown Cave had the lowest richness and most divergent community composition. 16S rRNA gene-based metagenomic analysis of cave-dwelling microbial communities in the Ozark caves revealed that species abundance and diversity are vast and included ecologically, agriculturally, and economically relevant taxa.

  1. Radon as a natural tracer for underwater cave exploration and hypogenic cave formation

    NASA Astrophysics Data System (ADS)

    Csondor, Katalin; Erőss, Anita; Horváth, Ákos; Szieberth, Dénes

    2017-04-01

    Using 222Rn as a natural tracer is a novel approach in underwater cave exploration and in the research of active hypogenic caves. The research area, the Molnár János cave is one of the largest caves of an unique hypogenic karst system, the Buda Thermal Karst (Budapest, Hungary). The cave system is mainly characterized by water-filled passages. The cave is located at one of the main discharge areas of the Buda Thermal Karst and the major outflow point of the waters of the cave system is the Boltív spring, which feeds the artificial Malom Lake. Previous complex hydrogeological studies and radon measurements in the cave system and in the spring established the highest radon concentration (71 Bq/L, where the average is 44 Bq/L) in the springwater. The origin of radon was identified in the form of iron-hydroxide containing biofilms, which form by mixing of waters and efficiently adsorb radium from the thermal water component and cause local radon anomalies. Since mixing of waters is responsible for the formation of the cave as well, these iron-hydroxide containing biofilms and consequently high radon concentrations mark the active cave forming zones. The aim of the study was to use the radon as a natural tracer to locate active mixing and cave forming zones. Based on previous radon measurements it is supposed that the active mixing and cave forming zone has to be close to the spring, since the highest radon concentration was measured there. Therefore, the radon activity concentration mapping was carried out with the help of divers and involving that part of the cave which closest to the spring. Based on our measurements the highest radon concentration (84 Bq/L) ever was achieved in the springwater. Based on the radon concentration distribution direct connection and active karst conduit was established between the spring and the deepest room of the researched part of the cave, which was verified by artificial tracer as well. However, the distribution of radon in the cave passages shows lower concentrations (18-46 Bq/L) compared to the spring, therefore an addition deep inflow from a hitherto unknown cave passages is assumed, from which waters with high radon content arrive to the spring. These passages are supposed to be in the active cave formation (mixing) zone. The Buda Thermal Karst research was funded by the Hungarian Scientific Research Fund under the grant agreement no. NK 101356.

  2. Sulfate-reducing bacteria are common members of bacterial communities in Altamira Cave (Spain).

    PubMed

    Portillo, M Carmen; Gonzalez, Juan M

    2009-01-15

    The conservation of paleolithic paintings such as those in Altamira Cave (Spain) is a primary objective. Recent molecular studies have shown the existence of unknown microbial communities in this cave including anaerobic microorganisms on cave walls. Herein, we analyzed an anaerobic microbial group, the sulfate-reducing bacteria (SRB), from Altamira Cave with potential negative effects on painting conservation. In the present work, the communities of bacteria and SRB were studied through PCR-DGGE analysis. Data suggest that SRB communities represent a significant, highly diverse bacterial group in Altamira Cave. These findings represent a first report on this physiological group on caves with paleolithic paintings and their potential biodegradation consequences. Expanding our knowledge on microbial communities in Altamira Cave is a priority to design appropriate conservation strategies.

  3. Computing Accurate Grammatical Feedback in a Virtual Writing Conference for German-Speaking Elementary-School Children: An Approach Based on Natural Language Generation

    ERIC Educational Resources Information Center

    Harbusch, Karin; Itsova, Gergana; Koch, Ulrich; Kuhner, Christine

    2009-01-01

    We built a natural language processing (NLP) system implementing a "virtual writing conference" for elementary-school children, with German as the target language. Currently, state-of-the-art computer support for writing tasks is restricted to multiple-choice questions or quizzes because automatic parsing of the often ambiguous and fragmentary…

  4. Energy and speleogenesis: Key determinants of terrestrial species richness in caves.

    PubMed

    Jiménez-Valverde, Alberto; Sendra, Alberto; Garay, Policarp; Reboleira, Ana Sofia P S

    2017-12-01

    The aim of this study was to unravel the relative role played by speleogenesis (i.e., the process in which a cave is formed), landscape-scale variables, and geophysical factors in the determination of species richness in caves. Biological inventories from 21 caves located in the southeastern Iberian Peninsula along with partial least square (PLS) regression analysis were used to assess the relative importance of the different explanatory variables. The caves were grouped according to the similarity in their species composition; the effect that spatial distance could have on similarity was also studied using correlation between matrices. The energy and speleogenesis of caves accounted for 44.3% of the variation in species richness. The trophic level of each cave was the most significant factor in PLS regression analysis, and epigenic caves (i.e., those formed by the action of percolating water) had significantly more species than hypogenic ones (i.e., those formed by the action of upward flows in confined aquifers). Dissimilarity among the caves was very high (multiple-site β sim  = 0.92). Two main groups of caves were revealed through the cluster analysis, one formed by the western caves and the other by the eastern ones. The significant-but low-correlation found between faunistic dissimilarity and geographical distance ( r  =   .16) disappeared once the caves were split into the two groups. The extreme beta-diversity suggests a very low connection among the caves and/or a very low dispersal capacity of the species. In the region under study, two main factors are intimately related to the richness of terrestrial subterranean species in caves: the amount of organic material (trophic level) and the formation process (genesis). This is the first time that the history of a cave genesis has been quantitatively considered to assess its importance in explaining richness patterns in comparison with other factors more widely recognized.

  5. Energy conservation with automatic flow control valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, D.

    Automatic flow control valves are offered in a wide range of sizes starting at 1/2 in. with flow rates of 0.5 gpm and up. They are also provided with materials and end connections to meet virtually any fan-coil system requirement. Among these are copper sweat type valves; ductile iron threaded valves; male/female threaded brass valves; and combination flow control/ball valves with union ends.

  6. Morphometry and distribution of isolated caves as a guide for phreatic and confined paleohydrological conditions

    NASA Astrophysics Data System (ADS)

    Frumkin, Amos; Fischhendler, Itay

    2005-04-01

    Isolated caves are a special cave type common in most karst terrains, formed by prolonged slow water flow where aggressivity is locally boosted. The morphometry and distribution of isolated caves are used here to reconstruct the paleohydrology of a karstic mountain range. Within a homogenous karstic rock sequence, two main types of isolated caves are distinguished, and each is associated with a special hydrogeologic setting: maze caves form by rising water in the confined zone of the aquifer, under the Mt. Scopus Group (Israel) confinement, while chamber caves are formed in phreatic conditions, apparently by lateral flow mixing with a vadose input from above.

  7. Effect of diurnal and seasonal temperature variation on Cussac cave ventilation using co2 assessment

    NASA Astrophysics Data System (ADS)

    Peyraube, Nicolas; Lastennet, Roland; Villanueva, Jessica Denila; Houillon, Nicolas; Malaurent, Philippe; Denis, Alain

    2017-08-01

    Cussac cave was investigated to assess the cave air temperature variations and to understand its ventilation regime. This cave is located in an active karst system in the south west part of France. It has a single entrance and is considered as a cold air trap. In this study, air mass exchanges were probed. Measurements of temperature and Pco2 with a 30-min frequency were made in several locations close to the cave entrance. Speed of the air flow was also measured at the door of cave entrance. Results show that cave air Pco2 varies from 0.18 to 3.33 %. This cave appears to be a CO2 source with a net mass of 2319 tons blown in 2009. Carbon-stable isotope of CO2 (13Cco2) ranges from -20.6 ‰ in cold season to -23.8 ‰ in warm season. Cave air is interpreted as a result of a mix between external air and an isotopically depleted air, coming from the rock environment. The isotopic value of the light member varies through time, from -23.9 to -22.5 ‰. Furthermore, this study ascertains that the cave never stops in communicating with the external air. The ventilation regime is identified. (1) In cold season, the cave inhales at night and blows a little at the warmest hours. However, in warm season, (2) cave blows at night, but (3) during the day, a convection loop takes place in the entrance area and prevents the external air from entering the cave, confirming the cold air trap.

  8. Radon levels in Romanian caves: an occupational exposure survey.

    PubMed

    Cucoş Dinu, Alexandra; Călugăr, Monica I; Burghele, Bety D; Dumitru, Oana A; Cosma, Constantin; Onac, Bogdan P

    2017-10-01

    A comprehensive radon survey has been carried out in seven caves located in the western half of Romania's most significant karst regions. Touristic and non-touristic caves were investigated with the aim to provide a reliable distribution of their radon levels and evaluate the occupational exposure and associated effective doses. Radon gas concentrations were measured with long-term diffusion-type detectors during two consecutive seasons (warm and cold). All investigated caves exceed the European Union reference level of radon gas at workplaces (300 Bq/m 3 ). The radon concentration in these caves ranges between 53 and 2866 Bq/m 3 , reflecting particular cave topography, season-related cave ventilation, and complex tectonic and geological settings surrounding each location. Relatively homogeneous high radon levels occur in all investigated touristic caves and in Tăuşoare and Vântului along their main galleries. Except for Muierii, in all the other caves radon levels are higher during the warm season, compared to the cold one. This suggests that natural cave ventilation largely controls the underground accumulation of radon. The results reported here reveal that the occupational exposure in Urşilor, Vadu Crişului, Tăuşoare, Vântului, and Muierii caves needs to be carefully monitored. The effective doses to workers vary between an average of 0.25 and 4.39 mSv/year depending on the measuring season. The highest values were recorded in show caves, ranging from 1.15 to 6.15 mSv/year, well above the European recommended limit, thus posing a potential health hazard upon cave guides, cavers, and scientists.

  9. Automated recycling of chemistry for virtual screening and library design.

    PubMed

    Vainio, Mikko J; Kogej, Thierry; Raubacher, Florian

    2012-07-23

    An early stage drug discovery project needs to identify a number of chemically diverse and attractive compounds. These hit compounds are typically found through high-throughput screening campaigns. The diversity of the chemical libraries used in screening is therefore important. In this study, we describe a virtual high-throughput screening system called Virtual Library. The system automatically "recycles" validated synthetic protocols and available starting materials to generate a large number of virtual compound libraries, and allows for fast searches in the generated libraries using a 2D fingerprint based screening method. Virtual Library links the returned virtual hit compounds back to experimental protocols to quickly assess the synthetic accessibility of the hits. The system can be used as an idea generator for library design to enrich the screening collection and to explore the structure-activity landscape around a specific active compound.

  10. 78 FR 59923 - Cave Run Energy, LLC; Notice of Intent To File License Application, Filing of Pre-Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14376-001] Cave Run Energy...: July 21, 2013. d. Submitted By: Cave Run Energy, LLC. e. Name of Project: Cave Run Hydroelectric...: 18 CFR 5.3 of the Commission's regulations. h. Potential Applicant Contact: Mark Boumansour, Cave Run...

  11. Picos de Europa National and Regional parks (Northern Spain): the karst underground landscape

    NASA Astrophysics Data System (ADS)

    Ballesteros, Daniel; Jiménez-Sánchez, Montserrat; Rodríguez-Rodríguez, Laura; José Domínguez-Cuesta, María; Meléndez-Asensio, Mónica; García-Sansegundo, Joaquín

    2015-04-01

    Karst caves represent an environmental with a high value from the Geoheritage and Geodiversity points of view given by hidden underground landscape practically reserved to the speleologists. Nevertheless, cave surveys, 3d models of caves and DEMs, and pictures can be used to approach the endokarst geoheritage characterization. The Picos de Europa National and Regional parks include the 14% of World's Deepest Caves (>1 km depth); moreover these parks shows a high environmental value related with seven protection figures: Biosphere Reserve, Special Protection Area, the Site of Community Importance, and four Natural Monument. The aim of this work is to present the Geoheritage values of the underground landscape of the Picos de Europa National and Regional parks. These parks involve several alpine karst massifs up to 700 km2 and 2,600 m asl, as the Picos de Europa mountains (declared Global Geosite by its geomorphological interest), the Mampodre Massif, and the Peñas Pintas and Yordas peaks (sited in Riaño dam area). The alpine karst involves a large underground landscape formed by more than 3,700 epigenic caves with 403 km of conduits. The 95 % of the cave conduits are located in the Picos de Europa mountains and correspond to caves up to 18.9 km length and 1.6 km depth; the 5 % of cave conduits are sited in other small karst areas and include caves up to 1.5 km length and 200 m depth. The karst caves present high natural, scientific and cultural values. The natural value corresponds to the singularity and the spectacular vertical development of the caves and a very high Geodiversity of cave features. The karst shows a high concentration of deep caves (81 caves deeper than 500 m) that is twice higher than the concentration of other karst areas, as Arabika Massif (Western Caucasus). The natural value is mainly related to the presence of geomorphological and hydrogeological features, highlighting high vadose canyons and shafts, old phreatic and epiphreatic conduits, few fluvial deposits, some speleothems (dripstone, flowstone), few ice caves, many underground streams, and karst springs. The scientific value corresponds to the cave records related to the regional evolution of the Cantabrian Range. The scientific studies evidence that the caves are originated prior to, at least, the Middle Pleistocene, in relation to mountain uplift, glaciations, fluvial incision, and the erosion of the alpine lithological seriesthat were above the karst. The cultural value is related with the specific uses of the cavities by shepherds and speleologists, and the singularity of cave names. The uses include traditional customs, as the livestock farming, the water collection, the elaboration of five types of cheese with Certificated of Origin, and sport uses by speleologists from many countries of Europe. The educative values are low due to the limitations of access inside the caves, although two caves are touristic and the entrance of some caves can be used to explain vadose shafts, relations between caves and glaciers and rivers or the underground water flow. GEOCAVE project (MAGRAMA-580/12 OAPN)

  12. Discovery of a diverse cave flora in China.

    PubMed

    Monro, Alexandre K; Bystriakova, Nadia; Fu, Longfei; Wen, Fang; Wei, Yigang

    2018-01-01

    Few studies document plants in caves. Our field observations of a widespread and seemingly angiosperm-rich cave flora in SW China lead us to test the following hypotheses, 1) SW China caves contain a diverse vascular plant flora, 2) that this is a relic of a largely absent forest type lacking endemic species, and 3) that the light environment plants occupy in caves is not distinct from non-cave habitats. To do so we surveyed 61 caves and used species accumulation curves (SAC) to estimate the total diversity of this flora and used a subsample of 14 caves to characterise the light environment. We used regional floras and existing conservation assessments to evaluate the conservation value of this flora. We used observations on human disturbance within caves to evaluate anthropogenic activities. Four-hundred-and-eighteen vascular plant species were documented with SACs predicting a total diversity of 529-846. Ninety-three percent of the species documented are known karst forest species, 7% are endemic to caves and 81% of the species are angiosperms. We demonstrate that the light environment in caves is distinct to that of terrestrial habitats and that a subset of the flora likely grow in the lowest light levels documented for vascularised plants. Our results suggest that the proportion of species threatened with extinction is like that for the terrestrial habitat and that almost half of the entrance caverns sampled showed signs of human disturbance. We believe that this is the first time that such an extensive sample of cave flora has been undertaken and that such a diverse vascular plant flora has been observed in caves which we predict occurs elsewhere in SE Asia. We argue that the cave flora is an extension of the karst forest understory present prior to catastrophic deforestation in the 20thC. We suggest that within SW China caves serve as both refuges and a valuable source of germplasm for the restoration of karst forest. We also propose that caves represent a distinct habitat for plants that is most similar to that of the forest understory, but distinct with respect to the absence of trees, leaf litter, root mats, higher levels of atmospheric CO2, and lower diurnal and annual variation in temperature and humidity. We highlight tourism, agriculture and the absence of legislated protection of caves as the main current threats to this flora.

  13. Discovery of a diverse cave flora in China

    PubMed Central

    Wen, Fang

    2018-01-01

    Few studies document plants in caves. Our field observations of a widespread and seemingly angiosperm-rich cave flora in SW China lead us to test the following hypotheses, 1) SW China caves contain a diverse vascular plant flora, 2) that this is a relic of a largely absent forest type lacking endemic species, and 3) that the light environment plants occupy in caves is not distinct from non-cave habitats. To do so we surveyed 61 caves and used species accumulation curves (SAC) to estimate the total diversity of this flora and used a subsample of 14 caves to characterise the light environment. We used regional floras and existing conservation assessments to evaluate the conservation value of this flora. We used observations on human disturbance within caves to evaluate anthropogenic activities. Four-hundred-and-eighteen vascular plant species were documented with SACs predicting a total diversity of 529–846. Ninety-three percent of the species documented are known karst forest species, 7% are endemic to caves and 81% of the species are angiosperms. We demonstrate that the light environment in caves is distinct to that of terrestrial habitats and that a subset of the flora likely grow in the lowest light levels documented for vascularised plants. Our results suggest that the proportion of species threatened with extinction is like that for the terrestrial habitat and that almost half of the entrance caverns sampled showed signs of human disturbance. We believe that this is the first time that such an extensive sample of cave flora has been undertaken and that such a diverse vascular plant flora has been observed in caves which we predict occurs elsewhere in SE Asia. We argue that the cave flora is an extension of the karst forest understory present prior to catastrophic deforestation in the 20thC. We suggest that within SW China caves serve as both refuges and a valuable source of germplasm for the restoration of karst forest. We also propose that caves represent a distinct habitat for plants that is most similar to that of the forest understory, but distinct with respect to the absence of trees, leaf litter, root mats, higher levels of atmospheric CO2, and lower diurnal and annual variation in temperature and humidity. We highlight tourism, agriculture and the absence of legislated protection of caves as the main current threats to this flora. PMID:29415039

  14. Analysis of Vadose Hydrology at Jinapsan Cave, Guam, Mariana Islands

    NASA Astrophysics Data System (ADS)

    Bautista, K. K.; Jenson, J. W.; Lander, M.; Noronha, A. L.; Righetti, T.

    2016-12-01

    Six years of monthly data were analyzed from an active tropical limestone cave in Guam, the southernmost of the Mariana Islands, in the western Pacific Ocean. The purpose of this study was to characterize vadose processes of aquifer recharge in the Plio-Pleistocene Mariana Limestone, which occupies about 75% of the surface of the Northern Guam Lens Aquifer, which produces 90% of the island's drinking water. This hydrogeologic study was conducted concurrent with paleoclimate research, in which correlative data on CO2 and other cave meteorological parameters are also collected. For this study, a ground survey grid was established on the surface above the cave, a vegetated talus slope at the foot of the >150-m cliff in the Mariana Limestone behind the cave. Cave and vadose zone 3-D models were constructed from the surface survey and an interior cave survey. Cross sections display talus slope features (33°), notational talus grain size distribution, inferred epikarst and vadose layer dimensions, cave slope (-34°) and structural and geomorphic features of the cave, including a brackish sea-level pool at the cave bottom. GIS products include georeferenced cave boundary and cave room shapefiles. A plan-view map displays significant boulder talus and limestone forest trees, cave entrance location and the underlying cave boundary and fractures mapped on the cave ceiling. Thicknesses of the talus and vadose bedrock sections range from 1.3 to 17.0 meters and 1.7 to 46.4 meters, respectively. Drip rate and discharge rate data from 7 cave stations are presented in graphs showing varying responses between percolation and changes in rainfall during wet (Jul-Dec) and dry (Jan-Jun) seasons. Three stations exhibited fast responses to wet season rainfall, which gradually dropped during the dry season. Two of these stations are at separate cave ceiling fractures. The third is indiscernible from its distance (>4m) above the floor. Three stations exhibited slow responses in both wet and dry seasons, which may be attributed to matrix percolation. One station exhibited slow responses, except for three consecutive months of fast response, a probable effect of short-term pathway rerouting. One slow percolation station also showed a semi-diurnal pattern in its drip rate, which correlates with the atmospheric tidal signal.

  15. The architectural form of Qikou Cave dwellings in Chinese "Earth" culture

    NASA Astrophysics Data System (ADS)

    Chen, Xuanchen; Feng, Xinqun

    2018-03-01

    Cave building is not only a kind of architecture with unique style, but also a manifestation of Chinese traditional culture. Cave culture is an important part of Chinese traditional culture. The main purpose of this thesis which studies the architectural form of Qikou Cave, is to analyze how the cave building plays a positive role in promoting the development and application of modern resources and in cultural transmission. Based on a large amount of literature material, and taking Qikou Cave as an example, by studying the morphological characteristics of cave building, the paper takes an optimistic outlook on its future development and the sustainable development of the resources. It is expected that the cave culture can be further explored to promote the traditional Chinese culture and to drive the development of modern construction industry and resource conservation.

  16. Karst development and speleogenesis, Isla de Mona, Puerto Rico

    USGS Publications Warehouse

    Frank, E.F.; Mylroie, J.; Troester, J.; Alexander, E.C.; Carew, J.L.

    1998-01-01

    Isla de Mona consists of a raised table-top Miocene-Pliocene reef platform bounded on three sides by vertical cliffs, up to 80 m high. Hundreds of caves ring the periphery of the island and are preferentially developed in, but not limited to, the Lirio Limestone/Isla de Mona Dolomite contact. These flank margin caves originally formed at sea level and are now exposed at various levels by tectonic uplift of the island (Franbk 1983; Mylroie et al. 1995b). Wall cusps, a characteristic feature of flank margin caves, are ubiquitois features. Comparisons among similar caves formed in the Bahamas and Isla de Mona reveal the same overall morphology throughout the entire range of sizes and complexities. The coincidence of the primary cave development zone with the Lirio Limestone/Isla de Mona Dolomite contact may result from syngenetic speleogenesis and dolomitization rather than preferential dissolution along a lithologic boundary. Tectonic uplift and glacioeustatic sea level fluctuations produced caves at a variety of elevations. Speleothem dissolution took place in many caves under phreatic conditions, evidence these caves were flooded after an initial period of subaerial exposure and speleothem growth. Several features around the perimeter of the island are interpreted to be caves whose roofs were removed by surficial denudation processes. Several large closed depressions and dense pit cave fields are further evidence of surficial karst features. The cliff retreat around the island perimeter since the speleogenesis of the major cave systems is small based upon the distribution of the remnant cave sections.

  17. Profiling bacterial diversity in a limestone cave of the western Loess Plateau of China

    PubMed Central

    Wu, Yucheng; Tan, Liangcheng; Liu, Wuxing; Wang, Baozhan; Wang, Jianjun; Cai, Yanjun; Lin, Xiangui

    2015-01-01

    Bacteria and archaea sustain subsurface cave ecosystems by dominating primary production and fueling biogeochemical cyclings, despite the permanent darkness and shortage of nutrients. However, the heterogeneity and underlying mechanism of microbial diversity in caves, in particular those well connect to surface environment are largely unexplored. In this study, we examined the bacterial abundance and composition in Jinjia Cave, a small and shallow limestone cave located on the western Loess Plateau of China, by enumerating and pyrosequencing small subunit rRNA genes. The results clearly reveal the contrasting bacterial community compositions in relation to cave habitat types, i.e., rock wall deposit, aquatic sediment, and sinkhole soil, which are differentially connected to the surface environment. The deposits on the cave walls were dominated by putative cave-specific bacterial lineages within the γ-Proteobacteria or Actinobacteria that are routinely found on cave rocks around the world. In addition, sequence identity with known functional groups suggests enrichments of chemolithotrophic bacteria potentially involved in autotrophic C fixation and inorganic N transformation on rock surfaces. By contrast, bacterial communities in aquatic sediments were more closely related to those in the overlying soils. This is consistent with the similarity in elemental composition between the cave sediment and the overlying soil, implicating the influence of mineral chemistry on cave microhabitat and bacterial composition. These findings provide compelling molecular evidence of the bacterial community heterogeneity in an East Asian cave, which might be controlled by both subsurface and surface environments. PMID:25870592

  18. Profiling bacterial diversity in a limestone cave of the western Loess Plateau of China.

    PubMed

    Wu, Yucheng; Tan, Liangcheng; Liu, Wuxing; Wang, Baozhan; Wang, Jianjun; Cai, Yanjun; Lin, Xiangui

    2015-01-01

    Bacteria and archaea sustain subsurface cave ecosystems by dominating primary production and fueling biogeochemical cyclings, despite the permanent darkness and shortage of nutrients. However, the heterogeneity and underlying mechanism of microbial diversity in caves, in particular those well connect to surface environment are largely unexplored. In this study, we examined the bacterial abundance and composition in Jinjia Cave, a small and shallow limestone cave located on the western Loess Plateau of China, by enumerating and pyrosequencing small subunit rRNA genes. The results clearly reveal the contrasting bacterial community compositions in relation to cave habitat types, i.e., rock wall deposit, aquatic sediment, and sinkhole soil, which are differentially connected to the surface environment. The deposits on the cave walls were dominated by putative cave-specific bacterial lineages within the γ-Proteobacteria or Actinobacteria that are routinely found on cave rocks around the world. In addition, sequence identity with known functional groups suggests enrichments of chemolithotrophic bacteria potentially involved in autotrophic C fixation and inorganic N transformation on rock surfaces. By contrast, bacterial communities in aquatic sediments were more closely related to those in the overlying soils. This is consistent with the similarity in elemental composition between the cave sediment and the overlying soil, implicating the influence of mineral chemistry on cave microhabitat and bacterial composition. These findings provide compelling molecular evidence of the bacterial community heterogeneity in an East Asian cave, which might be controlled by both subsurface and surface environments.

  19. Radiological tele-immersion for next generation networks.

    PubMed

    Ai, Z; Dech, F; Rasmussen, M; Silverstein, J C

    2000-01-01

    Since the acquisition of high-resolution three-dimensional patient images has become widespread, medical volumetric datasets (CT or MR) larger than 100 MB and encompassing more than 250 slices are common. It is important to make this patient-specific data quickly available and usable to many specialists at different geographical sites. Web-based systems have been developed to provide volume or surface rendering of medical data over networks with low fidelity, but these cannot adequately handle stereoscopic visualization or huge datasets. State-of-the-art virtual reality techniques and high speed networks have made it possible to create an environment for clinicians geographically distributed to immersively share these massive datasets in real-time. An object-oriented method for instantaneously importing medical volumetric data into Tele-Immersive environments has been developed at the Virtual Reality in Medicine Laboratory (VRMedLab) at the University of Illinois at Chicago (UIC). This networked-VR setup is based on LIMBO, an application framework or template that provides the basic capabilities of Tele-Immersion. We have developed a modular general purpose Tele-Immersion program that automatically combines 3D medical data with the methods for handling the data. For this purpose a DICOM loader for IRIS Performer has been developed. The loader was designed for SGI machines as a shared object, which is executed at LIMBO's runtime. The loader loads not only the selected DICOM dataset, but also methods for rendering, handling, and interacting with the data, bringing networked, real-time, stereoscopic interaction with radiological data to reality. Collaborative, interactive methods currently implemented in the loader include cutting planes and windowing. The Tele-Immersive environment has been tested on the UIC campus over an ATM network. We tested the environment with 3 nodes; one ImmersaDesk at the VRMedLab, one CAVE at the Electronic Visualization Laboratory (EVL) on east campus, and a CT scan machine in UIC Hospital. CT data was pulled directly from the scan machine to the Tele-Immersion server in our Laboratory, and then the data was synchronously distributed by our Onyx2 Rack server to all the VR setups. Instead of permitting medical volume visualization at one VR device, by combining teleconferencing, tele-presence, and virtual reality, the Tele-Immersive environment will enable geographically distributed clinicians to intuitively interact with the same medical volumetric models, point, gesture, converse, and see each other. This environment will bring together clinicians at different geographic locations to participate in Tele-Immersive consultation and collaboration.

  20. Modulation of Visually Evoked Postural Responses by Contextual Visual, Haptic and Auditory Information: A ‘Virtual Reality Check’

    PubMed Central

    Meyer, Georg F.; Shao, Fei; White, Mark D.; Hopkins, Carl; Robotham, Antony J.

    2013-01-01

    Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR. PMID:23840760

  1. Environmental change at Kartchner Caverns: trying to separate natural and anthropogenic changes

    Treesearch

    Rickard S. Toomey; Ginger Nolan

    2005-01-01

    Cave temperature and moisture levels are important factors in the environmental health of Kartchner Caverns. Monitoring indicates the cave has warmed and moisture levels have fallen over the past 14 years. Timing and patterns of change within the cave suggest that changes are due to development as a show cave. However, changes in other caves, surface temperature and...

  2. 16S rRNA Gene-Based Metagenomic Analysis of Ozark Cave Bacteria

    PubMed Central

    Oliveira, Cássia; Gunderman, Lauren; Coles, Cathryn A.; Lochmann, Jason; Parks, Megan; Ballard, Ethan; Glazko, Galina; Rahmatallah, Yasir; Tackett, Alan J.; Thomas, David J.

    2018-01-01

    The microbial diversity within cave ecosystems is largely unknown. Ozark caves maintain a year-round stable temperature (12–14 °C), but most parts of the caves experience complete darkness. The lack of sunlight and geological isolation from surface-energy inputs generate nutrient-poor conditions that may limit species diversity in such environments. Although microorganisms play a crucial role in sustaining life on Earth and impacting human health, little is known about their diversity, ecology, and evolution in community structures. We used five Ozark region caves as test sites for exploring bacterial diversity and monitoring long-term biodiversity. Illumina MiSeq sequencing of five cave soil samples and a control sample revealed a total of 49 bacterial phyla, with seven major phyla: Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, Chloroflexi, Bacteroidetes, and Nitrospirae. Variation in bacterial composition was observed among the five caves studied. Sandtown Cave had the lowest richness and most divergent community composition. 16S rRNA gene-based metagenomic analysis of cave-dwelling microbial communities in the Ozark caves revealed that species abundance and diversity are vast and included ecologically, agriculturally, and economically relevant taxa. PMID:29551950

  3. Steppe lion remains imported by Ice Age spotted hyenas into the Late Pleistocene Perick Caves hyena den in northern Germany

    NASA Astrophysics Data System (ADS)

    Diedrich, Cajus G.

    2009-05-01

    Upper Pleistocene remains of the Ice Age steppe lion Panthera leo spelaea (Goldfuss, 1810) have been found in the Perick Caves, Sauerland Karst, NW Germany. Bones from many hyenas and their imported prey dating from the Lower to Middle Weichselian have also been recovered from the Perick Cave hyena den. These are commonly cracked or exhibit deep chew marks. The absence of lion cub bones, in contrast to hyena and cave bear cub remains in the Perick Caves, and other caves of northern Germany, excludes the possibility that P. leo spelaea used the cave for raising cubs. Only in the Wilhelms Cave was a single skeleton of a cub found in a hyena den. Evidence of the chewing, nibbling and cracking of lion bones and crania must have resulted from the importation and destruction of lion carcasses (4% of the prey fauna). Similar evidence was preserved at other hyena den caves and open air sites in Germany. The bone material from the Perick and other Central European caves points to antagonistic hyena and lion conflicts, similar to clashes of their modern African relatives.

  4. Investigation of Sediment Pathways and Concealed Sedimentological Features in Hidden River Cave, Kentucky

    NASA Astrophysics Data System (ADS)

    Feist, S.; Maclachlan, J. C.; Reinhardt, E. G.; McNeill-Jewer, C.; Eyles, C.

    2016-12-01

    Hidden River Cave is part of a cave system hydrogeologically related to Mammoth Cave in Kentucky and is a multi-level active cave system with 25km of mapped passages. Upper levels experience flow during flood events and lower levels have continuously flowing water. Improper industrial and domestic waste disposal and poor understanding of local hydrogeology lead to contamination of Hidden River Cave in the early 1940s. Previously used for hydroelectric power generation and as a source of potable water the cave was closed to the public for almost 50 years. A new sewage treatment plant and remediation efforts since 1989 have improved the cave system's health. This project focuses on sedimentological studies in the Hidden River Cave system. Water and sediment transport in the cave are being investigated using sediment cores, surface sediment samples and water level data. An Itrax core scanner is used to analyze sediment cores for elemental concentrations, magnetic susceptibility, radiography, and high resolution photography. Horizons of metal concentrations in the core allow correlation of sedimentation events in the cave system. Thecamoebian (testate amoebae) microfossils identified in surface samples allow for further constraint of sediment sources, sedimentation rates, and paleoclimatic analysis. Dive recorders monitor water levels, providing data to further understand the movement of sediment through the cave system. A general time constraint on the sediment's age is based on the presence of microplastic in the surface samples and sediment cores, and data from radiocarbon and lead-210 dating. The integration of various sedimentological data allows for better understanding of sedimentation processes and their record of paleoenvironmental change in the cave system. Sediment studies and methodologies from this project can be applied to other karst systems, and have important applications for communities living on karst landscapes and their water management policies.

  5. Fast localized orthonormal virtual orbitals which depend smoothly on nuclear coordinates.

    PubMed

    Subotnik, Joseph E; Dutoi, Anthony D; Head-Gordon, Martin

    2005-09-15

    We present here an algorithm for computing stable, well-defined localized orthonormal virtual orbitals which depend smoothly on nuclear coordinates. The algorithm is very fast, limited only by diagonalization of two matrices with dimension the size of the number of virtual orbitals. Furthermore, we require no more than quadratic (in the number of electrons) storage. The basic premise behind our algorithm is that one can decompose any given atomic-orbital (AO) vector space as a minimal basis space (which includes the occupied and valence virtual spaces) and a hard-virtual (HV) space (which includes everything else). The valence virtual space localizes easily with standard methods, while the hard-virtual space is constructed to be atom centered and automatically local. The orbitals presented here may be computed almost as quickly as projecting the AO basis onto the virtual space and are almost as local (according to orbital variance), while our orbitals are orthonormal (rather than redundant and nonorthogonal). We expect this algorithm to find use in local-correlation methods.

  6. A Brief Analysis on the Redesign of Traditional Cave Dwellings

    NASA Astrophysics Data System (ADS)

    Chen, Xuanchen; Feng, Xinqun

    2018-05-01

    Cave dwelling, the treasure of ancient architecture, is the unique product of Chinese Loess Plateau. However, recently due to the continuous development of social economy and industrial civilization, traditional cave dwelling in our country has represented the backwardness and poverty of the country, and it had been gradually abandoned in the history. In order to effectively avoid this phenomenon and protect the traditional cave dwelling to the greatest extent. This paper makes relevant introduction about traditional cave dwelling, and meanwhile, the redesign of traditional cave dwelling houses has also been studied in detail.

  7. Bacterial Activity and Geochemical Reactions in Submerged Cave Development -- Impact on Karst Aquifers in Florida

    NASA Astrophysics Data System (ADS)

    Herman, J. S.; Franklin, R. B.; Mills, A. L.; Giannotti, A. L.; Tysall, T. N.

    2008-05-01

    Elucidation of coupled mechanisms of sulfide oxidation and biomass generation supports an improved understanding the driving forces behind acid production, calcite dissolution, cave development, and karst aquifers characterization. Wekiwa Springs Cave and DeLeon Springs Cave, located in central Florida, both contain prolific bacterial mats from which sulfur-oxidizing bacteria have been identified. Wekiwa Springs Cave, a submerged cave developed in the Hawthorne Formation and located near Orlando, Florida, has groundwater discharge from the Floridian aquifer system, with some contribution from surficial and intermediate aquifers. The spring is the headwater of the Wekiwa River and releases a total of 170,000 m3 of water per day. The ceiling and walls are heavily covered (10 cm thick) with three morphologically distinct types of microbial mats largely comprising sulfur-oxidizing bacteria. Analysis of nearby groundwater collected from wells confirms sulfide concentrations in the regional groundwater of ~ 1.5 mg/L, though sulfide concentrations for water collected in the cave are below detection. Dissolved oxygen concentration in the water is low (<0.5 mg/L). DeLeon Springs Cave, a submerged cave located in Volusia County, Florida, is a single conduit with an average discharge of ~ 70,000 m3 of water per day, and water chemistry data suggest the presence of a saline seep in the system. Dense microbial mats cover the rock surfaces of the cave; the mats are highly filamentous, with long white streamers that often extend 1-2 feet from the cave wall. Microscopic analysis has confirmed the presence of sulfur granules within these bacterial cells, similar to those observed in the Wekiwa cave organisms. The water chemistry in DeLeon Springs Cave, however, is distinct from that of Wekiwa Springs Cave. Though DO, Fetotal, and HS- values are similar for the two sites, the concentration of ions such as Cl-, Na+, and SO42- are considerably higher at DeLeon. A similar contrast exists for the other major cations (Ca2+, Mg2+, K+), although the difference is less pronounced. An important difference between the two cave systems is the considerable spatial variability associated with water chemistry along the flowpath in the DeLeon system, whereas water chemistry is fairly constant at all locations sampled in Wekiwa Springs Cave. Microbial communities were characterized based on the on overall genetic similarity between whole-community DNA samples as compared using T-RFLP analysis of 16S rRNA genes. The microbial communities found at each sampling station in the Wekiwa Springs Cave are relatively similar to one another, while the communities found at the different sampling stations in the DeLeon Springs Cave are distinct from one another and from the Wekiwa community. This examination of submerged caves with respect to the specific speleogenic mechanisms and the importance of biological processes in their generation informs our understanding of caves and karst environments.

  8. Evolution-based Virtual Content Insertion with Visually Virtual Interactions in Videos

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Hu; Wu, Ja-Ling

    With the development of content-based multimedia analysis, virtual content insertion has been widely used and studied for video enrichment and multimedia advertising. However, how to automatically insert a user-selected virtual content into personal videos in a less-intrusive manner, with an attractive representation, is a challenging problem. In this chapter, we present an evolution-based virtual content insertion system which can insert virtual contents into videos with evolved animations according to predefined behaviors emulating the characteristics of evolutionary biology. The videos are considered not only as carriers of message conveyed by the virtual content but also as the environment in which the lifelike virtual contents live. Thus, the inserted virtual content will be affected by the videos to trigger a series of artificial evolutions and evolve its appearances and behaviors while interacting with video contents. By inserting virtual contents into videos through the system, users can easily create entertaining storylines and turn their personal videos into visually appealing ones. In addition, it would bring a new opportunity to increase the advertising revenue for video assets of the media industry and online video-sharing websites.

  9. A VxD-based automatic blending system using multithreaded programming.

    PubMed

    Wang, L; Jiang, X; Chen, Y; Tan, K C

    2004-01-01

    This paper discusses the object-oriented software design for an automatic blending system. By combining the advantages of a programmable logic controller (PLC) and an industrial control PC (ICPC), an automatic blending control system is developed for a chemical plant. The system structure and multithread-based communication approach are first presented in this paper. The overall software design issues, such as system requirements and functionalities, are then discussed in detail. Furthermore, by replacing the conventional dynamic link library (DLL) with virtual X device drivers (VxD's), a practical and cost-effective solution is provided to improve the robustness of the Windows platform-based automatic blending system in small- and medium-sized plants.

  10. Actinobacterial Diversity in Volcanic Caves and Associated Geomicrobiological Interactions

    PubMed Central

    Riquelme, Cristina; Marshall Hathaway, Jennifer J.; Enes Dapkevicius, Maria de L. N.; Miller, Ana Z.; Kooser, Ara; Northup, Diana E.; Jurado, Valme; Fernandez, Octavio; Saiz-Jimenez, Cesareo; Cheeptham, Naowarat

    2015-01-01

    Volcanic caves are filled with colorful microbial mats on the walls and ceilings. These volcanic caves are found worldwide, and studies are finding vast bacteria diversity within these caves. One group of bacteria that can be abundant in volcanic caves, as well as other caves, is Actinobacteria. As Actinobacteria are valued for their ability to produce a variety of secondary metabolites, rare and novel Actinobacteria are being sought in underexplored environments. The abundance of novel Actinobacteria in volcanic caves makes this environment an excellent location to study these bacteria. Scanning electron microscopy (SEM) from several volcanic caves worldwide revealed diversity in the morphologies present. Spores, coccoid, and filamentous cells, many with hair-like or knobby extensions, were some of the microbial structures observed within the microbial mat samples. In addition, the SEM study pointed out that these features figure prominently in both constructive and destructive mineral processes. To further investigate this diversity, we conducted both Sanger sequencing and 454 pyrosequencing of the Actinobacteria in volcanic caves from four locations, two islands in the Azores, Portugal, and Hawai'i and New Mexico, USA. This comparison represents one of the largest sequencing efforts of Actinobacteria in volcanic caves to date. The diversity was shown to be dominated by Actinomycetales, but also included several newly described orders, such as Euzebyales, and Gaiellales. Sixty-two percent of the clones from the four locations shared less than 97% similarity to known sequences, and nearly 71% of the clones were singletons, supporting the commonly held belief that volcanic caves are an untapped resource for novel and rare Actinobacteria. The amplicon libraries depicted a wider view of the microbial diversity in Azorean volcanic caves revealing three additional orders, Rubrobacterales, Solirubrobacterales, and Coriobacteriales. Studies of microbial ecology in volcanic caves are still very limited. To rectify this deficiency, the results from our study help fill in the gaps in our knowledge of actinobacterial diversity and their potential roles in the volcanic cave ecosystems. PMID:26696966

  11. Conservation of prehistoric caves and stability of their inner climate: lessons from Chauvet and other French caves.

    PubMed

    Bourges, F; Genthon, P; Genty, D; Lorblanchet, M; Mauduit, E; D'Hulst, D

    2014-09-15

    In the last 150 years, some prehistoric painted caves suffered irreversible degradations due to misperception of conservation issues and subsequent mismanagement. These sites presented naturally an exceptional stability of their internal climate allowing conservation in situ of outstanding fragile remains, some for nearly 40,000 years. This is for a large part due to exchanges of air, CO2, heat and water with the karstic system in which these caves are included. We introduce the concept of underground confinement, based on the stability of the inner cave climate parameters, especially its temperature. Confined caves present the best conservative properties. It is emphasized that this confined state implies slow exchanges with the surrounding karst and that a stable cave cannot be viewed as a closed system. This is illustrated on four case studies of French caves of various confinement states evidenced by long term continuous monitoring and on strategies to improve their conservation properties. The Chauvet cave presents optimal conservation properties. It is wholly confined as shown by the stability of its internal parameters since its discovery in 1994. In Marsoulas cave, archeological works removed the entrance scree and let a strong opening situation of the decorated zone. Remediation is expected by adding a buffer structure at the entrance. In Pech Merle tourist cave, recurrent painting fading was related to natural seasonal drying of walls. Improvement of the cave closure system restored a confined state insuring optimal visibility of the paintings. In Gargas tourist cave, optimization of closures, lighting system and number of visitors, allowed it to gradually reach a semi-confined state that improved the conservation properties. Conclusions are drawn on the characterization of confinement state of caves and on the ways to improve their conservation properties by restoring their initial regulation mechanisms and to avoid threats to their stability. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Reconciling Mining with the Conservation of Cave Biodiversity: A Quantitative Baseline to Help Establish Conservation Priorities

    PubMed Central

    Prous, Xavier; Zampaulo, Robson; Giannini, Tereza C.; Imperatriz-Fonseca, Vera L.; Maurity, Clóvis; Oliveira, Guilherme; Brandi, Iuri V.; Siqueira, José O.

    2016-01-01

    Caves pose significant challenges for mining projects, since they harbor many endemic and threatened species, and must therefore be protected. Recent discussions between academia, environmental protection agencies, and industry partners, have highlighted problems with the current Brazilian legislation for the protection of caves. While the licensing process is long, complex and cumbersome, the criteria used to assign caves into conservation relevance categories are often subjective, with relevance being mainly determined by the presence of obligate cave dwellers (troglobites) and their presumed rarity. However, the rarity of these troglobitic species is questionable, as most remain unidentified to the species level and their habitats and distribution ranges are poorly known. Using data from 844 iron caves retrieved from different speleology reports for the Carajás region (South-Eastern Amazon, Brazil), one of the world's largest deposits of high-grade iron ore, we assess the influence of different cave characteristics on four biodiversity proxies (species richness, presence of troglobites, presence of rare troglobites, and presence of resident bat populations). We then examine how the current relevance classification scheme ranks caves with different biodiversity indicators. Large caves were found to be important reservoirs of biodiversity, so they should be prioritized in conservation programs. Our results also reveal spatial autocorrelation in all the biodiversity proxies assessed, indicating that iron caves should be treated as components of a cave network immersed in the karst landscape. Finally, we show that by prioritizing the conservation of rare troglobites, the current relevance classification scheme is undermining overall cave biodiversity and leaving ecologically important caves unprotected. We argue that conservation efforts should target subterranean habitats as a whole and propose an alternative relevance ranking scheme, which could help simplify the assessment process and channel more resources to the effective protection of overall cave biodiversity. PMID:27997576

  13. Radon as a natural tracer for underwater cave exploration.

    PubMed

    Csondor, Katalin; Erőss, Anita; Horváth, Ákos; Szieberth, Dénes

    2017-07-01

    The Molnár János cave is one of the largest hypogenic caves of the Buda Thermal Karst (Budapest, Hungary) and mainly characterized by water-filled passages. The major outflow point of the waters of the cave system is the Boltív spring, which feeds the artificial Malom Lake. Previous radon measurements in the cave system and in the spring established the highest radon concentration (71 BqL -1 ) in the springwater. According to previous studies, the origin of radon was identified as iron-hydroxide containing biofilms, which form where there is mixing of cold and thermal waters, and these biofilms efficiently adsorb radium from the thermal water component. Since mixing of waters is responsible for the formation of the cave as well, these iron-hydroxide containing biofilms and the consequent high radon concentrations mark the active cave forming zones. Based on previous radon measurements, it is supposed that the active mixing and cave forming zone has to be close to the spring, since the highest radon concentration was measured there. Therefore radon mapping was carried out with the help of divers in order to get a spatial distribution of radon in the cave passages closest to the spring. Based on our measurements, the highest radon activity concentration (84 BqL -1 ) was found in the springwater. Based on the distribution of radon activity concentrations, direct connection was established between the spring and the István-room of the cave, which was verified by an artificial tracer. However, the distribution of radon in the cave passages shows lower concentrations (18-46 BqL -1 ) compared to the spring, therefore an additional deep inflow from hitherto unknown cave passages is assumed, from which waters with high radon content arrive to the spring. These passages are assumed to be in the active cave formation zone. This study proved that radon activity concentration distribution is a useful tool in underwater cave exploration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Variations on seepage water geochemistry induced by natural and anthropogenic microclimatic changes: Implications for the speleothems growth conditions

    NASA Astrophysics Data System (ADS)

    Fernandez-Cortes, A.; Sanchez-Moral, S.; Canaveras, J. C.; Cuevas, J.; Cuezva, S.; Andreu, J. M.; Abella, R.

    2009-04-01

    During an annual cycle the effect of microclimatic changes (natural and anthropogenic origin) on the geochemical characteristics of seepage water and mineral precipitation rates was analyzed, for two karstic caves under opposing environmental stability and energy exchange with exterior. On the one hand Castañar cave (Caceres, Spain), an extremely controlled show cave with limited visitation showing a minimum exchange rate of energy with the outer atmosphere and, secondly, Canelobre cave (Alicante, Spain), a widely visited cave where the anthropogenic impact generates both high-speed and high-energy environmental changes. Microclimatic variations play a key role in CO2-dessgasing caused by the imbalance of pCO2 between the karstic water and the cave air, favoring the slow processes of mineral precipitation. Thus, a pCO2-range of seepage water have been detected for each cave (from 10-2.30/-2.35 to 10-2.47/-2.52 bar for Castañar cave, and from 10-2.8/-2.85 to 10-2.95/-3.0 bar for Canelobre cave) where the mineral oversaturation prevails, determining the type and rate of mineral precipitation in each cave. Finally, it analyzes how the changes on the oversaturation/ precipitation states are controlled by microclimatic variations, such as: 1) natural underground air renewal through the porous system of upper soil and the network of host-rock fissures (isolating membranes), or else through the cave entrance, 2) cumulative disruptions in the pCO2 levels of cave air due to the presence of visitors, and 3) forced ventilation of the subterranean atmosphere due to the uncontrolled opening of cave entrances. The obtained results reinforce the significance of the microclimatic fluctuations on short time scales in the dynamic and evolution of the subterranean karst system, in terms of rates of mineral precipitation and growth of speleothems. Likewise the interpretations are useful in order to ensure the constant climate required for the conservation of caves.

  15. Speleogenesis, geometry, and topology of caves: A quantitative study of 3D karst conduits

    NASA Astrophysics Data System (ADS)

    Jouves, Johan; Viseur, Sophie; Arfib, Bruno; Baudement, Cécile; Camus, Hubert; Collon, Pauline; Guglielmi, Yves

    2017-12-01

    Karst systems are hierarchically spatially organized three-dimensional (3D) networks of conduits behaving as drains for groundwater flow. Recently, geostatistical approaches proposed to generate karst networks from data and parameters stemming from analogous observed karst features. Other studies have qualitatively highlighted relationships between speleogenetic processes and cave patterns. However, few studies have been performed to quantitatively define these relationships. This paper reports a quantitative study of cave geometries and topologies that takes the underlying speleogenetic processes into account. In order to study the spatial organization of caves, a 3D numerical database was built from 26 caves, corresponding to 621 km of cumulative cave passages representative of the variety of karst network patterns. The database includes 3D speleological surveys for which the speleogenetic context is known, allowing the polygenic karst networks to be divided into 48 monogenic cave samples and classified into four cave patterns: vadose branchwork (VB), water-table cave (WTC), looping cave (LC), and angular maze (AM). Eight morphometric cave descriptors were calculated, four geometrical parameters (width-height ratio, tortuosity, curvature, and vertical index) and four topological ones (degree of node connectivity, α and γ graph indices, and ramification index) respectively. The results were validated by statistical analyses (Kruskal-Wallis test and PCA). The VB patterns are clearly distinct from AM ones and from a third group including WTC and LC. A quantitative database of cave morphology characteristics is provided, depending on their speleogenetic processes. These characteristics can be used to constrain and/or validate 3D geostatistical simulations. This study shows how important it is to relate the geometry and connectivity of cave networks to recharge and flow processes. Conversely, the approach developed here provides proxies to estimate the evolution of the vadose zone to epiphreatic and phreatic zones in limestones from the quantitative analysis of existing cave patterns.

  16. Cyber-Physical System Security With Deceptive Virtual Hosts for Industrial Control Networks

    DOE PAGES

    Vollmer, Todd; Manic, Milos

    2014-05-01

    A challenge facing industrial control network administrators is protecting the typically large number of connected assets for which they are responsible. These cyber devices may be tightly coupled with the physical processes they control and human induced failures risk dire real-world consequences. Dynamic virtual honeypots are effective tools for observing and attracting network intruder activity. This paper presents a design and implementation for self-configuring honeypots that passively examine control system network traffic and actively adapt to the observed environment. In contrast to prior work in the field, six tools were analyzed for suitability of network entity information gathering. Ettercap, anmore » established network security tool not commonly used in this capacity, outperformed the other tools and was chosen for implementation. Utilizing Ettercap XML output, a novel four-step algorithm was developed for autonomous creation and update of a Honeyd configuration. This algorithm was tested on an existing small campus grid and sensor network by execution of a collaborative usage scenario. Automatically created virtual hosts were deployed in concert with an anomaly behavior (AB) system in an attack scenario. Virtual hosts were automatically configured with unique emulated network stack behaviors for 92% of the targeted devices. The AB system alerted on 100% of the monitored emulated devices.« less

  17. Cave Conservation Priority Index to Adopt a Rapid Protection Strategy: A Case Study in Brazilian Atlantic Rain Forest

    NASA Astrophysics Data System (ADS)

    Souza Silva, Marconi; Martins, Rogério Parentoni; Ferreira, Rodrigo Lopes

    2015-02-01

    Cave environments are characterized by possessing specialized fauna living in high environmental stability with limited food conditions. These fauna are highly vulnerable to impacts, because this condition can frequently be easily altered. Moreover, environmental determinants of the biodiversity patterns of caves remain poorly understood and protected. Therefore, the main goal of this work is to propose a cave conservation priority index (CCPi) for a rapid assessment for troglobiotic and troglophile protection. Furthermore, the troglobiotic diversity, distribution and threats have been mapped in the Brazilian Atlantic forest. To propose the CCPi, the human impacts and richness of troglobiotic and troglophile species of 100 caves were associated. Data related to troglomorphic/troglobiotic fauna from another 200 caves were used to map the troglobiotic diversity and distribution. The CCPi reveals extremely high conservation priority for 15 % of the caves, high for 36 % and average for 46 % of the caves. Fourteen caves with extremely high priorities should have urgent conservation and management actions. The geographical distribution of the 221 known troglobiotic/troglomorphic species allowed us to select 19 karst areas that need conservation actions. Seven areas were considered to have urgent priority for conservation actions. The two richest areas correspond to the "iron quadrangle" with iron ore caves (67 spp.) and the "Açungui limestone group" (56 spp.). Both areas have several caves and are important aquifers. The use of the CCPi can prevent future losses because it helps assessors to select caves with priorities for conservation which should receive emergency attention in relation to protection, management and conservation actions.

  18. Winter distribution and use of high elevation caves as foraging sites by the endangered Hawaiian hoary bat, Lasiurus cinereus semotus

    USGS Publications Warehouse

    Bonaccorso, Frank; Montoya-Aiona, Kristina; Pinzari, Corinna A.; Todd, Christopher M.

    2016-01-01

    We examine altitudinal movements involving unusual use of caves by Hawaiian hoary bats, Lasiurus cinereus semotus, during winter and spring in the Mauna Loa Forest Reserve (MLFR), Hawai‘i Island. Acoustic detection of hoary bat vocalizations, were recorded with regularity outside 13 lava tube cave entrances situated between 2,200 to 3,600 m asl from November 2012 to April 2013. Vocalizations were most numerous in November and December with the number of call events and echolocation pulses decreasing through the following months. Bat activity was positively correlated with air temperature and negatively correlated with wind speed. Visual searches found no evidence of hibernacula nor do Hawaiian hoary bats appear to shelter by day in these caves. Nevertheless, bats fly deep into caves as evidenced by numerous carcasses found in cave interiors. The occurrence of feeding buzzes around cave entrances and visual observations of bats flying in acrobatic fashion in cave interiors point to the use of these spaces as foraging sites. Peridroma moth species (Noctuidae), the only abundant nocturnal, flying insect sheltering in large numbers in rock rubble and on cave walls in the MLFR, apparently serve as the principal prey attracting hoary bats during winter to lava tube caves in the upper MLFR. Caves above 3,000 m on Mauna Loa harbor temperatures suitable for Pseudogymnoascus destructansfungi, the causative agent of White-nose Syndrome that is highly lethal to some species of North American cave-dwelling bats. We discuss the potential for White-nose Syndrome to establish and affect Hawaiian hoary bats.

  19. Chemical Ecology of Cave-Dwelling Millipedes: Defensive Secretions of the Typhloiulini (Diplopoda, Julida, Julidae).

    PubMed

    Makarov, Slobodan E; Bodner, Michaela; Reineke, Doris; Vujisić, Ljubodrag V; Todosijević, Marina M; Antić, Dragan Ž; Vagalinski, Boyan; Lučić, Luka R; Mitić, Bojan M; Mitov, Plamen; Anđelković, Boban D; Lucić, Sofija Pavković; Vajs, Vlatka; Tomić, Vladimir T; Raspotnig, Günther

    2017-04-01

    Cave animals live under highly constant ecological conditions and in permanent darkness, and many evolutionary adaptations of cave-dwellers have been triggered by their specific environment. A similar "cave effect" leading to pronounced chemical interactions under such conditions may be assumed, but the chemoecology of troglobionts is mostly unknown. We investigated the defensive chemistry of a largely cave-dwelling julid group, the controversial tribe "Typhloiulini", and we included some cave-dwelling and some endogean representatives. While chemical defense in juliform diplopods is known to be highly uniform, and mainly based on methyl- and methoxy-substituted benzoquinones, the defensive secretions of typhloiulines contained ethyl-benzoquinones and related compounds. Interestingly, ethyl-benzoquinones were found in some, but not all cave-dwelling typhloiulines, and some non-cave dwellers also contained these compounds. On the other hand, ethyl-benzoquinones were not detected in troglobiont nor in endogean typhloiuline outgroups. In order to explain the taxonomic pattern of ethyl-benzoquinone occurrence, and to unravel whether a cave-effect triggered ethyl-benzoquinone evolution, we classed the "Typhloiulini" investigated here within a phylogenetic framework of julid taxa, and traced the evolutionary history of ethyl-benzoquinones in typhloiulines in relation to cave-dwelling. The results indicated a cave-independent evolution of ethyl-substituted benzoquinones, indicating the absence of a "cave effect" on the secretions of troglobiont Typhloiulini. Ethyl-benzoquinones probably evolved early in an epi- or endogean ancestor of a clade including several, but not all Typhloiulus (basically comprising a taxonomic entity known as "Typhloiulus sensu stricto") and Serboiulus. Ethyl-benzoquinones are proposed as novel and valuable chemical characters for julid systematics.

  20. Study of pulmonary functions of the tourist guides in two show caves in Slovenia

    NASA Astrophysics Data System (ADS)

    Debevec Gerjevic, V.; Jovanovič, P.

    2009-04-01

    Park Škocjan Caves is located in South Eastern part of Slovenia. It was established with aim of conserving and protecting exceptional geomorphological, geological and hydrological outstanding features, rare and endangered plant and animal species, paleontological and archaeological sites, ethnological and architectural characteristics and cultural landscape and for the purpose of ensuring opportunities for suitable development, by the National Assembly of the Republic of Slovenia in 1996. Due to their exceptional significance for cultural and natural heritage, the Škocjan Caves were entered on UNESCO's list of natural and cultural world heritage sites in 1986. Caves have always been special places for people all over the world. There has been a lot of research done in the field of speleology and also in medicine in relation to speleotherapy. There is still one field left partial unexplored and its main issue covers the interaction between special ecosystems as caves and human activities and living. Implementing the Slovene legislation in the field of radiation protection, we are obligated to perform special measurements in the caves and also having our guides and workers in the caves regularly examined according to established procedure. The medical exams are performed at Institution of Occupational Safety, Ljubljana in order to monitor the influence of Radon to the workers in the cave. The issue of epidemiologic research encompass several factors that are not necessarily related to the radon. Park Škocjan Caves established research monitoring projects such as caves microclimate parameters, quality of the water, every day's data from our meteorological station useful tool in public awareness related to pollution and climate change. Last year a special study was started in order to evaluate pulmonary functions of persons who work in the caves and those who work mostly in offices. Two groups of tourist guides from Škocjan Caves and Postojna Cave were included in the study. The promising results will highlight the need of medical survey of people working in the caves and help managers of the caves to adopt reactive management process. In order to facilitate decision process related to protection of people and caves environment, special recommendation in form of index of environment's use will be proposed after the study.

  1. Evolution and development in cave animals: from fish to crustaceans.

    PubMed

    Protas, Meredith; Jeffery, William R

    2012-01-01

    Cave animals are excellent models to study the general principles of evolution as well as the mechanisms of adaptation to a novel environment: the perpetual darkness of caves. In this article, two of the major model systems used to study the evolution and development (evo-devo) of cave animals are described: the teleost fish Astyanax mexicanus and the isopod crustacean Asellus aquaticus. The ways in which these animals match the major attributes expected of an evo-devo cave animal model system are described. For both species, we enumerate the regressive and constructive troglomorphic traits that have evolved during their adaptation to cave life, the developmental and genetic basis of these traits, the possible evolutionary forces responsible for them, and potential new areas in which these model systems could be used for further exploration of the evolution of cave animals. Furthermore, we compare the two model cave animals to investigate the mechanisms of troglomorphic evolution. Finally, we propose a few other cave animal systems that would be suitable for development as additional models to obtain a more comprehensive understanding of the developmental and genetic mechanisms involved in troglomorphic evolution.

  2. Recognition of microclimate zones through radon mapping, Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico

    USGS Publications Warehouse

    Cunningham, K.I.; LaRock, E.J.

    1991-01-01

    Radon concentrations range from <185 to 3,515 Bq m-3 throughout Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico. Concentrations in the entrance passages and areas immediately adjacent to these passages are controlled by outside air temperature and barometric pressure, similar to other Type 2 caves. Most of the cave is developed in three geographic branches beneath the entrance passages; these areas maintain Rn levels independent of surface effects, an indication that Rn levels in deep, complex caves or mines cannot be simply estimated by outside atmospheric parameters. These deeper, more isolated areas are subject to convective ventilation driven by temperature differences along the 477-m vertical extent of the cave. Radon concentrations are used to delineate six microclimate zones (air circulation cells) throughout the cave in conjunction with observed airflow data. Suspected surface connections contribute fresh air to remote cave areas demonstrated by anomalous Rn lows surrounded by higher values, the presence of mammalian skeletal remains, CO2 concentrations and temperatures lower than the cave mean, and associated surficial karst features.

  3. How to avoid simulation sickness in virtual environments during user displacement

    NASA Astrophysics Data System (ADS)

    Kemeny, A.; Colombet, F.; Denoual, T.

    2015-03-01

    Driving simulation (DS) and Virtual Reality (VR) share the same technologies for visualization and 3D vision and may use the same technics for head movement tracking. They experience also similar difficulties when rendering the displacements of the observer in virtual environments, especially when these displacements are carried out using driver commands, including steering wheels, joysticks and nomad devices. High values for transport delay, the time lag between the action and the corresponding rendering cues and/or visual-vestibular conflict, due to the discrepancies perceived by the human visual and vestibular systems when driving or displacing using a control device, induces the so-called simulation sickness. While the visual transport delay can be efficiently reduced using high frequency frame rate, the visual-vestibular conflict is inherent to VR, when not using motion platforms. In order to study the impact of displacements on simulation sickness, we have tested various driving scenarios in Renault's 5-sided ultra-high resolution CAVE. First results indicate that low speed displacements with longitudinal and lateral accelerations under a given perception thresholds are well accepted by a large number of users and relatively high values are only accepted by experienced users and induce VR induced symptoms and effects (VRISE) for novice users, with a worst case scenario corresponding to rotational displacements. These results will be used for optimization technics at Arts et Métiers ParisTech for motion sickness reduction in virtual environments for industrial, research, educational or gaming applications.

  4. Carbon dioxide budgets in cave air and carbon in speleothems; insights from a shallow cave in Ireland

    NASA Astrophysics Data System (ADS)

    McDermott, Frank; Phillips, Dominika

    2017-04-01

    The conventional view that hydrological inputs (e.g. drip-water degassing) comprise the dominant source of cave air CO2 has been challenged by recent studies that emphasise the importance of direct advection of gaseous CO2from above and beneath cave voids (e.g. 'soil air' and 'ground air'). A better understanding of CO2 gas budgets in caves is important, not only for the correct interpretation of δ13C values and 14C activity data in speleothems, but also for an understanding of the wider role of karst in the global carbon cycle as a source or sink of atmospheric CO2. This study presents new results from a combined air-temperature and CO2 monitoring programme at a small multi-chamber cave in SE Ireland (Ballynamintra cave, Co. Waterford), building on an earlier study at this cave (Baldini et al., 2006). Episodic, low-amplitude but temporally coherent diurnal-scale cave air temperature fluctuations detected almost simultaneously by a series of temperature loggers within the cave were used to detect air mass advection. The sequence and pattern of temperature fluctuations at different locations within the cave enabled the identification of discrete air-inflow and air-outflow events. These diurnal-scale events occur episodically throughout the year in the winter/ spring and summer/autumn temperature ventilation regimes of the cave. Importantly, changes in cave air pCO2 values recorded by an infra-red logger located in the inner chamber a few metres from the back of the cave occur contemporaneously with the air-mass displacement events, and are consistent with direct advection of CO2-rich soil air via fractures in the subjacent cave roof and walls. In the winter regime, episodic diurnal-scale air outflow events draw CO2-rich air over the logger, resulting in short-lived pulses of air, typically containing c. 0.7% CO2 (by volume), several times the ambient cave air CO2 values at this site. Similar events occur during the summer/autumn thermal regime, but these reach higher CO2values (1-1.2%), similar to those measured previously in the overlying soil. Overall, the data confirm an important role for soil and/or ground air sources at this cave and indicate that the episodic CO2 inputs are not controlled by drip-water inputs,. Some recent studies have additionally argued that advected 'ground-air' is not only an important constituent of cave air, but also an important source of carbon in speleothems. This claim is critically evaluated here using 14C activity measurements from actively growing zero-age soda-straw stalactites from the small inner chamber of the cave where the CO2 monitoring was carried out. Surprisingly, soda-straws collected from within a few metres of each other in this inner chamber exhibit quite different 14C activities (93-101 pMC), and are not identical as might be expected if complete carbon isotope exchange had occurred between the dissolved inorganic carbon and the cave atmosphere. The reasons for this will be discussed, drawing on the results of published kinetic models for degassing and isotope exchange. Overall, it is concluded that while the CO2 budget of the air in Ballynamintra cave is dominated by directly advected soil air, water transported dissolved inorganic carbon (DIC) likely remains an important carbon source for its speleothems. Baldini, J.U.L., Baldini, L.M., McDermott, F. and Clipson, N. (2006) Carbon dioxide sources, sinks, and spatial variability in shallow temperate zone caves: evidence from Ballynamintra Cave, Ireland. Journal of Cave and Karst Studies, 68, 4-11.

  5. Occurrence of organic wastewater and other contaminants in cave streams in northeastern Oklahoma and northwestern Arkansas.

    PubMed

    Bidwell, Joseph R; Becker, Carol; Hensley, Steve; Stark, Richard; Meyer, Michael T

    2010-02-01

    The prevalence of organic wastewater compounds in surface waters of the United States has been reported in a number of recent studies. In karstic areas, surface contaminants might be transported to groundwater and, ultimately, cave ecosystems, where they might impact resident biota. In this study, polar organic chemical integrative samplers (POCISs) and semipermeable membrane devices (SPMDs) were deployed in six caves and two surface-water sites located within the Ozark Plateau of northeastern Oklahoma and northwestern Arkansas in order to detect potential chemical contaminants in these systems. All caves sampled were known to contain populations of the threatened Ozark cavefish (Amblyopsis rosae). The surface-water site in Oklahoma was downstream from the outfall of a municipal wastewater treatment plant and a previous study indicated a hydrologic link between this stream and one of the caves. A total of 83 chemicals were detected in the POCIS and SPMD extracts from the surface-water and cave sites. Of these, 55 chemicals were detected in the caves. Regardless of the sampler used, more compounds were detected in the Oklahoma surface-water site than in the Arkansas site or the caves. The organic wastewater chemicals with the greatest mass measured in the sampler extracts included sterols (cholesterol and beta-sitosterol), plasticizers [diethylhexylphthalate and tris(2-butoxyethyl) phosphate], the herbicide bromacil, and the fragrance indole. Sampler extracts from most of the cave sites did not contain many wastewater contaminants, although extracts from samplers in the Oklahoma surface-water site and the cave hydrologically linked to it had similar levels of diethylhexyphthalate and common detections of carbamazapine, sulfamethoxazole, benzophenone, N-diethyl-3-methylbenzamide (DEET), and octophenol monoethoxylate. Further evaluation of this system is warranted due to potential ongoing transport of wastewater-associated chemicals into the cave. Halogenated organics found in caves and surface-water sites included brominated flame retardants, organochlorine pesticides (chlordane and nonachlor), and polychlorinated biphenyls. The placement of samplers in the caves (near the cave mouth compared to farther in the system) might have influenced the number of halogenated organics detected due to possible aerial transport of residues. Guano from cave-dwelling bats also might have been a source of some of these chlorinated organics. Seven-day survival and growth bioassays with fathead minnows (Pimephales promelas) exposed to samples of cave water indicated initial toxicity in water from two of the caves, but these effects were transient, with no toxicity observed in follow-up tests.

  6. Occurrence of organic wastewater and other contaminants in cave streams in northeastern Oklahoma and northwestern Arkansas

    USGS Publications Warehouse

    Bidwell, Joseph R.; Becker, C.; Hensley, S.; Stark, R.; Meyer, M.T.

    2010-01-01

    The prevalence of organic wastewater compounds in surface waters of the United States has been reported in a number of recent studies. In karstic areas, surface contaminants might be transported to groundwater and, ultimately, cave ecosystems, where they might impact resident biota. In this study, polar organic chemical integrative samplers (POCISs) and semipermeable membrane devices (SPMDs) were deployed in six caves and two surface-water sites located within the Ozark Plateau of northeastern Oklahoma and northwestern Arkansas in order to detect potential chemical contaminants in these systems. All caves sampled were known to contain populations of the threatened Ozark cavefish (Amblyopsis rosae). The surface-water site in Oklahoma was downstream from the outfall of a municipal wastewater treatment plant and a previous study indicated a hydrologic link between this stream and one of the caves. A total of 83 chemicals were detected in the POCIS and SPMD extracts from the surface-water and cave sites. Of these, 55 chemicals were detected in the caves. Regardless of the sampler used, more compounds were detected in the Oklahoma surface-water site than in the Arkansas site or the caves. The organic wastewater chemicals with the greatest mass measured in the sampler extracts included sterols (cholesterol and ??-sitosterol), plasticizers [diethylhexylphthalate and tris (2-butoxyethyl) phosphate], the herbicide bromacil, and the fragrance indole. Sampler extracts from most of the cave sites did not contain many wastewater contaminants, although extracts from samplers in the Oklahoma surfacewater site and the cave hydrologically linked to it had similar levels of diethylhexyphthalate and common detections of carbamazapine, sulfamethoxazole, benzophenone, N-diethyl-3-methylbenzamide (DEET), and octophenol monoethoxylate. Further evaluation of this system is warranted due to potential ongoing transport of wastewaterassociated chemicals into the cave. Halogenated organics found in caves and surface-water sites included brominated flame retardants, organochlorine pesticides (chlordane and nonachlor), and polychlorinated biphenyls. The placement of samplers in the caves (near the cave mouth compared to farther in the system) might have influenced the number of halogenated organics detected due to possible aerial transport of residues. Guano from cave-dwelling bats also might have been a source of some of these chlorinated organics. Seven-day survival and growth bioassays with fathead minnows (Pimephales promelas) exposed to samples of cave water indicated initial toxicity in water from two of the caves, but these effects were transient, with no toxicity observed in follow-up tests. ??Springer Science+Business Media, LLC 2009.

  7. Intelligent virtual teacher

    NASA Astrophysics Data System (ADS)

    Takács, Ondřej; Kostolányová, Kateřina

    2016-06-01

    This paper describes the Virtual Teacher that uses a set of rules to automatically adapt the way of teaching. These rules compose of two parts: conditions on various students' properties or learning situation; conclusions that specify different adaptation parameters. The rules can be used for general adaptation of each subject or they can be specific to some subject. The rule based system of Virtual Teacher is dedicated to be used in pedagogical experiments in adaptive e-learning and is therefore designed for users without education in computer science. The Virtual Teacher was used in dissertation theses of two students, who executed two pedagogical experiments. This paper also describes the phase of simulating and modeling of the theoretically prepared adaptive process in the modeling tool, which has all the required parameters and has been created especially for the occasion. The experiments are being conducted on groups of virtual students and by using a virtual study material.

  8. A Visual Servoing-Based Method for ProCam Systems Calibration

    PubMed Central

    Berry, Francois; Aider, Omar Ait; Mosnier, Jeremie

    2013-01-01

    Projector-camera systems are currently used in a wide field of applications, such as 3D reconstruction and augmented reality, and can provide accurate measurements, depending on the configuration and calibration. Frequently, the calibration task is divided into two steps: camera calibration followed by projector calibration. The latter still poses certain problems that are not easy to solve, such as the difficulty in obtaining a set of 2D–3D points to compute the projection matrix between the projector and the world. Existing methods are either not sufficiently accurate or not flexible. We propose an easy and automatic method to calibrate such systems that consists in projecting a calibration pattern and superimposing it automatically on a known printed pattern. The projected pattern is provided by a virtual camera observing a virtual pattern in an OpenGL model. The projector displays what the virtual camera visualizes. Thus, the projected pattern can be controlled and superimposed on the printed one with the aid of visual servoing. Our experimental results compare favorably with those of other methods considering both usability and accuracy. PMID:24084121

  9. Cave Art: Reflections of Early Human Culture.

    ERIC Educational Resources Information Center

    Sullivan, Brother Nicholas

    1981-01-01

    Discusses Paleolithic and Neolithic cave art and artifacts, stressing the degree of intellectual ability exhibited by the creators of this art. Topics discussed include some misunderstandings about cave art intellect shown by cave artists and the use of light and color. (DS)

  10. Dark Oligotrophic Volcanic Ecosystems (DOVEs) in Fumarolic Ice Caves of Mt. Erebus Volcano

    NASA Astrophysics Data System (ADS)

    Staudigel, H.; Anitori, R.; Davis, R.; Connell, L.; Tebo, B. M.

    2011-12-01

    Dark Oligotrophic Volcanic Ecosystems (DOVEs) in the earth's crust may host substantial biomass sustained by chemolithoautotrophic metabolic reactions. It may serve as the base of the foodweb at the surface via hydrothermal circulation, venting pore fluids, cold seeps or gases, and offer a means for primary carbon fixation. When compared to other crustal oligotrophic environments, DOVEs are particularly relevant due to their considerable reductive potential, high permeability and the substantial chemical exchange facilitated by their hydrothermal systems. We studied terrestrial DOVEs in fumarolic ice caves on the summit plateau of Mt Erebus, an active volcano on Ross Island, Antarctica (http://erebuscaves.nmt.edu/). Most of the ice caves on Mt Erebus are relatively shallow and illuminated by natural light, but some are deep enough to afford complete darkness. Fumarole gases forming these caves are mostly atmospheric, enriched with water vapor and CO2. The fumaroles were studied in three caves, Warren, Warren West and Harry's Dream; these displayed, respectively, temperatures of 18°C, 2°C and 11°C at our sampling sites. Both Warren caves were completely dark, while Harry's Dream received continuous indirect light during the Austral summer, and offered a control to the two dark caves. The composition of the resident microbial communities was assessed using 16S rRNA and ITS libraries, while metabolic and functional characteristics were analyzed by culturing. The latter results are presented by Anitori et al. (this session). The three cave soils displayed very low (Warren, Warren West) or moderate division-level diversity, with distinct communities in each environment. Acidobacteria was the only phylum detected in all three caves, and was a major component of each library. The phototroph-containing phyla Cyanobacteria, Chloroflexi, and Chlorophyta (latter eukaryotic) were only seen in Harry's Dream. A number of phyla whose members are known to oxidize Mn(II) or Fe(II) were also identified in the caves. The overall phylum and class-level composition of the cave libraries displayed certain similarities to other cave communities, with a notable exception being the dominance of Ktedonobacteria (63% of the Warren cave 16S rDNA library), a recently described, filamentous bacterial lineage. A large fraction of the database matches for the cave libraries were to uncultured or cultured bacteria from environments with one or more similarities to the Mt. Erebus ice caves, i.e, associated with volcanic rocks and soils, alpine soil types, glaciers, caves and other cold environments. A functional analysis of microbes from these caves (Anitori et al., this session) shows good evidence for chemolithotrophic metabolisms, autotrophic carbon fixation as well as nitrogen fixation. These studies validate fumarolic ice caves at Mt Erebus as viable experimental study sites for chemolithotrophic microbial communities in DOVEs.

  11. Drift-insensitive distributed calibration of probe microscope scanner in nanometer range: Virtual mode

    NASA Astrophysics Data System (ADS)

    Lapshin, Rostislav V.

    2016-08-01

    A method of distributed calibration of a probe microscope scanner is suggested. The main idea consists in a search for a net of local calibration coefficients (LCCs) in the process of automatic measurement of a standard surface, whereby each point of the movement space of the scanner can be characterized by a unique set of scale factors. Feature-oriented scanning (FOS) methodology is used as a basis for implementation of the distributed calibration permitting to exclude in situ the negative influence of thermal drift, creep and hysteresis on the obtained results. Possessing the calibration database enables correcting in one procedure all the spatial systematic distortions caused by nonlinearity, nonorthogonality and spurious crosstalk couplings of the microscope scanner piezomanipulators. To provide high precision of spatial measurements in nanometer range, the calibration is carried out using natural standards - constants of crystal lattice. One of the useful modes of the developed calibration method is a virtual mode. In the virtual mode, instead of measurement of a real surface of the standard, the calibration program makes a surface image ;measurement; of the standard, which was obtained earlier using conventional raster scanning. The application of the virtual mode permits simulation of the calibration process and detail analysis of raster distortions occurring in both conventional and counter surface scanning. Moreover, the mode allows to estimate the thermal drift and the creep velocities acting while surface scanning. Virtual calibration makes possible automatic characterization of a surface by the method of scanning probe microscopy (SPM).

  12. Črna Jama as a cold air trap cave within Postojna Cave, Slovenia

    NASA Astrophysics Data System (ADS)

    Šebela, Stanka; Turk, Janez

    2017-10-01

    Črna Jama is the coldest section of cave within the Postojna Cave System. Mean annual air temperatures at the Črna Jama 2 site are 5.6 °C (2015) and 5.7 °C (2016), and at the Črna Jama 3 site 7.1 °C (2015) and 7.2 (2016), whereas the mean external air temperature was 10.3 °C (2015) and 10.0 °C (2016). In Lepe Jame, the passage most heavily visited by tourists, the mean cave-air temperature is 10.7 °C (2014-2017). Črna Jama exhibits winter and summer temperature regimes. During warm periods (Tcave < Tout), it acts as a cold air trap, exchanging no air with the outside atmosphere. Under such conditions the cave-air temperature shows no short-term diurnal temperature oscillations. Cave-air temperature is significantly stable and affected only by elevation of the groundwater table, which is associated with precipitation. During cold periods (Tcave > Tout), ventilation takes place and dense, cold, outside air sinks into Črna Jama because of the favourable cave entrance morphology. Recent Črna Jama air temperature data (2014-2017) indicate a < 0.5 °C higher temperature than that recorded in historical data since 1933. Črna Jama is the most appropriate place within the Postojna Cave System to study long-term climatic changes. There are hardly any tourist visits to the cave, and human impacts on the cave climate are essentially reduced.

  13. Aspergillus baeticus sp. nov. and Aspergillus thesauricus sp. nov., two species in section Usti from Spanish caves.

    PubMed

    Nováková, Alena; Hubka, Vit; Saiz-Jimenez, Cesareo; Kolarik, Miroslav

    2012-11-01

    Two novel species of Aspergillus that are clearly distinct from all known species in section Usti were revealed during a study of microfungal communities in Spanish caves. The novel species identified in this study and additional species of Aspergillus section Usti are associated with places and substrates related to human activities in caves. Novel species are described using data from four loci (ITS, benA, caM and rpb2), morphology and basic chemical and physiological analyses. Members of the species Aspergillus thesauricus sp. nov. were isolated from various substrates, including decaying organic matter, cave air and cave sediment of the Cueva del Tesoro Cave (the Treasure cave); the species is represented by twelve isolates and is most closely related to the recently described Aspergillus germanicus. Members of the species Aspergillus baeticus sp. nov. were isolated from cave sediment in the Gruta de las Maravillas Cave (the Grotto of the Marvels); the species is represented by two isolates. An additional isolate was found in the Cueva del Tesoro Cave and in the Demänovská Peace Cave (Slovakia), suggesting a potentially wide distribution of this micro-organism. The species is related to Aspergillus ustus and Aspergillus pseudoustus. Both species were unable to grow at 37 °C, and a weakly positive, light greenish yellow Ehrlich reaction was observed in A. thesauricus. Unique morphological features alone are sufficient to distinguish both species from related taxa.

  14. Late Quaternary cave bears and brown bears in Europe: implications for distribution, chronology, and extinction based on a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Pacher, Martina

    2010-05-01

    Cave bear remains are one of the most numerous fossils found in European caves. Despite their frequency of occurrence, many aspects of cave bear palaeontology still remain poorly understood. New methodological approaches and ongoing studies led to controversial results and discussion about its taxonomy, palaeoecology, and final extinction. Are we dealing with one single or several species of cave bears? Was cave bear exclusively vegetarian or after all more omnivorous? Did he go extinct before or after the Late Glacial Maximum? Was cave bear restricted to Europe or did he also occur in Asia? Late Pleistocene brown bears, on the other hand, are often rare and little is known about the possible co-occurrence of cave and brown bears during the Late Pleistocene. Based on direct radiocarbon dates the distribution pattern of both, cave and brown bears is reconstructed during the Late Pleistocene in Europe. In addition, the reasons for the achieved pattern will be tested leading to the main question - why did cave bear become extinct while brown bears survived until today? To answer this question palaeobiological data of Late Pleistocene cave and brown bears will be tested against results from isotope analyses, while aDNA data may contribute to the question of distinct local population or even species of bears. The current state of evidence will be presented and on the basis of resulting pattern implications for further multi-disciplinary studies will be discussed.

  15. A >400 kyrs archive of sedimentation in Scladina cave (Belgium)

    NASA Astrophysics Data System (ADS)

    Vonhof, Hubert; Bonjean, Dominique; Pirson, Stéphane; van der Lubbe, Jeroen; Hellstrom, John; Scholz, Denis; Verheyden, Sophie

    2017-04-01

    Scladina Cave, near the Meuse River in Belgium, is well-known for its well preserved Neanderthal fossils and stone tools. Cave research started in the 1970's, when archeological findings near the entrance of the cave initiated a long-running excavation programme in the -at that time- almost completely sediment-infilled cave. Over the past decades, a wealth of mammal fossils, stone tools, and a mandible of a Neanderthal child were found, and the complex sedimentary context of the cave strata was reconstructed in high detail. Crucial to understanding the cave stratigraphy is the construction of an absolutely dated age model. Until recently, this age model was based on a number of OSL ages, pollen stratigraphy and a few U-series ages on flowstone and stalagmite calcite. These U-series ages, however, had much lower precision than can be obtained by modern MC-ICP-MS techniques. In this study, we present new and more precise U-series ages for the major flow stone levels in Scladina Cave (upper stratigraphical sequence), and two flowstone levels from Sous-Saint-Paul Cave (lower stratigraphical sequence). The oldest flow stone layer dates back to > 400 ka, and the youngest represents the Holocene. The age model shows that flow stone formation typically occurred during warm climate conditions. These findings help to improve the existing age model for Scladina Cave significantly, and place better constraints on the age of individual fossils, and fossil assemblages in the cave.

  16. 75 FR 4417 - Wind Cave National Park, Custer County, SD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... DEPARTMENT OF THE INTERIOR Wind Cave National Park, Custer County, SD AGENCY: National Park... Final Environmental Impact Statement, Wind Cave National Park, Custer County, South Dakota. SUMMARY... Management Plan and Final Environmental Impact Statement (Plan), Wind Cave National Park, Custer County...

  17. Modeling and analysis of caves using voxelization

    NASA Astrophysics Data System (ADS)

    Szeifert, Gábor; Szabó, Tivadar; Székely, Balázs

    2014-05-01

    Although there are many ways to create three dimensional representations of caves using modern information technology methods, modeling of caves has been challenging for researchers for a long time. One of these promising new alternative modeling methods is using voxels. We are using geodetic measurements as an input for our voxelization project. These geodetic underground surveys recorded the azimuth, altitude and distance of corner points of cave systems relative to each other. The diameter of each cave section is estimated from separate databases originating from different surveys. We have developed a simple but efficient method (it covers more than 99.9 % of the volume of the input model on the average) to convert these vector-type datasets to voxels. We have also developed software components to make visualization of the voxel and vector models easier. Since each cornerpoint position is measured relative to another cornerpoints positions, propagation of uncertainties is an important issue in case of long caves with many separate sections. We are using Monte Carlo simulations to analyze the effect of the error of each geodetic instrument possibly involved in a survey. Cross-sections of the simulated three dimensional distributions show, that even tiny uncertainties of individual measurements can result in high variation of positions that could be reduced by distributing the closing errors if such data are available. Using the results of our simulations, we can estimate cave volume and the error of the calculated cave volume depending on the complexity of the cave. Acknowledgements: the authors are grateful to Ariadne Karst and Cave Exploring Association and State Department of Environmental and Nature Protection of the Hungarian Ministry of Rural Development, Department of National Parks and Landscape Protection, Section Landscape and Cave Protection and Ecotourism for providing the cave measurement data. BS contributed as an Alexander von Humboldt Research Fellow.

  18. Insectivorous bat reproduction and human cave visitation in Cambodia: A perfect conservation storm?

    PubMed

    Lim, Thona; Cappelle, Julien; Hoem, Thavry; Furey, Neil

    2018-01-01

    Cave roosting bats represent an important component of Southeast Asian bat diversity and are vulnerable to human disturbance during critical reproductive periods (pregnancy, lactation and weaning). Because dramatic growth of cave tourism in recent decades has raised concerns about impacts on cave bats in the region, we assessed the reproductive phenology of two insectivorous species (Hipposideros larvatus sensu lato and Taphozous melanopogon) at three caves in Cambodia for 23 months in 2014-2016 and evaluated human visitation to these sites between 2007 and 2014. Despite the differing foraging strategies employed by the two taxa, the temporal consistency observed in proportions of pregnant, lactating and juvenile bats indicates that their major birth peaks coincide with the time of greatest cave visitation annually, particularly for domestic visitors and namely during the Cambodian new year in April. They also reflect rainfall patterns and correspond with the reproductive phenology of insectivorous cave bats in Vietnam. These findings were predictable because 1) insect biomass and thus food availability for insectivorous bats are optimal for ensuring survival of young following this period, and 2) the Khmer new year is the most significant month for religious ceremonies and thus domestic cave visitation nationally, due to the abundance of Buddhist shrines and temples in Cambodian caves. While the impact of visitor disturbance on bat population recruitment cannot be empirically assessed due to lack of historical data, it is nonetheless likely to have been considerable and raises a conservation concern. Further, because growing evidence suggests that insectivorous cave bats exhibit reproductive synchrony across continental Southeast Asia where countless cave shrines are heavily frequented during April in Theravada Buddhist countries (e.g., Myanmar, Thailand, Cambodia and Laos), our results may have wider applicability in the region. We consequently advocate for increased emphasis on sustainable cave management practices in Cambodia and further investigations to determine whether our findings present a broader concern for cave bat conservation in Southeast Asia.

  19. Insectivorous bat reproduction and human cave visitation in Cambodia: A perfect conservation storm?

    PubMed Central

    Cappelle, Julien; Hoem, Thavry

    2018-01-01

    Cave roosting bats represent an important component of Southeast Asian bat diversity and are vulnerable to human disturbance during critical reproductive periods (pregnancy, lactation and weaning). Because dramatic growth of cave tourism in recent decades has raised concerns about impacts on cave bats in the region, we assessed the reproductive phenology of two insectivorous species (Hipposideros larvatus sensu lato and Taphozous melanopogon) at three caves in Cambodia for 23 months in 2014–2016 and evaluated human visitation to these sites between 2007 and 2014. Despite the differing foraging strategies employed by the two taxa, the temporal consistency observed in proportions of pregnant, lactating and juvenile bats indicates that their major birth peaks coincide with the time of greatest cave visitation annually, particularly for domestic visitors and namely during the Cambodian new year in April. They also reflect rainfall patterns and correspond with the reproductive phenology of insectivorous cave bats in Vietnam. These findings were predictable because 1) insect biomass and thus food availability for insectivorous bats are optimal for ensuring survival of young following this period, and 2) the Khmer new year is the most significant month for religious ceremonies and thus domestic cave visitation nationally, due to the abundance of Buddhist shrines and temples in Cambodian caves. While the impact of visitor disturbance on bat population recruitment cannot be empirically assessed due to lack of historical data, it is nonetheless likely to have been considerable and raises a conservation concern. Further, because growing evidence suggests that insectivorous cave bats exhibit reproductive synchrony across continental Southeast Asia where countless cave shrines are heavily frequented during April in Theravada Buddhist countries (e.g., Myanmar, Thailand, Cambodia and Laos), our results may have wider applicability in the region. We consequently advocate for increased emphasis on sustainable cave management practices in Cambodia and further investigations to determine whether our findings present a broader concern for cave bat conservation in Southeast Asia. PMID:29709036

  20. Glacioclimatological study of Perennial Ice in the Fuji Ice Cave, Japan. Part I. Seasonal variation and mechanism of maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohata, Tetsuo; Furukawa, Teruo; Higuchi, Keiji

    1994-08-01

    Perennial cave ice in a cave located at Mt. Fuji in central Japan was studied to investigate the basic characteristics and the cause for existence of such ice under warm ground-level climate considering the ice cave as a thermal and hydrological system. Fuji Ice Cave is a lava tube cave 150 m in length with a collapsed part at the entrance. Measurements from 1984 to 1986 showed that the surface-level change of floor ice occurred due to freezing and melting at the surface and that melting at the bottom of the ice was negligible. The annual amplitude of change inmore » surface level was larger near the entrance. Meterological data showed that the cold air inflow to the cave was strong in winter, but in summer the cave was maintained near 0[degrees]C with only weak inflow of warm air. The predominant wind system was from the entrance to the interior in both winter and summer, but the spatial scale of the wind system was different. Heat budget consideration of the cave showed that the largest component was the strong inflow of subzero dry air mass in winter. Cooling in winter was compensated for by summer inflow of warm air, heat transport from the surrounding ground layer, and loss of sensible heat due to cooling of the cave for the observed year. Strong inflow of cold air and weak inflow of warm air, which is extremely low compared to the ground level air, seemed to be the most important condition. Thus the thermal condition of the cave is quasi-balanced at the presence condition below 0[degrees]C with ice. It can be said that the interrelated result of the climatological and special structural conditions makes this cave very cold, and allows perennial ice to exist in the cave. Other climatological factors such as precipitation seem to be minor factors. 17 refs., 3 figs., 3 tabs.« less

  1. Phylogenetic diversity of culturable fungi in the Heshang Cave, central China

    PubMed Central

    Man, Baiying; Wang, Hongmei; Xiang, Xing; Wang, Ruicheng; Yun, Yuan; Gong, Linfeng

    2015-01-01

    Caves are nutrient-limited and dark subterranean ecosystems. To date, attention has been focused on geological research of caves in China, whilst indigenous microbial diversity has been insufficiently characterized. Here, we report the fungal diversity in the pristine, oligotrophic, karst Heshang Cave, central China, using a culture-dependent method coupled with the analysis of the fungal rRNA-ITS gene sequences. A total of 194 isolates were obtained with six different media from 14 sampling sites of sediments, weathered rocks, and bat guanos. Phylogenetic analysis clustered the 194 sequenced isolates into 33 genera within 15 orders of three phyla, Ascomycota, Basidiomycota, and Zygomycota, indicating a high degree of fungal diversity in the Heshang Cave. Notably, 16 out of the 36 fungal genera were also frequently observed in solution caves around the world and 23 genera were previously found in carbonate cave, indicating potential similarities among fungal communities in cave ecosystems. However, 10 genera in this study were not reported previously in any solution caves, thus expanding our knowledge about fungal diversity in cave ecosystems. Moreover, culturable fungal diversity varied from one habitat to another within the cave, being the highest in sediments, followed by weathered rocks and bat guanos as indicated by α-diversity indexes. At the genus level, Penicillium accounted for 40, 54, and 52% in three habitats of sediments, weathered rocks, and bat guanos, respectively. Trichoderma, Paecilomyces, and Aspergillus accounted for 9, 22, and 37% in the above habitats, correspondingly. Despite of the dominance of Penicillium in all samples, β-diversity index indicated significant differences between each two fungal communities in the three habitats in view of both the composition and abundance. Our study is the first report on fungal communities in a natural pristine solution cave system in central China and sheds light on fungal diversity and functions in cave ecosystems. PMID:26539184

  2. Diversity and Function of Methanotrophic Bacteria in Caves

    NASA Astrophysics Data System (ADS)

    Webster, K.; Schimmelmann, A.; Lennon, J. T.

    2016-12-01

    Despite representing the second largest sink for the atmospheric greenhouse gas methane (CH4), the methanotrophic organisms responsible for atmospheric CH4 consumption have eluded cultivation. High-throughput studies of methanotrophic communities present an opportunity to learn novel details about the organisms responsible, yet such studies have rarely been conducted. Recent observations of subatmospheric CH4 concentrations in cave-air have led to the hypothesis that methanotrophs are active over large spatial scales in the subsurface. Karst terrains cover between 10 - 20 % of the terrestrial surface area and offer abundant cave-related methanotrophic habitat due to the exchange of air with the atmosphere. We collected 42 cave soil samples from 20 caves to test the hypothesis that subterranean methanotrophy removes CH4 from cave-air. Methanotrophs were found in 90 % of samples, notably in locations with subatmospheric CH4­ concentrations. Methylocystaceae were present in caves and accounted for 92 % of the methanotrophic community on average (median), however almost all of the observations were of unidentified Methylocystaceae. Abundances of uncultured and unidentified members of the Methylococcales were correlated with cave-air CH4 concentrations suggesting that some Methylococcales may contribute to atmospheric CH4 oxidation. Individual caves had a strong influence on the observed methanotrophic community composition accounting for 77 % of the variance in the assemblage. Nevertheless, cave-air CH4 concentrations were predictive of the methanotrophic community composition accounting for 5 % of the variation. Our findings also are suggestive of CH4-fueled microbial food webs. For example, abundances of known methylotrophic organisms were correlated with cave-air CH4 concentrations. This may suggest that some methylotrophs contribute to atmospheric CH4 oxidation or that molecules produced in the CH4 oxidation pathway, like methanol, are leaked from methanotrophic cells allowing for the growth of methylotrophs. Our results suggest that uncultivated and unidentified methanotrophs are responsible for subatmospheric CH4 concentrations in caves and have secondary influences on the cave-microbial community structure.

  3. Cave air and hydrological controls on prior calcite precipitation and stalagmite growth rates: Implications for palaeoclimate reconstructions using speleothems

    NASA Astrophysics Data System (ADS)

    Sherwin, Catherine M.; Baldini, James U. L.

    2011-07-01

    Hourly resolved cave air P and cave drip water hydrochemical data illustrate that calcite deposition on stalagmites can be modulated by prior calcite precipitation (PCP) on extremely short timescales. A very clear second-order covariation between cave air P and drip water Ca 2+ concentrations during the winter months demonstrates the effects of degassing-induced PCP on drip water chemistry. Estimating the strength of the cave air P control on PCP is possible because the PCP signal is so clear; at our drip site a one ppm shift in Ca 2+ concentrations requires a P shift of between 333 and 667 ppm. This value will undoubtedly vary from site to site, depending on drip water flow rate, residence time, drip water-cave air P differential, and availability of low P void spaces in the vadose zone above the cave. High-resolution cave environmental measurements were used to model calcite deposition on one stalagmite in Crag Cave, SW Ireland, and modelled growth over the study period (222 μm over 171 days) is extremely similar to the amount of actual calcite growth (240 μm) over the same time interval, strongly suggesting that equations used to estimate stalagmite growth rates are valid. Although cave air P appears to control drip water hydrochemistry in the winter, drip water dilution caused by rain events may have played a larger role during the summer, as evidenced by a series of sudden drops in Ca 2+ concentrations (dilution) followed by much more gradual increases in drip water Ca 2+ concentrations (slow addition of diffuse water). This research demonstrates that PCP on stalactites, cave ceilings, and void spaces within the karst above the cave partially controls drip water chemistry, and that thorough characterisation of this process at individual caves is necessary to most accurately interpret climate records from those sites.

  4. 43 CFR 37.11 - Nomination, evaluation, and designation of significant caves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the public, including those who utilize caves for scientific, educational, and recreational purposes... where the cave is located as new cave discoveries are made or as new information becomes available...) Paleontologic resources with potential to contribute useful educational and scientific information. (4...

  5. 43 CFR 37.11 - Nomination, evaluation, and designation of significant caves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the public, including those who utilize caves for scientific, educational, and recreational purposes... where the cave is located as new cave discoveries are made or as new information becomes available...) Paleontologic resources with potential to contribute useful educational and scientific information. (4...

  6. 43 CFR 37.11 - Nomination, evaluation, and designation of significant caves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the public, including those who utilize caves for scientific, educational, and recreational purposes... where the cave is located as new cave discoveries are made or as new information becomes available...) Paleontologic resources with potential to contribute useful educational and scientific information. (4...

  7. 43 CFR 37.11 - Nomination, evaluation, and designation of significant caves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the public, including those who utilize caves for scientific, educational, and recreational purposes... where the cave is located as new cave discoveries are made or as new information becomes available...) Paleontologic resources with potential to contribute useful educational and scientific information. (4...

  8. Diversity and role of cave-dwelling hematophagous insects in pathogen transmission in the Afrotropical region.

    PubMed

    Obame-Nkoghe, Judicaël; Leroy, Eric-Maurice; Paupy, Christophe

    2017-04-12

    The progressive anthropization of caves for food resources or economic purposes increases human exposure to pathogens that naturally infect cave-dwelling animals. The presence of wild or domestic animals in the immediate surroundings of caves also may contribute to increasing the risk of emergence of such pathogens. Some zoonotic pathogens are transmitted through direct contact, but many others require arthropod vectors, such as blood-feeding insects. In Africa, hematophagous insects often play a key role in the epidemiology of many pathogens; however, their ecology in cave habitats remains poorly known. During the last decades, several investigations carried out in Afrotropical caves suggested the medical and veterinary importance particularly of insect taxa of the Diptera order. Therefore, the role of some of these insects as vectors of pathogens that infect cave-dwelling vertebrates has been studied. The present review summarizes these findings, brings insights into the diversity of cave-dwelling hematophagous Diptera and their involvement in pathogen transmission, and finally discusses new challenges and future research directions.

  9. The fungal colonisation of rock-art caves: experimental evidence.

    PubMed

    Jurado, Valme; Fernandez-Cortes, Angel; Cuezva, Soledad; Laiz, Leonila; Cañaveras, Juan Carlos; Sanchez-Moral, Sergio; Saiz-Jimenez, Cesareo

    2009-09-01

    The conservation of rock-art paintings in European caves is a matter of increasing interest. This derives from the bacterial colonisation of Altamira Cave, Spain and the recent fungal outbreak of Lascaux Cave, France-both included in the UNESCO World Heritage List. Here, we show direct evidence of a fungal colonisation of rock tablets in a testing system exposed in Altamira Cave. After 2 months, the tablets, previously sterilised, were heavily colonised by fungi and bacteria. Most fungi isolated were labelled as entomopathogens, while the bacteria were those regularly identified in the cave. Rock colonisation was probably promoted by the dissolved organic carbon supplied with the dripping and condensation waters and favoured by the displacement of aerosols towards the interior of the cave, which contributed to the dissemination of microorganisms. The role of arthropods in the dispersal of spores may also help in understanding fungal colonisation. This study evidences the fragility of rock-art caves and demonstrates that microorganisms can easily colonise bare rocks and materials introduced into the cavity.

  10. Important caves to be identified

    NASA Astrophysics Data System (ADS)

    Criteria to identify significant caves on federal land are being developed by the Interior Department's Bureau of Land Management and the Agriculture Department's Forest Service under requirements of the Federal Cave Resources Protection Act of 1988. The departments gave advance notice of proposed rulemaking March 3 and invited suggestions and comments from the public for 30 days.The law requires protection, to the extent practical, of significant caves on lands administered by the Secretaries of Agriculture and Interior and includes authority to issue and revoke permits for collection and removal of cave resources and special provisions for regulation of cave resources on Indian lands. Final regulations must be published by August 18, 1989.

  11. Combining stable isotope (δ13C) of trace gases and aerobiological data to monitor the entry and dispersion of microorganisms in caves.

    PubMed

    Garcia-Anton, E; Cuezva, S; Jurado, V; Porca, E; Miller, A Z; Fernandez-Cortes, A; Saiz-Jimenez, C; Sanchez-Moral, S

    2014-01-01

    Altamira Cave (north of Spain) contains one of the world's most prominent Paleolithic rock art paintings, which are threatened by a massive microbial colonization of ceiling and walls. Previous studies revealed that exchange rates between the cave and the external atmosphere through the entrance door play a decisive role in the entry and transport of microorganisms (bacteria and fungi) and nutrients to the interior of the cave. A spatial-distributed sampling and measurement of carrier (CO2) and trace (CH4) gases and isotopic signal of CO2 (δ(13)C) inside the cave supports the existence of a second connection (active gas exchange processes) with the external atmosphere at or near the Well Hall, the innermost and deepest area of the cave. A parallel aerobiological study also showed that, in addition to the entrance door, there is another connection with the external atmosphere, which favors the transport and increases microorganism concentrations in the Well Hall. This double approach provides a more complete knowledge on cave ventilation and revealed the existence of unknown passageways in the cave, a fact that should be taken into account in future cave management.

  12. Phylogeography of Sardinian cave salamanders (genus Hydromantes) is mainly determined by geomorphology.

    PubMed

    Chiari, Ylenia; van der Meijden, Arie; Mucedda, Mauro; Lourenço, João M; Hochkirch, Axel; Veith, Michael

    2012-01-01

    Detecting the factors that determine the interruption of gene flow between populations is key to understanding how speciation occurs. In this context, caves are an excellent system for studying processes of colonization, differentiation and speciation, since they represent discrete geographical units often with known geological histories. Here, we asked whether discontinuous calcareous areas and cave systems represent major barriers to gene flow within and among the five species of Sardinian cave salamanders (genus Hydromantes) and whether intraspecific genetic structure parallels geographic distance within and among caves. We generated mitochondrial cytochrome b gene sequences from 184 individuals representing 48 populations, and used a Bayesian phylogeographic approach to infer possible areas of cladogenesis for these species and reconstruct historical and current dispersal routes among distinct populations. Our results show deep genetic divergence within and among all Sardinian cave salamander species, which can mostly be attributed to the effects of mountains and discontinuities in major calcareous areas and cave systems acting as barriers to gene flow. While these salamander species can also occur outside caves, our results indicate that there is a very poor dispersal of these species between separate cave systems.

  13. Quantitative food web analysis supports the energy-limitation hypothesis in cave stream ecosystems.

    PubMed

    Venarsky, Michael P; Huntsman, Brock M; Huryn, Alexander D; Benstead, Jonathan P; Kuhajda, Bernard R

    2014-11-01

    Energy limitation has long been the primary assumption underlying conceptual models of evolutionary and ecological processes in cave ecosystems. However, the prediction that cave communities are actually energy-limited in the sense that constituent populations are consuming all or most of their resource supply is untested. We assessed the energy-limitation hypothesis in three cave streams in northeastern Alabama (USA) by combining measurements of animal production, demand, and resource supplies (detritus, primarily decomposing wood particles). Comparisons of animal consumption and detritus supply rates in each cave showed that all, or nearly all, available detritus was required to support macroinvertebrate production. Furthermore, only a small amount of macroinvertebrate prey production remained to support other predatory taxa (i.e., cave fish and salamanders) after accounting for crayfish consumption. Placing the energy demands of a cave community within the context of resource supply rates provided quantitative support for the energy-limitation hypothesis, confirming the mechanism (limited energy surpluses) that likely influences the evolutionary processes and population dynamics that shape cave communities. Detritus-based surface ecosystems often have large detrital surpluses. Thus, cave ecosystems, which show minimal surpluses, occupy the extreme oligotrophic end of the spectrum of detritus-based food webs.

  14. Identification of Martian Cave Skylights Using the Temperature Change During Day and Night

    NASA Astrophysics Data System (ADS)

    Jung, Jongil; Yi, Yu; Kim, Eojin

    2014-06-01

    Recently, cave candidates have been discovered on other planets besides the Earth, such as the Moon and Mars. When we go to other planets, caves could be possible human habitats providing natural protection from cosmic threats. In this study, seven cave candidates have been found on Pavonis Mons and Ascraeus Mons in Tharsis Montes on Mars. The cave candidates were selected using the images of the Context Camera (CTX) on the Mars Reconnaissance Orbiter (MRO). The Context Camera could provide images with the high resolution of 6 meter per pixel. The diameter of the candidates ranges from 50 to 100m. Cushing et al. (2007) have analyzed the temperature change at daytime and nighttime using the Thermal Emission Imaging System (THEMIS) for the sites of potential cave candidates. Similarly, we have examined the temperature change at daytime and at nighttime for seven cave candidates using the method of Cushing et al. (2007). Among those, only one candidate showed a distinct temperature change. However, we cannot verify a cave based on the temperature change only and further study is required for the improvement of this method to identify caves more clearly.

  15. Enhanced Virtual Presence for Immersive Visualization of Complex Situations for Mission Rehearsal

    DTIC Science & Technology

    1997-06-01

    taken. We propose to join both these technologies together in a registration device . The registration device would be small and portable and easily...registering the panning of the camera (or other sensing device ) and also stitch together the shots to automatically generate panoramic files necessary to...database and as the base information changes each of the linked drawings is automatically updated. Filename Format A specific naming convention should be

  16. Fracture Networks from a deterministic physical model as 'forerunners' of Maze Caves

    NASA Astrophysics Data System (ADS)

    Ferer, M. V.; Smith, D. H.; Lace, M. J.

    2013-12-01

    'Fractures are the chief forerunners of caves because they transmit water much more rapidly than intergranular pores.[1] Thus, the cave networks can follow the fracture networks from which the Karst caves formed by a variety of processes. Traditional models of continental Karst define water flow through subsurface geologic formations, slowly dissolving the rock along the pathways (e.g. water saturated with respect to carbon dioxide flowing through fractured carbonate formations). We have developed a deterministic, physical model of fracturing in a model geologic layer of a given thickness, when that layer is strained in one direction and subsequently in a perpendicular direction. It was observed that the connected fracture networks from our model visually resemble maps of maze caves. Since these detailed cave maps offer critical tools in modeling cave development patterns and conduit flow in Karst systems, we were able to test the qualitative resemblance by using statistical analyses to compare our model networks in geologic layers of four different thicknesses with the corresponding statistical analyses of four different maze caves, formed in a variety of geologic settings. The statistical studies performed are: i) standard box-counting to determine if either the caves or the model networks are fractal. We found that both are fractal with a fractal dimension Df ≈ 1.75 . ii) for each section inside a closed path, we determined the area and perimeter-length, enabling a study of the tortuosity of the networks. From the dependence of the section's area upon its perimeter-length, we have found a power-law behavior (for sufficiently large sections) characterized by a 'tortuosity' exponent. These exponents have similar values for both the model networks and the maze caves. The best agreement is between our thickest model layer and the maze-like part of Wind Cave in South Dakota where the data from the model and the cave overlie each other. For the present networks from the physical model, we assumed that the geologic layer was of uniform thickness and that the strain in both directions were the same. The latter may not be the case for the Brazilian, Toca de Boa Cave. These assumptions can be easily modified in our computer code to reflect different geologic histories. Even so the quantitative agreement suggests that our model networks are statistically realistic both for the 'forerunners' of caves and for general fracture networks in geologic layers, which should assist the study of underground fluid flow in many applications for which fracture patterns and fluid flow are difficult to determine (e.g., hydrology, watershed management, oil recovery, carbon dioxide sequestration, etc.). Keywords - Fracture Networks, Karst, Caves, Structurally Variable Pathways, hydrogeological modeling 1 Arthur N. Palmer, CAVE GEOLOGY, pub. Cave Books, Dayton OH, (2007).

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ragan, Eric D; Bowman, Doug A; Scerbo, Siroberto

    Virtual reality (VR) systems have been proposed for use in numerous training scenarios, such as room clearing, which require the trainee to maintain spatial awareness. But many VR training systems lack a fully surrounding display, requiring trainees to use a combination of physical and virtual turns to view the environment, thus decreasing spatial awareness. One solution to this problem is to amplify head rotations, such that smaller physical turns are mapped to larger virtual turns, allowing trainees to view the surrounding environment with head movements alone. For example, in a multi-monitor system covering only a 90-degree field of regard, headmore » rotations could be amplified four times to allow the user to see the entire 360-degree surrounding environment. This solution is attractive because it can be used with lower-cost VR systems and does not require virtual turning. However, the effects of amplified head rotations on spatial awareness and training transfer are not well understood. We hypothesized that small amounts of amplification might be tolerable, but that larger amplifications might cause trainees to become disoriented and to have decreased task performance and training transfer. In this paper, we will present our findings from an experiment designed to investigate these hypotheses. The experiment placed users in a virtual warehouse and asked them to move from room to room, counting objects placed around them in space. We varied the amount of amplification applied during these trials, and also varied the type of display used (head-mounted display or CAVE). We measured task performance and spatial awareness. We then assessed training transfer in an assessment environment with a fully surrounding display and no amplification. The results of this study will inform VR training system developers about the potential negative effects of using head rotation amplification and contribute to more effective VR training system design.« less

  18. Continuously Monitoring the Micrometeorology of a Natural Cave System: Hollow Ridge Speleoclimatology

    NASA Astrophysics Data System (ADS)

    Kowalczk, A.; Gaffka, C.; Froelich, P.

    2008-05-01

    A study of cave microclimatology has been underway since October 2007 in a protected karst cave system near Marianna Florida. We are monitoring cave air, drip water and climatology at Hollow Ridge Cave to help calibrate isotopic and chemical paleoproxies incorporated into actively growing speleothems in Northwest Florida. Multiple monitoring stations positioned in the interior and above the overburden of this 1000 m long cave continuously record temperature (T), relative humidity (RH), barometric pressure (BP), drip rates (precipitation), acoustic airflow (wind) direction and velocity, 222Rn activities and CO2 concentrations. Air samples for 13CO2 analyses are collected periodically along the cave axis. Positively correlated 13CO2 vs. 1/ CO2 indicate soil gas (δ13C= -22 ‰) is the dominant CO2 source. Rn-222 is likely sourced from decay of 226Ra (U-series) in the limestone bedrock. In general, this cave inhales and exhales diurnally. All cave parameters reflect the intensity and longitudinal gradients of each breath modulated by frontal passages and seasonal changes. The diurnal amplitudes of T, RH, 222Rn and CO2 are highest nearest the entrance and almost disappear at the back of the cave, which mostly senses small amplitude frontal and seasonal changes. Radon-222 (20-340 dpm/L) and CO2 (400-1500 ppm) rise and fall coherently. Both gases are higher in the poorly ventilated portions of the cave, but each shows temporal and spatial patterns that reflect different sources - emanation from the enclosing limestone vs. soil gas and dripwater infusion from above. A flooding event due to a rise of the adjacent Chipola River inadvertently sealed the cave entrances, allowing 222Rn to grow in nearly to secular equilibrium (steady-state) in the air trapped inside the cave. Rn-222 peaked at 1200 dpm/L, over three-fold higher than previously measured, while CO2 peaked at 1400 ppm, similar to the highest CO2 values observed during normal conditions. As airflow was fully restricted, decay of 222Rn is balanced only by 222Rn emanation into the cave. Assuming 222Rn emanation into the cave is constant and represented by the secular equilibrium value, we use a simple radon- deficiency model to estimate air exchange rates (fractional tidal air volumes) and CO2 exhalation rates to compare wet (rainy) and dry periods. Daily air exchange rates vary from 18 to 26% of the cave volume. Radon/ CO2 ratios are four-times higher during wet periods than during dry periods, indicating stronger CO2 sources during dry periods. This suggests the cave ventilation system may be entraining soil gas CO2 from overhead fissures when the overlying soil cap is not waterlogged. This is counter to presumptions that wet periods with faster drips and more CO2 degassing from dripwater might increase cave air CO2 levels.

  19. Conserving relics from ancient underground worlds: assessing the influence of cave and landscape features on obligate iron cave dwellers from the Eastern Amazon

    PubMed Central

    Prous, Xavier; Calux, Allan; Gastauer, Markus; Nicacio, Gilberto; Zampaulo, Robson; Souza-Filho, Pedro W.M.; Oliveira, Guilherme; Brandi, Iuri V.; Siqueira, José O.

    2018-01-01

    The degradation of subterranean habitats is believed to represent a serious threat for the conservation of obligate subterranean dwellers (troglobites), many of which are short-range endemics. However, while the factors influencing cave biodiversity remain largely unknown, the influence of the surrounding landscape and patterns of subterranean connectivity of terrestrial troglobitic communities have never been systematically assessed. Using spatial statistics to analyze the most comprehensive speleological database yet available for tropical caves, we first assess the influence of iron cave characteristics and the surrounding landscape on troglobitic communities from the Eastern Amazon. We then determine the spatial pattern of troglobitic community composition, species richness, phylogenetic diversity, and the occurrence of frequent troglobitic species, and finally quantify how different landscape features influence the connectivity between caves. Our results reveal the key importance of habitat amount, guano, water, lithology, geomorphology, and elevation in shaping iron cave troglobitic communities. While mining within 250 m from the caves influenced species composition, increasing agricultural land cover within 50 m from the caves reduced species richness and phylogenetic diversity. Troglobitic species composition, species richness, phylogenetic diversity, and the occurrence of frequent troglobites showed spatial autocorrelation for up to 40 km. Finally, our results suggest that the conservation of cave clusters should be prioritized, as geographic distance was the main factor determining connectivity between troglobitic communities. Overall, our work sheds important light onto one of the most overlooked terrestrial ecosystems, and highlights the need to shift conservation efforts from individual caves to subterranean habitats as a whole. PMID:29576987

  20. Conserving relics from ancient underground worlds: assessing the influence of cave and landscape features on obligate iron cave dwellers from the Eastern Amazon.

    PubMed

    Jaffé, Rodolfo; Prous, Xavier; Calux, Allan; Gastauer, Markus; Nicacio, Gilberto; Zampaulo, Robson; Souza-Filho, Pedro W M; Oliveira, Guilherme; Brandi, Iuri V; Siqueira, José O

    2018-01-01

    The degradation of subterranean habitats is believed to represent a serious threat for the conservation of obligate subterranean dwellers (troglobites), many of which are short-range endemics. However, while the factors influencing cave biodiversity remain largely unknown, the influence of the surrounding landscape and patterns of subterranean connectivity of terrestrial troglobitic communities have never been systematically assessed. Using spatial statistics to analyze the most comprehensive speleological database yet available for tropical caves, we first assess the influence of iron cave characteristics and the surrounding landscape on troglobitic communities from the Eastern Amazon. We then determine the spatial pattern of troglobitic community composition, species richness, phylogenetic diversity, and the occurrence of frequent troglobitic species, and finally quantify how different landscape features influence the connectivity between caves. Our results reveal the key importance of habitat amount, guano, water, lithology, geomorphology, and elevation in shaping iron cave troglobitic communities. While mining within 250 m from the caves influenced species composition, increasing agricultural land cover within 50 m from the caves reduced species richness and phylogenetic diversity. Troglobitic species composition, species richness, phylogenetic diversity, and the occurrence of frequent troglobites showed spatial autocorrelation for up to 40 km. Finally, our results suggest that the conservation of cave clusters should be prioritized, as geographic distance was the main factor determining connectivity between troglobitic communities. Overall, our work sheds important light onto one of the most overlooked terrestrial ecosystems, and highlights the need to shift conservation efforts from individual caves to subterranean habitats as a whole.

  1. Stratigraphic Evidence for Environmental Change in a Bermudian Coastal Underwater Cave (Palm Cave System) in Response to Holocene Sea-level Rise

    NASA Astrophysics Data System (ADS)

    Cresswell, J. N.; van Hengstum, P. J.; Iliffe, T. M.

    2016-12-01

    Unique environments exist worldwide in coastal underwater caves, including those from Bermuda, which has been a global epicenter for interdisciplinary cave research. However, the development of environments, ecosystems, and sedimentary deposits in coastal underwater caves, particularly over millennial timescales is poorly understood, with previous research from Bermuda indicating a critical role for sea-level rise in driving environmental change. A multi-proxy stratigraphic analysis of 14 sediment cores that were collected from the Palm Cave System in Bermuda from 2 m to 20 m water depths was conducted to better understand Holocene-scale environmental change in coastal underwater caves (e.g., textural analysis, x-radiographs, microfossil analysis, radiocarbon dating). The rate of deposition was found to be variable throughout time and dependent upon the proximity of core locations to cave openings (`karst windows') and conduit geometry. The oldest recovered sediment was likely Pleistocene-aged, terra-rosa soil deposits that predate the Holocene inundation. By 9500 Cal yrs BP, deposition was dominated by organic-rich facies (gyttja), with agglutinated brackish foraminifera (Trochammina, Polysaccammina) and bivalves indicating brackish aquatic conditions in the system by 9200 Cal yrs BP. A system-wide shift to carbonate deposition occurred 8500 Cal yrs BP, which indicates the onset of oxygenated marine water entering the cave and development of a marine-dominated (i.e., submarine) cave environment. Comparison with local maximum sea-level indicators shows that inundation of the Bermuda platform by Holocene sea-level rise likely drove environmental change in the Palm Cave System.

  2. Psychological Benefits of Outdoor Adventure Activities.

    ERIC Educational Resources Information Center

    Teaff, Joseph; Kablach, John

    1987-01-01

    Reports psychological benefits of participation in caving, rock climbing, ropes, and teams course of 30-day adventure program by 56 delinquent youth (ages 11-18). Concludes rope course satisfied independence, rewards, and variety more than caving; rock climbing satisfied independence and rewards more than caving; caving less beneficial than other…

  3. 36 CFR 290.3 - Nomination, evaluation, and designation of significant caves.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... governmental agencies and the public, including those who utilize caves for scientific, educational, or... is located as new cave discoveries are made. Caves nominated but not approved for designation may be... mineralogic features that are fragile, represent formation processes that are of scientific interest, or that...

  4. 36 CFR 290.3 - Nomination, evaluation, and designation of significant caves.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... governmental agencies and the public, including those who utilize caves for scientific, educational, or... is located as new cave discoveries are made. Caves nominated but not approved for designation may be... mineralogic features that are fragile, represent formation processes that are of scientific interest, or that...

  5. 36 CFR 290.3 - Nomination, evaluation, and designation of significant caves.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... governmental agencies and the public, including those who utilize caves for scientific, educational, or... is located as new cave discoveries are made. Caves nominated but not approved for designation may be... mineralogic features that are fragile, represent formation processes that are of scientific interest, or that...

  6. 36 CFR 290.3 - Nomination, evaluation, and designation of significant caves.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... governmental agencies and the public, including those who utilize caves for scientific, educational, or... is located as new cave discoveries are made. Caves nominated but not approved for designation may be... mineralogic features that are fragile, represent formation processes that are of scientific interest, or that...

  7. Ice Versus Rock

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Olson, Eric A.; Dehm, Janet

    2005-01-01

    During a snow bank exploration, students noticed "ice caves," or pockets, in some of the larger snow banks, usually below darker layers. Most of these caves had many icicles hanging inside. Students offered reasonable explanations of ice cave formation--squirrels, kids, snow blowers--and a few students came close to the true ice cave-formation…

  8. Evaluating display fidelity and interaction fidelity in a virtual reality game.

    PubMed

    McMahan, Ryan P; Bowman, Doug A; Zielinski, David J; Brady, Rachael B

    2012-04-01

    In recent years, consumers have witnessed a technological revolution that has delivered more-realistic experiences in their own homes through high-definition, stereoscopic televisions and natural, gesture-based video game consoles. Although these experiences are more realistic, offering higher levels of fidelity, it is not clear how the increased display and interaction aspects of fidelity impact the user experience. Since immersive virtual reality (VR) allows us to achieve very high levels of fidelity, we designed and conducted a study that used a six-sided CAVE to evaluate display fidelity and interaction fidelity independently, at extremely high and low levels, for a VR first-person shooter (FPS) game. Our goal was to gain a better understanding of the effects of fidelity on the user in a complex, performance-intensive context. The results of our study indicate that both display and interaction fidelity significantly affect strategy and performance, as well as subjective judgments of presence, engagement, and usability. In particular, performance results were strongly in favor of two conditions: low-display, low-interaction fidelity (representative of traditional FPS games) and high-display, high-interaction fidelity (similar to the real world).

  9. Vibrational spectroscopic analysis of taranakite (K,NH 4)Al 3(PO 4) 3(OH)·9(H 2O) from the Jenolan Caves, Australia

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Palmer, Sara J.; Pogson, Ross E.

    2011-12-01

    Many phosphate containing minerals are found in the Jenolan Caves. Such minerals are formed by the reaction of bat guano and clays from the caves. Among these cave minerals is the mineral taranakite (K,NH 4)Al 3(PO 4) 3(OH)·9(H 2O) which has been identified by X-ray diffraction. Jenolan Caves taranakite has been characterised by Raman spectroscopy. Raman and infrared bands are assigned to H 2PO 4, OH and NH stretching vibrations. By using a combination of XRD and Raman spectroscopy, the existence of taranakite in the caves has been proven.

  10. Geophysical exploration in vicinity of the Unicorn Cave, South Harz Mountains, Germany

    NASA Astrophysics Data System (ADS)

    Kaufmann, Georg; Romanov, Douchko; Nielbock, Ralf

    2010-05-01

    The Unicorn Cave in the southern Harz Mountains in Germany is located in an outcrop of dolomite from the Zechstein formation, which is underlain by Grauwacke rocks. The cave, about 600 meters long, consists of several large chambers, which are connected by a gallery following the main fault alignments in E/W, NE/SW, and NW/SE direction. The overburden of the cave is shallow, between 10 and 30 m. We have used this cave site to perform a sensitivity test for both gravimetric and geoelectic methods above the cave. Additionally, geoelectic mapping has been used to assess the thickness of the cave sediments in one of the chambers. Our results show a clear signal in the Bouguer anomaly, which can only be explained by a combined model of the void space and the sediment filling. Geoelectric results are less clear, but support the gravimetry.

  11. Optimization research of structural parameters in non-pillar sublevel caving method with large structural parameters

    NASA Astrophysics Data System (ADS)

    Han, Wencheng; Zhou, Renjie; Liu, Xianfeng; Sun, Dongdong

    2018-03-01

    The non-pillar sublevel caving method with large structural parameters used in Mao Gong Iron Mine is of high rate of dilution and loss, and the ore recovery rate is less than 50%. Aiming at this problem, this paper analyzes the influence mechanism of the caving step on the mining index by means of the matching relationship between the shape of caved ore body and the drawn-out ore body, then through the physical simulation experiment in laboratory, the mining index such as the volume of pure ore drawing, ore recovery ratio and rock mixing ratio are studied under different caving step. The results show that the mining index under caving step of two row of blast hole is better than that under caving step of one row of blast hole. The research has guided significance for production of the mine.

  12. The microbiology of Lascaux Cave.

    PubMed

    Bastian, F; Jurado, V; Nováková, A; Alabouvette, C; Saiz-Jimenez, C

    2010-03-01

    Lascaux Cave (Montignac, France) contains paintings from the Upper Paleolithic period. Shortly after its discovery in 1940, the cave was seriously disturbed by major destructive interventions. In 1963, the cave was closed due to algal growth on the walls. In 2001, the ceiling, walls and sediments were colonized by the fungus Fusarium solani. Later, black stains, probably of fungal origin, appeared on the walls. Biocide treatments, including quaternary ammonium derivatives, were extensively applied for a few years, and have been in use again since January 2008. The microbial communities in Lascaux Cave were shown to be composed of human-pathogenic bacteria and entomopathogenic fungi, the former as a result of the biocide selection. The data show that fungi play an important role in the cave, and arthropods contribute to the dispersion of conidia. A careful study on the fungal ecology is needed in order to complete the cave food web and to control the black stains threatening the Paleolithic paintings.

  13. A synopsis of centipedes in Brazilian caves: hidden species diversity that needs conservation (Myriapoda, Chilopoda)

    PubMed Central

    Chagas-Jr, Amazonas; Bichuette, Maria Elina

    2018-01-01

    Abstract This study revises centipede fauna found in Brazilian caves, focusing on troglomorphic taxa and emphasizing conservation status. We present 563 centipede specimens from 274 caves across eleven Brazilian states. Of these, 22 records were derived from existing literature and 252 are newly collected. Specimens represent four orders, ten families, 18 genera, and 47 morphospecies. Together, the cave records represent 21 % of Brazil’s centipede fauna. Scolopendromorpha was the most representative order (41 %), followed by Geophilomorpha (26 %), Scutigeromorpha (23 %), and Lithobiomorpha (10 %). Six species were found only in caves, with four considered troglobitic. The distribution of Cryptops iporangensis, the first Brazilian troglobitic centipede species to be discovered, was expanded to other three caves. Cryptops spelaeoraptor and Cryptops iporangensis are two troglobitic species considered Vulnerable and Endangered, respectively, according to the IUCN Red List. Main threats to Brazilian caves are mining, hydroelectric projects, water pollution, and unregulated tourism. PMID:29674871

  14. Effects of Exercise in Immersive Virtual Environments on Cortical Neural Oscillations and Mental State

    PubMed Central

    Vogt, Tobias; Herpers, Rainer; Askew, Christopher D.; Scherfgen, David; Strüder, Heiko K.; Schneider, Stefan

    2015-01-01

    Virtual reality environments are increasingly being used to encourage individuals to exercise more regularly, including as part of treatment those with mental health or neurological disorders. The success of virtual environments likely depends on whether a sense of presence can be established, where participants become fully immersed in the virtual environment. Exposure to virtual environments is associated with physiological responses, including cortical activation changes. Whether the addition of a real exercise within a virtual environment alters sense of presence perception, or the accompanying physiological changes, is not known. In a randomized and controlled study design, moderate-intensity Exercise (i.e., self-paced cycling) and No-Exercise (i.e., automatic propulsion) trials were performed within three levels of virtual environment exposure. Each trial was 5 minutes in duration and was followed by posttrial assessments of heart rate, perceived sense of presence, EEG, and mental state. Changes in psychological strain and physical state were generally mirrored by neural activation patterns. Furthermore, these changes indicated that exercise augments the demands of virtual environment exposures and this likely contributed to an enhanced sense of presence. PMID:26366305

  15. Effects of Exercise in Immersive Virtual Environments on Cortical Neural Oscillations and Mental State.

    PubMed

    Vogt, Tobias; Herpers, Rainer; Askew, Christopher D; Scherfgen, David; Strüder, Heiko K; Schneider, Stefan

    2015-01-01

    Virtual reality environments are increasingly being used to encourage individuals to exercise more regularly, including as part of treatment those with mental health or neurological disorders. The success of virtual environments likely depends on whether a sense of presence can be established, where participants become fully immersed in the virtual environment. Exposure to virtual environments is associated with physiological responses, including cortical activation changes. Whether the addition of a real exercise within a virtual environment alters sense of presence perception, or the accompanying physiological changes, is not known. In a randomized and controlled study design, moderate-intensity Exercise (i.e., self-paced cycling) and No-Exercise (i.e., automatic propulsion) trials were performed within three levels of virtual environment exposure. Each trial was 5 minutes in duration and was followed by posttrial assessments of heart rate, perceived sense of presence, EEG, and mental state. Changes in psychological strain and physical state were generally mirrored by neural activation patterns. Furthermore, these changes indicated that exercise augments the demands of virtual environment exposures and this likely contributed to an enhanced sense of presence.

  16. Automatic Detection of Nausea Using Bio-Signals During Immerging in A Virtual Reality Environment

    DTIC Science & Technology

    2001-10-25

    reduce the redundancy in those parameters, and constructed an artificial neural network with those principal components. Using the network we constructed, we could partially detect nausea in real time.

  17. Alternative Fuels Data Center: Mammoth Cave National Park Uses Only

    Science.gov Websites

    Alternative Fuel Vehicles Mammoth Cave National Park Uses Only Alternative Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Mammoth Cave National Park Uses Only Alternative Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Mammoth Cave National Park Uses

  18. Comparison between cimetidine and Caved-S in the treatment of gastric ulceration, and subsequent maintenance therapy.

    PubMed Central

    Morgan, A G; McAdam, W A; Pacsoo, C; Darnborough, A

    1982-01-01

    One hundred patients with benign gastric ulceration were treated in a single-blind, endoscopically controlled trial to assess the relative efficacy of cimetidine (1 g daily) and Caved-S (six tablets daily). Ulcer healing was assessed after six weeks' treatment, and, if incomplete, after a further six weeks. There was no significant difference between the two drug regimens (approximately 63% at six weeks and 91% at 12 weeks). If an ulcer remains unhealed after 10 weeks' treatment the patient should undergo surgery. There was no difference in the relief of day pain between the two drug regimens but cimetidine was more effective over the first two weeks of treatment relieving night pain, than was Caved-S (p less than 0 . 02). After ulcer healing, drug dosage was reduced (cimetidine to 400 mg at night and Caved-S to two tablets twice daily). So far, 56 patients, 28 in each group, have completed the first year's maintenance treatment, and there have been four ulcer recurrences in each group (14%). PMID:7042486

  19. CaveMan Enterprise version 1.0 Software Validation and Verification.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, David

    The U.S. Department of Energy Strategic Petroleum Reserve stores crude oil in caverns solution-mined in salt domes along the Gulf Coast of Louisiana and Texas. The CaveMan software program has been used since the late 1990s as one tool to analyze pressure mea- surements monitored at each cavern. The purpose of this monitoring is to catch potential cavern integrity issues as soon as possible. The CaveMan software was written in Microsoft Visual Basic, and embedded in a Microsoft Excel workbook; this method of running the CaveMan software is no longer sustainable. As such, a new version called CaveMan Enter- prisemore » has been developed. CaveMan Enterprise version 1.0 does not have any changes to the CaveMan numerical models. CaveMan Enterprise represents, instead, a change from desktop-managed work- books to an enterprise framework, moving data management into coordinated databases and porting the numerical modeling codes into the Python programming language. This document provides a report of the code validation and verification testing.« less

  20. Rock fall simulation at Timpanogos Cave National Monument, American Fork Canyon, Utah, USA

    USGS Publications Warehouse

    Harp, E.L.; Dart, R.L.; Reichenbach, P.

    2011-01-01

    Rock fall from limestone cliffs at Timpanogos Cave National Monument in American Fork Canyon east of Provo, Utah, is a common occurrence. The cave is located in limestone cliffs high on the southern side of the canyon. One fatality in 1933 led to the construction of rock fall shelters at the cave entrance and exit in 1976. Numerous rock fall incidents, including a near miss in 2000 in the vicinity of the trail below the cave exit, have led to a decision to extend the shelter at the cave exit to protect visitors from these ongoing rock fall events initiating from cliffs immediately above the cave exit. Three-dimensional rock fall simulations from sources at the top of these cliffs have provided data from which to assess the spatial frequencies and velocities of rock falls from the cliffs and to constrain the design of protective measures to reduce the rock fall hazard. Results from the rock fall simulations are consistent with the spatial patterns of rock fall impacts that have been observed at the cave exit site. ?? 2011 Springer-Verlag.

  1. Rock fall simulation at Timpanogos Cave National Monument, American Fork Canyon, Utah, USA

    USGS Publications Warehouse

    Harp, Edwin L.; Dart, Richard L.; Reichenbach, Paola

    2011-01-01

    Rock fall from limestone cliffs at Timpanogos Cave National Monument in American Fork Canyon east of Provo, Utah, is a common occurrence. The cave is located in limestone cliffs high on the southern side of the canyon. One fatality in 1933 led to the construction of rock fall shelters at the cave entrance and exit in 1976. Numerous rock fall incidents, including a near miss in 2000 in the vicinity of the trail below the cave exit, have led to a decision to extend the shelter at the cave exit to protect visitors from these ongoing rock fall events initiating from cliffs immediately above the cave exit. Three-dimensional rock fall simulations from sources at the top of these cliffs have provided data from which to assess the spatial frequencies and velocities of rock falls from the cliffs and to constrain the design of protective measures to reduce the rock fall hazard. Results from the rock fall simulations are consistent with the spatial patterns of rock fall impacts that have been observed at the cave exit site.

  2. High endemism at cave entrances: a case study of spiders of the genus Uthina

    PubMed Central

    Yao, Zhiyuan; Dong, Tingting; Zheng, Guo; Fu, Jinzhong; Li, Shuqiang

    2016-01-01

    Endemism, which is typically high on islands and in caves, has rarely been studied in the cave entrance ecotone. We investigated the endemism of the spider genus Uthina at cave entrances. Totally 212 spiders were sampled from 46 localities, from Seychelles across Southeast Asia to Fiji. They mostly occur at cave entrances but occasionally appear at various epigean environments. Phylogenetic analysis of DNA sequence data from COI and 28S genes suggested that Uthina was grouped into 13 well-supported clades. We used three methods, the Bayesian Poisson Tree Processes (bPTP) model, the Bayesian Phylogenetics and Phylogeography (BPP) method, and the general mixed Yule coalescent (GMYC) model, to investigate species boundaries. Both bPTP and BPP identified the 13 clades as 13 separate species, while GMYC identified 19 species. Furthermore, our results revealed high endemism at cave entrances. Of the 13 provisional species, twelve (one known and eleven new) are endemic to one or a cluster of caves, and all of them occurred only at cave entrances except for one population of one species. The only widely distributed species, U. luzonica, mostly occurred in epigean environments while three populations were found at cave entrances. Additionally, eleven new species of the genus are described. PMID:27775081

  3. Response of ice caves to weather extremes in the southeastern Alps, Europe

    NASA Astrophysics Data System (ADS)

    Colucci, R. R.; Fontana, D.; Forte, E.; Potleca, M.; Guglielmin, M.

    2016-05-01

    High altitude karstic environments often preserve permanent ice deposits within caves, representing the lesser-known portion of the cryosphere. Despite being not so widespread and easily reachable as mountain glaciers and ice caps, ice caves preserve much information about past environmental changes and climatic evolution. We selected 1111 ice caves from the existing cave inventory, predominantly but not exclusively located in the periglacial domain where permafrost is not dominant (i.e., with mean annual air temperature < 3 °C but not in a permafrost environment). The influence of climate and topography on ice cave distribution is also investigated. In order to assess the thickness and the inner structure of the deposits, we selected two exemplary ice caves in the Canin massif (Julian Alps) performing several multifrequency GPR surveys. A strong influence of global and local climate change in the evolution of the ice deposits has been particularly highlighted in the dynamic ice cave type, especially in regard to the role of weather extremes. The natural response of ice caves to a warming climate could lead to a fast reduction of such ice masses. The increased occurrence of weather extremes, especially warmer and more intense precipitation caused by higher mean 0 °C-isotherms, could in fact be crucial in the future mass balance evolution of such permanent ice deposits.

  4. ‘Neanderthal bone flutes’: simply products of Ice Age spotted hyena scavenging activities on cave bear cubs in European cave bear dens

    PubMed Central

    Diedrich, Cajus G.

    2015-01-01

    Punctured extinct cave bear femora were misidentified in southeastern Europe (Hungary/Slovenia) as ‘Palaeolithic bone flutes’ and the ‘oldest Neanderthal instruments’. These are not instruments, nor human made, but products of the most important cave bear scavengers of Europe, hyenas. Late Middle to Late Pleistocene (Mousterian to Gravettian) Ice Age spotted hyenas of Europe occupied mainly cave entrances as dens (communal/cub raising den types), but went deeper for scavenging into cave bear dens, or used in a few cases branches/diagonal shafts (i.e. prey storage den type). In most of those dens, about 20% of adult to 80% of bear cub remains have large carnivore damage. Hyenas left bones in repeating similar tooth mark and crush damage stages, demonstrating a butchering/bone cracking strategy. The femora of subadult cave bears are intermediate in damage patterns, compared to the adult ones, which were fully crushed to pieces. Hyenas produced round–oval puncture marks in cub femora only by the bone-crushing premolar teeth of both upper and lower jaw. The punctures/tooth impact marks are often present on both sides of the shaft of cave bear cub femora and are simply a result of non-breakage of the slightly calcified shaft compacta. All stages of femur puncturing to crushing are demonstrated herein, especially on a large cave bear population from a German cave bear den. PMID:26064624

  5. Morphological and genetic identification and isotopic study of the hair of a cave lion (Panthera spelaea Goldfuss, 1810) from the Malyi Anyui River (Chukotka, Russia)

    NASA Astrophysics Data System (ADS)

    Chernova, O. F.; Kirillova, I. V.; Shapiro, B.; Shidlovskiy, F. K.; Soares, A. E. R.; Levchenko, V. A.; Bertuch, F.

    2016-06-01

    We present the first detailed analyses of the preserved hair of a cave lion (Panthera spelaea Goldfuss, 1810). The hair was found in association with a skeleton that was recovered recently from perennially frozen Pleistocene sediments in the lower reaches of the Malyi Anyui River (Chukotka, Russia). We extract mitochondrial DNA from the hair to confirm its taxonomic identity, and perform detailed morphological analyses of the color and structure of the hair using light optical microscopy and SEM. In addition, we compare the cave lion hair to hair taken from the back and mane of an African lion. We find that cave lion hair is similar but not identical to that of the present-day lion. In addition to slightly different coloration, cave lions had a very thick and dense undercoat comprising closed and compressed wavy downy hair with a medulla. In addition, while the microstructures of the medulla and cortex of cave lion hair are similar in extinct and living lions, the cuticular scales of cave lion hair are higher than those in living lions, suggesting that cave lion hair is stronger and more robust than that of living lions. We hypothesize that the differences between cave lion hair and present-day lion hair may be due to adaptations of cave lions to the harsh climatic and environmental conditions of the Pleistocene Ice Ages.

  6. Envitonmental monitoring and radiation protection in Škocjan Caves, Slovenia

    NASA Astrophysics Data System (ADS)

    Debevec Gerjeviè, V.; Jovanovič, P.

    2012-04-01

    Škocjan Caves were listed as UNESCO World Heritage Sites in 1986, due to their exceptional significance for cultural and natural heritage. Park Škocjan Caves is located in South Eastern part of Slovenia. It was established with aim of conserving and protecting exceptional geomorphological, geological and hydrological outstanding features, rare and endangered plant and animal species, paleontological and archaeological sites, ethnological and architectural characteristics and cultural landscape and for the purpose of ensuring opportunities for suitable development, by the National Assembly of the Republic of Slovenia in 1996. Park Škocjan Caves established monitoring that includes caves microclimate parameters: humidity, CO2, wind flow and radon concentration and daughter products. The approach in managing the working place with natural background radiation is complex. Monitoring of Radon has been functioning for more than ten years now. Presentation will show the dynamic observed in the different parts of the caves, related to radon daughter products and other microclimatic data. Relation of background radiation to carrying capacity will be explained. Implementing the Slovene legislation in the field of radiation protection, we are obligated to perform special measurements in the caves and also having our guides and workers in the caves regularly examined according to established procedure. The medical exams are performed at Institution of Occupational Safety, Ljubljana in order to monitor the influence of Radon to the workers in the cave. The equivalent dose for each employed person is also established on regular basis and it is part of medical survey of workers in the caves. A system of education of the staff working in the caves in the field of radiation protection will be presented as well.

  7. Feeding habits of amphipods (Crustacea: Malacostraca) from shallow soft bottom communities: Comparison between marine caves and open habitats

    NASA Astrophysics Data System (ADS)

    Navarro-Barranco, Carlos; Tierno-de-Figueroa, José Manuel; Guerra-García, José Manuel; Sánchez-Tocino, Luis; García-Gómez, José Carlos

    2013-04-01

    Marine caves are environments of great interest since the organisms that inhabit them are forced to develop specific adaptations to high constraint conditions. Because of some of these particular conditions, such as light absence or oligotrophy, it can be expected that feeding strategies into caves differ from that present outside them. Nevertheless, no studies have been done to compare the trophic structure of marine caves and open habitats, at least for amphipod communities, considering their importance both inside and outside of the caves. In this study, the diet of the dominant amphipod species living on shallow sediments, both inside and outside of six marine caves in western Mediterranean, was characterized. Thereby, the gut content of 17 amphipod species was studied, being this study the first attempt to establish the feeding habit of most of these species. Analysis of digestive contents of the species showed that amphipod diet is less diverse in sediments than in other environments, such as algae and seagrasses. No herbivorous species were found in the sediment and carnivorous amphipods showed a little variety of prey, feeding mainly on crustaceans. Differences in the trophic structure were also found between marine caves and open habitats sediments: while outside the caves detritivorous was the dominant group (both in number of species and number of individuals), amphipods mainly play the role of carnivorous inside the caves. No detritivorous species were found into the caves, where carnivorous represents almost 60% of amphipods species and more than 80% of amphipod individuals. This pattern obtained in amphipods differ from the general trend observed in marine cave organisms, for which a generalist diet, such as omnivory, usually is an advantage in these oligotrophic conditions. The possible causes of this pattern are discussed.

  8. Geological constraints on cave development in the plateau-gorge karst of South China (Wulong, Chongqing)

    NASA Astrophysics Data System (ADS)

    Szczygieł, Jacek; Golicz, Mateusz; Hercman, Helena; Lynch, Erin

    2018-03-01

    The Houping Tiankeng cluster is a part of the South China Karst UNESCO World Natural Heritage Site. Within the distinctive Wulong plateau-gorge karst, > 200 km of cave passages have been documented to date. This paper focuses on detailed tectonic and morphological research on the Luo Shui Kong cave, enriched with U-series dating of speleothems and complemented by morphometric analysis of the San Wang Dong and Er Wang Dong caves. All of these caves exhibit three regional levels of cave development: 1) 1040-1020 m a.s.l.; 2) 900-840 m a.s.l.; and 3) 740-660 m a.s.l. The Houping Tiankeng area is a carbonate rock sequence several hundred meters thick, overlain by the less soluble Lower Ordovician strata, limiting recharge points to faults exposing underlying easily soluble formations. This leads to the domination of concentrated, high-volume inflow and thus results in caves of large volume in the plateau-gorge karst. Shafts connecting the surface with cave passages located underneath formed along faults, changing the hydrogeological pattern through karst water capture and remodeling of existing conduits, albeit mainly by increasing their overall dimensions rather than by deepening them. The most favorable structures for cave-level development are two sets of joints conjugated with gently inclined bedding. Since these joints are characterized by a small vertical extent, downward development is limited. Hence, most of the passages are wide but not deep canyons and typical of a water-table cave pattern. Places where the fault plane is eroded from the surface and where, at the same time, an underneath cave chamber ceiling expands upwards are particularly predisposed to the formation of a tiankeng.

  9. Monitoring of Radon in Tourist Part of Skocjan Caves

    NASA Astrophysics Data System (ADS)

    Debevec Gerjevic, Vanja; Jovanovic, Peter

    2010-05-01

    Due to their exceptional significance for cultural and natural heritage, the Škocjan Caves were entered on UNESCO's list of natural and cultural world heritage sites in 1986. Park Škocjan Caves is located in South Eastern part of Slovenia. It was established with aim of conserving and protecting exceptional geomorphological, geological and hydrological outstanding features, rare and endangered plant and animal species, paleontological and archaeological sites, ethnological and architectural characteristics and cultural landscape and for the purpose of ensuring opportunities for suitable development, by the National Assembly of the Republic of Slovenia in 1996. Park Škocjan Caves established monitoring that includes caves microclimate parameters: humidity, CO2, wind flow and radon concentration and daughter products. The approach in managing the working place with natural background radiation is complex. Monitoring of Radon has been functioning for more than ten years now. Presentation will show the yearly dynamic observed in the different parts of the caves, related to radon daughter products and other microclimatic data, beside the most convenient measuring technique. Implementing the Slovene legislation in the field of radiation protection, we are obligated to perform special measurements in the caves and also having our guides and workers in the caves regularly examined according to established procedure. The medical exams are performed at Institution of Occupational Safety, Ljubljana in order to monitor the influence of Radon to the workers in the cave. The equivalent dose for each employed person is also established on regular basis and it is part of medical survey of workers in the caves. The survey will be described along with education of the staff working in the caves in the field of radiation protection. An overview of Slovene legislation with practical example on implementation will be demonstrated in the case of Škocjan Caves where the managing authority considers the monitoring of Radon as one of the tools for adaptive management.

  10. Monitoring of cave air temperature and humidity in the Niedźwiedzia Cave system (Sudetes, Poland) - a key to understanding tourists activity impact to cave environment

    NASA Astrophysics Data System (ADS)

    Gasiorowski, M.; Hercman, H.

    2012-04-01

    The Niedźwiedzia Cave is located in Śnieżnik Massif (the Easter Sudetes, SW Poland) at 800 m a.s.l. The length of known passages is ~3000 m and denivelation is 69 m. The system is composed of 3 levels of passages and chambers. It is a show cave with ~80,000 visitors every year. In 2010 we started monitoring program of cave air temperature and humidity, drip rate, stable isotopes and Uranium and Polonium content in water in selected sites inside the cave and in its vicinity. Changes in dropping rate in upper level are well correlated with precipitation. However, a response of dripping to rainfall depends on former precipitation frequency and intensity - during the humid period the dripping reacts immediately and after long dry period dripping responses with two-weeks delay. There is not so direct correlation between precipitation and dripping in lower level of the system. Air temperature inside the cave is almost stable in lower level (mean annual ~5.3 °C, and annual variation up to 0.7 °C) and more dynamic in the middle level (mean annual ~6.4 °C, and mean annual amplitude up to 4 °C). Daily and weekly measured changes of cave air temperature demonstrate extremely well correlation with number of visitors. In show cave passages (the middle level of the system) temperature increase 0.1-0.2 °C during every day when the cave is open for tourists and such changes is not observed during days without visitors and in lower level of the system closed for tourists. But even short visits of 3-4 cavers are recorded by temperature sensors exposed in the lower level (~0.02 °C increase). It proves very high sensitivity of cave environment to human activity. This study is funded by the National Science Centre and Higher Education grant no. N N306 131038.

  11. The use of water marks mapping to understand flood overflow events inside karstic cavities: Cueva Fría and Cueva Rosa (Asturias, NW Spain)

    NASA Astrophysics Data System (ADS)

    González Lemos, Saúl; Stoll, Heather M.

    2014-05-01

    Several karst systems in Asturias (NW Spain) present evidence of fluvial deposits cemented in speleothems that may provide good chronology of past flood events inside the caves. This flood record is under research in two karstic caves of this region, Cueva Fría and Cueva Rosa, which have in common the presence of a perennial stream inside the cave and a low gradient of the cave passage. Immediately after a flood overflow event, water marks, foam and detritus are visible at different heights on the cave walls and correspond to heights of bottlenecks in overflow drainage through the cave passage. Flood events also deposit sand and gravel on terraces on the cave wall and move large volumes of sand in the cave bed. We have noted that detrital particles (like sand or silt particles) are preserved as inclusions inside the stalagmites and that their abundance inside coeval stalagmites decreases as altitude and distance from the perennial stream increase, supporting its fluvial affinity. However, not all the stalagmites that contain detrital particles are located close to the perennial streams. In this work, we have mapped the water marks preserved in the cave walls to reconstruct water levels associated to flood overflow events of different magnitude. We have found that water mark correlation along the cave passage is very useful to define the hydrological behaviour and flood model of the cave during these extreme events. The water mark mapping and correlation have been also useful to prove that during periods of high rainfall, the movement of the sand-bars inside the cave can cover partially or completely active stalagmites, facilitating the cementation process and trapping abundant detrital material inside the stalagmite carbonate. 14C and U/Th dating of the stalagmites can provide a chronology for the detrital rich layers, so that the abundance of fluvial material in the stalagmites can reveal periods of enhanced vs. reduced flooding in the cave over the past several thousand years (Holocene).

  12. Sources and transport of microbial tetraether membrane lipids in Karst Systems

    NASA Astrophysics Data System (ADS)

    Jex, C.; Blyth, A. J.; McDonald, J.; Woltering, M.; Khan, S.; Baker, A.

    2014-12-01

    Speleothems preserve organic biomarkers, proxies for surface climate. Microbial-derived lipids, specifically glycerol dialkyl glycerol tetraetheral (GDGT) lipids have been identified in cave deposits and shown to correlate well with surface air temperature using the archaea-derived isoprenoid '(i)GDGT' index of TEX86 and the bacteria derived branched '(b)GDGT' index of MBT/CBT of modern speleothems [1]. Two competing sources for GDGTs in karst systems have been suggested: 1) A soil derived microbial signal dominated by bGDGTs; and 2) An in situ signal dominated by iGDGTs, representative of archaea existing within the cave or overlying bedrock [2]. These findings are yet to be thoroughly tested by characterising the seasonal nature of GDGTs in caves to establish the source and transport pathways within these complex fractured rock systems. Here, we address this and present the results of a yearlong monitoring campaign of GDGTs within two contrasting cave sites from the Yarrangobilly Caves in Kosciuszko national park, SE Australia. The caves are located at a high altitude, semi-arid site. Harriewood cave is dominated by discrete infiltration events throughout the year. Above the cave there are thin soils consisting of loose shallow scree, steep slopes and sparse shrub vegetation. The surface above Jillabenan is characterised by thick red clays of moderate to no slope and Eucalypt dominated forest. As such, these caves provide ideal test sites to characterise the variability in GDGT signals that may be a result of non-temperature related factors, including varying inputs (groundwater vs. in situ growth) or site-specific hydrological conditions. We present data obtained from within the cave: drip waters and in situ collection of GDGTs formed on filter papers left inside the cave throughout the year, and externally sourced signals from soils and their leachates. We also identify key differences in soil pH and cave air temperatures that are best predicted by using cave specific GDGT calibrations of [1]. [1] Blyth et al. 2013. Calibrating the glycerol dialkyl glycerol tetraether temperature signal in speleothems. Geochim Cosmochim Ac. 109, 312-328. [2] Blyth et al. 2014. Contrasting distributions of glycerol dialkyl glycerol tetraethers (GDGTs) in speleothems and associated soils, Org Geochem, 69, 1-10.

  13. Simple force feedback for small virtual environments

    NASA Astrophysics Data System (ADS)

    Schiefele, Jens; Albert, Oliver; van Lier, Volker; Huschka, Carsten

    1998-08-01

    In today's civil flight training simulators only the cockpit and all its interaction devices exist as physical mockups. All other elements such as flight behavior, motion, sound, and the visual system are virtual. As an extension to this approach `Virtual Flight Simulation' tries to subsidize the cockpit mockup by a 3D computer generated image. The complete cockpit including the exterior view is displayed on a Head Mounted Display (HMD), a BOOM, or a Cave Animated Virtual Environment. In most applications a dataglove or virtual pointers are used as input devices. A basic problem of such a Virtual Cockpit simulation is missing force feedback. A pilot cannot touch and feel buttons, knobs, dials, etc. he tries to manipulate. As a result, it is very difficult to generate realistic inputs into VC systems. `Seating Bucks' are used in automotive industry to overcome the problem of missing force feedback. Only a seat, steering wheel, pedal, stick shift, and radio panel are physically available. All other geometry is virtual and therefore untouchable but visible in the output device. In extension to this concept a `Seating Buck' for commercial transport aircraft cockpits was developed. Pilot seat, side stick, pedals, thrust-levers, and flaps lever are physically available. All other panels are simulated by simple flat plastic panels. They are located at the same location as their real counterparts only lacking the real input devices. A pilot sees the entire photorealistic cockpit in a HMD as 3D geometry but can only touch the physical parts and plastic panels. In order to determine task performance with the developed Seating Buck, a test series was conducted. Users press buttons, adapt dials, and turn knobs. In a first test, a complete virtual environment was used. The second setting had a plastic panel replacing all input devices. Finally, as cross reference the participants had to repeat the test with a complete physical mockup of the input devices. All panels and physical devices can be easily relocated to simulate a different type of cockpit. Maximal 30 minutes are needed for a complete adaptation. So far, an Airbus A340 and a generic cockpit are supported.

  14. Forensic Fluid Dynamics and the Indian Spring (1991) cave collapse problem

    NASA Astrophysics Data System (ADS)

    Nof, D.

    2013-05-01

    The collapse of the Indian spring cave (Florida) in 1991 was unique because it occurred while cave divers were in the cave. For the most part, the submerged cave is large enough to accommodate a passing truck so the cave divers were not in touch with its walls and it is hard to imagine why would it naturally collapse just when the divers were in it. Recently, Nof and Paldor (2010) resolved this apparent paradox by suggesting that resonance in the air pockets in the cavern, created by breathing (open circuit) divers, may have contributed to the collapse. In this scenario, divers present in the cavern during the dive may have (unknowingly) caused the collapse through the pressurized air/gas that they release with each breath. When the breathing period of the diver(s) matches the natural oscillations period of the "cave oscillator", the ensuing resonance causes the air pressure in the pockets to increase uncontrollably. Here, we place the above theory on a more solid ground. To do so, we first extended the resonance theory from our original two-pockets, symmetrical U-tube model (with two identical branches that were not specifically identified within the cave system) to a one (identified) pocket in the cavern and a very broad basin (identified, of course) that serves as the other branch of the U-tube. Our methodology is to apply familiar fluid dynamics principles to the situation that occurred in the cave. We did so, step-by-step, on the basis of our interviews with four out of the five surviving cave-divers. Namely, we dissected their testimonies to arrive at a physically plausible scenario determined on basis of a fluid dynamics application to the natural flow in the cave and the flow induced by the compressed air released by the divers as well as the collapsed mud. We found that the oscillation period was larger than what we earlier calculated (still relevant to the case, nevertheless), and that, in contrast to what most cave divers believe, there was a temporary flow blocking during the collapse but no total flow reversal within the cave. Observed swirling in the basin during the collapse is attributed to a dipole flow corresponding to an inflow and outflow from the cave.

  15. Detrital cave sediments record Late Quaternary hydrologic and climatic variability in northwestern Florida, USA

    NASA Astrophysics Data System (ADS)

    Winkler, Tyler S.; van Hengstum, Peter J.; Horgan, Meghan C.; Donnelly, Jeffrey P.; Reibenspies, Joseph H.

    2016-04-01

    Detrital sediment in Florida's (USA) submerged cave systems may preserve records of regional climate and hydrologic variability. However, the basic sedimentology, mineralogy, stratigraphic variability, and emplacement history of the successions in Florida's submerged caves remains poorly understood. Here we present stratigraphic, mineralogical, and elemental data on sediment cores from two phreatic cave systems in northwestern Florida (USA), on the Dougherty Karst Plain: Hole in the Wall Cave (HITW) and Twin Cave. Water flowing through these caves is subsurface flow in the Apalachicola River drainage basin, and the caves are located just downstream from Jackson Blue (1st magnitude spring, > 2.8 m3 s- 1 discharge). Sedimentation in these caves is dominated by three primary sedimentary styles: (i) ferromanganese deposits dominate the basal recovered stratigraphy, which pass upsection into (ii) poorly sorted carbonate sediment, and finally into (iii) fine-grained organic matter (gyttja) deposits. Resolving the emplacement history of the lower stratigraphic units was hampered by a lack of suitable material for radiocarbon dating, but the upper organic-rich deposits have a punctuated depositional history beginning in the earliest Holocene. For example, gyttja primarily accumulated in HITW and Twin Caves from ~ 5500 to 3500 cal yr. BP, which coincides with regional evidence for water-table rise of the Upper Floridian Aquifer associated with relative sea-level rise in the Gulf of Mexico, and evidence for invigorated drainage through the Apalachicola River drainage basin. Gyttja sediments were also deposited in one of the caves during the Bølling/Allerød climate oscillation. Biologically, these results indicate that some Floridian aquatic cave (stygobitic) ecosystems presently receive minimal organic matter supply in comparison to prehistoric intervals. The pre-Holocene poorly sorted carbonate sediment contains abundant invertebrate fossils, and likely documents a period of enhanced limestone dissolution and cave formation (speleogenesis) during lower paleo water levels. Further work is still required to (a) determine whether precipitation of the ferromanganese deposits is inorganically or biologically mediated, (b) temporally constrain the emplacement history of the primary sedimentary styles, and (c) determine the full geographic extent of these sedimentary signals. However, these preliminary observations suggest that sedimentation in the inland underwater caves of northwestern Florida is related to Quaternary-scale hydrographic variability in the Apalachicola River drainage basin in response to broader ocean and atmospheric forcing.

  16. A framework for grand scale parallelization of the combined finite discrete element method in 2d

    NASA Astrophysics Data System (ADS)

    Lei, Z.; Rougier, E.; Knight, E. E.; Munjiza, A.

    2014-09-01

    Within the context of rock mechanics, the Combined Finite-Discrete Element Method (FDEM) has been applied to many complex industrial problems such as block caving, deep mining techniques (tunneling, pillar strength, etc.), rock blasting, seismic wave propagation, packing problems, dam stability, rock slope stability, rock mass strength characterization problems, etc. The reality is that most of these were accomplished in a 2D and/or single processor realm. In this work a hardware independent FDEM parallelization framework has been developed using the Virtual Parallel Machine for FDEM, (V-FDEM). With V-FDEM, a parallel FDEM software can be adapted to different parallel architecture systems ranging from just a few to thousands of cores.

  17. Identifying Source Mixing and Examining Water Chemistry Variations: The Carroll Cave - Toronto Springs System

    USDA-ARS?s Scientific Manuscript database

    Located in the Missouri Ozarks, Carroll Cave is a dendritic stream cave system, formed in Ordivician Gasconade dolomite. In 2002, a new survey effort was launched under the auspices of the Carroll Cave Conservancy to provide a comprehensive map of the system. Since that time, 29.89 km of estimated p...

  18. A review of factors affecting cave climates for hibernating bats in temperate North America

    Treesearch

    Roger W. Perry

    2013-01-01

    The fungal pathogen Geomyces destructans, which causes white-nose syndrome in bats, thrives in the cold and moist conditions found in caves where bats hibernate. To aid managers and researchers address this disease, an updated and accessible review of cave hibernacula and cave microclimates is presented. To maximize energy savings and reduce...

  19. 76 FR 1629 - Public Land Order No. 7757; Withdrawal of National Forest System Land for the Big Ice Cave; Montana

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... United States Forest Service to protect the Big Ice Cave, its subterranean water supply, and Federal... to protect the Big Ice Cave, its subterranean water supply, and Federal improvements. The Big Ice... protect the Big Ice Cave, its subterranean water supply, and Federal improvements: Custer National Forest...

  20. Application and research of block caving in Pulang copper mine

    NASA Astrophysics Data System (ADS)

    Ge, Qifa; Fan, Wenlu; Zhu, Weigen; Chen, Xiaowei

    2018-01-01

    The application of block caving in mines shows significant advantages in large scale, low cost and high efficiency, thus block caving is worth promoting in the mines that meets the requirement of natural caving. Due to large scale of production and low ore grade in Pulang copper mine in China, comprehensive analysis and research were conducted on rock mechanics, mining sequence, undercutting and stability of bottom structure in terms of raising mine benefit and maximizing the recovery mineral resources. Finally this study summarizes that block caving is completely suitable for Pulang copper mine.

  1. Microbiological and environmental issues in show caves.

    PubMed

    Saiz-Jimenez, Cesareo

    2012-07-01

    Cultural tourism expanded in the last half of the twentieth century, and the interest of visitors has come to include caves containing archaeological remains. Some show caves attracted mass tourism, and economical interests prevailed over conservation, which led to a deterioration of the subterranean environment and the rock art. The presence and the role of microorganisms in caves is a topic that is often ignored in cave management. Knowledge of the colonisation patterns, the dispersion mechanisms, and the effect on human health and, when present, over rock art paintings of these microorganisms is of the utmost importance. In this review the most recent advances in the study of microorganisms in caves are presented, together with the environmental implications of the findings.

  2. Parallel reduced-instruction-set-computer architecture for real-time symbolic pattern matching

    NASA Astrophysics Data System (ADS)

    Parson, Dale E.

    1991-03-01

    This report discusses ongoing work on a parallel reduced-instruction- set-computer (RISC) architecture for automatic production matching. The PRIOPS compiler takes advantage of the memoryless character of automatic processing by translating a program's collection of automatic production tests into an equivalent combinational circuit-a digital circuit without memory, whose outputs are immediate functions of its inputs. The circuit provides a highly parallel, fine-grain model of automatic matching. The compiler then maps the combinational circuit onto RISC hardware. The heart of the processor is an array of comparators capable of testing production conditions in parallel, Each comparator attaches to private memory that contains virtual circuit nodes-records of the current state of nodes and busses in the combinational circuit. All comparator memories hold identical information, allowing simultaneous update for a single changing circuit node and simultaneous retrieval of different circuit nodes by different comparators. Along with the comparator-based logic unit is a sequencer that determines the current combination of production-derived comparisons to try, based on the combined success and failure of previous combinations of comparisons. The memoryless nature of automatic matching allows the compiler to designate invariant memory addresses for virtual circuit nodes, and to generate the most effective sequences of comparison test combinations. The result is maximal utilization of parallel hardware, indicating speed increases and scalability beyond that found for course-grain, multiprocessor approaches to concurrent Rete matching. Future work will consider application of this RISC architecture to the standard (controlled) Rete algorithm, where search through memory dominates portions of matching.

  3. Automatic detection and visualisation of MEG ripple oscillations in epilepsy.

    PubMed

    van Klink, Nicole; van Rosmalen, Frank; Nenonen, Jukka; Burnos, Sergey; Helle, Liisa; Taulu, Samu; Furlong, Paul Lawrence; Zijlmans, Maeike; Hillebrand, Arjan

    2017-01-01

    High frequency oscillations (HFOs, 80-500 Hz) in invasive EEG are a biomarker for the epileptic focus. Ripples (80-250 Hz) have also been identified in non-invasive MEG, yet detection is impeded by noise, their low occurrence rates, and the workload of visual analysis. We propose a method that identifies ripples in MEG through noise reduction, beamforming and automatic detection with minimal user effort. We analysed 15 min of presurgical resting-state interictal MEG data of 25 patients with epilepsy. The MEG signal-to-noise was improved by using a cross-validation signal space separation method, and by calculating ~ 2400 beamformer-based virtual sensors in the grey matter. Ripples in these sensors were automatically detected by an algorithm optimized for MEG. A small subset of the identified ripples was visually checked. Ripple locations were compared with MEG spike dipole locations and the resection area if available. Running the automatic detection algorithm resulted in on average 905 ripples per patient, of which on average 148 ripples were visually reviewed. Reviewing took approximately 5 min per patient, and identified ripples in 16 out of 25 patients. In 14 patients the ripple locations showed good or moderate concordance with the MEG spikes. For six out of eight patients who had surgery, the ripple locations showed concordance with the resection area: 4/5 with good outcome and 2/3 with poor outcome. Automatic ripple detection in beamformer-based virtual sensors is a feasible non-invasive tool for the identification of ripples in MEG. Our method requires minimal user effort and is easily applicable in a clinical setting.

  4. Low-complexity piecewise-affine virtual sensors: theory and design

    NASA Astrophysics Data System (ADS)

    Rubagotti, Matteo; Poggi, Tomaso; Oliveri, Alberto; Pascucci, Carlo Alberto; Bemporad, Alberto; Storace, Marco

    2014-03-01

    This paper is focused on the theoretical development and the hardware implementation of low-complexity piecewise-affine direct virtual sensors for the estimation of unmeasured variables of interest of nonlinear systems. The direct virtual sensor is designed directly from measured inputs and outputs of the system and does not require a dynamical model. The proposed approach allows one to design estimators which mitigate the effect of the so-called 'curse of dimensionality' of simplicial piecewise-affine functions, and can be therefore applied to relatively high-order systems, enjoying convergence and optimality properties. An automatic toolchain is also presented to generate the VHDL code describing the digital circuit implementing the virtual sensor, starting from the set of measured input and output data. The proposed methodology is applied to generate an FPGA implementation of the virtual sensor for the estimation of vehicle lateral velocity, using a hardware-in-the-loop setting.

  5. Advances in Modal Analysis Using a Robust and Multiscale Method

    NASA Astrophysics Data System (ADS)

    Picard, Cécile; Frisson, Christian; Faure, François; Drettakis, George; Kry, Paul G.

    2010-12-01

    This paper presents a new approach to modal synthesis for rendering sounds of virtual objects. We propose a generic method that preserves sound variety across the surface of an object at different scales of resolution and for a variety of complex geometries. The technique performs automatic voxelization of a surface model and automatic tuning of the parameters of hexahedral finite elements, based on the distribution of material in each cell. The voxelization is performed using a sparse regular grid embedding of the object, which permits the construction of plausible lower resolution approximations of the modal model. We can compute the audible impulse response of a variety of objects. Our solution is robust and can handle nonmanifold geometries that include both volumetric and surface parts. We present a system which allows us to manipulate and tune sounding objects in an appropriate way for games, training simulations, and other interactive virtual environments.

  6. The evolution of cave systems from the surface to subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loucks, R.G.; Handford, C.R.

    1996-01-01

    Many carbonate reservoirs are the result of cave-forming processes. The origin and recognition of fractures, breccias, and sediment fills associated with paleocaves were determined through the study of modern and paleocaves systems. Cave formation and destruction are the products of near-surface processes. Near-surface processes include solutional excavation, clastic and chemical sedimentation, and collapse of cave walls and ceilings. Cave sediment is derived from inside and/or outside the system. Depositional mechanisms include suspension, tractional, mass-flow and rock-fall. Collapse of ceilings and walls from chaotic breakdown breccias. These piles can be tens of meters thick and contain large voids and variable amountsmore » of matrix. Cave-roof crackle breccia forms from stress-and tension-related fractures in cave-roof strata. As the cave-bearing strata subside into the subsurface, mechanical compaction increases and restructures the existing breccias and remaining cavities. Fracture porosity increases and breccia and vug porosity decreases. Large cavities collapse forming burial chaotic breakdown breccias. Differentially compacted strata over the collapsed chamber fracture and form burial cave-roof crackle breccias. Continued burial leads to more extensive mechanical compaction causing previously formed clasts to fracture and pack closer together. The resulting product is a rebrecciated chaotic breakdown breccia composed predominantly of small clasts. Rebrecciated blocks are often overprinted by crackling. Subsurface paleocave systems commonly have a complex history with several episodes of fracturing and brecciation. The resulting collapsed-paleocave reservoir targets are not single collapsed passages of tens of feet across, but are homogenized collapsed-cave systems hundreds to several thousand feet across.« less

  7. The evolution of cave systems from the surface to subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loucks, R.G.; Handford, C.R.

    1996-12-31

    Many carbonate reservoirs are the result of cave-forming processes. The origin and recognition of fractures, breccias, and sediment fills associated with paleocaves were determined through the study of modern and paleocaves systems. Cave formation and destruction are the products of near-surface processes. Near-surface processes include solutional excavation, clastic and chemical sedimentation, and collapse of cave walls and ceilings. Cave sediment is derived from inside and/or outside the system. Depositional mechanisms include suspension, tractional, mass-flow and rock-fall. Collapse of ceilings and walls from chaotic breakdown breccias. These piles can be tens of meters thick and contain large voids and variable amountsmore » of matrix. Cave-roof crackle breccia forms from stress-and tension-related fractures in cave-roof strata. As the cave-bearing strata subside into the subsurface, mechanical compaction increases and restructures the existing breccias and remaining cavities. Fracture porosity increases and breccia and vug porosity decreases. Large cavities collapse forming burial chaotic breakdown breccias. Differentially compacted strata over the collapsed chamber fracture and form burial cave-roof crackle breccias. Continued burial leads to more extensive mechanical compaction causing previously formed clasts to fracture and pack closer together. The resulting product is a rebrecciated chaotic breakdown breccia composed predominantly of small clasts. Rebrecciated blocks are often overprinted by crackling. Subsurface paleocave systems commonly have a complex history with several episodes of fracturing and brecciation. The resulting collapsed-paleocave reservoir targets are not single collapsed passages of tens of feet across, but are homogenized collapsed-cave systems hundreds to several thousand feet across.« less

  8. Does the Cave Environment Reduce Functional Diversity?

    PubMed Central

    Fernandes, Camile Sorbo; Batalha, Marco Antonio; Bichuette, Maria Elina

    2016-01-01

    Caves are not colonised by all taxa present in the surface species pool, due to absence of light and the tendency to food limitation when compared to surface communities. Under strong species sorting during colonisation and later by the restrictive environmental filter, traits that are not adaptive in subterranean habitats may be filtered out. We tested whether cave communities were assembled by the restrictive regime propitiated by permanent darkness or by competitive exclusion due to resource scarcity. When compared to surface communities, the restrictive subterranean regime would lead to lower functional diversity and phenotypic clustering inside the caves, and the opposite should be expected in the case of competitive exclusion. Using isopods (Oniscidea) as model taxa, we measured several niche descriptors of taxa from surface and cave habitats, used a multivariate measure of functional diversity, and compared their widths. We found phenotypic overdispersion and higher functional diversity in cave taxa when compared to surface taxa. On the one hand, the dry climate outside of caves hampered the survival of several taxa and their ecological strategies, not viable under severe desiccation risk, culminating in the clustering of functional traits. In contrast, this restriction does not occur inside of caves, where isopods find favourable conditions under lower predation pressures and more amenable environmental parameters that allow occupation and subsequent diversification. Our results showed that, at least for some taxa, caves may not be such a harsh environment as previously thought. The high functional diversity we found inside caves adds an additional reason for the conservation of these sensitive environments. PMID:27003837

  9. A 33,000-year-old incipient dog from the Altai Mountains of Siberia: evidence of the earliest domestication disrupted by the Last Glacial Maximum.

    PubMed

    Ovodov, Nikolai D; Crockford, Susan J; Kuzmin, Yaroslav V; Higham, Thomas F G; Hodgins, Gregory W L; van der Plicht, Johannes

    2011-01-01

    Virtually all well-documented remains of early domestic dog (Canis familiaris) come from the late Glacial and early Holocene periods (ca. 14,000-9000 calendar years ago, cal BP), with few putative dogs found prior to the Last Glacial Maximum (LGM, ca. 26,500-19,000 cal BP). The dearth of pre-LGM dog-like canids and incomplete state of their preservation has until now prevented an understanding of the morphological features of transitional forms between wild wolves and domesticated dogs in temporal perspective. We describe the well-preserved remains of a dog-like canid from the Razboinichya Cave (Altai Mountains of southern Siberia). Because of the extraordinary preservation of the material, including skull, mandibles (both sides) and teeth, it was possible to conduct a complete morphological description and comparison with representative examples of pre-LGM wild wolves, modern wolves, prehistoric domesticated dogs, and early dog-like canids, using morphological criteria to distinguish between wolves and dogs. It was found that the Razboinichya Cave individual is most similar to fully domesticated dogs from Greenland (about 1000 years old), and unlike ancient and modern wolves, and putative dogs from Eliseevichi I site in central Russia. Direct AMS radiocarbon dating of the skull and mandible of the Razboinichya canid conducted in three independent laboratories resulted in highly compatible ages, with average value of ca. 33,000 cal BP. The Razboinichya Cave specimen appears to be an incipient dog that did not give rise to late Glacial-early Holocene lineages and probably represents wolf domestication disrupted by the climatic and cultural changes associated with the LGM. The two earliest incipient dogs from Western Europe (Goyet, Belguim) and Siberia (Razboinichya), separated by thousands of kilometers, show that dog domestication was multiregional, and thus had no single place of origin (as some DNA data have suggested) and subsequent spread.

  10. Locally adapted fish populations maintain small-scale genetic differentiation despite perturbation by a catastrophic flood event

    PubMed Central

    2010-01-01

    Background Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence, lead to speciation. Perturbations by catastrophic events, however, can distort such parapatric ecological speciation processes. Here, we asked whether an exceptionally strong flood led to homogenization of gene pools among locally adapted populations of the Atlantic molly (Poecilia mexicana, Poeciliidae) in the Cueva del Azufre system in southern Mexico, where two strong environmental selection factors (darkness within caves and/or presence of toxic H2S in sulfidic springs) drive the diversification of P. mexicana. Nine nuclear microsatellites as well as heritable female life history traits (both as a proxy for quantitative genetics and for trait divergence) were used as markers to compare genetic differentiation, genetic diversity, and especially population mixing (immigration and emigration) before and after the flood. Results Habitat type (i.e., non-sulfidic surface, sulfidic surface, or sulfidic cave), but not geographic distance was the major predictor of genetic differentiation. Before and after the flood, each habitat type harbored a genetically distinct population. Only a weak signal of individual dislocation among ecologically divergent habitat types was uncovered (with the exception of slightly increased dislocation from the Cueva del Azufre into the sulfidic creek, El Azufre). By contrast, several lines of evidence are indicative of increased flood-induced dislocation within the same habitat type, e.g., between different cave chambers of the Cueva del Azufre. Conclusions The virtual absence of individual dislocation among ecologically different habitat types indicates strong natural selection against migrants. Thus, our current study exemplifies that ecological speciation in this and other systems, in which extreme environmental factors drive speciation, may be little affected by temporary perturbations, as adaptations to physico-chemical stressors may directly affect the survival probability in divergent habitat types. PMID:20731863

  11. Locally adapted fish populations maintain small-scale genetic differentiation despite perturbation by a catastrophic flood event.

    PubMed

    Plath, Martin; Hermann, Bernd; Schröder, Christiane; Riesch, Rüdiger; Tobler, Michael; García de León, Francisco J; Schlupp, Ingo; Tiedemann, Ralph

    2010-08-23

    Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence, lead to speciation. Perturbations by catastrophic events, however, can distort such parapatric ecological speciation processes. Here, we asked whether an exceptionally strong flood led to homogenization of gene pools among locally adapted populations of the Atlantic molly (Poecilia mexicana, Poeciliidae) in the Cueva del Azufre system in southern Mexico, where two strong environmental selection factors (darkness within caves and/or presence of toxic H2S in sulfidic springs) drive the diversification of P. mexicana. Nine nuclear microsatellites as well as heritable female life history traits (both as a proxy for quantitative genetics and for trait divergence) were used as markers to compare genetic differentiation, genetic diversity, and especially population mixing (immigration and emigration) before and after the flood. Habitat type (i.e., non-sulfidic surface, sulfidic surface, or sulfidic cave), but not geographic distance was the major predictor of genetic differentiation. Before and after the flood, each habitat type harbored a genetically distinct population. Only a weak signal of individual dislocation among ecologically divergent habitat types was uncovered (with the exception of slightly increased dislocation from the Cueva del Azufre into the sulfidic creek, El Azufre). By contrast, several lines of evidence are indicative of increased flood-induced dislocation within the same habitat type, e.g., between different cave chambers of the Cueva del Azufre. The virtual absence of individual dislocation among ecologically different habitat types indicates strong natural selection against migrants. Thus, our current study exemplifies that ecological speciation in this and other systems, in which extreme environmental factors drive speciation, may be little affected by temporary perturbations, as adaptations to physico-chemical stressors may directly affect the survival probability in divergent habitat types.

  12. A stochastic approach for automatic generation of urban drainage systems.

    PubMed

    Möderl, M; Butler, D; Rauch, W

    2009-01-01

    Typically, performance evaluation of new developed methodologies is based on one or more case studies. The investigation of multiple real world case studies is tedious and time consuming. Moreover extrapolating conclusions from individual investigations to a general basis is arguable and sometimes even wrong. In this article a stochastic approach is presented to evaluate new developed methodologies on a broader basis. For the approach the Matlab-tool "Case Study Generator" is developed which generates a variety of different virtual urban drainage systems automatically using boundary conditions e.g. length of urban drainage system, slope of catchment surface, etc. as input. The layout of the sewer system is based on an adapted Galton-Watson branching process. The sub catchments are allocated considering a digital terrain model. Sewer system components are designed according to standard values. In total, 10,000 different virtual case studies of urban drainage system are generated and simulated. Consequently, simulation results are evaluated using a performance indicator for surface flooding. Comparison between results of the virtual and two real world case studies indicates the promise of the method. The novelty of the approach is that it is possible to get more general conclusions in contrast to traditional evaluations with few case studies.

  13. Locating single-point sources from arrival times containing large picking errors (LPEs): the virtual field optimization method (VFOM)

    NASA Astrophysics Data System (ADS)

    Li, Xi-Bing; Wang, Ze-Wei; Dong, Long-Jun

    2016-01-01

    Microseismic monitoring systems using local location techniques tend to be timely, automatic and stable. One basic requirement of these systems is the automatic picking of arrival times. However, arrival times generated by automated techniques always contain large picking errors (LPEs), which may make the location solution unreliable and cause the integrated system to be unstable. To overcome the LPE issue, we propose the virtual field optimization method (VFOM) for locating single-point sources. In contrast to existing approaches, the VFOM optimizes a continuous and virtually established objective function to search the space for the common intersection of the hyperboloids, which is determined by sensor pairs other than the least residual between the model-calculated and measured arrivals. The results of numerical examples and in-site blasts show that the VFOM can obtain more precise and stable solutions than traditional methods when the input data contain LPEs. Furthermore, we discuss the impact of LPEs on objective functions to determine the LPE-tolerant mechanism, velocity sensitivity and stopping criteria of the VFOM. The proposed method is also capable of locating acoustic sources using passive techniques such as passive sonar detection and acoustic emission.

  14. iCAVE: an open source tool for visualizing biomolecular networks in 3D, stereoscopic 3D and immersive 3D

    PubMed Central

    Liluashvili, Vaja; Kalayci, Selim; Fluder, Eugene; Wilson, Manda; Gabow, Aaron

    2017-01-01

    Abstract Visualizations of biomolecular networks assist in systems-level data exploration in many cellular processes. Data generated from high-throughput experiments increasingly inform these networks, yet current tools do not adequately scale with concomitant increase in their size and complexity. We present an open source software platform, interactome-CAVE (iCAVE), for visualizing large and complex biomolecular interaction networks in 3D. Users can explore networks (i) in 3D using a desktop, (ii) in stereoscopic 3D using 3D-vision glasses and a desktop, or (iii) in immersive 3D within a CAVE environment. iCAVE introduces 3D extensions of known 2D network layout, clustering, and edge-bundling algorithms, as well as new 3D network layout algorithms. Furthermore, users can simultaneously query several built-in databases within iCAVE for network generation or visualize their own networks (e.g., disease, drug, protein, metabolite). iCAVE has modular structure that allows rapid development by addition of algorithms, datasets, or features without affecting other parts of the code. Overall, iCAVE is the first freely available open source tool that enables 3D (optionally stereoscopic or immersive) visualizations of complex, dense, or multi-layered biomolecular networks. While primarily designed for researchers utilizing biomolecular networks, iCAVE can assist researchers in any field. PMID:28814063

  15. Pisgah Lava Cave Communication Test: Science Case Study for the Networked Constellations Initiative

    NASA Technical Reports Server (NTRS)

    Belov, K.; Ellison, D.; Fraeman, A.

    2017-01-01

    As part of the science case study for the Networked Constellations initiative, a team of JPL scientists explore the possibility of a mission to study the lava caves on Mars. Natural caves on Mars and the Moon present a unique opportunity to learn about the planetary geology and to provide a shelter for human explorers. Due to power and communication challenges, a network of assets has significant advantages over a single asset sent inside a cave. However, communication between the assets and the data downlink present significant difficulties due to the presence of rough walls, boulders, and other obstacles with unknown dielectric constant inside a typical cave, disturbing the propagation of the radio waves. A detailed study is needed to establish the limitations of the current communication technologies and to develop requirements for the new communication technology applicable to the cave environment. On May 4 of 2017, Konstantin Belov, Doug Ellison, and Abby Fraeman visited a lava cave in Pisgah, CA. The purpose of the visit was to build a 3D map of the cave, which could be used to create a model of radio wave propagation, and to conduct a series of communication tests using off-the-shelf equipment to verify the in-cave communication challenges. This experiment should be considered as a simple 'proof of concept' and is the subject of this report.

  16. iCAVE: an open source tool for visualizing biomolecular networks in 3D, stereoscopic 3D and immersive 3D.

    PubMed

    Liluashvili, Vaja; Kalayci, Selim; Fluder, Eugene; Wilson, Manda; Gabow, Aaron; Gümüs, Zeynep H

    2017-08-01

    Visualizations of biomolecular networks assist in systems-level data exploration in many cellular processes. Data generated from high-throughput experiments increasingly inform these networks, yet current tools do not adequately scale with concomitant increase in their size and complexity. We present an open source software platform, interactome-CAVE (iCAVE), for visualizing large and complex biomolecular interaction networks in 3D. Users can explore networks (i) in 3D using a desktop, (ii) in stereoscopic 3D using 3D-vision glasses and a desktop, or (iii) in immersive 3D within a CAVE environment. iCAVE introduces 3D extensions of known 2D network layout, clustering, and edge-bundling algorithms, as well as new 3D network layout algorithms. Furthermore, users can simultaneously query several built-in databases within iCAVE for network generation or visualize their own networks (e.g., disease, drug, protein, metabolite). iCAVE has modular structure that allows rapid development by addition of algorithms, datasets, or features without affecting other parts of the code. Overall, iCAVE is the first freely available open source tool that enables 3D (optionally stereoscopic or immersive) visualizations of complex, dense, or multi-layered biomolecular networks. While primarily designed for researchers utilizing biomolecular networks, iCAVE can assist researchers in any field. © The Authors 2017. Published by Oxford University Press.

  17. Automatic Optimization of Wayfinding Design.

    PubMed

    Huang, Haikun; Lin, Ni-Ching; Barrett, Lorenzo; Springer, Darian; Wang, Hsueh-Cheng; Pomplun, Marc; Yu, Lap-Fai

    2017-10-10

    Wayfinding signs play an important role in guiding users to navigate in a virtual environment and in helping pedestrians to find their ways in a real-world architectural site. Conventionally, the wayfinding design of a virtual environment is created manually, so as the wayfinding design of a real-world architectural site. The many possible navigation scenarios, and the interplay between signs and human navigation, can make the manual design process overwhelming and non-trivial. As a result, creating a wayfinding design for a typical layout can take months to several years. In this paper, we introduce the Way to Go! approach for automatically generating a wayfinding design for a given layout. The designer simply has to specify some navigation scenarios; our approach will automatically generate an optimized wayfinding design with signs properly placed considering human agents' visibility and possibility of making navigation mistakes. We demonstrate the effectiveness of our approach in generating wayfinding designs for different layouts. We evaluate our results by comparing different wayfinding designs and show that our optimized designs can guide pedestrians to their destinations effectively. Our approach can also help the designer visualize the accessibility of a destination from different locations, and correct any "blind zone" with additional signs.

  18. Feasibility of training athletes for high-pressure situations using virtual reality.

    PubMed

    Stinson, Cheryl; Bowman, Doug A

    2014-04-01

    Virtual reality (VR) has been successfully applied to a broad range of training domains; however, to date there is little research investigating its benefits for sport psychology training. We hypothesized that using high-fidelity VR systems to display realistic 3D sport environments could trigger anxiety, allowing resilience-training systems to prepare athletes for real-world, highpressure situations. In this work we investigated the feasibility and usefulness of using VR for sport psychology training. We developed a virtual soccer goalkeeping application for the Virginia Tech Visionarium VisCube (a CAVE-like display system), in which users defend against simulated penalty kicks using their own bodies. Using the application, we ran a controlled, within-subjects experiment with three independent variables: known anxiety triggers, field of regard, and simulation fidelity. The results demonstrate that a VR sport-oriented system can induce increased anxiety (physiological and subjective measures) compared to a baseline condition. There were a number of main effects and interaction effects for all three independent variables in terms of the subjective measures of anxiety. Both known anxiety triggers and simulation fidelity had a direct relationship to anxiety, while field of regard had an inverse relationship. Overall, the results demonstrate great potential for VR sport psychology training systems; however, further research is needed to determine if training in a VR environment can lead to long-term reduction in sport-induced anxiety.

  19. From Cave Walls to Clay Images

    ERIC Educational Resources Information Center

    Stone, Julie

    2004-01-01

    About 15,000 BC, the bison and other animals roamed the land and cave people, in their spare time, found colorful, chalky rocks with which to play. Over the course of time, they found that the chalky rocks would rub off on the cave walls, thus cave paintings and the pursuit of art was born. This article describes one fourth-grade classroom's…

  20. Summit firn caves, mount rainier, washington.

    PubMed

    Kiver, E P; Mumma, M D

    1971-07-23

    Heat and steam from the crater fumaroles have melted over 5700 feet (1737 meters) of cave passage in the ice-filled east crater of Mount Rainier. The caves are in approximate balance with the present geothermal heat release. Future changes in the thermal activity of the summit cone will cause corresponding changes in cave passage dimensions, location, and ceiling and wall ablation features.

  1. A high-precision chronological model for the decorated Upper Paleolithic cave of Chauvet-Pont d'Arc, Ardèche, France.

    PubMed

    Quiles, Anita; Valladas, Hélène; Bocherens, Hervé; Delqué-Količ, Emmanuelle; Kaltnecker, Evelyne; van der Plicht, Johannes; Delannoy, Jean-Jacques; Feruglio, Valérie; Fritz, Carole; Monney, Julien; Philippe, Michel; Tosello, Gilles; Clottes, Jean; Geneste, Jean-Michel

    2016-04-26

    Radiocarbon dates for the ancient drawings in the Chauvet-Pont d'Arc Cave revealed ages much older than expected. These early ages and nature of this Paleolithic art make this United Nations Educational, Scientific and Cultural Organization (UNESCO) site indisputably unique. A large, multidisciplinary dating program has recently mapped the anthropological evolution associated with the cave. More than 350 dates (by (14)C, U-Th, TL and (36)Cl) were obtained over the last 15 y. They include 259 radiocarbon dates, mainly related to the rock art and human activity in the cave. We present here more than 80 previously unpublished dates. All of the dates were integrated into a high-precision Bayesian model based on archaeological evidence to securely reconstruct the complete history of the Chauvet-Pont d'Arc Cave on an absolute timescale. It shows that there were two distinct periods of human activity in the cave, one from 37 to 33,500 y ago, and the other from 31 to 28,000 y ago. Cave bears also took refuge in the cave until 33,000 y ago.

  2. A high-precision chronological model for the decorated Upper Paleolithic cave of Chauvet-Pont d’Arc, Ardèche, France

    PubMed Central

    Quiles, Anita; Valladas, Hélène; Bocherens, Hervé; Delqué-Količ, Emmanuelle; Kaltnecker, Evelyne; van der Plicht, Johannes; Delannoy, Jean-Jacques; Feruglio, Valérie; Fritz, Carole; Monney, Julien; Philippe, Michel; Tosello, Gilles; Clottes, Jean; Geneste, Jean-Michel

    2016-01-01

    Radiocarbon dates for the ancient drawings in the Chauvet-Pont d’Arc Cave revealed ages much older than expected. These early ages and nature of this Paleolithic art make this United Nations Educational, Scientific and Cultural Organization (UNESCO) site indisputably unique. A large, multidisciplinary dating program has recently mapped the anthropological evolution associated with the cave. More than 350 dates (by 14C, U-Th, TL and 36Cl) were obtained over the last 15 y. They include 259 radiocarbon dates, mainly related to the rock art and human activity in the cave. We present here more than 80 previously unpublished dates. All of the dates were integrated into a high-precision Bayesian model based on archaeological evidence to securely reconstruct the complete history of the Chauvet-Pont d’Arc Cave on an absolute timescale. It shows that there were two distinct periods of human activity in the cave, one from 37 to 33,500 y ago, and the other from 31 to 28,000 y ago. Cave bears also took refuge in the cave until 33,000 y ago. PMID:27071106

  3. Vision-mediated interaction with the Nottingham caves

    NASA Astrophysics Data System (ADS)

    Ghali, Ahmed; Bayomi, Sahar; Green, Jonathan; Pridmore, Tony; Benford, Steve

    2003-05-01

    The English city of Nottingham is widely known for its rich history and compelling folklore. A key attraction is the extensive system of caves to be found beneath Nottingham Castle. Regular guided tours are made of the Nottingham caves, during which castle staff tell stories and explain historical events to small groups of visitors while pointing out relevant cave locations and features. The work reported here is part of a project aimed at enhancing the experience of cave visitors, and providing flexible storytelling tools to their guides, by developing machine vision systems capable of identifying specific actions of guides and/or visitors and triggering audio and/or video presentations as a result. Attention is currently focused on triggering audio material by directing the beam of a standard domestic flashlight towards features of interest on the cave wall. Cameras attached to the walls or roof provide image sequences within which torch light and cave features are detected and their relative positions estimated. When a target feature is illuminated the corresponding audio response is generated. We describe the architecture of the system, its implementation within the caves and the results of initial evaluations carried out with castle guides and members of the public.

  4. Spatiotemporal analysis of air conditions as a tool for the environmental management of a show cave (Cueva del Agua, Spain)

    NASA Astrophysics Data System (ADS)

    Fernandez-Cortes, A.; Calaforra, J. M.; Sanchez-Martos, F.

    We recorded the air temperature and carbon dioxide concentration within the Cueva del Agua, a cave in Spain, under natural conditions prior to the cave being opened to tourists. Geostatistical tools are useful techniques for characterizing microclimate parameters with the aim of adopting measures to ensure the conservation and sound environmental management of tourist caves. We modelled the spatial distribution of these microclimatic parameters over an annual cycle using iterative residual kriging, revealing the stratification of air related to the cave's topography. Replenishment of the cave air is activated by convective circulation that accompanies the development of inversions in the thermal gradient of the air. Comparison of the spatial distribution of each microclimatic parameter over time enables us to characterize the exchange of air between the cave interior and the outside, as well as identify potential areas that could be opened to tourists and determine suitable visiting schedules.

  5. Collapse of caves at shallow depth in Gaziantep city center, Turkey: a case study

    NASA Astrophysics Data System (ADS)

    Canakci, Hanifi

    2007-12-01

    This paper focuses on an investigation of the possible causes for the collapse of limestone caves in Gaziantep, Turkey. The city contains a lot of man-made caves, at a shallow depth, of various width and length. These caves were mainly excavated to provide work or storage space. As the city has been growing fast with increased population, many structures were constructed over these caves. Recently, two caves collapsed and five houses were damaged. These caves are all made of limestone and it was observed after the collapse that the limestone was saturated with water due to sewer pipe leakage and surface water. Tests were carried out on the limestone and it was determined that the compressive strength of limestone decreases by about 50% and the tensile strength decreased by about 80% when saturated with water. It was concluded that the reduced strength of the limestone combined with additional loads due to the factors mentioned above seem to be the main reason for these collapses.

  6. Isotopic evidence for omnivory among European cave bears: Late Pleistocene Ursus spelaeus from the Peştera cu Oase, Romania

    PubMed Central

    Richards, Michael P.; Pacher, Martina; Stiller, Mathias; Quilès, Jérôme; Hofreiter, Michael; Constantin, Silviu; Zilhão, João; Trinkaus, Erik

    2008-01-01

    Previous bone collagen carbon and nitrogen isotopic studies of Late Pleistocene European cave bears (Ursus spelaeus) have shown that these bears frequently had low nitrogen isotope values, similar to those of herbivores and indicating either unusual physiology related to hibernation or a herbivorous diet. Isotopic analysis of animal bone from the Peştera cu Oase (Cave with Bones), Romania, shows that most of its cave bears had higher nitrogen isotope values than the associated herbivores and were, therefore, omnivorous. The Oase bears are securely identified as cave bears by both their morphology and DNA sequences. Although many cave bear populations may have behaved like herbivores, the Oase isotopic data demonstrate that cave bears were capable of altering their diets to become omnivores or even carnivores. These data therefore broaden the dietary profile of U. spelaeus and raise questions about the nature of the carnivore guild in Pleistocene Europe. PMID:18187577

  7. Tamarugite in the Steam-Condensate Alteration Paragenesis in Diana Cave (SW Romania)

    NASA Astrophysics Data System (ADS)

    Puscas, C. M.; Onac, B. P.; Effenberger, H. S.; Povară, I.

    2012-12-01

    The double-salt hydrate tamarugite [NaAl(SO4)2 6H2O] is an uncommon mineral in the cave environment, forming as a result of chemical reactions between water and bedrock only under very specific conditions. The Diana Cave hosts a unique tamarugite occurrence, the first one to be reported from a typical karst environment. The cave is located within the limits of Băile Herculane township in the Cerna Mountains, SW Romania. It consists of a 14 m long, westward-oriented single passage, developed along the Diana Fault. In 1974 a concrete-clad mine gallery was created to channel the thermal water (Diana 1+2 Spring) flowing through the cave to a pumping station. The spring's chemical and physical parameters fluctuated through time, averaging 51.98° C, discharge of 0.96 Ls-1, pH of 7.46, 5768.66 ppm TDS, 9303 μScm-1 conductivity, 5.02 salinity. The major chemical components of the thermo-mineral water in Diana Cave are, Na+ (1392.57 ppm), K+ (58.55 ppm), Ca2+ (725.16 ppm), Mg2+ (10.78 ppm), Cl- (3376.83 ppm), and SO42- (92.27 ppm), and H2S (24.05 ppm), with traces of Si, Fe2+, Br+, I-, and Li+. The general air circulation pattern within the cave is fairly simple: cold air from the outside sweeps into the cave along the floor, heats up at the contact with the thermo-mineral water, ascends, and exists the cave along the ceiling. At the contact with the cold walls of the Diana Cave, the hot steam condenses and gives rise to a rich and exotic sulfate-mineral paragenesis (including halotrichite-series minerals, gypsum, bassanite, anhydrite, epsomite, alunite, halite, native sulfur, etc.). The most exotic minerals precipitate at or below the contact between the Tithonic - Neocomian limestone and the overlaying Cretaceous shaly limestone, as a result of steam-condensate alteration. Minerogenetic mechanisms responsible for the peculiar sulfate mineral assemblage in Diana Cave are evaporation, oxidation, hydrolysis, double exchange reactions, and deposition from vapours or possibly aerosols. This highly aggressive alteration of the carbonate rock (known as sulfuric acid speleogenesis) extends from the ceiling of the cave downward to, or slightly below, the water table and is responsible for further enlargement of cave passages. Given the availability of SO42-, gypsum replacement crusts form in the subaerial part of the cave, as well as thin gypsum rafts at the water surface. The presence of tamarugite indicates sufficiently strong acid conditions in the steam-condensate film to dissolve clay minerals, releasing Na+ and Al3+ into the geochemical system. Conditions conducive to tamarugite precipitation in carbonate caves seem to be the presence of: 1) thermo-mineral water, which through surface evaporation and condensation on the cold cave walls causes steam-condensate alteration processes, 2) sulfuric acid, and 3) a constant source of Al3+ and Na+. Such conditions are seldom fulfilled in any ordinary limestone caves. The bedrock geology and the particular tectonics and hydrogeology of the Băile Herculane area seem to be the essential prerequisites, not only for the development of hypogene karst, but also for producing an outstanding cave mineral assemblage.

  8. Evolution of arched roofs in salt caves: Role of gravity-induced stress and relative air humidity and temperature changes (Zagros Mts., Iran)

    NASA Astrophysics Data System (ADS)

    Bruthans, Jiri; Filippi, Michal; Zare, Mohammad

    2016-04-01

    In salt caves in the halite karst in SE Iran the disintegration of rock salt into individual grains can be observed. Highly disintegrated blocks and individual grains form a major volume of debris in many caves on islands in the Persian Gulf. Larger cave rooms have often perfectly arched roof. The perfect geometry of rooms and interlocking of salt grains indicate that evolution of room cross-sections in these caves is controlled by feedback between gravity-induced stress and rock salt disintegration in similar way as in evolution of sandstone landforms (Bruthans et al. 2014). Those portions of rock salt, which are under compressional stress, disintegrate much slower than portions under tensile stress. Important question is the kind of weathering mechanism responsible for intergranular disintegration of rock salt. The relationship between disintegration, its rate and cave climate was studied. Clearly the fastest disintegration rate was found in caves with strong air circulation (i.e, short caves with large cross-sections, open on both ends). Temperature and air humidity changes are considerable in these caves. On the other hand the disintegration is very slow in the inner parts of long caves with slow air circulation or caves with one entrance. The best example of such caves is the inner part of 3N Cave on Namakdan salt diapir with nearly no air circulation and stable temperature and humidity, where disintegration of rock salt into grains is missing. Strong effect of cave climate on disintegration rate can be explained by deliquescence properties of halite. Halite is absorbing air moisture forming NaCl solution if relative humidity (RH) exceeds 75 % (at 20-30 oC). In the Persian Gulf region the RH of the air is passing the 75 % threshold in case of 91% days (Qeshm Island, years 2002-2005), while in mountainous areas in mainland this threshold is less commonly reached. In most of nights (91 %) in Persian Gulf the air with RH >75 % is entering the salt caves and air moisture is wetting the dry rock and slightly diluting the percolating brine in ceiling of the caves, which is otherwise just saturated with respect to halite. During days the RH is <75% and brine partly dries up and precipitates halite. By repeating the cycle of dissolution and precipitation of halite and possibly also by temperature changes the rock salt is disintegrated into interlocked salt grains, whose behavior is then strongly controlled by gravity-induced stress. Research was funded by the Czech Science Foundation (GA CR No. 16-19459S). Reference: Bruthans J, Soukup J., Vaculíková J., Filippi M., Schweigstillova J., Mayo A.L., Masin D., Kletetschka G.,Rihosek J. (2014): Sandstone landforms shaped by negative feedback between stress and erosion. Nature Geoscience 7(8): 597-601.

  9. Automatic 3D virtual scenes modeling for multisensors simulation

    NASA Astrophysics Data System (ADS)

    Latger, Jean; Le Goff, Alain; Cathala, Thierry; Larive, Mathieu

    2006-05-01

    SEDRIS that stands for Synthetic Environment Data Representation and Interchange Specification is a DoD/DMSO initiative in order to federate and make interoperable 3D mocks up in the frame of virtual reality and simulation. This paper shows an original application of SEDRIS concept for research physical multi sensors simulation, when SEDRIS is more classically known for training simulation. CHORALE (simulated Optronic Acoustic Radar battlefield) is used by the French DGA/DCE (Directorate for Test and Evaluation of the French Ministry of Defense) to perform multi-sensors simulations. CHORALE enables the user to create virtual and realistic multi spectral 3D scenes, and generate the physical signal received by a sensor, typically an IR sensor. In the scope of this CHORALE workshop, French DGA has decided to introduce a SEDRIS based new 3D terrain modeling tool that enables to create automatically 3D databases, directly usable by the physical sensor simulation CHORALE renderers. This AGETIM tool turns geographical source data (including GIS facilities) into meshed geometry enhanced with the sensor physical extensions, fitted to the ray tracing rendering of CHORALE, both for the infrared, electromagnetic and acoustic spectrum. The basic idea is to enhance directly the 2D source level with the physical data, rather than enhancing the 3D meshed level, which is more efficient (rapid database generation) and more reliable (can be generated many times, changing some parameters only). The paper concludes with the last current evolution of AGETIM in the scope mission rehearsal for urban war using sensors. This evolution includes indoor modeling for automatic generation of inner parts of buildings.

  10. The Design of a Chemical Virtual Instrument Based on LabVIEW for Determining Temperatures and Pressures.

    PubMed

    Wang, Wen-Bin; Li, Jang-Yuan; Wu, Qi-Jun

    2007-01-01

    A LabVIEW-based self-constructed chemical virtual instrument (VI) has been developed for determining temperatures and pressures. It can be put together easily and quickly by selecting hardware modules, such as the PCI-DAQ card or serial port method, different kinds of sensors, signal-conditioning circuits or finished chemical instruments, and software modules such as data acquisition, saving, proceeding. The VI system provides individual and extremely flexible solutions for automatic measurements in physical chemistry research.

  11. The Design of a Chemical Virtual Instrument Based on LabVIEW for Determining Temperatures and Pressures

    PubMed Central

    Wang, Wen-Bin; Li, Jang-Yuan; Wu, Qi-Jun

    2007-01-01

    A LabVIEW-based self-constructed chemical virtual instrument (VI) has been developed for determining temperatures and pressures. It can be put together easily and quickly by selecting hardware modules, such as the PCI-DAQ card or serial port method, different kinds of sensors, signal-conditioning circuits or finished chemical instruments, and software modules such as data acquisition, saving, proceeding. The VI system provides individual and extremely flexible solutions for automatic measurements in physical chemistry research. PMID:17671611

  12. Emohawk: Searching for a "Good" Emergent Narrative

    NASA Astrophysics Data System (ADS)

    Brom, Cyril; Bída, Michal; Gemrot, Jakub; Kadlec, Rudolf; Plch, Tomáš

    We report on the progress we have achieved in development of Emohawk, a 3D virtual reality application with an emergent narrative for teaching high-school students and undergraduates the basics of virtual characters control, emotion modelling, and narrative generation. Besides, we present a new methodology, used in Emohawk, for purposeful authoring of emergent narratives of Façade's complexity. The methodology is based on massive automatic search for stories that are appealing to the audience whilst forbidding the unappealing ones during the design phase.

  13. Automatic delineation and 3D visualization of the human ventricular system using probabilistic neural networks

    NASA Astrophysics Data System (ADS)

    Hatfield, Fraser N.; Dehmeshki, Jamshid

    1998-09-01

    Neurosurgery is an extremely specialized area of medical practice, requiring many years of training. It has been suggested that virtual reality models of the complex structures within the brain may aid in the training of neurosurgeons as well as playing an important role in the preparation for surgery. This paper focuses on the application of a probabilistic neural network to the automatic segmentation of the ventricles from magnetic resonance images of the brain, and their three dimensional visualization.

  14. Isotopic variability of cave bears (δ15N, δ13C) across Europe during MIS 3

    NASA Astrophysics Data System (ADS)

    Krajcarz, Magdalena; Pacher, Martina; Krajcarz, Maciej T.; Laughlan, Lana; Rabeder, Gernot; Sabol, Martin; Wojtal, Piotr; Bocherens, Hervé

    2016-01-01

    Collagen, the organic fraction of bone, records the isotopic parameters of consumed food for carbon (δ13C) and nitrogen (δ15N). This relationship of isotopic signature between diet and tissue is an important tool for the study of dietary preferences of modern and fossil animal species. Since the first information on the isotopic signature of cave bear was reported, numerous data from Europe have become available. The goal of this work is to track the geographical variation of cave bear collagen isotopic values in Europe during Marine Isotopic Stage 3 (about 60,000-25,000 yr BP). In this study the results of new δ13C and δ15N isotopic analyses of cave bear collagen from four Central-Eastern European sites are presented, as well as a review of all published isotopic data for cave bears of the same period. The main conclusion is a lack of geographical East-West pattern in the variations of δ13C and δ15N values of cave bear collagen. Moreover, no relationship was found between cave bear taxonomy and isotopic composition. The cave bears from Central-Eastern Europe exhibit δ13C and δ15N values near the average of the range of Central, Western and Southern European cave bears. Despite the fact that most cave bear sites follow an altitudinal gradient, separate groups of sites exhibit shift in absolute values of δ13C, what disturbs an altitude-related isotopic pattern. The most distinct groups are: high Alpine sites situated over 1500 m a.s.l. - in terms of δ13C; and two Romanian sites Peştera cu Oase and Urşilor - in case of δ15N. Although the cave bear isotopic signature is driven by altitude, the altitudinal adjustment of isotopic data is not enough to explain the isotopic dissimilarity of these cave bears. The unusually high δ15N signature of mentioned Romanian sites is an isolated case in Europe. Cave bears from relatively closely situated Central-Eastern European sites and other Romanian sites are more similar to Western European than to Romanian populations in terms of isotopic composition, and probably ecology.

  15. Using stable isotopes of carbon to investigate the seasonal variation of carbon transfer in a northwestern Arkansas cave

    USGS Publications Warehouse

    Knierim, Katherine J.; Pollock, Erik; Hays, Phillip D.; Khojasteh, Jam

    2015-01-01

    Stable-isotope analyses are valuable in karst settings, where characterizing biogeochemical cycling of carbon along groundwater flow paths is critical for understanding and protecting sensitive cave and karst water resources. This study quantified the seasonal changes in concentration and isotopic composition (δ13C) of aqueous and gaseous carbon species—dissolved inorganic carbon (DIC) and gaseous carbon dioxide (CO2)—to characterize sources and transfer of these species along a karst flow path, with emphasis on a cave environment. Gas and water samples were collected from the soil and a cave in northwestern Arkansas approximately once a month for one year to characterize carbon cycling along a conceptual groundwater flow path. In the soil, as the DIC concentration increased, the isotopic composition of the DIC became relatively lighter, indicating an organic carbon source for a component of the DIC and corroborating soil DIC as a proxy for soil respiration. In the cave, a positive correlation between DIC and surface temperature was due to increased soil respiration as the organic carbon signal from the soil was transferred to the cave environment via the aqueous phase. CO2 concentration was lowest in the cave during colder months and increased exponentially with increasing surface temperature, presumably due to higher rates of soil respiration during warmer periods and changing ventilation patterns between the surface and cave atmosphere. Isotopic disequilibrium between CO2 and DIC in the cave was greatest when CO2 concentration was changing during November/ December and March/April, presumably due to the rapid addition or removal of gaseous CO2. The isotopic disequilibrium between DIC and CO2 provided evidence that cave CO2 was a mixture of carbon from several sources, which was mostly constrained by mixture between atmospheric CO2 and soil CO2. The concentration and isotopic composition of gaseous and aqueous carbon species were controlled by month-to-month variations in temperature and precipitation and provided insight into the sources of carbon in the cave. Stable carbon isotope ratios provided an effective tool to explore carbon transfer from the soil zone and into the cave, identify carbon sources in the cave, and investigate how seasonality affected the transfer of carbon in a shallow karst system.

  16. Geochemical Investigation of Source Water to Cave Springs, Great Basin National Park, White Pine County, Nevada

    USGS Publications Warehouse

    Prudic, David E.; Glancy, Patrick A.

    2009-01-01

    Cave Springs supply the water for the Lehman Caves Visitor Center at Great Basin National Park, which is about 60 miles east of Ely, Nevada, in White Pine County. The source of water to the springs was investigated to evaluate the potential depletion caused by ground-water pumping in areas east of the park and to consider means to protect the supply from contamination. Cave Springs are a collection of several small springs that discharge from alluvial and glacial deposits near the contact between quartzite and granite. Four of the largest springs are diverted into a water-collection system for the park. Water from Cave Springs had more dissolved strontium, calcium, and bicarbonate, and a heavier value of carbon-13 than water from Marmot Spring at the contact between quartzite and granite near Baker Creek campground indicating that limestone had dissolved into water at Cave Springs prior to discharging. The source of the limestone at Cave Springs was determined to be rounded gravels from a pit near Baker, Nevada, which was placed around the springs during the reconstruction of the water-collection system in 1996. Isotopic compositions of water at Cave Springs and Marmot Spring indicate that the source of water to these springs primarily is from winter precipitation. Mixing of water at Cave Springs between alluvial and glacial deposits along Lehman Creek and water from quartzite is unlikely because deuterium and oxygen-18 values from a spring discharging from the alluvial and glacial deposits near upper Lehman Creek campground were heavier than the deuterium and oxygen-18 values from Cave Springs. Additionally, the estimated mean age of water determined from chlorofluorocarbon concentrations indicates water discharging from the spring near upper Lehman Creek campground is younger than that discharging from either Cave Springs or Marmot Spring. The source of water at Cave Springs is from quartzite and water discharges from the springs on the upstream side of the contact between quartzite and granite where the alluvial and glacial deposits are thin. Consequently, the potential for depletion of discharge at Cave Springs from ground-water pumping in Snake Valley east of the park is less than if the source of water was from alluvial and glacial deposits or carbonate rocks, which would be more directly connected to downstream pumping sites in Snake Valley.

  17. 76 FR 42654 - Endangered and Threatened Wildlife and Plants; Petition To List Grand Canyon Cave Pseudoscorpion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... posterior eyes, and fewer setae (stiff bristles present on the body) on its upper dorsal section (Muchmore...) reported that most of the caves surveyed were dry and dusty with low relative humidity, and that most of...'s hydrologist, the Cave of the Domes is considered to be a dry cave with no discharge or pools, but...

  18. Some new cave diving exploration results from Croatian karst area

    NASA Astrophysics Data System (ADS)

    Garasic, Davor; Garasic, Mladen

    2017-04-01

    In the recent years, several international cave diving expeditions took place in the Dinaric karst of Croatia. The objectives were conducting a new research of previously known karstic springs and also exploring new ones. The deepest karst cave in Croatia filled with water is Crveno jezero (lake) near Imotski town, with water depth of 281 meters and total cave depth of 528 meters. Volume of water in this cave is about 16 millions m3. Diving expeditions were held in 1997 and 1998.The deepest karst spring in the Dinaric karst of Croatia is Vrelo of Una River (with max discharge about 100 m3/s), where divers measured depth of -248 meters. Explorations were made in 2007 and 2016. Sinac spring in Pla\\vsko Polje has been dived to the depth of -203 meters. Cave diving was done in 1984, 1999, 2003, 2007 - 2016. Furthermore, very popular springs of the river Kupa (-155 m) in Gorski Kotar (explored since1995 till 2015), river Gacka (-105 in depth, 1150m in length) in Lika, explored from 1992 to 2016, river Cetina (-110 m in depth, 1300 m in length), cave diving explored from 2000 to 2016 in the Dalmatinska Zagora, Rumin Veliki spring (- 150 m in depth) in the Sinjska Krajina (explored and dived in 2006 and 2010), than rivers Krnjeza and Krupa in Ravni kotari with diving depths of over 100 meters (in 2004 and 2005) and so on. Along the Adriatic coast in Croatia there are many deep and long submarine springs (vrulje), ie. caves under seawater springs. called - vruljas for example Vrulja Zecica with over 900 meters ine length and Vrulja Modrič with completely flooded cave channels that extend over 2300 meters in length. Cave diving was conducted from 2010 to 2016. Vrulja Dubci is also worth mentioning (dived and explored in 2000), 161 meters deep and so on. Tectonic activity plays a dominant role in the creation and function of these caves. Geological, hydrogeological and lithostratigraphic conditions are also very important in speleogenesis of these caves in Croatian karst system.

  19. Engineering geologic conditions at the sinkhole entrance to Logan Cave, Benton County, Arkansas

    USGS Publications Warehouse

    Schulz, William H.; McKenna, Jonathan P.

    2004-01-01

    Logan Cave, located in Benton County, Arkansas, is inhabited by several endangered and threatened species. The cave and surrounding area was designated a National Wildlife Refuge under the control of the U.S. Fish and Wildlife Service (USFWS) in 1989. Cave researchers access the cave through a steep-sided sinkhole entrance, which also is one of the two access points used by endangered bats. There is evidence of instability of one of the entrance slopes that has raised concerns that the entrance could close if slope failure was to occur. At the request of USFWS, we performed an engineering geologic investigation of the sinkhole to evaluate stability of this slope, which is comprised of soil, and other mechanisms of sediment transport into the cave entrance. The investigation included engineering geologic mapping, sampling and laboratory testing of subsurface geologic materials, and slope-stability analysis. We found that the sinkhole slope that extends into the entrance of the cave is comprised of sandy and gravelly soil to the depths explored (6.4 meters). This soil likely was deposited as alluvium within a previous, larger sinkhole. Based on properties of the alluvium, geometry of the slope, and results of finite-element slope-stability analyses, we conclude that the slope is marginally stable. Future failures of the slope probably would be relatively thin and small, thus several would be required to completely close the cave entrance. However, sediment is accumulating within the cave entrance due to foot traffic of those accessing the cave, surface-water erosion and transport, and shallow slope failures from the other sinkhole slopes. We conclude that the entrance will be closed by sediment in the future, similar to another entrance that we identified that completely closed in the past. Several measures could be taken to reduce the potential for closure of the cave entrance, including periodic sediment removal, installation of materials that reduce erosion by foot traffic and surface water, construction of a sediment-retention wall, and excavation of the soil slope. Any measures taken must be carefully planned and executed so that they have no impact on organisms within the cave.

  20. Sequence of mammalian fossils, including hominoid teeth, from the Bubing Basin caves, South China.

    PubMed

    Wang, Wei; Potts, Richard; Baoyin, Yuan; Huang, Weiwen; Cheng, Hai; Edwards, R Lawrence; Ditchfield, Peter

    2007-04-01

    A Plio-Pleistocene to Holocene faunal sequence has been recovered from four carefully excavated caves in the Bubing Basin, adjacent to the larger Bose Basin of South China. The caves vary in elevation; we suggest that the higher caves were formed and filled with sediments prior to the lower caves. The highest deposits, which are from Mohui Cave, contain hominoid teeth and other fossilized remains of mammalian taxa most similar to late Pliocene and early Pleistocene faunas. Wuyun Cave ( approximately 50m lower in elevation than Mohui) contains a late middle Pleistocene fauna, which is supported by U-series age constraints from 350 to 200ka. Lower Pubu Cave ( approximately 23m below Wuyun) is assigned to the late Pleistocene, while the Cunkong Cave (the lowest, approximately 2m lower elevation than Lower Pubu) preserves a Holocene fauna. The four faunal assemblages indicate species-level changes in Ailuropoda, Stegodon, and Sus, the appearance of Elephas, the local disappearance of Stegodon, and the migration of Equus hemionus to South China. These initial results of our work call into question the continued value of the Stegodon/Ailuropoda Fauna, a category long used to characterize the Pleistocene faunas of South China. Excavation of karstic caves of varying elevation within the basins of South China holds promise for defining local sequences of mammalian fossils that can be used to investigate faunal variations related to climate change, biogeographic events, and evolutionary change over the past two million years. Stable isotopic analysis of a small sample of mammalian teeth from Bubing Basin caves is consistent with 100% C(3) vegetation in the Bubing/Bose region, with certain delta(13)C values consistent with a canopied woodland or forest. A preliminary assessment of the hominoid teeth indicates the presence of diverse molar and premolar morphologies including dental remains of Gigantopithecus blacki and a sample with similarities to the teeth reported from Longgupo.

  1. Changes in the inhabitation of the Biśnik Cave during the Pleistocene

    NASA Astrophysics Data System (ADS)

    Cyrek, Krzysztof; Sudoł, Magdalena

    2010-01-01

    The Biśnik Cave lies on the left western slope of the Wodąca Valley, which is part of the Niegownice-Smoleń hills, situated in the central part of the Kraków-Częstochowa Upland. The cave consists of several chambers joined by corridors, and a number of entrances. Interdisciplinary research (archaeology, sedimentology, geomorphology and paleozoology) carried out since 1992 has dealt with the exploration of the following elements of the cave system: the main chamber, side shelter, side chamber and the area underneath the overhang. The Biśnik Cave is currently the oldest cave site in Poland with a well-preserved cross-section of sediments formed in separate stages of climatic changes, starting with the period preceding the Odra Glaciation to the Holocene. The oldest traces of settlement of Palaeolithic man go as far back as over 400,000 years ago. The most interesting mid-Palaeolithic sequence of the cave inhabitation comprises 17 cultural levels preserved in the form of stone and bone artefacts' concentrations, hearth remains and fragments of animal bones of post-consumption character. The attempts to date separate levels using the uranium-thorium dating method, electronic paramagnetic resonance and thermoluminescence method are very relevant. Scientific value of the Biśnik Cave turns it into a sample mid-Palaeolithic site in this part of Europe. A three-dimensional localisation of all finds made it possible to prepare a detailed map of the artefacts' distribution in the consecutive sedimentary layers. This, in turn, enabled the reconstruction of changes of the cave inhabitation by man. The correlation of those changes with the description of climatic conditions in the period of formation of sedimentary layers helped link the cave inhabitation methods with natural conditions dominating the area of the Biśnik Cave at that time.

  2. The Atmosphere of Crystal Cave: Understanding Sources and Sinks of Trace Gases

    NASA Astrophysics Data System (ADS)

    Jarnot, A. W.; Hughes, S.; Blake, D. R.

    2016-12-01

    The atmospheric chemistry of cave systems has not been previously studied in depth; however, cave systems are prime locations to study potential sources and sinks for trace gas pollutants. Relatively constant temperatures, humidity, minimal air flow, and lack of sunlight create a stable environment that allows for biogeochemical processes to go on uninterrupted for extended periods of time. Carbonyl sulfide (OCS) is one of the main contributors to air pollution globally, but many OCS sinks are not fully understood. A preliminary analysis of cave air from Crystal Cave in Sequoia National Park yielded OCS concentrations of 35.2 ± 0.7 pptv, approximately 16 times lower than the average concentration of 568 ± 8 pptv measured outside of the cave. In addition, the concentrations of several other trace gases such as alpha-pinene and methyl bromide were found to be abnormally low (10.5 ± 0.3 pptv inside and 387 ± 8 pptv for alpha-pinene, and 387 ± 8 pptv inside and 11.1 ± 0.4 pptv outside for methyl bromide). The cave air was found to be well-mixed as the concentrations of long lived halocarbons such as CFC-12 were similar inside and outside of the cave (545 ± 5 pptv and 538 ± 4 pptv, respectively). This indicates that there may be one or more factors causing the cave to act a sink for several trace gas species. Further sampling and analysis of the atmosphere in the cave is required to draw any concrete conclusions about the unique environment presented here. The information gathered will help elucidate mechanisms for trace gas degradation, which could yield information about global trace gas budgets and their effect on global air quality.

  3. Repeated and Time-Correlated Morphological Convergence in Cave-Dwelling Harvestmen (Opiliones, Laniatores) from Montane Western North America

    PubMed Central

    Derkarabetian, Shahan; Steinmann, David B.; Hedin, Marshal

    2010-01-01

    Background Many cave-dwelling animal species display similar morphologies (troglomorphism) that have evolved convergent within and among lineages under the similar selective pressures imposed by cave habitats. Here we study such ecomorphological evolution in cave-dwelling Sclerobuninae harvestmen (Opiliones) from the western United States, providing general insights into morphological homoplasy, rates of morphological change, and the temporal context of cave evolution. Methodology/Principal Findings We gathered DNA sequence data from three independent gene regions, and combined these data with Bayesian hypothesis testing, morphometrics analysis, study of penis morphology, and relaxed molecular clock analyses. Using multivariate morphometric analysis, we find that phylogenetically unrelated taxa have convergently evolved troglomorphism; alternative phylogenetic hypotheses involving less morphological convergence are not supported by Bayesian hypothesis testing. In one instance, this morphology is found in specimens from a high-elevation stony debris habitat, suggesting that troglomorphism can evolve in non-cave habitats. We discovered a strong positive relationship between troglomorphy index and relative divergence time, making it possible to predict taxon age from morphology. Most of our time estimates for the origin of highly-troglomorphic cave forms predate the Pleistocene. Conclusions/Significance While several regions in the eastern and central United States are well-known hotspots for cave evolution, few modern phylogenetic studies have addressed the evolution of cave-obligate species in the western United States. Our integrative studies reveal the recurrent evolution of troglomorphism in a perhaps unexpected geographic region, at surprisingly deep time depths, and in sometimes surprising habitats. Because some newly discovered troglomorphic populations represent undescribed species, our findings stress the need for further biological exploration, integrative systematic research, and conservation efforts in western US cave habitats. PMID:20479884

  4. Source to sink characterization of dissolved organic matter in a tropical karst system

    NASA Astrophysics Data System (ADS)

    Lechleitner, Franziska; Lang, Susan Q.; McIntyre, Cameron; Baldini, James U. L.; Dittmar, Thorsten; Eglinton, Timothy I.

    2016-04-01

    Karst systems are widespread surface features present on all continents. They are characterized by complex hydrology with a multitude of possible flow regimes, from diffuse seepage through the host rock to fracture flow in larger conduits. As stalagmite proxy records are important indicators of past terrestrial climate conditions, detailed understanding of the biogeochemistry of cave systems and their relationships to the overlying karst network is crucial. Microbial communities that drive the carbon cycle in caves are nourished by dissolved organic matter (DOM) carried with water into the cave system. Water samples from the Yok Balum cave in Belize were collected for DOM analysis, including soil waters, drip waters and pool waters from inside the cave. Additionally, DOM extracts from a stalagmite from the same cave were analysed to examine DOM signatures and test their applicability for reconstruction of environmental conditions. Ultrahigh-resolution mass spectrometry (via the ESI-FT-ICR-MS technique) yielded detailed molecular fingerprints on DOM from these samples. Several thousand molecular formulae of DOM compounds were identified. In addition, radiocarbon analyses were performed on the DOM samples to gain information on karst turnover times. A principal component analysis of the molecular data revealed a clear gradient between soil waters and cave waters, as soil waters were enriched in highly unsaturated oxygen-rich compounds (typical for vascular plants), which were much less abundant in drip waters. Conversely, peptides, which can originate from bacterial processes, were present only in the drip waters. Our data clearly show connectivity between the cave and overlaying soils, and reworking of DOM by the cave bacterial community. Furthermore, we found molecular evidence for the selective removal of vascular plant-derived DOM in the caves, possibly due to abiotic interactions with minerals.

  5. Palaeoclimate signal recorded by stable isotopes in cave ice: a modeling approach

    NASA Astrophysics Data System (ADS)

    Perşoiu, A.; Bojar, A.-V.

    2012-04-01

    Ice accumulations in caves preserve a large variety of geochemical information as candidate proxies for both past climate and environmental changes, one of the most significant being the stable isotopic composition of the ice. A series of recent studies have targeted oxygen and hydrogen stable isotopes in cave ice as proxies for past air temperatures, but the results are far from being as straightforward as they are in high latitude and altitude glaciers and ice caps. The main problems emerging from these studies are related to the mechanisms of cave ice formation (i.e., freezing of water) and post-formation processes (melting and refreezing), which both alter the original isotopic signal in water. Different methods have been put forward to solve these issues and a fair understanding of the present-day link between stable isotopes in precipitation and cave ice exists now. However, the main issues still lays unsolved: 1) is it possible to extend this link to older ice and thus reconstruct past changes in air temperature?; 2) to what extent are ice dynamics processes modifying the original climatic signal and 3) what is the best method to be used in extracting a climatic signal from stable isotopes in cave ice? To respond to these questions, we have conducted a modeling experiment, in which a theoretical cave ice stable isotope record was constructed using present-day observations on stable isotope behavior in cave ice and ice dynamics, and different methods (presently used for both polar and cave glaciers), were used to reconstruct the original, known, isotopic values. Our results show that it is possible to remove the effects of ice melting and refreezing on stable isotope composition of cave ice, and thus reconstruct the original isotopic signal, and further the climatic one.

  6. A Transcriptomic Analysis of Cave, Surface, and Hybrid Isopod Crustaceans of the Species Asellus aquaticus

    PubMed Central

    Stahl, Bethany A.; Gross, Joshua B.; Speiser, Daniel I.; Oakley, Todd H.; Patel, Nipam H.; Gould, Douglas B.; Protas, Meredith E.

    2015-01-01

    Cave animals, compared to surface-dwelling relatives, tend to have reduced eyes and pigment, longer appendages, and enhanced mechanosensory structures. Pressing questions include how certain cave-related traits are gained and lost, and if they originate through the same or different genetic programs in independent lineages. An excellent system for exploring these questions is the isopod, Asellus aquaticus. This species includes multiple cave and surface populations that have numerous morphological differences between them. A key feature is that hybrids between cave and surface individuals are viable, which enables genetic crosses and linkage analyses. Here, we advance this system by analyzing single animal transcriptomes of Asellus aquaticus. We use high throughput sequencing of non-normalized cDNA derived from the head of a surface-dwelling male, the head of a cave-dwelling male, the head of a hybrid male (produced by crossing a surface individual with a cave individual), and a pooled sample of surface embryos and hatchlings. Assembling reads from surface and cave head RNA pools yielded an integrated transcriptome comprised of 23,984 contigs. Using this integrated assembly as a reference transcriptome, we aligned reads from surface-, cave- and hybrid- head tissue and pooled surface embryos and hatchlings. Our approach identified 742 SNPs and placed four new candidate genes to an existing linkage map for A. aquaticus. In addition, we examined SNPs for allele-specific expression differences in the hybrid individual. All of these resources will facilitate identification of genes and associated changes responsible for cave adaptation in A. aquaticus and, in concert with analyses of other species, will inform our understanding of the evolutionary processes accompanying adaptation to the subterranean environment. PMID:26462237

  7. The view from the Lincoln Cave: mid- to late Pleistocene fossil deposits from Sterkfontein hominid site, South Africa.

    PubMed

    Reynolds, S C; Clarke, R J; Kuman, K A

    2007-09-01

    The Lincoln-Fault cave system lies adjacent to the Sterkfontein Cave system in the Cradle of Humankind World Heritage Site, Gauteng Province, South Africa. Lincoln Cave contains a mid- to late Pleistocene fossiliferous deposit which has been dated using uranium series methods to between 252,600+/-35,600 and 115,300+/-7,700 years old. Although speleologists presumed that there was no connection between the Lincoln Cave and Sterkfontein Cave systems, results of excavations conducted in 1997 suggest a link between the deposits. Detailed comparisons of artifacts, fauna, hominid material, and a statistical correspondence analysis (CA) of the macromammalian fauna in the deposits strongly support this hypothesis. The recovery of Early Acheulean-type artifacts from the Lincoln Cave suggests that older artifacts eroded out of Sterkfontein Member 5 West and were redeposited into the younger Lincoln Cave deposits. The close physical proximity of these deposits, and the nature of the material recovered from them, indicates that the material was probably redeposited via a link between the two cave systems. Although faunal mixing is present, it is possible to say that large carnivorans become more scarce at Sterkfontein during the mid- to late Pleistocene, while small canids and felids appear to become more abundant, indicating that large and small carnivorans probably varied their use of the site through time. This may also reflect an increasing presence of humans in the Sterkfontein area during the mid- to late Pleistocene.

  8. The Population Genomics of Repeated Evolution in the Blind Cavefish Astyanax mexicanus

    PubMed Central

    Bradic, Martina; Teotónio, Henrique; Borowsky, Richard L.

    2013-01-01

    Distinct populations of Astyanax mexicanus cavefish offer striking examples of repeatable convergence or parallelism in their independent evolutions from surface to cave phenotypes. However, the extent to which the repeatability of evolution occurred at the genetic level remains poorly understood. To address this, we first characterized the genetic diversity of 518 single-nucleotide polymorphisms (SNPs), obtained through RAD tag sequencing and distributed throughout the genome, in seven cave and three groups of surface populations. The cave populations represented two distinct lineages (old and new). Thirty-one SNPs were significantly differentiated between surface and old cave populations, two SNPs were differentiated between surface and new cave populations, and 44 SNPs were significantly differentiated in both old and new cave populations. In addition, we determined whether these SNPs map to the same locations of previously described quantitative trait loci (QTL) between surface and cave populations. A total of 25 differentiated SNPs co-map with several QTL, such as one containing a fibroblast growth factor gene (Fgf8) involved in eye development and lens size. Further, the identity of many SNPs that co-mapped with QTL was the same in independently derived cave populations. These conclusions were further confirmed by haplotype analyses of SNPs within QTL regions. Our findings indicate that the repeatability of evolution at the genetic level is substantial, suggesting that ancestral standing genetic variation significantly contributed to the population genetic variability used in adaptation to the cave environment. PMID:23927992

  9. Convergent Evolution of Unique Morphological Adaptations to a Subterranean Environment in Cave Millipedes (Diplopoda)

    PubMed Central

    Golovatch, Sergei; Wesener, Thomas; Tian, Mingyi

    2017-01-01

    Animal life in caves has fascinated researchers and the public alike because of the unusual and sometimes bizarre morphological adaptations observed in numerous troglobitic species. Despite their worldwide diversity, the adaptations of cave millipedes (Diplopoda) to a troglobitic lifestyle have rarely been examined. In this study, morphological characters were analyzed in species belonging to four different orders (Glomerida, Polydesmida, Chordeumatida, and Spirostreptida) and six different families (Glomeridae, Paradoxosomatidae, Polydesmidae, Haplodesmidae, Megalotylidae, and Cambalopsidae) that represent the taxonomic diversity of class Diplopoda. We focused on the recently discovered millipede fauna of caves in southern China. Thirty different characters were used to compare cave troglobites and epigean species within the same genera. A character matrix was created to analyze convergent evolution of cave adaptations. Males and females were analyzed independently to examine sex differences in cave adaptations. While 10 characters only occurred in a few phylogenetic groups, 20 characters were scored for in all families. Of these, four characters were discovered to have evolved convergently in all troglobitic millipedes. The characters that represented potential morphological cave adaptations in troglobitic species were: (1) a longer body; (2) a lighter body color; (3) elongation of the femora; and (4) elongation of the tarsi of walking legs. Surprisingly, female, but not male, antennae were more elongated in troglobites than in epigean species. Our study clearly shows that morphological adaptations have evolved convergently in different, unrelated millipede orders and families, most likely as a direct adaptation to cave life. PMID:28178274

  10. Convergent Evolution of Unique Morphological Adaptations to a Subterranean Environment in Cave Millipedes (Diplopoda).

    PubMed

    Liu, Weixin; Golovatch, Sergei; Wesener, Thomas; Tian, Mingyi

    2017-01-01

    Animal life in caves has fascinated researchers and the public alike because of the unusual and sometimes bizarre morphological adaptations observed in numerous troglobitic species. Despite their worldwide diversity, the adaptations of cave millipedes (Diplopoda) to a troglobitic lifestyle have rarely been examined. In this study, morphological characters were analyzed in species belonging to four different orders (Glomerida, Polydesmida, Chordeumatida, and Spirostreptida) and six different families (Glomeridae, Paradoxosomatidae, Polydesmidae, Haplodesmidae, Megalotylidae, and Cambalopsidae) that represent the taxonomic diversity of class Diplopoda. We focused on the recently discovered millipede fauna of caves in southern China. Thirty different characters were used to compare cave troglobites and epigean species within the same genera. A character matrix was created to analyze convergent evolution of cave adaptations. Males and females were analyzed independently to examine sex differences in cave adaptations. While 10 characters only occurred in a few phylogenetic groups, 20 characters were scored for in all families. Of these, four characters were discovered to have evolved convergently in all troglobitic millipedes. The characters that represented potential morphological cave adaptations in troglobitic species were: (1) a longer body; (2) a lighter body color; (3) elongation of the femora; and (4) elongation of the tarsi of walking legs. Surprisingly, female, but not male, antennae were more elongated in troglobites than in epigean species. Our study clearly shows that morphological adaptations have evolved convergently in different, unrelated millipede orders and families, most likely as a direct adaptation to cave life.

  11. The small but clear gravity signal above the natural cave 'Grotta Gigante' (Trieste, Italy)

    NASA Astrophysics Data System (ADS)

    Braitenberg, Carla; Sampietro, Daniele; Zuliani, David; Barbagallo, Alfio; Fabris, Paolo; Fabbri, Julius; Rossi, Lorenzo; Handi Mansi, Ahmed

    2014-05-01

    Gravity observations are a powerful means for detecting underground mass changes. The Italian and Slovenian Karst has a number of explored caves, several are also touristic due to their size (e.g. Grotta Gigante in Italy; Skocjianske Jame and Postojnska Jama in Slovenia). Just a few years ago another big cave was discovered by chance close to Trieste when drilling a tunnel for a motor-highway, which shows that more caves are expected to be discovered in coming years. We have acquired the gravity field above the Grotta Gigante cave, a cave roughly 100 m high and 200 m long with a traditional spring-gravity meter (Lacoste&Romberg) and height measurements made with GPS and total station. The GPS was made with two different teams and processing algorithms, to cross-check accuracy and error estimate. Some stations had to be surveyed with a classical instrument due to the vegetation which concealed the satellite positioning signal. Here we present the results of the positioning acquisitions and the gravity field. The cave produces a signal of 1.5 mGal, with a clear elongated concentric symmetry. The survey shows that a systematic coverage of the Karst would have the benefit to recover the position of all of the greater existing caves. This will have a large impact on civil and environmental purposes, since it will for example allow to plan the urban development at a safety distance from subsurface caves.

  12. Helium Isotopes and Noble Gas Abundances of Cave Dripping Water in Three Caves in East Asia

    NASA Astrophysics Data System (ADS)

    Chen, A. T.; Shen, C. C.; Tan, M.; Li, T.; Uemura, R.; Asami, R.

    2015-12-01

    Paleo-temperature recorded in nature archives is a critical parameter to understand climate change in the past. With advantages of unique inert chemical characteristics and sensitive solubilities with temperature, dissolved noble gases in speleothem inclusion water were recently proposed to retrieve terrestrial temperature history. In order to accurately apply this newly-developed speleothem noble gas temperature (NGT) as a reliable proxy, a fundamental issue about behaviors of noble gases in the karst should be first clarified. In this study, we measured noble gas contents in air and dripping water to evaluate any ratio deviation between noble gases. Cave dripping water samples was collected from three selected caves, Shihua Cave in northern China, Furong Cave in southwestern, and Gyukusen Cave in an island located in the western Pacific. For these caves are characterized by a thorough mixing and long-term storage of waters in a karst aquifer by the absence of seasonal oxygen isotope shifts. Ratios of dripping water noble gases are statistically insignificant from air data. Helium isotopic ratios in the dripping water samples match air value. The results indicate that elemental and isotopic signatures of noble gases from air can be frankly preserved in the epikarst and support the fidelity of NGT techniques.

  13. Is radon emission in caves causing deletions in satellite DNA sequences of cave-dwelling crickets?

    PubMed

    Allegrucci, Giuliana; Sbordoni, Valerio; Cesaroni, Donatella

    2015-01-01

    The most stable isotope of radon, 222Rn, represents the major source of natural radioactivity in confined environments such as mines, caves and houses. In this study, we explored the possible radon-related effects on the genome of Dolichopoda cave crickets (Orthoptera, Rhaphidophoridae) sampled in caves with different concentrations of radon. We analyzed specimens from ten populations belonging to two genetically closely related species, D. geniculata and D. laetitiae, and explored the possible association between the radioactivity dose and the level of genetic polymorphism in a specific family of satellite DNA (pDo500 satDNA). Radon concentration in the analyzed caves ranged from 221 to 26,000 Bq/m3. Specimens coming from caves with the highest radon concentration showed also the highest variability estimates in both species, and the increased sequence heterogeneity at pDo500 satDNA level can be explained as an effect of the mutation pressure induced by radon in cave. We discovered a specific category of nuclear DNA, the highly repetitive satellite DNA, where the effects of the exposure at high levels of radon-related ionizing radiation are detectable, suggesting that the satDNA sequences might be a valuable tool to disclose harmful effects also in other organisms exposed to high levels of radon concentration.

  14. Human utilization of subsurface extraterrestrial environments.

    PubMed

    Boston, P J; Frederick, R D; Welch, S M; Werker, J; Meyer, T R; Sprungman, B; Hildreth-Werker, V; Thompson, S L; Murphy, D L

    2003-06-01

    Caves have been used in the ancient past as shelter or habitat by many organisms (including humans). Since antiquity, humans have explored caves for the minerals they contain and sometimes for ceremonial purposes. Over the past century, caves have become the target of increasing exploration, scientific research, and recreation. The use of caves on extraterrestrial bodies for human habitation has been suggested by several investigators. Lunar lava tube bases received early attention because lava tubes were clearly visible in lunar images from the Apollo Era. More recently, Mars Observer Camera data has shown us clear evidence of large tubes visible in a number of volcanic regions on Mars. The budding field of cave geomicrobiology has direct application to questions about subsurface life on other planets. Caves contain many unusual organisms making their living from unlikely materials like manganese, iron, and sulfur. This makes caves and other subsurface habitats prime targets for astrobiological missions to Mars and possibly other bodies. We present the results of a completed Phase I and on-going Phase II NASA Institute for Advanced Concepts (NIAC) study that intensively examines the possibilities of using extraterrestrial caves as both a resource for human explorers and as a highly promising scientific target for both robotic and future human missions to Mars and beyond.

  15. Instrumenting caves to collect hydrologic and geochemical data: case study from James Cave, Virginia

    USGS Publications Warehouse

    Schreiber, Madeline E.; Schwartz, Benjamin F.; Orndorff, William; Doctor, Daniel H.; Eagle, Sarah D.; Gerst, Jonathan D.

    2015-01-01

    Karst aquifers are productive groundwater systems, supplying approximately 25 % of the world’s drinking water. Sustainable use of this critical water supply requires information about rates of recharge to karst aquifers. The overall goal of this project is to collect long-term, high-resolution hydrologic and geochemical datasets at James Cave, Virginia, to evaluate the quantity and quality of recharge to the karst system. To achieve this goal, the cave has been instrumented for continuous (10-min interval) measurement of the (1) temperature and rate of precipitation; (2) temperature, specific conductance, and rate of epikarst dripwater; (3) temperature of the cave air; and (4) temperature, conductivity, and discharge of the cave stream. Instrumentation has also been installed to collect both composite and grab samples of precipitation, soil water, the cave stream, and dripwater for geochemical analysis. This chapter provides detailed information about the instrumentation, data processing, and data management; shows examples of collected datasets; and discusses recommendations for other researchers interested in hydrologic and geochemical monitoring of cave systems. Results from the research, briefly described here and discussed in more detail in other publications, document a strong seasonality of the start of the recharge season, the extent of the recharge season, and the geochemistry of recharge.

  16. Virtual gait training for children with cerebral palsy using the Lokomat gait orthosis.

    PubMed

    Koenig, Alexander; Wellner, Mathias; Köneke, Susan; Meyer-Heim, Andreas; Lünenburger, Lars; Riener, Robert

    2008-01-01

    The Lokomat gait orthosis was developed in the Spinal Cord Injury Center at the University Hospital Balgrist Zurich and provides automatic gait training for patients with neurological gait impairments, such as Cerebral Palsy (CP). Each patient undergoes a task-oriented Lokomat rehabilitation training program via a virtual reality setup. In four virtual scenarios, the patient is able to exercise tasks such as wading through water, playing soccer, overstepping obstacles or training in a street scenario, each task offering varying levels of difficulty. Patients provided positive feedback in reference to the utilized haptic method, specifically addressing the sufficient degree of realism. In a single case study, we verified the task difficulty.

  17. Ancient DNA and the population genetics of cave bears (Ursus spelaeus) through space and time.

    PubMed

    Orlando, Ludovic; Bonjean, Dominique; Bocherens, Herve; Thenot, Aurelie; Argant, Alain; Otte, Marcel; Hänni, Catherine

    2002-11-01

    The cave bear spread from Western Europe to the Near East during the Riss glaciation (250 KYA) before becoming extinct approximately 12 KYA. During that period, the climatic conditions were highly dynamic, oscillating between glacial and temperate episodes. Such events have constrained the geographic repartition of species, the movements of populations and shaped their genetic diversity. We retrieved and analyzed ancient DNA from 21 samples from five European caves ranging from 40 to 130 KYA. Combined with available data, our data set accounts for a total of 41 sequences of cave bear, coming from 18 European caves. We distinguish four haplogroups at the level of the mitochondrial DNA control region. The large population size of cave bear could account for the maintenance of such polymorphism. Extensive gene flow seems to have connected European populations because two haplogroups cover wide geographic areas. Furthermore, the extensive sampling of the deposits of the Scladina cave located in Belgium allowed us to correlate changes in climatic conditions with the intrapopulational genetic diversity over 90 KY.

  18. A Bat's-Eye View of Holocene Climate Change in the Southwest: Resolving Ambiguities in Cave Isotopic Records

    NASA Astrophysics Data System (ADS)

    Cole, J. E.; Truebe, S. A.; Harrington, M. D.; Woodhead, J. D.; Overpeck, J. T.; Hlohowskyj, S.; Henderson, G. M.

    2015-12-01

    In dry environments, speleothems provide an outstanding archive of information on past climate change, particularly since lakes are typically absent or intermittent. Speleothem stable isotopes are widely used for climate reconstruction, but the isotope-climate relationship is complex in arid-region precipitation, and within-cave processes further complicate climate interpretations. Our isotope results from 3 southeastern Arizona caves, spanning the past 3.5-12 kyr, collectively indicate a weakening monsoon from 7kyr to present. These records exhibit substantial multidecadal-multicentury variability that is sometimes shared, and sometimes independent among caves. Strategies to overcome ambiguities in isotope records include long-term monitoring of cave dripwaters, multi-site comparisons, and multiproxy measurements. Monthly dripwater measurements from two caves spanning several years highlight substantial seasonal biases that create distinct differences in the climate sensitivity of individual cave records. These biases can lead to lack of correlation between records, but also creates opportunities for seasonally specific moisture reconstructions. New preliminary analyses suggest that elemental data can help to unravel the multivariate signal contained in speleothem oxygen isotope records.

  19. The Astrobiology of the Subsurface: Caves and Rock Fracture Habitats on Earth, Mars and Beyond

    NASA Technical Reports Server (NTRS)

    Boston, Penelope J.

    2017-01-01

    The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond. We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can fluorish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a Field Guide to Unknown Organisms for developing life detection space missions.

  20. Potential collapse due to geological structures influence in Seropan Cave, Gunung Kidul, Yogyakarta, Indonesia

    NASA Astrophysics Data System (ADS)

    Nugroho, B.; Pranantya, P. A.; Witjahjati, R.; Rofinus

    2018-01-01

    This study aims to estimate the potential collapse in the Seropan cave, based on the existing geological structure conditions in the cave. This is very necessary because in the Seropan cave will be built Microhydro installation for power plants. The electricity will be used to raise the underground river water in the cave to a barren soil surface, which can be used for surface irrigation. The method used is analysis the quality of rock mass along the cave. Analysis of rock mass quality using Geomechanical Classification or Rock Mass Rating (RMR), to determine the magnitude of the effect of geological structure on rock mass stability. The research path is divided into several sections and quality analysis is performed on each section. The results show that the influence of geological structure is very large and along the cave where the research there are several places that have the potential to collapse, so need to get serious attention in handling it. Nevertheless, the construction of this Microhydro installation can still be carried out by making a reinforcement on potentially collapsing parts

  1. The ALICE Software Release Validation cluster

    NASA Astrophysics Data System (ADS)

    Berzano, D.; Krzewicki, M.

    2015-12-01

    One of the most important steps of software lifecycle is Quality Assurance: this process comprehends both automatic tests and manual reviews, and all of them must pass successfully before the software is approved for production. Some tests, such as source code static analysis, are executed on a single dedicated service: in High Energy Physics, a full simulation and reconstruction chain on a distributed computing environment, backed with a sample “golden” dataset, is also necessary for the quality sign off. The ALICE experiment uses dedicated and virtualized computing infrastructures for the Release Validation in order not to taint the production environment (i.e. CVMFS and the Grid) with non-validated software and validation jobs: the ALICE Release Validation cluster is a disposable virtual cluster appliance based on CernVM and the Virtual Analysis Facility, capable of deploying on demand, and with a single command, a dedicated virtual HTCondor cluster with an automatically scalable number of virtual workers on any cloud supporting the standard EC2 interface. Input and output data are externally stored on EOS, and a dedicated CVMFS service is used to provide the software to be validated. We will show how the Release Validation Cluster deployment and disposal are completely transparent for the Release Manager, who simply triggers the validation from the ALICE build system's web interface. CernVM 3, based entirely on CVMFS, permits to boot any snapshot of the operating system in time: we will show how this allows us to certify each ALICE software release for an exact CernVM snapshot, addressing the problem of Long Term Data Preservation by ensuring a consistent environment for software execution and data reprocessing in the future.

  2. Technical devices of powered roof support for the top coal caving as automation objects

    NASA Astrophysics Data System (ADS)

    Nikitenko, M. S.; Kizilov, S. A.; Nikolaev, P. I.; Kuznetsov, I. S.

    2018-05-01

    In the paper technical devices for the top coal caving as automation objects in the composition of the longwall mining complex (LTCC) are considered. The proposed concept for automation of the top coal caving process allows caving efficiency to be ensured, coal dilution to be prevented, conveyor overloading to be prevented, the shearer service personnel to be unloaded, the influence of the “human factor” to be reduced.

  3. Late quaternary brown bear (Ursidae: Ursus cf. arctos) from a cave in the Huachuca Mountains, Arizona

    Treesearch

    Nicholas J. Czaplewski; Steve Willsey

    2013-01-01

    In 2008, Steve Willsey discovered the fragmentary cranium of a bear loose on the floor of a cave at about 2270 m elevation near the crest of the Huachuca Mountains. In 2009, we revisited the cave to examine the specimen with the intention of identifying the species. We photographed and measured the main pieces and left them in the cave. The skull is from an adult,...

  4. Late quaternary regional geoarchaeology of Southeast Alaska Karst: A progress report

    USGS Publications Warehouse

    Dixon, E.J.; Heaton, T.H.; Fifield, T.E.; Hamilton, T.D.; Putnam, D.E.; Grady, F.

    1997-01-01

    Karst systems, sea caves, and rock shelters within the coastal temperate rain forest of Alaska's Alexander Archipelago preserve important records of regional archaeology, sea level history, glacial and climatic history, and vertebrate paleontology. Two 14C AMS dates on human bone discovered in a remote cave (49-PET-408) on Prince of Wales Island document the oldest reliably dated human in Alaska to ca. 9800 B.P. A series of 14C AMS dates from cave deposits span the past 40,000 years and provide the first evidence of Pleistocene faunas from the northwest coast of North America. Other discoveries include sea caves and marine beach deposits elevated above modern sea level, extensive solution caves, and mammalian remains of species previously undocumented within the region. Records of human activity, including cave art, artifacts, and habitation sites may provide new insights into the early human colonization of the Americas. ??1997 John Wiley & Sons, Inc.

  5. Effect of soil-rock system on speleothems weathering in Bailong Cave, Yunnan Province, China*

    PubMed Central

    Wang, Jing; Song, Lin-hua

    2005-01-01

    Bailong Cave with its well-developed Middle Triassic calcareous dolomite’s system was opened as a show cave for visitors in 1988. The speleothem scenery has been strongly weathered as white powder on the outer layers. Study of the cave winds, permeability of soil-rock system and the chemical compositions of the dripping water indicated: (1) The cave dimension structure distinctively affects the cave winds, which were stronger at narrow places. (2) Based on the different soil grain size distribution, clay was the highest in composition in the soil. The response sense of dripping water to the rainwater percolation was slow. The density of joints and other openings in dolomite make the dolomite as mesh seepage body forming piles of thin and high columns and stalactites. (3) Study of 9 dripping water samples by HYDROWIN computer program showed that the major mineral in the water was dolomite. PMID:15682505

  6. Vibrational spectroscopy of synthetic archerite (K,NH4)HPO4- and in comparison with the natural cave mineral

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Palmer, Sara J.; Tan, Keqin; Millar, Graeme J.

    2012-03-01

    In order to mimic the formation of archerite in cave minerals, the mineral analogue has been synthesised. The cave mineral is formed by the reaction of the chemicals in bat guano with calcite substrates. X-ray diffraction proves that the synthesised archerite analogue was pure and more pure than the natural cave mineral. The vibrational spectra of the synthesised mineral are compared with that of the natural cave mineral from the Murra-el-elevyn Cave, Eucla, Western Australia. Raman and infrared bands are assigned to HPO4-, OH and NH stretching and bending vibrations. The Raman band at 917 cm-1 is assigned to the HOP stretching vibration of HPO4- units. Bands in the 1200-1800 cm-1 region are associated with NH4+ bending modes. Vibrational spectroscopy enables the molecular structure of archerite analogue to be analysed.

  7. DIVERSITY OF THE TYPE 1 INTRON-ITS REGION OF THE 18S rRNA GENE IN PSEUDOGYMNOASCUS SPECIES FROM THE RED HILLS OF KANSAS.

    PubMed

    Chen, Xi; Crupper, Scott S

    2016-09-01

    Gypsum caves found throughout the Red Hills of Kansas have the state's most diverse and largest population of cave-roosting bats. White-nose syndrome (WNS), a disease caused by the fungus Pseudogymnoascus destructans, which threatens all temperate bat species, has not been previously detected in the gypsum caves as this disease moves westward from the eastern United States. Cave soil was obtained from the gypsum caves, and using the polymerase chain reaction, a 624-nucleotide DNA fragment specific to the Type 1 intron-internal transcribed spacer region of the 18S rRNA gene from Pseudogymnoascus species was amplified. Subsequent cloning and DNA sequencing indicated P. destructans DNA was present, along with 26 uncharacterized Pseudogymnoascus DNA variants. However, no evidence of WNS was observed in bat populations residing in these caves.

  8. Reduced opsin gene expression in a cave-dwelling fish

    PubMed Central

    Tobler, Michael; Coleman, Seth W.; Perkins, Brian D.; Rosenthal, Gil G.

    2010-01-01

    Regressive evolution of structures associated with vision in cave-dwelling organisms is the focus of intense research. Most work has focused on differences between extreme visual phenotypes: sighted, surface animals and their completely blind, cave-dwelling counterparts. We suggest that troglodytic systems, comprising multiple populations that vary along a gradient of visual function, may prove critical in understanding the mechanisms underlying initial regression in visual pathways. Gene expression assays of natural and laboratory-reared populations of the Atlantic molly (Poecilia mexicana) revealed reduced opsin expression in cave-dwelling populations compared with surface-dwelling conspecifics. Our results suggest that the reduction in opsin expression in cave-dwelling populations is not phenotypically plastic but reflects a hardwired system not rescued by exposure to light during retinal ontogeny. Changes in opsin gene expression may consequently represent a first evolutionary step in the regression of eyes in cave organisms. PMID:19740890

  9. Effect of soil-rock system on speleothems weathering in Bailong Cave, Yunnan Province, China.

    PubMed

    Wang, Jing; Song, Lin-Hua

    2005-03-01

    Bailong Cave with its well-developed Middle Triassic calcareous dolomite's system was opened as a show cave for visitors in 1988. The speleothem scenery has been strongly weathered as white powder on the outer layers. Study of the cave winds, permeability of soil-rock system and the chemical compositions of the dripping water indicated: (1) The cave dimension structure distinctively affects the cave winds, which were stronger at narrow places. (2) Based on the different soil grain size distribution, clay was the highest in composition in the soil. The response sense of dripping water to the rainwater percolation was slow. The density of joints and other openings in dolomite make the dolomite as mesh seepage body forming piles of thin and high columns and stalactites. (3) Study of 9 dripping water samples by HYDROWIN computer program showed that the major mineral in the water was dolomite.

  10. U-series dating of Paleolithic art in 11 caves in Spain.

    PubMed

    Pike, A W G; Hoffmann, D L; García-Diez, M; Pettitt, P B; Alcolea, J; De Balbín, R; González-Sainz, C; de las Heras, C; Lasheras, J A; Montes, R; Zilhão, J

    2012-06-15

    Paleolithic cave art is an exceptional archive of early human symbolic behavior, but because obtaining reliable dates has been difficult, its chronology is still poorly understood after more than a century of study. We present uranium-series disequilibrium dates of calcite deposits overlying or underlying art found in 11 caves, including the United Nations Educational, Scientific, and Cultural Organization (UNESCO) World Heritage sites of Altamira, El Castillo, and Tito Bustillo, Spain. The results demonstrate that the tradition of decorating caves extends back at least to the Early Aurignacian period, with minimum ages of 40.8 thousand years for a red disk, 37.3 thousand years for a hand stencil, and 35.6 thousand years for a claviform-like symbol. These minimum ages reveal either that cave art was a part of the cultural repertoire of the first anatomically modern humans in Europe or that perhaps Neandertals also engaged in painting caves.

  11. Founder effects initiated rapid species radiation in Hawaiian cave planthoppers

    PubMed Central

    Wessel, Andreas; Hoch, Hannelore; Asche, Manfred; von Rintelen, Thomas; Stelbrink, Björn; Heck, Volker; Stone, Fred D.; Howarth, Francis G.

    2013-01-01

    The Hawaiian Islands provide the venue of one of nature’s grand experiments in evolution. Here, we present morphological, behavioral, genetic, and geologic data from a young subterranean insect lineage in lava tube caves on Hawai‘i Island. The Oliarus polyphemus species complex has the potential to become a model for studying rapid speciation by stochastic events. All species in this lineage live in extremely similar environments but show strong differentiation in behavioral and morphometric characters, which are random with respect to cave age and geographic distribution. Our observation that phenotypic variability within populations decreases with increasing cave age challenges traditional views on founder effects. Furthermore, these cave populations are natural replicates that can be used to test the contradictory hypotheses. Moreover, Hawaiian cave planthoppers exhibit one of the highest speciation rates among animals and, thus, radically shift our perception on the evolutionary potential of obligate cavernicoles. PMID:23696661

  12. Theoretical study of the ionospheric plasma cave in the equatorial ionization anomaly region

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Tsung; Lin, C. H.; Chen, C. H.; Liu, J. Y.; Huba, J. D.; Chang, L. C.; Liu, H.-L.; Lin, J. T.; Rajesh, P. K.

    2014-12-01

    This paper investigates the physical mechanism of an unusual equatorial electron density structure, plasma cave, located underneath the equatorial ionization anomaly by using theoretical simulations. The simulation results provide important new understanding of the dynamics of the equatorial ionosphere. It has been suggested previously that unusual E>⇀×B>⇀ drifts might be responsible for the observed plasma cave structure, but model simulations in this paper suggest that the more likely cause is latitudinal meridional neutral wind variations. The neutral winds are featured by two divergent wind regions at off-equator latitudes and a convergent wind region around the magnetic equator, resulting in plasma divergences and convergence, respectively, to form the plasma caves structure. The tidal-decomposition analysis further suggests that the cave related meridional neutral winds and the intensity of plasma cave are highly associated with the migrating terdiurnal tidal component of the neutral winds.

  13. An ancient example of fluvial cave sediment derived from dust (eolian silt) infiltration

    NASA Astrophysics Data System (ADS)

    Evans, J. E.

    2011-12-01

    Silt-rich grain size distributions are geologically rare and typically eolian. Such sediments (and lithified equivalents) are called dust/dustites in a general case, or loess/loessite in the special case of eolian silts derived from glacial deposits. In both cases, silt-rich deposits require a source area of silt-sized materials, transport mechanisms (prevailing winds of sufficient energy) and one or more depositional mechanisms (such as trapping in the lee of topographic obstacles or adhesion to surfaces with moisture or vegetation). This study evaluates a third type of silt-rich geological deposit, paleo-cave sediments derived from mixtures of dust (eolian silt) and karst breccias. Cave sediments can be autochthonous (speleothems), parautochthonous (karst breccias), and allochthonous (such as fluvial cave sediments). The provenance of fluvial cave sediments is the landscape overlying the cave-karst system, and they are introduced to the cave-karst system by flood events. The Mississippian Leadville Limestone (SW Colorado) was subject to karst processes following Late Mississippian eustatic sea-level fall. These processes included formation of phreatic tubes, tower karst (kegelkarst), solution valleys (poljes), sinkholes (dolines), solution-enhanced joints (grikes), surficial flutes (rillenkarren), solution pans (kamenitzas), and breakout domes containing mosaic and crackle breccias. Flowstone, dripstone, and cave pearls are interbedded with karst breccias and fluvial cave sediments in the Leadville Limestone. The overlying Pennsylvanian Molas Formation is an eolian siltstone (dustite) with sediment sources from the peri-Gondwanan and Grenville rocks of eastern North America. Evidence that the fluvial cave sediments in the Leadville Limestone are derived from this dustite include compositional and textural matches, especially grain size distribution trends vertically downward from the former landscape surface. These grain size trends indicate infiltration of the dustite into the underlying cave-karst system. There is a significant amount of evidence that the resedimentation process was episodic. Some individual phreatic tubes have complex infill history of up to eight events (successive debrites or inundites interbedded with speleothems). Some individual vertical grikes have complex infill histories of as many as six laminated or massive jointites with weakly developed paleosols superimposed on these individual deposits. Late Cenozoic cave sediments are increasingly utilized as archives of geologic change. The role of dust (eolian silt), including its inherited compositional and textural properties from a distant source area, land-atmosphere transfer processes, and resedimentation processes on the land surface overlying the cave-karst system, remain promising areas for research.

  14. Thirty year ecosystem trajectories in a submerged marine cave under changing pressure regime.

    PubMed

    Montefalcone, Monica; De Falco, Giada; Nepote, Ettore; Canessa, Martina; Bertolino, Marco; Bavestrello, Giorgio; Morri, Carla; Bianchi, Carlo Nike

    2018-06-01

    Marine caves are unique and vulnerable habitats exhibiting high biodiversity and heterogeneity, but threatened by multiple global and local disturbances. Marine caves, although widely distributed along the Mediterranean coast, suffer for the lack of quantitative data on their structure and function, which hinder their conservation status assessment. Thanks to the availability of a nearly 30-year-long series of data (1986-2013), we evaluated ecosystem change in the Bergeggi marine cave (Ligurian Sea, NW Mediterranean), a cave with a complex shape and high habitat heterogeneity. Non-taxonomic descriptors were adopted, namely growth forms (GF) and trophic guilds (TG), which are informative about ecosystem structure and functioning, respectively. The cave experienced a general trend of change during the last three decades, mainly due to the decline in the cover of sessile organisms (especially 3-dimensional forms) matched by an increase of turf and sediment, thus causing the structural and functional homogenization of the cave community. While change before 2004 had been attributed to climatic factors (especially to the summer heat waves of 1999 and 2003), the most important rate of change was observed between 2009 and 2013, coinciding with recent major beach nourishments and the extension of the neighbouring Vado Ligure harbour, thus providing evidences on the importance of local disturbances deriving from coastal interventions. Monitoring the status of cave ecosystems is urgently needed, and the use of effective indicators, such as the specific traits here adopted (morphology and feeding strategy), could provide effective tools to assist marine cave conservation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Distinction between epigenic and hypogenic maze caves

    NASA Astrophysics Data System (ADS)

    Palmer, Arthur N.

    2011-11-01

    Certain caves formed by dissolution of bedrock have maze patterns composed of closed loops in which many intersecting fractures or pores have enlarged simultaneously. Their origin can be epigenic (by shallow circulation of meteoric groundwater) or hypogenic (by rising groundwater or production of deep-seated solutional aggressiveness). Epigenic mazes form by diffuse infiltration through a permeable insoluble caprock or by floodwater supplied by sinking streams. Most hypogenic caves involve deep sources of aggressiveness. Transverse hypogenic cave origin is a recently proposed concept in which groundwater of mainly meteoric origin rises across strata in the distal portions of large flow systems, to form mazes in soluble rock sandwiched between permeable but insoluble strata. The distinction between maze types is debated and is usually based on examination of diagnostic cave features and relation of caves to their regional setting. In this paper, the principles of mass transfer are applied to clarify the limits of each model, to show how cave origin is related to groundwater discharge, dissolution rate, and time. The results show that diffuse infiltration and floodwater can each form maze caves at geologically feasible rates (typically within 500 ka). Transverse hypogenic mazes in limestone, to enlarge significantly within 1 Ma, require an unusually high permeability of the non-carbonate beds (generally ≥ 10-4 cm/s), large discharge, and calcite saturation no greater than 90%, which is rare in deep diffuse flow in sedimentary rocks. Deep sources of aggressiveness are usually required. The origin of caves by transverse hypogenic flow is much more favorable in evaporite rocks than in carbonate rocks.

  16. Population trends of Rhinolophus affinis during the breeding and non-breeding season roosting at the Kota Gelanggi limestone complex, Pahang

    NASA Astrophysics Data System (ADS)

    Sia, Ting Jin; Zubaid, Akbar; Foo, Ng Yong

    2015-09-01

    Monitoring population trends of bats in caves is difficult but is very important for their conservation. Their vulnerability to decline cannot be taken lightly and must be monitored for future management purposes especially in places open to the public. No studies have been done on bats roosting in caves at Kota Gelanggi and there are very few published studies of cave-dwelling bats in Malaysia. To fill this gap, a study on monitoring the population trends of Rhinolophus affinis was carried out in two caves namely, Gua Kepala Gajah and Gua Tongkat. This study was conducted from October 2013 until December 2014. The population size was estimated by direct visual counts and photographic methods during the day. The bats were caught by using mists net and harp traps. The reproductive condition of both female and male individuals was examined. The mean estimated population size for R. affinis in Gua Kepala Gajah was 221 individuals and 464 in Gua Tongkat. The population size of R. affinis showed an obvious decline during the breeding season and increased gradually after that for both caves. Pregnant R. affinis were found in April 2014 and lactating in June 2014 in both caves. It is important to know the breeding and non-breeding season of bats in both caves and their roosting behaviour in order to protect the bats from human disturbance as these caves are open to the public. The findings will enable the TEKAM management to come out with a proper conservation and management plan for protecting the bat fauna in these caves.

  17. Virtual 3d City Modeling: Techniques and Applications

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2013-08-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as Building, Tree, Vegetation, and some manmade feature belonging to urban area. There are various terms used for 3D city models such as "Cybertown", "Cybercity", "Virtual City", or "Digital City". 3D city models are basically a computerized or digital model of a city contains the graphic representation of buildings and other objects in 2.5 or 3D. Generally three main Geomatics approach are using for Virtual 3-D City models generation, in first approach, researcher are using Conventional techniques such as Vector Map data, DEM, Aerial images, second approach are based on High resolution satellite images with LASER scanning, In third method, many researcher are using Terrestrial images by using Close Range Photogrammetry with DSM & Texture mapping. We start this paper from the introduction of various Geomatics techniques for 3D City modeling. These techniques divided in to two main categories: one is based on Automation (Automatic, Semi-automatic and Manual methods), and another is Based on Data input techniques (one is Photogrammetry, another is Laser Techniques). After details study of this, finally in short, we are trying to give the conclusions of this study. In the last, we are trying to give the conclusions of this research paper and also giving a short view for justification and analysis, and present trend for 3D City modeling. This paper gives an overview about the Techniques related with "Generation of Virtual 3-D City models using Geomatics Techniques" and the Applications of Virtual 3D City models. Photogrammetry, (Close range, Aerial, Satellite), Lasergrammetry, GPS, or combination of these modern Geomatics techniques play a major role to create a virtual 3-D City model. Each and every techniques and method has some advantages and some drawbacks. Point cloud model is a modern trend for virtual 3-D city model. Photo-realistic, Scalable, Geo-referenced virtual 3-D City model is a very useful for various kinds of applications such as for planning in Navigation, Tourism, Disasters Management, Transportations, Municipality, Urban Environmental Managements and Real-estate industry. So the Construction of Virtual 3-D city models is a most interesting research topic in recent years.

  18. GROTTO visualization for decision support

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco O.; Kuo, Eddy; Uhlmann, Jeffrey K.

    1998-08-01

    In this paper we describe the GROTTO visualization projects being carried out at the Naval Research Laboratory. GROTTO is a CAVE-like system, that is, a surround-screen, surround- sound, immersive virtual reality device. We have explored the GROTTO visualization in a variety of scientific areas including oceanography, meteorology, chemistry, biochemistry, computational fluid dynamics and space sciences. Research has emphasized the applications of GROTTO visualization for military, land and sea-based command and control. Examples include the visualization of ocean current models for the simulation and stud of mine drifting and, inside our computational steering project, the effects of electro-magnetic radiation on missile defense satellites. We discuss plans to apply this technology to decision support applications involving the deployment of autonomous vehicles into contaminated battlefield environments, fire fighter control and hostage rescue operations.

  19. "DEAR ROCK, WHAT'S YOUR DESTINY? Ancient and modern uses of rocks in industry, building and art."

    NASA Astrophysics Data System (ADS)

    Pennesi, Daniela

    2015-04-01

    The project is for students of first grade of secondary school. The activity is a game, virtual or real of associations between rock and soil samples with their uses in industry, building and art. The students, alone or in a team, have to form pairs having available various samples of rocks, soils and building materials as bags of cement, tiles.. They have images of colonnades, staircases of famous churches, cave paintings and colors. The project is multidisciplinary. During the activity, the teachers of art and technical education are involved with and the teacher of sciences. The game can be used as an introduction for the rocks' classification. The inquiry in team, is a good way to learn the several uses of mineral resources.

  20. 76 FR 19129 - Excavations (Design of Cave-in Protection Systems); Extension of the Office of Management and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... paragraphs require employers to use protective systems to prevent cave-ins during excavation work; these... work, thereby assuring employees of maximum protection against cave-ins. II. Special Issues for Comment...

  1. Radon Dose Determination for Cave Guides in Czech Republic

    NASA Astrophysics Data System (ADS)

    Thinova, Lenka; Rovenska, Katerina

    2008-08-01

    According to recommended approach there are six (from total of twelve) open-to-public caves in Czech Republic, reaching near to an effective lung-dose of 6mSv/year. A conservative approach for estimating the potential effective lung-dose in caves (or underground) is based on two season's measurements, using solid state alpha track detector (Kodak in plastic diffusion chamber). The obtained dataset is converted into an annual effective dose, in agreement with the ICRP65 recommendation, using the "cave factor" 1.5. The value of "cave factor" which depends on the spectrum of aerosol particles, or on the proportional representation of the unattached/attached ratio (6.5 : 93.5 for residential places, 13.6 : 86.4 for caves due to lower concentration of free aerosols) and on the equilibrium factor. Thus conversion factor is 1.5 times higher in comparison with ICRP 65. Is this correct? Because a more precisely determined dose value would have a significant impact on radon remedies, or on restricting the time workers stay underground, a series of measurement was initiated in 2003 with the aim to specify input data, computation and errors in effective dose assessment in each one of the evaluated caves separately. The enhancement of personal dosimetry for underground work places includes a study of the given questions, from the following points of view in each cave: continual radon measurement; regular measurements of radon and its daughters to estimate the equilibrium factor and the presence of free 218Po; regular indoor air flow measurements to study the location of the radon supply and its transfer among individual areas of the cave; natural radioactive element content evaluation in subsoil and in water inside/outside, a study of the radon sources in the cave; determination of the free fraction from continual unattached and attached fraction measurement (grid and filter); thoron measurement. Air flow measurements provide very interesting information about the origin of "radon pockets" with very high radon concentration, and enable study of the location of the radon supply and its transfer among individual areas of the cave. Most of the results show the equilibrium factor around F = 0.2-0.7 and the unattached fraction around 2%-30%. One of the most important question remains: how accurately was the unattached fraction measured? Part of this project was to verify the influence of etched track detector position in the cave.

  2. Climatic control on the growth of gigantic gypsum crystals within hypogenic caves (Naica mine, Mexico)?

    NASA Astrophysics Data System (ADS)

    Garofalo, Paolo S.; Fricker, Mattias B.; Günther, Detlef; Forti, Paolo; Mercuri, Anna-Maria; Loreti, Mara; Capaccioni, Bruno

    2010-01-01

    Three hypogenic caves within the Naica mine of Mexico ( Cueva de los Cristales — CLC, Ojo de la Reina — OR, and Cueva de las Velas — CLV) host spectacular gypsum crystals up to 11 m in length. These caves are close to another shallow cave of the area ( Cueva de las Espadas — CLE), with which they cover a 160 m-deep vertical section of the local drainage basin. Similar to other hypogenic caves, all these caves lack a direct connection with the land surface and should be unrelated with climate. A record of multi-technique fluid inclusion data and pollen spectra from cave and mine gypsum indicates surprisingly that climatic changes occurring at Naica could have controlled fluid composition in these caves, and hence crystal growth. Microthermometry and LA-ICP-Mass Spectrometry of fluid inclusions indicate that the shallow, chemically peculiar, saline fluid (up to 7.7 eq. wt.%NaCl) of CLE could have formed from evaporation, during a dry and hot climatic period. The fluid of the deep caves was instead of low salinity (˜ 3.5 eq. wt.% NaCl) and chemically homogeneous, and was poorly affected by evaporation. We propose that mixing of these two fluids, generated at different depths of the Naica drainage basin, determined the stable supersaturation conditions for the gigantic gypsum crystals to grow. Fluid mixing was controlled by the hydraulic communication between CLE and the other deep caves, and must have taken place during cycles of warm-dry and fresh-wet climatic periods, which are known to have occurred in the region. Pollen grains from a 35 ka-old gypsum crystal of CLC corresponds to a fairly homogenous catchment basin made of a mixed broadleaf wet forest, which suggests precipitation during a fresh-wet climatic period and confirms our interpretation of the fluid inclusion data. The unusual combination of geological and geochemical factors of Naica suggests that other hypogenic caves found elsewhere may not host similar crystals. However, this work shows that fluid inclusions and pollen spectra represent a useful tool for cave studies in general, and if used in future studies might be essential to unravel the mechanisms of hypogenic deposition.

  3. Hypogenic speleogenesis in quartzite: The case of Corona 'e Sa Craba Cave (SW Sardinia, Italy)

    NASA Astrophysics Data System (ADS)

    Sauro, Francesco; De Waele, Jo; Onac, Bogdan P.; Galli, Ermanno; Dublyansky, Yuri; Baldoni, Eleonora; Sanna, Laura

    2014-04-01

    The paper presents a detailed study demonstrating the hypogenic origin of the Corona 'e Sa Craba quartzite cave in SW Sardinia (Italy). Although the quartzite host-rock of this cave derived from silicification of Cambrian dolostones and dissolution of carbonate remnants could have had a role in the speleogenesis, detailed morphologic and petrographic investigation revealed clear evidence of quartz dissolution without signs of mechanical erosion by running waters. Thin section microscopy and scanning electron microscope (SEM) images show pervasive dissolution morphologies, such as pits and notches on quartz crystals causing the deep arenization of the cave walls, suggesting that the dissolution of quartz had a primary role in the formation of the void. The study of secondary cave minerals and the sulfur isotopic composition of sulfates and sulfides, coupled with data on fluid inclusions, allowed reconstruction of the peculiar speleogenetic history of this hypogenic hydrothermal quartzite cave. The cave formed by reduced hydrothermal fluids, probably under basic-neutral pH in phreatic conditions. The presence of abundant cations of Ba2 + in reduced Cl-rich fluids enhanced the quartz dissolution rate, allowing the formation of the voids in deep settings. During the Late Oligocene uplift of the area, the hydrothermal fluids in the cave reached oxygen-rich conditions, thus a minerogenetic phase started with the deposition of barite when the temperature of the fluid was ≤ 50 °C. The presence of cinnabar crusts in the lower part of the cave walls and on the boulders suggests a later volcanic phase with Hg-rich vapors ascending from below. Other minerals such as alunite, basaluminite, gypsum and halloysite (typical of an acid sulfate alteration environment), and phosphates were formed in a final, much more recent stage. The δ34S values of the cave sulfate minerals indicate that S is derived from the remobilization of original Precambrian Pb-Zn Mississippi Valley Type ores. These last two stages did not significantly affect the morphology of the cave. The Corona 'e Sa Craba appears to be the world's first example of a hypogenic cave in quartzite where the speleogenetic mechanisms have been studied and reconstructed in detail, using a variety of modern methods. This study confirms that dissolution of quartz by thermal alkaline fluids at depth can produce large dissolutional voids in the apparently poorly soluble quartzite rocks.

  4. Measuring radon concentrations and estimating dose in tourist caves.

    PubMed

    Martín Sánchez, A; de la Torre Pérez, J; Ruano Sánchez, A B; Naranjo Correa, F L

    2015-11-01

    Caves and mines are considered to be places of especial risk of exposure to (222)Rn. This is particularly important for guides and workers, but also for visitors. In the Extremadura region (Spain), there are two cave systems in which there are workers carrying out their normal everyday tasks. In one, visits have been reduced to maintain the conditions of temperature and humidity. The other comprises several caves frequently visited by school groups. The caves were radiologically characterised in order to estimate the dose received by workers or possible hazards for visitors. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Southwest Caves Reveal New Forms of Life

    USGS Publications Warehouse

    Wynne, J. Judson; Drost, Charles

    2009-01-01

    Caves in northern Arizona and western New Mexico are being researched and inventoried by scientists with the U.S. Geological Survey and cooperating agencies. Southwestern caves have been little studied, and scientists are now finding that these lightless and nutrient-poor natural systems are home to life forms found nowhere else on Earth. This research has identified unique communities of arthropods (insects, arachnids, and crustaceans) that include 3 new genera, or groups of species, and at least 15 new species - some only known to exist in a single cave. This exciting research is yielding information that will be used by resource managers to better understand and protect fragile and important Southwestern cave ecosystems.

  6. The tardigrade fauna of Australian marine caves: with descriptions of nine new species of Arthrotardigrada.

    PubMed

    Jørgensen, Aslak; Boesgaard, Tom M; Møbjerg, Nadja; Kristensen, Reinhardt M

    2014-05-28

    Marine caves are known to support a rich macrofauna; however, few studies have focused on meiofauna. Marine cave meiofaunal tardigrades have been reported from Japan and the Mediterranean Sea and a preliminary list of species including a redescription of Actinarctus neretinus Grimaldi de Zio, D'Addabbo Gallo, Morone De Lucia, Vaccarella and Grimaldi, 1982 was reported from Fish Rock Cave and Jim's Cave on the coast of Australia. This study is the fourth in a series describing the unique meiofauna in two Australian submarine caves located off the coast of New South Wales, describing nine new species.        Only 67 tardigrades were collected from the two caves, yet these contained a high diversity of at least 16 different species which are quite different in the two caves. The fauna includes nine arthrotardigrade genera: Actinarctus, Batillipes, Dipodarctus, Halechiniscus, Raiarctus, Styraconyx, Tanarctus, Tholoarctus, and Wingstrandarctus. This fauna is different from that reported for the high energy beaches along the East Coast of Australia.        We describe nine new species comprising a single batillipedid and eight halechiniscids: Batillipes solitarius nov. sp., Dipodarctus australiensis nov. sp., Dipodarctus susannae nov. sp., Raiarctus jesperi nov. sp., Raiarctus katrinae nov. sp., Tanarctus hirsutospinosus nov. sp., Tholoarctus oleseni nov. sp., Wingstrandarctus stinae nov. sp. and Wingstrandarctus unsculptus nov. sp.

  7. Unexpected diversity of sandflies (Diptera: Psychodidae) in tourist caves in Northern Thailand.

    PubMed

    Sukantamala, Jedsada; Sing, Kong-Wah; Jaturas, Narong; Polseela, Raxsina; Wilson, John-James

    2017-11-01

    Certain species of Phlebotomine sandflies (Diptera: Psychodidae) are vectors of the protozoa which causes leishmaniasis. Sandflies are found breeding in enclosed places like caves. Thailand is a popular tourist destination, including for ecotourism activities like caving, which increases the risk of contact between tourists and sandflies. Surveillance of sandflies is important for monitoring this risk but identification of species based on morphology is challenged by phenotypic plasticity and cryptic diversity. DNA barcodes have been used for the identification of sandflies in Thailand. We collected sandflies using CDC light trap from four tourist caves in Northern Thailand. Female sandflies were provisionally sorted into 13 morphospecies and 19 unidentified specimens. DNA was extracted from the thorax and legs of sandflies and the DNA barcode region of cytochrome c oxidase I mtDNA amplified and sequenced. The specimens were sorted into 22 molecular operational taxonomic units (MOTU) based on the 145 DNA barcodes, which is significantly more than the morphospecies. Several of the taxa thought to be present in multiple caves, based on morphospecies sorting, split into cave-specific MOTU which likely represent cryptic species. Several MOTU reported in an earlier study from Wihan Cave, Thailand, were also found in these caves. This supports the use of DNA barcodes to investigate species diversity of sandflies and their useful role in surveillance of sandflies in Thailand.

  8. 3D Volume and Morphology of Perennial Cave Ice and Related Geomorphological Models at Scăriloara Ice Cave, Romania, from Structure from Motion, Ground Penetrating Radar and Total Station Surveys

    NASA Astrophysics Data System (ADS)

    Hubbard, J.; Onac, B. P.; Kruse, S.; Forray, F. L.

    2017-12-01

    Research at Scăriloara Ice Cave has proceeded for over 150 years, primarily driven by the presence and paleoclimatic importance of the large perennial ice block and various ice speleothems located within its galleries. Previous observations of the ice block led to rudimentary volume estimates of 70,000 to 120,000 cubic meters (m3), prospectively placing it as one of the world's largest cave ice deposits. The cave morphology and the surface of the ice block are now recreated in a total station survey-validated 3D model, produced using Structure from Motion (SfM) software. With the total station survey and the novel use of ArcGIS tools, the SfM validation process is drastically simplified to produce a scaled, georeferenced, and photo-texturized 3D model of the cave environment with a root-mean-square error (RMSE) of 0.24 m. Furthermore, ground penetrating radar data was collected and spatially oriented with the total station survey to recreate the ice block basal surface and was combined with the SfM model to create a model of the ice block itself. The resulting ice block model has a volume of over 118,000 m3 with an uncertainty of 9.5%, with additional volumes left un-surveyed. The varying elevation of the ice block basal surface model reflect specific features of the cave roof, such as areas of enlargement, shafts, and potential joints, which offer further validation and inform theories on cave and ice genesis. Specifically, a large depression area was identified as a potential area of initial ice growth. Finally, an ice thickness map was produced that will aid in the designing of future ice coring projects. This methodology presents a powerful means to observe and accurately characterize and measure cave and cave ice morphologies with ease and affordability. Results further establish the significance of Scăriloara's ice block to paleoclimate research, provide insights into cave and ice block genesis, and aid future study design.

  9. Non-extremophilic 'extremophiles' - Archaeal dominance in the subsurface and their implication for life

    NASA Astrophysics Data System (ADS)

    Reitschuler, Christoph; Lins, Philipp; Illmer, Paul

    2014-05-01

    Archaea - besides bacteria and eukaryota constituting the third big domain of life - were so far regarded as typical inhabitants of extreme environments, as indicated by the name (Archaeon, Greek: 'original', 'primal'). Previous research and cultivation successes were basically carried out in habitats characterized by extreme temperature, pH and salinity regimes. Such extreme conditions, as expected at the beginning of the Earth's evolution, are occasionally also prevalent on extraterrestrial planets and moons and make the Archaeal domain a key group to be studied concerning life's evolution and the most likely pioneer organisms to colonize environments that are regarded as hostile. However, in recent years it became obvious that Archaea, in particular non-extremophilic species, can be found almost ubiquitously in marine, freshwater, terrestrial and also subsurface habitats and occasionally outnumber other microbial domains and hold key positions in globally relevant energy and nutrient cycles. Besides extreme environments - the big question remains how to define a parameter as extreme - subsurface and cave environments present a window to the past, where adaptions to early life's conditions can be studied and how microbiomes may be structured in a habitat that represents a refugium on extraterrestrial celestial bodies, were surface conditions might be at first sight too extreme for life. The lower part of the alpine Hundsalm cave in Tyrol (Austria) offered a unique opportunity to study an almost pristine cave habitat, which is separated from the touristic part of the ice cave. The main focus of our research was laid on the microbial communities that were supposed to be in connection with secondary carbonate precipitations ('moonmilk'). For the ascertainment of these so far poorly evaluated structures a multiple approach assessment was chosen to generate a virtually complete picture of these subsurface microbiomes. Thereby, a combination of different cultivation strategies was applied as well as physiological analyses, comprising HPLC and GC analyses, and molecular approaches, covering end-point and quantitative PCRs, DGGE, cloning, and sequencing analyses. Outstanding in the course of this research was that assumed non-extremophilic Archaea clearly outnumbered bacteria within the different moonmilk deposits, while fungi were only of minor importance. Moreover, the Archaeal species formed a constant element within the investigated samples, while bacteria and fungi showed a much more diverse and inhomogeneous community pattern. This indicates that the Archaea might constitute the central element within the microbial communities, holding key positions in nutrient and energy-cycles. Furthermore, it was possible to cultivate the Archaeal community over a certain time period, demonstrating that so far uncultured or as 'not cultivable' regarded organisms are accessible with certain cultivation strategies. On the other hand the vast majority of bacterial and fungal representatives are in close relation to species, which are valuable concerning biotechnological or medical applications. Summing up, further research on cave microbiomes, especially Archaea, might be reasonable with regards to life's evolution, global nutrient cycles, requirements for possible refuges of extraterrestrial life forms and also concerning new technological applications.

  10. PATTERNS OF ENDEMISM OF THE EASTERN NORTH AMERICAN CAVE FAUNA

    EPA Science Inventory

    Over 250 species of obligate terrestrial cave-dwelling animals (troglobionts) are known from single caves in the eastern United States. We investigate their geographic distribution, especially in relation to other troglobionts. We relate these patterns to taxonomic group, oppor...

  11. Automated flight path planning for virtual endoscopy.

    PubMed

    Paik, D S; Beaulieu, C F; Jeffrey, R B; Rubin, G D; Napel, S

    1998-05-01

    In this paper, a novel technique for rapid and automatic computation of flight paths for guiding virtual endoscopic exploration of three-dimensional medical images is described. While manually planning flight paths is a tedious and time consuming task, our algorithm is automated and fast. Our method for positioning the virtual camera is based on the medial axis transform but is much more computationally efficient. By iteratively correcting a path toward the medial axis, the necessity of evaluating simple point criteria during morphological thinning is eliminated. The virtual camera is also oriented in a stable viewing direction, avoiding sudden twists and turns. We tested our algorithm on volumetric data sets of eight colons, one aorta and one bronchial tree. The algorithm computed the flight paths in several minutes per volume on an inexpensive workstation with minimal computation time added for multiple paths through branching structures (10%-13% per extra path). The results of our algorithm are smooth, centralized paths that aid in the task of navigation in virtual endoscopic exploration of three-dimensional medical images.

  12. Virtual Vision

    NASA Astrophysics Data System (ADS)

    Terzopoulos, Demetri; Qureshi, Faisal Z.

    Computer vision and sensor networks researchers are increasingly motivated to investigate complex multi-camera sensing and control issues that arise in the automatic visual surveillance of extensive, highly populated public spaces such as airports and train stations. However, they often encounter serious impediments to deploying and experimenting with large-scale physical camera networks in such real-world environments. We propose an alternative approach called "Virtual Vision", which facilitates this type of research through the virtual reality simulation of populated urban spaces, camera sensor networks, and computer vision on commodity computers. We demonstrate the usefulness of our approach by developing two highly automated surveillance systems comprising passive and active pan/tilt/zoom cameras that are deployed in a virtual train station environment populated by autonomous, lifelike virtual pedestrians. The easily reconfigurable virtual cameras distributed in this environment generate synthetic video feeds that emulate those acquired by real surveillance cameras monitoring public spaces. The novel multi-camera control strategies that we describe enable the cameras to collaborate in persistently observing pedestrians of interest and in acquiring close-up videos of pedestrians in designated areas.

  13. Coupling cosmogenic dating and magnetostratigraphy to constrain the chronological evolution of peri-Mediterranean karsts during the Messinian and the Pliocene: Example of Ardèche Valley, Southern France

    NASA Astrophysics Data System (ADS)

    Tassy, Aurélie; Mocochain, Ludovic; Bellier, Olivier; Braucher, Régis; Gattacceca, Jérôme; Bourlès, Didier

    2013-05-01

    The Ardèche River entrenches a deep canyon in the Saint Remèze plateau from Vallon-Pont-d'Arc to its confluence with the Rhône. This plateau is part of the Ardèche Cretaceous limestone plateau located at the edge of the Mid Rhône valley. It is characterized by dense multi-level cave systems, such as Saint-Marcel Cave (50 km of mapped passages) and Chauvet Cave, famous for its paleolithic paintings. Until now, and despite the absence of absolute dating, stepping of the Saint Remèze cave levels has been interpreted as the result of the Messinian salinity crisis. To clarify this interpretation, fluvial sediments of cave systems have been absolutely dated, while cave sediments have been demonstrated to be ideal for "burial dating" based on the different radioactive decay rates of the in situ-produced cosmogenic nuclides 10Be and 26Al. Combined with magnetostratigraphy and constrained by the Lower Ardèche base-level curve, this contribution provides an absolute dating for each cave level. The obtained results are consistent with the stepping per ascensum model of both surface landforms and caves for the Messinian-Pliocene eustatic cycle. Finally, this study provides evidence for a rise of the Ardèche river level to 40 m above the Pliocene abandonment surface. The second active period of the Chauvet Cave is evidenced between 2.96 and 2.18 Ma (cave filling). An absolute dating for the Pliocene abandonment surface between 1.94 and 1.77 Ma is also obtained, which brings new understandings to the geodynamic evolution of the area. The Lower Ardèche has been uplifted after the Pliocene, with a rate of 0.03 mm/year since 1.77 Ma.

  14. Application of spectral decomposition of ²²²Rn activity concentration signal series measured in Niedźwiedzia Cave to identification of mechanisms responsible for different time-period variations.

    PubMed

    Przylibski, Tadeusz Andrzej; Wyłomańska, Agnieszka; Zimroz, Radosław; Fijałkowska-Lichwa, Lidia

    2015-10-01

    The authors present an application of spectral decomposition of (222)Rn activity concentration signal series as a mathematical tool used for distinguishing processes determining temporal changes of radon concentration in cave air. The authors demonstrate that decomposition of monitored signal such as (222)Rn activity concentration in cave air facilitates characterizing the processes affecting changes in the measured concentration of this gas. Thanks to this, one can better correlate and characterize the influence of various processes on radon behaviour in cave air. Distinguishing and characterising these processes enables the understanding of radon behaviour in cave environment and it may also enable and facilitate using radon as a precursor of geodynamic phenomena in the lithosphere. Thanks to the conducted analyses, the authors confirmed the unquestionable influence of convective air exchange between the cave and the atmosphere on seasonal and short-term (diurnal) changes in (222)Rn activity concentration in cave air. Thanks to the applied methodology of signal analysis and decomposition, the authors also identified a third process affecting (222)Rn activity concentration changes in cave air. This is a deterministic process causing changes in radon concentration, with a distribution different from the Gaussian one. The authors consider these changes to be the effect of turbulent air movements caused by the movement of visitors in caves. This movement is heterogeneous in terms of the number of visitors per group and the number of groups visiting a cave per day and per year. Such a process perfectly elucidates the observed character of the registered changes in (222)Rn activity concentration in one of the decomposed components of the analysed signal. The obtained results encourage further research into precise relationships between the registered (222)Rn activity concentration changes and factors causing them, as well as into using radon as a precursor of geodynamic phenomena in the lithosphere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Estimation of deep infiltration in unsaturated limestone environments using cave lidar and drip count data

    NASA Astrophysics Data System (ADS)

    Mahmud, K.; Mariethoz, G.; Baker, A.; Treble, P. C.; Markowska, M.; McGuire, E.

    2016-01-01

    Limestone aeolianites constitute karstic aquifers covering much of the western and southern Australian coastal fringe. They are a key groundwater resource for a range of industries such as winery and tourism, and provide important ecosystem services such as habitat for stygofauna. Moreover, recharge estimation is important for understanding the water cycle, for contaminant transport, for water management, and for stalagmite-based paleoclimate reconstructions. Caves offer a natural inception point to observe both the long-term groundwater recharge and the preferential movement of water through the unsaturated zone of such limestone. With the availability of automated drip rate logging systems and remote sensing techniques, it is now possible to deploy the combination of these methods for larger-scale studies of infiltration processes within a cave. In this study, we utilize a spatial survey of automated cave drip monitoring in two large chambers of Golgotha Cave, south-western Western Australia (SWWA), with the aim of better understanding infiltration water movement and the relationship between infiltration, stalactite morphology, and unsaturated zone recharge. By applying morphological analysis of ceiling features from Terrestrial LiDAR (T-LiDAR) data, coupled with drip time series and climate data from 2012 to 2014, we demonstrate the nature of the relationships between infiltration through fractures in the limestone and unsaturated zone recharge. Similarities between drip rate time series are interpreted in terms of flow patterns, cave chamber morphology, and lithology. Moreover, we develop a new technique to estimate recharge in large-scale caves, engaging flow classification to determine the cave ceiling area covered by each flow category and drip data for the entire observation period, to calculate the total volume of cave discharge. This new technique can be applied to other cave sites to identify highly focussed areas of recharge and can help to better estimate the total recharge volume.

  16. Estimation of deep infiltration in unsaturated limestone environments using cave LiDAR and drip count data

    NASA Astrophysics Data System (ADS)

    Mahmud, K.; Mariethoz, G.; Baker, A.; Treble, P. C.; Markowska, M.; McGuire, E.

    2015-09-01

    Limestone aeolianites constitute karstic aquifers covering much of the western and southern Australian coastal fringe. They are a key groundwater resource for a range of industries such as winery and tourism, and provide important ecosystem services such as habitat for stygofauna. Moreover, recharge estimation is important for understanding the water cycle, for contaminant transport, for water management and for stalagmite-based paleoclimate reconstructions. Caves offer a natural inception point to observe both the long-term groundwater recharge and the preferential movement of water through the unsaturated zone of such limestone. With the availability of automated drip rate logging systems and remote sensing techniques, it is now possible to deploy the combination of these methods for larger scale studies of infiltration processes within a cave. In this study, we utilize a spatial survey of automated cave drip monitoring in two large chambers of the Golgotha Cave, South-West Western Australia (SWWA), with the aim of better understanding infiltration water movement and the relationship between infiltration, stalactite morphology and unsaturated zone recharge. By applying morphological analysis of ceiling features from Terrestrial LiDAR (T-LiDAR) data, coupled with drip time series and climate data from 2012-2014, we demonstrate the nature of the relationships between infiltration through fractures in the limestone and unsaturated zone recharge. Similarities between drip-rate time series are interpreted in terms of flow patterns, cave chamber morphology and lithology. Moreover, we develop a new technique to estimate recharge in large scale caves, engaging flow classification to determine the cave ceiling area covered by each flow category and drip data for the entire observation period, to calculate the total volume of cave discharge. This new technique can be applied to other cave sites to identify highly focused areas of recharge and can help to better estimate the total recharge volume.

  17. A Low-cost data-logging platform for long-term field sensor deployment in caves

    NASA Astrophysics Data System (ADS)

    Cruz, M. A.; Myre, J. M.; Covington, M. D.

    2014-12-01

    Active karst systems are notoriously inhospitable environments for humans and equipment. Caves require equipment to cope with high humidity, high velocity flows, submersion, sediment loads, and harassment from local fauna. Equipment taken into caves is often considered "consumable" due to the extreme nature of cave environments and the difficulty of transport. Further, because many interesting monitoring locations within caves can be considered remote, it is ideal for electronic monitoring platforms to require minimal maintenance of parts and power supplies. To partially address the challenge of scientifically monitoring such environments, we have developed an arduino based platform for environmental monitoring of cave systems. The arduino is a general purpose open source microcontroller that is easily programmed with only a basic knowledge of the C programming language. The arduino is capable of controlling digital and analog electronics in a modular fashion. Using this capability, we have created a platform for monitoring CO2 levels in cave systems that costs one-tenth of a comparable commercial system while using a fraction of the power. The modular nature of the arduino system allows the incorporation of additional environmental sensors in the future.

  18. Genomic sequencing of Pleistocene cave bears

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noonan, James P.; Hofreiter, Michael; Smith, Doug

    2005-04-01

    Despite the information content of genomic DNA, ancient DNA studies to date have largely been limited to amplification of mitochondrial DNA due to technical hurdles such as contamination and degradation of ancient DNAs. In this study, we describe two metagenomic libraries constructed using unamplified DNA extracted from the bones of two 40,000-year-old extinct cave bears. Analysis of {approx}1 Mb of sequence from each library showed that, despite significant microbial contamination, 5.8 percent and 1.1 percent of clones in the libraries contain cave bear inserts, yielding 26,861 bp of cave bear genome sequence. Alignment of this sequence to the dog genome,more » the closest sequenced genome to cave bear in terms of evolutionary distance, revealed roughly the expected ratio of cave bear exons, repeats and conserved noncoding sequences. Only 0.04 percent of all clones sequenced were derived from contamination with modern human DNA. Comparison of cave bear with orthologous sequences from several modern bear species revealed the evolutionary relationship of these lineages. Using the metagenomic approach described here, we have recovered substantial quantities of mammalian genomic sequence more than twice as old as any previously reported, establishing the feasibility of ancient DNA genomic sequencing programs.« less

  19. Study of the environmental variables affecting the natural preservation of the Altamira Cave paintings located at Santillana del Mar, Spain

    NASA Astrophysics Data System (ADS)

    Quindos, L. S.; Bonet, A.; Diaz-Caneja, N.; Fernandez, P. L.; Gutierrez, I.; Solana, J. R.; Soto, J.; Villar, E.

    A study was carried out over a period of more than two years of the seasonal variations shown by the different variables that determine the microclimatic and chromatic characteristics of the Altamira Cave, Spain, under natural conditions, i.e. in the absence of visitors to the cave. The Altamira Cave contains 16,000-year-old prehistoric paintings and as such is a priceless legacy from the distant past. Temperatures of the air, floors and roofs, air humidity, and CO 2 concentrations of the different chambers of the cave were measured. Flow rate and chemical composition of the waters flowing into the paintings chamber were also analyzed. A chromatic characterization of the paintings, determining the psychrometric coordinates of the colour, lightness, chroma and hue, was made. This study has not only enabled presentation of the state of conservation of the famous polychrome roof of the Paintings Chamber, but has also supplied a reference point for later studies. Future experiments could be made with various controlled regimes of visitors to the cave in order to establish suitable criteria for the best possible preservation of the cave paintings.

  20. Vineyard management in virtual reality: autonomous control of a transformable drone

    NASA Astrophysics Data System (ADS)

    Griffiths, H.; Shen, H.; Li, N.; Rojas, S.; Perkins, N.; Liu, M.

    2017-05-01

    Grape vines are susceptible to many diseases. Routine scouting is critically important to keep vineyards in healthy condition. Currently, scouting relies on experienced farm workers to inspect acres of land while arduously filling out reports to document crop health conditions. This process is both labor and time consuming. Using drones to assist farm workers in scouting has great potential to improve the efficiency of vineyard management. Due to the complexity in grape farm disease detection, the drones are normally used to detect suspicious areas to help farm workers to prioritize scouting activities. Operations still rely heavily on humans for further inspection to be certain about the health conditions of the vines. This paper introduces an autonomous transition flight control method for a transformable drone, which is suitable for the future virtual presence of humans in further inspecting suspicious areas. The transformable drone adopts a tilt-rotor mechanism to automatically switch between hover and horizontal flight modes, following commands from virtual reality devices held in the ground control station. The conceptual design and transformation dynamics of the drone will be first discussed, followed by a model predictive control system developed to automatically control the transition flight. Simulation is also provided to show the effectiveness of the proposed control system.

  1. LAMOST CCD camera-control system based on RTS2

    NASA Astrophysics Data System (ADS)

    Tian, Yuan; Wang, Zheng; Li, Jian; Cao, Zi-Huang; Dai, Wei; Wei, Shou-Lin; Zhao, Yong-Heng

    2018-05-01

    The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is the largest existing spectroscopic survey telescope, having 32 scientific charge-coupled-device (CCD) cameras for acquiring spectra. Stability and automation of the camera-control software are essential, but cannot be provided by the existing system. The Remote Telescope System 2nd Version (RTS2) is an open-source and automatic observatory-control system. However, all previous RTS2 applications were developed for small telescopes. This paper focuses on implementation of an RTS2-based camera-control system for the 32 CCDs of LAMOST. A virtual camera module inherited from the RTS2 camera module is built as a device component working on the RTS2 framework. To improve the controllability and robustness, a virtualized layer is designed using the master-slave software paradigm, and the virtual camera module is mapped to the 32 real cameras of LAMOST. The new system is deployed in the actual environment and experimentally tested. Finally, multiple observations are conducted using this new RTS2-framework-based control system. The new camera-control system is found to satisfy the requirements for automatic camera control in LAMOST. This is the first time that RTS2 has been applied to a large telescope, and provides a referential solution for full RTS2 introduction to the LAMOST observatory control system.

  2. Morphology and evolution of sulphuric acid caves in South Italy

    NASA Astrophysics Data System (ADS)

    D'Angeli, Ilenia M.; De Waele, Jo; Galdenzi, Sandro; Madonia, Giuliana; Parise, Mario; Vattano, Marco

    2016-04-01

    Sulphuric acid speleogenesis (SAS) related to the upwelling of acid water enriched in H2S and CO2 represents an unusual way of cave development. Since meteoric infiltration waters are not necessarily involved in speleogenesis, caves can form without the typical associated karst expressions (i.e. dolines) at the surface. The main mechanism of sulphuric acid dissolution is the oxidation of H2S (Jones et al., 2015) which can be amplified by bacterial mediation (Engel et al., 2004). In these conditions, carbonate dissolution associated with gypsum replacement, is generally believed to be faster than the normal epigenic one (De Waele et al., 2016). In Italy several SAS caves have been identified, but only few systems have been studied in detail: Frasassi and Acquasanta Terme (Marche)(Galdenzi et al., 2010), Monte Cucco (Umbria) (Galdenzi & Menichetti, 1995), and Montecchio (Tuscany) (Piccini et al., 2015). Other preliminary studies have been carried out in Calabria (Galdenzi, 2007) and Sicily (De Waele et al., 2016). Several less studied SAS cave systems located in South Italy, and in particular in Apulia (Santa Cesarea Terme), Sicily (Acqua Fitusa, Acqua Mintina) and Calabria (Mt. Sellaro and Cassano allo Ionio) have been selected in the framework of a PhD thesis on SAS caves and their speleogenesis. Using both limestone tablet weight loss (Galdenzi et al., 2012) and micro erosion meter (MEM) (Furlani et al., 2010) methods the dissolution rate above and under water in the caves will be quantified. Geomorphological observations, landscape analysis using GIS tools, and the analysis of gypsum and other secondary minerals (alunite and jarosite) (stable isotopes and dating) will help to reconstruct the speleogenetic stages of cave formation. Preliminary microbiological analysis will determine the microbial diversity and ecology in the biofilms. References Engel S.A., Stern L.A., Bennett P.C., 2004 - Microbial contributions to cave formation: New insight into sulfuric acid speleogenesis. Geology, 32: 369-372. De Waele J., Audra P., Madonia G., Vattano M., Plan L., D'Angeli I.M., Bigot J.-Y., Nobécourt J.-C., 2016 - Sulfuric acid speleogenesis (SAS) close to the water table: examples from southern France, Austria, and Sicily. Geomorphology, 253: 452-467. Furlani S., Cucchi F., Odorico R., 2010 - A new method to study micro-topographical changes in the intertidal zone: one year of TMEM measurements on a limestone removable slab (RRS). Z. Geomorph., 54(2): 137-151. Galdenzi S., 1997 - Initial geological observations in caves bordering the Sibari plain (southern Italy). J. Cave Karst Stud., 59: 81-86. Galdenzi S., 2012 - Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications. Int. J. Spel., 41(2): 149-159. Galdenzi S., Menichetti M., 1995 - Occurrence of hypogenic caves in a karst region: examples from central Italy. Environmental Geology, 26: 39-47. Galdenzi S., Cocchioni F., Filipponi G., Selvaggio R., Scuri S., Morichetti L., Cocchioni M., 2010 - The sulfidic thermal caves of Acquasanta Terme (central Italy). J. Cave Karst Stud. 72(1): 43-58. Jones, D.S., Polerecky, L., Galdenzi, S., Dempsey, B.A., Macalady, J.L., 2015 - Fate of sulfide in the Frasassi cave system and implications for sulfuric acid speleogenesis. Chemical Geology, 410: 21-27.

  3. THE MID-LATITUDE BIODIVERSITY RIDGE IN TERRESTRIAL CAVE FAUNA

    EPA Science Inventory

    The world's obligate cave-dwelling fauna holds considerable promise for biogeographic analysis because it represents a large number of independent evolutionary experiments in isolation in caves and adaptation to subterranean life. We focus on seven north temperate regions of at l...

  4. An experimental study on Sokkuram Cave Temple dome's indoor environment using a miniature model in winter season

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, S.H.; Chung, K.S.; Park, J.S.

    1999-07-01

    Currently, there are many researches on the analysis of indoor environment in Sokkuram Cave Temple. However, there is not enough researches about an experimental study on the dome's indoor environment in Sokkuram Cave Temple using a miniature model. The purpose of this investigation is to measure and analyze characteristics of indoor environment such as relative humidity, dry bulb temperature and air velocity in the miniature model of Sokkuram Cave dome during winter season.

  5. A sensor network based virtual beam-like structure method for fault diagnosis and monitoring of complex structures with Improved Bacterial Optimization

    NASA Astrophysics Data System (ADS)

    Wang, H.; Jing, X. J.

    2017-02-01

    This paper proposes a novel method for the fault diagnosis of complex structures based on an optimized virtual beam-like structure approach. A complex structure can be regarded as a combination of numerous virtual beam-like structures considering the vibration transmission path from vibration sources to each sensor. The structural 'virtual beam' consists of a sensor chain automatically obtained by an Improved Bacterial Optimization Algorithm (IBOA). The biologically inspired optimization method (i.e. IBOA) is proposed for solving the discrete optimization problem associated with the selection of the optimal virtual beam for fault diagnosis. This novel virtual beam-like-structure approach needs less or little prior knowledge. Neither does it require stationary response data, nor is it confined to a specific structure design. It is easy to implement within a sensor network attached to the monitored structure. The proposed fault diagnosis method has been tested on the detection of loosening screws located at varying positions in a real satellite-like model. Compared with empirical methods, the proposed virtual beam-like structure method has proved to be very effective and more reliable for fault localization.

  6. Culturable microbial diversity and the impact of tourism in Kartchner Caverns, Arizona.

    PubMed

    Ikner, Luisa A; Toomey, Rickard S; Nolan, Ginger; Neilson, Julia W; Pryor, Barry M; Maier, Raina M

    2007-01-01

    Kartchner Caverns in Benson, AZ, was opened for tourism in 1999 after a careful development protocol that was designed to maintain predevelopment conditions. As a part of an ongoing effort to determine the impact of humans on this limestone cave, samples were collected from cave rock surfaces along the cave trail traveled daily by tour groups (200,000 visitors year-1) and compared to samples taken from areas designated as having medium (30-40 visitors year-1) and low (2-3 visitors year-1) levels of human exposure. Samples were also taken from fiberglass moldings installed during cave development. Culturable bacteria were recovered from these samples and 90 unique isolates were identified by using 16S rRNA polymerase chain reaction and sequencing. Diversity generally decreased as human impact increased leading to the isolation of 32, 27, and 22 strains from the low, medium, and high impact areas, respectively. The degree of human impact was also reflected in the phylogeny of the isolates recovered. Although most isolates fell into one of three phyla: Actinobacteria, Firmicutes, or Proteobacteria, the Proteobacteria were most abundant along the cave trail (77% of the isolates), while Firmicutes predominated in the low (66%) and medium (52%) impact areas. Although the abundance of Proteobacteria along the cave trail seems to include microbes of environmental rather than of anthropogenic origin, it is likely that their presence is a consequence of increased organic matter availability due to lint and other organics brought in by cave visitors. Monitoring of the cave is still in progress to determine whether these bacterial community changes may impact the future development of cave formations.

  7. Determination of Sinkholes with Different Geophysical Techniques; A Case Study in Yarımburgaz, Küçükçekmece Lake NW Istanbul, Turkey

    NASA Astrophysics Data System (ADS)

    Karabulut, Savas; Cengiz Cinku, Mualla; Tezel, Okan; Dedecan, Hasan; Oygo, Azat

    2016-04-01

    The Yarımburgaz cave which is located in the city of Istanbul, NW Turkey plays an important host to the first human culture and preserve significant archaeological and paleontological resources. The cave was formed as a result of a subterranean stream erosion on the limestones of the Eocene Kırklareli formation. It has been reported that a double cave with upper and lower entrance chambers exist, although no geophysical research was conducted to detect the cave's trunk passages and the extend of the sediment fill inside the cave. The aim of this study was to test the preferred order for detection the response to different geophysical methods applied on the cave. We therefore carried out an a series of geophysical study to determine the size, position, and depth of sinkholes inside the caves. Integrated methodological approaches including multichannel analysis of surface wave (MASW) 2- microtremor array method, 3-single station microtremor measurements, 4- electrical tomography (ET) measuruments and 5-microgravity imaging showed that the geophysical response was succesfully applied. Based upon the flow-chart we concluded that the microgravity survey should be applied as a first step to detect the air-filled void and the geometry of the cave. The electric tomography method was well applied showing high resistivity values across the voids. The surface wave method showed that the low-velocity zones are detected in various locations of the cave. In addition we the results of MASW and ReMi methods showed clearly the density variation in the lateral direction. Fundamental frequency value above void decraese according the properties of geological units in lateral directional, especially when they are engineering rock like limestone.

  8. Methane concentration and isotopic composition (δ13C-CH4) in the Nerja Cave system (South Spain)

    NASA Astrophysics Data System (ADS)

    Vadillo, Iñaki; Etiope, Giuseppe; Benavente, José; Ojeda, Lucia; Liñán, Cristina; Carrasco, Francisco

    2016-04-01

    Air in underground caves often has methane (CH4) concentrations below the atmospheric level, due to methanotrophic or other unkown CH4 consuming processes. Caves are thus considered a potential sink for atmospheric methane. If globally important, this underground CH4 oxidation should be taken into account in the atmospheric methane budget, in addition to the known soil methanotrophy and tropospheric/stratospheric sinks. A large set of data is however necessary to understand how and how much methane from external atmospheric air is consumed in the caves. While methane concentration data are available for several caves worldwide, its isotopic composition and variations in space and time are poorly documented. We measured methane concentration and stable C isotope composition (δ13C) in the Nerja cave (Southern Spain) air during two surveys in March and April 2015. CH4 concentration decreases progressively from the more external cave rooms, with atmospheric levels of 1.9 ppmv, to the more internal and isolated rooms down to 0.5 ppmv. δ13C increases correspondingly from -47 ‰ to -41 ‰ (VPDB). CH4 is systematically 13C-enriched (δ13C > -45) in areas of the cave where the concentration is below 1.4 ppmv. This combination of concentration decrease and 13C-enrichment towards the more internal and isolated zones of the cave confirms the importance of CH4 oxidation, likely driven by methanotrophic bacteria. Further data, including stable H isotope composition of sub-atmospheric CH4 concentrations, CO2 and microbial analyses, shall be acquired over time to assess the actual role of methanotrophic bacteria and seasonal controls in the CH4 consumption process.

  9. Retreat and extinction of the Late Pleistocene cave bear ( Ursus spelaeus sensu lato)

    NASA Astrophysics Data System (ADS)

    Baca, Mateusz; Popović, Danijela; Stefaniak, Krzysztof; Marciszak, Adrian; Urbanowski, Mikołaj; Nadachowski, Adam; Mackiewicz, Paweł

    2016-12-01

    The cave bear ( Ursus spelaeus sensu lato) is a typical representative of Pleistocene megafauna which became extinct at the end of the Last Glacial. Detailed knowledge of cave bear extinction could explain this spectacular ecological transformation. The paper provides a report on the youngest remains of the cave bear dated to 20,930 ± 140 14C years before present (BP). Ancient DNA analyses proved its affiliation to the Ursus ingressus haplotype. Using this record and 205 other dates, we determined, following eight approaches, the extinction time of this mammal at 26,100-24,300 cal. years BP. The time is only slightly earlier, i.e. 27,000-26,100 cal. years BP, when young dates without associated collagen data are excluded. The demise of cave bear falls within the coldest phase of the last glacial period, Greenland Stadial 3. This finding and the significant decrease in the cave bear records with cooling indicate that the drastic climatic changes were responsible for its extinction. Climate deterioration lowered vegetation productivity, on which the cave bear strongly depended as a strict herbivore. The distribution of the last cave bear records in Europe suggests that this animal was vanishing by fragmentation into subpopulations occupying small habitats. One of them was the Kraków-Częstochowa Upland in Poland, where we discovered the latest record of the cave bear and also two other, younger than 25,000 14C years BP. The relatively long survival of this bear in karst regions may result from suitable microclimate and continuous access to water provided by deep aquifers, indicating a refugial role of such regions in the Pleistocene for many species.

  10. Retreat and extinction of the Late Pleistocene cave bear (Ursus spelaeus sensu lato).

    PubMed

    Baca, Mateusz; Popović, Danijela; Stefaniak, Krzysztof; Marciszak, Adrian; Urbanowski, Mikołaj; Nadachowski, Adam; Mackiewicz, Paweł

    2016-12-01

    The cave bear (Ursus spelaeus sensu lato) is a typical representative of Pleistocene megafauna which became extinct at the end of the Last Glacial. Detailed knowledge of cave bear extinction could explain this spectacular ecological transformation. The paper provides a report on the youngest remains of the cave bear dated to 20,930 ± 140 14 C years before present (BP). Ancient DNA analyses proved its affiliation to the Ursus ingressus haplotype. Using this record and 205 other dates, we determined, following eight approaches, the extinction time of this mammal at 26,100-24,300 cal. years BP. The time is only slightly earlier, i.e. 27,000-26,100 cal. years BP, when young dates without associated collagen data are excluded. The demise of cave bear falls within the coldest phase of the last glacial period, Greenland Stadial 3. This finding and the significant decrease in the cave bear records with cooling indicate that the drastic climatic changes were responsible for its extinction. Climate deterioration lowered vegetation productivity, on which the cave bear strongly depended as a strict herbivore. The distribution of the last cave bear records in Europe suggests that this animal was vanishing by fragmentation into subpopulations occupying small habitats. One of them was the Kraków-Częstochowa Upland in Poland, where we discovered the latest record of the cave bear and also two other, younger than 25,000 14 C years BP. The relatively long survival of this bear in karst regions may result from suitable microclimate and continuous access to water provided by deep aquifers, indicating a refugial role of such regions in the Pleistocene for many species.

  11. Dissolved organic matter in the unsaturated zone: the view from the cave

    NASA Astrophysics Data System (ADS)

    Baker, A.; Duan, W.; Rutlidge, H.; McDonough, L.; Oudone, P.; Meredith, K.; Andersen, M. S.; O'Carroll, D. M.; Coleborn, K.; Treble, P. C.

    2017-12-01

    Soil organic matter content is typically a few percent of the total soil composition. Diffuse recharge can mobilise some of this soil-derived organic matter. While soil pore water dissolved organic matter (DOM) concentrations are up to 100 ppm, the resulting groundwater dissolved organic matter concentration is typically less than 2ppm. Dissolved organic matter transported from the soil can be both biodegraded and sorbed to minerals, and the relative importance of these two processes in the unsaturated zone is poorly understood. Caves in karstified limestone uniquely provide direct access to water percolating from the soil to the groundwater. Cave percolation waters can be analysed for their DOM concentration and character. This provides insights into the extent and type of biological and chemical processing of DOM during transport from the soil to the groundwater. We determine the concentration and characteristics of DOM in cave percolation waters using liquid chromatography (LC-OCD) and optical spectrophotometry (fluorescence and absorbance). We sample DOM from multiple caves in SE Australia (Cathedral Cave, Wellington; South Glory and Harrie Wood Caves, Yarrangobilly), permitting comparison of unsaturated zone DOM properties at different depths (up to 30m below land surface) and different climate zones (montane and temperate). We use caves with long-term hydrological monitoring programs so that DOM in waters of contrasting residence times can be compared. Additionally, we compare these cave percolation water DOM characteristics to those from local and regional groundwater, sampled from nearby wells. Our results will help improve our understanding of how DOM is processed from soil to groundwater, and is also relevant to speleothem scientists interested in using organic matter preserved in speleothems as a paleoclimate or paleoenvironmental proxy.

  12. Marine Caves of the Mediterranean Sea: A Sponge Biodiversity Reservoir within a Biodiversity Hotspot

    PubMed Central

    Gerovasileiou, Vasilis; Voultsiadou, Eleni

    2012-01-01

    Marine caves are widely acknowledged for their unique biodiversity and constitute a typical feature of the Mediterranean coastline. Herein an attempt was made to evaluate the ecological significance of this particular ecosystem in the Mediterranean Sea, which is considered a biodiversity hotspot. This was accomplished by using Porifera, which dominate the rocky sublittoral substrata, as a reference group in a meta-analytical approach, combining primary research data from the Aegean Sea (eastern Mediterranean) with data derived from the literature. In total 311 species from all poriferan classes were recorded, representing 45.7% of the Mediterranean Porifera. Demospongiae and Homoscleromorpha are highly represented in marine caves at the family (88%), generic (70%), and species level (47.5%), the latter being the most favored group along with Dictyoceratida and Lithistida. Several rare and cave-exclusive species were reported from only one or few caves, indicating the fragmentation and peculiarity of this unique ecosystem. Species richness and phylogenetic diversity varied among Mediterranean areas; the former was positively correlated with research effort, being higher in the northern Mediterranean, while the latter was generally higher in caves than in the overall sponge assemblages of each area. Resemblance analysis among areas revealed that cavernicolous sponge assemblages followed a pattern quite similar to that of the overall Mediterranean assemblages. The same pattern was exhibited by the zoogeographic affinities of cave sponges: species with Atlanto-Mediterranean distribution and Mediterranean endemics prevailed (more than 40% each), 70% of them having warm-water affinities, since most caves were studied in shallow waters. According to our findings, Mediterranean marine caves appear to be important sponge biodiversity reservoirs of high representativeness and great scientific interest, deserving further detailed study and protection. PMID:22808070

  13. A Low-Power Sensor Network for Long Duration Monitoring in Deep Caves

    NASA Astrophysics Data System (ADS)

    Silva, A.; Johnson, I.; Bick, T.; Winclechter, C.; Jorgensen, A. M.; Teare, S. W.; Arechiga, R. O.

    2010-12-01

    Monitoring deep and inaccessible caves is important and challenging for a variety of reasons. It is of interest to study caves environments for understanding cave ecosystems, and human impact on the ecosystems. Caves may also hold clues to past climate changes. Cave instrumentation must however carry out its job with minimal human intervention and without disturbing the fragile environment. This requires unobtrusive and autonomous instrumentation. Earth-bound caves can also serve as analogs for caves on other planets and act as testbeds for autonomous sensor networks. Here we report on a project to design and implement a low-power, ad-hoc, wireless sensor network for monitoring caves and similar environments. The implemented network is composed of individual nodes which consist of a sensor, processing unit, memory, transceiver and a power source. Data collected at these nodes is transmitted through a wireless ZigBee network to a central data collection point from which the researcher may transfer collected data to a laptop for further analysis. The project accomplished a node design with a physical footprint of 2 inches long by 3 inches wide. The design is based on the EZMSP430-RF2480, a Zigbee hardware base offered by Texas Instruments. Five functioning nodes have been constructed at very low cost and tested. Due to the use of an external analog-to-digital converter the design was able to achieve a 16-bit resolution. The operational time achieved by the prototype was calculated to be approximately 80 days of autonomous operation while sampling once per minute. Each node is able to support and record data from up to four different sensors.

  14. Stratigraphy, U-Th chronology, and paleoenvironments at Gladysvale Cave: insights into the climatic control of South African hominin-bearing cave deposits.

    PubMed

    Pickering, Robyn; Hancox, Phillip J; Lee-Thorp, Julia A; Grün, Rainer; Mortimer, Graham E; McCulloch, Malcolm; Berger, Lee R

    2007-11-01

    Gladysvale Cave is one of the few Plio-Pleistocene hominin-bearing cave sites in South Africa that contains a well-stratified cave fill with clastic sediments interspersed with flowstones. The clastic sediments can be divided into units based on the presence of intercalated flowstones, forming flowstone bounded units (FBU). Ten MC-ICP-MS uranium-series dates on several flowstone horizons in the Gladysvale Internal Deposit fan indicate deposition from the late mid-Pleistocene ( approximately 570 ka) to Holocene ( approximately 7 ka) during limited periods of higher effective moisture. Clastic sedimentation occurred during the interceding, presumably more arid, periods. This sequence is not consistent with earlier models for South African caves that simply assumed interglacial sedimentation and glacial erosion. (13)C/(12)C data suggest that flowstone tended to form during periods with higher proportions of C(3) plants in the local vegetation, while clastic sediments reflect higher proportions of C(4) grasses, although this is not always the case. We argue that flowstones are precipitated during periods of higher effective precipitation and restricted cave entrances, while clastic sediments accumulated during periods with more open vegetation. The sedimentary fill of the fossiliferous deposits are, therefore, highly episodic in nature, with large periods of time unlikely to be represented. This has serious implications for the other hominin-bearing caves close by, as these deposits are likely to be similarly episodic. This is especially pertinent when addressing extinction events and reconstructions of paleoenvironments, as large periods of time may be unrecorded. The Gladysvale Cave fill sediments may serve as a climatically forced chronostratigraphic model for these less well-stratified and well-dated Plio-Pleistocene sites.

  15. Carbon dioxide, ground air and carbon cycling in Gibraltar karst

    NASA Astrophysics Data System (ADS)

    Mattey, D. P.; Atkinson, T. C.; Barker, J. A.; Fisher, R.; Latin, J.-P.; Durrell, R.; Ainsworth, M.

    2016-07-01

    We put forward a general conceptual model of CO2 behaviour in the vadose zone of karst aquifers, based on physical principles of air flow through porous media and caves, combined with a geochemical interpretation of cave monitoring data. This 'Gibraltar model' links fluxes of water, air and carbon through the soil with the porosity of the vadose zone, the circulation of ground air and the ventilation of caves. Gibraltar hosts many natural caves whose locations span the full length and vertical range of the Rock. We report results of an 8-year monitoring study of carbon in soil organic matter and bedrock carbonate, dissolved inorganic carbon in vadose waters, and gaseous CO2 in soil, cave and ground air. Results show that the regime of cave air CO2 results from the interaction of cave ventilation with a reservoir of CO2-enriched ground air held within the smaller voids of the bedrock. The pCO2 of ground air, and of vadose waters that have been in close contact with it, are determined by multiple factors that include recharge patterns, vegetation productivity and root respiration, and conversion of organic matter to CO2 within the soil, the epikarst and the whole vadose zone. Mathematical modelling and field observations show that ground air is subject to a density-driven circulation that reverses seasonally, as the difference between surface and underground temperatures reverses in sign. The Gibraltar model suggests that cave air pCO2 is not directly related to CO2 generated in the soil or the epikarstic zone, as is often assumed. Ground air CO2 formed by the decay of organic matter (OM) washed down into the deeper unsaturated zone is an important additional source of pCO2. In Gibraltar the addition of OM-derived CO2 is the dominant control on the pCO2 of ground air and the Ca-hardness of waters within the deep vadose zone. The seasonal regime of CO2 in cave air depends on the position of a cave in relation to the density-driven ground air circulation pattern which is itself determined by the topography, as well as by the high-permeability conduits for air movement provided by caves themselves. In the steep topography of Gibraltar, caves in the lower part of the Rock act as outflow conduits for descending ground air in summer, and so have higher pCO2 in that season. Caves in the upper Rock have high pCO2 in winter, when they act as outflow conduits for rising currents of CO2-enriched ground air. Understanding seasonal flows of ground air in the vadose zone, together with the origins and seasonal regimes of CO2 in cave air underpins robust interpretation of speleothem-based climate proxy records.

  16. Tamarugite from Diana Cave (SW Romania) -first true karst occurrence

    NASA Astrophysics Data System (ADS)

    Pušcaš, C. M.; Onac, B. P.; Effenberger, H. S.; Povarǎ, I.

    2012-04-01

    Diana Cave is located within the town limits of Baile Herculane (SW Romania) and develops as a 14 m long, westward oriented, unique passage guided by the Diana fault [1]. At the far end of the cave, the thermo-mineral Diana Spring wells forth. In the early 1970s a mine gallery that intersected the cave was created to drain the water into a pumping station and the original cave passage was somewhat altered and reinforced with concrete. Today the concrete and the silty limestone cave walls are heavily corroded by H2SO4 outgassing from the hot water (ca. 50°C) and display abundant gypsum crusts, soggy aggregates of native S, and a variety of more exotic sulfates. Among them, a mineral that has been previously identified in caves only in connection to volcanic activity, either as thermal springs or fumaroles [2]: tamarugite [NaAl(SO4)26H2O]. It was [3] that first mentioned the occurrence of this Na and Al sulfate in Diana Cave, our research aiming to give a detailed description of this mineral, its paragenesis, and mechanisms of precipitation. Recently, tamarugite has also been identified in a sulfuric acid cave from Greece [4]. Along with powder X-ray diffractions coupled with Rietveld refinement, scanning electron microscope, and electron probe micro-analysis, δ18O and δ34S compositions of the sulfate mineral as well as precipitates from the water were analyzed to identify and better constrain the genesis of this rare sulfate. Regrettably, the crystal size of our specimens is inappropriate for identification by means of single crystal X-ray diffraction. Physical and chemical parameters of Diana Spring were as well measured on several occasions. Geochemical analysis suggests that the minute, white tamarugite flakes precipitated in Diana Cave as a result of the interactions between the thermo-mineral water or water vapor and the original limestone bedrock and concrete that blankets the mine gallery. [1] Povara, I., Diaconu, G., Goran, C. (1972). Observations préliminaires sur les grottes influencées par les eaux thermo-minérales de la zone Baile-Herculane. Trav. Inst. Speol. "Emile Racovitza", XI, 355-365. [2] Rodgers, K.A., Hamlin, K.A., Browne, P.R.L., Campbell, K.A., Martin, R. (2000). The steam condensate alteration mineralogy of Ruatapu cave, Orakei Korako geothermal field, Taupo Volcanic Zone, New Zealand. Mineralogical magazine, 64(1), 125-142. [3] Onac, B.P., Sumrall, J., Tama?¸ T., Povara, I., Kerns, J., Dârmiceanu, V., Vere?¸ D., Lascu, C. (2009). The relationship between cave minerals and H2S-rich thermal waters along the Cerna Valley (SW Romania). Acta Carsologica, 38(1), 27-39. [4] Lazaridis G, Melfos, V, Papadopoulou L (2011). The first cave occurrence of orpiment (As2S3) from the sulfuric acid caves of Aghia Paraskevi (Kassandra Peninsula, N. Greece). International Journal of Speleology, 40(2): 133-139.

  17. Basaltic caves at Craters of the Moon National Monument and Preserve as analogs for Mars

    NASA Astrophysics Data System (ADS)

    Hinman, N. W.; Richardson, C. D.; McHenry, L.; Scott, J. R.

    2010-12-01

    Basaltic caves and lava tubes offer stable physicochemical conditions for formation of secondary minerals. Such features, putatively observed on Mars, intercept groundwater to weather country rock, leading to formation of secondary minerals. Further, caves are stable environments to search for evidence of past life, as they could offer protection from the oxidizing martian atmosphere. Searching for signs of life in a cave that could protect bio/organic compounds would preclude the need for risky drilling on Mars. Craters of the Moon National Monument (COM) offers an opportunity to study caves in Holocene iron-rich basalt flows to characterize secondary mineral deposits and search for organic compounds associated with secondary minerals; COM basalts are a good analog for martian basalts because of their high iron but other elements are higher at COM than on Mars. The Blue Dragon flow (~2.1 ka) contains the majority of the accessible caves and lava tubes. Two types of secondary mineral deposits were observed in these caves: ceiling coatings and crack or floor precipitates. Hematite, silica, and calcite comprise ceiling coatings. The crack and floor precipitates are white, efflorescent deposits in cavities along cave walls and ceilings or in localized mounds on cave floors. The secondary minerals in crack and floor precipitates are mainly thenardite and mirabilite with some minor concentrations of trona and/or burkeite. Organic compounds were found associated with the efflorescent deposits. Formation of the deposits is likely due to chemical leaching of basalt by meteoritic water. To test this, fluids collected from the ceiling and walls of the caves were analyzed. Solutions were modeled with the geochemical code, PHREEQC. The model tracked composition as water evaporated. Selected minerals were allowed to precipitate as they became oversaturated. Among the first minerals to become oversaturated were quartz and calcite, which are observed in ceiling deposits. Iron minerals were not included as no iron was detected in solution. Results compared well with evaporation of solutions generated by simulating chemical weathering of minerals found in the basalt; this approach allowed iron minerals to precipitate during evaporation because minerals in the basalt contained iron. The minerals modeled upon evaporation included the minerals observed in the actual deposits - hematite, calcite, and quartz. Na-minerals neared saturation in simulations but were normally not saturated, leaving open the question of their origin. One possible explanation for the presence of Na-minerals could be seasonal ice formation in the caves followed by sublimation, leaving more concentrated solutions behind than were sampled here. A seasonal model for mineral deposition in caves could be relevant to deposits in martian caves. While the formation mechanism for the secondary minerals at COM is not completely understood, the presence of secondary minerals that harbor organic compounds in a cave environment that may be analogous to Mar has implications for where to search for signs of martian life.

  18. A Chinese Interactive Feedback System for a Virtual Campus

    ERIC Educational Resources Information Center

    Chen, Jui-Fa; Lin, Wei-Chuan; Jian, Chih-Yu; Hung, Ching-Chung

    2008-01-01

    Considering the popularity of the Internet, an automatic interactive feedback system for Elearning websites is becoming increasingly desirable. However, computers still have problems understanding natural languages, especially the Chinese language, firstly because the Chinese language has no space to segment lexical entries (its segmentation…

  19. Optimized graph-based mosaicking for virtual microscopy

    NASA Astrophysics Data System (ADS)

    Steckhan, Dirk G.; Wittenberg, Thomas

    2009-02-01

    Virtual microscopy has the potential to partially replace traditional microscopy. For virtualization, the slide is scanned once by a fully automatized robotic microscope and saved digitally. Typically, such a scan results in several hundreds to thousands of fields of view. Since robotic stages have positioning errors, these fields of view have to be registered locally and globally in an additional step. In this work we propose a new global mosaicking method for the creation of virtual slides based on sub-pixel exact phase correlation for local alignment in combination with Prim's minimum spanning tree algorithm for global alignment. Our algorithm allows for a robust reproduction of the original slide even in the presence of views with little to no information content. This makes it especially suitable for the mosaicking of cervical smears. These smears often exhibit large empty areas, which do not contain enough information for common stitching approaches.

  20. Tools and Equipment Modeling for Automobile Interactive Assembling Operating Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Dianliang; Zhu Hongmin; Shanghai Key Laboratory of Advance Manufacturing Environment

    Tools and equipment play an important role in the simulation of virtual assembly, especially in the assembly process simulation and plan. Because of variety in function and complexity in structure and manipulation, the simulation of tools and equipments remains to be a challenge for interactive assembly operation. Based on analysis of details and characteristics of interactive operations for automobile assembly, the functional requirement for tools and equipments of automobile assembly is given. Then, a unified modeling method for information expression and function realization of general tools and equipments is represented, and the handling methods of manual, semi-automatic, automatic tools andmore » equipments are discussed. Finally, the application in assembly simulation of rear suspension and front suspension of Roewe 750 automobile is given. The result shows that the modeling and handling methods are applicable in the interactive simulation of various tools and equipments, and can also be used for supporting assembly process planning in virtual environment.« less

  1. Radiofrequency ablation of hepatic tumors: simulation, planning, and contribution of virtual reality and haptics.

    PubMed

    Villard, Caroline; Soler, Luc; Gangi, Afshin

    2005-08-01

    For radiofrequency ablation (RFA) of liver tumors, evaluation of vascular architecture, post-RFA necrosis prediction, and the choice of a suitable needle placement strategy using conventional radiological techniques remain difficult. In an attempt to enhance the safety of RFA, a 3D simulator, treatment planning, and training tool, that simulates the insertion of the needle, the necrosis of the treated area, and proposes an optimal needle placement, has been developed. The 3D scenes are automatically reconstructed from enhanced spiral CT scans. The simulator takes into account the cooling effect of local vessels greater than 3 mm in diameter, making necrosis shapes more realistic. Optimal needle positioning can be automatically generated by the software to produce complete destruction of the tumor, with maximum respect of the healthy liver and of all major structures to avoid. We also studied how the use of virtual reality and haptic devices are valuable to make simulation and training realistic and effective.

  2. 76 FR 26982 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    .... Specifically, it addresses the flooding source Licking River (Cave Run Lake). DATES: Comments are to be... Incorporated Areas,'' addressed the flooding source Licking River (Cave Run Lake). That table contained... River (Cave Run Lake)....... At the Buck Creek None +765 City of Frenchburg, confluence. Unincorporated...

  3. Status and Natural History of Emballonura Semicaudata Rotensis on Aguiguan, Mariana Islands

    USGS Publications Warehouse

    Wiles, Gary J.; O'Shea, Thomas J.; Worthington, David J.; Esselstyn, Jacob A.; Valdez, Ernest W.

    2011-01-01

    Pacific sheath-tailed bats (Emballonura semicaudata rotensis) in the Mariana Islands declined greatly in abundance and distribution during the 20th century. The small island of Aguiguan now supports the only persisting population. We studied abundance and natural history of this population from 1995–2008. There was a likely population increase during the study, with 359–466 (minimum and maximum) bats counted at caves in 2008. Bats roosted only in caves, primarily those of relatively larger size. Bats were detected in only seven of 95 caves; three caves were always occupied when surveyed. One cave consistently had the largest colony ( ± SD = 333 ± 33.6 in 2008). Others held 1–64 bats. Cave environments showed no complexities in temperature or humidity. Preliminary observations indicate a litter size of one and the possibility of birthing timed to coincide with the transitional period leading into the rainy season (June–July). We review potential threats to E. s. rotensis on Aguiguan and make suggestions for conservation.

  4. The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond

    NASA Technical Reports Server (NTRS)

    Boston, Penelope Jane

    2016-01-01

    We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can flourish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a "Field Guide to Unknown Organisms" for developing life detection space missions.

  5. X-ray analysis of aerosol samples from a therapeutic cave

    NASA Astrophysics Data System (ADS)

    Alföldy, B.; Török, Sz.; Kocsonya, A.; Szőkefalvi-Nagy, Z.; Balla, Md. I.

    2001-04-01

    Cave therapy is an efficient therapeutic method to cure asthma, the exact healing effect, however, is not clarified, yet. This study is motivated by the basic assumption that aerosols do play the key role in the cave therapy. This study is based on measurements of single aerosol particles originating from a therapeutic cave of Budapest, Hungary (Szemlőhegyi cave). Aerosol particles have been collected in the regions arranged for the therapeutic treatment. Samples were further analysed for chemical and morphological aspects, determining the particle size distribution and classifying them according to elemental composition. Three particle classes have been detected based on major element concentration: alumino-silicate, quartz and calcium carbonate. Calcium ions have well-known physiological influence: anti-spastic, anti-inflammation and excretion reducing effects. Inflammation, accompanying spasm and extreme excretion production cause the smothering stigma, the so-called asthma. Therefore it could be assumed that calcium ions present in high concentration in the cave's atmosphere is the major cause of the healing effect.

  6. Identification of montgomeryite mineral [Ca4MgAl4(PO4)6·(OH)4·12H2O] found in the Jenolan Caves—Australia

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Palmer, Sara J.; Pogson, Ross E.

    In this paper, we report on many phosphate containing natural minerals found in the Jenolan Caves - Australia. Such minerals are formed by the reaction of bat guano and clays from the caves. Among these cave minerals is the montgomeryite mineral [Ca4MgAl4(PO4)6·(OH)4·12H2O]. The presence of montgomeryite in deposits of the Jenolan Caves - Australia has been identified by X-ray diffraction (XRD). Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the crystal structure of montgomeryite. The Raman spectrum of a standard montgomeryite mineral is identical to that of the Jenolan Caves sample. Bands are assigned to H2PO4-, OH and NH stretching vibrations. By using a combination of XRD and Raman spectroscopy, the existence of montgomeryite in the Jenolan Caves - Australia has been proven. A mechanism for the formation of montgomeryite is proposed.

  7. Wireless and Low-Weight Technologies: Advanced Medical Assistance During a Cave Rescue: A Case Report.

    PubMed

    Petrucci, Emiliano; Pizzi, Barbara; Scimia, Paolo; Conti, Giuseppe; Di Carlo, Stefano; Santini, Antonella; Fusco, Pierfrancesco

    2018-06-01

    Trauma care in cave rescue is a unique situation that requires an advanced and organized approach with medical and technical assistance because of the extreme environmental conditions and logistical factors. In caving accidents, the most common injuries involve lower limbs. We describe an advanced medical rescue performed by the Italian Corpo Nazionale del Soccorso Alpino e Speleologico, in which extended focused assessment with sonography for trauma and an ultrasound-guided adductor canal block were performed on a patient with a knee distortion directly in the cave. The rescue team inside the cave shared data on patient monitoring and the ultrasound scanning in real time with rescuers at the entrance, using a video conference powered by the new Ermes system. The use of handheld, battery-powered, low-weight, multiparametric monitors, ultrasound machines, and digital data transmission systems could ensure complete medical assistance in harsh environmental conditions such as those found in a cave. Copyright © 2018 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  8. An overview of the Mediterranean cave-dwelling horny sponges (Porifera, Demospongiae)

    PubMed Central

    Manconi, Renata; Cadeddu, Barbara; Ledda, Fabio; Pronzato, Roberto

    2013-01-01

    Abstract The present synthesis focuses on the so called ‘horny sponges’ recorded from marine caves of the Mediterranean Sea. The main aim is to provide a list of all recorded species, diagnostic keys to their identification up to family and genus level, and exhaustive, formally uniform descriptions at the species level contributing to sharing of information on the faunistics and taxonomy of Mediterranean cave-dwelling species, including habitat preferences. The majority of species was recorded in 105 Mediterranean marine caves hosting four orders of horny sponges belonging to 9 families, 19 genera and 40 species. Species endemic to the Mediterranean Sea harboured in marine caves are 14 with an endemicity value of 35%. For each species morphological descriptions are supported by illustrations both original and from the literature, including the diagnostic traits of the skeleton by light and scanning electron microscopy giving further characterization at the specific level. A detailed map together with a list of all caves harbouring horny sponges is also provided with geographic coordinates. PMID:23794833

  9. Meteoric phreatic speleothems and the development of cave stratigraphy: An example from Tounj Cave, Dinarides, Croatia

    NASA Astrophysics Data System (ADS)

    Babić, Ljubomir; Lacković, Damir; HorvatinČIĆ, Nada

    Speleothems occurring in some caves of the carbonate Dinarides line all channel surfaces, and have been deposited from meteoric waters under phreatic conditions. Such phreatic speleothemic deposition modifies common experience (l) that meteoric phreatic conditions cause dissolutional widening of cave voids, and (2) that speleothems imply vadose conditions. The phreatic speleothems described here postdate an early polygenetic evolution of the cave voids, and predate the last, vadose stage. They were likely produced during the late/postglacial warming period, when dissolved carbonate was amply supplied, and when there was much water available for saturation of underground voids. Phreatic speleothems may be used as a tool for time correlation of internal deposits, both within one cave and within a karst region. They indicate an important stage in the history of the ground-water regime of an area. In general, phreatic speleothems help in better understanding of the development of subterranean voids and related karst/palaeokarst.

  10. Stability numerical analysis of soil cave in karst area to drawdown of underground water level

    NASA Astrophysics Data System (ADS)

    Mo, Yizheng; Xiao, Rencheng; Deng, Zongwei

    2018-05-01

    With the underground water level falling, the reliable estimates of the stability and deformation characteristics of soil caves in karst region area are required for analysis used for engineering design. Aimed at this goal, combined with practical engineering and field geotechnical test, detail analysis on vertical maximum displacement of top, vertical maximum displacement of surface, maximum principal stress and maximum shear stress were conducted by finite element software, with an emphasis on two varying factors: the size and the depth of soil cave. The calculations on the soil cave show that, its stability of soil cave is affected by both the size and depth, and only when extending a certain limit, the collapse occurred along with the falling of underground water; Additionally, its maximum shear stress is in arch toes, and its deformation curve trend of maximum displacement is similar to the maximum shear stress, which further verified that the collapse of soil cave was mainly due to shear-failure.

  11. Auto identification technology and its impact on patient safety in the Operating Room of the Future.

    PubMed

    Egan, Marie T; Sandberg, Warren S

    2007-03-01

    Automatic identification technologies, such as bar coding and radio frequency identification, are ubiquitous in everyday life but virtually nonexistent in the operating room. User expectations, based on everyday experience with automatic identification technologies, have generated much anticipation that these systems will improve readiness, workflow, and safety in the operating room, with minimal training requirements. We report, in narrative form, a multi-year experience with various automatic identification technologies in the Operating Room of the Future Project at Massachusetts General Hospital. In each case, the additional human labor required to make these ;labor-saving' technologies function in the medical environment has proved to be their undoing. We conclude that while automatic identification technologies show promise, significant barriers to realizing their potential still exist. Nevertheless, overcoming these obstacles is necessary if the vision of an operating room of the future in which all processes are monitored, controlled, and optimized is to be achieved.

  12. Regressive Evolution in the Mexican Cave Tetra, Astyanax mexicanus

    PubMed Central

    Protas, Meredith; Conrad, Melissa; Gross, Joshua B.; Tabin, Clifford; Borowsky, Richard

    2007-01-01

    Summary Cave adapted animals generally have reduced pigmentation and eyes, but the evolutionary forces driving the reductions are unknown; Darwin famously questioned the role of natural selection in eye loss in cave fishes; “As it is difficult to imagine that eyes, although useless, could be in any way injurious to animals living in darkness, I attribute their loss wholly to disuse” [1]. We studied the genetic basis of this phenomenon in the Mexican cave tetra, Astyanax mexicanus, by mapping the quantitative trait loci (QTL) determining differences in eye/lens sizes and melanophore number between cave and surface fish. In addition, we mapped QTL for the putatively constructive traits of jaw size, tooth number, and numbers of taste buds. The data suggest that eyes and pigmentation regressed through different mechanisms. Cave alleles at each eye/lens QTL we detected caused size reductions. This uniform negative polarity is consistent with evolution by natural selection and inconsistent with evolution by drift. In contrast, QTL polarities for melanophore number were mixed, consistent with evolution by genetic drift or indirect selection through pleiotropy. Past arguments against a role for selection in regression of cave fish eyes cited the insignificant cost of their development [2, 3], but we argue that the energetic cost of their maintenance is sufficiently high for eyes to be detrimental in the cave environment. Regression, a ubiquitous aspect of all evolutionary change, can be caused either by selection or genetic drift/pleiotropy. PMID:17306543

  13. The Jettencave, Southern Harz Mountains, Germany: Geophysical observations and a structural model of a shallow cave in gypsum/anhydrite-bearing rocks

    NASA Astrophysics Data System (ADS)

    Kaufmann, Georg; Romanov, Douchko

    2017-12-01

    Gypsum and anhydrite are soluble rocks, where fissures and bedding partings can be enlarged with time by the dissolution of the mineral species through water. The selective enlargement results in sub-surface voids acting as preferential flow path for the drainage of the rock. With time, larger cavities develop, and a network of cave passages can evolve. If the enlarged cave voids are not too deep under the surface, geophysical measurements can be used to detect, identify and trace these structures. We have used gravity measurements (GRAV), electrical resistivity imaging (ERI), self-potential measurements (SP), electrical conductivity measurements (EC), and ground-penetrating radar (GPR) above the cave Jettenhöhle, a cave located in the southern Harz Mountains in Germany. The Jettencave is developed in the Hauptanhydrit formation of the Permian Zechstein sequence, characterised by large breakdown rooms and an exposed water table. The overburden of the cave is only around 10-15 m, and dolomitic rocks are located in close vicinity. We present results from our geophysical surveys in vicinity of the cave. We are able to identify the cave geometry from GRAV, ERI, and GPR measurements, which distinguish the local lithology of the Permian Zechstein rocks in the area. From the ERI and EC measurements, we derive information on the void volume in the soluble rocks. We finally present a three-dimensional structural model of the Jettencave and its surroundings, based on our geophysical results and the hydrological interpretation.

  14. 36 CFR 290.4 - Confidentiality of cave location information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGRICULTURE CAVE RESOURCES MANAGEMENT § 290.4 Confidentiality of cave location information. (a) Information... determines that disclosure will further the purposes of the Act and will not create a substantial risk of... Federal or State governmental agencies, bona fide educational or research institutes, or individuals or...

  15. 36 CFR 290.4 - Confidentiality of cave location information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Confidentiality of cave location information. 290.4 Section 290.4 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF... organizations assisting the land management agencies with cave management activities. To request confidential...

  16. 36 CFR 290.4 - Confidentiality of cave location information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Confidentiality of cave location information. 290.4 Section 290.4 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF... organizations assisting the land management agencies with cave management activities. To request confidential...

  17. 36 CFR 290.4 - Confidentiality of cave location information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Confidentiality of cave location information. 290.4 Section 290.4 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF... organizations assisting the land management agencies with cave management activities. To request confidential...

  18. 36 CFR 290.4 - Confidentiality of cave location information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Confidentiality of cave location information. 290.4 Section 290.4 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF... organizations assisting the land management agencies with cave management activities. To request confidential...

  19. Radon Dose Determination for Cave Guides in Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thinova, Lenka; Rovenska, Katerina

    2008-08-07

    According to recommended approach there are six (from total of twelve) open-to-public caves in Czech Republic, reaching near to an effective lung-dose of 6mSv/year. A conservative approach for estimating the potential effective lung-dose in caves (or underground) is based on two season's measurements, using solid state alpha track detector (Kodak in plastic diffusion chamber). The obtained dataset is converted into an annual effective dose, in agreement with the ICRP65 recommendation, using the 'cave factor' 1.5. The value of 'cave factor' which depends on the spectrum of aerosol particles, or on the proportional representation of the unattached/attached ratio (6.5 : 93.5more » for residential places, 13.6 : 86.4 for caves due to lower concentration of free aerosols) and on the equilibrium factor. Thus conversion factor is 1.5 times higher in comparison with ICRP 65. Is this correct? Because a more precisely determined dose value would have a significant impact on radon remedies, or on restricting the time workers stay underground, a series of measurement was initiated in 2003 with the aim to specify input data, computation and errors in effective dose assessment in each one of the evaluated caves separately. The enhancement of personal dosimetry for underground work places includes a study of the given questions, from the following points of view in each cave: continual radon measurement; regular measurements of radon and its daughters to estimate the equilibrium factor and the presence of free {sup 218}Po; regular indoor air flow measurements to study the location of the radon supply and its transfer among individual areas of the cave; natural radioactive element content evaluation in subsoil and in water inside/outside, a study of the radon sources in the cave; determination of the free fraction from continual unattached and attached fraction measurement (grid and filter); thoron measurement. Air flow measurements provide very interesting information about the origin of 'radon pockets' with very high radon concentration, and enable study of the location of the radon supply and its transfer among individual areas of the cave. Most of the results show the equilibrium factor around F = 0.2-0.7 and the unattached fraction around 2%-30%. One of the most important question remains: how accurately was the unattached fraction measured? Part of this project was to verify the influence of etched track detector position in the cave.« less

  20. Contribution of stable isotopes (C,N,S) in collagen of late Pleistocene large mammal trophic ecology and landscape use: a case study in Goyet and Scladina cave (30-40,000 years BP)

    NASA Astrophysics Data System (ADS)

    Bocherens, Hervé; Germonpré, Mietje

    2010-05-01

    Two Belgian caves yielded very rich large mammal associations dating around 30 to 40,000 years ago: Goyet and Scladina cave (layer 1A). These sites are only 5 km apart but the cave entrances open on different valleys, in a quite diverse landscape ranging between open, unprotected uplands, steep cliffs and sheltered sun-exposed gorges, with the larger Meuse valley nearby. This mosaic scenery permitted during the Last Glacial a rich diversity of fossil flora and fauna. The faunal association includes a large diversity of taxa including Aurochs Bos primigenius, steppe bison Bison priscus, reindeer Rangifer tarandus, giant deer Megaloceros giganteus, horse Equus ferus, woolly rhinoceros Coelodonta antiquitatis, woolly mammoth Mammuthus primigenius, cave bear Ursus spelaeus, brown bear Ursus arctos, wolf Canis lupus, cave lion Panthera leo spelaea, and cave hyaena Crocuta crocuta spelaea. All the 90 studied bones and teeth yielded collagen with excellent collagen preservation, allowing reliable investigations of carbon, nitrogen and sulfur isotopic biogeochemistry. The combination of three different isotopic tracers allows to deciphering the effects of food selection and landscape use by different herbivorous and carnivorous taxa. This is the first study to include sulfur isotopic signatures in the study of late Quaternary large mammal palaeobiology. This new tracer yields evidence on mobility and differences in pasture areas, as different geological bedrock may exhibit various sulfur isotopic signatures that will pass on the herbivores and further on their predators. Using this feature in addition to the trophic information provided by carbon and nitrogen isotopic signatures, it appears that for some species present in both sites, such as horse and woolly rhinoceros, the individuals found in each site probably did not use the same pasture areas. This seems to also the case for the overwhelmingly vegetarian cave bears. In addition, individuals from the same species found in one site sometimes exhibit clear isotopic differences in the three isotopic tracers that suggest different pasture grounds as well, and therefore the possibility of different herds in the vicinity of the cave site. In the case of cave hyeanas, the isotopic signatures of individuals from both caves are not significantly different and suggest that these predators obtained their prey from a large territory including the pasture grounds of herbivores from both caves. In addition, direct radiocarbon dating of some of the studied collagen allows to investigating possible chronological trends. This study shows how new isotopic tracers can provide invaluable information on late Quaternary large mammal palaeobiology.

  1. Guanophilic fungi in three caves of southwestern Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    Fifty species of guanophilic (bat guano-loving) fungi were isolated from field-collected samples within three caves in south-western Puerto Rico; most were mitosporic fungi (23 species). The caves studied were Cueva La Tuna (Cabo Rojo), Cueva de Malano (Sistema de Los Chorros, San Germán), and Cuev...

  2. Caves: A Course of Study.

    ERIC Educational Resources Information Center

    Phillips, Jan

    Middle school students from The College School, a private school in Webster Groves (Missouri) have completed a class called "Caves and Crystallography." A thematic approach was used in the course in which students and teachers read books telling how caves were formed, saw movies which explained the delicate balance of life underground,…

  3. Fungal outbreak in a show cave.

    PubMed

    Jurado, V; Porca, E; Cuezva, S; Fernandez-Cortes, A; Sanchez-Moral, S; Saiz-Jimenez, C

    2010-08-01

    Castañar de Ibor Cave (Spain) was discovered in 1967 and declared a Natural Monument in 1997. In 2003 the cave was opened to public visits. Despite of extensive control, on 26 August 2008 the cave walls and sediments appeared colonized by long, white fungal mycelia. This event was the result of an accidental input of detritus on the afternoon of 24 August 2008. We report here a fungal outbreak initiated by Mucor circinelloides and Fusarium solani and the methods used to control it. 2010 Elsevier B.V. All rights reserved.

  4. Cryptotephra from the 74 ka BP Toba super-eruption in the Billa Surgam caves, southern India

    NASA Astrophysics Data System (ADS)

    Lane, Christine; Haslam, Michael; Petraglia, Michael; Ditchfield, Peter; Smith, Victoria; Korisettar, Ravi

    2011-07-01

    The ˜74 ka BP Youngest Toba Tuff (YTT), from the largest known Quaternary volcanic eruption, has been found for the first time as a non-visible ( crypto-) tephra layer within the Billa Surgam caves, southern India. The occurrence of the YTT layer in Charnel House Cave provides the first calendrical age estimate for this much debated Pleistocene faunal sequence and demonstrates the first successful application of cryptotephrochronology within a cave sequence. The YTT layer lies ˜50 cm below a major sedimentological change, which is related to global cooling around the MIS 5 to MIS 4 transition. Using this isochronous event layer the Billa Surgam Cave record can be directly correlated with other archaeological sites in peninsular India and palaeoenvironmental archives across southern Asia.

  5. Ancient photosynthetic eukaryote biofilms in an Atacama Desert coastal cave

    USGS Publications Warehouse

    Azua-Bustos, A.; Gonzalez-Silva, C.; Mancilla, R.A.; Salas, L.; Palma, R.E.; Wynne, J.J.; McKay, C.P.; Vicuna, R.

    2009-01-01

    Caves offer a stable and protected environment from harsh and changing outside prevailing conditions. Hence, they represent an interesting habitat for studying life in extreme environments. Here, we report the presence of a member of the ancient eukaryote red algae Cyanidium group in a coastal cave of the hyperarid Atacama Desert. This microorganism was found to form a seemingly monospecific biofilm growing under extremely low photon flux levels. Our work suggests that this species, Cyanidium sp. Atacama, is a new member of a recently proposed novel monophyletic lineage of mesophilic "cave" Cyanidium sp., distinct from the remaining three other lineages which are all thermo-acidophilic. The cave described in this work may represent an evolutionary island for life in the midst of the Atacama Desert. ?? Springer Science + Business Media, LLC 2009.

  6. Preliminary Genetic Analysis Supports Cave Populations as Targets for Conservation in the Endemic Endangered Puerto Rican Boa (Boidae: Epicrates inornatus)

    PubMed Central

    Revell, Liam J.

    2013-01-01

    The endemic Puerto Rican boa (Epicrates inornatus) has spent 42 years on the Endangered Species List with little evidence for recovery. One significant impediment to effective conservation planning has been a lack of knowledge of the distribution of genetic variability in the species. It has previously been suggested that boas might best be protected around caves that harbor large populations of bats. Prior study has found Puerto Rican boas at relatively high densities in and around bat caves, which they use both to feed and seek shelter. However, it is unknown whether these behaviorally distinctive populations represent a distinct evolutionary lineage, or (conversely) whether caves harbor representative genetic diversity for the species across the island. We provide the first genetic study of the Puerto Rican boa, and we examine and compare genetic diversity and divergence among two cave populations and two surface populations of boas. We find three haplogroups and an apparent lack of phylogeographic structure across the island. In addition, we find that the two cave populations appear no less diverse than the two surface populations, and harbor multiple mtDNA lineages. We discuss the conservation implications of these findings, including a call for the immediate protection of the remaining cave-associated populations of boas. PMID:23691110

  7. Preliminary genetic analysis supports cave populations as targets for conservation in the endemic endangered Puerto Rican boa (Boidae: Epicrates inornatus).

    PubMed

    Puente-Rolón, Alberto R; Reynolds, R Graham; Revell, Liam J

    2013-01-01

    The endemic Puerto Rican boa (Epicrates inornatus) has spent 42 years on the Endangered Species List with little evidence for recovery. One significant impediment to effective conservation planning has been a lack of knowledge of the distribution of genetic variability in the species. It has previously been suggested that boas might best be protected around caves that harbor large populations of bats. Prior study has found Puerto Rican boas at relatively high densities in and around bat caves, which they use both to feed and seek shelter. However, it is unknown whether these behaviorally distinctive populations represent a distinct evolutionary lineage, or (conversely) whether caves harbor representative genetic diversity for the species across the island. We provide the first genetic study of the Puerto Rican boa, and we examine and compare genetic diversity and divergence among two cave populations and two surface populations of boas. We find three haplogroups and an apparent lack of phylogeographic structure across the island. In addition, we find that the two cave populations appear no less diverse than the two surface populations, and harbor multiple mtDNA lineages. We discuss the conservation implications of these findings, including a call for the immediate protection of the remaining cave-associated populations of boas.

  8. Raman spectroscopy of stercorite H(NH 4)Na(PO 4)·4H 2O--A cave mineral from Petrogale Cave, Madura, Eucla, Western Australia

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Palmer, Sara J.

    2011-09-01

    Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the mineral stercorite H(NH 4)Na(PO 4)·4H 2O. The mineral stercorite originated from the Petrogale Cave, Madura, Eucla, Western Australia. This cave is one of many caves in the Nullarbor Plain in the South of Western Australia. These caves have been in existence for eons of time and have been dated at more than 550 million years old. The mineral is formed by the reaction of bat guano chemicals on calcite substrates. A single Raman band at 920 cm -1 defines the presence of phosphate in the mineral. Antisymmetric stretching bands are observed in the infrared spectrum at 1052, 1097, 1135 and 1173 cm -1. Raman spectroscopy shows the mineral is based upon the phosphate anion and not the hydrogen phosphate anion. Raman and infrared bands are found and assigned to PO 43-, H 2O, OH and NH stretching vibrations. The detection of stercorite by Raman spectroscopy shows that the mineral can be readily determined; as such the application of a portable Raman spectrometer in a 'cave' situation enables the detection of minerals, some of which may remain to be identified.

  9. Life on the edge: hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters.

    PubMed

    Tobler, Michael; Schlupp, Ingo; Heubel, Katja U; Riesch, Rüdiger; de León, Francisco J García; Giere, Olav; Plath, Martin

    2006-12-01

    Most eucaryotic organisms classified as living in an extreme habitat are invertebrates. Here we report of a fish living in a Mexican cave (Cueva del Azufre) that is rich in highly toxic H(2)S. We compared the water chemistry and fish communities of the cave and several nearby surface streams. Our study revealed high concentrations of H(2)S in the cave and its outflow (El Azufre). The concentrations of H(2)S reach more than 300 muM inside the cave, which are acutely toxic for most fishes. In both sulfidic habitats, the diversity of fishes was heavily reduced, and Poecilia mexicana was the dominant species indicating that the presence of H(2)S has an all-or-none effect, permitting only few species to survive in sulfidic habitats. Compared to habitats without H(2)S, P. mexicana from the cave and the outflow have a significantly lower body condition. Although there are microhabitats with varying concentrations of H(2)S within the cave, we could not find a higher fish density in areas with lower concentrations of H(2)S. We discuss that P. mexicana is one of the few extremophile vertebrates. Our study supports the idea that extreme habitats lead to an impoverished species diversity.

  10. Energy expenditure in caving.

    PubMed

    Antoni, Giorgia; Marini, Elisabetta; Curreli, Nicoletta; Tuveri, Valerio; Comandini, Ornella; Cabras, Stefano; Gabba, Silvia; Madeddu, Clelia; Crisafulli, Antonio; Rinaldi, Andrea C

    2017-01-01

    The aim of this study was to determine the energy expenditure of a group of cavers of both genders and different ages and experience during a 10 hour subterranean exploration, using portable metabolimeters. The impact of caving activity on body composition and hydration were also assessed through bioelectrical impedance, and nutritional habits of cavers surveyed. During cave activity, measured total energy expenditure (TEE) was in the range 225-287 kcal/h for women-men (MET = 4.1), respectively; subjects had an energy intake from food in the range 1000-1200 kcal, thus inadequate to restore lost calories. Bayesian statistical analysis estimated the effect of predictive variables on TEE, revealing that experienced subjects had a 5% lower TEE than the less skilled ones and that women required a comparatively larger energy expenditure than men to perform the same task. BIVA (bioelectrical impedance vector analysis) showed that subjects were within the range of normal hydration before and after cave activity, but bioelectrical changes indicated a reduction of extracellular water in men, which might result in hypo-osmolal dehydration in the case of prolonged underground exercise. All these facts should be considered when planning cave explorations, preparing training programs for subjects practising caving, and optimizing a diet for cavers. Further, information gathered through this study could be of value to reduce accidents in caves related to increase in fatigue.

  11. Stalagmite-inferred late Holocene precipitation evolution in the tropical western Pacific from Tine cave, Negros Occidental, Philippines

    NASA Astrophysics Data System (ADS)

    Hori, M.; Shen, C.; Siringan, F. P.; Mii, H.; Wu, C.; Kano, A.

    2009-12-01

    Dynamics of Asian monsoon (AM) rainfall in 20-40 degree N over the past millennia have been revealed. To understand ranfall variability in the low latitudinal AM region, duplicatable stalagmite δ18O records, ranging from -9.5‰ to -7.0‰, over the past 2800 years were measured for samples collected from Tine cave (09:44:16.6 N, 122:24:19.7 E), Negros Occidental, Philippines. Stalagmites were 230Th-dated with precision of 1-3% in age. During the time window of 2200-1700 years before present (yr BP, before AD 1950), Tine δ18O record resembles Liang Luar cave record at 8 degree S (Griffiths, 2009, Nature Geoscience, 2, 636-639). However, during 1550-1200 yr BP, the climate change sequence of Tine cave matches that of Chinese Wanxiang cave at 33 degree N (Zhang, 2008, Science, 322, 940-942). Both Tine and Wanxiang records show an abrupt drying at ~1150 yr BP toward the Late Tang Weak Monsoon Period. After 600 yr BP, an anti-phased rainfall relationship is observed between Tine and Wanxiang caves. The variable correlations between caves in Northern and Southern Hemispheres may indicate that the influence of AM rainfall has been changed with the zonal oscillations of regional climate systems.

  12. Comparison of Bacterial Diversity in Azorean and Hawai’ian Lava Cave Microbial Mats

    PubMed Central

    MARSHALL HATHAWAY, JENNIFER J.; GARCIA, MATTHEW G.; BALASCH, MONICA MOYA; SPILDE, MICHAEL N.; STONE, FRED D.; DAPKEVICIUS, MARIA DE LURDES N. E.; AMORIM, ISABEL R.; GABRIEL, ROSALINA; BORGES, PAULO A. V.; NORTHUP, DIANA E.

    2015-01-01

    Worldwide, lava caves host colorful microbial mats. However, little is known about the diversity of these microorganisms, or what role they may play in the subsurface ecosystem. White and yellow microbial mats were collected from four lava caves each on the Azorean island of Terceira and the Big Island of Hawai’i, to compare the bacterial diversity found in lava caves from two widely separated archipelagos in two different oceans at different latitudes. Scanning electron microscopy of mat samples showed striking similarities between Terceira and Hawai’ian microbial morphologies. 16S rRNA gene clone libraries were constructed to determine the diversity within these lava caves. Fifteen bacterial phyla were found across the samples, with more Actinobacteria clones in Hawai’ian communities and greater numbers of Acidobacteria clones in Terceira communities. Bacterial diversity in the subsurface was correlated with a set of factors. Geographical location was the major contributor to differences in community composition (at the OTU level), together with differences in the amounts of organic carbon, nitrogen and copper available in the lava rock that forms the cave. These results reveal, for the first time, the similarity among the extensive bacterial diversity found in lava caves in two geographically separate locations and contribute to the current debate on the nature of microbial biogeography. PMID:26924866

  13. Hypogenic origin, geologic controls and functional organization of a giant cave system in Precambrian carbonates, Brazil

    NASA Astrophysics Data System (ADS)

    Klimchouk, Alexander; Auler, Augusto S.; Bezerra, Francisco H. R.; Cazarin, Caroline L.; Balsamo, Fabrizio; Dublyansky, Yuri

    2016-01-01

    This study is focused on speleogenesis of the Toca da Boa Vista (TBV) and Toca da Barriguda (TBR), the longest caves in South America occurring in the Neoproterozoic Salitre Formation in the São Francisco Craton, NE Brazil. We employ a multidisciplinary approach integrating detailed speleomorphogenetic, lithostratigraphic and geological structure studies in order to reveal the origin of the caves, their functional organization and geologic controls on their development. The caves developed in deep-seated confined conditions by rising flow. The overall fields of passages of TBV and TBR caves represent a speleogenetically exploited large NE-SW-trending fracture corridor associated with a major thrust. This corridor vertically extends across the Salitre Formation allowing the rise of deep fluids. In the overall ascending flow system, the formation of the cave pattern was controlled by a system of sub-parallel anticlines and troughs with NNE-SSW dominant orientation, and by vertical and lateral heterogeneities in fracture distribution. Three cave-stratigraphic stories reflect the actual hydrostratigraphy during the main phase of speleogenesis. Cavities at different stories are distinct in morphology and functioning. The gross tree-dimensional pattern of the system is effectively organized to conduct rising flow in deep-seated confined conditions. Cavities in the lower story developed as recharge components to the system. A laterally extensive conduit network in the middle story formed because the vertical flow from numerous recharge points has been redirected laterally along the highly conductive unit, occurring below the major seal - a scarcely fractured unit. Rift-like and shaft-like conduits in the upper story developed along fracture-controlled outflow paths, breaching the integrity of the major seal, and served as outlets for the cave system. The cave system represents a series of vertically organized, functionally largely independent clusters of cavities developed within individual ascending flow cells. Lateral integration of clusters occurred due to hydrodynamic interaction between the flow cells in course of speleogenetic evolution and change of boundary conditions. The main speleogenetic phase, during which the gross cave pattern has been established and the caves acquired most of their volume, was likely related to rise of deep fluids at about 520 Ma or associated with rifting and the Pangea break-up in Triassic-Cretaceous. This study highlights the importance of speleogenetic studies for interpreting porosity and permeability features in carbonate reservoirs.

  14. Seasonal variations of cave conditions and drip water stable isotopes from a monitoring study of Raccoon Mountain Caverns, Tennessee, and its implications in interpreting speleothem record

    NASA Astrophysics Data System (ADS)

    Holtzclaw, C. L.; Gordon, R. D.; Feng, W.; Allard, J.

    2015-12-01

    A two-year monitoring study at Raccoon Mountain Caverns near Chattanooga, Tennessee was carried out in an attempt to establish quantitative relationships between climate signals and drip water stable isotopes for interpreting speleothem paleoclimate records from the cave. Eight field trips were made from Jan. 2014 to Jun. 2015, during which cave meteorological conditions (RH, temperature and cave air CO2 concentration) and drip rate were measured for 5 sites inside the cave. 63 cave drip and pool water samples were collected and analyzed for oxygen and hydrogen isotope compositions (δ18O and δD values). Cave air temperature varied throughout the study period, the temporal variations ranged at different sites from 2 to 8.4 °C (the greatest variation was observed at sites that are closer to the entrance or surface). These are significantly less than outside temperatures range of 24 °C, but more than observed in other monitored caves. Elevated cave-air CO2 concentration (3200 ppm) and slow drip rate during the summer indicated slowed or stalled growth of calcite. The overall range of δ18O values were -7.1‰ to -4.5‰. A δD vs δ18O diagram yields a slope of 6.1, which falls within the normal range of 6-8 for local Meteoric Water Line. The value is slightly above Global Meteoric Water Line, indicating lack of evaporative effect. Throughout the study period, the δ18O values varied from 0.6 ‰ at some sites to 1.9‰ at others. The largest changes were likely due to the close proximity of collection sites to the surface precipitation. Spatially, for samples collected at each cave trip, different sites displayed variations of δ18O values from 0‰ to 1.7‰. The difference could be attributed to different type of drip sites with varying types of flow paths rainwater takes to the drip sites. The significant seasonal shift of drip water δ18O values and growth conditions indicate importance of consideration of seasonality in interpreting speleothem δ18O record from this cave.

  15. Radon, radionuclides and the Cretaceous Folkestone Sands - gamma spectroscopy and geochemical analysis of silver sands and associated deposits in the SE of England.

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin; Al-Rafai, Yousef; Flowers, Alan

    2017-04-01

    Radon concentrations in a historic sand mine in Surrey, UK (Reigate Caves), have been measured by both real-time and time-averaged methods over a number of years. These mines are not identified as being in a 'Radon Affected Area' as defined by Public Health England, although concentrations show a summer level of 640 Bqm3 +-44 Bqm3. Average radon concentrations (September 2013 to January 2014) in Reigate caves were above the UK 200 Bqm3 domestic Action Level, above the UK domestic Target Level (of 100 Bqm3) but below the current workplace Action Level of 400 Bqm3. By way of a comparison radon has also been measured in nearby Dorking (South Street Caves). These enigmatic caves were not mined for sand for glass manufacture as Reigate Caves were and there is speculation on why the caves were created. Both are visited by tourists on a semi-regular basis. Dorking caves have a different morphology with radon concentrations in Autumn 2016 of up to 1940 +/- 230 Bqm3. The caves in Reigate are situated along Tunnel Road. These mines were also used as air raid shelters and wine stores. They consist of an East and West system and an older cave (Barons cave) which may have a medieval origin. As the Western Caves are now a shooting range our work has been carried out in the Eastern section at Reigate. Where Dorking is concerned the shops and houses in the town have extensive interconnected cellars and galleries cut into these sands. The caves probably date from the 17th century but were used quite extensively for wine storage in the 19th century due to their constant 140C air temperatures. Real-time measurements were taken with a Durridge Rad7 with time-averaged CR39 SSNTDs being placed throughout the cave systems to assess radon distribution and compare results with the real-time detector. Both caves contain marine shallow-water deposited locking (having tensile and compressive strength) silica sands of the Cretaceous Lower Greensand Group, Folkestone Formation, with little cement holding the grains together (typical porosity being around 30%). Microscope analysis shows that this material contains mostly angular to sub-angular quartz grains, some with undulose extinction under cross-polarised light. This suggests a metamorphic origin for the quartz. There are also some relatively rare rock fragments present. These silver sands are a mixture of fine to medium grain sizes (0.10 to 0.5 mm) with small proportions of finer and coarser grades and are in the order of 30 - 36 metres thick at Reigate. These beds show lateral and vertical variability in their grain size, mineralogy and geochemical make up such as iron oxide content and are heavily faulted in places. In view of these radon results, in order to determine whether these levels are supported or unsupported, samples were collected and subjected to laboratory-based Gamma spectrometry. This indicated the presence of U235 (186keV) and Pb212 (238keV) in sands from these caves. We will shortly be in a position to also report in-situ gamma spectrometry and ICPMS analysis of samples taken from these beds.

  16. Comparison of Spring and Cave Drip Water in Westcave Preserve, Central Texas May Reveal Epikarst CO2 Degassing

    NASA Astrophysics Data System (ADS)

    Carlson, P.; Banner, J. L.; Casteel, R. C.; Breecker, D.

    2013-12-01

    The cave at Westcave Preserve, in central Texas, is a unique location to study karst processes due to its low, nearly atmospheric cave-air CO2 levels and seasonally variable temperature. The source of water that drips into the cave, however, has not been constrained, limiting interpretation of climate proxies in the cave. It is possible that a nearby spring and the cave drip-waters share a common source. Alternatively, the drip-waters could represent precipitation that has infiltrated the host rock. These hypotheses should be tested using Sr isotope ratios and/or other tracers. If they do share a common source, analysis of dissolved inorganic carbon (DIC) concentration , δ13CDIC, and cation concentrations of the two waters could provide insight into epikarst processes such as CO2 degassing and prior calcite precipitation (PCP) that are otherwise difficult to constrain. Westcave Preserve includes outcrops of the Hensell Sand, the Cow Creek Limestone, and the Hammett Shale, with a small cave at the contact between the Cow Creek and Hammett formations. The overlying Hensell Sand contains water that emerges at the surface as a spring near the cave. Water also drips directly into the cave, forming speleothems. Previous research has established that although δ18O values of rainfall in the area vary seasonally, between -10.5 and 1.1‰ with a weighted mean of -6.5‰ (VSMOW), the drip-water varies only between -4.7 and -4.3‰ with a weighted mean of -4.5‰ (Feng et al., in review). This suggests a large well-mixed reservoir above the cave. The soils above the cave have high CO2 of up to 17,500 ppmv, but because the cave is shallow with multiple large openings, cave CO2 levels are near-atmospheric (Casteel and Banner, in review). This creates a steep CO2 gradient between the soil and the cave air. The spring water DIC is nearly in carbon-isotope equilibrium with the soil CO2, suggesting that soil respiration, here controlled by C3 plants, is the primary source of CO2 for this reservoir. The drip water δ13CDIC is higher than the spring water (-10.3‰ versus -13.0‰). Although the spring water has higher DIC concentration than the drip water, with mean values of 128 mg/L C versus 113 mg/L C, respectively, preliminary data suggest that for some drips, the drip water DIC concentrations and δ13CDIC may vary with spring DIC values. We propose that if the spring and the drip water prove to be derived from the same source, the differences in DIC and δ13CDIC between spring and drip water are due to epikarst CO2 degassing as the water percolates down the CO2 gradient toward the cave ceiling. If the spring represents the source of the drip water, the calculated δ13 value of degassed CO2 is -33.3‰, assuming no PCP. PCP may occur, leading to a δ13C of degassed CO2 lower than calculated, but would result in a decrease or no change in δ13CDIC and therefore does not explain the observed difference between spring water and drip water.

  17. An automatic CFD-based flow diverter optimization principle for patient-specific intracranial aneurysms.

    PubMed

    Janiga, Gábor; Daróczy, László; Berg, Philipp; Thévenin, Dominique; Skalej, Martin; Beuing, Oliver

    2015-11-05

    The optimal treatment of intracranial aneurysms using flow diverting devices is a fundamental issue for neuroradiologists as well as neurosurgeons. Due to highly irregular manifold aneurysm shapes and locations, the choice of the stent and the patient-specific deployment strategy can be a very difficult decision. To support the therapy planning, a new method is introduced that combines a three-dimensional CFD-based optimization with a realistic deployment of a virtual flow diverting stent for a given aneurysm. To demonstrate the feasibility of this method, it was applied to a patient-specific intracranial giant aneurysm that was successfully treated using a commercial flow diverter. Eight treatment scenarios with different local compressions were considered in a fully automated simulation loop. The impact on the corresponding blood flow behavior was evaluated qualitatively as well as quantitatively, and the optimal configuration for this specific case was identified. The virtual deployment of an uncompressed flow diverter reduced the inflow into the aneurysm by 24.4% compared to the untreated case. Depending on the positioning of the local stent compression below the ostium, blood flow reduction could vary between 27.3% and 33.4%. Therefore, a broad range of potential treatment outcomes was identified, illustrating the variability of a given flow diverter deployment in general. This method represents a proof of concept to automatically identify the optimal treatment for a patient in a virtual study under certain assumptions. Hence, it contributes to the improvement of virtual stenting for intracranial aneurysms and can support physicians during therapy planning in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Mobile Virtual Reality : A Solution for Big Data Visualization

    NASA Astrophysics Data System (ADS)

    Marshall, E.; Seichter, N. D.; D'sa, A.; Werner, L. A.; Yuen, D. A.

    2015-12-01

    Pursuits in geological sciences and other branches of quantitative sciences often require data visualization frameworks that are in continual need of improvement and new ideas. Virtual reality is a medium of visualization that has large audiences originally designed for gaming purposes; Virtual reality can be captured in Cave-like environment but they are unwieldy and expensive to maintain. Recent efforts by major companies such as Facebook have focussed more on a large market , The Oculus is the first of such kind of mobile devices The operating system Unity makes it possible for us to convert the data files into a mesh of isosurfaces and be rendered into 3D. A user is immersed inside of the virtual reality and is able to move within and around the data using arrow keys and other steering devices, similar to those employed in XBox.. With introductions of products like the Oculus Rift and Holo Lens combined with ever increasing mobile computing strength, mobile virtual reality data visualization can be implemented for better analysis of 3D geological and mineralogical data sets. As more new products like the Surface Pro 4 and other high power yet very mobile computers are introduced to the market, the RAM and graphics card capacity necessary to run these models is more available, opening doors to this new reality. The computing requirements needed to run these models are a mere 8 GB of RAM and 2 GHz of CPU speed, which many mobile computers are starting to exceed. Using Unity 3D software to create a virtual environment containing a visual representation of the data, any data set converted into FBX or OBJ format which can be traversed by wearing the Oculus Rift device. This new method for analysis in conjunction with 3D scanning has potential applications in many fields, including the analysis of precious stones or jewelry. Using hologram technology to capture in high-resolution the 3D shape, color, and imperfections of minerals and stones, detailed review and analysis of the stone can be done remotely without ever seeing the real thing. This strategy can be game-changer for shoppers without having to go to the store.

  19. Near Surface Geophysical Methods Applied to the Rising Star Cave System

    NASA Astrophysics Data System (ADS)

    Webb, S. J.; Naidoo, M.; Elliott, M. C.; Kruger, A.; Roberts, E.; Dirks, P.

    2017-12-01

    The Rising Star Cave system is located approximately 40 km northwest of Johannesburg in the Malmani dolomites (Chuniespoort group,Transvaal Supergroup). The cave system is extensive with 4 km of mapped passages and chambers. The Dinaledi chamber, host to the Homo Naledi fossils, is reached by following a tortuous route with squeezes as small as 20 cm. The chamber is located 30 m below surface and 80 m from the entrance. The enigmatic find of fossils from at least 15 individual hominins, without the presence of other species, led to the idea of deliberate burial. The present access route is difficult and it is unclear how early hominins were able to navigate it, prompting the suggestion of an undiscovered entrance. We are using near surface geophysical methods to investigate possible connections between the surface and the caves. Using a Geometrics Cs-vapor Walkmag, we collected preliminary ground magnetic intensity measurements over a region 300 m x 200 m, using 1 m station spacing and 10 m line spacing. The average magnetic variation along line is 200 nT. We also collected over 100 susceptibility measurements on outcropping lithologies, surface soil and cave sediments using a SM-30 susceptibility meter. The surface soil was one to two orders of magnitude higher than surrounding lithologies (average = 1.5 x 10-3 SI) and the cave sediment samples were slightly higher (average = 3.07 x 10-3 SI). We were able to collect GPR data (GSSI SIR-3000, 400 MHz) in selected spots on the cave floor with the goal of locating the cave floor beneath the sediments. Dolomites usually have low magnetic susceptibilities, but erosion products of the nearby magnetic Hospital Hill or Rooihoogte shales may have been transported into or onto the cave system. This is a likely cause of the magnetic anomalies and larger amplitude anomalies may indicate an accumulation of sediments, extending to depth. These anomalies will be further investigated using gravity to determine if there are previously unknown connections between the surface and the cave system.

  20. Hydrological characterization of cave drip waters in a porous limestone: Golgotha Cave, Western Australia

    NASA Astrophysics Data System (ADS)

    Mahmud, Kashif; Mariethoz, Gregoire; Baker, Andy; Treble, Pauline C.

    2018-02-01

    Cave drip water response to surface meteorological conditions is complex due to the heterogeneity of water movement in the karst unsaturated zone. Previous studies have focused on the monitoring of fractured rock limestones that have little or no primary porosity. In this study, we aim to further understand infiltration water hydrology in the Tamala Limestone of SW Australia, which is Quaternary aeolianite with primary porosity. We build on our previous studies of the Golgotha Cave system and utilize the existing spatial survey of 29 automated cave drip loggers and a lidar-based flow classification scheme, conducted in the two main chambers of this cave. We find that a daily sampling frequency at our cave site optimizes the capture of drip variability with the least possible sampling artifacts. With the optimum sampling frequency, most of the drip sites show persistent autocorrelation for at least a month, typically much longer, indicating ample storage of water feeding all stalactites investigated. Drip discharge histograms are highly variable, showing sometimes multimodal distributions. Histogram skewness is shown to relate to the wetter-than-average 2013 hydrological year and modality is affected by seasonality. The hydrological classification scheme with respect to mean discharge and the flow variation can distinguish between groundwater flow types in limestones with primary porosity, and the technique could be used to characterize different karst flow paths when high-frequency automated drip logger data are available. We observe little difference in the coefficient of variation (COV) between flow classification types, probably reflecting the ample storage due to the dominance of primary porosity at this cave site. Moreover, we do not find any relationship between drip variability and discharge within similar flow type. Finally, a combination of multidimensional scaling (MDS) and clustering by k means is used to classify similar drip types based on time series analysis. This clustering reveals four unique drip regimes which agree with previous flow type classification for this site. It highlights a spatial homogeneity in drip types in one cave chamber, and spatial heterogeneity in the other, which is in agreement with our understanding of cave chamber morphology and lithology.

  1. Biogeography, phylogeny, and morphological evolution of central Texas cave and spring salamanders

    PubMed Central

    2013-01-01

    Background Subterranean faunal radiations can result in complex patterns of morphological divergence involving both convergent or parallel phenotypic evolution and cryptic species diversity. Salamanders of the genus Eurycea in central Texas provide a particularly challenging example with respect to phylogeny reconstruction, biogeography and taxonomy. These predominantly aquatic species inhabit karst limestone aquifers and spring outflows, and exhibit a wide range of morphological and genetic variation. We extensively sampled spring and cave populations of six Eurycea species within this group (eastern Blepsimolge clade), to reconstruct their phylogenetic and biogeographic history using mtDNA and examine patterns and origins of cave- and surface-associated morphological variation. Results Genetic divergence is generally low, and many populations share ancestral haplotypes and/or show evidence of introgression. This pattern likely indicates a recent radiation coupled with a complex history of intermittent connections within the aquatic karst system. Cave populations that exhibit the most extreme troglobitic morphologies show no or very low divergence from surface populations and are geographically interspersed among them, suggesting multiple instances of rapid, parallel phenotypic evolution. Morphological variation is diffuse among cave populations; this is in contrast to surface populations, which form a tight cluster in morphospace. Unexpectedly, our analyses reveal two distinct and previously unrecognized morphological groups encompassing multiple species that are not correlated with spring or cave habitat, phylogeny or geography, and may be due to developmental plasticity. Conclusions The evolutionary history of this group of spring- and cave-dwelling salamanders reflects patterns of intermittent isolation and gene flow influenced by complex hydrogeologic dynamics that are characteristic of karst regions. Shallow genetic divergences among several species, evidence of genetic exchange, and nested relationships across morphologically disparate cave and spring forms suggests that cave invasion was recent and many troglobitic morphologies arose independently. These patterns are consistent with an adaptive-shift hypothesis of divergence, which has been proposed to explain diversification in other karst fauna. While cave and surface forms often do not appear to be genetically isolated, morphological diversity within and among populations may be maintained by developmental plasticity, selection, or a combination thereof. PMID:24044519

  2. Reconstructing water level in Hoyo Negro, Quintana Roo, Mexico, implications for early Paleoamerican and faunal access

    NASA Astrophysics Data System (ADS)

    Collins, S. V.; Reinhardt, E. G.; Rissolo, D.; Chatters, J. C.; Nava Blank, A.; Luna Erreguerena, P.

    2015-09-01

    The skeletal remains of a Paleoamerican (Naia; HN5/48) and extinct megafauna were found at -40 to -43 mbsl in a submerged dissolution chamber named Hoyo Negro (HN) in the Sac Actun Cave System, Yucatan Peninsula, Mexico. The human remains were dated to between 12 and 13 Ka, making these remains the oldest securely dated in the Yucatan. Twelve sediment cores were used to reconstruct the Holocene flooding history of the now phreatic cave passages and cenotes (Ich Balam, Oasis) that connect to HN. Four facies were found: 1. bat guano and Seed (SF), 2. lime Mud (MF), 3. Calcite Rafts (CRF) and 4. Organic Matter/Calcite Rafts (OM/CRF) which were defined by their lithologic characteristics and ostracod, foraminifera and testate amoebae content. Basal radiocarbon ages (AMS) of aquatic sediments (SF) combined with cave bottom and ceiling height profiles determined the history of flooding in HN and when access was restricted for human and animal entry. Our results show that the bottom of HN was flooded at least by 9850 cal yr BP but likely earlier. We also found, that the pit became inaccessible for human and animal entry at ≈8100 cal yr BP, when water reaching the cave ceiling effectively prevented entry. Water level continued to rise between ≈6000 and 8100 cal yr BP, filling the cave passages and entry points to HN (Cenotes Ich Balam and Oasis). Analysis of cave facies revealed that both Holocene sea-level rise and cave ceiling height determined the configuration of airways and the deposition of floating and bat derived OM (guano and seeds). Calcite rafts, which form on the water surface, are also dependent on the presence of airways but can also form in isolated air domes in the cave ceiling that affect their loci of deposition on the cave bottom. These results indicated that aquatic cave sedimentation is transient in time and space, necessitating extraction of multiple cores to determine a limit after which flooding occurred.

  3. Stalagmite Survival: 500kyr of Cyclical Growth and Natural Attrition of Stalagmites in Sulawesi

    NASA Astrophysics Data System (ADS)

    Scroxton, N.; Gagan, M. K.; Dunbar, G. B.; Ayliffe, L. K.; Hantoro, W. S.; Shen, C. C.; Hellstrom, J. C.; Zhao, J. X.; Cheng, H.; Edwards, R. L.; Sun, H.; Rifai, H.

    2014-12-01

    Numerous speleothem studies have analysed the age distribution of stalagmites harvested from multiple caves and inferred important changes in paleoclimates to explain stalagmite growth phases. However, stalagmites take tens to hundreds of thousands of years to grow, and thus the twin desires to preserve the cave condition for future generations and advance palaeoclimate science are often in conflict. In this study we use U/Th ages from low impact mini-cores extracted in situ from the bases of stalagmites, thus keeping the intrinsic value of the cave intact. Our case study is based on 77 individual stalagmites drilled in situ in thirteen caves located in and around Bantimurung-Bulusaraung National Park, South Sulawesi, Indonesia. The stalagmites grew during discrete time intervals within the last ~530,000 years, and analysis of their age distribution shows an exponential decrease in the number of older stalagmites surviving to the present day. The age distribution indicates that the rate of natural attrition of stalagmites is approximately constant through time, probably in response to a number of natural processes, including downward erosion of the karst terrain, cave collapse, in-cave erosional processes and in-cave sedimentation covering stalagmites. Natural attrition of stalagmites is likely to be a general cave phenomenon, and has important implications for cave conservation because it highlights that random removal of stalagmites without prior knowledge of their ages will result in unnecessary replication and a failure to sample the full length of the available paleoclimate record. Departure from this "normal" exponential profile can be used to infer palaeoclimate information: significant deviations are produced by periods of more frequent stalagmite growth, inferred here to reflect increases in monsoon rainfall over Sulawesi (345-340, 75-70 and 10-5 kyr BP). By adjusting the record to account for stalagmite attrition, more statistically robust paleoclimate information can be inferred. Crucially, these insights on past climates have been obtained entirely from reconnaissance-style basal mini-core ages. This novel technique is therefore suitable for caves where the removal of stalagmites would cause irreparable damage, or jeopardize local cultural and tourism potential.

  4. Evaluating the Carrying Capacity in The Škocjan Caves, Slovenia

    NASA Astrophysics Data System (ADS)

    Debevec Gerjevic, V.

    2009-04-01

    Park Škocjanske jame, Slovenija is a multidesignation site, located in south western part of Slovenia. In 1986 the Škocjanske jame - Škocjan Caves were listed in UNESCO world heritage list, in 1996 the Government of Republic Slovenia established the Regional Park Škocjanske jame, Slovenija. In 1999 the underground course of The Reka River in Škocjan Caves was designated a Ramsar site as first underground wetland of international importance. The park lies within three locations Natura 2000. In 2004 Park Škocjanske jame became a MAB locality as The Karst Biosphere Reserve. The tourist activity was already developed in the early 19th century. Today's research projects are focused on quality of caves microclimate, in order to enable the cave to remain as pristine as possible due to tourism and on the other hand to provide safe environment for people who work in the caves, and on quality of the water that flows from buffer zone to the underground world an then to the sea in Italy. The tourist activity increased during the past years. With the aim of nature conservation and protection the management plan was developed and special programme of monitoring started in order to detect changes in the environment due to the anthropogenic impact. In the park we consider the estimation of the carrying capacity as a key element for preparation of proper management guidelines for the tourism development in site. The caves system is rich in several halls and tunnels and distinguishes the caves for its variety of dimensions. There are several limitations of the visits and number of visitors. They merely depend on spatial characteristic of the caves and its surroundings and on human resources of the experts stuff that is in charge of guiding tourists groups to the caves. There is no simple formula that could be used for evaluation of capacity on general, but detailed studies of several locations and suitable description of parameters could give us an idea of proposing the limiting numbers. Physical and actual capacities will be discussed and a model of preparation of social capacity will be provided.

  5. Radon in Ingleborough / Clapham Cave, North Yorkshire, UK.

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin

    2015-04-01

    Atmospheric radon concentration was measured at Ingleborough Cave, North Yorkshire during the summer of 2004, and the autumn / winter of 2004/5. Significantly, Ingleborough Cave forms part of a larger system which includes the world famous Gaping Gill pothole. This plunges 105 m (334 ft), contains the tallest unbroken waterfall in England and one of the largest known underground chambers in the UK. Measurements were taken to assess the effects of seasonal and spatial variation, elevation and ventilation on radon concentration in Ingleborough. In this study personal dose exposures for three groups of cave user were identified, and the performance of a variety of radon detection systems evaluated. Summer radon concentrations inside the cave peaked at around 7,000 Bq m-3, although average concentrations were less than 5,000 Bq m-3. During the winter measurement period, average concentrations were around 100 Bq m-3, and a winter / summer ration therefore of 47,4. The average annual radon concentration exceeded the legislative limitations for the workplace of 400 Bq m-3 due in part to a failed fan in the ventilation system. When the fan was running we noted an 80% reduction in radon concentrations although reliability of the fan was problematic due to extensive but relatively rare flooding of the cave system. The radon dose experienced by cave workers and guides in this study exceeded the Ionisation Radiation Regulations limit of 5 mSv/annum, and highlighted that for health and safety reasons the ventilation system should be fully operational during the high radon concentration summer months. Keywords: Radon, Cave, Ingleborough, Detection methods

  6. Mimogonellus dreybrodti sp. n., a new cave-inhabiting Osoriinae from Laos (Coleoptera: Staphylinidae).

    PubMed

    Yin, Zi-Wei; Steiner, Helmut

    2017-10-17

    A new osoriine species, Mimogonellus dreybrodti Yin & Steiner, sp. n., collected from a cave in Houaphanh Province, Laos, is described and illustrated. This represents the third Mimogonellus species in Asia, and the first in the genus known to inhabit a cave environment.

  7. Resource Documentation and Recharge Area Delineation of a Large Fluvial Karst System: Carroll Cave, Missouri

    USDA-ARS?s Scientific Manuscript database

    Located along Wet Glaize Creek in the central Missouri Ozarks, Toronto Spring is a distributary spring system where surface stream flow mixes with flow from the Carroll Cave system. Following recharge area delineations for Thunder River and Confusion Creek in Carroll Cave, flow from these rivers wa...

  8. 36 CFR 7.36 - Mammoth Cave National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Mammoth Cave National Park. 7.36 Section 7.36 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.36 Mammoth Cave National Park. (a) Fishing—(1...

  9. 36 CFR 7.36 - Mammoth Cave National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Mammoth Cave National Park. 7.36 Section 7.36 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.36 Mammoth Cave National Park. (a) Fishing—(1...

  10. 36 CFR 7.36 - Mammoth Cave National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Mammoth Cave National Park. 7.36 Section 7.36 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.36 Mammoth Cave National Park. (a) Fishing—(1...

  11. 36 CFR 7.36 - Mammoth Cave National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Mammoth Cave National Park. 7.36 Section 7.36 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.36 Mammoth Cave National Park. (a) Fishing—(1...

  12. 36 CFR 7.36 - Mammoth Cave National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Mammoth Cave National Park. 7.36 Section 7.36 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.36 Mammoth Cave National Park. (a) Fishing—(1...

  13. DNA analysis of fecal bacteria to augment an epikarst dye trace study at Crump's Cave, Kentucky

    USDA-ARS?s Scientific Manuscript database

    A rainfall simulation experiment was performed to investigate the transport behavior of fecal-derived bacteria through shallow karst soils and through the epikarst. The experiment was conducted at Cave Springs Cavern located just south of Mammoth Cave National Park on the Sinkhole Plain of South Cen...

  14. Population connectivity of endangered Ozark big-eared bats (Corynorhinus townsendii ingens)

    USGS Publications Warehouse

    Lee, Dana N.; Stark, Richard C.; Puckette, William L.; Hamilton, Meredith J.; Leslie, David M.; Van Den Bussche, Ronald A.

    2015-01-01

    The endangered Ozark big-eared bat (Corynorhinus townsendii ingens) is restricted to eastern Oklahoma and western and north-central Arkansas, where populations may be susceptible to losses of genetic variation due to patchy distribution of colonies and potentially small effective population sizes. We used mitochondrial D-loop DNA sequences and 15 nuclear microsatellite loci to determine population connectivity among Ozark big-eared bat caves. Assessment of 7 caves revealed a haplotype not detected in a previous study (2002–2003) and gene flow among colonies in eastern Oklahoma. Our data suggest genetic mixing of individuals, which may be occurring at nearby swarming sites in the autumn. Further evidence of limited gene flow between caves in Oklahoma with a cave in Arkansas highlights the importance of including samples from geographically widespread caves to fully understand gene flow in this subspecies. It appears autumn swarming sites and winter hibernacula play an important role in providing opportunities for mating; therefore, we suggest protection of these sites, maternity caves, and surrounding habitat to facilitate gene flow among populations of Ozark big-eared bats.

  15. The importance of selection in the evolution of blindness in cavefish.

    PubMed

    Cartwright, Reed A; Schwartz, Rachel S; Merry, Alexandra L; Howell, Megan M

    2017-02-07

    Blindness has evolved repeatedly in cave-dwelling organisms, and many hypotheses have been proposed to explain this observation, including both accumulation of neutral loss-of-function mutations and adaptation to darkness. Investigating the loss of sight in cave dwellers presents an opportunity to understand the operation of fundamental evolutionary processes, including drift, selection, mutation, and migration. Here we model the evolution of blindness in caves. This model captures the interaction of three forces: (1) selection favoring alleles causing blindness, (2) immigration of sightedness alleles from a surface population, and (3) mutations creating blindness alleles. We investigated the dynamics of this model and determined selection-strength thresholds that result in blindness evolving in caves despite immigration of sightedness alleles from the surface. We estimate that the selection coefficient for blindness would need to be at least 0.005 (and maybe as high as 0.5) for blindness to evolve in the model cave-organism, Astyanax mexicanus. Our results indicate that strong selection is required for the evolution of blindness in cave-dwelling organisms, which is consistent with recent work suggesting a high metabolic cost of eye development.

  16. A New Methodology for Open Pit Slope Design in Karst-Prone Ground Conditions Based on Integrated Stochastic-Limit Equilibrium Analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Cao, Ping; Ma, Guowei; Fan, Wenchen; Meng, Jingjing; Li, Kaihui

    2016-07-01

    Using the Chengmenshan Copper Mine as a case study, a new methodology for open pit slope design in karst-prone ground conditions is presented based on integrated stochastic-limit equilibrium analysis. The numerical modeling and optimization design procedure contain a collection of drill core data, karst cave stochastic model generation, SLIDE simulation and bisection method optimization. Borehole investigations are performed, and the statistical result shows that the length of the karst cave fits a negative exponential distribution model, but the length of carbonatite does not exactly follow any standard distribution. The inverse transform method and acceptance-rejection method are used to reproduce the length of the karst cave and carbonatite, respectively. A code for karst cave stochastic model generation, named KCSMG, is developed. The stability of the rock slope with the karst cave stochastic model is analyzed by combining the KCSMG code and the SLIDE program. This approach is then applied to study the effect of the karst cave on the stability of the open pit slope, and a procedure to optimize the open pit slope angle is presented.

  17. Immersive volume rendering of blood vessels

    NASA Astrophysics Data System (ADS)

    Long, Gregory; Kim, Han Suk; Marsden, Alison; Bazilevs, Yuri; Schulze, Jürgen P.

    2012-03-01

    In this paper, we present a novel method of visualizing flow in blood vessels. Our approach reads unstructured tetrahedral data, resamples it, and uses slice based 3D texture volume rendering. Due to the sparse structure of blood vessels, we utilize an octree to efficiently store the resampled data by discarding empty regions of the volume. We use animation to convey time series data, wireframe surface to give structure, and utilize the StarCAVE, a 3D virtual reality environment, to add a fully immersive element to the visualization. Our tool has great value in interdisciplinary work, helping scientists collaborate with clinicians, by improving the understanding of blood flow simulations. Full immersion in the flow field allows for a more intuitive understanding of the flow phenomena, and can be a great help to medical experts for treatment planning.

  18. Further constraints on the Chauvet cave artwork elaboration.

    PubMed

    Sadier, Benjamin; Delannoy, Jean-Jacques; Benedetti, Lucilla; Bourlès, Didier L; Jaillet, Stéphane; Geneste, Jean-Michel; Lebatard, Anne-Elisabeth; Arnold, Maurice

    2012-05-22

    Since its discovery, the Chauvet cave elaborate artwork called into question our understanding of Palaeolithic art evolution and challenged traditional chronological benchmarks [Valladas H et al. (2001) Nature 413:419-479]. Chronological approaches revealing human presences in the cavity during the Aurignacian and the Gravettian are indeed still debated on the basis of stylistic criteria [Pettitt P (2008) J Hum Evol 55:908-917]. The presented (36)Cl Cosmic Ray Exposure ages demonstrate that the cliff overhanging the Chauvet cave has collapsed several times since 29 ka until the sealing of the cavity entrance prohibited access to the cave at least 21 ka ago. Remarkably agreeing with the radiocarbon dates of the human and animal occupancy, this study confirms that the Chauvet cave paintings are the oldest and the most elaborate ever discovered, challenging our current knowledge of human cognitive evolution.

  19. Further constraints on the Chauvet cave artwork elaboration

    NASA Astrophysics Data System (ADS)

    Sadier, Benjamin; Delannoy, Jean-Jacques; Benedetti, Lucilla; Bourlès, Didier L.; Jaillet, Stéphane; Geneste, Jean-Michel; Lebatard, Anne-Elisabeth; Arnold, Maurice

    2012-05-01

    Since its discovery, the Chauvet cave elaborate artwork called into question our understanding of Palaeolithic art evolution and challenged traditional chronological benchmarks [Valladas H et al. (2001) Nature 413:419-479]. Chronological approaches revealing human presences in the cavity during the Aurignacian and the Gravettian are indeed still debated on the basis of stylistic criteria [Pettitt P (2008) J Hum Evol 55:908-917]. The presented 36Cl Cosmic Ray Exposure ages demonstrate that the cliff overhanging the Chauvet cave has collapsed several times since 29 ka until the sealing of the cavity entrance prohibited access to the cave at least 21 ka ago. Remarkably agreeing with the radiocarbon dates of the human and animal occupancy, this study confirms that the Chauvet cave paintings are the oldest and the most elaborate ever discovered, challenging our current knowledge of human cognitive evolution.

  20. Virtual Titrator: A Student-Oriented Instrument.

    ERIC Educational Resources Information Center

    Ritter, David; Johnson, Michael

    1997-01-01

    Describes a titrator system, constructed from a computer-interfaced pH-meter, that was designed to increase student involvement in the process. Combines automatic data collection with real-time graphical display and interactive controls to focus attention on the process rather than on bits of data. Improves understanding of concepts and…

  1. Automatically Producing Accessible Learning Objects

    ERIC Educational Resources Information Center

    Di Iorio, Angelo; Feliziani, Antonio Angelo; Mirri, Silvia; Salomoni, Paola; Vitali, Fabio

    2006-01-01

    The "Anywhere, Anytime, Anyway" slogan is frequently associated to e-learning with the aim to emphasize the wide access offered by on-line education. Otherwise, learning materials are currently created to be used with a specific technology or configuration, leaving out from the virtual classroom students who have limited access capabilities and,…

  2. Towards a Virtual Teaching Assistant to Answer Questions Asked by Students in Introductory Computer Science

    ERIC Educational Resources Information Center

    Heiner, Cecily

    2009-01-01

    Students in introductory programming classes often articulate their questions and information needs incompletely. Consequently, the automatic classification of student questions to provide automated tutorial responses is a challenging problem. This dissertation analyzes 411 questions from an introductory Java programming course by reducing the…

  3. Palaeohydrology of a 3D-maze cave (Hermannshöhle, Lower Austria)

    NASA Astrophysics Data System (ADS)

    Schober, Andrea; Plan, Lukas

    2013-04-01

    The 4.4 km-long Hermannshöhle (located in Kirchberg/Wechsel, Lower Austria) is one of the largest caves in the Lower Austroalpine Unit. It is developed in an isolated block of carbonate marble, taking up only 140 x 160 m of ground area and 73 m of elevation difference. The cave is unusual in two respects: (a) its dense network of corridors is arranged in a three-dimensional maze and (b) the most outstanding macro- and micromorphologic features were caused by paragenesis. Speleothems are abundant throughout the cave comprising flowstones, dripstones, helictites, popcorn, calcite rafts, a shield, and moonmilk. Even though most passages are canyon-shaped, the cave shows exclusively phreatic features. Sediment fills are abundant as well, mostly covering the floor of passages to an unknown depth, containing mainly allochthonous material, i.e. schists and gneisses. Besides some vadose dripwater the cave is dry today. A conspicuous feature is the lack of a single water path and instead a maze with multiple flow paths formed. Another interesting feature is that one part of the cave developed below the nearby Ramsbach brook but is still dry. There are small ponors reported from the Ramsbach brook (which were observed during river regulation) indicating an actively draining karst system, which is not yet explored. The aim of this study was to enlighten the palaeohydrology of this cave using morphological and sedimentological observations as well as U/Th dating of speleothems. First results show that the palaeo-environment and the hydrologic setting of the Hermannshöhle were drastically different from today. Undersaturated water sourced from nearby non-karstic gneisses and schists gave rise to well-developed contact karst features. Surprisingly the palaeo flow direction deduced from indicators like scallops and sediment structures was opposite to the flow direction of the present nearby brooks (Rams- and Feistrizbach). Following pulses of clastic sediment input a distinct system of paragenetic canyons developed creating the unique maze character of the cave.

  4. New Results on the Palaeobiology of Bears on the Swabian Alb (Chronology, Isotopic Geochemistry and Palaeogenetics)

    NASA Astrophysics Data System (ADS)

    Muenzel, Susanne

    2010-05-01

    Paleogenetic investigations at three geographically close caves in the Ach Valley near Blaubeuren have revealed two different cave bear haplogroups. These two haplogroups correspond to Ursus spelaeus (haplogroup 1) and Ursus ingressus (haplogroup 4) (Rabeder & Hofreiter 2004, Die Höhle 55, 58-77). This genetic variability was first attested for Geißenklösterle and Sirgenstein cave, but the new genetic data attest them also for Hohle Fels. In all three caves Ursus ingressus replaced Ursus spelaeus around 28 000 B.P. The carbon and nitrogen isotopes of the two genetic types do not vary significantly, meaning that there is no dietary difference between them and Ursus spelaeus were in dietary competition with Ursus ingressus in the Ach valley. The radiocarbon dates suggested a sudden replacement (Hofreiter et al. 2007, Current Biology 17(4): R1-R3), which must have been accompanied by local extinction of the older cave bear, according to the dietary competition with the younger bear. The possible reasons for this replacement are not clear yet. Climatic changes are unlikely, since the faunal composition remains the same and the environmental data do not differ significantly. But we cannot exclude human impact on the cave bear population, since a cave bear vertebra with an embedded fragment of a flint projectile was recovered in the Gravettian layer AH IIcf dated to 27 830+150-140 B.P. and gives indisputable proof of the hunting of cave bears. Numerous cut marks proof an ongoing exploitation of this species. In this context, new radiocarbon dates and isotopic results on cave bears and coeval brown bears will help us to refine the possible scenarios of this complex evolutionary and ecological process. These results will be used to test hypotheses of competitive exclusion between the different bear species. This study will exemplify how combining evidence from different approaches can provide invaluable clues about palaeobiology of late Pleistocene large mammals such as fossil bears in Europe.

  5. Predicting the Occurrence of Cave-Inhabiting Fauna Based on Features of the Earth Surface Environment.

    PubMed

    Christman, Mary C; Doctor, Daniel H; Niemiller, Matthew L; Weary, David J; Young, John A; Zigler, Kirk S; Culver, David C

    2016-01-01

    One of the most challenging fauna to study in situ is the obligate cave fauna because of the difficulty of sampling. Cave-limited species display patchy and restricted distributions, but it is often unclear whether the observed distribution is a sampling artifact or a true restriction in range. Further, the drivers of the distribution could be local environmental conditions, such as cave humidity, or they could be associated with surface features that are surrogates for cave conditions. If surface features can be used to predict the distribution of important cave taxa, then conservation management is more easily obtained. We examined the hypothesis that the presence of major faunal groups of cave obligate species could be predicted based on features of the earth surface. Georeferenced records of cave obligate amphipods, crayfish, fish, isopods, beetles, millipedes, pseudoscorpions, spiders, and springtails within the area of Appalachian Landscape Conservation Cooperative in the eastern United States (Illinois to Virginia and New York to Alabama) were assigned to 20 x 20 km grid cells. Habitat suitability for these faunal groups was modeled using logistic regression with twenty predictor variables within each grid cell, such as percent karst, soil features, temperature, precipitation, and elevation. Models successfully predicted the presence of a group greater than 65% of the time (mean = 88%) for the presence of single grid cell endemics, and for all faunal groups except pseudoscorpions. The most common predictor variables were latitude, percent karst, and the standard deviation of the Topographic Position Index (TPI), a measure of landscape rugosity within each grid cell. The overall success of these models points to a number of important connections between the surface and cave environments, and some of these, especially soil features and topographic variability, suggest new research directions. These models should prove to be useful tools in predicting the presence of species in understudied areas.

  6. Hunting, Swimming, and Worshiping: Human Cultural Practices Illuminate the Blood Meal Sources of Cave Dwelling Chagas Vectors (Triatoma dimidiata) in Guatemala and Belize

    PubMed Central

    Stevens, Lori; Monroy, M. Carlota; Rodas, Antonieta Guadalupe; Dorn, Patricia L.

    2014-01-01

    Background Triatoma dimidiata, currently the major Central American vector of Trypanosoma cruzi, the parasite that causes Chagas disease, inhabits caves throughout the region. This research investigates the possibility that cave dwelling T. dimidiata might transmit the parasite to humans and links the blood meal sources of cave vectors to cultural practices that differ among locations. Methodology/Principal Findings We determined the blood meal sources of twenty-four T. dimidiata collected from two locations in Guatemala and one in Belize where human interactions with the caves differ. Blood meal sources were determined by cloning and sequencing PCR products amplified from DNA extracted from the vector abdomen using primers specific for the vertebrate 12S mitochondrial gene. The blood meal sources were inferred by ≥99% identity with published sequences. We found 70% of cave-collected T. dimidiata positive for human DNA. The vectors had fed on 10 additional vertebrates with a variety of relationships to humans, including companion animal (dog), food animals (pig, sheep/goat), wild animals (duck, two bat, two opossum species) and commensal animals (mouse, rat). Vectors from all locations fed on humans and commensal animals. The blood meal sources differ among locations, as well as the likelihood of feeding on dog and food animals. Vectors from one location were tested for T. cruzi infection, and 30% (3/10) tested positive, including two positive for human blood meals. Conclusions/Significance Cave dwelling Chagas disease vectors feed on humans and commensal animals as well as dog, food animals and wild animals. Blood meal sources were related to human uses of the caves. We caution that just as T. dimidiata in caves may pose an epidemiological risk, there may be other situations where risk is thought to be minimal, but is not. PMID:25211347

  7. Carbon cycling in the mantled karst of the Ozark Plateaus, central United States

    USGS Publications Warehouse

    Knierim, Katherine J.; Pollock, Erik D.; Covington, Matthew D.; Hays, Phillip D.; Brye, Kristofor R.

    2017-01-01

    The nature of carbon (C) cycling in the unsaturated zone where groundwater is in contact with abundant gas-filled voids is poorly understood. The objective of this study was to trace inorganic-C cycling in a karst landscape using stable-C isotopes, with emphasis on a shallow groundwater flow path through the soil, to an underlying cave, and to the spring outlet of a cave stream in the Ozark Plateaus of northwestern Arkansas. Carbon dioxide (CO2) concentration and isotopic composition (δ13C-CO2) in gas and dissolved inorganic carbon (DIC) concentration and isotopic composition (δ13C-DIC) in water were measured in samples collected from two suction-cup soil samplers above the cave, three sites in the cave, and at the spring outlet of the cave stream. Soil-gas CO2 concentration (median 2,578 ppm) and δ13C-CO2 (median − 21.5‰) were seasonally variable, reflecting the effects of surface temperature changes on soil-CO2 production via respiration and organic-matter decomposition. Cave-air CO2 (median 1,026 ppm) was sourced from the soil zone and the surface atmosphere, with seasonally changing proportions of each source controlled by surface temperature-driven air density gradients. Soil-DIC concentration (median 1.7 mg L− 1) was lower and soil-δ13C-DIC (median − 19.5‰) was lighter compared to the cave (median 23.3 mg L− 1 and − 14.3‰, respectively) because carbonate-bedrock dissolution provided an inorganic source of C to the cave. Carbon species in the soil had a unique, light stable-C isotopic signature compared to the cave. Discrimination of soil-C sources to karst groundwater was achieved, which is critical for developing hydrologic budgets using environmental tracers such as C.

  8. Predicting the Occurrence of Cave-Inhabiting Fauna Based on Features of the Earth Surface Environment

    PubMed Central

    Doctor, Daniel H.; Niemiller, Matthew L.; Weary, David J.; Young, John A.; Zigler, Kirk S.

    2016-01-01

    One of the most challenging fauna to study in situ is the obligate cave fauna because of the difficulty of sampling. Cave-limited species display patchy and restricted distributions, but it is often unclear whether the observed distribution is a sampling artifact or a true restriction in range. Further, the drivers of the distribution could be local environmental conditions, such as cave humidity, or they could be associated with surface features that are surrogates for cave conditions. If surface features can be used to predict the distribution of important cave taxa, then conservation management is more easily obtained. We examined the hypothesis that the presence of major faunal groups of cave obligate species could be predicted based on features of the earth surface. Georeferenced records of cave obligate amphipods, crayfish, fish, isopods, beetles, millipedes, pseudoscorpions, spiders, and springtails within the area of Appalachian Landscape Conservation Cooperative in the eastern United States (Illinois to Virginia and New York to Alabama) were assigned to 20 x 20 km grid cells. Habitat suitability for these faunal groups was modeled using logistic regression with twenty predictor variables within each grid cell, such as percent karst, soil features, temperature, precipitation, and elevation. Models successfully predicted the presence of a group greater than 65% of the time (mean = 88%) for the presence of single grid cell endemics, and for all faunal groups except pseudoscorpions. The most common predictor variables were latitude, percent karst, and the standard deviation of the Topographic Position Index (TPI), a measure of landscape rugosity within each grid cell. The overall success of these models points to a number of important connections between the surface and cave environments, and some of these, especially soil features and topographic variability, suggest new research directions. These models should prove to be useful tools in predicting the presence of species in understudied areas. PMID:27532611

  9. Predicting the occurrence of cave-inhabiting fauna based on features of the earth surface environment

    USGS Publications Warehouse

    Christman, Mary C.; Doctor, Daniel H.; Niemiller, Matthew L.; Weary, David J.; Young, John A.; Zigler, Kirk S.; Culver, David C.

    2016-01-01

    One of the most challenging fauna to study in situ is the obligate cave fauna because of the difficulty of sampling. Cave-limited species display patchy and restricted distributions, but it is often unclear whether the observed distribution is a sampling artifact or a true restriction in range. Further, the drivers of the distribution could be local environmental conditions, such as cave humidity, or they could be associated with surface features that are surrogates for cave conditions. If surface features can be used to predict the distribution of important cave taxa, then conservation management is more easily obtained. We examined the hypothesis that the presence of major faunal groups of cave obligate species could be predicted based on features of the earth surface. Georeferenced records of cave obligate amphipods, crayfish, fish, isopods, beetles, millipedes, pseudoscorpions, spiders, and springtails within the area of Appalachian Landscape Conservation Cooperative in the eastern United States (Illinois to Virginia and New York to Alabama) were assigned to 20 x 20 km grid cells. Habitat suitability for these faunal groups was modeled using logistic regression with twenty predictor variables within each grid cell, such as percent karst, soil features, temperature, precipitation, and elevation. Models successfully predicted the presence of a group greater than 65% of the time (mean = 88%) for the presence of single grid cell endemics, and for all faunal groups except pseudoscorpions. The most common predictor variables were latitude, percent karst, and the standard deviation of the Topographic Position Index (TPI), a measure of landscape rugosity within each grid cell. The overall success of these models points to a number of important connections between the surface and cave environments, and some of these, especially soil features and topographic variability, suggest new research directions. These models should prove to be useful tools in predicting the presence of species in understudied areas.

  10. Pesticide contamination of endangered gray bats and their food base in Boone County, Missouri, 1982

    USGS Publications Warehouse

    Clawson, R.L.; Clark, D.R.

    1989-01-01

    Gray bat guano from Devil's Icebox and Hunters Caves contained dieldrin at levels previously associated with gray bat mortality. Two of four gray bats found dead in Holton Cave had lethal brain concentrations of dieldrin. Twenty-five of 28 (86%) insect samples from bat foraging areas contained measurable dieldrin, heptachlor epoxide or both. Beetle samples were most heavily contaminated containing up to 2.2 ppm and 1.1 ppm heptachlor epoxide. The addition of Holton Cave brings to five the number of Missouri caves where gray bats have died of food chain pesticide poisoning.

  11. Karst in Wadi Bani Khalid, Oman

    NASA Astrophysics Data System (ADS)

    Abdelaziz, Ramadan

    2017-04-01

    There are several important in Oman. The main aquifer is surficial aquifer and fractured rocks. In fact, the geology of Oman is complex whichmake the hydraulic continuity of bedrock is limited and formaing localized aquifers. caves in Oman are varying types and length, size and geographic formations. Many caves and valleys founded in Oman. Wadi Bani Khalid hosts complex network of fractured rock. Karst in Wadi Bani Kalid made upof Limestone(Calcium, which is dissolve in water.A rain water pass through the rock it is erode the rock and form caves. The cave located in Miqil. The karst was formed in Calcium Carbonate rocks.

  12. Climate variability during the Holocene inferred from northeastern Iberian speleothems

    NASA Astrophysics Data System (ADS)

    Moreno, A.; Bartolomé, M.; Sancho, C.; Belmonte, Á.; Stoll, H.; Cacho, I.; Edwards, R. L.; Hellstrom, J.

    2012-04-01

    Although the general climate trends during the Holocene in the Iberian Peninsula have been well described after the study of marine and lacustrine records, many questions regarding the timing of some of the events together with the characterization of the higher-frequency climate variability are still poorly understood. New speleothem records from several caves in northeastern Iberia provide data to explore Holocene climate changes. The selected caves are located in a latitudinal transect from the Pyrenees to the Iberian Range and placed at different altitude. Two of them, 5 de Agosto and Pot au Feu, belong to the same karstic complex in Cotiella massif (Central Pyrenees, 1600 m asl). Seso Cave, also in the Central Pyrenees but at 781 m of altitude, and Molinos cave, a cavity very rich in speleothems located at 1040 m in the Iberian Range, complete the transect. Although in all the caves precipitation coming from Atlantic fronts dominates over the year, a significant Mediterranean influence, specially in summer months, is identified after rainfall monitoring. Speleothem formation during the Holocene occurred at a very low pace in 5 de Agosto cave (80yrs/mm) and increased dramatically at low-altitude caves and during particular periods proved to be wetter (eg. Early Holocene in Molinos cave, less than 10yr/mm). In Seso and Pot au Feu caves, up to seven studied speleothems only grew during short climatic events such as the Iron Cold Period (3000-2500 cal yr BP) or the Little Ice Age (1300-1850 yr AD) that, although cold, were particularly humid periods in northeastern Spain. First stable isotope results highlight the importance of comparing speleothems with similar growing rates and from the same cave to extract climate information and discard other influences. From the integration of four stalagmites from Molinos cave covering since the Holocene onset to 2000 cal yrs BP, the Early Holocene (11.7-8.5 ka BP) with d13C values between -11 and - 9‰ appears as the wetter interval. The highest isotopic values are reached during Middle Holocene (8.5-5.5 ka BP) while there is a tendency towards more negative values during Late Holocene (last 5000 yrs). The range of d18O values is low (about 2‰) but still lighter values during Early Holocene and heavier afterwards are well marked. Shorter events characterized by more negative d13C values are observed at 4 ka, 6 ka, 7.5 ka, 8.2, 8.7, 9.2, 10.3 ka and interpreted as cold but probably wetter periods with denser vegetation cover and soil development over the cave. However, changes in the source of precipitation (Atlantic vs Mediterranean) or the influence of fresh-water outbursts in North Atlantic can not be neglected.

  13. Meckel's cave access: anatomic study comparing the endoscopic transantral and endonasal approaches.

    PubMed

    Van Rompaey, Jason; Suruliraj, Anand; Carrau, Ricardo; Panizza, Benedict; Solares, C Arturo

    2014-04-01

    Recent advances in endonasal endoscopy have facilitated the surgical access to the lateral skull base including areas such as Meckel's cave. This approach has been well documented, however, few studies have outlined transantral specific access to Meckel's. A transantral approach provides a direct pathway to this region obviating the need for extensive endonasal and transsphenoidal resection. Our aim in this study is to compare the anatomical perspectives obtained in endonasal and transantral approaches. We prepared 14 cadaveric specimens with intravascular injections of colored latex. Eight cadavers underwent endoscopic endonasal transpterygoid approaches to Meckel's cave. Six additional specimens underwent an endoscopic transantral approach to the same region. Photographic evidence was obtained for review. 30 CT scans were analyzed to measure comparative distances to Meckel's cave for both approaches. The endoscopic approaches provided a direct access to the anterior and inferior portions of Meckel's cave. However, the transantral approach required shorter instrumentation, and did not require clearing of the endonasal corridor. This approach gave an anterior view of Meckel's cave making posterior dissection more difficult. A transantral approach to Meckel's cave provides access similar to the endonasal approach with minimal invasiveness. Some of the morbidity associated with extensive endonasal resection could possibly be avoided. Better understanding of the complex skull base anatomy, from different perspectives, helps to improve current endoscopic skull base surgery and to develop new alternatives, consequently, leading to improvements in safety and efficacy.

  14. Energy expenditure in caving

    PubMed Central

    Antoni, Giorgia; Marini, Elisabetta; Curreli, Nicoletta; Tuveri, Valerio; Comandini, Ornella; Cabras, Stefano; Gabba, Silvia; Madeddu, Clelia; Crisafulli, Antonio

    2017-01-01

    The aim of this study was to determine the energy expenditure of a group of cavers of both genders and different ages and experience during a 10 hour subterranean exploration, using portable metabolimeters. The impact of caving activity on body composition and hydration were also assessed through bioelectrical impedance, and nutritional habits of cavers surveyed. During cave activity, measured total energy expenditure (TEE) was in the range 225–287 kcal/h for women-men (MET = 4.1), respectively; subjects had an energy intake from food in the range 1000–1200 kcal, thus inadequate to restore lost calories. Bayesian statistical analysis estimated the effect of predictive variables on TEE, revealing that experienced subjects had a 5% lower TEE than the less skilled ones and that women required a comparatively larger energy expenditure than men to perform the same task. BIVA (bioelectrical impedance vector analysis) showed that subjects were within the range of normal hydration before and after cave activity, but bioelectrical changes indicated a reduction of extracellular water in men, which might result in hypo-osmolal dehydration in the case of prolonged underground exercise. All these facts should be considered when planning cave explorations, preparing training programs for subjects practising caving, and optimizing a diet for cavers. Further, information gathered through this study could be of value to reduce accidents in caves related to increase in fatigue. PMID:28158208

  15. Gradient Evolution of Body Colouration in Surface- and Cave-Dwelling Poecilia mexicana and the Role of Phenotype-Assortative Female Mate Choice

    PubMed Central

    Penshorn, Marina; Hamfler, Sybille; Herbert, Denise B.; Appel, Jessica; Meyer, Philipp; Slattery, Patrick; Charaf, Sarah; Wolf, Raoul; Völker, Johannes; Berger, Elisabeth A. M.; Dröge, Janis; Riesch, Rüdiger; Arias-Rodriguez, Lenin; Indy, Jeanne R.; Plath, Martin

    2013-01-01

    Ecological speciation assumes reproductive isolation to be the product of ecologically based divergent selection. Beside natural selection, sexual selection via phenotype-assortative mating is thought to promote reproductive isolation. Using the neotropical fish Poecilia mexicana from a system that has been described to undergo incipient ecological speciation in adjacent, but ecologically divergent habitats characterized by the presence or absence of toxic H2S and darkness in cave habitats, we demonstrate a gradual change in male body colouration along the gradient of light/darkness, including a reduction of ornaments that are under both inter- and intrasexual selection in surface populations. In dichotomous choice tests using video-animated stimuli, we found surface females to prefer males from their own population over the cave phenotype. However, female cave fish, observed on site via infrared techniques, preferred to associate with surface males rather than size-matched cave males, likely reflecting the female preference for better-nourished (in this case: surface) males. Hence, divergent selection on body colouration indeed translates into phenotype-assortative mating in the surface ecotype, by selecting against potential migrant males. Female cave fish, by contrast, do not have a preference for the resident male phenotype, identifying natural selection against migrants imposed by the cave environment as the major driver of the observed reproductive isolation. PMID:24175282

  16. Microhabitat use, population densities, and size distributions of sulfur cave-dwelling Poecilia mexicana

    PubMed Central

    Bierbach, David; Riesch, Rüdiger; Schießl, Angela; Wigh, Adriana; Arias-Rodriguez, Lenin; Indy, Jeane Rimber; Klaus, Sebastian; Zimmer, Claudia; Plath, Martin

    2014-01-01

    The Cueva del Azufre in Tabasco, Mexico, is a nutrient-rich cave and its inhabitants need to cope with high levels of dissolved hydrogen sulfide and extreme hypoxia. One of the successful colonizers of this cave is the poeciliid fish Poecilia mexicana, which has received considerable attention as a model organism to examine evolutionary adaptations to extreme environmental conditions. Nonetheless, basic ecological data on the endemic cave molly population are still missing; here we aim to provide data on population densities, size class compositions and use of different microhabitats. We found high overall densities in the cave and highest densities at the middle part of the cave with more than 200 individuals per square meter. These sites have lower H2S concentrations compared to the inner parts where most large sulfide sources are located, but they are annually exposed to a religious harvesting ceremony of local Zoque people called La Pesca. We found a marked shift in size/age compositions towards an overabundance of smaller, juvenile fish at those sites. We discuss these findings in relation to several environmental gradients within the cave (i.e., differences in toxicity and lighting conditions), but we also tentatively argue that the annual fish harvest during a religious ceremony (La Pesca) locally diminishes competition (and possibly, cannibalism by large adults), which is followed by a phase of overcompensation of fish densities. PMID:25083351

  17. Microhabitat use, population densities, and size distributions of sulfur cave-dwelling Poecilia mexicana.

    PubMed

    Jourdan, Jonas; Bierbach, David; Riesch, Rüdiger; Schießl, Angela; Wigh, Adriana; Arias-Rodriguez, Lenin; Indy, Jeane Rimber; Klaus, Sebastian; Zimmer, Claudia; Plath, Martin

    2014-01-01

    The Cueva del Azufre in Tabasco, Mexico, is a nutrient-rich cave and its inhabitants need to cope with high levels of dissolved hydrogen sulfide and extreme hypoxia. One of the successful colonizers of this cave is the poeciliid fish Poecilia mexicana, which has received considerable attention as a model organism to examine evolutionary adaptations to extreme environmental conditions. Nonetheless, basic ecological data on the endemic cave molly population are still missing; here we aim to provide data on population densities, size class compositions and use of different microhabitats. We found high overall densities in the cave and highest densities at the middle part of the cave with more than 200 individuals per square meter. These sites have lower H2S concentrations compared to the inner parts where most large sulfide sources are located, but they are annually exposed to a religious harvesting ceremony of local Zoque people called La Pesca. We found a marked shift in size/age compositions towards an overabundance of smaller, juvenile fish at those sites. We discuss these findings in relation to several environmental gradients within the cave (i.e., differences in toxicity and lighting conditions), but we also tentatively argue that the annual fish harvest during a religious ceremony (La Pesca) locally diminishes competition (and possibly, cannibalism by large adults), which is followed by a phase of overcompensation of fish densities.

  18. Hurricane Impact on Seepage Water in Larga Cave, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Vieten, Rolf; Warken, Sophie; Winter, Amos; Schröder-Ritzrau, Andrea; Scholz, Denis; Spötl, Christoph

    2018-03-01

    Hurricane-induced rainfall over Puerto Rico has characteristic δ18O values which are more negative than local rainfall events. Thus, hurricanes may be recorded in speleothems from Larga cave, Puerto Rico, as characteristic oxygen isotope excursions. Samples of 84 local rainfall events between 2012 and 2013 ranged from -6.2 to +0.3‰, whereas nine rainfall samples belonging to a rainband of hurricane Isaac (23-24 August 2012) ranged from -11.8 to -7.1‰. Cave monitoring covered the hurricane season of 2014 and investigated the impact of hurricane rainfall on drip water chemistry. δ18O values were measured in cumulative monthly rainwater samples above the cave. Inside the cave, δ18O values of instantaneous drip water samples were analyzed and drip rates were recorded at six drip sites. Most effective recharge appears to occur during the wet months (April-May and August-November). δ18O values of instantaneous drip water samples ranged from -3.5 to -2.4‰. In April 2014 and April 2015 some drip sites showed more negative δ18O values than the effective rainfall (-2.9‰), implying an influence of hurricane rainfall reaching the cave via stratified seepage flow months to years after the event. Speleothems from these drip sites in Larga cave have a high potential for paleotempestology studies.

  19. Virtualized Traffic: reconstructing traffic flows from discrete spatiotemporal data.

    PubMed

    Sewall, Jason; van den Berg, Jur; Lin, Ming C; Manocha, Dinesh

    2011-01-01

    We present a novel concept, Virtualized Traffic, to reconstruct and visualize continuous traffic flows from discrete spatiotemporal data provided by traffic sensors or generated artificially to enhance a sense of immersion in a dynamic virtual world. Given the positions of each car at two recorded locations on a highway and the corresponding time instances, our approach can reconstruct the traffic flows (i.e., the dynamic motions of multiple cars over time) between the two locations along the highway for immersive visualization of virtual cities or other environments. Our algorithm is applicable to high-density traffic on highways with an arbitrary number of lanes and takes into account the geometric, kinematic, and dynamic constraints on the cars. Our method reconstructs the car motion that automatically minimizes the number of lane changes, respects safety distance to other cars, and computes the acceleration necessary to obtain a smooth traffic flow subject to the given constraints. Furthermore, our framework can process a continuous stream of input data in real time, enabling the users to view virtualized traffic events in a virtual world as they occur. We demonstrate our reconstruction technique with both synthetic and real-world input. © 2011 IEEE Published by the IEEE Computer Society

  20. Automatic visualization of 3D geometry contained in online databases

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; John, Nigel W.

    2003-04-01

    In this paper, the application of the Virtual Reality Modeling Language (VRML) for efficient database visualization is analyzed. With the help of JAVA programming, three examples of automatic visualization from a database containing 3-D Geometry are given. The first example is used to create basic geometries. The second example is used to create cylinders with a defined start point and end point. The third example is used to processs data from an old copper mine complex in Cheshire, United Kingdom. Interactive 3-D visualization of all geometric data in an online database is achieved with JSP technology.

Top