Continuous-wave vs. pulsed infrared laser stimulation of the rat prostate cavernous nerves
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Cilip, Christopher M.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2011-03-01
Optical nerve stimulation has recently been developed as an alternative to electrical nerve stimulation. However, recent studies have focused primarily on pulsed delivery of the laser radiation and at relatively low pulse rates. The objective of this study is to demonstrate faster optical stimulation of the prostate cavernous nerves using continuouswave (CW) infrared laser radiation, for potential diagnostic applications. A Thulium fiber laser (λ = 1870 nm) was used for non-contact optical stimulation of the rat prostate cavernous nerves, in vivo. Optical nerve stimulation, as measured by an intracavernous pressure (ICP) response in the penis, was achieved with the laser operating in either CW mode, or with a 5-ms pulse duration at 10, 20, 30, 40, 50, and 100 Hz. Successful optical stimulation was observed to be primarily dependent on a threshold nerve temperature (42-45 °C), not an incident fluence, as previously reported. CW optical nerve stimulation provides a significantly faster ICP response time using a laser with lower power output than pulsed stimulation. CW optical nerve stimulation may therefore represent an alternative mode of stimulation for intra-operative diagnostic applications where a rapid response is critical, such as identification of the cavernous nerves during prostate cancer surgery.
Continuous-wave infrared optical nerve stimulation for potential diagnostic applications
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Cilip, Christopher M.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2010-09-01
Optical nerve stimulation using infrared laser radiation has recently been developed as a potential alternative to electrical nerve stimulation. However, recent studies have focused primarily on pulsed delivery of the laser radiation and at relatively low pulse rates. The objective of this study is to demonstrate faster optical stimulation of the prostate cavernous nerves using continuous-wave (cw) infrared laser radiation for potential diagnostic applications. A thulium fiber laser (λ=1870 nm) is used for noncontact optical stimulation of the rat prostate cavernous nerves in vivo. Optical nerve stimulation, as measured by an intracavernous pressure (ICP) response in the penis, is achieved with the laser operating in either cw mode, or with a 5-ms pulse duration at 10, 20, 30, 40, 50, and 100 Hz. Successful optical stimulation is observed to be primarily dependent on a threshold nerve temperature (42 to 45 °C), rather than an incident fluence, as previously reported. cw optical nerve stimulation provides a significantly faster ICP response time using a lower power (and also less expensive) laser than pulsed stimulation. cw optical nerve stimulation may therefore represent an alternative mode of stimulation for intraoperative diagnostic applications where a rapid response is critical, such as identification of the cavernous nerves during prostate cancer surgery.
NASA Astrophysics Data System (ADS)
Perkins, William C.; Lagoda, Gwen A.; Burnett, Arthur; Fried, Nathaniel M.
2015-07-01
Identification and preservation of the cavernous nerves (CNs) during prostate cancer surgery is critical for post-operative sexual function. Electrical nerve stimulation (ENS) mapping has previously been tested as an intraoperative tool for CN identification, but was found to be unreliable. ENS is limited by the need for electrode-tissue contact, poor spatial precision from electrical current spreading, and stimulation artifacts interfering with detection. Alternatively, optical nerve stimulation (ONS) provides noncontact stimulation, improved spatial selectivity, and elimination of stimulation artifacts. This study compares ENS to pulsed/CW ONS to explore the ONS mechanism. A total of eighty stimulations were performed in 5 rats, in vivo. ENS (4 V, 5 ms, 10 Hz) was compared to ONS using a pulsed diode laser nerve stimulator (1873 nm, 5 ms, 10 Hz) or CW diode laser nerve stimulator (1455 nm). Intracavernous pressure (ICP) response and nerve compound action potentials (nCAPs) were measured. All three stimulation modes (ENS, ONS-CW, ONS-P) produced comparable ICP magnitudes. However, ENS demonstrated more rapid ICP response times and well defined nCAPs compared to unmeasurable nCAPs for ONS. Further experiments measuring single action potentials during ENS and ONS are warranted to further understand differences in the ENS and ONS mechanisms.
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2011-03-01
Optical nerve stimulation (ONS) has recently been reported as a potential alternative to electrical nerve stimulation. Continuous-wave (CW) laser stimulation of the prostate cavernous nerves (CN) in a rat model, in vivo, has also been demonstrated in our previous studies. The objective of this study is to present a new all-single-mode-fiber configuration for ONS with the laser operating in CW mode for potential diagnostic applications. An infrared pigtailed single-mode diode laser (λ = 1455 nm) was used in this study for noncontact ONS. This new all-fiber approach introduces several advantages including: (1) a less expensive and more compact ONS system, (2) elimination of alignment of optical components, and (3) an improved spatial beam profile. Successful optical stimulation of the rat CN using this new design was observed after the CN reached a threshold temperature of ~ 41 °C with response times as short as 3 s. Upon further study, this configuration may be useful for identification and preservation of the cavernous nerves during prostate cancer surgery.
Temperature-controlled optical stimulation of the rat prostate cavernous nerves
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Hutchens, Thomas C.; McClain, Michael A.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2013-06-01
Optical nerve stimulation (ONS) may be useful as a diagnostic tool for intraoperative identification and preservation of the prostate cavernous nerves (CN), responsible for erectile function, during prostate cancer surgery. Successful ONS requires elevating the nerve temperature to within a narrow range (˜42 to 47°C) for nerve activation without thermal damage to the nerve. This preliminary study explores a prototype temperature-controlled optical nerve stimulation (TC-ONS) system for maintaining a constant (±1°C) nerve temperature during short-term ONS of the rat prostate CNs. A 150-mW, 1455-nm diode laser was operated in continuous-wave mode, with and without temperature control, during stimulation of the rat CNs for 15 to 30 s through a fiber optic probe with a 1-mm-diameter spot. A microcontroller opened and closed an in-line mechanical shutter in response to an infrared sensor, with a predetermined temperature set point. With TC-ONS, higher laser power settings were used to rapidly and safely elevate the CNs to a temperature necessary for a fast intracavernous pressure response, while also preventing excessive temperatures that would otherwise cause thermal damage to the nerve. With further development, TC-ONS may provide a rapid, stable, and safe method for intraoperative identification and preservation of the prostate CNs.
Zhou, Zhang-Yan; Fei-Li; Cheng, Shao-Ping; Huang, Hui; Peng, Bi-Wen; Wang, Jing; Liu, Chang-Mao; Xing, Cheng; Sun, Ya-Ling; Bsoul, Najeeb; Pan, Hui; Yi, Cun-Jian; Liu, Rong-Hua; Zhong, Guang-Jun
2015-01-01
Background The aim of this study was to determine if shRNA constructs targeting insulin-like growth factor binding protein-3 can rehabilitate decreased serum testosterone concentrations in streptozotocin-induced diabetic rats. Material/Methods After 12 weeks of intracavernous administration of IGFBP-3 shRNA, intracavernous pressure responses to electrical stimulation of cavernous nerves were evaluated. The expression of IGFBP-3 at mRNA and protein levels was detected by quantitative real-time PCR analysis and Western blot, respectively. The concentrations of serum testosterone and cavernous cyclic guanosine monophosphate were detected by enzyme-linked immunosorbent assay. Results After 12 weeks of intracavernous administration of IGFBP-3 shRNA, the cavernosal pressure was significantly increased in response to the cavernous nerves stimulation compared to the diabetic control group (p<0.01). Cavernous IGFBP-3 expression at both mRNA and protein levels was significantly inhibited. Both serum testosterone and cavernous cyclic guanosine monophosphate concentrations were significantly increased in the IGFBP-3 shRNA treatment group compared to the diabetic control group (p<0.01). Conclusions These results suggest that IGFBP-3 shRNA may rehabilitate erectile function via increases of concentrations of serum testosterone and cavernous cyclic guanosine monophosphate in streptozotocin-induced diabetic rats. PMID:25582342
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Stahl, Charlotte S. D.; Hutchens, Thomas C.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2013-03-01
Successful identification of the cavernous nerves (CN's) during radical prostatectomy requires detection of the CN's through a thin layer of overlying fascia. This study explores the 1490 nm infrared (IR) diode laser wavelength for rapid and deep subsurface CN stimulation in a rat model, in vivo. A 150-mW, 1490-nm diode laser providing an optical penetration depth of 520 μm was used to stimulate the CN's in 8 rats through a single mode fiber optic probe with 1-mm-diameter spot and 15 s irradiation time. Successful ONS was judged by an intracavernous pressure response (ICP) in the rat penis. Subsurface ONS at 1490 nm was also compared with previous studies using 1455 and 1550 nm IR diode laser wavelengths. ONS was observed through fascia layers up to 380 μm thick using an incident laser power of 50 mW. ICP response times as short as 4.6 +/- 0.2 s were recorded using higher laser powers bust still below the nerve damage threshold. The 1490-nm diode laser represents a compact, low cost, high power, and high quality infrared light source for use in ONS. This wavelength provides deeper optical penetration than 1455 nm and more rapid and efficient nerve stimulation than 1550 nm.
NASA Astrophysics Data System (ADS)
Perkins, William C.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2014-03-01
Optical nerve stimulation (ONS) has been commonly performed in the laboratory using high-power, pulsed, infrared (IR) lasers including Holmium:YAG, diode, and Thulium fiber lasers. However, the relatively high cost of these lasers in comparison with conventional electrical nerve stimulation (ENS) equipment may represent a significant barrier to widespread adoption of ONS. Optical stimulation of the prostate cavernous nerves (CN's) has recently been reported using lower cost, continuous-wave (CW), all-fiber-based diode lasers. This preliminary study describes further miniaturization and cost reduction of the ONS system in the form of a compact, lightweight, cordless, and inexpensive IR laser. A 140-mW, 1560-nm diode laser was integrated with a green aiming beam and delivery optics into a compact ONS system. Surface and subsurface ONS was performed in a total of 5 rats, in vivo, with measurement of an intracavernous pressure (ICP) response during CW laser irradiation for 30 s with a spot diameter of 0.7 mm. Short-term, CW ONS of the prostate CN's is feasible using a compact, inexpensive, batterypowered IR laser diode system. This ONS system may represent an alternative to ENS for laboratory studies, and with further development, a handheld option for ONS in the clinic to identify and preserve the CN's during prostate cancer surgery.
NASA Astrophysics Data System (ADS)
Stahl, Charlotte S. D.; Tozburun, Serhat; Hutchens, Thomas C.; Lagoda, Gwen A.; Burnett, Arthur L.; Keller, Matthew D.; Fried, Nathaniel M.
2013-03-01
Optical nerve stimulation (ONS) is being explored for identification and preservation of the cavernous nerves (CN), responsible for erectile function, during prostate cancer surgery. This study compares three pulsed infrared lasers to determine whether differences in spectral linewidth and/or temporal pulse profile influence successful ONS of CN. Infrared laser radiation from the Capella diode laser (1873 nm, 5 ms, 10 Hz), Thulium fiber laser (TFL) (1873 nm, 5 ms, 10 Hz), and solid-state Holmium:YAG laser (2120 nm, 200 μs, 5 Hz) were transmitted through 400-μm-corediameter optical fibers, producing a 1-mm-diameter-spot on the nerve surface. Successful ONS was judged by an intracavernous pressure (ICP) response in the penis (n =10 rats) during a total stimulation time of 30 s. The narrow linewidth TFL (Δλ 0.5 nm) and broad linewidth Capella laser (Δλ 12 nm) performed similarly, producing ICP responses with a threshold radiant exposure of 0.45 J/cm2, and ICP response times of 12-17 s, while the Holmium laser stimulated at 0.59 J/cm2, and ICP response times of about 14-28 s. All three lasers demonstrated successful ONS of CN. ICP response time was dependent on the rate of energy deposition into the CN, rather than linewidth or temporal pulse profile.
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Lagoda, Gwen A.; Mayeh, Mona; Burnett, Arthur L.; Farahi, Faramarz; Fried, Nathaniel M.
2010-02-01
The cavernous nerves (CN) course along the prostate surface and are responsible for erectile function. Improved identification and preservation of the CN's is critical to maintaining sexual potency after prostate cancer surgery. Noncontact optical nerve stimulation (ONS) of the CN's was recently demonstrated in a rat model, in vivo, as a potential alternative to electrical nerve stimulation (ENS) for identification of the CN's during prostate surgery. However, the therapeutic window for ONS is narrow, so optimal design of the fiber optic delivery system is critical for safe, reproducible stimulation. This study describes modeling, assembly, and testing of an ONS probe for delivering a small, collimated, flat-top laser beam for uniform CN stimulation. A direct comparison of the magnitude and response time of the intracavernosal pressure (ICP) for both Gaussian and flat-top spatial beam profiles was performed. Thulium fiber laser radiation (λ=1870 nm) was delivered through a 200-μm fiber, with distal fiber tip chemically etched to convert a Gaussian to flat-top beam profile. The laser beam was collimated to a 1-mm-diameter spot using an aspheric lens. Computer simulations of light propagation were used to optimize the probe design. The 10-Fr (3.4-mm-OD) laparoscopic probe provided a constant radiant exposure at the nerve surface. The probe was tested in four rats, in vivo. ONS of the CN's was performed with a 1-mm-diameter spot, 5- ms pulse duration, and pulse rate of 20 Hz for a duration of 15-30 s. The flat-top laser beam profile consistently produced a faster and higher ICP response at a lower radiant exposure than the Gaussian beam profile due, in part, to easier alignment of the more uniform beam with nerve. With further development, ONS may be used as a diagnostic tool for identification of the CN's during laparoscopic and robotic nerve-sparing prostate cancer surgery.
OCT image segmentation of the prostate nerves
NASA Astrophysics Data System (ADS)
Chitchian, Shahab; Weldon, Thomas P.; Fried, Nathaniel M.
2009-08-01
The cavernous nerves course along the surface of the prostate and are responsible for erectile function. Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery may improve nerve preservation and postoperative sexual potency. In this study, 2-D OCT images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. Three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The features were segmented using a nearestneighbor classifier. N-ary morphological post-processing was used to remove small voids. The cavernous nerves were differentiated from the prostate gland with a segmentation error rate of only 0.058 +/- 0.019.
NASA Astrophysics Data System (ADS)
Chitchian, Shahab; Weldon, Thomas P.; Fried, Nathaniel M.
2009-07-01
The cavernous nerves course along the surface of the prostate and are responsible for erectile function. Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery may improve nerve preservation and postoperative sexual potency. Two-dimensional (2-D) optical coherence tomography (OCT) images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. To detect these nerves, three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The Gabor feature was applied with different standard deviations in the x and y directions. In the Daubechies wavelet feature, an 8-tap Daubechies orthonormal wavelet was implemented, and the low-pass sub-band was chosen as the filtered image. Last, Laws feature extraction was applied to the images. The features were segmented using a nearest-neighbor classifier. N-ary morphological postprocessing was used to remove small voids. The cavernous nerves were differentiated from the prostate gland with a segmentation error rate of only 0.058+/-0.019. This algorithm may be useful for implementation in clinical endoscopic OCT systems currently being studied for potential intraoperative diagnostic use in laparoscopic and robotic nerve-sparing prostate cancer surgery.
Chitchian, Shahab; Weldon, Thomas P; Fried, Nathaniel M
2009-01-01
The cavernous nerves course along the surface of the prostate and are responsible for erectile function. Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery may improve nerve preservation and postoperative sexual potency. Two-dimensional (2-D) optical coherence tomography (OCT) images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. To detect these nerves, three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The Gabor feature was applied with different standard deviations in the x and y directions. In the Daubechies wavelet feature, an 8-tap Daubechies orthonormal wavelet was implemented, and the low-pass sub-band was chosen as the filtered image. Last, Laws feature extraction was applied to the images. The features were segmented using a nearest-neighbor classifier. N-ary morphological postprocessing was used to remove small voids. The cavernous nerves were differentiated from the prostate gland with a segmentation error rate of only 0.058+/-0.019. This algorithm may be useful for implementation in clinical endoscopic OCT systems currently being studied for potential intraoperative diagnostic use in laparoscopic and robotic nerve-sparing prostate cancer surgery.
Effects of hyperglycemia on rat cavernous nerve axons: a functional and ultrastructural study.
Zotova, Elena G; Schaumburg, Herbert H; Raine, Cedric S; Cannella, Barbara; Tar, Moses; Melman, Arnold; Arezzo, Joseph C
2008-10-01
The present study explored parallel changes in the physiology and structure of myelinated (Adelta) and unmyelinated (C) small diameter axons in the cavernous nerve of rats associated with streptozotocin-induced hyperglycemia. Damage to these axons is thought to play a key role in diabetic autonomic neuropathy and erectile dysfunction, but their pathophysiology has been poorly studied. Velocities in slow conducting fibers were measured by applying multiple unit procedures; histopathology was evaluated with both light and electron microscopy. To our knowledge, these are the initial studies of slow nerve conduction velocities in the distal segments of the cavernous nerve. We report that hyperglycemia is associated with a substantial reduction in the amplitude of the slow conducting response, as well as a slowing of velocities within this very slow range (< 2.5 m/s). Even with prolonged hyperglycemia (> 4 months), histopathological abnormalities were mild and limited to the distal segments of the cavernous nerve. Structural findings included dystrophic changes in nerve terminals, abnormal accumulations of glycogen granules in unmyelinated and preterminal axons, and necrosis of scattered smooth muscle fibers. The onset of slowing of velocity in the distal cavernous nerve occurred subsequent to slowing in somatic nerves in the same rats. The functional changes in the cavernous nerve anticipated and exceeded the axonal degeneration detected by morphology. The physiologic techniques outlined in these studies are feasible in most electrophysiologic laboratories and could substantially enhance our sensitivity to the onset and progression of small fiber diabetic neuropathy.
EFFECTS OF HYPERGLYCEMIA ON RAT CAVERNOUS NERVE AXONS: A FUNCTIONAL AND ULTRASTRUCTURAL STUDY
Zotova, Elena G.; Schaumburg, Herbert H.; Raine, Cedric S.; Cannella, Barbara; Tar, Moses; Melman, Arnold; Arezzo, Joseph C.
2008-01-01
The present study explored parallel changes in the physiology and structure of myelinated (Aδ) and unmyelinated (C) small diameter axons in the cavernous nerve of rats associated with streptozotocin-induced hyperglycemia. Damage to these axons is thought to play a key role in diabetic autonomic neuropathy and erectile dysfunction, but their pathophysiology has been poorly studied. Velocities in slow conducting fibers were measured by applying multiple unit procedures; histopathology was evaluated with both light and electron microscopy. To our knowledge, these are the initial studies of slow nerve conduction velocities in the distal segments of the cavernous nerve. We report that hyperglycemia is associated with a substantial reduction in the amplitude of the slow conducting response, as well as a slowing of velocities within this very slow range (<2.5 m/sec). Even with prolonged hyperglycemia (> 4 months), histopathological abnormalities were mild and limited to the distal segments of the cavernous nerve. Structural findings included dystrophic changes in nerve terminals, abnormal accumulations of glycogen granules in unmyelinated and preterminal axons, and necrosis of scattered smooth muscle fibers. The onset of slowing of velocity in the distal cavernous nerve occurred subsequent to slowing in somatic nerves in the same rats. The functional changes in the cavernous nerve anticipated and exceeded the axonal degeneration detected by morphology. The physiologic techniques outlined in these studies are feasible in most electrophysiologic laboratories and could substantially enhance our sensitivity to the onset and progression of small fiber diabetic neuropathy. PMID:18687329
EVOKED CAVERNOUS ACTIVITY: NEUROANATOMIC IMPLICATIONS
Yilmaz, Ugur; Vicars, Brenda; Yang, Claire C.
2013-01-01
We investigated the autonomic innervation of the penis by using evoked cavernous activity (ECA). We recruited 7 males with thoracic spinal cord injury (SCI) and sexual dysfunction and 6 males who were scheduled to have pelvic surgery (PS), specifically non-nerve-sparing radical cystoprostatectomy. In the PS subjects, ECA was performed both pre- and postoperatively. The left median nerve was electrically stimulated and ECA was recorded with two concentric electromyography needles placed into the right and left cavernous bodies. We simultaneously recorded hand and foot sympathetic skin responses (SSRs) as controls. In the SCI group, all but one subject had reproducible hand SSRs. None of these subjects had ECA or foot SSRs. All the PS subjects had reproducible ECA and SSRs, both preoperatively and postoperatively. There was no difference in the latency and amplitude measurements of ECA and SSRs in the postoperative compared to the preoperative period (p>0.05). In conclusion, ECA is absent in men with SCI above the sympathetic outflow to the genitalia. In men following radical pelvic surgery, ECA is preserved, indicating the preservation of sympathetic fibers. PMID:19609298
Ishida, Go; Oishi, Makoto; Jinguji, Shinya; Yoneoka, Yuichiro; Sato, Mitsuya; Fujii, Yukihiko
2011-10-01
To evaluate the anatomy of cranial nerves running in and around the cavernous sinus, we employed three-dimensional reversed fast imaging with steady-state precession (FISP) with diffusion weighted imaging (3D PSIF-DWI) on 3-T magnetic resonance (MR) system. After determining the proper parameters to obtain sufficient resolution of 3D PSIF-DWI, we collected imaging data of 20-side cavernous regions in 10 normal subjects. 3D PSIF-DWI provided high contrast between the cranial nerves and other soft tissues, fluid, and blood in all subjects. We also created volume-rendered images of 3D PSIF-DWI and anatomically evaluated the reliability of visualizing optic, oculomotor, trochlear, trigeminal, and abducens nerves on 3D PSIF-DWI. All 20 sets of cranial nerves were visualized and 12 trochlear nerves and 6 abducens nerves were partially identified. We also presented preliminary clinical experiences in two cases with pituitary adenomas. The anatomical relationship between the tumor and cranial nerves running in and around the cavernous sinus could be three-dimensionally comprehended by 3D PSIF-DWI and the volume-rendered images. In conclusion, 3D PSIF-DWI has great potential to provide high resolution "cranial nerve imaging", which visualizes the whole length of the cranial nerves including the parts in the blood flow as in the cavernous sinus region.
Speckle reduction during all-fiber common-path optical coherence tomography of the cavernous nerves
NASA Astrophysics Data System (ADS)
Chitchian, Shahab; Fiddy, Michael; Fried, Nathaniel M.
2009-02-01
Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery, which are responsible for erectile function, may improve nerve preservation and postoperative sexual potency. In this study, we use a rat prostate, ex vivo, to evaluate the feasibility of optical coherence tomography (OCT) as a diagnostic tool for real-time imaging and identification of the cavernous nerves. A novel OCT system based on an all single-mode fiber common-path interferometer-based scanning system is used for this purpose. A wavelet shrinkage denoising technique using Stein's unbiased risk estimator (SURE) algorithm to calculate a data-adaptive threshold is implemented for speckle noise reduction in the OCT image. The signal-to-noise ratio (SNR) was improved by 9 dB and the image quality metrics of the cavernous nerves also improved significantly.
Kadoya, Tatsuo; Uehara, Hirofumi; Yamamoto, Toshinori; Shiraishi, Munehiro; Kinoshita, Yuki; Joyashiki, Takeshi; Enokida, Kengo
2016-02-01
Previously, we reported a case of brainstem cavernous hemangioma showing false positive responses to electromyographic tracheal tube (EMG tube). We concluded that the cause was spontaneous respiration accompanied by vocal cord movement. We report a case of left vertebral artery aneurysm showing evoked potentials on bilateral electrodes by the left vagus nerve stimulation to EMG tube. An 82-year-old woman underwent clipping of a left unruptured vertebral artery-posterior inferior cerebellar artery aneurysm. General anesthesia was induced with remifentanil, propofol and suxamethonium, and was maintained with oxygen, air, remifentanil and propofol. We monitored somatosensory evoked potentials, motor evoked potentials, and electromyogram of the vocal cord. When the manipulation reached brainstem and the instrument touched the left vagus nerve, evoked potentials appeared on bilateral electrodes. EMG tube is equipped with two electrodes on both sides. We concluded that the left vagus nerve stimulation generated evoked potentials of the left laryngeal muscles, and they were simultaneously detected as potential difference between two electrodes on both sides. EMG tube is used to identify the vagus nerve. However, it is necessary to bear in mind that each vagus nerve stimulation inevitably generates evoked potentials on bilateral electrodes.
Tolerance of cranial nerves of the cavernous sinus to radiosurgery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tishler, R.B.; Loeffler, J.S.; Alexander, E. III
1993-09-20
Stereotactic radiosurgery is becoming a more accepted treatment option for benign, deep seated intracranial lesions. However, little is known about the effects of large single fractions of radiation on cranial nerves. This study was undertaken to assess the effect of radiosurgery on the cranial nerves of the cavernous sinus. The authors examined the tolerance of cranial nerves (II-VI) following radiosurgery for 62 patients (42/62 with meningiomas) treated for lesions within or near the cavernous sinus. Twenty-nine patients were treated with a modified 6 MV linear accelerator (Joint Center for Radiation Therapy) and 33 were treated with the Gamma Knife (Universitymore » of Pittsburgh). Three-dimensional treatment plans were retrospectively reviewed and maximum doses were calculated for the cavernous sinus and the optic nerve and chiasm. Median follow-up was 19 months (range 3-49). New cranial neuropathies developed in 12 patients from 3-41 months following radiosurgery. Four of these complications involved injury to the optic system and 8 (3/8 transient) were the result of injury to the sensory or motor nerves of the cavernous sinus. There was no clear relationship between the maximum dose to the cavernous sinus and the development of complications for cranial nerves III-VI over the dose range used (1000-4000 cGy). For the optic apparatus, there was a significantly increased incidence of complications with dose. Four of 17 patients (24%) receiving greater than 800 cGy to any part of the optic apparatus developed visual complications compared with 0/35 who received less than 800 cGy (p = 0.009). Radiosurgery using tumor-controlling doses of up to 4000 cGy appears to be a relatively safe technique in treating lesions within or near the sensory and motor nerves (III-VI) of the cavernous sinus. The dose to the optic apparatus should be limited to under 800 cGy. 21 refs., 4 tabs.« less
Manni, E; Bortolami, R; Pettorossi, V E; Lucchi, M L; Callegari, E
1978-01-01
The main aim of the present study was to localize with electrophysiological techniques the central projections and terminations of the aberrant trigeminal fibres contained in the oculomotor nerve of the lamb. After severing a trigeminal root, single-shock electrical stimulation of the trigeminal axons present in the central stump of the ipsilateral oculomotor nerve evoked field potentials in the area of, i) the subnucleus gelatinosus of the nucleus caudalis trigemini at the level of C1-C2; ii) the main sensory trigeminal nucleus; iii) the descending trigeminal nucleus and tract; iv) the adjacent reticular formation. Units whose discharge rate was influenced by such a stimulation were also found in the same territories. These regions actually exhibited degenerations after cutting an oculomotor nerve. We conclude, therefore, that the trigeminal fibres which leave the Vth nerve at the level of the cavernous sinus and enter the brain stem through the IIIrd nerve, end in the same structures which receive the terminations of the afferent fibres entering the brain stem through the sensory trigeminal root.
Matsui, Hotaka; Sopko, Nikolai A; Hannan, Johanna L; Reinhardt, Allison A; Kates, Max; Yoshida, Takahiro; Liu, Xiaopu; Castiglione, Fabio; Hedlund, Petter; Weyne, Emmanuel; Albersen, Maarten; Bivalacqua, Trinity J
2017-02-01
Neurogenic erectile dysfunction is a common sequela of radical prostatectomy. The etiology involves injury to the autonomic cavernous nerves, which arise from the major pelvic ganglion (MPG), and subsequent neuroinflammation, which leads to recruitment of macrophages to the injury site. Currently, two macrophage phenotypes are known: neurotoxic M1 macrophages and neuroprotective M2 macrophages. To examine whether bilateral cavernous nerve injury (BCNI) in a rat model of erectile dysfunction would increase recruitment of neurotoxic M1 macrophages to the MPG. Male Sprague-Dawley rats underwent BCNI and the MPG was harvested at various time points after injury. The corpora cavernosa was used to evaluate tissue myographic responses to electrical field stimulation ex vivo. Quantitative real-time polymerase chain reaction was used to examine the gene expression of global macrophage markers, M1 macrophage markers, M2 macrophage markers, and cytokines and chemokines in the MPG. Mathematical calculation of the M1/M2 index was used to quantify macrophage changes temporally. Western blot of MPG tissues was used to evaluate the protein amount of M1 and M2 macrophage markers quantitatively. Immunohistochemistry staining of MPGs for CD68, CD86, and CD206 was used to characterize M1 and M2 macrophage infiltration. Corpora cavernosa responsiveness ex vivo; gene (quantitative real-time polymerase chain reaction) and protein (western blot) expressions of M1 and M2 markers, cytokines, and chemokines; and immunohistochemical localization of M1 and M2 macrophages. BCNI impaired the corporal parasympathetic-mediated relaxation response to electrical field stimulation and enhanced the contraction response to electrical field stimulation. Gene expression of proinflammatory (Il1b, Il16, Tnfa, Tgfb, Ccl2, Ccr2) and anti-inflammatory (Il10) cytokines was upregulated in the MPG 48 hours after injury. M1 markers (CD86, inducible nitric oxide synthase, interleukin-1β) and M2 markers (CD206, arginase-1, interleukin-10) were increased after BCNI in the MPG, with the M1/M2 index above 1.0 indicating that more M1 than M2 macrophages were recruited to the MPG. Protein expression of the M1 macrophage marker (inducible nitric oxide synthase) was increased in MPGs after BCNI. However, the protein amount of M2 macrophage markers (arginase-1) remained unchanged. Immunohistochemical characterization demonstrated predominant increases in M1 (CD68 + CD86 + ) macrophages in the MPG after BCNI. These results suggest that an increase in M1 macrophage infiltration of the MPG after BCNI is associated with impaired neurogenically mediated erectile tissue physiology ex vivo and thus has significant implications for cavernous nerve axonal repair. Future studies are needed to demonstrate that inhibition of M1 macrophage recruitment prevents erectile dysfunction after CNI. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Girard, Beatrice M; Merriam, Laura A; Tompkins, John D; Vizzard, Margaret A; Parsons, Rodney L
2013-11-15
Quantitative real-time PCR was used to test whether cavernous nerve injury leads to a decrease in major pelvic ganglia (MPG) neuronal nicotinic ACh receptor (nAChR) subunit and postsynaptic density (PSD)-93 transcript levels. Subunits α3, β4, and α7, commonly expressed in the MPG, were selected for analysis. After 72 h in explant culture, MPG transcript levels for α3, β4, α7, and PSD-93 were significantly depressed. Three days after cavernous nerve axotomy or crush in vivo, transcript levels for α3, β4, and PSD-93, but not for α7, were significantly depressed. Three days after dissection of the cavernous nerve free of underlying tissue and application of a 5-mm lateral stretch (manipulation), transcript levels for α3 and PSD-93 were also significantly decreased. Seven days after all three surgical procedures, α3 transcript levels remained depressed, but PSD-93 transcript levels were still decreased only after axotomy or nerve crush. At 30 days postsurgery, transcript levels for the nAChR subunits and PSD-93 had recovered. ACh-induced currents were significantly smaller in MPG neurons dissociated from 3-day explant cultured ganglia than from those recorded in neurons dissociated from acutely isolated ganglia; this observation provides direct evidence showing that a decrease in nAChR function was coincident with a decrease in nAChR subunit transcript levels. We conclude that a downregulation of nAChR subunit and PSD-93 expression after cavernous nerve injury, or even manipulation, could interrupt synaptic transmission within the MPG and thus contribute to the loss of neural control of urogenital organs after pelvic surgeries.
Chitchian, Shahab; Fiddy, Michael; Fried, Nathaniel M
2008-01-01
Preservation of the cavernous nerves during prostate cancer surgery is critical in preserving sexual function after surgery. Optical coherence tomography (OCT) of the prostate nerves has recently been studied for potential use in nerve-sparing prostate surgery. In this study, the discrete wavelet transform and complex dual-tree wavelet transform are implemented for wavelet shrinkage denoising in OCT images of the rat prostate. Applying the complex dual-tree wavelet transform provides improved results for speckle noise reduction in the OCT prostate image. Image quality metrics of the cavernous nerves and signal-to-noise ratio (SNR) were improved significantly using this complex wavelet denoising technique.
The effect of cavernous nerve traction on erectile function in rats
Chen, Liping; Wang, Tao; Wang, Shaogang; Liu, Jihong
2017-01-01
We performed this study to evaluate the effect of cavernous nerve (CN) traction on erectile function in rats. Thirty-two 8- week-old Sprague–Dawley rats were divided into four groups: control, 1-minute CN traction, 2-minute CN traction, and 2-minute CN crush. CN traction was performed using a glass hook with a tensile force of 0.2 Newton. One month later, the mean arterial pressure (MAP) and intracavernosal pressure (ICP) in response to CN stimulation were measured to assess erectile function. The penis and major pelvic ganglion (MPG) were harvested to explore the expression of neuronal nitric oxide synthase (nNOS) and neurofilament, fibrosis and apoptosis. The ICP/MAP ratio was reduced in the 2-minute CN traction group compared with the control group (P < 0.05). The ICP/MAP ratio in the CN crush group was lower than in the other three groups (P < 0.05, for each). Expression of nNOS in both MPG and dorsal penile nerve was lower in the CN traction group than in the control group, but was higher than in the CN crush group (P < 0.05). Nerve fiber number in the dorsal penile nerve was reduced by 2-minute CN traction (P < 0.05). The ratios of collagen to smooth muscle content and the apoptosis were both increased the in 2-minute CN traction group compared with the control group (P < 0.05). The findings indicate that CN traction is an effective CN injury model and the injury it caused is relatively mild compared with the CN crush model. PMID:28982169
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2012-02-01
Successful identification and preservation of the cavernous nerves (CN), which are responsible for sexual function, during prostate cancer surgery, will require subsurface detection of the CN beneath a thin fascia layer. This study explores optical nerve stimulation (ONS) in the rat with a fascia layer placed over the CN. Two near-IR diode lasers (1455 nm and 1550 nm lasers) were used to stimulate the CN in CW mode with a 1-mm-diameter spot in 8 rats. The 1455 nm wavelength provides an optical penetration depth (OPD) of ~350 μm, while 1550 nm provides an OPD of ~1000 μm (~3 times deeper than 1455 nm and 1870 nm wavelengths previously tested). Fascia layers with thicknesses of 85 - 600 μm were placed over the CN. Successful ONS was confirmed by an intracavernous pressure (ICP) response in the rat penis at 1455 nm through fascia 110 μm thick and at 1550 nm through fascia 450 μm thick. Higher incident laser power was necessary and weaker and slower ICP responses were observed as fascia thickness was increased. Subsurface ONS of the rat CN at a depth of 450 μm using a 1550 nm laser is feasible.
Robert, Thomas; Valsecchi, Daniele; Sylvestre, Philippe; Blanc, Raphaël; Ciccio, Gabriele; Smajda, Stanislas; Redjem, Hocine; Piotin, Michel
2018-05-03
Sixth nerve palsy is a common complication of endovascular treatment for carotid-cavernous fistulas (CCF). Two hypotheses are evoked: the spontaneous venous congestion into the cavernous sinus and the direct compression of the nerve by the embolic agent into the cavernous sinus. Nevertheless, the evidence is still uncertain. Knowing the vicinity of the sixth nerve with the inferior petrosal sinus (IPS) in the Dorello canal, we hypothesized that the recanalization of the IPS increased the risk of nerve damage. We analyzed a prospective database of patients treated for CCFs from March 2009 to April 2016. We excluded patients who did not need treatment, cases of high-flow CCF, and patients lost to follow-up, obtaining a homogeneous population of 82 patients with indirect CCFs. This population was divided in 2 groups: patients without new-onset/worsening of sixth nerve palsy and patients with this postprocedural complication. Our main endpoints were the potential differences between patients with or without recanalization of IPS and between those who underwent or not an embolization with Onyx-18. We did not find any statistically meaningful difference between the 2 groups concerning the necessity of IPS recanalization (P > 0.999, odds ratio 0.97, 95% confidence interval 0.32-2.96) or with the use of Onyx-18 as an embolic agent (P = 0.56; odds ratio 1.41, 95% confidence interval 0.41-2.45). The recanalization of a thrombosed IPS does not increase the risk of procedural sixth nerve damage. The initial injury seems to relate with development/worsening of a sixth nerve palsy. Copyright © 2018 Elsevier Inc. All rights reserved.
Chen, Yen-Lin; Chao, Ting-Ting; Wu, Yi-No; Chen, Meng-Chuan; Lin, Ying-Hung; Liao, Chun-Hou; Wu, Chien-Chih; Chen, Kuo-Chiang; Chou, Shang-Shing P; Chiang, Han-Sun
2018-01-17
The changes in neuronal nitric oxide synthases (nNOS) in the dorsal penile nerves (DPNs) are consistent with cavernous nerve (CN) injury in rat models. However, the anatomical relationship and morphological changes between the minor branches of the DPNs and the CNs after injury have never been clearly explored. There were forty 12 week old male Sprague-Dawley rats receiving bilateral cavernous nerve injury (BCNI). Erectile function of intracavernous pressure and mean arterial pressure were measured. The histology and ultrastructure with H&E stain, Masson's trichrome stain and immunohistochemical stains were applied on the examination of CNs and DPNs. We demonstrated communicating nerve branches between the DPNs and the CNs in rats. The greatest damage and lowest erectile function were seen in the 14 th day and partially recovered in the 28 th day after BCNI. The nNOS positive DPN minor branches' number was significantly correlated with erectile function. The sub-analysis of the number of nNOS positive DPN minor branches also matched with the time course of the erectile function after BCNI. We suggest the regeneration of the DPNs minor branches would ameliorate the erectile function in BCNI rats.
Cavernous sinus syndrome in a Holstein bull.
Jacob, Sarah I; Drees, Randi; Pinkerton, Marie E; Bentley, Ellison M; Peek, Simon F
2015-03-01
A 13-month-old Holstein bull was presented for right-sided exophthalmos. Ophthalmologic examination noted that the animal was visual in both eyes, but that the right pupil was persistently dilated and very sluggish to constrict when stimulated with a bright light and that normal ocular motility was absent. Fundic examination of the right eye was normal as was a complete ophthalmologic examination of the left eye. Radiographs at presentation did not reveal the presence of sinusitis or other skull abnormalities. Initial treatment comprised intravenous antibiotics and anti-inflammatories for orbital inflammation over a 14-day period. There was no perceptible change in the appearance or neuro-ophthalmologic examination of the right eye during hospitalization. The animal was discharged to the owner's care, but 3 weeks later was found recumbent with unilateral strabismus of the left eye and a fixed right pupil. Due to the inability to rise and rapid deterioration, humane euthanasia was performed, and a full postmortem examination, preceded by a MRI, was performed that identified abscesses extending bilaterally through the round foramina obliterating the cavernous sinus region, as well as abscessation of the right mandible, right trigeminal neuritis, right-sided sinusitis, and right-sided otitis media. Cavernous sinus syndrome should be considered in cattle with a combination of exophthalmos and neuro-ophthalmologic abnormalities involving cranial nerves III, IV, V, and VI, whose branches are located within the cavernous sinus. © 2013 American College of Veterinary Ophthalmologists.
AlMasri, Omar A; Brown, Emma E; Forster, Alan; Kamel, Mahmoud H
2014-11-01
The aim in this paper was to localize and detect incipient damage to the ophthalmic and maxillary branches of the trigeminal nerve during tumor surgery. This was an observational study of patients with skull base, retroorbital, or cavernous sinus tumors warranting dissection toward the cavernous sinus at a university hospital. Stimuli were applied as normal during approach to the cavernous sinus to localize cranial nerves (CNs) III, IV, and VI. Recordings were also obtained from the facial muscles to localize CN VII. The trigeminofacial reflex was sought simply by observing a longer time base routinely. Clear facial electromyography responses were reproduced when stimuli were applied to the region of V1, V2, and V3. Response latency was increased compared with direct CN VII stimuli seen in some cases. Responses gave early warning of approach to these sensory trigeminal branches. The authors submit this as a new technique, which may improve the chances of preserving trigeminal sensory branches during surgery in this region.
Haney, Nora M; Nguyen, Hoang M T; Honda, Matthew; Abdel-Mageed, Asim B; Hellstrom, Wayne J G
2018-04-01
It is common for men to develop erectile dysfunction after radical prostatectomy. The anatomy of the rat allows the cavernous nerve (CN) to be identified, dissected, and injured in a controlled fashion. Therefore, bilateral CN injury (BCNI) in the rat model is routinely used to study post-prostatectomy erectile dysfunction. To compare and contrast the available literature on pharmacologic intervention after BCNI in the rat. A literature search was performed on PubMed for cavernous nerve and injury and erectile dysfunction and rat. Only articles with BCNI and pharmacologic intervention that could be grouped into categories of immune modulation, growth factor therapy, receptor kinase inhibition, phosphodiesterase type 5 inhibition, and anti-inflammatory and antifibrotic interventions were included. To assess outcomes of pharmaceutical intervention on erectile function recovery after BCNI in the rat model. The ratio of maximum intracavernous pressure to mean arterial pressure was the main outcome measure chosen for this analysis. All interventions improved erectile function recovery after BCNI based on the ratio of maximum intracavernous pressure to mean arterial pressure results. Additional end-point analysis examined the corpus cavernosa and/or the major pelvic ganglion and CN. There was extreme heterogeneity within the literature, making accurate comparisons between crush injury and therapeutic interventions difficult. BCNI in the rat is the accepted animal model used to study nerve-sparing post-prostatectomy erectile dysfunction. However, an important limitation is extreme variability. Efforts should be made to decrease this variability and increase the translational utility toward clinical trials in humans. Haney NM, Nguyen HMT, Honda M, et al. Bilateral Cavernous Nerve Crush Injury in the Rat Model: A Comparative Review of Pharmacologic Interventions. Sex Med Rev 2018;6:234-241. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Lin, Guiting; Qiu, Xuefeng; Fandel, Thomas M; Albersen, Maarten; Wang, Zhong; Lue, Tom F; Lin, Ching-Shwun
2011-10-01
To investigate whether fluorochrome-conjugated phalloidin can delineate cavernous smooth muscle (CSM) cells and whether it can be combined with immunofluorescence (IF) staining to quantify erectile dysfunction (ED)-associated changes. ED was induced by cavernous nerve crush in rats. Penile tissues of control and ED rats were stained with Alexa-488-conjugated phalloidin and/or with antibodies against rat endothelial cell antigen (RECA), CD31, neuronal nitric oxide synthase (nNOS), and collagen-IV (Col-IV). Phalloidin was able to delineate CSM as composed of a circular and a longitudinal compartment. When combined with IF stain for CD31 or RECA, it helped the identification of the helicine arteries as covered by endothelial cells on both sides of the smooth muscle layer. When combined with IF stain for nNOS, it helped the identification that nNOS-positive nerves were primarily localized within the dorsal nerves and in the adventitia of dorsal arteries. When combined with IF stain for Col-IV, it helped identify that Col-IV was localized around smooth muscles and beneath the endothelium. Phalloidin also facilitated the quantitative analysis of ED-related changes in the penis. In rats with cavernous nerve injury, RECA or Col-IV expression did not change significantly, but CSM and nNOS nerve contents decreased significantly. Phalloidin stain improved penile histology, enabling the visualization of the circular and longitudinal compartments in the CSM. It also worked synergistically with IF stain, permitting the visualization of the dual endothelial covering in helicine arteries, and facilitating the quantification of ED-related histologic changes. Copyright © 2011 Elsevier Inc. All rights reserved.
Lee, Samuel; Abd-Elsayed, Alaa
2016-12-01
Neuromodulation, including cavernous nerve stimulation, gastric electrical stimulation, deep brain stimulation, and vagus nerve stimulation, has been used with success in treating several functional disease conditions. The FDA has approved the use of neuromodulation for a few indications. We discuss in our review article the evidence of using neuromodulation for treating some important disorders involving the autonomic nervous system that are not currently FDA approved. This was a review article that included a systematic online web search for human clinical studies testing the efficacy of neuromodulation in treating erectile dysfunction, gastroparesis, gastroesophageal reflux disease, obesity, asthma, and heart failure. Our review includes all feasibility studies, nonrandomized clinical trials, and randomized controlled trials. Our systematic literature search found 3, 4, 5, 4, 1, and 4 clinical studies relating to erectile dysfunction, gastroparesis, gastroesophageal reflux disease, obesity, asthma, and heart failure, respectively. This review article shows preliminary support based on clinical studies that neuromodulation can be of benefit for patients with important autonomic nervous system disease conditions that are not currently approved by the FDA. All of these investigational uses are encouraging; further studies are necessary and warranted for all indications discussed in this review before achieving FDA approval. © 2016 International Neuromodulation Society.
Graillon, T; Fuentes, S; Metellus, P; Adetchessi, T; Gras, R; Dufour, H
2014-01-01
Advances in transsphenoidal surgery and endoscopic techniques have opened new perspectives for cavernous sinus (CS) approaches. The aim of this study was to assess the advantages and disadvantages of limited endoscopic transsphenoidal approach, as performed in pituitary adenoma surgery, for CS tumor biopsy illustrated with three clinical cases. The first case was a 46-year-old woman with a prior medical history of parotid adenocarcinoma successfully treated 10 years previously. The cavernous sinus tumor was revealed by right third and sixth nerve palsy and increased over the past three years. A tumor biopsy using a limited endoscopic transsphenoidal approach revealed an adenocarcinoma metastasis. Complementary radiosurgery was performed. The second case was a 36-year-old woman who consulted for diplopia with right sixth nerve palsy and amenorrhea with hyperprolactinemia. Dopamine agonist treatment was used to restore the patient's menstrual cycle. Cerebral magnetic resonance imaging (MRI) revealed a right sided CS tumor. CS biopsy, via a limited endoscopic transsphenoidal approach, confirmed a meningothelial grade 1 meningioma. Complementary radiosurgery was performed. The third case was a 63-year-old woman with progressive installation of left third nerve palsy and visual acuity loss, revealing a left cavernous sinus tumor invading the optic canal. Surgical biopsy was performed using an enlarged endoscopic transsphenoidal approach to the decompress optic nerve. Biopsy results revealed a meningothelial grade 1 meningioma. Complementary radiotherapy was performed. In these three cases, no complications were observed. Mean hospitalization duration was 4 days. Reported anatomical studies and clinical series have shown the feasibility of reaching the cavernous sinus using an endoscopic endonasal approach. Trans-foramen ovale CS percutaneous biopsy is an interesting procedure but only provides cell analysis results, and not tissue analysis. However, radiotherapy and radiosurgery have proven effective for SC meningiomas. When histological diagnosis is required, limited endoscopic transsphenoidal approach appears as a safe, fast, and useful alternative to the classical endocranial approach. Also, a tailored enlargement of the approach could be performed if optic nerve decompression is required. The feasibility of CS endoscopic transsphenoidal biopsy has prompted us to consider CS biopsy when the diagnosis of CS meningioma is uncertain. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Selective nitrergic neurodegeneration in diabetes mellitus–a nitric oxide-dependent phenomenon
Cellek, Selim; Rodrigo, José; Lobos, Edgar; Fernández, Patricia; Serrano, Julia; Moncada, Salvador
1999-01-01
In vitro and in vivo studies have demonstrated a dysfunctional nitrergic system in diabetes mellitus, thus explaining the origin of diabetic impotence. However, the mechanism of this nitrergic defect is not understood.In the penises of streptozotocin (STZ)-induced diabetic rats, here, we show by immunohistochemistry that nitrergic nerves undergo selective degeneration since the noradrenergic nerves which have an anti-erectile function in the penis remained intact.Nitrergic relaxation responses in vitro and erectile responses to cavernous nerve stimulation in vivo were attenuated in these animals, whereas noradrenergic responses were enhanced.Activity and protein amount of neuronal nitric oxide synthase (nNOS) were also reduced in the penile tissue of diabetic rats.We, thus, hypothesized that NO in the nitrergic nerves may be involved in the nitrergic nerve damage, since only the nerves which contain neuronal NO synthase underwent degeneration.We administered an inhibitor of NO synthase, NG-nitro-L-arginine methyl ester (L-NAME), in the drinking water of rats for up to 12 weeks following the establishment of diabetes with STZ.Here we demonstrate that this compound protected the nitrergic nerves from morphological and functional impairment. Our results show that selective nitrergic degeneration in diabetes is NO-dependent and suggest that inhibition of NO synthase is neuroprotective in this condition. PMID:10588937
Gaussian versus flat-top spatial beam profiles for optical stimulation of the prostate nerves
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2010-02-01
The cavernous nerves (CN) course along the prostate surface and are responsible for erectile function. Improved identification and preservation of the CN's is critical to maintaining sexual potency after prostate cancer surgery. Noncontact optical nerve stimulation (ONS) of the CN's was recently demonstrated in a rat model, in vivo, as a potential alternative to electrical nerve stimulation (ENS) for identification of the CN's during prostate surgery. However, the therapeutic window for ONS is narrow, so optimal design of the fiber optic delivery system is critical for safe, reproducible stimulation. This study describes modeling, assembly, and testing of an ONS probe for delivering a small, collimated, flat-top laser beam for uniform CN stimulation. A direct comparison of the magnitude and response time of the intracavernosal pressure (ICP) for both Gaussian and flat-top spatial beam profiles was performed. Thulium fiber laser radiation (λ=1870 nm) was delivered through a 200-μm fiber, with distal fiber tip chemically etched to convert a Gaussian to flat-top beam profile. The laser beam was collimated to a 1-mm-diameter spot using an aspheric lens. Computer simulations of light propagation were used to optimize the probe design. The 10-Fr (3.4-mm-OD) laparoscopic probe provided a constant radiant exposure at the CN surface. The probe was tested in four rats, in vivo. ONS of the CN's was performed with a 1-mm-diameter spot, 5-ms pulse duration, and pulse rate of 20 Hz for a duration of 15-30 s. The flat-top laser beam profile consistently produced a faster and higher ICP response at a lower radiant exposure than the Gaussian beam profile due, in part, to easier alignment of the more uniform beam with nerve. The threshold for ONS was approximately 0.14 J/cm2, corresponding to a temperature increase of 6-8°C at the CN surface after a stimulation time of 15 s. With further development, ONS may be used as a diagnostic tool for identification of CN's during prostate cancer surgery.
The effect of methamphetamine on an animal model of erectile function
Tar, Moses T.; Martinez, Luis R.; Nosanchuk, Joshua D.; Davies, Kelvin P.
2014-01-01
In the U.S. methamphetamine is considered a first-line treatment for attention-deficit hyperactivity disorder. It is also a common drug of abuse. Reports in patients and abusers suggest its use results in impotence. The efficacy of phosphodiesterase-5 inhibitors (PDE5i) to restore erectile function in these patient groups also has not been determined. In these studies we determined if the rat is a suitable animal model for the physiological effects of methamphetamine on erectile function, and if a PDE5i (tadalafil) has an effect on erectile function following methamphetamine treatment. In acute phase studies, erectile function was measured in male Sprague-Dawley rats, before and after administration of 10 mg/kg methamphetamine i.p. Chronically treated animals received escalating doses of methamphetamine (2.5 mg/kg (1st week), 5 mg/kg (2nd week), and 10 mg/kg (3rd week)) i.p. daily for three weeks and erectile function compared to untreated controls. The effect of co-administration of tadalafil was also investigated in rats acutely and chronically treated with methamphetamine. Erectile function was determined by measuring the intracorporal pressure/blood pressure ratio (ICP/BP) following cavernous nerve stimulation. In both acute and chronic phase studies we observed a significant increase in the rates of spontaneous erections after methamphetamine administration. In addition, following stimulation of the cavernous nerve at 4 and 6mA, there was a significant decrease in the ICP/BP ratio (approximately 50%), indicative of impaired erectile function. Tadalafil treatment reversed this effect. In chronically treated animals the ICP/BP ratio following 4 and 6mA stimulation decreased by approximately 50% compared to untreated animals and erectile dysfunction was also reversed by tadalafil. Overall our data suggests that the rat is a suitable animal model to study the physiological effect of methamphetamine on erectile function. Our work also provides a rationale for treating patients that report erectile dysfunction associated with therapeutics containing methamphetamine or amphetamine with PDE5i. PMID:24706617
Jin, Hai-Rong; Kim, Woo Jean; Song, Jae Sook; Piao, Shuguang; Choi, Min Ji; Tumurbaatar, Munkhbayar; Shin, Sun Hwa; Yin, Guo Nan; Koh, Gou Young; Ryu, Ji-Kan; Suh, Jun-Kyu
2011-01-01
OBJECTIVE Patients with diabetic erectile dysfunction often have severe endothelial dysfunction and respond poorly to oral phosphodiesterase-5 inhibitors. We examined the effectiveness of the potent angiopoietin-1 (Ang1) variant, cartilage oligomeric matrix protein (COMP)-Ang1, in promoting cavernous endothelial regeneration and restoring erectile function in diabetic animals. RESEARCH DESIGN AND METHODS Four groups of mice were used: controls; streptozotocin (STZ)-induced diabetic mice; STZ-induced diabetic mice treated with repeated intracavernous injections of PBS; and STZ-induced diabetic mice treated with COMP-Ang1 protein (days −3 and 0). Two and 4 weeks after treatment, we measured erectile function by electrical stimulation of the cavernous nerve. The penis was harvested for histologic examinations, Western blot analysis, and cGMP quantification. We also performed a vascular permeability test. RESULTS Local delivery of the COMP-Ang1 protein significantly increased cavernous endothelial proliferation, endothelial nitric oxide (NO) synthase (NOS) phosphorylation, and cGMP expression compared with that in the untreated or PBS-treated STZ-induced diabetic group. The changes in the group that received COMP-Ang1 restored erectile function up to 4 weeks after treatment. Endothelial protective effects, such as marked decreases in the expression of p47phox and inducible NOS, in the generation of superoxide anion and nitrotyrosine, and in the number of apoptotic cells in the corpus cavernosum tissue, were noted in COMP-Ang1–treated STZ-induced diabetic mice. An intracavernous injection of COMP-Ang1 completely restored endothelial cell-cell junction proteins and decreased cavernous endothelial permeability. COMP-Ang1–induced promotion of cavernous angiogenesis and erectile function was abolished by the NOS inhibitor, N-nitro-L-arginine methyl ester, but not by the NADPH oxidase inhibitor, apocynin. CONCLUSIONS These findings support the concept of cavernous endothelial regeneration by use of the recombinant Ang1 protein as a curative therapy for diabetic erectile dysfunction. PMID:21270241
Motion sickness is linked to nystagmus-related trigeminal brain stem input: a new hypothesis.
Gupta, Vinod Kumar
2005-01-01
Motion sickness is a common and distressing but poorly understood syndrome associated with nausea/vomiting and autonomic nervous system accompaniments that develops in the air or space as well as on sea or land. A bidirectional aetiologic link prevails between migraine and motion-sickness. Motion sickness provokes jerk nystagmus induced by both optokinetic and vestibular stimulation. Fixation of gaze or closure of eyes generally prevents motion sickness while vestibular otolithic function is eliminated in microgravity of space, indicating a predominant pathogenetic role for visuo-sensory input. Scopolamine, dimenhydrinate, and promethazine reduce motion-related nystagmus. Contraction of extraocular muscles generates proprioceptive neural traffic and can provoke an ocular hypertensive response. It is proposed that repetitive contractions of the extraocular muscles during motion-related jerk nystagmus rapidly augment brain stem afferent input by increasing proprioceptive neural traffic through connections of the oculomotor nerves with the ophthalmic nerve in the lateral wall of the cavernous sinus as well as by raising the intraocular pressure thereby stimulating anterior segment ocular trigeminal nerve fibers. This verifiable hypothesis defines the pathophysiological basis of individual susceptibility to motion sickness, elucidates the preventive mechanism of gaze fixation or ocular closure, advances the aetiologic link between MS and migraine, rationalizes the mechanism of known preventive drugs, and explores new therapeutic possibilities.
Microsurgical anatomy of the abducens nerve.
Joo, Wonil; Yoshioka, Fumitaka; Funaki, Takeshi; Rhoton, Albert L
2012-11-01
The aim of this study is to demonstrate and review the detailed microsurgical anatomy of the abducens nerve and surrounding structures along its entire course and to provide its topographic measurements. Ten cadaveric heads were examined using ×3 to ×40 magnification after the arteries and veins were injected with colored silicone. Both sides of each cadaveric head were dissected using different skull base approaches to demonstrate the entire course of the abducens nerve from the pontomedullary sulcus to the lateral rectus muscle. The anatomy of the petroclival area and the cavernous sinus through which the abducens nerve passes are complex due to the high density of critically important neural and vascular structures. The abducens nerve has angulations and fixation points along its course that put the nerve at risk in many clinical situations. From a surgical viewpoint, the petrous tubercle of the petrous apex is an intraoperative landmark to avoid damage to the abducens nerve. The abducens nerve is quite different from the other nerves. No other cranial nerve has a long intradural path with angulations and fixations such as the abducens nerve in petroclival venous confluence. A precise knowledge of the relationship between the abducens nerve and surrounding structures has allowed neurosurgeon to approach the clivus, petroclival area, cavernous sinus, and superior orbital fissure without surgical complications. Copyright © 2012 Wiley Periodicals, Inc.
Spontaneous Recovery of Cavernous Nerve Crush Injury
Kim, Hyo Jong; Kim, Ha Young; Kim, Sung Young; Lee, Seong Ho; Lee, Won Ki
2011-01-01
Purpose To investigate pathophysiological consequences and spontaneous recovery after cavernous nerve crush injury (CNCI) in a rat model. Materials and Methods Twenty 4-week-old male Sprague-Dawley rats were divided into the following groups: sham-operated group (n=10) and bilateral CNCI groups (n=10) for two different durations (12 and 24 weeks). At both time points, CN electrical stimulation was used to assess erectile function by measuring the intracavernous pressure. The expression of hypoxia inducible factor (HIF)-1α and sonic hedgehog (SHH) was examined in penile tissue. Immunohistochemical staining was performed for nerve growth factor (NGF), endothelial nitric oxide synthase (eNOS), neuronal nitric oxide synthase (nNOS), and smooth muscle α-actin. Results CNCI significantly decreased erectile function at 12 weeks (51.7% vs. 71.9%, mean ICP/BP ratio, p<0.05) and increased the expression of HIF-1α and decreased the expression of eNOS, nNOS, and SHH. At 24 weeks, erectile function in the CNCI group was improved with no significant difference versus the sham group (70.5% vs. 63.3%, mean ICP/BP ratio, p<0.05) or the CN group at 12 weeks (51.7% vs. 63.3%, mean ICP/BP ratio, p<0.05). By RT-PCR, the increase in HIF-1α and decrease in SHH mRNA was restored at 24 weeks. By immunohistochemistry, the expression of eNOS and nNOS was increased at 24 weeks. Conclusions CN injury induces significantly impaired erectile function and altered gene and protein expression, which suggests that local hypoxic and inflammatory processes may contribute to this change. Significant spontaneous recovery of erectile function was observed at 6 months after CN crush injury. PMID:21927704
Campbell, Jeffrey D.; Burnett, Arthur L.
2017-01-01
Erectile dysfunction (ED) is a significant cause of reduced quality of life in men and their partners. Cavernous nerve injury (CNI) during pelvic surgery results in ED in greater than 50% of patients, regardless of additional patient factors. ED related to CNI is difficult to treat and typically poorly responsive to first- and second-line therapeutic options. Recently, a significant amount of research has been devoted to exploring neuroprotective and neuroregenerative approaches to salvage erectile function in patients with CNI. In addition, therapeutic options such as neuregulins, immunophilin ligands, gene therapy, stem cell therapy and novel surgical strategies, have shown benefit in pre-clinical, and limited clinical studies. In the era of personalized medicine, these new therapeutic technologies will be the future of ED treatment and are described in this review. PMID:28820434
Transvenous embolization in spontaneous direct carotid-cavernous fistula in childhood
Mercado, Glenna B.; Irie, Keiko; Negoro, Makoto; Moriya, Shigeta; Tanaka, Teppei; Ohmura, Masahiro; Sadato, Akiyo; Hayakawa, Motuharu; Sano, Hirotoshi
2011-01-01
Carotid cavernous fistula (CCF) is an abnormal arteriovenous communication in the cavernous sinus. Direct CCF results from a tear in the intracavernous carotid artery. Typically, it has a high flow and usually presents with oculo-orbital venous congestive features such as exophthalmos, chemosis, and sometimes oculomotor or abducens cranial nerve palsy. Indirect CCF generally occurs spontaneously with subtle signs. We report a rare case of spontaneous direct CCF in childhood who did not have the usual history of craniofacial trauma or connective tissue disorder but presented with progressive chemosis and exophthalmos of the right eye. This report aims also to describe the safety and success of transvenous embolization with coils of the superior ophthalmic vein and cavernous sinus through the inferior petrosal sinus. PMID:22059104
Optical coherence tomography of the prostate nerves
NASA Astrophysics Data System (ADS)
Chitchian, Shahab
Preservation of the cavernous nerves during prostate cancer surgery is critical in preserving a man's ability to have spontaneous erections following surgery. These microscopic nerves course along the surface of the prostate within a few millimeters of the prostate capsule, and they vary in size and location from one patient to another, making preservation of the nerves difficult during dissection and removal of a cancerous prostate gland. These observations may explain in part the wide variability in reported sexual potency rates (9--86%) following prostate cancer surgery. Any technology capable of providing improved identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery would be of great assistance in improving sexual function after surgery, and result in direct patient benefit. Optical coherence tomography (OCT) is a noninvasive optical imaging technique capable of performing high-resolution cross-sectional in vivo and in situ imaging of microstructures in biological tissues. OCT imaging of the cavernous nerves in the rat and human prostate has recently been demonstrated. However, improvements in the OCT system and the quality of the images for identification of the cavernous nerves is necessary before clinical use. The following chapters describe complementary approaches to improving identification and imaging of the cavernous nerves during OCT of the prostate gland. After the introduction to OCT imaging of the prostate gland, the optimal wavelength for deep imaging of the prostate is studied in Chapter 2. An oblique-incidence single point measurement technique using a normal-detector scanning system was implemented to determine the absorption and reduced scattering coefficients, mua and m's , of fresh canine prostate tissue, ex vivo, from the diffuse reflectance profile of near-IR light as a function of source-detector distance. The effective attenuation coefficient, mueff, and the Optical Penetration Depth (OPD) were then calculated for near-IR wavelengths of 1064 nm, 1307 nm, and 1555 nm. Chapters 3 and 4 describe locally adaptive denoising algorithms applied to reduce speckle noise in OCT images of the prostate taken by experimental and clinical systems, respectively. The dual-tree complex wavelet transform (CDWT) is a relatively recent enhancement to the discrete wavelet transform (DWT), with important additional properties: It is nearly shift invariant and directionally selective in two and higher dimensions. The CDWT algorithm was implemented for denoising of OCT images. In Chapter 5, 2-D OCT images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. To detect these nerves, three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The Gabor feature was applied with different standard deviations in the x and y directions. In the Daubechies wavelet feature, an 8-tap Daubechies orthonormal wavelet was implemented, and the low pass sub-band was chosen as the filtered image. Finally, Laws feature extraction was applied to the images. The features were segmented using a nearest-neighbor classifier. Morphological post-processing was used to remove small voids. In Chapter 6, a new algorithm based on thresholding and first-order derivative class of differential edge detection was implemented to see deeper in the OCT images. One of the main limitations in OCT imaging of the prostate tissue is the inability to image deep into opaque tissues. Currently, OCT is limited to an image depth of approximately 1 min in opaque tissues. Theoretical comparisons of detection performance for Fourier domain (FD) and time domain (TD) OCT have been previously reported. In Chapter 7, we compare several image quality metrics including signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and equivalent number of looks (ENL) for TD-OCT and FD-OCT images taken of the rat prostate, in vivo. The results show that TD-OCT has inferior CNR, but superior SNR compared to FD-OCT, and that TD-OCT is better for deep imaging of opaque tissues. Finally, Chapter 8 summarizes the study and future directions for OCT imaging of the prostate gland are discussed.
2007-09-01
Certain factors such as a serum PSA>10ng/ml, biopsy tumor Gleason >7, clinical stage T2a or higher, and a high number and percentage of biopsy ...Solution supplemented with 6.5 mg/ml glucose. The epineurium, connective tissue, and blood vessels were removed using fine forceps and the nerve was
The Role of Palliative Radiosurgery When Cancer Invades the Cavernous Sinus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kano, Hideyuki; Niranjan, Ajay; Kondziolka, Douglas
2009-03-01
Purpose: Involvement of the cavernous sinus by direct invasion from skull base cancer or from metastatic spread of cancers is a challenging problem. We evaluated the role of stereotactic radiosurgery (SRS) in the treatment of patients who developed cavernous sinus metastases or direct invasion. Methods and Materials: We retrospectively reviewed the data from 37 patients who had cavernous sinus metastases or had cavernous sinus invasion from adjacent skull base cancers and who underwent SRS between 1992 and 2006 at University of Pittsburgh Medical Center. The median patient age was 57.8 years. Previous adjuvant management included fractionated radiotherapy in 8, chemotherapymore » in 16, and both radiotherapy and chemotherapy in 5. The primary sites of metastases or invasion were nasopharyngeal carcinoma (n = 7), parotid gland carcinoma (n = 7), and metastases from systemic cancer (n = 23). The median target volume was 6.3 cm{sup 3} (range, 0.3-33.6), and the median margin dose was 14 Gy (range, 12-20). Results: At a mean of 12.9 months (range, 0.8-63.9), 32 patients had died and 5 were living. The overall survival rate after SRS was 36.6% and 19.4% at 1 and 2 years, respectively. Progression-free survival was related to a greater marginal dose. After SRS, 12 (35.3%) of 34 patients with neurologic symptoms exhibited improvement. SRS early after diagnosis was significantly associated with improvement of cranial nerve dysfunction. Conclusion: SRS is a minimally invasive palliative option for patients whose cancer has invaded the cavernous sinus. The benefits for cranial nerve deficits are best when SRS is performed early.« less
Melamed, Itay; Tubbs, R Shane; Payner, Troy D; Cohen-Gadol, Aaron A
2009-08-01
Exposure of the cavernous sinus or anterior parahippocampus often involves a wide exposure of the temporal lobe and mobilization of the temporalis muscle associated with temporal lobe retraction. The authors present a cadaveric study to illustrate the feasibility, advantages and landmarks necessary to perform a trans-zygomatic middle fossa approach to lesions around the cavernous sinus and anterior parahippocampus. The authors performed bilateral trans-zygomatic middle fossae exposures to reach the cavernous sinus and parahippocampus in five cadavers (10 sides). We assessed the morbidity associated with this procedure and compared the indications, advantages, and disadvantages of this method versus more extensive skull base approaches. A vertical linear incision along the middle portion of the zygomatic arch was extended one finger breadth inferior to the inferior edge of the zygomatic arch. Careful dissection inferior to the arch allowed preservation of facial nerve branches. A zygomatic osteotomy was followed via a linear incision through the temporalis muscle and exposure of the middle cranial fossa floor. A craniotomy along the inferolateral temporal bone and middle fossa floor allowed extradural dissection along the middle fossa floor and exposure of the cavernous sinus including all three divisions of the trigeminal nerve. Intradural inspection demonstrated adequate exposure of the parahippocampus. Exposure of the latter required minimal or no retraction of the temporal lobe. The trans-zygomatic middle fossa approach is a simplified skull base exposure using a linear incision, which may avoid the invasivity of more extensive skull base approaches while providing an adequate corridor for resection of cavernous sinus and parahippocampus lesions. The advantages of this approach include its efficiency, ease, minimalism, preservation of the temporalis muscle, and minimal retraction of the temporal lobe.
Riemenschneider, Markus; Herdmann, Jörg
2010-01-01
Pure spinal epidural cavernous angiomas are extremely rare lesions, and their normal shape is that of a fusiform mass in the dorsal aspects of the spinal canal. We report a case of a lumbo-sacral epidural cavernous vascular malformation presenting with acute onset of right-sided S1 radiculopathy. Clinical aspects, imaging, intraoperative findings, and histology are demonstrated. The patient, a 27-year-old man presented with acute onset of pain, paraesthesia, and numbness within the right leg corresponding to the S1 segment. An acute lumbosacral disc herniation was suspected, but MRI revealed a cystic lesion with the shape of a balloon, a fluid level and a thickened contrast-enhancing wall. Intraoperatively, a purple-blue tumor with fibrous adhesions was located between the right S1 and S2 nerve roots. Macroscopically, no signs of epidural bleedings could be denoted. After coagulation of a reticular venous feeder network and dissection of the adhesions the rubber ball-like lesion was resected in total. Histology revealed a prominent venous vessel with a pathologically thickened, amuscular wall surrounded by smaller, hyalinized, venous vessels arranged in a back-to-back position typical for the diagnosis of a cavernous angioma. Lumina were partially occluded by thrombi. The surrounding fibrotic tissue showed signs of recurrent bleedings. There was no obvious mass hemorrhage into the surrounding tissue. In this unique case, the pathologic mechanism was not the usual rupture of the cavernous angioma with subsequent intraspinal hemorrhage, but acute mass effect by intralesional bleedings and thrombosis with subsequent increase of volume leading to nerve root compression. Thus, even without a sudden intraspinal hemorrhage a spinal cavernous malformation can cause acute symptoms identical to the clinical features of a soft disc herniation. PMID:20213297
Shkarubo, A N; Ogurtsova, A A; Moshchev, D A; Lubnin, A Yu; Andreev, D N; Koval', K V; Chernov, I V
2016-01-01
Intraoperative identification of the cranial nerves is a useful technique in removal of skull base tumors through the endoscopic endonasal approach. Searching through the scientific literature found one pilot study on the use of triggered electromyography (t-EMG) for identification of the VIth nerve in endonasal endoscopic surgery of skull base tumors (D. San-Juan, et al, 2014). The study objective was to prevent iatrogenic injuries to the cranial nerves without reducing the completeness of tumor tissue resection. In 2014, 5 patients were operated on using the endoscopic endonasal approach. Surgeries were performed for large skull base chordomas (2 cases) and trigeminal nerve neurinomas located in the cavernous sinus (3). Intraoperatively, identification of the cranial nerves was performed by triggered electromyography using a bipolar electrode (except 1 case of chordoma where a monopolar electrode was used). Evaluation of the functional activity of the cranial nerves was carried out both preoperatively and postoperatively. Tumor resection was total in 4 out of 5 cases and subtotal (chordoma) in 1 case. Intraoperatively, the IIIrd (2 patients), Vth (2), and VIth (4) cranial nerves were identified. No deterioration in the function of the intraoperatively identified nerves was observed in the postoperative period. In one case, no responses from the VIth nerve on the right (in the cavernous sinus region) were intraoperatively obtained, and deep paresis (up to plegia) of the nerve-innervated muscles developed in the postoperative period. The nerve function was not impaired before surgery. The t-EMG technique is promising and requires further research.
The effect of methamphetamine on an animal model of erectile function.
Tar, M T; Martinez, L R; Nosanchuk, J D; Davies, K P
2014-07-01
In the US methamphetamine is considered a first-line treatment for attention-deficit hyperactivity disorder. It is also a common drug of abuse. Reports in patients and abusers suggest its use results in impotence. The efficacy of phosphodiesterase-5 inhibitors (PDE5i) to restore erectile function in these patient groups also has not been determined. In these studies, we determined if the rat is a suitable animal model for the physiological effects of methamphetamine on erectile function, and if a PDE5i (tadalafil) has an effect on erectile function following methamphetamine treatment. In acute phase studies, erectile function was measured in male Sprague-Dawley rats, before and after administration of 10 mg/kg methamphetamine i.p. Chronically treated animals received escalating doses of methamphetamine [2.5 mg/kg (1st week), 5 mg/kg (2nd week), and 10 mg/kg (3rd week)] i.p. daily for 3 weeks and erectile function compared with untreated controls. The effect of co-administration of tadalafil was also investigated in rats acutely and chronically treated with methamphetamine. Erectile function was determined by measuring the intracorporal pressure/blood pressure ratio (ICP/BP) following cavernous nerve stimulation. In both acute and chronic phase studies, we observed a significant increase in the rates of spontaneous erections after methamphetamine administration. In addition, following stimulation of the cavernous nerve at 4 and 6 mA, there was a significant decrease in the ICP/BP ratio (approximately 50%), indicative of impaired erectile function. Tadalafil treatment reversed this effect. In chronically treated animals, the ICP/BP ratio following 4 and 6 mA stimulation decreased by approximately 50% compared with untreated animals and erectile dysfunction (ED) was also reversed by tadalafil. Overall, our data suggest that the rat is a suitable animal model to study the physiological effect of methamphetamine on erectile function. Our work also provides a rationale for treating patients that report ED associated with therapeutics-containing methamphetamine or amphetamine with PDE5i. © 2014 American Society of Andrology and European Academy of Andrology.
Transnitrosylation: A Factor in Nitric Oxide-Mediated Penile Erection
Goetz, Tabitha; La Favor, Justin D.; Burnett, Arthur L.
2016-01-01
Introduction Nitric oxide (NO) signaling can be mediated not only through classical cGMP, but also through S-nitrosylation. The impact of S-nitrosylation on erectile function and in NO regulation and oxidative stress in the penis, however, remains poorly understood. Aims To characterize the role of GSNOR, a major regulator of S-nitrosylation homeostasis, on erection physiology and on eNOS function and oxidative/nitrosative stress in the penis. Materials and Methods Adult GSNOR-deficient and WT mice were used. Erectile function was assessed in response to electrical stimulation of the cavernous nerve. Total NO in penile homogenates was measured by Griess reaction. Protein S-nitrosylation, endothelial NO synthase (eNOS) phosphorylation on Ser-1177 (positive regulatory site), eNOS uncoupling, and markers of oxidative stress (4-hydroxy-2-nonenal [4-HNE], malondialdehyde, and nitrotyrosine) in the penis were measured by Western blot. Main outcome measures Erectile function, eNOS function and oxidative stress in the penis of GSNOR-deficient mice. Results Erectile function was intact in GSNOR-deficient mice. Total S-nitrosylated proteins were increased (p<0.05) in the GSNOR−/− compared to WT mouse penis. While eNOS phosphorylation on Ser-1177 did not differ between the GSNOR−/− and WT mouse penis at baseline, electrical stimulation of the cavernous nerve increased (p<0.05) P-eNOS in the WT mouse penis, but failed to increase P-eNOS in the GSNOR−/− mouse penis. Total NO production was decreased (p<0.05), while eNOS uncoupling, 4-HNE, malondialdehyde, and nitrotyrosine were increased (p<0.05) in the GSNOR-deficient mouse penis compared to that of WT mice. Conclusion Transnitrosylation mechanisms play an important role in regulating NO bioactivity in the penis. Deficiency of GSNOR leads to eNOS dysfunction and increased oxidative damage, suggesting that homeostatic eNOS function in the penis is governed by transnitrosylation. PMID:27114194
Impact of systemically active neurohumoral factors on the erectile response of the rat.
MacKenzie, Lindsay D; Heaton, Jeremy P W; Adams, Michael A
2011-09-01
Mean arterial pressure (MAP) and specific regulation of penile blood flow are the primary determinants of an erection. While this concept is well recognized, the differential relationship between systemically acting vasoactive factors on arterial pressure and erectile responses is not well described. The aim of this study was to determine how the modification of systemic levels of neurohumoral factors impacts on the magnitude and efficiency of the erectile response. The main outcome measures for this study are changes in MAP and intracavernosal pressure (ICP) following electrostimulation of the cavernous nerve. Anesthetized adult, male Sprague-Dawley rats were catheterized for measuring MAP (carotid), ICP, and drug administration (vena cava). Erections were induced via cavernous nerve electrostimulation. Vasoactive drug infusions were used to produce changes in MAP levels including: hexamethonium, angiotensin II (ANGII)±hexamethonium, methoxamine±hexamethonium, losartan, MAHMA NONOate, and terbutaline. In general, ICP and MAP were linearly correlated regardless of treatment. Hexamethonium markedly dropped MAP and proportionately decreased the magnitude of the erectile response. ANGII or methoxamine given to hexamethonium-pretreated or untreated rats increased MAP similarly, but produced contrasting effects on erectile responses. ANGII-induced pressor responses were associated with increased erectile responses whereas all methoxamine treatments markedly decreased erectile responses. Depressor changes with losartan or terbutaline, but not MAHMA NONOate, also impacted negatively on the efficiency of the erectile responses at lower arterial pressures. In general, the magnitude of the erectile responses was found to be dependent upon the level of MAP, although the mechanism by which arterial pressure was changed impacted substantially on the characteristics of the relationship. The major finding was that circulation-wide α-adrenoceptor stimulation was extremely deleterious to erectile responses whereas global stimulation of ANG II receptors was actually proerectile. Overall, the results indicate that neurohumoral specificity in systemic hemodynamic control is also critical in establishing the optimal erectile environment in rats. © 2011 International Society for Sexual Medicine.
Nanoparticles as a Novel Delivery Vehicle for Therapeutics Targeting Erectile Dysfunction
Han, George; Tar, Moses; Kuppam, Dwaraka S. R.; Friedman, Adam; Melman, Arnold; Friedman, Joel; Davies, Kelvin P.
2010-01-01
Introduction Nanoparticles represent a potential novel mechanism for transdermal delivery of erectogenic agents directly to the penis. Aim To determine if nanoparticles encapsulating known erectogenic agents (tadalafil, sialorphin, and nitric oxide [NO]) can improve erectile function in a rat model of erectile dysfunction (ED) as a result of aging (the Sprague-Dawley retired breeder rat). Methods Nanoparticles encapsulating the erectogenic agents were applied as a gel to the glans and penile shaft of anesthetized Sprague-Dawley rats and the intracorporal pressure/blood pressure (ICP/BP) monitored for up to 2 hours with or without stimulation of the cavernous nerve. Control nanoparticles were made without encapsulating erectogenic agents and applied in a similar manner in separate experiments. Results Nanoparticles encapsulating NO caused spontaneous visible erections in the rat, with an average time of onset of 4.5 minutes, duration of 1.42 minutes, and ICP/BP of 0.67 ± 0.14. The sialorphin nanoparticles also caused visible spontaneous erections after an average of 4.5 minutes, with a duration of 8 minutes and ICP/BP ratio of 0.72 ± 0.13. The difference in the erectile response between groups of animals treated with NO or sialorphin nanoparticles was significantly different from the control group treated with empty nanoparticles (P < 0.05) Tadalafil nanoparticles showed a significant increase in the mean ICP/BP (0.737 ± 0.029) following stimulation of the cavernous nerve (4 mA) 1 hour after application of the nanoparticles with a visibly improved erectile response. Conclusions Nanoparticles encapsulating three different erectogenic agents resulted in increased erectile function when applied to the penis of a rat model of ED. Nanoparticles represent a potential novel route for topical delivery of erectogenic agents which could improve the safety profile for existing orally administered drugs by avoiding effects of absorption and first-pass metabolism, and would be less hazardous than injection. PMID:19765204
Nanoparticles as a novel delivery vehicle for therapeutics targeting erectile dysfunction.
Han, George; Tar, Moses; Kuppam, Dwaraka S R; Friedman, Adam; Melman, Arnold; Friedman, Joel; Davies, Kelvin P
2010-01-01
Nanoparticles represent a potential novel mechanism for transdermal delivery of erectogenic agents directly to the penis. To determine if nanoparticles encapsulating known erectogenic agents (tadalafil, sialorphin, and nitric oxide [NO]) can improve erectile function in a rat model of erectile dysfunction (ED) as a result of aging (the Sprague-Dawley retired breeder rat). Nanoparticles encapsulating the erectogenic agents were applied as a gel to the glans and penile shaft of anesthetized Sprague-Dawley rats and the intracorporal pressure/blood pressure (ICP/BP) monitored for up to 2 hours with or without stimulation of the cavernous nerve. Control nanoparticles were made without encapsulating erectogenic agents and applied in a similar manner in separate experiments. Nanoparticles encapsulating NO caused spontaneous visible erections in the rat, with an average time of onset of 4.5 minutes, duration of 1.42 minutes, and ICP/BP of 0.67 +/- 0.14. The sialorphin nanoparticles also caused visible spontaneous erections after an average of 4.5 minutes, with a duration of 8 minutes and ICP/BP ratio of 0.72 +/- 0.13. The difference in the erectile response between groups of animals treated with NO or sialorphin nanoparticles was significantly different from the control group treated with empty nanoparticles (P < 0.05) Tadalafil nanoparticles showed a significant increase in the mean ICP/BP (0.737 +/- 0.029) following stimulation of the cavernous nerve (4 mA) 1 hour after application of the nanoparticles with a visibly improved erectile response. Nanoparticles encapsulating three different erectogenic agents resulted in increased erectile function when applied to the penis of a rat model of ED. Nanoparticles represent a potential novel route for topical delivery of erectogenic agents which could improve the safety profile for existing orally administered drugs by avoiding effects of absorption and first-pass metabolism, and would be less hazardous than injection.
Li, Xiang; Lee, Yun Jung; Kim, Hye Yoom; Tan, Rui; Park, Min Cheol; Kang, Dae Gill; Lee, Ho Sub
2016-01-01
We have reported that ethanol extracts of the root from Scutellaria baicalensis Georgi (ESB) relax cavernous smooth muscles via the NO/cGMP system and Ca[Formula: see text]-sensitive K[Formula: see text] channels in the rabbit corpus cavernosum. In the present study, erectile function was assessed by intracavernous pressure (ICP) and mean arterial pressure (MAP) during electrical stimulation of the cavernous nerve. The ICP/MAP ratio was dose-dependently increased by the treatment of ESB in normal SD rats ([Formula: see text]). To investigate the beneficial effect of ESB on erectile dysfunction in a diabetic animal model, male SD rats were injected with streptozotocin (60[Formula: see text]mg/kg) and then 300[Formula: see text]mg/kg/day ESB was administered daily for eight weeks. In our in vivo study, administration of ESB in STZ rats significantly increased the ICP, ICP/MAP ratio, area under the curve (AUC), as well as the cavernous cGMP levels. Morphometric analyses showed that ESB administration increased both smooth muscle volume and the regular arrangement of collagen fibers compared to the STZ group. The protein expression levels of endothelial nitric oxide synthase (eNOS) and SM [Formula: see text]-actin from penile tissues were also significantly increased in the ESB-treated rats. Taken together, these results suggest that ESB ameliorates penile erectile dysfunction via the activation of the NO/cGMP pathways of the penile corpus cavernosum in a streptozotocin-induced diabetic rat model.
Carotid-cavernous fistula after functional endoscopic sinus surgery.
Karaman, Emin; Isildak, Huseyin; Haciyev, Yusuf; Kaytaz, Asim; Enver, Ozgun
2009-03-01
Carotid-cavernous fistulas (CCFs) are anomalous communications between the carotid arterial system and the venous cavernous sinus. They can arise because of spontaneous or trauma causes. Most caroticocavernous fistulas are of spontaneous origin and unknown etiology. Spontaneous CCF may also be associated with cavernous sinus pathology such as arteriosclerotic changes of the arterial wall, fibromuscular dysplasia, or Ehler-Danlos syndrome. Traumatic CCFs may occur after either blunt or penetrating head trauma. Their clinical presentation is related to their size and to the type of venous drainage, which can lead to a variety of symptoms, such as visual loss, proptosis, bruit, chemosis, cranial nerve impairment, intracranial hemorrhage (rare), and so on. Treatment by endovascular transarterial embolization with electrolytically detachable coils is a very effective method for CCF with good outcomes. Carotid-cavernous fistulas have been rarely reported after craniofacial surgery and are uncommon pathologies in otolaryngology practice. In this study, we report a 40-year-old woman with CCF secondary to blunt trauma of functional endoscopic sinus surgery.
Paiva, Wellingson Silva; Fonoff, Erich Talamoni; Marcolin, Marco Antonio; Bor-Seng-Shu, Edson; Figueiredo, Eberval Gadelha; Teixeira, Manoel Jacobsen
2013-01-01
Since the introduction of microscopic techniques, radical surgery for cavernous angiomas has become a recommended treatment option. However, the treatment of motor area cavernous angioma represents a great challenge for the surgical team. Here, we describe an approach guided by frameless neuronavigation and preoperative functional mapping with transcranial magnetic stimulation (TMS), for surgical planning. We used TMS to map the motor cortex and its relationship with the angioma. We achieved complete resection of the lesions in the surgeries, while avoiding areas of motor response identified during the preoperative mapping. We verified the complete control of seizures (Engel class 1A) in the patients with previous refractory epilepsy. Postsurgery, one patient was seizure-free without medication, and two patients required only one medication for seizure control. Thus, navigated TMS appears to be a useful tool, in preoperative planning for cavernous angiomas of the motor area. PMID:24353424
Hernández-Guerra, Angel María; Del Mar López-Murcia, María; Planells, Alicia; Corpa, Juan Manuel; Liste, Fernando
2007-07-01
An eight-year old Rottweiler dog was presented with signs of enophthalmia, ptosis, anisocoria and mydriasis of the right eye, which showed visual disturbance, reduced or absent reflexes, and ophthalmoplegia. Consensual pupillary light reflex was also absent in the left eye. These neurological deficits were compatible with cavernous sinus syndrome. Computed tomography images of the cavernous sinus and the optical fissure revealed a mildly calcified mass arising from the right presphenoid bone extending further caudally into the orbital foramina. This extension of the mass affected the normal function of several cranial nerves. The dog was euthanased within one year of the initial presentation following development of forebrain signs. A chondrosarcoma was diagnosed histologically after necropsy.
Removal of an orbital apex hemangioma using an endoscopic transethmoidal approach: technical note.
Karaki, Masayuki; Kobayashi, Ryuichi; Mori, Nozomu
2006-07-01
The posterior orbit contains a number of important and vulnerable structures, including the optic nerve, the ophthalmic artery and vein, and the ocular muscles and their motor nerves, which makes surgical access to the lesion in this region quite difficult. Transfrontal, transfrontal-ethmoidal, and transmaxillary procedures have the disadvantage of possible injuries to a number of nontumor structures, whereas an endoscopic transethmoidal approach is a minimally invasive surgery for the retrobulbar lesions. Retrobulbar cavernous hemangioma was successfully removed by a transethmoidal approach. Tumor removal was performed in a patient with an intraconal cavernous hemangioma of approximately 15 mm in diameter. By a transethmoidal approach, the medial-inferior part of the orbit, as well as the apex of the orbit, were clearly visualized after endonasal ethmoidectomy. After the removal of the medial orbital bone, the orbital periosteum was incised and elevated. By elevating the orbital fat, the tumor could be identified separately from the orbital contents. Cavernous hemangioma at the orbital apex was removed without complications. An endoscopic transethmoidal approach, which requires no skin incision, is a minimally invasive surgery for retrobulbar orbital tumor, leading to excellent cosmetic results with less bleeding.
Kwon, Mi-Hye; Tuvshintur, Buyankhuu; Kim, Woo Jean; Jin, Hai-Rong; Yin, Guo Nan; Song, Kang-Moon; Choi, Min Ji; Kwon, Ki-Dong; Batbold, Dulguun; Ryu, Ji-Kan; Suh, Jun-Kyu
2013-12-01
Much attention has recently been focused on therapeutic angiogenesis as a treatment for erectile dysfunction (ED). The apelin and apelin receptor (APJ) system is known to cause endothelium-dependent vasodilatation and to be involved in angiogenesis. To examine the differential expression of apelin and APJ in animal models of vasculogenic ED and to determine whether and how enhancement of apelin-APJ signaling restores erectile function in hypercholesterolemic mice. Acute cavernous ischemia was induced in C57BL/6J mice by bilateral occlusion of internal iliac arteries, and chronic vasculogenic ED was induced by feeding a high-cholesterol diet or by intraperitoneal injection of streptozotocin. Messenger RNA (mRNA) levels of apelin and APJ were determined in cavernous tissue of each vasculogenic ED model by semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR). We evaluated erectile function by electrical stimulation of the cavernous nerve in hypercholesterolemic mice 1, 3, 7, and 14 days after a single intracavernous injection of apelin protein (5 μg/20 μL). The penis was harvested for histologic examinations and Western blot analysis. The cavernous mRNA expression of apelin and APJ was up-regulated in acute ischemia model and down-regulated in chronic vasculogenic ED models. A significant restoration of erectile function was noted 1 day after injection of apelin protein into the penis of hypercholesterolemic mice; however, erectile function returned to baseline values thereafter. The beneficial effects of apelin on erectile function resulted mainly from an activation of endothelial nitric oxide synthase and increase in nitric oxide bioavailability through reduction in reactive oxygen species-mediated endothelial apoptosis rather than through direct endothelial cell proliferation. These findings suggest that apelin-APJ signaling is a potential therapeutic target in the treatment of vasculogenic ED. Further studies are needed to develop a potent agonist for APJ and to determine the role of repeated dosing of apelin on long-term recovery of erectile function. © 2013 International Society for Sexual Medicine.
Optical stimulation of the prostate nerves: A potential diagnostic technique
NASA Astrophysics Data System (ADS)
Tozburun, Serhat
There is wide variability in sexual potency rates (9--86%) after nerve-sparing prostate cancer surgery due to limited knowledge of the location of the cavernous nerves (CN's) on the prostate surface, which are responsible for erectile function. Thus, preservation of the CN's is critical in preserving a man's ability to have spontaneous erections following surgery. Nerve-mapping devices, utilizing conventional Electrical Nerve Stimulation (ENS) techniques, have been used as intra-operative diagnostic tools to assist in preservation of the CN. However, these technologies have proven inconsistent and unreliable in identifying the CN's due to the need for physical contact, the lack of spatial selectivity, and the presence of electrical artifacts in measurements. Optical Nerve Stimulation (ONS), using pulsed infrared laser radiation, is studied as an alternative to ENS. The objective of this study is sevenfold: (1) to develop a laparoscopic laser probe for ONS of the CN's in a rat model, in vivo; (2) to demonstrate faster ONS using continuous-wave infrared laser radiation; (3) to describe and characterize the mechanism of successful ONS using alternative laser wavelengths; (4) to test a compact, inexpensive all-single-mode fiber configuration for optical stimulation of the rat CN studies; (5) to implement fiber optic beam shaping methods for comparison of Gaussian and flat-top spatial beam profiles during ONS; (6) to demonstrate successful ONS of CN's through a thin layer of fascia placed over the nerve and prostate gland; and (7) to verify the experimentally determined therapeutic window for safe and reliable ONS without thermal damage to the CN's by comparison with a computational model for thermal damage. A 5.5-Watt Thulium fiber laser operated at 1870 nm and two pigtailed, single mode, near-IR diode lasers (150-mW, 1455-nm laser and 500-mW, 1550-nm laser) were used for non-contact stimulation of the rat CN's. Successful laser stimulation, as measured by an intracavernous pressure (ICP) response in the penis, was achieved with the laser operating in CW mode. CW optical nerve stimulation provides a significantly faster ICP response time using a lower laser power laser than conventional pulsed stimulation. An all-single-mode fiber design was successfully tested in a rat model. The CN reached a threshold temperature of ˜ 42 °C, with response times as short as 3 s, and ICP responses in the rat penis of up to 50 mmHg compared to a baseline of 5--10 mmHg. Chemical etching of the distal single-mode-fiber tip produced a concave shape and transformed the Gaussian to a flat-top spatial beam profile, resulting in simplified alignment of the laser beam with the nerve. This novel, all-single-mode-fiber laser nerve stimulation system introduces several advantages including: (1) a less expensive and more compact ONS configuration; (2) elimination of alignment and cleaning bulk optical components; and (3) improved spatial beam profile for simplified alignment. For the fascia layers over the CN's (240--600 microm), the 1550 nm laser with an optical penetration depth of ˜ 930 microm in water was substituted for the 1455 nm laser. Successful ONS was achieved, for the first time, in fascia layers up to 450 microm thick which is critical for future clinical translation of this method for intra-operative identification and preservation of CN's during prostate cancer surgery. In order to define the upper limit of the therapeutic window for ONS of CN in a rat model, in vivo, identification of the thermal damage threshold for the CN after laser irradiation was investigated by direct comparison of the visible thermal damage data with a theoretical thermal damage calculation utilizing a standard Arrhenius integral model.
Karpukhin, I V; Bogomol'nyĭ, V A
1997-01-01
105 patients with chronic nonspecific prostatitis were examined and treated with papaverin electrophoresis using sinusoidal modulated currents (SMC) and local vacuum magnetotherapy (LVMT). Papaverin SMC electrophoresis and LVMT stimulated cavernous circulation. The highest stimulation was achieved at successive use of LVMT and the electrophoresis. LVMT followed by the electrophoresis maintained good cavernous circulation for 5-6 hours after the procedure in the course of which several spontaneous erections were observed.
Valentine, Heather; Chen, Yi; Guo, Hongzhi; McCormick, Jocelyn; Wu, Yong; Sezen, Sena F.; Hoke, Ahmet; Burnett, Arthur L.; Steiner, Joseph P.
2009-01-01
Objectives We investigated the effects of the orally bioavailable non-immunosuppressive immunophilin ligand GPI 1046 (GPI) on erectile function and cavernous nerve (CN) histology following unilateral or bilateral crush injury (UCI, BCI, respectively) of the CNs. Methods Adult male Sprague-Dawley rats were administered GPI 15 mg/kg intraperitoneally (ip) or 30 mg/kg orally (po), FK506 1 mg/kg, ip, or vehicle controls for each route of administration just prior to UCI or BCI and daily up to 7 d following injury. At day 1 or 7 of treatment, erectile function induced by CN electrical stimulation was measured, and electron microscopic analysis of the injured CN was performed. Results Intraperitoneal administration of GPI to rats with injured CN protected erectile function, in a fashion similar to the prototypic immunophilin ligand FK506, compared with vehicle-treated animals (93% ± 9% vs. 70% ± 5% vs. 45% ± 1%, p < 0.01, respectively). Oral administration of GPI elicited the same level of significant protection from CN injury. GPI administered PO at 30 mg/kg/d, dosing either once daily or four times daily with 7.5 mg/kg, provided nearly complete protection of erectile function. In a more severe BCI model, PO administration of GPI maintained erectile function at 24 h after CN injury. Ultrastructural analysis of injured CNs indicated that GPI administered at the time of CN injury prevents degeneration of about 83% of the unmyelinated axons at 7 d after CN injury. Conclusions The orally administered immunophilin ligand GPI neuroprotects CNs and maintains erectile function in rats under various conditions of CN crush injury. PMID:17145129
Brainstem cavernous malformations: Natural history versus surgical management.
Walcott, Brian P; Choudhri, Omar; Lawton, Michael T
2016-10-01
While brainstem cavernous malformations were once considered inoperable, improvements in patient selection, surgical exposures, intraoperative MRI-guidance, MR tractography, and neurophysiologic monitoring have resulted in good outcomes in the majority of operated patients. In a consecutive series of 104 patients with brainstem cavernous malformations, only 14% of patients experienced cranial nerve or motor dysfunction that was worse at late follow-up, relative to their preoperative condition. Outcomes were predicted by several factors, including larger lesion size, lesions that crossed the midline, the presence of a developmental venous anomaly, older age, and greater time interval from lesion hemorrhage to surgery. The 14% of patients who experienced a persistent neurological deficit as a result of surgery, while substantial from any perspective, compares favorably with the risks of observation based on a recent meta-analysis. Curative resection is a safe and effective treatment for brainstem cavernous malformations that will prevent re-hemorrhage in symptomatic patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
HIDE, Takuichiro; YANO, Shigetoshi; KURATSU, Jun-ichi
2014-01-01
The complete resection of intracavernous sinus dermoid cysts is very difficult due to tumor tissue adherence to important anatomical structures such as the internal carotid artery (ICA), cavernous sinus, and cranial nerves. As residual dermoid cyst tissue sometimes induces symptoms and repeat surgery may be required after cyst recurrence, minimal invasiveness is an important consideration when selecting the surgical approach to the lesion. We addressed a recurrent intracavernous sinus dermoid cyst by the endoscopic endonasal transsphenoidal approach assisted by neuronavigation and indocyanine green (ICG) endoscopy to confirm the ICA and patency of the cavernous sinus. The ICG endoscope detected the fluorescence signal from the ICA and cavernous sinus; its intensity changed with the passage of time. The ICG endoscope was very useful for real-time imaging, and its high spatial resolution facilitated the detection of the ICA and the patent cavernous sinus. We found it to be of great value for successful endonasal transsphenoidal surgery. PMID:25446381
Clival osteomyelitis and hypoglossal nerve palsy--rare complications of Lemierre's syndrome.
He, Jingzhou; Lam, Jonathan Chun Leuk; Adlan, Tarig
2015-08-30
An increasingly reported entity, Lemierre's syndrome classically presents with a recent oropharyngeal infection, internal jugular vein thrombosis and the presence of anaerobic organisms such as Fusobacterium necrophorum. The authors report a normally fit and well 17-year-old boy who presented with severe sepsis following a 5-day history of a sore throat, myalgia and neck stiffness requiring intensive care admission. Blood cultures grew F. necrophorum and radiological investigations demonstrated left internal jugular vein, cavernous sinus and sigmoid sinus thrombus, left vertebral artery dissection and thrombus within the left internal carotid artery. Imaging also revealed two areas of acute ischaemia in the brain, consistent with septic emboli, skull base (clival) osteomyelitis and an extensive epidural abscess. The patient improved on meropenem and metronidazole and was warfarinised for his cavernous sinus thrombosis. He has an on-going left-sided hypoglossal (XIIth) nerve palsy. 2015 BMJ Publishing Group Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Xin; Liu Xiaoxia; Mei Guanghai
Purpose: Cavernous sinus hemangioma is a rare vascular tumor. The direct microsurgical approach usually results in massive hemorrhage. Although radiosurgery plays an important role in managing cavernous sinus hemangiomas as a treatment alternative to microsurgery, the potential for increased toxicity with single-session treatment of large tumors is a concern. The purpose of this study was to assess the efficacy of hypofractionated stereotactic radiotherapy in patients with large cavernous sinus hemangiomas. Methods: Fourteen patients with large (volume >20 cm{sup 3}) cavernous sinus hemangiomas were enrolled in a prospective Phase II study between December 2007 and December 2010. The hypofractionated stereotactic radiotherapymore » dose was 21 Gy delivered in 3 fractions. Results: After a mean follow-up of 15 months (range, 6-36 months), the magnetic resonance images showed a mean of 77% tumor volume reduction (range, 44-99%). Among the 6 patients with cranial nerve impairments before hypofractionated stereotactic radiotherapy, 1 achieved symptomatic complete resolution and 5 had improvement. No radiotherapy-related complications were observed during follow-up. Conclusion: Our current experience, though preliminary, substantiates the role of hypofractionated stereotactic radiotherapy for large cavernous sinus hemangiomas. Although a longer and more extensive follow-up is needed, hypofractionated stereotactic radiotherapy of 21 Gy delivered in 3 fractions is effective in reducing the tumor volume without causing any new deficits and can be considered as a treatment modality for large cavernous sinus hemangiomas.« less
Qian, Zeng-Hui; Feng, Xu; Li, Yang; Tang, Ke
2018-01-01
Studying the three-dimensional (3D) anatomy of the cavernous sinus is essential for treating lesions in this region with skull base surgeries. Cadaver dissection is a conventional method that has insurmountable flaws with regard to understanding spatial anatomy. The authors' research aimed to build an image model of the cavernous sinus region in a virtual reality system to precisely, individually and objectively elucidate the complete and local stereo-anatomy. Computed tomography and magnetic resonance imaging scans were performed on 5 adult cadaver heads. Latex mixed with contrast agent was injected into the arterial system and then into the venous system. Computed tomography scans were performed again following the 2 injections. Magnetic resonance imaging scans were performed again after the cranial nerves were exposed. Image data were input into a virtual reality system to establish a model of the cavernous sinus. Observation results of the image models were compared with those of the cadaver heads. Visualization of the cavernous sinus region models built using the virtual reality system was good for all the cadavers. High resolutions were achieved for the images of different tissues. The observed results were consistent with those of the cadaver head. The spatial architecture and modality of the cavernous sinus were clearly displayed in the 3D model by rotating the model and conveniently changing its transparency. A 3D virtual reality model of the cavernous sinus region is helpful for globally and objectively understanding anatomy. The observation procedure was accurate, convenient, noninvasive, and time and specimen saving.
Zheng, Tao; Zhang, Tian-Biao; Wang, Chao-Liang; Zhang, Wei-Xing; Jia, Dong-Hui; Yang, Fan; Sun, Yang-Yang; Ding, Xiao-Ju; Wang, Rui
2018-06-14
Icariside II (ICA II) is used in erectile dysfunction treatment. Adipose tissue-derived stem cells (ADSCs) are efficient at improving erectile function. This study aimed to explore the action mechanism of ADSCs in improving erectile function. ADSCs were isolated from the adipose tissues of rats. Cell proliferation was determined using the Cell Counting Kit-8 (CCK-8) assay. The expressions of mRNA and protein were determined separately through qRT-PCR and western blot. The endogenous expressions of related genes were regulated using recombinant plasmids and cell transfection. A Dual- Luciferase Reporter Assay was performed to determine the interaction between miR-34a and STAT3. Rat models with bilateral cavernous nerve injuries (BCNIs) were used to assess erectile function through the detection of mean arterial pressure (MAP) and intracavernosal pressure (ICP). ICA II promoted ADSCs' proliferation and differentiation to Schwann cells (SCs) through the inhibition of miR-34a. Suppressed miR-34a promoted the differentiation of ADSCs to SCs by upregulating STAT3. ICA II promoted the differentiation of ADSCs to SCs through the miR-34a/STAT3 pathway. The combination of ICA II and ADSCs preserved the erectile function of the BCNI model rats. ADSCs treated with ICA II markedly preserved the erectile function of the BCNI model rats, which was reversed through miR-34a overexpression. ICA II promotes the differentiation of ADSCs to SCs through the miR- 34a/STAT3 pathway, contributing to erectile function preservation after the occurrence of a cavernous nerve injury.
Mori, Kentaro; Yamamoto, Takuji; Oyama, Kazutaka; Ueno, Hideaki; Nakao, Yasuaki; Honma, Keiichirou
2008-12-01
Experience with dissection of the cavernous sinus and the temporal bone is essential for training in skull base surgery, but the opportunities for cadaver dissection are very limited. A modification of a commercially available prototype three-dimensional (3D) skull base model, made by a selective laser sintering method and incorporating surface details and inner bony structures such as the inner ear structures and air cells, is proposed to include artificial dura mater, cranial nerves, venous sinuses, and the internal carotid artery for such surgical training. The transpetrosal approach and epidural cavernous sinus surgery (Dolenc's technique) were performed on this modified model using a high speed drill or ultrasonic bone curette under an operating microscope. The model could be dissected in almost the same way as a real cadaver. The modified 3D skull base model provides a good educational tool for training in skull base surgery.
Choe, Shawn; Bond, Christopher W; Harrington, Daniel A; Stupp, Samuel I; McVary, Kevin T; Podlasek, Carol A
2017-01-01
Erectile dysfunction (ED) has high impact on quality of life in prostatectomy, diabetic and aging patients. An underlying mechanism is cavernous nerve (CN) injury, which causes ED in up to 80% of prostatectomy patients. We examine how sonic hedgehog (SHH) treatment with innovative peptide amphiphile nanofiber hydrogels (PA), promotes CN regeneration after injury. SHH and its receptors patched (PTCH1) and smoothened (SMO) are localized in PG neurons and glia. SMO undergoes anterograde transport to signal to downstream targets. With crush injury, PG neurons degenerate and undergo apoptosis. SHH protein decreases, SMO localization changes to the neuronal cell surface, and anterograde transport stops. With SHH treatment SHH is taken up at the injury site and undergoes retrograde transport to PG neurons, allowing SMO transport to occur, and neurons remain intact. SHH treatment prevents neuronal degeneration, maintains neuronal, glial and downstream target signaling, and is significant as a regenerative therapy. Published by Elsevier Inc.
Chibbaro, S; Cebula, H; Ganau, M; Gubian, A; Todeschi, J; Lhermitte, B; Proust, F; Noel, G
2018-06-01
Extra-axial cavernous hemangiomas (ECH) are rare vascular lesions with a tendency to grow within the medial structures of the middle cranial fossa. This pathological entity lacks specific symptoms, and falls into the category of differential diagnosis of space occupying lesions in the cavernous sinus (CS) with or without sellar involvement, including those of tumoral, vascular and inflammatory nature. Of note, ECH can also be indolent, and is at times discovered incidentally during autopsy investigations. On radiological studies, ECH with sellar extension are frequently mistaken at first for pituitary adenomas. Total removal of intrasellar-CS ECH is technically demanding and burdened by remarkable morbidity and mortality rates, mostly related to the complex neuroanatomy of the CS-sellar region (i.e., peri and postoperative bleeding, and transitory or permanent nerve palsies, hormonal deficits). Consequently, only a few cases of successful total removal have been reported so far in the literature. Surgical debulking with cranial nerve decompression followed by stereotactic radiosurgery is currently considered the best alternative to total removal when the latter carries excessive perioperative risks. We present a rare case of a mainly located intrasellar ECH extending to the left CS discussing its clinical features and focusing on the most relevant aspects of the surgical management along with a review of the pertinent literature. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cranial nerve injury after Le Fort I osteotomy.
Kim, J-W; Chin, B-R; Park, H-S; Lee, S-H; Kwon, T-G
2011-03-01
A Le Fort I osteotomy is widely used to correct dentofacial deformity because it is a safe and reliable surgical method. Although rare, various complications have been reported in relation to pterygomaxillary separation. Cranial nerve damage is one of the serious complications that can occur after Le Fort I osteotomy. In this report, a 19-year-old man with unilateral cleft lip and palate underwent surgery to correct maxillary hypoplasia, asymmetry and mandibular prognathism. After the Le Fort I maxillary osteotomy, the patient showed multiple cranial nerve damage; an impairment of outward movement of the eye (abducens nerve), decreased vision (optic nerve), and paraesthesia of the frontal and upper cheek area (ophthalmic and maxillary nerve). The damage to the cranial nerve was related to an unexpected sphenoid bone fracture and subsequent trauma in the cavernous sinus during the pterygomaxillary osteotomy. Copyright © 2010 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Massive Oculomotor Nerve Enlargement: A Case of Presumed Schwannomatosis.
Donaldson, Laura; Rebello, Ryan; Rodriguez, Amadeo
2017-06-01
A 45-year-old man presented with a slowly progressive pupil-involving third nerve palsy. Magnetic resonance imaging (MRI) revealed a tubular lesion extending from the interpeduncular cistern through the cavernous sinus and into the left orbit where it branched into a superior and an inferior division, clearly outlining the anatomy of the third cranial nerve. Multiple other, less pronounced, enlarged cranial nerves were noted. The differential diagnosis included chronic inflammatory demyelinating polyneuropathy (CIDP), hereditary motor and sensory neuropathy (HMSN), neurofibromatosis (NF), and schwannomatosis. The absence of other muscle weakness and of sensory symptoms combined with normal peripheral nerve conduction studies effectively ruled out the hypertrophic polyneuropathies and pointed to a syndromic cause of multiple benign peripheral nerve sheath tumours (PNSTs). The authors are treating this case as presumed schwannomatosis, a syndrome similar to NF2 with much lower frequency of acoustic neuromas.
Massive Oculomotor Nerve Enlargement: A Case of Presumed Schwannomatosis
Donaldson, Laura; Rebello, Ryan; Rodriguez, Amadeo
2017-01-01
ABSTRACT A 45-year-old man presented with a slowly progressive pupil-involving third nerve palsy. Magnetic resonance imaging (MRI) revealed a tubular lesion extending from the interpeduncular cistern through the cavernous sinus and into the left orbit where it branched into a superior and an inferior division, clearly outlining the anatomy of the third cranial nerve. Multiple other, less pronounced, enlarged cranial nerves were noted. The differential diagnosis included chronic inflammatory demyelinating polyneuropathy (CIDP), hereditary motor and sensory neuropathy (HMSN), neurofibromatosis (NF), and schwannomatosis. The absence of other muscle weakness and of sensory symptoms combined with normal peripheral nerve conduction studies effectively ruled out the hypertrophic polyneuropathies and pointed to a syndromic cause of multiple benign peripheral nerve sheath tumours (PNSTs). The authors are treating this case as presumed schwannomatosis, a syndrome similar to NF2 with much lower frequency of acoustic neuromas. PMID:28512503
Microsurgical anatomy of the trochlear nerve.
Joo, Wonil; Rhoton, Albert L
2015-10-01
The trochlear nerve is the cranial nerve with the longest intracranial course, but also the thinnest. It is the only nerve that arises from the dorsal surface of the brainstem and decussates in the superior medullary velum. After leaving the dorsal surface of the brainstem, it courses anterolaterally around the lateral surface of the brainstem and then passes anteriorly just beneath the free edge of the tentorium. It passes forward to enter the cavernous sinus, traverses the superior orbital fissure and terminates in the superior oblique muscle in the orbit. Because of its small diameter and its long course, the trochlear nerve can easily be injured during surgical procedures. Therefore, precise knowledge of its surgical anatomy and its neurovascular relationships is essential for approaching and removing complex lesions of the orbit and the middle and posterior fossae safely. This review describes the microsurgical anatomy of the trochlear nerve and is illustrated with pictures involving the nerve and its surrounding connective and neurovascular structures. © 2015 Wiley Periodicals, Inc.
A role for the melanocortin 4 receptor in sexual function.
Van der Ploeg, Lex H T; Martin, William J; Howard, Andrew D; Nargund, Ravi P; Austin, Christopher P; Guan, Xiaoming; Drisko, Jennifer; Cashen, Doreen; Sebhat, Iyassu; Patchett, Arthur A; Figueroa, David J; DiLella, Anthony G; Connolly, Brett M; Weinberg, David H; Tan, Carina P; Palyha, Oksana C; Pong, Sheng-Shung; MacNeil, Tanya; Rosenblum, Charles; Vongs, Aurawan; Tang, Rui; Yu, Hong; Sailer, Andreas W; Fong, Tung Ming; Huang, Cathy; Tota, Michael R; Chang, Ray S; Stearns, Ralph; Tamvakopoulos, Constantin; Christ, George; Drazen, Deborah L; Spar, Brian D; Nelson, Randy J; MacIntyre, D Euan
2002-08-20
By using a combination of genetic, pharmacological, and anatomical approaches, we show that the melanocortin 4 receptor (MC4R), implicated in the control of food intake and energy expenditure, also modulates erectile function and sexual behavior. Evidence supporting this notion is based on several findings: (i) a highly selective non-peptide MC4R agonist augments erectile activity initiated by electrical stimulation of the cavernous nerve in wild-type but not Mc4r-null mice; (ii) copulatory behavior is enhanced by administration of a selective MC4R agonist and is diminished in mice lacking Mc4r; (iii) reverse transcription (RT)-PCR and non-PCR based methods demonstrate MC4R expression in rat and human penis, and rat spinal cord, hypothalamus, brainstem, pelvic ganglion (major autonomic relay center to the penis), but not in rat primary corpus smooth muscle cavernosum cells; and (iv) in situ hybridization of glans tissue from the human and rat penis reveal MC4R expression in nerve fibers and mechanoreceptors in the glans of the penis. Collectively, these data implicate the MC4R in the modulation of penile erectile function and provide evidence that MC4R-mediated proerectile responses may be activated through neuronal circuitry in spinal cord erectile centers and somatosensory afferent nerve terminals of the penis. Our results provide a basis for the existence of MC4R-controlled neuronal pathways that control sexual function.
Bortolami, R; Lucchi, M L; Callegari, E; Barazzoni, A M; Costerbosa, G L; Scapolo, P A
1990-01-01
A well-developed ganglion and scattered ganglion cells are present in the intracranial portion of the oculomotor nerve during the first half of fetal life in the ox. In the second half of fetal life a dramatic reduction of the ganglion cells associated with the oculomotor nerve occurs because of spontaneous cell death. Concomitantly, the same phenomenon of cell death is found in the trigeminal ganglion, especially in its rostromedial portion. Free degenerating perikarya can be found in the cavernous sinus. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 PMID:2384329
External laryngeal nerve in thyroid surgery: is the nerve stimulator necessary?
Aina, E N; Hisham, A N
2001-09-01
To find out the incidence and type of external laryngeal nerves during operations on the thyroid, and to assess the role of a nerve stimulator in detecting them. Prospective, non-randomised study. Teaching hospital, Malaysia. 317 patients who had 447 dissections between early January 1998 and late November 1999. Number and type of nerves crossing the cricothyroid space, and the usefulness of the nerve stimulator in finding them. The nerve stimulator was used in 206/447 dissections (46%). 392 external laryngeal nerves were seen (88%), of which 196/206 (95%) were detected with the stimulator. However, without the stimulator 196 nerves were detected out of 241 dissections (81%). The stimulator detected 47 (23%) Type I nerves (nerve > 1 cm from the upper edge of superior pole); 86 (42%) Type IIa nerves (nerve < 1 cm from the upper edge of superior pole); and 63 (31%) Type IIb nerves (nerve below upper edge of superior pole). 10 nerves were not detected. When the stimulator was not used the corresponding figures were 32 (13%), 113 (47%), and 51 (21%), and 45 nerves were not seen. If the nerve cannot be found we recommend dissection of capsule close to the medial border of the upper pole of the thyroid to avoid injury to the nerve. Although the use of the nerve stimulator seems desirable, it confers no added advantage in finding the nerve. In the event of uncertainty about whether a structure is the nerve, the stimulator may help to confirm it. However, exposure of the cricothyroid space is most important for good exposure in searching for the external laryngeal nerve.
Pescatori, L; Niutta, M; Tropeano, M P; Santoro, G; Santoro, A
2017-01-01
Despite the recent progress in surgical technology in the last decades, the surgical treatment of skull base lesions still remains a challenge. The purpose of this study was to assess the anatomy of the tentorial and cavernous segment of the fourth cranial nerve as it appears in two different surgical approaches to the skull base: subtemporal transtentorial approach and pretemporal fronto-orbito-zygomatic approach. Four human cadaveric fixed heads were used for the dissection. Using both sides of each cadaveric head, we made 16 dissections: 8 with subtemporal transtentorial technique and 8 with pretemporal fronto-orbito-zygomatic approach. The first segment that extends from the initial point of contact of the fourth cranial nerve with the tentorium (point Q) to its point of entry into its dural channel (point D) presents an average length of 13.5 mm with an extremely wide range and varying between 3.20 and 9.3 mm. The segment 2, which extends from point D to the point of entry into the lateral wall of the cavernous sinus, presents a lesser interindividual variability (mean 10.4 mm, range 15.1-5.9 mm). A precise knowledge of the surgical anatomy of the fourth cranial nerve and its neurovascular relationships is essential to safely approach. The recognition of some anatomical landmarks allows to treat pathologies located in regions of difficult surgical access even when there is an important subversion of the anatomy.
Effect of chronic low-dose tadalafil on penile cavernous tissues in diabetic rats.
Mostafa, Mohamed E; Senbel, Amira M; Mostafa, Taymour
2013-06-01
To assess the effect of chronic low-dose administration of tadalafil (Td) on penile cavernous tissue in induced diabetic rats. The study investigaged 48 adult male albino rats, comprising a control group, sham controls, streptozotocin-induced diabetic rats, and induced diabetic rats that received Td low-dose daily (0.09 mg/200 g weight) for 2 months. The rats were euthanized 1 day after the last dose. Cavernous tissues were subjected to histologic, immunohistochemical, morphometric studies, and measurement of intracavernosal pressure and mean arterial pressure in anesthetized rats. Diabetic rats demonstrated dilated cavernous spaces, smooth muscles with heterochromatic nuclei, degenerated mitochondria, vacuolated cytoplasm, and negative smooth muscle immunoreactivity. Nerve fibers demonstrated a thick myelin sheath and intra-axonal edema, where blood capillaries exhibited thick basement membrane. Diabetic rats on Td showed improved cavernous organization with significant morphometric increases in the area percentage of smooth muscles and elastic tissue and a significant decrease of fibrous tissue. The Td-treated group showed enhanced erectile function (intracavernosal pressure/mean arterial pressure) at 0.3, 0.5, 1, 3, and 5 Hz compared with diabetic group values at the respective frequencies (P <.05) that approached control values. Chronic low-dose administration of Td in diabetic rats is associated with substantial improvement of the structure of penile cavernous tissue, with increased smooth muscles and elastic tissue, decreased fibrous tissue, and functional enhancement of the erectile function. This raises the idea that the change in penile architecture with Td treatment improves erectile function beyond its half-life and its direct pharmacologic action on phosphodiesterase type 5. Copyright © 2013 Elsevier Inc. All rights reserved.
Yadav, Rajiv; Mukherjee, Sushmita; Hermen, Michael; Tan, Gerald; Maxfield, Frederick R.; Webb, Watt W.
2009-01-01
Abstract Background and Purpose Various imaging modalities are under investigation for real-time tissue imaging of periprostatic nerves with the idea of improving the results of nerve-sparing radical prostatectomy. We explored multiphoton microscopy (MPM) for real-time tissue imaging of the prostate and periprostatic neural tissue in a male Sprague-Dawley rat model. The unique advantage of this technique is the acquisition of high-resolution images without necessitating any extrinsic labeling agent and with minimal phototoxic effect on tissue. Materials and Methods The prostate and cavernous nerves were surgically excised from male Sprague-Dawley rats. The imaging was carried out using intrinsic fluorescence and scattering properties of the tissues without any exogenous dye or contrast agent. A custom-built MPM, consisting of an Olympus BX61WI upright frame and a modified MRC 1024 scanhead, was used. A femtosecond pulsed titanium/sapphire laser at 780-nm wavelength was used to excite the tissue; laser power under the objective was modulated via a Pockels cell. Second harmonic generation (SHG) signals were collected at 390 (±35 nm), and broadband autofluorescence was collected at 380 to 530 nm. The images obtained from SHG and from tissue fluorescence were then merged and color coded during postprocessing for better appreciation of details. The corresponding tissues were subjected to hematoxylin and eosin staining for histologic confirmation of the structures. Results High-resolution images of the prostate capsule, underlying acini, and individual cells outlining the glands were obtained at varying magnifications. MPM images of adipose tissue and the neural tissues were also obtained. Histologic confirmation and correlation of the prostate gland, fat, cavernous nerve, and major pelvic ganglion validated the findings of MPM. Conclusion Real-time imaging and microscopic resolution of prostate and periprostatic neural tissue using MPM is feasible without the need for any extrinsic labeling agents. Integration of this imaging modality with operative technique has the potential to improve the precision of nerve-sparing prostatectomy. PMID:19425823
Gianduzzo, Troy; Colombo, Jose R; Haber, Georges-Pascal; Hafron, Jason; Magi-Galluzzi, Cristina; Aron, Monish; Gill, Inderbir S; Kaouk, Jihad H
2008-08-05
To examine the feasibility of using laser energy during nerve-sparing robotically assisted radical prostatectomy (RARP), as the energy sources currently used for haemostasis in RARP adversely affect cavernous nerve function, while clips require application by a skilled assistant, but laser energy potentially allows precise dissection with minimal collateral tissue injury. We used laser-based RARP in 10 dogs, using the da Vinci S system (Intuitive Surgical, Sunnyvale, CA, USA) and a prototype robotic laser instrument. The potassium-titanyl-phosphate laser was used for dissection at 2-6 W, with intermittent use of the neodymium-doped yttrium-aluminium-garnet laser at 5 W for coagulating larger vessels. The peak intracavernosal pressure response to nerve stimulation was recorded as a percentage of mean arterial pressure (ICP%MAP) before and after RARP. Five dogs were killed immediately after RARP and five were maintained alive for 72 h; the haemoglobin and haematocrit levels were measured before and after RARP in the latter five dogs. All 10 procedures were performed solely using laser energy and no additional haemostatic manoeuvres. The median prostate excision time was 65 min. The ICP%MAP before and after RARP (median 98.5% and 77.0%, P = 0.12) were not significantly different; similarly, the respective haemoglobin (median 14.4 vs 12.6 g/dL, P = 0.06) and haematocrit levels (45.1% vs 40.2%, P = 0.06) were not significantly different. Two dogs had catheter-related complications and one had an anastomotic leak. There were no laser-related complications or postoperative haemorrhage. Laser RARP is feasible in dogs and further assessment is warranted.
VAGUS NERVE STIMULATION REGULATES HEMOSTASIS IN SWINE
Czura, Christopher J.; Schultz, Arthur; Kaipel, Martin; Khadem, Anna; Huston, Jared M.; Pavlov, Valentin A.; Redl, Heinz; Tracey, Kevin J.
2010-01-01
The central nervous system regulates peripheral immune responses via the vagus nerve, the primary neural component of the cholinergic anti-inflammatory pathway. Electrical stimulation of the vagus nerve suppresses pro-inflammatory cytokine release in response to endotoxin, I/R injury, and hypovolemic shock and protects against lethal hypotension. To determine the effect of vagus nerve stimulation on coagulation pathways, anesthetized pigs were subjected to partial ear resection before and after electrical vagus nerve stimulation. We observed that electrical vagus nerve stimulation significantly decreased bleeding time (pre–electrical vagus nerve stimulation = 1033 ± 210 s versus post–electrical vagus nerve stimulation = 585 ± 111 s; P < 0.05) and total blood loss (pre–electrical vagus nerve stimulation = 48.4 ± 6.8 mL versus post–electrical vagus nerve stimulation = 26.3 ± 6.7 mL; P < 0.05). Reduced bleeding time after vagus nerve stimulation was independent of changes in heart rate or blood pressure and correlated with increased thrombin/antithrombin III complex generation in shed blood. These data indicate that electrical stimulation of the vagus nerve attenuates peripheral hemorrhage in a porcine model of soft tissue injury and that this protective effect is associated with increased coagulation factor activity. PMID:19953009
2011-03-01
epartment of Physics and Optical Science harlotte, North Carolina 28223 homas P. Weldon niversity of North Carolina at Charlotte epartment of...Lens Glass Ferrule Visible Diode Laser IR Diode Laser 90% 10% Fiber Coupler 10/90 (SMF-28) Butterfly Diode Laser Mount 1420 1430 147014501440
21 CFR 870.3850 - Carotid sinus nerve stimulator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carotid sinus nerve stimulator. 870.3850 Section... nerve stimulator. (a) Identification. A carotid sinus nerve stimulator is an implantable device used to decrease arterial pressure by stimulating Hering's nerve at the carotid sinus. (b) Classification. Class...
21 CFR 882.5870 - Implanted peripheral nerve stimulator for pain relief.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted peripheral nerve stimulator for pain....5870 Implanted peripheral nerve stimulator for pain relief. (a) Identification. An implanted peripheral nerve stimulator for pain relief is a device that is used to stimulate electrically a peripheral nerve...
Endovascular embolization of carotid-cavernous fistulas: A pioneering experience in Peru
Plasencia, Andres R.; Santillan, Alejandro
2012-01-01
Background: Endovascular embolization represents the method of choice for the treatment of carotid-cavernous fistulas (CCFs). Methods: We report our experience using the endovascular technique in 24 patients harboring 25 CCFs treated between October 1994 and April 2010, with an emphasis on the role of detachable balloons for the treatment of direct CCFs. Results: Of the 16 patients who presented with direct CCFs (Barrow Type A CCFs) (age range, 7–62 years; mean age, 34.3 years), 14 were caused by traumatic injury and 2 by a ruptured internal carotid artery (ICA) aneurysm. Eight patients (age range, 32–71 years; mean age, 46.5 years) presented with nine indirect CCFs (Barrow Types B, C, and D). The clinical follow-up after endovascular treatment ranged from 2 to 108 months (mean, 35.2 months). In two cases (8%), the endovascular approach failed. Symptomatic complications related to the procedure occurred in three patients (12.5%): transient cranial nerve palsy in two patients and a permanent neurological deficit in one patient. Detachable balloons were used in 13 out of 16 (81.3%) direct CCFs and were associated with a cure rate of 92.3%. Overall, the angiographic cure rate was obtained in 22 out of 25 (88%) fistulas. Patients presenting with III nerve palsy improved gradually between 1 day and 6 months after treatment. Good clinical outcomes [modified Rankin scale (mRS) ≤ 2] were observed in 22 out of 24 (91.6%) patients at last follow-up. Conclusions: Endovascular treatment using detachable balloons still constitutes a safe and effective method to treat direct carotid-cavernous fistulas. PMID:22363900
Right-sided vagus nerve stimulation inhibits induced spinal cord seizures.
Tubbs, R Shane; Salter, E George; Killingsworth, Cheryl; Rollins, Dennis L; Smith, William M; Ideker, Raymond E; Wellons, John C; Blount, Jeffrey P; Oakes, W Jerry
2007-01-01
We have previously shown that left-sided vagus nerve stimulation results in cessation of induced spinal cord seizures. To test our hypothesis that right-sided vagus nerve stimulation will also abort seizure activity, we have initiated seizures in the spinal cord and then performed right-sided vagus nerve stimulation in an animal model. Four pigs were anesthetized and placed in the lateral position and a small laminectomy performed in the lumbar region. Topical penicillin, a known epileptogenic drug to the cerebral cortex and spinal cord, was next applied to the dorsal surface of the exposed cord. With the exception of the control animal, once seizure activity was discernible via motor convulsion or increased electrical activity, the right vagus nerve previously isolated in the neck was stimulated. Following multiple stimulations of the vagus nerve and with seizure activity confirmed, the cord was transected in the midthoracic region and vagus nerve stimulation performed. Right-sided vagus nerve stimulation resulted in cessation of spinal cord seizure activity in all animals. Transection of the spinal cord superior to the site of seizure induction resulted in the ineffectiveness of vagus nerve stimulation in causing cessation of seizure activity in all study animals. As with left-sided vagus nerve stimulation, right-sided vagus nerve stimulation results in cessation of induced spinal cord seizures. Additionally, the effects of right-sided vagus nerve stimulation on induced spinal cord seizures involve descending spinal pathways. These data may aid in the development of alternative mechanisms for electrical stimulation for patients with medically intractable seizures and add to our knowledge regarding the mechanism for seizure cessation following peripheral nerve stimulation.
Direct Administration of Nerve-Specific Contrast to Improve Nerve Sparing Radical Prostatectomy
Barth, Connor W.; Gibbs, Summer L.
2017-01-01
Nerve damage remains a major morbidity following nerve sparing radical prostatectomy, significantly affecting quality of life post-surgery. Nerve-specific fluorescence guided surgery offers a potential solution by enhancing nerve visualization intraoperatively. However, the prostate is highly innervated and only the cavernous nerve structures require preservation to maintain continence and potency. Systemic administration of a nerve-specific fluorophore would lower nerve signal to background ratio (SBR) in vital nerve structures, making them difficult to distinguish from all nervous tissue in the pelvic region. A direct administration methodology to enable selective nerve highlighting for enhanced nerve SBR in a specific nerve structure has been developed herein. The direct administration methodology demonstrated equivalent nerve-specific contrast to systemic administration at optimal exposure times. However, the direct administration methodology provided a brighter fluorescent nerve signal, facilitating nerve-specific fluorescence imaging at video rate, which was not possible following systemic administration. Additionally, the direct administration methodology required a significantly lower fluorophore dose than systemic administration, that when scaled to a human dose falls within the microdosing range. Furthermore, a dual fluorophore tissue staining method was developed that alleviates fluorescence background signal from adipose tissue accumulation using a spectrally distinct adipose tissue specific fluorophore. These results validate the use of the direct administration methodology for specific nerve visualization with fluorescence image-guided surgery, which would improve vital nerve structure identification and visualization during nerve sparing radical prostatectomy. PMID:28255352
Direct Administration of Nerve-Specific Contrast to Improve Nerve Sparing Radical Prostatectomy.
Barth, Connor W; Gibbs, Summer L
2017-01-01
Nerve damage remains a major morbidity following nerve sparing radical prostatectomy, significantly affecting quality of life post-surgery. Nerve-specific fluorescence guided surgery offers a potential solution by enhancing nerve visualization intraoperatively. However, the prostate is highly innervated and only the cavernous nerve structures require preservation to maintain continence and potency. Systemic administration of a nerve-specific fluorophore would lower nerve signal to background ratio (SBR) in vital nerve structures, making them difficult to distinguish from all nervous tissue in the pelvic region. A direct administration methodology to enable selective nerve highlighting for enhanced nerve SBR in a specific nerve structure has been developed herein. The direct administration methodology demonstrated equivalent nerve-specific contrast to systemic administration at optimal exposure times. However, the direct administration methodology provided a brighter fluorescent nerve signal, facilitating nerve-specific fluorescence imaging at video rate, which was not possible following systemic administration. Additionally, the direct administration methodology required a significantly lower fluorophore dose than systemic administration, that when scaled to a human dose falls within the microdosing range. Furthermore, a dual fluorophore tissue staining method was developed that alleviates fluorescence background signal from adipose tissue accumulation using a spectrally distinct adipose tissue specific fluorophore. These results validate the use of the direct administration methodology for specific nerve visualization with fluorescence image-guided surgery, which would improve vital nerve structure identification and visualization during nerve sparing radical prostatectomy.
NASA Technical Reports Server (NTRS)
Tang, P. C.
1973-01-01
Evidence is presented to indicate that evoked potentials in the recurrent laryngeal, the cervical sympathetic, and the phrenic nerve, commonly reported as being elicited by vestibular nerve stimulation, may be due to stimulation of structures other than the vestibular nerve. Experiments carried out in decerebrated cats indicated that stimulation of the petrous bone and not that of the vestibular nerve is responsible for the genesis of evoked potentials in the recurrent laryngeal and the cervical sympathetic nerves. The phrenic response to electrical stimulation applied through bipolar straight electrodes appears to be the result of stimulation of the facial nerve in the facial canal by current spread along the petrous bone, since stimulation of the suspended facial nerve evoked potentials only in the phrenic nerve and not in the recurrent laryngeal nerve. These findings indicate that autonomic components of motion sickness represent the secondary reactions and not the primary responses to vestibular stimulation.
Lee, Seung Hwan; Kim, In Gul; Jung, Ae Ryang; Shrestha, Kshitiz Raj; Lee, Jin Ho; Park, Ki Dong; Chung, Byung Ha; Kim, Sae Woong; Kim, Ki Hean
2014-01-01
Erectile dysfunction (ED) is the most frequent long-term problem after radical prostatectomy. We aimed to evaluate whether the use of combination therapy with basic fibroblast growth factor (bFGF)-hydrogel on corpus cavernosum and with adipose-derived stem cells (ADSCs) and brain-derived neurotrophic factor (BDNF)-immobilized poly-lactic-co-glycolic acid (PLGA) membrane on the cavernous nerve (CN) could improve erectile function in a rat model of bilateral cavernous nerve crush injury (BCNI). Rats were randomly divided into five groups (n=15 per group): a normal group (N group), a group receiving saline application after bilateral cavernous nerve crush injury (BCNI), a group undergoing bFGF-hydrogel injection in the corpus cavernosum after BCNI (bFGF), a group receiving ADSC application covered with BDNF-membrane after BCNI (ADSC/BDNF), and a group undergoing coadministration of bFGF-hydrogel injection and BDNF-membrane with ADSCs after BDNF (bFGF+ADSC/BDNF). Four weeks postoperatively, the erectile function was assessed by detecting the ratio of intracavernous pressure (ICP) to mean arterial pressure (MAP). Smooth muscle and collagen contents were measured using Masson's trichrome staining. Neuronal nitric oxide synthase (nNOS) expression in the dorsal penile nerve was detected by immunostaining. The protein expression of the α-smooth muscle actin (α-SMA) and the cyclic guanosine monophosphate (cGMP) level of the corpus cavernosum were quantified by western blot and cGMP assay, respectively. In the bFGF+ADSC/BDNF group, the erectile function was significantly elevated compared with the BCNI and other treated groups and showed a significantly increased smooth muscle/collagen ratio, nNOS content, α-SMA expression, and cGMP level. In particular, there were no statistical differences in the ICP/MAP ratio, smooth muscle/collagen ratio, and α-SMA and cGMP levels between the bFGF+ADSC/BDNF group and normal group. Application of the BDNF-immobilized PLGA membrane with human ADSC into the CN and bFGF-incorporated hydrogel into the corpus carvernosum improved nearly normal erectile function in a rat model of postprostatectomy ED. This result suggests that a combined application of bFGF+ADSC/BDNF might be a promising treatment for postprostatectomy ED. PMID:24673637
Yang, Fan; Zhao, Jian F; Shou, Qi Y; Huang, Xiao J; Chen, Gang; Yang, Ke B; Zhang, Shi G; Lv, Bo D; Fu, Hui Y
2014-01-01
Patients undergoing radical prostatectomy (RP) are at high risk for erectile dysfunction (ED) due to potential cavernous nerve (CN) damage during surgery. Penile hypoxia after RP is thought to significantly contribute to ED pathogenesis. We previously showed that corpora cavernosum smooth muscle cells (CCSMCs) undergo phenotypic modulation under hypoxic conditions in vitro. Here, we studied such changes in an in vivo post-RP ED model by investigating CCSMCs in bilateral cavernous neurectomy (BCN) rats. Sprague-Dawley rats underwent sham (n = 12) or BCN (n = 12) surgery. After 12 weeks, they were injected with apomorphine to determine erectile function. The penile tissues were harvested and assessed for fibrosis using Masson trichrome staining and for molecular markers of phenotypic modulation using immunohistochemistry and western blotting. CCSMC morphological structure was evaluated by hematoxylin-eosin (H&E) staining and transmission electron microscopy (TEM). Erectile function was significantly lower in BCN rats than in sham rats. BCN increased hypoxia-inducible factor-1α and collagen protein expression in corpora cavernous tissue. H&E staining and TEM showed that CCSMCs in BCN rats underwent hypertrophy and showed rough endoplasmic reticulum formation. The expression of CCSMC phenotypic markers, such as smooth muscle α-actin, smooth muscle myosin heavy chain, and desmin, was markedly lower, whereas vimentin protein expression was significantly higher in BCN rats than in control rats. CCSMCs undergo phenotype modulation in rats with cavernous neurectomy. The results have unveiled physiological transformations that occur at the cellular and molecular levels and have helped characterize CN injury-induced ED.
Results of stereotactic radiosurgery for patients with imaging defined cavernous sinus meningiomas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollock, Bruce E.; Stafford, Scott L.
2005-08-01
Introduction: The purpose of this study was to evaluate the efficacy and safety of stereotactic radiosurgery as primary management for patients with imaging defined cavernous sinus meningiomas. Methods: Between 1992 and 2001, 49 patients had radiosurgery for dural-based masses of the cavernous sinus presumed to be meningiomas. The mean patient age was 55.5 years. The mean tumor volume was 10.2 mL; the mean tumor margin dose was 15.9 Gy. The mean follow-up was 58 months (range, 16-144 months). Results: No tumor enlarged after radiosurgery. Twelve of 38 patients (26%) with preexisting diplopia or facial numbness/pain had improvement in cranial nervemore » function. Five patients (10%) had new (n = 3) or worsened (n = 2) trigeminal dysfunction; 2 of these patients (4%) underwent surgery at 20 and 25 months after radiosurgery despite no evidence of tumor progression. Neither patient improved after partial tumor resection. One patient (2%) developed an oculomotor nerve injury. One patient (2%) had an ischemic stroke related to occlusion of the cavernous segment of the internal carotid artery. Event-free survival was 98%, 85%, and 80% at 1, 3, and 7 years after radiosurgery, respectively. Univariate analysis of patient and dosimetric factors found no analyzed factor correlated with postradiosurgical morbidity. Conclusions: Radiosurgery was an effective primary management strategy for patients with an imaging defined cavernous sinus meningioma. Except in situations of symptomatic mass effect, unusual clinical presentation, or atypical imaging features, surgery to confirm the histologic diagnosis is unlikely to provide clinical benefit.« less
Son, Byung Chul; Lee, Sang Won; Kim, Sup; Hong, Jae Taek; Sung, Jae Hoon; Yang, Seung-Ho
2012-02-01
The authors reviewed the surgical experience and operative technique in a series of 11 patients with middle fossa tumors who underwent surgery using the transzygomatic approach and intraoperative neuromonitoring (IOM) at a single institution. This approach was applied to trigeminal schwannomas (n = 3), cavernous angiomas (n = 3), sphenoid wing meningiomas (n = 3), a petroclival meningioma (n = 1), and a hemangiopericytoma (n = 1). An osteotomy of the zygoma, a low-positioned frontotemporal craniotomy, removal of the remaining squamous temporal bone, and extradural drilling of the sphenoid wing made a flat trajectory to the skull base. Total resection was achieved in 9 of 11 patients. Significant motor pathway damage can be avoided using a change in motor-evoked potentials as an early warning sign. Four patients experienced cranial nerve palsies postoperatively, even though free-running electromyography of cranial nerves showed normal responses during the surgical procedure. A simple transzygomatic approach provides a wide surgical corridor for accessing the cavernous sinus, petrous apex, and subtemporal regions. Knowledge of the middle fossa structures is essential for anatomic orientation and avoiding injuries to neurovascular structures, although a neuronavigation system and IOM helps orient neurosurgeons.
Ultrasound-guided, percutaneous peripheral nerve stimulation: technical note.
Chan, Isaac; Brown, Anthony R; Park, Kenneth; Winfree, Christopher J
2010-09-01
Peripheral nerve stimulation is a form of neuromodulation that applies electric current to peripheral nerves to induce stimulation paresthesias within the painful areas. To report a method of ultrasound-guided, percutaneous peripheral nerve stimulation. This technique utilizes real-time imaging to avoid injury to adjacent vascular structures during minimally invasive placement of peripheral nerve stimulator electrodes. We describe a patient that presented with chronic, bilateral foot pain following multiple foot surgeries, for whom a comprehensive, pain management treatment strategy had failed. We utilized ultrasound-guided, percutaneous tibial nerve stimulation at a thigh level to provide durable pain relief on the right side, and open peripheral nerve stimulation on the left. The patient experienced appropriate stimulation paresthesias and excellent pain relief on the plantar aspect of the right foot with the percutaneous electrode. On the left side, we were unable to direct the stimulation paresthesias to the sole of the foot, despite multiple electrode repositionings. A subsequent, open placement of a left tibial nerve stimulator was performed. This revealed that the correct electrode position against the tibial nerve was immediately adjacent to the popliteal artery, and was thus not appropriate for percutaneous placement. We describe a method of ultrasound-guided peripheral nerve stimulation that avoids the invasiveness of electrode placement via an open procedure while providing excellent pain relief. We further describe limitations of the percutaneous approach when navigating close to large blood vessels, a situation more appropriately managed with open peripheral nerve stimulator placement. Ultrasound-guided placement may be considered for patients receiving peripheral nerve stimulators placed within the deep tissues, and not easily placed in a blind fashion.
Barroso, Ubirajara; Viterbo, Walter; Bittencourt, Joana; Farias, Tiago; Lordêlo, Patrícia
2013-08-01
Parasacral transcutaneous electrical nerve stimulation and posterior tibial nerve stimulation have emerged as effective methods to treat overactive bladder in children. However, to our knowledge no study has compared the 2 methods. We evaluated the results of parasacral transcutaneous electrical nerve stimulation and posterior tibial nerve stimulation in children with overactive bladder. We prospectively studied children with overactive bladder without dysfunctional voiding. Success of treatment was evaluated by visual analogue scale and dysfunctional voiding symptom score, and by level of improvement of each specific symptom. Parasacral transcutaneous electrical nerve stimulation was performed 3 times weekly and posterior tibial nerve stimulation was performed once weekly. A total of 22 consecutive patients were treated with posterior tibial nerve stimulation and 37 with parasacral transcutaneous electrical nerve stimulation. There was no difference between the 2 groups regarding demographic characteristics or types of symptoms. Concerning the evaluation by visual analogue scale, complete resolution of symptoms was seen in 70% of the group undergoing parasacral transcutaneous electrical nerve stimulation and in 9% of the group undergoing posterior tibial nerve stimulation (p = 0.02). When the groups were compared, there was no statistically significant difference (p = 0.55). The frequency of persistence of urgency and diurnal urinary incontinence was nearly double in the group undergoing posterior tibial nerve stimulation. However, this difference was not statistically significant. We found that parasacral transcutaneous electrical nerve stimulation is more effective in resolving overactive bladder symptoms, which matches parental perception. However, there were no statistically significant differences in the evaluation by dysfunctional voiding symptom score, or in complete resolution of urgency or diurnal incontinence. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Hepatocellular carcinoma metastasizing to the skull base involving multiple cranial nerves.
Kim, Soo Ryang; Kanda, Fumio; Kobessho, Hiroshi; Sugimoto, Koji; Matsuoka, Toshiyuki; Kudo, Masatoshi; Hayashi, Yoshitake
2006-11-07
We describe a rare case of HCV-related recurrent multiple hepatocellular carcinoma (HCC) metastasizing to the skull base involving multiple cranial nerves in a 50-year-old woman. The patient presented with symptoms of ptosis, fixation of the right eyeball, and left abducens palsy, indicating disturbances of the right oculomotor and trochlear nerves and bilateral abducens nerves. Brain contrast-enhanced computed tomography (CT) revealed an ill-defined mass with abnormal enhancement around the sella turcica. Brain magnetic resonance imaging (MRI) disclosed that the mass involved the clivus, cavernous sinus, and petrous apex. On contrast-enhanced MRI with gadolinium-chelated contrast medium, the mass showed inhomogeneous intermediate enhancement. The diagnosis of metastatic HCC to the skull base was made on the basis of neurological findings and imaging studies including CT and MRI, without histological examinations. Further studies may provide insights into various methods for diagnosing HCC metastasizing to the craniospinal area.
Hsieh, Ru-Lan; Lee, Wen-Chung
2002-11-01
To investigate the therapeutic effects of one shot of low-frequency percutaneous electrical nerve stimulation one shot of transcutaneous electrical nerve stimulation in patients with low back pain. In total, 133 low back pain patients were recruited for this randomized, control study. Group 1 patients received medication only. Group 2 patients received medication plus one shot of percutaneous electrical nerve stimulation. Group 3 patients received medication plus one shot of transcutaneous electrical nerve stimulation. Therapeutic effects were measured using a visual analog scale, body surface score, pain pressure threshold, and the Quebec Back Pain Disability Scale. Immediately after one-shot treatment, the visual analog scale improved 1.53 units and the body surface score improved 3.06 units in the percutaneous electrical nerve stimulation group. In the transcutaneous electrical nerve stimulation group, the visual analog scale improved 1.50 units and the body surface score improved 3.98 units. The improvements did not differ between the two groups. There were no differences in improvement at 3 days or 1 wk after the treatment among the three groups. Simple one-shot treatment with percutaneous electrical nerve stimulation or transcutaneous electrical nerve stimulation provided immediate pain relief for low back pain patients. One-shot transcutaneous electrical nerve stimulation treatment is recommended due to the rarity of side effects and its convenient application.
Sjöblom-Widfeldt, N
1990-01-01
For many years noradrenaline was considered to be the exclusive transmitter released from sympathetic nerves. However, during recent years both ATP and NPY have been suggested to be co-transmitters to noradrenaline in these nerves. The present study aimed to investigate the functional relationship between these suggested transmitters during nerve stimulation with different frequencies and in different extracellular calcium concentrations. Also the importance of the pattern of nerve stimulation and the potentiation of the neurogenic response after a period of high-frequency nerve stimulation were investigated. Contractions caused by nerve stimulation and applied agonists were investigated in segments of small mesenteric arteries from rat. The biophysical, electrophysiological, and pharmacological properties of these vessels are well characterized in previous studies. The rapid contraction caused by a single nerve stimulus, the "single twitch", and the initial, phasic contraction caused by high-frequency nerve stimulation were only slightly affected by alpha-adrenoceptor blockade with prazosin, whereas the tonic response to high-frequency stimulation was markedly reduced. The phasic responses and those to low-frequency nerve stimulation thus appear to be due mainly to a non-adrenergic transmitter. After inhibiting the response to exogenous ATP by alpha beta-methylene ATP, the response to single impulses and to low-frequency nerve stimulation were markedly reduced, while those to high-frequency stimulation were unaffected. This suggests that ATP acts as a true transmitter in sympathetic nerves, being responsible mainly for rapid responses to low-frequency stimulation, and for the initial part of responses to high-frequency stimulation. When alpha beta-methylene ATP and prazosin were given in combination, no contraction was obtained during nerve stimulation at any frequency. However, if in this situation a contraction was induced by e.g. exogenous vasopressin, field stimulation caused a further, slow contraction. This additional response was undoubtedly neurogenic, but required high-frequency nerve stimulation. The response to nerve stimulation was found to be calcium-dependent, the calcium-dependency being more pronounced at low than at high stimulation frequencies. A continuous, high-frequency (8-16 Hz) nerve stimulation could greatly (5-15 fold) enhance the response to subsequent low-frequency nerve stimulation. This potentiation increased with the frequency of the conditioning stimulation and, within limits, with the number of impulses delivered. Also the extracellular calcium concentration during the conditioning stimulation determined the magnitude of the potentiation. This post-tetanic potentiation has many characteristics in common with the post-tetanic potentiation studied in the central and somatomotor nervous system.(ABSTRACT TRUNCATED AT 400 WORDS)
Hannan, Johanna L; Matsui, Hotaka; Sopko, Nikolai A; Liu, Xiaopu; Weyne, Emmanuel; Albersen, Maarten; Watson, Joseph W; Hoke, Ahmet; Burnett, Arthur L; Bivalacqua, Trinity J
2016-07-08
Axonal injury due to prostatectomy leads to Wallerian degeneration of the cavernous nerve (CN) and erectile dysfunction (ED). Return of potency is dependent on axonal regeneration and reinnervation of the penis. Following CN injury (CNI), RhoA and Rho-associated protein kinase (ROCK) increase in penile endothelial and smooth muscle cells. Previous studies indicate that nerve regeneration is hampered by activation of RhoA/ROCK pathway. We evaluated the role of RhoA/ROCK pathway in CN regulation following CNI using a validated rat model. CNI upregulated gene and protein expression of RhoA/ROCK and caspase-3 mediated apoptosis in the major pelvic ganglion (MPG). ROCK inhibitor (ROCK-I) prevented upregulation of RhoA/ROCK pathway as well as activation of caspase-3 in the MPG. Following CNI, there was decrease in the dimer to monomer ratio of neuronal nitric oxide synthase (nNOS) protein and lowered NOS activity in the MPG, which were prevented by ROCK-I. CNI lowered intracavernous pressure and impaired non-adrenergic non-cholinergic-mediated relaxation in the penis, consistent with ED. ROCK-I maintained the intracavernous pressure and non-adrenergic non-cholinergic-mediated relaxation in the penis following CNI. These results suggest that activation of RhoA/ROCK pathway mediates caspase-3 dependent apoptosis of nitrergic neurons in the MPG following CNI and that ROCK-I can prevent post-prostatectomy ED.
The anatomical location and laterality of orbital cavernous haemangiomas.
McNab, Alan A; Selva, Dinesh; Hardy, Thomas G; O'Donnell, Brett
2014-10-01
To determine the anatomical location and laterality of orbital cavernous haemangiomas (OCH). Retrospective case series. The records of 104 patients with OCH were analyzed. The anatomical location of each OCH defined by the location of a point at the centre of the lesion, and its laterality. There were 104 patients included in the study. No patient had more than one lesion. Sixteen (15.4%) were located in the anterior third of the orbit, 74 (71.2%) were in the middle third, and 14 (13.5%) in the posterior third. In the middle third, 10 of 74 (13.5%) were extraconal and 64 intraconal (86.5%), with 30 of 64 (46.9%) middle third intraconal lesions lying lateral to the optic nerve. Of 104 lesions, 56 (53.8%) were left sided, showing a trend towards a predilection for the left side (p = 0.065). If data from other published series which included data on laterality is added to our own data and analysed, 270 of 468 (57.7%) OCH occurred in the left orbit (p < 0.005). OCH may occur at almost any location within the orbit. The commonest location is the middle third of the orbit, in the intraconal space lateral to the optic nerve. This may reflect an origin of these lesions from the arterial side of the circulation, as there are more small arteries in the intraconal space lateral to the optic nerve than in other locations. A predilection for the left orbit remains unexplained.
NASA Astrophysics Data System (ADS)
Crook, J. J.; Brouillard, C. B. J.; Irazoqui, P. P.; Lovick, T. A.
2018-04-01
Objective. Neuromodulation of autonomic nerve activity to regulate physiological processes is an emerging field. Vagal stimulation has received most attention whereas the potential of modulate visceral function by targeting autonomic nerves within the abdominal cavity remains under-exploited. Surgery to locate intra-abdominal targets is inherently more stressful than for peripheral nerves. Electrode leads risk becoming entrapped by intestines and loss of functionality in the nerve-target organ connection could result from electrode migration or twisting. Since nociceptor afferents are intermingled with similar-sized visceral autonomic fibres, stimulation may induce pain. In anaesthetised rats high frequency stimulation of the pelvic nerve can suppress urinary voiding but it is not known how conscious animals would react to this procedure. Our objective therefore was to determine how rats tolerated chronic implantation of cuff electrodes on the pelvic nerve, whether nerve stimulation would be aversive and whether nerve-bladder functionality would be compromised. Approach. We carried out a preliminary de-risking study to investigate how conscious rats tolerated chronic implantation of electrodes on the pelvic nerve, their responsiveness to intermittent high frequency stimulation and whether functionality of the nerve-bladder connection became compromised. Main results. Implantation of cuff electrodes was well-tolerated. The normal diurnal pattern of urinary voiding was not disrupted. Pelvic nerve stimulation (up to 4 mA, 3 kHz) for 30 min periods evoked mild alerting at stimulus onset but no signs of pain. Stimulation evoked a modest (<0.5 °C) increase in nerve temperature but the functional integrity of the nerve-bladder connection, reflected by contraction of the detrusor muscle in response to 10 Hz nerve stimulation, was not compromised. Significance. Chronic implantation of cuff electrodes on the pelvic nerve was found to be a well-tolerated procedure in rats and high frequency stimulation did not lead to loss of nerve functionality. Pelvic nerve stimulation has development potential for normalizing voiding dysfunction in conscious rats.
Effects of sciatic nerve stimulation on the propagation of cortical spreading depression
NASA Astrophysics Data System (ADS)
Sun, Xiaoli; Yu, Zhidong; Zeng, Shaoqun; Luo, Qingming; Li, Pengcheng
2008-02-01
Cortical spreading depression (CSD) is an important pathological model of migraine and is related to other neural disorders, such as cerebral ischemia and epilepsy. It has been reported that brain stimulation is a quite effective way to treat neural diseases. However, direct stimulation could cause harm to brain. If peripheral nerve stimulation could have the same treatment, it would be essential to investigate the mechanisms of peripheral nerve and the study of sciatic nerve stimulation would have profound clinical meaning. In this paper, we used optical intrinsic signal imaging (OISI) and extracellular electrophysiologic recording techniques to study the effects of sciatic nerve stimulation on the propagation of CSD. We found that: (1) continuous sciatic nerve stimulation on rats caused a decrease in light intensity on the whole cortex, which meant an increase in cerebral blood volume(CBV); (2) the spreading velocity of CSD declined from 3.63+/- 0.272 mm/min to 3.06+/-0.260 mm/min during sciatic nerve stimulation, compared with that without sciatic nerve stimulation. In summary, data suggests that sciatic nerve stimulation elicits a response of cortex and causes a slowdown in the propagation of CSD.
21 CFR 868.2775 - Electrical peripheral nerve stimulator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...
21 CFR 868.2775 - Electrical peripheral nerve stimulator.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...
21 CFR 868.2775 - Electrical peripheral nerve stimulator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...
Tong, Yuehong; Tiplitsky, Scott I; Tar, Moses; Melman, Arnold; Davies, Kelvin P
2008-08-01
Several reports suggest that the rat Vcsa1 gene is down-regulated in models of erectile dysfunction. The Vcsa protein product sialorphin is an endogenous neutral endopeptidase inhibitor and its down-regulation could result in prolonged activation of G-protein activated signaling pathways by their peptide agonists. We investigated whether Vcsa1 down-regulation could result in an adaptive change in GPCR (G-protein coupled receptor) expression. Gene expression in cultured rat corporeal smooth muscle cells following treatment with siRNA directed against Vcsa1 or the neutral endopeptidase gene was analyzed using microarray and quantitative reverse transcriptase-polymerase chain reaction. In rats Vcsa1 is one of the most down-regulated genes following bilateral transection of the cavernous nerves. In that animal model we also investigated whether Vcsa1 down-regulation was accompanied by similar changes in gene expression in corporeal smooth muscle cells in which Vcsa1 was knocked down in vitro. Microarray analysis and quantitative reverse transcriptase-polymerase chain reaction demonstrated that corporeal smooth muscle cells treated in vitro with siRNA against Vcsa1 resulted in GPCR up-regulation as a functional group. In contrast, treatment of corporeal smooth muscle cells that lowered neutral endopeptidase activity resulted in decreased GPCR expression. These results suggest that the peptide product of Vcsa1, sialorphin, can effect GPCR expression by acting on neutral endopeptidase. In animals with bilaterally transected cavernous nerves the decreased Vcsa1 expression is accompanied by increased GPCR expression in cavernous tissue. These experiments suggest that the mechanism by which Vcsa1 modulates erectile function is partly mediated through changes in GPCR expression.
Shkarubo, Alexey Nikolaevich; Chernov, Ilia Valerievich; Ogurtsova, Anna Anatolievna; Moshchev, Dmitry Aleksandrovich; Lubnin, Andrew Jurievich; Andreev, Dmitry Nicolaevich; Koval, Konstantin Vladimirovich
2017-02-01
Intraoperative identification of cranial nerves is crucial for safe surgery of skull base tumors. Currently, only a small number of published papers describe the technique of trigger electromyography (t-EMG) in endoscopic endonasal removal of such tumors. To assess the effectiveness of t-EMG in preventing intraoperative cranial nerve damage in endoscopic endonasal surgery of skull base tumors. Nine patients were operated on using the endoscopic endonasal approach within a 1-year period. The tumors included large skull base chordomas and trigeminal neurinomas localized in the cavernous sinus. During the surgical process, cranial nerve identification was carried out using monopolar and bipolar t-EMG methods. Assessment of cranial nerve functional activity was conducted both before and after tumor removal. We mapped 17 nerves in 9 patients. Third, fifth, and sixth cranial nerves were identified intraoperatively. There were no cases of postoperative functional impairment of the mapped cranial nerves. In one case we were unable to get an intraoperative response from the fourth cranial nerve and observed its postoperative transient plegia (the function was normal before surgery). t-EMG allows surgeons to control the safety of cranial nerves both during and after skull base tumor removal. Copyright © 2016 Elsevier Inc. All rights reserved.
Use of Vagus Nerve Stimulator on Children With Primary Generalized Epilepsy.
Welch, William P; Sitwat, Bilal; Sogawa, Yoshimi
2018-06-01
To describe the response to vagus nerve stimulator (VNS) in otherwise neurotypical children with medically intractable primary generalized epilepsy. Retrospective chart review of patients who underwent vagus nerve stimulator surgery between January 2011 and December 2015. Eleven patients were identified. Median follow-up duration was 2.5 years (1.2-8.4 years). Prior to vagus nerve stimulator surgery, all patients had at least 1 seizure per week, and 7/11 (64%) had daily seizures. At 1-year follow-up after vagus nerve stimulator, 7/11 (64%) reported improved seizure frequency and 6/11 (55%) reported fewer than 1 seizure per month. Three patients (27%) reported complications related to vagus nerve stimulator surgery, and no patients required device removal. In children with medically intractable primary generalized epilepsy, vagus nerve stimulator is well tolerated and appears to lead to improvement in seizure frequency. Improvement was not attributable to epilepsy classification, age at vagus nerve stimulator implantation, output current, duty cycle, or follow-up duration.
Huang, Jinghui; Hu, Xueyu; Lu, Lei; Ye, Zhengxu; Wang, Yuqing; Luo, Zhuojing
2009-10-01
Electrical stimulation has been shown to enhance peripheral nerve regeneration after nerve injury. However, the impact of electrical stimulation on motor functional recovery after nerve injuries, especially over long nerve gap lesions, has not been investigated in a comprehensive manner. In the present study, we aimed to determine whether electrical stimulation (1 h, 20 Hz) is beneficial for motor functional recovery after a 10 mm femoral nerve gap lesion in rats. The proximal nerve stump was electrically stimulated for 1 h at 20 Hz frequency prior to nerve repair with an autologous graft. The rate of motor functional recovery was evaluated by single frame motion analysis and electrophysiological studies, and the nerve regeneration was investigated by double labeling and histological analysis. We found that brief electrical stimulation significantly accelerated motor functional recovery and nerve regeneration. Although the final outcome, both in functional terms and morphological terms, was not improved by electrical stimulation, the observed acceleration of functional recovery and axon regeneration may be of therapeutic importance in clinical setting.
21 CFR 874.1820 - Surgical nerve stimulator/locator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Surgical nerve stimulator/locator. 874.1820... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1820 Surgical nerve stimulator/locator. (a) Identification. A surgical nerve stimulator/locator is a device that is intended to...
21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Transcutaneous electrical nerve stimulator for... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to...
21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Transcutaneous electrical nerve stimulator for...
21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Transcutaneous electrical nerve stimulator for...
21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Transcutaneous electrical nerve stimulator for...
21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Transcutaneous electrical nerve stimulator for...
Diallo, Djibril; Zaitouna, Mazen; Alsaid, Bayan; Quillard, Jeannine; Droupy, Stéphane; Benoit, Gérard; Bessede, Thomas
2013-01-01
The purpose of this study was to identify the microscopic arterial vascularization of the corpora cavernosa (CC) of the penis using computer-assisted anatomic dissection (CAAD), determine the contribution of the different penile arteries towards this vascularization, detail the nature of cavernospongiosum shunts, and locate the anastomoses between these different arteries. Tissue specimens were taken from five donors who donated their bodies to science. The specimens were fixed in 10% formalin and sliced into a series of five 5-μm sections at intervals of 200 μm. The first section was stained with hematoxylin-eosin or Masson's trichrome and the second with anti-protein S100. The cavernous artery of the penis is not the only source of arterial vascularization of the CC. In four of the five cases studied, we found two to four perforating branches arising from the dorsal arteries of the penis that join up with the cavernous artery of the penis or that are solely responsible for the vascularization of the distal third of the penis. The bulbo-urethral and urethral arteries are situated outside of the tunica albuginea of the corpus spongiosum on their lateral and dorsal sides. The anastomoses do not occur between the cavernous artery of the penis and the corpus spongiosum but between the cavernous artery of the penis and the urethral artery on the surface of the tunica albuginea. All of these arteries are accompanied by nerve branches. The CC were found to be vascularized by both cavernous and dorsal arteries of the penis. Intrapenile vascularization is organized around four arterial axes, which are anastomosed by multiple neurovascular shunts. PMID:23981086
Role of Schwann cells in the regeneration of penile and peripheral nerves
Wang, Lin; Sanford, Melissa T; Xin, Zhongcheng; Lin, Guiting; Lue, Tom F
2015-01-01
Schwann cells (SCs) are the principal glia of the peripheral nervous system. The end point of SC development is the formation of myelinating and nonmyelinating cells which ensheath large and small diameter axons, respectively. They play an important role in axon regeneration after injury, including cavernous nerve injury that leads to erectile dysfunction (ED). Despite improvement in radical prostatectomy surgical techniques, many patients still suffer from ED postoperatively as surgical trauma causes traction injuries and local inflammatory changes in the neuronal microenvironment of the autonomic fibers innervating the penis resulting in pathophysiological alterations in the end organ. The aim of this review is to summarize contemporary evidence regarding: (1) the origin and development of SCs in the peripheral and penile nerve system; (2) Wallerian degeneration and SC plastic change following peripheral and penile nerve injury; (3) how SCs promote peripheral and penile nerve regeneration by secreting neurotrophic factors; (4) and strategies targeting SCs to accelerate peripheral nerve regeneration. We searched PubMed for articles related to these topics in both animal models and human research and found numerous studies suggesting that SCs could be a novel target for treatment of nerve injury-induced ED. PMID:25999359
Tsuji, Kojun; Tsujimura, Takanori; Magara, Jin; Sakai, Shogo; Nakamura, Yuki; Inoue, Makoto
2015-02-01
The aim of the present study was to investigate the adaptation of the swallowing reflex in terms of reduced swallowing reflex initiation following continuous superior laryngeal nerve stimulation. Forty-four male Sprague Dawley rats were anesthetized with urethane. To identify swallowing, electromyographic activity of the left mylohyoid and thyrohyoid muscles was recorded. To evoke the swallowing response, the superior laryngeal nerve (SLN), recurrent laryngeal nerve, or cortical swallowing area was electrically stimulated. Repetitive swallowing evoked by continuous SLN stimulation was gradually reduced, and this reduction was dependent on the resting time duration between stimulations. Prior SLN stimulation also suppressed subsequent swallowing initiation. The reduction in evoked swallows induced by recurrent laryngeal nerve or cortical swallowing area stimulation was less than that following superior laryngeal nerve stimulation. Decerebration had no effect on the reduction in evoked swallows. Prior subthreshold stimulation reduced subsequent initiation of swallowing, suggesting that there was no relationship between swallowing movement evoked by prior stimulation and the subsequent reduction in swallowing initiation. Overall, these data suggest that reduced sensory afferent nerve firing and/or trans-synaptic responses, as well as part of the brainstem central pattern generator, are involved in adaptation of the swallowing reflex following continuous stimulation of swallow-inducing peripheral nerves and cortical areas. Copyright © 2014 Elsevier Inc. All rights reserved.
Buonocore, M.; Camuzzini, N.; Cecini, M.; Dalla Toffola, E.
2013-01-01
Background. TENS (transcutaneous electrical nerve stimulation) is probably the most diffused physical therapy used for antalgic purposes. Although it continues to be used by trial and error, correct targeting of paresthesias evoked by the electrical stimulation on the painful area is diffusely considered very important for pain relief. Aim. To investigate if TENS antalgic effect is higher in the cutaneous area of the stimulated nerve when confronted to neighbouring areas. Methods. 10 volunteers (4 males, 6 females) underwent three different sessions: in two, heat pain thresholds (HPTs) were measured on the dorsal hand skin before, during and after electrical stimulation (100 Hz, 0.1 msec) of superficial radial nerve; in the third session HPTs, were measured without any stimulation. Results. Radial nerve stimulation induced an increase of HPT significantly higher in its cutaneous territory when confronted to the neighbouring ulnar nerve territory, and antalgic effect persisted beyond the stimulation time. Conclusions. The location of TENS electrodes is crucial for obtaining the strongest pain relief, and peripheral nerve trunk stimulation is advised whenever possible. Moreover, the present study indicates that continuous stimulation could be unnecessary, suggesting a strategy for avoiding the well-known tolerance-like effect of prolonged TENS application. PMID:24027756
Beckwée, David; Bautmans, Ivan; Swinnen, Eva; Vermet, Yorick; Lefeber, Nina; Lievens, Pierre; Vaes, Peter
2014-01-01
To evaluate the clinical efficacy of transcutaneous electric nerve stimulation in the treatment of postoperative knee arthroplasty pain and to relate these results to the stimulation parameters used. PubMed, Pedro and Web of Knowledge were systematically screened for studies investigating effects of transcutaneous electric nerve stimulation on postoperative knee arthroplasty pain. Studies were screened for their methodological and therapeutical quality. We appraised the influence of the stimulation settings used and indicated whether or not a neurophysiological and/or mechanistic rationale was given for these stimulation settings. A total of 5 articles met the inclusion criteria. In total, 347 patients were investigated. The number of patients who received some form of transcutaneous electric nerve stimulation was 117, and 54 patients received sham transcutaneous electric nerve stimulation. Pain was the primary outcome in all studies. The stimulation settings used in the studies (n = 2) that reported significant effects differed from the others as they implemented a submaximal stimulation intensity. Stimulation parameters were heterogeneous, and only one study provided a rationale for them. This review reveals that an effect of transcutaneous electric nerve stimulation might have been missed due to low methodological and therapeutical quality. Justifying the choice of transcutaneous electric nerve stimulation parameters may improve therapeutical quality.
Use of early tactile stimulation in rehabilitation of digital nerve injuries.
Cheng, A S
2000-01-01
Digital nerves are the most frequently injured peripheral nerve. To improve the recovery of functional sensibility of digital nerve injuries, a prospective randomized controlled study was conducted to see the effect of using early tactile stimulation in rehabilitation of digital nerve injuries. Two specific tactile stimulators were made and prescribed for patients with digital nerve-injury. Twenty-four participants with 32 digital nerve injuries received the prescribed tactile stimulators (experimental group), and another 25 participants with 33 digital nerve injuries received only routine conventional therapy (control group). A significant difference (p < .05) was seen in the experimental group, although there were some variations between the different classes of associated injuries, with least benefit observed in the combined nerve, tendon, and bone injury class. Use of early tactile stimulation as described in this study can be considered an effective way to improve both quality and quantity of recovery of functional sensibility in digital nerve injuries without combined nerve, tendon, and bone injuries.
Cai, R S; Alexander, M Sipski; Marson, L
2008-09-01
We examined the effects of pudendal sensory nerve stimulation and urethral distention on vaginal blood flow and the urethrogenital reflex, and the relationship between somatic and autonomic pathways regulating sexual responses. Distention of the urethra and stimulation of the pudendal sensory nerve were used to evoke changes in vaginal blood flow (laser Doppler perfusion monitoring) and pudendal motor nerve activity in anesthetized, spinally transected female rats. Bilateral cuts of either the pelvic or hypogastric nerve or both autonomic nerves were made, and blood flow and pudendal nerve responses were reexamined. Stimulation of the pudendal sensory nerve or urethral distention elicited consistent increases in vaginal blood flow and rhythmic firing of the pudendal motor nerve. Bilateral cuts of the pelvic plus hypogastric nerves significantly reduced vaginal blood flow responses without altering pudendal motor nerve responses. Pelvic nerve cuts also significantly reduced vaginal blood flow responses. In contrast, hypogastric nerve cuts did not significantly change vaginal blood flow. Bilateral cuts of the pudendal sensory nerve blocked pudendal motor nerve responses but stimulation of the central end evoked vaginal blood flow and pudendal motor nerve responses. Stimulation of the sensory branch of the pudendal nerve elicits vasodilatation of the vagina. The likely mechanism is via activation of spinal pathways that in turn activate pelvic nerve efferents to produced changes in vaginal blood flow. Climatic-like responses (firing of the pudendal motor nerve) occur in response to stimulation of the pudendal sensory nerve and do not require intact pelvic or hypogastric nerves.
Lateral sellar compartment O.T. (cavernous sinus): history, anatomy, terminology.
Parkinson, D
1998-08-01
Claudios Galen (119-199 a.d.) dissected lower animals with parasellar carotid retia bathed in venous blood and transposed his findings to human anatomy. Andreas Vesalius (1514-1564) corrected most of Galen's errors but apparently never looked into this small, extradural compartment, nor, apparently, did Winslow (Exposition Anatomique de la Structure du Corps Humain. London: N. Prevast, 1734), who christened it the "cavernous sinus," (CS) presumably thinking that it would resemble the corpora cavernosa of the penis. Multiple surgical explorations, gross dissections, microscopic views, and vascular casts from early fetuses to an 81 year old have been examined and reviewed. The CS is not a dural sinus nor is it cavernous. The compartment is extradural, and the venous structures contained within consist of a greatly variable plexus of extremely thin-walled veins. The name, CS, is a barrier to the understanding of the structure and function of this extradural anatomical jewel box, which contains fat, myelinated and nonmyelinated nerves, arteries, and a plexus of veins. It is proposed that this name be changed, because it is inaccurate and misleading. The replacement should leave no doubt about its meaning. The lateral sellar compartment is descriptive and accurate. The veins within are a parasellar plexus.
Mentzel, Thomas; Brenn, Thomas
2017-11-01
In this short review, malignant mesenchymal neoplasms of the dermis and subcutis mimicking benign lesions and their differential diagnoses are discussed. These include plaque-like dermatofibrosarcoma protuberans, superficial low-grade fibromyxoid sarcoma, low-grade superficial malignant peripheral nerve sheath tumour, epithelioid sarcoma, pseudomyogenic haemangioendothelioma, Kaposi sarcoma mimicking cavernous haemangioma and benign lymphangioendothelioma, and rare forms of angiosarcoma mimicking a benign vascular lesion.
Khatibi, Kasra; Choudhri, Omar; Connolly, Ian D; McTaggart, Ryan A; Do, Huy M
2017-02-01
Trigeminal-cardiac reflex (TCR) from the stimulation of sensory branches of trigeminal nerve can lead to hemodynamic instability. This phenomenon has been described during ophthalmologic, craniofacial, and skull base surgeries. TCR has been reported rarely with endovascular onyx embolization of dural arteriovenous fistulas. We report a case of TCR during endovascular Onyx embolization of an arteriovenous malformation (AVM). A 16-year-old boy presented with a large cerebellar AVM with arterial feeders from the external carotid artery and posterior cerebral artery branches. The middle meningeal artery was catheterized, through which dimethyl sulfoxide was injected, followed by Onyx, into the nidus and the feeders. Near the completion of embolization, patient became bradycardic and proceeded to asystole; he was resuscitated with chest compression, atropine, and vasopressors. We used PubMed to identify the reported cases of Onyx and other endovascular embolizations complicated by hemodynamic instability. We found 16 cases of endovascular onyx embolization complicated by clinically significant hemodynamic changes in the treatment of dural arteriovenous fistula, cavernous carotid fistula, and juvenile nasopharygeal angiofibroma but not with AVMs. In these cases, arterial supply to the nidus involved the sensory receptive field of trigeminal nerve. Hemodynamic changes have been reported during the injection of dimethyl sulfoxide before the introduction of Onyx, as well as Onyx injection and cast formation. TCR can lead to significant hemodynamic changes during endovascular Onyx embolization of vascular malformations (both pial AVM and dural arteriovenous fistulas) involving receptive field of trigeminal nerve. Therefore, the anesthesiologist should be made aware of treatment approach before intervention and appropriate precautions taken. Copyright © 2016 Elsevier Inc. All rights reserved.
Recruitment order of quadriceps motor units: femoral nerve vs. direct quadriceps stimulation.
Rodriguez-Falces, Javier; Place, Nicolas
2013-12-01
To investigate potential differences in the recruitment order of motor units (MUs) in the quadriceps femoris when electrical stimulation is applied over the quadriceps belly versus the femoral nerve. M-waves and mechanical twitches were evoked using femoral nerve stimulation and direct quadriceps stimulation of gradually increasing intensity from 20 young, healthy subjects. Recruitment order was investigated by analysing the time-to-peak twitch and the time interval from the stimulus artefact to the M-wave positive peak (M-wave latency) for the vastus medialis (VM) and vastus lateralis (VL) muscles. During femoral nerve stimulation, time-to-peak twitch and M-wave latency decreased consistently (P < 0.05) with increasing stimulus intensity, whereas, during graded direct quadriceps stimulation, time-to-peak twitch and VL M-wave latency did not show a clear trend (P > 0.05). For the VM muscle, M-wave latency decreased with increasing stimulation level for both femoral nerve and direct quadriceps stimulation, whereas, for the VL muscle, the variation of M-wave latency with stimulus intensity was different for the two stimulation geometries (P < 0.05). Femoral nerve stimulation activated MUs according to the size principle, whereas the recruitment order during direct quadriceps stimulation was more complex, depending ultimately on the architecture of the peripheral nerve and its terminal branches below the stimulating electrodes for each muscle. For the VM, MUs were orderly recruited for both stimulation geometries, whereas, for the VL muscle, MUs were orderly recruited for femoral nerve stimulation, but followed no particular order for direct quadriceps stimulation.
Novel Evidence-Based Classification of Cavernous Venous Occlusive Disease.
Pathak, Ram A; Rawal, Bhupendra; Li, Zhuo; Broderick, Gregory A
2016-10-01
The primary aim of our study was to determine whether an evidence-based rationale could categorize cavernous venous occlusive disease into mild, moderate and severe erectile dysfunction. A total of 863 patients underwent color duplex Doppler ultrasound from January 2010 to June 2013 performed by a single urologist. We identified a cohort of 75 patients (8.7%) with a diagnosis of cavernous venous occlusive disease based on a unilateral resistive index less than 0.9, and right and left peak systolic velocity 35 cm per second or less after visual sexual stimulation. At a median followup of 13 months patients were evaluated for treatment efficacy. A total of 75 patients with a median age of 60 years (range 19 to 83) and a mean body mass index of 26.3 kg/m(2) (range 19.0 to 39.3) satisfied the criteria of cavernous venous occlusive disease. When substratified into tertiles, resistive index cutoffs were obtained, including mild cavernous venous occlusive disease-81.6 to 94.0, moderate disease-72.6 to 81.5 and severe disease-59.5 to 72.5. Using these 3 groups the phosphodiesterase type 5-inhibitor failure rate (p = 0.017) and SHIM (Sexual Health Inventory for Men) score categories (1 to 10 vs 11 to 20, p = 0.030) were statistically significantly different for mild, moderate and severe cavernous venous occlusive disease. Treatment satisfaction was also statistically significantly different. Penile prosthetic placement was a more common outcome among patients with erectile dysfunction and more severe cavernous venous occlusive disease. Our retrospective analysis supports a correlation between the phosphodiesterase type 5 inhibitor failure rate, SHIM score and the rate of surgical intervention using resistive index values. Our data further suggest that an evidence-based classification of cavernous venous occlusive disease by color Doppler ultrasound is possible and can triage patients to penile prosthetic placement. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Borsody, Mark K; Yamada, Chisa; Bielawski, Dawn; Heaton, Tamara; Castro Prado, Fernando; Garcia, Andrea; Azpiroz, Joaquín; Sacristan, Emilio
2014-04-01
Facial nerve stimulation has been proposed as a new treatment of ischemic stroke because autonomic components of the nerve dilate cerebral arteries and increase cerebral blood flow when activated. A noninvasive facial nerve stimulator device based on pulsed magnetic stimulation was tested in a dog middle cerebral artery occlusion model. We used an ischemic stroke dog model involving injection of autologous blood clot into the internal carotid artery that reliably embolizes to the middle cerebral artery. Thirty minutes after middle cerebral artery occlusion, the geniculate ganglion region of the facial nerve was stimulated for 5 minutes. Brain perfusion was measured using gadolinium-enhanced contrast MRI, and ATP and total phosphate levels were measured using 31P spectroscopy. Separately, a dog model of brain hemorrhage involving puncture of the intracranial internal carotid artery served as an initial examination of facial nerve stimulation safety. Facial nerve stimulation caused a significant improvement in perfusion in the hemisphere affected by ischemic stroke and a reduction in ischemic core volume in comparison to sham stimulation control. The ATP/total phosphate ratio showed a large decrease poststroke in the control group versus a normal level in the stimulation group. The same stimulation administered to dogs with brain hemorrhage did not cause hematoma enlargement. These results support the development and evaluation of a noninvasive facial nerve stimulator device as a treatment of ischemic stroke.
Radiation-induced ocular motor cranial nerve palsies in patients with pituitary tumor.
Vaphiades, Michael S; Spencer, Sharon A; Riley, Kristen; Francis, Courtney; Deitz, Luke; Kline, Lanning B
2011-09-01
Radiation therapy is often used in the treatment of pituitary tumor. Diplopia due to radiation damage to the ocular motor cranial nerves has been infrequently reported as a complication in this clinical setting. Retrospective case series of 6 patients (3 men and 3 women) with pituitary adenoma, all of whom developed diplopia following transsphenoidal resection of pituitary adenoma with subsequent radiation therapy. None had evidence of tumor involvement of the cavernous sinus. Five patients developed sixth nerve palsies, 3 unilateral and 2 bilateral, and in 1 patient, a sixth nerve palsy was preceded by a fourth cranial nerve palsy. One patient developed third nerve palsy. Five of the 6 patients had a growth hormone-secreting pituitary tumor with acromegaly. Following transsphenoidal surgery in all 6 patients (2 had 2 surgeries), 4 had 2 radiation treatments consisting of either radiosurgery (2 patients) or external beam radiation followed by radiosurgery (2 patients). Patients with pituitary tumors treated multiple times with various forms of radiation therapy are at risk to sustain ocular motor cranial nerve injury. The prevalence of acromegalic patients in this study reflects an aggressive attempt to salvage patients with recalcitrant growth hormone elevation and may place the patient at a greater risk for ocular motor cranial nerve damage.
da Silva, Carlos Eduardo; da Silva, Vinicius Duval; da Silva, Jefferson Luis Braga
2014-01-01
Objective The identification of cranial nerves is one of the most challenging goals in the dissection of skull base meningiomas. The authors present an application of sodium fluorescein (SF) in skull base meningiomas with the purpose of improving the identification of cranial nerves. Design A prospective study within-subjects design. Setting Hospital Ernesto Dornelles, Porto Alegre, Brazil. Participants Patients with skull base meningiomas. Main Outcomes Measures Cranial nerve identification. Results The group of nine meningiomas was composed of one cavernous sinus, three petroclival, one tuberculum sellae, two sphenoid wing, one olfactory groove, and one temporal floor meningioma. The SF enhancement in all tumors was strong, and the contrast with cranial nerves clearly evident. There were one definite olfactory nerve deficit, one transient abducens deficit, and one definite hemiparesis. All lesions were resected (Simpson grades 1 and 2). The analysis of the difference of the delta SF wavelength between the meningiomas and cranial nerve contrast was performed by the Wilcoxon signed rank test and showed p = 0.011. Conclusions The contrast between the enhanced meningiomas and cranial nerves was evident and assisted in the visualization and microsurgical dissection of these structures. The anatomical preservation of these structures was improved using the contrast. PMID:27054056
da Silva, Carlos Eduardo; da Silva, Vinicius Duval; da Silva, Jefferson Luis Braga
2014-08-01
Objective The identification of cranial nerves is one of the most challenging goals in the dissection of skull base meningiomas. The authors present an application of sodium fluorescein (SF) in skull base meningiomas with the purpose of improving the identification of cranial nerves. Design A prospective study within-subjects design. Setting Hospital Ernesto Dornelles, Porto Alegre, Brazil. Participants Patients with skull base meningiomas. Main Outcomes Measures Cranial nerve identification. Results The group of nine meningiomas was composed of one cavernous sinus, three petroclival, one tuberculum sellae, two sphenoid wing, one olfactory groove, and one temporal floor meningioma. The SF enhancement in all tumors was strong, and the contrast with cranial nerves clearly evident. There were one definite olfactory nerve deficit, one transient abducens deficit, and one definite hemiparesis. All lesions were resected (Simpson grades 1 and 2). The analysis of the difference of the delta SF wavelength between the meningiomas and cranial nerve contrast was performed by the Wilcoxon signed rank test and showed p = 0.011. Conclusions The contrast between the enhanced meningiomas and cranial nerves was evident and assisted in the visualization and microsurgical dissection of these structures. The anatomical preservation of these structures was improved using the contrast.
Pulsed laser versus electrical energy for peripheral nerve stimulation
Wells, Jonathon; Konrad, Peter; Kao, Chris; Jansen, E. Duco; Mahadevan-Jansen, Anita
2010-01-01
Transient optical neural stimulation has previously been shown to elicit highly controlled, artifact-free potentials within the nervous system in a non-contact fashion without resulting in damage to tissue. This paper presents the physiologic validity of elicited nerve and muscle potentials from pulsed laser induced stimulation of the peripheral nerve in a comparative study with the standard method of electrically evoked potentials. Herein, the fundamental physical properties underlying the two techniques are contrasted. Key laser parameters for efficient optical stimulation of the peripheral nerve are detailed. Strength response curves are shown to be linear for each stimulation modality, although fewer axons can be recruited with optically evoked potentials. Results compare the relative transient energy requirements for stimulation using each technique and demonstrate that optical methods can selectively excite functional nerve stimulation. Adjacent stimulation and recording of compound nerve potentials in their entirety from optical and electrical stimulation are presented, with optical responses shown to be free of any stimulation artifact. Thus, use of a pulsed laser exhibits some advantages when compared to standard electrical means for excitation of muscle potentials in the peripheral nerve in the research domain and possibly for clinical diagnostics in the future. PMID:17537515
Beckwée, David; Bautmans, Ivan; Swinnen, Eva; Vermet, Yorick; Lefeber, Nina; Lievens, Pierre
2014-01-01
Objective: To evaluate the clinical efficacy of transcutaneous electric nerve stimulation in the treatment of postoperative knee arthroplasty pain and to relate these results to the stimulation parameters used. Data Sources: PubMed, Pedro and Web of Knowledge were systematically screened for studies investigating effects of transcutaneous electric nerve stimulation on postoperative knee arthroplasty pain. Review Methods: Studies were screened for their methodological and therapeutical quality. We appraised the influence of the stimulation settings used and indicated whether or not a neurophysiological and/or mechanistic rationale was given for these stimulation settings. Results: A total of 5 articles met the inclusion criteria. In total, 347 patients were investigated. The number of patients who received some form of transcutaneous electric nerve stimulation was 117, and 54 patients received sham transcutaneous electric nerve stimulation. Pain was the primary outcome in all studies. The stimulation settings used in the studies (n = 2) that reported significant effects differed from the others as they implemented a submaximal stimulation intensity. Stimulation parameters were heterogeneous, and only one study provided a rationale for them. Conclusion: This review reveals that an effect of transcutaneous electric nerve stimulation might have been missed due to low methodological and therapeutical quality. Justifying the choice of transcutaneous electric nerve stimulation parameters may improve therapeutical quality. PMID:26770730
Motor Cortex Stimulation Regenerative Effects in Peripheral Nerve Injury: An Experimental Rat Model.
Nicolas, Nicolas; Kobaiter-Maarrawi, Sandra; Georges, Samuel; Abadjian, Gerard; Maarrawi, Joseph
2018-06-01
Immediate microsurgical nerve suture remains the gold standard after peripheral nerve injuries. However, functional recovery is delayed, and it is satisfactory in only 2/3 of cases. Peripheral electrical nerve stimulation proximal to the lesion enhances nerve regeneration and muscle reinnervation. This study aims to evaluate the effects of the motor cortex electrical stimulation on peripheral nerve regeneration after injury. Eighty rats underwent right sciatic nerve section, followed by immediate microsurgical epineural sutures. Rats were divided into 4 groups: Group 1 (control, n = 20): no electrical stimulation; group 2 (n = 20): immediate stimulation of the sciatic nerve just proximal to the lesion; Group 3 (n = 20): motor cortex stimulation (MCS) for 15 minutes after nerve section and suture (MCSa); group 4 (n = 20): MCS performed over the course of two weeks after nerve suture (MCSc). Assessment included electrophysiology and motor functional score at day 0 (baseline value before nerve section), and at weeks 4, 8, and 12. Rats were euthanized for histological study at week 12. Our results showed that MCS enhances functional recovery, nerve regeneration, and muscle reinnervation starting week 4 compared with the control group (P < 0.05). The MCS induces higher reinnervation rates even compared with peripheral stimulation, with better results in the MCSa group (P < 0.05), especially in terms of functional recovery. MCS seems to have a beneficial effect after peripheral nerve injury and repair in terms of nerve regeneration and muscle reinnervation, especially when acute mode is used. Copyright © 2018 Elsevier Inc. All rights reserved.
Khodaparast, Navid; Hays, Seth A.; Sloan, Andrew M.; Fayyaz, Tabbassum; Hulsey, Daniel R.; Rennaker, Robert L.; Kilgard, Michael P.
2014-01-01
Neural plasticity is widely believed to support functional recovery following brain damage. Vagus nerve stimulation paired with different forelimb movements causes long-lasting map plasticity in rat primary motor cortex that is specific to the paired movement. We tested the hypothesis that repeatedly pairing vagus nerve stimulation with upper forelimb movements would improve recovery of motor function in a rat model of stroke. Rats were separated into three groups: vagus nerve stimulation during rehab, vagus nerve stimulation after rehab, and rehab alone. Animals underwent 4 training stages: shaping (motor skill learning), pre-lesion training, post-lesion training, and therapeutic training. Rats were given a unilateral ischemic lesion within motor cortex and implanted with a left vagus nerve cuff. Animals were allowed one week of recovery before post-lesion baseline training. During the therapeutic training stage, rats received vagus nerve stimulation paired with each successful trial. All seventeen trained rats demonstrated significant contralateral forelimb impairment when performing a bradykinesia assessment task. Forelimb function was recovered completely to pre-lesion levels when vagus nerve stimulation was delivered during rehab training. Alternatively, intensive rehab training alone (without stimulation) failed to restore function to pre-lesion levels. Delivering the same amount of stimulation after rehab training did not yield improvements compared to rehab alone. These results demonstrate that vagus nerve stimulation repeatedly paired with successful forelimb movements can improve recovery after motor cortex ischemia and may be a viable option for stroke rehabilitation. PMID:24553102
Electric stimulation and decimeter wave therapy improve the recovery of injured sciatic nerves
Zhao, Feng; He, Wei; Zhang, Yingze; Tian, Dehu; Zhao, Hongfang; Yu, Kunlun; Bai, Jiangbo
2013-01-01
Drug treatment, electric stimulation and decimeter wave therapy have been shown to promote the repair and regeneration of the peripheral nerves at the injured site. This study prepared a Mackinnon's model of rat sciatic nerve compression. Electric stimulation was given immediately after neurolysis, and decimeter wave radiation was performed at 1 and 12 weeks post-operation. Histological observation revealed that intraoperative electric stimulation and decimeter wave therapy could improve the local blood circulation of repaired sites, alleviate hypoxia of compressed nerves, and lessen adhesion of compressed nerves, thereby decreasing the formation of new entrapments and enhancing compressed nerve regeneration through an improved microenvironment for regeneration. Immunohistochemical staining results revealed that intraoperative electric stimulation and decimeter wave could promote the expression of S-100 protein. Motor nerve conduction velocity and amplitude, the number and diameter of myelinated nerve fibers, and sciatic functional index were significantly increased in the treated rats. These results verified that intraoperative electric stimulation and decimeter wave therapy contributed to the regeneration and the recovery of the functions in the compressed nerves. PMID:25206506
Electrical stimulation of anal sphincter or pudendal nerve improves anal sphincter pressure.
Damaser, Margot S; Salcedo, Levilester; Wang, Guangjian; Zaszczurynski, Paul; Cruz, Michelle A; Butler, Robert S; Jiang, Hai-Hong; Zutshi, Massarat
2012-12-01
Stimulation of the pudendal nerve or the anal sphincter could provide therapeutic options for fecal incontinence with little involvement of other organs. The goal of this project was to assess the effects of pudendal nerve and anal sphincter stimulation on bladder and anal pressures. Ten virgin female Sprague Dawley rats were randomly allocated to control (n = 2), perianal stimulation (n = 4), and pudendal nerve stimulation (n = 4) groups. A monopolar electrode was hooked to the pudendal nerve or placed on the anal sphincter. Aballoon catheter was inserted into the anus to measure anal pressure, and a catheter was inserted into the bladder via the urethra to measure bladder pressure. Bladder and anal pressures were measured with different electrical stimulation parameters and different timing of electrical stimulation relative to spontaneous anal sphincter contractions. Increasing stimulation current had the most dramatic effect on both anal and bladder pressures. An immediate increase in anal pressure was observed when stimulating either the anal sphincter or the pudendal nerve at stimulation values of 1 mA or 2 mA. No increase in anal pressure was observed for lower current values. Bladder pressure increased at high current during anal sphincter stimulation, but not as much as during pudendal nerve stimulation. Increased bladder pressure during anal sphincter stimulation was due to contraction of the abdominal muscles. Electrical stimulation caused an increase in anal pressures with bladder involvement only at high current. These initial results suggest that electrical stimulation can increase anal sphincter pressure, enhancing continence control.
Peters, James E; Gupta, Vivek; Saeed, Ibtisam T; Offiah, Curtis; Jawad, Ali S M
2018-05-01
Granulomatosis with polyangiitis (GPA, formerly Wegener's granulomatosis) is a multisystem vasculitis of small- to medium-sized blood vessels. Cranial involvement can result in cranial nerve palsies and, rarely, pituitary infiltration. We describe the case of a 32 year-old woman with limited but severe GPA manifesting as progressive cranial nerve palsies and pituitary dysfunction. Our patient initially presented with localised ENT involvement, but despite treatment with methotrexate, she deteriorated. Granulomatous inflammatory tissue around the skull base resulted in cavernous sinus syndrome, facial nerve palsy, palsies of cranial nerves IX-XII (Collet-Sicard syndrome), and the rare complication of cranial diabetes insipidus due to pituitary infiltration. The glossopharyngeal, vagus and accessory nerve palsies resulted in severe dysphagia and she required nasogastric tube feeding. Her neurological deficits substantially improved with treatment including high dose corticosteroid, cyclophosphamide and rituximab. This case emphasises that serious morbidity can arise from localised cranial Wegener's granulomatosis in the absence of systemic disease. In such cases intensive induction immunosuppression is required. Analysis of previously reported cases of pituitary involvement in GPA reveals that this rare complication predominantly affects female patients.
Bell, Sarah; Shaw-Dunn, John; Gollee, Henrik; Allan, David B; Fraser, Matthew H; McLean, Alan N
2007-08-01
Patients with tetraplegia often have respiratory complications because of paralysis of the abdominal and intercostal muscles. Functional electrical stimulation (FES) has been used to improve breathing in these patients by applying surface stimulation to the abdominal muscles. We aimed to find the best nerves to stimulate directly to increase tidal volume and make cough more effective. Surface electrodes were placed on a patient's abdominal wall to find the optimum points for surface stimulation. These positions were plotted on a transparent sheet. The abdomino-intercostal nerves were dissected in five male dissecting room cadavers matched for size with the patient. The plastic sheet was then superimposed over each of the dissections to clarify the relationship between optimum surface stimulation points and the underlying nerves. Results show that the optimum surface stimulation points overlie the course of abdomino-intercostal nerves T9, 10, and 11. The success with selecting stimulation points associated with T9, 10, and 11 is probably because of the large mass of abdominal muscle supplied by these nerves. The constant position of the nerves below the ribs makes the intercostal space a possible site for direct stimulation of the abdomino-intercostal nerves.
Rodriguez-Falces, Javier; Maffiuletti, Nicola A; Place, Nicolas
2013-11-01
In this study we investigated differences in the spatial recruitment of motor units (MUs) in the quadriceps when electrical stimulation is applied over the quadriceps belly versus the femoral nerve. M-waves and mechanical twitches were evoked using over-the-quadriceps and femoral nerve stimulation of gradually increasing intensity from 22 young, healthy subjects. Spatial recruitment was investigated using recruitment curves of M-waves recorded from the vastus medialis (VM) and vastus lateralis (VL) and of twitches recorded from the quadriceps. At maximal stimulation intensity (Imax), no differences were found between nerve and over-the-quadriceps stimulation. At submaximal intensities, VL M-wave amplitude was higher for over-the-quadriceps stimulation at 40% Imax, and peak twitch force was greater for nerve stimulation at 60% and 80% Imax. For the VM, MU spatial recruitment during nerve and over-the-quadriceps stimulation of increasing intensity occurred in a similar manner, whereas significant differences were observed for the VL. Copyright © 2013 Wiley Periodicals, Inc.
Xue, Ning; Martinez, Ignacio Delgado; Sun, Jianhai; Cheng, Yuhua; Liu, Chunxiu
2018-07-30
Vagus nerve stimulation is an emerging bioelectronic medicine to modulate cardiac function, as the nerve provides parasympathetic innervation to the heart. In this study, we developed a polyimide based 2D cuff electrode to wrap around on the vagus nerve. Thanks to the tiny size and bendable protruding structure of the contact tips of the device, the electrode sites are able to flexibly bend to touch the nerve, selectively record and stimulate the vagus nerve. Gold, platinum and platinum black materials were chosen to compose the electrodes for nerve stimulation and recording, respectively. Since the platinum black has ~30 times larger charge delivery capacity (CDC) than gold, Pt black electrode is used for nerve stimulation. The electrochemical impedance spectroscopy and cyclic voltammetry measurement of the three materials were conducted in vitro, revealing the results of 405 kΩ, 41 kΩ, 10.5 kΩ, @1 kHz and 0.81 mC/cm 2 , 4.26 mC/cm 2 , 25.5 mC/cm 2 , respectively (n = 3). The cuff electrodes were implanted into the right-sided vagus nerve of rats for in vivo experiment. Biphasic current configuration was implemented for nerve stimulation with frequency of 10 Hz, pulse during of 300 μs and various currents stimulus. The result shows the heart beat frequency drops up to 36% during the stimulation and was able to return the regular frequency as stimulation was removed. Subsequently, the vagus nerve signals were recorded with the four channel cuff electrodes. The magnitude of the compound nerve action potentials (CNAPs) is ~10 μV and the signal to noise ratio (SNR) is ~20. Copyright © 2018 Elsevier B.V. All rights reserved.
Vagus Nerve Stimulation for Treating Epilepsy
... and their FAMILIES VAGUS NERVE STIMULATION FOR TREATING EPILEPSY This information sheet is provided to help you ... how vagus nerve stimulation (VNS) may help treat epilepsy. The American Academy of Neurology (AAN) is the ...
Electromechanical Nerve Stimulator
NASA Technical Reports Server (NTRS)
Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.
1993-01-01
Nerve stimulator applies and/or measures precisely controlled force and/or displacement to nerve so response of nerve measured. Consists of three major components connected in tandem: miniature probe with spherical tip; transducer; and actuator. Probe applies force to nerve, transducer measures force and sends feedback signal to control circuitry, and actuator positions force transducer and probe. Separate box houses control circuits and panel. Operator uses panel to select operating mode and parameters. Stimulator used in research to characterize behavior of nerve under various conditions of temperature, anesthesia, ventilation, and prior damage to nerve. Also used clinically to assess damage to nerve from disease or accident and to monitor response of nerve during surgery.
Vertical muscle transposition with silicone band belting in VI nerve palsy
Freitas, Cristina
2016-01-01
A woman aged 60 years developed a Millard-Gubler syndrome after a diagnosis of a cavernous angioma in the median and paramedian areas of the pons. In this context, she presented a right VI nerve palsy, right conjugate gaze palsy, facial palsy and left hemiparesis. To improve the complete VI nerve palsy, we planned a modified transposition approach, in which procedure we made a partial transposition of vertical rectus with a silicone band that was fixated posteriorly. After the procedure, the patient gained the ability to slightly abduct the right eye. We found no compensatory torticollis in the primary position of gaze. There was also an improvement of elevation and depression movements of the right eye. We obtained satisfactory results with a theoretically reversible technique, which is adjustable intraoperatively with no need of muscle detachment, preventing anterior segment ischaemia and allowing simultaneous recession of the medial rectus muscles, if necessary. PMID:27974341
Zausinger, Stefan; Yousry, Indra; Brueckmann, Hartmut; Schmid-Elsaesser, Robert; Tonn, Joerg-Christian
2006-02-01
The indications for resection of cavernous malformations (CMs) of the brainstem include neurological deficits, (recurrent) hemorrhage, and surgically accessible location. In particular, knowledge of the thickness of the parenchymal layer and of the CM's spatial relation to nuclei, tracts, cranial nerves, and vessels is critical for planning the surgical approach. We reviewed the operative treatment of 13 patients with 14 brainstem CMs, with special regard to refined three-dimensional (3D)-constructive interference in steady-state (CISS) magnetic resonance imaging (MRI). Patients were evaluated neurologically and by conventional spin-echo/fast spin-echo and 3D-CISS MRI. Surgery was performed with the use of microsurgical techniques and neurophysiological monitoring. Eleven CMs were located in the pons/pontomedullary region; 10 of the 11 were operated on via the lateral suboccipital approach. Three CMs were located near the floor of the fourth ventricle and operated on via the median suboccipital approach, with total removal of all CMs. Results were excellent or good in 10 patients; one patient transiently required tracheostomy, and two patients developed new hemipareses/ataxia with subsequent improvement. Not only did 3D-CISS sequences allow improved judgment of the thickness of the parenchymal layer over the lesion compared with spin-echo/fast spin-echo MRI, but 3D-CISS imaging also proved particularly superior in demonstrating the spatial relation of the lesion to fairly "safe" entry zones (e.g., between the trigeminal nerve and the VIIth and VIIIth nerve groups) by displaying the cranial nerves and vessels within the cerebellopontine cistern more precisely. Surgical treatment of brainstem CMs is recommended in symptomatic patients. Especially in patients with lesions situated ventrolaterally, the 3D-CISS sequence seems to be a valuable method for identifying the CM's relation to safe entry zones, thereby facilitating the surgical approach.
Byrne, N. G.; Muir, T. C.
1985-01-01
The response of the bovine retractor penis (BRP) to stimulation of non-adrenergic, non-cholinergic (NANC) inhibitory nerves and to an inhibitory extract prepared from this muscle have been studied using intracellular microelectrode, sucrose gap and conventional mechanical recording techniques. Both inhibitory nerve stimulation and inhibitory extract hyperpolarized the membrane potential and relaxed spontaneous or guanethidine (3 X 10(-5) M)-induced tone. These effects were accompanied by an increase in membrane resistance. Following membrane potential displacement from an average value of -53 +/- 7 mV (n = 184; Byrne & Muir, 1984) inhibitory potentials to nerve stimulation were abolished at approximately -30 mV; there was no evidence of reversal. Displacement by inward hyperpolarizing current over the range -45 to -60 mV increased the inhibitory response to nerve stimulation and to inhibitory extract; at more negative potential values (above approximately -60 mV) the inhibitory potential decreased and was abolished (approximately -103 mV). There was no evidence of reversal. Removal of [K+]o reversibly reduced hyperpolarization to nerve stimulation and inhibitory extract. No enhancement was observed. Increasing the [K+]o to 20 mM reduced the inhibitory potential to nerve stimulation but this was restored by passive membrane hyperpolarization. Inhibitory potentials were obtained at membrane potential values exceeding that of the estimated EK (-49 mV). [Cl-]o-free or [Cl-]o-deficient solutions reduced and abolished (after some 20-25 min) the hyperpolarization produced by inhibitory nerve stimulation or inhibitory extract. The inhibitory potential amplitude following nerve stimulation was not restored by passive displacement of the membrane potential from -26 to -104 mV approximately. Ouabain (1-5 X 10(-5) M) reduced then (45-60 min later) abolished the inhibitory potential to nerve stimulation. The effects of this drug on the extract were not investigated. It is concluded that the inhibitory response to nerve stimulation and extract in the BRP may involve several ionic species. However, unlike that in gastrointestinal muscles the NANC response in the BRP is accompanied by an increased membrane resistance and does not primarily involve K+. The underlying mechanisms for the inhibitory response to both NANC nerve stimulation and inhibitory extract appear to be similar, compatible with the view that the latter may contain the inhibitory transmitter released from these nerves in this tissue. PMID:4027462
NASA Technical Reports Server (NTRS)
Andrews, Russell J.
2003-01-01
Neuromodulation denotes controlled electrical stimulation of the central or peripheral nervous system. The three forms of neuromodulation described in this paper-deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation-were chosen primarily for their demonstrated or potential clinical usefulness. Deep brain stimulation is a completely implanted technique for improving movement disorders, such as Parkinson's disease, by very focal electrical stimulation of the brain-a technique that employs well-established hardware (electrode and pulse generator/battery). Vagus nerve stimulation is similar to deep brain stimulation in being well-established (for the treatment of refractory epilepsy), completely implanted, and having hardware that can be considered standard at the present time. Vagus nerve stimulation differs from deep brain stimulation, however, in that afferent stimulation of the vagus nerve results in diffuse effects on many regions throughout the brain. Although use of deep brain stimulation for applications beyond movement disorders will no doubt involve placing the stimulating electrode(s) in regions other than the thalamus, subthalamus, or globus pallidus, the use of vagus nerve stimulation for applications beyond epilepsy-for example, depression and eating disorders-is unlikely to require altering the hardware significantly (although stimulation protocols may differ). Transcranial magnetic stimulation is an example of an external or non-implanted, intermittent (at least given the current state of the hardware) stimulation technique, the clinical value of which for neuromodulation and neuroprotection remains to be determined.
Andrews, Russell J
2003-05-01
Neuromodulation denotes controlled electrical stimulation of the central or peripheral nervous system. The three forms of neuromodulation described in this paper-deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation-were chosen primarily for their demonstrated or potential clinical usefulness. Deep brain stimulation is a completely implanted technique for improving movement disorders, such as Parkinson's disease, by very focal electrical stimulation of the brain-a technique that employs well-established hardware (electrode and pulse generator/battery). Vagus nerve stimulation is similar to deep brain stimulation in being well-established (for the treatment of refractory epilepsy), completely implanted, and having hardware that can be considered standard at the present time. Vagus nerve stimulation differs from deep brain stimulation, however, in that afferent stimulation of the vagus nerve results in diffuse effects on many regions throughout the brain. Although use of deep brain stimulation for applications beyond movement disorders will no doubt involve placing the stimulating electrode(s) in regions other than the thalamus, subthalamus, or globus pallidus, the use of vagus nerve stimulation for applications beyond epilepsy-for example, depression and eating disorders-is unlikely to require altering the hardware significantly (although stimulation protocols may differ). Transcranial magnetic stimulation is an example of an external or non-implanted, intermittent (at least given the current state of the hardware) stimulation technique, the clinical value of which for neuromodulation and neuroprotection remains to be determined.
Salmasi, Amirali; Lee, Geun Taek; Patel, Neal; Goyal, Ritu; Dinizo, Michael; Kwon, Young Suk; Modi, Part K; Faiena, Izak; Kim, Hee-Jin; Lee, Nara; Hannan, Johanna L; Kohn, Joachim; Kim, Isaac Yi
2016-12-01
There is no consensus on the best oral phosphodiesterase type 5 inhibitor (PDE5I) for patients undergoing penile rehabilitation after surgical nerve injury. To determine the mechanism of PDE5I on cultured neuronal cells and the effectiveness of local drug delivery using nanospheres (NSPs) to sites of nerve injury in a rat model of bilateral cavernous nerve injury (BCNI). The effects of sildenafil, tadalafil, and vardenafil on cyclic adenosine monophosphate, cyclic guanosine monophosphate, and cell survival after exposure to hypoxia and H 2 O 2 were measured in PC12, SH-SY5Y, and NTERA-2 (NT2) cell cultures. The effects of phosphodiesterase type 4 inhibitor (PDE4I) and PDE5I on neuronal cell survival were evaluated. Male rats underwent BCNI and were untreated (BCNI), immediately treated with application of empty NSPs (BCNI + NSP), NSPs containing sildenafil (Sild + NSP), or NSPs containing rolipram (Rol + NSP). Viability of neuronal cells was measured. Intracavernous pressure changes after cavernous nerve electrostimulation and expression of neurofilament, nitric oxide synthase, and actin in mid-shaft of penis were analyzed 14 days after injury. Sildenafil and rolipram significantly decreased cell death after exposure to H 2 O 2 and hypoxia in PC12, SH-SY5Y, and NT2 cells. PC12 cells did not express PDE5 and knockdown of PDE4 significantly increased cell viability in PC12, SH-SY5Y, and NT2 cells exposed to hypoxia. The ratio of intracavernous pressure to mean arterial pressure and expression of penile neurofilament, nitric oxide synthase, and actin were significantly higher in the Sild + NSP and Rol + NSP groups than in the BCNI and BCNI + NSP groups. Limitations included analysis in only two PDE families using only a single dose. Sildenafil showed the most profound neuroprotective effect compared with tadalafil and vardenafil. Sildenafil- or rolipram-loaded NSP delivery to the site of nerve injury prevented erectile dysfunction and led to increased neurofilament, nitric oxide synthase, smooth muscle content in rat penile tissue after BCNI. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Andersson, P O; Bloom, S R; Järhult, J
1983-01-01
1. The effects of stimulation of the pelvic nerves in atropinized cats at continuous, low frequencies from 1 to 16 Hz (continuous stimulation) were compared with those of stimulation at higher frequencies (10-160 Hz) delivered in 1 s bursts at 10 s intervals (stimulation in bursts), the latter simulating a commonly observed discharge pattern in vivo. Both types of stimulation evoked a transient vasodilatation. Stimulation in bursts at 20 and 40 Hz evoked more pronounced vasodilatations than continuous stimulation delivering exactly the same number of impulses over the whole period of excitation. 2. Stimulation of the pelvic nerves in bursts failed to elicit an effective contraction of the colon at any frequency tested, whereas continuous stimulation invariably evoked a contraction. 3. There was a clear-cut increase in the output of vasoactive intestinal polypeptide during both continuous and intermittent stimulation of the pelvic nerves. Stimulation in bursts caused a small but significant increase in the output of somatostatin but there was no change in the output of substance P in response to either type of pelvic nerve stimulation. 4. The colonic muscular contraction in response to continuous stimulation of the pelvic nerves was not affected by somatostatin when infused intra-arterially at the large dose of 1.0 microgram/min. 5. It is concluded that the colonic responses of atropinized cats to pelvic nerve stimulation can be substantially altered merely by changing the pattern of stimulation. Thus, whereas continuous stimulation produces both muscular contraction and vasodilatation, stimulation in bursts favours vasodilatation but is ineffective in eliciting colonic contraction. PMID:6191025
NEURAL ORGANIZATION OF SENSORY INFORMATIONS FOR TASTE,
TASTE , ELECTROPHYSIOLOGY), (*NERVES, *TONGUE), NERVE CELLS, NERVE IMPULSES, PHYSIOLOGY, NERVOUS SYSTEM, STIMULATION(PHYSIOLOGY), NERVE FIBERS, RATS...HAMSTERS, STIMULATION(PHYSIOLOGY), PERCEPTION, COOLING, BEHAVIOR, PSYCHOPHYSIOLOGY, TEMPERATURE, THRESHOLDS(PHYSIOLOGY), CHEMORECEPTORS , STATISTICAL ANALYSIS, JAPAN
Ghosh, Justin; Singarayar, Suresh; Kabunga, Peter; McGuire, Mark A
2015-06-01
The phrenic nerves may be damaged during catheter ablation of atrial fibrillation. Phrenic nerve function is routinely monitored during ablation by stimulating the right phrenic nerve from a site in the superior vena cava (SVC) and manually assessing the strength of diaphragmatic contraction. However the optimal stimulation site, method of assessing diaphragmatic contraction, and techniques for monitoring the left phrenic nerve have not been established. We assessed novel techniques to monitor phrenic nerve function during cryoablation procedures. Pacing threshold and stability of phrenic nerve capture were assessed when pacing from the SVC, left and right subclavian veins. Femoral venous pressure waveforms were used to monitor the strength of diaphragmatic contraction. Stable capture of the left phrenic nerve by stimulation in the left subclavian vein was achieved in 96 of 100 patients, with a median capture threshold of 2.5 mA [inter-quartile range (IQR) 1.4-5.0 mA]. Stimulation of the right phrenic nerve from the subclavian vein was superior to stimulation from the SVC with lower pacing thresholds (1.8 mA IQR 1.4-3.3 vs. 6.0 mA IQR 3.4-8.0, P < 0.001). Venous pressure waveforms were obtained in all patients and attenuation of the waveform was always observed prior to onset of phrenic nerve palsy. The left phrenic nerve can be stimulated from the left subclavian vein. The subclavian veins are the optimal sites for phrenic nerve stimulation. Monitoring the femoral venous pressure waveform is a novel technique for detecting impending phrenic nerve damage. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.
Schiefer, Matthew; Gamble, Jenniffer; Strohl, Kingman Perkins
2018-06-07
Obstructive sleep apnea (OSA) is a disorder characterized by collapse of the velopharynx and/or oropharynx during sleep when drive to the upper airway is reduced. Here, we explore an indirect approach for activation of upper airway muscles which might affect airway dynamics- unilateral electrical stimulation of the afferent fibers of the sciatic nerve- in an anesthetized rabbit model. A nerve cuff electrode was placed around the sciatic and hypoglossal nerves to deliver stimulus while air flow, air pressure, and alae nasi electromyogram (EMG) were monitored both prior to and after sciatic transection. Sciatic nerve stimulation increased respiratory effort, rate, and alae nasi EMG, which persisted for seconds after stimulation; however, upper airway resistance was unchanged. Hypoglossal stimulation reduced resistance without altering drive. While sciatic nerve stimulation is not ideal for treating obstructive sleep apnea, it remains a target for altering respiratory drive.
Endogenous angiotensin affects responses to stimulation of baroreceptor afferent nerves.
DiBona, Gerald F; Jones, Susan Y
2003-08-01
To study effects of endogenous angiotensin II on responses to standardized stimulation of afferent neural input into the central portion of the arterial and cardiac baroreflexes. Different dietary sodium intakes were used to physiologically alter endogenous angiotensin II activity. Candesartan, an angiotensin II type 1 receptor antagonist, was used to assess dependency of observed effects on angiotensin II stimulation of angiotensin II type 1 receptors. Electrical stimulation of arterial and cardiac baroreflex afferent nerves was used to provide a standardized input to the central portion of the arterial and cardiac baroreflexes. In anesthetized rats in balance on low, normal and high dietary sodium intake, arterial pressure, heart rate and renal sympathetic nerve activity responses to electrical stimulation of vagus and aortic depressor nerves were determined. Compared with plasma renin activity values in normal dietary sodium intake rats, those from low dietary sodium intake rats were higher and those from high dietary sodium intake rats were lower. During vagus nerve stimulation, the heart rate, arterial pressure and renal sympathetic nerve activity responses were similar in all three dietary sodium intake groups. During aortic depressor nerve stimulation, the heart rate and arterial pressure responses were similar in all three dietary sodium intake groups. However, the renal sympathetic nerve activity response was significantly greater in the low sodium group than in the normal and high sodium group at 4, 8 and 16 Hz. Candesartan administered to low dietary sodium intake rats had no effect on the heart rate and arterial pressure responses to either vagus or aortic depressor nerve stimulation but increased the magnitude of the renal sympathoinhibitory responses. Increased endogenous angiotensin II in rats on a low dietary sodium intake attenuates the renal sympathoinhibitory response to activation of the cardiac and sinoaortic baroreflexes by standardized vagus and aortic depressor nerve stimulation, respectively.
Bhatt, Y M; Hans, P S; Belloso, A
2010-05-01
Vagus nerve stimulators are devices used in the management of patients with drug-refractory epilepsy unsuitable for resective or disconnective surgery. Implanted usually by neurosurgeons, these devices are infrequently encountered by otolaryngologists. Despite significant anti-seizure efficacy, side effects related to laryngopharyngeal stimulation are not uncommon. A 28-year-old man with a history of effective vagus nerve stimulator use presented with a cluster of seizures and respiratory distress associated with intermittent stridor. The duration of stridor corresponded to the period of vagus nerve stimulation. Endoscopy revealed forced adduction of the left vocal fold against a medialised right vocal fold. The device was switched off and the stridor immediately resolved. Airway compromise is an under-recognised side effect of vagus nerve stimulation. We describe the first known case of stridor and contralateral vocal fold palsy in a vagus nerve stimulator user. We highlight the need for better understanding amongst otolaryngologists of the laryngopharyngeal side effects of this technology.
Optical stimulation of the facial nerve: a surgical tool?
NASA Astrophysics Data System (ADS)
Richter, Claus-Peter; Teudt, Ingo Ulrik; Nevel, Adam E.; Izzo, Agnella D.; Walsh, Joseph T., Jr.
2008-02-01
One sequela of skull base surgery is the iatrogenic damage to cranial nerves. Devices that stimulate nerves with electric current can assist in the nerve identification. Contemporary devices have two main limitations: (1) the physical contact of the stimulating electrode and (2) the spread of the current through the tissue. In contrast to electrical stimulation, pulsed infrared optical radiation can be used to safely and selectively stimulate neural tissue. Stimulation and screening of the nerve is possible without making physical contact. The gerbil facial nerve was irradiated with 250-μs-long pulses of 2.12 μm radiation delivered via a 600-μm-diameter optical fiber at a repetition rate of 2 Hz. Muscle action potentials were recorded with intradermal electrodes. Nerve samples were examined for possible tissue damage. Eight facial nerves were stimulated with radiant exposures between 0.71-1.77 J/cm2, resulting in compound muscle action potentials (CmAPs) that were simultaneously measured at the m. orbicularis oculi, m. levator nasolabialis, and m. orbicularis oris. Resulting CmAP amplitudes were 0.3-0.4 mV, 0.15-1.4 mV and 0.3-2.3 mV, respectively, depending on the radial location of the optical fiber and the radiant exposure. Individual nerve branches were also stimulated, resulting in CmAP amplitudes between 0.2 and 1.6 mV. Histology revealed tissue damage at radiant exposures of 2.2 J/cm2, but no apparent damage at radiant exposures of 2.0 J/cm2.
Useful Method for Intraoperative Monitoring of Facial Nerve in a Scarred Bed.
Aysal, Bilge Kagan; Yapici, Abdulkerim; Bayram, Yalcin; Zor, Fatih
2016-10-01
Facial nerve is the main cranial nerve for the innervation of facial expression muscles. Main trunk of facial nerve passes approximately 1 to 2 cm deep to tragal pointer. In some patients, where a patient has multiple operations, fibrosis due to previous operations may change the natural anatomy and direction of the branches of facial nerve. A 22-year-old male patient had 2 operations for mandibular reconstruction after gunshot wound. During the second operation, there was a possible injury to the marginal mandibular nerve and a nerve stimulator was used intraoperatively to monitor the nerve at the tragal pointer because the excitability of the distal segments remains intact for 24 to 48 hours after nerve injuries. Thus, using a nerve stimulator at the operational site may lead to false-positive muscle movements in case of injuries. Using the nerve stimulator to stimulate the main trunk at the tragal point may help to distinguish the presence of possible injuries. A reliable method for intraoperative facial nerve monitoring in a scarred operational site was introduced in this letter.
Elserty, Noha; Kattabei, Omaima; Elhafez, Hytham
2016-07-01
This study aimed to investigate the effect of adjusting pulse amplitude of transcutaneous electrical nerve stimulation versus fixed pulse amplitude in treatment of chronic mechanical low back pain. Randomized clinical trial. El-sahel Teaching Hospital, Egypt. Forty-five patients with chronic low back pain assigned to three equal groups. Their ages ranged from 20 to 50 years. The three groups received the same exercise program. Group A received transcutaneous electrical nerve stimulation with fixed pulse amplitude for 40 minutes. Group B received transcutaneous electrical nerve stimulation with adjusted pulse amplitude for 40 minutes, with the pulse amplitude adjusted every 5 minutes. Group C received exercises only. Treatment sessions were applied three times per week for 4 weeks for the three groups. A visual analogue scale was used to assess pain severity, the Oswestry Disability Index was used to assess functional level, and a dual inclinometer was used to measure lumbar range of motion. Evaluations were performed before and after treatment. Visual analogue scale, Oswestry Disability Index, and back range of motion significantly differed between the two groups that received transcutaneous electrical nerve stimulation and the control group and did not significantly differ between fixed and adjusted pulse amplitude of transcutaneous electrical nerve stimulation. Adjusting pulse amplitude of transcutaneous electrical nerve stimulation does not produce a difference in the effect of transcutaneous electrical nerve stimulation used to treat chronic low back pain.
Heiser, C; Hofauer, B
2017-02-01
Obstructive sleep apnea (OSA) is a common disease in western industrialized countries with increasing prevalence. Gold standard of therapy is nocturnal positive pressure ventilation by continuous positive airway pressure (CPAP). Due to complications and side effects of ventilation, therapy adherence is limited. Recently an alternative surgical treatment has become available for these patients, which uses established techniques to stimulate the hypoglossus nerve to open the upper airway during sleep. The aim of this work is to provide an overview of the history and current state of scientific knowledge of this therapy in the treatment of OSA. Currently, two systems are available on the market: respiratory-driven hypoglossal nerve stimulation (Inspire Medical Systems) and continuous hypoglossal nerve stimulation (ImThera Medical). For respiratory-driven hypoglossal nerve stimulation, a solid body of evidence is available and the therapy has been investigated in numerous multicenter clinical studies with regard to safety and efficacy. Only a small number of publications is available for continuous hypoglossal nerve stimulation. At the end of the last century, promising clinical results were shown in the first patients treated with hypoglossal nerve stimulation. Consequent technological and scientific development of respiratory-driven hypoglossal nerve stimulation in recent years led to its implementation in today's clinical routine. This therapy significantly broadens the spectrum of therapies in the treatment of OSA, especially for patients with CPAP intolerance.
Effect of renal nerve stimulation on responsiveness of the rat renal vasculature.
DiBona, Gerald F; Sawin, Linda L
2002-11-01
When the renal nerves are stimulated with sinusoidal stimuli over the frequency range 0.04-0.8 Hz, low (< or =0.4 Hz)- but not high (> or =0.4 Hz)-frequency oscillations appear in renal blood flow (RBF) and are proposed to increase responsiveness of the renal vasculature to stimuli. This hypothesis was tested in anesthetized rats in which RBF responses to intrarenal injection of norepinephrine and angiotensin and to reductions in renal arterial pressure (RAP) were determined during conventional rectangular pulse and sinusoidal renal nerve stimulation. Conventional rectangular pulse renal nerve stimulation decreased RBF at 2 Hz but not at 0.2 or 1.0 Hz. Sinusoidal renal nerve stimulation elicited low-frequency oscillations (< or =0.4 Hz) in RBF only when the basal carrier signal frequency produced renal vasoconstriction, i.e., at 5 Hz but not at 1 Hz. Regardless of whether renal vasoconstriction occurred, neither conventional rectangular pulse nor sinusoidal renal nerve stimulation altered renal vasoconstrictor responses to norepinephrine and angiotensin. The RBF response to reduction in RAP was altered by both conventional rectangular pulse and sinusoidal renal nerve stimulation only when renal vasoconstriction occurred: the decrease in RBF during reduced RAP was greater. Sinusoidal renal nerve stimulation with a renal vasoconstrictor carrier frequency results in a decrease in RBF with superimposed low-frequency oscillations. However, these low-frequency RBF oscillations do not alter renal vascular responsiveness to vasoconstrictor stimuli.
Ceccato, Guilherme H W; Henning, Lucélio; Prado, Julyana L; Rassi, Marcio S; Borba, Luis A B
2018-05-21
Solitary spinal epidural cavernous angiomas are rare vascular malformations. Surgical excision is the treatment of choice, as these lesions tend to grow or bleed at some point. In this 3-dimensional, narrated video, we present the case of a 61-year-old male who presented with progressive pain in the right paravertebral region secondary to an epidural cavernous angioma located at the T6/T7 level. Under intraoperative neurophysiological monitoring, a laminectomy between T5 and T7 was performed. A reddish, well delimited, and highly vascularized epidural mass was identified and dissected from the adjacent dura and nerve root, and an en bloc total resection was achieved. The patient was discharged neurologically intact on postoperative day 4, presenting a remarkable improvement of his pain at 2-month follow-up. Total excision of these lesions is possible in most of cases, remaining the standard treatment, with minimum complications. All procedures were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All data related to patient identification were removed from this surgical video and manuscript, with no need of a written informed consent.
Long pacing pulses reduce phrenic nerve stimulation in left ventricular pacing.
Hjortshøj, Søren; Heath, Finn; Haugland, Morten; Eschen, Ole; Thøgersen, Anna Margrethe; Riahi, Sam; Toft, Egon; Struijk, Johannes Jan
2014-05-01
Phrenic nerve stimulation is a major obstacle in cardiac resynchronization therapy (CRT). Activation characteristics of the heart and phrenic nerve are different with higher chronaxie for the heart. Therefore, longer pulse durations could be beneficial in preventing phrenic nerve stimulation during CRT due to a decreased threshold for the heart compared with the phrenic nerve. We investigated if long pulse durations decreased left ventricular (LV) thresholds relatively to phrenic nerve thresholds in humans. Eleven patients, with indication for CRT and phrenic nerve stimulation at the intended pacing site, underwent determination of thresholds for the heart and phrenic nerve at different pulse durations (0.3-2.9 milliseconds). The resulting strength duration curves were analyzed by determining chronaxie and rheobase. Comparisons for those parameters were made between the heart and phrenic nerve, and between the models of Weiss and Lapicque as well. In 9 of 11 cases, the thresholds decreased faster for the LV than for the phrenic nerve with increasing pulse duration. In 3 cases, the thresholds changed from unfavorable for LV stimulation to more than a factor 2 in favor of the LV. The greatest change occurred for pulse durations up to 1.5 milliseconds. The chronaxie of the heart was significantly higher than the chronaxie of the phrenic nerve (0.47 milliseconds vs. 0.22 milliseconds [P = 0.029, Lapicque] and 0.79 milliseconds vs. 0.27 milliseconds [P = 0.033, Weiss]). Long pulse durations lead to a decreased threshold of the heart relatively to the phrenic nerve and may prevent stimulation of the phrenic nerve in a clinical setting. © 2013 Wiley Periodicals, Inc.
Functional MRI Detection of Hemodynamic Response of Repeated Median Nerve Stimulation
Ai, Leo; Oya, Hiroyuki; Howard, Matthew; Xiong, Jinhu
2012-01-01
Median nerve stimulation is a commonly used technique in the clinical setting to determine areas of neuronal function in the brain. Neuronal activity of repeated median nerve stimulation is well studied. The cerebral hemodynamic response of the stimulation, on the other hand, is not very clear. In this study, we investigate how cerebral hemodynamics behaves over time using the same repeated median nerve stimulation. Ten subjects received constant repeated electrical stimulation to the right median nerve. Each subject had fMRI scans while receiving said stimulations for seven runs. Our results show that the BOLD signal significantly decreases across each run. Significant BOLD signal decreases can also be seen within runs. These results are consistent with studies that have studied the hemodynamic habituation effect with other forms of stimulation. However, the results do not completely agree with the findings of studies where evoked potentials were examined. Thus, further inquiry of how evoked potentials and cerebral hemodynamics are coupled when using constant stimulations is needed. PMID:23228312
A Nerve Clamp Electrode Design for Indirect Stimulation of Skeletal Muscle
2010-10-01
neurons. This device enables stimulation of muscle contraction indirectly as opposed to contraction from direct muscle stimulation. The electrode is able...to stimulate indirect muscle contraction when tested on ex vivo preparations from rodent phrenic nerve-hemidiaphragm muscle in similar fashion to...unsuccessful in stimulating indirect muscle contraction . Therefore, this novel electrode is useful for physiological assessment of nerve agents and
Stimulation of the human auditory nerve with optical radiation
NASA Astrophysics Data System (ADS)
Fishman, Andrew; Winkler, Piotr; Mierzwinski, Jozef; Beuth, Wojciech; Izzo Matic, Agnella; Siedlecki, Zygmunt; Teudt, Ingo; Maier, Hannes; Richter, Claus-Peter
2009-02-01
A novel, spatially selective method to stimulate cranial nerves has been proposed: contact free stimulation with optical radiation. The radiation source is an infrared pulsed laser. The Case Report is the first report ever that shows that optical stimulation of the auditory nerve is possible in the human. The ethical approach to conduct any measurements or tests in humans requires efficacy and safety studies in animals, which have been conducted in gerbils. This report represents the first step in a translational research project to initiate a paradigm shift in neural interfaces. A patient was selected who required surgical removal of a large meningioma angiomatum WHO I by a planned transcochlear approach. Prior to cochlear ablation by drilling and subsequent tumor resection, the cochlear nerve was stimulated with a pulsed infrared laser at low radiation energies. Stimulation with optical radiation evoked compound action potentials from the human auditory nerve. Stimulation of the auditory nerve with infrared laser pulses is possible in the human inner ear. The finding is an important step for translating results from animal experiments to human and furthers the development of a novel interface that uses optical radiation to stimulate neurons. Additional measurements are required to optimize the stimulation parameters.
1981-01-01
Taking advantage of the fact that nerve terminal mitochondria swell and sequester calcium during repetitive nerve stimulation, we here confirm that this change is caused by calcium influx into the nerve and use this fact to show that botulinum toxin abolishes such calcium influx. The optimal paradigm for producing the mitochondrial changes in normal nerves worked out to be 5 min of stimulation at 25 Hz in frog Ringer's solution containing five time more calcium than normal. Applying this same stimulation paradigm to botulinum-intoxicated nerves produced no mitochondrial changes at all. Only when intoxicated nerves were stimulated in 4-aminopyridine (which grossly exaggerates calcium currents in normal nerves) or when they were soaked in black widow spider venom (which is a nerve-specific calcium ionophore) could nerve mitochondria be induced to swell and accumulate calcium. These results indicate that nerve mitochondria are not damaged directly by the toxin and point instead to a primary inhibition of the normal depolarization- evoked calcium currents that accompany nerve activity. Because these currents normally provide the calcium that triggers transmitter secretion from the nerve, this demonstration of their inhibition helps to explain how botulinum toxin paralyzes. PMID:6259176
Martínez-Salamanca, Juan I; Zurita, Mercedes; Costa, Carla; Martínez-Salamanca, Eduardo; Fernández, Argentina; Castela, Angela; Vaquero, Jesús; Carballido, Joaquín; Angulo, Javier
2016-01-01
Novel effective therapeutic strategies are necessary for treating erectile dysfunction secondary to cavernous nerve injury (CNI). To functionally evaluate the benefits of long-term oral treatment with a phosphodiesterase type 5 inhibitor on the potential capacity of intracavernosal cell therapy to recover erectile function after CNI. Bilateral crush CNI (BCNI) was produced in anesthetized male rats. After BCNI, rats were treated with the phosphodiesterase type 5 inhibitor tadalafil (TAD; 5 mg/kg/d orally; BCNI + TAD), a single intracavernosal injection of bone marrow-derived mesenchymal stem cells (BMSCs; BCNI + BMSC), or dual therapy (BCNI + BMSC + TAD). Ex vivo function of the corpus cavernosum (CC) and in vivo intracavernosal pressure responses to CN electrical stimulation were evaluated 4 weeks after BCNI. Trichrome staining and terminal 2'-deoxyuridine-5'-triphosphate nick-end labeling assay were used for fibrosis and apoptosis determination, respectively, in the CC. In vivo erectile responses in anesthetized rats, ex vivo evaluation of endothelium-dependent relaxation, neurogenic relaxation and neurogenic contraction in CC strips, and histologic evaluation of fibrosis and apoptosis in cavernosal tissue. BCNI resulted in a marked decrease of erectile responses that were partly recovered in the BCNI + TAD and BCNI + BMSC groups. Complete recovery of erectile function was achieved only in the BCNI + BMSC + TAD group. Endothelium-dependent and nitric oxide donor-induced relaxations of the CC were not altered by BCNI or the treatments. BCNI resulted in enhanced neurogenic adrenergic contractions and impaired nitrergic relaxations of the CC. The BCNI + TAD group displayed diminished neurogenic contractions, whereas the BCNI + TAD and BCNI + BMSC groups showed partly recovered nitrergic responses. In the BCNI + BMSC + TAD group, neurogenic contractions were decreased and nitrergic relaxations were normalized. Cavernosal apoptosis and fibrosis were similarly prevented in the BCNI + TAD, BCNI + BMSC, and BCNI + BMSC + TAD groups. A dual strategy combining the intracavernosal injection of BMSCs and oral administration of TAD was superior to individual approaches in normalizing neurogenic control of cavernosal tone and preserving erectile function after CNI, suggesting the potential of this dual strategy in the future management of erectile dysfunction after radical prostatectomy. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Laryngeal and tracheal afferent nerve stimulation evokes swallowing in anaesthetized guinea pigs
Tsujimura, Takanori; Udemgba, Chioma; Inoue, Makoto; Canning, Brendan J
2013-01-01
We describe swallowing reflexes evoked by laryngeal and tracheal vagal afferent nerve stimulation in anaesthetized guinea pigs. The swallowing reflexes evoked by laryngeal citric acid challenges were abolished by recurrent laryngeal nerve (RLN) transection and mimicked by electrical stimulation of the central cut ends of an RLN. By contrast, the number of swallows evoked by upper airway/pharyngeal distensions was not significantly reduced by RLN transection but they were virtually abolished by superior laryngeal nerve transection. Laryngeal citric acid-evoked swallowing was mimicked by laryngeal capsaicin challenges, implicating transient receptor potential vanilloid 1 (TRPV1)-expressing laryngeal afferent nerves arising from the jugular ganglia. The swallowing evoked by citric acid and capsaicin and evoked by electrical stimulation of either the tracheal or the laryngeal mucosa occurred at stimulation intensities that were typically subthreshold for evoking cough in these animals. Swallowing evoked by airway afferent nerve stimulation also desensitized at a much slower rate than cough. We speculate that swallowing is an essential component of airway protection from aspiration associated with laryngeal and tracheal afferent nerve activation. PMID:23858010
Farizon, Brigitte; Gavid, Marie; Karkas, Alexandre; Dumollard, Jean-Marc; Peoc'h, Michel; Prades, Jean-Michel
2017-01-01
The aim of the present study was to evaluate the thyroarytenoid muscle response during bilateral thyroid surgery using vagal nerve stimulation. 195 patients (390 nerves at risk) underwent a total thyroidectomy. The recurrent laryngeal nerve's function was checked by analyzing the amplitude and the latency of the thyroarytenoid muscle's responses after a vagal nerve's stimulation (0.5 and 1 mA) using the NIM3 Medtronic system. All patients were submitted to preoperative and postoperative laryngoscopy. 20 patients get no thyroarytenoid muscle response to the vagal nerve stimulation, and 14 postoperative recurrent laryngeal nerve palsies were confirmed (3.8 %). Two palsies were present after 6 months (0.51 %). All the patients with muscle's response have normal mobility vocal fold. The test sensitivity was 100 % and the test specificity was 98 %. Physiologically, the mean latencies of the muscular potentials for the right RLN were, respectively, 3.89 and 3.83 ms (p > 0.05) for the stimulation at 0.5 and 1 mA. The mean latencies for the left RLN were, respectively, 6.25 and 6.22 ms for the stimulation at 0.5 and 1 mA (p > 0.05). The difference of the latencies between the right and the left nerve was 2.30 ms (1.75-3.25 ms) with a stimulation of 0.5 or 1 mA (p < 0.05). Thyroarytenoid muscle's response via a vagal nerve stimulation showed a functional asymmetry of the laryngeal adduction with a faster right response. Surgically, this method can predict accurately an immediate postoperative vocal folds function in patients undergoing a bilateral thyroid surgery.
Influence of peripheral magnetic stimulation of soleus muscle on H and M waves.
Matsuda, Tadamitsu; Kurayama, Taichi; Tagami, Miki; Fujino, Yuji; Manji, Atsushi; Kusumoto, Yasuaki; Amimoto, Kazu
2018-05-01
[Purpose] This study evaluated the effects of repetitive peripheral magnetic stimulation of the soleus muscle on spinal cord and peripheral motor nerve excitability. [Subjects and Methods] Twelve healthy adults (mean age 22 years) who provided written informed consent were administered repetitive peripheral magnetic stimulation for 10 min. Pre-and post-stimulation latencies and amplitudes of H- and M-waves of the soleus muscle were measured using electromyography and compared using paired t-tests. [Results] Pre- and post-stimulation latencies (28.3 ± 3.3 vs. 29.1 ± 1.3 ms, respectively) and amplitudes (35.8 ± 1.3 vs. 35.8 ± 1.1 mV, respectively) of H-waves were similar. Pre-stimulation latencies of M-waves were significantly higher than post-stimulation latencies (6.1 ± 2.2 vs. 5.0 ± 0.9 ms, respectively), although pre- and post-stimulation amplitudes were similar (12.2 ± 1.4 vs. 12.2 ± 1.3 mV, respectively). Motor neuron excitability, based on the excitability of motor nerves and peripheral nerve action, was increased by M-waves following magnetic stimulation. [Conclusion] The lack of effect of magnetic stimulation on the amplitude and latency of the H-reflex suggests that magnetic stimulation did not activate sensory nerve synapses of α motor neurons in the spinal cord. However, because motor nerves were stimulated together with sensory nerves, the increased H-wave amplitude may have reflected changes in peripheral rather than in α motor nerves.
Neuroprotective effects of vagus nerve stimulation on traumatic brain injury
Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang
2014-01-01
Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue. PMID:25368644
Real time imaging of peripheral nerve vasculature using optical coherence angiography
NASA Astrophysics Data System (ADS)
Vasudevan, Srikanth; Kumsa, Doe; Takmakov, Pavel; Welle, Cristin G.; Hammer, Daniel X.
2016-03-01
The peripheral nervous system (PNS) carries bidirectional information between the central nervous system and distal organs. PNS stimulation has been widely used in medical devices for therapeutic indications, such as bladder control and seizure cessation. Investigational uses of PNS stimulation include providing sensory feedback for improved control of prosthetic limbs. While nerve safety has been well documented for stimulation parameters used in marketed devices, novel PNS stimulation devices may require alternative stimulation paradigms to achieve maximum therapeutic benefit. Improved testing paradigms to assess the safety of stimulation will expedite the development process for novel PNS stimulation devices. The objective of this research is to assess peripheral nerve vascular changes in real-time with optical coherence angiography (OCA). A 1300-nm OCA system was used to image vasculature changes in the rat sciatic nerve in the region around a surface contacting single electrode. Nerves and vasculature were imaged without stimulation for 180 minutes to quantify resting blood vessel diameter. Walking track analysis was used to assess motor function before and 6 days following experiments. There was no significant change in vessel diameter between baseline and other time points in all animals. Motor function tests indicated the experiments did not impair functionality. We also evaluated the capabilities to image the nerve during electrical stimulation in a pilot study. Combining OCA with established nerve assessment methods can be used to study the effects of electrical stimulation safety on neural and vascular tissue in the periphery.
[Sacral nerve stimulation in fecal incontinence].
Rasmussen, Ole Ø; Christiansen, John
2002-08-12
Sacral nerve stimulation for the treatment of faecal incontinence has gained increasing use in Europe over the last two years. Experience with the first patients treated in Denmark is described here. Fourteen patients with severe faecal incontinence were given sacral nerve stimulation. The first treatment was temporary, and if this was successful they had a device for permanent stimulation implanted. The result of the test stimulation was good in ten of the 14 patients and a permanent system was implanted. After a median of 4.5 months' stimulation, nine of the ten patients continued to respond to respond well. Sacral nerve stimulation in the treatment of faecal incontinence shows promising results. Compared to other more advanced forms of treatment, this method is minimally invasive.
Novel Neurostimulation of Autonomic Pelvic Nerves Overcomes Bladder-Sphincter Dyssynergia
Peh, Wendy Yen Xian; Mogan, Roshini; Thow, Xin Yuan; Chua, Soo Min; Rusly, Astrid; Thakor, Nitish V.; Yen, Shih-Cheng
2018-01-01
The disruption of coordination between smooth muscle contraction in the bladder and the relaxation of the external urethral sphincter (EUS) striated muscle is a common issue in dysfunctional bladders. It is a significant challenge to overcome for neuromodulation approaches to restore bladder control. Bladder-sphincter dyssynergia leads to undesirably high bladder pressures, and poor voiding outcomes, which can pose life-threatening secondary complications. Mixed pelvic nerves are potential peripheral targets for stimulation to treat dysfunctional bladders, but typical electrical stimulation of pelvic nerves activates both the parasympathetic efferent pathway to excite the bladder, as well as the sensory afferent pathway that causes unwanted sphincter contractions. Thus, a novel pelvic nerve stimulation paradigm is required. In anesthetized female rats, we combined a low frequency (10 Hz) stimulation to evoke bladder contraction, and a more proximal 20 kHz stimulation of the pelvic nerve to block afferent activation, in order to produce micturition with reduced bladder-sphincter dyssynergia. Increasing the phase width of low frequency stimulation from 150 to 300 μs alone was able to improve voiding outcome significantly. However, low frequency stimulation of pelvic nerves alone evoked short latency (19.9–20.5 ms) dyssynergic EUS responses, which were abolished with a non-reversible proximal central pelvic nerve cut. We demonstrated that a proximal 20 kHz stimulation of pelvic nerves generated brief onset effects at lower current amplitudes, and was able to either partially or fully block the short latency EUS responses depending on the ratio of the blocking to stimulation current. Our results indicate that ratios >10 increased the efficacy of blocking EUS contractions. Importantly, we also demonstrated for the first time that this combined low and high frequency stimulation approach produced graded control of the bladder, while reversibly blocking afferent signals that elicited dyssynergic EUS contractions, thus improving voiding by 40.5 ± 12.3%. Our findings support advancing pelvic nerves as a suitable neuromodulation target for treating bladder dysfunction, and demonstrate the feasibility of an alternative method to non-reversible nerve transection and sub-optimal intermittent stimulation methods to reduce dyssynergia. PMID:29618971
Eid, Issam; Miller, Frank R; Rowan, Stephanie; Otto, Randal A
2013-10-01
To determine the role and efficacy of intraoperative recurrent laryngeal nerve (RLN) stimulation in the prediction of early and permanent postoperative nerve function in thyroid and parathyroid surgery. A retrospective review of thyroid and parathyroid surgeries was performed with calculation of sensitivity and specificity of the response of intraoperative stimulation for different pathological groups. Normal electromyography (EMG) response with 0.5 mAmp stimulation was considered a positive stimulation response with postoperative function determined by laryngoscopy. No EMG response at >1-2 mAmps was considered a negative response. The rates of early and permanent paralysis, as well as sensitivity, specificity, and positive and negative predictive values for postoperative nerve function were calculated for separate pathological groups. The number of nerves at risk analyzed was 909. The overall early and permanent paralysis rates were 3.1% and 1.2%, respectively, with the highest rate being for Grave's disease cases. The overall sensitivity was 98.4%. The specificity was lower at 62.5% but acceptable in thyroid carcinoma and Grave's disease patients. The majority of nerves with a positive stimulation result and postoperative paralysis on laryngoscopy recovered function in 3 to 12 weeks, showing positive stimulation to be a good predictor of eventual recovery. Stimulation of the RLN during thyroid and parathyroid surgery is a useful tool in predicting postoperative RLN function. The sensitivity of stimulation is high, showing positive stimulation to be an excellent predictor of normal nerve function. Negative stimulation is more predictive of paralysis in cases of thyroid carcinoma and Grave's disease. 2b. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
Uchida, Sae; Hotta, Harumi; Hanada, Tomoko; Okuno, Yuka; Aikawa, Yoshihiro
2007-08-01
The effects of thermal stimulation, applied to the hindpaw via a hot bath set to either 40 degrees C (non-noxious) or 49 degrees C (noxious), upon ovarian blood flow were examined in nonpregnant anesthetized rats. Ovarian blood flow was measured using a laser Doppler flowmeter. Blood pressure was markedly increased following 49 degrees C stimulation. Ovarian blood flow, however, showed no obvious change during stimulation, although a small increase was observed after stimulation. Ovarian blood flow and blood pressure responses to 49 degrees C stimulation were abolished after hindlimb somatic nerves proximal to the stimuli were cut. Heat stimulation (49 degrees C) resulted in remarkable increases in both ovarian blood flow and blood pressure in rats in which the sympathetic nerves supplying the ovary were cut but the hindlimb somatic nerves remained intact. The efferent activity of the ovarian plexus nerve was increased during stimulation at 49 degrees C. Stimulation at 40 degrees C had no effect upon ovarian blood flow, blood pressure or ovarian plexus nerve activity. Electrical stimulation of the distal part of the severed ovarian plexus nerve resulted in a decrease in both the diameter of ovarian arterioles, observed using a digital video microscope, and ovarian blood flow.The present results demonstrate that noxious heat, but not non-noxious warm, stimulation of the hindpaw skin in anesthetized rats influences ovarian blood flow in a manner that is attributed to reflex responses in ovarian sympathetic nerve activity and blood pressure.
Skalsky, Andrew J; Lesser, Daniel J; McDonald, Craig M
2015-02-01
Assessing phrenic nerve function in the setting of diaphragmatic paralysis in diaphragm pacing candidates can be challenging. Traditional imaging modalities and electrodiagnostic evaluations are technically difficult. Either modality alone is not a direct measure of the function of the phrenic nerve and diaphragm unit. In this article, the authors present their method for evaluating phrenic nerve function and the resulting diaphragm function. Stimulating the phrenic nerve with transcutaneous stimulation and directly observing the resulting movement of the hemidiaphragm with M-mode ultrasonography provides quantitative data for predicting the success of advancing technologies such as phrenic nerve pacing and diaphragm pacing. Copyright © 2015 Elsevier Inc. All rights reserved.
Vagus nerve stimulation for the treatment of depression and other neuropsychiatric disorders.
George, Mark S; Nahas, Ziad; Borckardt, Jeffrey J; Anderson, Berry; Burns, Carol; Kose, Samet; Short, E Baron
2007-01-01
Vagus nerve stimulation is an interesting new approach to treating neuropsychiatric diseases within the class of brain-stimulation devices sometimes labeled 'neuromodulators'. With vagus nerve stimulation, a battery-powered generator implanted in the chest wall connects to a wire wrapped around the vagus nerve in the neck, and sends intermittent pulses of electricity along the nerve directly into the brain. This mechanism takes advantage of the natural role of the vagus nerve in conveying information into the brain concerning homeostatic information (e.g., hunger, chest pain and respirations). Vagus nerve stimulation therapy is US FDA approved for the adjunctive treatment of epilepsy and has recently been FDA approved for the treatment of medication-resistant depression. Owing to its novel route into the brain, it has no drug-drug interactions or systemic side effects. This treatment also appears to have high long-term tolerability in patients, with low rates of patients relapsing on vagus nerve stimulation or becoming tolerant. However, alongside the excitement and enthusiasm for this new treatment, a lack of Class I evidence of efficacy in treating depression is currently slowing down adoption by psychiatrists. Much more research is needed regarding exactly how to refine and deliver the electrical pulses and how this differentially affects brain function in health and disease.
Li, Yongping; Lao, Jie; Zhao, Xin; Tian, Dong; Zhu, Yi; Wei, Xiaochun
2014-01-01
The distance between the two electrode tips can greatly influence the parameters used for recording compound nerve action potentials. To investigate the optimal parameters for these recordings in the rat median nerve, we dissociated the nerve using different methods and compound nerve action potentials were orthodromically or antidromically recorded with different electrode spacings. Compound nerve action potentials could be consistently recorded using a method in which the middle part of the median nerve was intact, with both ends dissociated from the surrounding fascia and a ground wire inserted into the muscle close to the intact part. When the distance between two stimulating electrode tips was increased, the threshold and supramaximal stimulating intensity of compound nerve action potentials were gradually decreased, but the amplitude was not changed significantly. When the distance between two recording electrode tips was increased, the amplitude was gradually increased, but the threshold and supramaximal stimulating intensity exhibited no significant change. Different distances between recording and stimulating sites did not produce significant effects on the aforementioned parameters. A distance of 5 mm between recording and stimulating electrodes and a distance of 10 mm between recording and stimulating sites were found to be optimal for compound nerve action potential recording in the rat median nerve. In addition, the orthodromic compound action potential, with a biphasic waveform that was more stable and displayed less interference (however also required a higher threshold and higher supramaximal stimulus), was found to be superior to the antidromic compound action potential. PMID:25206798
Autistic spectrum disorder, epilepsy, and vagus nerve stimulation.
Hull, Mariam Mettry; Madhavan, Deepak; Zaroff, Charles M
2015-08-01
In individuals with a comorbid autistic spectrum disorder and medically refractory epilepsy, vagus nerve stimulation may offer the potential of seizure control and a positive behavioral side effect profile. We aimed to examine the behavioral side effect profile using longitudinal and quantitative data and review the potential mechanisms behind behavioral changes. We present a case report of a 10-year-old boy with autistic spectrum disorder and epilepsy, who underwent vagus nerve stimulation subsequent to unsuccessful treatment with antiepileptic medication. Following vagus nerve stimulation implantation, initial, if temporary, improvement was observed in seizure control. Modest improvements were also observed in behavior and development, improvements which were observed independent of seizure control. Vagus nerve stimulation in autistic spectrum disorder is associated with modest behavioral improvement, with unidentified etiology, although several candidates for this improvement are evident.
Modern management of epilepsy: Vagus nerve stimulation.
Ben-Menachem, E
1996-12-01
Vagus nerve stimulation (VNS) was first tried as a treatment for seizure patients in 1988. The idea to stimulate the vagus nerve and disrupt or prevent seizures was proposed by Jacob Zabarra. He observed a consistent finding among several animal studies which indicated that stimulation of the vagus nerve could alter the brain wave patterns of the animals under study. His hypothesis formed the basis for the development of the vagus nerve stimulator, an implantable device similar to a pacemaker, which is implanted in the left chest and attached to the left vagus nerve via a stimulating lead. Once implanted, the stimulator is programmed by a physician to deliver regular stimulation 24 hours a day regardless of seizure activity. Patients can also activate extra 'on-demand' stimulation with a handheld magnet. Clinical studies have demonstrated VNS therapy to be a safe and effective mode of treatment when added to the existing regimen of severe, refractory patients with epilepsy. Efficacy ranges from seizure free to no response with the majority of patients (> 50%) reporting at least a 50% improvement in number of seizures after 1.5 years of treatment. The side-effect profile is unique and mostly includes stimulation-related sensations in the neck and throat. The mechanism of action for VNS is not clearly understood although two theories have emerged. First, the direct connection theory hypothesizes that the anticonvulsant action of VNS is caused by a threshold raising effect of the connections to the nucleus of the solitary tract and on to other structures. The second is the concept that chronic stimulation of the vagus nerve increases the amount of inhibitory neurotransmitters and decreases the amount of excitatory neurotransmitters. Additional research into the optimal use of VNS is ongoing. Animal and clinical research have produced some interesting new data suggesting there are numerous ways to improve the clinical performance of vagus nerve stimulation as a treatment for refractory patients.
The effect of dentinal stimulation on pulp nerve function and pulp morphology in the dog.
Hirvonen, T J; Närhi, M V
1986-11-01
The effect of dentinal stimulation on pulpal nerve responses and pulp morphology has been studied in the dog. Canine tooth (n = 25) dentin was stimulated by drilling, probing, and air-blasting for from two to five hours. Acid-etching was used to open dentinal tubules. All test teeth showed disruption of the odontoblast layer and its separation from the predentin; also, dislocation of odontoblast nuclei into dentinal tubules was found in most cases. Single-fiber (n = 14, conduction velocity = 24.3 +/- 7.4 (SD) m/s) recordings of the responses of canine tooth pulpal nerves to dentinal stimulation were made in ten of the stimulated teeth. No changes in the sensitivity of the nerves to dentinal stimulation could be detected. It is concluded that pulpal nerve function and morphological changes of the pulp are not clearly correlated. The condition of the dentin surface seems to be the important factor.
High-resolution measurement of electrically-evoked vagus nerve activity in the anesthetized dog
NASA Astrophysics Data System (ADS)
Yoo, Paul B.; Lubock, Nathan B.; Hincapie, Juan G.; Ruble, Stephen B.; Hamann, Jason J.; Grill, Warren M.
2013-04-01
Objective. Not fully understanding the type of axons activated during vagus nerve stimulation (VNS) is one of several factors that limit the clinical efficacy of VNS therapies. The main goal of this study was to characterize the electrical recruitment of both myelinated and unmyelinated fibers within the cervical vagus nerve. Approach. In anesthetized dogs, recording nerve cuff electrodes were implanted on the vagus nerve following surgical excision of the epineurium. Both the vagal electroneurogram (ENG) and laryngeal muscle activity were recorded in response to stimulation of the right vagus nerve. Main results. Desheathing the nerve significantly increased the signal-to-noise ratio of the ENG by 1.2 to 9.9 dB, depending on the nerve fiber type. Repeated VNS following nerve transection or neuromuscular block (1) enabled the characterization of A-fibers, two sub-types of B-fibers, and unmyelinated C-fibers, (2) confirmed the absence of stimulation-evoked reflex compound nerve action potentials in both the ipsilateral and contralateral vagus nerves, and (3) provided evidence of stimulus spillover into muscle tissue surrounding the stimulating electrode. Significance. Given the anatomical similarities between the canine and human vagus nerves, the results of this study provide a template for better understanding the nerve fiber recruitment patterns associated with VNS therapies.
2009-03-01
wavelength, pulse energy, and pulse rate) to produce strongest and most rapid erectile response as measured by intracavernosal pressure in the penis ...PC Fiber Rod Housing Optics 5-mm-ID Port Probe Handle Probe Stem Enlarged View of Probe Tip Oscilloscope FunctionGenerator Thulium Fiber Laser Shutter...rapid erectile response as measured by intracavernosal pressure (ICP) in the penis . ICP values were increased from an initial range of 30-40 mmHg
2010-03-01
of near- IR l ight as a f unction of source-detector distance. The effective attenuation coefficient (μeff) and optical penetration depth (OPD...were then calculated for near- IR wavelengths of 1064, 1307, and 1555 nm (Table 1). A total of ten canine samples were used for this study. At...Diego, CA, 2009). Chitchian S, Fried NM. Near- IR optical properties of canine prostate tissue using oblique incidence reflectometry. Proc. SPIE
NASA Astrophysics Data System (ADS)
Song, Yong-Ak; Melik, Rohat; Rabie, Amr N.; Ibrahim, Ahmed M. S.; Moses, David; Tan, Ara; Han, Jongyoon; Lin, Samuel J.
2011-12-01
Conventional functional electrical stimulation aims to restore functional motor activity of patients with disabilities resulting from spinal cord injury or neurological disorders. However, intervention with functional electrical stimulation in neurological diseases lacks an effective implantable method that suppresses unwanted nerve signals. We have developed an electrochemical method to activate and inhibit a nerve by electrically modulating ion concentrations in situ along the nerve. Using ion-selective membranes to achieve different excitability states of the nerve, we observe either a reduction of the electrical threshold for stimulation by up to approximately 40%, or voluntary, reversible inhibition of nerve signal propagation. This low-threshold electrochemical stimulation method is applicable in current implantable neuroprosthetic devices, whereas the on-demand nerve-blocking mechanism could offer effective clinical intervention in disease states caused by uncontrolled nerve activation, such as epilepsy and chronic pain syndromes.
Borch, Luise; Hagstroem, Soeren; Kamperis, Konstantinos; Siggaard, C V; Rittig, Soeren
2017-08-01
We evaluated whether combination therapy with transcutaneous electrical nerve stimulation and oxybutynin results in a superior treatment response compared to either therapy alone in children with urge incontinence. In this placebo controlled study 66 children with a mean ± SD age of 7.3 ± 1.6 years who were diagnosed with urge incontinence were randomized to 3 treatment groups. Group 1 consisted of 22 children undergoing transcutaneous electrical nerve stimulation plus active oxybutynin administration. Group 2 included 21 children undergoing active transcutaneous electrical nerve stimulation plus placebo oxybutynin administration. Group 3 consisted of 23 children undergoing active oxybutynin administration plus placebo transcutaneous electrical nerve stimulation. The children received active or placebo transcutaneous electrical nerve stimulation over the sacral S2 to S3 outflow for 2 hours daily in combination with 5 mg active or placebo oxybutynin twice daily. The intervention period was 10 weeks. Primary outcome was number of wet days weekly. Secondary outcomes were severity of incontinence, frequency, maximum voided volume over expected bladder capacity for age, average voided volume over expected bladder capacity for age and visual analogue scale score. Combination therapy was superior to oxybutynin monotherapy, with an 83% greater chance of treatment response (p = 0.05). Combination therapy was also significantly more effective than transcutaneous electrical nerve stimulation monotherapy regarding reduced number of wet days weekly (mean difference -2.28, CI -4.06 to -0.49), severity of incontinence (-3.11, CI -5.98 to -0.23) and daily voiding frequency (-2.82, CI -4.48 to -1.17). Transcutaneous electrical nerve stimulation in combination with oxybutynin for childhood urge incontinence was superior to monotherapy consisting of transcutaneous electrical nerve stimulation or oxybutynin, although the latter only reached borderline statistical significance. Furthermore, transcutaneous electrical nerve stimulation was associated with a decreased risk of oxybutynin induced post-void residual urine greater than 20 ml. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Synergistic nonuniform shortening of atrial refractory period induced by autonomic stimulation.
Takei, M; Furukawa, Y; Narita, M; Ren, L M; Karasawa, Y; Murakami, M; Chiba, S
1991-12-01
We investigated the nonuniform effects of autonomic nerve stimulation of the effective refractory period (ERP) of the right atrium in the anesthetized dog. Stimulation of the discrete intracardiac sympathetic nerves to the sinoatrial (SA) nodal region uniformly shortened ERPs at three sites in the right atrium after administration of atropine. Right ansa subclavia (RS) stimulation similarly shortened ERPs in the absence of atropine. Stimulation of the discrete intracardiac parasympathetic nerves to the SA nodal region (SAP stimulation) shortened ERPs of the right atrium in a nonuniform manner. Simultaneous RS and SAP stimulation additively shortened ERPs at each site and decreased sinus rate much more than SAP stimulation alone. Shortening of ERP induced by SAP stimulation was greater than that induced by RS stimulation at similar absolute changes in heart rate. These results suggest that simultaneous activation of sympathetic and parasympathetic nerves nonuniformly shortens the ERP in the right atrium as the algebraic sum of the individual responses to each stimulation. However, parasympathetics exert the principal neural control over atrial ERP.
Kottink, Anke I R; Tenniglo, Martin J B; de Vries, Wiebe H K; Hermens, Hermie J; Buurke, Jaap H
2012-01-01
The aims of this study were: (i) to compare the neuro-prosthetic effect of implantable peroneal nerve stimulation to the orthotic effect of a standard of care intervention (no device, shoe or ankle foot orthosis) on walking, as assessed by spatiotemporal parameters; and (ii) to examine whether there is evidence of an enhanced lower-limb flexion reflex with peroneal nerve stimulation and compare the kinematic effect of an implantable peroneal nerve stimulation device vs standard of care intervention on initial loading response of the paretic limb, as assessed by hip, knee and ankle kinematics. Randomized controlled trial. A total of 23 chronic stroke survivors with drop foot. The intervention group received an implantable 2-channel peroneal nerve stimulator for correction of drop foot. The control group continued using a conventional walking device. Spatiotemporal parameters and hip, knee and ankle kinematics were measured while subjects walked with the device on using a 3-dimensional video camera system during baseline and after a follow-up period of 26 weeks. Peroneal nerve stimulation normalized stance and double support of the paretic limb and single support of the non-paretic limb, in comparison with using a conventional walking device. In addition, peroneal nerve stimulation is more effective to provide ankle dorsiflexion during swing and resulted in a normalized initial loading response. Although peroneal nerve stimulation and ankle foot orthosis are both prescribed to correct a drop foot in the same patient population, spatiotemporal parameters, dorsiflexion during swing and loading response are influenced in a functionally different way.
Uludag, Mehmet; Aygun, Nurcihan; Isgor, Adnan
2017-06-01
The major component of the upper esophageal sphincter is the cricopharyngeal muscle (CPM). We assessed the contribution of the laryngeal nerves to motor innervation of the CPM. We performed an intraoperative electromyographic study of 27 patients. The recurrent laryngeal nerve (RLN), vagus nerve, external branch of the superior laryngeal nerve (EBSLN), and pharyngeal plexus (PP) were stimulated. Responses were evaluated by visual observation of CPM contractions and electromyographic examination via insertion of needle electrodes into the CPM. In total, 46 CPMs (24 right, 22 left) were evaluated. PP stimulation produced both positive visual contractions and electromyographic (EMG) responses in 42 CPMs (2080 ± 1583 μV). EBSLN stimulation produced visual contractions of 28 CPMs and positive EMG responses in 35 CPMs (686 ± 630 μV). Stimulation of 45 RLNs produced visible contractions of 37 CPMs and positive EMG activity in 41 CPMs (337 ± 280 μV). Stimulation of 42 vagal nerves resulted in visible contractions of 36 CPMs and positive EMG responses in 37 CPMs (292 ± 229 μV). Motor activity was noted in 32 CPMs by both RLN and EBSLN stimulation, 9 CPMs by RLN stimulation, and 3 CPMs by EBSLN stimulation; 2 CPMs exhibited no response. This is the first study to show that the EBSLN contributes to motor innervation of the human CPM. The RLN, EBSLN, or both of the nerves innervate the 90, 75, and 70 % of the CPMs ipsilaterally, respectively.
Tsui, B C
2014-04-01
Using a simple surface nerve stimulation system, I examined the effects of general anaesthesia on rheobase (the minimum current required to stimulate nerve activity) and chronaxie (the minimum time for a stimulus twice the rheobase to elicit nerve activity). Nerve stimulation was used to elicit a motor response from the ulnar nerve at varying pulse widths before and after induction of general anaesthesia. Mean (SD) rheobase before and after general anaesthesia was 0.91 (0.37) mA (95% CI 0.77-1.04 mA) and 1.11 (0.53) mA (95% CI 0.92-1.30 mA), respectively. Mean (SD) chronaxie measured before and after general anaesthesia was 0.32 (0.17) ms (95% CI 0.26-0.38 ms) and 0.29 (0.13) ms (95% CI 0.24-0.33 ms), respectively. Under anaesthesia, rheobase values increased by an average of 20% (p = 0.05), but chronaxie values did not change significantly (p = 0.39). These results suggest that threshold currents used for motor response from nerve stimulation under general anaesthesia might be higher than those used in awake patients. © 2014 The Association of Anaesthetists of Great Britain and Ireland.
Preoperative transcutaneous electrical nerve stimulation for localizing superficial nerve paths.
Natori, Yuhei; Yoshizawa, Hidekazu; Mizuno, Hiroshi; Hayashi, Ayato
2015-12-01
During surgery, peripheral nerves are often seen to follow unpredictable paths because of previous surgeries and/or compression caused by a tumor. Iatrogenic nerve injury is a serious complication that must be avoided, and preoperative evaluation of nerve paths is important for preventing it. In this study, transcutaneous electrical nerve stimulation (TENS) was used for an in-depth analysis of peripheral nerve paths. This study included 27 patients who underwent the TENS procedure to evaluate the peripheral nerve path (17 males and 10 females; mean age: 59.9 years, range: 18-83 years) of each patient preoperatively. An electrode pen coupled to an electrical nerve stimulator was used for superficial nerve mapping. The TENS procedure was performed on patients' major peripheral nerves that passed close to the surgical field of tumor resection or trauma surgery, and intraoperative damage to those nerves was apprehensive. The paths of the target nerve were detected in most patients preoperatively. The nerve paths of 26 patients were precisely under the markings drawn preoperatively. The nerve path of one patient substantially differed from the preoperative markings with numbness at the surgical region. During surgery, the nerve paths could be accurately mapped preoperatively using the TENS procedure as confirmed by direct visualization of the nerve. This stimulation device is easy to use and offers highly accurate mapping of nerves for surgical planning without major complications. The authors conclude that TENS is a useful tool for noninvasive nerve localization and makes tumor resection a safe and smooth procedure. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Neurostimulation for Drug-Resistant Epilepsy
DeGiorgio, Christopher M.; Krahl, Scott E.
2013-01-01
Purpose of Review: The purpose of this review is to provide an evidence-based update on the neurostimulation options available for patients with drug-resistant epilepsy in the United States and in European countries. Recent Findings: The field of neurostimulation for epilepsy has grown dramatically since 1997, when vagus nerve stimulation became the first device to be approved for epilepsy by the US Food and Drug Administration (FDA). New data from recently completed randomized controlled trials are available for deep brain stimulation of the anterior thalamus, responsive neurostimulation, and trigeminal nerve stimulation. Although vagus nerve stimulation is the only device currently approved in the United States, deep brain stimulation and responsive neurostimulation devices are awaiting FDA approval. Deep brain stimulation, trigeminal nerve stimulation, and transcutaneous vagus nerve stimulation are now approved for epilepsy in the European Union. In this article, the mechanisms of action, safety, and efficacy of new neurostimulation devices are reviewed, and the key advantages and disadvantages of each are discussed. Summary: The exponential growth of the field of neuromodulation for epilepsy is an exciting development; these new devices provide physicians with new options for patients with drug-resistant epilepsy. PMID:23739108
42 CFR 414.232 - Special payment rules for transcutaneous electrical nerve stimulators (TENS).
Code of Federal Regulations, 2010 CFR
2010-10-01
... nerve stimulators (TENS). 414.232 Section 414.232 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... Special payment rules for transcutaneous electrical nerve stimulators (TENS). (a) General payment rule. Except as provided in paragraph (b) of this section, payment for TENS is made on a purchase basis with...
Liu, Spencer S; John, Raymond S
2010-01-01
Ultrasound guidance for regional anesthesia has increased in popularity. However, the cost of ultrasound versus nerve stimulator guidance is controversial, as multiple and varying cost inputs are involved. Sensitivity analysis allows modeling of different scenarios and determination of the relative importance of each cost input for a given scenario. We modeled cost per patient of ultrasound versus nerve stimulator using single-factor sensitivity analysis for 4 different clinical scenarios designed to span the expected financial impact of ultrasound guidance. The primary cost factors for ultrasound were revenue from billing for ultrasound (85% of variation in final cost), number of patients examined per ultrasound machine (10%), and block success rate (2.6%). In contrast, the most important input factors for nerve stimulator were the success rate of the nerve stimulator block (89%) and the amount of liability payout for failed airway due to rescue general anesthesia (9%). Depending on clinical scenario, ultrasound was either a profit or cost center. If revenue is generated, then ultrasound-guided blocks consistently become a profit center regardless of clinical scenario in our model. Without revenue, the clinical scenario dictates the cost of ultrasound. In an ambulatory setting, ultrasound is highly competitive with nerve stimulator and requires at least a 96% success rate with nerve stimulator before becoming more expensive. In a hospitalized scenario, ultrasound is consistently more expensive as the uniform use of general anesthesia and hospitalization negate any positive cost effects from greater efficiency with ultrasound.
The role of angiotensin II in the renal responses to somatic nerve stimulation in the rat.
Handa, R K; Johns, E J
1987-01-01
1. Electrical stimulation of the brachial nerves at 3 Hz (15 V, 0.2 ms), in sodium pentobarbitone-anaesthetized rats whose renal arterial pressure was held constant, elicited a 26% increase in systemic blood pressure, a 15% rise in heart rate, an 11% reduction in renal blood flow, did not alter glomerular filtration rate and significantly reduced absolute and fractional sodium excretions and urine flow by 44, 49 and 31%, respectively. 2. In a separate group of rats, brachial nerve stimulation at 3 Hz increased plasma renin activity approximately 2-fold, while in animals in which the brachial nerves were not stimulated plasma renin activity did not change. 3. Following inhibition of the renin-angiotensin system with captopril or sar-1-ile-8-angiotensin II, brachial nerve stimulation resulted in similar increases in systemic blood pressure and heart rate as in the animals with an intact renin-angiotensin system but, in captopril-infused rats, did not change renal haemodynamics or urine flow while absolute and fractional sodium excretions were reduced by 20 and 25%, respectively. In sar-1-ile-8-angiotensin II-infused animals, similar nerve stimulation decreased renal blood flow by 12%, glomerular filtration rate by 7% and absolute and fractional sodium excretions and urine flow by 25, 18 and 18%, respectively. These decreases in sodium and water output were significantly smaller than those observed in animals with an intact renin-angiotensin system. 4. Stimulation of the brachial nerves increased post-ganglionic efferent renal nerve activity by 20% and the magnitude of this response was unaffected following inhibition of the renin-angiotensin system. 5. The results show that low rates of brachial nerve stimulation in the rat can increase efferent renal nerve activity and result in an antinatriuresis and antidiuresis which is dependent on the presence of angiotensin II, and appears to be due to an action of angiotensin II at the level of the kidney. PMID:3328780
Selective stimulation of facial muscles with a penetrating electrode array in the feline model
Sahyouni, Ronald; Bhatt, Jay; Djalilian, Hamid R.; Tang, William C.; Middlebrooks, John C.; Lin, Harrison W.
2017-01-01
Objective Permanent facial nerve injury is a difficult challenge for both patients and physicians given its potential for debilitating functional, cosmetic, and psychological sequelae. Although current surgical interventions have provided considerable advancements in facial nerve rehabilitation, they often fail to fully address all impairments. We aim to introduce an alternative approach to facial nerve rehabilitation. Study design Acute experiments in animals with normal facial function. Methods The study included three anesthetized cats. Four facial muscles (levator auris longus, orbicularis oculi, nasalis, and orbicularis oris) were monitored with a standard electromyographic (EMG) facial nerve monitoring system with needle electrodes. The main trunk of the facial nerve was exposed and a 16-channel penetrating electrode array was placed into the nerve. Electrical current pulses were delivered to each stimulating electrode individually. Elicited EMG voltage outputs were recorded for each muscle. Results Stimulation through individual channels selectively activated restricted nerve populations, resulting in selective contraction of individual muscles. Increasing stimulation current levels resulted in increasing EMG voltage responses. Typically, selective activation of two or more distinct muscles was successfully achieved via a single placement of the multi-channel electrode array by selection of appropriate stimulation channels. Conclusion We have established in the animal model the ability of a penetrating electrode array to selectively stimulate restricted fiber populations within the facial nerve and to selectively elicit contractions in specific muscles and regions of the face. These results show promise for the development of a facial nerve implant system. PMID:27312936
Pubols, L M; Foglesong, M E; Vahle-Hinz, C
1986-04-16
Electrical stimulation of the sural nerve (SN) revealed input from sural nerve afferents to L6 and L7 dorsal horn neurons that were not apparent using natural mechanical stimuli, especially in cells with variable latency responses to SN stimulation. Nearly all (31/32) cells that had reliable, fixed latency responses to SN stimulation also had an excitatory receptive field (RF) in the region of skin innervated by the sural nerve (SN region). About one-third (20/57) of the cells with variable latency responses to SN stimulation, however, had an RF outside the SN region. Most (130/146) cells with no response to SN stimulation had RFs outside the SN region. There were no obvious differences between variable latency cells with RFs in the SN region vs those with RFs outside it in latency of response to SN stimulation, recording depth, RF sizes or modality properties. In a subsample of 31 postsynaptic dorsal column neurons all cells responding to SN stimulation also had an RF in the SN region. Strengthening of relatively ineffective projections from the sural nerve by lesions might be expected to lead to an increase in the proportion of cells responding with impulses to natural stimulation of the skin innervated by the sural nerve, and, hence, to an increase in average RF size.
Zhu, Zhaojun; Hofauer, Benedikt; Heiser, Clemens
2018-06-01
The following report presents a case of two late embedded hypoglossus branches during implantation of an upper airway stimulation device that caused a mixed activation of the tongue when included in the stimulation cuff. In the end, correct cuff placement could be achieved by careful examination of the hypoglossal nerve anatomy, precise nerve dissection, tongue motion analysis and intraoperative nerve monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.
Ogawa, Fumio; Hanamitsu, Masakazu; Ayajiki, Kazuhide; Aimi, Yoshinari; Okamura, Tomio; Shimizu, Takeshi
2010-06-01
Neural control of nasal blood flow (NBF) has not been systematically investigated. The aim of the present study was to evaluate the effect of electrical stimulation of both sensory and parasympathetic nerves innervating the nasal mucosal arteries on NBF in rats. In anesthetized rats, nasociliary (sensory) nerves and postganglionic (parasympathetic) nerves derived from the right sphenopalatine ganglion were electrically stimulated. We measured NBF with a laser-Doppler flowmeter. The nerve stimulation increased NBF on both sides and increased the mean arterial blood pressure. The increase in NBF was larger on the ipsilateral side than on the contralateral side. Hexamethonium bromide, a ganglion blocker, abolished the stimulation-induced pressure effect and the increase in NBF on the contralateral side, but did not abolish the increase in NBF on the ipsilateral side. The remaining increase in NBF was abolished by N(G)-nitro-L-arginine, a nitric oxide synthase inhibitor. Histochemical analysis with nicotinamide adenine dinucleotide phosphate-diaphorase showed neuronal nitric oxide synthase-containing nerves that innervate nasal mucosal arteries. Nitric oxide released from parasympathetic nitrergic nerves may contribute to an increase in NBF in rats. The afferent impulses induced by sensory nerve stimulation may lead to an increase in mean arterial blood pressure that is partly responsible for the increase in NBF.
Sacral nerve stimulation can be an effective treatment for low anterior resection syndrome.
Eftaiha, S M; Balachandran, B; Marecik, S J; Mellgren, A; Nordenstam, J; Melich, G; Prasad, L M; Park, J J
2017-10-01
Sacral nerve stimulation has become a preferred method for the treatment of faecal incontinence in patients who fail conservative (non-operative) therapy. In previous small studies, sacral nerve stimulation has demonstrated improvement of faecal incontinence and quality of life in a majority of patients with low anterior resection syndrome. We evaluated the efficacy of sacral nerve stimulation in the treatment of low anterior resection syndrome using a recently developed and validated low anterior resection syndrome instrument to quantify symptoms. A retrospective review of consecutive patients undergoing sacral nerve stimulation for the treatment of low anterior resection syndrome was performed. Procedures took place in the Division of Colon and Rectal Surgery at two academic tertiary medical centres. Pre- and post-treatment Cleveland Clinic Incontinence Scores and Low Anterior Resection Syndrome scores were assessed. Twelve patients (50% men) suffering from low anterior resection syndrome with a mean age of 67.8 (±10.8) years underwent sacral nerve test stimulation. Ten patients (83%) proceeded to permanent implantation. Median time from anterior resection to stimulator implant was 16 (range 5-108) months. At a median follow-up of 19.5 (range 4-42) months, there were significant improvements in Cleveland Clinic Incontinence Scores and Low Anterior Resection Syndrome scores (P < 0.001). Sacral nerve stimulation improved symptoms in patients suffering from low anterior resection syndrome and may therefore be a viable treatment option. Colorectal Disease © 2017 The Association of Coloproctology of Great Britain and Ireland.
Maharjan, Ashim; Wang, Eunice; Peng, Mei; Cakmak, Yusuf O.
2018-01-01
In past literature on animal models, invasive vagal nerve stimulation using high frequencies has shown to be effective at modulating the activity of the olfactory bulb (OB). Recent advances in invasive vagal nerve stimulation in humans, despite previous findings in animal models, used low frequency stimulation and found no effect on the olfactory functioning. The present article aimed to test potential effects of non-invasive, high and low frequency vagal nerve stimulation in humans, with supplementary exploration of the orbitofrontal cortex using near-infrared spectroscopy (NIRS). Healthy, male adult participants (n = 18) performed two olfactory tests [odor threshold test (OTT) and supra-threshold test (STT)] before and after receiving high-, low frequency vagal nerve stimulation and placebo (no stimulation). Participant's olfactory functioning was monitored using NIRS, and assessed with two behavioral olfactory tests. NIRS data of separate stimulation parameters were statistically analyzed using repeated-measures ANOVA across different stages. Data from olfactory tests were analyzed using paired parametric and non-parametric statistical tests. Only high frequency, non-invasive vagal nerve stimulation was able to positively modulate the performance of the healthy participants in the STT (p = 0.021, Wilcoxon sign-ranked test), with significant differences in NIRS (p = 0.014, post-hoc with Bonferroni correction) recordings of the right hemispheric, orbitofrontal cortex. The results from the current article implore further exploration of the neurocircuitry involved under vagal nerve stimulation and the effects of non-invasive, high frequency, vagal nerve stimulation toward olfactory dysfunction which showcase in Parkinson's and Alzheimer's Diseases. Despite the sufficient effect size (moderate effect, correlation coefficient (r): 0.39 for the STT) of the current study, future research should replicate the current findings with a larger cohort. PMID:29740266
Maharjan, Ashim; Wang, Eunice; Peng, Mei; Cakmak, Yusuf O
2018-01-01
In past literature on animal models, invasive vagal nerve stimulation using high frequencies has shown to be effective at modulating the activity of the olfactory bulb (OB). Recent advances in invasive vagal nerve stimulation in humans, despite previous findings in animal models, used low frequency stimulation and found no effect on the olfactory functioning. The present article aimed to test potential effects of non-invasive, high and low frequency vagal nerve stimulation in humans, with supplementary exploration of the orbitofrontal cortex using near-infrared spectroscopy (NIRS). Healthy, male adult participants ( n = 18) performed two olfactory tests [odor threshold test (OTT) and supra-threshold test (STT)] before and after receiving high-, low frequency vagal nerve stimulation and placebo (no stimulation). Participant's olfactory functioning was monitored using NIRS, and assessed with two behavioral olfactory tests. NIRS data of separate stimulation parameters were statistically analyzed using repeated-measures ANOVA across different stages. Data from olfactory tests were analyzed using paired parametric and non-parametric statistical tests. Only high frequency, non-invasive vagal nerve stimulation was able to positively modulate the performance of the healthy participants in the STT ( p = 0.021, Wilcoxon sign-ranked test), with significant differences in NIRS ( p = 0.014, post-hoc with Bonferroni correction ) recordings of the right hemispheric, orbitofrontal cortex. The results from the current article implore further exploration of the neurocircuitry involved under vagal nerve stimulation and the effects of non-invasive, high frequency, vagal nerve stimulation toward olfactory dysfunction which showcase in Parkinson's and Alzheimer's Diseases. Despite the sufficient effect size (moderate effect, correlation coefficient (r): 0.39 for the STT) of the current study, future research should replicate the current findings with a larger cohort.
Possover, Marc; Forman, Axel
2017-01-01
Introduction: More than 30 years ago, functional electrical stimulation (FES) was developed as an orthotic system to be used for rehabilitation for SCI patients. In the present case report, FES-assisted training was combined with continuous low-frequency stimulation of the pelvic somatic nerves in a SCI patient. Case Presentation: We report on unexpected findings in a 41-year-old man with chronic complete flaccid paraplegia, since he was 18 years old, who underwent spinal stem cell therapy and a laparoscopic implantation of neuroprosthesis (LION procedure) in the pelvic lumbosacral nerves. The patient had complete flaccid sensomotoric paraplegia T12 as a result of a motor vehicle accident in 1998. In June 2011, he underwent a laparoscopic implantation of stimulation electrodes to the sciatic and femoral nerves for continuous low-frequency electrical stimulation and functional electrical stimulation of the pelvic nerves. Neither intraoperative direct stimulation of the pelvic nerves nor postoperative stimulation induced any sensation or muscle reactions. After 2 years of passive continuous low-frequency stimulation, the patient developed progressive recovery of electrically assisted voluntary motor functions below the lesions: he was first able to extend the right knee and 6 months later, the left. He is currently capable of voluntary weight-bearing standing and walking (with voluntary knee movements) about 50 m with open cuff crutches and drop foot braces. Discussion: Our findings suggest that continuous low-frequency pelvic nerve stimulation in combination with FES-assisted training might induce changes that affect both the upper and the lower motor neuron and allow supra- and infra-spinal inputs to engage residual spinal and peripheral pathways. PMID:28503316
Thibaut, Aurore; Moissenet, Florent; Di Perri, Carol; Schreiber, Céline; Remacle, Angélique; Kolanowski, Elisabeth; Chantraine, Frédéric; Bernard, Claire; Hustinx, Roland; Tshibanda, Jean-Flory; Filipetti, Paul; Laureys, Steven; Gosseries, Olivia
2017-01-01
Recent studies have shown that stimulation of the peroneal nerve using an implantable 4-channel peroneal nerve stimulator could improve gait in stroke patients. To assess structural cortical and regional cerebral metabolism changes associated with an implanted peroneal nerve electrical stimulator to correct foot drop related to a central nervous system lesion. Two stroke patients presenting a foot drop related to a central nervous system lesion were implanted with an implanted peroneal nerve electrical stimulator. Both patients underwent clinical evaluations before implantation and one year after the activation of the stimulator. Structural magnetic resonance imaging (MRI) and [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) were acquired before and one year after the activation of the stimulator. Foot drop was corrected for both patients after the implantation of the stimulator. After one year of treatment, patient 1 improved in three major clinical tests, while patient 2 only improved in one test. Prior to treatment, FDG-PET showed a significant hypometabolism in premotor, primary and supplementary motor areas in both patients as compared to controls, with patient 2 presenting more widespread hypometabolism. One year after the activation of the stimulator, both patients showed significantly less hypometabolism in the damaged motor cortex. No difference was observed on the structural MRI. Clinical improvement of gait under peroneal nerve electrical stimulation in chronic stroke patients presenting foot drop was paralleled to metabolic changes in the damaged motor cortex.
Motor neuron activation in peripheral nerves using infrared neural stimulation
NASA Astrophysics Data System (ADS)
Peterson, E. J.; Tyler, D. J.
2014-02-01
Objective. Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach. The rabbit sciatic nerve was stimulated extraneurally with 1875 nm wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results. 81% of nerves tested were sensitive to INS, with 1.7 ± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2-9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance. The observed selectivity of INS indicates that it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS.
Motor Neuron Activation in Peripheral Nerves Using Infrared Neural Stimulation
Peterson, EJ; Tyler, DJ
2014-01-01
Objective Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach The rabbit sciatic nerve was stimulated extraneurally with 1875 nm-wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results 81% of nerves tested were sensitive to INS, with 1.7± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2–9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance The observed selectivity of INS indicates it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS. PMID:24310923
Electrocautery-induced cavernous nerve injury in rats that mimics radical prostatectomy in humans.
Song, Lu-Jie; Zhu, Jian-Qiang; Xie, Min-Kai; Wang, Yong-Chuan; Li, Hong-Bin; Cui, Zhi-Qiang; Lu, Hong-Kai; Xu, Yue-Min
2014-07-01
To investigate the early and delayed effects of cavernous nerve electrocautery injury (CNEI) in a rat model, with the expectation that this model could be used to test rehabilitation therapies for erectile dysfunction (ED) after radical prostatectomy (RP). In all, 30 male Sprague-Dawley rats were randomly divided equally into two groups (15 per group). The control group received CNs exposure surgery only and the experimental group received bilateral CNEI. At 1, 4 and 16 weeks after surgery (five rats at each time point), the ratio of maximal intracavernosal pressure (ICP) to mean arterial pressure (MAP) was measured in the two groups. Neurofilament expression in the dorsal penile nerves was assessed by immunofluorescent staining and Masson's trichrome staining was used to assess the smooth muscle to collagen ratio in both groups. At the 1-week follow-up, the mean ICP/MAP was significantly lower in the CNEI group compared with the control group, at 9.94% vs 70.06% (P < 0.05). The mean ICP/MAP in the CNEI group was substantially increased at the 4- (35.97%) and 16-week (37.11%) follow-ups compared with the 1-week follow-up (P < 0.05). At all three follow-up time points, the CNEI group had significantly decreased neurofilament staining compared with the control group (P < 0.05). Also, neurofilament expressions in the CNEI group at both 4 and 16 weeks were significantly higher than that at 1 week (P < 0.05), but there was no difference between 4 and 16 weeks (P > 0.05). The smooth muscle to collagen ratio in the CNEI group was significantly lower than in the control group at the 4- and 16-week follow-ups (P < 0.05), and the ratio at 16 weeks was further reduced compared with that at 4 weeks (P < 0.05). In the CNEI rat model, we found the damaging effects of CNEI were accompanied by a decline in ICP, reduced numbers of nerve fibres in the dorsal penile nerve, and exacerbated fibrosis in the corpus cavernosum. This may provide a basis for studying potential preventative measures or treatment strategies to ameliorate ED caused by CNEI during RP. © 2013 The Authors. BJU International © 2013 BJU International.
A voltage-controlled capacitive discharge method for electrical activation of peripheral nerves.
Rosellini, Will M; Yoo, Paul B; Engineer, Navzer; Armstrong, Scott; Weiner, Richard L; Burress, Chester; Cauller, Larry
2011-01-01
A voltage-controlled capacitive discharge (VCCD) method was investigated as an alternative to rectangular stimulus pulses currently used in peripheral nerve stimulation therapies. In two anesthetized Gottingen mini pigs, the threshold (total charge per phase) for evoking a compound nerve action potential (CNAP) was compared between constant current (CC) and VCCD methods. Electrical pulses were applied to the tibial and posterior cutaneous femoralis nerves using standard and modified versions of the Medtronic 3778 Octad. In contrast to CC stimulation, the combined application of VCCD pulses with a modified Octad resulted in a marked decrease (-73 ± 7.4%) in the stimulation threshold for evoking a CNAP. This was consistent for different myelinated fiber types and locations of stimulation. The VCCD method provides a highly charge-efficient means of activating myelinated fibers that could potentially be used within a wireless peripheral nerve stimulator system. © 2011 International Neuromodulation Society.
Vagus Nerve Stimulation for Electrographic Status Epilepticus in Slow-Wave Sleep.
Carosella, Christopher M; Greiner, Hansel M; Byars, Anna W; Arthur, Todd M; Leach, James L; Turner, Michele; Holland, Katherine D; Mangano, Francesco T; Arya, Ravindra
2016-07-01
Electrographic status epilepticus in slow sleep or continuous spike and waves during slow-wave sleep is an epileptic encephalopathy characterized by seizures, neurocognitive regression, and significant activation of epileptiform discharges during nonrapid eye movement sleep. There is no consensus on the diagnostic criteria and evidence-based optimal treatment algorithm for children with electrographic status epilepticus in slow sleep. We describe a 12-year-old girl with drug-resistant electrographic status epilepticus in slow wave sleep that was successfully treated with vagus nerve stimulation. Her clinical presentation, presurgical evaluation, decision-making, and course after vagus nerve stimulator implantation are described in detail. After vagus nerve stimulator implantation, the girl remained seizure free for more than a year, resolved the electrographic status epilepticus in slow sleep pattern on electroencephalography, and exhibited significant cognitive improvement. Vagus nerve stimulation may be considered for electrographic status epilepticus in slow sleep. Copyright © 2016 Elsevier Inc. All rights reserved.
Peripheral neuromodulation: a review.
Goroszeniuk, Teodor; Pang, David
2014-05-01
Peripheral nerve stimulation (PNS) is likely the most diverse and rapidly expanding area of neuromodulation. Its expansion has become possible due to both technological and clinical advances in pain medicine. The first implantable systems were surgically placed. However, it is currently commonplace to use percutaneous leads, as this approach has become instrumental in its expansion. The first percutaneous peripheral nerve stimulators were reported in 1999. Cylindrical leads were implanted to stimulate the greater occipital nerve to manage intractable headache. It has been expanded into other individual nerves or nerve plexuses to treat neuropathic, visceral, cardiac, abdominal, low back and facial pain. The use of PNS in modulating organ function in treatment of syndromes such as epilepsy, incontinence and obesity with vagal, tibial and gastric stimulation is under extensive investigation. New technologies that allow easier and safer electrode placement are expected to further expand the uses of PNS. A noninvasive stimulation will open this treatment modality to more clinicians of varying backgrounds.
Borghei-Razavi, Hamid; Tomio, Ryosuke; Fereshtehnejad, Seyed-Mohammad; Shibao, Shunsuke; Schick, Uta; Toda, Masahiro; Yoshida, Kazunari; Kawase, Takeshi
2016-02-01
Objectives Numerous surgical approaches have been developed to access the petroclival region. The Kawase approach, through the middle fossa, is a well-described option for addressing cranial base lesions of the petroclival region. Our aim was to gather data about the variation of cranial nerve locations in diverse petroclival pathologies and clarify the most common pathologic variations confirmed during the anterior petrosal approach. Method A retrospective analysis was made of both videos and operative and histologic records of 40 petroclival tumors from January 2009 to September 2013 in which the Kawase approach was used. The anatomical variations of cranial nerves IV-VI related to the tumor were divided into several location categories: superior lateral (SL), inferior lateral (IL), superior medial (SM), inferior medial (IM), and encased (E). These data were then analyzed taking into consideration pathologic subgroups of meningioma, epidermoid, and schwannoma. Results In 41% of meningiomas, the trigeminal nerve is encased by the tumor. In 38% of the meningiomas, the trigeminal nerve is in the SL part of the tumor, and it is in 20% of the IL portion of the tumor. In 38% of the meningiomas, the trochlear nerve is encased by the tumor. The abducens nerve is not always visible (35%). The pathologic nerve pattern differs from that of meningiomas for epidermoid and trigeminal schwannomas. Conclusion The pattern of cranial nerves IV-VI is linked to the type of petroclival tumor. In a meningioma, tumor origin (cavernous, upper clival, tentorial, and petrous apex) is the most important predictor of the location of cranial nerves IV-VI. Classification of four subtypes of petroclival meningiomas using magnetic resonance imaging is very useful to predict the location of deviated cranial nerves IV-VI intraoperatively.
Song, Lujie; Zhu, Jianqiang; Zhang, Xiong; Cui, Zhiqiang; Fu, Qiang; Huang, Jianwen; Lu, Hongkai
2016-01-01
Erectile dysfunction (ED) continues to be a significant problem for men following radical prostatectomy. We hypothesize that intracavernous injection of BDNF-hypersecreting human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) can ameliorate ED in a rat model of cavernous nerve electrocautery injury (CNEI). Forty-two male Sprague-Dawley rats were randomly divided into four groups: sham + PBS (n = 6), CNEI + PBS (n = 12), CNEI + hUCB-MSCs (n = 12) and CNEI + BDNF-hUCB-MSCs (n = 12). At day 28 post-surgery, erectile function was examined and specimens were harvested for histology. Immunofluorescence staining, Masson's trichrome staining and transmission electron microscopy were performed to determine the structural changes in corpus cavernosum. Cells that are injected into penis were labeled by BrdU and tracked by immunofluorescence staining. Three days post-surgery, the concentration of BDNF protein in penile tissues was measured by Western blotting. Rats intracavernosally injected with BDNF-hUCB-MSCs showed the most significant improvement in the ratio of maximal ICP to MAP (ICP/MAP). Histological examinations showed moderate recovery of nNOS-positive nerve fibers, ratio of smooth muscle to collagen and smooth muscle content in the CNEI + hUCB-MSCs group and remarkable recovery in the CNEI + BDNF-hUCB-MSCs group compared to the CNEI + PBS group. By TEM examination, atrophy of myelinated and non-myelinated nerve fibers was noted in CNEI + PBS group and significant recovery was observed in two treated groups. There were more BrdU-positive cells in the BDNF-hUCB-MSCs group than in the hUCB-MSCs group both in the penis and in the MPG. Three days post-surgery, the concentration of BDNF protein in penile tissues in BDNF-hUCB-MSCs group was much higher than in other groups. Intracavernous injection of BDNF-hypersecreting hUCB-MSCs can enhance the recovery of erectile function, promote the CNs regeneration and inhibit corpus cavernosum fibrosis after CNEI in a rat model.
... differences in temperature to diagnose damage to the acoustic nerve. This is the nerve that is involved ... This test stimulates your acoustic nerve by delivering cold or warm water or air into your ear canal. When cold water or air enters your ...
Mediratta, Neeraj; Barker, Diane; McKevith, James; Davies, Peter; Belchambers, Sandra; Rao, Archana
2012-07-01
Cardiac resynchronization therapy is an established therapy for heart failure, improving quality of life and prognosis. Despite advances in technique, available leads and delivery systems, trans-venous left ventricular (LV) lead positioning remains dependent on the patient's underlying venous anatomy. The left phrenic nerve courses over the surface of the pericardium laterally and may be stimulated by the LV pacing lead, causing uncomfortable diaphragmatic twitch. This paper describes a video-assisted thoracoscopic (VATS) procedure to correct phrenic nerve stimulation secondary to cardiac resynchronization therapy. Most current ways of avoiding phrenic stimulation involve either electronic reprogramming to distance the phrenic nerve from the stimulation circuit or repositioning the lead. We describe a case where the phrenic nerve was surgically insulated from the stimulating current by insinuating a patch of bovine pericardium between the epicardium and native pericardium of the heart thus completely resolving previously intolerable and incessant diaphragmatic twitch. The procedure was performed under general anaesthesia with single-lung ventilation and minimal use of neuromuscular blocking agents. Surgical patch insulation of the phrenic nerve was performed using minimally invasive VATS surgery, as a short-stay procedure, with no complications. No diaphragmatic twitch occurred post-surgery and the patient continued to gain symptomatic benefit from cardiac synchronization therapy (New York Heart Association Class III to II), enabling return to work. In cases where the trans-venous position of a LV lead is limited by troublesome phrenic nerve stimulation, thoracoscopic surgical patch insulation of the phrenic nerve could be considered to allow beneficial cardiac resynchronization therapy.
Fisher, L E; Tyler, D J; Anderson, J S; Triolo, R J
2009-08-01
This study describes the stability and selectivity of four-contact spiral nerve-cuff electrodes implanted bilaterally on distal branches of the femoral nerves of a human volunteer with spinal cord injury as part of a neuroprosthesis for standing and transfers. Stimulation charge threshold, the minimum charge required to elicit a visible muscle contraction, was consistent and low (mean threshold charge at 63 weeks post-implantation: 23.3 +/- 8.5 nC) for all nerve-cuff electrode contacts over 63 weeks after implantation, indicating a stable interface with the peripheral nervous system. The ability of individual nerve-cuff electrode contacts to selectively stimulate separate components of the femoral nerve to activate individual heads of the quadriceps was assessed with fine-wire intramuscular electromyography while measuring isometric twitch knee extension moment. Six of eight electrode contacts could selectively activate one head of the quadriceps while selectively excluding others to produce maximum twitch responses of between 3.8 and 8.1 N m. The relationship between isometric twitch and tetanic knee extension moment was quantified, and selective twitch muscle responses scaled to between 15 and 35 N m in tetanic response to pulse trains with similar stimulation parameters. These results suggest that this nerve-cuff electrode can be an effective and chronically stable tool for selectively stimulating distal nerve branches in the lower extremities for neuroprosthetic applications.
Fisher, L E; Tyler, D J; Anderson, J S; Triolo, R J
2010-01-01
This study describes the stability and selectivity of four-contact spiral nerve-cuff electrodes implanted bilaterally on distal branches of the femoral nerves of a human volunteer with spinal cord injury as part of a neuroprosthesis for standing and transfers. Stimulation charge threshold, the minimum charge required to elicit a visible muscle contraction, was consistent and low (mean threshold charge at 63 weeks post-implantation: 23.3 ± 8.5 nC) for all nerve-cuff electrode contacts over 63 weeks after implantation, indicating a stable interface with the peripheral nervous system. The ability of individual nerve-cuff electrode contacts to selectively stimulate separate components of the femoral nerve to activate individual heads of the quadriceps was assessed with fine-wire intramuscular electromyography while measuring isometric twitch knee extension moment. Six of eight electrode contacts could selectively activate one head of the quadriceps while selectively excluding others to produce maximum twitch responses of between 3.8 and 8.1 Nm. The relationship between isometric twitch and tetanic knee extension moment was quantified, and selective twitch muscle responses scaled to between 15 and 35 Nm in tetanic response to pulse trains with similar stimulation parameters. These results suggest that this nerve-cuff electrode can be an effective and chronically stable tool for selectively stimulating distal nerve branches in the lower extremities for neuroprosthetic applications. PMID:19602729
Cavernous malformations isolated from cranial nerves: Unexpected diagnosis?
Rotondo, Michele; Natale, Massimo; D'Avanzo, Raffaele; Pascale, Michela; Scuotto, Assunta
2014-11-01
Cranial nerves (CN) cavernous malformations (CMs) are lesions that are isolated from the CNs. The authors present three cases of CN CMs, for which MR was demonstrated to be critical for management, and surgical resection produced good outcomes for the patients. Surgical removal is the recommended course of action to restore or preserve neurological function and to eliminate the risk of future haemorrhage. However, the anatomical location and the complexity of nearby neural structures can make these lesions difficult to access and remove. In this study, the authors review the literature of reported cases of CN CMs to analyse the clinical and radiographic presentations, surgical approaches and neurological outcomes. A MEDLINE/Pub Med search was performed and revealed 86 cases of CN CMs. The authors report three additional cases in this study for a total of 89 cases. CMs affecting the optic nerve (CN II), oculomotor nerve (CN III), facial/vestibule-cochlear nerves (CN VII, CN VIII) have been described. The records of three patients were reviewed with respect to the lesion locations, symptoms, surgical approaches and therapeutic considerations. Clinical and radiological follow-up results are reported. Three patients (2 females, 1 male; age range 21-37 year) presented with three CN lesions. One lesion involved CN III, one lesion involved CN VII-CN VIII, and one involved CN II. The patient with the CN III lesion had a one-month history of mild right ptosis and diplopia. The patient with the CN VII-CN VIII lesion exhibited acute hearing loss and on the left and left facial paresis. The patient with the opticchiasmatic lesion presented with acute visual deterioration on the right and a left temporal field deficit in the left eye. Pterional and orbitozygomatic craniotomies were performed for the CN III lesion and the CN II lesion, and retrosigmoid craniotomy was performed for the cerebello-pontine angle lesion. All patients experienced symptom improvement after surgery. On MR follow-up, recurrence was excluded in all patients. CN CMs present with specific symptoms and require complex surgical techniques for resection. These lesions are frequently symptomatic, because of the complexity of the origin tissue. Symptomatic CN CMs should be resected microsurgically and completely when possible to prevent further losses of nerve function, improve function, avoid recurrence, and to eliminate the risk of future haemorrhages. The authors discuss the therapeutic options and the radiological features of these infrequent localisation of CMs. Specifically, the authors focus on the role of magnetic resonance imaging in the identification of these rare lesions. Copyright © 2014 Elsevier B.V. All rights reserved.
Turner, Michael J; Kawada, Toru; Shimizu, Shuji; Sugimachi, Masaru
2014-06-13
This study aims to identify the contribution of myelinated (A-fiber) and unmyelinated (C-fiber) baroreceptor central pathways to the baroreflex control of sympathetic nerve activity and arterial pressure. Two binary white noise stimulation protocols were used to electrically stimulate the aortic depressor nerve and activate reflex responses from either A-fiber (3 V, 20-100 Hz) or C-fiber (20 V, 0-10 Hz) baroreceptor in anesthetized Sprague-Dawley rats (n=10). Transfer function analysis was performed between stimulation and sympathetic nerve activity (central arc), sympathetic nerve activity and arterial pressure (peripheral arc), and stimulation and arterial pressure (Stim-AP arc). The central arc transfer function from nerve stimulation to splanchnic sympathetic nerve activity displayed derivative characteristics for both stimulation protocols. However, the modeled steady-state gain (0.28 ± 0.04 vs. 4.01 ± 0.2%·Hz(-1), P<0.001) and coherence at 0.01 Hz (0.44 ± 0.05 vs. 0.81 ± 0.03, P<0.05) were significantly lower for A-fiber stimulation compared with C-fiber stimulation. The slope of the dynamic gain was higher for A-fiber stimulation (14.82 ± 1.02 vs. 7.21 ± 0.79 dB·decade(-1), P<0.001). The steady-state gain of the Stim-AP arc was also significantly lower for A-fiber stimulation compared with C-fiber stimulation (0.23 ± 0.05 vs. 3.05 ± 0.31 mmHg·Hz(-1), P<0.001). These data indicate that the A-fiber central pathway contributes to high frequency arterial pressure regulation and the C-fiber central pathway provides more sustained changes in sympathetic nerve activity and arterial pressure. A sustained reduction in arterial pressure from electrical stimulation of arterial baroreceptor afferents is likely mediated through the C-fiber central pathway. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bandi, Akhil; Vajtay, Thomas J.; Upadhyay, Aman; Yiantsos, S. Olga; Lee, Christian R.; Margolis, David J.
2018-02-01
Optogenetic modulation of neural circuits has opened new avenues into neuroscience research, allowing the control of cellular activity of genetically specified cell types. Optogenetics is still underdeveloped in the peripheral nervous system, yet there are many applications related to sensorimotor function, pain and nerve injury that would be of great benefit. We recently established a method for non-invasive, transdermal optogenetic stimulation of the facial muscles that control whisker movements in mice (Park et al., 2016, eLife, e14140)1. Here we present results comparing the effects of optogenetic stimulation of whisker movements in mice that express channelrhodopsin-2 (ChR2) selectively in either the facial motor nerve (ChAT-ChR2 mice) or muscle (Emx1-ChR2 or ACTA1-ChR2 mice). We tracked changes in nerve and muscle function before and up to 14 days after nerve transection. Optogenetic 460 nm transdermal stimulation of the distal cut nerve showed that nerve degeneration progresses rapidly over 24 hours. In contrast, the whisker movements evoked by optogenetic muscle stimulation were up-regulated after denervation, including increased maximum protraction amplitude, increased sensitivity to low-intensity stimuli, and more sustained muscle contractions (reduced adaptation). Our results indicate that peripheral optogenetic stimulation is a promising technique for probing the timecourse of functional changes of both nerve and muscle, and holds potential for restoring movement after paralysis induced by nerve damage or motoneuron degeneration.
Karasuno, Hiroshi; Ogihara, Hisayoshi; Morishita, Katsuyuki; Yokoi, Yuka; Fujiwara, Takayuki; Ogoma, Yoshiro; Abe, Koji
2016-04-01
[Purpose] This study aimed to clarify the immediate effects of a combined transcutaneous electrical nerve stimulation and stretching protocol. [Subjects] Fifteen healthy young males volunteered to participate in this study. The inclusion criterion was a straight leg raising range of motion of less than 70 degrees. [Methods] Subjects performed two protocols: 1) stretching (S group) of the medial hamstrings, and 2) tanscutaneous electrical nerve stimulation (100 Hz) with stretching (TS group). The TS group included a 20-minute electrical stimulation period followed by 10 minutes of stretching. The S group performed 10 minutes of stretching. Muscle hardness, pressure pain threshold, and straight leg raising range of motion were analyzed to evaluate the effects. The data were collected before transcutaneous electrical nerve stimulation (T1), before stretching (T2), immediately after stretching (T3), and 10 minutes after stretching (T4). [Results] Combined transcutaneous electrical nerve stimulation and stretching had significantly beneficial effects on muscle hardness, pressure pain threshold, and straight leg raising range of motion at T2, T3, and T4 compared with T1. [Conclusion] These results support the belief that transcutaneous electrical nerve stimulation combined with stretching is effective in reducing pain and decreasing muscle hardness, thus increasing range of motion.
A precision mechanical nerve stimulator
NASA Technical Reports Server (NTRS)
Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.
1988-01-01
An electromechanical device, used to apply and monitor stimulating pulses to a mammalian motor nerve, has been successfully developed at NASA Langley Research Center. Two existing force transducers, a flight skin friction balance and a miniature skin friction balance which were designed for making aerodynamic drag measurements, were modified and incorporated to form this precision instrument. The nerve stimulator is a type one servomechanism capable of applying and monitoring stimulating pulses of 0 to 10 grams with a precision of better than +/- 0.05 grams. Additionally, the device can be independently used to apply stimulating pulses by displacing the nerve from 0 to 0.25 mm with a precision of better than +/- 0.001 mm while measuring the level of the load applied.
Reflex effects on components of synchronized renal sympathetic nerve activity.
DiBona, G F; Jones, S Y
1998-09-01
The effects of peripheral thermal receptor stimulation (tail in hot water, n = 8, anesthetized) and cardiac baroreceptor stimulation (volume loading, n = 8, conscious) on components of synchronized renal sympathetic nerve activity (RSNA) were examined in rats. The peak height and peak frequency of synchronized RSNA were determined. The renal sympathoexcitatory response to peripheral thermal receptor stimulation was associated with an increase in the peak height. The renal sympathoinhibitory response to cardiac baroreceptor stimulation was associated with a decrease in the peak height. Although heart rate was significantly increased with peripheral thermal receptor stimulation and significantly decreased with cardiac baroreceptor stimulation, peak frequency was unchanged. As peak height reflects the number of active fibers, reflex increases and decreases in synchronized RSNA are mediated by parallel increases and decreases in the number of active renal nerve fibers rather than changes in the centrally based rhythm or peak frequency. The increase in the number of active renal nerve fibers produced by peripheral thermal receptor stimulation reflects the engagement of a unique group of silent renal sympathetic nerve fibers with a characteristic response pattern to stimulation of arterial baroreceptors, peripheral and central chemoreceptors, and peripheral thermal receptors.
Park, C; Choi, J B; Lee, Y-S; Chang, H-S; Shin, C S; Kim, S; Han, D W
2015-04-01
Posterior neck pain following thyroidectomy is common because full neck extension is required during the procedure. We evaluated the effect of intra-operative transcutaneous electrical nerve stimulation on postoperative neck pain in patients undergoing total thyroidectomy under general anaesthesia. One hundred patients were randomly assigned to one of two groups; 50 patients received transcutaneous electrical nerve stimulation applied to the trapezius muscle and 50 patients acted as controls. Postoperative posterior neck pain and anterior wound pain were evaluated using an 11-point numerical rating scale at 30 min, 6 h, 24 h and 48 h following surgery. The numerical rating scale for posterior neck pain was significantly lower in the transcutaneous electrical nerve stimulation group compared with the control group at all time points (p < 0.05). There were no significant differences in the numerical rating scale for anterior wound pain at any time point. No adverse effects related to transcutaneous electrical nerve stimulation were observed. We conclude that intra-operative transcutaneous electrical nerve stimulation applied to the trapezius muscle reduced posterior neck pain following thyroidectomy. © 2014 The Association of Anaesthetists of Great Britain and Ireland.
Öncü, Emine; Zincir, Handan
2017-07-01
The aim of the present study was to assess the efficacy of transcutaneous electrical nerve stimulation in patients with acute exacerbation of chronic obstructive pulmonary disease. In patients with stable chronic obstructive pulmonary disease, transcutaneous electrical nerve stimulation has been known to attain improvement in forced expiratory volume in 1 seconds, physical activity, and quality of life. However, information about the effects of transcutaneous electrical nerve stimulation on acute exacerbation of chronic obstructive pulmonary disease is quite limited. A single-blind, randomised controlled trial. Data were collected between August 2013-May 2014. Eighty-two patients who were hospitalised with a diagnosis of acute exacerbation of chronic obstructive pulmonary disease were randomly assigned to a transcutaneous electrical nerve stimulation group receiving transcutaneous electrical nerve stimulation treatment for 20 seance over the acupuncture points with pharmacotherapy or placebo group receiving the same treatment without electrical current output from the transcutaneous electrical nerve stimulation device. Pulmonary functional test, six-minute walking distance, dyspnoea and fatigue scale, and St. George's Respiratory Questionnaire scores were assessed pre- and postprogram. The program started at the hospital by the researcher was sustained in the patient's home by the caregiver. All patients were able to complete the program, despite the exacerbation. The 20 seance transcutaneous electrical nerve stimulation program provided clinically significant improvement in forced expiratory volume in 1 seconds 21 ml, 19·51% but when compared with the placebo group, the difference was insignificant (p > 0·05). The six-minute walking distance increased by 48·10 m more in the placebo group (p < 0·05). There were no significant differences between the two groups' St. George's Respiratory Questionnaire, dyspnoea and fatigue score (p > 0·05). Adding transcutaneous electrical nerve stimulation therapy to pharmacotherapy in patients with acute exacerbation of chronic obstructive pulmonary disease provided clinical improvement in forced expiratory volume in 1 seconds and add benefit in exercise capacity, but no significant effect on the other outcomes measured. Transcutaneous electrical nerve stimulation can be used as a non-invasive complementary therapy due to its beneficial effects on forced expiratory volume in 1 seconds and exercise capacity in patients with acute exacerbation of chronic obstructive pulmonary disease. © 2016 John Wiley & Sons Ltd.
Su, Hong-Lin; Chiang, Chien-Yi; Lu, Zong-Han; Cheng, Fu-Chou; Chen, Chun-Jung; Sheu, Meei-Ling; Sheehan, Jason; Pan, Hung-Chuan
2018-06-25
High-frequency transcutaneous neuromuscular electrical nerve stimulation (TENS) is currently used for the administration of electrical current in denervated muscle to alleviate muscle atrophy and enhance motor function; however, the time window (i.e. either immediate or delayed) for achieving benefit is still undetermined. In this study, we conducted an intervention of sciatic nerve crush injury using high-frequency TENS at different time points to assess the effect of motor and sensory functional recovery. Animals with left sciatic nerve crush injury received TENS treatment starting immediately after injury or 1 week later at a high frequency(100 Hz) or at a low frequency (2 Hz) as a control. In SFI gait analysis, either immediate or late admission of high-frequency electrical stimulation exerted significant improvement compared to either immediate or late administration of low-frequency electrical stimulation. In an assessment of allodynia, immediate high frequency electrical stimulation caused a significantly decreased pain threshold compared to late high-frequency or low-frequency stimulation at immediate or late time points. Immunohistochemistry staining and western blot analysis of S-100 and NF-200 demonstrated that both immediate and late high frequency electrical stimulation showed a similar effect; however the effect was superior to that achieved with low frequency stimulation. Immediate high frequency electrical stimulation resulted in significant expression of TNF-α and synaptophysin in the dorsal root ganglion, somatosensory cortex, and hippocampus compared to late electrical stimulation, and this trend paralleled the observed effect on somatosensory evoked potential. The CatWalk gait analysis also showed that immediate electrical stimulation led to a significantly high regularity index. In primary dorsal root ganglion cells culture, high-frequency electrical stimulation also exerted a significant increase in expression of TNF-α, synaptophysin, and NGF in accordance with the in vivo results. Immediate or late transcutaneous high-frequency electrical stimulation exhibited the potential to stimulate the motor nerve regeneration. However, immediate electrical stimulation had a predilection to develop neuropathic pain. A delay in TENS initiation appears to be a reasonable approach for nerve repair and provides the appropriate time profile for its clinical application.
Pudendal nerve stimulation and block by a wireless-controlled implantable stimulator in cats.
Yang, Guangning; Wang, Jicheng; Shen, Bing; Roppolo, James R; de Groat, William C; Tai, Changfeng
2014-07-01
The study aims to determine the functionality of a wireless-controlled implantable stimulator designed for stimulation and block of the pudendal nerve. In five cats under α-chloralose anesthesia, the stimulator was implanted underneath the skin on the left side in the lower back along the sacral spine. Two tripolar cuff electrodes were implanted bilaterally on the pudendal nerves in addition to one bipolar cuff electrode that was implanted on the left side central to the tripolar cuff electrode. The stimulator provided high-frequency (5-20 kHz) biphasic stimulation waveforms to the two tripolar electrodes and low-frequency (1-100 Hz) rectangular pulses to the bipolar electrode. Bladder and urethral pressures were measured to determine the effects of pudendal nerve stimulation (PNS) or block. The maximal (70-100 cmH2O) urethral pressure generated by 20-Hz PNS applied via the bipolar electrode was completely eliminated by the pudendal nerve block induced by the high-frequency stimulation (6-15 kHz, 6-10 V) applied via the two tripolar electrodes. In a partially filled bladder, 20-30 Hz PNS (2-8 V, 0.2 ms) but not 5 Hz stimulation applied via the bipolar electrode elicited a large sustained bladder contraction (45.9 ± 13.4 to 52.0 ± 22 cmH2O). During cystometry, the 5 Hz PNS significantly (p < 0.05) increased bladder capacity to 176.5 ± 27.1% of control capacity. The wireless-controlled implantable stimulator successfully generated the required waveforms for stimulation and block of pudendal nerve, which will be useful for restoring bladder functions after spinal cord injury. © 2013 International Neuromodulation Society.
Wu, Lien-Chen; Weng, Pei-Wei; Chen, Chia-Hsien; Huang, Yi-You; Tsuang, Yang-Hwei; Chiang, Chang-Jung
2018-01-01
Background and Objectives This study is a meta-analysis of randomized controlled trials comparing the efficacy of transcutaneous electrical nerve stimulation (TENS) to a control and to other nerve stimulation therapies (NSTs) for the treatment of chronic back pain. Methods Citations were identified in MEDLINE, the Cochrane Library, Google Scholar, and ClinicalTrials.gov through June 2014 using the following keywords: nerve stimulation therapy, transcutaneous electrical nerve stimulation, back pain, chronic pain. Control treatments included sham, placebo, or medication only. Other NSTs included electroacupuncture, percutaneous electrical nerve stimulation, and percutaneous neuromodulation therapy. Results Twelve randomized controlled trials including 700 patients were included in the analysis. The efficacy of TENS was similar to that of control treatment for providing pain relief (standardized difference in means [SDM] = −0.20; 95% confidence interval [CI], −0.58 to 0.18; P = 0.293). Other types of NSTs were more effective than TENS in providing pain relief (SDM = 0.86; 95% CI, 0.15–1.57; P = 0.017). Transcutaneous electrical nerve stimulation was more effective than control treatment in improving functional disability only in patients with follow-up of less than 6 weeks (SDM = −1.24; 95% CI, −1.83 to −0.65; P < 0.001). There was no difference in functional disability outcomes between TENS and other NSTs. Conclusions These results suggest that TENS does not improve symptoms of lower back pain, but may offer short-term improvement of functional disability. PMID:29394211
Jørgensen, Cecilie Siggaard; Kamperis, Konstantinos; Borch, Luise; Borg, Britt; Rittig, Søren
2017-09-01
In a third of all children with monosymptomatic nocturnal enuresis their condition is refractory to first line treatments. Transcutaneous electrical nerve stimulation has been documented to be efficacious in children with daytime incontinence. We investigated the effect of transcutaneous electrical nerve stimulation in children with monosymptomatic nocturnal enuresis without nocturnal polyuria. Children with monosymptomatic nocturnal enuresis (3 or more wet nights per week) and no nocturnal polyuria were randomized to treatment with active or sham transcutaneous electrical nerve stimulation involving 1-hour sessions twice daily for 10 weeks in a double-blind design. Of the 52 children with monosymptomatic nocturnal enuresis included in the study 47 completed treatment (mean age 9.5 ± 2.1 years, 38 males). None of the children experienced a full response with complete remission of enuresis. Treatment with transcutaneous electrical nerve stimulation did not lead to significant changes in number of wet nights, nocturnal urine production on wet or dry nights, maximum voided volume with and without first morning voided volume, or voiding frequency when comparing parameters before and after treatment. The present study demonstrates no anti-enuretic effect of transcutaneous electrical nerve stimulation in children with monosymptomatic nocturnal enuresis without nocturnal polyuria. Nocturnal urine production and bladder capacity remained unchanged during and after treatment with transcutaneous electrical nerve stimulation. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Nerve monitoring-guided selective hypoglossal nerve stimulation in obstructive sleep apnea patients.
Heiser, Clemens; Hofauer, Benedikt; Lozier, Luke; Woodson, B Tucker; Stark, Thomas
2016-12-01
Selective stimulation of the upper airway is a new therapy for obstructive sleep apnea. The aim of the study was to determine if a selective nerve integrity monitoring (NIM) system could aid in precise placement of the cuff electrode in selective upper-airway stimulation. Single-center, prospective clinical trial. Twenty patients who received a selective upper-airway stimulation system (Inspire Medical Systems, Maple Grove, MN) were implanted by using a NIM system. The tongue motions were recorded during surgery and 2 months postoperatively from the transoral view and by transnasal endoscopy. All patients exhibited consistent protrusion at tongue front and tongue base. The nerve monitoring system helped to place the cuff electrode around the protrusion and stiffening branches, while excluding the retractor branches of the hypoglossal nerve. This report demonstrated a novel use of a NIM system to identify the functional separation between inclusion and exclusion branches of the hypoglossal nerve for implantation of a selective upper-airway stimulation system. 4. Laryngoscope, 126:2852-2858, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Neuromodulation for the Treatment of Lower Urinary Tract Symptoms.
Yamanishi, Tomonori; Kaga, Kanya; Fuse, Miki; Shibata, Chiharu; Uchiyama, Tomoyuki
2015-09-01
Neuromodulation therapy incorporates electrical stimulation to target specific nerves that control lower urinary tract symptoms (LUTS). The objectives of this article are to review the mechanism of action, the type of neuromodulation, and the efficacy of neuromodulation mainly according to the results of randomized controlled trials. Neuromodulation includes pelvic floor electrical stimulation (ES) using vaginal, anal and surface electrodes, interferential therapy (IF), magnetic stimulation (MS), percutaneous tibial nerve stimulation, and sacral nerve stimulation (SNS). The former four stimulations are used for external periodic (short-term) stimulation, and SNS are used for internal, chronic (long-term) stimulation. All of these therapies have been reported to be effective for overactive bladder or urgency urinary incontinence. Pelvic floor ES, IF, and MS have also been reported to be effective for stress urinary incontinence. The mechanism of neuromodulation for overactive bladder has been reported to be the reflex inhibition of detrusor contraction by the activation of afferent fibers by three actions, i.e., the activation of hypogastric nerve, the direct inhibition of the pelvic nerve within the sacral cord and the supraspinal inhibition of the detrusor reflex. The mechanism of neuromodulation for stress incontinence is contraction of the pelvic floor muscles through an effect on the muscle fibers as well as through the stimulation of pudendal nerves. Overall, cure and improvement rates of these therapies for urinary incontinence are 30-50, and 60-90% respectively. MS has been considered to be a technique for stimulating nervous system noninvasively. SNS is indicated for patients with refractory overactive bladder and urinary retention. © 2015 Wiley Publishing Asia Pty Ltd.
Meningiomas involving the optic nerve: technical aspects and outcomes for a series of 50 patients.
Margalit, Nevo S; Lesser, Jonathan B; Moche, Jason; Sen, Chandranath
2003-09-01
Surgical strategies and results for 50 patients with meningiomas involving the optic nerves are discussed and evaluated. Factors affecting the degree of resection and patient outcomes are presented. We emphasize our surgical techniques for resection of these tumors and we discuss the advantages of different approaches, depending on the relationship of the tumor to the optic nerves. Data for 50 patients with meningiomas involving the optic nerves who were surgically treated between 1991 and 2002 were reviewed, by using patient files, operative notes, and pre- and postoperative imaging and ophthalmological examination findings. Thirty-one female patients and 19 male patients, with a mean age of 53 years, were treated. Thirty-one patients (62%) underwent complete tumor removal (Simpson Grade 1 or 2), and 19 patients underwent subtotal removal (Grade 4). Factors affecting the grade of resection were tumor size (P = 0.01), location (P = 0.007), and internal carotid artery encasement (P = 0.019). Patients who underwent Grade 1 or 2 resection exhibited a mean tumor size of 3.0 cm, and patients who underwent Grade 4 resection exhibited a mean tumor size of 4.1 cm. Only three patients had residual tumor on the optic nerve; all others had tumor in the cavernous sinus or at the orbital apex or exhibited vascular involvement. Visual outcomes were influenced predominantly by tumor size, preoperative visual function, and optic nerve encasement. Meningiomas that involve the optic nerves require special considerations and surgical techniques. Early decompression of the optic nerve within the bony canal allows identification and separation of the tumor from the nerve, permitting removal of the tumor from this area with minimal manipulation of the optic nerve.
Regenerated Sciatic Nerve Axons Stimulated through a Chronically Implanted Macro-Sieve Electrode.
MacEwan, Matthew R; Zellmer, Erik R; Wheeler, Jesse J; Burton, Harold; Moran, Daniel W
2016-01-01
Sieve electrodes provide a chronic interface for stimulating peripheral nerve axons. Yet, successful utilization requires robust axonal regeneration through the implanted electrode. The present study determined the effect of large transit zones in enhancing axonal regeneration and revealed an intimate neural interface with an implanted sieve electrode. Fabrication of the polyimide sieve electrodes employed sacrificial photolithography. The manufactured macro-sieve electrode (MSE) contained nine large transit zones with areas of ~0.285 mm 2 surrounded by eight Pt-Ir metallized electrode sites. Prior to implantation, saline, or glial derived neurotropic factor (GDNF) was injected into nerve guidance silicone-conduits with or without a MSE. The MSE assembly or a nerve guidance conduit was implanted between transected ends of the sciatic nerve in adult male Lewis rats. At 3 months post-operation, fiber counts were similar through both implant types. Likewise, stimulation of nerves regenerated through a MSE or an open silicone conduit evoked comparable muscle forces. These results showed that nerve regeneration was comparable through MSE transit zones and an open conduit. GDNF had a minimal positive effect on the quality and morphology of fibers regenerating through the MSE; thus, the MSE may reduce reliance on GDNF to augment axonal regeneration. Selective stimulation of several individual muscles was achieved through monopolar stimulation of individual electrodes sites suggesting that the MSE might be an optimal platform for functional neuromuscular stimulation.
Regenerated Sciatic Nerve Axons Stimulated through a Chronically Implanted Macro-Sieve Electrode
MacEwan, Matthew R.; Zellmer, Erik R.; Wheeler, Jesse J.; Burton, Harold; Moran, Daniel W.
2016-01-01
Sieve electrodes provide a chronic interface for stimulating peripheral nerve axons. Yet, successful utilization requires robust axonal regeneration through the implanted electrode. The present study determined the effect of large transit zones in enhancing axonal regeneration and revealed an intimate neural interface with an implanted sieve electrode. Fabrication of the polyimide sieve electrodes employed sacrificial photolithography. The manufactured macro-sieve electrode (MSE) contained nine large transit zones with areas of ~0.285 mm2 surrounded by eight Pt-Ir metallized electrode sites. Prior to implantation, saline, or glial derived neurotropic factor (GDNF) was injected into nerve guidance silicone-conduits with or without a MSE. The MSE assembly or a nerve guidance conduit was implanted between transected ends of the sciatic nerve in adult male Lewis rats. At 3 months post-operation, fiber counts were similar through both implant types. Likewise, stimulation of nerves regenerated through a MSE or an open silicone conduit evoked comparable muscle forces. These results showed that nerve regeneration was comparable through MSE transit zones and an open conduit. GDNF had a minimal positive effect on the quality and morphology of fibers regenerating through the MSE; thus, the MSE may reduce reliance on GDNF to augment axonal regeneration. Selective stimulation of several individual muscles was achieved through monopolar stimulation of individual electrodes sites suggesting that the MSE might be an optimal platform for functional neuromuscular stimulation. PMID:28008303
Ansó, Juan; Dür, Cilgia; Gavaghan, Kate; Rohrbach, Helene; Gerber, Nicolas; Williamson, Tom; Calvo, Enric M; Balmer, Thomas Wyss; Precht, Christina; Ferrario, Damien; Dettmer, Matthias S; Rösler, Kai M; Caversaccio, Marco D; Bell, Brett; Weber, Stefan
2016-01-01
A multielectrode probe in combination with an optimized stimulation protocol could provide sufficient sensitivity and specificity to act as an effective safety mechanism for preservation of the facial nerve in case of an unsafe drill distance during image-guided cochlear implantation. A minimally invasive cochlear implantation is enabled by image-guided and robotic-assisted drilling of an access tunnel to the middle ear cavity. The approach requires the drill to pass at distances below 1 mm from the facial nerve and thus safety mechanisms for protecting this critical structure are required. Neuromonitoring is currently used to determine facial nerve proximity in mastoidectomy but lacks sensitivity and specificity necessaries to effectively distinguish the close distance ranges experienced in the minimally invasive approach, possibly because of current shunting of uninsulated stimulating drilling tools in the drill tunnel and because of nonoptimized stimulation parameters. To this end, we propose an advanced neuromonitoring approach using varying levels of stimulation parameters together with an integrated bipolar and monopolar stimulating probe. An in vivo study (sheep model) was conducted in which measurements at specifically planned and navigated lateral distances from the facial nerve were performed to determine if specific sets of stimulation parameters in combination with the proposed neuromonitoring system could reliably detect an imminent collision with the facial nerve. For the accurate positioning of the neuromonitoring probe, a dedicated robotic system for image-guided cochlear implantation was used and drilling accuracy was corrected on postoperative microcomputed tomographic images. From 29 trajectories analyzed in five different subjects, a correlation between stimulus threshold and drill-to-facial nerve distance was found in trajectories colliding with the facial nerve (distance <0.1 mm). The shortest pulse duration that provided the highest linear correlation between stimulation intensity and drill-to-facial nerve distance was 250 μs. Only at low stimulus intensity values (≤0.3 mA) and with the bipolar configurations of the probe did the neuromonitoring system enable sufficient lateral specificity (>95%) at distances to the facial nerve below 0.5 mm. However, reduction in stimulus threshold to 0.3 mA or lower resulted in a decrease of facial nerve distance detection range below 0.1 mm (>95% sensitivity). Subsequent histopathology follow-up of three representative cases where the neuromonitoring system could reliably detect a collision with the facial nerve (distance <0.1 mm) revealed either mild or inexistent damage to the nerve fascicles. Our findings suggest that although no general correlation between facial nerve distance and stimulation threshold existed, possibly because of variances in patient-specific anatomy, correlations at very close distances to the facial nerve and high levels of specificity would enable a binary response warning system to be developed using the proposed probe at low stimulation currents.
Transmission failure in sympathetic nerves produced by hemicholinium
Chang, V.; Rand, M. J.
1960-01-01
It has been shown by others that hemicholinium (α,α'-dimethylethanolamino-4,4'-biacetophenone) inhibits the synthesis of acetylcholine, an effect which is reversed by choline. Hemicholinium produces a failure of response to nerve stimulation in the following sympathetically innervated preparations: guinea-pig isolated vas deferens, rabbit isolated uterus, rabbit isolated colon, perfused rabbit ear, cat isolated atria and the piloerector muscles in the cat's tail. The blocking action of hemicholinium on the responses to postganglionic sympathetic stimulation resembles its blocking action against cholinergic nerve stimulation observed on rabbit isolated atria with vagus nerves, rabbit isolated vagina with pelvic nerves, and guinea-pig isolated diaphragm with phrenic nerve. The failure of transmission produced by hemicholinium in sympathetic nerves and in cholinergic nerves can be reversed by choline. It is suggested that if there were a cholinergic junction at sympathetic nerve endings the mechanism of the blocking action of hemicholinium at these endings could be explained by inhibition of acetylcholine synthesis. ImagesFIG. 13FIG. 14 PMID:13692344
Becker, A J; Uckert, S; Stief, C G; Truss, M C; Hartman, U; Sohn, M; Jonas, U
2000-06-01
The role of the sympathetic adrenergic nerves in mediating the constant tone of penile flaccidity and returning the erect penis to its flaccid state is fairly well established. However, it is not yet known whether additional nonadrenergic transmitters might be involved in this process. Endothelin 1 (ET-1), a 21-amino-acid peptide with potent and long-lasting vasoconstrictor activity, may be one of the factors contributing to such control. The present study was undertaken to determine whether plasma levels of ET-1 changed during flaccidity, tumescence, rigidity, and detumescence. We determined plasma levels of ET-1 in the peripheral and cavernosal blood of 32 potent adult male volunteers, in whom penile tumescence and erection were elicited by exposure to visual and tactile erotic stimuli. Whole blood was aspirated from the corpus cavernosum and the cubital vein, and ET-1 was quantified in plasma aliquots obtained from the blood samples. Using the organ bath technique, we evaluated the contractile effects of ET-1 and norepinephrine (NE) on isolated human corpus cavernosum musculature. No significant change in ET-1 levels was observed in the peripheral or cavernosal blood in the process of developing erection, rigidity, or detumescence. The mean plasma level of ET-1 was 0.2-0.7 fmol/ml. In the organ bath, ET-1 elicited concentration-dependent contractions of isolated human corpus cavernosum, which were much more pronounced than those evoked by the adrenergic agonist NE. Our data indicate that despite the in vitro efficacy of ET-1 in stimulating contractile activity in isolated human cavernous smooth muscle, the peptide may not be of ultimate importance for the mechanism of flaccidity and detumescence in healthy males. Nevertheless, the exact role of ETs in the control of penile smooth muscle tone remains to be established.
Energy-optimal electrical excitation of nerve fibers.
Jezernik, Saso; Morari, Manfred
2005-04-01
We derive, based on an analytical nerve membrane model and optimal control theory of dynamical systems, an energy-optimal stimulation current waveform for electrical excitation of nerve fibers. Optimal stimulation waveforms for nonleaky and leaky membranes are calculated. The case with a leaky membrane is a realistic case. Finally, we compare the waveforms and energies necessary for excitation of a leaky membrane in the case where the stimulation waveform is a square-wave current pulse, and in the case of energy-optimal stimulation. The optimal stimulation waveform is an exponentially rising waveform and necessitates considerably less energy to excite the nerve than a square-wave pulse (especially true for larger pulse durations). The described theoretical results can lead to drastically increased battery lifetime and/or decreased energy transmission requirements for implanted biomedical systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhrel, D; Sood, S; Badkul, R
Purpose: To compare dose distributions calculated using PB-hete vs. XVMC algorithms for SRT treatments of cavernous sinus tumors. Methods: Using PB-hete SRT, five patients with cavernous sinus tumors received the prescription dose of 25 Gy in 5 fractions for planning target volume PTV(V100%)=95%. Gross tumor volume (GTV) and organs at risk (OARs) were delineated on T1/T2 MRI-CT-fused images. PTV (range 2.1–84.3cc, mean=21.7cc) was generated using a 5mm uniform-margin around GTV. PB-hete SRT plans included a combination of non-coplanar conformal arcs/static beams delivered by Novalis-TX consisting of HD-MLCs and a 6MV-SRS(1000 MU/min) beam. Plans were re-optimized using XVMC algorithm with identicalmore » beam geometry and MLC positions. Comparison of plan specific PTV(V99%), maximal, mean, isocenter doses, and total monitor units(MUs) were evaluated. Maximal dose to OARs such as brainstem, optic-pathway, spinal cord, and lenses as well as normal tissue volume receiving 12Gy(V12) were compared between two algorithms. All analysis was performed using two-tailed paired t-tests of an upper-bound p-value of <0.05. Results: Using either algorithm, no dosimetrically significant differences in PTV coverage (PTVV99%,maximal, mean, isocenter doses) and total number of MUs were observed (all p-values >0.05, mean ratios within 2%). However, maximal doses to optic-chiasm and nerves were significantly under-predicted using PB-hete (p=0.04). Maximal brainstem, spinal cord, lens dose and V12 were all comparable between two algorithms, with exception of one patient with the largest PTV who exhibited 11% higher V12 with XVMC. Conclusion: Unlike lung tumors, XVMC and PB-hete treatment plans provided similar PTV coverage for cavernous sinus tumors. Majority of OARs doses were comparable between two algorithms, except for small structures such as optic chiasm/nerves which could potentially receive higher doses when using XVMC algorithm. Special attention may need to be paid on a case-by-case basis when planning for sinus SRT based on tumor size and location to OARs particularly the optic apparatus.« less
Narouze, Samer N; Zakari, Adel; Vydyanathan, Amaresh
2009-01-01
Femoral nerve injury is a rare complication of cardiac catheterization and is usually caused by direct trauma during femoral artery access, compression from a hematoma, or prolonged digital pressure for post-procedural hemostasis. Peripheral nerve stimulation has been used to treat different pain syndromes in the upper and lower extremities with variable success and it typically requires direct vision with open surgical approach. Since the femoral nerve can be readily seen with ultrasonography, an ultrasound-guided lead placement seemed practical. A 61-year-old morbidly obese male who sustained femoral nerve injury during cardiac catheterization continued to complain of intractable femoral neuropathy 18 months afterwords. He failed multiple treatment modalities and continued to complain of severe neuropathic pains that markedly interfere with his daily activities. Two percutaneous leads were placed under real-time ultrasonography and the placement was confirmed with fluoroscopy. One lead was placed along the longitudinal axis of the nerve and the patient had good coverage over the anterior thigh but not below the knee. So another lead was placed horizontally across the femoral nerve in order to stimulate all the branches and the patient reported good coverage along the saphenous nerve distribution down to the foot. The patient continues to be pain free 20 months after the implant. Here we described a novel non-invasive percutaneous approach for femoral nerve stimulation with ultrasound guidance which allowed precise placement of the stimulating lead very close to the femoral nerve without the need for surgical exploration.
NASA Astrophysics Data System (ADS)
Badia, Jordi; Boretius, Tim; Andreu, David; Azevedo-Coste, Christine; Stieglitz, Thomas; Navarro, Xavier
2011-06-01
The selection of a suitable nerve electrode for neuroprosthetic applications implies a trade-off between invasiveness and selectivity, wherein the ultimate goal is achieving the highest selectivity for a high number of nerve fascicles by the least invasiveness and potential damage to the nerve. The transverse intrafascicular multichannel electrode (TIME) is intended to be transversally inserted into the peripheral nerve and to be useful to selectively activate subsets of axons in different fascicles within the same nerve. We present a comparative study of TIME, LIFE and multipolar cuff electrodes for the selective stimulation of small nerves. The electrodes were implanted on the rat sciatic nerve, and the activation of gastrocnemius, plantar and tibialis anterior muscles was recorded by EMG signals. Thus, the study allowed us to ascertain the selectivity of stimulation at the interfascicular and also at the intrafascicular level. The results of this study indicate that (1) intrafascicular electrodes (LIFE and TIME) provide excitation circumscribed to the implanted fascicle, whereas extraneural electrodes (cuffs) predominantly excite nerve fascicles located superficially; (2) the minimum threshold for muscle activation with TIME and LIFE was significantly lower than with cuff electrodes; (3) TIME allowed us to selectively activate the three tested muscles when stimulating through different active sites of one device, both at inter- and intrafascicular levels, whereas selective activation using multipolar cuff (with a longitudinal tripolar stimulation configuration) was only possible for two muscles, at the interfascicular level, and LIFE did not activate selectively more than one muscle in the implanted nerve fascicle.
Angeloni, Nicholas L.; Bond, Christopher W.; Monsivais, Diana; Tang, Yi; Podlasek, Carol A.
2010-01-01
Introduction Sonic hedgehog (SHH) is an essential regulator of smooth muscle apoptosis in the penis that has significant clinical potential as a therapy to suppress post-prostatectomy apoptosis, an underlying cause of erectile dysfunction (ED). Thus an understanding of how SHH signaling is regulated in the adult penis is essential to move the field of ED research forward and to develop new treatment strategies. We propose that hedgehog-interacting protein (HIP), which has been shown to bind SHH protein and to play a role in SHH regulation during embryogenesis of other organs, is a critical regulator of SHH signaling, penile morphology, and apoptosis induction. Aims We have examined HIP signaling in the penis and cavernous nerve (CN) during postnatal differentiation of the penis, in CN-injured, and a diabetic model of ED. Methods HIP localization/abundance and RNA abundance were examined by immunohistochemical (IHC) analysis and real-time reverse transcriptase-polymerase chain reaction (RT-PCR) in Sprague-Dawley rats between the ages of 7 and 92 days old, in CN-injured Sprague-Dawley rats and in BioBreeding/Worcester diabetic rats. HIP signaling was perturbed in the pelvic ganglia and in the penis and TUNEL assay was performed in the penis. CN tie, lidocaine, and anti-kinesin experiments were performed to examine HIP signaling in the CN and penis. Results In this study we are the first to demonstrate that HIP undergoes anterograde transport to the penis via the CN, that HIP perturbation in the pelvic ganglia or the penis induces apoptosis, and that HIP plays a role in maintaining CN integrity, penile morphology, and SHH abundance. Conclusions These studies are significant because they show HIP involvement in cross-talk (signaling) between the pelvic ganglia and penis, which is integral for maintenance of penile morphology and they suggest a mechanism of how nerves may regulate target organ morphology and function. PMID:19515211
Skaribas, Ioannis; Calvillo, Octavio; Delikanaki-Skaribas, Evangelia
2011-05-10
Occipital peripheral nerve stimulation is an interventional pain management therapy that provides beneficial results in the treatment of refractory chronic occipital neuralgia. Herein we present a first-of-its-kind case study of a patient with neurofibromatosis type 1 and bilateral occipital neuralgia treated with occipital peripheral nerve stimulation. A 42-year-old Caucasian woman presented with bilateral occipital neuralgia refractory to various conventional treatments, and she was referred for possible treatment with occipital peripheral nerve stimulation. She was found to be a suitable candidate for the procedure, and she underwent implantation of two octapolar stimulating leads and a rechargeable, programmable, implantable generator. The intensity, severity, and frequency of her symptoms resolved by more than 80%, but an infection developed at the implantation site two months after the procedure that required explantation and reimplantation of new stimulating leads three months later. To date she continues to experience symptom resolution of more than 60%. These results demonstrate the significance of peripheral nerve stimulation in the management of refractory occipital neuralgias in patients with neurofibromatosis type 1 and the possible role of neurofibromata in the development of occipital neuralgia in these patients.
Domanski, Mark C; Preciado, Diego A
2012-01-01
Phrenic nerve pacing can be used to treat congenital central hypoventilation syndrome (CCHS). We report how the lack of normal vocal cord tone during phrenic paced respiration can result in passive vocal cord collapse and produce obstructive symptoms. We describe a case of passive vocal cord collapse during phrenic nerve paced respiration in a patient with CCHS. As far as we know, this is the first report of this etiology of airway obstruction. The patient, a 7-year-old with CCHS and normal waking vocal cord movement, continued to require nightly continuous positive airway pressure (CPAP) despite successful utilization of phrenic nerve pacers. On direct laryngoscopy, the patient's larynx was observed while the diaphragmatic pacers were sequentially engaged. No abnormal vocal cord stimulation was witnessed during engaging of either phrenic nerve stimulator. However, the lack of normal inspiratory vocal cord abduction during phrenic nerve-paced respiration resulted in vocal cord collapse and partial obstruction due to passive adduction of the vocal cords through the Bernoulli effect. Bilateral phrenic nerve stimulation resulted in more vocal cord collapse than unilateral stimulation. The lack of vocal cord abduction on inspiration presents a limit to phrenic nerve pacers.
The Effect of Electrical Stimulation in Improving Muscle Tone (Clinical)
NASA Astrophysics Data System (ADS)
Azman, M. F.; Azman, A. W.
2017-11-01
Electrical stimulation (ES) and also known as neuromuscular electrical stimulation (NMES) and transcutaneous electrical stimulation (TES) involves the use of electrical current to stimulate the nerves or nerve endings that innervate muscle beneath the skin. Electrical stimulation may be applied superficially on the skin (transcutaneously) or directly into a muscle or muscles (intramuscularly) for the primary purpose of enhancing muscle function. The basic theoretical premise is that if the peripheral nerve can be stimulated, the resulting excitation impulse will be transmitted along the nerve to the motor endplates in the muscle, producing a muscle contraction. In this work, the effect of mere electrical stimulation to the muscle bulk and strength are tested. This paper explains how electrical stimulation can affect the muscle bulk, muscle size, muscle tone, muscle atrophy and muscle strength. The experiment and data collection are performed on 5 subjects and the results obtained are analyzed. This research aims to understand the full potential of electrical stimulation and identifying its possible benefits or disadvantages to the muscle properties. The results indicated that electrical stimulation alone able to improve muscle properties but with certain limits and precautions which might be useful in rehabilitation programme.
Evaluation of high-density, multi-contact nerve cuffs for activation of grasp muscles in monkeys
NASA Astrophysics Data System (ADS)
Brill, N. A.; Naufel, S. N.; Polasek, K.; Ethier, C.; Cheesborough, J.; Agnew, S.; Miller, L. E.; Tyler, D. J.
2018-06-01
Objective. The objective of this work was to evaluate whether nerve cuffs can selectively activate hand muscles for functional electrical stimulation (FES). FES typically involves identifying and implanting electrodes in many individual muscles, but nerve cuffs only require implantation at a single site around the nerve. This method is surgically more attractive. Nerve cuffs may also more effectively stimulate intrinsic hand muscles, which are difficult to implant and stimulate without spillover to adjacent muscles. Approach. To evaluate its ability to selectively activate muscles, we implanted and tested the flat interface nerve electrode (FINE), which is designed to selectively stimulate peripheral nerves that innervate multiple muscles (Tyler and Durand 2002 IEEE Trans. Neural Syst. Rehabil. Eng. 10 294-303). We implanted FINEs on the nerves and bipolar intramuscular wires for recording compound muscle action potentials (CMAPs) from up to 20 muscles in each arm of six monkeys. We then collected recruitment curves while the animals were anesthetized. Main result. A single FINE implanted on an upper extremity nerve in the monkey can selectively activate muscles or small groups of muscles to produce multiple, independent hand functions. Significance. FINE cuffs can serve as a viable supplement to intramuscular electrodes in FES systems, where they can better activate intrinsic and extrinsic muscles with lower currents and less extensive surgery.
Cheng, H; Wang, L S; Pan, H C; Shoung, H M; Lee, L S
1992-02-01
Electrical stimulation of the phrenic nerve to pace the diaphragm in patients with chronic ventilatory insufficiency has been an established therapeutic modality since William W.L. Glenn first described using radiofrequency signals in 1978 to stimulate the phrenic nerves. Before this event, patients who were ventilator-dependent and thus bedridden because of respiratory paralysis associated with quadriplegia usually anticipated little chance for physical or psychosocial rehabilitation. Two cases of C1-C2 subluxtion with cord injury and chronic ventilatory insufficiency were implanted at VGH-Taipei with diaphragm pacemaker in 1988. Postoperative phrenic nerve stimulation was given according to individual training schedule. One case with total phrenic paralysis received bilateral phrenic nerve stimulation and became weaned from the ventilator 6 months later. The other case with partially active ventilatory function received unilateral phrenic nerve stimulation to compensate the ventilation. However, its final outcome still showed the necessity of a bilateral mode to achieve adequate ventilation irrespective of strenuous training for 2 years.
Patterned sensory nerve stimulation enhances the reactivity of spinal Ia inhibitory interneurons.
Kubota, Shinji; Hirano, Masato; Morishita, Takuya; Uehara, Kazumasa; Funase, Kozo
2015-03-25
Patterned sensory nerve stimulation has been shown to induce plastic changes in the reciprocal Ia inhibitory circuit. However, the mechanisms underlying these changes have not yet been elucidated in detail. The aim of the present study was to determine whether the reactivity of Ia inhibitory interneurons could be altered by patterned sensory nerve stimulation. The degree of reciprocal Ia inhibition, the conditioning effects of transcranial magnetic stimulation (TMS) on the soleus (SOL) muscle H-reflex, and the ratio of the maximum H-reflex amplitude versus maximum M-wave (H(max)/M(max)) were examined in 10 healthy individuals. Patterned electrical nerve stimulation was applied to the common peroneal nerve every 1 s (100 Hz-5 train) at the motor threshold intensity of tibialis anterior muscle to induce activity changes in the reciprocal Ia inhibitory circuit. Reciprocal Ia inhibition, the TMS-conditioned H-reflex amplitude, and H(max)/M(max) were recorded before, immediately after, and 15 min after the electrical stimulation. The patterned electrical nerve stimulation significantly increased the degree of reciprocal Ia inhibition and decreased the amplitude of the TMS-conditioned H-reflex in the short-latency inhibition phase, which was presumably mediated by Ia inhibitory interneurons. However, it had no effect on H(max)/M(max). Our results indicated that patterned sensory nerve stimulation could modulate the activity of Ia inhibitory interneurons, and this change may have been caused by the synaptic modification of Ia inhibitory interneuron terminals. These results may lead to a clearer understanding of the spinal cord synaptic plasticity produced by repetitive sensory inputs. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.
Patterning of somatosympathetic reflexes
NASA Technical Reports Server (NTRS)
Kerman, I. A.; Yates, B. J.
1999-01-01
In a previous study, we reported that vestibular nerve stimulation in the cat elicits a specific pattern of sympathetic nerve activation, such that responses are particularly large in the renal nerve. This patterning of vestibulosympathetic reflexes was the same in anesthetized and decerebrate preparations. In the present study, we report that inputs from skin and muscle also elicit a specific patterning of sympathetic outflow, which is distinct from that produced by vestibular stimulation. Renal, superior mesenteric, and lumbar colonic nerves respond most strongly to forelimb and hindlimb nerve stimulation (approximately 60% of maximal nerve activation), whereas external carotid and hypogastric nerves were least sensitive to these inputs (approximately 20% of maximal nerve activation). In contrast to vestibulosympathetic reflexes, the expression of responses to skin and muscle afferent activation differs in decerebrate and anesthetized animals. In baroreceptor-intact animals, somatosympathetic responses were strongly attenuated (to <20% of control in every nerve) by increasing blood pressure levels to >150 mmHg. These findings demonstrate that different types of somatic inputs elicit specific patterns of sympathetic nerve activation, presumably generated through distinct neural circuits.
Functions of the Renal Nerves.
ERIC Educational Resources Information Center
Koepke, John P.; DiBona, Gerald F.
1985-01-01
Discusses renal neuroanatomy, renal vasculature, renal tubules, renin secretion, renorenal reflexes, and hypertension as related to renal nerve functions. Indicates that high intensitites of renal nerve stimulation have produced alterations in several renal functions. (A chart with various stimulations and resultant renal functions and 10-item,…
Heaton, James T.; Knox, Christopher; Malo, Juan; Kobler, James B.; Hadlock, Tessa A.
2013-01-01
Functional recovery is typically poor after facial nerve transection and surgical repair. In rats, whisking amplitude remains greatly diminished after facial nerve regeneration, but can recover more completely if the whiskers are periodically mechanically stimulated during recovery. Here we present a robotic “whisk assist” system for mechanically driving whisker movement after facial nerve injury. Movement patterns were either pre-programmed to reflect natural amplitudes and frequencies, or movements of the contralateral (healthy) side of the face were detected and used to control real-time mirror-like motion on the denervated side. In a pilot study, twenty rats were divided into nine groups and administered one of eight different whisk assist driving patterns (or control) for 5–20 minutes, five days per week, across eight weeks of recovery after unilateral facial nerve cut and suture repair. All rats tolerated the mechanical stimulation well. Seven of the eight treatment groups recovered average whisking amplitudes that exceeded controls, although small group sizes precluded statistical confirmation of group differences. The potential to substantially improve facial nerve recovery through mechanical stimulation has important clinical implications, and we have developed a system to control the pattern and dose of stimulation in the rat facial nerve model. PMID:23475376
Hyvärinen, Antti; Tarkka, Ina M; Mervaala, Esa; Pääkkönen, Ari; Valtonen, Hannu; Nuutinen, Juhani
2008-12-01
The purpose of this study was to assess clinical and neurophysiological changes after 6 mos of transcutaneous electrical stimulation in patients with unresolved facial nerve paralysis. A pilot case series of 10 consecutive patients with chronic facial nerve paralysis either of idiopathic origin or because of herpes zoster oticus participated in this open study. All patients received below sensory threshold transcutaneous electrical stimulation for 6 mos for their facial nerve paralysis. The intervention consisted of gradually increasing the duration of electrical stimulation of three sites on the affected area for up to 6 hrs/day. Assessments of the facial nerve function were performed using the House-Brackmann clinical scale and neurophysiological measurements of compound motor action potential distal latencies on the affected and nonaffected sides. Patients were tested before and after the intervention. A significant improvement was observed in the facial nerve upper branch compound motor action potential distal latency on the affected side in all patients. An improvement of one grade in House-Brackmann scale was observed and some patients also reported subjective improvement. Transcutaneous electrical stimulation treatment may have a positive effect on unresolved facial nerve paralysis. This study illustrates a possibly effective treatment option for patients with the chronic facial paresis with no other expectations of recovery.
Lin, Shuqin; Sun, Qi; Wang, Haifeng; Xie, Guomin
2018-01-10
To evaluate the influence of transcutaneous electrical nerve stimulation in patients with stroke through a systematic review and meta-analysis. PubMed, Embase, Web of Science, EBSCO, and Cochrane Library databases were searched systematically. Randomized controlled trials assessing the effect of transcutaneous electrical nerve stimulation vs placebo transcutaneous electrical nerve stimulation on stroke were included. Two investigators independently searched articles, extracted data, and assessed the quality of included studies. The primary outcome was modified Ashworth scale (MAS). Meta-analysis was performed using the random-effect model. Seven randomized controlled trials were included in the meta-analysis. Compared with placebo transcutaneous electrical nerve stimulation, transcutaneous electrical nerve stimulation supplementation significantly reduced MAS (standard mean difference (SMD) = -0.71; 95% confidence interval (95% CI) = -1.11 to -0.30; p = 0.0006), improved static balance with open eyes (SMD = -1.26; 95% CI = -1.83 to -0.69; p<0.0001) and closed eyes (SMD = -1.74; 95% CI = -2.36 to -1.12; p < 0.00001), and increased walking speed (SMD = 0.44; 95% CI = 0.05 to 0.84; p = 0.03), but did not improve results on the Timed Up and Go Test (SMD = -0.60; 95% CI=-1.22 to 0.03; p = 0.06). Transcutaneous electrical nerve stimulation is associated with significantly reduced spasticity, increased static balance and walking speed, but has no influence on dynamic balance.
Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Morshed, Mohammad; Nasr-Esfahani, Mohammad Hossein; Baharvand, Hossein; Kiani, Sahar; Al-Deyab, Salem S; Ramakrishna, Seeram
2011-04-01
Among the numerous attempts to integrate tissue engineering concepts into strategies to repair nearly all parts of the body, neuronal repair stands out. This is partially due to the complexity of the nervous anatomical system, its functioning and the inefficiency of conventional repair approaches, which are based on single components of either biomaterials or cells alone. Electrical stimulation has been shown to enhance the nerve regeneration process and this consequently makes the use of electrically conductive polymers very attractive for the construction of scaffolds for nerve tissue engineering. In this review, by taking into consideration the electrical properties of nerve cells and the effect of electrical stimulation on nerve cells, we discuss the most commonly utilized conductive polymers, polypyrrole (PPy) and polyaniline (PANI), along with their design and modifications, thus making them suitable scaffolds for nerve tissue engineering. Other electrospun, composite, conductive scaffolds, such as PANI/gelatin and PPy/poly(ε-caprolactone), with or without electrical stimulation, are also discussed. Different procedures of electrical stimulation which have been used in tissue engineering, with examples on their specific applications in tissue engineering, are also discussed. Copyright © 2011 John Wiley & Sons, Ltd.
Dilation of the oropharynx via selective stimulation of the hypoglossal nerve
NASA Astrophysics Data System (ADS)
Huang, Jingtao; Sahin, Mesut; Durand, Dominique M.
2005-12-01
The functional effects of selective hypoglossal nerve (HG) stimulation with a multi-contact peripheral nerve electrode were assessed using images of the upper airways and the tongue in anesthetized beagles. A biphasic pulse train of 50 Hz frequency and 2 s duration was applied through each one of the tripolar contact sets of the nerve electrode while the pharyngeal images were acquired into a computer. The stimulation current was limited to 20% above the activation threshold for maximum selectivity. The images showed that various contact sets could generate several different activation patterns of the tongue muscles resulting in medial and/or lateral dilation and closing of the airways at the tongue root. Some of these patterns translated into an increase in the oropharyngeal size while others did not have any effect. The pharyngeal sizes were not statistically different during stimulation either between the two different positions of the head (30° and 60°), or when the lateral contacts were compared with the medial ones. The contacts that had the least effect generated an average of 53 ± 15% pharyngeal dilation relative to the best contacts, indicating that the results are marginally sensitive to the contact position around the HG nerve trunk. These results suggest that selective HG nerve stimulation can be a useful technique to produce multiple tongue activation patterns that can dilate the pharynx. This may in turn increase the size of the patient population who can benefit from HG nerve stimulation as a treatment method for obstructive sleep apnea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escobar, Antonio S.; Ocampo, Arcelia F. M.; Hernandez, Maria G. H.
2010-05-31
The purpose of this study was to evaluate the compound nerve action potential amplitude and latency measured to determine the degree of myelination and the number of fibers stimulated in a model of stimulated frog sciatic nerve laser at 810 nm as perioperative treatment after injury. It used 30 bullfrogs (Rana catesbeiana) to obtain 60 sciatic nerves forming four groups, groups 1 and 2 worked with nerves in vitro, were dissected in humid chambers for placing isolated organ, was recorded on compound nerve action potential, the second group laser was applied at 24, 48, 72, 96 and 120 hours andmore » at the same time were placed in 10% formalin. Groups 3 and 4 are worked in vivo localizing the nerve and causing damage through compression, occurred over the compound nerve action potential to assess the degree of myelination and the number of fibers stimulated, the group 4 was applied to 810 nm laser (500 Hz, 10 J, 200 mW) after injury, after 48 hours, three frogs were sacrificed by introducing the nerves in 10% formalin. The latency recorded by stimulating the sciatic nerve of frog to 0.5 mA and 100 ms in groups 1 and 2 show significant differences (p<0.001 and p<000) as in the amplitude (p<000 and p<000). Groups 3 and 4, which was stimulated at 100 mA and 100 ms latency showed no statistically significant difference (p>000), as to the extent, if any statistically significant difference. (p<0.001 and p<0.000). The laser produces a favorable response in the treatment of paresthesia (post-traumatic neuropathy).« less
NASA Astrophysics Data System (ADS)
Escobar, Antonio S.; Ocampo, Arcelia F. M.; Hernández, María G. H.; Jasso, José L. C.; Lira, Maricela O. F.; Flores, Mariana A.; Balderrama, Vicente L.
2010-05-01
The purpose of this study was to evaluate the compound nerve action potential amplitude and latency measured to determine the degree of myelination and the number of fibers stimulated in a model of stimulated frog sciatic nerve laser at 810 nm as perioperative treatment after injury. It used 30 bullfrogs (Rana catesbeiana) to obtain 60 sciatic nerves forming four groups, groups 1 and 2 worked with nerves in vitro, were dissected in humid chambers for placing isolated organ, was recorded on compound nerve action potential, the second group laser was applied at 24, 48, 72, 96 and 120 hours and at the same time were placed in 10% formalin. Groups 3 and 4 are worked in vivo localizing the nerve and causing damage through compression, occurred over the compound nerve action potential to assess the degree of myelination and the number of fibers stimulated, the group 4 was applied to 810 nm laser (500 Hz, 10 J, 200 mW) after injury, after 48 hours, three frogs were sacrificed by introducing the nerves in 10% formalin. The latency recorded by stimulating the sciatic nerve of frog to 0.5 mA and 100 ms in groups 1 and 2 show significant differences (p<0.001 and p<000) as in the amplitude (p<000 and p<000). Groups 3 and 4, which was stimulated at 100 mA and 100 ms latency showed no statistically significant difference (p>000), as to the extent, if any statistically significant difference. (p<0.001 and p<0.000). The laser produces a favorable response in the treatment of paresthesia (post-traumatic neuropathy).
21 CFR 868.2775 - Electrical peripheral nerve stimulator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... a device used to apply an electrical current to a patient to test the level of pharmacological... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve...
21 CFR 868.2775 - Electrical peripheral nerve stimulator.
Code of Federal Regulations, 2013 CFR
2013-04-01
... a device used to apply an electrical current to a patient to test the level of pharmacological... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve...
Long-term efficacy and safety of sacral nerve stimulation for fecal incontinence.
Mellgren, Anders; Wexner, Steven D; Coller, John A; Devroede, Ghislain; Lerew, Darin R; Madoff, Robert D; Hull, Tracy
2011-09-01
Sacral nerve stimulation is effective in the treatment of urinary incontinence and is currently under Food and Drug Administration review in the United States for fecal incontinence. Previous reports have focused primarily on short-term results of sacral nerve stimulation for fecal incontinence. The present study reports the long-term effectiveness and safety of sacral nerve stimulation for fecal incontinence in a large prospective multicenter study. Patients with fecal incontinent episodes more than twice per week were offered participation in this multicentered prospective trial. Patients showing ≥ 50% improvement during test stimulation were offered chronic implantation of the InterStim Therapy system (Medtronic; Minneapolis, MN). The aims of the current report were to provide 3-year follow-up data on patients from that study who underwent sacral nerve stimulation and were monitored under the rigors of an Food and Drug Administration-approved investigational protocol. One hundred thirty-three patients underwent test stimulation with a 90% success rate, of whom 120 (110 females) with a mean age of 60.5 years and a mean duration of fecal incontinence of 7 years received chronic implantation. Mean length of follow-up was 3.1 (range, 0.2-6.1) years, with 83 patients completing all or part of the 3-year follow-up assessment. At 3 years follow-up, 86% of patients (P < .0001) reported ≥ 50% reduction in the number of incontinent episodes per week compared with baseline and the number of incontinent episodes per week decreased from a mean of 9.4 at baseline to 1.7. Perfect continence was achieved in 40% of subjects. The therapy also improved the fecal incontinence severity index. Sacral nerve stimulation had a positive impact on the quality of life, as evidenced by significant improvements in all 4 scales of the Fecal Incontinence Quality of Life instrument at 12, 24, and 36 months of follow-up. The most common device- or therapy-related adverse events through the mean 36 months of follow-up included implant site pain (28%), paresthesia (15%), change in the sensation of stimulation (12%), and infection (10%). There were no reported unanticipated adverse device effects associated with sacral nerve stimulation therapy. Sacral nerve stimulation using InterStim Therapy is a safe and effective treatment for patients with fecal incontinence. These data support long-term safety and effectiveness to 36 months.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chuanhui; Wang, Yang; Li, Youxiang
PurposeCranial nerve dysfunction (CND) is not uncommon in patients with cavernous dural arteriovenous fistulas (cDAVFs), and may represent an initial manifestation or a complication after endovascular treatment. This study evaluated the outcome of CND associated with cDAVFs after transvenous embolization (TVE) using Onyx.Materials and MethodsForty-one patients with cDAVFs were treated with TVE in our department between April 2009 and October 2013. For each patient, clinical and radiologic records were retrospectively reviewed and evaluated, with an emphasis placed on evaluating the outcomes of the pre-existing cDAVF-induced CND and the TVE-induced CND.ResultsOf the 41 cases, 25 had a history of preoperative CND.more » Postoperatively, gradual remission to complete recovery (CR) within 8 months was observed in 17 of these cases, transient aggravation in 7, and significant improvement to be better than preoperative function but no CR in 1. All aggravation of CND occurred immediately or within 1 day after TVE and resolved completely within 5 months. Nine patients developed new CND after TVE. New CND occurred during the perioperative period in 8 cases, but all cases resolved completely within 15 days–6 months. Delayed CND was observed in 3 cases with a time lag of 3–25 months after TVE. Two of these completely resolved within 20 days–1 month and the remaining case significantly improved.ConclusionBoth the pre-existing cDAVF-induced CND and the TVE-induced new or aggravated CND completely resolved in almost all cases after embolization with Onyx.« less
Gamma Knife radiosurgery for hemangioma of the cavernous sinus.
Lee, Cheng-Chia; Sheehan, Jason P; Kano, Hideyuki; Akpinar, Berkcan; Martinez-Alvarez, Roberto; Martinez-Moreno, Nuria; Guo, Wan-Yuo; Lunsford, L Dade; Liu, Kang-Du
2017-05-01
OBJECTIVE Cavernous sinus hemangiomas (CSHs) are rare vascular tumors. A direct microsurgical approach usually results in massive hemorrhage and incomplete tumor resection. Although stereotactic radiosurgery (SRS) has emerged as a therapeutic alternative to microsurgery, outcome studies are few. Authors of the present study evaluated the role of SRS for CSH. METHODS An international multicenter study was conducted to review outcome data in 31 patients with CSH. Eleven patients had initial microsurgery before SRS, and the other 20 patients (64.5%) underwent Gamma Knife SRS as the primary management for their CSH. Median age at the time of radiosurgery was 47 years, and 77.4% of patients had cranial nerve dysfunction before SRS. Patients received a median tumor margin dose of 12.6 Gy (range 12-19 Gy) at a median isodose of 55%. RESULTS Tumor regression was confirmed by imaging in all 31 patients, and all patients had greater than 50% reduction in tumor volume at 6 months post-SRS. No patient had delayed tumor growth, new cranial neuropathy, visual function deterioration, adverse radiation effects, or hypopituitarism after SRS. Twenty-four patients had presented with cranial nerve disorders before SRS, and 6 (25%) of them had gradual improvement. Four (66.7%) of the 6 patients with orbital symptoms had symptomatic relief at the last follow-up. CONCLUSIONS Stereotactic radiosurgery was effective in reducing the volume of CSH and attaining long-term tumor control in all patients at a median of 40 months. The authors' experience suggests that SRS is a reasonable primary and adjuvant treatment modality for patients in whom a CSH is diagnosed.
Cavernous nerve repair with allogenic adipose matrix and autologous adipose-derived stem cells.
Lin, Guiting; Albersen, Maarten; Harraz, Ahmed M; Fandel, Thomas M; Garcia, Maurice; McGrath, Mary H; Konety, Badrinath R; Lue, Tom F; Lin, Ching-Shwun
2011-06-01
To investigate whether adipose-derived matrix seeded with adipose-derived stem cells (ADSC) can facilitate the repair of injured cavernous nerves (CNs). Human and rat adipose tissues were decellularized and fabricated into various forms, including adipose tissue-derived acellular matrix thread (ADMT). ADMT seeded with ADSC were transplanted into subcutaneous space and examined for signs of inflammation. ADSC-seeded ADMTs were then used to repair CN injury in rats, followed by assessment of histology and erectile function. Adipose tissue can be fabricated into acellular matrices of various shapes and sizes, including threads and sheets. Seeding of ADMT occurred rapidly: within 24 hours, 55% of the surface was covered with ADSC and within 1 week, 90% was covered. Transplantation of the seeded ADMT into the subcutaneous space of an allogenic host showed no signs of inflammatory reaction. At 3 months after grafting into CN injury rats, approximately twice as many cells were found on seeded ADMT as on unseeded ADMT. The seeded ADMT also had various degrees of S100 and neuronal nitric oxide synthase expression, suggesting CN axonal ingrowth. Rats grafted with seeded ADMT overall had the best erectile function recovery when compared with those grafted with unseeded ADMT and those ungrafted. However, as a result of large variations, the differences did not reach statistic significance (P = .07). Grafting of ADSC-seeded matrix resulted in a substantial recovery of erectile function and improvement of histology. However, further refinement of the matrix architecture is needed to improve the success rate. Copyright © 2011 Elsevier Inc. All rights reserved.
Occipital Neuralgia from C2 Cavernous Malformation
Ha, Sang-woo; Choi, Jin-gyu; Son, Byung-chul
2018-01-01
A unique case is presented of chronic occipital neuralgia (ON) caused by cavernous malformation (CM) in the intramedullary C2 spinal cord and subsequent pain relief and remodeling of allodynic pain following dorsal root rhizotomy. A 53-year-old male presented with a 30-year history of chronic allodynic, paroxysmal lancinating pain in the greater and lesser occipital nerves. Typically, the pain was aggravated with neck extension and head movement. Magnetic resonance imaging showed a CM in the right posterolateral side of the intramedullary C2 cord. Considering potential risks associated with removal of the lesion, intradural C1-3 dorsal root rhizotomy with dentate ligament resection was performed. The paroxysmal lancinating pain of ON was significantly alleviated, and the remodeling of the extent of allodynic pain was noted after C1-3 dorsal root rhizotomy. These changes gradually occurred during the second postoperative month, and this effect was maintained for 24 months postoperatively. Significant reduction in chronic allodynic pain of secondary ON caused by cervicomedullary CM involving central sensitization in the trigeminocervical complex was observed with reduction of irritating, afferent input with C1-C3 dorsal root rhizotomy. PMID:29682056
Occipital Neuralgia from C2 Cavernous Malformation.
Ha, Sang-Woo; Choi, Jin-Gyu; Son, Byung-Chul
2018-01-01
A unique case is presented of chronic occipital neuralgia (ON) caused by cavernous malformation (CM) in the intramedullary C2 spinal cord and subsequent pain relief and remodeling of allodynic pain following dorsal root rhizotomy. A 53-year-old male presented with a 30-year history of chronic allodynic, paroxysmal lancinating pain in the greater and lesser occipital nerves. Typically, the pain was aggravated with neck extension and head movement. Magnetic resonance imaging showed a CM in the right posterolateral side of the intramedullary C2 cord. Considering potential risks associated with removal of the lesion, intradural C1-3 dorsal root rhizotomy with dentate ligament resection was performed. The paroxysmal lancinating pain of ON was significantly alleviated, and the remodeling of the extent of allodynic pain was noted after C1-3 dorsal root rhizotomy. These changes gradually occurred during the second postoperative month, and this effect was maintained for 24 months postoperatively. Significant reduction in chronic allodynic pain of secondary ON caused by cervicomedullary CM involving central sensitization in the trigeminocervical complex was observed with reduction of irritating, afferent input with C1-C3 dorsal root rhizotomy.
Pelvic autonomic neuromonitoring: present reality, future prospects.
Skinner, Stanley A
2014-08-01
Currently, the means to assess the autonomic nervous system primarily depend on end organ functional measurement: intravesical pressure, skin resistance, and penile strain gauge tension, for example. None of these measures has been generally accepted in the operating room. Nevertheless, the segmental and peripheral pelvic autonomic nerve supply is placed at risk during both pelvic and lower spine surgery. In this difficult era of suboptimal post-prostatectomy outcomes, the urological literature does reveal the salutary development of safer dissection techniques about the peri-prostatic and cavernous plexus. Means of reliably specific nerve identification remain elusive. The need for actual nerve monitoring (not just identification) has only recently been proposed. Data from the animal lab reinforce an appreciation of the intimate and elegant interconnectedness of autonomic and somatic structures, particularly at the segmental level. Also, the biochemistry of erectile tissue engorgement (in both sexes) is very well understood (the electrophysiology increasingly so). Understanding these principles should permit parallel investigation and implementation of neurophysiological techniques which both identify and monitor pelvic autonomic function. The predicates for these proposed new approaches in the operating room are discussed in this review.
Presacral abscess as a rare complication of sacral nerve stimulator implantation.
Gumber, A; Ayyar, S; Varia, H; Pettit, S
2017-03-01
A 50-year-old man with intractable anal pain attributed to proctalgia fugax underwent insertion of a sacral nerve stimulator via the right S3 vertebral foramen for pain control with good symptomatic relief. Thirteen months later, he presented with signs of sepsis. Computed tomography (CT) and magnetic resonance imaging (MRI) showed a large presacral abscess. MRI demonstrated increased enhancement along the pathway of the stimulator electrode, indicating that the abscess was caused by infection introduced at the time of sacral nerve stimulator placement. The patient was treated with broad spectrum antibiotics, and the sacral nerve stimulator and electrode were removed. Attempts were made to drain the abscess transrectally using minimally invasive techniques but these were unsuccessful and CT guided transperineal drainage was then performed. Despite this, the presacral abscess progressed, developing enlarging gas locules and extending to the pelvic brim to involve the aortic bifurcation, causing hydronephrosis and radiological signs of impending sacral osteomyelitis. MRI showed communication between the rectum and abscess resulting from transrectal drainage. In view of the progressive presacral sepsis, a laparotomy was performed with drainage of the abscess, closure of the upper rectum and formation of a defunctioning end sigmoid colostomy. Following this, the presacral infection resolved. Presacral abscess formation secondary to an infected sacral nerve stimulator electrode has not been reported previously. Our experience suggests that in a similar situation, the optimal management is to perform laparotomy with drainage of the presacral abscess together with simultaneous removal of the sacral nerve stimulator and electrode.
Presacral abscess as a rare complication of sacral nerve stimulator implantation
Gumber, A; Ayyar, S; Varia, H
2017-01-01
A 50-year-old man with intractable anal pain attributed to proctalgia fugax underwent insertion of a sacral nerve stimulator via the right S3 vertebral foramen for pain control with good symptomatic relief. Thirteen months later, he presented with signs of sepsis. Computed tomography (CT) and magnetic resonance imaging (MRI) showed a large presacral abscess. MRI demonstrated increased enhancement along the pathway of the stimulator electrode, indicating that the abscess was caused by infection introduced at the time of sacral nerve stimulator placement. The patient was treated with broad spectrum antibiotics, and the sacral nerve stimulator and electrode were removed. Attempts were made to drain the abscess transrectally using minimally invasive techniques but these were unsuccessful and CT guided transperineal drainage was then performed. Despite this, the presacral abscess progressed, developing enlarging gas locules and extending to the pelvic brim to involve the aortic bifurcation, causing hydronephrosis and radiological signs of impending sacral osteomyelitis. MRI showed communication between the rectum and abscess resulting from transrectal drainage. In view of the progressive presacral sepsis, a laparotomy was performed with drainage of the abscess, closure of the upper rectum and formation of a defunctioning end sigmoid colostomy. Following this, the presacral infection resolved. Presacral abscess formation secondary to an infected sacral nerve stimulator electrode has not been reported previously. Our experience suggests that in a similar situation, the optimal management is to perform laparotomy with drainage of the presacral abscess together with simultaneous removal of the sacral nerve stimulator and electrode. PMID:28071947
Colzato, Lorenza S; Sellaro, Roberta; Beste, Christian
2017-07-01
Charles Darwin proposed that via the vagus nerve, the tenth cranial nerve, emotional facial expressions are evolved, adaptive and serve a crucial communicative function. In line with this idea, the later-developed polyvagal theory assumes that the vagus nerve is the key phylogenetic substrate that regulates emotional and social behavior. The polyvagal theory assumes that optimal social interaction, which includes the recognition of emotion in faces, is modulated by the vagus nerve. So far, in humans, it has not yet been demonstrated that the vagus plays a causal role in emotion recognition. To investigate this we employed transcutaneous vagus nerve stimulation (tVNS), a novel non-invasive brain stimulation technique that modulates brain activity via bottom-up mechanisms. A sham/placebo-controlled, randomized cross-over within-subjects design was used to infer a causal relation between the stimulated vagus nerve and the related ability to recognize emotions as indexed by the Reading the Mind in the Eyes Test in 38 healthy young volunteers. Active tVNS, compared to sham stimulation, enhanced emotion recognition for easy items, suggesting that it promoted the ability to decode salient social cues. Our results confirm that the vagus nerve is causally involved in emotion recognition, supporting Darwin's argumentation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Non-invasive peripheral nerve stimulation via focused ultrasound in vivo
NASA Astrophysics Data System (ADS)
Downs, Matthew E.; Lee, Stephen A.; Yang, Georgiana; Kim, Seaok; Wang, Qi; Konofagou, Elisa E.
2018-02-01
Focused ultrasound (FUS) has been employed on a wide range of clinical applications to safely and non-invasively achieve desired effects that have previously required invasive and lengthy procedures with conventional methods. Conventional electrical neuromodulation therapies that are applied to the peripheral nervous system (PNS) are invasive and/or non-specific. Recently, focused ultrasound has demonstrated the ability to modulate the central nervous system and ex vivo peripheral neurons. Here, for the first time, noninvasive stimulation of the sciatic nerve eliciting a physiological response in vivo is demonstrated with FUS. FUS was applied on the sciatic nerve in mice with simultaneous electromyography (EMG) on the tibialis anterior muscle. EMG signals were detected during or directly after ultrasound stimulation along with observable muscle contraction of the hind limb. Transecting the sciatic nerve downstream of FUS stimulation eliminated EMG activity during FUS stimulation. Peak-to-peak EMG response amplitudes and latency were found to be comparable to conventional electrical stimulation methods. Histology along with behavioral and thermal testing did not indicate damage to the nerve or surrounding regions. The findings presented herein demonstrate that FUS can serve as a targeted, safe and non-invasive alternative to conventional peripheral nervous system stimulation to treat peripheral neuropathic diseases in the clinic.
2011-01-01
Introduction Occipital peripheral nerve stimulation is an interventional pain management therapy that provides beneficial results in the treatment of refractory chronic occipital neuralgia. Herein we present a first-of-its-kind case study of a patient with neurofibromatosis type 1 and bilateral occipital neuralgia treated with occipital peripheral nerve stimulation. Case presentation A 42-year-old Caucasian woman presented with bilateral occipital neuralgia refractory to various conventional treatments, and she was referred for possible treatment with occipital peripheral nerve stimulation. She was found to be a suitable candidate for the procedure, and she underwent implantation of two octapolar stimulating leads and a rechargeable, programmable, implantable generator. The intensity, severity, and frequency of her symptoms resolved by more than 80%, but an infection developed at the implantation site two months after the procedure that required explantation and reimplantation of new stimulating leads three months later. To date she continues to experience symptom resolution of more than 60%. Conclusion These results demonstrate the significance of peripheral nerve stimulation in the management of refractory occipital neuralgias in patients with neurofibromatosis type 1 and the possible role of neurofibromata in the development of occipital neuralgia in these patients. PMID:21569290
Topical nitroglycerin: a potential treatment for impotence.
Owen, J A; Saunders, F; Harris, C; Fenemore, J; Reid, K; Surridge, D; Condra, M; Morales, A
1989-03-01
The effect of 2 per cent nitroglycerin paste applied to the penile shaft of impotent subjects was evaluated in a placebo controlled double-blind study under laboratory conditions. After application of nitroglycerin paste or a placebo ointment base, penile tumescence was recorded through a strain gauge transducer while subjects viewed an erotic video presentation. Relative to the placebo paste the number of subjects demonstrating an increase in penile circumference after nitroglycerin (18 of 26) was significantly different than all other outcome possibilities (p less than 0.05). Noninvasive vascular assessment by ultrasonography demonstrated an increase in diameter and blood flow in the cavernous arteries after application of nitroglycerin paste. Nitroglycerin paste increases blood flow in the cavernous arteries and improves tumescence after erotic stimulation. This agent may represent a new therapy for impotence.
Near-infrared signals associated with electrical stimulation of peripheral nerves
NASA Astrophysics Data System (ADS)
Fantini, Sergio; Chen, Debbie K.; Martin, Jeffrey M.; Sassaroli, Angelo; Bergethon, Peter R.
2009-02-01
We report our studies on the optical signals measured non-invasively on electrically stimulated peripheral nerves. The stimulation consists of the delivery of 0.1 ms current pulses, below the threshold for triggering any visible motion, to a peripheral nerve in human subjects (we have studied the sural nerve and the median nerve). In response to electrical stimulation, we observe an optical signal that peaks at about 100 ms post-stimulus, on a much longer time scale than the few milliseconds duration of the electrical response, or sensory nerve action potential (SNAP). While the 100 ms optical signal we measured is not a direct optical signature of neural activation, it is nevertheless indicative of a mediated response to neural activation. We argue that this may provide information useful for understanding the origin of the fast optical signal (also on a 100 ms time scale) that has been measured non-invasively in the brain in response to cerebral activation. Furthermore, the optical response to peripheral nerve activation may be developed into a diagnostic tool for peripheral neuropathies, as suggested by the delayed optical signals (average peak time: 230 ms) measured in patients with diabetic neuropathy with respect to normal subjects (average peak time: 160 ms).
Preliminary results of sacral transcutaneous electrical nerve stimulation for fecal incontinence.
Leung, Edmund; Francombe, James
2013-03-01
Fecal incontinence is a common debilitating condition. The aim of this study is to investigate the feasibility of sacral transcutaneous electrical nerve stimulation as an alternative treatment modality for fecal incontinence. All consecutive patients who presented with fecal incontinence to the senior author's clinic were prospectively recruited between June 2009 and September 2010. The severity of their fecal incontinence was assessed by the Wexner and Vaizey scores and anal physiology. Any improvement following a period of sacral transcutaneous electrical nerve stimulation treatment was determined by repeating the scores. In addition, patient satisfaction with the procedure was assessed by using a patient impression score. Twenty female patients with a median age of 57.5 years (range, 30-86) were evaluated. The median follow-up was 10 months (range, 5-12 months). Two patients did not record a change in their Vaizey score. The overall mean Wexner score was 7.9 ± 4.2 before in comparison with 4.0 ± 3.1 after sacral transcutaneous electrical nerve stimulation treatment (p < 0.0001, CI = 2.2-5.7, SE = 0.832). The overall mean Vaizey score was 12.7 ± 5.7 before in comparison with 5.8 ± 5.6 after sacral transcutaneous electrical nerve stimulation treatment (p < 0.0001, CI = 4.5-9.4, SE = 1.162). The pretreatment patient impression score was set at a mean of 1 ± 0 in comparison with 2.8 ± 1.1 after sacral transcutaneous electrical nerve stimulation treatment (p < 0.0001, CI = 1.2-2.3, SE = 0.25). The preliminary results suggest sacral transcutaneous electrical nerve stimulation is a promising noninvasive alternative to existing modalities in the treatment of idiopathic fecal incontinence.
Youssef, Tamer; Youssef, Mohamed; Thabet, Waleed; Lotfy, Ahmed; Shaat, Reham; Abd-Elrazek, Eman; Farid, Mohamed
2015-10-01
The objective of this study was to evaluate the efficacy of transcutaneous electrical posterior tibial nerve stimulation in treatment of patients with chronic anal fissure and to compare it with the conventional lateral internal sphincterotomy. Consecutive patients with chronic anal fissure were randomly allocated into two treatment groups: transcutaneous electrical posterior tibial nerve stimulation group and lateral internal sphincterotomy group. The primary outcome measures were number of patients with clinical improvement and healed fissure. Secondary outcome measures were complications, VAS pain scores, Wexner's constipation and Peascatori anal incontinence scores, anorectal manometry, and quality of life index. Seventy-three patients were randomized into two groups of 36 patients who were subjected to transcutaneous electrical nerve stimulation and 37 patients who underwent lateral internal sphincterotomy. All (100%) patients in lateral internal sphincterotomy group had clinical improvement at one month following the procedure in contrast to 27 (75%) patients in transcutaneous electrical nerve stimulation group. Recurrence of anal fissure after one year was reported in one (2.7%) and 11 (40.7%) patients in lateral internal sphincterotomy and transcutaneous electrical nerve stimulation groups respectively. Resting anal pressure and functional anal canal length were significantly reduced after lateral internal sphincterotomy. Transcutaneous electrical posterior tibial nerve stimulation for treatment of chronic anal fissure is a novel, non-invasive procedure and has no complications. However, given the higher rate of clinical improvement and fissure healing and the lower rate of fissure recurrence, lateral internal sphincterotomy remains the gold standard for treating chronic anal fissure. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.
Biffi, Mauro; Exner, Derek V; Crossley, George H; Ramza, Brian; Coutu, Benoit; Tomassoni, Gery; Kranig, Wolfgang; Li, Shelby; Kristiansen, Nina; Voss, Frederik
2013-01-01
Unwanted phrenic nerve stimulation (PNS) has been reported in ∼1 in 4 patients undergoing left ventricular (LV) pacing. The occurrence of PNS over mid-term follow-up and the significance of PNS are less certain. Data from 1307 patients enrolled in pre-market studies of LV leads manufactured by Medtronic (models 4193 and 4195 unipolar, 4194, 4196, 4296, and 4396 bipolar) were pooled. Left ventricular lead location was recorded at implant using a common classification scheme. Phrenic nerve stimulation symptoms were either spontaneously reported or identified at scheduled follow-up visits. A PNS-related complication was defined as PNS resulting in invasive intervention or the termination of LV pacing. Average follow-up was 14.9 months (range 0.0-46.6). Phrenic nerve stimulation symptoms occurred in 169 patients (12.9%). Phrenic nerve stimulation-related complications occurred in 21 of 1307 patients (1.6%); 16 of 738 (2.2%) in the unipolar lead studies, and 5 of 569 (0.9%) in the bipolar lead studies (P = 0.08). Phrenic nerve stimulation was more frequent at middle-lateral/posterior, and apical LV sites (139/1010) vs. basal-posterior/lateral/anterior, and middle-anterior sites (20/297; P= 0.01). As compared with an anterior LV lead position, a lateral LV pacing site was associated with over a four-fold higher risk of PNS (P= 0.005) and an apical LV pacing site was associated with over six-fold higher risk of PNS (P= 0.001). Phrenic nerve stimulation occurred in 13% of patients undergoing LV lead placement and was more common at mid-lateral/posterior, and LV apical sites. Most cases (123/139; 88%) of PNS were mitigated via electrical reprogramming, without the need for invasive intervention.
King, Camille Tessitore; Garcea, Mircea; Spector, Alan C
2014-08-01
Remarkably, when lingual gustatory nerves are surgically rerouted to inappropriate taste fields in the tongue, some taste functions recover. We previously demonstrated that quinine-stimulated oromotor rejection reflexes and neural activity (assessed by Fos immunoreactivity) in subregions of hindbrain gustatory nuclei were restored if the posterior tongue, which contains receptor cells that respond strongly to bitter compounds, was cross-reinnervated by the chorda tympani nerve. Such functional recovery was not seen if instead, the anterior tongue, where receptor cells are less responsive to bitter compounds, was cross-reinnervated by the glossopharyngeal nerve, even though this nerve typically responds robustly to bitter substances. Thus, recovery depended more on the taste field being reinnervated than on the nerve itself. Here, the distribution of quinine-stimulated Fos-immunoreactive neurons in two taste-associated forebrain areas was examined in these same rats. In the central nucleus of the amygdala (CeA), a rostrocaudal gradient characterized the normal quinine-stimulated Fos response, with the greatest number of labeled cells situated rostrally. Quinine-stimulated neurons were found throughout the gustatory cortex, but a "hot spot" was observed in its anterior-posterior center in subregions approximating the dysgranular/agranular layers. Fos neurons here and in the rostral CeA were highly correlated with quinine-elicited gapes. Denervation of the posterior tongue eliminated, and its reinnervation by either nerve restored, numbers of quinine-stimulated labeled cells in the rostralmost CeA and in the subregion approximating the dysgranular gustatory cortex. These results underscore the remarkable plasticity of the gustatory system and also help clarify the functional anatomy of neural circuits activated by bitter taste stimulation. © 2014 Wiley Periodicals, Inc.
Occipital Nerve Stimulation for the Treatment of Refractory Occipital Neuralgia: A Case Series.
Keifer, Orion P; Diaz, Ashley; Campbell, Melissa; Bezchlibnyk, Yarema B; Boulis, Nicholas M
2017-09-01
Occipital neuralgia is a chronic pain syndrome characterized by sharp, shooting pains in the distribution of the occipital nerves. Although relatively rare, it associated with extremely debilitating symptoms that drastically affect a patient's quality of life. Furthermore, it is extremely difficult to treat as the symptoms are refractory to traditional treatments, including pharmacologic and procedural interventions. A few previous case studies have established the use of a neurostimulation of the occipital nerves to treat occipital neuralgia. The following expands on that literature by retrospectively reviewing the results of occipital nerve stimulation in a relatively large patient cohort (29 patients). A retrospective review of 29 patients undergoing occipital nerve stimulation for occipital neuralgia from 2012 to 2017 at a single institution with a single neurosurgeon. Of those 29 patients, 5 were repair or replacement of previous systems, 4 did not have benefit from trial stimulation, and 20 saw benefit to their trial stage of stimulation and went on to full implantation. Of those 20 patients, even with a history of failed procedures and pharmacological therapies, there was an overall success rate of 85%. The average preoperative 10-point pain score dropped from 7.4 ± 1.7 to a postoperative score of 2.9 ± 1.7. However, as with any peripheral nerve stimulation procedure, there were complications (4 patients), including infection, hardware erosion, loss of effect, and lead migration, which required revision or system removal. Despite complications, the results suggest, overall, that occipital nerve stimulation is a safe and effective procedure for refractory occipital neuralgia and should be in the neurosurgical repertoire for occipital neuralgia treatment. Copyright © 2017 Elsevier Inc. All rights reserved.
Zecca, C; Digesu, G A; Robshaw, P; Singh, A; Elneil, S; Gobbi, C
2014-03-01
Percutaneous tibial nerve stimulation is an effective second line therapy for lower urinary tract symptoms. Data on percutaneous tibial nerve stimulation maintenance treatment are scarce. In this study we evaluate its effectiveness and propose an algorithm of percutaneous tibial nerve stimulation maintenance treatment in patients with multiple sclerosis. In this prospective, multicenter, open label trial consecutive patients with multiple sclerosis and lower urinary tract symptoms unresponsive to medical therapy were treated with 12 weekly sessions of percutaneous tibial nerve stimulation. Responder patients (50% or greater improvement of lower urinary tract symptoms as measured by the patient perception of bladder condition questionnaire) entered a maintenance phase with individualized treatment frequency based on patient response. Lower urinary tract symptoms were assessed using a 3-day frequency volume chart, urodynamics and patient perception of bladder condition questionnaire. Treatment satisfaction was evaluated using a global response assessment scale and a treatment satisfaction visual analog scale. A total of 83 patients were included in the study and 74 (89%) responded to initial treatment. Persistent efficacy occurred in all initial responders after a mean treatment of 24 months. The greatest frequency of maintenance percutaneous tibial nerve stimulation was every 2 weeks. Lower urinary tract symptoms and patient treatment satisfaction improved with time compared to initial treatment (p <0.05). Bladder diary parameters and voiding parameters improved compared to baseline (p <0.05). Prolonged percutaneous tibial nerve stimulation treatment leads to a persistent improvement of lower urinary tract symptoms in patients with multiple sclerosis. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Neurostimulation for Treatment of Migraine and Cluster Headache
Schwedt, Todd J.; Vargas, Bert
2015-01-01
Objective The objective of this narrative review was to summarize the current state of neurostimulation therapies for the treatment of migraine and/or cluster. Methods For this narrative review, publications were identified by searching PubMed using the search terms “migraine” or “cluster” combined with “vagal nerve stimulation”, “transcranial magnetic stimulation”, “supraorbital nerve stimulation”, “sphenopalatine ganglion stimulation”, “occipital nerve stimulation”, “deep brain stimulation”, “neurostimulation”, or “neuromodulation”. Publications were chosen based upon the quality of data that were provided and their relevance to the chosen topics of interest for this review. Reference lists of chosen articles and the authors own files were used to identify additional publications. Current clinical trials were identified by searching clinicaltrials.org. Results and Conclusions Neurostimulation of the vagal nerve, supraorbital nerve, occipital nerve and sphenopalatine ganglion, transcranial magnetic stimulation, and deep brain stimulation have been investigated for the treatment of migraine and/or cluster. Whereas invasive methods of neurostimulation would be reserved for patients with very severe and treatment refractory migraine or cluster, non-invasive methods of stimulation might serve as useful adjuncts to more conventional therapies. Currently, transcutaneous supraorbital nerve stimulation is FDA approved and commercially available for migraine prevention and transcranial magnetic stimulation is FDA approved for the treatment of migraine with aura. The potential utility of each type of neurostimulation has yet to be completely defined. PMID:26177612
NASA Astrophysics Data System (ADS)
Caravaca, A. S.; Tsaava, T.; Goldman, L.; Silverman, H.; Riggott, G.; Chavan, S. S.; Bouton, C.; Tracey, K. J.; Desimone, R.; Boyden, E. S.; Sohal, H. S.; Olofsson, P. S.
2017-12-01
Objective. Neural reflexes regulate immune responses and homeostasis. Advances in bioelectronic medicine indicate that electrical stimulation of the vagus nerve can be used to treat inflammatory disease, yet the understanding of neural signals that regulate inflammation is incomplete. Current interfaces with the vagus nerve do not permit effective chronic stimulation or recording in mouse models, which is vital to studying the molecular and neurophysiological mechanisms that control inflammation homeostasis in health and disease. We developed an implantable, dual purpose, multi-channel, flexible ‘microelectrode’ array, for recording and stimulation of the mouse vagus nerve. Approach. The array was microfabricated on an 8 µm layer of highly biocompatible parylene configured with 16 sites. The microelectrode was evaluated by studying the recording and stimulation performance. Mice were chronically implanted with devices for up to 12 weeks. Main results. Using the microelectrode in vivo, high fidelity signals were recorded during physiological challenges (e.g potassium chloride and interleukin-1β), and electrical stimulation of the vagus nerve produced the expected significant reduction of blood levels of tumor necrosis factor (TNF) in endotoxemia. Inflammatory cell infiltration at the microelectrode 12 weeks of implantation was limited according to radial distribution analysis of inflammatory cells. Significance. This novel device provides an important step towards a viable chronic interface for cervical vagus nerve stimulation and recording in mice.
Intracranial Management of Perineural Spread in the Trigeminal Nerve.
Redmond, Michael J; Panizza, Benedict J
2016-04-01
Since the mid-1960s surgeons have attempted to cure intracranial perineural spread (PNS) of cutaneous malignancies. Untreated patients with trigeminal PNS die from brainstem invasion and leptomeningeal disease. It was understood that resection with clear margins was potentially curative, but early surgical attempts were unsuccessful. The prevailing wisdom considered that this surgery failed to improve the results achieved with radiation therapy alone and was associated with high morbidity. However, with improved imaging, surgical equipment, and better understanding of cavernous sinus (CS) anatomy and access, contemporary surgeons can improve outcomes for this disease. The aim of this paper is to describe a technique to access the interdural compartment of the CS and treat PNS of cutaneous squamous cell carcinoma (cSCC) in the intracranial trigeminal nerve and ganglion. It is based on the experience of the Queensland Skull Base Unit, Australia in managing PNS of cutaneous squamous cell carcinoma of the head and neck (cSCCHN).
Electronic enhancement of tear secretion
NASA Astrophysics Data System (ADS)
Brinton, Mark; Lim Chung, Jae; Kossler, Andrea; Kook, Koung Hoon; Loudin, Jim; Franke, Manfred; Palanker, Daniel
2016-02-01
Objective. To study electrical stimulation of the lacrimal gland and afferent nerves for enhanced tear secretion, as a potential treatment for dry eye disease. We investigate the response pathways and electrical parameters to safely maximize tear secretion. Approach. We evaluated the tear response to electrical stimulation of the lacrimal gland and afferent nerves in isofluorane-anesthetized rabbits. In acute studies, electrical stimulation was performed using bipolar platinum foil electrodes, implanted beneath the inferior lacrimal gland, and a monopolar electrode placed near the afferent ethmoid nerve. Wireless microstimulators with bipolar electrodes were implanted beneath the lacrimal gland for chronic studies. To identify the response pathways, we applied various pharmacological inhibitors. To optimize the stimulus, we measured tear secretion rate (Schirmer test) as a function of pulse amplitude (1.5-12 mA), duration (0.1-1 ms) and repetition rate (10-100 Hz). Main results. Stimulation of the lacrimal gland increased tear secretion by engaging efferent parasympathetic nerves. Tearing increased with stimulation amplitude, pulse duration and repetition rate, up to 70 Hz. Stimulation with 3 mA, 500 μs pulses at 70 Hz provided a 4.5 mm (125%) increase in Schirmer score. Modulating duty cycle further increased tearing up to 57%, compared to continuous stimulation in chronically implanted animals (36%). Ethmoid (afferent) nerve stimulation increased tearing similar to gland stimulation (3.6 mm) via a reflex pathway. In animals with chronically implanted stimulators, a nearly 6 mm increase (57%) was achieved with 12-fold less charge density per pulse (0.06-0.3 μC mm-2 with 170-680 μs pulses) than the damage threshold (3.5 μC mm-2 with 1 ms pulses). Significance. Electrical stimulation of the lacrimal gland or afferent nerves may be used as a treatment for dry eye disease. Clinical trials should validate this approach in patients with aqueous tear deficiency, and further optimize electrical parameters for maximum clinical efficacy.
d'Ovidio, Dario; Noviello, Emilio; Adami, Chiara
2015-07-01
To describe the nerve stimulator-guided sciatic-femoral nerve block in raptors undergoing surgical treatment of pododermatitis. Prospective clinical trial. Five captive raptors (Falco peregrinus) aged 6.7 ± 1.3 years. Anaesthesia was induced and maintained with isoflurane in oxygen. The sciatic-femoral nerve block was performed with 2% lidocaine (0.05 mL kg(-1) per nerve) as the sole intra-operative analgesic treatment. Intraoperative physiological variables were recorded every 10 minutes from endotracheal intubation until the end of anaesthesia. Assessment of intraoperative nociception was based on changes in physiological variables above baseline values, while evaluation of postoperative pain relied on species-specific behavioural indicators. The sciatic-femoral nerve block was feasible in raptors and the motor responses following electrical stimulation of both nerves were consistent with those reported in mammalian species. During surgery no rescue analgesia was required. The anaesthesia plane was stable and cardiorespiratory variables did not increase significantly in response to surgical stimulation. Iatrogenic complications, namely nerve damage and local anaesthetic toxicity, did not occur. Recovery was smooth and uneventful. The duration (mean ± SD) of the analgesic effect provided by the nerve block was 130 ± 20 minutes. The sciatic-femoral nerve block as described in dogs and rabbits can be performed in raptors as well. Further clinical trials with a control groups are required to better investigate the analgesic efficacy and the safety of this technique in raptors. © 2014 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.
Frahm, Ken Steffen; Hennings, Kristian; Vera-Portocarrero, Louis; Wacnik, Paul W; Mørch, Carsten Dahl
2016-04-01
Low back pain is one of the indications for using peripheral nerve field stimulation (PNFS). However, the effect of PNFS varies between patients; several stimulation parameters have not been investigated in depth, such as orientation of the nerve fiber in relation to the electrode. While placing the electrode parallel to the nerve fiber may give lower activation thresholds, anodal blocking may occur when the propagating action potential passes an anode. A finite element model was used to simulate the extracellular potential during PNFS. This was combined with an active cable model of Aβ and Aδ nerve fibers. It was investigated how the angle between the nerve fiber and electrode affected the nerve activation and whether anodal blocking could occur. Finally, the area of paresthesia was estimated and compared with any concomitant Aδ fiber activation. The lowest threshold was found when nerve and electrode were in parallel, and that anodal blocking did not appear to occur during PNFS. The activation of Aβ fibers was within therapeutic range (<10V) of PNFS; however, within this range, Aδ fiber activation also may occur. The combined area of activated Aβ fibers (paresthesia) was at least two times larger than Aδ fibers for similar stimulation intensities. No evidence of anodal blocking was observed in this PNFS model. The thresholds were lowest when the nerves and electrodes were parallel; thus, it may be relevant to investigate the overall position of the target nerve fibers prior to electrode placement. © 2015 International Neuromodulation Society.
Napadow, Vitaly; Edwards, Robert R; Cahalan, Christine M; Mensing, George; Greenbaum, Seth; Valovska, Assia; Li, Ang; Kim, Jieun; Maeda, Yumi; Park, Kyungmo; Wasan, Ajay D
2012-06-01
Previous vagus nerve stimulation (VNS) studies have demonstrated antinociceptive effects, and recent noninvasive approaches, termed transcutaneous-vagus nerve stimulation (t-VNS), have utilized stimulation of the auricular branch of the vagus nerve in the ear. The dorsal medullary vagal system operates in tune with respiration, and we propose that supplying vagal afferent stimulation gated to the exhalation phase of respiration can optimize t-VNS. Counterbalanced, crossover study. Patients with chronic pelvic pain (CPP) due to endometriosis in a specialty pain clinic. INTERVENTIONS/OUTCOMES: We evaluated evoked pain analgesia for respiratory-gated auricular vagal afferent nerve stimulation (RAVANS) compared with nonvagal auricular stimulation (NVAS). RAVANS and NVAS were evaluated in separate sessions spaced at least 1 week apart. Outcome measures included deep-tissue pain intensity, temporal summation of pain, and anxiety ratings, which were assessed at baseline, during active stimulation, immediately following stimulation, and 15 minutes after stimulus cessation. RAVANS demonstrated a trend for reduced evoked pain intensity and temporal summation of mechanical pain, and significantly reduced anxiety in N = 15 CPP patients, compared with NVAS, with moderate to large effect sizes (η(2) > 0.2). Chronic pain disorders such as CPP are in great need of effective, nonpharmacological options for treatment. RAVANS produced promising antinociceptive effects for quantitative sensory testing (QST) outcomes reflective of the noted hyperalgesia and central sensitization in this patient population. Future studies should evaluate longer-term application of RAVANS to examine its effects on both QST outcomes and clinical pain. Wiley Periodicals, Inc.
Nowak, Dennis A; Linder, Stefan; Topka, Helge
2005-09-01
Earlier investigations have suggested that isolated conduction block of the facial nerve to transcranial magnetic stimulation early in the disorder represents a very sensitive and potentially specific finding in Bell's palsy differentiating the disease from other etiologies. Stimulation of the facial nerve was performed electrically at the stylomastoid foramen and magnetically at the labyrinthine segment of the Fallopian channel within 3 days from symptom onset in 65 patients with Bell's palsy, five patients with Zoster oticus, one patient with neuroborreliosis and one patient with nuclear facial nerve palsy due to multiple sclerosis. Absence or decreased amplitudes of muscle responses to early transcranial magnetic stimulation was not specific for Bell's palsy, but also evident in all cases of Zoster oticus and in the case of neuroborreliosis. Amplitudes of electrically evoked muscle responses were more markedly reduced in Zoster oticus as compared to Bell's palsy, most likely due to a more severe degree of axonal degeneration. The degree of amplitude reduction of the muscle response to electrical stimulation reliably correlated with the severity of facial palsy. Transcranial magnetic stimulation in the early diagnosis of Bell's palsy is less specific than previously thought. While not specific with respect to the etiology of facial palsy, transcranial magnetic stimulation seems capable of localizing the site of lesion within the Fallopian channel. Combined with transcranial magnetic stimulation, early electrical stimulation of the facial nerve at the stylomastoid foramen may help to establish correct diagnosis and prognosis.
Assouad, Jalal; Masmoudi, Hicham; Gonzalez-Bermejo, Jesus; Morélot-Panzini, Capucine; Diop, Moustapha; Grunenwald, Dominique; Similowski, Thomas
2012-08-01
Phrenic nerve stimulation for diaphragm pacing allows patients with central respiratory paralysis to be weaned from mechanical ventilation. Two procedures are available, either intrathoracic (bilateral thoracotomy) or intradiaphragmatic (four ports laparoscopy). The present experimental work assesses the feasibility, safety and efficacy of a trans-mediastinal implantation of intradiaphragmatic phenic nerve stimulation electrodes using a flexible gastroscope through a cervical incision. We operated on nine ewes. After selective bronchial intubation, we dissected the latero-tracheal space and opened both mediastinal pleura. We then introduced a flexible gastroscope into the pleural cavities, in a sequential manner. The phrenic nerves were located and followed up to the diaphragm dome. Electrodes loaded within a long, pliable needle were introduced through the adjacent intercostal space and implanted in each hemidiaphragm, at a 'tendinous' location (as close as possible to the entry of the nerve in the central tendon), and at a more lateral 'muscular' location. Postoperatively, the animals were ventilated using bilateral phrenic nerve stimulation. After euthanasia, abdominal verification of the electrodes position was performed through a laparotomy. The mediastinal and pleural parts of the procedure were uneventful. The insertion of electrodes was associated with transdiaphragmatic puncture and small abdominal haematomas in the first two animals studied. After a slight modification of the insertion technique, this was not observed anymore. Phrenic nerve stimulation produced efficient ventilation, with tidal volumes significantly higher when delivered at the tendinous site than at the muscular site. The trans-mediastinal implantation of intradiaphragmatic phrenic nerve stimulation electrodes is feasible, appears reasonably safe, and allows efficient ventilation.
High frequency oscillations evoked by peripheral magnetic stimulation.
Biller, S; Simon, L; Fiedler, P; Strohmeier, D; Haueisen, J
2011-01-01
The analysis of somatosensory evoked potentials (SEP) and / or fields (SEF) is a well-established and important tool for investigating the functioning of the peripheral and central human nervous system. A standard technique to evoke SEPs / SEFs is the stimulation of the median nerve by using a bipolar electrical stimulus. We aim at an alternative stimulation technique enabling stimulation of deep nerve structures while reducing patient stress and error susceptibility. In the current study, we apply a commercial transcranial magnetic stimulation system for peripheral magnetic stimulation of the median nerve. We compare the results of simultaneously recorded EEG signals to prove applicability of our technique to evoke SEPs including low frequency components (LFC) as well as high frequency oscillations (HFO). Therefore, we compare amplitude, latency and time-frequency characteristics of the SEP of 14 healthy volunteers after electric and magnetic stimulation. Both low frequency components and high frequency oscillations were detected. The HFOs were superimposed onto the primary cortical response N20. Statistical analysis revealed significantly lower amplitudes and increased latencies for LFC and HFO components after magnetic stimulation. The differences indicate the inability of magnetic stimulation to elicit supramaximal responses. A psycho-perceptual evaluation showed that magnetic stimulation was less unpleasant for 12 out of the 14 volunteers. In conclusion, we showed that LFC and HFO components related to median nerve stimulation can be evoked by peripheral magnetic stimulation.
A nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle.
van Bolhuis, A I; Holsheimer, J; Savelberg, H H
2001-05-30
Electrical stimulation of peripheral nerve results in a motor-unit recruitment order opposite to that attained by natural neural control, i.e. from large, fast-fatiguing to progressively smaller, fatigue-resistant motor-units. Yet animal studies involving physiological exercise protocols of low intensity and long duration require minimal fatigue. The present study sought to apply a nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle. Two pulse generators were used, independently supplying short supramaximal cathodal stimulating pulses (0.5 ms) and long subthreshold cathodal inactivating pulses (1.5 s) to the sciatic nerve. Propagation of action potentials was selectively blocked in nerve fibres of different diameter by adjusting the strength of the inactivating current. A tensile-testing machine was used to gauge isometric muscle force of the plantaris and both heads of the gastrocnemius muscle. The order of motor-unit recruitment was estimated from twitch characteristics, i.e. peak force and relaxation time. The results showed prolonged relaxation at lower twitch peak forces as the intensity of the inactivating current increased, indicating a reduction of the number of large motor-units to force production. It is shown that the nerve stimulation method described is effective in mimicking physiological muscle control.
eNOS-uncoupling in age-related erectile dysfunction
Johnson, JM; Bivalacqua, TJ; Lagoda, GA; Burnett, AL; Musicki, B
2011-01-01
Aging is associated with ED. Although age-related ED is attributed largely to increased oxidative stress and endothelial dysfunction in the penis, the molecular mechanisms underlying this effect are not fully defined. We evaluated whether endothelial nitric oxide synthase (eNOS) uncoupling in the aged rat penis is a contributing mechanism. Correlatively, we evaluated the effect of replacement with eNOS cofactor tetrahydrobiopterin (BH4) on erectile function in the aged rats. Male Fischer 344 ‘young’ (4-month-old) and ‘aged’ (19-month-old) rats were treated with a BH4 precursor sepiapterin (10 mg/kg intraperitoneally) or vehicle for 4 days. After 1-day washout, erectile function was assessed in response to electrical stimulation of the cavernous nerve. Endothelial dysfunction (eNOS uncoupling) and oxidative stress (thiobarbituric acid reactive substances, TBARS) were measured by conducting western blot in penes samples. Erectile response was significantly reduced in aged rats, whereas eNOS uncoupling and TBARS production were significantly increased in the aged rat penis compared with young rats. Sepiapterin significantly improved erectile response in aged rats and prevented increase in TBARS production, but did not affect eNOS uncoupling in the penis of aged rats. These findings suggest that aging induces eNOS uncoupling in the penis, resulting in increased oxidative stress and ED. PMID:21289638
Antifibrogenic role of valproic acid in streptozotocin induced diabetic rat penis.
Kutlu, O; Karaguzel, E; Gurgen, S G; Okatan, A E; Kutlu, S; Bayraktar, C; Kazaz, I O; Eren, H
2016-05-01
We investigated the therapeutic effects of valproic acid (VPA) on erectile dysfunction and reducing penile fibrosis in streptozocin (STZ)-induced diabetic rats. Eighteen male rats were divided into three experimental groups (Control, STZ-DM, STZ-DM plus VPA) and diabetes was induced by transperitoneal single dose STZ. Eight weeks after, VPA and placebo treatments were given according to groups for 15 days. All rats were anesthetised for the measurement of in vivo erectile response to cavernous nerve stimulation. Afterward penes were evaluated histologically in terms of immune labelling scores of endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF) and transforming growth factor-β1 (TGF-β1). Slides were also evaluated in terms of collagen/smooth muscle ratio and penile apoptosis. After the treatment with VPA, erectile responses were found as improved when compared with STZ-DM rats but not statistically meaningful. eNOS and VEGF immune expressions diminished in penile corpora of STZ-DM rats and improved with VPA treatment. VPA led to decrease in TGF-β1 expression and collagen content of diabetic rats' penes. Penile apoptosis was not diminished with VPA. In conclusion, VPA treatment seems to be effective for reducing penile fibrosis in diabetic rats and more prolonged treatment period may enhance erectile functions. © 2015 Blackwell Verlag GmbH.
Benefits and Risks of Cochlear Implants
... The cochlear implant stimulates the nerves directly with electrical currents. Although this stimulation appears to be safe, the long term effect of these electrical currents on the nerves is unknown. May not ...
Moszkowski, Tomasz; Kauff, Daniel W; Wegner, Celine; Ruff, Roman; Somerlik-Fuchs, Karin H; Kruger, Thilo B; Augustyniak, Piotr; Hoffmann, Klaus-Peter; Kneist, Werner
2018-03-01
Neurophysiologic monitoring can improve autonomic nerve sparing during critical phases of rectal cancer surgery. To develop a system for extracorporeal stimulation of sacral nerve roots. Dedicated software controlled a ten-electrode stimulation array by switching between different electrode configurations and current levels. A built-in impedance and current level measurement assessed the effectiveness of current injection. Intra-anal surface electromyography (sEMG) informed on targeting the sacral nerve roots. All tests were performed on five pig specimens. During switching between electrode configurations, the system delivered 100% of the set current (25 mA, 30 Hz, 200 μs cathodic pulses) in 93% of 250 stimulation trains across all specimens. The impedance measured between single stimulation array contacts and corresponding anodes across all electrode configurations and specimens equaled 3.7 ± 2.5 kΩ. The intra-anal sEMG recorded a signal amplitude increase as previously observed in the literature. When the stimulation amplitude was tested in the range from 1 to 21 mA using the interconnected contacts of the stimulation array and the intra-anal anode, the impedance remained below 250 Ω and the system delivered 100% of the set current in all cases. Intra-anal sEMG showed an amplitude increase for current levels exceeding 6 mA. The system delivered stable electric current, which was proved by built-in impedance and current level measurements. Intra-anal sEMG confirmed the ability to target the branches of the autonomous nervous system originating from the sacral nerve roots. Stimulation outside of the operative field during rectal cancer surgery is feasible and may improve the practicality of pelvic intraoperative neuromonitoring.
Evolution in the concept of erection anatomy.
Awad, Ayman; Alsaid, Bayan; Bessede, Thomas; Droupy, Stéphane; Benoît, Gérard
2011-05-01
To review and to summarize the literature on anatomy and physiology of erection in the past three decades, especially the work done in our institution. A search of the PubMed database was performed using keywords erection, anatomy and erectile dysfunction (ED). Relevant articles were reviewed, analyzed and summarized. Penile vascularisation and innervation vary substantially. Internal pudendal artery is the major source of penile blood supply, but a supralevator accessory pudendal artery that may originate from inferior vesical or obturator or external iliac arteries is not uncommon. Section of this artery during radical prostatectomy (RP) may adversely affect postoperative potency. Anastomoses between the supra and the infralevator arterial pathways are frequent. The cavernous nerves (CNs) contain parasympathetic and sympathetic nerve fibers and these nerves lie within leaves of the lateral endopelvic fascia. Anastomoses between the CNs and the dorsal nerve of the penis are common. Nitric oxide released from noradrenergic, noncholinergic neurotransmission of the CN and from the endothelium is the principal neurotransmitter-mediating penile erection. Interactions between pro-erectile and anti-erectile neurotransmitters are not completely defined. Finally, medial preoptic area and paraventricular nucleus are the key structures in the central control of sexual function and penile erection. The surgical and functional anatomy of erection is complex. Precise knowledge of penile vascularisation and innervation facilitates treatment of ED especially after RP.
Frequency response of the renal vasculature in congestive heart failure.
DiBona, Gerald F; Sawin, Linda L
2003-04-29
The renal vasoconstrictor response to renal nerve stimulation is greater in congestive heart failure (CHF) rats than in control rats. This study tested the hypothesis that the enhanced renal vasoconstrictor response to renal nerve stimulation in CHF is a result of an impairment in the low-pass filter function of the renal vasculature. In response to conventional graded-frequency renal nerve stimulation, the reductions in renal blood flow at each stimulation frequency were greater in CHF rats than control rats. A pseudorandom binary sequence pattern of renal nerve stimulation was used to examine the frequency response of the renal vasculature. Although this did not affect the renal blood flow power spectrum in control rats, there was a 10-fold increase in renal blood flow power over the frequency range of 0.01 to 1.0 Hz in CHF rats. On analysis of transfer function gain, attenuation of the renal nerve stimulation input signal was similar in control and CHF rats over the frequency range of 0.001 to 0.1 Hz. However, over the frequency range of 0.1 to 1.0 Hz, although there was progressive attenuation of the input signal (-30 to -70 dB) in control rats, CHF rats exhibited a flat gain response (-20 dB) without progressive attenuation. The enhanced renal vasoconstrictor response to renal nerve stimulation in CHF rats is caused by an alteration in the low-pass filter function of the renal vasculature, resulting in a greater transfer of input signals into renal blood flow in the 0.1 to 1.0 Hz range.
Williams, J D; Lehman, R
1988-01-01
A technique is described in which "jingle bells" are sutured in three positions on the face at the points of maximum excursion of the facial musculature when stimulated by a Hilger nerve stimulator set at 2 mA. The procedure is used to monitor movement of the facial nerve while the surgeon dissects the nerve in the cerebellopontine angle and internal auditory canal.
The use of a stimulating catheter for total knee replacement surgery - preliminary results
Jack, Nigel T.M.; Liem, Edwin B.; Vonhögen, Leon H.
2006-01-01
Summary Background There is continuing debate as to whether the use of electrical stimulation that aids in localizing nerves is also beneficial for optimizing placement of nerve catheters and will lead to improved clinical outcomes such as reductions in pain scores and opioid consumption. Methods We undertook a retrospective, non-randomized comparison of stimulating and non-stimulating nerve catheters in 419 patients undergoing total knee replacement between December 2002 and July 2004. Pre-operatively, patients received sciatic and femoral nerve blocks, with a catheter for the femoral nerve. In 159 patients, a stimulating (Stimucath, Arrow International, Reading, PA) and, in 260 patients, a non-stimulating (Contiplex, BBraun, Melsungen, Germany) catheter system was used. Postoperatively, pain scores and morphine consumption were recorded at 4-hour intervals until the first postoperative morning. In a subset of 85 patients, the postoperative evaluation period was lengthened to three days. Results Post-operative visual analogue scores (VAS) for pain were similar in the two groups during the first 24 hours (P = 0.305). In patients followed for three days, VAS scores did not differ on any of the days (P = 0.427). Total morphine consumption did not differ on the first post-operative day (Stimulating: 12.4 [10.1-14.7] vs. non-stimulating: 10.4 [8.9-11.8]; mean [95% CI]; P=0.140) or on subsequent days. Conclusions The practical advantages of the stimulating catheter, as by reported by previous investigators, were not obvious in this clinical situation. In terms of outcome measures such as pain scores and morphine consumption, we found no significant differences between stimulating and non-stimulating catheters. PMID:15923268
A micro-scale printable nanoclip for electrical stimulation and recording in small nerves.
Lissandrello, Charles A; Gillis, Winthrop F; Shen, Jun; Pearre, Ben W; Vitale, Flavia; Pasquali, Matteo; Holinski, Bradley J; Chew, Daniel J; White, Alice E; Gardner, Timothy J
2017-06-01
The vision of bioelectronic medicine is to treat disease by modulating the signaling of visceral nerves near various end organs. In small animal models, the nerves of interest can have small diameters and limited surgical access. New high-resolution methods for building nerve interfaces are desirable. In this study, we present a novel nerve interface and demonstrate its use for stimulation and recording in small nerves. We design and fabricate micro-scale electrode-laden nanoclips capable of interfacing with nerves as small as 50 µm in diameter. The nanoclips are fabricated using a direct laser writing technique with a resolution of 200 nm. The resolution of the printing process allows for incorporation of a number of innovations such as trapdoors to secure the device to the nerve, and quick-release mounts that facilitate keyhole surgery, obviating the need for forceps. The nanoclip can be built around various electrode materials; here we use carbon nanotube fibers for minimally invasive tethering. We present data from stimulation-evoked responses of the tracheal syringeal (hypoglossal) nerve of the zebra finch, as well as quantification of nerve functionality at various time points post implant, demonstrating that the nanoclip is compatible with healthy nerve activity over sub-chronic timescales. Our nerve interface addresses key challenges in interfacing with small nerves in the peripheral nervous system. Its small size, ability to remain on the nerve over sub-chronic timescales, and ease of implantation, make it a promising tool for future use in the treatment of disease.
Choudhary, M; Clavica, F; van Mastrigt, R; van Asselt, E
2016-06-20
Electrophysiological studies of whole organ systems in vitro often require measurement of nerve activity and/or stimulation of the organ via the associated nerves. Currently two-compartment setups are used for such studies. These setups are complicated and require two fluids in two separate compartments and stretching the nerve across one chamber to the other, which may damage the nerves. We aimed at developing a simple single compartment setup by testing the electrophysiological properties of FC-770 (a perfluorocarbon) for in vitro recording of bladder afferent nerve activity and electrical stimulation of the bladder. Perflurocarbons are especially suitable for such a setup because of their high oxygen carrying capacity and insulating properties. In male Wistar rats, afferent nerve activity was recorded from postganglionic branches of the pelvic nerve in vitro, in situ and in vivo. The bladder was stimulated electrically via the efferent nerves. Organ viability was monitored by recording spontaneous contractions of the bladder. Additionally, histological examinations were done to test the effect of FC-770 on the bladder tissue. Afferent nerve activity was successfully recorded in a total of 11 rats. The bladders were stimulated electrically and high amplitude contractions were evoked. Histological examinations and monitoring of spontaneous contractions showed that FC-770 maintained organ viability and did not cause damage to the tissue. We have shown that FC-770 enables a simple, one compartment in vitro alternative for the generally used two compartment setups for whole organ electrophysiological studies.
Shaw, Andrew; Sharma, Mayur; Zibly, Zion; Ikeda, Daniel; Deogaonkar, Milind
2016-12-01
Ilioinguinal neuralgia (IG) and genitofemoral (GF) neuralgia following inguinal hernia repair is a chronic and debilitating neuropathic condition. Recently, peripheral nerve stimulation has become an effective and minimally invasive option for the treatment of refractory pain. Here we present a retrospective case series of six patients who underwent placement of peripheral nerve stimulation electrodes using various techniques for treatment of refractory post-intervention inguinal region pain. Six patients with post-intervention inguinal, femoral or GF neuropathic pain were evaluated for surgery. Either octopolar percutaneous electrodes or combination of paddle and percutaneous electrodes were implanted in the area of their pain. Pain visual analog scores (VAS), surgical complication rate, preoperative symptom duration, degree of pain relief, preoperative and postoperative work status, postoperative changes in medication usage, and overall degree of satisfaction with this therapy was assessed. All six patients had an average improvement of 62% in the immediate post-operative follow-up. Four patients underwent stimulation for IG, one for femoral neuralgia, and another for GF neuralgia. Peripheral nerve stimulation provided at least 50% pain relief in all the six patients with post-intervention inguinal region pain. 85% of patients indicated they were completely satisfied with the therapy overall. There was one treatment failure with an acceptable complication rate. Peripheral nerve or field stimulation for post-intervention inguinal region pain is a safe and effective treatment for this refractory and complex problem for patients who have exhausted other management options.
Sellaro, Roberta; de Gelder, Beatrice; Finisguerra, Alessandra; Colzato, Lorenza S
2018-02-01
The polyvagal theory suggests that the vagus nerve is the key phylogenetic substrate enabling optimal social interactions, a crucial aspect of which is emotion recognition. A previous study showed that the vagus nerve plays a causal role in mediating people's ability to recognize emotions based on images of the eye region. The aim of this study is to verify whether the previously reported causal link between vagal activity and emotion recognition can be generalized to situations in which emotions must be inferred from images of whole faces and bodies. To this end, we employed transcutaneous vagus nerve stimulation (tVNS), a novel non-invasive brain stimulation technique that causes the vagus nerve to fire by the application of a mild electrical stimulation to the auricular branch of the vagus nerve, located in the anterior protuberance of the outer ear. In two separate sessions, participants received active or sham tVNS before and while performing two emotion recognition tasks, aimed at indexing their ability to recognize emotions from facial and bodily expressions. Active tVNS, compared to sham stimulation, enhanced emotion recognition for whole faces but not for bodies. Our results confirm and further extend recent observations supporting a causal relationship between vagus nerve activity and the ability to infer others' emotional state, but restrict this association to situations in which the emotional state is conveyed by the whole face and/or by salient facial cues, such as eyes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Relationship of vocal cord paralysis to the coil diameter of vagus nerve stimulator leads.
Robinson, Leslie C; Winston, Ken R
2015-03-01
This investigation was done to examine, following implantation of vagus nerve stimulators, the relationship of vocal cord paralysis to the inner diameter of the coils used to attach the stimulator lead to the nerve. All data in this investigation were collected, as mandated by the FDA, by the manufacturer of vagus nerve stimulators and were made available without restrictions for analysis by the authors. The data reflect all initial device implantations in the United States for the period from 1997 through 2012. Vocal cord paralysis was reported in 193 of 51,882 implantations. In patients aged 18 years and older, the incidence of paralysis was 0.26% when the stimulator leads had coil diameters of 3 mm and 0.51% when the leads had 2-mm-diameter coils (p < 0.05). Across all age groups, the incidence of vocal cord paralysis increased with age at implantation for leads having 2-mm-diameter coils. In patients aged 18 years and older, vocal cord paralysis occurred at almost twice the rate with the implantation of vagus nerve stimulator leads having 2-mm-diameter coils than with leads having 3-mm-diameter coils. The incidence of vocal cord paralysis increases with patient age at implantation.
21 CFR 882.5860 - Implanted neuromuscular stimulator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... electrical stimulation to a patient's peroneal or femoral nerve to cause muscles in the leg to contract, thus... electrodes that are placed around a patient's nerve and an external transmitter for transmitting the...
Anderson, Matthew; Shelke, Namdev B.; Manoukian, Ohan S.; Yu, Xiaojun; McCullough, Louise D.; Kumbar, Sangamesh G.
2017-01-01
Treatment of large peripheral nerve damages ranges from the use of an autologous nerve graft to a synthetic nerve growth conduit. Biological grafts, in spite of many merits, show several limitations in terms of availability and donor site morbidity, and outcomes are suboptimal due to fascicle mismatch, scarring, and fibrosis. Tissue engineered nerve graft substitutes utilize polymeric conduits in conjunction with cues both chemical and physical, cells alone and or in combination. The chemical and physical cues delivered through polymeric conduits play an important role and drive tissue regeneration. Electrical stimulation (ES) has been applied toward the repair and regeneration of various tissues such as muscle, tendon, nerve, and articular tissue both in laboratory and clinical settings. The underlying mechanisms that regulate cellular activities such as cell adhesion, proliferation, cell migration, protein production, and tissue regeneration following ES is not fully understood. Polymeric constructs that can carry the electrical stimulation along the length of the scaffold have been developed and characterized for possible nerve regeneration applications. We discuss the use of electrically conductive polymers and associated cell interaction, biocompatibility, tissue regeneration, and recent basic research for nerve regeneration. In conclusion, a multifunctional combinatorial device comprised of biomaterial, structural, functional, cellular, and molecular aspects may be the best way forward for effective peripheral nerve regeneration. PMID:27278739
Sanchez, Olivia; García, Andrea; Castro-Prado, Fernando; Perez, Miriam; Lara-Estrada, Rafael; Ramirez-Meza, Martin; Godinez, Montserrat; Coco, Michael L; Azpiroz, Joaquín; Borsody, Mark K; Sacristán, Emilio
2018-02-15
Magnetic stimulation of the facial nerve has been tested in preclinical studies as a new, non-invasive emergency treatment of ischemic stroke that acts by increasing cerebral blood flow (CBF). The objective of the studies reported herein was to identify minimal stimulation parameters that increase CBF in large animals and then test those stimulation parameters in healthy volunteers for safety, tolerability, and effectiveness at increasing CBF. This translational research is necessary preparation for clinical studies in ischemic stroke patients. Initial experiments in anesthetized Yorkshire pigs were undertaken in order to identify the lowest stimulus power and duration that increase CBF. A full 3 × 3 factorial design was used to evaluate magnetic stimulation of the facial nerve at various stimulation powers (1.3, 1.6, and 1.9 Tesla field strength at coil surface) and for various durations (2, 3.5, and 5 min). CBF was measured with contrast MRI perfusion imaging and the internal carotid arteries were assessed with MR angiography. Magnetic facial nerve stimulation with parameters identified in the pig study was then applied to 35 healthy volunteers. Safety was assessed with adverse event reports and by medical examination. Tolerability was defined as each volunteer's ability to withstand at least 2 min of stimulation. Volunteers could determine the maximum power of stimulation they received during a ramp-up period. In pigs, unilateral facial nerve stimulation increased CBF by as much as 77% over pre-stimulation baseline when administered across a range of 1.3-1.9 Tesla power and for 2- to 5-min duration. No clear dose-response relationship could be observed across this range, but lower powers and durations than these were markedly less effective. The effect of a single stimulation lasted 90 min. A second stimulation delivered 100 min after the first stimulation sustained the increased CBF without evidence of tachyphylaxis. In human, bilateral facial nerve stimulation caused only non-serious adverse events that were limited to the 2-min stimulation period. Tolerability was greatly improved by gentle encouragement from the study staff, which enabled most volunteers to tolerate 1.6-1.8 Tesla of stimulation power. CBF measures taken approximately 10 min after stimulation demonstrated on average a 32 ± 6% increase in CBF, with ≥ 25% increases in CBF occurring in 10 of the 31 volunteers who had adequate CBF measurements. The minimal effective stimulation parameters defined by increased CBF, as identified in the pig study, translated into safe, tolerable, and effective stimulation of healthy volunteers. These results support the future development and evaluation of non-invasive facial nerve stimulation for the emergency treatment of ischemic stroke. Trial Registration retrospectively registered with clinicaltrials.gov NRV_P1_01_15 on June 6, 2017.
De Ridder, Dirk; Kilgard, Michael; Engineer, Navzer; Vanneste, Sven
2015-04-01
Classical neuromodulation consists of applying electrical or magnetic stimuli to the nervous system to modulate ongoing activity and connectivity. However, recently, an exciting novel neuromodulation technique was developed in which stimulation of the vagal nerve was paired with simultaneous presentation of tones, demonstrating that it reverses a tinnitus percept in noise-exposed rats. To determine whether this therapy could also be effective in humans, we delivered a similar therapy in a patient with chronic tinnitus unresponsive to previous therapies. In this report, we describe the case of a 59-year-old man who suffered from bilateral tinnitus for 14 years that arose after a cervical fusion operation. Pharmacotherapy, transcranial magnetic stimulation, transcranial direct current stimulation, neurofeedback, and bilateral auditory cortex stimulation via implanted electrodes did not improve the tinnitus. After implanting the vagal nerve stimulator, the patient received daily vagus nerve stimulation tone pairings for 4 weeks in a non-placebo-controlled way. At the end of therapy, the patient experienced a significant reduction in tinnitus symptoms that lasted for 2 months after treatment. Tinnitus Handicap Inventory and Tinnitus Reaction Questionnaire were reduced by 48% and 68%, respectively. Symptoms of depression were also improved by 40%, as quantified by the Beck Depression Inventory. Three months after ending therapy, placebo stimulation was performed consisting of only tone presentation without the simultaneous electrical stimuli. This resulted in further continuation of the gradual relapse to the baseline state, without renewed improvement. Our results suggest that vagus nerve stimulation paired with tones could become an effective therapy for the treatment of tinnitus.
Bendella, H; Pavlov, S P; Grosheva, M; Irintchev, A; Angelova, S K; Merkel, D; Sinis, N; Kaidoglou, K; Skouras, E; Dunlop, S A; Angelov, Doychin N
2011-07-01
We have recently shown that manual stimulation of target muscles promotes functional recovery after transection and surgical repair to pure motor nerves (facial: whisking and blink reflex; hypoglossal: tongue position). However, following facial nerve repair, manual stimulation is detrimental if sensory afferent input is eliminated by, e.g., infraorbital nerve extirpation. To further understand the interplay between sensory input and motor recovery, we performed simultaneous cut-and-suture lesions on both the facial and the infraorbital nerves and examined whether stimulation of the sensory afferents from the vibrissae by a forced use would improve motor recovery. The efficacy of 3 treatment paradigms was assessed: removal of the contralateral vibrissae to ensure a maximal use of the ipsilateral ones (vibrissal stimulation; Group 2), manual stimulation of the ipsilateral vibrissal muscles (Group 3), and vibrissal stimulation followed by manual stimulation (Group 4). Data were compared to controls which underwent surgery but did not receive any treatment (Group 1). Four months after surgery, all three treatments significantly improved the amplitude of vibrissal whisking to 30° versus 11° in the controls of Group 1. The three treatments also reduced the degree of polyneuronal innervation of target muscle fibers to 37% versus 58% in Group 1. These findings indicate that forced vibrissal use and manual stimulation, either alone or sequentially, reduce target muscle polyinnervation and improve recovery of whisking function when both the sensory and the motor components of the trigemino-facial system regenerate.
Effects of coil characteristics for femoral nerve magnetic stimulation.
Tomazin, Katja; Verges, Samuel; Decorte, Nicolas; Oulerich, Alain; Millet, Guillaume Y
2010-03-01
The aim of this study was to compare the efficiency of two coils used for femoral nerve magnetic stimulation and to compare them with electrical stimulation in inducing maximal response of the quadriceps. The mechanical and electromyographic (EMG) responses were dependent on the coil used. The 45-mm double coil showed greater efficiency to elicit a maximal quadriceps response, which was similar to electrical stimulation.
Enríquez-Denton, M; Nielsen, J; Perreault, M-C; Morita, H; Petersen, N; Hultborn, H
2000-01-01
In cat lumbar motoneurones, disynaptic inhibitory postsynaptic potentials (IPSPs) evoked by stimulation of antagonist motor nerves were depressed for at least 150 ms following conditioning stimulation of flexor (1.7-2 times threshold (T)) and ankle extensor (5T) nerves. The aim of the present study was to investigate the possibility that this depression is caused by presynaptic inhibitory mechanisms acting at the terminals of group I afferent fibres projecting to the Ia inhibitory interneurones and/or the terminals of these interneurones to the target motoneurones. Conditioning stimulation of flexor, but not ankle extensor, nerves evoked a depression of the monosynaptic Ia excitatory postsynaptic potentials (EPSPs) recorded intracellularly in Ia inhibitory interneurones. This depression lasted between 200 and 700 ms and was not accompanied by a depression of the monosynaptic EPSPs evoked by stimulation of descending pathways. These results suggest that flexor, but not ankle extensor, group I afferent fibres can modulate sensory transmission at the synapse between Ia afferent fibres and Ia inhibitory interneurones. Conditioning stimulation of flexor muscle nerves, extensor muscle nerves and cutaneous nerves produced a long-lasting increase in excitability of the terminals of the Ia inhibitory interneurones. The increase in the excitability of the terminals was not secondary to an electrotonic spread of synaptic excitation at the soma. Indeed, concomitant with the excitability increase of the terminals there were signs of synaptic inhibition in the soma. The unitary IPSPs induced in target motoneurones following the spike activity of single Ia inhibitory interneurones were depressed by conditioning stimulation of muscle and cutaneous nerves. Since the conditioning stimulation also evoked compound IPSPs in those motoneurones, a firm conclusion as to whether unitary IPSP depression involved presynaptic inhibitory mechanism of the terminals of the interneurones could not be reached. The possibility that the changes in excitability of the Ia interneuronal terminals reflect the presence of a presynaptic inhibitory mechanism similar to that operating at the terminals of the afferent fibres (presynaptic inhibition) is discussed.1. In cat lumbar motoneurones, disynaptic inhibitory postsynaptic potentials (IPSPs) evoked by stimulation of antagonist motor nerves were depressed for at least 150 ms following conditioning stimulation of flexor (1.7-2 times threshold (T)) and ankle extensor (5T) nerves. The aim of the present study was to investigate the possibility that this depression is caused by presynaptic inhibitory mechanisms acting at the terminals of group I afferent fibres projecting to the Ia inhibitory interneurones and/or the terminals of these interneurones to the target motoneurones. PMID:10922013
Keyl, Cornelius; Held, Tanja; Albiez, Georg; Schmack, Astrid; Wiesenack, Christoph
2013-07-01
Peripheral neuropathy may affect nerve conduction in patients with diabetes mellitus. This study was designed to test the hypothesis that the electrical stimulation threshold for a motor response of the sciatic nerve is increased in patients suffering from diabetic foot gangrene compared to non-diabetic patients. Prospective non-randomised trial with two parallel groups. Two university-affiliated hospitals. Patients scheduled for surgical treatment of diabetic foot gangrene (n = 30) and non-diabetic patients (n = 30) displaying no risk factors for neuropathy undergoing orthopaedic foot or ankle surgery. The minimum current intensity required to elicit a typical motor response (dorsiflexion or eversion of the foot) at a pulse width of 0.1 ms and a stimulation frequency of 1 Hz when the needle tip was positioned under ultrasound control directly adjacent to the peroneal component of the sciatic nerve. The non-diabetic patients were younger [64 (SD 12) vs. 74 (SD 7) years] and predominantly female (23 vs. 8). The geometric mean of the motor stimulation threshold was 0.26 [95% confidence interval (95% CI) 0.24 to 0.28] mA in non-diabetic and 1.9 (95% CI 1.6 to 2.2) mA in diabetic patients. The geometric mean of the electrical stimulation threshold was significantly (P < 0.001) increased by a factor of 7.2 (95% CI 6.1 to 8.4) in diabetic compared to non-diabetic patients. The electrical stimulation threshold for a motor response of the sciatic nerve is increased by a factor of 7.2 in patients with diabetic foot gangrene, which might hamper nerve identification.
Hirayama, Jiro; Yamagata, Masatsune; Takahashi, Kazuhisa; Moriya, Hideshige
2005-05-01
The effect of noxious electrical stimulation of the peroneal nerve on the stretch reflex electromyogram activity of the hamstring muscle (semitendinous) was studied. To verify the following hypothetical mechanisms underlying tight hamstrings in lumbar disc herniation: stretch reflex muscle activity of hamstrings is increased by painful inputs from an injured spinal nerve root and the increased stretch reflex muscle activity is maintained by central sensitization. It is reported that stretch reflex activity of the trunk muscles is induced by noxious stimulation of the sciatic nerve and maintained by central sensitization. In spinalized rats (transected spinal cord), the peroneal nerve was stimulated electrically as a conditioning stimulus. Stretch reflex electromyogram activity of the semitendinous muscle was recorded before and after the conditioning stimulus. Even after electrical stimulation was terminated, an increased stretch reflex activity of the hamstring muscle was observed. It is likely that a central sensitization mechanism at the spinal cord level was involved in the increased reflex activity. Central sensitization may play a part in the neuronal mechanisms of tight hamstrings in lumbar disc herniation.
High-reliability microcontroller nerve stimulator for assistance in regional anaesthesia procedures.
Ferri, Carlos A; Quevedo, Antonio A F
2017-07-01
In the last decades, the use of nerve stimulators to aid in regional anaesthesia has been shown to benefit the patient since it allows a better location of the nerve plexus, leading to correct positioning of the needle through which the anaesthetic is applied. However, most of the nerve stimulators available in the market for this purpose do not have the minimum recommended features for a good stimulator, and this can lead to risks to the patient. Thus, this study aims to develop an equipment, using embedded electronics, which meets all the characteristics, for a successful blockade. The system is made of modules for generation and overall control of the current pulse and the patient and user interfaces. The results show that the designed system fits into required specifications for a good and reliable nerve stimulator. Linearity proved satisfactory, ensuring accuracy in electrical current amplitude for a wide range of body impedances. Field tests have proven very successful. The anaesthesiologist that used the system reported that, in all cases, plexus blocking was achieved with higher quality, faster anaesthetic diffusion and without needed of an additional dose when compared with same procedure without the use of the device.
The role of laryngeal electromyography in vagus nerve stimulation-related vocal fold dysmotility.
Saibene, Alberto M; Zambrelli, Elena; Pipolo, Carlotta; Maccari, Alberto; Felisati, Giovanni; Felisati, Elena; Furia, Francesca; Vignoli, Aglaia; Canevini, Maria Paola; Alfonsi, Enrico
2017-03-01
Vagus nerve stimulation (VNS) is a useful tool for drug-resistant epilepsy, but it induces known laryngeal side effects, with a significant role on patients' quality of life. VNS patients may show persistent left vocal fold (LVF) palsy at rest and/or recurrent LVF adduction during stimulation. This study aims at electromyographically evaluating laryngeal muscles abnormalities in VNS patients. We compared endoscopic laryngeal evaluation data in six VNS patients with laryngeal muscle electromyography (LMEMG) carried out on the thyroarytenoid, cricothyroid, posterior cricoarytenoid, and cricopharyngeal muscles. Endoscopy showed LVF palsy at rest in 3/6 patients in whom LMEMG documented a tonic spastic activity with reduced phasic modulation. In four out of six patients with recurrent LVF adduction during VNS activation, LMEMG showed a compound muscle action potential persisting for the whole stimulation. This is the first LMEMG report of VNS-induced motor unit activation via recurrent laryngeal nerve and upper laryngeal nerve stimulation. LMEMG data were could, therefore, be considered consistent with the endoscopic laryngeal examination in all patient.
Transverse tripolar stimulation of peripheral nerve: a modelling study of spatial selectivity.
Deurloo, K E; Holsheimer, J; Boom, H B
1998-01-01
Various anode-cathode configurations in a nerve cuff are modelled to predict their spatial selectivity characteristics for functional nerve stimulation. A 3D volume conductor model of a monofascicular nerve is used for the computation of stimulation-induced field potentials, whereas a cable model of myelinated nerve fibre is used for the calculation of the excitation thresholds of fibres. As well as the usual configurations (monopole, bipole, longitudinal tripole, 'steering' anode), a transverse tripolar configuration (central cathode) is examined. It is found that the transverse tripole is the only configuration giving convex recruitment contours and therefore maximises activation selectivity for a small (cylindrical) bundle of fibres in the periphery of a monofascicular nerve trunk. As the electrode configuration is changed to achieve greater selectivity, the threshold current increases. Therefore threshold currents for fibre excitation with a transverse tripole are relatively high. Inverse recruitment is less extreme than for the other configurations. The influences of several geometrical parameters and model conductivities of the transverse tripole on selectivity and threshold current are analysed. In chronic implantation, when electrodes are encapsulated by a layer of fibrous tissue, threshold currents are low, whereas the shape of the recruitment contours in transverse tripolar stimulation does not change.
Patterning of sympathetic nerve activity in response to vestibular stimulation
NASA Technical Reports Server (NTRS)
Kerman, I. A.; McAllen, R. M.; Yates, B. J.
2000-01-01
Growing evidence suggests a role for the vestibular system in regulation of autonomic outflow during postural adjustments. In the present paper we review evidence for the patterning of sympathetic nerve activity elicited by vestibular stimulation. In response to electrical activation of vestibular afferents, firing of sympathetic nerves located throughout the body is altered. However, activity of the renal nerve is most sensitive to vestibular inputs. In contrast, high-intensity simultaneous activation of cutaneous and muscle inputs elicits equivalent changes in firing of the renal, superior mesenteric and lumbar colonic nerves. Responses of muscle vasoconstrictor (MVC) efferents to vestibular stimulation are either inhibitory (Type I) or are comprised of a combination of excitation and inhibition (Type II). Interestingly, single MVC units located in the hindlimb exhibited predominantly Type I responses while those located in the forelimb and face exhibited Type II responses. Furthermore, brachial and femoral arterial blood flows were dissociated in response to vestibular stimulation, such that brachial vascular resistance increased while femoral resistance decreased. These studies demonstrate that vestibulosympathetic reflexes are patterned according to both the anatomical location and innervation target of a particular sympathetic nerve, and can lead to distinct changes in local blood flow.
Ijichi, Kei; Sasano, Hiroshi; Harima, Megumi; Murakami, Shingo
2017-10-01
In thyroid surgery, intraoperative identification and preservation of the recurrent laryngeal nerve (RLN) and superior laryngeal nerve external branch (SLNEB) are crucial. Several reports have proposed that electromyography (EMG) monitoring is an acceptable adjunct for identification and preservation of the RLN. However, a limited number of hospitals have access to an EMG monitoring system. Therefore, the development of another viable monitoring method is required. The aim of the present study was to design a new RLN and SLNEB monitoring method combining an Airwayscope™ (AWS) and a facial nerve stimulator. The facial nerve-stimulating electrode stimulates the RLN or SLNEB, so that the movement of the vocal cord may be observed with an AWS. This monitoring method was performed on 10 patients with a thyroid tumor. In all the cases, RLN and SLNEB were identified and vocal cord function was preserved. All the patients exhibited normal vocal cord function following surgery. Thus, the new RLN and SLNEB monitoring method using an AWS and a facial nerve stimulator is useful in thyroid surgery, and this method may be used as a reliable and available alternative to EMG monitoring to ensure the normal function of the vocal cord.
Ayajiki, Kazuhide; Kobuchi, Shuhei; Tawa, Masashi; Okamura, Tomio
2012-01-01
The functional roles of the nitrergic nerves innervating the monkey cerebral artery were evaluated in a tension-response study examining isolated arteries in vitro and cerebral angiography in vivo. Nicotine produced relaxation of arteries by stimulation of nerve terminals innervating isolated monkey arteries irrigating the cerebrum, cerebellum and brain stem. Relaxation of arteries induced by nicotine was abolished by treatment with N(G)-nitro-L-arginine, a nitric oxide synthase inhibitor, and was restored by addition of L-arginine. Cerebral angiography showed that electrical stimulation of the unilateral greater petrosal nerve, which connects to the pterygopalatine ganglion via the parasympathetic ganglion synapse, produced vasodilatation of the anterior, middle and posterior cerebral arteries in the stimulated side. However, stimulation failed to produce vasodilatation of the superior and anterior-inferior cerebellar arteries and the basilar artery in anesthetized monkeys. Therefore, nitrergic nerves derived from the pterygopalatine ganglion appear to regulate cerebral vasomotor function. In contrast, circulation in the cerebellum and brain stem might be regulated by nitrergic nerves originating not from the pterygopalatine ganglion, but rather from an unknown ganglion (or ganglia).
Reinnervation of Urethral and Anal Sphincters With Femoral Motor Nerve to Pudendal Nerve Transfer
Ruggieri, Michael R.; Braverman, Alan S.; Bernal, Raymond M.; Lamarre, Neil S.; Brown, Justin M.; Barbe, Mary F.
2012-01-01
Aims Lower motor neuron damage to sacral roots or nerves can result in incontinence and a flaccid urinary bladder. We showed bladder reinnervation after transfer of coccygeal to sacral ventral roots, and genitofemoral nerves (L1, 2 origin) to pelvic nerves. This study assesses the feasibility of urethral and anal sphincter reinnervation using transfer of motor branches of the femoral nerve (L2–4 origin) to pudendal nerves (S1, 2 origin) that innervate the urethral and anal sphincters in a canine model. Methods Sacral ventral roots were selected by their ability to stimulate bladder, urethral sphincter, and anal sphincter contraction and transected. Bilaterally, branches of the femoral nerve, specifically, nervus saphenous pars muscularis [Evans HE. Miller’s anatomy of the dog. Philadelphia: W.B. Saunders; 1993], were transferred and end-to-end anastomosed to transected pudendal nerve branches in the perineum, then enclosed in unipolar nerve cuff electrodes with leads to implanted RF micro-stimulators. Results Nerve stimulation induced increased anal and urethral sphincter pressures in five of six transferred nerves. Retrograde neurotracing from the bladder, urethral sphincter, and anal sphincter using fluorogold, fast blue, and fluororuby, demonstrated urethral and anal sphincter labeled neurons in L2–4 cord segments (but not S1–3) in nerve transfer canines, consistent with rein-nervation by the transferred femoral nerve motor branches. Controls had labeled neurons only in S1–3 segments. Postmortem DiI and DiO labeling confirmed axonal regrowth across the nerve repair site. Conclusions These results show spinal cord reinnervation of urethral and anal sphincter targets after sacral ventral root transection and femoral nerve transfer (NT) to the denervated pudendal nerve. These surgical procedures may allow patients to regain continence. PMID:21953679
Kang, Yu-Tien; Liao, Yi-Sheng; Hsieh, Ching-Liang
2015-01-01
Background The effects of transcutaneous electric nerve stimulation (TENS) and electroacupuncture (EA) on the cerebral cortex are largely unclear. The purpose of the present study was to investigate the effect of TENS and EA on the cerebral cortex by examining their effect on the median nerve-somatosensory evoked potentials (MN-SEPs). Methods Twenty volunteers were studied. The cortical and cervical spinal potentials were recorded by median nerve stimulation at the left wrist. Sham TENS, 2 Hz TENS and 2 Hz EA were applied to both ST36 and ST37. MN-SEPs were recorded during sham TENS, 2 Hz TENS and 2 Hz EA, with at least 1 week interval for each subject. One-way analysis of variance was used to determine the differences in latency and amplitude of the MN-SEPs observed in the stimulation and post-stimulation periods compared with baseline. Scheffe's post hoc correction was employed to identify pairwise differences. Results No differences in mean latency were found between the stimulation procedures during the stimulation and post-stimulation periods. 2 Hz EA but not sham TENS or 2 Hz TENS caused higher mean amplitudes in N20 and N30 during the stimulation and post-stimulation periods. Conclusions EA, but not TENS, induces changes in certain components of the signal. PMID:25432425
Okuma, Yoshino; Bergquist, Austin J; Hong, Mandy; Chan, K Ming; Collins, David F
2013-11-01
To compare the spatial distribution of motor units recruited in tibialis anterior (TA) when electrical stimulation is applied over the TA muscle belly versus the common peroneal nerve trunk. Electromyography (EMG) was recorded from the surface and from fine wires in superficial and deep regions of TA. Separate M-wave recruitment curves were constructed for muscle belly and nerve trunk stimulation. During muscle belly stimulation, significantly more current was required to generate M-waves that were 5% of the maximal M-wave (M max; M5%max), 50% M max (M 50%max) and 95% M max (M 95%max) at the deep versus the superficial recording site. In contrast, during nerve trunk stimulation, there were no differences in the current required to reach M5%max, M 50%max or M 95%max between deep and superficial recording sites. Surface EMG reflected activity in both superficial and deep muscle regions. Stimulation over the muscle belly recruited motor units from superficial to deep with increasing stimulation amplitude. Stimulation over the nerve trunk recruited superficial and deep motor units equally, regardless of stimulation amplitude. These results support the idea that where electrical stimulation is applied markedly affects how contractions are produced and have implications for the interpretation of surface EMG data. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Tsui, Ban C H; Shakespeare, Timothy J; Leung, Danika H; Tsui, Jeremy H; Corry, Gareth N
2013-08-01
Current methods of assessing nerve blocks, such as loss of perception to cold sensation, are subjective at best. Transcutaneous nerve stimulation is an alternative method that has previously been used to measure the current perception threshold (CPT) in individuals with neuropathic conditions, and various devices to measure CPT are commercially available. Nevertheless, the device must provide reproducible results to be used as an objective tool for assessing nerve blocks. We recruited ten healthy volunteers to examine CPT reproducibility using the Neurometer(®) and the Stimpod NMS450 peripheral nerve stimulator. Each subject's CPT was determined for the median (second digit) and ulnar (fifth digit) nerve sensory distributions on both hands - with the Neurometer at 5 Hz, 250 Hz, and 2000 Hz and with the Stimpod at pulse widths of 0.1 msec, 0.3 msec, 0.5 msec, and 1.0 msec, both at 5 Hz and 2 Hz. Intraclass correlation coefficients (ICC) were also calculated to assess reproducibility; acceptable ICCs were defined as ≥ 0.4. The ICC values for the Stimpod ranged from 0.425-0.79, depending on pulse width, digit, and stimulation; ICCs for the Neurometer were 0.615 and 0.735 at 250 and 2,000 Hz, respectively. These values were considered acceptable; however, the Neurometer performed less efficiently at 5 Hz (ICCs for the second and fifth digits were 0.292 and 0.318, respectively). Overall, the Stimpod device displayed good to excellent reproducibility in measuring CPT in healthy volunteers. The Neurometer displayed poor reproducibility at low frequency (5 Hz). These results suggest that peripheral nerve stimulators may be potential devices for measuring CPT to assess nerve blocks.
Intraoperative identification of the facial nerve by needle electromyography stimulation with a burr
KHAMGUSHKEEVA, N.N.; ANIKIN, I.A.; KORNEYENKOV, A.A.
2016-01-01
The purpose of this research is to improve the safety of surgery for patients with a pathology of the middle and inner ear by preventing damage to the facial nerve by conducting intraoperative monitoring of the facial nerve by needle electromyography with continuous stimulation with a burr. Patients and Methods The clinical part of the prospective study was carried out on 48 patients that were diagnosed with suppurative otitis media. After the surgery with intraoperative monitoring, the facial nerve with an intact bone wall was stimulated electrically in the potentially dangerous places of damage. Minimum (threshold) stimulation (mA) of the facial nerve with a threshold event of 100 μV was used to register EMG events. The anatomical part of the study was carried out on 30 unformalinized cadaver temporal bones from adult bodies. The statistical analysis of obtained data was carried out with parametric methods (Student’s t-test), non-parametric correlation (Spearman’s method) and regression analysis. Results It was found that 1 mA of threshold amperage corresponded to 0.8 mm thickness of the bone wall of the facial canal. Values of transosseous threshold stimulation in potentially dangerous sections of the injury to the facial nerve were obtained. Conclusion These data lower the risk of paresis (paralysis) of the facial muscles during otologic surgery. PMID:27142821
The blocking action of choline 2:6-xylyl ether bromide on adrenergic nerves
Exley, K. A.
1957-01-01
Choline 2:6-xylyl ether bromide (TM 10), given systemically to cats in doses of 5 to 15 mg./kg., abolishes the effects of adrenergic nerve stimulation whilst leaving the reactions of the effector organs to adrenaline unimpaired. The effects of a single dose may take up to one hour to become fully established and last for more than twenty-four hours. Apart from transitory ganglionic blockade, cholinergic autonomic nerves are unaffected even by large doses of TM 10. Doses of TM 10 which produce effective blockade do not impair conduction along adrenergic nerve trunks; the drug must, therefore, act at, or close to, the nerve terminals. TM 10 prevents the output of noradrenaline from the spleen on stimulating the splenic nerves; but, in acute experiments, it does not influence the liberation of pressor amines from the stimulated suprarenals. Examination of some ethers related to TM 10 revealed no correlation between TM 10-like adrenergic blocking activity and local anaesthetic activity. The action of TM 10 on adrenergic nerves does not, therefore, seem to be accounted for by axonal block. ImagesFIG. 8 PMID:13460234
Fascicular nerve stimulation and recording using a novel double-aisle regenerative electrode
NASA Astrophysics Data System (ADS)
Delgado-Martínez, I.; Righi, M.; Santos, D.; Cutrone, A.; Bossi, S.; D'Amico, S.; Del Valle, J.; Micera, S.; Navarro, X.
2017-08-01
Objective. As artificial prostheses become more refined, they are most often used as a therapeutic option for hand amputation. By contrast to extra- or intraneural interfaces, regenerative nerve electrodes are designed to enable electrical interfaces with regrowing axonal bundles of injured nerves, aiming to achieve high selectivity for recording and stimulation. However, most of the developed designs pose an obstacle to the regrowth mechanisms due to low transparency and cause impairment to the nerve regeneration. Approach. Here we present the double-aisle electrode, a new type of highly transparent, non-obstructive regenerative electrode. Using a double-side thin-film polyimide planar multi-contact electrode, two nerve fascicles can regenerate without physical impairment through two electrically isolated aisles. Main results. We show that this electrode can be used to selectively record and stimulate fascicles, acutely as well as chronically, and allow regeneration in nerve gaps of several millimeters without impairment. Significance. This multi-aisle regenerative electrode may be suitable for neuroprosthetic applications, such as prostheses, for the restoration of hand function after amputation or severe nerve injuries.
Saccular and utricular inputs to sternocleidomastoid motoneurons of decerebrate cats.
Kushiro, K; Zakir, M; Ogawa, Y; Sato, H; Uchino, Y
1999-06-01
Connections from the otolithic organs to sternocleidomastoid (SCM) motoneurons were studied in 20 decerebrate cats. The electrical stimulation was selective for the saccular or the utricular nerves. Postsynaptic potentials were recorded from antidromically identified SCM motoneurons; these muscles participate mainly in neck rotation and flexion. Partial transections of the brainstem at the level of the obex were performed to identify the possible pathway from the otolithic organs to the SCM motoneurons. Saccular or utricular nerve stimulation mainly evoked inhibitory postsynaptic potentials (IPSPs) in the ipsilateral SCM motoneurons. Some of the sacculus-induced IPSPs were preceded by small-amplitude excitatory PSPs (EPSPs). The latencies of the PSPs ranged from 1.8 to 3.1 ms after saccular nerve stimulation and from 1.7 to 2.8 ms after utricular nerve stimulation, indicating that most of the ipsilateral connections were disynaptic. In the contralateral SCM motoneurons, saccular nerve stimulation had no or faint effects, whereas utricular nerve stimulation evoked EPSPs in about two-thirds of neurons, and no visible PSPs in about one-third of neurons. The latencies of the EPSPs ranged from 1.5 to 2.0 ms, indicating the disynaptic connection. Thus, the results suggest a difference between the two otolithic innervating patterns of SCM motoneurons. After transection of the medial vestibulospinal tract (MVST), saccular nerve stimulation did not evoke IPSPs at all in ipsilateral SCM motoneurons, but some (11/40) neurons showed small-amplitude EPSPs. Most (24/33) of the utricular-activated IPSPs disappeared after transection, whereas the other 9 neurons still indicated IPSPs. In the contralateral SCM motoneurons, no utricular-activated EPSPs were recorded after transection. These MVST transection results suggest that most of the otolith-SCM pathways are located in the MVST at the obex level. However, the results also suggest the possibility that other otolith-SCM pathways exist at the obex level.
Liddy, Whitney; Barber, Samuel R; Lin, Brian M; Kamani, Dipti; Kyriazidis, Natalia; Lawson, Bradley; Randolph, Gregory W
2018-01-01
Intraoperative neural monitoring (IONM) of laryngeal nerves using electromyography (EMG) is routinely performed using endotracheal tube surface electrodes adjacent to the vocalis muscles. Other laryngeal muscles such as the posterior cricoarytenoid muscle (PCA) are indirectly monitored. The PCA may be directly and reliably monitored through an electrode placed in the postcricoid region. Herein, we describe the method and normative data for IONM using PCA EMG. Retrospective review. Data were reviewed retrospectively for thyroid and parathyroid surgery patients with IONM of laryngeal nerves from January to August 2016. Recordings of vocalis and PCA EMG amplitudes and latencies with stimulation of laryngeal nerves were obtained using endotracheal (ET) tube-based and postcricoid surface electrodes. Data comprised EMG responses in vocalis and PCA recording channels with stimulation of the vagus, recurrent laryngeal nerve (RLN), and external branch of the superior laryngeal nerve from 20 subjects (11 left, 9 right), as well as PCA EMG threshold data with RLN stimulation from 17 subjects. Mean EMG amplitude was 725.69 ± 108.58 microvolts (µV) for the ipsilateral vocalis and 329.44 ± 34.12 µV for the PCA with vagal stimulation, and 1,059.75 ± 140.40 µV for the ipsilateral vocalis and 563.88 ± 116.08 µV for the PCA with RLN stimulation. There were no statistically significant differences in mean latency. For threshold cutoffs of the PCA with RLN stimulation, mean minimum and maximum threshold intensities were 0.37 milliamperes (mA) and 0.84 mA, respectively. This study shows robust and reliable PCA EMG waveforms with direct nerve stimulation. Further studies will evaluate feasibility and application of the PCA electrode as a complementary quantitative tool in IONM. 4. Laryngoscope, 128:283-289, 2018. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Phasic action of the tensor muscle modulates the calling song in cicadas
Fonseca; Hennig
1996-01-01
The effect of tensor muscle contraction on sound production by the tymbal was investigated in three species of cicadas (Tettigetta josei, Tettigetta argentata and Tympanistalna gastrica). All species showed a strict time correlation between the activity of the tymbal motoneurone and the discharge of motor units in the tensor nerve during the calling song. Lesion of the tensor nerve abolished the amplitude modulation of the calling song, but this modulation was restored by electrical stimulation of the tensor nerve or by mechanically pushing the tensor sclerite. Electrical stimulation of the tensor nerve at frequencies higher than 3040 Hz changed the sound amplitude. In Tett. josei and Tett. argentata there was a gradual increase in sound amplitude with increasing frequency of tensor nerve stimulation, while in Tymp. gastrica there was a sudden reduction in sound amplitude at stimulation frequencies higher than 30 Hz. This contrasting effect in Tymp. gastrica was due to a bistable tymbal frame. Changes in sound pulse amplitude were positively correlated with changes in the time lag measured from tymbal motoneurone stimulation to the sound pulse. The tensor muscle acted phasically because electrical stimulation of the tensor nerve during a time window (010 ms) before electrical stimulation of the tymbal motoneurone was most effective in eliciting amplitude modulations. In all species, the tensor muscle action visibly changed the shape of the tymbal. Despite the opposite effects of the tensor muscle on sound pulse amplitude observed between Tettigetta and Tympanistalna species, the tensor muscle of both acts by modulating the shape of the tymbal, which changes the force required for the tymbal muscle to buckle the tymbal.
Analysis of cavern and well stability at the West Hackberry SPR site using a full-dome model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobolik, Steven R.
2015-08-01
This report presents computational analyses that simulate the structural response of caverns at the Strategic Petroleum Reserve (SPR) West Hackberry site. The cavern field comprises 22 caverns. Five caverns (6, 7, 8, 9, 11) were acquired from industry and have unusual shapes and a history dating back to 1946. The other 17 caverns (101-117) were leached according to SPR standards in the mid-1980s and have tall cylindrical shapes. The history of the caverns and their shapes are simulated in a three-dimensional geomechanics model of the site that predicts deformations, strains, and stresses. Future leaching scenarios corresponding to oil drawdowns usingmore » fresh water are also simulated by increasing the volume of the caverns. Cavern pressures are varied in the model to capture operational practices in the field. The results of the finite element model are interpreted to provide information on the current and future status of subsidence, well integrity, and cavern stability. The most significant results in this report are relevant to Cavern 6. The cavern is shaped like a bowl with a large ceiling span and is in close proximity to Cavern 9. The analyses predict tensile stresses at the edge of the ceiling during repressurization of Cavern 6 following workover conditions. During a workover the cavern is at low pressure to service a well. The wellhead pressures are atmospheric. When the workover is complete, the cavern is repressurized. The resulting elastic stresses are sufficient to cause tension around the edge of the large ceiling span. With time, these stresses relax to a compressive state because of salt creep. However, the potential for salt fracture and propagation exists, particularly towards Cavern 9. With only 200 feet of salt between the caverns, the operational consequences must be examined if the two caverns become connected. A critical time may be during a workover of Cavern 9 in part because of the operational vulnerabilities, but also because dilatant damage is predicted under the ledge that forms the lower lobe in the cavern. The remaining caverns have no significant issues regarding cavern stability and may be safely enlarged during subsequent oil drawdowns. Predicted well strains and subsidence are significant and consequently future remedial actions may be necessary. These predicted well strains certainly suggest appropriate monitoring through a well-logging program. Subsidence is currently being monitored.« less
Blood pressure control with selective vagal nerve stimulation and minimal side effects
NASA Astrophysics Data System (ADS)
Plachta, Dennis T. T.; Gierthmuehlen, Mortimer; Cota, Oscar; Espinosa, Nayeli; Boeser, Fabian; Herrera, Taliana C.; Stieglitz, Thomas; Zentner, Joseph
2014-06-01
Objective. Hypertension is the largest threat to patient health and a burden to health care systems. Despite various options, 30% of patients do not respond sufficiently to medical treatment. Mechanoreceptors in the aortic arch relay blood pressure (BP) levels through vagal nerve (VN) fibers to the brainstem and trigger the baroreflex, lowering the BP. Selective electrical stimulation of these nerve fibers reduced BP in rats. However, there is no technique described to localize and stimulate these fibers inside the VN without inadvertent stimulation of non-baroreceptive fibers causing side effects like bradycardia and bradypnea. Approach. We present a novel method for selective VN stimulation to reduce BP without the aforementioned side effects. Baroreceptor compound activity of rat VN (n = 5) was localized using a multichannel cuff electrode, true tripolar recording and a coherent averaging algorithm triggered by BP or electrocardiogram. Main results. Tripolar stimulation over electrodes near the barofibers reduced the BP without triggering significant bradycardia and bradypnea. The BP drop was adjusted to 60% of the initial value by varying the stimulation pulse width and duration, and lasted up to five times longer than the stimulation. Significance. The presented method is robust to impedance changes, independent of the electrode's relative position, does not compromise the nerve and can run on implantable, ultra-low power signal processors.
Innervation of the cricothyroid muscle by the recurrent laryngeal nerve.
Masuoka, Hiroo; Miyauchi, Akira; Yabuta, Tomonori; Fukushima, Mitsuhiro; Miya, Akihiro
2016-04-01
The recurrent laryngeal nerve (RLN) and the external branch of the superior laryngeal nerve (SLN) are generally thought to innervate the endolaryngeal muscles and the cricothyroid muscle (CTM), respectively. Meticulous anatomic studies found communication between these nerves (ie, the human communicating nerve). In this study, we report the innervation of the CTM by the RLN. We performed electromyographic studies of 50 patients during thyroidectomy (20 total and 30 hemithyroidectomies). During surgery, the external branch of the SLN, RLN, and vagus nerve were stimulated. Responses were evaluated by visual observation of the CTM and by electromyographies through needle electrodes inserted into the CTM. Seventy CTMs were evaluated. The RLN stimulation yielded both visible contractions and clear electromyographic responses (>300 µV) in 27 (39%), either response in 24 (34%), and neither response in 19 (27%) of the CTMs. The vagus stimulation gave similar results. The RLN innervated the CTM at least in 39% cases. © 2015 Wiley Periodicals, Inc. Head Neck 38: E441-E445, 2016. © 2015 Wiley Periodicals, Inc.
Nielsen, Thomas N; Kurstjens, G A Mathijs; Struijk, Johannes J
2011-04-01
The ability to stimulate subareas of a nerve selectively is highly desirable, since it has the potential of simplifying surgery to implanting one cuff on a large nerve instead of many cuffs on smaller nerves or muscles, or alternatively can improve function where surgical access to the smaller nerves is limited. In this paper, stimulation was performed with a four-channel multipolar cuff electrode implanted on the sciatic nerve of nine rabbits to compare the extensively researched longitudinal tripolar configuration with the transverse tripolar configuration, which has received less interest. The performance of these configurations was evaluated in terms of selectivity in recruitment of the three branches of the sciatic nerve. The results showed that the transverse configuration was able to selectively activate the sciatic nerve branches to a functionally relevant level in more cases than the longitudinal configuration (20/27 versus 11/27 branches) and overall achieved a higher mean selectivity [0.79 ± 0.13 versus 0.61 ± 0.09 (mean ± standard deviation)]. The transverse configuration was most successful at recruiting the small cutaneous and medium-sized peroneal branches, and less successful at recruiting the large tibial nerve.
A micro-scale printable nanoclip for electrical stimulation and recording in small nerves
NASA Astrophysics Data System (ADS)
Lissandrello, Charles A.; Gillis, Winthrop F.; Shen, Jun; Pearre, Ben W.; Vitale, Flavia; Pasquali, Matteo; Holinski, Bradley J.; Chew, Daniel J.; White, Alice E.; Gardner, Timothy J.
2017-06-01
Objective. The vision of bioelectronic medicine is to treat disease by modulating the signaling of visceral nerves near various end organs. In small animal models, the nerves of interest can have small diameters and limited surgical access. New high-resolution methods for building nerve interfaces are desirable. In this study, we present a novel nerve interface and demonstrate its use for stimulation and recording in small nerves. Approach. We design and fabricate micro-scale electrode-laden nanoclips capable of interfacing with nerves as small as 50 µm in diameter. The nanoclips are fabricated using a direct laser writing technique with a resolution of 200 nm. The resolution of the printing process allows for incorporation of a number of innovations such as trapdoors to secure the device to the nerve, and quick-release mounts that facilitate keyhole surgery, obviating the need for forceps. The nanoclip can be built around various electrode materials; here we use carbon nanotube fibers for minimally invasive tethering. Main results. We present data from stimulation-evoked responses of the tracheal syringeal (hypoglossal) nerve of the zebra finch, as well as quantification of nerve functionality at various time points post implant, demonstrating that the nanoclip is compatible with healthy nerve activity over sub-chronic timescales. Significance. Our nerve interface addresses key challenges in interfacing with small nerves in the peripheral nervous system. Its small size, ability to remain on the nerve over sub-chronic timescales, and ease of implantation, make it a promising tool for future use in the treatment of disease.
Urinary Incontinence Surgery: When Other Treatments Aren't Enough
... surgery. Certain procedures to treat overactive bladder involve stimulation — using small, electrical impulses — of the nerves that signal the need to urinate. Sacral nerve stimulation. Your surgeon implants a small, pacemaker-like device ...
Bai, Guang-Yi; Zhou, Feng; Hui, Yu; Xu, Yong-De; Lei, Hong-En; Pu, Jin-Xian; Xin, Zhong-Cheng
2014-01-01
Diabetic erectile dysfunction is associated with penile dorsal nerve bundle neuropathy in the corpus cavernosum and the mechanism is not well understood. We investigated the neuropathy changes in the corpus cavernosum of rats with streptozotocin-induced diabetes and the effects of Icariside II (ICA II) on improving neuropathy. Thirty-six 8-week-old Sprague-Dawley rats were randomly distributed into normal control group, diabetic group and ICA-II treated group. Diabetes was induced by a one-time intraperitoneal injection of streptozotocin (60 mg/kg). Three days later, the diabetic rats were randomly divided into 2 groups including a saline treated placebo group and an ICA II-treated group (5 mg/kg/day, by intragastric administration daily). Twelve weeks later, erectile function was measured by cavernous nerve electrostimulation with real time intracorporal pressure assessment. The penis was harvested for the histological examination (immunofluorescence and immunohistochemical staining) and transmission electron microscopy detecting. Diabetic animals exhibited a decreased density of dorsal nerve bundle in penis. The neurofilament of the dorsal nerve bundle was fragmented in the diabetic rats. There was a decreased expression of nNOS and NGF in the diabetic group. The ICA II group had higher density of dorsal nerve bundle, higher expression of NGF and nNOS in the penis. The pathological change of major pelvic nerve ganglion (including the microstructure by transmission electron microscope and the neurite outgrowth length of major pelvic nerve ganglion tissue cultured in vitro) was greatly attenuated in the ICA II-treated group (p < 0.01). ICA II treatment attenuates the diabetes-related impairment of corpus cavernosum and major pelvic ganglion neuropathy in rats with Streptozotocin-Induced Diabetes. PMID:25517034
Neurostimulation in the treatment of primary headaches
Miller, Sarah; Sinclair, Alex J; Davies, Brendan; Matharu, Manjit
2016-01-01
There is increasing interest in using neurostimulation to treat headache disorders. There are now several non-invasive and invasive stimulation devices available with some open-label series and small controlled trial studies that support their use. Non-invasive stimulation options include supraorbital stimulation (Cefaly), vagus nerve stimulation (gammaCore) and single-pulse transcranial magnetic stimulation (SpringTMS). Invasive procedures include occipital nerve stimulation, sphenopalatine ganglion stimulation and ventral tegmental area deep brain stimulation. These stimulation devices may find a place in the treatment pathway of headache disorders. Here, we explore the basic principles of neurostimulation for headache and overview the available methods of neurostimulation. PMID:27152027
Martins Lima, Êmyle; Teixeira Goes, Bruno; Zugaib Cavalcanti, João; Vannier-Santos, Marcos André; Martinez, Ana Maria Blanco; Baptista, Abrahão Fontes
2014-01-01
We investigated the effect of two frequencies of transcutaneous electrical nerve stimulation (TENS) applied immediately after lesion on peripheral nerve regeneration after a mouse sciatic crush injury. The animals were anesthetized and subjected to crushing of the right sciatic nerve and then separated into three groups: nontreated, Low-TENS (4 Hz), and High-TENS (100 Hz). The animals of Low- and High-TENS groups were stimulated for 2 h immediately after the surgical procedure, while the nontreated group was only positioned for the same period. After five weeks the animals were euthanized, and the nerves dissected bilaterally for histological and histomorphometric analysis. Histological assessment by light and electron microscopy showed that High-TENS and nontreated nerves had a similar profile, with extensive signs of degeneration. Conversely, Low-TENS led to increased regeneration, displaying histological aspects similar to control nerves. High-TENS also led to decreased density of fibers in the range of 6–12 μm diameter and decreased fiber diameter and myelin area in the range of 0–2 μm diameter. These findings suggest that High-TENS applied just after a peripheral nerve crush may be deleterious for regeneration, whereas Low-TENS may increase nerve regeneration capacity. PMID:25147807
George, Mark S; Aston-Jones, Gary
2010-01-01
Although the preceding chapters discuss much of the new knowledge of neurocircuitry of neuropsychiatric diseases, and an invasive approach to treatment, this chapter describes and reviews the noninvasive methods of testing circuit-based theories and treating neuropsychiatric diseases that do not involve implanting electrodes into the brain or on its surface. These techniques are transcranial magnetic stimulation, vagus nerve stimulation, and transcranial direct current stimulation. Two of these approaches have FDA approval as therapies. PMID:19693003
Interlimb Reflexes Induced by Electrical Stimulation of Cutaneous Nerves after Spinal Cord Injury
Butler, Jane E.; Godfrey, Sharlene; Thomas, Christine K.
2016-01-01
Whether interlimb reflexes emerge only after a severe insult to the human spinal cord is controversial. Here the aim was to examine interlimb reflexes at rest in participants with chronic (>1 year) spinal cord injury (SCI, n = 17) and able-bodied control participants (n = 5). Cutaneous reflexes were evoked by delivering up to 30 trains of stimuli to either the superficial peroneal nerve on the dorsum of the foot or the radial nerve at the wrist (5 pulses, 300 Hz, approximately every 30 s). Participants were instructed to relax the test muscles prior to the delivery of the stimuli. Electromyographic activity was recorded bilaterally in proximal and distal arm and leg muscles. Superficial peroneal nerve stimulation evoked interlimb reflexes in ipsilateral and contralateral arm and contralateral leg muscles of SCI and control participants. Radial nerve stimulation evoked interlimb reflexes in the ipsilateral leg and contralateral arm muscles of control and SCI participants but only contralateral leg muscles of control participants. Interlimb reflexes evoked by superficial peroneal nerve stimulation were longer in latency and duration, and larger in magnitude in SCI participants. Interlimb reflex properties were similar for both SCI and control groups for radial nerve stimulation. Ascending interlimb reflexes tended to occur with a higher incidence in participants with SCI, while descending interlimb reflexes occurred with a higher incidence in able-bodied participants. However, the overall incidence of interlimb reflexes in SCI and neurologically intact participants was similar which suggests that the neural circuitry underlying these reflexes does not necessarily develop after central nervous system injury. PMID:27049521
Zhu, Yongjun; Feng, Yuxing; Peng, Lihua
2017-11-21
Transcutaneous electrical nerve stimulation is a possible adjunctive therapy to pharmacological treatment for controlling pain after total knee arthroplasty. However, the results are controversial. A systematic review and meta-analysis was conducted to explore the effect of transcutaneous electrical nerve stimulation on patients with total knee arthroplasty. PubMed, Embase, Web of Science, EBSCO, and Cochrane Library databases were searched systematically. Randomized controlled trials assessing the effect of transcutaneous electrical nerve stimulation on patients with total knee arthroplasty were included. Two investigators independently searched articles, extracted data, and assessed the quality of included studies. Primary outcome was visual analogue scale (VAS) score over a period of 24 h. Meta-analysis was performed using a random-effect model. Six randomized controlled trials involving 529 patients were included in the meta-analysis. Overall, compared with control intervention, transcutaneous electrical nerve stimulation supplementation intervention was found to significantly reduce VAS scores and total postoperative morphine dose over a period of 24 h, and to improve active range of knee motion (standard mean difference (SMD) = 0.37; 95% confidence interval (95% CI) = 0.06-0.68; p = 0.02), but had no effect on VAS scores at 2 weeks (SMD = 0.20; 95% CI = -0.07 to 0.48; p = 0.15). Compared with control intervention, transcutaneous electrical nerve stimulation supplementation intervention was found to significantly reduce pain and morphine requirement over a period of 24 h and to promote functional recovery in patients who have undergone total knee arthroplasty.
Almeida, Camila Cadena de; Silva, Vinicius Z Maldaner da; Júnior, Gerson Cipriano; Liebano, Richard Eloin; Durigan, Joao Luiz Quagliotti
2018-02-02
Transcutaneous electrical nerve stimulation and interferential current have been widely used in clinical practice. However, a systematic review comparing their effects on pain relief has not yet been performed. To investigate the effects of transcutaneous electrical nerve stimulation and interferential current on acute and chronic pain. We use Pubmed, Embase, LILACS, PEDro and Cochrane Central Register of Controlled Trials as data sources. Two independent reviewers that selected studies according to inclusion criteria, extracted information of interest and verified the methodological quality of the studies made study selection. The studies were selected if transcutaneous electrical nerve stimulation and interferential current were used as treatment and they had pain as the main outcome, as evaluated by a visual analog scale. Secondary outcomes were the Western Ontario Macmaster and Rolland Morris Disability questionnaires, which were added after data extraction. Eight studies with a pooled sample of 825 patients were included. The methodological quality of the selected studies was moderate, with an average of six on a 0-10 scale (PEDro). In general, both transcutaneous electrical nerve stimulation and interferential current improved pain and functional outcomes without a statistical difference between them. Transcutaneous electrical nerve stimulation and interferential current have similar effects on pain outcome The low number of studies included in this meta-analysis indicates that new clinical trials are needed. Copyright © 2018 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.
Marshall, S D; Boden, E; Serpell, J
2015-07-01
Testing of the integrity of the recurrent laryngeal nerve during thyroid surgery has become routine practice for many surgeons to aid dissection and minimise the chance of inadvertent nerve injury. We hypothesised that routine reversal of an intermediate-acting, non-depolarising neuromuscular blocking agent would improve conditions for stimulation of the recurrent laryngeal nerve. We conducted a single-centre, randomised, double-blind placebo-controlled trial of patients undergoing thyroid surgery by the same surgeon. After randomisation, the participants received either neostigmine 2.5 mg with glycopyrrolate 0.4 mg or placebo, at 30 minutes after induction of anaesthesia and administration of 0.4 mg/kg of atracurium. The primary outcome was the subjective assessment by the surgeon as to whether the neuromuscular function was adequate for stimulation of the recurrent laryngeal nerve using a neuromuscular integrity monitor (NIM). Time to NIM stimulation was 44.6 minutes in the placebo group and 41.4 minutes in the intervention group (P=0.268). Of the 21 patients who received the neuromuscular blockade reversal, 20 (95.2%) had adequate surgical conditions for NIM stimulation, compared to 9 out of 18 patients (50%) in the placebo group (P=0.002). Three of the ten patients (30%) with inadequate reversal showed no evidence of residual blockade assessed peripherally. The routine reversal of neuromuscular blockade at 30 minutes post induction appears to result in adequate surgical conditions for safe stimulation of the recurrent laryngeal nerve. Return of neuromuscular function at a peripheral site does not guarantee adequate laryngeal muscle function for use of the NIM.
Patterns of fast synaptic cholinergic activation of neurons in the celiac ganglia of cats.
Niel, J P; Clerc, N; Jule, Y
1988-12-01
Fast nicotinic transmission was studied in vitro in neurons of isolated cat celiac ganglia. In the absence of nerve stimulation, neurons could be classified into three types: silent neurons, synaptically activated neurons, and spontaneously discharging neurons. In all three types, fast synaptic activation could be obtained in single neurons by stimulating with a single pulse both the splanchnic nerves or one of the peripheral nerves connected to the ganglia. During repetitive nerve stimulation, a gradual depression of the central and peripheral fast nicotinic activation occurred, which was not affected by phentolamine plus propranolol, domperidone, atropine, or naloxone. Repetitive nerve stimulation was followed by a long lasting discharge of excitatory postsynaptic potentials and action potentials that decreased gradually with time. This discharge, which was probably due to presynaptic or prejunctional facilitation of acetylcholine release from cholinergic terminals, was reduced by the application of phentolamine plus propranolol, domperidone, or atropine and increased with naloxone. The existence of the mechanisms described in this study reflects the complexity of the integrative processes at work in neurons of the cat celiac ganglia that involve fast synaptic cholinergic activation.
Labrunée, Marc; Boned, Anne; Granger, Richard; Bousquet, Marc; Jordan, Christian; Richard, Lisa; Garrigues, Damien; Gremeaux, Vincent; Sénard, Jean-Michel; Pathak, Atul; Guiraud, Thibaut
2015-11-01
The aim of this study was to determine whether 45 mins of transcutaneous electrical nerve stimulation before exercise could delay pain onset and increase walking distance in peripheral artery disease patients. After a baseline assessment of the walking velocity that led to pain after 300 m, 15 peripheral artery disease patients underwent four exercise sessions in a random order. The patients had a 45-min transcutaneous electrical nerve stimulation session with different experimental conditions: 80 Hz, 10 Hz, sham (presence of electrodes without stimulation), or control with no electrodes, immediately followed by five walking bouts on a treadmill until pain occurred. The patients were allowed to rest for 10 mins between each bout and had no feedback concerning the walking distance achieved. Total walking distance was significantly different between T10, T80, sham, and control (P < 0.0003). No difference was observed between T10 and T80, but T10 was different from sham and control. Sham, T10, and T80 were all different from control (P < 0.001). There was no difference between each condition for heart rate and blood pressure. Transcutaneous electrical nerve stimulation immediately before walking can delay pain onset and increase walking distance in patients with class II peripheral artery disease, with transcutaneous electrical nerve stimulation of 10 Hz being the most effective.
Peripheral nerve magnetic stimulation: influence of tissue non-homogeneity
Krasteva, Vessela TZ; Papazov, Sava P; Daskalov, Ivan K
2003-01-01
Background Peripheral nerves are situated in a highly non-homogeneous environment, including muscles, bones, blood vessels, etc. Time-varying magnetic field stimulation of the median and ulnar nerves in the carpal region is studied, with special consideration of the influence of non-homogeneities. Methods A detailed three-dimensional finite element model (FEM) of the anatomy of the wrist region was built to assess the induced currents distribution by external magnetic stimulation. The electromagnetic field distribution in the non-homogeneous domain was defined as an internal Dirichlet problem using the finite element method. The boundary conditions were obtained by analysis of the vector potential field excited by external current-driven coils. Results The results include evaluation and graphical representation of the induced current field distribution at various stimulation coil positions. Comparative study for the real non-homogeneous structure with anisotropic conductivities of the tissues and a mock homogeneous media is also presented. The possibility of achieving selective stimulation of either of the two nerves is assessed. Conclusion The model developed could be useful in theoretical prediction of the current distribution in the nerves during diagnostic stimulation and therapeutic procedures involving electromagnetic excitation. The errors in applying homogeneous domain modeling rather than real non-homogeneous biological structures are demonstrated. The practical implications of the applied approach are valid for any arbitrary weakly conductive medium. PMID:14693034
Andersson, P O; Bloom, S R; Edwards, A V; Järhult, J; Mellander, S
1983-01-01
Vascular and motor responses in the rectum to pelvic nerve stimulation are described in the anaesthetized cat and compared with corresponding effects observed in the colon. The responses comprise a cholinergic and a non-cholinergic component, and an attempt has been made to elucidate the latter. Pelvic nerve stimulation evoked a pronounced and well maintained vasodilator response in the rectum whereas that in the colon was transient. Maximal vasodilatation occurred at much lower stimulus frequencies in the rectum (2-4 Hz) than it did in the colon (8-16 Hz) and maximal blood flow under these conditions was also greater in the rectum (greater than 200 ml 100 g-1 min-1) than the colon (less than 150 ml 100 g-1 min-1). Muscarinic blockade further curtailed the colonic vasodilator response to pelvic nerve stimulation, whereas the rectal dilatation was only slightly reduced in the presence of atropine. Pelvic nerve stimulation caused a substantial release of vasoactive intestinal polypeptide (VIP) from the rectum, which was related both in magnitude and duration to the vasodilatation. Intra-arterial infusions of VIP, which reproduced this rise in rectal venous VIP concentration, caused a rectal vasodilator response which closely resembled that during pelvic nerve stimulation after cholinergic blockade. The rectal vasculature was estimated to be 50-100 times more sensitive to VIP than the colonic vasculature. VIP therefore seems to be the most likely putative neurotransmitter responsible for non-cholinergic rectal vasodilatation. Stimulation of the pelvic nerves also caused rapid contractile motor responses before, and more gradual motor responses after, muscarinic blockade in both the colon and rectum, in the latter preceded by a non-cholinergic relaxation. These patterns of motor activity largely confirm previous results. Infusions of substance P effectively mimicked the non-cholinergic contractile motor responses but failed to demonstrate significant release of this peptide during pelvic nerve stimulation in the present experiments. However, substance P is rapidly inactivated and might possibly be involved in these responses. Stimulation of the pelvic nerves in bursts at high frequencies (up to 80 Hz), simulating a discharge pattern observed electrophysiologically in vivo, was effective in eliciting all the above responses, with the exception of the colonic contraction. PMID:6197521
Vagal Nerve Stimulation Therapy: What Is Being Stimulated?
Kember, Guy; Ardell, Jeffrey L.; Armour, John A.; Zamir, Mair
2014-01-01
Vagal nerve stimulation in cardiac therapy involves delivering electrical current to the vagal sympathetic complex in patients experiencing heart failure. The therapy has shown promise but the mechanisms by which any benefit accrues is not understood. In this paper we model the response to increased levels of stimulation of individual components of the vagal sympathetic complex as a differential activation of each component in the control of heart rate. The model provides insight beyond what is available in the animal experiment in as much as allowing the simultaneous assessment of neuronal activity throughout the cardiac neural axis. The results indicate that there is sensitivity of the neural network to low level subthreshold stimulation. This leads us to propose that the chronic effects of vagal nerve stimulation therapy lie within the indirect pathways that target intrinsic cardiac local circuit neurons because they have the capacity for plasticity. PMID:25479368
Vagal nerve stimulation therapy: what is being stimulated?
Kember, Guy; Ardell, Jeffrey L; Armour, John A; Zamir, Mair
2014-01-01
Vagal nerve stimulation in cardiac therapy involves delivering electrical current to the vagal sympathetic complex in patients experiencing heart failure. The therapy has shown promise but the mechanisms by which any benefit accrues is not understood. In this paper we model the response to increased levels of stimulation of individual components of the vagal sympathetic complex as a differential activation of each component in the control of heart rate. The model provides insight beyond what is available in the animal experiment in as much as allowing the simultaneous assessment of neuronal activity throughout the cardiac neural axis. The results indicate that there is sensitivity of the neural network to low level subthreshold stimulation. This leads us to propose that the chronic effects of vagal nerve stimulation therapy lie within the indirect pathways that target intrinsic cardiac local circuit neurons because they have the capacity for plasticity.
Fandel, Thomas M.; Albersen, Maarten; Lin, Guiting; Qiu, Xuefeng; Ning, Hongxiu; Banie, Lia; Lue, Tom F.; Lin, Ching-Shwun
2011-01-01
Background Intracavernous (IC) injection of stem cells has been shown to ameliorate cavernous-nerve (CN) injury-induced erectile dysfunction (ED). However, the mechanisms of action of adipose-derived stem cells (ADSC) remain unclear. Objectives To investigate the mechanism of action and fate of IC injected ADSC in a rat model of CN crush injury. Design, setting, and participants Sprague-Dawley rats (n = 110) were randomly divided into five groups. Thirty-five rats underwent sham surgery and IC injection of ADSC (n = 25) or vehicle (n = 10). Another 75 rats underwent bilateral CN crush injury and were treated with vehicle or ADSC injected either IC or in the dorsal penile perineural space. At 1, 3, 7 (n = 5), and 28 d (n = 10) postsurgery, penile tissues and major pelvic ganglia (MPG) were harvested for histology. ADSC were labeled with 5-ethynyl-2-deoxyuridine (EdU) before treatment. Rats in the 28-d groups were examined for erectile function prior to tissue harvest. Measurements IC pressure recording on CN electrostimulation, immunohistochemistry of the penis and the MPG, and number of EdU-positive (EdU+) cells in the injection site and the MPG. Results and limitations IC, but not perineural, injection of ADSC resulted in significantly improved erectile function. Significantly more EdU+ ADSC appeared in the MPG of animals with CN injury and IC injection of ADSC compared with those injected perineurally and those in the sham group. One day after crush injury, stromal cell-derived factor-1 (SDF-1) was upregulated in the MPG, providing an incentive for ADSC recruitment toward the MPG. Neuroregeneration was observed in the group that underwent IC injection of ADSC, and IC ADSC treatment had beneficial effects on the smooth muscle/collagen ratio in the corpus cavernosum. Conclusions CN injury upregulates SDF-1 expression in the MPG and thereby attracts intracavernously injected ADSC. At the MPG, ADSC exert neuroregenerative effects on the cell bodies of injured nerves, resulting in enhanced erectile response. PMID:21824718
Stereotactic radiotherapy for malignancies involving the trigeminal and facial nerves.
Cuneo, K C; Zagar, T M; Brizel, D M; Yoo, D S; Hoang, J K; Chang, Z; Wang, Z; Yin, F F; Das, S K; Green, S; Ready, N; Bhatti, M T; Kaylie, D M; Becker, A; Sampson, J H; Kirkpatrick, J P
2012-06-01
Involvement of a cranial nerve caries a poor prognosis for many malignancies. Recurrent or residual disease in the trigeminal or facial nerve after primary therapy poses a challenge due to the location of the nerve in the skull base, the proximity to the brain, brainstem, cavernous sinus, and optic apparatus and the resulting complex geometry. Surgical resection caries a high risk of morbidity and is often not an option for these patients. Stereotactic radiosurgery and radiotherapy are potential treatment options for patients with cancer involving the trigeminal or facial nerve. These techniques can deliver high doses of radiation to complex volumes while sparing adjacent critical structures. In the current study, seven cases of cancer involving the trigeminal or facial nerve are presented. These patients had unresectable recurrent or residual disease after definitive local therapy. Each patient was treated with stereotactic radiation therapy using a linear accelerator based system. A multidisciplinary approach including neuroradiology and surgical oncology was used to delineate target volumes. Treatment was well tolerated with no acute grade 3 or higher toxicity. One patient who was reirradiated experienced cerebral radionecrosis with mild symptoms. Four of the seven patients treated had no evidence of disease after a median follow up of 12 months (range 2-24 months). A dosimetric analysis was performed to compare intensity modulated fractionated stereotactic radiation therapy (IM-FSRT) to a 3D conformal technique. The dose to 90% (D90) of the brainstem was lower with the IM-FSRT plan by a mean of 13.5 Gy. The D95 to the ipsilateral optic nerve was also reduced with IM-FSRT by 12.2 Gy and the D95 for the optic chiasm was lower with FSRT by 16.3 Gy. Treatment of malignancies involving a cranial nerve requires a multidisciplinary approach. Use of an IM-FSRT technique with a micro-multileaf collimator resulted in a lower dose to the brainstem, optic nerves and chiasm for each case examined.
Kang, Yu-Tien; Liao, Yi-Sheng; Hsieh, Ching-Liang
2015-02-01
The effects of transcutaneous electric nerve stimulation (TENS) and electroacupuncture (EA) on the cerebral cortex are largely unclear. The purpose of the present study was to investigate the effect of TENS and EA on the cerebral cortex by examining their effect on the median nerve-somatosensory evoked potentials (MN-SEPs). Twenty volunteers were studied. The cortical and cervical spinal potentials were recorded by median nerve stimulation at the left wrist. Sham TENS, 2 Hz TENS and 2 Hz EA were applied to both ST36 and ST37. MN-SEPs were recorded during sham TENS, 2 Hz TENS and 2 Hz EA, with at least 1 week interval for each subject. One-way analysis of variance was used to determine the differences in latency and amplitude of the MN-SEPs observed in the stimulation and post-stimulation periods compared with baseline. Scheffe's post hoc correction was employed to identify pairwise differences. No differences in mean latency were found between the stimulation procedures during the stimulation and post-stimulation periods. 2 Hz EA but not sham TENS or 2 Hz TENS caused higher mean amplitudes in N20 and N30 during the stimulation and post-stimulation periods. EA, but not TENS, induces changes in certain components of the signal. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Broniatowski, Michael; Grundfest-Broniatowski, Sharon; Tucker, Harvey M; Tyler, Dustin J
2007-02-01
We hypothesized that voice may be artificially manipulated to ameliorate dystonias considered to be a failure in dynamic integration between competing neuromuscular systems. Orderly intrinsic laryngeal muscle recruitment by anodal block via the recurrent laryngeal and vagus nerves has allowed us to define specific values based on differential excitabilities, but has precluded voice fluency because of focused breaks during stimulation and the need to treat several neural conduits. Such problems may be obviated by a circuit capable of stimulating some axons while simultaneously blocking others in the recurrent laryngeal nerve, which carries innervation to all intrinsic laryngeal muscles, including the arguably intrinsic cricothyroideus. In 5 dogs, both recurrent laryngeal nerves received 40-Hz quasi-trapezoidal pulses (0 to 2000 microA, 0 to 2000 micros, 0 to 500 micros decay) via tripolar electrodes. Electromyograms were matched with audio intensities and fundamental frequencies recorded under a constant flow of humidified air. Data were digitized and evaluated for potential correlations. Orderly recruitment of the thyroarytenoideus, posterior cricoarytenoideus, and cricothyroideus was correlated with stimulating intensities (p < .001), and posterior cricoarytenoideus opposition to the thyroarytenoideus and cricothyroideus was instrumental in manipulating audio intensities and fundamental frequencies. Manipulation of canine voice parameters appears feasible via the sole recurrent laryngeal nerve within appropriate stimulation envelopes, and offers promise in human laryngeal dystonias.
Transcutaneous vagus nerve stimulation (tVNS) enhances divergent thinking.
Colzato, Lorenza S; Ritter, Simone M; Steenbergen, Laura
2018-03-01
Creativity is one of the most important cognitive skills in our complex and fast-changing world. Previous correlative evidence showed that gamma-aminobutyric acid (GABA) is involved in divergent but not convergent thinking. In the current study, a placebo/sham-controlled, randomized between-group design was used to test a causal relation between vagus nerve and creativity. We employed transcutaneous vagus nerve stimulation (tVNS), a novel non-invasive brain stimulation technique to stimulate afferent fibers of the vagus nerve and speculated to increase GABA levels, in 80 healthy young volunteers. Creative performance was assessed in terms of divergent thinking (Alternate Uses Task) and convergent thinking tasks (Remote Associates Test, Creative Problem Solving Task, Idea Selection Task). Results demonstrate active tVNS, compared to sham stimulation, enhanced divergent thinking. Bayesian analysis reported the data to be inconclusive regarding a possible effect of tVNS on convergent thinking. Therefore, our findings corroborate the idea that the vagus nerve is causally involved in creative performance. Even thought we did not directly measure GABA levels, our results suggest that GABA (likely to be increased in active tVNS condition) supports the ability to select among competing options in high selection demand (divergent thinking) but not in low selection demand (convergent thinking). Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Hypothesis that vagal reinervation of diaphragm could sensitise it to electrical stimulation.
Pavlovic, Dragan; Wendt, Michael
2003-03-01
The hypothesis proposed is that restoration of functional capacity of denervated diaphragm may be achieved by reinervating it with vagus nerve. Following trauma, carcinomatose infiltration, and/or large thoracic surgery and neck surgery, phrenic nerve is frequently injured. Reinervation even in the most favourable conditions would not follow and diaphragm would rest permanently denervated and paralysed. This results in unilateral or bilateral paralysis of diaphragm. In principle, intermittent electrical stimulation of the phrenic nerve or diaphragm could elicit regular diaphragm contractions and maintain satisfactory respiration. While this technique could be used in upper motor neurone injury, in lower motor neurone injury and denervated diaphragm, that imposes too high electrical resistance, direct diaphragm pacing is practically impossible. In these cases, long term artificial ventilation is often necessary. Nevertheless, those patients are at high risk to suffer from atelectasis and respiratory infections. We project a hypothesis that reinervation of denervated diaphragm by vagus nerve could re-establishes its sensitivity to intramuscular electrical stimulation and may allow stimulation of the diaphragm by implanted pace-maker electrodes. An appropriate electrical stimulation might then be possible and diaphragm pacing could replace prolonged artificial ventilation in those patients. Restoration of functional capacity of denervated diaphragm could open a perspective for long term diaphragm pacing in patients with irreversible phrenic nerve injury and diaphragm paralysis.
Kneist, W; Kauff, D W; Koch, K P; Schmidtmann, I; Heimann, A; Hoffmann, K P; Lang, H
2011-01-01
Pelvic autonomic nerve preservation avoids postoperative functional disturbances. The aim of this feasibility study was to develop a neuromonitoring system with simultaneous intraoperative verification of internal anal sphincter (IAS) activity and intravesical pressure. 14 pigs underwent low anterior rectal resection. During intermittent bipolar electric stimulation of the inferior hypogastric plexus (IHP) and the pelvic splanchnic nerves (PSN), electromyographic signals of the IAS and manometry of the urinary bladder were observed simultaneously. Stimulation of IHP and PSN as well as simultaneous intraoperative monitoring could be realized with an adapted neuromonitoring device. Neurostimulation resulted in either bladder or IAS activation or concerted activation of both. Intravesical pressure increase as well as amplitude increase of the IAS neuromonitoring signal did not differ significantly between stimulation of IHP and PSN [6.0 cm H(2)O (interquartile range [IQR] 3.5-9.0) vs. 6.0 cm H(2)O (IQR 3.0-10.0) and 12.1 μV (IQR 3.0-36.7) vs. 40.1 μV (IQR 9.0-64.3)] (p > 0.05). Pelvic autonomic nerve stimulation with simultaneous intraoperative monitoring of IAS and bladder innervation is feasible. The method may enable neuromonitoring with increasing selectivity for pelvic autonomic nerve preservation. Copyright © 2011 S. Karger AG, Basel.
Functional significance of the pattern of renal sympathetic nerve activation.
Dibona, G F; Sawin, L L
1999-08-01
To assess the renal functional significance of the pattern of renal sympathetic nerve activation, computer-generated stimulus patterns (delivered at constant integrated voltage) were applied to the decentralized renal sympathetic nerve bundle and renal hemodynamic and excretory responses determined in anesthetized rats. When delivered at the same integrated voltage, stimulus patterns resembling those observed in in vivo multifiber recordings of renal sympathetic nerve activity (diamond-wave patterns) produced greater renal vasoconstrictor responses than conventional square-wave patterns. Within diamond-wave patterns, increasing integrated voltage by increasing amplitude produced twofold greater renal vasoconstrictor responses than by increasing duration. With similar integrated voltages that were subthreshold for renal vasoconstriction, neither diamond- nor square-wave pattern altered glomerular filtration rate, whereas diamond- but not square-wave pattern reversibly decreased urinary sodium excretion by 25 +/- 3%. At the same number of pulses per second, intermittent stimulation produced faster and greater renal vasoconstriction than continuous stimulation. At the same number of pulses per second, increases in rest period during intermittent stimulation proportionally augmented the renal vasoconstrictor response compared with that observed with continuous stimulation; the maximum augmentation of 55% occurred at a rest period of 500 ms. These results indicate that the pattern of renal sympathetic nerve stimulation (activity) significantly influences the rapidity, magnitude, and selectivity of the renal vascular and tubular responses.
Butler, C; Watson-Wright, W M; Wilkinson, M; Johnstone, D E; Armour, J A
1988-03-01
Electrical stimulation of an acutely decentralized stellate or middle cervical ganglion or cardiopulmonary nerve augments cardiac chronotropism or inotropism; as the stimulation continues there is a gradual reduction of this augmentation following the peak response, i.e., an inhibition of augmentation. The amount of this inhibition was found to be dependent upon the region of the heart investigated and the neural structure stimulated. The cardiac parameters which were augmented the most displayed the greatest inhibition. Maximum augmentation or inhibition occurred, in most instances, when 5-20 Hz stimuli were used. Inhibition of augmentation was overcome when the stimulation frequency was subsequently increased or following the administration of nicotine or tyramine, indicating that the inhibition was not primarily due to the lack of availability of noradrenaline in the nerve terminals of the efferent postganglionic sympathetic neurons. Furthermore, as infusions of isoproterenol or noradrenaline during the period of inhibition could still augment cardiac responses, whereas during the early peak responses they did not, the inhibition of augmentation does not appear to be due primarily to down regulation of cardiac myocyte beta-adrenergic receptors. The inhibition was modified by hexamethonium but not by phentolamine or atropine. Inhibition occurred when all ipsilateral cardiopulmonary nerves connected with acutely decentralized middle cervical and stellate ganglia were stimulated, whereas significant inhibition did not occur when these nerves were stimulated after they had been disconnected from the ipsilateral decentralized ganglia. Taken together these data indicate that the inhibition of cardiac augmentation which occurs during relatively long-term stimulation of intrathoracic sympathetic neural elements is due in large part to nicotinic cholinergic synaptic mechanisms that lie primarily in the major thoracic autonomic ganglia. They also indicate that long-term stimulation in intrathoracic sympathetic neural elements with frequencies as low as 2 Hz may augment the heart as much as higher stimulation frequencies, depending upon the structure stimulated and the cardiovascular parameter monitored.
Rectal sphincter pressure monitoring device.
Hellbusch, L C; Nihsen, B J
1989-05-01
A silicone, dual cuffed catheter designed for the control of nasal hemorrhage was used for rectal sphincter pressure monitoring. Patients with lipomyelomeningocele and tethered spinal cord were monitored during their operative procedures to aid in distinguishing sacral nerve roots from other tissues. Stimulation of sacral nerve roots was done with a disposable nerve stimulator. The use of a catheter with two balloons helps to keep the outer balloon placed against the rectal sphincter.
Infrared neural stimulation of human spinal nerve roots in vivo.
Cayce, Jonathan M; Wells, Jonathon D; Malphrus, Jonathan D; Kao, Chris; Thomsen, Sharon; Tulipan, Noel B; Konrad, Peter E; Jansen, E Duco; Mahadevan-Jansen, Anita
2015-01-01
Infrared neural stimulation (INS) is a neurostimulation modality that uses pulsed infrared light to evoke artifact-free, spatially precise neural activity with a noncontact interface; however, the technique has not been demonstrated in humans. The objective of this study is to demonstrate the safety and efficacy of INS in humans in vivo. The feasibility of INS in humans was assessed in patients ([Formula: see text]) undergoing selective dorsal root rhizotomy, where hyperactive dorsal roots, identified for transection, were stimulated in vivo with INS on two to three sites per nerve with electromyogram recordings acquired throughout the stimulation. The stimulated dorsal root was removed and histology was performed to determine thermal damage thresholds of INS. Threshold activation of human dorsal rootlets occurred in 63% of nerves for radiant exposures between 0.53 and [Formula: see text]. In all cases, only one or two monitored muscle groups were activated from INS stimulation of a hyperactive spinal root identified by electrical stimulation. Thermal damage was first noted at [Formula: see text] and a [Formula: see text] safety ratio was identified. These findings demonstrate the success of INS as a fresh approach for activating human nerves in vivo and providing the necessary safety data needed to pursue clinically driven therapeutic and diagnostic applications of INS in humans.
Misdirection of Regenerating Axons and Functional Recovery Following Sciatic Nerve Injury in Rats
Hamilton, Shirley K.; Hinkle, Marcus L.; Nicolini, Jennifer; Rambo, Lindsay N.; Rexwinkle, April M.; Rose, Sam J.; Sabatier, Manning J.; Backus, Deborah; English, Arthur W.
2013-01-01
Poor functional recovery found after peripheral nerve injury has been attributed to the misdirection of regenerating axons to reinnervate functionally inappropriate muscles. We applied brief electrical stimulation (ES) to the common fibular (CF) but not the tibial (Tib) nerve just prior to transection and repair of the entire rat sciatic nerve, to attempt to influence the misdirection of its regenerating axons. The specificity with which regenerating axons reinnervated appropriate targets was evaluated physiologically using compound muscle action potentials (M responses) evoked from stimulation of the two nerve branches above the injury site. Functional recovery was assayed using the timing of electromyography (EMG) activity recorded from the tibialis anterior (TA) and soleus (Sol) muscles during treadmill locomotion and kinematic analysis of hindlimb locomotor movements. Selective ES of the CF nerve resulted in restored M-responses at earlier times than in unstimulated controls in both TA and Sol muscles. Stimulated CF axons reinnervated inappropriate targets to a greater extent than unstimulated Tib axons. During locomotion, functional antagonist muscles, TA and Sol, were coactivated both in stimulated rats and in unstimulated but injured rats. Hindlimb kinematics in stimulated rats were comparable to untreated rats, but significantly different from intact controls. Selective ES promotes enhanced axon regeneration but does so with decreased fidelity of muscle reinnervation. Functional recovery is neither improved nor degraded, suggesting that compensatory changes in the outputs of the spinal circuits driving locomotion may occur irrespective of the extent of misdirection of regenerating axons in the periphery. PMID:21120925
[Normative aspects of somatosensory evoked P300 components].
Louzã Neto, M R; Maurer, K; Neuhauser, B
1989-06-01
Using a somatosensory version of the oddball-paradigma the influence of age and gender on the P300-component and the comparison of the potential after stimulation of the right and left median nerve was studied in 30 healthy right handed volunteers (age: 20-35 years). Latency, amplitude, area and duration of the P300-potential were analysed. No relationship between age, gender and the P300-parameters were observed. The amplitude and the area of the potential obtained from the F3 electrode were greater after stimulation of the right median nerve compared to the potential after stimulation of the left median nerve. All other results were not significantly different. Strong positive correlations between the results after stimulation of the right and left median nerve were observed. These results showed that by a young group of volunteers age and gender did not influence the P300-component. Although the P300-Parameters had a between-subject variability, their mean remained constant over the study, their correlation coefficients were strong positive and the side of stimulation did not influence them (except for the electrode F3).
Badiger, Santoshi V; Desai, Sameer N
2017-01-01
A variety of techniques have been described for the axillary block using nerve stimulator, either with single injection, two, three, or four separate injections. Identification of all the four nerves is more difficult and time-consuming than other methods. Aim of the present study is to compare success rate, onset, and duration of sensory and motor anesthesia of axillary block using nerve stimulator, either with single injection after identification of any one of the four nerves or four separate injections following identification of each of nerve. Prospective, randomized, double-blind study. Patients undergoing forearm and hand surgeries under axillary block. One hundred patients, aged 18-75 years, were randomly allocated into two groups of 50 each. Axillary block was performed under the guidance of nerve stimulator with a mixture of 18 ml of 1.5% lignocaine and 18 ml of 0.5% bupivacaine. In the first group ( n = 50), all 36 ml of local anesthetic was injected after the identification of motor response to any one of the nerves and in Group 2, all the four nerves were identified by the motor response, and 9 ml of local anesthetic was injected at each of the nerves. The success rate of the block, onset, and duration of sensory and motor block was assessed. Categorical variables were compared using the Chi-square test, and continuous variables were compared using independent t -test. The success rate of the block with four injection technique was higher compared to single-injection technique (84% vs. 56%, P = 0.02). Four injection groups had a faster onset of sensory and motor block and prolonged duration of analgesia compared to single-injection group ( P < 0.001). There were no significant differences in the incidence of accidental arterial puncture and hemodynamic parameter between the groups. Identification of all the four nerves produced higher success rate and better quality of the block when compared to single-injection technique.
Mendez, Adrian; Seikaly, Hadi; Biron, Vincent L; Zhu, Lin Fu; Côté, David W J
2016-02-01
Recent studies have examined the effects of brief electrical stimulation (BES) on nerve regeneration, with some suggesting that BES accelerates facial nerve recovery. However, the facial nerve outcome measurement in these studies has not been precise or accurate. The objective of this study is to assess the effect of BES on accelerating facial nerve functional recovery from a transection injury in the rat model. A prospective randomized animal study using a rat model was performed. Two groups of 9 rats underwent facial nerve surgery. Both group 1 and 2 underwent facial nerve transection and repair at the main trunk of the nerve, with group 2 additionally receiving BES on post-operative day 0 for 1 h using an implantable stimulation device. Primary outcome was measured using a laser curtain model, which measured amplitude of whisking at 2, 4, and 6 weeks post-operatively. At week 2, the average amplitude observed for group 1 was 4.4°. Showing a statistically significant improvement over group 1, the group 2 mean was 14.0° at 2 weeks post-operatively (p = 0.0004). At week 4, group 1 showed improvement having an average of 9.7°, while group 2 remained relatively unchanged with an average of 12.8°. Group 1 had an average amplitude of 13.63° at 6-weeks from surgery. Group 2 had a similar increase in amplitude with an average of 15.8°. There was no statistically significant difference between the two groups at 4 and 6 weeks after facial nerve surgery. This is the first study to use an implantable stimulator for serial BES following neurorrhaphy in a validated animal model. Results suggest performing BES after facial nerve transection and neurorrhaphy at the main trunk of the facial nerve is associated with accelerated whisker movement in a rat model compared with a control group.
Patel, Chirag R; Fernandez-Miranda, Juan C; Wang, Wei-Hsin; Wang, Eric W
2016-02-01
The anatomy of the skull base is complex with multiple neurovascular structures in a small space. Understanding all of the intricate relationships begins with understanding the anatomy of the sphenoid bone. The cavernous sinus contains the carotid artery and some of its branches; cranial nerves III, IV, VI, and V1; and transmits venous blood from multiple sources. The anterior skull base extends to the frontal sinus and is important to understand for sinus surgery and sinonasal malignancies. The clivus protects the brainstem and posterior cranial fossa. A thorough appreciation of the anatomy of these various areas allows for endoscopic endonasal approaches to the skull base. Copyright © 2016 Elsevier Inc. All rights reserved.
Gómez-Tames, José; González, José; Yu, Wenwei
2014-01-01
Volume conductor models with different geometric representations, such as the parallel layer model (PM), the cylindrical layer model (CM), or the anatomically based model (AM), have been employed during the implementation of bioelectrical models for electrical stimulation (FES). Evaluating their strengths and limitations to predict nerve activation is fundamental to achieve a good trade-off between accuracy and computation time. However, there are no studies aimed at clarifying the following questions. (1) Does the nerve activation differ between CM and PM? (2) How well do CM and PM approximate an AM? (3) What is the effect of the presence of blood vessels and nerve trunk on nerve activation prediction? Therefore, in this study, we addressed these questions by comparing nerve activation between CM, PM, and AM models by FES. The activation threshold was used to evaluate the models under different configurations of superficial electrodes (size and distance), nerve depths, and stimulation sites. Additionally, the influences of the sciatic nerve, femoral artery, and femoral vein were inspected for a human thigh. The results showed that the CM and PM had a high error rate, but the variation of the activation threshold followed the same tendency for electrode size and interelectrode distance variation as AM. PMID:25276222
Detection of a diabetic sural nerve from the magnetic field after electric stimulation
NASA Astrophysics Data System (ADS)
Hayami, Takehito; Iramina, Keiji; Hyodo, Akira; Chen, Xian; Sunagawa, Kenji
2009-04-01
In this study, we proposed a new diagnostic technique for diabetic neuropathy using biomagnetic measurement. Peripheral neuropathy is one of the most common complications of diabetes. To examine the injury, the skin potential around the nerve is often measured after electric stimulation. However, measuring the magnetic field may reveal precise condition of the injury. To evaluate the effect of measuring the magnetic field, a simulation study was performed. A diabetic sural nerve was simulated as a bundle of myelinated nerve fibers. Each fiber was modeled as an electric cable of Ranvier's nodes. Anatomical data were used to determine the number of nerve fibers and distribution of nerve fiber diameters. The electric potential and the magnetic field on the skin after electric stimulation were computed to the boundary element method. Biphasic time courses were obtained as the electric potential and the magnetic flux density at measurement points. In diabetic nerves, the longer interpeak latency of the electric potential wave and the shorter interpeak latency of the magnetic flux wave were obtained. Measuring both the electric potential and the magnetic flux density seemed to provide a noninvasive and objective marker for diabetic neuropathy.
Frahm, Ken Steffen; Hennings, Kristian; Vera-Portocarrero, Louis; Wacnik, Paul W; Mørch, Carsten Dahl
2016-08-01
Peripheral nerve field stimulation (PNFS) is a potential treatment for chronic low-back pain. Pain relief using PNFS is dependent on activation of non-nociceptive Aβ-fibers. However, PNFS may also activate muscles, causing twitches and discomfort. In this study, we developed a mathematical model, to investigate the activation of sensory and motor nerves, as well as direct muscle fiber activation. The extracellular field was estimated using a finite element model based on the geometry of CT scanned lumbar vertebrae. The electrode was modeled as being implanted to a depth of 10-15 mm. Three implant directions were modeled; horizontally, vertically, and diagonally. Both single electrode and "between-lead" stimulation between contralateral electrodes were modeled. The extracellular field was combined with models of sensory Aβ-nerves, motor neurons and muscle fibers to estimate their activation thresholds. The model showed that sensory Aβ fibers could be activated with thresholds down to 0.563 V, and the lowest threshold for motor nerve activation was 7.19 V using between-lead stimulation with the cathode located closest to the nerves. All thresholds for direct muscle activation were above 500 V. The results suggest that direct muscle activation does not occur during PNFS, and concomitant motor and sensory nerve fiber activation are only likely to occur when using between-lead configuration. Thus, it may be relevant to investigate the location of the innervation zone of the low-back muscles prior to electrode implantation to avoid muscle activation. © 2016 International Neuromodulation Society.
Sieg, Emily P; Payne, Russell A; Hazard, Sprague; Rizk, Elias
2016-06-01
Case reports, case series and case control studies have looked at the use of phrenic nerve stimulators in the setting of high spinal cord injuries and central hypoventilation syndromes dating back to the 1980s. We evaluated the evidence related to this topic by performing a systematic review of the published literature. Search terms "phrenic nerve stimulation," "phrenic nerve and spinal cord injury," and "phrenic nerve and central hypoventilation" were entered into standard search engines in a systematic fashion. Articles were reviewed by two study authors and graded independently for class of evidence according to published guidelines. The published evidence was reviewed, and the overall body of evidence was evaluated using the grading of recommendations, assesment, development and evaluations (GRADE) criteria Balshem et al. (J Clin Epidemiol 64:401-406, 2011). Our initial search yielded 420 articles. There were no class I, II, or III studies. There were 18 relevant class IV articles. There were no discrepancies among article ratings (i.e., kappa = 1). A meta-analysis could not be performed due to the low quality of the available evidence. The overall quality of the body of evidence was evaluated using GRADE criteria and fell within the "very poor" category. The quality of the published literature for phrenic nerve stimulation is poor. Our review of the literature suggests that phrenic nerve stimulation is a safe and effective option for decreasing ventilator dependence in high spinal cord injuries and central hypoventilation; however, we are left with critical questions that provide crucial directions for future studies.
Handa, R K; Johns, E J
1985-01-01
Stimulation of the renal sympathetic nerves in pentobarbitone anaesthetized rats achieved a 13% reduction in renal blood flow, did not change glomerular filtration rate, but reduced urine flow by 37%, absolute sodium excretion by 37%, and fractional sodium excretion by 34%. Following inhibition of converting enzyme with captopril (0.38 mmol kg-1 h-1), similar nerve stimulation reduced both renal blood flow and glomerular filtration rate by 16%, and although urine flow and absolute sodium excretion fell by 32 and 31%, respectively, the 18% fall in fractional sodium excretion was significantly less than that observed in the absence of captopril. Renal nerve stimulation at low levels, which did not change either renal blood flow or glomerular filtration rate, reduced urine flow, and absolute and fractional sodium excretions by 25, 26 and 23%, respectively. In animals receiving captopril at 0.38 mmol kg-1 h-1, low-level nerve stimulation caused small increases in glomerular filtration rate of 7% and urine flow of 12%, but did not change either absolute or fractional sodium excretions. At one-fifth the dose of captopril (0.076 mmol kg-1 h-1), low-level nerve stimulation did not change renal haemodynamics but decreased urine flow, and absolute and fractional sodium excretions by 10, 10 and 8%, respectively. These results showed that angiotensin II production was necessary for regulation of glomerular filtration rate in the face of modest neurally induced reductions in renal blood flow and was compatible with an intra-renal site of action of angiotensin II preferentially at the efferent arteriole. They also demonstrated that in the rat the action of the renal nerves to decrease sodium excretion was dependent on angiotensin II. PMID:3005558
[Electrical stimulation of the facial nerve with a prognostic function in parotid surgery].
García-Losarcos, N; González-Hidalgo, M; Franco-Carcedo, C; Poch-Broto, J
Continuous electromyography during parotidectomies and direct stimulation of the facial nerve as an intraoperative identification technique significantly lower the rate of post-operative morbidity. To determine the usefulness of intra-operative neurophysiological parameters registered by means of electrical stimulation of the facial nerve as values capable of predicting the type of lesion and the functional prognosis. Our sample consisted of a correlative series of 20 cases of monitored parotidectomies. Post-operative facial functioning, type of lesion and its prognosis were compared with the variations in latency/amplitude of the muscle response between two stimulations of the facial nerve before and after resection, as well as in the absence or presence of muscle response to stimulation after resection. All the patients except one presented motor evoked potentials (MEP) to stimulation after resection. There was no facial damage following the operation in 55% of patients and 45% presented some kind of paresis. The 21% drop in the amplitude of the intra-operative MEP and the mean increase in latency of 13.5% correspond to axonal and demyelinating insult, respectively, with a mean recovery time of three and six months. The only case of absence of response to the post-resection stimulation presented permanent paresis. The presence of MEP following resection does not ensure that functioning of the nerve remains undamaged. Nevertheless, it can be considered a piece of data that suggests a lower degree of compromise, if it is present, and a better prognosis. The variations in latency and amplitude of the MEP tend to be intra-operative parameters that indicate the degree of compromise and functional prognosis.
Neurophysiological intraoperative monitoring during an optic nerve schwannoma removal.
San-Juan, Daniel; Escanio Cortés, Manuel; Tena-Suck, Martha; Orozco Garduño, Adolfo Josué; López Pizano, Jesús Alejandro; Villanueva Domínguez, Jonathan; Fernández Gónzalez-Aragón, Maricarmen; Gómez-Amador, Juan Luis
2017-10-01
This paper reports the case of a patient with optic nerve schwannoma and the first use of neurophysiological intraoperative monitoring of visual evoked potentials during the removal of such tumor with no postoperative visual damage. Schwannomas are benign neoplasms of the peripheral nervous system arising from the neural crest-derived Schwann cells, these tumors are rarely located in the optic nerve and the treatment consists on surgical removal leading to high risk of damage to the visual pathway. Case report of a thirty-year-old woman with an optic nerve schwannoma. The patient underwent surgery for tumor removal on the left optic nerve through a left orbitozygomatic approach with intraoperative monitoring of left II and III cranial nerves. We used Nicolet Endeavour CR IOM (Carefusion, Middleton WI, USA) to performed visual evoked potentials stimulating binocularly with LED flash goggles with the patient´s eyes closed and direct epidural optic nerve stimulation delivering rostral to the tumor a rectangular current pulse. At follow up examinations 7 months later, the left eye visual acuity was 20/60; Ishihara score was 8/8 in both eyes; the right eye photomotor reflex was normal and left eye was mydriatic and arreflectic; optokinetic reflex and ocular conjugate movements were normal. In this case, the epidural direct electrical stimulation of optic nerve provided stable waveforms during optic nerve schwannoma resection without visual loss.
de Jong, Mark R; Hoogerwaard, Annemiek F; Gal, Pim; Adiyaman, Ahmet; Smit, Jaap Jan J; Delnoy, Peter Paul H M; Ramdat Misier, Anand R; van Hasselt, Boudewijn A A M; Heeg, Jan-Evert; le Polain de Waroux, Jean-Benoit; Lau, Elizabeth O Y; Staessen, Jan A; Persu, Alexandre; Elvan, Arif
2016-06-01
Blood pressure response to renal denervation is highly variable, and the proportion of responders is disappointing. This may be partly because of accessory renal arteries too small for denervation, causing incomplete ablation. Renal nerve stimulation before and after renal denervation is a promising approach to assess completeness of renal denervation and may predict blood pressure response to renal denervation. The objective of the current study was to assess renal nerve stimulation-induced blood pressure increase before and after renal sympathetic denervation in main and accessory renal arteries of anaesthetized patients with drug-resistant hypertension. The study included 21 patients. Nine patients had at least 1 accessory renal artery in which renal denervation was not feasible. Renal nerve stimulation was performed in the main arteries of all patients and in accessory renal arteries of 6 of 9 patients with accessory arteries, both before and after renal sympathetic denervation. Renal nerve stimulation before renal denervation elicited a substantial increase in systolic blood pressure, both in main (25.6±2.9 mm Hg; P<0.001) and accessory (24.3±7.4 mm Hg; P=0.047) renal arteries. After renal denervation, renal nerve stimulation-induced systolic blood pressure increase was blunted in the main renal arteries (Δ systolic blood pressure, 8.6±3.7 mm Hg; P=0.020), but not in the nondenervated renal accessory renal arteries (Δ systolic blood pressure, 27.1±7.6 mm Hg; P=0.917). This residual source of renal sympathetic tone may result in persistent hypertension after ablation and partly account for the large response variability. © 2016 American Heart Association, Inc.
Expression of aquaporin water channels in rat vagina: potential role in vaginal lubrication.
Park, Kwangsung; Han, Ho Jae; Kim, Soo Wan; Jung, Seung Il; Kim, Sun-Ouck; Lee, Hyun-Suk; Lee, Mi Na; Ahn, Kyuyoun
2008-01-01
Aquaporins (AQPs) are membrane proteins that facilitate water movement across biological membranes. There has been little research on the role of AQPs in the female sexual arousal response. The purposes of this study were to investigate the localization and functional roles of AQP1, AQP2, and AQP3 in rat vagina. Female Sprague-Dawley rats (230-240 g, N = 20) were anesthetized. The vaginal branch of the pelvic nerve was stimulated for 60 seconds (10 V, 16 Hz, 0.8 ms), and the animals were sacrificed either immediately or 5 minutes later. The expression and cellular localization of AQP1, 2, and 3 were determined by Western blot and immunohistochemistry of the vagina. The intracellular membrane and plasma membrane fractions of the proteins in vaginal tissue were studied by immunoblot analysis with the differential centrifugation. The expression and cellular localization of AQPs, and pelvic nerve stimulation induced translocation of AQPs in rat vaginal tissue. Immunolabeling showed that AQP1 was mainly expressed in the capillaries and venules of the vagina. AQP2 was expressed in the cytoplasm of the epithelium, and AQP3 was mainly associated with the plasma membrane of the vaginal epithelium. AQPs were found to be present primarily in the cytosolic fraction of untreated tissues. The translocation of AQP1 and 2 isoforms from the cytosolic compartment to the membrane compartment was observed immediately after nerve stimulation and had declined at 5 minutes after nerve stimulation, while the subcellular localization of AQP3 was not changed by nerve stimulation. These results showed a distinct localization of AQPs in the rat vagina. Pelvic nerve stimulation modulated short-term translocation of AQP1 and 2. These results imply that AQPs may play an important role in vaginal lubrication.
Liddy, Whitney; Barber, Samuel R; Cinquepalmi, Matteo; Lin, Brian M; Patricio, Stephanie; Kyriazidis, Natalia; Bellotti, Carlo; Kamani, Dipti; Mahamad, Sadhana; Dralle, Henning; Schneider, Rick; Dionigi, Gianlorenzo; Barczynski, Marcin; Wu, Che-Wei; Chiang, Feng Yu; Randolph, Gregory
2017-03-01
Correlation of physiologically important electromyographic (EMG) waveforms with demonstrable muscle activation is important for the reliable interpretation of evoked waveforms during intraoperative neural monitoring (IONM) of the vagus nerve, recurrent laryngeal nerve (RLN), and external branch of the superior laryngeal nerve (EBSLN) in thyroid surgery. Retrospective chart review. Data were reviewed retrospectively for thyroid surgery patients with laryngeal nerve IONM from January to December, 2015. EMG responses to monopolar stimulation of the vagus/RLN and EBSLN were recorded in bilateral vocalis, cricothyroid (CTM), and strap muscles using endotracheal tube-based surface and intramuscular hook electrodes, respectively. Target muscles for vagal/RLN and EBSLN stimulation were the ipsilateral vocalis and CTM, respectively. All other recording channels were nontarget muscles. Fifty surgical sides were identified in 37 subjects. All target muscle mean amplitudes were significantly higher than in nontarget muscles. With vagal/RLN stimulation, target ipsilateral vocalis mean amplitude was 1,095.7 μV (mean difference range = -814.1 to -1,078 μV, P < .0001). For EBSLN stimulation, target ipsilateral CTM mean amplitude was 6,379.3 μV (mean difference range = -6,222.6 to -6,362.3 μV, P < .0001). Target muscle large-amplitude EMG responses correlated with meaningful visual or palpable muscular responses, whereas nontarget EMG responses showed no meaningful muscle activation. Target and nontarget laryngeal muscles are differentiated based on divergence of EMG response directly correlating with presence or absence of visual and palpable muscle activation. Low-amplitude EMG waveforms in nontarget muscles with neural stimulation can be explained by the concept of far-field artifactual waveforms and do not correspond to a true muscular response. The surgeon should be aware of these nonphysiologic waveforms when interpreting and applying IONM during thyroid surgery. 4 Laryngoscope, 127:764-771, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
On the nature of the afferent fibers of oculomotor nerve.
Manni, E; Draicchio, F; Pettorossi, V E; Carobi, C; Grassi, S; Bortolami, R; Lucchi, M L
1989-03-01
The oculogyric nerves contain afferent fibers originating from the ophthalmic territory, the somata of which are located in the ipsilateral semilunar ganglion. These primary sensory neurons project to the Subnucleus Gelatinosus of the Nucleus Caudalis Trigemini, where they make presynaptic contact with the central endings of the primary trigeminal afferents running in the fifth cranial nerve. After complete section of the trigeminal root, the antidromic volleys elicited in the trunk of the third cranial nerve by stimulating SG of NCT consisted of two waves belonging to the A delta and C groups. The area of both components of the antidromic volleys decreased both after bradykinin and hystamine injection into the corresponding cutaneous region and after thermic stimulation of the ipsilateral trigeminal ophthalmic territory. The reduction of such potentials can be explained in terms of collision between the antidromic volleys and those elicited orthodromically by chemical and thermic stimulation. Also, capsaicin applied on the nerve induced an immediate increase, followed by a long lasting decrease, of orthodromic evoked response area. These findings bring further support to the nociceptive nature of the afferent fibers running into the oculomotor nerve.
Spencer, Julianne H; Goff, Ryan P; Iaizzo, Paul A
2015-07-01
The objective of this study was to quantitatively characterize anatomy of the human phrenic nerve in relation to the coronary venous system, to reduce undesired phrenic nerve stimulation during left-sided lead implantations. We obtained CT scans while injecting contrast into coronary veins of 15 perfusion-fixed human heart-lung blocs. A radiopaque wire was glued to the phrenic nerve under CT, then we created three-dimensional models of anatomy and measured anatomical parameters. The left phrenic nerve typically coursed over the basal region of the anterior interventricular vein, mid region of left marginal veins, and apical region of inferior and middle cardiac veins. There was large variation associated with the average angle between nerve and veins. Average angle across all coronary sinus tributaries was fairly consistent (101.3°-111.1°). The phrenic nerve coursed closest to the middle cardiac vein and left marginal veins. The phrenic nerve overlapped a left marginal vein in >50% of specimens. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehgartner, Brian L.; Sobolik, Steven Ronald
This report presents computational analyses that simulate the structural response of caverns at the Strategic Petroleum Reserve Bryan Mound site. The cavern field comprises 20 caverns. Five caverns (1, 2, 4, and 5; 3 was later plugged and abandoned) were acquired from industry and have unusual shapes and a history dating back to 1946. The other 16 caverns (101-116) were leached according to SPR standards in the mid-1980s and have tall cylindrical shapes. The history of the caverns and their shapes are simulated in a 3-D geomechanics model of the site that predicts deformations, strains, and stresses. Future leaching scenariosmore » due to oil drawdowns using fresh water are also simulated by increasing the volume of the caverns. Cavern pressures are varied in the model to capture operational practices in the field. The results of the finite element model are interpreted to provide information on the current and future status of subsidence, well integrity, and cavern stability. The most significant result in this report is relevant to caverns 1, 2, and 5. The caverns have non-cylindrical shapes and have potential regions where the surrounding salt may be damaged during workover procedures. During a workover the normal cavern operating pressure is lowered to service a well. At this point the wellhead pressures are atmospheric. When the workover is complete, the cavern is repressurized. The resulting elastic stresses are sufficient to cause tension and large deviatoric stresses at several locations. With time, these stresses relax to a compressive state due to salt creep. However, the potential for salt damage and fracturing exists. The analyses predict tensile stresses at locations with sharp-edges in the wall geometry, or in the case of cavern 5, in the neck region between the upper and lower lobes of the cavern. The effects do not appear to be large-scale, however, so the only major impact is the potential for stress-induced salt falls in cavern 5, potentially leading to hanging string damage. Caverns 1 and 2 have no significant issues regarding leachings due to drawdowns; cavern 5 may require a targeted leaching of the neck region to improve cavern stability and lessen hanging string failure potential. The remaining caverns have no significant issues regarding cavern stability and may be safely enlarged during subsequent oil drawdowns. Well strains are significant and consequently future remedial actions may be necessary. Well strains certainly suggest the need for appropriate monitoring through a well-logging program. Subsidence is currently being monitored; there are no issues identified regarding damage from surface subsidence or horizontal strain to surface facilities.« less
Bhasin, Neha; Reddy, Sreedevi; Nagarajappa, Anil Kumar; Kakkad, Ankur
2015-06-01
Saliva is a complex fluid, whose important role is to maintain the well being of oral cavity. Salivary gland hypofunction or hyposalivation is the condition of having reduced saliva production which leads to the subjective complaint of oral dryness termed xerostomia.(7) Management of xerostomia includes palliative therapy using topical agents or systemic therapy. Electrostimulation to produce saliva was studied in the past and showed moderate promise but never became part of mainstream therapy. Hence, this study was undertaken to evaluate the effect of transcutaneous electrical nerve stimulation (TENS) on whole salivary flow rate in healthy adults and to evaluate how long this effect of TENS lasts on salivary flow. One hundred healthy adult subjects were divided into five age groups with each group containing 20 subjects equally divided into males and females in each group. Unstimulated saliva was collected using a graduated test tube fitted with funnel and quantity was measured. Transcutaneous electrical nerve stimulation unit was activated and stimulated saliva was collected. Saliva was again collected 30 minutes and 24 hours post stimulation. The mean unstimulated whole saliva flow rate for all subjects (n = 100) was 2.60 ml/5 min. During stimulation, it increased to 3.60 ± 0.39 ml/5 min. There was 38.46% increase in salivary flow. Ninety six out of 100 responded positively to TENS therapy. Salivary flow remained increased 30 minutes and 24 hours post stimulation with the values being 3.23 ± 0.41 ml/5 min and 2.69 ± 0.39 ml/5 min respectively. Repeated measures One way analysis of variance (ANOVA) test showed that the difference between these values were statistically significant. Transcutaneous electrical nerve stimulation therapy was effective for stimulation of whole saliva in normal, healthy subjects and its effect retained till 30 minutes and a little up to 24 hours. Transcutaneous electrical nerve stimulation may work best synergistically with other sialagogues and can be used for the management of xerostomia.
Functional and Histological Effects of Chronic Neural Electrode Implantation.
Sahyouni, Ronald; Chang, David T; Moshtaghi, Omid; Mahmoodi, Amin; Djalilian, Hamid R; Lin, Harrison W
2017-04-01
Permanent injury to the cranial nerves can often result in a substantial reduction in quality of life. Novel and innovative interventions can help restore form and function in nerve paralysis, with bioelectric interfaces among the more promising of these approaches. The foreign body response is an important consideration for any bioelectric device as it influences the function and effectiveness of the implant. The purpose of this review is to describe tissue and functional effects of chronic neural implantation among the different categories of neural implants and highlight advances in peripheral and cranial nerve stimulation. Data Sources : PubMed, IEEE, and Web of Science literature search. Review Methods : A review of the current literature was conducted to examine functional and histologic effects of bioelectric interfaces for neural implants. Bioelectric devices can be characterized as intraneural, epineural, perineural, intranuclear, or cortical depending on their placement relative to nerves and neuronal cell bodies. Such devices include nerve-specific stimulators, neuroprosthetics, brainstem implants, and deep brain stimulators. Regardless of electrode location and interface type, acute and chronic histological, macroscopic and functional changes can occur as a result of both passive and active tissue responses to the bioelectric implant. A variety of chronically implantable electrodes have been developed to treat disorders of the peripheral and cranial nerves, to varying degrees of efficacy. Consideration and mitigation of detrimental effects at the neural interface with further optimization of functional nerve stimulation will facilitate the development of these technologies and translation to the clinic. 3.
Bayesian analysis of the kinetics of quantal transmitter secretion at the neuromuscular junction.
Saveliev, Anatoly; Khuzakhmetova, Venera; Samigullin, Dmitry; Skorinkin, Andrey; Kovyazina, Irina; Nikolsky, Eugeny; Bukharaeva, Ellya
2015-10-01
The timing of transmitter release from nerve endings is considered nowadays as one of the factors determining the plasticity and efficacy of synaptic transmission. In the neuromuscular junction, the moments of release of individual acetylcholine quanta are related to the synaptic delays of uniquantal endplate currents recorded under conditions of lowered extracellular calcium. Using Bayesian modelling, we performed a statistical analysis of synaptic delays in mouse neuromuscular junction with different patterns of rhythmic nerve stimulation and when the entry of calcium ions into the nerve terminal was modified. We have obtained a statistical model of the release timing which is represented as the summation of two independent statistical distributions. The first of these is the exponentially modified Gaussian distribution. The mixture of normal and exponential components in this distribution can be interpreted as a two-stage mechanism of early and late periods of phasic synchronous secretion. The parameters of this distribution depend on both the stimulation frequency of the motor nerve and the calcium ions' entry conditions. The second distribution was modelled as quasi-uniform, with parameters independent of nerve stimulation frequency and calcium entry. Two different probability density functions for the distribution of synaptic delays suggest at least two independent processes controlling the time course of secretion, one of them potentially involving two stages. The relative contribution of these processes to the total number of mediator quanta released depends differently on the motor nerve stimulation pattern and on calcium ion entry into nerve endings.
Threat of a sinkhole: A reevaluation of Cavern 4, Bayou Choctaw salt dome, Louisiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neal, J.T.; Todd, J.L.; Linn, J.K.
1993-09-01
Cavern Lake at Bayou Choctaw salt dome resulted from the failure of Cavern 7 in 1954. Uncontrolled solutioning of this cavern through the thin caprock had set the stage for overburden to collapse into the cavern below. A similar situation developed with nearby Cavern 4, but with less dissolutioning of the caprock. Because pressure loss was already a problem and because another 800 ft diameter lake would have endangered surface operations, solutioning of Cavern 4 was stopped and the cavern abandoned in 1957 in order to protect the already-small site. In 1978 the Strategic Petroleum Reserve (SPR) acquired a numbermore » of caverns at Bayou Choctaw, including Cavern 4, and the possible repeat of the Cavern 7 failure and formation of another lake thus became an issue. The cavern dimensions were re-sonared in 1980 for comparison with 1963 and 1977 surveys. Annual surface leveling between 1982--1992 showed less subsidence occurring than the site average, and a cavern monitoring system, installed in 1984, has revealed no anomalous motion. Repeat sonar surveys in 1992 showed very little, if any, change occurred since 1980 although a small amount of uncertainty exists as a result of changing sonar techniques. We conclude that significant additional solutioning or erosion of the caprock has not occurred and that there is no increased threat to SPR operations.« less
Modification by choline of adrenergic transmission in rat mesenteric arteries
Malik, K. U.; McGiff, J. C.
1971-01-01
1. The action of choline on the vasoconstrictor responses of the perfused mesenteric arteries of the rat to sympathetic nerve stimulation and to injected noradrenaline has been investigated. 2. The infusion of choline (500 μg/ml), for periods of 15 s, increased the response to sympathetic nerve stimulation, whereas the infusion of the same concentration for 20 min greatly reduced the response to nerve stimulation. Choline (up to 500 μg/ml), infused either for short or long periods, did not alter the response to injected noradrenaline. 3. The inhibitory action of choline on the response to nerve stimulation was abolished either by an increase in the calcium concentration from 1·8 to 5·4 mM or by simultaneous infusion of (+)-amphetamine or atropine. 4. The results suggest that choline in concentrations of 500 μg/ml has the same effect on adrenergic transmission in mesenteric arteries as acetylcholine at concentrations of 5 ng/ml. PMID:4339884
Secretion of Growth Hormone in Response to Muscle Sensory Nerve Stimulation
NASA Technical Reports Server (NTRS)
Grindeland, Richard E.; Roy, R. R.; Edgerton, V. R.; Gosselink, K. L.; Grossman, E. J.; Sawchenko, P. E.; Wade, Charles E. (Technical Monitor)
1994-01-01
Growth hormone (GH) secretion is stimulated by aerobic and resistive exercise and inhibited by exposure to actual or simulated (bedrest, hindlimb suspension) microgravity. Moreover, hypothalamic growth hormone-releasing factor (GRF) and preproGRF mRNA are markedly decreased in spaceflight rats. These observations suggest that reduced sensory input from inactive muscles may contribute to the reduced secretion of GH seen in "0 G". Thus, the aim of this study was to determine the effect of muscle sensory nerve stimulation on secretion of GH. Fed male Wistar rats (304 +/- 23 g) were anesthetized (pentobarbital) and the right peroneal (Pe), tibial (T), and sural (S) nerves were cut. Electrical stimulation of the distal (D) or proximal (P) ends of the nerves was implemented for 15 min. to mimic the EMG activity patterns of ankle extensor muscles of a rat walking 1.5 mph. The rats were bled by cardiac puncture and their anterior pituitaries collected. Pituitary and plasma bioactive (BGH) and immunoactive (IGH) GH were measured by bioassay and RIA.
Effects of ozone therapy on facial nerve regeneration.
Ozbay, Isa; Ital, Ilker; Kucur, Cuneyt; Akcılar, Raziye; Deger, Aysenur; Aktas, Savas; Oghan, Fatih
Ozone may promote moderate oxidative stress, which increases antioxidant endogenous systems. There are a number of antioxidants that have been investigated therapeutically for improving peripheral nerve regeneration. However, no previous studies have reported the effect of ozone therapy on facial nerve regeneration. We aimed to evaluate the effect of ozone therapy on facial nerve regeneration. Fourteen Wistar albino rats were randomly divided into two groups with experimental nerve crush injuries: a control group, which received saline treatment post-crush, and an experimental group, which received ozone treatment. All animals underwent surgery in which the left facial nerve was exposed and crushed. Treatment with saline or ozone began on the day of the nerve crush. Left facial nerve stimulation thresholds were measured before crush, immediately after crush, and after 30 days. After measuring nerve stimulation thresholds at 30 days post-injury, the crushed facial nerve was excised. All specimens were studied using light and electron microscopy. Post-crushing, the ozone-treated group had lower stimulation thresholds than the saline group. Although this did not achieve statistical significance, it is indicative of greater functional improvement in the ozone group. Significant differences were found in vascular congestion, macrovacuolization, and myelin thickness between the ozone and control groups. Significant differences were also found in axonal degeneration and myelin ultrastructure between the two groups. We found that ozone therapy exerted beneficial effect on the regeneration of crushed facial nerves in rats. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Pashapour, Ali; Mohammadian, Reza; Salehpour, Firooz; Sharifipour, Ehsan; Mansourizade, Reza; Mahdavifard, Ali; Salehi, Mohamadgharib; Mirzaii, Farhad; Sariaslani, Payam; Fatahzade Ardalani, Ghasem; Altafi, Davar
2014-01-01
Summary Ocular symptoms are regularly observed in patients with cavernous sinus dural arteriovenous fistulas (cDAVF). We aimed to evaluate the long-term efficacy and safety of endovascular approaches in patients with cDAVF presenting with different ocular symptoms. In a prospective study between June 2008 and March 2013, 46 patients with ocular symptoms due to cDAVF who were not eligible for conservative therapy, met the inclusion criteria and underwent endovascular treatment. They underwent a transarterial approach with histoacryl glue injections or transvenous coil embolization, all in one session. They were followed up for a mean period of 17.3 months (range 7 to 30 months) clinically and using angiography. The mean age of patients was 36.8 years (18-60) and 65% of them were male. All patients showed venous drainage into the superior and inferior orbital veins. Access to the cavernous sinus was transvenous in ten patients, transarterial in 26 patients, and mixed in ten patients. Initial symptoms were improved in 97.8% of patients and did not recur during the study follow-up. The procedural complications included: blurred vision, transient sixth nerve palsy and exacerbation of chemoproptosis in two, one and two patients respectively that completely resolved in initial weeks with no recurrence. No patient worsened or developed new symptoms suggestive of a recurrent fistula during the follow-up period. One patient experienced intracranial dissection of the internal carotid artery and ischemic stroke with an unfinished procedure. The relief of early presentation was durable in long-term follow-up and the cured lesions were stable in angiographic controls. Favorable and durable outcomes could be obtained following endovascular approaches for cDAVF presenting with different ocular symptoms. PMID:25196621
Phrenic Nerve Stimulation: Technology and Clinical Applications.
Abdunnur, Shane V; Kim, Daniel H
2015-01-01
Phrenic nerve stimulation is a technique used to reanimate the diaphragm of patients with central nervous system etiologies of respiratory insufficiency. Current clinical indications include congenital central hypoventilation syndrome, spinal cord injury above C4, brain stem injury, and idiopathic severe sleep apnea. Presurgical evaluation ensures proper patient selection by validating the intact circuit from the phrenic nerve through alveolar oxygenation. The procedure involves placing leads around the phrenic nerves bilaterally and attaching these leads to radio receivers in a subcutaneous pocket. The rate and amplitude of the current is adjusted via an external radio transmitter. After implantation, each patient progresses through a conditioning phase that strengthens the diaphragm and progressively provides independence from the mechanical ventilator. Studies indicate that patients and families experience an improved quality of life and are satisfied with the results. Phrenic nerve stimulation provides a safe and effective means for reanimating the diaphragm for certain patients with respiratory insufficiency, providing independence from mechanical ventilation. © 2016 S. Karger AG, Basel.
Osorio, Joseph A; Breshears, Jonathan D; Arnaout, Omar; Simon, Neil G; Hastings-Robinson, Ashley M; Aleshi, Pedram; Kliot, Michel
2015-09-01
OBJECT The objective of this study was to provide a technique that could be used in the preoperative period to facilitate the surgical exploration of peripheral nerve pathology. METHODS The authors describe a technique in which 1) ultrasonography is used in the immediate preoperative period to identify target peripheral nerves, 2) an ultrasound-guided needle electrode is used to stimulate peripheral nerves to confirm their position, and then 3) a methylene blue (MB) injection is performed to mark the peripheral nerve pathology to facilitate surgical exploration. RESULTS A cohort of 13 patients with varying indications for peripheral nerve surgery is presented in which ultrasound guidance, stimulation, and MB were used to localize and create a road map for surgeries. CONCLUSIONS Preoperative ultrasound-guided MB administration is a promising technique that peripheral nerve surgeons could use to plan and execute surgery.
Matsushima, J; Kumagai, M; Harada, C; Takahashi, K; Inuyama, Y; Ifukube, T
1992-09-01
Our previous reports showed that second formant information, using a speech coding method, could be transmitted through an electrode on the promontory. However, second formant information can also be transmitted by tactile stimulation. Therefore, to find out whether electrical stimulation of the auditory nerve would be superior to tactile stimulation for our speech coding method, the time resolutions of the two modes of stimulation were compared. The results showed that the time resolution of electrical promontory stimulation was three times better than the time resolution of tactile stimulation of the finger. This indicates that electrical stimulation of the auditory nerve is much better for our speech coding method than tactile stimulation of the finger.
21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted diaphragmatic/phrenic nerve stimulator. 882.5830 Section 882.5830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5830...
21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted diaphragmatic/phrenic nerve stimulator. 882.5830 Section 882.5830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5830...
Tibial nerve stimulation for overactive bladder syndrome unresponsive to medical therapy.
Ridout, A E; Yoong, W
2010-02-01
Overactive bladder syndrome is defined as a symptom syndrome which includes urinary urgency, with or without urge incontinence, usually accompanied by frequency (>8 micturitions/24 h) and nocturia. Conservative treatment usually comprises behavioural techniques, bladder retraining, pelvic floor re-education and pharmacotherapy but up to 30% of patients will remain refractory to treatment. Although second-line treatment options such as sacral nerve stimulation and intravesical botulinum A injections are valuable additions to the therapeutic arsenal, they are relatively invasive and can have serious side-effects. Inhibition of detrusor activity by peripheral neuromodulation of the posterior tibial nerve was first described in 1983, with recent authors further confirming a 60-80% positive response rate. This review was undertaken to examine published literature on percutaneous tibial nerve stimulation and to discuss outcome measures, maintenance therapy and prognostic factors of this technique.
Translational Perspective on the Role of Testosterone in Sexual Function and Dysfunction.
Podlasek, Carol A; Mulhall, John; Davies, Kelvin; Wingard, Christopher J; Hannan, Johanna L; Bivalacqua, Trinity J; Musicki, Biljana; Khera, Mohit; González-Cadavid, Nestor F; Burnett, Arthur L
2016-08-01
The biological importance of testosterone is generally accepted by the medical community; however, controversy focuses on its relevance to sexual function and the sexual response, and our understanding of the extent of its role in this area is evolving. To provide scientific evidence examining the role of testosterone at the cellular and molecular levels as it pertains to normal erectile physiology and the development of erectile dysfunction and to assist in guiding successful therapeutic interventions for androgen-dependent sexual dysfunction. In this White Paper, the Basic Science Committee of the Sexual Medicine Society of North America assessed the current basic science literature examining the role of testosterone in sexual function and dysfunction. Testosterone plays an important role in sexual function through multiple processes: physiologic (stimulates activity of nitric oxide synthase), developmental (establishes and maintains the structural and functional integrity of the penis), neural (development, maintenance, function, and plasticity of the cavernous nerve and pelvic ganglia), therapeutically for dysfunctional regulation (beneficial effect on aging, diabetes, and prostatectomy), and phosphodiesterase type 5 inhibition (testosterone supplement to counteract phosphodiesterase type 5 inhibitor resistance). Despite controversies concerning testosterone with regard to sexual function, basic science studies provide incontrovertible evidence for a significant role of testosterone in sexual function and suggest that properly administered testosterone therapy is potentially advantageous for treating male sexual dysfunction. Published by Elsevier Inc.
Deuchars, Susan A; Lall, Varinder K; Clancy, Jennifer; Mahadi, Mohd; Murray, Aaron; Peers, Lucy; Deuchars, Jim
2018-03-01
What is the topic of this review? This review briefly considers what modulates sympathetic nerve activity and how it may change as we age or in pathological conditions. It then focuses on transcutaneous vagus nerve stimulation, a method of neuromodulation in autonomic cardiovascular control. What advances does it highlight? The review considers the pathways involved in eliciting the changes in autonomic balance seen with transcutaneous vagus nerve stimulation in relationship to other neuromodulatory techniques. The autonomic nervous system, consisting of the sympathetic and parasympathetic branches, is a major contributor to the maintenance of cardiovascular variables within homeostatic limits. As we age or in certain pathological conditions, the balance between the two branches changes such that sympathetic activity is more dominant, and this change in dominance is negatively correlated with prognosis in conditions such as heart failure. We have shown that non-invasive stimulation of the tragus of the ear increases parasympathetic activity and reduces sympathetic activity and that the extent of this effect is correlated with the baseline cardiovascular parameters of different subjects. The effects could be attributable to activation of the afferent branch of the vagus and, potentially, other sensory nerves in that region. This indicates that tragus stimulation may be a viable treatment in disorders where autonomic activity to the heart is compromised. © 2017 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Cardinal, René; Pagé, Pierre; Vermeulen, Michel; Bouchard, Caroline; Ardell, Jeffrey L; Foreman, Robert D; Armour, J Andrew
2006-11-01
Spinal cord stimulation (SCS) applied to the dorsal aspect of the cranial thoracic cord imparts cardioprotection under conditions of neuronally dependent cardiac stress. This study investigated whether neuronally induced atrial arrhythmias can be modulated by SCS. In 16 anesthetized dogs with intact stellate ganglia and in five with bilateral stellectomy, trains of five electrical stimuli were delivered during the atrial refractory period to right- or left-sided mediastinal nerves for up to 20 s before and after SCS (20 min). Recordings were obtained from 191 biatrial epicardial sites. Before SCS (11 animals), mediastinal nerve stimulation initiated bradycardia alone (12 nerve sites), bradycardia followed by tachyarrhythmia/fibrillation (50 sites), as well as tachyarrhythmia/fibrillation without a preceding bradycardia (21 sites). After SCS, the number of responsive sites inducing bradycardia was reduced by 25% (62 to 47 sites), and the cycle length prolongation in residual bradycardias was reduced. The number of responsive sites inducing tachyarrhythmia was reduced by 60% (71 to 29 sites). Once elicited, residual tachyarrhythmias arose from similar epicardial foci, displaying similar dynamics (cycle length) as in control states. In the absence of SCS, bradycardias and tachyarrhythmias induced by repeat nerve stimulation were reproducible (five additional animals). After bilateral stellectomy, SCS no longer influenced neuronal induction of bradycardia and atrial tachyarrhythmias. These data indicate that SCS obtunds the induction of atrial arrhythmias resulting from excessive activation of intrinsic cardiac neurons and that such protective effects depend on the integrity of nerves coursing via the subclavian ansae and stellate ganglia.
Clinical predictors of facial nerve outcome after translabyrinthine resection of acoustic neuromas.
Shamji, Mohammed F; Schramm, David R; Benoit, Brien G
2007-01-01
The translabyrinthine approach to acoustic neuroma resection offers excellent exposure for facial nerve dissection with 95% preservation of anatomic continuity. Acceptable outcome in facial asymptomatic patients is reported at 64-90%, but transient postoperative deterioration often occurs. The objective of this study was to identify preoperative clinical presentation and intraoperative surgical findings that predispose patients to facial nerve dysfunction after acoustic neuroma surgery. The charts of 128 consecutive translabyrinthine patients were examined retrospectively to identify new clinical and intraoperative predictors of facial nerve outcome. Postoperative evaluation of patients to normal function or mild asymmetry upon close inspection (House-Brackmann grades of I or II) was defined as an acceptable outcome, with obvious asymmetry to no movement (grades III to VI) defined as unacceptable. Intraoperative nerve stimulation was performed in all cases, and clinical grading was performed by a single neurosurgeon in all cases. Among patients with no preoperative facial nerve deficit, 87% had an acceptable result. Small size (P < 0.01) and low intraoperative nerve stimulation of < 0.10 mA (P< 0.01) were reaffirmed as predictive of functional nerve preservation. Additionally, preoperative tinnitus (P = 0.03), short duration of hearing loss (P< 0. 01), and lack of subjective tumour adherence to the facial nerve (P = 0.02) were independently correlated with positive outcome. Our experience with the translabyrinthine approach reveals the previously unestablished associations of facial nerve outcome to include presence of tinnitus and duration of hypoacusis. Independent predictors of tumour size and nerve stimulation thresholds were reaffirmed, and the subjective description of tumour adherence to the facial nerve making dissection more difficult appears to be important.
Emmerson, Elaine
2017-03-01
Cutaneous nerves extend throughout the dermis and epidermis and control both the functional and reparative capacity of the skin. Denervation of the skin impairs cutaneous healing, presenting evidence that nerves provide cues essential for timely wound repair. Sebastian et al. demonstrate that electrical stimulation promotes reinnervation and neural differentiation in human acute wounds, thus accelerating wound repair. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.
Willand, Michael P; Chiang, Cameron D; Zhang, Jennifer J; Kemp, Stephen W P; Borschel, Gregory H; Gordon, Tessa
2015-08-01
Incomplete recovery following surgical reconstruction of damaged peripheral nerves is common. Electrical muscle stimulation (EMS) to improve functional outcomes has not been effective in previous studies. To evaluate the efficacy of a new, clinically translatable EMS paradigm over a 3-month period following nerve transection and immediate repair. Rats were divided into 6 groups based on treatment (EMS or no treatment) and duration (1, 2, or 3 months). A tibial nerve transection injury was immediately repaired with 2 epineurial sutures. The right gastrocnemius muscle in all rats was implanted with intramuscular electrodes. In the EMS group, the muscle was electrically stimulated with 600 contractions per day, 5 days a week. Terminal measurements were made after 1, 2, or 3 months. Rats in the 3-month group were assessed weekly using skilled and overground locomotion tests. Neuromuscular junction reinnervation patterns were also examined. Muscles that received daily EMS had significantly greater numbers of reinnervated motor units with smaller average motor unit sizes. The majority of muscle endplates were reinnervated by a single axon arising from a nerve trunk with significantly fewer numbers of terminal sprouts in the EMS group, the numbers being small. Muscle mass and force were unchanged but EMS improved behavioral outcomes. Our results demonstrated that EMS using a moderate stimulation paradigm immediately following nerve transection and repair enhances electrophysiological and behavioral recovery. © The Author(s) 2014.
Avoiding nerve stimulation in irreversible electroporation: a numerical modeling study
NASA Astrophysics Data System (ADS)
Mercadal, Borja; Arena, Christopher B.; Davalos, Rafael V.; Ivorra, Antoni
2017-10-01
Electroporation based treatments consist in applying one or multiple high voltage pulses to the tissues to be treated. As an undesired side effect, these pulses cause electrical stimulation of excitable tissues such as nerves and muscles. This increases the complexity of the treatments and may pose a risk to the patient. To minimize electrical stimulation during electroporation based treatments, it has been proposed to replace the commonly used monopolar pulses by bursts of short bipolar pulses. In the present study, we have numerically analyzed the rationale for such approach. We have compared different pulsing protocols in terms of their electroporation efficacy and their capability of triggering action potentials in nerves. For that, we have developed a modeling framework that combines numerical models of nerve fibers and experimental data on irreversible electroporation. Our results indicate that, by replacing the conventional relatively long monopolar pulses by bursts of short bipolar pulses, it is possible to ablate a large tissue region without triggering action potentials in a nearby nerve. Our models indicate that this is possible because, as the pulse length of these bipolar pulses is reduced, the stimulation thresholds raise faster than the irreversible electroporation thresholds. We propose that this different dependence on the pulse length is due to the fact that transmembrane charging for nerve fibers is much slower than that of cells treated by electroporation because of their geometrical differences.
NASA Astrophysics Data System (ADS)
Jing, Wenjun; Zhao, Yan
2018-02-01
Stability is an important part of geotechnical engineering research. The operating experiences of underground storage caverns in salt rock all around the world show that the stability of the caverns is the key problem of safe operation. Currently, the combination of theoretical analysis and numerical simulation are the mainly adopts method of reserve stability analysis. This paper introduces the concept of risk into the stability analysis of underground geotechnical structure, and studies the instability of underground storage cavern in salt rock from the perspective of risk analysis. Firstly, the definition and classification of cavern instability risk is proposed, and the damage mechanism is analyzed from the mechanical angle. Then the main stability evaluating indicators of cavern instability risk are proposed, and an evaluation method of cavern instability risk is put forward. Finally, the established cavern instability risk assessment system is applied to the analysis and prediction of cavern instability risk after 30 years of operation in a proposed storage cavern group in the Huai’an salt mine. This research can provide a useful theoretical base for the safe operation and management of underground storage caverns in salt rock.
Infrared neural stimulation of human spinal nerve roots in vivo
Cayce, Jonathan M.; Wells, Jonathon D.; Malphrus, Jonathan D.; Kao, Chris; Thomsen, Sharon; Tulipan, Noel B.; Konrad, Peter E.; Jansen, E. Duco; Mahadevan-Jansen, Anita
2015-01-01
Abstract. Infrared neural stimulation (INS) is a neurostimulation modality that uses pulsed infrared light to evoke artifact-free, spatially precise neural activity with a noncontact interface; however, the technique has not been demonstrated in humans. The objective of this study is to demonstrate the safety and efficacy of INS in humans in vivo. The feasibility of INS in humans was assessed in patients (n=7) undergoing selective dorsal root rhizotomy, where hyperactive dorsal roots, identified for transection, were stimulated in vivo with INS on two to three sites per nerve with electromyogram recordings acquired throughout the stimulation. The stimulated dorsal root was removed and histology was performed to determine thermal damage thresholds of INS. Threshold activation of human dorsal rootlets occurred in 63% of nerves for radiant exposures between 0.53 and 1.23 J/cm2. In all cases, only one or two monitored muscle groups were activated from INS stimulation of a hyperactive spinal root identified by electrical stimulation. Thermal damage was first noted at 1.09 J/cm2 and a 2∶1 safety ratio was identified. These findings demonstrate the success of INS as a fresh approach for activating human nerves in vivo and providing the necessary safety data needed to pursue clinically driven therapeutic and diagnostic applications of INS in humans. PMID:26157986
Exploration of Hand Grasp Patterns Elicitable Through Non-Invasive Proximal Nerve Stimulation.
Shin, Henry; Watkins, Zach; Hu, Xiaogang
2017-11-29
Various neurological conditions, such as stroke or spinal cord injury, result in an impaired control of the hand. One method of restoring this impairment is through functional electrical stimulation (FES). However, traditional FES techniques often lead to quick fatigue and unnatural ballistic movements. In this study, we sought to explore the capabilities of a non-invasive proximal nerve stimulation technique in eliciting various hand grasp patterns. The ulnar and median nerves proximal to the elbow joint were activated transcutanously using a programmable stimulator, and the resultant finger flexion joint angles were recorded using a motion capture system. The individual finger motions averaged across the three joints were analyzed using a cluster analysis, in order to classify the different hand grasp patterns. With low current intensity (<5 mA and 100 µs pulse width) stimulation, our results show that all of our subjects demonstrated a variety of consistent hand grasp patterns including single finger movement and coordinated multi-finger movements. This study provides initial evidence on the feasibility of a proximal nerve stimulation technique in controlling a variety of finger movements and grasp patterns. Our approach could also be developed into a rehabilitative/assistive tool that can result in flexible movements of the fingers.
Transcutaneous Electrical Nerve Stimulation: Research Update.
ERIC Educational Resources Information Center
Johns, Florene Carnicelli
Currently, research is being performed in the area of nonsurgical and nonchemical means for influencing the body's threshold for pain. Today, transcutaneous electrical nerve stimulation (TENS) is being widely used for this purpose. Application of this treatment can be confusing, however, because determining such things as selection of the proper…
Sarabia-Estrada, Rachel; Bañuelos-Pineda, Jacinto; Osuna Carrasco, Laura P; Jiménez-Vallejo, Salvador; Jiménez-Estrada, Ismael; Rivas-Celis, Efrain; Dueñas-Jiménez, Judith M; Dueñas-Jiménez, Sergio H
2015-07-01
Transection of peripheral nerves produces loss of sensory and/or motor function. After complete nerve cutting, the distal and proximal segment ends retract, but if both ends are bridged with unaltered chitosan, progesterone-impregnated chitosan, or silicone tubes, an axonal repair process begins. Progesterone promotes nerve repair and has neuroprotective effects thwarting regulation of neuron survival, inflammation, and edema. It also modulates aberrant axonal sprouting and demyelination. The authors compared the efficacy of nerve recovery after implantation of progesterone-loaded chitosan, unaltered chitosan, or silicone tubes after sciatic nerve transection in rats. After surgical removal of a 5-mm segment of the proximal sciatic nerve, rats were implanted with progesterone-loaded chitosan, unaltered chitosan, or silicone tubes in the transected nerve for evaluating progesterone and chitosan effects on sciatic nerve repair and ipsilateral hindlimb kinematic function, as well as on gastrocnemius electro-myographic responses. In some experiments, tube implantation was performed 90 minutes after nerve transection. At 90 days after sciatic nerve transection and tube implantation, rats with progesterone-loaded chitosan tubes showed knee angular displacement recovery and better outcomes for step length, velocity of locomotion, and normal hindlimb raising above the ground. In contrast, rats with chitosan-only tubes showed reduced normal raising and pendulum-like hindlimb movements. Aberrant fibers coming from the tibial nerve innervated the gastrocnemius muscle, producing electromyographic responses. Electrical responses in the gastrocnemius muscle produced by sciatic nerve stimulation occurred only when the distal nerve segment was stimulated; they were absent when the proximal or intratubular segment was stimulated. A clear sciatic nerve morphology with some myelinated fiber fascicles appeared in the tube section in rats with progesterone-impregnated chitosan tubes. Some gastrocnemius efferent fibers were partially repaired 90 days after nerve resection. The better outcome in knee angle displacement may be partially attributable to the aberrant neuromuscular synaptic effects, since nerve conduction in the gastrocnemius muscle could be blocked in the progesterone-impregnated chitosan tubes. In addition, in the region of the gap produced by the nerve resection, the number of axons and amount of myelination were reduced in the sciatic nerve implanted with chitosan, progesterone-loaded chitosan, and silicone tubes. At 180 days after sciatic nerve sectioning, the knee kinematic function recovered to a level observed in control rats of a similar age. In rats with progesterone-loaded chitosan tubes, stimulation of the proximal and intratubular sciatic nerve segments produced an electromyographic response. The axon morphology of the proximal and intratubular segments of the sciatic nerve resembled that of the contralateral nontransected nerve. Progesterone-impregnated chitosan tubes produced aberrant innervation of the gastrocnemius muscle, which allowed partial recovery of gait locomotion and could be adequate for reinnervating synergistic denervated muscles while a parent innervation is reestablished. Hindlimb kinematic parameters differed between younger (those at 90 days) and older (those at 180 days) rats.
Electric-acoustic interactions in the hearing cochlea: single fiber recordings.
Tillein, J; Hartmann, R; Kral, A
2015-04-01
The present study investigates interactions of simultaneous electric and acoustic stimulation in single auditory nerve fibers in normal hearing cats. First, the auditory nerve was accessed with a microelectrode and response areas of single nerve fibers were determined for acoustic stimulation. Second, response thresholds to extracochlear sinusoidal electric stimulation using ball electrodes positioned at the round window were measured. Third, interactions that occurred with combined electric-acoustic stimulation were investigated in two areas: (1) the spectral domain (frequency response areas) and (2) the temporal domain (phase-locking to each stimulus) at moderate stimulus intensities (electric: 6 dB re threshold, acoustic: 20-40 dB re threshold at the characteristic frequency, CF). For fibers responding to both modalities responses to both electric and acoustic stimulation could be clearly identified. CFs, thresholds, and bandwidth (Q10dB) of acoustic responses were not significantly affected by simultaneous electric stimulation. Phase-locking of electric responses decreased in the presence of acoustic stimulation. Indication for electric stimulation of inner hair cells with 125 and 250 Hz were observed. However, these did not disturb the acoustic receptive fields of auditory nerve fibers. There was a trade-off between these responses when the intensities of the stimulation were varied: Relatively more intense stimulation dominated less intense stimulation. The scarcity of interaction between the different stimulus modalities demonstrates the ability of electric-acoustic stimulation to transfer useful information through both stimulation channels at the same time despite cochlear electrophonic effects. Application of 30 Hz electric stimulation resulted in a strong suppression of acoustic activity in the anodic phase of the stimulus. An electric stimulation like this might thus be used to control acoustic responses. This article is part of a Special Issue entitled
Abramochkin, D V; Pustovit, K B; Kuz'min, V S
2017-09-01
The modulatory influence of diadenosine tetraphosphate (Ap4A) and diadenosine pentaphosphate (Ap5A) on the effect of intramural autonomic nerve stimulation in isolated rabbit sinoatrial node were examined. Electrical activity of the sinoatrial node was recorded intracellularly. Against the background of blockade of adrenergic effects with propranolol (3×10 -6 M) or in preparations isolated 2 h after injection of reserpine (2 mg/kg), nerve stimulation induced short-term membrane hyperpolarization and diminished the sinus node firing rate. These phenomena were not affected by Ap4A or Ap5A (10 -5 M). Under the action of atropine (3×10 -6 M) that completely eliminated the cholinergic influences, nerve stimulation enhanced the sinus node firing rate by 17.30±3.45% from the initial rate. Both Ap4A and Ap5A moderated the stimulation-induced elevation of firing rate to 9.9±2.8 and 10.5±2.9%, respectively. The data suggest that diadenosine polyphosphates significantly modulate the sympathetic influences on the heart rhythm, but have no effect on the parasympathetic control over activity of sinoatrial node.
Skull base trauma: diagnosis and management.
Samii, Madjid; Tatagiba, Marcos
2002-03-01
The singular anatomical relationship of the base of the skull is responsible for the particular problems that may arise after injury. Extensive dural laceration and severe neurovascular damage may accompany skull base injuries. Trauma to the anterior skull base is frequently related to the paranasal sinuses, and trauma to the middle and the posterior skull base usually affects the petrous bone. Injury to the anterior fossa including the paranasal sinuses may produce CSF leakage, damage the olfactory nerves, optic nerves, and orbita contents. Fractures may affect the carotid canal, injure the internal carotid artery and result in carotid-cavernous fistula. Trauma to the petrous bone may cause facial palsy and deafness, and CSF leakage with otorrhoea or paradoxal rhinoliquorrhoea. Trauma to the posterior fossa may lacerate the major venous sinuses, and affect the cranio-cervical stability. Each one of these injuries will need a particular strategy. Decision making for management as a whole must consider all aspects, including the fact that these injuries frequently involve polytraumatized patients. Decisions regarding the timing of surgery and the sequence of the surgical procedures must be made with great care. Modern surgical techniques and recent technologies including functional preservation of the olfactory nerves in frontobasal trauma, visual evoked potentials, assisted optic nerve decompression, facial nerve reconstruction, interventional technique for intravascular repair of vascular injuries, and recent developments in cochlea implants and brain stem implants, all contributed significantly to improve outcome and enhance the quality of life of patients. This article reviews basic principles of management of skull base trauma stressing the role of these advanced techniques.
Interfacing peripheral nerve with macro-sieve electrodes following spinal cord injury.
Birenbaum, Nathan K; MacEwan, Matthew R; Ray, Wilson Z
2017-06-01
Macro-sieve electrodes were implanted in the sciatic nerve of five adult male Lewis rats following spinal cord injury to assess the ability of the macro-sieve electrode to interface regenerated peripheral nerve fibers post-spinal cord injury. Each spinal cord injury was performed via right lateral hemisection of the cord at the T 9-10 site. Five months post-implantation, the ability of the macro-sieve electrode to interface the regenerated nerve was assessed by stimulating through the macro-sieve electrode and recording both electromyography signals and evoked muscle force from distal musculature. Electromyography measurements were recorded from the tibialis anterior and gastrocnemius muscles, while evoked muscle force measurements were recorded from the tibialis anterior, extensor digitorum longus, and gastrocnemius muscles. The macro-sieve electrode and regenerated sciatic nerve were then explanted for histological evaluation. Successful sciatic nerve regeneration across the macro-sieve electrode interface following spinal cord injury was seen in all five animals. Recorded electromyography signals and muscle force recordings obtained through macro-sieve electrode stimulation confirm the ability of the macro-sieve electrode to successfully recruit distal musculature in this injury model. Taken together, these results demonstrate the macro-sieve electrode as a viable interface for peripheral nerve stimulation in the context of spinal cord injury.
Effects of Asymmetric Superior Laryngeal Nerve Stimulation on Glottic Posture, Acoustics, Vibration
Chhetri, Dinesh K.; Neubauer, Juergen; Bergeron, Jennifer L.; Sofer, Elazar; Peng, Kevin A.; Jamal, Nausheen
2013-01-01
Objectives Evaluate the effects of asymmetric superior laryngeal nerve stimulation on the vibratory phase, laryngeal posture, and acoustics. Study Design Basic science study using an in vivo canine model. Methods The superior laryngeal nerves were symmetrically and asymmetrically stimulated over eight activation levels to mimic laryngeal asymmetries representing various levels of superior laryngeal nerve paresis and paralysis conditions. Glottal posture change, vocal fold speed, and vibration of these 64 distinct laryngeal activation conditions were evaluated by high speed video and concurrent acoustic and aerodynamic recordings. Assessments were made at phonation onset. Results Vibratory phase was symmetric in all symmetric activation conditions but consistent phase asymmetry towards the vocal fold with higher superior laryngeal nerve activation was observed. Superior laryngeal nerve paresis and paralysis conditions had reduced vocal fold strain and fundamental frequency. Superior laryngeal nerve activation increased vocal fold closure speed, but this effect was more pronounced for the ipsilateral vocal fold. Increasing asymmetry led to aperiodic and chaotic vibration. Conclusions This study directly links vocal fold tension asymmetry with vibratory phase asymmetry; in particular the side with greater tension leads in the opening phase. The clinical observations of vocal fold lag, reduced vocal range, and aperiodic voice in superior laryngeal paresis and paralysis is also supported. PMID:23712542
Role of the vagus nerve in the development and treatment of diet‐induced obesity
2016-01-01
Abstract This review highlights evidence for a role of the vagus nerve in the development of obesity and how targeting the vagus nerve with neuromodulation or pharmacology can be used as a therapeutic treatment of obesity. The vagus nerve innervating the gut plays an important role in controlling metabolism. It communicates peripheral information about the volume and type of nutrients between the gut and the brain. Depending on the nutritional status, vagal afferent neurons express two different neurochemical phenotypes that can inhibit or stimulate food intake. Chronic ingestion of calorie‐rich diets reduces sensitivity of vagal afferent neurons to peripheral signals and their constitutive expression of orexigenic receptors and neuropeptides. This disruption of vagal afferent signalling is sufficient to drive hyperphagia and obesity. Furthermore neuromodulation of the vagus nerve can be used in the treatment of obesity. Although the mechanisms are poorly understood, vagal nerve stimulation prevents weight gain in response to a high‐fat diet. In small clinical studies, in patients with depression or epilepsy, vagal nerve stimulation has been demonstrated to promote weight loss. Vagal blockade, which inhibits the vagus nerve, results in significant weight loss. Vagal blockade is proposed to inhibit aberrant orexigenic signals arising in obesity as a putative mechanism of vagal blockade‐induced weight loss. Approaches and molecular targets to develop future pharmacotherapy targeted to the vagus nerve for the treatment of obesity are proposed. In conclusion there is strong evidence that the vagus nerve is involved in the development of obesity and it is proving to be an attractive target for the treatment of obesity. PMID:26959077
Haidar, Yarah M; Sahyouni, Ronald; Moshtaghi, Omid; Wang, Beverly Y; Djalilian, Hamid R; Middlebrooks, John C; Verma, Sunil P; Lin, Harrison W
2017-10-31
Laryngeal muscles (LMs) are controlled by the recurrent laryngeal nerve (RLN), injury of which can result in vocal fold (VF) paralysis (VFP). We aimed to introduce a bioelectric approach to selective stimulation of LMs and graded muscle contraction responses. Acute experiments in cats. The study included six anesthetized cats. In four cats, a multichannel penetrating microelectrode array (MEA) was placed into an uninjured RLN. For RLN injury experiments, one cat received a standardized hemostat-crush injury, and one cat received a transection-reapproximation injury 4 months prior to testing. In each experiment, three LMs (thyroarytenoid, posterior cricoarytenoid, and cricothyroid muscles) were monitored with an electromyographic (EMG) nerve integrity monitoring system. Electrical current pulses were delivered to each stimulating channel individually. Elicited EMG voltage outputs were recorded for each muscle. Direct videolaryngoscopy was performed for visualization of VF movement. Stimulation through individual channels led to selective activation of restricted nerve populations, resulting in selective contraction of individual LMs. Increasing current levels resulted in rising EMG voltage responses. Typically, activation of individual muscles was successfully achieved via single placement of the MEA by selection of appropriate stimulation channels. VF abduction was predominantly observed on videolaryngoscopy. Nerve histology confirmed injury in cases of RLN crush and transection experiments. We demonstrated the ability of a penetrating MEA to selectively stimulate restricted fiber populations within the feline RLN and selectively elicit contractions of discrete LMs in both acute and injury-model experiments, suggesting a potential role for intraneural MEA implantation in VFP management. NA Laryngoscope, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Abbs, E. T.; Joseph, D. N.
1981-01-01
1 Atropine (10(-5) M) enhanced the release of [3H]-acetylcholine from rat isolated hemidiaphragms, previously incubated with [3H-methyl]-choline, stimulated via their phrenic nerves. 2 Oxotremorine (10(-5) M) did not affect the stimulated release of [3H]-acetylcholine but antagonized the facilitatory effects of atropine (10(-5) M). 3 It is suggested that there are presynaptic inhibitory muscarinic receptors that modulate the release of acetylcholine in the phrenic nerves of the rat. PMID:7236997
Crater Formation Above Salt Caverns: Piston vs Hour-glass
NASA Astrophysics Data System (ADS)
Berest, P.
2016-12-01
Conditions leading to crater formation above salt caverns are discussed. In most cases, at the end of leaching, the cavern roof had reached the top of the salt formation, allowing direct contact between brine and marl (or argillite) layers that compose the overburden of the salt formation. These layers are prone to weathering when in contact with saturated brine. Stoping takes place, and the cavern roof rises through the overburden. This process may be several years or dozens of years long. In Lorraine salt formations, stoping stops when the rising cavern top reaches a competent layer, the Beaumont Dolomite. Operators then lower cavern-brine pressure to trigger collapse. A rigid cylinder of rock (a "piston") drops into the cavern, and a crater whose initial edges are vertical is created. Cavern drop is more abrupt when the cavern top is filled partly with air. The contour of the piston is circular, as a circle is the shape such that the ratio between perimeter and area is minimal. In other cases, for instance in Kansas, the cavern rises until the uppermost keystone in the bedrock at shallow depth is breached, permitting loose materials to flow into the cavern through a relatively narrow hole at the bottom of the sink hole, as in an hour glass.
Bidirectional peripheral nerve interface and applications.
Thakor, Nitish V; Qihong Wang; Greenwald, Elliot
2016-08-01
Peripheral nerves, due to their small size and complex innervation to organs and complex physiology, pose particularly significant challenges towards interfacing electrodes and electronics to enable neuromodulation. Here, we present a review of the technology for building such interface, including recording and stimulating electrodes and low power electronics, as well as powering. Of particular advantage to building a miniature implanted device is a "bidirectional" system that both senses from the nerves or surrogate organs and stimulates the nerves to affect the organ function. This review and presentation will cover a range of electrodes, electronics, wireless power and data schemes and system integration, and will end with some examples and applications.
Nielsen, Thomas N; Sevcencu, Cristian; Struijk, Johannes J
2014-01-01
Previous studies have indicated that electrodes placed between fascicles can provide nerve recruitment with high topological selectivity if the areas of interest in the nerve are separated with passive elements. In this study, we investigated if this separation of fascicles also can provide topologically selective nerve recordings and compared the performance of mono-, bi-, and tripolar configurations for stimulation and recording with an intra-neural interface. The interface was implanted in the sciatic nerve of 10 rabbits and achieved a median selectivity of Ŝ=0.98-0.99 for all stimulation configurations, while recording selectivity configurations was in the range of Ŝ=0.70-0.80 with the monopolar configuration providing the lowest and the average reference configuration the highest recording selectivity. Interfascicular electrodes could provide an interesting addition to the bulk of peripheral nerve interfaces available for neural prosthetic devices. The separation of the nerve into chambers by the passive elements of the electrode could ensure a higher selectivity than comparable cuff electrodes and the intra-neural location could provide an option of targeting mainly central fascicles. Further studies are, however, still required to develop biocompatible electrodes and test their stability and safety in chronic experiments.
2016-10-01
new version of the stimulator will be manufactured and tested again. This design-build-test cycle will be repeated multiple times during the second...AWARD NUMBER: W81XWH-15-C-0066 TITLE: Development of an Implantable Pudendal Nerve Stimulator To Restore Bladder Function in Humans After SCI...response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and
Demonstrating Electrical Activity in Nerve and Muscle. Part I
ERIC Educational Resources Information Center
Robinson, D. J.
1975-01-01
Describes a demonstration for showing the electrical activity in nerve and muscle including action potentials, refractory period of a nerve, and fatigue. Presents instructions for constructing an amplifier, electronic stimulator, and force transducer. (GS)
ERIC Educational Resources Information Center
Powell, Richard L.
1970-01-01
Describes the origin of limestone caverns, using Mammoth Cave as an example, with particular reference to the importance of groundwater information of caverns, the present condition of groundwater, and how caverns develop within fluctuating groundwater zones. (BR)
Release of “neurokinin” on nervous and electrical stimulation of a frog stomach muscle preparation
Singh, I.
1964-01-01
Activation of a frog stomach muscle preparation by electrical stimulation of a vagus nerve or by direct stimulation released two polypeptides. One was destroyed by trypsin or chymotrypsin in about 10 min; the activity of the other was enhanced by trypsin for about 10 min, but was destroyed by chymotrypsin. Similar stimulation of dog stomach muscle did not release these polypeptides. Correspondingly, the transmission from vagus nerve to stomach muscle in the frog was resistant to atropine, but was blocked by atropine in the dog. PMID:14190475
Strauss, G; Strauss, M; Lüders, C; Stopp, S; Shi, J; Dietz, A; Lüth, T
2008-10-01
PROBLEM DEFINITION: The goal of this work is the integration of the information of the intraoperative EMG monitoring of the facial nerve into the radiological data of the petrous bone. The following hypotheses are to be examined: (I) the N. VII can be determined intraoperatively with a high reliability by the stimulation-probe. A computer program is able to discriminate true-positive EMG signals from false-positive artifacts. (II) The course of the facial nerve can be registered in a three-dimensional area by EMG signals at a nerve model in the lab test. The individual items of the nerve can be combined into a route model. The route model can be integrated into the data of digital volume tomography (DVT). (I) Intraoperative EMG signals of the facial nerve were classified at 128 measurements by an automatic software. The results were correlated with the actual intraoperative situation. (II) The nerve phantom was designed and a DVT data set was provided. Phantom was registered with a navigation system (Karl Storz NPU, Tuttlingen, Germany). The stimulation probe of the EMG-system was tracked by the navigation system. The navigation system was extended by a processing unit (MiMed, Technische Universität München, Germany). Thus the classified EMG parameters of the facial route can be received, processed and be generated to a model of the facial nerve route. The operability was examined at 120 (10 x 12) measuring points. The evaluation of the examined algorithm for classification EMG-signals of the facial nerve resulted as correct in all measuring events. In all 10 attempts it succeeded to visualize the nerve route as three-dimensional model. The different sizes of the individual measuring points reflect the appropriate values of Istim and UEMG correctly. This work proves the feasibility of an automatic classification of an intraoperative EMG signal of the facial nerve by a processing unit. Furthermore the work shows the feasibility of tracking of the position of the stimulation probe and its integration into amodel of the route of the facial nerve (e. g. DVT). The rediability, with which the position of the nerve can be seized by the stimulation probe, is also included into the resulting route model.
Historical Cavern Floor Rise for All SPR Sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moriarty, Dylan Michael
2016-09-01
The Strategic Petroleum Reserve (SPR) contains the largest supply is the largest stockpile of government-owned emergency crude oil in the world. The oil is stored in multiple salt caverns spread over four sites in Louisiana and Texas. Cavern infrastructure near the bottom of the cavern can be damaged from vertical floor movement. This report presents a comprehensive history of floor movements in each cavern. Most of the cavern floor rise rates ranged from 0.5-3.5 ft/yr, however, there were several caverns with much higher rise rates. BH103, BM106, and BH105 had the three highest rise rates. Information from this report willmore » be used to better predict future vertical floor movements and optimally place cavern infrastructure. The reasons for floor rise are not entirely understood and should be investigated.« less
Hesse, I F; Johns, E J
1984-01-01
A study was undertaken in pentobarbitone anaesthetized rabbits, undergoing a saline diuresis, to determine the subtype of alpha-adrenoceptor mediating renal tubular sodium reabsorption. Stimulation of the renal nerves at low rates, to cause an 11% fall in renal blood flow, did not change glomerular filtration rate but significantly reduced urine flow rate, and absolute and fractional sodium excretions by approximately 40%. These responses were reproducible in different groups of animals and with time. Renal nerve stimulation during an intra-renal arterial infusion of prazosin, to block alpha 1-adrenoceptors, had no effect on the renal haemodynamic response but completely abolished the reductions in urine flow rate, and absolute and fractional sodium excretion. During intra-renal arterial infusion of yohimbine, to block renal alpha 2-adrenoceptors, stimulation of the renal nerves to cause similar renal haemodynamic changes resulted in significantly larger reductions in urine flow rate, and absolute and fractional sodium excretion of about 52-58%. These results indicate that in the rabbit alpha 1-adrenoceptors are present on the renal tubules, which mediate the increase in sodium reabsorption caused by renal nerve stimulation. They further suggest the presence of presynaptic alpha 2-adrenoceptors on those nerves innervating the renal tubules. PMID:6086915
Bower, W F; Moore, K H; Adams, R D; Shepherd, R
1998-12-01
We studied the effect of surface neuromodulation on cystometric pressure and volume parameters in women with detrusor instability or sensory urgency. Electrical current was delivered to the suprapubic region and third sacral foramina via a transcutaneous electrical nerve stimulator with sham neuromodulation control. A consecutive series of women with proved detrusor instability or sensory urgency were randomized to 3 surface neuromodulation groups. Volume and pressure parameters were the main outcomes of transcutaneous electrical nerve stimulation applied during second cystometric fill. Sham transcutaneous electrical nerve stimulation did not alter the outcome measures. However, neuromodulation delivered across the suprapubic and sacral skin effected a reduction in mean maximum height of detrusor contraction. A current which inhibits motor activity was not superior to that which inhibits sensory perception in reducing detrusor pressure. Response in sensory urgency was poor. Results from our sham controlled study suggest that short-term surface neuromodulation via transcutaneous electrical nerve stimulation may have a role in the treatment of detrusor instability. Future studies must examine the clinical effect of long-term surface neuromodulation.
Manufactured caverns in carbonate rock
Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.
2007-01-02
Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.
Al Asari, S; Meurette, G; Mantoo, S; Kubis, C; Wyart, V; Lehur, P-A
2014-11-01
The study assessed the initial experience with posterior tibial nerve stimulation (PTNS) for faecal incontinence and compared it with sacral nerve stimulation (SNS) performed in a single centre during the same timespan. A retrospective review of a prospectively collected database was conducted at the colorectal unit, University Hospital, Nantes, France, from May 2009 to December 2010. Seventy-eight patients diagnosed with chronic severe faecal incontinence underwent neurostimulation including PTNS in 21 and SNS in 57. The main outcome measures were faecal incontinence (Wexner score) and quality of life (Fecal Incontinence Quality of Life, FIQL) scores in a short-term follow-up. No significant differences were observed in patients' characteristics. Of 57 patients having SNS, 18 (32%) failed peripheral nerve evaluation and 39 (68%) received a permanent implant. Two (5%) developed a wound infection. No adverse effects were recorded in the PTNS group. There was no significant difference in the mean Wexner and FIQL scores between patients having PTNS and SNS at 6 (P = 0.39 and 0.09) and 12 months (P = 0.79 and 0.37). A 50% or more improvement in Wexner score was seen at 6 and 12 months in 47% and 30% of PTNS patients and in 50% and 58% of SNS patients with no significant difference between the groups. Posterior tibial nerve stimulation is a valid method of treating faecal incontinence in the short term when conservative treatment has failed. It is easier, simpler, cheaper and less invasive than SNS with a similar short-term outcome. Colorectal Disease © 2014 The Association of Coloproctology of Great Britain and Ireland.
Dissanayaka, Thusharika Dilrukshi; Pallegama, Ranjith Wasantha; Suraweera, Hilari Justus; Johnson, Mark I; Kariyawasam, Anula Padma
2016-09-01
The aim of this study was to compare the effectiveness of transcutaneous electrical nerve stimulation and interferential therapy (IFT) both in combination with hot pack, myofascial release, active range of motion exercise, and a home exercise program on myofascial pain syndrome patients with upper trapezius myofascial trigger point. A total of 105 patients with an upper trapezius myofascial trigger point were recruited to this single-blind randomized controlled trial. Following random allocation of patients to three groups, three therapeutic regimens-control-standard care (hot pack, active range of motion exercises, myofascial release, and a home exercise program with postural advice), transcutaneous electrical nerve stimulation-standard care and IFT-standard care-were administered eight times during 4 wks at regular intervals. Pain intensity and cervical range of motions (cervical extension, lateral flexion to the contralateral side, and rotation to the ipsilateral side) were measured at baseline, immediately after the first treatment, before the eighth treatment, and 1 wk after the eighth treatment. Immediate and short-term improvements were marked in the transcutaneous electrical nerve stimulation group (n = 35) compared with the IFT group (n = 35) and the control group (n = 35) with respect to pain intensity and cervical range of motions (P < 0.05). The IFT group showed significant improvement on these outcome measurements than the control group did (P < 0.05). Transcutaneous electrical nerve stimulation with standard care facilitates recovery better than IFT does in the same combination.
Deficient "sensory" beta synchronization in Parkinson's disease.
Degardin, A; Houdayer, E; Bourriez, J-L; Destée, A; Defebvre, L; Derambure, P; Devos, D
2009-03-01
Beta rhythm movement-related synchronization (beta synchronization) reflects motor cortex deactivation and sensory afference processing. In Parkinson's disease (PD), decreased beta synchronization after active movement reflects abnormal motor cortex idling and may be involved in the pathophysiology of akinesia. The objectives of the present study were to (i) compare event-related synchronization after active and passive movement and electrical nerve stimulation in PD patients and healthy, age-matched volunteers and (ii) evaluate the effect of levodopa. Using a 128-electrode EEG system, we studied beta synchronization after active and passive index finger movement and electrical median nerve stimulation in 13 patients and 12 control subjects. Patients were recorded before and after 150% of their usual morning dose of levodopa. The peak beta synchronization magnitude in the contralateral primary sensorimotor (PSM) cortex was significantly lower in PD patients after active movement, passive movement and electrical median nerve stimulation, compared with controls. Levodopa partially reversed the drop in beta synchronization after active movement but not after passive movement or electrical median nerve stimulation. If one considers that beta synchronization reflects sensory processing, our results suggest that integration of somaesthetic afferences in the PSM cortex is abnormal in PD during active and passive movement execution and after simple electrical median nerve stimulation. Better understanding of the mechanisms involved in the deficient beta synchronization observed here could prompt the development of new therapeutic approaches aimed at strengthening defective processes. The lack of full beta synchronization restoration by levodopa might be related to the involvement of non-dopaminergic pathways.
Long-term occipital nerve stimulation for drug-resistant chronic cluster headache.
Leone, Massimo; Proietti Cecchini, Alberto; Messina, Giuseppe; Franzini, Angelo
2017-07-01
Introduction Chronic cluster headache is rare and some of these patients become drug-resistant. Occipital nerve stimulation has been successfully employed in open studies to treat chronic drug-resistant cluster headache. Data from large group of occipital nerve stimulation-treated chronic cluster headache patients with long duration follow-up are advantageous. Patients and methods Efficacy of occipital nerve stimulation has been evaluated in an experimental monocentric open-label study including 35 chronic drug-resistant cluster headache patients (mean age 42 years; 30 men; mean illness duration: 6.7 years). The primary end-point was a reduction in number of daily attacks. Results After a median follow-up of 6.1 years (range 1.6-10.7), 20 (66.7%) patients were responders (≥50% reduction in headache number per day): 12 (40%) responders showed a stable condition characterized by sporadic attacks, five responders had a 60-80% reduction in headache number per day and in the remaining three responders chronic cluster headache was transformed in episodic cluster headache. Ten (33.3%) patients were non-responders; half of these have been responders for a long period (mean 14.6 months; range 2-48 months). Battery depletion (21 patients 70%) and electrode migration (six patients - 20%) were the most frequent adverse events. Conclusions Occipital nerve stimulation efficacy is confirmed in chronic drug-resistant cluster headaches even after an exceptional long-term follow-up. Tolerance can occur years after improvement.
Effect of sodium intake on sympathetic and hemodynamic response to thermal receptor stimulation.
DiBona, Gerald F; Jones, Susan Y
2003-02-01
Low dietary sodium intake increases central nervous system angiotensin activity, which increases basal renal sympathetic nerve activity and shifts its arterial baroreflex control to a higher level of arterial pressure. This results in a higher level of renal sympathetic nerve activity for a given level of arterial pressure during low dietary sodium intake than during either normal or high dietary sodium intake, in which there is less central angiotensin activity. Peripheral thermal receptor stimulation overrides arterial baroreflex control and produces a pressor response, tachycardia, increased renal sympathetic nerve activity, and renal vasoconstriction. To test the hypothesis that increased central angiotensin activity would enhance the responses to peripheral thermal receptor stimulation, anesthetized normal rats in balance on low, normal, and high dietary sodium intake were subjected to acute peripheral thermal receptor stimulation. Low sodium rats had greater increases in renal sympathetic nerve activity, greater decreases in RBF, and greater increases in renal vascular resistance than high sodium rats. Responses of normal sodium rats were between those of low and high sodium rats. Arterial pressure and heart rate responses were not different among dietary groups. Spontaneously hypertensive rats, known to have increased central nervous system angiotensin activity, also had greater renal sympathoexcitatory and vasoconstrictor responses than normotensive Wistar-Kyoto rats. These results support the view that increased central nervous system angiotensin activity alters arterial baroreflex control of renal sympathetic nerve activity such that the renal sympathoexcitatory and vasoconstrictor responses to peripheral thermoreceptor stimulation are enhanced.
Double peak sensory nerve action potentials to single stimuli in nerve conduction studies.
Leote, Joao; Pereira, Pedro; Valls-Sole, Josep
2017-05-01
In humans, sensory nerve action potentials (SNAPs) can show 2 separate deflections, i.e., double peak potentials (DPp), which necessarily means that 1 peak is delayed with respect to the other. DPps may have various origins and be due to either physical or physiological properties. We review the nature of commonly encountered DPps in clinical practice, provide the most likely interpretations for their physiological origin, and assess their reproducibility and clinical utility. We classified the DPps into 3 categories: (1) simultaneous anodal and cathodal stimulation. (2) simultaneous recording from 2 different nerves at the same site, and (3) SNAP desynchronization. Although the recording of DPps is not a standardized neurophysiological method, their study brings interesting cues about the physiology of nerve stimulation and paves the way for clinical application of such an observation. Muscle Nerve 55: 619-625, 2017. © 2016 Wiley Periodicals, Inc.
Liu, Xiao; Gilmore, Kerry J; Moulton, Simon E; Wallace, Gordon G
2009-12-01
The purpose of this work was to investigate for the first time the potential biomedical applications of novel polypyrrole (PPy) composites incorporating a large polyelectrolyte dopant, poly (2-methoxy-5 aniline sulfonic acid) (PMAS). The physical and electrochemical properties were characterized. The PPy/PMAS composites were found to be smooth and hydrophilic and have low electrical impedance. We demonstrate that PPy/PMAS supports nerve cell (PC12) differentiation, and that clinically relevant 250 Hz biphasic current pulses delivered via PPy/PMAS films significantly promote nerve cell differentiation in the presence of nerve growth factor (NGF). The capacity of PPy/PMAS composites to support and enhance nerve cell differentiation via electrical stimulation renders them valuable for medical implants for neurological applications.
Intraoperative Hypoglossal Nerve Mapping During Carotid Endarterectomy: Technical Note.
Kojima, Atsuhiro; Saga, Isako; Ishikawa, Mami
2018-05-01
Hypoglossal nerve deficit is a possible complication caused by carotid endarterectomy (CEA). The accidental injury of the hypoglossal nerve during surgery is one of the major reasons for permanent hypoglossal nerve palsy. In this study, we investigated the usefulness of intraoperative mapping of the hypoglossal nerve to identify this nerve during CEA. Five consecutive patients who underwent CEA for the treatment of symptomatic or asymptomatic carotid artery stenosis were studied. A hand-held probe was used to detect the hypoglossal nerve in the operative field, and the tongue motor evoked potentials (MEPs) were recorded. The tongue MEPs were obtained in all the patients. The invisible hypoglossal nerve was successfully identified without any difficulty when the internal carotid artery was exposed. Intraoperative mapping was particularly useful for identifying the hypoglossal nerve when the hypoglossal nerve passed beneath the posterior belly of the digastric muscle. In 1 of 2 cases, MEP was also elicited when the ansa cervicalis was stimulated, although the resulting amplitude was much smaller than that obtained by direct stimulation of the hypoglossal nerve. Postoperatively, none of the patients presented with hypoglossal nerve palsy. Intraoperative hypoglossal nerve mapping enabled us to locate the invisible hypoglossal nerve during the exposure of the internal carotid artery accurately without retracting the posterior belly of the digastric muscle and other tissues in the vicinity of the internal carotid artery. Copyright © 2018 Elsevier Inc. All rights reserved.
Analysis of erectile responses to BAY 41-8543 and muscarinic receptor stimulation in the rat.
Lasker, George F; Pankey, Edward A; Allain, Alexander V; Dhaliwal, Jasdeep S; Stasch, Johannes-Peter; Murthy, Subramanyam N; Kadowitz, Philip J
2013-03-01
Soluble guanylate cyclase (sGC) is the receptor for nitric oxide (NO) and in pathophysiologic conditions where NO formation or bioavailability is impaired, erectile dysfunction (ED) occurs. The aim of this study was to investigate erectile responses to the sGC stimulator BAY 41-8543 in physiologic and pathophysiologic conditions. Increases in intracavernosal pressure (ICP) in response to intracavernosal (ic) injections of BAY 41-8543 were investigated in the anesthetized rat. Increases in ICP/MAP in response to ic injections of BAY 41-8543 and the interaction of BAY 41-8543 with exogenous and endogenously released NO were investigated and the effect of the sGC stimulator on cavernosal nerve injury was assessed. The mechanism of the increase in ICP/MAP in response to ic injection of acetylcholine was investigated. The ic injections of BAY 41-8543 increased ICP/MAP and the duration of the response. BAY 41-8543 was less potent than sodium nitroprusside (SNP) and ic injections of BAY 41-8543 and SNP produced a larger response than the algebraic sum of responses to either agent alone. Simultaneous ic injection of BAY 41-8543 and cavernosal nerve stimulation produced a greater response than either intervention alone. Atropine and cavernosal nerve crush injury decreased the response to nerve stimulation and ic injection of BAY 41-8543 restored the response. These data show that BAY 41-8543 has significant erectile activity and can synergize with exogenous and endogenously released NO. This study shows that atropine and nerve crush attenuate the response to cavernosal nerve stimulation and that BAY 41-8543 can restore the response. The results with atropine, L-NAME and hexamethonium indicate that the response to ic injection of acetylcholine is mediated by muscarinic receptors and the release of NO with no significant role for nicotinic receptors. These results suggest that BAY 41-8543 would be useful in the treatment of ED. © 2012 International Society for Sexual Medicine.
Expansion analyses of strategic petroleum reserve in Bayou Choctaw : revised locations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehgartner, Brian L.; Park, Byoung Yoon
2010-11-01
This report summarizes a series of three-dimensional simulations for the Bayou Choctaw Strategic Petroleum Reserve. The U.S. Department of Energy plans to leach two new caverns and convert one of the existing caverns within the Bayou Choctaw salt dome to expand its petroleum reserve storage capacity. An existing finite element mesh from previous analyses is modified by changing the locations of two caverns. The structural integrity of the three expansion caverns and the interaction between all the caverns in the dome are investigated. The impacts of the expansion on underground creep closure, surface subsidence, infrastructure, and well integrity are quantified.more » Two scenarios were used for the duration and timing of workover conditions where wellhead pressures are temporarily reduced to atmospheric pressure. The three expansion caverns are predicted to be structurally stable against tensile failure for both scenarios. Dilatant failure is not expected within the vicinity of the expansion caverns. Damage to surface structures is not predicted and there is not a marked increase in surface strains due to the presence of the three expansion caverns. The wells into the caverns should not undergo yield. The results show that from a structural viewpoint, the locations of the two newly proposed expansion caverns are acceptable, and all three expansion caverns can be safely constructed and operated.« less
Mostafa, T; Sabry, D; Abdelaal, A M; Mostafa, I; Taymour, M
2013-08-01
This study aimed to assess the cavernous antioxidant effect of green tea (GT), epigallocatechin-3-gallate (EGCG) with/without sildenafil citrate intake in aged diabetic rats. One hundred and four aged male white albino rat were divided into controls that received ordinary chow, streptozotocin (STZ)-induced aged diabetic rats, STZ-induced diabetic rats on infused green tea, induced diabetic rats on epigallocatechin-3-gallate and STZ-induced diabetic rats on sildenafil citrate added to EGCG. After 8 weeks, dissected cavernous tissues were assessed for gene expression of eNOS, cavernous malondialdehyde (MDA), glutathione peroxidase (GPx), cyclic guanosine monophosphate (cGMP), and serum testosterone (T). STZ-induced diabetic rats on GT demonstrated significant increase in cavernous eNOS, cGMP, GPx and significant decrease in cavernous MDA compared with diabetic rats. Diabetic rats on EGCG demonstrated significant increase in cavernous eNOS, cGMP, GPx and significant decrease in cavernous MDA compared with diabetic rats or diabetic rats on GT. Diabetic rats on EGCG added to sildenafil showed significant increase in cavernous eNOS, cGMP and significant decrease in cavernous MDA compared with other groups. Serum T demonstrated nonsignificant difference between the investigated groups. It is concluded that GT and EGCG have significant cavernous antioxidant effects that are increased if sildenafil is added. © 2012 Blackwell Verlag GmbH.
Nerve conduction studies are safe in patients with central venous catheters.
London, Zachary N; Mundwiler, Andrew; Oral, Hakan; Gallagher, Gary W
2017-08-01
It is unknown if central venous catheters bypass the skin's electrical resistance and engender a risk of nerve conduction study-induced cardiac arrhythmia. The objective of this study is to determine if nerve conduction studies affect cardiac conduction and rhythm in patients with central venous catheters. Under continuous 12-lead electrocardiogram monitoring, subjects with and without central venous catheters underwent a series of upper extremity nerve conduction studies. A cardiologist reviewed the electrocardiogram tracings for evidence of cardiac conduction abnormality or arrhythmia. Ten control subjects and 10 subjects with central venous catheters underwent the nerve conduction study protocol. No malignant arrhythmias or conduction abnormalities were noted in either group. Nerve conduction studies of the upper extremities, including both proximal stimulation and repetitive stimulation, do not appear to confer increased risk of cardiac conduction abnormality in those patients with central venous catheters who are not critically ill or have a prior history of arrhythmia. Muscle Nerve 56: 321-323, 2017. © 2016 Wiley Periodicals, Inc.
Different effects of astrocytes and Schwann cells on regenerating retinal axons.
Campbell, Gregor; Kitching, Juliet; Anderson, Patrick N; Lieberman, A Robert
2003-11-14
Following a crush injury of the optic nerve in adult rats, the axons of retinal ganglion cells, stimulated to regenerate by a lens injury and growing within the optic nerve, are associated predominantly with astrocytes: they remain of small diameter (0.1-0.5 microm) and unmyelinated for > or = 2 months after the operation. In contrast, when the optic nerve is cut and a segment of a peripheral nerve is grafted to the ocular stump of the optic nerve, the regenerating retinal axons are associated predominantly with Schwann cells: they are of larger diameter than in the previous experiment and include unmyelinated axons (0.2-2.5 microm) and myelinated axons (mean diameter 2.3 microm). Thus, the grafted peripheral nerve, and presumably its Schwann cells, stimulate enlargement of the regenerating retinal axons leading to partial myelination, whereas the injured optic nerve itself, and presumably its astrocytes, does not. The result points to a marked difference of peripheral (Schwann cells) and central (astrocytes) glia in their effect on regenerating retinal axons.
Napadow, Vitaly; Edwards, Robert R; Cahalan, Christine M; Mensing, George; Greenbaum, Seth; Valovska, Assia; Li, Ang; Kim, Jieun; Maeda, Yumi; Park, Kyungmo; Wasan, Ajay D.
2012-01-01
Objective Previous Vagus Nerve Stimulation (VNS) studies have demonstrated anti-nociceptive effects, and recent non-invasive approaches; termed transcutaneous-VNS, or t-VNS, have utilized stimulation of the auricular branch of the vagus nerve in the ear. The dorsal medullary vagal system operates in tune with respiration, and we propose that supplying vagal afferent stimulation gated to the exhalation phase of respiration can optimize t-VNS. Design counterbalanced, crossover study. Patients patients with chronic pelvic pain (CPP) due to endometriosis in a specialty pain clinic. Interventions/Outcomes We evaluated evoked pain analgesia for Respiratory-gated Auricular Vagal Afferent Nerve Stimulation (RAVANS) compared with Non-Vagal Auricular Stimulation (NVAS). RAVANS and NVAS were evaluated in separate sessions spaced at least one week apart. Outcome measures included deep tissue pain intensity, temporal summation of pain, and anxiety ratings, which were assessed at baseline, during active stimulation, immediately following stimulation, and 15 minutes after stimulus cessation. Results RAVANS demonstrated a trend for reduced evoked pain intensity and temporal summation of mechanical pain, and significantly reduced anxiety in N=15 CPP patients, compared to NVAS, with moderate to large effect sizes (eta2>0.2). Conclusion Chronic pain disorders such as CPP are in great need of effective, non-pharmacological options for treatment. RAVANS produced promising anti-nociceptive effects for QST outcomes reflective of the noted hyperalgesia and central sensitization in this patient population. Future studies should evaluate longer-term application of RAVANS to examine its effects on both QST outcomes and clinical pain. PMID:22568773
... techniques that focus on neuromodulation, which incorporates electrical, magnetic or other forms of energy to stimulate brain ... electroconvulsive therapy (ECT), vagus-nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and the experimental deep-brain stimulation ( ...
Sonar surveys used in gas-storage cavern analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crossley, N.G.
1998-05-04
Natural-gas storage cavern internal configuration, inspection information, and cavern integrity data can be obtained during high-pressure operations with specialized gas-sonar survey logging techniques. TransGas Ltd., Regina, Sask., has successfully performed these operations on several of its deepest and highest pressurized caverns. The data can determine gas-in-place inventory and assess changes in spatial volumes. These changes can result from cavern creep, shrinkage, or closure or from various downhole abnormalities such as fluid infill or collapse of the sidewall or roof. The paper discusses conventional surveys with sonar, running surveys in pressurized caverns, accuracy of the sonar survey, initial development of Cavernmore » 5, a roof fall, Cavern 4 development, and a damaged string.« less
Extradural cold block for selective neurostimulation of the bladder: development of a new technique.
Schumacher, S; Bross, S; Scheepe, J R; Seif, C; Jünemann, K P; Alken, P
1999-03-01
Cryotechnique for selective block of the urethral sphincter and simultaneous activation of the bladder was developed to achieve physiological micturition during sacral anterior root stimulation (SARS). In ten foxhounds SARS of S2 was carried out while extradurally both spinal nerves S2 were cooled down from positive 25C in a stepwise fashion until a sphincter block was observed. Subsequently, SARS of S2 was performed while the pudendal nerves were cooled down from + 15C. The effects of spinal and pudendal nerve cold block on the urethral sphincter and bladder during SARS and the recovery time were monitored by urodynamic investigation. A complete cold block of the urethral sphincter during spinal nerve cooling was achieved in all cases. During pudendal nerve cooling, the sphincter was completely blocked in two, and incompletely blocked in four dogs. Cold block temperature of the spinal nerves averaged +11.7C and of the pudendal nerves +6.2C. During SARS and spinal nerve cooling, an increase in intravesical pressure up to 13 cm. water was recognized, and recovery time was on average 6.6 minutes. Intravesical pressure remained unchanged during pudendal nerve cooling, with recovery time being less than 1 minute. The cold block was always reversible. Cryotechnique is an excellent method for selective and reversible block of the urethral sphincter during SARS to avoid detrusor-sphincter-dyssynergia. The application of cryotechnique in functional electrical stimulation leads to an improvement of quality of life in para- or tetraplegic patients because of selective nerve stimulation with optimization of micturition, standing, walking and grasping and does so without the necessity of surgical dorsal root rhizotomy.
Mechanisms of reflex bladder activation by pudendal afferents
Woock, John P.; Yoo, Paul B.
2011-01-01
Activation of pudendal afferents can evoke bladder contraction or relaxation dependent on the frequency of stimulation, but the mechanisms of reflex bladder excitation evoked by pudendal afferent stimulation are unknown. The objective of this study was to determine the contributions of sympathetic and parasympathetic mechanisms to bladder contractions evoked by stimulation of the dorsal nerve of the penis (DNP) in α-chloralose anesthetized adult male cats. Bladder contractions were evoked by DNP stimulation only above a bladder volume threshold equal to 73 ± 12% of the distension-evoked reflex contraction volume threshold. Bilateral hypogastric nerve transection (to eliminate sympathetic innervation of the bladder) or administration of propranolol (a β-adrenergic antagonist) decreased the stimulation-evoked and distension-evoked volume thresholds by −25% to −39%. Neither hypogastric nerve transection nor propranolol affected contraction magnitude, and robust bladder contractions were still evoked by stimulation at volume thresholds below the distension-evoked volume threshold. As well, inhibition of distention-evoked reflex bladder contractions by 10 Hz stimulation of the DNP was preserved following bilateral hypogastric nerve transection. Administration of phentolamine (an α-adrenergic antagonist) increased stimulation-evoked and distension-evoked volume thresholds by 18%, but again, robust contractions were still evoked by stimulation at volumes below the distension-evoked threshold. These results indicate that sympathetic mechanisms contribute to establishing the volume dependence of reflex contractions but are not critical to the excitatory pudendal to bladder reflex. A strong correlation between the magnitude of stimulation-evoked bladder contractions and bladder volume supports that convergence of pelvic afferents and pudendal afferents is responsible for bladder excitation evoked by pudendal afferents. Further, abolition of stimulation-evoked bladder contractions following administration of hexamethonium bromide confirmed that contractions were generated by pelvic efferent activation via the pelvic ganglion. These findings indicate that pudendal afferent stimulation evokes bladder contractions through convergence with pelvic afferents to increase pelvic efferent activity. PMID:21068196
Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury.
Bennett, D J; Sanelli, L; Cooke, C L; Harvey, P J; Gorassini, M A
2004-05-01
Following chronic sacral spinal cord transection in rats the affected tail muscles exhibit marked spasticity, with characteristic long-lasting tail spasms evoked by mild stimulation. The purpose of the present paper was to characterize the long-lasting reflex seen in tail muscles in response to electrical stimulation of the tail nerves in the awake spastic rat, including its development with time and relation to spasticity. Before and after sacral spinal transection, surface electrodes were placed on the tail for electrical stimulation of the caudal nerve trunk (mixed nerve) and for recording EMG from segmental tail muscles. In normal and acute spinal rats caudal nerve trunk stimulation evoked little or no EMG reflex. By 2 wk after injury, the same stimulation evoked long-lasting reflexes that were 1) very low threshold, 2) evoked from rest without prior EMG activity, 3) of polysynaptic latency with >6 ms central delay, 4) about 2 s long, and 5) enhanced by repeated stimulation (windup). These reflexes produced powerful whole tail contractions (spasms) and developed gradually over the weeks after the injury (< or =52 wk tested), in close parallel to the development of spasticity. Pure low-threshold cutaneous stimulation, from electrical stimulation of the tip of the tail, also evoked long-lasting spastic reflexes, not seen in acute spinal or normal rats. In acute spinal rats a strong C-fiber stimulation of the tip of the tail (20 x T) could evoke a weak EMG response lasting about 1 s. Interestingly, when this C-fiber stimulation was used as a conditioning stimulation to depolarize the motoneuron pool in acute spinal rats, a subsequent low-threshold stimulation of the caudal nerve trunk evoked a 300-500 ms long reflex, similar to the onset of the long-lasting reflex in chronic spinal rats. A similar conditioned reflex was not seen in normal rats. Thus there is an unusually long low-threshold polysynaptic input to the motoneurons (pEPSP) that is normally inhibited by descending control. This pEPSP is released from inhibition immediately after injury but does not produce a long-lasting reflex because of a lack of motoneuron excitability. With chronic injury the motoneuron excitability is increased markedly, and the pEPSP then triggers sustained motoneuron discharges associated with long-lasting reflexes and muscle spasms.
Souza Trindade, José Carlos; Viterbo, Fausto; Petean Trindade, André; Fávaro, Wagner José; Trindade-Filho, José Carlos Souza
2017-06-01
To study a novel penile reinnervation technique using four sural nerve grafts and end-to-side neurorraphies connecting bilaterally the femoral nerve and the cavernous corpus and the femoral nerve and the dorsal penile nerves. Ten patients (mean [± sd; range] age 60.3 [± 4.8; 54-68] years), who had undergone radical prostatectomy (RP) at least 2 years previously, underwent penile reinnervation in the present study. Four patients had undergone radiotherapy after RP. All patients reported satisfactory sexual activity prior to RP. The surgery involved bridging of the femoral nerve to the dorsal nerve of the penis and the inner part of the corpus cavernosum with sural nerve grafts and end-to-side neurorraphies. Patients were evaluated using the International Index of Erectile Function (IIEF) questionnaire and pharmaco-penile Doppler ultrasonography (PPDU) preoperatively and at 6, 12 and 18 months postoperatively, and using a Clinical Evolution of Erectile Function (CEEF) questionnaire, administered after 36 months. The IIEF scores showed improvements with regard to erectile dysfunction (ED), satisfaction with intercourse and general satisfaction. Evaluation of PPDU velocities did not reveal any difference between the right and left sides or among the different time points. The introduction of nerve grafts neither caused fibrosis of the corpus cavernosum, nor reduced penile vascular flow. CEEF results showed that sexual intercourse began after a mean of 13.7 months with frequency of sexual intercourse varying from once daily to once monthly. Acute complications were minimal. The study was limited by the small number of cases. A total of 60% of patients were able to achieve full penetration, on average, 13 months after reinnervation surgery. Patients previously submitted to radiotherapy had slower return of erectile function. We conclude that penile reinnervation surgery is a viable technique, with effective results, and could offer a new treatment method for ED after RP. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.
Chronic cuffing of cervical vagus nerve inhibits efferent fiber integrity in rat model
NASA Astrophysics Data System (ADS)
Somann, Jesse P.; Albors, Gabriel O.; Neihouser, Kaitlyn V.; Lu, Kun-Han; Liu, Zhongming; Ward, Matthew P.; Durkes, Abigail; Robinson, J. Paul; Powley, Terry L.; Irazoqui, Pedro P.
2018-06-01
Objective. Numerous studies of vagal nerve stimulation (VNS) have been published showing it to be a potential treatment for chronic inflammation and other related diseases and disorders. Studies in recent years have shown that electrical stimulation of the vagal efferent fibers can artificially modulate cytokine levels and reduce systematic inflammation. Most VNS research in the treatment of inflammation have been acute studies on rodent subjects. Our study tested VNS on freely moving animals by stimulating and recording from the cervical vagus with nerve cuff electrodes over an extended period of time. Approach. We used methods of electrical stimulation, retrograde tracing (using Fluorogold) and post necropsy histological analysis of nerve tissue, flow cytometry to measure plasma cytokine levels, and MRI scanning of gastric emptying. This novel combination of methods allowed examination of physiological aspects of VNS previously unexplored. Main results. Through our study of 53 rat subjects, we found that chronically cuffing the left cervical vagus nerve suppressed efferent Fluorogold transport in 43 of 44 animals (36 showed complete suppression). Measured cytokine levels and gastric emptying rates concurrently showed nominal differences between chronically cuffed rats and those tested with similar acute methods. Meanwhile, results of electrophysiological and histological tests of the cuffed nerves revealed them to be otherwise healthy, consistent with previous literature. Significance. We hypothesize that due to these unforeseen and unexplored physiological consequences of the chronically cuffed vagus nerve in a rat, that inflammatory modulation and other vagal effects by VNS may become unreliable in chronic studies. Given our findings, we submit that it would benefit the VNS community to re-examine methods used in previous literature to verify the efficacy of the rat model for chronic VNS studies.
Innervation of the cricothyroid muscle by extralaryngeal branches of the recurrent laryngeal nerve.
Miyauchi, Akira; Masuoka, Hiroo; Nakayama, Ayako; Higashiyama, Takuya
2016-05-01
A major concern in thyroid surgery is possible changes in the patient's voice due to dysfunction of the laryngeal muscles. The classical understanding of the anatomy is that the cricothyroid muscle (CTM) is innervated solely by the external branch of the superior laryngeal nerve (EBSLN), and the endolaryngeal muscles are covered only by the recurrent laryngeal nerve (RLN). Meticulous anatomical studies found communication between these nerves. Recent neurophysiological studies revealed cross-innervations among these nerve-muscle sets. Here, we report innervation of the CTM by extralaryngeal branches of the RLN. Clinical observation during thyroid surgery at a hospital center for thyroid diseases. During thyroid cancer surgeries, we encountered four adult Japanese patients who had an extralaryngeal branch of the RLN, the electrical stimulation of which showed contraction of the CTM. The EBSLN and RLN were electrically stimulated. Responses were evaluated by visual observation of contraction of the CTM and palpable laryngeal twitch of the endolaryngeal muscles. Electromyographic studies were also performed in two patients. Five of the seven RLNs examined showed contraction of the CTM on stimulation. Four of these five RLNs had an extralaryngeal branch that showed contraction of the CTM on stimulation. Stimulation of the RLN proximal to the branch yielded contraction of the CTM and laryngeal twitch, whereas stimulation of the RLN distal to the branch yielded only laryngeal twitch. Extralaryngeal branches of the RLN innervated the CTM in four patients. This phenomenon might influence voice changes following thyroid surgery. 4. Laryngoscope, 126:1157-1162, 2016. Laryngoscope published by Wiley on behalf of the American Laryngological, Rhinological and Otological Society, Inc, “The Triological Society” and American Laryngological Association (the “Owner”).
Gordon, Tessa; Amirjani, Nasim; Edwards, David C; Chan, K Ming
2010-05-01
Electrical stimulation (ES) of injured peripheral nerves accelerates axonal regeneration in laboratory animals. However, clinical applicability of this intervention has never been investigated in human subjects. The aim of this pilot study was to determine the effect of ES on axonal regeneration after surgery in patients with median nerve compression in the carpal tunnel causing marked motor axonal loss. A randomized control trial was conducted to provide proof of principle for ES-induced acceleration of axon regeneration in human patients. Carpel tunnel release surgery (CTRS) was performed and in the stimulation group of patients, stainless steel electrode wires placed alongside the median nerve proximal to the surgical decompression site for immediate 1 h 20 Hz bipolar ES. Subjects were followed for a year at regular intervals. Axonal regeneration was quantified using motor unit number estimation (MUNE) and sensory and motor nerve conduction studies. Purdue Pegboard Test, Semmes Weinstein Monofilaments, and Levine's Self-Assessment Questionnaire were used to assess functional recovery. The stimulation group had significant axonal regeneration 6-8 months after the CTRS when the MUNE increased to 290+/-140 (mean+/-SD) motor units (MU) from 150+/-62 MU at baseline (p<0.05). In comparison, MUNE did not significantly improve in the control group (p>0.2). Terminal motor latency significantly accelerated in the stimulation group but not the control group (p>0.1). Sensory nerve conduction values significantly improved in the stimulation group earlier than the controls. Other outcome measures showed a significant improvement in both patient groups. We conclude that brief low frequency ES accelerates axonal regeneration and target reinnervation in humans. Copyright 2009 Elsevier Inc. All rights reserved.
Savard, P; Cardinal, R; Nadeau, R A; Armour, J A
1991-06-01
Sixty-three ventricular epicardial electrograms were recorded simultaneously in 8 atropinized dogs during stimulation of acutely decentralized intrathoracic autonomic ganglia or cardiopulmonary nerves. Three variables were measured: (1) isochronal maps representing the epicardial activation sequence, (2) maps depicting changes in areas under the QRS complex and T wave (regional inhomogeneity of repolarization), and (3) local and total QT intervals. Neural stimulations did not alter the activation sequence but induced changes in the magnitude and polarity of the ST segments and T waves as well as in QRST areas. Stimulation of the same neural structure in different dogs induced electrical changes with different amplitudes and in different regions of the ventricles, except for the ventral lateral cardiopulmonary nerve which usually affected the dorsal wall of the left ventricle. Greatest changes occurred when the right recurrent, left intermediate medial, left caudal pole, left ventral lateral cardiopulmonary nerves and stellate ganglia were stimulated. Local QT durations either decreased or did not change, whereas total QT duration as measured using a root-mean-square signal did not change, indicating the regional nature of repolarization changes. Taken together, these data indicate that intrathoracic efferent sympathetic neurons can induce regional inhomogeneity of repolarization without prolonging the total QT interval.
Reinnervation following catheter-based radio-frequency renal denervation.
Booth, Lindsea C; Nishi, Erika E; Yao, Song T; Ramchandra, Rohit; Lambert, Gavin W; Schlaich, Markus P; May, Clive N
2015-04-20
What is the topic of this review? Does catheter-based renal denervation effectively denervate the afferent and efferent renal nerves and does reinnervation occur? What advances does it highlight? Following catheter-based renal denervation, the afferent and efferent responses to electrical stimulation were abolished, renal sympathetic nerve activity was absent, and levels of renal noradrenaline and immunohistochemistry for tyrosine hydroxylase and calcitonin gene-related peptide were significantly reduced. By 11 months after renal denervation, both the functional responses and anatomical markers of afferent and efferent renal nerves had returned to normal, indicating reinnervation. Renal denervation reduces blood pressure in animals with experimental hypertension and, recently, catheter-based renal denervation was shown to cause a prolonged decrease in blood pressure in patients with resistant hypertension. The randomized, sham-controlled Symplicity HTN-3 trial failed to meet its primary efficacy end-point, but there is evidence that renal denervation was incomplete in many patients. Currently, there is little information regarding the effectiveness of catheter-based renal denervation and the extent of reinnervation. We assessed the effectiveness of renal nerve denervation with the Symplicity Flex catheter and the functional and anatomical reinnervation at 5.5 and 11 months postdenervation. In anaesthetized, non-denervated sheep, there was a high level of renal sympathetic nerve activity, and electrical stimulation of the renal nerve increased blood pressure and reduced heart rate (afferent response) and caused renal vasoconstriction and reduced renal blood flow (efferent response). Immediately after renal denervation, renal sympathetic nerve activity and the responses to electrical stimulation were absent, indicating effective denervation. By 11 months after denervation, renal sympathetic nerve activity was present and the responses to electrical stimulation were normal, indicating reinnervation. Anatomical measures of renal innervation by sympathetic efferent nerves (tissue noradrenaline and tyrosine hydroxylase) and afferent sensory nerves (calcitonin gene-related peptide) demonstrated large decreases at 1 week postdenervation, but normal levels at 11 months postdenervation. In summary, catheter-based renal denervation is effective, but reinnervation occurs. Studies of central and renal changes postdenervation are required to understand the causes of the prolonged hypotensive response to catheter-based renal denervation in human hypertension. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.
Sacral nerve stimulation enhances epithelial barrier of the rectum: results from a porcine model.
Meurette, G; Blanchard, C; Duchalais-Dassonneville, E; Coquenlorge, S; Aubert, P; Wong, M; Lehur, P-A; Neunlist, M
2012-03-01
The mechanism of action of sacral nerve stimulation (SNS) remains largely elusive. The aims of this study were to develop a clinically relevant animal model for percutaneous SNS and to describe its effect on the epithelial barrier of the rectum. Under general anesthesia and after percutaneous electrode placement for S3 nerve root stimulation, six pigs underwent unilateral stimulation and six bilateral stimulation. Animals were stimulated for 3 h using an external pulse generator (1-2.5 V; 14 Hz; 210 μs). Six animals underwent electrode implantation without stimulation and served as controls. Full-thickness rectal biopsies were performed prior to and after stimulation. Paracellular permeability was evaluated by measuring sulfonic acid flux across the rectal mucosa in Ussing chambers. Histological assessment of mucosal thickness, epithelial desquamation, and mucus expression were performed. Percutaneous stimulation resulted in successful anal contractions whose amplitude and uniformity was enhanced following bilateral compared with unilateral stimulation. In controls, paracellular permeability significantly increased during the stimulation period whereas it remained unchanged following unilateral stimulation. In contrast, permeability was significantly reduced by bilateral stimulation. This effect was associated with a concomitant reduction in mucosal thickness and a trend toward increased amount of mucus on surface epithelium compared with controls. The development of a porcine model of percutaneous SNS revealed the ability of neuromodulation to reinforce rectal epithelial barrier. Furthermore, our results suggest that SNS could be used for treatment of gastrointestinal pathologies with reduced rectal mucosal barrier functions. © 2012 Blackwell Publishing Ltd.
Vagus Nerve Stimulation Reduces Cocaine Seeking and Alters Plasticity in the Extinction Network
ERIC Educational Resources Information Center
Childs, Jessica E.; DeLeon, Jaime; Nickel, Emily; Kroener, Sven
2017-01-01
Drugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces rates of relapse. Here we used vagus nerve stimulation (VNS) to induce targeted synaptic…
ERIC Educational Resources Information Center
Moharic, Metka
2010-01-01
Transcutaneous electrical nerve stimulation (TENS) is one of the therapies for painful neuropathy. Its analgesic mechanisms probably involve the gate control theory, the physiological block and the endogenous pain inhibitory system. The aim of the study was to determine whether TENS improves small fibre function diminished because of painful…
NASA Astrophysics Data System (ADS)
Motogi, Jun; Sugiyama, Yukiya; Laakso, Ilkka; Hirata, Akimasa; Inui, Koji; Tamura, Manabu; Muragaki, Yoshihiro
2016-06-01
The in situ electric field in the peripheral nerve of the skin is investigated to discuss the selective stimulation of nerve fibres. Coaxial planar electrodes with and without intra-epidermal needle tip were considered as electrodes of a stimulator. From electromagnetic analysis, the tip depth of the intra-epidermal electrode should be larger than the thickness of the stratum corneum, the electrical conductivity of which is much lower than the remaining tissue. The effect of different radii of the outer ring electrode on the in situ electric field is marginal. The minimum threshold in situ electric field (rheobase) for free nerve endings is estimated to be 6.3 kV m-1. The possible volume for electrostimulation, which can be obtained from the in situ electric field distribution, becomes deeper and narrower with increasing needle depth, suggesting that possible stimulation sites may be controlled by changing the needle depth. The injection current amplitude should be adjusted when changing the needle depth because the peak field strength also changes. This study shows that intra-epidermal electrical stimulation can achieve stimulation of small fibres selectively, because Aβ-, Aδ-, and C-fibre terminals are located at different depths in the skin.
ERIC Educational Resources Information Center
Gordon, Tessa; Gordon, Karen
2010-01-01
Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…
Rossignol, F; Brandenberger, O; Perkins, J D; Marie, J-P; Mespoulhès-Rivière, C; Ducharme, N G
2018-07-01
In horses, the only established method for reinnervation of the larynx is the nerve-muscle pedicle implantation, whereas in human medicine, direct nerve implantation is a standard surgical technique for selective laryngeal reinnervation in human patients suffering from bilateral vocal fold paralysis. (1) To describe a modified first or second cervical nerve transplantation technique for the treatment of recurrent laryngeal neuropathy (RLN) in horses and (2) evaluate the outcomes of reinnervation using direct nerve needle-stimulation of the first cervical nerve and exercising endoscopy before and after surgery. Case series. Nerve transplantation surgery, in which the first or second cervical nerve is tunnelled through the atrophied left cricoarytenoideus dorsalis muscle, was performed in combination with ipsilateral laser ventriculocordectomy. Ultrasound-guided stimulation of the first cervical nerve at the level of the alar foramen was used to confirm successful reinnervation post-operatively. Exercising endoscopy was performed before and after surgery. The exercising RLN grade of the left arytenoid was blindly determined at the highest stride frequency for each examination. Surgery was performed in 17 client-owned animals with RLN. Reinnervation was confirmed by nerve stimulation and subsequent arytenoid abduction observed in 11 out of 12 cases between 4 and 12 months post-operatively. Fourteen horses had exercising endoscopy before and after surgery. Nine horses had an improved exercising RLN grade, four horses had the same exercising grade and one horse had a worse exercising grade after surgery. A sham-operated control group was not included and follow-up beyond 12 months and objective performance data were not obtained. The modified first or second cervical nerve transplantation technique, using tunnelling and direct implantation of the donor nerve into the cricoarytenoideus dorsalis muscle, resulted in reinnervation in 11 out of 12 cases and improved exercising grade in 9 out of 14 horses within 12 months after surgery. © 2017 EVJ Ltd.
"Long-term stability of stimulating spiral nerve cuff electrodes on human peripheral nerves".
Christie, Breanne P; Freeberg, Max; Memberg, William D; Pinault, Gilles J C; Hoyen, Harry A; Tyler, Dustin J; Triolo, Ronald J
2017-07-11
Electrical stimulation of the peripheral nerves has been shown to be effective in restoring sensory and motor functions in the lower and upper extremities. This neural stimulation can be applied via non-penetrating spiral nerve cuff electrodes, though minimal information has been published regarding their long-term performance for multiple years after implantation. Since 2005, 14 human volunteers with cervical or thoracic spinal cord injuries, or upper limb amputation, were chronically implanted with a total of 50 spiral nerve cuff electrodes on 10 different nerves (mean time post-implant 6.7 ± 3.1 years). The primary outcome measures utilized in this study were muscle recruitment curves, charge thresholds, and percent overlap of recruited motor unit populations. In the eight recipients still actively involved in research studies, 44/45 of the spiral contacts were still functional. In four participants regularly studied over the course of 1 month to 10.4 years, the charge thresholds of the majority of individual contacts remained stable over time. The four participants with spiral cuffs on their femoral nerves were all able to generate sufficient moment to keep the knees locked during standing after 2-4.5 years. The dorsiflexion moment produced by all four fibular nerve cuffs in the active participants exceeded the value required to prevent foot drop, but no tibial nerve cuffs were able to meet the plantarflexion moment that occurs during push-off at a normal walking speed. The selectivity of two multi-contact spiral cuffs was examined and both were still highly selective for different motor unit populations for up to 6.3 years after implantation. The spiral nerve cuffs examined remain functional in motor and sensory neuroprostheses for 2-11 years after implantation. They exhibit stable charge thresholds, clinically relevant recruitment properties, and functional muscle selectivity. Non-penetrating spiral nerve cuff electrodes appear to be a suitable option for long-term clinical use on human peripheral nerves in implanted neuroprostheses.
The association of carotid cavernous fistula with Graves’ ophthalmopathy
Celik, Ozlem; Buyuktas, Deram; Islak, Civan; Sarici, A Murat; Gundogdu, A Sadi
2013-01-01
Graves’ ophthalmopathy (GO) is one of the frequent manifestations of the disorder which is an inflammatory process due to fibroblast infiltration, fibroblast proliferation and accumulation of glycosaminoglycans. Eye irritation, dryness, excessive tearing, visual blurring, diplopia, pain, visual loss, retroorbital discomfort are the symptoms and they can mimic carotid cavernous fistulas. Carotid cavernous fistulas are abnormal communications between the carotid arterial system and the cavernous sinus. The clinical manifestations of GO can mimic the signs of carotid cavernous fistulas. Carotid cavernous fistulas should be considered in the differential diagnosis of the GO patients especially who are not responding to the standard treatment and when there is a unilateral or asymmetric eye involvement. Here we report the second case report with concurrent occurrence of GO and carotid cavernous fistula in the literature. PMID:23571267
Kim, Jin Hwan; Choi, Kyu Young; Lee, Kyu Ho; Lee, Dong Jin; Park, Bum Jung; Rho, Young-Soo
2014-01-01
To evaluate the motor input from the spinal accessory nerve (SAN) and the branches of the cervical plexus in an intraoperative motor nerve conduction study measuring motor action potentials by direct stimulation of the exposed nerve during neck dissection. The entire length of the SAN and the contributions from the upper cervical plexus were preserved. Compound muscle action potentials were measured for each part of the trapezius muscle on stimulation of the SAN, C2, C3, and C4 nerves. With stimulation of the spinal nerve, evoked responses were obtained from all 24 patients in the descending, transverse, and ascending trapezius muscle. C2 contributions were noted in 2 out of 24 patients; however, no patient revealed responses in all three parts of the muscle. C3 contributions were seen in 11 out of 24 patients, supplying all three parts of the muscle in 8 patients, and C4 contributions were noted in 20 out of 24 patients, supplying all three parts of the muscle in 16 of them. The SAN provided the most consistent motor input to the trapezius muscle. The C2, C3, and C4 nerves also provided motor input to the trapezius muscle; however, they were either inconsistently present or, when present, irregularly innervated the three parts of the trapezius muscle.
McGrath, J C; Olverman, H J
1978-01-01
1 A method is described for labelling the neuronal noradrenaline (NA) stores of rat anococcygeus with [3H]-NA and detecting subsequent release of 3H from the superfused tissue by nerve stimulation or drugs. 2 Lysergic acid diethylamide (LSD) or tyramine but not barium chloride or carbachol increased the efflux of 3H although each drug produced an equivalent contractile response. This confirms that LDS has an indirect sympathomimetic action. 3 LSD was found to produce a proportionately smaller reduction of the nerve-induced efflux of 3H than of the accompanying contractile response. 4 The inhibition of nerve-induced contractile responses by LSD was shown to be independent of the neuronal uptake of noradrenaline and any post-junctional inhibition demonstrated to be non-specific. PMID:728688
Radiation-induced erectile dysfunction using prostate-confined modern radiotherapy in a rat model.
Kimura, Masaki; Yan, Hui; Rabbani, Zahid; Satoh, Takefumi; Baba, Shiro; Yin, Fang-fang; Polascik, Thomas J; Donatucci, Craig F; Vujaskovic, Zeljko; Koontz, Bridget F
2011-08-01
The mechanisms of radiation-induced erectile dysfunction (ED) are unclear, as clinical studies are limited, and previous animal models were based on wide-field irradiation, which does not model current radiotherapy (RT) techniques. To perform functional and morphological analyses of erectile function (EF) utilizing image-guided stereotactic prostate-confined RT in a rat model. Sixty young adult male rats aged 10-12 weeks old were divided into age-matched sham and RT groups. A single 20-Gy fraction to the prostate was delivered to RT animals. Penile bulb, shaft, and testes were excluded from treatment fields. Bioassay and intracavernous pressure (ICP) measurements were conducted at 2, 4, and 9 weeks following RT. Perfusion analysis of the corpora cavernosa (CC) was conducted using Hoechst injected prior to sacrifice. Penile shaft and cavernous nerve (CN) were evaluated by immunohistochemistry. Plasma testosterone level was analyzed using a testosterone enzyme-linked immunosorbent assay (ELISA) assay kit. Irradiated animals demonstrated statistically significant time-dependent functional impairment of EF by bioassay and ICP measurement from 4 weeks. Neuronal nitric oxide synthase (NOS) expression was decreased in CN by 4 weeks. In CC, expression levels of anti-alpha smooth muscle actin and endothelial NOS were significantly decreased at 9 weeks. In penile dorsal vessels, smooth muscle/collagen ratio was significantly decreased at 4 and 9 weeks. Additionally, Hoechst perfusion showed time-dependent decrease in CC of RT animals, whereas CD31 expression was not affected. No toxicities were noted; testosterone levels were similar in both groups. We demonstrated time-dependent ED following image-guided stereotactic RT. Our results imply that reduction of neuronal NOS expression in cavernous nerve could trigger consecutive reduction of smooth muscle content as well as blood perfusion in CC that resulted in corporal veno-occlusive dysfunction. Present study could be a cornerstone to future research that may bring comprehensive scientific understanding of radiation-induced ED. © 2011 International Society for Sexual Medicine.
Groehs, Raphaela V; Antunes-Correa, Ligia M; Nobre, Thais S; Alves, Maria-Janieire Nn; Rondon, Maria Urbana Pb; Barreto, Antônio Carlos Pereira; Negrão, Carlos E
2016-10-01
We investigated the effects of muscle functional electrical stimulation on muscle sympathetic nerve activity and muscle blood flow, and, in addition, exercise tolerance in hospitalised patients for stabilisation of heart failure. Thirty patients hospitalised for treatment of decompensated heart failure, class IV New York Heart Association and ejection fraction ≤ 30% were consecutively randomly assigned into two groups: functional electrical stimulation (n = 15; 54 ± 2 years) and control (n = 15; 49 ± 2 years). Muscle sympathetic nerve activity was directly recorded via microneurography and blood flow by venous occlusion plethysmography. Heart rate and blood pressure were evaluated on a beat-to-beat basis (Finometer), exercise tolerance by 6-minute walk test, quadriceps muscle strength by a dynamometer and quality of life by Minnesota questionnaire. Functional electrical stimulation consisted of stimulating the lower limbs at 10 Hz frequency, 150 ms pulse width and 70 mA intensity for 60 minutes/day for 8-10 consecutive days. The control group underwent electrical stimulation at an intensity of < 20 mA. Baseline characteristics were similar between groups, except age that was higher and C-reactive protein and forearm blood flow that were smaller in the functional electrical stimulation group. Functional electrical stimulation significantly decreased muscle sympathetic nerve activity and increased muscle blood flow and muscle strength. No changes were found in the control group. Walking distance and quality of life increased in both groups. However, these changes were greater in the functional electrical stimulation group. Functional electrical stimulation improves muscle sympathetic nerve activity and vasoconstriction and increases exercise tolerance, muscle strength and quality of life in hospitalised heart failure patients. These findings suggest that functional electrical stimulation may be useful to hospitalised patients with decompensated chronic heart failure. © The European Society of Cardiology 2016.
Novel use of narrow paddle electrodes for occipital nerve stimulation--technical note.
Abhinav, Kumar; Park, Nicholas D; Prakash, Savithru K; Love-Jones, Sarah; Patel, Nikunj K
2013-01-01
Occipital nerve stimulation (ONS), an established treatment for medically intractable headache syndromes, has lead migration rates quoted up to 24%. In a series of patients with ideal characteristics for this treatment modality, we describe an operative technique for ONS involving the novel use of narrow paddle electrodes: "S8 Lamitrode" (St. Jude Medical [SJM], St. Paul, MN, USA). Five patients (occipital neuralgia [ON] = 4; chronic migraine [CM] = 1) were treated with ONS between 2010 and 2011. All patients had a successful trial of peripheral neurostimulation (Algotec Ltd, Crawley, UK) therapy. Operative technique involved the use of a park-bench position, allowing simultaneous exposure of the occipital and infraclavicular regions. Through a retromastoid/occipital incision just beneath the external occipital protruberance, exposing the extrafascial plane, the S8 Lamitrode is implanted to intersect both greater occipital nerves for bilateral pain or unilateral greater and lesser occipital nerves for unilateral ON or with significant component of the pain relating to the lesser occipital nerve. Over the median follow-up of 12 months, there were no episodes of lead migration or revision. There also was significant improvement in symptoms in all patients. This is the first reported use of S8 Lamitrode electrode for ONS. This narrow electrode is suited for this role leading to minimal trauma during surgical placement, facilitates resolution of problems with lead migration, and optimizes effect with stimulation focused more in direction of the occipital nerves without skin involvement. To date, the SJM Genesis neurostimulation system, with percutaneous electrodes only, is CE mark approved in Europe for peripheral nerve stimulation of the occipital nerves for the management of pain and disability for patients diagnosed with intractable CM. Further developments and studies are required for better devices to suit ONS, thereby avoiding frequently encountered problems and which may clarify the role of paddle leads in ONS. © 2012 International Neuromodulation Society.
Lundberg, J. M.; Saria, A.; Brodin, E.; Rosell, S.; Folkers, K.
1983-01-01
Electrical stimulation of the cervical vagus nerve in anesthetized guinea pigs induced a rapid increase in respiratory insufflation pressure, suggesting increased airway resistance. After intravenous administration of a substance P (SP) antagonist, [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP, the insufflation pressure response to vagal stimulation was reduced by 78% while the cardiovascular effects were unchanged. Histamine receptor-blocking agents were used to inhibit the effects of histamine release induced by the SP-antagonist. [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP also reduced the increase in insufflation pressure caused by intravenous SP or capsaicin. The long-lasting noncholinergic contraction of the main and hilus bronchi induced by field stimulation in vitro, as well as the contractile effects of SP and capsaicin, were also blocked by the SP antagonist. The cholinergic contractions and the noncholinergic tracheal relaxation on field stimulation in vitro were, however, not blocked by the antagonist. Vagal stimulation in vivo also increased vascular permeability in the respiratory tract and esophagus, causing a subepithelial edema as indicated by Evans blue extravasation. Previous treatment with [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP inhibited the permeability increase induced by both vagus nerve stimulation and exogenous SP. SP release from vagal sensory nerves was indirectly shown by reduction in the bronchial levels of SP after nerve stimulation in vivo. The data suggest that a major portion of the vagally or capsaicin-induced increase in smooth muscle tone is caused by SP release from sensory neurons. In addition, activation of vagal SP-containing sensory nerves induces local edema. Tracheobronchial afferent SP-containing C fibers may thus exert local control of smooth muscle tone and vascular permeability in normal and pathophysiological conditions. Images PMID:6189120
da Silva Martins, Warley Carvalho; de Albuquerque, Lucas Alverne Freitas; de Carvalho, Gervásio Teles Cardoso; Dourado, Jules Carlos; Dellaretti, Marcos; de Sousa, Atos Alves
2017-01-01
Background: Bilateral hemifacial spasm (BHFS) is a rare neurological syndrome whose diagnosis depends on excluding other facial dyskinesias. We present a case of BHFS along with a literature review. Methods: A 64-year-old white, hypertense male reported involuntary left hemiface contractions in 2001 (aged 50). In 2007, right hemifacial symptoms appeared, without spasm remission during sleep. Botulinum toxin type A application produced partial temporary improvement. Left microvascular decompression (MVD) was performed in August 2013, followed by right MVD in May 2014, with excellent results. Follow-up in March 2016 showed complete cessation of spasms without medication. Results: The literature confirms nine BHFS cases bilaterally treated by MVD, a definitive surgical option with minimal complications. Regarding HFS pathophysiology, ectopic firing and ephaptic transmissions originate in the root exit zone (REZ) of the facial nerve, due to neurovascular compression (NVC), orthodromically stimulate facial muscles and antidromically stimulate the facial nerve nucleus; this hyperexcitation continuously stimulates the facial muscles. These activated muscles can trigger somatosensory afferent skin nerve impulses and neuromuscular spindles from the trigeminal nerve, which, after transiting the Gasser ganglion and trigeminal nucleus, reach the somatosensory medial posterior ventral nucleus of the contralateral thalamus as well as the somatosensory cortical area of the face. Once activated, this area can stimulate the motor and supplementary motor areas (extrapyramidal and basal ganglia system), activating the motoneurons of the facial nerve nucleus and peripherally stimulating the facial muscles. Conclusions: We believe that bilateral MVD is the best approach in cases of BHFS. PMID:29026661
Aygün, Nurcihan; Uludağ, Mehmet; İşgör, Adnan
2017-01-01
Objective We evaluated the contribution of intraoperative neuromonitoring to the visual and functional identification of the external branch of the superior laryngeal nerve. Material and Methods The prospectively collected data of patients who underwent thyroid surgery with intraoperative neuromonitoring for external branch of the superior laryngeal nerve exploration were assessed retrospectively. The surface endotracheal tube-based Medtronic NIM3 intraoperative neuromonitoring device was used. The external branch of the superior laryngeal nerve function was evaluated by the cricothyroid muscle twitch. In addition, contribution of external branch of the superior laryngeal nerve to the vocal cord adduction was evaluated using electromyographic records. Results The study included data of 126 (female, 103; male, 23) patients undergoing thyroid surgery, with a mean age of 46.2±12.2 years (range, 18–75 years), and 215 neck sides were assessed. Two hundred and one (93.5%) of 215 external branch of the superior laryngeal nerves were identified, of which 60 (27.9%) were identified visually before being stimulated with a monopolar stimulator probe. Eighty-nine (41.4%) external branch of the superior laryngeal nerves were identified visually after being identified with a probe. Although 52 (24.1%) external branch of the superior laryngeal nerves were identified with a probe, they were not visualized. Intraoperative neuromonitoring provided a significant contribution to visual (p<0.001) and functional (p<0.001) identification of external branch of the superior laryngeal nerves. Additionally, positive electromyographic responses were recorded from 160 external branch of the superior laryngeal nerves (74.4%). Conclusion Intraoperative neuromonitoring provides an important contribution to visual and functional identification of external branch of the superior laryngeal nerves. We believe that it can not be predicted whether the external branch of the superior laryngeal nerve is at risk or not and the nerve is often invisible; thus, intraoperative neuromonitoring may routinely be used in superior pole dissection. Glottic electromyography response obtained via external branch of the superior laryngeal nerve stimulation provides quantifiable information in addition to the simple visualization of the cricothyroid muscle twitch. PMID:28944328
Raslan, Ashraf; Volk, Gerd Fabian; Möller, Martin; Stark, Vincent; Eckhardt, Nikolas; Guntinas-Lichius, Orlando
2017-06-01
To examine by intraoperative electric stimulation which peripheral facial nerve (FN) branches are functionally connected to which facial muscle functions. Single-center prospective clinical study. Seven patients whose peripheral FN branching was exposed during parotidectomy under FN monitoring received a systematic electrostimulation of each branch starting with 0.1 mA and stepwise increase to 2 mA with a frequency of 3 Hz. The electrostimulation and the facial and neck movements were video recorded simultaneously and evaluated independently by two investigators. A uniform functional allocation of specific peripheral FN branches to a specific mimic movement was not possible. Stimulation of the whole spectrum of branches of the temporofacial division could lead to eye closure (orbicularis oculi muscle function). Stimulation of the spectrum of nerve branches of the cervicofacial division could lead to reactions in the midface (nasal and zygomatic muscles) as well as around the mouth (orbicularis oris and depressor anguli oris muscle function). Frontal and eye region were exclusively supplied by the temporofacial division. The region of the mouth and the neck was exclusively supplied by the cervicofacial division. Nose and zygomatic region were mainly supplied by the temporofacial division, but some patients had also nerve branches of the cervicofacial division functionally supplying the nasal and zygomatic region. FN branches distal to temporofacial and cervicofacial division are not necessarily covered by common facial nerve monitoring. Future bionic devices will need a patient-specific evaluation to stimulate the correct peripheral nerve branches to trigger distinct muscle functions. 4 Laryngoscope, 127:1288-1295, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Jin, Yu; Kong, Jian
2017-01-01
Transcutaneous Vagus Nerve Stimulation (tVNS) on the auricular branch of the vagus nerve has been receiving attention due to its therapeutic potential for neuropsychiatric disorders. Although the mechanism of tVNS is not yet completely understood, studies have demonstrated the potential role of vagal afferent nerve stimulation in the regulation of mood and visceral state associated with social communication. In addition, a growing body of evidence shows that tVNS can activate the brain regions associated with Autism Spectrum Disorder (ASD), trigger neuroimmune modulation and produce treatment effects for comorbid disorders of ASD such as epilepsy and depression. We thus hypothesize that tVNS may be a promising treatment for ASD, not only for comorbid epilepsy and depression, but also for the core symptoms of ASD. The goal of this manuscript is to summarize the findings and rationales for applying tVNS to treat ASD and propose potential parameters for tVNS treatment of ASD. PMID:28163670
NASA Technical Reports Server (NTRS)
Andrews, Russell J.
2003-01-01
Three examples of neuroprotective applications of electrical stimulation-neuromodulation-are considered: (1) the diagnosis and treatment of epilepsy, (2) the augmentation of peripheral nerve regeneration after transection, and (3) the interaction between electrical stimulation and neurotrophins (notably brain derived neurotrophic factor [BDNF]) in various neuroprotective situations. The research cited demonstrates clear benefit from appropriate electrical stimulation in the treatment of (1) certain patients with medication-refractory epilepsy, and (2) the functional regeneration of peripheral nerves after transection and surgical repair. Furthermore, neuromodulation of peripheral nerve regeneration has been associated with an increase in the neurotrophin BDNF. The roles of BDNF and other neurotrophins in several disorders of the nervous system are discussed in the context of neuromodulation and its augmentation of neurotrophins. Neuromodulation-at least in part through its effect on BDNF and other neurotrophins-will likely play a major role in the treatment (and possibly prevention) of disorders of the nervous system for which neuroproteive pharmacologic agents have traditionally been sought.
Andrews, Russell J
2003-05-01
Three examples of neuroprotective applications of electrical stimulation-neuromodulation-are considered: (1) the diagnosis and treatment of epilepsy, (2) the augmentation of peripheral nerve regeneration after transection, and (3) the interaction between electrical stimulation and neurotrophins (notably brain derived neurotrophic factor [BDNF]) in various neuroprotective situations. The research cited demonstrates clear benefit from appropriate electrical stimulation in the treatment of (1) certain patients with medication-refractory epilepsy, and (2) the functional regeneration of peripheral nerves after transection and surgical repair. Furthermore, neuromodulation of peripheral nerve regeneration has been associated with an increase in the neurotrophin BDNF. The roles of BDNF and other neurotrophins in several disorders of the nervous system are discussed in the context of neuromodulation and its augmentation of neurotrophins. Neuromodulation-at least in part through its effect on BDNF and other neurotrophins-will likely play a major role in the treatment (and possibly prevention) of disorders of the nervous system for which neuroproteive pharmacologic agents have traditionally been sought.
Neural control of renal tubular sodium reabsorption of the dog.
DiBona, G F
1978-04-01
The evidence supporting a role for direct neurogenic control of renal tubular sodium reabsorption is reviewed. Electron microscopic and fluorescence histochemical studies demonstrate adrenergic nerve terminals in direct contact with basement membranes of mammalian renal tubular epithelial cells. Low level direct or baroreceptor reflex stimulation of renal sympathetic nerves produces an increase in renal tubular sodium reabsorption without alterations in glomerular filtration rate, renal blood flow, or intrarenal distribution of blood flow. The antinatriuresis is prevented by prior treatment of the kidney with guanethidine or phenoxybenzamine. Possible indirect mediation of the antinatriuresis by other humoral agents known to be released from the kidney upon renal nerve stimulation (angiotensin II, prostaglandin) was excluded by experiments with appropriate blocking agents. Reflex diminutions in renal nerve activity (left atrial distention, stellate ganglion stimulation) produce a decrease in renal tubular sodium reabsorption independent of glomerular filtration rate or renal blood flow. The anatomically described adrenergic innervation of the renal tubules participates in the direct regulation of renal tubular sodium reabsorption.
Chernov, Andrei V.; Dolkas, Jennifer; Hoang, Khang; Angert, Mila; Srikrishna, Geetha; Vogl, Thomas; Baranovskaya, Svetlana; Strongin, Alex Y.; Shubayev, Veronica I.
2015-01-01
To shed light on the early immune response processes in severed peripheral nerves, we performed genome-wide transcriptional profiling and bioinformatics analyses of the proximal (P, regenerating) and distal (D, degenerating) nerve stumps on day 1 in the sciatic nerve axotomy model in rats. Multiple cell death-related pathways were activated in the degenerating D stump, whereas activation of the cytoskeletal motility and gluconeogenesis/glycolysis pathways was most prominent in the P stump of the axotomized nerve. Our bioinformatics analyses also identified the specific immunomodulatory genes of the chemokine, IL, TNF, MHC, immunoglobulin-binding Fc receptor, calcium-binding S100, matrix metalloproteinase, tissue inhibitor of metalloproteinase, and ion channel families affected in both the P and D segments. S100a8 and S100a9 were the top up-regulated genes in both the P and D segments. Stimulation of cultured Schwann cells using the purified S100A8/A9 heterodimer recapitulated activation of the myeloid cell and phagocyte chemotactic genes and pathways, which we initially observed in injured nerves. S100A8/A9 heterodimer injection into the intact nerve stimulated macrophage infiltration. We conclude that, following peripheral nerve injury, an immediate acute immune response occurs both distal and proximal to the lesion site and that the rapid transcriptional activation of the S100a8 and S100a9 genes results in S100A8/A9 hetero- and homodimers, which stimulate the release of chemokines and cytokines by activated Schwann cells and generate the initial chemotactic gradient that guides the transmigration of hematogenous immune cells into the injured nerve. PMID:25792748
Peña, David F.; Engineer, Navzer D.; McIntyre, Christa K.
2012-01-01
Background Fearful experiences can produce long-lasting and debilitating memories. Extinction of conditioned fear requires consolidation of new memories that compete with fearful associations. In human subjects, as well as rats, posttraining stimulation of the vagus nerve enhances memory consolidation. Subjects with posttraumatic stress disorder (PTSD) show impaired extinction of conditioned fear. The objective of this study was to determine whether vagus nerve stimulation (VNS) can enhance the consolidation of extinction of conditioned fear. Methods Male Sprague-Dawley rats were trained on an auditory fear conditioning task followed by 1–10 days of extinction training. Treatment with vagus nerve or sham stimulation was administered concurrently with exposure to the fear conditioned stimulus. Another group was given VNS and extinction training but the VNS was not paired with exposure to conditioned cues. Retention of fear conditioning was tested 24 hours after each treatment. Results VNS paired with exposure to conditioned cues enhanced the extinction of conditioned fear. After a single extinction trial, rats given VNS stimulation demonstrated a significantly lower level of freezing, compared to that of sham controls. When extinction trials were extended to 10 days, paired VNS accelerated extinction of the conditioned response. Conclusions Extinction paired with VNS is more rapid than extinction paired with sham stimulation. As it is currently approved by the Federal Food and Drug Administration for depression and seizure prevention, VNS is a readily-available and promising adjunct to exposure therapy for the treatment of severe anxiety disorders. PMID:23245749
Neuromodulation of chronic headaches: position statement from the European Headache Federation
2013-01-01
The medical treatment of patients with chronic primary headache syndromes (chronic migraine, chronic tension-type headache, chronic cluster headache, hemicrania continua) is challenging as serious side effects frequently complicate the course of medical treatment and some patients may be even medically intractable. When a definitive lack of responsiveness to conservative treatments is ascertained and medication overuse headache is excluded, neuromodulation options can be considered in selected cases. Here, the various invasive and non-invasive approaches, such as hypothalamic deep brain stimulation, occipital nerve stimulation, stimulation of sphenopalatine ganglion, cervical spinal cord stimulation, vagus nerve stimulation, transcranial direct current stimulation, repetitive transcranial magnetic stimulation, and transcutaneous electrical nerve stimulation are extensively published although proper RCT-based evidence is limited. The European Headache Federation herewith provides a consensus statement on the clinical use of neuromodulation in headache, based on theoretical background, clinical data, and side effect of each method. This international consensus further gives recommendations for future studies on these new approaches. In spite of a growing field of stimulation devices in headaches treatment, further controlled studies to validate, strengthen and disseminate the use of neurostimulation are clearly warranted. Consequently, until these data are available any neurostimulation device should only be used in patients with medically intractable syndromes from tertiary headache centers either as part of a valid study or have shown to be effective in such controlled studies with an acceptable side effect profile. PMID:24144382
Measurement of Young's modulus in the in vivo human vocal folds.
Tran, Q T; Berke, G S; Gerratt, B R; Kreiman, J
1993-08-01
Currently, surgeons have no objective means to evaluate and optimize results of phonosurgery intraoperatively. Instead, they usually judge the vocal folds subjectively by visual inspection or by listening to the voice. This paper describes a new device that measures Young's (elastic) modulus values for the human vocal fold intraoperatively. Physiologically, the modulus of the vocal fold may be important in determining the nature of vocal fold vibration in normal and pathologic states. This study also reports the effect of recurrent laryngeal nerve stimulation on Young's modulus of the human vocal folds, measured by means of transcutaneous nerve stimulation techniques. Young's modulus increased with increases in current stimulation to the recurrent laryngeal nerve. Ultimately, Young's modulus values may assist surgeons in optimizing the results of various phonosurgeries.
Kogan, M I; Obeĭd, M T; Siziakin, D V
2007-01-01
Rupture of the cavernous bodies is a serious penile trauma which may result in severe long-term consequences. Standard suturing of the cavernous body is accompanied with posttraumatic complications: erectile dysfunction and distortion of the penis. The results of examination and treatment of 38 patients with rupture of the tunica albuginea of the penile cavernous bodies are presented. The technique of the cavernous body wound suturing was perfected. Long-term sequences of fracture of the penis in conservative policy and different methods of cavernous body wound suturing are compared.
Stimulus waveform determines the characteristics of sensory nerve action potentials.
Pereira, Pedro; Leote, João; Cabib, Christopher; Casanova-Molla, Jordi; Valls-Sole, Josep
2016-03-01
In routine nerve conduction studies supramaximal electrical stimuli generate sensory nerve action potentials by depolarization of nerve fibers under the cathode. However, stimuli of submaximal intensity may give rise to action potentials generated under the anode. We tested if this phenomenon depends on the characteristics of stimulus ending. We added a circuit to our stimulation device that allowed us to modify the end of the stimulus by increasing the time constant of the decay phase. Increasing the fall time caused a reduction of anode action potential (anAP) amplitude, and eventually abolished it, in all tested subjects. We subsequently examined the stimulus waveform in a series of available electromyographs stimulators and found that the anAP could only be obtained with stimulators that issued stimuli ending sharply. Our results prove that the anAP is generated at stimulus end, and depends on the sharpness of current shut down. Electromyographs produce stimuli of varying characteristics, which limits the reproducibility of anAP results by interested researchers. The study of anodal action potentials might be a useful tool to have a quick appraisal of distal human sensory nerve excitability. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Sacral neuromodulation for women with Fowler's syndrome.
Swinn, M J; Kitchen, N D; Goodwin, R J; Fowler, C J
2000-10-01
Neuromodulation of the sacral nerves has been found to be an effective therapy for a variety of lower urinary tract dysfunctions. The reported success rate for the period of trial stimulation (peripheral nerve evaluation test) prior to permanent implantation of a sacral nerve stimulator is variable, but generally reported to be in the region of 30-50%. We present here the results of the peripheral nerve evaluation test in 38 patients with urinary retention. 34 of the 38 had been found to have an abnormality of their striated urethral sphincter on electromyography using a concentric needle electrode, i.e., they had the disorder which was described by Fowler and coworkers in 1988. The overall success rate in this group was 68%. We believe that our relatively high success rate is due to sacral neuromodulation working via a mechanism which involves the urethral sphincter, an abnormality which had been demonstrated in 89% of these patients. Twelve of the patients subsequently underwent permanent implantation of a sacral nerve stimulator, and all of them have experienced a return of voiding. However, in 2 patients, there is a persisting need for self-catheterization. There is, however, a high reoperation rate.
Alavi, Cyrus Emir; Asgari, Seyed Alaeddin; Falahatkar, Siavash; Rimaz, Siamak; Naghipour, Mohammadreza; Khoshrang, Hossein; Jafari, Mehdi; Herfeh, Nadia
2017-01-01
Objective To determine whether spinal anesthesia combined with obturator nerve blockade (SOB) is effective in preventing obturator nerve stimulation, jerking and bladder perforation during transurethral resection of bladder tumor (TURBT). Material and methods In this clinical trial, 30 patients were randomly divided into two groups: spinal anesthesia (SA) and SOB. In SA group, 2.5 cc of 0.5% bupivacaine was injected intrathecally using a 25-gauge spinal needle and in SOB after spinal anesthesia, a classic obturator nerve blockade was performed by using nerve stimulation technique. Results There was a statistically significant difference between jerking in both groups (p=0.006). During the TURBT, surgeon satisfaction was significantly higher in SOB group compared to SA group (p=0.006). There was no significant correlation between sex, patient age and location of bladder tumor between the groups (p>0.05). Conclusion Obturator nerve blockade by using 15 cc lidocaine 1% is effective in preventing adductor muscle spasms during TURBT. PMID:29201516
The sympathetic mechanism in the isolated pulmonary artery of the rabbit
Bevan, J. A.; Su, C.
1964-01-01
The nature of postganglionic sympathetic nervous transmission to vascular muscle in vitro was studied using the recurrent cardiac nerve-pulmonary artery preparation of the rabbit. Experiments, similar to those which in other tissues have provided evidence to support a role for acetylcholine at the sympathetic postganglionic nerve-effector cell junction, were carried out. The contractile response of the isolated artery to acetylcholine was blocked completely by atropine. High concentrations of acetylcholine and of hemicholinium had no effect on the contractile response to sympathetic nerve stimulation. Physostigmine, atropine and hemicholinium were without influence on the relationship between nerve stimulus frequency and response. Yohimbine, bretylium and reserpine blocked completely the response to nerve stimulation but did not affect that to applied acetylcholine. These results support the view that transmission in this preparation at the sympathetic postganglionic nerve-effector cell junction is mediated by an adrenaline-like transmitter and provide no evidence for the view that acetylcholne is involved at this site. PMID:14126048
Beta electron fluxes inside a magnetic plasma cavern: Calculation and comparison with experiment
NASA Astrophysics Data System (ADS)
Stupitskii, E. L.; Smirnov, E. V.; Kulikova, N. A.
2010-12-01
We study the possibility of electrostatic blanking of beta electrons in the expanding spherical blob of a radioactive plasma in a rarefied ionosphere. From numerical studies on the dynamics of beta electrons departing a cavern, we obtain the form of a function that determines the portion of departing electrons and calculate the flux density of beta electrons inside the cavern in relation to the Starfish Prime nuclear blast. We show that the flux density of electrons in geomagnetic flux tubes and inside the cavern depend on a correct allowance for the quantity of beta electrons returning to the cavern. On the basis of a physical analysis, we determine the approximate criterion for the return of electrons from a geomagnetic flux tube to the cavern. We compare calculation results in terms of the flux density of beta electrons inside the cavern with the recently published experimental results from operation Starfish Prime.
Cavernous sinus thrombosis caused by contralateral sphenoid sinusitis: a case report
2013-01-01
Objective To report a rare case of unilateral cavernous sinus thrombosis caused by contralateral sphenoid sinusitis. Case report A 33-year-old female visited our hospital for severe, right-sided, temporal headache, chemosis, periorbital edema, and proptosis. These signs were associated with congested erythematous nasal mucosa with purulent discharge from the right superior nasal meatus. Contrast enhanced CT showed dilated left superior ophthalmic vein, suggestive of thrombosis, contrast enhancement of the left cavernous sinuses, and dilation of cavernous sinus, indicating cavernous sinus inflammation. The right maxillary, ethmoid and sphenoid sinuses showed mucosal thickening and retention of purulent material. She was diagnosed with cavernous sinus thrombosis caused by contralateral sphenoid sinusitis. All clinical symptoms and signs improved after endoscopic sphenoidotomy and appropriate medical treatment. Conclusions Sphenoiditis can cause contralateral cavernous sinus thrombosis. Early surgical sphenoidotomy and aggressive medical treatment are the cornerstones of successful management of this life-threatening complication. PMID:23497466
Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehgartner, Brian L.; Park, Byoung Yoon
2009-03-01
A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes for strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parametersmore » and the impact on the performance of storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.« less
[Endovascular treatment of carotid-cavernous fistula type A with platinium coils].
Culafić, Slobodan; Juszkat, Robert; Rusović, Sinisa; Stefanović, Dara; Minić, Ljubodrag; Spaić, Milan
2008-12-01
Carotid-cavernous fistulas are abnormal communications between carotid arteries or their branches and the cavernous system caused mostly by trauma. Posttraumatic fistulas represent 70% of all carotid-cavernous fistulas and they are mostly high-flow shunts (type A). This type gives characteristic eye symptoms. This paper presents a 44-year old male patient with carotid-cavernous fistula as a result of penetrating head injury. In clinical presentation the patient had exophthalmos, conjunctival chemosis and weakening of vision on the right eye, headache and diplopia. Digital subtracted angiography showed high-flow carotid-cavernous fistula, which was vascularised from the left carotid artery and from vertebrobasilar artery. Endovascular embolization with platinum coils was performed through the transarterial route (endoarterial approach). Check angiogram confirmed that the fistula was closed and that no new communications developed. Embolization of complex carotid-cavernous fistula type A was successfully performed with platinum coils by endovascular approach.
NASA Astrophysics Data System (ADS)
Guiraud, David; Andreu, David; Bonnet, Stéphane; Carrault, Guy; Couderc, Pascal; Hagège, Albert; Henry, Christine; Hernandez, Alfredo; Karam, Nicole; Le Rolle, Virginie; Mabo, Philippe; Maciejasz, Paweł; Malbert, Charles-Henri; Marijon, Eloi; Maubert, Sandrine; Picq, Chloé; Rossel, Olivier; Bonnet, Jean-Luc
2016-08-01
Objective. Neural signals along the vagus nerve (VN) drive many somatic and autonomic functions. The clinical interest of VN stimulation (VNS) is thus potentially huge and has already been demonstrated in epilepsy. However, side effects are often elicited, in addition to the targeted neuromodulation. Approach. This review examines the state of the art of VNS applied to two emerging modulations of autonomic function: heart failure and obesity, especially morbid obesity. Main results. We report that VNS may benefit from improved stimulation delivery using very advanced technologies. However, most of the results from fundamental animal studies still need to be demonstrated in humans.
Durfee, William K; Young, Joseph R; Ginz, Hans F
2014-05-01
ICU patients typically are given large amounts of fluid and often develop oedema. The purpose of this study was to evaluate whether the oedema would change inter-electrode resistance and, thus, require a different approach to using non-invasive electrical stimulation of nerves to assess muscle force. Inter-electrode tissue resistance in the lower leg was measured by applying a 300 µs constant current pulse and measuring the current through and voltage across the stimulating electrodes. The protocol was administered to nine ICU patients with oedema, eight surgical patients without oedema and eight healthy controls. No significant difference in inter-electrode resistance was found between the three groups. For all groups, resistance decreased as stimulation current increased. In conclusion, inter-electrode resistance in ICU patients with severe oedema is the same as the resistance in regular surgical patients and healthy controls. This means that non-invasive nerve stimulation devices do not need to be designed to accommodate different resistances when used with oedema patients; however, surface stimulation does require higher current levels with oedema patients because of the increased distance between the skin surface and the targeted nerve or muscle.
Granata, Giuseppe; Di Iorio, Riccardo; Romanello, Roberto; Iodice, Francesco; Raspopovic, Stanisa; Petrini, Francesco; Strauss, Ivo; Valle, Giacomo; Stieglitz, Thomas; Čvančara, Paul; Andreu, David; Divoux, Jean-Louis; Guiraud, David; Wauters, Loic; Hiairrassary, Arthur; Jensen, Winnie; Micera, Silvestro; Rossini, Paolo Maria
2018-06-01
The aim of the paper is to objectively demonstrate that amputees implanted with intraneural interfaces are truly able to feel a sensation in the phantom hand by recording "phantom" somatosensory evoked potentials from the corresponding brain areas. We implanted four transverse intrafascicular multichannel electrodes, available with percutaneous connections to a multichannel electrical stimulator, in the median and ulnar nerves of two left trans-radial amputees. Two channels of the implants that were able to elicit sensations during intraneural nerve stimulation were chosen, in both patients, for recording somatosensory evoked potentials. We recorded reproducible evoked responses by stimulating the median and the ulnar nerves in both cases. Latencies were in accordance with the arrival of somatosensory information to the primary somatosensory cortex. Our results provide evidence that sensations generated by intraneural stimulation are truly perceived by amputees and located in the phantom hand. Moreover, our results strongly suggest that sensations perceived in different parts of the phantom hand result in different evoked responses. Somatosensory evoked potentials obtained by selective intraneural electrical stimulation in amputee patients are a useful tool to provide an objective demonstration of somatosensory feedback in new generation bidirectional prostheses. Copyright © 2018. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Minor, Lloyd B.; Tomko, David L.; Paige, Gary D.
1995-01-01
Electrical stimulation of vestibular-nerve afferents innervating the semicircular canals has been used to identify the extraocular muscles receiving activation or inhibition by individual ampullary nerves. This technique was originally developed by Szentagothai (1950) and led to the description of three neuron reflex arcs that connect each semicircular canal through an interneuron traversing in the region of the medial longitudinal fasciculus to one ipsilateral and one contralateral eye muscle. Selective ampullary nerve stimulation was subsequently used by Cohen and colleagues (Cohen and Suzuki, 1963; Cohen et al., 1964; Suzuki et al., 1964; Cohen et al., 1966) to study movements of the eyes and activation of individual extraocular muscles in response to stimulation of combinations of ampullary nerves. This work led to a description of the now familiar relationships between activation of a semicircular canal ampullary nerves and the anticipated movement in each eye. Disconjugacy of eye movements induced by individual vertical canal stimulation and dependence of the pulling direction of vertical recti and oblique muscles on eye position were also defined in these experiments. Subsequent studies have defined the mechanisms by which externally applied galvanic currents result in a change in vestibular-nerve afferent discharge. The currents appear to act at the spike trigger site. Perilymphatic cathodal currents depolarize the trigger site and lead to excitation whereas anodal currents hyperpolarize and result in inhibition. Afferents innervating all five vestibular endorgans appear to be affected equally by the currents (Goldberg et al., 1984). Irregularly discharging afferents are about 5-10 times more sensitive than regularly discharging ones because of the steeper slope of the former's faster postspike recovery of excitability in encoder sensitivity (Smith and Goldberg, 1986). Response adaptation similar to that noted during acceleration steps is apparent for longer periods of current administration. This adaptation is manifested as a perstimulus return toward resting discharge and poststimulus after-response in the opposite direction (Goldberg et al., 1984; Minor and Goldberg, l991). Cathodal currents (with respect to the perilymphatic space of the vestibule) are excitatory whereas anodal currents are inhibitory. Horizontal eye movements evoked by unilateral galvanic polarizations administered through chronically implanted labyrinthine stimulating electrodes have been studied in alert squirrel monkeys (Minor and Goldberg, 1991). We sought to extend this analysis by recording three-dimensional eye movements during galvanic stimulation. As predicted based upon roughly equal stimulation of ampullary nerves innervating the vertical canals, a substantial torsional component to the nystagmus is noted. The trajectory of torsional slow phases and nystagmus profile after the polarization provide insight into the central mechanisms that influence these responses.
Herschkowitz, Daniel; Kubias, Jana
2018-04-13
Complex regional pain syndrome (CRPS) is a debilitating painful disorder, cryptic in its pathophysiology and refractory condition with limited therapeutic options. Type I CRPS with its variable relationship to trauma has often no discernible fractures or nerve injuries and remains enigmatic in its response to conservative treatment as well as the other limited interventional therapies. Neuromodulation in the form of spinal cord and dorsal root ganglion stimulation (SCS, DRGS) has shown encouraging results, especially of causalgia or CRPS I of lower extremities. Upper extremity CRPS I is far more difficult. To report a case of upper extremity CRPS I treated by wireless peripheral nerve stimulation (WPNS) for its unique features and minimally invasive technique. The system does not involve implantation of battery or its connections. A 47 year old female patient presented with refractory CRPS I following a blunt trauma to her right forearm. As interventional treatment in the form of local anesthetics (Anesthesia of peripheral branches of radial nerve) and combined infusions of ketamine/lidocaine failed to provide any significant relief she opted for WPNS treatment. Based on the topographic distribution, two electrodes (Stimwave Leads: FR4A-RCV-A0 with tines, Generation 1 and FR4A-RCV-B0 with tines, Generation 1), were placed along the course of radial and median nerves under ultrasonography monitoring and guided by intraoperative stimulation. This procedure did not involve implantation of extension cables or the power source. At a frequency of 60 Hz and 300 μs the stimulation induced paresthesia along the distribution of the nerves. Therapeutic relief was observed with high frequency (HF) stimulation (HF 10 kHz/32 μs, 2.0 mA) reducing her pain from a visual analogue scale (VAS) score of 7-4 postoperatively. Three HF stimulations programs were provided at the time of discharge, as she improved in her sensory impairment to touch, pressure and temperature at her first follow up visit. At 5-months she was able to drive, did not require opioids and allodynia disappeared. In a case with difficult CRPS I involving upper extremity, a minimally invasive WPNS of radial and median nerves provided good symptomatic relief. The procedure was tolerated well and both electrodes remained in place without any adverse events. In view of the very limited options currently available to manage CRPS, WPNS can be a promising therapeutic modality.
Cold-induced peripheral nerve damage: involvement of touch receptors of the foot.
Carter, J L; Shefner, J M; Krarup, C
1988-10-01
A 31-year-old male developed paresthesia and numbness of mainly the right foot following exposure to nonfreezing temperatures under moist conditions over a period of 1 week. The symptoms gradually improved over several months. When seen for electrophysiological studies 6 months after the injury, there was no sensory loss on clinical examination, although he continued to complain of distal numbness of the right foot. The right extensor digitorum brevis muscle was atrophic, and the distal motor latency in the peroneal nerve was prolonged. Conduction studies of the right sural nerve showed a predominantly distal diminution of the SAP evoked by electrical stimulation at the dorsum pedis. Action potentials evoked by tactile stimulation of Pacinian corpuscles showed a prolonged latency on the symptomatic side, suggesting that the most pronounced pathological changes in immersion injury may be localized to the very distal portion of the nerve at the nerve fiber-receptor junction.
Ay, Ilknur; Ay, Hakan
2013-01-01
Electrical stimulation of the cervical vagus nerve reduces infarct size by approximately 50% after cerebral ischemia in rats. The mechanism of ischemic protection by vagus nerve stimulation (VNS) is not known. In this study, we investigated whether the infarct reducing effect of VNS was mediated by activation of the parasympathetic vasodilator fibers that originate from the sphenopalatine ganglion (SPG) and innervate the anterior cerebral circulation. We examined the effects of electrical stimulation of the cervical vagus nerve in two groups of rats: one with and one without SPG ablation. Electrical stimulation was initiated 30 min after induction of ischemia, and lasted for 1h. Measurement of infarct size 24h later revealed that the volume of ischemic damage was smaller in those animals that received VNS treatment (41.32 ± 2.07% vs. 24.19 ± 2.62% of the contralateral hemispheric volume, n=6 in both; p<0.05). SPG ablation did not abolish this effect; the reduction in infarct volume following VNS was 58% in SPG-damaged animals, 41% in SPG-intact animals (p>0.05). In both SPG-intact and SPG-damaged animals VNS treatment resulted in better motor outcome (p<0.05 vs. corresponding controls for both). Our findings show that VNS can protect the brain against acute ischemic injury, and that this effect is not mediated by SPG projections. PMID:23273773
A neural interface provides long-term stable natural touch perception.
Tan, Daniel W; Schiefer, Matthew A; Keith, Michael W; Anderson, James Robert; Tyler, Joyce; Tyler, Dustin J
2014-10-08
Touch perception on the fingers and hand is essential for fine motor control, contributes to our sense of self, allows for effective communication, and aids in our fundamental perception of the world. Despite increasingly sophisticated mechatronics, prosthetic devices still do not directly convey sensation back to their wearers. We show that implanted peripheral nerve interfaces in two human subjects with upper limb amputation provided stable, natural touch sensation in their hands for more than 1 year. Electrical stimulation using implanted peripheral nerve cuff electrodes that did not penetrate the nerve produced touch perceptions at many locations on the phantom hand with repeatable, stable responses in the two subjects for 16 and 24 months. Patterned stimulation intensity produced a sensation that the subjects described as natural and without "tingling," or paresthesia. Different patterns produced different types of sensory perception at the same location on the phantom hand. The two subjects reported tactile perceptions they described as natural tapping, constant pressure, light moving touch, and vibration. Changing average stimulation intensity controlled the size of the percept area; changing stimulation frequency controlled sensation strength. Artificial touch sensation improved the subjects' ability to control grasping strength of the prosthesis and enabled them to better manipulate delicate objects. Thus, electrical stimulation through peripheral nerve electrodes produced long-term sensory restoration after limb loss. Copyright © 2014, American Association for the Advancement of Science.
A neural interface provides long-term stable natural touch perception
Tan, Daniel W.; Schiefer, Matthew A.; Keith, Michael W.; Anderson, James Robert; Tyler, Joyce; Tyler, Dustin J.
2017-01-01
Touch perception on the fingers and hand is essential for fine motor control, contributes to our sense of self, allows for effective communication, and aids in our fundamental perception of the world. Despite increasingly sophisticated mechatronics, prosthetic devices still do not directly convey sensation back to their wearers. We show that implanted peripheral nerve interfaces in two human subjects with upper limb amputation provided stable, natural touch sensation in their hands for more than 1 year. Electrical stimulation using implanted peripheral nerve cuff electrodes that did not penetrate the nerve produced touch perceptions at many locations on the phantom hand with repeatable, stable responses in the two subjects for 16 and 24 months. Patterned stimulation intensity produced a sensation that the subjects described as natural and without “tingling,” or paresthesia. Different patterns produced different types of sensory perception at the same location on the phantom hand. The two subjects reported tactile perceptions they described as natural tapping, constant pressure, light moving touch, and vibration. Changing average stimulation intensity controlled the size of the percept area; changing stimulation frequency controlled sensation strength. Artificial touch sensation improved the subjects’ ability to control grasping strength of the prosthesis and enabled them to better manipulate delicate objects. Thus, electrical stimulation through peripheral nerve electrodes produced long-term sensory restoration after limb loss. PMID:25298320
Patterns of motor activity in the isolated nerve cord of the octopus arm.
Gutfreund, Yoram; Matzner, Henry; Flash, Tamar; Hochner, Binyamin
2006-12-01
The extremely flexible octopus arm provides a unique opportunity for studying movement control in a highly redundant motor system. We describe a novel preparation that allows analysis of the peripheral nervous system of the octopus arm and its interaction with the muscular and mechanosensory elements of the arm's intrinsic muscular system. First we examined the synaptic responses in muscle fibers to identify the motor pathways from the axial nerve cord of the arm to the surrounding musculature. We show that the motor axons project to the muscles via nerve roots originating laterally from the arm nerve cord. The motor field of each nerve is limited to the region where the nerve enters the arm musculature. The same roots also carry afferent mechanosensory information from the intrinsic muscle to the axial nerve cord. Next, we characterized the pattern of activity generated in the dorsal roots by electrically stimulating the axial nerve cord. The evoked activity, although far reaching and long lasting, cannot alone account for the arm extension movements generated by similar electrical stimulation. The mismatch between patterns of activity in the isolated cord and in an intact arm may stem from the involvement of mechanosensory feedback in natural arm extension.
NASA Technical Reports Server (NTRS)
Niijima, A.; Jiang, Z. Y.; Daunton, Nancy G.; Fox, Robert A.
1991-01-01
The experiments were conducted in anaesthetized rats. In the first part of the experiments, the effect of CuSO4 on the afferent activity in the gastric branch of the vagus nerve was investigated. Gastric perfusion of CuSO4 solution (0.04 percent and 0.08 percent) provoked an increase in afferent activity. In the second part of the experiments, the reflex effects of gastric perfusion of CuSO4 solution, repetitive stimulation of the gastric vagus nerve, and caloric stimulation of the right vestibular apparatus (5-18 C water) on gastric autonomic outflow were investigated. The results of these experiments showed that these three different types of stimulation caused an inhibition in efferent activity of the gastric vagus nerve and a slight activation of the splanchnic gastric efferents. The summation of the effect of each stimulation was also observed. These results, therefore, provide evidence for a possible integrative inhibitory function of the vagal gastric center as well as an excitatory function of gastric sympathetic motoneurons in relation to motion sickness.
Gebhardt, Nils; Bär, Karl-Jürgen; Boettger, Michael K; Grecksch, Gisela; Keilhoff, Gerburg; Reichart, Rupert; Becker, Axel
2013-01-01
Vagus nerve stimulation (VNS) has been introduced as a therapeutic option for treatment-resistant depression. The neural and chemical mechanisms responsible for the effects of VNS are largely unclear. Bilateral removal of the olfactory bulbs (OBX) is a validated animal model in depression research. We studied the effects of vagus nerve stimulation (VNS) on disturbed one-way active avoidance learning and neurogenesis in the hippocampal dentate gyrus of rats. After a stimulation period of 3 weeks, OBX rats acquired the learning task as controls. In addition, the OBX-related decrease of neuronal differentiated BrdU positive cells in the dentate gyrus was prevented by VNS. This suggests that chronic VNS and changes in hippocampal neurogenesis induced by VNS may also account for the amelioration of behavioral deficits in OBX rats. To the best of our knowledge, this is the first report on the restorative effects of VNS on behavioral function in an animal model of depression that can be compared with the effects of antidepressants. Copyright © 2013 Elsevier Inc. All rights reserved.
Effects of patterned peripheral nerve stimulation on soleus spinal motor neuron excitability
Dileone, Michele; Campolo, Michela; Carrasco-Lopez, Carmen; Moitinho-Ferreira, Fabricia; Gallego-Izquierdo, Tomas; Siebner, Hartwig R.; Valls-Solé, Josep; Aguilar, Juan
2018-01-01
Spinal plasticity is thought to contribute to sensorimotor recovery of limb function in several neurological disorders and can be experimentally induced in animals and humans using different stimulation protocols. In healthy individuals, electrical continuous Theta Burst Stimulation (TBS) of the median nerve has been shown to change spinal motoneuron excitability in the cervical spinal cord as indexed by a change in mean H-reflex amplitude in the flexor carpi radialis muscle. It is unknown whether continuous TBS of a peripheral nerve can also shift motoneuron excitability in the lower limb. In 26 healthy subjects, we examined the effects of electrical TBS given to the tibial nerve in the popliteal fossa on the excitability of lumbar spinal motoneurons as measured by H-reflex amplitude of the soleus muscle evoked by tibial nerve stimulation. Continuous TBS was given at 110% of H-reflex threshold intensity and compared to non-patterned regular electrical stimulation at 15 Hz. To disclose any pain-induced effects, we also tested the effects of TBS at individual sensory threshold. Moreover, in a subgroup of subjects we evaluated paired-pulse inhibition of H-reflex. Continuous TBS at 110% of H-reflex threshold intensity induced a short-term reduction of H-reflex amplitude. The other stimulation conditions produced no after effects. Paired-pulse H-reflex inhibition was not modulated by continuous TBS or non-patterned repetitive stimulation at 15 Hz. An effect of pain on the results obtained was discarded, since non-patterned 15 Hz stimulation at 110% HT led to pain scores similar to those induced by EcTBS at 110% HT, but was not able to induce any modulation of the H reflex amplitude. Together, the results provide first time evidence that peripheral continuous TBS induces a short-lasting change in the excitability of spinal motoneurons in lower limb circuitries. Future studies need to investigate how the TBS protocol can be optimized to produce a larger and longer effect on spinal cord physiology and whether this might be a useful intervention in patients with excessive excitability of the spinal motorneurons. PMID:29451889
Melman, A; Biggs, G; Davies, K; Zhao, W; Tar, M T; Christ, G J
2008-03-01
Previous reports have demonstrated that gene transfer with the alpha, or pore-forming, subunit of the human Maxi-K channel (hSlo) restores the decline in erectile capacity observed in established rat models of diabetes and aging. Preliminary data from a human clinical trial also showed safety and potential efficacy in 11 men treated with the same plasmid construct expressing the Maxi-K channel. In all instances, the original plasmid was driven by the heterologous cytomegalovirus promoter which is broadly active in a wide variety of cell and tissue types. To more precisely determine the contribution of the corporal myocyte to the observed physiological effects in vivo, we report here our initial work using a distinct vector (pSMAA-hSlo) in which hSlo gene expression was driven off the mouse smooth muscle alpha-actin (SMAA) promoter. Specifically, older rats, with diminished erectile capacity, were given a single intracorporal injection with either 100 mug pVAX-hSlo or 10, 100 or 1000 mug pSMAA-hSlo, or vector or vehicle alone. Significantly increased intracavernous pressure (ICP) responses to cavernous nerve stimulation were observed for all doses of both plasmids encoding hSlo, relative to control injections. These data confirm and extend previous observations to document that smooth muscle cell-specific expression of hSlo in corporal tissue is both necessary and sufficient to restore erectile function in aging rats.
NASA Astrophysics Data System (ADS)
Moon, Jiwon; Yeo, In Wook
2013-04-01
Underground unlined caverns have been constructed in fractured rocks to stockpile oil and petroleum products, where they are hydraulically contained by natural groundwater pressure. However, for the case that natural groundwater pressure is not maintained at the required level, water curtain boreholes, through which water is injected, are often constructed above the cavern as engineering barrier to secure water pressure enough to overwhelm the operational pressure of the cavern. For secure containment of oil and petroleum products inside the cavern, it is essential to keep water pressure around the cavern higher than operational pressure of the cavern using either natural groundwater pressure or engineering barrier. In the Republic of Korea, a number of underground stockpile bases are being operated by Korea National Oil Corporation (KNOC) and private companies, most of which have water curtain system. The criterion that KNOC adopts for water curtain system design and operation such as the vertical distance from the cavern and operational injection rate is based on the Åberg hypothesis that the vertical hydraulic gradient should be larger than one. The criterion has been used for maintaining oil storage cavern without its thorough review. In this study, systematic numerical works have been done for reviewing the Åberg criterion. As groundwater predominantly takes places through fractures in underground caverns, discrete fracture modeling approach is essential for this study. Fracture data, obtained from boreholes drilled at the stage of site investigation at the Yeosu stockpile base in Korea, were statistically analyzed in terms of orientation and intensity, which were used to generate the site descriptive three dimensional fracture networks. Then, groundwater flow modeling has been carried out for the fracture networks. Constant head boundaries were applied along the circumference of the cavern and water curtain boreholes. Main flow channel and hydraulic connectivity between water curtain boreholes and the caverns have been identified, along which hydraulic heads are monitored to find out whether the required hydraulic pressure is maintained around the cavern. The flow modeling has been repeatedly carried out at different constant head boundary conditions to create the criterion for the optimal operation of water curtain system.