Science.gov

Sample records for cavitation bubble growth

  1. Mechanics of collapsing cavitation bubbles.

    PubMed

    van Wijngaarden, Leen

    2016-03-01

    A brief survey is given of the dynamical phenomena accompanying the collapse of cavitation bubbles. The discussion includes shock waves, microjets and the various ways in which collapsing bubbles produce damage.

  2. Analysis of cavitation bubble dynamics in a liquid

    NASA Technical Reports Server (NTRS)

    Fontenot, L. L.; Lee, Y. C.

    1971-01-01

    General differential equations governing the dynamics of the cavitation bubbles in a liquid were derived. With the assumption of spherical symmetry the governing equations were simplified. Closed form solutions were obtained for simple cases, and numerical solutions were calculated for complicated ones. The growth and the collapse of the bubble were analyzed, oscillations of the bubbles were studied, and the stability of the cavitation bubbles were investigated. The results show that the cavitation bubbles are unstable, and the oscillation is not sinusoidal.

  3. Nonlinear bubble dynamics of cavitation.

    PubMed

    An, Yu

    2012-01-01

    For cavitation clouds generated in a standing sound wave driven by an ultrasonic horn, the nonlinear acoustic wave equation governing cavitation dynamics is numerically solved together with the bubble motion equation under an approximation. This conceptual calculation can qualitatively reproduce the observed characteristics of cavitation.

  4. Discrete Bubble Modeling for Cavitation Bubbles

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Keun; Chahine, Georges; Hsiao, Chao-Tsung

    2007-03-01

    Dynaflow, Inc. has conducted extensive studies on non-spherical bubble dynamics and interactions with solid and free boundaries, vortical flow structures, and other bubbles. From these studies, emerged a simplified Surface Averaged Pressure (SAP) spherical bubble dynamics model and a Lagrangian bubble tracking scheme. In this SAP scheme, the pressure and velocity of the surrounding flow field are averaged on the bubble surface, and then used for the bubble motion and volume dynamics calculations. This model is implemented using the Fluent User Defined Function (UDF) as Discrete Bubble Model (DBM). The Bubble dynamics portion can be solved using an incompressible liquid modified Rayleigh-Plesset equation or a compressible liquid modified Gilmore equation. The Discrete Bubble Model is a very suitable tool for the studies on cavitation inception of foils and turbo machinery, bubble nuclei effects, noise from the bubbles, and can be used in many practical problems in industrial and naval applications associated with flows in pipes, jets, pumps, propellers, ships, and the ocean. Applications to propeller cavitation, wake signatures of waterjet propelled ships, bubble-wake interactions, modeling of cavitating jets, and bubble entrainments around a ship will be presented.

  5. Effect of dissolved gases in water on acoustic cavitation and bubble growth rate in 0.83 MHz megasonic of interest to wafer cleaning.

    PubMed

    Kang, Bong-Kyun; Kim, Min-Su; Park, Jin-Goo

    2014-07-01

    Changes in the cavitation intensity of gases dissolved in water, including H2, N2, and Ar, have been established in studies of acoustic bubble growth rates under ultrasonic fields. Variations in the acoustic properties of dissolved gases in water affect the cavitation intensity at a high frequency (0.83 MHz) due to changes in the rectified diffusion and bubble coalescence rate. It has been proposed that acoustic bubble growth rates rapidly increase when water contains a gas, such as hydrogen faster single bubble growth due to rectified diffusion, and a higher rate of coalescence under Bjerknes forces. The change of acoustic bubble growth rate in rectified diffusion has an effect on the damping constant and diffusivity of gas at the acoustic bubble and liquid interface. It has been suggested that the coalescence reaction of bubbles under Bjerknes forces is a reaction determined by the compressibility and density of dissolved gas in water associated with sound velocity and density in acoustic bubbles. High acoustic bubble growth rates also contribute to enhanced cavitation effects in terms of dissolved gas in water. On the other hand, when Ar gas dissolves into water under ultrasound field, cavitation behavior was reduced remarkably due to its lower acoustic bubble growth rate. It is shown that change of cavitation intensity in various dissolved gases were verified through cleaning experiments in the single type of cleaning tool such as particle removal and pattern damage based on numerically calculated acoustic bubble growth rates.

  6. Cavitation inception from bubble nuclei

    PubMed Central

    Mørch, K. A.

    2015-01-01

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure–time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes. PMID:26442138

  7. The acoustic emissions of cavitation bubbles in stretched vortices.

    PubMed

    Chang, Natasha A; Ceccio, Steven L

    2011-11-01

    Pairs of unequal strength, counter-rotating vortices were produced in order to examine the inception, dynamics, and acoustic emission of cavitation bubbles in rapidly stretching vortices. The acoustic signatures of these cavitation bubbles were characterized during their inception, growth, and collapse. Growing and collapsing bubbles often produced a sharp, broadband, pop sound. The spectrum of these bubbles, and the peak resonant frequency can generally be related to quiescent flow bubble dynamics and corresponding resonant frequencies. However, some elongated cavitation bubbles produced a short tonal burst, or chirp, with frequencies on the order of a few kilohertz. Theses frequencies are too low to be related to resonant frequencies of a bubble in a quiescent flow. Instead, the frequency content of the acoustic signal during bubble inception and growth is related to the volumetric oscillations of the bubble while it interacted with vortical flow that surrounds the bubble (i.e., the resonant frequency of the vortex-bubble system). A relationship was determined between the observed peak frequency of the oscillations, the highly stretched vortex properties, and the water nuclei content. It was found that different cavitation spectra could relate to different flow and fluid properties and therefore would not scale in the same manner.

  8. Sonoporation from Jetting Cavitation Bubbles

    PubMed Central

    Ohl, Claus-Dieter; Arora, Manish; Ikink, Roy; de Jong, Nico; Versluis, Michel; Delius, Michael; Lohse, Detlef

    2006-01-01

    The fluid dynamic interaction of cavitation bubbles with adherent cells on a substrate is experimentally investigated. We find that the nonspherical collapse of bubbles near to the boundary is responsible for cell detachment. High-speed photography reveals that a wall bounded flow leads to the detachment of cells. Cells at the edge of the circular area of detachment are found to be permanently porated, whereas cells at some distance from the detachment area undergo viable cell membrane poration (sonoporation). The wall flow field leading to cell detachment is modeled with a self-similar solution for a wall jet, together with a kinetic ansatz of adhesive bond rupture. The self-similar solution for the δ-type wall jet compares very well with the full solution of the Navier-Stokes equation for a jet of finite thickness. Apart from annular sites of sonoporation we also find more homogenous patterns of molecule delivery with no cell detachment. PMID:16950843

  9. Optical cavitation probe using light scattering from bubble clouds.

    PubMed

    Iida, Yasuo; Lee, Judy; Kozuka, Teruyuki; Yasui, Kyuichi; Towata, Atsuya; Tuziuti, Toru

    2009-04-01

    To understand the behaviour of systems containing clouds of bubbles (multibubble system) in real sonochemical reactors, a new diagnosis method, i.e., optical cavitation probe (OCP), has been proposed. When a laser beam is introduced into the cavitation bubble cloud, the scattered light intensity changes by the collective oscillation of cavitation bubbles. The frequency domain spectrum of the scattered light contains rich information on the cavitation bubble clouds, comparable with the acoustic emission spectra detected by a hydrophone. The significant merits of OCP, such as capability for spatially resolved, non-invasive measurement of the cavitation bubble clouds, robustness even in a violent cavitation field have been experimentally demonstrated.

  10. Sonoluminescence, sonochemistry and bubble dynamics of single bubble cavitation

    NASA Astrophysics Data System (ADS)

    Hatanaka, Shin-ichi

    2012-09-01

    The amount of hydroxyl radicals produced from a single cavitation bubble was quantified by terephthalate dosimetry at various frequencies and pressure amplitudes, while the dynamics of the single bubble was observed by stroboscopic and light-scattering methods. Also, sonoluminescence (SL), sonochemiluminescence (SCL) of luminol, and sodium atom emission (Na*) in the cavitation field were observed. The amount of hydroxyl radicals per cycle as well as the intensity of SL was proportional to pressure amplitude at every frequency performed, and it decreased with increasing frequency. When the single bubble was dancing with a decrease in pressure amplitude, however, the amount of hydroxyl radicals was greater than that for the stable bubble at the higher pressure amplitude and did not significantly decrease with frequency. Furthermore, SCL and Na* were detected only under unstable bubble conditions. These results imply that the instability of bubbles significantly enhances sonochemical efficiency for non-volatile substances in liquid phase.

  11. Cavitation inception by the backscattering of pressure waves from a bubble interface

    NASA Astrophysics Data System (ADS)

    Takahira, Hiroyuki; Ogasawara, Toshiyuki; Mori, Naoto; Tanaka, Moe

    2015-10-01

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble. The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t0 to a characteristic time of wave propagation tS, η = t0/ts, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.

  12. Enhancing acoustic cavitation using artificial crevice bubbles.

    PubMed

    Zijlstra, Aaldert; Fernandez Rivas, David; Gardeniers, Han J G E; Versluis, Michel; Lohse, Detlef

    2015-02-01

    We study the response of pre-defined cavitation nuclei driven continuously in the kHz regime (80, 100 and 200 kHz). The nuclei consist of stabilized gaspockets in cylindrical pits of 30 μm diameter etched in silicon or glass substrates. It is found that above an acoustic pressure threshold the dynamics of the liquid-gas meniscus switches from a stable drum-like vibration to expansion and deformation, frequently resulting in detachment of microbubbles. Just above this threshold small bubbles are continuously and intermittently ejected. At elevated input powers bubble detachment becomes more frequent and cavitation bubble clouds are formed and remain in the vicinity of the pit bubble. Surprisingly, the resulting loss of gas does not lead to deactivation of the pit which can be explained by a rectified gas diffusion process.

  13. Intensely oscillating cavitation bubble in microfluidics

    NASA Astrophysics Data System (ADS)

    Siew-Wan, Ohl; Tandiono; Klaseboer, Evert; Dave, Ow; Choo, Andre; Claus-Dieter, Ohl

    2015-12-01

    This study reports the technical breakthrough in generating intense ultrasonic cavitation in the confinement of a microfluidics channel [1], and applications that has been developed on this platform for the past few years [2,3,4,5]. Our system consists of circular disc transducers (10-20 mm in diameter), the microfluidics channels on PDMS (polydimethylsiloxane), and a driving circuitry. The cavitation bubbles are created at the gas- water interface due to strong capillary waves which are generated when the system is driven at its natural frequency (around 100 kHz) [1]. These bubbles oscillate and collapse within the channel. The bubbles are useful for sonochemistry and the generation of sonoluminescence [2]. When we add bacteria (Escherichia coli), and yeast cells (Pichia pastoris) into the microfluidics channels, the oscillating and collapsing bubbles stretch and lyse these cells [3]. Furthermore, the system is effective (DNA of the harvested intracellular content remains largely intact), and efficient (yield reaches saturation in less than 1 second). In another application, human red blood cells are added to a microchamber. Cell stretching and rapture are observed when a laser generated cavitation bubble expands and collapses next to the cell [4]. A numerical model of a liquid pocket surrounded by a membrane with surface tension which was placed next to an oscillating bubble was developed using the Boundary Element Method. The simulation results showed that the stretching of the liquid pocket occurs only when the surface tension is within a certain range.

  14. The inception of cavitation bubble clouds induced by high-intensity focused ultrasound.

    PubMed

    Chen, Hong; Li, Xiaojing; Wan, Mingxi

    2006-12-22

    In many therapeutic applications of high-intensity focused ultrasound (HIFU) the appearance of cavitation bubbles is unavoidable, whereas the dynamics of the bubbles induced by HIFU have not been clarified. The objective of the present work is to observe the inception process of cavitation bubble clouds generated by HIFU transducer in water using high-speed photography. Sequential images captured within 600 micros after the onset of ultrasound transmission show the dynamics of cavitation bubbles' generation, growth, deformation, expansion and collapse in the focal region. However, when the observation time is narrowed to the initial 145 micros, both the still and streak images reveal that the cavitation bubbles astonishingly stay stable in the focal region for at least 60 micros. The results imply that through adjusting the HIFU exposure time while other physical parameters are appropriately chosen, it might be possible to control the generation of stable cavitation bubbles locally in the focal region.

  15. The inception of cavitation bubble clouds induced by high-intensity focused ultrasound.

    PubMed

    Chen, Hong; Li, Xiaojing; Wan, Mingxi

    2006-12-22

    In many therapeutic applications of high-intensity focused ultrasound (HIFU) the appearance of cavitation bubbles is unavoidable, whereas the dynamics of the bubbles induced by HIFU have not been clarified. The objective of the present work is to observe the inception process of cavitation bubble clouds generated by HIFU transducer in water using high-speed photography. Sequential images captured within 600 micros after the onset of ultrasound transmission show the dynamics of cavitation bubbles' generation, growth, deformation, expansion and collapse in the focal region. However, when the observation time is narrowed to the initial 145 micros, both the still and streak images reveal that the cavitation bubbles astonishingly stay stable in the focal region for at least 60 micros. The results imply that through adjusting the HIFU exposure time while other physical parameters are appropriately chosen, it might be possible to control the generation of stable cavitation bubbles locally in the focal region. PMID:16782158

  16. How Snapping Shrimp Snap: Through Cavitating Bubbles

    NASA Astrophysics Data System (ADS)

    Versluis, Michel; Schmitz, Barbara; von der Heydt, Anna; Lohse, Detlef

    2000-09-01

    The snapping shrimp (Alpheus heterochaelis) produces a loud snapping sound by an extremely rapid closure of its snapper claw. One of the effects of the snapping is to stun or kill prey animals. During the rapid snapper claw closure, a high-velocity water jet is emitted from the claw with a speed exceeding cavitation conditions. Hydrophone measurements in conjunction with time-controlled high-speed imaging of the claw closure demonstrate that the sound is emitted at the cavitation bubble collapse and not on claw closure. A model for the bubble dynamics based on a Rayleigh-Plesset-type equation quantitatively accounts for the time dependence of the bubble radius and for the emitted sound.

  17. Mixture segregation by an inertial cavitation bubble.

    PubMed

    Grossier, R; Louisnard, O; Vargas, Y

    2007-04-01

    Pressure diffusion is a mass diffusion process forced by pressure gradients. It has the ability to segregate two species of a mixture, driving the densest species toward high pressure zones, but requires very large pressure gradients to become noticeable. An inertial cavitation bubble develops large pressure gradients in its vicinity, especially as the bubble rebounds at the end of its collapse, and it is therefore expected that a liquid mixture surrounding such a bubble would become segregated. Theory developed in an earlier paper shows that this is indeed the case for sufficiently large molecules or nano-particles. The main theoretical results are recalled and a possible implication of this segregation phenomenon on the well-known cavitation-enhanced crystals nucleation is proposed.

  18. Multiscale Modeling of Cavitating Bubbly Flows

    NASA Astrophysics Data System (ADS)

    Ma, J.; Hsiao, C.-T.; Chahine, G. L.

    2013-03-01

    Modeling of cavitating bubbly flows is challenging due to the wide range of characteristic lengths of the physics at play: from micrometers (e.g., bubble nuclei radius) to meters (e.g., propeller diameter or sheet cavity length). To address this, we present here a multiscale approach which integrates a Discrete Bubble Model for dispersed microbubbles and a level set N-S solver for macro cavities, along with a mesoscale transition model to bridge the two. This approach was implemented in 3DYNAFScopyright and used to simulate sheet-to-cloud cavitation over a hydrofoil. The hybrid model captures well the full cavitation process starting from free field nuclei and nucleation from solid surfaces. In low pressure region of the foil small nuclei are seen to grow large and eventually merge to form a large scale sheet cavity. A reentrant jet forms under the cavity, travels upstream, and breaks it, resulting in a bubble cloud of a large amount of microbubbles as the broken pockets shrink and travel downstream. This is in good agreement with experimental observations based of sheet lengths and frequency of lift force oscillation. DOE-SBIR, ONR (monitored by Dr. Ki-Han Kim)

  19. Modeling of surface cleaning by cavitation bubble dynamics and collapse.

    PubMed

    Chahine, Georges L; Kapahi, Anil; Choi, Jin-Keun; Hsiao, Chao-Tsung

    2016-03-01

    Surface cleaning using cavitation bubble dynamics is investigated numerically through modeling of bubble dynamics, dirt particle motion, and fluid material interaction. Three fluid dynamics models; a potential flow model, a viscous model, and a compressible model, are used to describe the flow field generated by the bubble all showing the strong effects bubble explosive growth and collapse have on a dirt particle and on a layer of material to remove. Bubble deformation and reentrant jet formation are seen to be responsible for generating concentrated pressures, shear, and lift forces on the dirt particle and high impulsive loads on a layer of material to remove. Bubble explosive growth is also an important mechanism for removal of dirt particles, since strong suction forces in addition to shear are generated around the explosively growing bubble and can exert strong forces lifting the particles from the surface to clean and sucking them toward the bubble. To model material failure and removal, a finite element structure code is used and enables simulation of full fluid-structure interaction and investigation of the effects of various parameters. High impulsive pressures are generated during bubble collapse due to the impact of the bubble reentrant jet on the material surface and the subsequent collapse of the resulting toroidal bubble. Pits and material removal develop on the material surface when the impulsive pressure is large enough to result in high equivalent stresses exceeding the material yield stress or its ultimate strain. Cleaning depends on parameters such as the relative size between the bubble at its maximum volume and the particle size, the bubble standoff distance from the particle and from the material wall, and the excitation pressure field driving the bubble dynamics. These effects are discussed in this contribution.

  20. Bubble-bubble interaction: A potential source of cavitation noise

    NASA Astrophysics Data System (ADS)

    Ida, Masato

    2009-01-01

    The interaction between microbubbles through pressure pulses has been studied to show that it can be a source of cavitation noise. A recent report demonstrated that the acoustic noise generated by a shrimp originates from the collapse of a cavitation bubble produced when the shrimp closes its snapper claw. The recorded acoustic signal contains a broadband noise that consists of positive and negative pulses, but a theoretical model for single bubbles fails to reproduce the negative ones. Using a nonlinear multibubble model, we have shown here that the negative pulses can be explained by considering the interaction of microbubbles formed after the cavitation bubble has collapsed and fragmented: Positive pulses produced at the collapse of the microbubbles hit and impulsively compress neighboring microbubbles to generate reflected pulses whose amplitudes are negative. Discussing the details of the noise generation process, we have found that no negative pulses are generated if the internal pressure of the reflecting bubble is very high when hit by a positive pulse.

  1. On thermonuclear processes in cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Nigmatulin, R. I.; Lahey, R. T., Jr.; Taleyarkhan, R. P.; West, C. D.; Block, R. C.

    2014-09-01

    The theoretical and experimental foundations of so-called bubble nuclear fusion are reviewed. In the nuclear fusion process, a spherical cavitation cluster ˜ 10-2 m in diameter is produced of spherical bubbles at the center of a cylindrical chamber filled with deuterated acetone using a focused acoustic field having a resonant frequency of about 20 kHz. The acoustically-forced bubbles effectuate volume oscillations with sharp collapses during the compression stage. At the final stages of collapse, the bubble cluster emits 2.5 MeV D-D fusion neutron pulses at a rate of ˜ 2000 per second. The neutron yield is ˜ 10^5 s -1. In parallel, tritium nuclei are produced at the same yield. It is shown numerically that, for bubbles having sufficient molecular mass, spherical shock waves develop in the center of the cluster and that these spherical shock waves (microshocks) produce converging shocks within the interior bubbles, which focus energy on the centers of the bubbles. When these shock waves reflect from the centers of the bubbles, extreme conditions of temperature ( ˜ 10^8 K) and density ( ˜ 10^4 kg m -3) arise in a (nano)spherical region ( ˜ 10-7 m in size) that last for ˜ 10-12 s, during which time about ten D-D fusion neutrons and tritium nuclei are produced in the region. A paradoxical result in our experiments is that it is bubble cluster (not streamer) cavitation and the sufficiently high molecular mass of (and hence the low sound speed in) D-acetone ( C3D6O) vapor (as compared, for example, to deuterated water D2O) which are necessary conditions for the formation of convergent spherical microshock waves in central cluster bubbles. It is these waves that allow the energy to be sufficiently focused in the nanospherical regions near the bubble centers for fusion events to occur. The criticism to which the concept of 'bubble fusion' has been subjected in the literature, in particular, most recently in Uspekhi Fizicheskikh Nauk (Physics - Uspekhi) journal, is

  2. Cavitation of electron bubbles in liquid parahydrogen

    NASA Astrophysics Data System (ADS)

    Ancilotto, Francesco; Barranco, Manuel; Navarro, Jesús; Pi, Martí

    2011-12-01

    Within a finite-temperature density functional approach, we have investigated the structure of electron bubbles in liquid parahydrogen below the saturated vapour pressure, determining the critical pressure at which electron bubbles explode as a function of temperature. The electron-parahydrogen interaction has been modelled by a Hartree-type local potential fitted to the experimental value of the conduction band-edge for a delocalized electron in pH2. We have found that the pressure for bubble explosion is, in absolute value, about a factor of two smaller than that of the homogeneous cavitation pressure in the liquid. Comparison with the results obtained within the capillary model shows the limitations of this approximation, especially as temperature increases.

  3. Bubble proliferation in the cavitation field of a shock wave lithotripter.

    PubMed

    Pishchalnikov, Yuri A; Williams, James C; McAteer, James A

    2011-08-01

    Lithotripter shock waves (SWs) generated in non-degassed water at 0.5 and 2 Hz pulse repetition frequency (PRF) were characterized using a fiber-optic hydrophone. High-speed imaging captured the inertial growth-collapse-rebound cycle of cavitation bubbles, and continuous recording with a 60 fps camcorder was used to track bubble proliferation over successive SWs. Microbubbles that seeded the generation of bubble clouds formed by the breakup of cavitation jets and by bubble collapse following rebound. Microbubbles that persisted long enough served as cavitation nuclei for subsequent SWs, as such bubble clouds were enhanced at fast PRF. Visual tracking suggests that bubble clouds can originate from single bubbles.

  4. Cavitation inception by the backscattering of pressure waves from a bubble interface

    SciTech Connect

    Takahira, Hiroyuki Ogasawara, Toshiyuki Mori, Naoto Tanaka, Moe

    2015-10-28

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble. The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t{sub 0} to a characteristic time of wave propagation t{sub S}, η = t{sub 0}/t{sub s}, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.

  5. Nucleus factory on cavitation bubble for amyloid β fibril

    PubMed Central

    Nakajima, Kichitaro; Ogi, Hirotsugu; Adachi, Kanta; Noi, Kentaro; Hirao, Masahiko; Yagi, Hisashi; Goto, Yuji

    2016-01-01

    Structural evolution from monomer to fibril of amyloid β peptide is related to pathogenic mechanism of Alzheimer disease, and its acceleration is a long-running problem in drug development. This study reveals that ultrasonic cavitation bubbles behave as catalysts for nucleation of the peptide: The nucleation reaction is highly dependent on frequency and pressure of acoustic wave, and we discover an optimum acoustical condition, at which the reaction-rate constant for nucleation is increased by three-orders-of magnitudes. A theoretical model is proposed for explaining highly frequency and pressure dependent nucleation reaction, where monomers are captured on the bubble surface during its growth and highly condensed by subsequent bubble collapse, so that they are transiently exposed to high temperatures. Thus, the dual effects of local condensation and local heating contribute to dramatically enhance the nucleation reaction. Our model consistently reproduces the frequency and pressure dependences, supporting its essential applicability. PMID:26912021

  6. Nucleus factory on cavitation bubble for amyloid β fibril.

    PubMed

    Nakajima, Kichitaro; Ogi, Hirotsugu; Adachi, Kanta; Noi, Kentaro; Hirao, Masahiko; Yagi, Hisashi; Goto, Yuji

    2016-01-01

    Structural evolution from monomer to fibril of amyloid β peptide is related to pathogenic mechanism of Alzheimer disease, and its acceleration is a long-running problem in drug development. This study reveals that ultrasonic cavitation bubbles behave as catalysts for nucleation of the peptide: The nucleation reaction is highly dependent on frequency and pressure of acoustic wave, and we discover an optimum acoustical condition, at which the reaction-rate constant for nucleation is increased by three-orders-of magnitudes. A theoretical model is proposed for explaining highly frequency and pressure dependent nucleation reaction, where monomers are captured on the bubble surface during its growth and highly condensed by subsequent bubble collapse, so that they are transiently exposed to high temperatures. Thus, the dual effects of local condensation and local heating contribute to dramatically enhance the nucleation reaction. Our model consistently reproduces the frequency and pressure dependences, supporting its essential applicability. PMID:26912021

  7. Nucleus factory on cavitation bubble for amyloid β fibril.

    PubMed

    Nakajima, Kichitaro; Ogi, Hirotsugu; Adachi, Kanta; Noi, Kentaro; Hirao, Masahiko; Yagi, Hisashi; Goto, Yuji

    2016-02-25

    Structural evolution from monomer to fibril of amyloid β peptide is related to pathogenic mechanism of Alzheimer disease, and its acceleration is a long-running problem in drug development. This study reveals that ultrasonic cavitation bubbles behave as catalysts for nucleation of the peptide: The nucleation reaction is highly dependent on frequency and pressure of acoustic wave, and we discover an optimum acoustical condition, at which the reaction-rate constant for nucleation is increased by three-orders-of magnitudes. A theoretical model is proposed for explaining highly frequency and pressure dependent nucleation reaction, where monomers are captured on the bubble surface during its growth and highly condensed by subsequent bubble collapse, so that they are transiently exposed to high temperatures. Thus, the dual effects of local condensation and local heating contribute to dramatically enhance the nucleation reaction. Our model consistently reproduces the frequency and pressure dependences, supporting its essential applicability.

  8. Nucleus factory on cavitation bubble for amyloid β fibril

    NASA Astrophysics Data System (ADS)

    Nakajima, Kichitaro; Ogi, Hirotsugu; Adachi, Kanta; Noi, Kentaro; Hirao, Masahiko; Yagi, Hisashi; Goto, Yuji

    2016-02-01

    Structural evolution from monomer to fibril of amyloid β peptide is related to pathogenic mechanism of Alzheimer disease, and its acceleration is a long-running problem in drug development. This study reveals that ultrasonic cavitation bubbles behave as catalysts for nucleation of the peptide: The nucleation reaction is highly dependent on frequency and pressure of acoustic wave, and we discover an optimum acoustical condition, at which the reaction-rate constant for nucleation is increased by three-orders-of magnitudes. A theoretical model is proposed for explaining highly frequency and pressure dependent nucleation reaction, where monomers are captured on the bubble surface during its growth and highly condensed by subsequent bubble collapse, so that they are transiently exposed to high temperatures. Thus, the dual effects of local condensation and local heating contribute to dramatically enhance the nucleation reaction. Our model consistently reproduces the frequency and pressure dependences, supporting its essential applicability.

  9. Cavitation Bubble Nucleation by Energetic Particles

    SciTech Connect

    West, C.D.

    1998-12-01

    In the early sixties, experimental measurements using a bubble chamber confirmed quantitatively the thermal spike theory of bubble nucleation by energetic particles: the energy of the slow, heavy alpha decay recoils used in those experiments matched the calculated bubble nucleation energy to within a few percent. It was a triumph, but was soon to be followed by a puzzle. Within a couple of years, experiments on similar liquids, but well below their normal boiling points, placed under tensile stress showed that the calculated bubble nucleation energy was an order of magnitude less than the recoil energy. Why should the theory work so well in the one case and so badly in the other? How did the liquid, or the recoil particle, "know" the difference between the two experiments? Another mathematical model of the same physical process, introduced in 1967, showed qualitatively why different analyses would be needed for liquids with high and low vapor pressures under positive or negative pressures. But, the quantitative agreement between the calculated nucleation energy and the recoil energy was still poor--the former being smaller by a factor of two to three. In this report, the 1967 analysis is extended and refined: the qualitative understanding of the difference between positive and negative pressure nucleation, "boiling" and "cavitation" respectively, is retained, and agreement between the negative pressure calculated to be needed for nucleation and the energy calculated to be available is much improved. A plot of the calculated negative pressure needed to induce bubble formation against the measured value now has a slope of 1.0, although there is still considerable scatter in the individual points.

  10. Supersonic microjets induced by hemispherical cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Gonzalez-Avila, Roberto; Song, Chaolong; Ohl, Claus-Dieter

    2014-11-01

    In recent years methods to produce fast microjets have received significant attention due to their potential to be employed in needle-free injection devices that can provide mass inoculation. In this talk we present a novel technique capable of producing jets that can reach up to 400 m/s. The jets are produced by a device that consists only of two electrodes on a plastic substrate and a tapered hole of 13 ~ 20 μm between them. A short pulse of electric current is applied to the electrodes, then a spark bridges between the electrodes creating a cavitation bubble. Liquid is accelerated through the hole during the expansion and collapse of the bubble producing two separate jets. We found that as the exit velocity of the jet increases the jets become unstable. The second jet exiting the hole, usually faster than the first jet exits as a spray. The effect of viscosity was also studied with silicone oils up to 100 cSt. Finally, we also demonstrate that the jets can penetrate into soft material, thus they have the potential to be used in a needle-free drug-delivery application.

  11. Cavitation bubble behavior inside a liquid jet

    NASA Astrophysics Data System (ADS)

    Robert, Etienne; Lettry, Jacques; Farhat, Mohamed; Monkewitz, Peter A.; Avellan, François

    2007-06-01

    The growth and collapse of laser-induced vapor cavities inside axisymmetric free-falling liquid water jets have been studied. Bubbles of different size are generated at various distances from the jet axis and the effects on the jet interface are recorded by means of ultrafast cinematography. The configuration is characterized by two dimensionless parameters: the bubble to jet diameter ratio δ and the eccentricity coefficient ɛ defined as the radius of bubble generation divided by the jet radius. For high δ and ɛ, microjets and droplets are ejected from the liquid jet at speeds exceeding 100m/s. The observed jet fragmentation shows similarities with experiments conducted on a liquid mercury jet hit by a pulsed proton beam, a candidate configuration for future accelerator based facilities.

  12. Cavitation and bubble dynamics: the Kelvin impulse and its applications.

    PubMed

    Blake, John R; Leppinen, David M; Wang, Qianxi

    2015-10-01

    Cavitation and bubble dynamics have a wide range of practical applications in a range of disciplines, including hydraulic, mechanical and naval engineering, oil exploration, clinical medicine and sonochemistry. However, this paper focuses on how a fundamental concept, the Kelvin impulse, can provide practical insights into engineering and industrial design problems. The pathway is provided through physical insight, idealized experiments and enhancing the accuracy and interpretation of the computation. In 1966, Benjamin and Ellis made a number of important statements relating to the use of the Kelvin impulse in cavitation and bubble dynamics, one of these being 'One should always reason in terms of the Kelvin impulse, not in terms of the fluid momentum…'. We revisit part of this paper, developing the Kelvin impulse from first principles, using it, not only as a check on advanced computations (for which it was first used!), but also to provide greater physical insights into cavitation bubble dynamics near boundaries (rigid, potential free surface, two-fluid interface, flexible surface and axisymmetric stagnation point flow) and to provide predictions on different types of bubble collapse behaviour, later compared against experiments. The paper concludes with two recent studies involving (i) the direction of the jet formation in a cavitation bubble close to a rigid boundary in the presence of high-intensity ultrasound propagated parallel to the surface and (ii) the study of a 'paradigm bubble model' for the collapse of a translating spherical bubble, sometimes leading to a constant velocity high-speed jet, known as the Longuet-Higgins jet.

  13. Numerical Model and Validation for Cryogenic High-Speed Cavitating Flow Based on Bubble Size Distribution Model in Consideration of Rigorous Heat Transfer around Bubble and Bubble Oscillation

    NASA Astrophysics Data System (ADS)

    Ito, Yutaka

    A bubble size distribution model has been developed by the author for a cryogenic high-speed cavitating flow of a turbo-pump in a liquid fuel rocket engine. In this model, bubble growth/decay and bubble advection are solved for each class of the bubble size, strictly mass, when there are various mass bubbles in the same calculation region. The above calculations are treated as Eulerian approach with respect to the bubble mass. The numerical results based on this model have agreed with the experimental results as a whole, however, some inconsistency still remained. It is suspected that the model of the bubble growth/decay causes the difference between the numerical and experimental results because heat transfer around the bubble was approximately computed by an analytical solution of unsteady heat transfer based on the elapsed-time from the bubble nucleation. In this paper, a new bubble size distribution model was redeveloped, in which the bubble growth/decay calculations employ a new method combining two rigorous methods, namely, a Rayleigh-Plesset equation for bubble oscillation, and a heat conduction equation in a thermal boundary layer around the bubble to evaluate mass rate of evaporation/condensation.

  14. Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al-10Cu melts.

    PubMed

    Xu, W W; Tzanakis, I; Srirangam, P; Mirihanage, W U; Eskin, D G; Bodey, A J; Lee, P D

    2016-07-01

    Knowledge of the kinetics of gas bubble formation and evolution under cavitation conditions in molten alloys is important for the control casting defects such as porosity and dissolved hydrogen. Using in situ synchrotron X-ray radiography, we studied the dynamic behaviour of ultrasonic cavitation gas bubbles in a molten Al-10 wt%Cu alloy. The size distribution, average radius and growth rate of cavitation gas bubbles were quantified under an acoustic intensity of 800 W/cm(2) and a maximum acoustic pressure of 4.5 MPa (45 atm). Bubbles exhibited a log-normal size distribution with an average radius of 15.3 ± 0.5 μm. Under applied sonication conditions the growth rate of bubble radius, R(t), followed a power law with a form of R(t)=αt(β), and α=0.0021 &β=0.89. The observed tendencies were discussed in relation to bubble growth mechanisms of Al alloy melts. PMID:26964960

  15. Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al-10Cu melts.

    PubMed

    Xu, W W; Tzanakis, I; Srirangam, P; Mirihanage, W U; Eskin, D G; Bodey, A J; Lee, P D

    2016-07-01

    Knowledge of the kinetics of gas bubble formation and evolution under cavitation conditions in molten alloys is important for the control casting defects such as porosity and dissolved hydrogen. Using in situ synchrotron X-ray radiography, we studied the dynamic behaviour of ultrasonic cavitation gas bubbles in a molten Al-10 wt%Cu alloy. The size distribution, average radius and growth rate of cavitation gas bubbles were quantified under an acoustic intensity of 800 W/cm(2) and a maximum acoustic pressure of 4.5 MPa (45 atm). Bubbles exhibited a log-normal size distribution with an average radius of 15.3 ± 0.5 μm. Under applied sonication conditions the growth rate of bubble radius, R(t), followed a power law with a form of R(t)=αt(β), and α=0.0021 &β=0.89. The observed tendencies were discussed in relation to bubble growth mechanisms of Al alloy melts.

  16. The recreation of a unique shrimp's mechanically induced cavitation bubble

    NASA Astrophysics Data System (ADS)

    Miller, Ryan; Dougherty, Christopher; Eliasson, Veronica; Khanolkar, Gauri

    2014-11-01

    The Alpheus heterochaelis, appropriately nicknamed the ``pistol shrimp,'' possesses an oversized claw that creates a cavitation bubble upon rapid closure. The implosion of this bubble results in a shock wave that can stun or even kill the shrimp's prey (Versluis et al., 2000). Additionally, the implosion is so violent that sonoluminescence may occur. This light implies extreme temperatures, which have been recorded to reach as high as 10,000 K (Roach, 2001). By developing an analogous mechanism to the oversized claw, the goal of this experiment is to verify that cavitation can be produced similar to that of the pistol shrimp in nature as well as to analyze the resulting shock wave and sonoluminescence. High-speed schlieren imaging was used to observe the shock dynamics. Furthermore, results on cavitation collapse and light emission will be presented. USC Provost Undergraduate Research Fellowship/Rose Hills Undergraduate Research Fellowship.

  17. Quantitative assessment of reactive oxygen sonochemically generated by cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Yasuda, Jun; Miyashita, Takuya; Taguchi, Kei; Yoshizawa, Shin; Umemura, Shin-ichiro

    2015-07-01

    Acoustic cavitation bubbles can induce not only a thermal bioeffect but also a chemical bioeffect. When cavitation bubbles collapse and oscillate violently, they produce reactive oxygen species (ROS) that cause irreversible changes to the tissue. A sonosensitizer can promote such ROS generation. A treatment method using a sonosensitizer is called sonodynamic treatment. Rose bengal (RB) is one of the sonosensitizers whose in vivo and in vitro studies have been reported. In sonodynamic treatment, it is important to produce ROS at a high efficiency. For the efficient generation of ROS, a triggered high-intensity focused ultrasound (HIFU) sequence has been proposed. In this study, cavitation bubbles were generated in a chamber where RB solution was sealed, and a high-speed camera captured the behavior of these cavitation bubbles. The amount of ROS was also quantified by a potassium iodide (KI) method and compared with high-speed camera pictures to investigate the effectiveness of the triggered HIFU sequence. As a result, ROS could be obtained efficiently by this sequence.

  18. Energy partition at the collapse of spherical cavitation bubbles.

    PubMed

    Tinguely, M; Obreschkow, D; Kobel, P; Dorsaz, N; de Bosset, A; Farhat, M

    2012-10-01

    Spherically collapsing cavitation bubbles produce a shock wave followed by a rebound bubble. Here we present a systematic investigation of the energy partition between the rebound and the shock. Highly spherical cavitation bubbles are produced in microgravity, which suppresses the buoyant pressure gradient that otherwise deteriorates the sphericity of the bubbles. We measure the radius of the rebound bubble and estimate the shock energy as a function of the initial bubble radius (2-5.6mm) and the liquid pressure (10-80kPa). Those measurements uncover a systematic pressure dependence of the energy partition between rebound and shock. We demonstrate that these observations agree with a physical model relying on a first-order approximation of the liquid compressibility and an adiabatic treatment of the noncondensable gas inside the bubble. Using this model we find that the energy partition between rebound and shock is dictated by a single nondimensional parameter ξ=Δpγ6/[p(g0)1/γ(ρc2)1-1/γ], where Δp=p∞ - pv is the driving pressure, p∞ is the static pressure in the liquid, pv is the vapor pressure, pg0 is the pressure of the noncondensable gas at the maximal bubble radius, γ is the adiabatic index of the noncondensable gas, ρ is the liquid density, and c is the speed of sound in the liquid.

  19. Energy partition at the collapse of spherical cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Tinguely, M.; Obreschkow, D.; Kobel, P.; Dorsaz, N.; de Bosset, A.; Farhat, M.

    2012-10-01

    Spherically collapsing cavitation bubbles produce a shock wave followed by a rebound bubble. Here we present a systematic investigation of the energy partition between the rebound and the shock. Highly spherical cavitation bubbles are produced in microgravity, which suppresses the buoyant pressure gradient that otherwise deteriorates the sphericity of the bubbles. We measure the radius of the rebound bubble and estimate the shock energy as a function of the initial bubble radius (2-5.6mm) and the liquid pressure (10-80kPa). Those measurements uncover a systematic pressure dependence of the energy partition between rebound and shock. We demonstrate that these observations agree with a physical model relying on a first-order approximation of the liquid compressibility and an adiabatic treatment of the noncondensable gas inside the bubble. Using this model we find that the energy partition between rebound and shock is dictated by a single nondimensional parameter ξ=Δpγ6/[pg01/γ(ρc2)1-1/γ], where Δp=p∞-pv is the driving pressure, p∞ is the static pressure in the liquid, pv is the vapor pressure, pg0 is the pressure of the noncondensable gas at the maximal bubble radius, γ is the adiabatic index of the noncondensable gas, ρ is the liquid density, and c is the speed of sound in the liquid.

  20. Cavitation and bubble dynamics: the Kelvin impulse and its applications

    PubMed Central

    Blake, John R.; Leppinen, David M.; Wang, Qianxi

    2015-01-01

    Cavitation and bubble dynamics have a wide range of practical applications in a range of disciplines, including hydraulic, mechanical and naval engineering, oil exploration, clinical medicine and sonochemistry. However, this paper focuses on how a fundamental concept, the Kelvin impulse, can provide practical insights into engineering and industrial design problems. The pathway is provided through physical insight, idealized experiments and enhancing the accuracy and interpretation of the computation. In 1966, Benjamin and Ellis made a number of important statements relating to the use of the Kelvin impulse in cavitation and bubble dynamics, one of these being ‘One should always reason in terms of the Kelvin impulse, not in terms of the fluid momentum…’. We revisit part of this paper, developing the Kelvin impulse from first principles, using it, not only as a check on advanced computations (for which it was first used!), but also to provide greater physical insights into cavitation bubble dynamics near boundaries (rigid, potential free surface, two-fluid interface, flexible surface and axisymmetric stagnation point flow) and to provide predictions on different types of bubble collapse behaviour, later compared against experiments. The paper concludes with two recent studies involving (i) the direction of the jet formation in a cavitation bubble close to a rigid boundary in the presence of high-intensity ultrasound propagated parallel to the surface and (ii) the study of a ‘paradigm bubble model’ for the collapse of a translating spherical bubble, sometimes leading to a constant velocity high-speed jet, known as the Longuet-Higgins jet. PMID:26442141

  1. Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field.

    PubMed

    Chen, Hong; Li, Xiaojing; Wan, Mingxi

    2006-09-01

    Cavitation bubbles have been recognized as being essential to many applications of ultrasound. Temporal evolution and spatial distribution of cavitation bubble clouds induced by a focused ultrasound transducer of 1.2 MHz center frequency are investigated by high-speed photography. It is revealed that at a total acoustic power of 72 W the cavitation bubble cloud first emerges in the focal region where cavitation bubbles are observed to generate, grow, merge and collapse during the initial 600 micros. The bubble cloud then grows upward to the post-focal region, and finally becomes visible in the pre-focal region. The structure of the final bubble cloud is characterized by regional distribution of cavitation bubbles in the ultrasound field. The cavitation bubble cloud structure remains stable when the acoustic power is increased from 25 W to 107 W, but it changes to a more violent form when the acoustic power is further increased to 175 W.

  2. Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field.

    PubMed

    Chen, Hong; Li, Xiaojing; Wan, Mingxi

    2006-09-01

    Cavitation bubbles have been recognized as being essential to many applications of ultrasound. Temporal evolution and spatial distribution of cavitation bubble clouds induced by a focused ultrasound transducer of 1.2 MHz center frequency are investigated by high-speed photography. It is revealed that at a total acoustic power of 72 W the cavitation bubble cloud first emerges in the focal region where cavitation bubbles are observed to generate, grow, merge and collapse during the initial 600 micros. The bubble cloud then grows upward to the post-focal region, and finally becomes visible in the pre-focal region. The structure of the final bubble cloud is characterized by regional distribution of cavitation bubbles in the ultrasound field. The cavitation bubble cloud structure remains stable when the acoustic power is increased from 25 W to 107 W, but it changes to a more violent form when the acoustic power is further increased to 175 W. PMID:16571378

  3. Cavitation in confined water: ultra-fast bubble dynamics

    NASA Astrophysics Data System (ADS)

    Vincent, Olivier; Marmottant, Philippe

    2012-02-01

    In the hydraulic vessels of trees, water can be found at negative pressure. This metastable state, corresponding to mechanical tension, is achieved by evaporation through a porous medium. It can be relaxed by cavitation, i.e. the sudden nucleation of vapor bubbles. Harmful for the tree due to the subsequent emboli of sap vessels, cavitation is on the contrary used by ferns to eject spores very swiftly. We will focus here on the dynamics of the cavitation bubble, which is of primary importance to explain the previously cited natural phenomena. We use the recently developed method of artificial tress, using transparent hydrogels as the porous medium. Our experiments, on water confined in micrometric hydrogel cavities, show an extremely fast dynamics: bubbles are nucleated at the microsecond timescale. For cavities larger than 100 microns, the bubble ``rings'' with damped oscillations at MHz frequencies, whereas for smaller cavities the oscillations become overdamped. This rich dynamics can be accounted for by a model we developed, leading to a modified Rayleigh-Plesset equation. Interestingly, this model predicts the impossibility to nucleate bubbles above a critical confinement that depends on liquid negative pressure and corresponds to approximately 100 nm for 20 MPa tensions.

  4. Evolution of bubble clouds induced by pulsed cavitational ultrasound therapy - histotripsy.

    PubMed

    Xu, Zhen; Raghavan, M; Hall, T L; Mycek, M-A; Fowlkes, J B

    2008-05-01

    Mechanical tissue fractionation can be achieved using successive, high-intensity ultrasound pulses in a process termed histotripsy. Histotripsy has many potential clinical applications where noninvasive tissue removal is desired. The primary mechanism for histotripsy is believed to be cavitation. Using fast-gated imaging, this paper studies the evolution of a cavitating bubble cloud induced by a histotripsy pulse (10 and 14 cycles) at peak negative pressures exceeding 21MPa. Bubble clouds are generated inside a gelatin phantom and at a tissue-water interface, representing two situations encountered clinically. In both environments, the imaging results show that the bubble clouds share the same evolutionary trend. The bubble cloud and individual bubbles in the cloud were generated by the first cycle of the pulse, grew with each cycle during the pulse, and continued to grow and collapsed several hundred microseconds after the pulse. For example, the bubbles started under 10 microm, grew to 50 microm during the pulse, and continued to grow 100 microm after the pulse. The results also suggest that the bubble clouds generated in the two environments differ in growth and collapse duration, void fraction, shape, and size. This study furthers our understanding of the dynamics of bubble clouds induced by histotripsy.

  5. Effect of supercritical water shell on cavitation bubble dynamics

    NASA Astrophysics Data System (ADS)

    Shao, Wei-Hang; Chen, Wei-Zhong

    2015-05-01

    Based on reported experimental data, a new model for single cavitation bubble dynamics is proposed considering a supercritical water (SCW) shell surrounding the bubble. Theoretical investigations show that the SCW shell apparently slows down the oscillation of the bubble and cools the gas temperature inside the collapsing bubble. Furthermore, the model is simplified to a Rayleigh-Plesset-like equation for a thin SCW shell. The dependence of the bubble dynamics on the thickness and density of the SCW shell is studied. The results show the bubble dynamics depends on the thickness but is insensitive to the density of the SCW shell. The thicker the SCW shell is, the smaller are the wall velocity and the gas temperature in the bubble. In the authors’ opinion, the SCW shell works as a buffering agent. In collapsing, it is compressed to absorb a good deal of the work transformed into the bubble internal energy during bubble collapse so that it weakens the bubble oscillations. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174145 and 11334005).

  6. A Study of Cavitation-Ignition Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Jacqmin, David A.

    2005-01-01

    We present the results of an experimental and computational study of the physics and chemistry of cavitation-ignition bubble combustion (CIBC), a process that occurs when combustible gaseous mixtures are ignited by the high temperatures found inside a rapidly collapsing bubble. The CIBC process was modeled using a time-dependent compressible fluid-dynamics code that includes finite-rate chemistry. The model predicts that gas-phase reactions within the bubble produce CO and other gaseous by-products of combustion. In addition, heat and mechanical energy release through a bubble volume-expansion phase are also predicted by the model. We experimentally demonstrate the CIBC process using an ultrasonically excited cavitation flow reactor with various hydrocarbon-air mixtures in liquid water. Low concentrations (< 160 ppm) of carbon monoxide (CO) emissions from the ultrasonic reactor were measured, and found to be proportional to the acoustic excitation power. The results of the model were consistent with the measured experimental results. Based on the experimental findings, the computational model, and previous reports of the "micro-diesel effect" in industrial hydraulic systems, we conclude that CIBC is indeed possible and exists in ultrasonically- and hydrodynamically-induced cavitation. Finally, estimates of the utility of CIBC process as a means of powering an idealized heat engine are also presented.

  7. Cavitation bubble dynamics during thulium fiber laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Kennedy, Joshua D.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    The Thulium fiber laser (TFL) is being explored for lithotripsy. TFL parameters differ from standard Holmium:YAG laser in several ways, including smaller fiber delivery, more strongly absorbed wavelength, low pulse energy/high pulse rate operation, and more uniform temporal pulse structure. High speed imaging of cavitation bubbles was performed at 105,000 fps and 10 μm spatial resolution to determine influence of these laser parameters on bubble formation. TFL was operated at 1908 nm with pulse energies of 5-75 mJ, and pulse durations of 200-1000 μs, delivered through 100-μm-core fiber. Cavitation bubble dynamics using Holmium laser at 2100 nm with pulse energies of 200-1000 mJ and pulse duration of 350 μs was studied, for comparison. A single, 500 μs TFL pulse produced a bubble stream extending 1090 +/- 110 μm from fiber tip, and maximum bubble diameters averaged 590 +/- 20 μm (n=4). These observations are consistent with previous studies which reported TFL ablation stallout at working distances < 1.0 mm. TFL bubble dimensions were five times smaller than for Holmium laser due to lower pulse energy, higher water absorption coefficient, and smaller fiber diameter used.

  8. Bubble nucleation and growth in open-cycle OTEC subsystems

    NASA Astrophysics Data System (ADS)

    Bugby, D. C.; Wassel, A. T.; Mills, A. F.

    1983-05-01

    Bubble nucleation and growth in the evaporator, condenser, upcomers, and feedwater distribution systems of open-cycle ocean thermal energy conversion (OTEC) power plants are examined. The phenomenon that will probably have the most impact on system design is cavitation in the warm water feed near the entrance of the evaporator. The critical bubble size for cavitation is about 105 microns. Sources of bubbles in the warm water feed are those entering from the ocean, those nucleating on suspended particles, and those nucleating on the upcomer wall. Analyses of bubble growth induced by changes in hydrostatic pressure, mass transfer, and coalescence are presented. Using available information for bubble size distribution in seawater at California locations, it is shown that cavitation will probably have a significant impact on evaporator performance unless a debubbler is provided upstream of the evaporator entrance.

  9. Numerical simulation of cavitation bubble dynamics induced by ultrasound waves in a high frequency reactor.

    PubMed

    Servant, G; Caltagirone, J P; Gérard, A; Laborde, J L; Hita, A

    2000-10-01

    The use of high frequency ultrasound in chemical systems is of major interest to optimize chemical procedures. Characterization of an open air 477 kHz ultrasound reactor shows that, because of the collapse of transient cavitation bubbles and pulsation of stable cavitation bubbles, chemical reactions are enhanced. Numerical modelling is undertaken to determine the spatio-temporal evolution of cavitation bubbles. The calculus of the emergence of cavitation bubbles due to the acoustic driving (by taking into account interactions between the sound field and bubbles' distribution) gives a cartography of bubbles' emergence within the reactor. Computation of their motion induced by the pressure gradients occurring in the reactor show that they migrate to the pressure nodes. Computed bubbles levitation sites gives a cartography of the chemical activity of ultrasound. Modelling of stable cavitation bubbles' motion induced by the motion of the liquid gives some insight on degassing phenomena. PMID:11062879

  10. Shock wave emission during the collapse of cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Garen, W.; Hegedűs, F.; Kai, Y.; Koch, S.; Meyerer, B.; Neu, W.; Teubner, U.

    2016-07-01

    Shock wave emission induced by intense laser pulses is investigated experimentally. The present work focuses on the conditions of shock wave emission in glycerine and distilled water during the first bubble collapse. Experimental investigations are carried out in liquids as a function of temperature and viscosity. Comparison is made with the theoretical work of Poritsky (Proc 1st US Natl Congress Appl Mech 813-821, 1952) and Brennen (Cavitation and bubble dynamics, Oxford University Press 1995). To the best knowledge of the authors, this is the first experimental verification of those theories.

  11. Modeling of cavitation-bubble compression in benzene

    NASA Astrophysics Data System (ADS)

    Dnestrovskii, A. Yu.; Voropaev, S. A.; Zabrodina, E. A.

    2016-08-01

    In this study a two-dimensional model for calculating cavitation-bubble compression in benzene using a wide range of equations of state for ultrahigh pressures and temperatures is constructed. The calculations are carried out on the supercomputer of the Keldysh IAM. With the help of this model, the possibility of hits in the diamond-formation mode depending on the parameters of the external pressure and the initial bubble radius are analyzed. The dependence of the duration of the presence in the diamond-formation mode on these parameters is investigated.

  12. Cavitation clouds created by shock scattering from bubbles during histotripsy.

    PubMed

    Maxwell, Adam D; Wang, Tzu-Yin; Cain, Charles A; Fowlkes, J Brian; Sapozhnikov, Oleg A; Bailey, Michael R; Xu, Zhen

    2011-10-01

    Histotripsy is a therapy that focuses short-duration, high-amplitude pulses of ultrasound to incite a localized cavitation cloud that mechanically breaks down tissue. To investigate the mechanism of cloud formation, high-speed photography was used to observe clouds generated during single histotripsy pulses. Pulses of 5-20 cycles duration were applied to a transparent tissue phantom by a 1-MHz spherically focused transducer. Clouds initiated from single cavitation bubbles that formed during the initial cycles of the pulse, and grew along the acoustic axis opposite the propagation direction. Based on these observations, we hypothesized that clouds form as a result of large negative pressure generated by the backscattering of shockwaves from a single bubble. The positive-pressure phase of the wave inverts upon scattering and superimposes on the incident negative-pressure phase to create this negative pressure and cavitation. The process repeats with each cycle of the incident wave, and the bubble cloud elongates toward the transducer. Finite-amplitude propagation distorts the incident wave such that the peak-positive pressure is much greater than the peak-negative pressure, which exaggerates the effect. The hypothesis was tested with two modified incident waves that maintained negative pressure but reduced the positive pressure amplitude. These waves suppressed cloud formation which supported the hypothesis.

  13. Drop fragmentation by laser-induced cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Gonzalez-A, S. Roberto; Kerssens, Pjotr; Ohl, Claus-Dieter

    2015-11-01

    The fragmentation of water droplets by a short laser pulse has received significant attention since the 70's. The fundamental understanding of droplet vaporization/fragmentation is of interest in laser beam propagation in the atmosphere, in situ analysis of combustion products -a great concern due to its ecological implications- and more recently driven by a better understanding of the drop shaping by a laser pulse which is of interest in the development of extreme ultraviolet (EUV) machines. In this presentation we discuss about the incipient events that lead to the fragmentation of a drop produced by a cavitation bubble. When the bubble expands, it stretches the drop into a thin liquid film; this liquid film is eventually ruptured and a shockwave and small droplets are ejected as fast as 4 times the speed of sound in air. Interestingly, we also observe bubbles on the surface of the stretched film. Numerical simulations of a shock wave propagating inside a droplet show that cavitation bubbles appear when counter propagating shock waves that rebound from the walls of the drop meet. We also show different fragmentation scenarios recorded with high-speed video, one of them being a jelly fish like liquid film that eventually fragments into smaller drops.

  14. Observation of cavitation bubbles and acoustic streaming in high intensity ultrasound fields

    NASA Astrophysics Data System (ADS)

    Uemura, Yuuki; Sasaki, Kazuma; Minami, Kyohei; Sato, Toshio; Choi, Pak-Kon; Takeuchi, Shinichi

    2015-07-01

    We observed the behavior of acoustic cavitation by sonochemical luminescence and ultrasound B-mode imaging with ultrasound diagnostic equipment in a standing-wave ultrasound field and focused ultrasound field. Furthermore, in order to investigate the influence of acoustic streaming on acoustic cavitation bubbles, we performed flow analysis of the sound field using particle image velocimetry. We found that acoustic cavitation bubbles are stirred by circulating acoustic streaming and local vortexes occurring in the water tank of the standing-wave ultrasound exposure system. We considered that the acoustic cavitation bubbles are carried away by acoustic streaming due to the high ultrasound pressure in the focused ultrasound field.

  15. Bubbly cavitating flow generation and investigation of its erosional nature for biomedical applications.

    PubMed

    Koşar, Ali; Şeşen, Muhsincan; Oral, Ozlem; Itah, Zeynep; Gozuacik, Devrim

    2011-05-01

    This paper presents a study that investigates the destructive energy output resulting from hydrodynamic bubbly cavitation in microchannels and its potential use in biomedical applications. The research performed in this study includes results from bubbly cavitation experiments and findings showing the destructive effects of bubbly cavitating flow on selected solid specimens and live cells. The bubbles generated by hydrodynamic cavitation are highly destructive at the surfaces of the target medium on which they are carefully focused. The resulting destructive energy output could be effectively used for biomedical treatments, such as destroying kidney stones (renal calculi) or killing cancer cells. Motivated by this potential, the cavitation damage to cancerous cells and material removal from chalk pieces (which possess similar material properties as some kidney stones) was investigated. Our results showed that cavitation could induce damage both on chalk pieces and leukemia/lymphoma cells. We discovered that hydrodynamic cavitation exposure had early and delayed effects on cancer cell survival. Hence, the potential of hydrodynamic bubbly cavitation generated at the microscale for biomedical treatments was revealed using the microchannel configuration as a microorifice (with an inner diameter of 147 μm and a length of 1.52 cm), which acts as the source of bubbly cavitating flows.

  16. Modeling and experimental analysis of acoustic cavitation bubbles for Burst Wave Lithotripsy

    PubMed Central

    Maeda, Kazuki; Colonius, Tim; Kreider, Wayne; Maxwell, Adam; Cunitz, Bryan; Bailey, Michael

    2016-01-01

    A combined modeling and experimental study of acoustic cavitation bubbles that are initiated by focused ultrasound waves is reported. Focused ultrasound waves of frequency 335 kHz and peak negative pressure 8 MPa are generated in a water tank by a piezoelectric transducer to initiate cavitation. The resulting pressure field is obtained by direct numerical simulation (DNS) and used to simulate single bubble oscillation. The characteristics of cavitation bubbles observed by high-speed photography qualitatively agree withs the simulation result. Finally, bubble clouds are captured using acoustic B-mode imaging that works in synchronization with high-speed photography. PMID:27087826

  17. Numerical simulations of acoustic cavitation noise with the temporal fluctuation in the number of bubbles.

    PubMed

    Yasui, Kyuichi; Tuziuti, Toru; Lee, Judy; Kozuka, Teruyuki; Towata, Atsuya; Iida, Yasuo

    2010-02-01

    Numerical simulations of cavitation noise have been performed under the experimental conditions reported by Ashokkumar et al. (2007) [26]. The results of numerical simulations have indicated that the temporal fluctuation in the number of bubbles results in the broad-band noise. "Transient" cavitation bubbles, which disintegrate into daughter bubbles mostly in a few acoustic cycles, generate the broad-band noise as their short lifetimes cause the temporal fluctuation in the number of bubbles. Not only active bubbles in light emission (sonoluminescence) and chemical reactions but also inactive bubbles generate the broad-band noise. On the other hand, "stable" cavitation bubbles do not generate the broad-band noise. The weaker broad-band noise from a low-concentration surfactant solution compared to that from pure water observed experimentally by Ashokkumar et al. is caused by the fact that most bubbles are shape stable in a low-concentration surfactant solution due to the smaller ambient radii than those in pure water. For a relatively high number density of bubbles, the bubble-bubble interaction intensifies the broad-band noise. Harmonics in cavitation noise are generated by both "stable" and "transient" cavitation bubbles which pulsate nonlinearly with the period of ultrasound.

  18. Cavitation bubble behavior and bubble-shock wave interaction near a gelatin surface as a study of in vivo bubble dynamics

    NASA Astrophysics Data System (ADS)

    Kodama, T.; Tomita, Y.

    The collapse of a single cavitation bubble near a gelatin surface, and the interaction of an air bubble attached to a gelatin surface with a shock wave, were investigated. These events permitted the study of the behavior of in vivo cavitation bubbles and the subsequent tissue damage mechanism during intraocular surgery, intracorporeal and extracorporeal shock wave lithotripsy. Results were obtained with high-speed framing photography. The cavitation bubbles near the gelatin surface did not produce significant liquid jets directed at the surface, and tended to migrate away from it. The period of the motion of a cavitation bubble near the gelatin surface was longer than that of twice the Rayleigh's collapse time for a wide range of relative distance, L/Rmax, excepting for very small L/Rmax values (L was the stand-off distance between the gelatin surface and the laser focus position, and Rmax was the maximum bubble radius). The interaction of an air bubble with a shock wave yielded a liquid jet inside the bubble, penetrating into the gelatin surface. The liquid jet had the potential to damage the gelatin. The results predicted that cavitation-bubble-induced tissue damage was closely related to the oscillatory bubble motion, the subsequent mechanical tissue displacement, and the liquid jet penetration generated by the interaction of the remaining gas bubbles with subsequent shock waves. The characteristic bubble motion and liquid jet formation depended on the tissue's mechanical properties, resulting in different damage mechanisms from those observed on hard materials.

  19. ``Ultrasonic stars'' for time reversal focusing using induced cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Pernot, Mathieu; Montaldo, Gabriel; Tanter, Mickael; Fink, Mathias

    2006-05-01

    Time reversal focusing with ultrasonic arrays is a way to focus waves through heterogeneous media. It requires a reference signal either sent by a small active source embedded in the medium or backscattered by a strong scatterer acting as a passive source. The potential of this method in ultrasonic medical imaging was already envisioned for aberration corrections. However, in many practical situations it is not possible to insert an active source in the medium or to rely on the presence of a unique strong scaterrer at focus in order to generate the reference signal. In analogy with the field of adaptive optics in astronomy, we propose here to create artificial ``ultrasonic stars'' in the body. The trick consists in creating cavitation bubbles inside the medium using one part of the ultrasonic probe. The bubble cavitation generates a spherical wave that propagates through medium heterogeneities to a time reversal array and is used as a reference signal for the time reversal method. This novel method is here experimentally validated for aberrations corrections in tissue mimicking phantoms.

  20. [Cavitation and boiling of bubbles at the focal region during high intensity focused ultrasound exposure].

    PubMed

    Zhong, Mingsong; Ai, Huijian; Li, Faqi

    2012-10-01

    High intensity focused ultrasound (HIFU) is a very complex transient process and can cause tissue coagulation necrosis. The cavitation and boiling behaviour of bubbles in the focal region play very important roles throughout an injury process. This paper reviews the research done by domestic and foreign scholars on behaviours of bubbles in HIFU irradiation process and summarizes in the focal region bubble cavitation and boiling generation, related detective means and relationships with hyperecho, temperature rise of the focus and injury shape.

  1. Synchrotron radiation X-ray imaging of cavitation bubbles in Al-Cu alloy melt.

    PubMed

    Huang, Haijun; Shu, Da; Fu, Yanan; Wang, Jun; Sun, Baode

    2014-07-01

    Cavitation bubbles in Al-10 wt.%Cu melt has been investigated by adopting synchrotron radiation X-ray imaging technology. In-situ observation reveals that most of bubbles concentrate within an intense cavitation zone nearby the radiation face. The measured near-maximum bubble radii obey a similar truncated Gaussian distribution as in water but increase by nearly the magnitude of one order due to higher ultrasonic intensity applied in aluminum melt.

  2. High-contrast active cavitation imaging technique based on multiple bubble wavelet transform.

    PubMed

    Lu, Shukuan; Xu, Shanshan; Liu, Runna; Hu, Hong; Wan, Mingxi

    2016-08-01

    In this study, a unique method that combines the ultrafast active cavitation imaging technique with multiple bubble wavelet transform (MBWT) for improving cavitation detection contrast was presented. The bubble wavelet was constructed by the modified Keller-Miksis equation that considered the mutual effect among bubbles. A three-dimensional spatial model was applied to simulate the spatial distribution of multiple bubbles. The effects of four parameters on the signal-to-noise ratio (SNR) of cavitation images were evaluated, including the following: initial radii of bubbles, scale factor in the wavelet transform, number of bubbles, and the minimum inter-bubble distance. And the other two spatial models and cavitation bubble size distributions were introduced in the MBWT method. The results suggested that in the free-field experiments, the averaged SNR of images acquired by the MBWT method was improved by 7.16 ± 0.09 dB and 3.14 ± 0.14 dB compared with the values of images acquired by the B-mode and single bubble wavelet transform (SBWT) methods. In addition, in the tissue experiments, the averaged cavitation-to-tissue ratio of cavitation images acquired by the MBWT method was improved by 4.69 ± 0.25 dB and 1.74± 0.29 dB compared with that of images acquired by B-mode and SBWT methods.

  3. Experimental investigation on dynamic characteristics and strengthening mechanism of laser-induced cavitation bubbles.

    PubMed

    Ren, X D; He, H; Tong, Y Q; Ren, Y P; Yuan, S Q; Liu, R; Zuo, C Y; Wu, K; Sui, S; Wang, D S

    2016-09-01

    The dynamic features of nanosecond laser-induced cavitation bubbles near the light alloy boundary were investigated with the high-speed photography. The shock-waves and the dynamic characteristics of the cavitation bubbles generated by the laser were detected using the hydrophone. The dynamic features and strengthening mechanism of cavitation bubbles were studied. The strengthening mechanisms of cavitation bubble were discussed when the relative distance parameter γ was within the range of 0.5-2.5. It showed that the strengthening mechanisms caused by liquid jet or shock-waves depended on γ much. The research results provided a new strengthening method based on laser-induced cavitation shotless peening (CSP).

  4. Experimental investigation on dynamic characteristics and strengthening mechanism of laser-induced cavitation bubbles.

    PubMed

    Ren, X D; He, H; Tong, Y Q; Ren, Y P; Yuan, S Q; Liu, R; Zuo, C Y; Wu, K; Sui, S; Wang, D S

    2016-09-01

    The dynamic features of nanosecond laser-induced cavitation bubbles near the light alloy boundary were investigated with the high-speed photography. The shock-waves and the dynamic characteristics of the cavitation bubbles generated by the laser were detected using the hydrophone. The dynamic features and strengthening mechanism of cavitation bubbles were studied. The strengthening mechanisms of cavitation bubble were discussed when the relative distance parameter γ was within the range of 0.5-2.5. It showed that the strengthening mechanisms caused by liquid jet or shock-waves depended on γ much. The research results provided a new strengthening method based on laser-induced cavitation shotless peening (CSP). PMID:27150764

  5. Cavitation bubble generation and control for HIFU transcranial adaptive focusing

    NASA Astrophysics Data System (ADS)

    Gâteau, J.; Marsac, L.; Pernot, M.; Aubry, J.-F.; Tanter, M.; Fink, M.

    2009-04-01

    Brain treatment with High Intensity Focused Ultrasound (HIFU) can be achieved by multichannel arrays through the skull using time-reversal focusing. Such a method requires a reference signal either sent by a real source embedded in brain tissues or computed from a virtual source, using the acoustic properties of the skull deduced from CT images. This noninvasive computational method allows precise focusing, but is time consuming and suffers from unavoidable modeling errors which reduce the accessible acoustic pressure at the focus in comparison with real experimental time-reversal using an implanted hydrophone. Ex vivo simulations with a half skull immersed in a water tank allow us to reach at low amplitude levels a pressure ratio of 83% of the reference pressure (real time reversal) at 1MHz. Using this method to transcranially focus a pulse signal in an agar gel (model for in vivo bubble formation), we induced a cavitation bubble that generated an ultrasonic wave received by the array. Selecting the 1MHz component, the signal was time reversed and re-emitted, allowing 97%±1.1% of pressure ratio to be restored. To target points in the vicinity of the geometrical focus, electronic steering from the reference signal has been achieved. Skull aberrations severely degrade the accessible pressure while moving away from the focus ( ˜90% at 10mm in the focal plane). Nevertheless, inducing cavitation bubbles close to the limit of the primary accessible zone allowed us to acquire multiple references signal to increase the electronic steering area by 50%.

  6. Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement.

    PubMed

    Gac, Séverine Le; Zwaan, Ed; van den Berg, Albert; Ohl, Claus-Dieter

    2007-12-01

    We report here the sonoporation of HL60 (human promyelocytic leukemia) suspension cells in a microfluidic confinement using a single laser-induced cavitation bubble. Cavitation bubbles can induce membrane poration of cells located in their close vicinity. Membrane integrity of suspension cells placed in a microfluidic chamber is probed through either the calcein release out of calcein-loaded cells or the uptake of trypan blue. Cells that are located farther away than four times Rmax (maximum bubble radius) from the cavitation bubble center remain fully unaffected, while cells closer than 0.75 Rmax become porated with a probability of >75%. These results enable us to define a distance of 0.75 Rmax as a critical interaction distance of the cavitation bubble with HL60 suspension cells. These experiments suggest that flow-induced poration of suspension cells is applicable in lab-on-a-chip systems, and this might be an interesting alternative to electroporation.

  7. Resonance fluorescence spectroscopy in laser-induced cavitation bubbles.

    PubMed

    Koch, Sandra; Garen, Walter; Neu, Walter; Reuter, Rainer

    2006-05-01

    Laser-induced breakdown spectroscopy (LIBS) in liquids using a double-pulse Q-switched Nd:YAG laser system has provided reliable results that give trace detection limits in water. Resonant laser excitation has been added to enhance detection sensitivity. A primary laser pulse (at 532 nm), transmitted via an optical fiber, induces a cavitation bubble and shockwave at a target immersed in a 10 mg l(-1)-100 mg l(-1) indium (In) water suspension. The low-pressure rear of the shockwave induces bubble expansion and a resulting reduction in cavity pressure as it extends away from the target. Shortly before the maximum diameter is expected, a secondary laser pulse (also at 532 nm) is fed into the bubble in order to reduce quenching processes. The plasma field generated is then resonantly excited by a fiber-guided dye laser beam to increase detection selectivity. The resulting resonance fluorescence emission is optically detected and processed by an intensified optical multichannel analyzer system.

  8. Experimental and theoretical study on cavitation inception and bubbly flow dynamics. Part 1: Design, development and operation of a cavitation susceptibility meter. Part 2: Linearized dynamics of bubbly and cavitating flows with bubble dynamics effects

    NASA Astrophysics Data System (ADS)

    Dagostino, Luca

    1987-05-01

    This theses presents the design, development and operations of a Cavitation Susceptibility Meter based on the use of a venturi tube for the measurement of the content of active cavitation nuclei in water samples. The pressure at the venturi throat is determined from the upstream pressure and the local flow velocity without corrections for viscous effects because the flow possesses a laminar potential core in all operational conditions. The detection ov cavitation and the measurement of the flow velocity are carried out optically. The apparatus comprises a Laser Doppler Velocimeter for the measurement of the flow velocity and the detection of cavitation, a custom-made electronic Signal Processor for real time generation and temporary storage of the data and a computerized system for the final acquisition and reduction of the collected data. The results of application of the Cavitation Susceptibility Meter to the measurement of the water quality of the tap water samples are presented. The results of an investigation are presented on the linearized dynamics of two-phase bubbly flows with the inclusion of bubble dynamics effects. Two flow configurations have been studied: the time dependent one-dimensional flow of a spherical bubble cloud subject to harmonic excitation of the far field external pressure and the steady state two-dimensional flow of a bubbly mixture on a slender profile of arbitrary shape.

  9. Efficient Generation of Cavitation Bubbles in Gel Phantom by Ultrasound Exposure with Negative-Followed by Positive-Peak-Pressure-Emphasized Waves

    NASA Astrophysics Data System (ADS)

    Yasuda, Jun; Asai, Ayumu; Yoshizawa, Shin; Umemura, Shin-ichiro

    2013-07-01

    Cavitation bubbles have much potential for emphasizing therapeutic treatments such as high-intensity focused ultrasound (HIFU) treatment, histotripsy, and sonodynamic therapy. Their highly efficient as well as controlled generation is important to utilize them effectively as well as safely. However, producing negative pressure over the cavitation threshold by focused ultrasound is difficult because of the nonlinear propagation combined with the focal phase shift. We have suggested a dual-frequency ultrasound exposure method, in which N- and P-waves emphasizing either the peak negative or positive pressure, respectively, are synthesized by superimposing the second harmonic onto the fundamental frequency. In this study, high-speed camera observation demonstrated that the exposure with N-waves immediately followed by P-waves could generate cavitation bubbles most efficiently in gel phantom. Furthermore, the measured negative and positive pressure distributions of the N- and P-wave fields, respectively, agreed well with the optically observed distributions of cavitation inception and cavitation cloud growth.

  10. Reconstruction of laser-induced cavitation bubble dynamics based on a Fresnel propagation approach.

    PubMed

    Devia-Cruz, Luis Felipe; Camacho-López, Santiago; Cortés, Víctor Ruiz; Ramos-Muñiz, Victoria; Pérez-Gutiérrez, Francisco G; Aguilar, Guillermo

    2015-12-10

    A single laser-induced cavitation bubble in transparent liquids has been studied through a variety of experimental techniques. High-speed video with varying frame rate up to 20×10(7)   fps is the most suitable to study nonsymmetric bubbles. However, it is still expensive for most researchers and more affordable (lower) frame rates are not enough to completely reproduce bubble dynamics. This paper focuses on combining the spatial transmittance modulation (STM) technique, a single shot cavitation bubble and a very simple and inexpensive experimental technique, based on Fresnel approximation propagation theory, to reproduce a laser-induced cavitation spatial dynamics. Our results show that the proposed methodology reproduces a laser-induced cavitation event much more accurately than 75,000 fps video recording. In conclusion, we propose a novel methodology to reproduce laser-induced cavitation events that combine the STM technique with Fresnel propagation approximation theory that properly reproduces a laser-induced cavitation event including a very precise identification of the first, second, and third collapses of the cavitation bubble. PMID:26836867

  11. Spatial distribution of sonoluminescence and sonochemiluminescence generated by cavitation bubbles in 1.2 MHz focused ultrasound field.

    PubMed

    Cao, Hua; Wan, Mingxi; Qiao, Yangzi; Zhang, Shusheng; Li, Ruixue

    2012-03-01

    An intensified charge coupled device (ICCD) camera was used to observe the spatial distribution of sonoluminescence (SL) and sonochemiluminescence (SCL) generated by cavitation bubbles in a 1.2 MHz focused ultrasound (FU) field in order to investigate the mechanisms of acoustic cavitation under different sonication conditions for FU therapeutic applications. It was found that SL emissions were located in the post-focal region. When the intensity of SL and SCL increased as the power rose, the growth of SCL was much higher than that of SL. In the post-focal region, the SCL emissions moved along specific paths and formed branch-like streamers. At the beginning of the ultrasound irradiation, cavitation bubbles generated SCL in both the pre-focal and the post-focal region. When the electrical power or the sonication time increased, the SCL in the post-focal region increased and became higher than that in the pre-focal region. The intensity of SCL in the focal region is usually the weakest because of "oversaturation". The spatial distribution of SCL near a tissue boundary differed from that obtained in free fields. It organized into special structures under different acoustic amplitudes. When the electrical power was relatively low, the SCL emission was conical shape which suggested a standing wave formation at the tissue-fluid boundary. When the electrical power exceeded a certain threshold, only a bright spot could be captured in the focus. The cavitation bubbles which centralized in the focus concentrated energy and hindered the formation of standing waves. With rising electrical power at high levels, besides a bright spot in the focus, there were some irregular light spots in pre-focal region, which indicated some cavitation bubbles or small bubble clusters achieved the threshold of SCL and induced the reaction with the luminol solution.

  12. Spatio-temporal dynamics of cavitation bubble clouds in a low frequency reactor: comparison between theoretical and experimental results.

    PubMed

    Servant, G; Laborde, J L; Hita, A; Caltagirone, J P; Gérard, A

    2001-07-01

    The propagation of ultrasound through a liquid induces the growth of inceptions and germs into bubbles. In a low frequency reactor, fragmentary transient bubbles emerge due to the acoustic driving. They violently collapse in one cycle and fragment into many smaller bubbles than in turn cavitate. This violent collapse is responsible for the mechanical effects of ultrasounds effects. The latter bubbles gather in a ball-shaped cloud and migrate to pressure antinodes. During their migration, their nonexplosive collapses mainly contribute to activate chemical reactions by producing OH. radicals. Mathematical modelling is performed as a new approach to predict the bubbles field. Through numerical simulation, we determinate emergence sites of mechanically active cavitation bubbles. Calculus are compared with aluminium foil degradation. The modelling of bubble migration allow us to have an insight on the privileged sites of the chemical reactions. Validation of the modelling is made through direct comparison with chemiluminescence photo. All experiments and computations are made in a 28.2 kHz sonoreactor.

  13. Acceleration of lithotripsy using cavitation bubbles induced by second-harmonic superimposition

    NASA Astrophysics Data System (ADS)

    Osuga, Masamizu; Yasuda, Jun; Jimbo, Hayato; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    Shock wave lithotripsy potentially produces residual stone fragments too large to pass through ureters and significant injury to the normal tissue surrounding the stone. Previous works have shown that the collapse of cavitation bubbles induced by high-intensity focused ultrasound can produce small stone fragments via cavitation erosion. However, the erosion rate is hypothesized to be reduced by ultrasound attenuation by excessively generated bubble clouds. If so, it is important to generate the bubbles only on the stone surface. The effects of peak-negative-enhanced (PNE) and peak-positive-enhanced (PPE) waves obtained by second-harmonic superimposition were investigated to control cavitation bubbles. With the PNE waves, the bubbles were generated only on the stone surface and the maximum erosion rate was 232 ± 32 mg/min. All the fragments were smaller than 2 mm, which makes them pass through ureters naturally. The proposed method shows the potential to significantly improve the speed of lithotripsy.

  14. Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio

    NASA Astrophysics Data System (ADS)

    Shan, Ming-Lei; Zhu, Chang-Ping; Yao, Cheng; Yin, Cheng; Jiang, Xiao-Yan

    2016-10-01

    The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q et al. [Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301] is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. It is found that the thermodynamic consistency and surface tension are independent of kinematic viscosity. By homogeneous and heterogeneous cavitation simulation, the ability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of a collapsing bubble is consistent with the results from experiments and simulations by other numerical methods. It is demonstrated that the present pseudopotential multi-relaxation-time lattice Boltzmann model is applicable and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274092 and 1140040119) and the Natural Science Foundation of Jiangsu Province, China (Grant No. SBK2014043338).

  15. Cloud cavitation induced by shock-bubble interaction in a viscoelastic solid

    NASA Astrophysics Data System (ADS)

    Oguri, Ryota; Ando, Keita

    2015-12-01

    We experimentally study a shock-bubble interaction problem in a viscoelastic solid, which is relevant to shock wave lithotripsy. A gas bubble is produced by focusing an infrared laser pulse into gelatin. A spherical shock is then created, through rapid expansion of plasma that results from the laser focusing, in the vicinity of the gas bubble. The shock-bubble interaction is recorded by a CCD camera with flash illumination of a nanosecond green laser pulse. The observation captures cavitation inception in the gelatin under tension that results from acoustic impedance mismatching at the bubble wall. Namely, the shock reflects at the bubble interface as a rarefaction wave, which induces the nucleation of cavitation bubbles as a result of rupturing the gelatin.

  16. High-speed observation of cavitation bubble clouds near a tissue boundary in high-intensity focused ultrasound fields.

    PubMed

    Chen, Hong; Li, Xiaojing; Wan, Mingxi; Wang, Supin

    2009-03-01

    Cavitation bubble clouds generated near a tissue boundary by high-intensity focused ultrasound (HIFU) were studied using high-speed photography. In all, 171 image series were captured during the initial 100 ms of continuous HIFU exposure, which showed that cavitation bubble clouds at the tissue boundary organized into two structures - "cone-shape bubble cloud structure" recorded in 146 image series and "crown-shape bubble cloud structure" recorded in 18 image series. The remaining 7 image series showed the interchanging of these two structures. It was found that when cavitation bubbles first appeared at the tissue boundary, they developed to cone-shape bubble cloud. The cone-shape bubble cloud structure was characterized by a nearly fixed tip in front of the tissue boundary. When the cavitation bubbles initially appeared away from the tissue boundary they evolved into a crown-shape bubble cloud. Deformation of tissue boundary was shown in all the recorded image series.

  17. High-speed observation of cavitation bubble clouds near a tissue boundary in high-intensity focused ultrasound fields.

    PubMed

    Chen, Hong; Li, Xiaojing; Wan, Mingxi; Wang, Supin

    2009-03-01

    Cavitation bubble clouds generated near a tissue boundary by high-intensity focused ultrasound (HIFU) were studied using high-speed photography. In all, 171 image series were captured during the initial 100 ms of continuous HIFU exposure, which showed that cavitation bubble clouds at the tissue boundary organized into two structures - "cone-shape bubble cloud structure" recorded in 146 image series and "crown-shape bubble cloud structure" recorded in 18 image series. The remaining 7 image series showed the interchanging of these two structures. It was found that when cavitation bubbles first appeared at the tissue boundary, they developed to cone-shape bubble cloud. The cone-shape bubble cloud structure was characterized by a nearly fixed tip in front of the tissue boundary. When the cavitation bubbles initially appeared away from the tissue boundary they evolved into a crown-shape bubble cloud. Deformation of tissue boundary was shown in all the recorded image series. PMID:19041998

  18. Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy.

    PubMed

    Zhong, P; Cocks, F H; Cioanta, I; Preminger, G M

    1997-12-01

    The feasibility of using controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy was demonstrated using microsecond tandem shockwave pulses. High-speed photography revealed that a secondary shock wave, released in less than 500 microseconds (microsec.) following a lithotripter-generated shock wave, can be used to control and force the collapse of cavitation bubbles toward target concretions. This timely enforced shockwave-bubble interaction was found to greatly enhance the cavitational activity near the stone surface, with a resultant up to 43% increment in stone fragmentation. Since most of the cavitation energy is directed and concentrated toward the target stones and fewer shock waves are needed for successful stone comminution, tissue injury associated with this new lithotripsy procedure may also be reduced. This novel concept of shock wave lithotripsy may be used to improve the treatment efficiency and safety of existing clinical lithotripters, as well as in the design of new shock wave lithotripters.

  19. High-contrast active cavitation imaging technique based on multiple bubble wavelet transform.

    PubMed

    Lu, Shukuan; Xu, Shanshan; Liu, Runna; Hu, Hong; Wan, Mingxi

    2016-08-01

    In this study, a unique method that combines the ultrafast active cavitation imaging technique with multiple bubble wavelet transform (MBWT) for improving cavitation detection contrast was presented. The bubble wavelet was constructed by the modified Keller-Miksis equation that considered the mutual effect among bubbles. A three-dimensional spatial model was applied to simulate the spatial distribution of multiple bubbles. The effects of four parameters on the signal-to-noise ratio (SNR) of cavitation images were evaluated, including the following: initial radii of bubbles, scale factor in the wavelet transform, number of bubbles, and the minimum inter-bubble distance. And the other two spatial models and cavitation bubble size distributions were introduced in the MBWT method. The results suggested that in the free-field experiments, the averaged SNR of images acquired by the MBWT method was improved by 7.16 ± 0.09 dB and 3.14 ± 0.14 dB compared with the values of images acquired by the B-mode and single bubble wavelet transform (SBWT) methods. In addition, in the tissue experiments, the averaged cavitation-to-tissue ratio of cavitation images acquired by the MBWT method was improved by 4.69 ± 0.25 dB and 1.74± 0.29 dB compared with that of images acquired by B-mode and SBWT methods. PMID:27586732

  20. Initial growth of sonochemically active and sonoluminescence bubbles at various frequencies.

    PubMed

    Babgi, Bandar; Zhou, Meifang; Aksu, Mecit; Alghamdi, Yousef; Ashokkumar, Muthupandian

    2016-03-01

    The initial growth of acoustic cavitation activity is important in some applications such as therapeutic and diagnostic medicine. The initial growth of cavitation activity has been investigated using sonoluminescence and sonochemical activity (sonochemiluminescence) at 358 kHz, 647 kHz and 1062 kHz and at 5 W, 15 W and 30 W applied power levels. The growth of sonochemically active bubble population is found to be much faster than that of sonoluminescence bubble population at 358 kHz and 647 kHz whereas almost similar growth rate is observed at 1062 kHz for both bubble populations. This suggests that the cavitation bubble resonance size ranges of sonoluminescence and sonochemically active bubbles are different at 358 kHz and 647 kHz, whereas they have similar size range at 1062 kHz. At 358 kHz and 647 kHz, relatively smaller bubbles become chemically active. Possible reasons for such observations have been discussed. The data presented and discussed in this study may be useful in controlling the growth of cavitation bubble population in addition to enhancing the knowledge base in cavitation science. PMID:26584984

  1. A two-dimensional nonlinear model for the generation of stable cavitation bubbles.

    PubMed

    Vanhille, Christian

    2016-07-01

    Bubbles appear by acoustic cavitation in a liquid when rarefaction pressures attain a specific threshold value in a liquid. Once they are created, the stable cavitation bubbles oscillate nonlinearly and affect the ultrasonic field. Here we present a model developed for the study of bubble generation in a liquid contained in a two-dimensional cavity in which a standing ultrasonic field is established. The model considers dissipation and dispersion due to the bubbles. It also assumes that both the ultrasonic field and the bubble oscillations are nonlinear. The numerical experiments predict where the bubbles are generated from a population of nuclei distributed in the liquid and show how they affect the ultrasonic field. PMID:26964990

  2. A two-dimensional nonlinear model for the generation of stable cavitation bubbles.

    PubMed

    Vanhille, Christian

    2016-07-01

    Bubbles appear by acoustic cavitation in a liquid when rarefaction pressures attain a specific threshold value in a liquid. Once they are created, the stable cavitation bubbles oscillate nonlinearly and affect the ultrasonic field. Here we present a model developed for the study of bubble generation in a liquid contained in a two-dimensional cavity in which a standing ultrasonic field is established. The model considers dissipation and dispersion due to the bubbles. It also assumes that both the ultrasonic field and the bubble oscillations are nonlinear. The numerical experiments predict where the bubbles are generated from a population of nuclei distributed in the liquid and show how they affect the ultrasonic field.

  3. A numerical method for the dynamics of non-spherical cavitation bubbles

    NASA Technical Reports Server (NTRS)

    Lucca, G.; Prosperetti, A.

    1982-01-01

    A boundary integral numerical method for the dynamics of nonspherical cavitation bubbles in inviscid incompressible liquids is described. Only surface values of the velocity potential and its first derivatives are involved. The problem of solving the Laplace equation in the entire domain occupied by the liquid is thus avoided. The collapse of a bubble in the vicinity of a solid wall and the collapse of three bubbles with collinear centers are considered.

  4. A New Active Cavitation Mapping Technique for Pulsed HIFU Applications – Bubble Doppler

    PubMed Central

    Li, Tong; Khokhlova, Tatiana; Sapozhnikov, Oleg; Hwang, Joo Ha; Sapozhnikov, Oleg; O’Donnell, Matthew

    2015-01-01

    In this work, a new active cavitation mapping technique for pulsed high-intensity focused ultrasound (pHIFU) applications termed bubble Doppler is proposed and its feasibility tested in tissue-mimicking gel phantoms. pHIFU therapy uses short pulses, delivered at low pulse repetition frequency, to cause transient bubble activity that has been shown to enhance drug and gene delivery to tissues. The current gold standard for detecting and monitoring cavitation activity during pHIFU treatments is passive cavitation detection (PCD), which provides minimal information on the spatial distribution of the bubbles. B-mode imaging can detect hyperecho formation, but has very limited sensitivity, especially to small, transient microbubbles. The bubble Doppler method proposed here is based on a fusion of the adaptations of three Doppler techniques that had been previously developed for imaging of ultrasound contrast agents – color Doppler, pulse inversion Doppler, and decorrelation Doppler. Doppler ensemble pulses were interleaved with therapeutic pHIFU pulses using three different pulse sequences and standard Doppler processing was applied to the received echoes. The information yielded by each of the techniques on the distribution and characteristics of pHIFU-induced cavitation bubbles was evaluated separately, and found to be complementary. The unified approach - bubble Doppler – was then proposed to both spatially map the presence of transient bubbles and to estimate their sizes and the degree of nonlinearity. PMID:25265178

  5. Study of cavitation bubble dynamics during Ho:YAG laser lithotripsy by high-speed camera

    NASA Astrophysics Data System (ADS)

    Zhang, Jian J.; Xuan, Jason R.; Yu, Honggang; Devincentis, Dennis

    2016-02-01

    Although laser lithotripsy is now the preferred treatment option for urolithiasis, the mechanism of laser pulse induced calculus damage is still not fully understood. This is because the process of laser pulse induced calculus damage involves quite a few physical and chemical processes and their time-scales are very short (down to sub micro second level). For laser lithotripsy, the laser pulse induced impact by energy flow can be summarized as: Photon energy in the laser pulse --> photon absorption generated heat in the water liquid and vapor (super heat water or plasma effect) --> shock wave (Bow shock, acoustic wave) --> cavitation bubble dynamics (oscillation, and center of bubble movement , super heat water at collapse, sonoluminscence) --> calculus damage and motion (calculus heat up, spallation/melt of stone, breaking of mechanical/chemical bond, debris ejection, and retropulsion of remaining calculus body). Cavitation bubble dynamics is the center piece of the physical processes that links the whole energy flow chain from laser pulse to calculus damage. In this study, cavitation bubble dynamics was investigated by a high-speed camera and a needle hydrophone. A commercialized, pulsed Ho:YAG laser at 2.1 mu;m, StoneLightTM 30, with pulse energy from 0.5J up to 3.0 J, and pulse width from 150 mu;s up to 800 μs, was used as laser pulse source. The fiber used in the investigation is SureFlexTM fiber, Model S-LLF365, a 365 um core diameter fiber. A high-speed camera with frame rate up to 1 million fps was used in this study. The results revealed the cavitation bubble dynamics (oscillation and center of bubble movement) by laser pulse at different energy level and pulse width. More detailed investigation on bubble dynamics by different type of laser, the relationship between cavitation bubble dynamics and calculus damage (fragmentation/dusting) will be conducted as a future study.

  6. Numerical simulation of cavitation erosion on a NACA0015 hydrofoil based on bubble collapse strength

    NASA Astrophysics Data System (ADS)

    Hidalgo, V.; Luo, X.; Escaler, X.; Huang, R.; Valencia, E.

    2015-12-01

    The prediction of erosion under unsteady cavitation is crucial to prevent damage in hydraulic machinery. The present investigation deals with the numerical simulation of erosive partial cavitation around a NACA0015 hydrofoil. The study presents the calculation of the bubble collapse strength, Sb, based on the bubble potential energy to identify the surface areas with highest risk of damage. The results are obtained with a numerical scheme assuming homogeneous mixture flow, implicit LES and Zwart cavitation model. The 3D unsteady flow simulation has been solved using OpenFOAM. Python language and OpenFOAM calculator (foamCalcEx) have been used to obtain and represent Sb. The obtained results clearly show the instants of erosive bubble collapse and the affected surface areas.

  7. Dependence of pulsed focused ultrasound induced thrombolysis on duty cycle and cavitation bubble size distribution.

    PubMed

    Xu, Shanshan; Zong, Yujin; Feng, Yi; Liu, Runna; Liu, Xiaodong; Hu, Yaxin; Han, Shimin; Wan, Mingxi

    2015-01-01

    In this study, we investigated the relationship between the efficiency of pulsed, focused ultrasound (FUS)-induced thrombolysis, the duty cycle (2.3%, 9%, and 18%) and the size distribution of cavitation bubbles. The efficiency of thrombolysis was evaluated through the degree of mechanical fragmentation, namely the number, mass, and size of clot debris particles. First, we found that the total number and mass of clot debris particles were highest when a duty cycle of 9% was used and that the mean diameter of clot debris particles was smallest. Second, we found that the size distribution of cavitation bubbles was mainly centered around the linear resonance radius (2.5μm) of the emission frequency (1.2MHz) of the FUS transducer when a 9% duty cycle was used, while the majority of cavitation bubbles became smaller or larger than the linear resonance radius when a 2.3% or 18% duty cycle was used. In addition, the inertial cavitation dose from the treatment performed at 9% duty cycle was much higher than the dose obtained with the other two duty cycles. The data presented here suggest that there is an optimal duty cycle at which the thrombolysis efficiency and cavitation activity are strongest. They further indicate that using a pulsed FUS may help control the size distribution of cavitation nuclei within an active size range, which we found to be near the linear resonance radius of the emission frequency of the FUS transducer.

  8. Bubble Growth in Lunar Basalts

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2009-05-01

    Although Moon is usually said to be volatile-"free", lunar basalts are often vesicular with mm-size bubbles. The vesicular nature of the lunar basalts suggests that they contained some initial gas concentration. A recent publication estimated volatile concentrations in lunar basalts (Saal et al. 2008). This report investigates bubble growth on Moon and compares with that on Earth. Under conditions relevant to lunar basalts, bubble growth in a finite melt shell (i.e., growth of multiple regularly-spaced bubbles) is calculated following Proussevitch and Sahagian (1998) and Liu and Zhang (2000). Initial H2O content of 700 ppm (Saal et al. 2008) or lower is used and the effect of other volatiles (such as carbon dioxide, halogens, and sulfur) is ignored. H2O solubility at low pressures (Liu et al. 2005), concentration-dependent diffusivity in basalt (Zhang and Stolper 1991), and lunar basalt viscosity (Murase and McBirney 1970) are used. Because lunar atmospheric pressure is essentially zero, the confining pressure on bubbles is completely supplied by the overlying magma. Due to low H2O content in lunar basaltic melt (700 ppm H2O corresponds to a saturation pressure of 75 kPa), H2O bubbles only grow in the upper 16 m of a basalt flow or lake. A depth of 20 mm corresponds to a confining pressure of 100 Pa. Hence, vesicular lunar rocks come from very shallow depth. Some findings from the modeling are as follows. (a) Due to low confining pressure as well as low viscosity, even though volatile concentration is very low, bubble growth rate is extremely high, much higher than typical bubble growth rates in terrestrial melts. Hence, mm-size bubbles in lunar basalts are not strange. (b) Because the pertinent pressures are so low, bubble pressure due to surface tension plays a main role in lunar bubble growth, contrary to terrestrial cases. (c) Time scale to reach equilibrium bubble size increases as the confining pressure increases. References: (1) Liu Y, Zhang YX (2000) Earth

  9. Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes

    SciTech Connect

    Marti-Lopez, L.; Ocana, R.; Porro, J. A.; Morales, M.; Ocana, J. L.

    2009-07-01

    We report an experimental study of the temporal and spatial dynamics of shock waves, cavitation bubbles, and sound waves generated in water during laser shock processing by single Nd:YAG laser pulses of nanosecond duration. A fast ICCD camera (2 ns gate time) was employed to record false schlieren photographs, schlieren photographs, and Mach-Zehnder interferograms of the zone surrounding the laser spot site on the target, an aluminum alloy sample. We recorded hemispherical shock fronts, cylindrical shock fronts, plane shock fronts, cavitation bubbles, and phase disturbance tracks.

  10. Observation of bubble dynamics within luminescent cavitation clouds: Sonoluminescence at the nano-scale.

    PubMed

    Weninger, K R; Camara, C G; Putterman, S J

    2001-01-01

    Measurements of acoustically driven cavitation luminescence indicate that this phenomenon is robust over a huge parameter space ranging from 10 kHz to >10 MHz. The minimum bubble radius achieved is an upper bound for the size of the light-emitting region and ranges from about 1 microm at 15 kHz to tens of nm at 11 MHz. Although lines can be discerned in the spectra of some cavitation clouds, they sit on top of a broadband continuum which can have greater spectral density in the ultraviolet than is observed for resonantly driven sonoluminescence from a single bubble.

  11. Multifocal laser surgery: cutting enhancement by hydrodynamic interactions between cavitation bubbles.

    PubMed

    Toytman, I; Silbergleit, A; Simanovski, D; Palanker, D

    2010-10-01

    Transparent biological tissues can be precisely dissected with ultrafast lasers using optical breakdown in the tight focal zone. Typically, tissues are cut by sequential application of pulses, each of which produces a single cavitation bubble. We investigate the hydrodynamic interactions between simultaneous cavitation bubbles originating from multiple laser foci. Simultaneous expansion and collapse of cavitation bubbles can enhance the cutting efficiency, by increasing the resulting deformations in tissue, and the associated rupture zone. An analytical model of the flow induced by the bubbles is presented and experimentally verified. The threshold strain of the material rupture is measured in a model tissue. Using the computational model and the experimental value of the threshold strain one can compute the shape of the rupture zone in tissue resulting from application of multiple bubbles. With the threshold strain of 0.7 two simultaneous bubbles produce a continuous cut when applied at the distance 1.35 times greater than that required in sequential approach. Simultaneous focusing of the laser in multiple spots along the line of intended cut can extend this ratio to 1.7. Counterpropagating jets forming during collapse of two bubbles in materials with low viscosity can further extend the cutting zone-up to approximately a factor of 1.5.

  12. Transient oscillation of cavitation bubbles near stone surface during electrohydraulic lithotripsy.

    PubMed

    Zhong, P; Tong, H L; Cocks, F H; Preminger, G M

    1997-02-01

    Using high-speed photography and acoustic emission measurements, we studied the dynamics of a transient cavitation bubble near a stone surface and the concomitant shockwaves generated during electrohydraulic lithotripsy (EHL). At each spark discharge, a vapor plasma and subsequently a cavitation bubble oscillating around the tip of an EHL probe are produced. Simultaneously, three distinctive shockwave pulses are generated. The first shockwave is produced by the rapid expansion of the vapor plasma, while the second and third waves are produced by rebounds of the cavitation bubble. Depending on the proximity of the probe to the stone surface, the collapse of the cavitation bubble may be symmetric, resulting in a strong shockwave emission; or asymmetric, leading to the formation of a liquid jet. For the Nortech AUTOLITH lithotripter with a 1.9F probe that was used in this study, maximum shockwave emission is produced when the probe is about 1 mm from the stone surface, whereas the maximum jet velocity is produced when the probe tip is at distance equivalent to the maximum bubble radius of about 3 mm. These findings are consistent with clinical experience, which suggests that for optimal treatment results, the EHL probe should be placed close to the stone surface.

  13. Studies on the tempo of bubble formation in recently cavitated vessels: a model to predict the pressure of air bubbles.

    PubMed

    Wang, Yujie; Pan, Ruihua; Tyree, Melvin T

    2015-06-01

    A cavitation event in a vessel replaces water with a mixture of water vapor and air. A quantitative theory is presented to argue that the tempo of filling of vessels with air has two phases: a fast process that extracts air from stem tissue adjacent to the cavitated vessels (less than 10 s) and a slow phase that extracts air from the atmosphere outside the stem (more than 10 h). A model was designed to estimate how water tension (T) near recently cavitated vessels causes bubbles in embolized vessels to expand or contract as T increases or decreases, respectively. The model also predicts that the hydraulic conductivity of a stem will increase as bubbles collapse. The pressure of air bubbles trapped in vessels of a stem can be predicted from the model based on fitting curves of hydraulic conductivity versus T. The model was validated using data from six stem segments each of Acer mono and the clonal hybrid Populus 84 K (Populus alba × Populus glandulosa). The model was fitted to results with root mean square error less than 3%. The model provided new insight into the study of embolism formation in stem tissue and helped quantify the bubble pressure immediately after the fast process referred to above.

  14. High speed imaging of bubble clouds generated in pulsed ultrasound cavitational therapy--histotripsy.

    PubMed

    Xu, Zhen; Raghavan, Mekhala; Hall, Timothy L; Chang, Ching-Wei; Mycek, Mary-Ann; Fowlkes, J Brian; Cain, Charles A

    2007-10-01

    Our recent studies have demonstrated that mechanical fractionation of tissue structure with sharply demarcated boundaries can be achieved using short (< 20 micros), high intensity ultrasound pulses delivered at low duty cycles. We have called this technique histotripsy. Histotripsy has potential clinical applications where noninvasive tissue fractionation and/or tissue removal are desired. The primary mechanism of histotripsy is thought to be acoustic cavitation, which is supported by a temporally changing acoustic backscatter observed during the histotripsy process. In this paper, a fast-gated digital camera was used to image the hypothesized cavitating bubble cloud generated by histotripsy pulses. The bubble cloud was produced at a tissue-water interface and inside an optically transparent gelatin phantom which mimics bulk tissue. The imaging shows the following: (1) Initiation of a temporally changing acoustic backscatter was due to the formation of a bubble cloud; (2) The pressure threshold to generate a bubble cloud was lower at a tissue-fluid interface than inside bulk tissue; and (3) at higher pulse pressure, the bubble cloud lasted longer and grew larger. The results add further support to the hypothesis that the histotripsy process is due to a cavitating bubble cloud and may provide insight into the sharp boundaries of histotripsy lesions.

  15. The effect of cavitation bubbles on the removal of juvenile barnacles.

    PubMed

    Guo, Shifeng; Khoo, Boo Cheong; Teo, Serena Lay Ming; Lee, Heow Pueh

    2013-09-01

    The effect of cavitation bubbles on the removal of juvenile barnacles was documented using high speed photography. Using spark generated bubbles, the interaction between barnacle and cavitation bubble was examined in detail. The liquid jet generated by the bubble collapse was observed to be directed towards barnacle at different impact intensities, which is related to the dimensionless distance H' (H'=H/Rm), where H is the distance between bubble formation point and the top of barnacle, and Rm is the maximum bubble radius. At lower values of H', higher speed liquid jet was produced; consequently a larger impact pressure was generated. In general, barnacles are more easily removed at a younger stage. In older barnacles, the liquid jet impact was only able to remove the barnacle shells, leaving the base plate attached to the surface. This study indicates that cavitation can be used to remove attached barnacles, and it would be more efficient if it is applied during early stages of fouling, before the formation of hard calcareous structures.

  16. A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound

    PubMed Central

    Kreider, Wayne; Crum, Lawrence A.; Bailey, Michael R.; Sapozhnikov, Oleg A.

    2011-01-01

    Cavitation often occurs in therapeutic applications of medical ultrasound such as shock-wave lithotripsy (SWL) and high-intensity focused ultrasound (HIFU). Because cavitation bubbles can affect an intended treatment, it is important to understand the dynamics of bubbles in this context. The relevant context includes very high acoustic pressures and frequencies as well as elevated temperatures. Relative to much of the prior research on cavitation and bubble dynamics, such conditions are unique. To address the relevant physics, a reduced-order model of a single, spherical bubble is proposed that incorporates phase change at the liquid-gas interface as well as heat and mass transport in both phases. Based on the energy lost during the inertial collapse and rebound of a millimeter-sized bubble, experimental observations were used to tune and test model predictions. In addition, benchmarks from the published literature were used to assess various aspects of model performance. Benchmark comparisons demonstrate that the model captures the basic physics of phase change and diffusive transport, while it is quantitatively sensitive to specific model assumptions and implementation details. Given its performance and numerical stability, the model can be used to explore bubble behaviors across a broad parameter space relevant to therapeutic ultrasound. PMID:22088026

  17. Frequency spectrum of the noise emitted by two interacting cavitation bubbles in strong acoustic fields.

    PubMed

    Jiang, Liang; Liu, Fengbing; Chen, Haosheng; Wang, Jiadao; Chen, Darong

    2012-03-01

    The dynamics and acoustic emission of two interacting cavitation bubbles exposed to strong acoustic fields with a frequency of 515 KHz are investigated numerically in this paper. After comparing the dynamics of a single bubble excited by the given pressure waves, bubbles with ambient radii of 2 and 5 μm were chosen to be studied to discuss the influence of the mutual bubble-bubble interaction on the dynamic behaviors and acoustic emission of the bubbles. The results show that, aside from the external driving pressure waves, the interaction between the bubbles imposes an extra nonlinear effect on the oscillations of the bubbles and that the dynamics of the smaller bubble could be suppressed gradually with the enhancement of this mutual interaction by decreasing the distance between the bubbles. Moreover, the improvement in the oscillation nonlinearity of the bubbles due to the change in the ambient circumstance could readily be observed from the frequency spectra of the bubbles' acoustic emission, which interprets the change by exhibiting an appropriate development of the subharmonics, the ultraharmonics, and the broadband component.

  18. Molecular dynamics simulations of bubble formation and cavitation in liquid metals.

    SciTech Connect

    Insepov, Z.; Hassanein, A.; Bazhirov, T. T.; Norman, G. E.; Stegailov, V. V.; Mathematics and Computer Science; Inst. for High Energy Densities of Joint Inst. for High Temperatures of RAS

    2007-11-01

    Thermodynamics and kinetics of nano-scale bubble formation in liquid metals such as Li and Pb were studied by molecular dynamics (MD) simulations at pressures typical for magnetic and inertial fusion. Two different approaches to bubble formation were developed. In one method, radial densities, pressures, surface tensions, and work functions of the cavities in supercooled liquid lithium were calculated and compared with the surface tension experimental data. The critical radius of a stable cavity in liquid lithium was found for the first time. In the second method, the cavities were created in the highly stretched region of the liquid phase diagram; and then the stability boundary and the cavitation rates were calculated in liquid lead. The pressure dependences of cavitation frequencies were obtained over the temperature range 700-2700 K in liquid Pb. The results of MD calculations for cavitation rate were compared with estimates of classical nucleation theory (CNT).

  19. Localized removal of layers of metal, polymer, or biomaterial by ultrasound cavitation bubbles.

    PubMed

    Fernandez Rivas, David; Verhaagen, Bram; Seddon, James R T; Zijlstra, Aaldert G; Jiang, Lei-Meng; van der Sluis, Luc W M; Versluis, Michel; Lohse, Detlef; Gardeniers, Han J G E

    2012-09-01

    We present an ultrasonic device with the ability to locally remove deposited layers from a glass slide in a controlled and rapid manner. The cleaning takes place as the result of cavitating bubbles near the deposited layers and not due to acoustic streaming. The bubbles are ejected from air-filled cavities micromachined in a silicon surface, which, when vibrated ultrasonically at a frequency of 200 kHz, generate a stream of bubbles that travel to the layer deposited on an opposing glass slide. Depending on the pressure amplitude, the bubble clouds ejected from the micropits attain different shapes as a result of complex bubble interaction forces, leading to distinct shapes of the cleaned areas. We have determined the removal rates for several inorganic and organic materials and obtained an improved efficiency in cleaning when compared to conventional cleaning equipment. We also provide values of the force the bubbles are able to exert on an atomic force microscope tip.

  20. The penetration of acoustic cavitation bubbles into micrometer-scale cavities.

    PubMed

    Vaidya, Haresh Anant; Ertunç, Özgür; Lichtenegger, Thomas; Delgado, Antonio; Skupin, Andreas

    2016-04-01

    The penetration of acoustically induced cavitation bubbles in micrometer-scale cavities is investigated experimentally by means of high-speed photography and acoustic measurements. Micrometer-scale cavities of different dimensions (width=40 μm, 80 μm, 10 mm and depth=50 μm) are designed to replicate the cross section of microvias in a PCB. The aim here is to present a method for enhancing mass transfer due to the penetration of bubbles in such narrow geometries under the action of ultrasound. The micrometer-scale cavities are placed in a test-cell filled with water and subjected to an ultrasound excitation at 75 kHz. A cavitation bubble cluster is generated at the mouth of the cavity which acts as a continuous source of bubbles that penetrate into the cavity. The radial oscillation characteristics and translation of these bubbles are investigated in detail here. It is observed that the bubbles arrange themselves into streamer-like structures inside the cavity. Parameters such as bubble population and size distribution and their correlation with the phase of the incident ultrasound radiation are investigated in detail here. This provides a valuable insight into the dynamics of bubbles in narrow confined spaces. Mass transfer investigations show that fresh liquid can be continuously introduced in the cavities under the action of ultrasound. Our findings may have important consequences in optimizing the filling processes for microvias with high aspect ratios. PMID:26763751

  1. The penetration of acoustic cavitation bubbles into micrometer-scale cavities.

    PubMed

    Vaidya, Haresh Anant; Ertunç, Özgür; Lichtenegger, Thomas; Delgado, Antonio; Skupin, Andreas

    2016-04-01

    The penetration of acoustically induced cavitation bubbles in micrometer-scale cavities is investigated experimentally by means of high-speed photography and acoustic measurements. Micrometer-scale cavities of different dimensions (width=40 μm, 80 μm, 10 mm and depth=50 μm) are designed to replicate the cross section of microvias in a PCB. The aim here is to present a method for enhancing mass transfer due to the penetration of bubbles in such narrow geometries under the action of ultrasound. The micrometer-scale cavities are placed in a test-cell filled with water and subjected to an ultrasound excitation at 75 kHz. A cavitation bubble cluster is generated at the mouth of the cavity which acts as a continuous source of bubbles that penetrate into the cavity. The radial oscillation characteristics and translation of these bubbles are investigated in detail here. It is observed that the bubbles arrange themselves into streamer-like structures inside the cavity. Parameters such as bubble population and size distribution and their correlation with the phase of the incident ultrasound radiation are investigated in detail here. This provides a valuable insight into the dynamics of bubbles in narrow confined spaces. Mass transfer investigations show that fresh liquid can be continuously introduced in the cavities under the action of ultrasound. Our findings may have important consequences in optimizing the filling processes for microvias with high aspect ratios.

  2. Interaction of lithotripter shockwaves with single inertial cavitation bubbles.

    PubMed

    Klaseboer, Evert; Fong, Siew Wan; Turangan, Cary K; Khoo, Boo Cheong; Szeri, Andrew J; Calvisi, Michael L; Sankin, Georgy N; Zhong, Pei

    2007-01-01

    The dynamic interaction of a shockwave (modelled as a pressure pulse) with an initially spherically oscillating bubble is investigated. Upon the shockwave impact, the bubble deforms non-spherically and the flow field surrounding the bubble is determined with potential flow theory using the boundary-element method (BEM). The primary advantage of this method is its computational efficiency. The simulation process is repeated until the two opposite sides of the bubble surface collide with each other (i.e. the formation of a jet along the shockwave propagation direction). The collapse time of the bubble, its shape and the velocity of the jet are calculated. Moreover, the impact pressure is estimated based on water-hammer pressure theory. The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet impact) are also determined. Overall, the simulated results compare favourably with experimental observations of lithotripter shockwave interaction with single bubbles (using laser-induced bubbles at various oscillation stages). The simulations confirm the experimental observation that the most intense collapse, with the highest jet velocity and impact pressure, occurs for bubbles with intermediate size during the contraction phase when the collapse time of the bubble is approximately equal to the compressive pulse duration of the shock wave. Under this condition, the maximum amount of energy of the incident shockwave is transferred to the collapsing bubble. Further, the effect of the bubble contents (ideal gas with different initial pressures) and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the dynamics of the shockwave-bubble interaction are discussed.

  3. Micro-bubble emission boiling with the cavitation bubble blow pit

    PubMed Central

    Inada, Shigeaki; Shinagawa, Kazuaki; Illias, Suhaimi Bin; Sumiya, Hiroyuki; Jalaludin, Helmisyah A.

    2016-01-01

    The miniaturization boiling (micro-bubble emission boiling [MEB]) phenomenon, with a high heat removal capacity that contributes considerably to the cooling of the divertor of the nuclear fusion reactor, was discovered in the early 1980s. Extensive research on MEB has been performed since its discovery. However, the progress of the application has been delayed because the generation mechanism of MEB remains unclear. Reasons for this lack of clarity include the complexity of the phenomenon itself and the high-speed phase change phenomenon in which boiling and condensation are rapidly generated. In addition, a more advanced thermal technique is required to realize the MEB phenomenon at the laboratory scale. To the authors’ knowledge, few studies have discussed the rush mechanism of subcooled liquid to the heating surface, which is critical to elucidating the mechanism behind MEB. This study used photographic images to verify that the cavitation phenomenon spreads to the inside of the superheated liquid on the heating surface and thus clarify the mechanism of MEB. PMID:27628271

  4. Micro-bubble emission boiling with the cavitation bubble blow pit.

    PubMed

    Inada, Shigeaki; Shinagawa, Kazuaki; Illias, Suhaimi Bin; Sumiya, Hiroyuki; Jalaludin, Helmisyah A

    2016-01-01

    The miniaturization boiling (micro-bubble emission boiling [MEB]) phenomenon, with a high heat removal capacity that contributes considerably to the cooling of the divertor of the nuclear fusion reactor, was discovered in the early 1980s. Extensive research on MEB has been performed since its discovery. However, the progress of the application has been delayed because the generation mechanism of MEB remains unclear. Reasons for this lack of clarity include the complexity of the phenomenon itself and the high-speed phase change phenomenon in which boiling and condensation are rapidly generated. In addition, a more advanced thermal technique is required to realize the MEB phenomenon at the laboratory scale. To the authors' knowledge, few studies have discussed the rush mechanism of subcooled liquid to the heating surface, which is critical to elucidating the mechanism behind MEB. This study used photographic images to verify that the cavitation phenomenon spreads to the inside of the superheated liquid on the heating surface and thus clarify the mechanism of MEB. PMID:27628271

  5. Micro-bubble emission boiling with the cavitation bubble blow pit

    NASA Astrophysics Data System (ADS)

    Inada, Shigeaki; Shinagawa, Kazuaki; Illias, Suhaimi Bin; Sumiya, Hiroyuki; Jalaludin, Helmisyah A.

    2016-09-01

    The miniaturization boiling (micro-bubble emission boiling [MEB]) phenomenon, with a high heat removal capacity that contributes considerably to the cooling of the divertor of the nuclear fusion reactor, was discovered in the early 1980s. Extensive research on MEB has been performed since its discovery. However, the progress of the application has been delayed because the generation mechanism of MEB remains unclear. Reasons for this lack of clarity include the complexity of the phenomenon itself and the high-speed phase change phenomenon in which boiling and condensation are rapidly generated. In addition, a more advanced thermal technique is required to realize the MEB phenomenon at the laboratory scale. To the authors’ knowledge, few studies have discussed the rush mechanism of subcooled liquid to the heating surface, which is critical to elucidating the mechanism behind MEB. This study used photographic images to verify that the cavitation phenomenon spreads to the inside of the superheated liquid on the heating surface and thus clarify the mechanism of MEB.

  6. Micro-bubble emission boiling with the cavitation bubble blow pit.

    PubMed

    Inada, Shigeaki; Shinagawa, Kazuaki; Illias, Suhaimi Bin; Sumiya, Hiroyuki; Jalaludin, Helmisyah A

    2016-01-01

    The miniaturization boiling (micro-bubble emission boiling [MEB]) phenomenon, with a high heat removal capacity that contributes considerably to the cooling of the divertor of the nuclear fusion reactor, was discovered in the early 1980s. Extensive research on MEB has been performed since its discovery. However, the progress of the application has been delayed because the generation mechanism of MEB remains unclear. Reasons for this lack of clarity include the complexity of the phenomenon itself and the high-speed phase change phenomenon in which boiling and condensation are rapidly generated. In addition, a more advanced thermal technique is required to realize the MEB phenomenon at the laboratory scale. To the authors' knowledge, few studies have discussed the rush mechanism of subcooled liquid to the heating surface, which is critical to elucidating the mechanism behind MEB. This study used photographic images to verify that the cavitation phenomenon spreads to the inside of the superheated liquid on the heating surface and thus clarify the mechanism of MEB.

  7. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.

    PubMed

    Yasui, Kyuichi; Towata, Atsuya; Tuziuti, Toru; Kozuka, Teruyuki; Kato, Kazumi

    2011-11-01

    The effect of static pressure on acoustic emissions including shock-wave emissions from cavitation bubbles in viscous liquids under ultrasound has been studied by numerical simulations in order to investigate the effect of static pressure on dispersion of nano-particles in liquids by ultrasound. The results of the numerical simulations for bubbles of 5 μm in equilibrium radius at 20 kHz have indicated that the optimal static pressure which maximizes the energy of acoustic waves radiated by a bubble per acoustic cycle increases as the acoustic pressure amplitude increases or the viscosity of the solution decreases. It qualitatively agrees with the experimental results by Sauter et al. [Ultrason. Sonochem. 15, 517 (2008)]. In liquids with relatively high viscosity (∼200 mPa s), a bubble collapses more violently than in pure water when the acoustic pressure amplitude is relatively large (∼20 bar). In a mixture of bubbles of different equilibrium radius (3 and 5 μm), the acoustic energy radiated by a 5 μm bubble is much larger than that by a 3 μm bubble due to the interaction with bubbles of different equilibrium radius. The acoustic energy radiated by a 5 μm bubble is substantially increased by the interaction with 3 μm bubbles.

  8. Study on the spatial distribution of the liquid temperature near a cavitation bubble wall.

    PubMed

    Shen, Yang; Yasui, Kyuichi; Sun, Zhicheng; Mei, Bin; You, Meiyan; Zhu, Tong

    2016-03-01

    A simple new model of the spatial distribution of the liquid temperature near a cavitation bubble wall (Tli) is employed to numerically calculate Tli. The result shows that Tli is almost same with the ambient liquid temperature (T0) during the bubble oscillations except at strong collapse. At strong collapse, Tli can increase to about 1510 K, the same order of magnitude with that of the maximum temperature inside the bubble, which means that the chemical reactions occur not only in gas-phase inside the collapsing bubble but also in liquid-phase just outside the collapsing bubble. Four factors (ultrasonic vibration amplitude, ultrasonic frequency, the surface tension and the viscosity) are considered to study their effects for the thin liquid layer. The results show that for the thin layer, the thickness and the temperature increase as the ultrasonic vibration amplitude rise; conversely, the thickness and the temperature decrease with the increase of the ultrasonic frequency, the surface tension or the viscosity.

  9. A model of bubble growth leading to xylem conduit embolism.

    PubMed

    Hölttä, T; Vesala, T; Nikinmaa, E

    2007-11-01

    The dynamics of a gas bubble inside a water conduit after a cavitation event was modeled. A distinction was made between a typical angiosperm conduit with a homogeneous pit membrane and a typical gymnosperm conduit with a torus-margo pit membrane structure. For conduits with torus-margo type pits pit membrane deflection was also modeled and pit aspiration, the displacement of the pit membrane to the low pressure side of the pit chamber, was found to be possible while the emboli was still small. Concurrent with pit aspiration, the high resistance to water flow out of the conduit through the cell walls or aspirated pits will make the embolism process slow. In case of no pit aspiration and always for conduits with homogeneous pit membranes, embolism growth is more rapid but still much slower than bubble growth in bulk water under similar water tension. The time needed for the embolism to fill a whole conduit was found to be dependent on pit and cell wall conductance, conduit radius, xylem water tension, pressure rise in adjacent conduits due to water freed from the embolising conduit, and the rigidity and structure of the pits in the case of margo-torus type pit membrane. The water pressure in the conduit hosting the bubble was found to occur almost immediately after bubble induction inside a conduit, creating a sudden tension release in the conduit, which can be detected by acoustic and ultra-acoustic monitoring of xylem cavitation.

  10. Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Warnez, Matthew T.; Singh, Rahul; Mancia, Lauren; Putnam, Andrew J.; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-03-01

    Histotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50 µm. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal. Previous work has shown that the histotripsy process is affected by tissue mechanical properties with stiffer tissues showing increased resistance to histotripsy fractionation, which we hypothesize to be caused by impeded bubble expansion in stiffer tissues. In this study, the hypothesis that increases in tissue stiffness cause a reduction in bubble expansion was investigated both theoretically and experimentally. High speed optical imaging was used to capture a series of time delayed images of bubbles produced inside mechanically tunable agarose tissue phantoms using histotripsy pulses produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. The results demonstrated a significant decrease in maximum bubble radius (Rmax) and collapse time (tc) with both increasing Young’s modulus and increasing frequency. Furthermore, results showed that Rmax was not increased by raising the pressure above the intrinsic threshold. Finally, this work demonstrated the potential of using a dual-frequency strategy to modulate the expansion of histotripsy bubbles. Overall, the results of this study improve our understanding of how tissue stiffness and ultrasound parameters affect histotripsy-induced bubble behavior and provide a rational basis to tailor acoustic parameters for treatment of the specific tissues of interest.

  11. Effects of Tissue Stiffness, Ultrasound Frequency, and Pressure on Histotripsy-induced Cavitation Bubble Behavior

    PubMed Central

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Warnez, Matthew; Singh, Rahul; Mancia, Lauren; Putnam, Andrew J.; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-01-01

    Histotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50 microns. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal. Previous work has shown that the histotripsy process is affected by tissue mechanical properties with stiffer tissues showing increased resistance to histotripsy fractionation, which we hypothesize to be caused by impeded bubble expansion in stiffer tissues. In this study, the hypothesis that increases in tissue stiffness causes a reduction in bubble expansion was investigated both theoretically and experimentally. High speed optical imaging was used to capture a series of time delayed images of bubbles produced inside mechanically tunable agarose tissue phantoms using histotripsy pulses produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. The results demonstrated a significant decrease in maximum bubble radius (Rmax) and collapse time (tc) with both increasing Young’s modulus and increasing frequency. Furthermore, results showed that Rmax was not increased by raising the pressure above the intrinsic threshold. Finally, this work demonstrated the potential of using a dual-frequency strategy to modulate the expansion of histotripsy bubbles. Overall, the results of this study improve our understanding of how tissue stiffness and ultrasound parameters affect histotripsy-induced bubble behavior and provide a rational basis to tailor acoustic parameters for treatment of the specific tissues of interest. PMID:25715732

  12. Ultrasonic emissions reveal individual cavitation bubbles in water-stressed wood.

    PubMed

    Ponomarenko, A; Vincent, O; Pietriga, A; Cochard, H; Badel, É; Marmottant, P

    2014-10-01

    Under drought conditions, the xylem of trees that conducts ascending sap produces ultrasonic emissions whose exact origin is not clear. We introduce a new method to record simultaneously both acoustic events and optical observation of the xylem conduits within slices of wood that were embedded in a transparent material setting a hydric stress. In this article, we resolved the rapid development of all cavitation bubbles and demonstrated that each ultrasound emission was linked to the nucleation of one single bubble, whose acoustic energy is an increasing function of the size of the conduit where nucleation occurred and also of the hydric stress. We modelled these observations by the fact that water columns in conduits store elastic energy and release it into acoustic waves when they are broken by cavitation bubbles. Water columns are thus elastic, and not rigid, 'wires of water' set under tension by hydric stresses. Cavitation bubbles are at the origin of an embolism, whose development was followed in our experiments. Such an embolism of sap circulation can result in a fatal condition for living trees. These findings provide new insights for the non-destructive monitoring of embolisms within trees, and suggest a new approach to study porous media under hydric stress.

  13. Ultrasonic emissions reveal individual cavitation bubbles in water-stressed wood

    PubMed Central

    Ponomarenko, A.; Vincent, O.; Pietriga, A.; Cochard, H.; Badel, É.; Marmottant, P.

    2014-01-01

    Under drought conditions, the xylem of trees that conducts ascending sap produces ultrasonic emissions whose exact origin is not clear. We introduce a new method to record simultaneously both acoustic events and optical observation of the xylem conduits within slices of wood that were embedded in a transparent material setting a hydric stress. In this article, we resolved the rapid development of all cavitation bubbles and demonstrated that each ultrasound emission was linked to the nucleation of one single bubble, whose acoustic energy is an increasing function of the size of the conduit where nucleation occurred and also of the hydric stress. We modelled these observations by the fact that water columns in conduits store elastic energy and release it into acoustic waves when they are broken by cavitation bubbles. Water columns are thus elastic, and not rigid, ‘wires of water’ set under tension by hydric stresses. Cavitation bubbles are at the origin of an embolism, whose development was followed in our experiments. Such an embolism of sap circulation can result in a fatal condition for living trees. These findings provide new insights for the non-destructive monitoring of embolisms within trees, and suggest a new approach to study porous media under hydric stress. PMID:25056212

  14. Single bubble perturbation in cavitation proximity of solid glass: hot spot versus distance.

    PubMed

    Radziuk, Darya; Möhwald, Helmuth; Suslick, Kenneth

    2014-02-28

    A systematic study of the energy loss of a cavitation bubble in a close proximity of a glass surface is introduced for the first time in a low acoustic field (1.2-2.4 bar). Single bubble sonoluminescence (SBSL) is used as a tool to predict the temperature and pressure decrease of bubble (μm) versus surface distance. A glass as a model system is used to imitate the boundary conditions relevant for nano- or micromaterials. SBSL preequilibrated with 5% argon is perturbed by a glass rod with the tip (Z-perturbation) and with the long axis (X-perturbation) at a defined distance. From 2 mm to 500 μm argon-SBSL lines monotonically narrow and the effective emission temperature decreases from 9000 K to 6800 K comparable to multiple bubbles. The electron density decreases by two orders of magnitude in Z-perturbation and is by a factor of two higher in X-perturbation than the unperturbed cavitating bubble. The perturbed single bubble sonoluminescence pressure decreases from 2700 atm to 1200 atm at 2.4 bar. In water new non-SBSL SiO molecular emission lines are observed and OH emission disappears.

  15. Sonoluminescence and multi-bubble cavitation phenomena for selected research and industrial applications

    NASA Astrophysics Data System (ADS)

    Greenwood, Larry; Olsen, Khris; Good, Morris; Bond, Leonard; Posakony, Gerald; Peters, Timothy; Baldwin, David; Wester, Dennis; Ahmed, Salahuddin

    2003-04-01

    Single bubble sonoluminescence (SBSL), multi-bubble sonoluminescence (MBSL), multi-bubble sonochemiluminescence (MBSCL) and other high power ultrasound cavitation and noncavitating ultrasound process stream interaction phenomena are known to produce a wide range of both physical and chemical effects that depend upon the system and operating conditions employed. Three interacting regimes are under investigation (a) high power and high frequency (including noncavitating systems), (b) single bubble resonance/sonoluminescence and (c) multi-bubble high power sonochemical processing. In all cases these involve various reactors, including possible schemes for continuous material feeding and processing for selected chemical, nonaqueous fluids and biological research and industrial applications. High power sonochemical and noncavitating ultrasound processing applications and a review of literature pertaining to the potential of high power processing, including fusion are discussed. Work includes the investigation of acoustic fields in reactors, characterization of sonoluminescence spectra, the investigation of system parameters to control maximum bubble temperature and pressure, and acoustic energy partition into light and acoustic emission/shock waves. Effects of various chemical systems on multi-bubble luminescence are being investigated and will be reported. Work to date has emphasized the evaluation of both single and multi-bubble sonoluminescence, spectral measurements, acoustic emission measurements and the observation of a continuous bubble feed phenomenon.

  16. A New Unsteady Model for Dense Cloud Cavitation in Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Hosangadi, Ashvin; Ahuja, Vineet

    2005-01-01

    Contents include the following: Background on thermal effects in cavitation. Physical properties of hydrogen. Multi-phase cavitation with thermal effect. Solution procedure. Cavitation model overview. Cavitation source terms. New cavitation model. Source term for bubble growth. One equation les model. Unsteady ogive simulations: liquid nitrogen. Unsteady incompressible flow in a pipe. Time averaged cavity length for NACA15 flowfield.

  17. Spatial-temporal ultrasound imaging of residual cavitation bubbles around a fluid-tissue interface in histotripsy.

    PubMed

    Hu, Hong; Xu, Shanshan; Yuan, Yuan; Liu, Runna; Wang, Supin; Wan, Mingxi

    2015-05-01

    Cavitation is considered as the primary mechanism of soft tissue fragmentation (histotripsy) by pulsed high-intensity focused ultrasound. The residual cavitation bubbles have a dual influence on the histotripsy pulses: these serve as nuclei for easy generation of new cavitation, and act as strong scatterers causing energy "shadowing." To monitor the residual cavitation bubbles in histotripsy, an ultrafast active cavitation imaging method with relatively high signal-to-noise ratio and good spatial-temporal resolution was proposed in this paper, which combined plane wave transmission, minimum variance beamforming, and coherence factor weighting. The spatial-temporal evolutions of residual cavitation bubbles around a fluid-tissue interface in histotripsy under pulse duration (PD) of 10-40 μs and pulse repetition frequency (PRF) of 0.67-2 kHz were monitored by this method. The integrated bubble area curves inside the tissue interface were acquired from the bubble image sequence, and the formation process of histotripsy damage was estimated. It was observed that the histotripsy efficiency decreased with both longer PDs and higher PRFs. A direct relationship with a coefficient of 1.0365 between histotripsy lesion area and inner residual bubble area was found. These results can assist in monitoring and optimization of the histotripsy treatment further.

  18. Spatial-temporal ultrasound imaging of residual cavitation bubbles around a fluid-tissue interface in histotripsy.

    PubMed

    Hu, Hong; Xu, Shanshan; Yuan, Yuan; Liu, Runna; Wang, Supin; Wan, Mingxi

    2015-05-01

    Cavitation is considered as the primary mechanism of soft tissue fragmentation (histotripsy) by pulsed high-intensity focused ultrasound. The residual cavitation bubbles have a dual influence on the histotripsy pulses: these serve as nuclei for easy generation of new cavitation, and act as strong scatterers causing energy "shadowing." To monitor the residual cavitation bubbles in histotripsy, an ultrafast active cavitation imaging method with relatively high signal-to-noise ratio and good spatial-temporal resolution was proposed in this paper, which combined plane wave transmission, minimum variance beamforming, and coherence factor weighting. The spatial-temporal evolutions of residual cavitation bubbles around a fluid-tissue interface in histotripsy under pulse duration (PD) of 10-40 μs and pulse repetition frequency (PRF) of 0.67-2 kHz were monitored by this method. The integrated bubble area curves inside the tissue interface were acquired from the bubble image sequence, and the formation process of histotripsy damage was estimated. It was observed that the histotripsy efficiency decreased with both longer PDs and higher PRFs. A direct relationship with a coefficient of 1.0365 between histotripsy lesion area and inner residual bubble area was found. These results can assist in monitoring and optimization of the histotripsy treatment further. PMID:25994689

  19. An Acoustofluidic Micromixer via Bubble Inception and Cavitation from Microchannel Sidewalls

    PubMed Central

    2015-01-01

    During the deep reactive ion etching process, the sidewalls of a silicon mold feature rough wavy structures, which can be transferred onto a polydimethylsiloxane (PDMS) microchannel through the soft lithography technique. In this article, we utilized the wavy structures of PDMS microchannel sidewalls to initiate and cavitate bubbles in the presence of acoustic waves. Through bubble cavitation, this acoustofluidic approach demonstrates fast, effective mixing in microfluidics. We characterized its performance by using viscous fluids such as poly(ethylene glycol) (PEG). When two PEG solutions with a resultant viscosity 54.9 times higher than that of water were used, the mixing efficiency was found to be 0.92, indicating excellent, homogeneous mixing. The acoustofluidic micromixer presented here has the advantages of simple fabrication, easy integration, and capability to mix high-viscosity fluids (Reynolds number: ∼0.01) in less than 100 ms. PMID:24754496

  20. Cavitation bubbles induced by Erbium lasers: implications for dentistry

    NASA Astrophysics Data System (ADS)

    Verleng, Marja; Verdaasdonk, Rudolf; van der Veen, Albert; Lemberg, Vladimir; Boutoussov, Dmitri

    2014-02-01

    With new fiber systems available for 3 μm, Erbium lasers become more interesting for precise tissue ablation in a water environment enabling new application in e.g. dentistry. The dynamics of explosive bubble formation was investigated at 2.78 μm (Er,Cr;YSGG) and 2.94 μm (Er:YAG), in relation to energy (10-50 mJ), pulse length (20-150 μs) and fiber tip shape (flat or taper). The dynamics of exploding and imploding vapor bubbles were captured with high speed imaging (10 - 300 μs range). Increasing the pulse length and energy, the vapor bubble became more elongated with an opaque surface for flat tip fibers. Tapered fibers produced spherical vapor bubbles with an optically transparent surface expected to be more forceful for creating mechanical effects in both hard and soft tissues. There was no significant difference between bubbles formed at 2.78 μm (Er,Cr;YSGG) and 2.94 μm (Er:YAG).

  1. Recent theories of cavitation damage including non-symmetrical bubble collapse effects

    NASA Technical Reports Server (NTRS)

    Hammitt, F. G.

    1974-01-01

    Theories of cavitation damage mechanisms are discussed. Photographic evidence has shown that the actual collapse of bubbles near a symmetry-destroying feature such as a nearby wall results in a toroidal-like collapse, with the final generation of a liquid microjet oriented toward the wall. Numerical analyses indicate that the shock wave intensity emitted during collapse is not likely to be strong enough to be damaging to most materials. It has been determined that actual damage is usually a result of a combination of impact effect of the microjet and the shock wave pressures generated by bubble rebounds.

  2. Reduction of Bubble Cavitation by Modifying the Diffraction Wave from a Lithotripter Aperture

    PubMed Central

    2012-01-01

    Abstract Purpose A new method was devised to suppress the bubble cavitation in the lithotripter focal zone to reduce the propensity of shockwave-induced renal injury. Materials and Methods An edge extender was designed and fabricated to fit on the outside of the ellipsoidal reflector of an electrohydraulic lithotripter to disturb the generation of diffraction wave at the aperture, but with little effect on the acoustic field inside the reflector. Results Although the peak negative pressures at the lithotripter focus using the edge extender at 20 kV were similar to that of the original configuration (-11.1±0.9 vs −10.6±0.7 MPa), the duration of the tensile wave was shortened significantly (3.2±0.54 vs 5.83±0.56 μs, P<0.01). There is no difference, however, in both the amplitude and duration of the compressive shockwaves between these two configurations as well as the −6 dB beam width in the focal plane. The significant suppression effect of bubble cavitation was confirmed by the measured bubble collapse time using passive cavitation detection. At the lithotripter focus, while only about 30 shocks were needed to rupture a blood vessel phantom using the original HM-3 reflector at 20 kV, no damage could be produced after 300 shocks using the edge extender. Meanwhile, the original HM-3 lithotripter at 20 kV can achieve a stone comminution efficiency of 50.4±2.0% on plaster-of-Paris stone phantom after 200 shocks, which is comparable to that of using the edge extender (46.8±4.1%, P=0.005). Conclusions Modifying the diffraction wave at the lithotripter aperture can suppress the shockwave-induced bubble cavitation with significant reduced damage potential on the vessel phantom but satisfactory stone comminution ability. PMID:22332839

  3. Bubble growth and mechanical properties of tissue in decompression.

    PubMed

    Vann, R D; Clark, H G

    1975-09-01

    A survey of decompression literature leads to the conclusion that when tissue is subjected to gaseous supersaturation, pre-existing gas micronuclei grow into the gas bubbles which are routinely observed in decompression studies. These micronuclei may originate from mechanically induced tribonucleation or cavitation within joints. A new tissue model for decompression sickness based upon failure theory in rubber is proposed. The model shows theoretically that pre-existing sea-level nuclei can be stabilized at depth by elastic forces in tissue. These same elastic forces restrain the growth of nuclei when supersaturation occurs. Mechanical stress will lower the gaseous supersaturation required for growth of nuclei. Gaseous supersaturation, mechanical stress, and the elastic properties of various tissues interact to produce unbounded bubble growth leading to tissue lesions when combined gaseous and mechanical supersaturation exceeds a threshold value. The recommendation is made that the high levels of supersaturation generally used for the decompression of men be reduced.

  4. Binary Schemes of Vapor Bubble Growth

    NASA Astrophysics Data System (ADS)

    Zudin, Yu. B.

    2015-05-01

    A problem on spherically symmetric growth of a vapor bubble in an infi nite volume of a uniformly superheated liquid is considered. A description of the limiting schemes of bubble growth is presented. A binary inertial-thermal bubble growth scheme characterized by such specifi c features as the "three quarters" growth law and the effect of "pressure blocking" in a vapor phase is considered.

  5. Variations of bubble cavitation and temperature elevation during lesion formation by high-intensity focused ultrasound.

    PubMed

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2013-08-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in both thermal ablations for solid tumor/cancer and soft-tissue fragmentation. Mechanical and thermal effects, which play an important role in the HIFU treatment simultaneously, are dependent on the operating parameters and may vary with the progress of therapy. Mechanical erosion in the shape of a "squid," a "dumbbell" lesion with both mechanical and thermal lesions, or a "tadpole" lesion with mechanical erosion at the center and thermal necrosis on the boundary in the transparent gel phantom could be produced correspondingly with the pulse duration of 5-30 ms, which is much longer than histotripsy burst but shorter than the time for tissue boiling, and pulse repetition frequency (PRF) of 0.2-5 Hz. Meanwhile, variations of bubble cavitation (both inertial and stable cavitation) and temperature elevation in the focal region (i.e., z = -2.5, 0, and 2.5 mm) were measured by passive cavitation detection (PCD) and thermocouples during the therapeutic procedure, respectively. Stable cavitation increased with the pulse duration, PRF, and the number of pulses delivered. However, inertial cavitation was found to increase initially and then decrease with long pulse duration and high PRF. Temperature in the pre-focal region is always higher than those at the focal and post-focal position in all tests. Great variations of PCD signals and temperature elevation are due to the generation and persistence of large bubble, which is resistant to collapse and occurs with the increase of pulse duration and PRF. Similar lesion pattern and variations were also observed in ex vivo porcine kidneys. Hyperechoes in the B-mode ultrasound image were comparable to the shape and size of lesions in the dissected tissue. Thermal lesion volume increased with the increase of pulse duration and PRF, but mechanical erosion reached its maximum volume with the pulse duration of 20 ms and PRF of 1

  6. Wavelet-transform-based active imaging of cavitation bubbles in tissues induced by high intensity focused ultrasound.

    PubMed

    Liu, Runna; Xu, Shanshan; Hu, Hong; Huo, Rui; Wang, Supin; Wan, Mingxi

    2016-08-01

    Cavitation detection and imaging are essential for monitoring high-intensity focused ultrasound (HIFU) therapies. In this paper, an active cavitation imaging method based on wavelet transform is proposed to enhance the contrast between the cavitation bubbles and surrounding tissues. The Yang-Church model, which is a combination of the Keller-Miksis equation with the Kelvin-Voigt equation for the pulsations of gas bubbles in simple linear viscoelastic solids, is utilized to construct the bubble wavelet. Experiments with porcine muscles demonstrate that image quality is associated with the initial radius of the bubble wavelet and the scale. Moreover, the Yang-Church model achieves a somewhat better performance compared with the Rayleigh-Plesset-Noltingk-Neppiras-Poritsky model. Furthermore, the pulse inversion (PI) technique is combined with bubble wavelet transform to achieve further improvement. The cavitation-to-tissue ratio (CTR) of the best tissue bubble wavelet transform (TBWT) mode image is improved by 5.1 dB compared with that of the B-mode image, while the CTR of the best PI-based TBWT mode image is improved by 7.9 dB compared with that of the PI-based B-mode image. This work will be useful for better monitoring of cavitation in HIFU-induced therapies.

  7. Wavelet-transform-based active imaging of cavitation bubbles in tissues induced by high intensity focused ultrasound.

    PubMed

    Liu, Runna; Xu, Shanshan; Hu, Hong; Huo, Rui; Wang, Supin; Wan, Mingxi

    2016-08-01

    Cavitation detection and imaging are essential for monitoring high-intensity focused ultrasound (HIFU) therapies. In this paper, an active cavitation imaging method based on wavelet transform is proposed to enhance the contrast between the cavitation bubbles and surrounding tissues. The Yang-Church model, which is a combination of the Keller-Miksis equation with the Kelvin-Voigt equation for the pulsations of gas bubbles in simple linear viscoelastic solids, is utilized to construct the bubble wavelet. Experiments with porcine muscles demonstrate that image quality is associated with the initial radius of the bubble wavelet and the scale. Moreover, the Yang-Church model achieves a somewhat better performance compared with the Rayleigh-Plesset-Noltingk-Neppiras-Poritsky model. Furthermore, the pulse inversion (PI) technique is combined with bubble wavelet transform to achieve further improvement. The cavitation-to-tissue ratio (CTR) of the best tissue bubble wavelet transform (TBWT) mode image is improved by 5.1 dB compared with that of the B-mode image, while the CTR of the best PI-based TBWT mode image is improved by 7.9 dB compared with that of the PI-based B-mode image. This work will be useful for better monitoring of cavitation in HIFU-induced therapies. PMID:27586712

  8. Bubble-induced sheet cavitation inception on an isolated roughness element

    NASA Astrophysics Data System (ADS)

    van Rijsbergen, Martijn; Slot, Jesse

    2015-12-01

    The nucleation process on an isolated roughness element, located at the point of minimum pressure of a NACA 0015 hydrofoil was studied experimentally and computationally. The objective of this study was to investigate the working mechanism of bubble-induced sheet cavitation inception. High-speed micro-scale observations show the generation of a streak of cavitation—attached to the roughness element—in the wake of the bubble. Below its critical diameter, the bubble can detach from the streak cavity and travel on while the streak cavity remains. The solutions of a Rayleigh-Plesset equation along a streamline extracted from a RANS calculation show strong similarities with the experimental observations, but a factor 5 to 10 higher frame rate is needed to validate the calculations.

  9. Helium Bubble Injection Solution To The Cavitation Damage At The Spallation Neutron Source

    SciTech Connect

    Francis, M. W.; Ruggles, A. E.

    2009-03-10

    The Spallation Neutron Source (SNS) is one of the largest science projects in the United States, with total cost near 1.4 Billion Dollars. The limiting factor of the facility had always been assumed to be the lifetime of the target window due to radiation damage. After further investigation, the lifetime of the target was determined not to be limited by radiation damage but by cavitation damage. The cavitation damage derives from pressure waves caused by the beam energy deposition. Vapor bubbles form when low to negative pressures occur in the mercury near the stainless steel target window due to wave interaction with the structure. Collapse of these bubbles can focus wave energy in small liquid jets that erode the window surface. Compressibility of the mercury can be enhanced to reduce the amplitude of the pressure wave caused by the beam energy deposition. To enhance compressibility, small (10 to 30 micron diameter) gas bubbles could be injected into the bulk of the mercury. Solubility and diffusivity parameters of inert gas in mercury are required for a complete mechanical simulation and engineering of these strategies. Using current theoretical models, one obtains a theoretical Henry coefficient of helium in mercury on the order of 3.9E15 Pa-molHg/molHe at 300 K. This low solubility was confirmed by a direct, offline experimental method. Mercury was charged with helium and any pressure change was recorded. Any pressure change was attributed to gas going into solution. Therefore, with the sensitivity of the experiment, a lower limit of 9E12 Pa-molHg/molHe was placed on the mercury-helium system. These values guarantee a stable bubble lifetime needed within the SNS mercury target to mitigate cavitation issues.

  10. Transient trapping of two microparticles interacting with optical tweezers and cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Carmona-Sosa, Viridiana; Quinto-Su, Pedro A.

    2016-10-01

    In this work we show that two absorbing microbeads can briefly share the same optical trap while creating microscopic explosions. Optical forces pull the particles towards the waist of the trapping beam, once a particle reaches the vicinity of the waist, the surrounding liquid is superheated creating an explosion or cavitation bubble that pushes the particle away while lengthening or shortening the trajectories of the surrounding particles. Hence effectively coupling all the trajectories to each cavitation event. We find that when two microbeads reach the waist simultaneously within a distance of 2.9 μ {{m}} from the beam center in the transverse plane, a larger explosion might result in ejection from the trap. The measured maximum radial displacements {{Δ }}{ρ }{{c}} due to cavitation are {{Δ }}{ρ }{{c}}=3.9+/- 2.2 μ {{m}} when the particles reach simultaneously with maximum bubble sizes {R}{{\\max }}=6.2+/- 3.1 μ {{m}}, while for individual cases {{Δ }}{ρ }{{c}} is 2.7+/- 1.2 μ {{m}} and {R}{{\\max }}=4.2+/- 1.6 μ {{m}}. We also measure the characteristic timescale of two particle coalescence which is a measure of the expected time that the particles can stay trapped near the waist. The measurements are fitted by a Poisson decaying exponential probability distribution. A simple one-dimensional model shows that the characteristic timescales for transient trapping of multiple absorbing particles decrease as more objects are added.

  11. Interaction Mechanisms of Cavitation Bubbles Induced by Spatially and Temporally Separated fs-Laser Pulses

    PubMed Central

    Tinne, Nadine; Kaune, Brigitte; Krüger, Alexander; Ripken, Tammo

    2014-01-01

    The emerging use of femtosecond lasers with high repetition rates in the MHz regime together with limited scan speed implies possible mutual optical and dynamical interaction effects of the individual cutting spots. In order to get more insight into the dynamics a time-resolved photographic analysis of the interaction of cavitation bubbles is presented. Particularly, we investigated the influence of fs-laser pulses and their resulting bubble dynamics with various spatial as well as temporal separations. Different time courses of characteristic interaction effects between the cavitation bubbles were observed depending on pulse energy and spatio-temporal pulse separation. These ranged from merely no interaction to the phenomena of strong water jet formation. Afterwards, the mechanisms are discussed regarding their impact on the medical application of effective tissue cutting lateral to the laser beam direction with best possible axial precision: the mechanical forces of photodisruption as well as the occurring water jet should have low axial extend and a preferably lateral priority. Furthermore, the overall efficiency of energy conversion into controlled mechanical impact should be maximized compared to the transmitted pulse energy and unwanted long range mechanical side effects, e.g. shock waves, axial jet components. In conclusion, these experimental results are of great importance for the prospective optimization of the ophthalmic surgical process with high-repetition rate fs-lasers. PMID:25502697

  12. Interaction mechanisms of cavitation bubbles induced by spatially and temporally separated fs-laser pulses.

    PubMed

    Tinne, Nadine; Kaune, Brigitte; Krüger, Alexander; Ripken, Tammo

    2014-01-01

    The emerging use of femtosecond lasers with high repetition rates in the MHz regime together with limited scan speed implies possible mutual optical and dynamical interaction effects of the individual cutting spots. In order to get more insight into the dynamics a time-resolved photographic analysis of the interaction of cavitation bubbles is presented. Particularly, we investigated the influence of fs-laser pulses and their resulting bubble dynamics with various spatial as well as temporal separations. Different time courses of characteristic interaction effects between the cavitation bubbles were observed depending on pulse energy and spatio-temporal pulse separation. These ranged from merely no interaction to the phenomena of strong water jet formation. Afterwards, the mechanisms are discussed regarding their impact on the medical application of effective tissue cutting lateral to the laser beam direction with best possible axial precision: the mechanical forces of photodisruption as well as the occurring water jet should have low axial extend and a preferably lateral priority. Furthermore, the overall efficiency of energy conversion into controlled mechanical impact should be maximized compared to the transmitted pulse energy and unwanted long range mechanical side effects, e.g. shock waves, axial jet components. In conclusion, these experimental results are of great importance for the prospective optimization of the ophthalmic surgical process with high-repetition rate fs-lasers.

  13. Study on the spatial distribution of the liquid temperature near a cavitation bubble wall.

    PubMed

    Shen, Yang; Yasui, Kyuichi; Sun, Zhicheng; Mei, Bin; You, Meiyan; Zhu, Tong

    2016-03-01

    A simple new model of the spatial distribution of the liquid temperature near a cavitation bubble wall (Tli) is employed to numerically calculate Tli. The result shows that Tli is almost same with the ambient liquid temperature (T0) during the bubble oscillations except at strong collapse. At strong collapse, Tli can increase to about 1510 K, the same order of magnitude with that of the maximum temperature inside the bubble, which means that the chemical reactions occur not only in gas-phase inside the collapsing bubble but also in liquid-phase just outside the collapsing bubble. Four factors (ultrasonic vibration amplitude, ultrasonic frequency, the surface tension and the viscosity) are considered to study their effects for the thin liquid layer. The results show that for the thin layer, the thickness and the temperature increase as the ultrasonic vibration amplitude rise; conversely, the thickness and the temperature decrease with the increase of the ultrasonic frequency, the surface tension or the viscosity. PMID:26585020

  14. Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom

    NASA Astrophysics Data System (ADS)

    Brujan, Emil-Alexandru; Vogel, Alfred

    2006-07-01

    Stress wave emission and cavitation bubble dynamics after optical breakdown in water and a tissue phantom with Nd: YAG laser pulses of 6 ns duration were investigated both experimentally and numerically to obtain a better understanding of the physical mechanisms involved in plasma-mediated laser surgery. Experimental tools were high-speed photography with 50000 frames s(-1) , and acoustic measurements. The tissue phantom consisted of a transparent polyacrylamide (PAA) gel, the elastic properties of which can be controlled by modifying the water content. Breakdown in water produced a purely compressive stress wave. By contrast, in stiff PAA samples and for sufficiently large pulse energies, the compression wave was followed by an intense tensile wave, similar to the behaviour previously observed in cornea. The elastic/plastic response of the medium led to a significant decrease of the maximum size of the cavitation bubble and to a shortening of its oscillation period which was found to be related to the generation of the tensile stress wave upon breakdown. For increasing elastic modulus of the PAA, both the amplitudes of the bubble oscillation and of the stress wave emitted during bubble collapse decreased until the bubble oscillation was so strongly damped that no collapse stress wave was emitted. Numerical simulations were performed using a spherical model of bubble dynamics which includes the compressibility and elastic/plastic behaviour of the medium, viscosity, density and surface tension. The calculations revealed that consideration of the elastic/plastic behaviour of the medium surrounding the bubble is essential to describe the experimentally observed bipolar shape of the stress wave emitted upon optical breakdown. Water is a poor tissue model because the shape of the emitted stress waves and the bubble dynamics differ strongly for both materials. The mechanical properties of PAA were also found to be quite different from those of tissues. Experimental and

  15. Bubble growth in superheated He-II

    SciTech Connect

    Dresner, L.

    1988-01-01

    Bubble growth in superheated He-II is controlled by the transfer of heat to the surface of the growing bubble by nonlinear Gorter-Mellink counterflow. The present work presents analytic formulas for the bubble radius as a function of time in the limiting cases of small and large superheats. The formulas include the effect of the inertial reaction of the surrounding liquid to the expansion of the bubble. A numerical example shows that bubble velocities of the order of meters per second are possible. A related problem, involving only heat transfer but no movement of the liquid, is the motion of the free surface of superheated He-II in a very long tube. This problem has a similarity solution. The interfacial velocity in the tube is much smaller than the bubble growth velocity. 1 ref.

  16. Shock wave emission from laser-induced cavitation bubbles in polymer solutions.

    PubMed

    Brujan, Emil-Alexandru

    2008-09-01

    The role of extensional viscosity on the acoustic emission from laser-induced cavitation bubbles in polymer solutions and near a rigid boundary is investigated by acoustic measurements. The polymer solutions consist of a 0.5% polyacrylamide (PAM) aqueous solution with a strong elastic component and a 0.5% carboxymethylcellulose (CMC) aqueous solution with a weak elastic component. A reduction of the maximum amplitude of the shock wave pressure and a prolongation of the oscillation period of the bubble were found in the elastic PAM solution. It might be caused by an increased resistance to extensional flow which is conferred upon the liquid by the polymer additive. In both polymer solutions, however, the shock pressure decays proportionally to r(-1) with increasing distance r from the emission centre.

  17. Bubble Proliferation or Dissolution of Cavitation Nuclei in the Beam Path of a Shock-Wave Lithotripter

    NASA Astrophysics Data System (ADS)

    Frank, Spencer; Lautz, Jaclyn; Sankin, Georgy N.; Szeri, Andrew J.; Zhong, Pei

    2015-03-01

    It is hypothesized that the decreased treatment efficiency in contemporary shock-wave lithotripters is related to tensile wave attenuation due to cavitation in the prefocal beam path. Utilizing high-speed imaging of the beam path and focal pressure waveform measurements, tensile attenuation is associated with bubble proliferation. By systematically testing different combinations of pulse-repetition frequency and gas concentration, we modulate the bubble-dissolution time to identify which conditions lead to bubble proliferation and show that reducing bubble proliferation in the beam path significantly improves acoustic transmission and stone comminution efficiency in vitro. In addition to experiments, a bubble-proliferation model is developed that takes gas diffusion across the bubble wall and bubble fragmentation into account. By aligning the model with experimental observations, the number of daughter bubbles produced after a single lithotripter bubble collapse is estimated to be in the range of 253 ˜510 . This finding is on the same order of magnitude with previous measurements of an isolated bubble collapse in a lithotripter field by Pishchalnikov, McAteer, and Williams [BJU Int. 102, 1681 (2008), 10.1111/j.1464-410X.2008.07896.x], and this estimate improves the general understanding of lithotripsy bubble dynamics in the beam path.

  18. Cavitation mapping by sonochemiluminescence with less bubble displacement induced by acoustic radiation force in a 1.2 MHz HIFU.

    PubMed

    Yin, Hui; Qiao, Yangzi; Cao, Hua; Li, Zhaopeng; Wan, Mingxi

    2014-03-01

    An acoustic radiation force counterbalanced appliance was employed to map the cavitation distribution in water. The appliance was made up of a focused ultrasound transducer and an aluminum alloy reflector with the exactly same shape. They were centrosymmetry around the focus of the source transducer. Spatial-temporal dynamics of cavitation bubble clouds in the 1.2 MHz ultrasonic field within this appliance were observed in water. And they were mapped by sonochemiluminescence (SCL) recordings and high-speed photography. There were significant differences in spatial distribution and temporal evolution between normal group and counterbalanced group. The reflector could avoid bubble directional displacement induced by acoustic radiation force under certain electric power (≤50 W). As a result, the SCL intensity in the pre-focal region was larger than that of normal group. In event of high electric power (≥70 W), most of the bubbles were moving in acoustic streaming. When electric power decreased, bubbles kept stable and showed stripe structure in SCL images. Both stationary bubbles and moving bubbles have been captured, and exhibited analytical potential with respect to bubbles in therapeutic ultrasound.

  19. Studies on the Tempo of Bubble Formation in Recently Cavitated Vessels: A Model to Predict the Pressure of Air Bubbles1

    PubMed Central

    Wang, Yujie; Pan, Ruihua; Tyree, Melvin T.

    2015-01-01

    A cavitation event in a vessel replaces water with a mixture of water vapor and air. A quantitative theory is presented to argue that the tempo of filling of vessels with air has two phases: a fast process that extracts air from stem tissue adjacent to the cavitated vessels (less than 10 s) and a slow phase that extracts air from the atmosphere outside the stem (more than 10 h). A model was designed to estimate how water tension (T) near recently cavitated vessels causes bubbles in embolized vessels to expand or contract as T increases or decreases, respectively. The model also predicts that the hydraulic conductivity of a stem will increase as bubbles collapse. The pressure of air bubbles trapped in vessels of a stem can be predicted from the model based on fitting curves of hydraulic conductivity versus T. The model was validated using data from six stem segments each of Acer mono and the clonal hybrid Populus 84K (Populus alba × Populus glandulosa). The model was fitted to results with root mean square error less than 3%. The model provided new insight into the study of embolism formation in stem tissue and helped quantify the bubble pressure immediately after the fast process referred to above. PMID:25907963

  20. Spectrum of laser light scattered by nanoparticles in an ablation-induced cavitation bubble

    NASA Astrophysics Data System (ADS)

    Takeuchi, Masato; Sasaki, Koichi

    2016-04-01

    The spectrum of the laser light scattered by nanoparticles in a cavitation bubble, which was induced by laser ablation of a titanium target in water, was measured using a triple-grating spectrograph. The scattered laser light observed at 100 \\upmu s after laser ablation had no wavelength-shifted component, suggesting that nanoparticles at this delay time were metallic. The wavelength-shifted component was observed in the spectrum at a delay time of 200 \\upmu s, suggesting the formation of oxidized nanoparticles. However, we observed no peaks in the spectrum of the scattered laser light in the present in situ laser-light scattering experiment. On the other hand, we observed clear peaks in the Raman spectrum of synthesized nanoparticles. The experimental results suggest slow crystallization of nanoparticles in liquid in liquid-phase laser ablation.

  1. Dynamics of dissolved gas in a cavitating fluid

    NASA Astrophysics Data System (ADS)

    Mastikhin, Igor V.; Newling, Benedict

    2008-12-01

    A strong acoustic field in a liquid separates the liquid and dissolved gases by the formation of bubbles (cavitation). Bubble growth and collapse is the result of active exchange of gas and vapor through the bubble walls with the surrounding liquid. This paper details a new approach to the study of cavitation, not as an evolution of discrete bubbles, but as the dynamics of molecules constituting both the bubbles and the fluid. We show, by direct, independent measurement of the liquid and the dissolved gas, that the motions of dissolved gas (freon-22, CHClF2 ) and liquid (water) can be quite different during acoustic cavitation and are strongly affected by filtration or previous cavitation of the solvent. Our observations suggest that bubbles can completely refresh their content within two acoustic cycles and that long-lived (˜minutes) microbubbles act as nucleation sites for cavitation. This technique is complementary to the traditional optical and acoustical techniques.

  2. CO2 bubbling-based 'Nanobomb' System for Targetedly Suppressing Panc-1 Pancreatic Tumor via Low Intensity Ultrasound-activated Inertial Cavitation.

    PubMed

    Zhang, Kun; Xu, Huixiong; Chen, Hangrong; Jia, Xiaoqing; Zheng, Shuguang; Cai, Xiaojun; Wang, Ronghui; Mou, Juan; Zheng, Yuanyi; Shi, Jianlin

    2015-01-01

    Noninvasive and targeted physical treatment is still desirable especially for those cancerous patients. Herein, we develop a new physical treatment protocol by employing CO2 bubbling-based 'nanobomb' system consisting of low-intensity ultrasound (1.0 W/cm(2)) and a well-constructed pH/temperature dual-responsive CO2 release system. Depending on the temperature elevation caused by exogenous low-intensity therapeutic ultrasound irradiation and the low pH caused by the endogenous acidic-environment around/within tumor, dual-responsive CO2 release system can quickly release CO2 bubbles, and afterwards, the generated CO2 bubbles waves will timely explode before dissolution due to triggering by therapeutic ultrasound waves. Related bio-effects (e.g., cavitation, mechanical, shock waves, etc) caused by CO2 bubbles' explosion effectively induce instant necrosis of panc-1 cells and blood vessel destruction within panc-1 tumor, and consequently inhibit the growth of panc-1 solid tumor, simultaneously minimizing the side effects to normal organs. This new physiotherapy employing CO2 bubbling-based 'nanobomb' system promises significant potentials in targetedly suppressing tumors, especially for those highly deadly cancers.

  3. CO2 bubbling-based 'Nanobomb' System for Targetedly Suppressing Panc-1 Pancreatic Tumor via Low Intensity Ultrasound-activated Inertial Cavitation

    PubMed Central

    Zhang, Kun; Xu, Huixiong; Chen, Hangrong; Jia, Xiaoqing; Zheng, Shuguang; Cai, Xiaojun; Wang, Ronghui; Mou, Juan; Zheng, Yuanyi; Shi, Jianlin

    2015-01-01

    Noninvasive and targeted physical treatment is still desirable especially for those cancerous patients. Herein, we develop a new physical treatment protocol by employing CO2 bubbling-based 'nanobomb' system consisting of low-intensity ultrasound (1.0 W/cm2) and a well-constructed pH/temperature dual-responsive CO2 release system. Depending on the temperature elevation caused by exogenous low-intensity therapeutic ultrasound irradiation and the low pH caused by the endogenous acidic-environment around/within tumor, dual-responsive CO2 release system can quickly release CO2 bubbles, and afterwards, the generated CO2 bubbles waves will timely explode before dissolution due to triggering by therapeutic ultrasound waves. Related bio-effects (e.g., cavitation, mechanical, shock waves, etc) caused by CO2 bubbles' explosion effectively induce instant necrosis of panc-1 cells and blood vessel destruction within panc-1 tumor, and consequently inhibit the growth of panc-1 solid tumor, simultaneously minimizing the side effects to normal organs. This new physiotherapy employing CO2 bubbling-based 'nanobomb' system promises significant potentials in targetedly suppressing tumors, especially for those highly deadly cancers. PMID:26379793

  4. ``Ultrasonic stars'' for time-reversal focusing using induced cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Pernot, Mathieu; Montaldo, Gabriel; Tanter, Mickael; Fink, Mathias

    2006-01-01

    Ultrasound waves can be focused by multichannel arrays through heterogeneous media using a time-reversal focusing method. In this method, it is required that a reference signal be either sent by a small active source embedded in the medium or backscattered by a strong scatterer acting as a passive source. The potential of this method in ultrasonic medical imaging has been already envisioned for aberration corrections. However, in many practical situations it is not possible to insert an active source in the medium or to rely on the presence of a unique strong scatterer in order to generate the reference signal. Analogous to the field of adaptive optics in astronomy, we propose here to create artificial ``ultrasonic stars'' in the body. The trick consists of first creating a bubble inside the medium using a section of the ultrasonic array. Due to cavitation, the bubble generates a spherical wave that propagates through a heterogeneous medium to the ultrasound array. The time-reversal method is then applied to the ultrasonic wave received by the array. This technique is experimentally validated for aberrations corrections in tissue mimicking phantoms.

  5. Effects of an acoustic diode on the pressure waveform and cavitation bubble dynamics produced by a piezoelectric shock wave generator

    NASA Astrophysics Data System (ADS)

    Zhu, Songlin; Zhong, Pei

    2003-10-01

    High-speed schlieren imaging, combined with fiber optical probe hydrophone (FOPH) and passive cavitation detection (PCD) were used to access the effects of an acoustic diode (AD) on the pressure waveform and associated cavitation activities produced by a piezoelectric shock wave (PSW) generator. Without the AD, a typical pressure waveform at the focus of the PSW generator consists of a leading shock wave, followed by a tensile wave and several oscillation waves (OWs) of gradually reduced amplitudes. When the AD was placed 30 mm in front of the focus, the amplitude of the tensile wave was reduced and the subsequent OWs were removed. The pulse intensity integral of the tensile wave was reduced by 58%, and subsequently, PSW-induced bubble dynamics were altered significantly. Based on PCD data, the collapse time of cavitation bubble(s) was reduced by about 11%. Although intensive collapse of microbubbles was observed in about 10 μs following the shock front of the original PSW, the forced collapse of microbubbles was not observed when the AD was used, presumably due to the removal of the OWs. Theoretical calculation based on the Gilmore model confirmed these experimental observations. [Work supported by the Whitaker Foundation and NIH.

  6. High-speed observation of cavitation bubble cloud structures in the focal region of a 1.2 MHz high-intensity focused ultrasound transducer.

    PubMed

    Chen, Hong; Li, Xiaojing; Wan, Mingxi; Wang, Supin

    2007-03-01

    Cavitation bubble clouds in the focal region of HIFU play important roles in therapeutic applications of HIFU. Temporal evolution and spatial distribution of cavitation bubble clouds generated in the focal region of a 1.2 MHz single element concave HIFU transducer in water are investigated by high-speed photography. It is found that during the initial 600 micro s insonation cavitation bubble clouds organize to the "screw-like structure" or "cap-like structure". The screw-like structure is characterized by a nearly fixed tip at the geometrical focus of the HIFU transducer, and the cap-like structure is marked by a dent formed in the direction of ultrasound transmission. After 600 micro s, another two structures are recorded - "streamer structure" and "cluster structure". The streamer structure is also featured by a nearly fixed bottom position at the focus, while the cluster structure is distinguished by agglomerations of bubbles around the focus.

  7. High-speed observation of cavitation bubble cloud structures in the focal region of a 1.2 MHz high-intensity focused ultrasound transducer.

    PubMed

    Chen, Hong; Li, Xiaojing; Wan, Mingxi; Wang, Supin

    2007-03-01

    Cavitation bubble clouds in the focal region of HIFU play important roles in therapeutic applications of HIFU. Temporal evolution and spatial distribution of cavitation bubble clouds generated in the focal region of a 1.2 MHz single element concave HIFU transducer in water are investigated by high-speed photography. It is found that during the initial 600 micro s insonation cavitation bubble clouds organize to the "screw-like structure" or "cap-like structure". The screw-like structure is characterized by a nearly fixed tip at the geometrical focus of the HIFU transducer, and the cap-like structure is marked by a dent formed in the direction of ultrasound transmission. After 600 micro s, another two structures are recorded - "streamer structure" and "cluster structure". The streamer structure is also featured by a nearly fixed bottom position at the focus, while the cluster structure is distinguished by agglomerations of bubbles around the focus. PMID:17071124

  8. Some problems of the theory of bubble growth and condensation in bubble chambers

    NASA Technical Reports Server (NTRS)

    Tkachev, L. G.

    1988-01-01

    This work is an attempt to explain the reasons for the discrepancies between the theoretical and experimental values of bubble growth rate in an overheated liquid, and to provide a brief formulation of the main premises of the theory on bubble growth in liquid before making a critical analysis. To simplify the problem, the floating upward of bubbles is not discussed; moreover, the study is based on the results of the theory of the behavior of fixed bubbles.

  9. Bioeffects caused by changes in acoustic cavitation bubble density and cell concentration: a unified explanation based on cell-to-bubble ratio and blast radius.

    PubMed

    Guzmán, Héctor R; McNamara, Andrew J; Nguyen, Daniel X; Prausnitz, Mark R

    2003-08-01

    Acoustic cavitation has been shown to load drugs, proteins and DNA into viable cells as a complex function of acoustic and nonacoustic parameters. To better understand and quantify this functionality, DU145 prostate cancer cell suspensions at different cell concentrations (2.5 x 10(5) to 4.0 x 10(7) cells/mL) were exposed to 500 kHz ultrasound (US) over a range of acoustic energy exposures (2 to 817 J/cm(2); peak negative pressures of 0.64 to 2.96 MPa; exposure times of 120 to 2000 ms) in the presence of different initial concentrations of Optison contrast agent bubbles (3.6 x 10(4) to 9.3 x 10(7) bubbles/mL). As determined by flow cytometry, molecular uptake of calcein and cell viability both increased with increasing cell density; viability decreased and uptake was unaffected by increasing initial contrast agent concentration. When normalized relative to the initial contrast agent concentration (e.g., cells killed per bubble), bioeffects increased with increasing cell density and decreased with increasing bubble concentration. These varying effects of contrast agent concentration and cell density were unified through an overall correlation with cell-to-bubble ratio. Additional analysis led to estimation of "blast radii" over which bubbles killed or permeabilized cells; these radii were as much as 3 to 90 times the bubble radius. Combined, these results suggest that extensive molecular uptake into cells at high viability occurs for low-energy exposure US applied at a high cell-to-bubble ratio.

  10. Cavitation-induced damage of soft materials by focused ultrasound bursts: A fracture-based bubble dynamics model.

    PubMed

    Movahed, Pooya; Kreider, Wayne; Maxwell, Adam D; Hutchens, Shelby B; Freund, Jonathan B

    2016-08-01

    A generalized Rayleigh-Plesset-type bubble dynamics model with a damage mechanism is developed for cavitation and damage of soft materials by focused ultrasound bursts. This study is linked to recent experimental observations in tissue-mimicking polyacrylamide and agar gel phantoms subjected to bursts of a kind being considered specifically for lithotripsy. These show bubble activation at multiple sites during the initial pulses. More cavities appear continuously through the course of the observations, similar to what is deduced in pig kidney tissues in shock-wave lithotripsy. Two different material models are used to represent the distinct properties of the two gel materials. The polyacrylamide gel is represented with a neo-Hookean elastic model and damaged based upon a maximum-strain criterion; the agar gel is represented with a strain-hardening Fung model and damaged according to the strain-energy-based Griffith's fracture criterion. Estimates based upon independently determined elasticity and viscosity of the two gel materials suggest that bubble confinement should be sufficient to prevent damage in the gels, and presumably injury in some tissues. Damage accumulation is therefore proposed to occur via a material fatigue, which is shown to be consistent with observed delays in widespread cavitation activity.

  11. Cavitation-induced damage of soft materials by focused ultrasound bursts: A fracture-based bubble dynamics model.

    PubMed

    Movahed, Pooya; Kreider, Wayne; Maxwell, Adam D; Hutchens, Shelby B; Freund, Jonathan B

    2016-08-01

    A generalized Rayleigh-Plesset-type bubble dynamics model with a damage mechanism is developed for cavitation and damage of soft materials by focused ultrasound bursts. This study is linked to recent experimental observations in tissue-mimicking polyacrylamide and agar gel phantoms subjected to bursts of a kind being considered specifically for lithotripsy. These show bubble activation at multiple sites during the initial pulses. More cavities appear continuously through the course of the observations, similar to what is deduced in pig kidney tissues in shock-wave lithotripsy. Two different material models are used to represent the distinct properties of the two gel materials. The polyacrylamide gel is represented with a neo-Hookean elastic model and damaged based upon a maximum-strain criterion; the agar gel is represented with a strain-hardening Fung model and damaged according to the strain-energy-based Griffith's fracture criterion. Estimates based upon independently determined elasticity and viscosity of the two gel materials suggest that bubble confinement should be sufficient to prevent damage in the gels, and presumably injury in some tissues. Damage accumulation is therefore proposed to occur via a material fatigue, which is shown to be consistent with observed delays in widespread cavitation activity. PMID:27586763

  12. Target geometry and rigidity determines laser-induced cavitation bubble transport and nanoparticle productivity - a high-speed videography study.

    PubMed

    Kohsakowski, Sebastian; Gökce, Bilal; Tanabe, Rie; Wagener, Philipp; Plech, Anton; Ito, Yoshiro; Barcikowski, Stephan

    2016-06-28

    Laser-induced cavitation has mostly been studied in bulk liquid or at a two-dimensional wall, although target shapes for the particle synthesis may strongly affect bubble dynamics and interfere with particle productivity. We investigated the dynamics of the cavitation bubble induced by pulsed-laser ablation in liquid for different target geometries with high-speed laser microsecond videography and focus on the collapse behaviour. This method enables us observations in a high time resolution (intervals of 1 μs) and single-pulse experiments. Further, we analyzed the nanoparticle productivity, the sizes of the synthesized nanoparticles and the evolution of the bubble volume for each different target shape and geometry. For the ablation of metal (Ag, Cu, Ni) wire tips a springboard-like behaviour after the first collapse is observed which can be correlated with vertical projectile motion. Its turbulent friction in the liquid causes a very efficient transport and movement of the bubble and ablated material into the bulk liquid and prevents particle redeposition. This effect is influenced by the degree of freedom of the wire as well as the material properties and dimensions, especially the Young's modulus. The most efficient and largest bubble movement away from the wire was observed for a thin (500 μm) silver wire with velocities up to 19.8 m s(-1) and for materials with a small Young's modulus and flexural rigidity. We suggest that these observations may contribute to upscaling strategies and increase of particle yield towards large synthesis of colloids based on targets that may continuously be fed. PMID:27273693

  13. Chromatically encoded high-speed photography of cavitation bubble dynamics inside inhomogeneous ophthalmic tissue

    NASA Astrophysics Data System (ADS)

    Tinne, N.; Matthias, B.; Kranert, F.; Wetzel, C.; Krüger, A.; Ripken, T.

    2016-03-01

    The interaction effect of photodisruption, which is used for dissection of biological tissue with fs-laser pulses, has been intensively studied inside water as prevalent sample medium. In this case, the single effect is highly reproducible and, hence, the method of time-resolved photography is sufficiently applicable. In contrast, the reproducibility significantly decreases analyzing more solid and anisotropic media like biological tissue. Therefore, a high-speed photographic approach is necessary in this case. The presented study introduces a novel technique for high-speed photography based on the principle of chromatic encoding. For illumination of the region of interest within the sample medium, the light paths of up to 12 LEDs with various emission wavelengths are overlaid via optical filters. Here, MOSFET-electronics provide a LED flash with a duration <100 ns; the diodes are externally triggered with a distinct delay for every LED. Furthermore, the different illumination wavelengths are chromatically separated again for detection via camera chip. Thus, the experimental setup enables the generation of a time-sequence of <= 12 images of a single cavitation bubble dynamics. In comparison to conventional time-resolved photography, images in sample media like water and HEMA show the significant advantages of this novel illumination technique. In conclusion, the results of this study are of great importance for the fundamental evaluation of the laser-tissue interaction inside anisotropic biological tissue and for the optimization of the surgical process with high-repetition rate fs-lasers. Additionally, this application is also suitable for the investigation of other microscopic, ultra-fast events in transparent inhomogeneous materials.

  14. Modeling of high-intensity focused ultrasound-induced lesions in the presence of cavitation bubbles

    PubMed

    Chavrier; Chapelon; Gelet; Cathignol

    2000-07-01

    The classical "Bio Heat Transfer Equation (BHTE)" model is adapted to take into account the effects of oscillating microbubbles that occur naturally in the tissue during high-intensity focused ultrasound (HIFU) treatment. First, the Gilmore-Akulichev model is used to quantify the acoustic pressure scattered by microbubbles submitted to HIFU. Because this scattered pressure is not monochromatic, the concept of harmonic attenuation is introduced and a global attenuation coefficient is estimated for bubble-filled tissues. The first results show that this global attenuation coefficient varies significantly with respect to several parameters such as the frequency and the density of microbubbles in the medium, but also with respect to the incident acoustic pressure which thus becomes a transcendental function. Under these conditions, a layer-by-layer modeling, in the direction of propagation, is proposed to calculate the ultrasonic beam. Finally, the BHTE is solved and the HIFU-induced lesions are estimated by the calculation of the thermal dose. Using this model, it can be observed first that, when the firing power increases, the lesion develops clearly in the direction of the transducer, with a shape agreeing with in vivo experimentation. Next, it is observed that the lesion can be significantly modified in size and position, if an interface (skin or inner wall) is simulated as a zone with multiple cavitation nuclei. With a firing power increase, it is also shown how a secondary lesion can appear at the interface and how, beyond a certain threshold, this lesion develops at the main lesion expense. Finally, a better in-depth homogeneity of lesions is observed when the acoustic frequency of HIFU is increased.

  15. Cavitations induced by plasmas, plasmas induced by cavitations, and plasmas produced in cavitations

    NASA Astrophysics Data System (ADS)

    Sasaki, Koichi

    2015-11-01

    Cavitation bubbles are not static bubbles but have dynamics of expansion, shrinkage, and collapse. Since the collapse of a cavitation bubble is roughly an adiabatic process, the inside of the bubble at the collapse has a high temperature and a high pressure, resulting in the production of a plasma. This talk will be focused on cavitation-related plasma phenomena and the role of the cavitation bubble in the synthesis of nanoparticles. A method for inducing a cavitation bubble is laser ablation in liquid. After the disappearance of laser-produced plasma with optical emission, we have observed the formation of a cavitation bubble. We have found that the inside of the cavitation bubble is the reaction field for the synthesis of nanoparticles. The atomic and molecular species ejected from the ablation target toward the liquid are transported into the cavitation bubble, and they condense into nanoparticles inside it. It is important to note that nanoparticles are stored inside the cavitation bubble until its collapse. We have shown that the size and the structure of nanoparticles are controlled by controlling the dynamics of the cavitation bubbles. Another method for inducing cavitation bubbles is to use ultrasonic power. We have found a simple method for the efficient production of standing cavitation bubbles. The method is just inserting a punching metal plate into water irradiated by ultrasonic wave. The depth of water and the position of the punching plate should be tuned precisely. We have proposed the mechanism of the efficient production of cavitation bubbles by this method. Currently, we try to have electric discharges in cavitation bubbles with the intention of realizing nonequilibrium sonochemistry. In particular, the electric discharge in a laser-induced cavitation bubble shows interesting distortion of the bubble shape, which suggests the electrostatic characteristics of the cavitation bubble.

  16. Controlled manipulation and in situ mechanical measurement of single co nanowire with a laser-induced cavitation bubble.

    PubMed

    Huang, Xiaohu; Quinto-Su, Pedro A; Gonzalez-Avila, S Roberto; Wu, Tom; Ohl, Claus-Dieter

    2010-10-13

    The flow induced by a single laser-induced cavitation bubble is used to manipulate individual Co nanowires. The short-lived (<20 μs) bubble with a maximum size of 45 μm is created in an aqueous solution with a laser pulse. Translation, rotation, and radial motion of the nanowire can be selectively achieved by varying the initial distance and orientation of the bubble with respect to the nanowire. Depending on the initial distance, the nanowire can be either pushed away or pulled toward the laser focus. No translation is observed for a distance further than approximately 60 μm, while at closer distance, the nanowire can be bent as a result of the fast flow induced during the bubble collapse. Studying the dynamics of the shape recovery allows an estimation of the Young's modulus of the nanowire. The low measured Young's modulus (in a range from 9.6 to 13.0 GPa) of the Co nanowire is attributed to a softening effect due to structural defects and surface oxidation layer. Our study suggests that this bubble-based technique allows selectively transporting, orienting, and probing individual nanowires and may be exploited for constructing functional nanodevices.

  17. Enhancing the aggressive intensity of hydrodynamic cavitation through a Venturi tube by increasing the pressure in the region where the bubbles collapse

    NASA Astrophysics Data System (ADS)

    Soyama, H.; Hoshino, J.

    2016-04-01

    In this paper, we used a Venturi tube for generating hydrodynamic cavitation, and in order to obtain the optimum conditions for this to be used in chemical processes, the relationship between the aggressive intensity of the cavitation and the downstream pressure where the cavitation bubbles collapse was investigated. The acoustic power and the luminescence induced by the bubbles collapsing were investigated under various cavitating conditions, and the relationships between these and the cavitation number, which depends on the upstream pressure, the downstream pressure at the throat of the tube and the vapor pressure of the test water, was found. It was shown that the optimum downstream pressure, i.e., the pressure in the region where the bubbles collapse, increased the aggressive intensity by a factor of about 100 compared to atmospheric pressure without the need to increase the input power. Although the optimum downstream pressure varied with the upstream pressure, the cavitation number giving the optimum conditions was constant for all upstream pressures.

  18. Cavitation microstreaming generated by a bubble pair in an ultrasound field.

    PubMed

    Wang, Chenghui; Cheng, Jianchun

    2013-08-01

    An analytical theory has been developed to calculate the acoustic streaming velocity inside and outside bubbles for the case of a bubble pair suspended in an unbounded viscous liquid, taking into account the two predominant modes of a bubble pair: The volume and translation modes. It was demonstrated that the interaction between bubbles can affect the magnitude and direction of acoustic streaming, especially for tangential components outside of bubbles. The acoustic streaming intensifies as the radius of the neighboring bubble increases and is weakened as the distance between the bubbles increases.

  19. Small Gas Bubble Experiment for Mitigation of Cavitation Damage and Pressure Waves in Short-pulse Mercury Spallation Targets

    SciTech Connect

    Wendel, Mark W; Felde, David K; Sangrey, Robert L; Abdou, Ashraf A; West, David L; Shea, Thomas J; Hasegawa, Shoichi; Kogawa, Hiroyuki; Naoe, Dr. Takashi; Farny, Dr. Caleb H.; Kaminsky, Andrew L

    2014-01-01

    Populations of small helium gas bubbles were introduced into a flowing mercury experiment test loop to evaluate mitigation of beam-pulse induced cavitation damage and pressure waves. The test loop was developed and thoroughly tested at the Spallation Neutron Source (SNS) prior to irradiations at the Los Alamos Neutron Science Center - Weapons Neutron Research Center (LANSCE-WNR) facility. Twelve candidate bubblers were evaluated over a range of mercury flow and gas injection rates by use of a novel optical measurement technique that accurately assessed the generated bubble size distributions. Final selection for irradiation testing included two variations of a swirl bubbler provided by Japan Proton Accelerator Research Complex (J-PARC) collaborators and one orifice bubbler developed at SNS. Bubble populations of interest consisted of sizes up to 150 m in radius with achieved gas void fractions in the 10^-5 to 10^-4 range. The nominal WNR beam pulse used for the experiment created energy deposition in the mercury comparable to SNS pulses operating at 2.5 MW. Nineteen test conditions were completed each with 100 pulses, including variations on mercury flow, gas injection and protons per pulse. The principal measure of cavitation damage mitigation was surface damage assessment on test specimens that were manually replaced for each test condition. Damage assessment was done after radiation decay and decontamination by optical and laser profiling microscopy with damaged area fraction and maximum pit depth being the more valued results. Damage was reduced by flow alone; the best mitigation from bubble injection was between half and a quarter that of flow alone. Other data collected included surface motion tracking by three laser Doppler vibrometers (LDV), loop wall dynamic strain, beam diagnostics for charge and beam profile assessment, embedded hydrophones and pressure sensors, and sound measurement by a suite of conventional and contact microphones.

  20. A simple model of ultrasound propagation in a cavitating liquid. Part II: Primary Bjerknes force and bubble structures.

    PubMed

    Louisnard, O

    2012-01-01

    In a companion paper, a reduced model for propagation of acoustic waves in a cloud of inertial cavitation bubbles was proposed. The wave attenuation was calculated directly from the energy dissipated by a single bubble, the latter being estimated directly from the fully nonlinear radial dynamics. The use of this model in a mono-dimensional configuration has shown that the attenuation near the vibrating emitter was much higher than predictions obtained from linear theory, and that this strong attenuation creates a large traveling wave contribution, even for closed domain where standing waves are normally expected. In this paper, we show that, owing to the appearance of traveling waves, the primary Bjerknes force near the emitter becomes very large and tends to expel the bubbles up to a stagnation point. Two-dimensional axi-symmetric computations of the acoustic field created by a large area immersed sonotrode are also performed, and the paths of the bubbles in the resulting Bjerknes force field are sketched. Cone bubble structures are recovered and compare reasonably well to reported experimental results. The underlying mechanisms yielding such structures is examined, and it is found that the conical structure is generic and results from the appearance a sound velocity gradient along the transducer area. Finally, a more complex system, similar to an ultrasonic bath, in which the sound field results from the flexural vibrations of a thin plate, is also simulated. The calculated bubble paths reveal the appearance of other commonly observed structures in such configurations, such as streamers and flare structures. PMID:21764349

  1. A Eulerian-Lagrangian description of cavitating flow

    NASA Astrophysics Data System (ADS)

    Iben, U.; Ivanov, N. G.; Isaenko, I. I.; Schmidt, A. A.

    2015-12-01

    We propose a method of cavitating flow calculation that is based on the Eulerian-Lagrangian description of multiphase flows. The formation and growth of cavitation bubbles are described using the model of heterogeneous volume nucleation. Results of test calculations demonstrate the efficiency of the proposed model.

  2. Current Status in Cavitation Modeling

    NASA Technical Reports Server (NTRS)

    Singhal, Ashok K.; Avva, Ram K.

    1993-01-01

    Cavitation is a common problem for many engineering devices in which the main working fluid is in liquid state. In turbomachinery applications, cavitation generally occurs on the inlet side of pumps. The deleterious effects of cavitation include: lowered performance, load asymmetry, erosion and pitting of blade surfaces, vibration and noise, and reduction of the overall machine life. Cavitation models in use today range from rather crude approximations to sophisticated bubble dynamics models. Details about bubble inception, growth and collapse are relevant to the prediction of blade erosion, but are not necessary to predict the performance of pumps. An engineering model of cavitation is proposed to predict the extent of cavitation and performance. The vapor volume fraction is used as an indicator variable to quantify cavitation. A two-phase flow approach is employed with the assumption of the thermal equilibrium between liquid and vapor. At present velocity slip between the two phases is selected. Preliminary analyses of 2D flows shows qualitatively correct results.

  3. Current status in cavitation modeling

    NASA Astrophysics Data System (ADS)

    Singhal, Ashok K.; Avva, Ram K.

    1993-07-01

    Cavitation is a common problem for many engineering devices in which the main working fluid is in liquid state. In turbomachinery applications, cavitation generally occurs on the inlet side of pumps. The deleterious effects of cavitation include: lowered performance, load asymmetry, erosion and pitting of blade surfaces, vibration and noise, and reduction of the overall machine life. Cavitation models in use today range from rather crude approximations to sophisticated bubble dynamics models. Details about bubble inception, growth and collapse are relevant to the prediction of blade erosion, but are not necessary to predict the performance of pumps. An engineering model of cavitation is proposed to predict the extent of cavitation and performance. The vapor volume fraction is used as an indicator variable to quantify cavitation. A two-phase flow approach is employed with the assumption of the thermal equilibrium between liquid and vapor. At present velocity slip between the two phases is selected. Preliminary analyses of 2D flows shows qualitatively correct results.

  4. Theoretical model of ice nucleation induced by inertial acoustic cavitation. Part 2: Number of ice nuclei generated by a single bubble.

    PubMed

    Cogné, C; Labouret, S; Peczalski, R; Louisnard, O; Baillon, F; Espitalier, F

    2016-01-01

    In the preceding paper (part 1), the pressure and temperature fields close to a bubble undergoing inertial acoustic cavitation were presented. It was shown that extremely high liquid water pressures but quite moderate temperatures were attained near the bubble wall just after the collapse providing the necessary conditions for ice nucleation. In this paper (part 2), the nucleation rate and the nuclei number generated by a single collapsing bubble were determined. The calculations were performed for different driving acoustic pressures, liquid ambient temperatures and bubble initial radius. An optimal acoustic pressure range and a nucleation temperature threshold as function of bubble radius were determined. The capability of moderate power ultrasound to trigger ice nucleation at low undercooling level and for a wide distribution of bubble sizes has thus been assessed on the theoretical ground. PMID:26384898

  5. Dynamics of shock waves and cavitation bubbles in bilinear elastic-plastic media, and the implications to short-pulsed laser surgery

    NASA Astrophysics Data System (ADS)

    Brujan, E.-A.

    2005-01-01

    The dynamics of shock waves and cavitation bubbles generated by short laser pulses in water and elastic-plastic media were investigated theoretically in order to get a better understanding of their role in short-pulsed laser surgery. Numerical simulations were performed using a spherical model of bubble dynamics which include the elastic-plastic behaviour of the medium surrounding the bubble, compressibility, viscosity, density and surface tension. Breakdown in water produces a monopolar acoustic signal characterized by a compressive wave. Breakdown in an elastic-plastic medium produces a bipolar acoustic signal, with a leading positive compression wave and a trailing negative tensile wave. The calculations revealed that consideration of the tissue elasticity is essential to describe the bipolar shape of the shock wave emitted during optical breakdown. The elastic-plastic response of the medium surrounding the bubble leads to a significant decrease of the maximum size of the cavitation bubble and pressure amplitude of the shock wave emitted during bubble collapse, and shortening of the oscillation period of the bubble. The results are discussed with respect to collateral damage in short-pulsed laser surgery.

  6. Gas flow induced by ultrasonic cavitation bubble clouds and surface capillary wave.

    PubMed

    Wang, Ying; Li, Tao; Kong, Ling Bing; Hng, Huey Hoon; Lee, Pooi See

    2014-06-01

    In this paper, we report a gas flow phenomenon induced by ultrasonic water cavitation and capillary wave in a vibrating hollow tip and reflector system. The cavitation clouds generated a gas suction force and the capillary wave created tunnels through which the gas could go into the liquid. The gas flow rate was measured and compared under different conditions, including applied power, type of reflector, and tip-to-reflector distance. A model was proposed to explain the mechanisms of the gas flow and analyze the results in the experiments.

  7. Efficient generation of cavitation bubbles and reactive oxygen species using triggered high-intensity focused ultrasound sequence for sonodynamic treatment

    NASA Astrophysics Data System (ADS)

    Yasuda, Jun; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    Sonodynamic treatment is a method of treating cancer using reactive oxygen species (ROS) generated by cavitation bubbles in collaboration with a sonosensitizer at a target tissue. In this treatment method, both localized ROS generation and ROS generation with high efficiency are important. In this study, a triggered high-intensity focused ultrasound (HIFU) sequence, which consists of a short, extremely high intensity pulse immediately followed by a long, moderate-intensity burst, was employed for the efficient generation of ROS. In experiments, a solution sealed in a chamber was exposed to a triggered HIFU sequence. Then, the distribution of generated ROS was observed by the luminol reaction, and the amount of generated ROS was quantified using KI method. As a result, the localized ROS generation was demonstrated by light emission from the luminol reaction. Moreover, it was demonstrated that the triggered HIFU sequence has higher efficiency of ROS generation by both the KI method and the luminol reaction emission.

  8. A numerical study on the effects of cavitation on orifice flow

    NASA Astrophysics Data System (ADS)

    Dabiri, S.; Sirignano, W. A.; Joseph, D. D.

    2010-04-01

    Previous experimental studies have shown better atomization of sprays generated by high-pressure liquid injectors when cavitation occurs inside the nozzle. It has been proposed that the collapse of traveling cavitation bubbles increases the disturbances inside the liquid flow. These disturbances will later trigger the instabilities in the emerged jet and cause a shorter breakup distance. In this paper, effects of cavitation on increasing the disturbances in the flow through the orifice of an atomizer are studied. In previous cavitation models, spherical cavitation bubbles are considered. Here, the cavitation bubbles are allowed to deform as they travel through the orifice. Dynamics of the cavitation bubble, traveling in the separated shear layer in the orifice, is analyzed through a one-way coupling between the orifice flow and bubble dynamics. Effects of shear strain, normal strain, and pressure variation are examined. Three mechanisms are suggested that could be responsible for the increase in disturbances in the flow due to cavitation. These mechanisms are monopole, quadrupole, and vorticities generated during growth and collapse of cavitation bubbles. The effects of these mechanisms are estimated by postprocessing of the solutions to the Navier-Stokes equations to identify monopole and quadrupole behaviors.

  9. Dynamic Nucleation of Ice Induced by a Single Stable Cavitation Bubble

    NASA Technical Reports Server (NTRS)

    Ohsaka, Kenichi; Trinh, Eugene H.

    1997-01-01

    Dynamic nucleation of ice induced by caviation bubble in undercooled water is observed using an acoustic levitation technique. The observation indicates that a high pressure pulse associated with a collapsing bubble is indeed responsible for the nucleation of a high pressure phase of ice.

  10. Unorthodox bubbles when boiling in cold water.

    PubMed

    Parker, Scott; Granick, Steve

    2014-01-01

    High-speed movies are taken when bubbles grow at gold surfaces heated spotwise with a near-infrared laser beam heating water below the boiling point (60-70 °C) with heating powers spanning the range from very low to so high that water fails to rewet the surface after bubbles detach. Roughly half the bubbles are conventional: They grow symmetrically through evaporation until buoyancy lifts them away. Others have unorthodox shapes and appear to contribute disproportionately to heat transfer efficiency: mushroom cloud shapes, violently explosive bubbles, and cavitation events, probably stimulated by a combination of superheating, convection, turbulence, and surface dewetting during the initial bubble growth. Moreover, bubbles often follow one another in complex sequences, often beginning with an unorthodox bubble that stirs the water, followed by several conventional bubbles. This large dataset is analyzed and discussed with emphasis on how explosive phenomena such as cavitation induce discrepancies from classical expectations about boiling.

  11. Bubble growth by rectified diffusion at high gas supersaturation levels.

    PubMed

    Ilinskii, Yurii A; Wilson, Preston S; Hamilton, Mark F

    2008-10-01

    For high gas supersaturation levels in liquids, on the order of 300% as predicted in capillaries of marine mammals following a series of dives [D. S. Houser, R. Howard, and S. Ridgway, J. Theor. Biol. 213, 183-195 (2001)], standard mathematical models of both static and rectified diffusion are found to underestimate the rate of bubble growth by 10%-20%. The discrepancy is demonstrated by comparing predictions based on existing mathematical models with direct numerical solutions of the differential equations for gas diffusion in the liquid and thermal conditions in the bubble. Underestimation of bubble growth by existing mathematical models is due to the underlying assumption that the gas concentration in the liquid is given by its value for a bubble of constant equilibrium radius. This assumption is violated when high supersaturation causes the bubble to grow too fast in relation to the time scale associated with diffusion. Rapid bubble growth results in an increased gas concentration gradient at the bubble wall and therefore a growth rate in excess of predictions based on constant equilibrium bubble radius.

  12. Bubble growth by rectified diffusion at high gas supersaturation levels.

    PubMed

    Ilinskii, Yurii A; Wilson, Preston S; Hamilton, Mark F

    2008-10-01

    For high gas supersaturation levels in liquids, on the order of 300% as predicted in capillaries of marine mammals following a series of dives [D. S. Houser, R. Howard, and S. Ridgway, J. Theor. Biol. 213, 183-195 (2001)], standard mathematical models of both static and rectified diffusion are found to underestimate the rate of bubble growth by 10%-20%. The discrepancy is demonstrated by comparing predictions based on existing mathematical models with direct numerical solutions of the differential equations for gas diffusion in the liquid and thermal conditions in the bubble. Underestimation of bubble growth by existing mathematical models is due to the underlying assumption that the gas concentration in the liquid is given by its value for a bubble of constant equilibrium radius. This assumption is violated when high supersaturation causes the bubble to grow too fast in relation to the time scale associated with diffusion. Rapid bubble growth results in an increased gas concentration gradient at the bubble wall and therefore a growth rate in excess of predictions based on constant equilibrium bubble radius. PMID:19062834

  13. Shadowgraph Imaging and Numerical Simulation of Cavitation Bubbles Formed in Pulsed Laser Ablation Plasmas in the Vicinity of the Critical Point of CO2

    NASA Astrophysics Data System (ADS)

    Muneoka, Hitoshi; Himeno, Shohei; Urabe, Keiichiro; Stauss, Sven; Baba, Motoyoshi; Suemoto, Tohru; Terashima, Kazuo

    2015-09-01

    The characteristic behavior of cavitation bubbles formed in pulsed laser ablation plasmas in supercritical CO2 were investigated by shadowgraph imaging and numerical simulations. The time evolution of the cavitation bubbles could be divided into three phases near the critical point: Expansion, Double layer formation, and Contraction. The distribution of the refractive index was estimated from the variation of the direction of the refracted light in the shockwave in the expansion phase. It was suggested that the cause of the reduction of the transmitted light in the outer shell in the double-layer phase was not due to refraction, and the contributions of nanoparticles and clusters generated in supercritical fluids were implied. The characteristics in time evolution of the bubble size in the contraction phase, in particular almost constant position of the interface in a relatively long time, was proposed to be due to zero surface tension by numerical simulations. The results suggest that the properties and fluid structure peculiar to SCF affect the structure of cavitation bubbles.

  14. Ultrahigh-Speed Dynamics of Micrometer-Scale Inertial Cavitation from Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kwan, J. J.; Lajoinie, G.; de Jong, N.; Stride, E.; Versluis, M.; Coussios, C. C.

    2016-10-01

    Direct imaging of cavitation from solid nanoparticles has been a challenge due to the combined nanosized length and time scales involved. We report on high-speed microscopic imaging of inertial cavitation from gas trapped on nanoparticles with a tunable hemispherical depression (nanocups) at nanosecond time scales. The high-speed recordings establish that nanocups facilitate bubble growth followed by inertial collapse. Nanoparticle size, acoustic pressure amplitude, and frequency influence bubble dynamics and are compared to model predictions. Understanding these cavitation dynamics is critical for applications enhanced by acoustic cavitation.

  15. Study on Prediction of Underwater Radiated Noise from Propeller Tip Vortex Cavitation

    NASA Astrophysics Data System (ADS)

    Yamada, Takuyoshi; Sato, Kei; Kawakita, Chiharu; Oshima, Akira

    2015-12-01

    The method to predict underwater radiated noise from tip vortex cavitation was studied. The growth of a single cavitation bubble in tip vortex was estimated by substituting the tip vortex to Rankine combined vortex. The ideal spectrum function for the sound pressure generated by a single cavitation bubble was used, also the empirical factor for the number of collapsed bubbles per unit time was introduced. The estimated noise data were compared with measured ship's ones and it was found out that this method can estimate noise data within 3dB difference.

  16. Aspherical bubble dynamics and oscillation times

    SciTech Connect

    Vogel, A.; Noack, J.; Chapyak, E.J.; Godwin, R.P.

    1999-06-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored by time-resolved photography and numerical simulations. The growth-collapse period of cylindrical bubbles of large aspect ratio (length:diameter {approximately}20) differs only slightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble size and energy even for aspherical bubbles. The change of the oscillation period of bubbles near solid walls and elastic (tissue-like) boundaries relative to that of isolated spherical bubbles is also investigated.

  17. EXPERIMENTS AND SIMULATIONS WITH LARGE GAS BUBBLES IN MERCURY TOWARDS ESTABLISHING A GAS LAYER TO MITIGATE CAVITATION DAMAGE

    SciTech Connect

    Wendel, Mark W; Riemer, Bernie; Felde, David K; Ruggles, Arthur; Karnowski, Thomas Paul

    2006-01-01

    One of several options that shows promise for protecting solid surfaces from cavitation damage in liquid metal spallation targets, involves introducing an interstitial gas layer between the liquid metal and the containment vessel wall. Several approaches toward establishing such a protective gas layer are being investigated at the Oak Ridge National Laboratory including large bubble injection, and methods that involve stabilization of the layer by surface modifications to enhance gas hold-up on the wall or by inserting a porous media. It has previously been reported that using a gas layer configuration in a test target showed an order-of-magnitude decrease in damage for an in-beam experiment. Video images that were taken of the successful gas/mercury flow configuration have been analyzed and correlated. The results show that the success was obtained under conditions where only 60% of the solid wall was covered with gas. Such a result implies that this mitigation scheme may have much more potential. Additional experiments with gas injection into water are underway. Multi-component flow simulations are also being used to provide direction for these new experiments. These simulations have been used to size the gas layer and position multiple inlet nozzles.

  18. Numerical study on the effective heating due to inertial cavitation in microbubble-enhanced HIFU therapy

    NASA Astrophysics Data System (ADS)

    Okita, Kohei; Sugiyama, Kazuyasu; Takagi, Shu; Matsumoto, Yoichiro

    2015-10-01

    The enhancement of heating due to inertial cavitation was focused in high-intensity focused ultrasound (HIFU) therapy. The influences of the rectified diffusion on microbubble-enhanced HIFU were examined numerically. A bubble dynamics equation in consideration of the spherical shell bubble and the elasticity of surrounding tissue was employed. Mass and heat transfer between the surrounding medium and the bubble were considered. The basic equations were discretized by finite difference method. The mixture phase and bubbles are coupled by the Euler-Lagrange method to take into account the interaction between ultrasound and bubbles. The mass transfer rate of gas from the surrounding medium to the bubble was examined as function of the initial bubble radius and the driving pressure amplitude. As the results, the pressure required to bubble growth was decreases with increasing the initial bubble radius. Thus, the injection of microbubble reduces the cavitation threshold pressure. On the other hand, the influence of the rectified diffusion on the triggered HIFU therapy which generates cavitation bubbles by high-intensity burst and induces the localized heating owing to cavitation bubble oscillation by low-intensity continuous waves. The calculation showed that the localized heating was enhanced by the increase of the equilibrium bubble size due to the rectified diffusion.

  19. Simulation of bubble growth and coalescence in reacting polymer foams

    NASA Astrophysics Data System (ADS)

    Marchisio, Daniele; Karimi, Mohsen

    2015-11-01

    This work concerns with the simulation of reacting polymer foams with computational fluid dynamics (CFD). In these systems upon mixing of different ingredients polymerization starts and some gaseous compounds are produced, resulting in the formation of bubbles that growth and coalesce. As the foam expands, the polymerization proceeds resulting in an increase of the apparent viscosity. The evolution of the collective behavior of the bubbles within the polymer foam is tracked by solving a master kinetic equation, formulated in terms of the bubble size distribution. The rate with which individual bubbles grow is instead calculated by resolving the momentum and concentration boundary layers around the bubbles. Moreover, since it is useful to track the evolution of the interface between the foam and the surrounding air, a volume-of-fluid (VOF) model is adopted. The final computational model is implemented in the open-source CFD code openFOAM by making use of the compressibleInterFoam solver. The master kinetic equation is solved with a quadrature-based moment method (QBMM) directly implemented in openFOAM, whereas the bubble growth model is solved independently and ''called'' from the CFD code by using an unstructured database. Model predictions are validated against experimental data. This work was funded by the European Commission under the grant agreement number 604271 (Project acronym: MoDeNa; call identifier: FP7-NMP-2013-SMALL-7).

  20. Theoretical and experimental comparison of vapor cavitation in dynamically loaded journal bearings

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Hamrock, B. J.; Jacobson, B. A.

    1985-01-01

    Vapor cavitation for a submerged journal bearing under dynamically loaded conditions was investigated. The observation of vapor cavitation in the laboratory was done by high-speed photography. It was found that vapor cavitation occurs when the tensile stress applied to the oil exceeded the tensile strength of the oil or the binding of the oil to the surface. The theoretical solution to the Reynolds equation is determined numerically using a moving boundary algorithm. This algorithm conserves mass throughout the computational domain including the region of cavitation and its boundaries. An alternating direction implicit (MDI) method is used to effect the time march. A rotor undergoing circular whirl was studied. Predicted cavitation behavior was analyzed by three-dimensional computer graphic movies. The formation, growth, and collapse of the bubble in response to the dynamic conditions is shown. For the same conditions of dynamic loading, the cavitation bubble was studied in the laboratory using high-speed photography.

  1. Nonequilibrium bubbles in a flowing langmuir monolayer.

    PubMed

    Muruganathan, Rm; Khattari, Z; Fischer, Th M

    2005-11-24

    We investigate the nonequilibrium behavior of two-dimensional gas bubbles in Langmuir monolayers. A cavitation bubble is induced in liquid expanded phase by locally heating a Langmuir monolayer with an IR-laser. At low IR-laser power the cavitation bubble is immersed in quiescent liquid expanded monolayer. At higher IR-laser power thermo capillary flow around the laser-induced cavitation bubble sets in. The thermo capillary flow is caused by a temperature dependence of the gas/liquid line tension. The slope of the line tension with temperature is determined by measuring the thermo capillary flow velocity. Thermodynamically stable satellite bubbles are generated by increasing the surface area of the monolayer. Those satellite bubbles collide with the cavitation bubble. Upon collision the satellite bubbles either coalesce with the cavitation bubble or slide past the cavitation bubble. Moreover we show that the satellite bubbles can also be produced by the emission from the laser-induced cavitation bubbles.

  2. Cavitation and Fusion

    NASA Astrophysics Data System (ADS)

    Stringham, Roger S.

    2005-12-01

    Natural cavitation phenomena in D2O using piezo devices, is now amplified initiating DD fusion events that produce heat and helium. The transient cavitation bubble produces micro accelerators in the form of jets containing high densities of deuterons, 1024-25/cc from the cavitating D2O. An electrically driven piezo device in a reactor filled with D2O produces jets that implant deuterons into a target foil producing 4He and T plus heat. There is no long range radiation associated with this process. We are moving in the direction of utilizing smaller systems by gaining faster and less expensive technology growth moving from successes at 0.2 and 0.4 MHz to 1.7 MHz. One of the results of our low frequency studies is a 1 to 3 MHz induced standing wave in our target foils. We are using sonoluminescence intensity as a tool to guide us in finding highest plasma density in the adiabatic bubble collapse process in the jet plasma formation. The generation of these sonoluminescence photons relates to conditions for the target implantation process. These experiments and the analytical methods have concentrated on the mass spectroscopy of reactor gases, calorimetry of the reactor and power supply, and the scanning electron microscope photographs of target foils. This work provides a path for an ecological and hydrocarbon-free energy source for all energy applications.

  3. The growth of vapor bubble and relaxation between two-phase bubble flow

    NASA Astrophysics Data System (ADS)

    Mohammadein, S. A.; Subba Reddy Gorla, Rama

    2002-10-01

    This paper presents the behavior of the bubble growth and relaxation between vapor and superheated liquid. The growth and thermal relaxation time between the two-phases are obtained for different levels of superheating. The heat transfer problem is solved numerically by using the extended Scriven model. Results are compared with those of Scriven theory and MOBY DICK experiment with reasonably good agreement for lower values of superheating.

  4. Percolation models for boiling and bubble growth in porous media

    SciTech Connect

    Yortsos, Y.C.

    1991-05-01

    We analyze the liquid-to-vapor phase change in single-component fluids in porous media at low superheats. Conditions typical to steam injection in porous media are taken. We examine nucleation, phase equilibria and their stability, and the growth of vapor bubbles. Effects of pore structure are emphasized. It is shown that at low supersaturations, bubble growth can be described as a percolation process. In the absence of spatial gradients, macroscopic flow properties are calculated in terms of nucleation parameters. A modification of gradient percolation is also proposed in the case of spatial temperature gradients, when solid conduction predominates. 22 refs., 10 figs., 1 tab.

  5. Visualization and simulation of bubble growth in pore networks

    SciTech Connect

    Li, Xuehai; Yortsos, Y.C.

    1994-03-01

    Bubble nucleation and bubble growth in porous media is an important problem encountered in processes, such as pressure depletion and boiling. To understand its basic aspects, experiments and numerical simulations in micromodel geometries were undertaken. Experiments of bubble growth by pressure depletion were carried out in 2-D etched-glass micromodels and in Hele-Shaw cells. Nucleation of bubbles and the subsequent growth of gas clusters were visualized. Contrary to the bulk or to Hele-Shaw cells, gas clusters in the micromodel have irregular and ramified shapes and share many of the features of an external invasion process (e.g. of percolation during drainage). A pore network numerical model was developed to simulate the growth of multiple gas clusters under various conditions. The model is based on the solution of the convection-diffusions equation and also accounts for capillary and viscous forces, which play an important role in determining the growth patterns. Numerical simulation resulted in good agreement with the experimental results.

  6. Effects of system pressure and heat flux on bubble nucleation and growth

    NASA Astrophysics Data System (ADS)

    Qiu, Chao; Zhang, Huichen

    2015-09-01

    Characteristics of bubble nucleation and growth are critical for its application. It is affected by several factors including viscosity, surface tension and temperature. However, the effect of pressure on bubble nucleation and growth has been underreported, although it processes significant effect on above characteristics. In this work, a micro copper electrode is etched on a slab covered with copper to produce bubble on the surface by current input. The nucleation time of bubble is measured under different heat flux and system pressures. The nucleation and growth processes are recorded with a high speed camera in order to discuss the effects of heat flux and system pressure on bubble characteristics. The experiment results indicate that the micro electrode with higher heat flux produces more thermal energy, which makes the time of bubble nucleation shorter and the speed of bubble growth faster. Higher system pressure causes the increase of the critical nucleation temperature and also baffles the bubble nucleation and growth. Bubble growth includes the stages of rapid growth and dynamic equilibrium, with the speed being from fast to slow. In the former part of rapid growth, heat flux plays a dominant role in bubble growth. While the effect of system pressure on bubble growth becomes significant in the latter part of rapid growth. Both the nucleation time and bubble growth agree well with the theoretical analysis. The obtained results help to accurately control bubble nucleation and growth required in different application.

  7. Analogy between fluid cavitation and fracture mechanics

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mullen, R. L.; Braun, M. J.

    1983-01-01

    When the stresses imposed on a fluid are sufficiently large, rupture or cavitation can occur. Such conditions can exist in many two-phase flow applications, such as the choked flows, which can occur in seals and bearings. Nonspherical bubbles with large aspect ratios have been observed in fluids under rapid acceleration and high shear fields. These bubbles are geometrically similar to fracture surface patterns (Griffith crack model) existing in solids. Analogies between crack growth in solid and fluid cavitation are proposed and supported by analysis and observation (photographs). Healing phenomena (void condensation), well accepted in fluid mechanics, have been observed in some polymers and hypothesized in solid mechanics. By drawing on the strengths of the theories of solid mechanics and cavitation, a more complete unified theory can be developed.

  8. Cavitation bubble-driven cell and particle behavior in an ultrasound standing wave.

    PubMed

    Kuznetsova, Larisa A; Khanna, Sanjay; Amso, Nazar N; Coakley, W Terence; Doinikov, Alexander A

    2005-01-01

    The behavior of human erythrocytes and 1-microm-diameter fluorescent latex beads in the presence of Optison contrast agent in a single half-wavelength (lambda/2) ultrasound standing wave (USSW) resonator has been studied. The particle movements were observed with an epi-fluorescent microscope and the velocity of the particles and cells was measured by particle image velocimetry (PIV). Acoustic emissions were monitored with a microphone and a spectrum analyzer. Optison contrast agent disintegrated immediately on exposure to ultrasound of 0.98-MPa acoustic pressure amplitude or higher in a chamber driven at its resonance frequency of 1.56 MHz. A discrete cloud of active microbubbles, detected at the pressure node plane, disappeared gradually and was completely lost within 15 s. The microscopy showed three-dimensional regions of circulation of both 1-microm tracer particles and erythrocytes in planes perpendicular to the pressure node plane. A numerical simulation showed that, for parameters that conform to the experimental conditions, a bubble of a subresonance size moves towards and translates about a pressure node plane. This result is in agreement with the experimental observation that the particle and cell circulation is induced by the presence and/or translational motion of microbubbles at the pressure node plane. PMID:15704403

  9. Particle film growth driven by foam bubble coalescence.

    PubMed

    Binks, Bernard P; Clint, John H; Fletcher, Paul D I; Lees, Timothy J G; Taylor, Philip

    2006-09-01

    Water films stabilised by hydrophobic particles are found to spread rapidly up the inner walls of a glass vessel containing water and hydrophobic particles when it is shaken; shaking produces unstable particle-stabilised foam bubbles whose coalescence with the air/water interface drives film growth up the inner walls of the container.

  10. The dynamics of histotripsy bubbles

    NASA Astrophysics Data System (ADS)

    Kreider, Wayne; Bailey, Michael R.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.

    2011-09-01

    Histotripsy describes treatments in which high-amplitude acoustic pulses are used to excite bubbles and erode tissue. Though tissue erosion can be directly attributed to bubble activity, the genesis and dynamics of bubbles remain unclear. Histotripsy lesions that show no signs of thermal coagulative damage have been generated with two different acoustic protocols: relatively long acoustic pulses that produce local boiling within milliseconds and relatively short pulses that are higher in amplitude but likely do not produce boiling. While these two approaches are often distinguished as `boiling' versus `cavitation', such labels can obscure similarities. In both cases, a bubble undergoes large changes in radius and vapor is transported into and out of the bubble as it oscillates. Moreover, observations from both approaches suggest that bubbles grow to a size at which they cease to collapse violently. In order to better understand the dynamics of histotripsy bubbles, a single-bubble model has been developed that couples acoustically excited bubble motions to the thermodynamic state of the surrounding liquid. Using this model for bubbles exposed to histotripsy sound fields, simulations suggest that two mechanisms can act separately or in concert to lead to the typically observed bubble growth. First, nonlinear acoustic propagation leads to the evolution of shocks and an asymmetry in the positive and negative pressures that drive bubble motion. This asymmetry can have a rectifying effect on bubble oscillations whereby the bubble grows on average during each acoustic cycle. Second, vapor transport to/from the bubble tends to produce larger bubbles, especially at elevated temperatures. Vapor transport by itself can lead to rectified bubble growth when the ambient temperature exceeds 100 °C (`boiling') or local heating in the vicinity of the bubble leads to a superheated boundary layer.

  11. Accelerated Molecular Dynamics studies of He Bubble Growth in Tungsten

    NASA Astrophysics Data System (ADS)

    Uberuaga, Blas; Sandoval, Luis; Perez, Danny; Voter, Arthur

    2015-11-01

    Understanding how materials respond to extreme environments is critical for predicting and improving performance. In materials such as tungsten exposed to plasmas for nuclear fusion applications, novel nanoscale fuzzes, comprised of tendrils of tungsten, form as a consequence of the implantation of He into the near surface. However, the detailed mechanisms that link He bubble formation to the ultimate development of fuzz are unclear. Molecular dynamics simulations provide insight into the He implantation process, but are necessarily performed at implantation rates that are orders of magnitudes faster than experiment. Here, using accelerated molecular dynamics methods, we examine the role of He implantation rates on the physical evolution of He bubbles in tungsten. We find that, as the He rate is reduced, new types of events involving the response of the tungsten matrix to the pressure in the bubble become competitive and change the overall evolution of the bubble as well as the subsequent morphology of the tungsten surface. We have also examined how bubble growth differs at various microstructural features. These results highlight the importance of performing simulations at experimentally relevant conditions in order to correctly capture the contributions of the various significant kinetic processes and predict the overall response of the material.

  12. Experimenting cavitation measuring instruments

    NASA Astrophysics Data System (ADS)

    Toulouse, G.

    1988-09-01

    A calibrating method for measuring the volume of cavitation bubbles is presented and the results of open air experiments are given. The bubbles appearing on the surface of a marine rotating propeller are measured using CCD cameras and optical procedures. Square bubble section first approximations is used. The performance of cameras equipped with light amplifiers is studied in order to use them for real bubble cross section measurements.

  13. One-way-coupling simulation of cavitation accompanied by high-speed droplet impact

    NASA Astrophysics Data System (ADS)

    Kondo, Tomoki; Ando, Keita

    2016-03-01

    Erosion due to high-speed droplet impact is a crucial issue in industrial applications. The erosion is caused by the water-hammer loading on material surfaces and possibly by the reloading from collapsing cavitation bubbles that appear within the droplet. Here, we simulate the dynamics of cavitation bubbles accompanied by high-speed droplet impact against a deformable wall in order to see whether the bubble collapse is violent enough to give rise to cavitation erosion on the wall. The evolution of pressure waves in a single water (or gelatin) droplet to collide with a deformable wall at speed up to 110 m/s is inferred from simulations of multicomponent Euler flow where phase changes are not permitted. Then, we examine the dynamics of cavitation bubbles nucleated from micron/submicron-sized gas bubble nuclei that are supposed to exist inside the droplet. For simplicity, we perform Rayleigh-Plesset-type calculations in a one-way-coupling manner, namely, the bubble dynamics are determined according to the pressure variation obtained from the Euler flow simulation. In the simulation, the preexisting bubble nuclei whose size is either micron or submicron show large growth to submillimeters because tension inside the droplet is obtained through interaction of the pressure waves and the droplet interface; this supports the possibility of having cavitation due to the droplet impact. It is also found, in particular, for the case of cavitation arising from very small nuclei such as nanobubbles, that radiated pressure from the cavitation bubble collapse can overwhelm the water-hammer pressure directly created by the impact. Hence, cavitation may need to be accounted for when it comes to discussing erosion in the droplet impact problem.

  14. Cavitation in medicine.

    PubMed

    Brennen, Christopher Earls

    2015-10-01

    We generally think of bubbles as benign and harmless and yet they can manifest the most remarkable range of physical effects. Some of those effects are the stuff of our everyday experience as in the tinkling of a brook or the sounds of breaking waves at the beach. But even these mundane effects are examples of the ability of bubbles to gather, focus and radiate energy (acoustic energy in the above examples). In other contexts that focusing of energy can lead to serious technological problems as when cavitation bubbles eat great holes through ships' propeller blades or cause a threat to the integrity of the spillways at the Hoover Dam. In liquid-propelled rocket engines, bubbles pose a danger to the stability of the propulsion system, and in artificial heart valves they can cause serious damage to the red blood cells. In perhaps the most extraordinary example of energy focusing, collapsing cavitation bubbles can emit not only sound, but also light with black body radiation temperatures equal to that of the sun (Brennen 1995 Cavitation and bubble dynamics). But, harnessed carefully, this almost unique ability to focus energy can also be put to remarkably constructive use. Cavitation bubbles are now used in a remarkable range of surgical and medical procedures, for example to emulsify tissue (most commonly in cataract surgery or in lithotripsy procedures for the reduction of kidney and gall stones) or to manipulate the DNA in individual cells. By creating cavitation bubbles non-invasively thereby depositing and focusing energy non-intrusively, one can generate minute incisions or target cancer cells. This paper will begin by briefly reviewing the history of cavitation phenomena and will end with a vision of the new horizons for the amazing cavitation bubble. PMID:26442145

  15. Cavitation in medicine

    PubMed Central

    Brennen, Christopher Earls

    2015-01-01

    We generally think of bubbles as benign and harmless and yet they can manifest the most remarkable range of physical effects. Some of those effects are the stuff of our everyday experience as in the tinkling of a brook or the sounds of breaking waves at the beach. But even these mundane effects are examples of the ability of bubbles to gather, focus and radiate energy (acoustic energy in the above examples). In other contexts that focusing of energy can lead to serious technological problems as when cavitation bubbles eat great holes through ships' propeller blades or cause a threat to the integrity of the spillways at the Hoover Dam. In liquid-propelled rocket engines, bubbles pose a danger to the stability of the propulsion system, and in artificial heart valves they can cause serious damage to the red blood cells. In perhaps the most extraordinary example of energy focusing, collapsing cavitation bubbles can emit not only sound, but also light with black body radiation temperatures equal to that of the sun (Brennen 1995 Cavitation and bubble dynamics). But, harnessed carefully, this almost unique ability to focus energy can also be put to remarkably constructive use. Cavitation bubbles are now used in a remarkable range of surgical and medical procedures, for example to emulsify tissue (most commonly in cataract surgery or in lithotripsy procedures for the reduction of kidney and gall stones) or to manipulate the DNA in individual cells. By creating cavitation bubbles non-invasively thereby depositing and focusing energy non-intrusively, one can generate minute incisions or target cancer cells. This paper will begin by briefly reviewing the history of cavitation phenomena and will end with a vision of the new horizons for the amazing cavitation bubble. PMID:26442145

  16. Bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2004-06-01

    Vanitas vanitatum et omnia vanitas: bubbles are emptiness, non-liquid, a tiny cloud shielding a mathematical singularity. Born from chance, a violent and brief life ending in the union with the (nearly) infinite. But a wealth of phenomena spring forth from this nothingness: underwater noise, sonoluminescence, boiling, and many others. Some recent results on a "blinking bubble" micropump and vapor bubbles in sound fields are outlined. The last section describes Leonardo da Vinci's observation of the non-rectlinear ascent of buoyant bubbles and justifies the name Leonardo's paradox recently attributed to this phenomenon.

  17. Bubble evolution and properties in homogeneous nucleation simulations.

    PubMed

    Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K; Tanaka, Hidekazu

    2014-12-01

    We analyze the properties of naturally formed nanobubbles in Lennard-Jones molecular dynamics simulations of liquid-to-vapor nucleation in the boiling and the cavitation regimes. The large computational volumes provide a realistic environment at unchanging average temperature and liquid pressure, which allows us to accurately measure properties of bubbles from their inception as stable, critically sized bubbles, to their continued growth into the constant speed regime. Bubble gas densities are up to 50% lower than the equilibrium vapor densities at the liquid temperature, yet quite close to the gas equilibrium density at the lower gas temperatures measured in the simulations: The latent heat of transformation results in bubble gas temperatures up to 25% below those of the surrounding bulk liquid. In the case of rapid bubble growth-typical for the cavitation regime-compression of the liquid outside the bubble leads to local temperature increases of up to 5%, likely significant enough to alter the surface tension as well as the local viscosity. The liquid-vapor bubble interface is thinner than expected from planar coexistence simulations by up to 50%. Bubbles near the critical size are extremely nonspherical, yet they quickly become spherical as they grow. The Rayleigh-Plesset description of bubble-growth gives good agreement in the cavitation regime. PMID:25615216

  18. Bubble evolution and properties in homogeneous nucleation simulations.

    PubMed

    Angélil, Raymond; Diemand, Jürg; Tanaka, Kyoko K; Tanaka, Hidekazu

    2014-12-01

    We analyze the properties of naturally formed nanobubbles in Lennard-Jones molecular dynamics simulations of liquid-to-vapor nucleation in the boiling and the cavitation regimes. The large computational volumes provide a realistic environment at unchanging average temperature and liquid pressure, which allows us to accurately measure properties of bubbles from their inception as stable, critically sized bubbles, to their continued growth into the constant speed regime. Bubble gas densities are up to 50% lower than the equilibrium vapor densities at the liquid temperature, yet quite close to the gas equilibrium density at the lower gas temperatures measured in the simulations: The latent heat of transformation results in bubble gas temperatures up to 25% below those of the surrounding bulk liquid. In the case of rapid bubble growth-typical for the cavitation regime-compression of the liquid outside the bubble leads to local temperature increases of up to 5%, likely significant enough to alter the surface tension as well as the local viscosity. The liquid-vapor bubble interface is thinner than expected from planar coexistence simulations by up to 50%. Bubbles near the critical size are extremely nonspherical, yet they quickly become spherical as they grow. The Rayleigh-Plesset description of bubble-growth gives good agreement in the cavitation regime.

  19. Nonlinear bubble nucleation and growth following filament and white-light continuum generation induced by a single-shot femtosecond laser pulse into dielectrics based on consideration of the time scale

    SciTech Connect

    Mizushima, Yuki; Saito, Takayuki

    2015-09-14

    Bubble nucleation and growth following plasma channeling (filament) and white-light continuum in liquid irradiated by a single-shot fs-pulse were experimentally investigated with close observation of the time scale. Making full use of a new confocal system and time-resolved visualization techniques, we obtained evidence suggestive of a major/minor role of the non-linear/thermal effects during the fs-pulse-induced bubble's fountainhead (10{sup −13} s) and growth (10{sup −7} s), which was never observed with the use of the ns-pulse (i.e., optic cavitation). In this context, the fs-pulse-induced bubble is not an ordinary optic cavitation but rather is nonlinear-optic cavitation. We present the intrinsic differences in the dominant-time domain of the fs-pulse and ns-pulse excitation, and intriguingly, a mere hundred femtoseconds' excitation predetermines the size of the bubble appearing several microseconds after irradiation. That is, the nucleation happens temporally beyond a six-order-of-magnitude difference.

  20. Simulation of hydrogen bubble growth in tungsten by a hybrid model

    NASA Astrophysics Data System (ADS)

    Sang, Chaofeng; Sun, Jizhong; Bonnin, Xavier; Wang, L.; Wang, Dezhen

    2015-08-01

    A two dimensional hybrid code (HIIPC-MC) joining rate-theory and Monte Carlo (MC) methods is developed in this work. We evaluate the cascade-coalescence mechanism contribution to the bubble growth by MC. First, effects of the starting radius and solute deuterium concentration on the bubble growth are studied; then the impacts of the wall temperature and implantation ion flux on the bubble growth are assessed. The simulation indicates that the migration-coalescence of the bubbles and the high pressure inside the bubbles are the main driving forces for the bubble growth, and that neglect of the migration and coalescence would lead to an underestimation of the bubble growth or blistering.

  1. Growth of bubbles on a solid surface in response to a pressure reduction.

    PubMed

    Li, Jiang; Chen, Haosheng; Zhou, Weizheng; Wu, Bo; Stoyanov, Simeon D; Pelan, Eddie G

    2014-04-22

    A diffusion-controlled method is presented to study the growth of bubbles on a solid surface. The bubbles are nucleated spontaneously on a hydrophobic smooth surface in response to a sudden pressure reduction and then grow with an expanding contact line. The evolution of the bubbles in the early stage is found to grow with a constant bubble radius and a decreasing contact angle, while the bubbles continue their growth with a constant contact angle and an increasing bubble radius after the contact angle reaches its equilibrium value. A total variation of about 60° of the contact angle is observed during the growth of the bubbles with the size scale of 10-100 μm in radius. The growing process is described by the diffusion theory with the validation of the growth constant.

  2. A three-dimensional meso-scale computer modeling for bubble growth in metals

    NASA Astrophysics Data System (ADS)

    Suzudo, T.; Kaburaki, H.; Itakura, M.; Wakai, E.

    2008-07-01

    A new meso-scale three-dimensional computer model has been proposed to enhance the modeling capability of the bubble growth in metals, particularly helium bubble growth under conditions of post-irradiation annealing. We assume that the bubble growth is modeled by a process driven by energy minimization of the surface energy and thermal fluctuation within the framework of a Monte Carlo simulation method. We found that it is possible to simulate growing bubbles following the ideal gas law and in equilibrium with the surface tension. The simulation results show good agreement with some experimental evidence, in particular, of the log-normal bubble-size distribution. The extension of the model to the bubble growth on grain boundaries with reference to helium embrittlement has succeeded in reproducing a particular bubble shape observed in experiments.

  3. Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids

    NASA Astrophysics Data System (ADS)

    Cai, Y.; Wu, H. A.; Luo, S. N.

    2014-06-01

    Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (˜0.9 J {m}^{-2}) and the Tolman length (0.4-0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (1033 - 34 s-1 m-3) and critical size (3-4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.

  4. Cavitation in a metallic liquid: homogeneous nucleation and growth of nanovoids.

    PubMed

    Cai, Y; Wu, H A; Luo, S N

    2014-06-01

    Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (~0.9 J m⁻²) and the Tolman length (0.4-0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10(33 - 34) s(-1) m(-3)) and critical size (3-4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.

  5. Cavitation in a metallic liquid: homogeneous nucleation and growth of nanovoids.

    PubMed

    Cai, Y; Wu, H A; Luo, S N

    2014-06-01

    Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (~0.9 J m⁻²) and the Tolman length (0.4-0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10(33 - 34) s(-1) m(-3)) and critical size (3-4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence. PMID:24908018

  6. Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids

    SciTech Connect

    Cai, Y.; Wu, H. A.; Luo, S. N.

    2014-06-07

    Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (∼0.9 J m{sup −2}) and the Tolman length (0.4–0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10{sup 33−34} s{sup −1} m{sup −3}) and critical size (3–4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.

  7. Vulnerability to cavitation, hydraulic efficiency, growth and survival in an insular pine (Pinus canariensis)

    PubMed Central

    López, Rosana; López de Heredia, Unai; Collada, Carmen; Cano, Francisco Javier; Emerson, Brent C.; Cochard, Hervé; Gil, Luis

    2013-01-01

    Background and Aims It is widely accepted that hydraulic failure due to xylem embolism is a key factor contributing to drought-induced mortality in trees. In the present study, an attempt is made to disentangle phenotypic plasticity from genetic variation in hydraulic traits across the entire distribution area of a tree species to detect adaptation to local environments. Methods A series of traits related to hydraulics (vulnerability to cavitation and hydraulic conductivity in branches), growth performance and leaf mass per area were assessed in eight Pinus canariensis populations growing in two common gardens under contrasting environments. In addition, the neutral genetic variability (FST) and the genetic differentiation of phenotypic variation (QST) were compared in order to identify the evolutionary forces acting on these traits. Key Results The variability for hydraulic traits was largely due to phenotypic plasticity. Nevertheless, the vulnerability to cavitation displayed a significant genetic variability (approx. 5 % of the explained variation), and a significant genetic × environment interaction (between 5 and 19 % of the explained variation). The strong correlation between vulnerability to cavitation and survival in the xeric common garden (r = –0·81; P < 0·05) suggests a role for the former in the adaptation to xeric environments. Populations from drier sites and higher temperature seasonality were less vulnerable to cavitation than those growing at mesic sites. No trade-off between xylem safety and efficiency was detected. QST of parameters of the vulnerability curve (0·365 for P50 and the slope of the vulnerability curve and 0·452 for P88) differed substantially from FST (0·091), indicating divergent selection. In contrast, genetic drift alone was found to be sufficient to explain patterns of differentiation for xylem efficiency and growth. Conclusions The ability of P. canariensis to inhabit a wide range of ecosystems seemed to be associated

  8. Aspherical bubble dynamics and oscillation times

    SciTech Connect

    Godwin, R.P.; Chapyak, E.J.; Noack, J.; Vogel, A.

    1999-03-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.

  9. Experimental analysis of bubble growth, departure and interactions during pool boiling on artificial nucleation sites

    SciTech Connect

    Siedel, S.; Cioulachtjian, S.; Bonjour, J.

    2008-09-15

    The present work describes experimental results of pentane pool boiling, simplified to the cases of boiling on a single or on two adjacent nucleation sites. Bubbles growths have been recorded by a high speed camera under various wall superheat conditions. Bubble volume has been plotted as a function of time, and an experimental growth law has been proposed. Oscillations were observed during growth, showing the interaction of one bubble with the preceding bubble released from the same nucleation site. Lateral coalescence has been visualized and the images have brought to the fore the capillary effects on the distortion of the interface. (author)

  10. A cavitation model for computations of unsteady cavitating flows

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Wang, Guoyu; Huang, Biao

    2016-04-01

    A local vortical cavitation (LVC) model for the computation of unsteady cavitation is proposed. The model is derived from the Rayleigh-Plesset equations, and takes into account the relations between the cavitation bubble radius and local vortical effects. Calculations of unsteady cloud cavitating flows around a Clark-Y hydrofoil are performed to assess the predictive capability of the LVC model using well-documented experimental data. Compared with the conventional Zwart's model, better agreement is observed between the predictions of the LVC model and experimental data, including measurements of time-averaged flow structures, instantaneous cavity shapes and the frequency of the cloud cavity shedding process. Based on the predictions of the LVC model, it is demonstrated that the evaporation process largely concentrates in the core region of the leading edge vorticity in accordance with the growth in the attached cavity, and the condensation process concentrates in the core region of the trailing edge vorticity, which corresponds to the spread of the rear component of the attached cavity. When the attached cavity breaks up and moves downstream, the condensation area fully transports to the wake region, which is in accordance with the dissipation of the detached cavity. Furthermore, using vorticity transport equations, we also find that the periodic formation, breakup, and shedding of the sheet/cloud cavities, along with the associated baroclinic torque, are important mechanisms for vorticity production and modification. When the attached cavity grows, the liquid-vapour interface that moves towards the trailing edge enhances the vorticity in the attached cavity closure region. As the re-entrant jet moves upstream, the wavy/bubbly cavity interface enhances the vorticity near the trailing edge. At the end of the cycle, the break-up of the stable attached cavity is the main reason for the vorticity enhancement near the suction surface.

  11. Reconstructing the Growth History of Bubbles in Magma from Preserved Volatile Concentrations in Glass

    NASA Astrophysics Data System (ADS)

    McIntosh, I. M.; Llewellin, E. W.; Humphreys, M.; Larsen, J. F.; Blower, J. D.

    2010-12-01

    Volcanic eruptions are driven by the nucleation and growth of bubbles that are formed when volatile species (particularly water) exsolve from magma. Once nucleated, bubbles may continue to grow through a combination of diffusion of volatiles from the melt and decompressive expansion. The kinetics of bubble formation and growth exert a critical influence on eruption dynamics, particularly on the explosivity of the eruption; consequently, numerical models of volcanic eruptions are sensitive to the choice of bubble growth model. We present preliminary results of analyses of experimentally-decompressed phonolite and rhyolite samples, which provide data against which bubble growth models can be validated. Data interpretation is supported by numerical modelling of the growth of isolated and paired bubbles in three-dimensions. Previous numerical modelling of bubble growth has demonstrated the importance of the dynamic feedback between the concentration of water in the melt, its diffusivity, and the viscosity of the melt shell in which the bubble grows (e.g. Blower et al., 2001). Diffusion of water, therefore, not only alters the water concentration profile surrounding the bubble, but is itself modified by the resulting concentration profile. This concentration profile may be preserved when the magma is quenched to glass. We adapt the technique of Humphreys et al (2008) to extract sub-micron resolution water concentration data from backscatter SEM images of volcanic glasses by using greyscale variation as a proxy for water content. The profiles are calibrated using SEM-Raman and FTIR. We present preliminary two-dimensional maps of water concentration around isolated bubbles and bubble-pairs in synthetically hydrated and decompressed samples of volcanic glass. To support the interpretation of the data, we have developed a finite element model of bubble growth, which couples volatile diffusion with concentration dependent viscosity and melt hydrodynamics around the growing

  12. Osmotic pressure-triggered cavitation in microcapsules.

    PubMed

    Shang, Luoran; Cheng, Yao; Wang, Jie; Yu, Yunru; Zhao, Yuanjin; Chen, Yongping; Gu, Zhongze

    2016-01-21

    A cavitation system was found in solid microcapsules with a membrane shell and a liquid core. By simply treating these microcapsules with hypertonic solutions, cavitation could be controllably triggered without special equipment or complex operations. A cavitation-formed vapor bubble was fully entrapped within the microcapsules, thus providing an advantageous method for fabricating encapsulated microbubbles with controllable dimensions and functional components. PMID:26659708

  13. Dynamics of diffusive bubble growth and pressure recovery in a bubbly rhyolitic melt embedded in an elastic solid

    USGS Publications Warehouse

    Chouet, Bernard A.; Dawson, Phillip B.; Nakano, Masaru

    2006-01-01

    We present a model of gas exsolution and bubble expansion in a melt supersaturated in response to a sudden pressure drop. In our model, the melt contains a suspension of gas bubbles of identical sizes and is encased in a penny-shaped crack embedded in an elastic solid. The suspension is modeled as a three-dimensional lattice of spherical cells with slight overlap, where each elementary cell consists of a gas bubble surrounded by a shell of volatile-rich melt. The melt is then subjected to a step drop in pressure, which induces gas exsolution and bubble expansion, resulting in the compression of the melt and volumetric expansion of the crack. The dynamics of diffusion-driven bubble growth and volumetric crack expansion span 9 decades in time. The model demonstrates that the speed of the crack response depends strongly on volatile diffusivity in the melt and bubble number density and is markedly sensitive to the ratio of crack thickness to crack radius and initial bubble radius but is relatively insensitive to melt viscosity. The net drop in gas concentration in the melt after pressure recovery represents only a small fraction of the initial concentration prior to the drop, suggesting the melt may undergo numerous pressure transients before becoming significantly depleted of gases. The magnitude of pressure and volume recovery in the crack depends sensitively on the size of the input-pressure transient, becoming relatively larger for smaller-size transients in a melt containing bubbles with initial radii less than 10-5 m. Amplification of the input transient may be large enough to disrupt the crack wall and induce brittle failure in the rock matrix surrounding the crack. Our results provide additional basis for the interpretation of volume changes in the magma conduit under Popocatépetl Volcano during Vulcanian degassing bursts in its eruptive activity in April–May 2000.

  14. Observations of bubble growth in rhyolite using hot-stage microscopy

    NASA Astrophysics Data System (ADS)

    Browning, J.; Tuffen, H.; James, M. R.

    2012-12-01

    Bubble growth in rhyolitic melts is a primary control on some of the largest explosive eruptions, but growth dynamics remain controversial. We have used hot-stage microscopy to directly observe vesiculation of a Chaiten rhyolite melt (containing ~1.38 wt. % H 2O) at atmospheric pressure. Thin wafers of obsidian were held from 5 minutes up to 2 days in the hot-stage at temperatures between 575 oC and 875 oC. The growth of many individual bubbles was measured using image tracking code within MATLAB. We found that bubble growth rates increased with both temperature and bubble size. The average growth rate at the highest temperature of 875 oC is ~1.27 μm s-1, compared with the lowest observed growth rate of ~0.02 μm s-1 at 725 oC; below this temperature no growth was observed. Average growth rate V r follows an exponential relationship with temperature and melt viscosity where V r ~ exp (0.0169T) and V r ~ exp (-1.202η). Comparison of these measured rates with existing bubble growth models (e.g. Navon, Proussevitch and Sahagian) indicates slower growth than expected at the highest temperatures. The extent of diffusive degassing of H 2O and OH- from wafer surfaces during experiments was estimated with simple diffusion models. It was found to be negligible during brief high-temperature experiments but became increasingly important for slower, lower-temperature experiments. Several stages of bubble growth were directly observed, including initial relaxation of deformed existing bubbles into spheres, extensive growth of spheres, and, at higher temperatures, close packing and foam formation. An advantage of the imaging techniques used here is that bubble-bubble interactions can be observed in-situ at relatively high resolution. Bubble deformation due to bubble-bubble interaction and coalescence was observed in most experiments. Evolving bubble number densities (BND) with time were determined, allowing nucleation rates to be estimated. Maximum observed BNDs were 3.4 x

  15. Harness cavitation to improve processing

    SciTech Connect

    Pandit, A.G.; Moholkar, V.S.

    1996-07-01

    Mention cavitation to most chemical engineers, and they undoubtedly think of it as an operational problem. Indeed, the rapid creation and then collapse of bubbles, which is after all what cavitation involves, can destroy pumps and erode other equipment. Cavitation, however, also can have a positive side--presuming it is designed for and not unplanned. In this article, the authors look at how cavitation can be harnessed to improve processes, and the mechanisms for inducing cavitation--ultrasonics and hydrodynamics--and their likely roles. Sonication, that is, the use of ultrasound, is the conventional approach for creating cavitation, and so they turn to it first. Over the past few years, a number of groups have attempted to solve the problem of scale-up and design of ultrasonic reactors. The authors review the systems that already exist and also explore a simpler and efficient alternative to the ultrasonic reactor, the hydrodynamic cavitation reactor.

  16. Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. II. Cavitation fields.

    PubMed

    Bailey, M R; Blackstock, D T; Cleveland, R O; Crum, L A

    1999-08-01

    Dramatically different cavitation was produced by two separate acoustic pulses that had different shapes but similar duration, frequency content, and peak positive and negative pressure. Both pulses were produced by a Dornier HM-3 style lithotripter: one pulse when the ellipsoidal reflector was rigid, the other when the reflector was pressure release. The cavitation, or bubble action, generated by the conventional rigid-reflector pulse was nearly 50 times longer lived and 3-13 times stronger than that produced by the pressure-release-reflector pulse. Cavitation durations measured by passive acoustic detection and high-speed video agreed with calculations based on the Gilmore equation. Cavitation intensity, or destructive potential, was judged (1) experimentally by the size of pits in aluminum foil detectors and (2) numerically by the calculated amplitude of the shock wave emitted by a collapsing bubble. The results indicate that the trailing positive spike in the pressure-release-reflector waveform stifles bubble growth and mitigates the collapse, whereas the trough after the positive spike in the rigid-reflector waveform triggers inertially driven growth and collapse. The two reflectors therefore provide a tool to compare effects in weakly and strongly cavitating fields and thereby help assess cavitation's role in lithotripsy.

  17. Dynamics of gas bubble growth in a supersaturated solution with Sievert's solubility law.

    PubMed

    Gor, G Yu; Kuchma, A E

    2009-07-21

    This paper presents a theoretical description of diffusion growth of a gas bubble after its nucleation in supersaturated liquid solution. We study systems where gas molecules completely dissociate in the solvent into two parts, thus making Sievert's solubility law valid. We show that the difference between Henry's and Sievert's laws for chemical equilibrium conditions causes the difference in bubble growth dynamics. Assuming that diffusion flux is steady we obtain a differential equation on bubble radius. Bubble dynamics equation is solved analytically for the case of homogeneous nucleation of a bubble, which takes place at a significant pressure drop. We also obtain conditions of diffusion flux steadiness. The fulfillment of these conditions is studied for the case of nucleation of water vapor bubbles in magmatic melts.

  18. Particle image velocimetry studies of bubble growth and detachment by high-speed photography

    NASA Astrophysics Data System (ADS)

    Stickland, Mathew; Dempster, William; Lothian, Lee; Oldroyd, Andrew

    1997-05-01

    An understanding of bubble flows is important in the design of process equipment, particularly in the chemical and power industries. In vapor-liquid processes the mass and heat transfer between the phases is dominated by the liquid-vapor interface and is determined by the number, size, and shape of the bubbles. For bubble flows these characteristics are often controlled by the generation mechanisms and, since bubble flows are often generated at an orifice, it is important to determine the controlling parameters which dictate how bubbles grow and detach. For bubbles growing at orifices the liquid displacement is an important feature and affects the pressure distribution acting on the bubble and the heat and mass transfer that may occur at the bubble interface. Therefore, in this study, the characteristics of the liquid velocity field are studied experimentally using Particle image Velocimetry (PIV) during growth, detachment and translation of a bubble being generated at an orifice supplied with a constant mass flow rate of air. The process is transient and occurs over a period of approximately 50 msecs. In order to map the transient flow field a combination of high speed cine and cross correlation PIV image processing has been used to determine the liquid velocity vector field during the bubble growth process. The paper contains details of the PIV technique and presents several of the velocity vector maps calculated.

  19. Empirical relationships of homogeneous bubble nucleation, growth and coalescence in rhyolitic melt

    NASA Astrophysics Data System (ADS)

    Giachetti, T.; Gonnermann, H. M.; Gardner, J. E.; Truong, N.; Toledo, P.; Hajimirza, S.

    2015-12-01

    Decompression experiments of homogeneous nucleation, growth and coalescence of bubbles in rhyolitic melt provide new data for an empirical formulation to predict bubble number density and size from controlled experimental conditions. Samples were hydrated at 200-250 MPa and 850 °C to water contents of 5.4-6.0 wt%, followed by decompression at rates of 60-150 MPa.s-1. Samples were held at final pressures for 6-90 s, allowing for bubble growth and coalescence after decompression and nucleation. Scanning electron microscopic (SEM) images and computed tomography (CT) scans of the decompressed glasses were analyzed for size distributions of both isolated and coalesced bubbles separately. Sample porosities vary from 4% to 63%, and connected porosity is positively correlated with total porosity for samples where it is greater than approximately 35%. A steep increase in the proportion of connected bubbles is observed once the average bubble wall thickness becomes lower than approximately 2 μm. In combination with SEM, CT and bubble size distributions these results indicate that bubble coalescence is independent of bubble size. Bubble number density varies from 8.9×1011 m-3 to 4.4×1016 m-3 (melt-referenced), and is positively correlated with the degree of supersaturation (130-210 MPa), as well as initial water content. For most experiments, we do not observe any increase in bubble number density after 10-20 s, suggesting that bubble nucleation has stopped. The bubble number density does not show a systematic correlation with decompression rate.

  20. Plasma and Cavitation Dynamics during Pulsed Laser Microsurgery in vivo

    SciTech Connect

    Hutson, M. Shane; Ma Xiaoyan

    2007-10-12

    We compare the plasma and cavitation dynamics underlying pulsed laser microsurgery in water and in fruit fly embryos (in vivo)--specifically for nanosecond pulses at 355 and 532 nm. We find two key differences. First, the plasma-formation thresholds are lower in vivo --especially at 355 nm--due to the presence of endogenous chromophores that serve as additional sources for plasma seed electrons. Second, the biological matrix constrains the growth of laser-induced cavitation bubbles. Both effects reduce the disrupted region in vivo when compared to extrapolations from measurements in water.

  1. A method for real-time in vitro observation of cavitation on prosthetic heart valves.

    PubMed

    Zapanta, C M; Liszka, E G; Lamson, T C; Stinebring, D R; Deutsch, S; Geselowitz, D B; Tarbell, J M

    1994-11-01

    A method for real-time in vitro observation of cavitation on a prosthetic heart valve has been developed. Cavitation of four blood analog fluids (distilled water, aqueous glycerin, aqueous polyacrylamide, and aqueous xanthan gum) has been documented for a Medtronic/Hall prosthetic heart valve. This method employed a Penn State Electrical Ventricular Assist Device in a mock circulatory loop that was operated in a partial filling mode associated with reduced atrial filling pressure. The observations were made on a valve that was located in the mitral position, with the cavitation occurring on the inlet side after valve closure on every cycle. Stroboscopic videography was used to document the cavity life cycle. Bubble cavitation was observed on the valve occluder face. Vortex cavitation was observed at two locations in the vicinity of the valve occluder and housing. For each fluid, cavity growth and collapse occurred in less than one millisecond, which provides strong evidence that the cavitation is vaporous rather than gaseous. The cavity duration time was found to decrease with increasing atrial pressure at constant aortic pressure and beat rate. The area of cavitation was found to decrease with increasing delay time at a constant aortic pressure, atrial pressure, and beat rate. Cavitation was found to occur in each of the fluids, with the most cavitation seen in the Newtonian fluids (distilled water and aqueous glycerin). PMID:7869722

  2. The rate of gas-bubble growth in tissue under decompression. Mathematical modelling.

    PubMed

    Kislyakov YuYa; Kopyltsov, A V

    1988-03-01

    A mathematical model simulating the formation of gas bubbles in biological tissues under decompression is presented. It is written as a system of partial differential equations solved on a computer. For the nitrogen-oxygen gas mixture, used for respiration in deep-water immersions, the effects of the physico-chemical properties of the gases, the magnitude of pressure differentials and the density of bubble-formation centres on the bubble size and rate of growth were studied. It is shown that in the case of drastic pressure differentials the formation of bubbles capable of producing microcirculatory disturbances is accomplished within a few seconds.

  3. Skin formation and bubble growth during drying process of polymer solution.

    PubMed

    Arai, S; Doi, M

    2012-07-01

    When a polymer solution with volatile solvent is dried, skins are often formed at the surface of the solution. It has been observed that after the skin is formed, bubbles often appear in the solution. We conducted experiments to clarify the relation between the skin formation and the bubble formation. We measured the time dependence of the thickness of the skin layer, the size of the bubbles, and the pressure in the solution. From our experiments, we concluded that i) the gas in the bubble is a mixture of solvent vapor and air dissolved in the solution, ii) the bubble nucleation is assisted by the pressure decrease in the solution covered by the skin layer, and iii) the growth of the bubbles is diffusion limited, mainly limited by the diffusion of air molecules dissolved in the solution.

  4. Computer simulation of boundary effects on bubble growth in metals due to He.

    SciTech Connect

    Zimmerman, Jonathan A.

    2003-03-01

    Atomistic simulation methods were used to investigate and identify the relevant physical mechanisms necessary to describe the growth of helium gas bubbles within a metal lattice. Specifically, molecular dynamics simulations were performed to examine the material defects that originate from growing spherical He bubbles in a palladium crystal. These simulations consist of a model system containing bubbles within a metal and near a free surface. The simulation code employed was ParaDyn using the Embedded Atom Method to model the constitutive properties of Pd atoms in a FCC lattice. The results of these simulations are compared with previously run calculations of He bubbles in a bulk lattice [l]. These simulations show the influence of the free surface on defect creation and evolution. Features compared include the formation of inter-bubble dislocations, bubble pressure and swelling as functions of He to metal (He/M) concentration.

  5. PHASE-FIELD SIMULATION OF INTERGRANULAR BUBBLE GROWTH AND PERCOLATION IN BICRYSTALS

    SciTech Connect

    Paul C. Millett; Michael Tonks; S. B. Biner; Liangzhe Zhang; K. Chockalingam; Yongfeng Zhang

    2012-06-01

    We present three-dimensional phase-field simulations of the growth and coalescence of intergranular bubbles in bicrystal grain geometries. We investigate the dependency of bubble percolation on two factors: the initial bubble density and the bubble shape, which is governed by the ratio of the grain boundary energy over the surface energy. We find that variations of each of these factors can lead to large discrepancies in the bubble coalescence rate, and eventual percolation, which may partially explain this observed occurrence in experimental investigations. The results presented here do not account for concurrent gas production and bubble resolution due to irradiation, therefore this simulation study is most applicable to post-irradiation annealing.

  6. Gas-bubble growth mechanisms in the analysis of metal fuel swelling

    SciTech Connect

    Gruber, E.E.; Kramer, J.M.

    1986-06-01

    During steady-state irradiation, swelling rates associated with growth of fission-gas bubbles in metallic fast reactor fuels may be expected to remain small. As a consequence, bubble-growth mechanisms are not a major consideration in modeling the steady-state fuel behavior, and it is usually adequate to consider the gas pressure to be in equilibrium with the external pressure and surface tension restraint. On transient time scales, however, various bubble-growth mechanisms become important components of the swelling rate. These mechanisms include growth by diffusion, for bubbles within grains and on grain boundaries; dislocation nucleation at the bubble surface, or ''punchout''; and bubble growth by creep. Analyses of these mechanisms are presented and applied to provide information on the conditions and the relative time scales for which the various processes should dominate fuel swelling. The results are compared to a series of experiments in which the swelling of irradiated metal fuel was determined after annealing at various temperatures and pressures. The diffusive growth of bubbles on grain boundaries is concluded to be dominant in these experiments.

  7. Cavitating vortex generation by a submerged jet

    SciTech Connect

    Belyakov, G. V.; Filippov, A. N.

    2006-05-15

    The surface geometry of a cavitating vortex is determined in the limit of inviscid incompressible flow. The limit surface is an ovaloid of revolution with an axis ratio of 5: 3. It is shown that a cavitating vortex ring cannot develop if the cavitation number is lower than a certain critical value. Experiments conducted at various liquid pressures and several jet exit velocities confirm the existence of a critical cavitation number close to 3. At cavitation numbers higher than the critical one, the cavitating vortex ring does not develop. At substantially lower cavitation numbers (k {<=} 0.1), an elongated asymmetric cavitation bubble is generated, with an axial reentrant jet whose length can exceed the initial jet length by several times. This flow structure is called an asymmetric cavitating vortex, even though steady motion of this structure has not been observed.

  8. Why Are Short Pulses More Efficient in Tissue Erosion Using Pulsed Cavitational Ultrasound Therapy (Histotripsy)?

    NASA Astrophysics Data System (ADS)

    Wang, Tzu-Yin; Maxwell, Adam D.; Park, Simone; Xu, Zhen; Fowlkes, J. Brian; Cain, Charles A.

    2010-03-01

    Histotripsy produces mechanical tissue fractionation through controlled cavitation. The histotripsy induced tissue erosion is more efficient with shorter (i.e., 3-6 cycles) rather than longer (i.e. 24 cycles) pulses. In this study, we investigated the reasons behind this observation by studying dynamics of the cavitating bubble clouds and individual bubbles during and after a therapy pulse. Bubble clouds were generated at a gel-water interface using 5 to 30-cycle 1 MHz pulses at P-/P+>19/125-MPa pressure and 1-kHz pulse repetition frequency. The evolution of the overall bubble cloud and individual bubbles were studied using high speed photography. Results show that: 1) within the first 10-15 cycles, the overall cloud grew to its maximum size; the individual bubbles underwent violent expansion and collapse, and grew in size with each cycle of ultrasound; 2) between the 15th cycle and the end of the pulse, the overall cloud size did not change even if further cycles of ultrasound were delivered; the individual bubbles no longer underwent violent collapse; 3) after the pulse, the overall cloud gradually dissolved; the individual bubbles may coalesce into larger bubbles for 0-40 μs, and then gradually dissolved. These observations suggest that violent growth and collapse of individual bubbles occur within the first few cycles of ultrasound pulse most often. This may explain why extremely short pulses are more energy efficient in histotripsy-induced tissue erosion.

  9. Control of cavitation activity by different shockwave pulsing regimes.

    PubMed

    Huber, P; Debus, J; Jöchle, K; Simiantonakis, I; Jenne, J; Rastert, R; Spoo, J; Lorenz, W J; Wannenmacher, M

    1999-06-01

    The aim of the study was to control the number of inertial cavitation bubbles in the focal area of an electromagnetic lithotripter in water independently of peak intensity, averaged intensity or pressure waveform. To achieve this, the shockwave pulses were applied in double pulse sequences, which were administered at a fixed pulse repetition frequency (PRF) of 0.33 Hz. The two pulses of a double pulse were separated by a variable short pulse separation time (PST) ranging from 200 micros to 1500 ms. The number and size of the cavitation bubbles were monitored by scattered laser light and stroboscopic photographs. We found that the number of inertial cavitation bubbles as a measure of cavitation dose was substantially influenced by variation of the PST, while the pressure pulse waveform, averaged acoustic intensity and bubble size were kept constant. The second pulse of each double pulse generated more cavitation bubbles than the first. At 14 kV capacitor voltage, the total number of cavitation bubbles generated by the double pulses increased with shorter PST down to approximately 400 micros, the cavitation lifespan. The results can be explained by cavitation nuclei generated by the violently imploding inertial cavitation bubbles. This method of pulse administration and cavitation monitoring could be useful to establish a cavitation dose-effect relationship independently of other acoustic parameters.

  10. Active cavitation detection of asymmetrical inertial cavitation

    NASA Astrophysics Data System (ADS)

    Everbach, E. Carr

    2001-05-01

    The active cavitation detector (ACD) developed in Bob Apfel's laboratory has often been employed to quantify pressure thresholds for inception of symmetrical inertial cavitation of microbubbles. In the current application, however, a 30-MHz ACD interrogates individual echo-contrast agent bubbles adhering to a Mylar(TM) sheet that are driven into asymmetrical (jet-producing) collapse by a 1-MHz toneburst (>1 MPa pp). The resulting ACD output suggests that asymmetrical bubble collapse is slower than symmetrical collapse, producing less total radiated acoustic power. ACD output mixed with reference sinusoids at 30 MHz and low pass filtered yields Doppler signals that may be useful in quantifying asymmetrical collapses under biomedically relevant conditions, such as on endothelial walls.

  11. An arbitrary Lagrangian Eulerian method for simulating bubble growth in polymer foaming

    NASA Astrophysics Data System (ADS)

    Yue, Pengtao; Feng, James J.; Bertelo, Christopher A.; Hu, Howard H.

    2007-10-01

    We present a sharp-interface algorithm for simulating the diffusion-driven bubble growth in polymer foaming. A moving mesh of unstructured triangular elements tracks the expanding and deforming bubble surface. In the interior of the liquid, the mesh velocity is determined by solving a Laplace equation to ensure spatially smooth mesh movement. When mesh distortion becomes severe, remeshing and interpolation are performed. The governing equations are solved using a Galerkin finite-element formalism, with fully implicit time marching that requires iteration among the bubble and mesh deformation, gas diffusion and the flow and stress fields. Besides numerical stability, the implicit scheme also guarantees a smooth interfacial curvature as numerical disturbances on the interface are automatically relaxed through the iterations. The polymer melt is modeled as a viscoelastic Oldroyd-B fluid. First, we compute three benchmark problems to validate various aspects of the algorithm. Then we use a periodic hexagonal cell to simulate bubble growth in an isothermal two-dimensional foam, fed by a gaseous blowing agent initially dissolved in the melt to supersaturation. Results show two distinct stages: a rapid initial expansion followed by slow drainage of the liquid film between bubbles driven by capillarity. The effect of viscoelastic rheology is to enhance the speed of bubble growth in the first stage, and hinder film drainage in the second. Finally, we use axisymmetric simulations to investigate the thinning film between a bubble and a free surface. Melt viscoelasticity is shown to initially enhance film thinning but later resist it. An important insight from the simulations is that polymer strain-hardening, namely the steep increase of elongational viscosity with strain, helps stabilize the foam structure by suppressing bubble-bubble coalescence and bubble burst at the foam surface. This confirms prior observations in foam extrusion experiments.

  12. A New Unsteady Model for Dense Cloud Cavitation in Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Hosangadi, A.; Ahuja, V.

    2005-01-01

    A new unsteady, cavitation model is presented wherein the phase change process (bubble growth/collapse) is coupled to the acoustic field in a cryogenic fluid. It predicts the number density and radius of bubbles in vapor clouds by tracking both the aggregate surface area and volume fraction of the cloud. Hence, formulations for the dynamics of individual bubbles (e.g. Rayleigh-Plesset equation) may be integrated within the macroscopic context of a dense vapor cloud i.e. a cloud that occupies a significant fraction of available volume and contains numerous bubbles. This formulation has been implemented within the CRUNCH CFD, which has a compressible real fluid formulation, a multi-element, unstructured grid framework, and has been validated extensively for liquid rocket turbopump inducers. Detailed unsteady simulations of a cavitating ogive in liquid nitrogen are presented where time-averaged mean cavity pressure and temperature depressions due to cavitation are compared with experimental data. The model also provides the spatial and temporal history of the bubble size distribution in the vapor clouds that are shed, an important physical parameter that is difficult to measure experimentally and is a significant advancement in the modeling of dense cloud cavitation.

  13. The size of active bubbles for the production of hydrogen in sonochemical reaction field.

    PubMed

    Merouani, Slimane; Hamdaoui, Oualid

    2016-09-01

    The sonication of aqueous solution generates microscopic cavitation bubbles that may growth and violently collapse to produce highly reactive species (i.e. OH, HO2 and H2O2), hydrogen and emit light, sonoluminescence. The bubble size is a key parameter that influences the chemical activity of the system. This wok aims to study theoretically the size of active bubbles for the production of hydrogen in ultrasonic cavitation field in water using a single bubble sonochemistry model. The effect of several parameters such as frequency of ultrasound, acoustic intensity and liquid temperature on the range of sonochemically active bubbles for the production of hydrogen was clarified. The numerical simulation results showed that the size of active bubbles is an interval which includes an optimum value at which the production rate of H2 is maximal. It was shown that the range of ambient radius for an active bubble as well as the optimum bubble radius for the production of hydrogen increased with increasing acoustic intensity and decreased with increasing ultrasound frequency and bulk liquid temperature. It was found that the range of ambient bubble radius dependence of the operational conditions followed the same trend as those reported experimentally for sonoluminescing bubbles. Comparison with literature data showed a good agreement between the theoretical determined optimum bubble sizes for the production of hydrogen and the experimental reported sizes for sonoluminescing bubbles. PMID:27150777

  14. The size of active bubbles for the production of hydrogen in sonochemical reaction field.

    PubMed

    Merouani, Slimane; Hamdaoui, Oualid

    2016-09-01

    The sonication of aqueous solution generates microscopic cavitation bubbles that may growth and violently collapse to produce highly reactive species (i.e. OH, HO2 and H2O2), hydrogen and emit light, sonoluminescence. The bubble size is a key parameter that influences the chemical activity of the system. This wok aims to study theoretically the size of active bubbles for the production of hydrogen in ultrasonic cavitation field in water using a single bubble sonochemistry model. The effect of several parameters such as frequency of ultrasound, acoustic intensity and liquid temperature on the range of sonochemically active bubbles for the production of hydrogen was clarified. The numerical simulation results showed that the size of active bubbles is an interval which includes an optimum value at which the production rate of H2 is maximal. It was shown that the range of ambient radius for an active bubble as well as the optimum bubble radius for the production of hydrogen increased with increasing acoustic intensity and decreased with increasing ultrasound frequency and bulk liquid temperature. It was found that the range of ambient bubble radius dependence of the operational conditions followed the same trend as those reported experimentally for sonoluminescing bubbles. Comparison with literature data showed a good agreement between the theoretical determined optimum bubble sizes for the production of hydrogen and the experimental reported sizes for sonoluminescing bubbles.

  15. Cavitation studies in microgravity

    NASA Astrophysics Data System (ADS)

    Kobel, Philippe; Obreschkow, Danail; Farhat, Mohamed; Dorsaz, Nicolas; de Bosset, Aurele

    The hydrodynamic cavitation phenomenon is a major source of erosion for many industrial systems such as cryogenic pumps for rocket propulsion, fast ship propellers, hydraulic pipelines and turbines. Erosive processes are associated with liquid jets and shockwaves emission fol-lowing the cavity collapse. Yet, fundamental understanding of these processes requires further cavitation studies inside various geometries of liquid volumes, as the bubble dynamics strongly depends the surrounding pressure field. To this end, microgravity represents a unique platform to produce spherical fluid geometries and remove the hydrostatic pressure gradient induced by gravity. The goal of our first experiment (flown on ESA's parabolic flight campaigns 2005 and 2006) was to study single bubble dynamics inside large spherical water drops (having a radius between 8 and 13 mm) produced in microgravity. The water drops were created by a micro-pump that smoothly expelled the liquid through a custom-designed injector tube. Then, the cavitation bubble was generated through a fast electrical discharge between two electrodes immersed in the liquid from above. High-speed imaging allowed to analyze the implications of isolated finite volumes and spherical free surfaces on bubble evolution, liquid jets formation and shock wave dynamics. Of particular interest are the following results: (A) Bubble lifetimes are shorter than in extended liquid volumes, which could be explain by deriving novel corrective terms to the Rayleigh-Plesset equation. (B) Transient crowds of micro-bubbles (smaller than 1mm) appeared at the instants of shockwaves emission. A comparison between high-speed visualizations and 3D N-particle simulations of a shock front inside a liquid sphere reveals that focus zones within the drop lead to a significantly increased density of induced cavitation. Considering shock wave crossing and focusing may hence prove crucially useful to understand the important process of cavitation erosion

  16. Formation and Growth of Micro and Macro Bubbles on Copper-Graphite Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Sankovic, John M.; Motil, Brian J.; Zhang, Nengli

    2007-01-01

    Micro scale boiling behavior in the vicinity of graphite micro-fiber tips on the coppergraphite composite boiling surfaces is investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the copper matrix in pool boiling. In virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each of which sitting on several tips. The growth processes of the micro and macro bubbles are analyzed and formulated followed by an analysis of bubble departure on the composite surfaces. Based on these analyses, the enhancement mechanism of the pool boiling heat transfer on the composite surfaces is clearly revealed. Experimental results of pool boiling heat transfer both for water and Freon-113 on the composite surfaces convincingly demonstrate the enhancement effects of the unique structure of Cu-Gr composite surfaces on boiling heat transfer.

  17. Effects of FLIRT on bubble growth in man.

    PubMed

    Winkler, B E; Koch, A; Schoeppenthau, H; Ludwig, T; Tetzlaff, K; Hartig, F; Kaehler, W; Koehler, A; Kanstinger, A; Ciscato, W; Muth, C-M

    2012-11-01

    Recompression during decompression has been suggested to possibly reduce the risk of decompression sickness (DCS). The main objective of the current study was to investigate the effects of FLIRT (First Line Intermittent Recompression Technique) on bubble detection in man. 29 divers underwent 2 simulated dives in a dry recompression chamber to a depth of 40 msw (500 kPa ambient pressure) in random order. A Buehlmann-based decompression profile served as control and was compared to an experimental profile with intermittent recompression during decompression (FLIRT). Circulating bubbles in the right ventricular outflow tract (RVOT) were monitored by Doppler ultrasound and quantified using the Spencer scoring algorithm. Heat shock protein 70 (HSP70), thrombocytes, D-Dimers and serum osmolarity were analyzed before and 120 min after the dive. Both dive profiles elicited bubbles in most subjects (range Spencer 0-4). However, no statistically significant difference was found in bubble scores between the control and the experimental dive procedure. There was no significant change in either HSP70, thrombocytes, and D-Dimers. None of the divers had clinical signs or symptoms suggestive of DCS. We conclude that FLIRT did not significantly alter the number of microbubbles and thus may not be considered superior to classical decompression in regards of preventing DCS.

  18. Blood vessel rupture by cavitation

    PubMed Central

    Chen, Hong; Brayman, Andrew A.; Bailey, Michael R.

    2011-01-01

    Cavitation is thought to be one mechanism for vessel rupture during shock wave lithotripsy treatment. However, just how cavitation induces vessel rupture remains unknown. In this work, a high-speed photomicrography system was set up to directly observe the dynamics of bubbles inside blood vessels in ex vivo rat mesenteries. Vascular rupture correlating to observed bubble dynamics were examined by imaging bubble extravasation and dye leakage. The high-speed images show that bubble expansion can cause vessel distention, and bubble collapse can lead to vessel invagination. Liquid jets were also observed to form. Our results suggest that all three mechanisms, vessel distention, invagination and liquid jets, can contribute to vessel rupture. PMID:20680255

  19. Evolution of disturbances of the sphericity of a bubble under strong compression

    NASA Astrophysics Data System (ADS)

    Nigmatulin, R. I.; Aganin, A. A.; Toporkov, D. Yu.; Ilgamov, M. A.

    2016-03-01

    The growth in the amplitude of the small nonsphericity of cavitation bubbles in acetone and water under strong compression is considered. A hydrodynamic model is used in which the compressibility of the liquid, the nonstationary thermal conduction of the vapor and the liquid, and nonequilibrium evaporation-condensation processes, as well as imperfection of the vapor, are considered. It has been shown that the increase in the amplitude of the small nonsphericity of cavitation bubbles in the form of separate spherical harmonics during compression in water is substantially (more than 10 times) higher than during compression in acetone. This indicates that acetone is much more advantageous over water to implement a process of the nearer-to-spherical extreme compression of the medium in the cavitation bubbles.

  20. Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Corrigan, Jackie

    2004-01-01

    A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM

  1. Modeling methane bubble growth in fine-grained muddy aquatic sediments: correlation with sediment properties

    NASA Astrophysics Data System (ADS)

    Katsman, Regina

    2015-04-01

    Gassy sediments contribute to destabilization of aquatic infrastructure, air pollution, and global warming. In the current study a precise shape and size of the buoyant mature methane bubble in fine-grained muddy aquatic sediment is defined by numerical and analytical modeling, their results are in a good agreement. A closed-form analytical solution defining the bubble parameters is developed. It is found that the buoyant mature bubble is elliptical in its front view and resembles an inverted tear drop in its cross-section. The size and shape of the mature bubble strongly correlate with sediment fracture toughness. Bubbles formed in the weaker sediments are smaller and characterized by a larger surface-to volume ratio that induces their faster growth and may lead to their faster dissolution below the sediment-water interface. This may prevent their release to the water column and to the atmosphere. Shapes of the bubbles in the weaker sediments deviate further from the spherical configuration, than those in the stronger sediments. Modeled bubble characteristics, important for the acoustic applications, are in a good agreement with field observations and lab experiments.

  2. Using Improved Equation of State to Model Simultaneous Nucleation and Bubble Growth in Thermoplastic Foams

    NASA Astrophysics Data System (ADS)

    Khan, Irfan; Costeux, Stephane; Adrian, David; Cristancho, Diego

    2013-11-01

    Due to environmental regulations carbon-dioxide (CO2) is increasingly being used to replace traditional blowing agents in thermoplastic foams. CO2 is dissolved in the polymer matrix under supercritical conditions. In order to predict the effect of process parameters on foam properties using numerical modeling, the P-V-T relationship of the blowing agents should accurately be represented at the supercritical state. Previous studies in the area of foam modeling have all used ideal gas equation of state to predict the behavior of the blowing agent. In this work the Peng-Robinson equation of state is being used to model the blowing agent during its diffusion into the growing bubble. The model is based on the popular ``Influence Volume Approach,'' which assumes a growing boundary layer with depleted blowing agent surrounds each bubble. Classical nucleation theory is used to predict the rate of nucleation of bubbles. By solving the mass balance, momentum balance and species conservation equations for each bubble, the model is capable of predicting average bubble size, bubble size distribution and bulk porosity. The effect of the improved model on the bubble growth and foam properties are discussed.

  3. Nucleation and Growth of Bubbles in He Ion Implanted V/Ag Multilayers

    SciTech Connect

    Wei, Q. M.; Wang, Y. Q.; Nastasi, Michael; Misra, A.

    2011-11-18

    Microstructures of He ion-implanted pure Ag, pure V and polycrystalline V/Ag multilayers with individual layer thickness ranging from 1 nm to 50 nm were investigated by transmission electron microscopy (TEM). The bubbles in the Ag layer were faceted and larger than the non-faceted bubbles in the V layer under the same implantation conditions for both pure metals and multilayers. The substantially higher single defects surviving the spike phase and lower mobility of trapped He in bcc than those in fcc could account for this difference. For multilayers, the bubbles nucleate at interfaces but grow preferentially in Ag layers due to high mobility of trapped He in fcc Ag. In addition, the He concentration above which bubbles can be detected in defocused TEM images increases with decreasing layer thickness, from 0 for pure Ag to 4–5 at. % for 1 nm V/1 nm Ag multilayers. In contrast, the bubble size decreases with decreasing layer thickness, from approximately 4 nm in diameter in pure Ag to 1 nm in the 1 nm V/1 nm Ag multilayers. Elongated bubbles confined in the Ag layer by the V–Ag interfaces were observed in 1 nm multilayers. These observations show that bubble nucleation and growth can be suppressed to high He concentrations in nanoscale composites with interfaces that have high He solubility.

  4. Isobaric bubble growth: a consequence of altering atmospheric gas.

    PubMed

    Strauss, R H; Kunkle, T D

    1974-11-01

    During certain treatments of decompression sickness following dives made with compressed air, the U.S. Navy advocates breathing helium-oxygen mixtures. However, stable nitrogen bubbles created within gelatin by decompression have been found to enlarge when the atmosphere was switched from nitrogen to helium without changing ambient pressure. This suggests that decompression sickness would be worsened by switching from nitrogen to helium in the breathing gas mixture.

  5. Acoustic cavitation movies

    NASA Astrophysics Data System (ADS)

    Crum, Lawrence A.

    2003-04-01

    Acoustic cavitation is a phenomenon that occurs on microsecond time scales and micron length scales, yet, it has many macroscopic manifestations. Accordingly, it is often difficult, at least for the author, to form realistic physical descriptions of the specific mechanisms through which it expresses itself in our macroscopic world. For example, there are still many who believe that cavitation erosion is due to the shock wave that is emitted by bubble implosion, rather than the liquid jet created on asymmetric collapse...and they may be right. Over the years, the author has accumulated a number of movies and high-speed photographs of cavitation activity, which he uses to form his own visual references. In the time allotted, he will show a number of these movies and photographs and discuss their relevance to existing technological problems. A limited number of CDs containing the presented materials will be available to interested individuals. [Work supported in part by the NIH, USAMRMC, and the ONR.

  6. Cavitation propagation in water under tension

    NASA Astrophysics Data System (ADS)

    Noblin, Xavier; Yip Cheung Sang, Yann; Pellegrin, Mathieu; Materials and Complex Fluids Team

    2012-11-01

    Cavitation appears when pressure decreases below vapor pressure, generating vapor bubbles. It can be obtain in dynamical ways (acoustic, hydraulic) but also in quasi-static conditions. This later case is often observed in nature, in trees, or during the ejection of ferns spores. We study the cavitation bubbles nucleation dynamics and its propagation in a confined microfabricated media. This later is an ordered array of microcavities made in hydrogel filled with water. When the system is put into dry air, it dehydrates, water leaves the cavities and tension (negative pressure) builds in the cavities. This can be sustained up to a critical pressure (of order -20 MPa), then cavitation bubbles appear. We follow the dynamics using ultra high speed imaging. Events with several bubbles cavitating in a few microseconds could be observed along neighboring cells, showing a propagation phenomenon that we discuss. ANR CAVISOFT 2010-JCJC-0407 01.

  7. Improving microalgal growth with small bubbles in a raceway pond with swing gas aerators.

    PubMed

    Yang, Zongbo; Cheng, Jun; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2016-09-01

    A novel swing gas aerator was developed to generate small bubbles for improving the mass transfer coefficient and microalgal growth rate in a raceway pond. A high-speed photography system (HSP) was used to measure the bubble diameter and generation time, and online precise dissolved oxygen probes and pH probes were used to measure the mass transfer coefficient and mixing time. Bubble generation time and diameter decreased by 21% and 9%, respectively, when rubber gas aerators were swung in the microalgae solution. When water pump power and gas aeration rate increased in a raceway pond with swing gas aerators and oscillating baffles (SGAOB), bubble generation time and diameter decreased but solution velocity and mass transfer coefficient increased. The mass transfer coefficient increased by 25% and the solution velocity increased by 11% when SGAOB was used, and the microalgal biomass yield increased by 18%.

  8. Fighting fish (Betta splendens) bubble nests do not inhibit microbial growth.

    PubMed

    Brown, Alexandria C; Clotfelter, Ethan D

    2012-12-01

    Some organisms produce antimicrobial substances in nesting foam to favorably manipulate the environment to which their developing offspring are exposed. We tested if fighting fish Betta splendens foamy nest material, which is comprised of bubbles produced in the oral cavity of nesting males, has antimicrobial properties against a pathogenic bacteria (Edwardsiella tarda), a nonpathogenic bacteria (Escherichia coli), or a pathogenic oomycete (Saprolegnia parasitica). We also tested if exposure to nest material increases larval survival by performing in vitro fertilizations and individually incubating eggs in bubble nest extract or tank water (control). Our results show no evidence of antimicrobial properties of bubble nests. On the contrary, bubble nests provided favorable microenvironments for the growth of Saprolegnia parasitica. Our results confirm earlier work citing the importance of male nest attendance, and suggest that the mechanism responsible for decreased survival in the absence of attending males is pathogenic microbes.

  9. Improving microalgal growth with small bubbles in a raceway pond with swing gas aerators.

    PubMed

    Yang, Zongbo; Cheng, Jun; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2016-09-01

    A novel swing gas aerator was developed to generate small bubbles for improving the mass transfer coefficient and microalgal growth rate in a raceway pond. A high-speed photography system (HSP) was used to measure the bubble diameter and generation time, and online precise dissolved oxygen probes and pH probes were used to measure the mass transfer coefficient and mixing time. Bubble generation time and diameter decreased by 21% and 9%, respectively, when rubber gas aerators were swung in the microalgae solution. When water pump power and gas aeration rate increased in a raceway pond with swing gas aerators and oscillating baffles (SGAOB), bubble generation time and diameter decreased but solution velocity and mass transfer coefficient increased. The mass transfer coefficient increased by 25% and the solution velocity increased by 11% when SGAOB was used, and the microalgal biomass yield increased by 18%. PMID:27243604

  10. Fighting fish (Betta splendens) bubble nests do not inhibit microbial growth.

    PubMed

    Brown, Alexandria C; Clotfelter, Ethan D

    2012-12-01

    Some organisms produce antimicrobial substances in nesting foam to favorably manipulate the environment to which their developing offspring are exposed. We tested if fighting fish Betta splendens foamy nest material, which is comprised of bubbles produced in the oral cavity of nesting males, has antimicrobial properties against a pathogenic bacteria (Edwardsiella tarda), a nonpathogenic bacteria (Escherichia coli), or a pathogenic oomycete (Saprolegnia parasitica). We also tested if exposure to nest material increases larval survival by performing in vitro fertilizations and individually incubating eggs in bubble nest extract or tank water (control). Our results show no evidence of antimicrobial properties of bubble nests. On the contrary, bubble nests provided favorable microenvironments for the growth of Saprolegnia parasitica. Our results confirm earlier work citing the importance of male nest attendance, and suggest that the mechanism responsible for decreased survival in the absence of attending males is pathogenic microbes. PMID:22753365

  11. Helium bubble nucleation and growth in α-Fe: insights from first-principles simulations.

    PubMed

    Xiao, W; Zhang, X; Geng, W T; Lu, G

    2014-06-25

    We have carried out a first-principles study on the nucleation and early-stage growth of He bubbles in Fe. The energetics, atomic and electronic structure of He-vacancy complexes, involving both a monovacancy and a nine-vacancy cluster, are examined. Based on the energetics, we then perform thermodynamics analysis to gain deeper insights into He bubble nucleation and growth. We have determined the energy cost for the nucleation of He bubbles and found that up to eight He atoms can be trapped at a single vacancy. In order to capture more He atoms, the vacancy has to emit Frenkel pairs to release the substantial stress building on the surrounding Fe lattice. Compared to the monovacancy, the nine-vacancy cluster has a lower energy cost for He bubble nucleation and growth. He atoms at the vacancy repel the surrounding electronic charge and redistribute it on the neighboring Fe atoms. The thermodynamic analysis reveals that He chemical potential provides a driving force for He bubble nucleation and growth. There are two critical He chemical potentials that are of particular importance: one of them marks the transition from single He occupation to multiple He occupation at a monovacancy while the other sets off He-induced superabundant vacancy formation.

  12. Growth of oxygen bubbles during recharge process in zinc-air battery

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Chen, Huicui; Xu, Huachi; Chen, Dongfang; Xing, Haoqiang

    2015-11-01

    Rechargeable zinc-air battery used for energy storage has a serious problem of charging capacity limited by oxygen bubble coalescence. Fast removal of oxygen bubbles adhered to the charging electrode surface is of great importance for improving the charging performance of the battery. Here we show that the law of oxygen bubble growth can be achieved by means of phase-field simulation, revealing two phenomena of bubble detachment and bubble coalescence located in the charging electrode on both sides. Hydrodynamic electrolyte and partial insulation structure of the charging electrode are investigated to solve the problem of oxygen bubble coalescence during charging. Two types of rechargeable zinc-air battery are developed on the basis of different tri-electrode configurations, demonstrating that the charging performance of the battery with electrolyte flow (Ⅰ) is better than that of the battery with the partially insulated electrode (Ⅱ), while the battery Ⅱ is superior to the battery Ⅰ in the discharging performance, cost and portability. The proposed solutions and results would be available for promoting commercial application of rechargeable zinc-air batteries or other metal-air batteries.

  13. Growth and structural determination of He bubbles in iron/chromium alloys using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Abhishek, A.; Warrier, M.; Ganesh, R.; Caro, A.

    2016-04-01

    Helium(He) produced by transmutation process inside structural material due to neutron irradiation plays a vital role in the degradation of material properties. We have carried out Molecular dynamics(MD) simulations to study the growth of He bubble in Iron-Chromium alloy. Simulations are carried out at two different temperatures, viz. 0.1 K and 800 K, upto He bubble radius of 2.5 nm. An equation for variation of volume of He bubbles with the number of He atoms is obtained at both the temperatures. Bubble pressure and potential energy variation is obtained with increasing bubble radius. Dislocations are also found to be emitted after the bubble reaches a critical radius of 0.39 nm at 800 K. Separate MD simulations of He with pre-created voids are also carried out to study the binding energies of He and Vacancy (V) to Hem-Vn cluster. Binding energies are found to be in the range of 1-5.5 eV.

  14. Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth.

    PubMed

    Bagherzadeh, S Alireza; Alavi, Saman; Ripmeester, John; Englezos, Peter

    2015-06-01

    Molecular dynamic simulations are performed to study the conditions for methane nano-bubble formation during methane hydrate dissociation in the presence of water and a methane gas reservoir. Hydrate dissociation leads to the quick release of methane into the liquid phase which can cause methane supersaturation. If the diffusion of methane molecules out of the liquid phase is not fast enough, the methane molecules agglomerate and form bubbles. Under the conditions of our simulations, the methane-rich quasi-spherical bubbles grow to become cylindrical with a radius of ∼11 Å. The nano-bubbles remain stable for about 35 ns until they are gradually and homogeneously dispersed in the liquid phase and finally enter the gas phase reservoirs initially set up in the simulation box. We determined that the minimum mole fraction for the dissolved methane in water to form nano-bubbles is 0.044, corresponding to about 30% of hydrate phase composition (0.148). The importance of nano-bubble formation to the mechanism of methane hydrate formation, growth, and dissociation is discussed.

  15. Monitoring Cavitation in HIFU as an Aid to Assisting Treatment

    NASA Astrophysics Data System (ADS)

    Hsieh, Chang-yu; Smith, Penny Probert; Kennedy, James; Leslie, Thomas

    2007-05-01

    Rapid hypothermia resulting in tissue necrosis is often associated with bubble activity (normally from cavitation) in HIFU treatment. Indeed in some HIFU protocols, the evidence of cavitation is taken as an indicator of tissue lesions. In this paper we discuss two methods to delineate reliably the region in which cavitation occurs, so that a history of the cavitation events can be provided automatically during treatment. Results are shown on simulated images and from a clinical treatment session.

  16. ATOMISTIC STUDIES OF GROWTH OF HELIUM BUBBLES IN a-FE

    SciTech Connect

    Gao, Fei; Yang, L.; Kurtz, Richard J.

    2014-08-01

    Experimental results and atomistic simulations demonstrate that nucleation and growth of He bubbles in a-Fe is will contribute to embrittlement and is significant material problem for development of fusion power. Understanding the nucleation growth of He bubbles in steels is one of the most important issues in nuclear fusion technology. In order to understand the formation and evolution of self-interstitials (SIAs) caused by He bubble growth under He-rich/vacancy-poor conditions, the clustering of He and growth of He bubbles in bulk Fe is currently being investigated by inserting He atoms one by one into one or two He clusters. We find that a 1/2 <111> dislocation loop is formed and eventually punched out by a single He cluster, but when two He clusters are present the configuration of the SIA loop formed depends on the distance between the two He clusters. A <100> cluster is created when the distance between the He clusters is less than about 6a0 and eventually grows into a <100>{100} dislocation loop.

  17. Numerical simulation of aeration bubble growth in a plug-flow aeration tank used in wastewater treatment

    NASA Astrophysics Data System (ADS)

    Wang, H. R.; Li, Y. P.

    2010-03-01

    The micro-scale hydrodynamics of bubbles growth by aeration is related to the oxygen transfer efficiency and the overall performance of the activated sludge wastewater treatment process. To gain a deeper insight on the micro-scale phenomena of dispersed bubble in this process, a three-dimensional direct simulation method is developed to study the effects of the liquid cross-flow on micro-scale behavior of bubble growth in a plug-flow aeration tank. The numerical simulations are performed using the level set method coupling with the governing equations of a single fluid with variable properties. The governing equations are solved using the finite-volume projection technique. The simulation results are compared with the experimental observations and theoretical relations. The simulated results show that water cross-flow in plug-flow type aeration tank has a strong impact on the bubble growth process. Compared to that generated under quiescent water conditions used in mixing type aeration tank, the bubble under water cross-flow conditions grows downstream along the tilted axis, and the bubble generation time tends to decrease noticeably and the bubble at detachment has significantly smaller size. The dynamic characteristics of the bubble growth through two orifices are also numerically studied. The effect of water cross-flow on the bubbling synchronicity is finally discussed.

  18. An Eulerian-based Bubble Dynamics Model for Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Balu, Asish; Kinzel, Michael

    2015-11-01

    Cavitation dynamics of nuclei are largely governed by the Rayleigh-Plesset Equation (RPE). This research explores the implementation of a one-way coupling to the solution of the RPE to a computational fluid dynamics (CFD) simulation in an Eulerian-framework. In this work, we used transport equations (i.e., advection) of the bubble radius and bubble growth rate, both of which are governed by advection mechanisms and coupling to the RPE through the CFD pressure field. The method is validated in the context of hypothetical pressure fields by prescribing a temporally varying pressure. Then, it is extended to one-way coupling with cavitation development in three different flow situations: (1) flow over a cylinder, (2) bubble formation during a bottle collapse event, and (3) cavitation in a tip vortex. In the context of these flows, the CFD simulations replicate an equivalent MATLAB-based solution to the RPE, thus validating the model. Additionally, an analytical formulation for appropriate upper and lower bounds for the bubble's physical properties is presented. These boundary values allow the CFD solver to run at larger time steps, therefore increasing the rate of convergence as well as maintaining solution accuracy. The results from this work suggest that Eulerian-based RPE cavitation models are practical and have the potential to simulate large numbers of bubbles that challenge Lagrangian methods.

  19. Vapor Cavitation in Dynamically Loaded Journal Bearings

    NASA Technical Reports Server (NTRS)

    Jacobson, B. O.; Hamrock, B. J.

    1983-01-01

    High speed motion camera experiments were performed on dynamically loaded journal bearings. The length to diameter ratio of the bearing, the speed of the roller and the tube, the surface material of the roller, and the static and dynamic eccentricity of the bearing were varied. One hundred and thirty-four cases were filmed. The occurrence of vapor cavitation was clearly evident in the films and figures presented. Vapor cavitation was found to occur when the tensile stress applied to the oil exceeded the tensile strength of the oil or the binding of the oil to the surface. The physical situation in which vapor cavitation occurs is during the squeezing and sliding motion within a bearing. Besides being able to accurately capture the vapor cavitation on film, an analysis of the formation and collapse of the cavitation bubbles and characteristics of the bubble content are presented.

  20. CAVITATION DAMAGE STUDY VIA A NOVEL REPETITIVE PRESSURE PULSE APPROACH

    SciTech Connect

    Wang, Jy-An John; Ren, Fei; Wang, Hong

    2010-01-01

    Cavitation damage can significantly affect system performance. Thus, there is great interest in characterizing cavitation damage and improving materials resistance to cavitation damage. In this paper, we present a novel methodology to simulate cavitation environment. A pulsed laser is utilized to induce optical breakdown in the cavitation media, with the emission of shock wave and the generation of bubbles. The pressure waves induced by the optical breakdown fluctuate/propagate within the media, which enables the cavitation to occur and to further develop cavitation damage at the solid boundary. Using the repetitive pulsed-pressure apparatus developed in the current study, cavitation damage in water media was verified on stainless steel and aluminum samples. Characteristic cavitation damages such as pitting and indentation are observed on sample surfaces using scanning electron microscopy.

  1. Using a dynamic point-source percolation model to simulate bubble growth.

    SciTech Connect

    Zimmerman, Jonathan A.; Zeigler, David A.; Cowgill, Donald F.

    2004-05-01

    Accurate modeling of nucleation, growth and clustering of helium bubbles within metal tritide alloys is of high scientific and technological importance. Of interest is the ability to predict both the distribution of these bubbles and the manner in which these bubbles interact at a critical concentration of helium-to-metal atoms to produce an accelerated release of helium gas. One technique that has been used in the past to model these materials, and again revisited in this research, is percolation theory. Previous efforts have used classical percolation theory to qualitatively and quantitatively model the behavior of interstitial helium atoms in a metal tritide lattice; however, higher fidelity models are needed to predict the distribution of helium bubbles and include features that capture the underlying physical mechanisms present in these materials. In this work, we enhance classical percolation theory by developing the dynamic point-source percolation model. This model alters the traditionally binary character of site occupation probabilities by enabling them to vary depending on proximity to existing occupied sites, i.e. nucleated bubbles. This revised model produces characteristics for one and two dimensional systems that are extremely comparable with measurements from three dimensional physical samples. Future directions for continued development of the dynamic model are also outlined.

  2. Enhanced Generic Phase-field Model of Irradiation Materials: Fission Gas Bubble Growth Kinetics in Polycrystalline UO2

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei; Sun, Xin

    2012-05-30

    Experiments show that inter-granular and intra-granular gas bubbles have different growth kinetics which results in heterogeneous gas bubble microstructures in irradiated nuclear fuels. A science-based model predicting the heterogeneous microstructure evolution kinetics is desired, which enables one to study the effect of thermodynamic and kinetic properties of the system on gas bubble microstructure evolution kinetics and morphology, improve the understanding of the formation mechanisms of heterogeneous gas bubble microstructure, and provide the microstructure to macroscale approaches to study their impact on thermo-mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking. In our previous report 'Mesoscale Benchmark Demonstration, Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing', we developed a phase-field model to simulate the intra-granular gas bubble evolution in a single crystal during post-irradiation thermal annealing. In this work, we enhanced the model by incorporating thermodynamic and kinetic properties at grain boundaries, which can be obtained from atomistic simulations, to simulate fission gas bubble growth kinetics in polycrystalline UO2 fuels. The model takes into account of gas atom and vacancy diffusion, vacancy trapping and emission at defects, gas atom absorption and resolution at gas bubbles, internal pressure in gas bubbles, elastic interaction between defects and gas bubbles, and the difference of thermodynamic and kinetic properties in matrix and grain boundaries. We applied the model to simulate gas atom segregation at grain boundaries and the effect of interfacial energy and gas mobility on gas bubble morphology and growth kinetics in a bi-crystal UO2 during post-irradiation thermal annealing. The preliminary results demonstrate that the model can produce the equilibrium thermodynamic properties and the morphology of gas bubbles at

  3. Nuclei and propeller cavitation inception

    SciTech Connect

    Gindroz, B.; Billet, M.L.

    1994-12-31

    Propeller cavitation inception tests were conducted in the Grand Tunnel Hydrodynamique (GTH) of the Bassin d`Essaid des Carenes. Both acoustic and visual cavitation inception were determined for leading-edge sheet, travelling bubble, and tip vortex. These data were obtained for specific water quality conditions. The water quality was determined from cavitation susceptibility meter measurements for degassed water (maximum liquid tension, few nuclei), low injection rate of microbubbles (medium liquid tension, low nuclei concentration), medium injection rate of microbubbles (medium liquid tension, high nuclei concentration) and high injection rate of microbubbles (minimum liquid tension, high nuclei concentration). Results clearly demonstrate a different influence of water quality for each type of cavitation. Little variation in cavitation inception index for a significant increase in liquid tension and microbubble size distribution was found for leading-edge sheet; however, tip vortex cavitation inception index decreased significantly for an increase in liquid tension. In addition, a dependency on event rate was determined for tip vortex cavitation inception.

  4. Dissolved water distribution in vesicular magmatic glass records both decompressive bubble growth and quench resorption

    NASA Astrophysics Data System (ADS)

    McIntosh, I. M.; Llewellin, E.; Humphreys, M.; Nichols, A. R.; Burgisser, A.; Schipper, C.

    2013-12-01

    Water distribution in magma varies over the lifetime of an eruption due to a variety of processes, including decompressive degassing of the melt, cooling during the quench from melt to glass, and post-emplacement hydration under ambient conditions. Correct interpretation of water distributions in erupted pyroclasts can therefore offer crucial insights into the dynamics of eruption mechanisms and emplacement histories. Volcanic eruptions are driven by the nucleation and growth of bubbles in magma. Bubbles grow as volatile species in the melt, of which water is volumetrically the most important, diffuse down a concentration gradient towards and across the bubble wall. On cooling, the melt quenches to glass, preserving the spatial distribution of water concentration around the bubbles (now vesicles). We use Backscatter Scanning Electron Microscopy (BSEM), Secondary Ion Mass Spectrometry (SIMS) and Fourier Transform Infra-Red spectroscopy (FTIR) to measure the spatial distribution of water around vesicles in experimentally-vesiculated samples. We find that, contrary to expectation, the total water concentration increases (by up to 2 wt.%) in the ~30 microns closest to the vesicle wall. Our samples record significant resorption of water back into the melt around bubbles during the quench process, a process which represents ';regassing' of the magma. We propose that the observed total water resorption profiles result from the increase in the equilibrium solubility of water as temperature decreases during the quench to glass, and that this resorption locally overprints the pre-existing concentration total water profile resulting from bubble growth during decompression. This resorption occurs over the very short timescales of rapid experimental quench (3-10 seconds) resulting in strongly disequilibrium water speciation. Water re-enters the melt as molecular water leading to enrichment in molecular water around vesicles, while the distribution of hydroxyl groups remains

  5. A method to account for acoustic microstreaming when predicting bubble growth rates produced by rectified diffusion.

    PubMed

    Church, C C

    1988-11-01

    A reinterpretation of existing theory for rectified diffusion, the process by which bubbles in a sound field may grow in radius, is presented in order to quantitate the effect of acoustic microstreaming on bubble growth rates. The 1/t term in the growth rate equation is defined as the "decay term" and t as the "decay time," the time required for the gas concentration in the liquid contacting the bubble to rise (or fall) from its initial to its final value. In the absence of microstreaming, t is the duration of sonification. In the presence of microstreaming, t may be calculated from the streaming velocity and the bubble radius. A comparison between theory and the experimental results of Eller [A. Eller, J. Acoust. Soc. Am. 46, 1246-1250 (1969)] and of Gould [R.K. Gould, J. Acoust. Soc. Am. 56, 1740-1746 (1974)] shows reasonable agreement in the low kHz range. Theoretical results in the frequency range of 1-10 MHz at 1 and 4 bar are also presented.

  6. Application of signal analysis to cavitation

    NASA Technical Reports Server (NTRS)

    Martin, C. S.; Veerabhadra Rao, P.

    1984-01-01

    The diagnostic facilities of the cross power spectrum and the coherence function have been employed to enhance the identification of not only the inception of cavitation, but also its level. Two piezoelectric pressure transducers placed in the downstream chamber of a model spool valve undergoing various levels of cavitation allowed for the use of both functions - the phase angle of the complex cross spectrum and the dimensionless coherence function - to sense clearly the difference between noise levels associated with a noncavitating jet from those once cavitation inception is attained. The cavitation noise within the chamber exhibited quite a regular character in terms of the phase difference between instruments for limited cavitation. Varying cavitation levels clearly illustrated the effect of bubble size on the attendant frequency range for which there was an extremely high coherence or nearly perfect causality.

  7. Acoustically enhanced bubble growth at low frequencies and its implications for human diver and marine mammal safety.

    PubMed

    Crum, L A; Mao, Y

    1996-05-01

    Computations are made of the conditions necessary to obtain bubble growth by rectified diffusion under a variety of conditions associated with low-frequency sonar propagation in the ocean. The complex issue of microbubble nuclei stabilization is treated by assuming either a sufficient level of supersaturation to stabilize the initial bubble size, or by examining a microbubble nucleus with zero surface tension. The bubble growth rates and thresholds are obtained for a ranged of sound-pressure levels (re: 1 microPa) from 150-220 dB, for initial bubble radii from 1-10 microns, and for levels of the dissolved gas concentration from 100% to 223% of saturation. It was determined that for the range of conditions examined, it was necessary to utilize three different formulations of the equations for bubble growth. The results of these calculations (and assumptions concerning nuclei stabilization) indicate that for SPL's in excess of 210 dB, significant bubble growth can be expected to occur, and divers and marine mammals exposed to these conditions could be at risk. For SPL's below about 190 dB, however, except under relatively extreme conditions of supersaturation, significant bubble growth is unexpected.

  8. Helium defects interactions and mechanism of helium bubble growth in tungsten: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Chun; Liu, Yi-Nan; Yu, Yi; Luo, Guang-Nan; Shu, Xiaolin; Lu, Guang-Hong

    2014-08-01

    Molecular dynamics simulations have been performed to investigate the interactions between helium (He) and defects in tungsten (W). The binding energy between He and He cluster is shown to be positive, which increases with increasing He cluster size. Both the W self-interstitial atoms (SIAs) and the vacancy can promote the He cluster formation. The binding energies of a He, a vacancy and an SIA W to a He-vacancy cluster (HenVm) in W are also investigated, which depend on the n/m ratio. According to these results, we propose the formation and growth mechanism of He bubbles, which involves the procedures of He-vacancy cluster formation, the capturing of vacancies, then He atoms, and vacancies again. The mechanism provides a good reference to understand the initial stage of the He bubble formation and growth in W.

  9. Large-scale atomistic simulations of helium-3 bubble growth in complex palladium alloys

    NASA Astrophysics Data System (ADS)

    Hale, Lucas M.; Zimmerman, Jonathan A.; Wong, Bryan M.

    2016-05-01

    Palladium is an attractive material for hydrogen and hydrogen-isotope storage applications due to its properties of large storage density and high diffusion of lattice hydrogen. When considering tritium storage, the material's structural and mechanical integrity is threatened by both the embrittlement effect of hydrogen and the creation and evolution of additional crystal defects (e.g., dislocations, stacking faults) caused by the formation and growth of helium-3 bubbles. Using recently developed inter-atomic potentials for the palladium-silver-hydrogen system, we perform large-scale atomistic simulations to examine the defect-mediated mechanisms that govern helium bubble growth. Our simulations show the evolution of a distribution of material defects, and we compare the material behavior displayed with expectations from experiment and theory. We also present density functional theory calculations to characterize ideal tensile and shear strengths for these materials, which enable the understanding of how and why our developed potentials either meet or confound these expectations.

  10. A numerical model for the evolution of internal structure of cavitation cloud

    NASA Astrophysics Data System (ADS)

    Du, Tezhuan; Wang, Yiwei; Liao, Lijuan; Huang, Chenguang

    2016-07-01

    Bubble size distributions in cloud cavitation are important in cavitating flows. In this study, a numerical model was developed to study the evolution of the internal structure of cloud cavitation. The model includes (1) an evolution equation of bubble number density, which considers the bubble breakup effect and (2) the multiphase Reynolds-averaged Navier-Stokes equations with a modified cavitation model for background cavitating flows. The proposed model was validated with a flow over a projectile. Results show that the numerical model can predict the evolution of the internal structure of cloud cavitation. Comparisons of the proposed model and Singhal model were discussed. The effects of re-entrant jet and bubble number density on cavitating flows were also investigated.

  11. Bubble formation in microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1996-01-01

    An extensive experimental program was initiated for the purpose of understanding the mechanisms leading to bubble generation during fluid handling procedures in a microgravity environment. Several key fluid handling procedures typical for PCG experiments were identified for analysis in that program. Experiments were designed to specifically understand how such procedures can lead to bubble formation. The experiments were then conducted aboard the NASA KC-135 aircraft which is capable of simulating a low gravity environment by executing a parabolic flight attitude. However, such a flight attitude can only provide a low gravity environment of approximately 10-2go for a maximum period of 30 seconds. Thus all of the tests conducted for these experiments were designed to last no longer than 20 seconds. Several experiments were designed to simulate some of the more relevant fluid handling procedures during protein crystal growth experiments. These include submerged liquid jet cavitation, filling of a cubical vessel, submerged surface scratch, attached drop growth, liquid jet impingement, and geysering experiments. To date, four separate KC-135 flight campaigns were undertaken specifically for performing these experiments. However, different experiments were performed on different flights.

  12. Thresholds for cavitation produced in water by pulsed ultrasound.

    PubMed

    Atchley, A A; Frizzell, L A; Apfel, R E; Holland, C K; Madanshetty, S; Roy, R A

    1988-09-01

    The threshold for transient cavitation produced in water by pulsed ultrasound was measured as a function of pulse duration and pulse repetition frequency at both 0.98 and 2.30 MHz. The cavitation events were detected with a passive acoustic technique which relies upon the scattering of the irradiation field by the bubble clouds associated with the events. The results indicate that the threshold is independent of pulse duration and acoustic frequency for pulses longer than approximately 10 acoustic cycles. The threshold increases for shorter pulses. The cavitation events are likely to be associated with bubble clouds rather than single bubbles.

  13. Experimental and Theoretical Investigations of Cavitation in Water

    NASA Technical Reports Server (NTRS)

    Ackeret, J.

    1945-01-01

    The cavitation in nozzles on airfoils of various shape and on a sphere are experimentally investigated. The limits of cavitation and the extension of the zone of the bubbles in different stages of cavitation are photographically established. The pressure in the bubble area is constant and very low, jumping to high values at the end of the area. The analogy with the gas compression shock is adduced and discussed. The collapse of the bubbles under compression shock produces very high pressures internally, which must be contributory factors to corrosion. The pressure required for purely mechanical corrosion is also discussed.

  14. Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance.

    PubMed

    Villagra, Mariana; Campanello, Paula I; Montti, Lia; Goldstein, Guillermo

    2013-03-01

    A 4-year fertilization experiment with nitrogen (N) and phosphorus (P) was carried out in natural gaps of a subtropical forest in northeastern Argentina. Saplings of six dominant canopy species differing in shade tolerance were grown in five control and five N + P fertilized gaps. Hydraulic architectural traits such as wood density, the leaf area to sapwood area ratio (LA : SA), vulnerability to cavitation (P50) and specific and leaf-specific hydraulic conductivity were measured, as well as the relative growth rate, specific leaf area (SLA) and percentage of leaf damage by insect herbivores. Plant growth rates and resistance to drought-induced embolisms increased when nutrient limitations were removed. On average, the P50 of control plants was -1.1 MPa, while the P50 of fertilized plants was -1.6 MPa. Wood density and LA : SA decreased with N + P additions. A trade-off between vulnerability to cavitation and efficiency of water transport was not observed. The relative growth rate was positively related to the total leaf surface area per plant and negatively related to LA : SA, while P50 was positively related to SLA across species and treatments. Plants with higher growth rates and higher total leaf area in fertilized plots were able to avoid hydraulic dysfunction by becoming less vulnerable to cavitation (more negative P50). Two high-light-requiring species exhibited relatively low growth rates due to heavy herbivore damage. Contrary to expectations, shade-tolerant plants with relatively high resistance to hydraulic dysfunction and reduced herbivory damage were able to grow faster. These results suggest that during the initial phase of sapling establishment in gaps, species that were less vulnerable to cavitation and exhibited reduced herbivory damage had faster realized growth rates than less shade-tolerant species with higher potential growth rates. Finally, functional relationships between hydraulic traits and growth rate across species and treatments

  15. Bubble baryogenesis

    NASA Astrophysics Data System (ADS)

    Cheung, Clifford; Dahlen, Alex; Elor, Gilly

    2012-09-01

    We propose an alternative mechanism of baryogenesis in which a scalar baryon undergoes a percolating first-order phase transition in the early Universe. The potential barrier that divides the phases contains explicit B and CP violation and the corresponding instanton that mediates decay is therefore asymmetric. The nucleation and growth of these asymmetric bubbles dynamically generates baryons, which thermalize after percolation; bubble collision dynamics can also add to the asymmetry yield. We present an explicit toy model that undergoes bubble baryogenesis, and numerically study the evolution of the baryon asymmetry through bubble nucleation and growth, bubble collisions, and washout. We discuss more realistic constructions, in which the scalar baryon and its potential arise amongst the color-breaking minima of the MSSM, or in the supersymmetric neutrino seesaw mechanism. Phenomenological consequences, such as gravitational waves, and possible applications to asymmetric dark-matter generation are also discussed.

  16. Experimental investigation of cavitation in pump inlet

    NASA Astrophysics Data System (ADS)

    Sikora, Roman; Bureček, Adam; Hružík, Lumír; Vašina, Martin

    2015-05-01

    The article deals with experimental research of cavitation development in inlet tube of hydraulic pump. The pressures in inlet and outlet tube of the pump and flow rate were measured. Mineral oil was used as working fluid. The cavitation was visually evaluated in transparent inlet tube. The inlet tube underpressure was achieved by throttle valve. The relationship between the generation of bubbles and the inlet pressure is evaluated.

  17. Collapse and rebound of a gas-filled spherical bubble immersed in a diagnostic ultrasonic field.

    PubMed

    Aymé-Bellegarda, E J

    1990-08-01

    This work is concerned with the influence of the finite-amplitude distortion of a driving diagnostic ultrasonic field on the collapse and rebound of a gas-filled spherical microbubble, present in the exposed compressible liquid. Such an analysis is especially important since one of the mechanisms for cavitation damage comes from the very large gas pressures generated at bubble collapse and in the subsequent pressure wave formed by bubble rebound. Gilmore's model [F.R. Gilmore, "The growth or collapse of a spherical bubble in a viscous compressible liquid," Hydrodynamics Lab. Rep. No. 26-4, California Institute of Technology, Pasadena, CA (1952)] for bubble dynamics is used to obtain the motion of the bubble interface when subjected to a pulsed diagnostic ultrasonic field of large amplitude. Knowledge of the bubble motion allows one to derive the pressure distribution around the bubble. Numerical results over a range of initial bubble sizes, acoustic pressures, and frequencies relevant to medical use show that the strength of the pressure spikes radiated by the rebounding bubble depends upon (i) the acoustic frequency (f), (ii) the initial bubble size (R0), and (iii) the magnitude of the pressure amplitude of the fundamental (PF) in a Fourier series description of the distorted pulse. As the pressure spikes propagate outward from the bubble wall, their strength is attenuated as the reciprocal of the distance from the center of collapse.

  18. Investigation of bubble-bubble interaction effect during the collapse of multi-bubble system

    NASA Astrophysics Data System (ADS)

    Shao, Xueming; Zhang, Lingxin; Wang, Wenfeng

    2014-11-01

    Bubble collapse is not only an important subject among bubble dynamics, but also a key consequence of cavitation. It has been demonstrated that the structural damage is associated with the rapid change in flow fields during bubble collapse. How to model and simulate the behavior of the bubble collapse is now of great interest. In the present study, both theoretical analysis and a direct numerical simulation on the basis of VOF are performed to investigate the collapses of single bubble and bubble cluster. The effect of bubble-bubble interaction on the collapse of multi-bubble system is presented. The work was supported by the National Natural Science Foundation of China (11272284, 11332009).

  19. Pore-network study of bubble growth in porous media driven by heat transfer

    SciTech Connect

    Satik, C.; Yortsos, Y.C.

    1996-05-01

    We present experimental and theoretical investigations of vapor phase growth in pore-network models of porous media. Visualization experiments of boiling of ethyl alcohol in horizontal etched-glass micromodels were conducted. The vapor phase was observed to grow into a disordered pattern following a sequence of pressurization and pore-filling steps. At sufficiently small cluster sizes, growth occurred `one pore at a time,` leading to invasion percolation patterns. Single-bubble (cluster) growth was next simulated with a pore-network simulator that includes heat transfer (convection and conduction), and capillary and viscous forces, although not gravity. A boundary in the parameter space was delineated that separates patterns of growth dictated solely by capillarity (invasion percolation) from other patterns. The region of validity of invasion percolation was found to decrease as the supersaturation (heat flux), the capillary number, the thermal diffusivity, and the vapor cluster size increase. Implications to continuum models are discussed. 33 refs., 9 figs.

  20. Improvement of growth rate of plants by bubble discharge in water

    NASA Astrophysics Data System (ADS)

    Takahata, Junichiro; Takaki, Koichi; Satta, Naoya; Takahashi, Katsuyuki; Fujio, Takuya; Sasaki, Yuji

    2015-01-01

    The effect of bubble discharge in water on the growth rate of plants was investigated experimentally for application to plant cultivation systems. Spinach (Spinacia oleracea), radish (Raphanus sativus var. sativus), and strawberry (Fragaria × ananassa) were used as specimens to clarify the effect of the discharge treatment on edible parts of the plants. The specimens were cultivated in pots filled with artificial soil, which included chicken manure charcoal. Distilled water was sprayed on the artificial soil and drained through a hole in the pots to a water storage tank. The water was circulated from the water storage tank to the cultivation pots after 15 or 30 min discharge treatment on alternate days. A magnetic compression-type pulsed power generator was used to produce the bubble discharge with a repetition rate of 250 pps. The plant height in the growth phase and the dry weight of the harvested plants were improved markedly by the discharge treatment in water. The soil and plant analyzer development (SPAD) value of the plants also improved in the growth phase of the plants. The concentration of nitrate nitrogen, which mainly contributed to the improvement of the growth rate, in the water increased with the discharge treatment. The Brix value of edible parts of Fragaria × ananassa increased with the discharge treatment. The inactivation of bacteria in the water was also confirmed with the discharge treatment.

  1. Numerical modeling of bubble dynamics in viscoelastic media with relaxation

    NASA Astrophysics Data System (ADS)

    Warnez, M. T.; Johnsen, E.

    2015-06-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.

  2. Numerical modeling of bubble dynamics in viscoelastic media with relaxation

    PubMed Central

    Warnez, M. T.; Johnsen, E.

    2015-01-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller–Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin–Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time. PMID:26130967

  3. Ultrafast active cavitation imaging with enhanced cavitation to tissue ratio based on wavelet transform and pulse inversion.

    PubMed

    Liu, Runna; Hu, Hong; Xu, Shanshan; Huo, Rui; Wang, Supin; Wan, Mingxi

    2015-06-01

    The quality of ultrafast active cavitation imaging (UACI) using plane wave transmission is hindered by low transmission pressure, which is necessary to prevent bubble destruction. In this study, a UACI method that combined wavelet transform with pulse inversion (PI) was proposed to enhance the contrast between the cavitation bubbles and surrounding tissues. The main challenge in using wavelet transform is the selection of the optimum mother wavelet. A mother wavelet named "cavitation bubble wavelet" and constructed according to Rayleigh-Plesset-Noltingk-Neppiras-Poritsky model was expected to obtain a high correlation between the bubbles and beamformed echoes. The method was validated by in vitro experiments. Results showed that the image quality was associated with the initial radius of bubble and the scale. The signal-to-noise ratio (SNR) of the best optimum cavitation bubble wavelet transform (CBWT) mode image was improved by 3.2 dB compared with that of the B-mode image in free-field experiments. The cavitation-to-tissue ratio of the best optimum PI-based CBWT mode image was improved by 2.3 dB compared with that of the PI-based B-mode image in tissue experiments. Furthermore, the SNR versus initial radius curve had the potential to estimate the size distribution of cavitation bubbles.

  4. Evolution of Plasma-Exposed Tungsten Surfaces Due to Helium Diffusion and Bubble Growth

    NASA Astrophysics Data System (ADS)

    Hammond, Karl; Hu, Lin; Maroudas, Dimitrios; Wirth, Brian; PSI-SciDAC Team

    2013-10-01

    Helium from linear plasma devices and tokamak plasmas causes the formation of microscopic features, termed ``fuzz'' or ``coral,'' on the surface of plasma-exposed materials after only a few hours of plasma exposure. The details of such surface modifications are only beginning to be understood. This study examines the initial and intermediate stages of fuzz formation by large-length-scale molecular dynamics (MD) simulations of helium-implanted tungsten over time scales of up to microseconds using single-crystalline and polycrystalline supercell models of tungsten. The large-scale MD simulations employ state-of-the-art many-body interatomic potentials and implantation depth distributions for the insertion of helium atoms into the tungsten matrix constructed based on MD simulations of helium-atom impingement onto tungsten surfaces under prescribed thermal and implantation conditions. The large-scale MD simulations reveal surface features formed via the sequence of helium implantation, diffusion of helium atoms and their aggregation to form bubbles, growth of bubbles and consequent production of tungsten self-interstitial atoms, organization of those atoms into prismatic loops, glide of those loops to the surface, and bubble rupture.

  5. Enhancement of heat and mass transfer by cavitation

    NASA Astrophysics Data System (ADS)

    Zhang, Y. N.; Zhang, Y. N.; Du, X. Z.; Xian, H. Z.

    2015-01-01

    In this paper, a brief summary of effects of cavitation on the heat and mass transfer are given. The fundamental studies of cavitation bubbles, including its nonlinearity, rectified heat and mass diffusion, are initially introduced. Then selected topics of cavitation enhanced heat and mass transfer were discussed in details including whales stranding caused by active sonar activity, pool boiling heat transfer, oscillating heat pipe and high intensity focused ultrasound treatment.

  6. Molecular dynamics simulation of the formation, growth and bursting of bubbles in tungsten exposed to high fluxes of low energy deuterium

    NASA Astrophysics Data System (ADS)

    Liu, Shengguang; Dai, Shuyu; Sang, Chaofeng; Sun, Jizhong; Stirner, Thomas; Wang, Dezhen

    2015-08-01

    Molecular dynamics simulations are carried out to investigate the formation, growth and bursting of bubbles in tungsten exposed to the irradiation of an extremely high deuterium flux. It is found that the bubbles form in the region near the location of the implanted ion distribution peaks, and that the effect of the substrate temperature on the bubble formation depth is negligible; it is also found that the percentage of deuterium that is found in D2 molecules increases as the bubble grows, and that the evolution of the bubble's internal pressure is strongly associated with the properties of its surrounding structure. The simulations display the development of a dome-shaped structure at the tungsten surface during the bubble growth. The merging of two deuterium bubbles is also observed. The present simulations also show that the bubble bursts by generating a partially opened lid, which has already been observed in previous independent experiments.

  7. Ultrasonic cavitation for disruption of microalgae.

    PubMed

    Greenly, Justin M; Tester, Jefferson W

    2015-05-01

    Challenges with mid-stream fractionation steps in proposed microalgae biofuel pathways arise from the typically dilute cell density in growth media, micron scale cell sizes, and often durable cell walls. For microalgae to be a sustainable source of biofuels and co-products, efficient fractionation by some method will be necessary. This study evaluates ultrasonic cell disruption as a processing step that fractionates microalgae. A range of species types with different sizes and cell wall compositions were treated. The initial seconds of sonication offered the most significant disruption, even for the more durable Nannochloropsis cells. Following this initial period, diminishing effectiveness was attributed, by acoustic measurements, to attenuation of the ultrasound in the ensuing cloud of cavitating bubbles. At longer exposure times, differences between species were more pronounced. Processing higher concentrations of Isochrysis slowed cell disintegration only marginally, making the expenditure of energy more worthwhile.

  8. Simultaneous pressure measurement and high-speed photography study of cavitation in a dynamically loaded journal bearing

    NASA Technical Reports Server (NTRS)

    Sun, D. C.; Brewe, D. E.; Abel, P. B.

    1993-01-01

    Cavitation of the oil film in a dynamically loaded journal bearing was studied using high-speed photography and pressure measurement simultaneously. Comparison of the visual and pressure data provided considerable insight into the occurence and non-occurrence of cavitation. It was found that (1), cavitation typically occurred in the form of one bubble with the pressure in the cavitation bubble close to the absolute zero; and (2), for cavitation-producing operating conditions, cavitation did not always occur; with the oil film then supporting a tensile stress.

  9. Simultaneous pressure measurement and high-speed photography study of cavitation in a dynamically loaded journal bearing

    NASA Technical Reports Server (NTRS)

    Sun, D. C.; Brewe, David E.; Abel, Philip B.

    1994-01-01

    Cavitation of the oil film in a dynamically loaded journal bearing was studied using high-speed photography and pressure measurement simultaneously. Comparison of the visual and pressure data provided considerable insight into the occurrence and nonoccurrence of cavitation. It was found that (1) for the submerged journal bearing, cavitation typically occurred in the form of one bubble with the pressure in the cavitation bubble close to the absolute zero; and (2) for cavitation-producing operating conditions, cavitation did not always occur; with the oil film then supporting a tensile stress.

  10. Inertial confinement fusion based on the ion-bubble trigger

    SciTech Connect

    Jafari, S. Nilkar, M.; Ghasemizad, A.; Mehdian, H.

    2014-10-15

    Triggering the ion-bubble in an inertial confinement fusion, we have developed a novel scheme for the fast ignition. This scheme relies on the plasma cavitation by the wake of an intense laser pulse to generate an ion-bubble. The bubble acts both as an intense electron accelerator and as an electron wiggler. Consequently, the accelerated electrons trapped in the bubble can emit an intense tunable laser light. This light can be absorbed by an ablation layer on the outside surface of the ignition capsule, which subsequently drills it and thereby produces a guide channel in the pellet. Finally, the relativistic electron beam created in the bubble is guided through the channel to the high density core igniting the fusion fuel. The normalized beam intensity and beam energy required for triggering the ignition have been calculated when core is heated by the e-beam. In addition, through solving the momentum transfer, continuity and wave equations, a dispersion relation for the electromagnetic and space-charge waves has been analytically derived. The variations of growth rate with the ion-bubble density and electron beam energy have been illustrated. It is found that the growth rates of instability are significantly controlled by the ions concentration and the e-beam energy in the bubble.

  11. Experimental investigation of remote seismic triggering by gas bubble growth in groundwater

    NASA Astrophysics Data System (ADS)

    Crews, J. B.; Cooper, C. A.

    2014-12-01

    Remotely triggered seismicity is the process by which an earthquake at one location initiates others after a time delay ranging from seconds to days, over distances up to thousands of kilometers. Candidate mechanisms have been proposed, but none specifically address the role of carbon dioxide (CO2) gas bubble growth in groundwater as a driver of remote seismic triggering in active volcanic and geothermal regions, where shallow crustal CO2 gas is abundant. In the present study, we hypothesize that a seismic wave from a distant source can initiate rapid gas bubble growth in CO2-rich groundwater, resulting in a persistent increase in pore fluid pressure and a reduction of effective stress, which can trigger failure on a critically loaded geologic fault. Under conditions representative of a confined aquifer, a Berea sandstone core flooded with an aqueous CO2 solution was subjected to a six-period burst of 0.05-0.3 Hz, 0.1-0.4 MPa confining stress oscillations. After the oscillations were terminated, the pore fluid pressure exceeded its initial value by 13-60 cm equivalent freshwater head, scaling with the amplitude and frequency - a surplus that is consistent with borehole water level changes [Roeloffs et al. (1995) USGS Open File Report, 95-42] observed in response to the June 28 1992 MW 7.3 Landers, California earthquake Rayleigh wave in Parkfield and Long Valley caldera, California, where remotely triggered earthquakes occurred [Hill et al. (1993) Science, 260(5114); Hill et al. (1995) Journal of Geophysical Research, 100(B7)]. Our experimental results indicate that seismically initiated gas bubble growth in groundwater is a physically plausible mechanism for remote seismic triggering in active volcanic and geothermal regions, suggesting that the aqueous CO2 saturation state in a confined aquifer may be used to assess susceptibility to remote seismic triggering.

  12. Radiation induced cavitation: A possible phenomenon in liquid targets?

    SciTech Connect

    West, C.D.

    1998-07-01

    The proposed design of a new, short-pulse spallation neutron source includes a liquid mercury target irradiated with a 1 GeV proton beam. This paper explores the possibility that cavitation bubbles may be formed in the mercury and briefly discusses some design features that could avoid harmful effects should cavitation take place.

  13. Numerical investigation of cavitation performance on bulb tubular turbine

    NASA Astrophysics Data System (ADS)

    Sun, L. G.; Guo, P. C.; Zheng, X. B.; Luo, X. Q.

    2016-05-01

    The cavitation flow phenomena may occur in the bulb tubular turbine at some certain operation conditions, which even decrease the performance of units and causes insatiably noise and vibration when it goes worse. A steady cavitating flow numerical simulations study is carried out on the bulb tubular unit with the same blade pitch angle and different guide vane openings by using the commercial code ANSYS CFX in this paper. The phenomena of cavitation induction areas and development process are obtained and draws cavitation performance curves. The numerical results show that the travelling bubble cavity is the main types of cavitation development over a wide operating range of discharge and this type of cavitation begins to sensitive to the value of cavitation number when the discharge exceeding a certain valve, in this condition, it can lead to a severe free bubble formation with the gradually decrement of cavitation number. The reported cavitation performance curves results indicate that the flow blockage incident would happen because of a mount of free bubble formation in the flow passage when the cavity developed to certain extend, which caused head drop behavior and power broken dramatically and influenced the output power.

  14. Synchronised electrical monitoring and high speed video of bubble growth associated with individual discharges during plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Troughton, S. C.; Nominé, A.; Nominé, A. V.; Henrion, G.; Clyne, T. W.

    2015-12-01

    Synchronised electrical current and high speed video information are presented from individual discharges on Al substrates during PEO processing. Exposure time was 8 μs and linear spatial resolution 9 μm. Image sequences were captured for periods of 2 s, during which the sample surface was illuminated with short duration flashes (revealing bubbles formed where the discharge reached the surface of the coating). Correlations were thus established between discharge current, light emission from the discharge channel and (externally-illuminated) dimensions of the bubble as it expanded and contracted. Bubbles reached radii of 500 μm, within periods of 100 μs, with peak growth velocity about 10 m/s. It is deduced that bubble growth occurs as a consequence of the progressive volatilisation of water (electrolyte), without substantial increases in either pressure or temperature within the bubble. Current continues to flow through the discharge as the bubble expands, and this growth (and the related increase in electrical resistance) is thought to be responsible for the current being cut off (soon after the point of maximum radius). A semi-quantitative audit is presented of the transformations between different forms of energy that take place during the lifetime of a discharge.

  15. Cavitation dynamics on the nanoscale

    SciTech Connect

    Kotaidis, Vassilios; Plech, Anton

    2005-11-21

    The ultrafast excitation of gold nanoparticle sols causes a strong nonequilibrium heating of the particle lattice and subsequently of the water shell close to the particle surface. Above a threshold in laser fluence, which is defined by the onset of homogeneous nucleation, nanoscale vapor bubbles develop around the particles, expand and collapse again within the first nanosecond after excitation. We show the existence of cavitation on the nanometer and subnanosecond time scale, described within the framework of continuum thermodynamics.

  16. Nucleation stage with nonsteady growth of supercritical gas bubbles in a strongly supersaturated liquid solution and the effect of excluded volume.

    PubMed

    Kuchma, Anatoly E; Kuni, Fedor M; Shchekin, Alexander K

    2009-12-01

    An approach to the kinetics of barrier formation of supercritical gas bubbles in a strongly supersaturated liquid solution is presented. A common assumption of uniform reduction of a dissolved gas supersaturation in a liquid solution via stationary diffusion to nucleating gas bubbles is shown to be not applicable to the case of high gas supersaturations. The approach recognizes that the diffusion growth of supercritical bubbles at high gas supersaturation is essentially nonstationary. Nonstationary growth of an individual gas bubble is described by a self-similar solution of the diffusion equation which predicts a renormalized growth rate and thin highly nonuniform diffusion layer around the bubble. The depletion of a dissolved gas due to intake of gas molecules by the bubble occurs only within this thin layer. An integral equation for the total volume of an ensemble of supercritical gas bubbles within a liquid solution is derived. This equation describes the effect of excluding a total volume of the depleted diffusion layers around the growing bubbles nucleated at all previous moments of time until nucleation of new bubbles ceases due to elimination of the nondepleted volume of the solution. An analytical solution of this equation is found. The swelling of the liquid solution, the number of gas bubbles nucleated, the distribution function of bubbles in their sizes, and the mean radius of the bubbles are determined in their dependence on time.

  17. Stem Hydraulic Conductivity depends on the Pressure at Which It Is Measured and How This Dependence Can Be Used to Assess the Tempo of Bubble Pressurization in Recently Cavitated Vessels.

    PubMed

    Wang, Yujie; Liu, Jinyu; Tyree, Melvin T

    2015-12-01

    Cavitation of water in xylem vessels followed by embolism formation has been authenticated for more than 40 years. Embolism formation involves the gradual buildup of bubble pressure (air) to atmospheric pressure as demanded by Henry's law of equilibrium between gaseous and liquid phases. However, the tempo of pressure increase has not been quantified. In this report, we show that the rate of pressurization of embolized vessels is controlled by both fast and slow kinetics, where both tempos are controlled by diffusion but over different spatial scales. The fast tempo involves a localized diffusion from endogenous sources: over a distance of about 0.05 mm from water-filled wood to the nearest embolized vessels; this process, in theory, should take <2 min. The slow tempo involves diffusion of air from exogenous sources (outside the stem). The latter diffusion process is slower because of the increased distance of diffusion of up to 4 mm. Radial diffusion models and experimental measurements both confirm that the average time constant is >17 h, with complete equilibrium requiring 1 to 2 d. The implications of these timescales for the standard methods of measuring percentage loss of hydraulic conductivity are discussed in theory and deserve more research in future.

  18. Stem Hydraulic Conductivity depends on the Pressure at Which It Is Measured and How This Dependence Can Be Used to Assess the Tempo of Bubble Pressurization in Recently Cavitated Vessels1[OPEN

    PubMed Central

    Liu, Jinyu; Tyree, Melvin T.

    2015-01-01

    Cavitation of water in xylem vessels followed by embolism formation has been authenticated for more than 40 years. Embolism formation involves the gradual buildup of bubble pressure (air) to atmospheric pressure as demanded by Henry’s law of equilibrium between gaseous and liquid phases. However, the tempo of pressure increase has not been quantified. In this report, we show that the rate of pressurization of embolized vessels is controlled by both fast and slow kinetics, where both tempos are controlled by diffusion but over different spatial scales. The fast tempo involves a localized diffusion from endogenous sources: over a distance of about 0.05 mm from water-filled wood to the nearest embolized vessels; this process, in theory, should take <2 min. The slow tempo involves diffusion of air from exogenous sources (outside the stem). The latter diffusion process is slower because of the increased distance of diffusion of up to 4 mm. Radial diffusion models and experimental measurements both confirm that the average time constant is >17 h, with complete equilibrium requiring 1 to 2 d. The implications of these timescales for the standard methods of measuring percentage loss of hydraulic conductivity are discussed in theory and deserve more research in future. PMID:26468516

  19. Activating Molecules, Ions, and Solid Particles with Acoustic Cavitation

    PubMed Central

    Pflieger, Rachel; Chave, Tony; Virot, Matthieu; Nikitenko, Sergey I.

    2014-01-01

    The chemical and physical effects of ultrasound arise not from a direct interaction of molecules with sound waves, but rather from the acoustic cavitation: the nucleation, growth, and implosive collapse of microbubbles in liquids submitted to power ultrasound. The violent implosion of bubbles leads to the formation of chemically reactive species and to the emission of light, named sonoluminescence. In this manuscript, we describe the techniques allowing study of extreme intrabubble conditions and chemical reactivity of acoustic cavitation in solutions. The analysis of sonoluminescence spectra of water sparged with noble gases provides evidence for nonequilibrium plasma formation. The photons and the "hot" particles generated by cavitation bubbles enable to excite the non-volatile species in solutions increasing their chemical reactivity. For example the mechanism of ultrabright sonoluminescence of uranyl ions in acidic solutions varies with uranium concentration: sonophotoluminescence dominates in diluted solutions, and collisional excitation contributes at higher uranium concentration. Secondary sonochemical products may arise from chemically active species that are formed inside the bubble, but then diffuse into the liquid phase and react with solution precursors to form a variety of products. For instance, the sonochemical reduction of Pt(IV) in pure water provides an innovative synthetic route for monodispersed nanoparticles of metallic platinum without any templates or capping agents. Many studies reveal the advantages of ultrasound to activate the divided solids. In general, the mechanical effects of ultrasound strongly contribute in heterogeneous systems in addition to chemical effects. In particular, the sonolysis of PuO2 powder in pure water yields stable colloids of plutonium due to both effects. PMID:24747272

  20. Large-scale atomistic simulations of helium-3 bubble growth in complex palladium alloys

    DOE PAGES

    Hale, Lucas M.; Zimmerman, Jonathan A.; Wong, Bryan M.

    2016-05-18

    Palladium is an attractive material for hydrogen and hydrogen-isotope storage applications due to its properties of large storage density and high diffusion of lattice hydrogen. When considering tritium storage, the material’s structural and mechanical integrity is threatened by both the embrittlement effect of hydrogen and the creation and evolution of additional crystal defects (e.g., dislocations, stacking faults) caused by the formation and growth of helium-3 bubbles. Using recently developed inter-atomic potentials for the palladium-silver-hydrogen system, we perform large-scale atomistic simulations to examine the defect-mediated mechanisms that govern helium bubble growth. Our simulations show the evolution of a distribution of materialmore » defects, and we compare the material behavior displayed with expectations from experiment and theory. In conclusion, we also present density functional theory calculations to characterize ideal tensile and shear strengths for these materials, which enable the understanding of how and why our developed potentials either meet or confound these expectations.« less

  1. Large-scale atomistic simulations of helium-3 bubble growth in complex palladium alloys.

    PubMed

    Hale, Lucas M; Zimmerman, Jonathan A; Wong, Bryan M

    2016-05-21

    Palladium is an attractive material for hydrogen and hydrogen-isotope storage applications due to its properties of large storage density and high diffusion of lattice hydrogen. When considering tritium storage, the material's structural and mechanical integrity is threatened by both the embrittlement effect of hydrogen and the creation and evolution of additional crystal defects (e.g., dislocations, stacking faults) caused by the formation and growth of helium-3 bubbles. Using recently developed inter-atomic potentials for the palladium-silver-hydrogen system, we perform large-scale atomistic simulations to examine the defect-mediated mechanisms that govern helium bubble growth. Our simulations show the evolution of a distribution of material defects, and we compare the material behavior displayed with expectations from experiment and theory. We also present density functional theory calculations to characterize ideal tensile and shear strengths for these materials, which enable the understanding of how and why our developed potentials either meet or confound these expectations. PMID:27208963

  2. Improving microalgal growth with reduced diameters of aeration bubbles and enhanced mass transfer of solution in an oscillating flow field.

    PubMed

    Yang, Zongbo; Cheng, Jun; Lin, Richen; Zhou, Junhu; Cen, Kefa

    2016-07-01

    A novel oscillating gas aerator combined with an oscillating baffle was proposed to generate smaller aeration bubbles and enhance solution mass transfer, which can improve microalgal growth in a raceway pond. A high-speed photography system (HSP) was used to measure bubble diameter and generation time, and online precise dissolved oxygen probes and pH probes were used to measure mass-transfer coefficient and mixing time. Bubble diameter and generation time decreased with decreased aeration gas rate, decreased orifice diameter, and increased water velocity in the oscillating gas aerator. The optimized oscillating gas aerator decreased bubble diameter and generation time by 25% and 58%, respectively, compared with a horizontal tubular gas aerator. Using an oscillating gas aerator and an oscillating baffle in a raceway pond increased the solution mass-transfer coefficient by 15% and decreased mixing time by 32%; consequently, microalgal biomass yield increased by 19%. PMID:27035474

  3. Improving microalgal growth with reduced diameters of aeration bubbles and enhanced mass transfer of solution in an oscillating flow field.

    PubMed

    Yang, Zongbo; Cheng, Jun; Lin, Richen; Zhou, Junhu; Cen, Kefa

    2016-07-01

    A novel oscillating gas aerator combined with an oscillating baffle was proposed to generate smaller aeration bubbles and enhance solution mass transfer, which can improve microalgal growth in a raceway pond. A high-speed photography system (HSP) was used to measure bubble diameter and generation time, and online precise dissolved oxygen probes and pH probes were used to measure mass-transfer coefficient and mixing time. Bubble diameter and generation time decreased with decreased aeration gas rate, decreased orifice diameter, and increased water velocity in the oscillating gas aerator. The optimized oscillating gas aerator decreased bubble diameter and generation time by 25% and 58%, respectively, compared with a horizontal tubular gas aerator. Using an oscillating gas aerator and an oscillating baffle in a raceway pond increased the solution mass-transfer coefficient by 15% and decreased mixing time by 32%; consequently, microalgal biomass yield increased by 19%.

  4. Investigation of noninertial cavitation produced by an ultrasonic horn.

    PubMed

    Birkin, Peter R; Offin, Douglas G; Vian, Christopher J B; Leighton, Timothy G; Maksimov, Alexey O

    2011-11-01

    This paper reports on noninertial cavitation that occurs beyond the zone close to the horn tip to which the inertial cavitation is confined. The noninertial cavitation is characterized by collating the data from a range of measurements of bubbles trapped on a solid surface in this noninertial zone. Specifically, the electrochemical measurement of mass transfer to an electrode is compared with high-speed video of the bubble oscillation. This gas bubble is shown to be a "noninertial" event by electrochemical surface erosion measurements and "ring-down" experiments showing the activity and motion of the bubble as the sound excitation was terminated. These measurements enable characterization of the complex environment produced below an operating ultrasonic horn outside of the region where inertial collapse can be detected. The extent to which solid boundaries in the liquid cause the frequencies and shapes of oscillatory modes on the bubble wall to differ from their free field values is discussed. PMID:22088002

  5. Detecting cavitation in mercury exposed to a high-energy pulsed proton beam

    SciTech Connect

    Manzi, Nicholas J; Chitnis, Parag V; Holt, Ray G; Roy, Ronald A; Cleveland, Robin O; Riemer, Bernie; Wendel, Mark W

    2010-01-01

    The Oak Ridge National Laboratory Spallation Neutron Source employs a high-energy pulsed proton beam incident on a mercury target to generate short bursts of neutrons. Absorption of the proton beam produces rapid heating of the mercury, resulting in the formation of acoustic shock waves and the nucleation of cavitation bubbles. The subsequent collapse of these cavitation bubbles promote erosion of the steel target walls. Preliminary measurements using two passive cavitation detectors (megahertz-frequency focused and unfocused piezoelectric transducers) installed in a mercury test target to monitor cavitation generated by proton beams with charges ranging from 0.041 to 4.1 C will be reported on. Cavitation was initially detected for a beam charge of 0.082 C by the presence of an acoustic emission approximately 250 s after arrival of the incident proton beam. This emission was consistent with an inertial cavitation collapse of a bubble with an estimated maximum bubble radius of 0.19 mm, based on collapse time. The peak pressure in the mercury for the initiation of cavitation was predicted to be 0.6 MPa. For a beam charge of 0.41 C and higher, the lifetimes of the bubbles exceeded the reverberation time of the chamber (~300 s), and distinct windows of cavitation activity were detected, a phenomenon that likely resulted from the interaction of the reverberation in the chamber and the cavitation bubbles.

  6. Strongly interacting bubbles under an ultrasonic horn.

    PubMed

    Yasui, Kyuichi; Iida, Yasuo; Tuziuti, Toru; Kozuka, Teruyuki; Towata, Atsuya

    2008-01-01

    Numerical simulations of bubble pulsations have been performed for a system of two bubble clouds in order to study the experimentally observed bubble motion under an ultrasonic horn by high-speed video camera. The comparison between the calculated results and the experimental observation of the bubble pulsation has indicated that the bubble pulsation is strongly influenced by the interaction with surrounding bubbles. The expansion of a bubble during the rarefaction phase of ultrasound is strongly reduced by the bubble-bubble interaction. Some bubbles move toward the horn tip due to the secondary Bjerknes force acting from the bubbles near the horn tip. It has also been shown that the acoustic amplitude in the liquid is strongly reduced by cavitation due to the decrease in acoustic radiation resistance.

  7. Acoustic cavitation generated by an extracorporeal shockwave lithotripter.

    PubMed

    Coleman, A J; Saunders, J E; Crum, L A; Dyson, M

    1987-02-01

    Evidence is presented of acoustic cavitation generated by a Dornier extracorporeal shockwave lithotripter. Using x-ray film, thin aluminum sheets, and relatively thick metal plates as targets, evidence of liquid jet impacts associated with cavitation bubble collapse was observed. The jet impact was violent enough to puncture thin foils and deform metal plates. Furthermore, numerous jet impacts were generated over a volume of greater than 200 cm3. It is likely that such violent cavitation will also occur in tissue, and observed biological effects (e.g. renal calculus disintegration and tissue trauma) may be related to cavitation damage.

  8. Rayleigh scattering on the cavitation region emerging in liquids.

    PubMed

    Shneider, M N; Pekker, M

    2016-03-15

    It is shown that the scattering of laser radiation off cavitation ruptures in fluids is similar to scattering by gas particles. When the characteristic dimensions of microscopic voids and bubbles are considerably smaller than the laser wavelength, the scattered light is in the Rayleigh regime, which allows for the detection of early stage cavitation. Simple estimates of the scattered radiation intensity and the dynamics of its changes in connection with the generation of cavitation in the test volume are obtained, allowing us to find the critical conditions for cavitation inception. PMID:26977641

  9. Photoacoustic cavitation for theranostics: mechanism, current progress and applications

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Qin, D.; Wan, M.

    2015-12-01

    As an emerging cavitation technology, photoacoustic cavitation (PAC) means the formation of bubbles in liquids using focused laser and pre-established ultrasound synchronously. Its significant advantages include the decreased threshold of each modality and the precise location of cavitation determined by the focused laser. In this paper, a brief review of PAC is presented, including the physical mechanism description, the classic experimental technology, the representative results in variety of media, and its applications in biomedical imaging and therapy. Moreover, some preliminary results of PAC in perfluoropentane (PFP) liquid and PFP droplets investigated by passive cavitation detection (PCD) in our group are also presented.

  10. Visualization of acoustic cavitation effects on suspended calcite crystals.

    PubMed

    Wagterveld, R M; Boels, L; Mayer, M J; Witkamp, G J

    2011-01-01

    The acoustic cavitation (42,080 Hz, 7.1 W cm(-2) or 17 W) effects on suspended calcite crystals, sized between 5 and 50 μm, have been visualized for the first time using high speed photography. High speed recordings with a duration of 1 s containing up to 300,000 frames per second, revealed the effect of cluster and streamer cavitation on several calcite crystals. Cavitation clusters, evolved from cavitation inception and collapse, caused attrition, disruption of aggregates and deagglomeration, whereas streamer cavitation was observed to cause deagglomeration only. Cavitation on the surface gave the crystals momentum. However, it is shown that breakage of accelerated crystals by interparticle collisions is unrealistic because of their small sizes and low velocities. Crystals that were accelerated by bubble expansion, subsequently experienced a deceleration much stronger than expected from drag forces, upon bubble collapse. Experiments with pre-dried crystals seemed to support the current theory on bubble nucleation through the presence of pre-existing gas pockets. However, experiments with fully wetted crystals also showed the nucleation of bubbles on the crystal surface. Although microjet impingement on the crystal surface could not be directly visualized with high speed photography, scanning electron microscopy (SEM) analysis of irradiated calcite seeds showed deep circular indentations. It was suggested that these indentations might be caused by shockwave induced jet impingement. Furthermore, the appearance of voluminous fragments with large planes of fracture indicated that acoustic cavitation can also cause the breakage of single crystal structures.

  11. Growth characteristics of Chlorella sorokiniana in airlift and bubble column photobioreactors.

    PubMed

    Kumar, Kanhaiya; Das, Debabrata

    2012-07-01

    The present study investigated the feasibility of bioCO(2) sequestration using Chlorella sorokiniana. It was found that 5% CO(2) (v/v) in air was the most suitable concentration for the growth of this organism. At this concentration, the maximum rate of CO(2) sequestered and the biomass obtained were found to be 1.21 g L(-1)d(-1) and 4.4 g L(-1) respectively. Modeling and simulation of the growth profile was obtained using the logistic equation. Further, at higher CO(2) concentrations, pH drop in the growth media, TAP [-acetate], was prevented by replacing NH(4)Cl by NaNO(3.) Additionally, the study evaluated the performance of two reactors namely: bubble column and airlift reactor based on their growth profile and transport properties like K(L)a and mixing time. The growth profile was better in airlift reactor and it provides cyclic axial mixing of media. K(L)a of downcomer was significantly lower than the riser in airlift reactor.

  12. Metallic bubbles nucleation and growth in VO2 nanofilms: insights from TDDFT+DMFT

    NASA Astrophysics Data System (ADS)

    Turkowski, Volodymyr; Galicia-Hernandez, Jose Mario; Hernandez-Cocoletzi, Gregorio; Rahman, Talat S.

    We apply a time-dependent density-functional theory + dynamical mean-field theory (TDDFT+DMFT) approach to model the response of insulating nanofilms of VO2 to perturbations by ultrafast laser pulses. We focus on the spatially-resolved metallization of the systems, and especially on the process of nucleation and time-dependence of the size of the ''surface'' and ''bulk'' metallic domains (bubbles) as a function of film width. In particular, we find that the initial universal (parameter-independent) growth of the domains (radius R ~t 1 / 2), changes by the bubbles shrinking (R ~t-a , a ~ 1) as a result of Coulomb scattering effects, and eventually by post-femto-second phonon-involved relaxation of the systems to the equilibrium accompanied by infrared photoemission. The time-dependent conductivity obtained from the above results is in a good agreement with available experimental data. Work supported in part by DOE Grant No. DOE-DE-FG02-07ER46354 and by CONACYT Scholarship # 23210 (J.M.G.H.).

  13. Numerical study of nucleation and growth of bubbles in viscous magmas

    SciTech Connect

    Toramaru, A.

    1995-02-01

    The nucleation and growth processes of bubbles in viscous magmas with a constant decompression rate have been numerically investigated based on a formation which accounts for effects of viscosity, as well as diffusivity, interfacial tension, and decompression rate. The numerical solutions show two regimes in the nucleation and growth process, a diffusion-controlled regime and a viscosity-controlled regime, mainly depending on the decompression rate, initial saturation pressure and viscosity. The basic mechanism common to both regimes is that growth governs nucleation through depletion of degassing components. In basaltic eruptions the vesiculation is essentially controlled by diffusion, and the viscosity-controlled regime is limited to very high decompression rate and very small water content. When andesitic magma saturated by water at 10 MPa is decompressed through the propagation of rarefraction wave induced by a landslide, as took place in the Mount St. Helens 1980 eruption, the vesiculation is controlled by the viscosity up to 100 m depth. On the other hand, in a rhyolitic magma for the same situation, vesiculation is controlled by the viscosity over the whole depth of the magma column. In the viscosity-controlled regime, the vesicularity may be 90% or less as seen in silicic pumice, whereas in the diffusion-controlled regime the vesicularity equals or exceeds 98% such as in reticulite in Hawaiian basalt. An observed variation of the number density of bubbles by several orders of magnitude in plinian eruptions and the correlation with the SiO2 content can be attributed approximately to the dependence of diffusivity of viscosity on SiO2 content and temperature, assuming the apparent correlation between SiO2 content and temperature of magma.

  14. Effect of vibration amplitude on vapor cavitation in journal bearings

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Jacobson, B. O.

    1986-01-01

    Computational movies were used to analyze the formation and collapse of vapor cavitation bubbles in a submerged journal bearing. The effect of vibration amplitude on vapor cavitation was studied for a journal undergoing circular whirl. The boundary conditions were implemented using Elrod's algorithm, which conserves mass flow through the cavitation bubble as well as through the oil-film region of the bearing. The vibration amplitudes for the different cases studied resulted in maximum eccentricity ratios ranging from 0.4 to 0.9. The minimum eccentricity ratio reached in each case was 0.1. For the least vibration amplitude studied in which the eccentricity ratio varied between 0.1 and 0.4, no vapor cavitation occurred. The largest vibration amplitude (i.e., eccentricity ratios of 0.1 to 0.9) resulted in vapor cavitation present 76 percent of one complete orbit.

  15. Study on cavitation behavior during high-intensity focused ultrasound exposure by using optical and ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Taguchi, Kei; Takagi, Ryo; Yasuda, Jun; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    Cavitation bubbles are known to enhance the heating effect of high-intensity focused ultrasound (HIFU). In our previous study, the use of a “triggered HIFU” sequence consisting of a high-intensity pulse and a relatively low-intensity burst was proposed as an effective method to utilize the effect of cavitation bubbles. However, the duration of each component in the sequence has not been optimized. In this study, optical imaging was carried out to observe the behavior of cavitation bubbles in a gel phantom during the triggered HIFU exposure. Ultrasound imaging using the pulse inversion method was also conducted to detect the behavior of the bubbles. The results suggest that the oscillation of cavitation bubbles become inactive as the duration of HIFU burst exposure increases to the order of 10 ms. It was also suggested that ultrasonic imaging has potential use for detecting a change in the oscillation of cavitation bubbles for optimizing a triggered HIFU sequence.

  16. Dynamics of concerted bubble cluster collapse in shock wave lithotripsy

    NASA Astrophysics Data System (ADS)

    Pishchalnikov, Yuri A.; McAteer, James A.; Evan, Andrew P.; Sapozhnikov, Oleg A.; Cleveland, Robin O.; Colonius, Tim; Bailey, Michael R.; Crum, Lawrence A.

    2003-10-01

    Cavitation bubble cluster collapse at the surface of artificial kidney stones during shock wave lithotripsy was investigated in vitro by means of multiframe high-speed photography, passive cavitation detection (PCD), and pressure waveform measurements using a fiber-optic probe hydrophone (FOPH). It was observed that after the passage of the lithotripter shock pulse the stone was covered by numerous individual bubbles. During their growth phase the bubbles coalesced into bubble clusters, with the biggest cluster at the proximal face of the stone. High-speed camera images suggested that cluster collapse started at the periphery and ended with a violent collapse in a small region in the center of the surface of the stone. Shadowgraphy resolved numerous secondary shock waves emitted during this focused collapse. Shock wave emission during cluster collapse was confirmed by PCD. Measurement with the FOPH showed that these shock waves were typically of short duration (0.2 μs). The majority of the shock waves emanating from cluster collapse were low amplitude but some shock waves registered amplitudes on the order of the incident shock pulse (tens of MPa). [Work supported by NIH DK43881, DK55674.

  17. Optical Measurements of Cavitation in Tribological Contacts

    NASA Astrophysics Data System (ADS)

    Tang, Tian; Morris, Nick; Coupland, Jeremy

    2015-12-01

    The paper describes the use of a white light interformeter to measure the cavitation bubble and oil film thickness in a tribological contact and compares the results to theory. It is found that oil film thickness is best predicted by the theory proposed by Coyne and Elrod.

  18. Review on Lithotripsy and Cavitation in Urinary Stone Therapy.

    PubMed

    Ghorbani, Morteza; Oral, Ozlem; Ekici, Sinan; Gozuacik, Devrim; Kosar, Ali

    2016-01-01

    Cavitation is the sudden formation of vapor bubbles or voids in liquid media and occurs after rapid changes in pressure as a consequence of mechanical forces. It is mostly an undesirable phenomenon. Although the elimination of cavitation is a major topic in the study of fluid dynamics, its destructive nature could be exploited for therapeutic applications. Ultrasonic and hydrodynamic sources are two main origins for generating cavitation. The purpose of this review is to give the reader a general idea about the formation of cavitation phenomenon and existing biomedical applications of ultrasonic and hydrodynamic cavitation. Because of the high number of the studies on ultrasound cavitation in the literature, the main focus of this review is placed on the lithotripsy techniques, which have been widely used for the treatment of urinary stones. Accordingly, cavitation phenomenon and its basic concepts are presented in Section II. The significance of the ultrasound cavitation in the urinary stone treatment is discussed in Section III in detail and hydrodynamic cavitation as an important alternative for the ultrasound cavitation is included in Section IV. Finally, side effects of using both ultrasound and hydrodynamic cavitation in biomedical applications are presented in Section V. PMID:27249837

  19. Removal of Residual Nuclei Following a Cavitation Event using Low-Amplitude Ultrasound

    PubMed Central

    Duryea, Alexander P.; Cain, Charles A.; Tamaddoni, Hedieh A.; Roberts, William W.; Hall, Timothy L.

    2014-01-01

    Microscopic residual bubble nuclei can persist on the order of 1 second following a cavitation event. These bubbles can limit the efficacy of ultrasound therapies such as shock wave lithotripsy and histotripsy, as they attenuate pulses that arrive subsequent to their formation and seed repetitive cavitation activity at a discrete set of sites (cavitation memory). Here, we explore a strategy for the removal of these residual bubbles following a cavitation event, using low amplitude ultrasound pulses to stimulate bubble coalescence. All experiments were conducted in degassed water and monitored using high speed photography. In each case, a 2 MHz histotripsy transducer was used to initiate cavitation activity (a cavitational bubble cloud), the collapse of which generated a population of residual bubble nuclei. This residual nuclei population was then sonicated using a 1 ms pulse from a separate 500 kHz transducer, which we term the ‘bubble removal pulse.’ Bubble removal pulse amplitudes ranging from 0 to 1.7 MPa were tested, and the backlit area of shadow from bubbles remaining in the field following bubble removal was calculated to quantify efficacy. It was found that an ideal amplitude range exists (roughly 180 – 570 kPa) in which bubble removal pulses stimulate the aggregation and subsequent coalescence of residual bubble nuclei, effectively removing them from the field. Further optimization of bubble removal pulse sequences stands to provide an adjunct to cavitation-based ultrasound therapies such as shock wave lithotripsy and histotripsy, mitigating the effects of residual bubble nuclei that currently limit their efficacy. PMID:25265172

  20. Effects of acoustic parameters on bubble cloud dynamics in ultrasound tissue erosion (histotripsy).

    PubMed

    Xu, Zhen; Hall, Timothy L; Fowlkes, J Brian; Cain, Charles A

    2007-07-01

    High intensity pulsed ultrasound can produce significant mechanical tissue fractionation with sharp boundaries ("histotripsy"). At a tissue-fluid interface, histotripsy produces clearly demarcated tissue erosion and the erosion efficiency depends on pulse parameters. Acoustic cavitation is believed to be the primary mechanism for the histotripsy process. To investigate the physical basis of the dependence of tissue erosion on pulse parameters, an optical method was used to monitor the effects of pulse parameters on the cavitating bubble cloud generated by histotripsy pulses at a tissue-water interface. The pulse parameters studied include pulse duration, peak rarefactional pressure, and pulse repetition frequency (PRF). Results show that the duration of growth and collapse (collapse cycle) of the bubble cloud increased with increasing pulse duration, peak rarefactional pressure, and PRF when the next pulse arrived after the collapse of the previous bubble cloud. When the PRF was too high such that the next pulse arrived before the collapse of the previous bubble cloud, only a portion of histotripsy pulses could effectively create and collapse the bubble cloud. The collapse cycle of the bubble cloud also increased with increasing gas concentration. These results may explain previous in vitro results on effects of pulse parameters on tissue erosion.

  1. Detection of cavitation in hydraulic turbines

    NASA Astrophysics Data System (ADS)

    Escaler, Xavier; Egusquiza, Eduard; Farhat, Mohamed; Avellan, François; Coussirat, Miguel

    2006-05-01

    An experimental investigation has been carried out in order to evaluate the detection of cavitation in actual hydraulic turbines. The methodology is based on the analysis of structural vibrations, acoustic emissions and hydrodynamic pressures measured in the machine. The proposed techniques have been checked in real prototypes suffering from different types of cavitation. In particular, one Kaplan, two Francis and one Pump-Turbine have been investigated in the field. Additionally, one Francis located in a laboratory has also been tested. First, a brief description of the general features of cavitation phenomenon is given as well as of the main types of cavitation occurring in hydraulic turbines. The work presented here is focused on the most important ones which are the leading edge cavitation due to its erosive power, the bubble cavitation because it affects the machine performance and the draft tube swirl that limits the operation stability. Cavitation detection is based on the previous understanding of the cavity dynamics and its location inside the machine. This knowledge has been gained from flow visualisations and measurements in laboratory devices such as a high-speed cavitation tunnel and a reduced scale turbine test rig. The main techniques are the study of the high frequency spectral content of the signals and of their amplitude demodulation for a given frequency band. Moreover, low frequency spectral content can also be used in certain cases. The results obtained for the various types of cavitation found in the selected machines are presented and discussed in detail in the paper. Conclusions are drawn about the best sensor, measuring location, signal processing and analysis for each type of cavitation, which serve to validate and to improve the detection techniques.

  2. Periodic cavitation shedding in a cylindrical orifice

    NASA Astrophysics Data System (ADS)

    Stanley, C.; Barber, T.; Milton, B.; Rosengarten, G.

    2011-11-01

    Cavitation structures in a large-scale ( D = 8.25 mm), plain orifice style nozzle within a unique experimental rig are investigated using high-speed visualisation and digital image processing techniques. Refractive index matching with an acrylic nozzle is achieved using aqueous sodium iodide for the test fluid. Cavitation collapse length, unsteady shedding frequency and spray angles are measured for cavitation conditions from incipient to supercavitation for a range of Reynolds numbers, for a fixed L/ D ratio of 4.85. Periodic cavitation shedding was shown to occur with frequencies between 500 and 2,000 Hz for conditions in which cavitation occupied less than 30% of the nozzle length. A discontinuity in collapse length was shown to occur once the cavitation exceeded this length, coinciding with a loss of periodic shedding. A mechanism for this behaviour is discussed. Peak spray angles of approximately θ ≈ 14° were recorded for supercavitation conditions indicating the positive influence of cavitation bubble collapse on the jet atomisation process.

  3. Stem xylem resistance to cavitation is related to xylem structure but not to growth and water-use efficiency at the within-population level in Populus nigra L.

    PubMed

    Guet, Justine; Fichot, Régis; Lédée, Camille; Laurans, Françoise; Cochard, Hervé; Delzon, Sylvain; Bastien, Catherine; Brignolas, Franck

    2015-08-01

    Xylem resistance to drought-induced cavitation is a key trait of plant water relations. This study assesses the genetic variation expressed for stem cavitation resistance within a population of a riparian species, the European black poplar (Populus nigra L.), and explores its relationships with xylem anatomy, water-use efficiency (WUE), and growth. Sixteen structural and physiological traits related to cavitation resistance, xylem anatomy, growth, bud phenology, and WUE were measured on 33 P. nigra genotypes grown under optimal irrigation in a 2-year-old clonal experiment in a nursery. Significant genetic variation was expressed for the xylem tension inducing 50% loss of hydraulic conductivity (Ψ50) within the studied population, as attested by the high value of broad-sense heritability estimated for this trait (H (2) ind = 0.72). Stem cavitation resistance was associated with xylem structure: the more cavitation-resistant genotypes exhibited lower hydraulic efficiency and higher mechanical reinforcement as assessed from stem xylem cross sections. By contrast, Ψ50 was not significantly related to shoot height increment, total above-ground dry mass, or bulk leaf carbon isotope discrimination, a proxy for intrinsic WUE. These findings indicate that the trade-offs between xylem resistance to cavitation, hydraulic efficiency, and mechanical reinforcement can occur at the within-population level. Given that the studied genotypes were exposed to the same environmental conditions and evolutionary drivers in situ, the trade-offs detected at this scale are expected to reflect true functional relationships.

  4. Bursting Bubbles and Bilayers

    PubMed Central

    Wrenn, Steven P.; Dicker, Stephen M.; Small, Eleanor F.; Dan, Nily R.; Mleczko, Michał; Schmitz, Georg; Lewin, Peter A.

    2012-01-01

    This paper discusses various interactions between ultrasound, phospholipid monolayer-coated gas bubbles, phospholipid bilayer vesicles, and cells. The paper begins with a review of microbubble physics models, developed to describe microbubble dynamic behavior in the presence of ultrasound, and follows this with a discussion of how such models can be used to predict inertial cavitation profiles. Predicted sensitivities of inertial cavitation to changes in the values of membrane properties, including surface tension, surface dilatational viscosity, and area expansion modulus, indicate that area expansion modulus exerts the greatest relative influence on inertial cavitation. Accordingly, the theoretical dependence of area expansion modulus on chemical composition - in particular, poly (ethylene glyclol) (PEG) - is reviewed, and predictions of inertial cavitation for different PEG molecular weights and compositions are compared with experiment. Noteworthy is the predicted dependence, or lack thereof, of inertial cavitation on PEG molecular weight and mole fraction. Specifically, inertial cavitation is predicted to be independent of PEG molecular weight and mole fraction in the so-called mushroom regime. In the “brush” regime, however, inertial cavitation is predicted to increase with PEG mole fraction but to decrease (to the inverse 3/5 power) with PEG molecular weight. While excellent agreement between experiment and theory can be achieved, it is shown that the calculated inertial cavitation profiles depend strongly on the criterion used to predict inertial cavitation. This is followed by a discussion of nesting microbubbles inside the aqueous core of microcapsules and how this significantly increases the inertial cavitation threshold. Nesting thus offers a means for avoiding unwanted inertial cavitation and cell death during imaging and other applications such as sonoporation. A review of putative sonoporation mechanisms is then presented, including those

  5. PIV Analysis of Cavitation Flow Characteristics of He II

    SciTech Connect

    Harada, K.; Murakami, M.

    2006-04-27

    In the present experimental study cavitation phenomena in both He I and He II flows were investigated through the application of the PIV technique and visual observation under the saturated vapor pressure condition. The cavitation flow was generated in the downstream regions of a Venturi channel and a converging jet nozzle driven by a contracting metal bellows. It is seen that cavitation inception is a kind of stochastic process and has definite temperature dependence. The spatial distribution of the cavitation bubble velocity is measured by using the PIV technique. Some differences in the cavitating flow pattern and the void fraction are found between He II and He I cavitating flows. The PIV result indicates that the void fraction for He II flow is larger than that for He I flow.

  6. Cavitation nucleation

    NASA Astrophysics Data System (ADS)

    Crum, Lawrence A.

    2001-05-01

    For his dissertation research at Harvard, Bob Apfel chose the subject of homogeneous nucleation, and conceived of some ingenious experiments to test existing theories. By selecting a small microdroplet of liquid, he could make the reasonable assumption that no inhomogeneities were present to serve as preferential sites for liquid rupture. However, Bob also studied dirty liquids, as well as very clean ones, and wrote some seminal papers on inhomogeneous nucleation, in which he developed the Golden rule: Know thy liquid! Currently, considerable attention has been devoted to the study of cavitation generation in vivo, particularly in blood, and, for this case, the nucleation conditions are much different than those for normal liquids. In this presentation, I will review some of Bob's pioneering studies and present some of our latest studies of cavitation inception, both in vitro and in vivo.

  7. Numerical simulation on the cavitation of waterjet propulsion pump

    NASA Astrophysics Data System (ADS)

    Xia, C. Z.; Cheng, L.; Shang, Y. N.; Zhou, J. R.; Yang, F.; Jin, Y.

    2016-05-01

    Waterjet propulsion system is widely used in high speed vessels with advantages of simple transmission mechanism, low noise underwater and good manoeuvrability. Compared with the propeller, waterjet propulsion can be used flow stamping to increasing cavitation resistance at high speed. But under certain conditions, such as low ship speed or high ship speed, cavitation problem still exists. If water-jet propulsion pump is run in cavitation condition for a long time, then the cavitation will cause a great deal of noise CFD is applied to analysis and predict the process of production and development of cavitation in waterjet propulsion pump. Based on the cavitation model of Zwart-Gerber-Belamri and a mixture of homogeneous flow model, commercial CFD software CFX was taken for characteristics of cavitation under the three operating conditions. Commercial software ANSYS 14.0 is used to build entity model, mesh and numerical simulation. The grid independence analysis determine the grid number of mixed flow pump model is about 1.6 million and the grid number of water-jet pump system unit is about 2.7 million. The cavitation characteristics of waterjet pump under three operating conditions are studied. The results show that the cavitation development trend is similar design and small rate of flow condition .Under the design conditions Cavitation bubbles are mainly gathered in suction surface of blade near the inlet side of the hub under the primary stage, and gradually extended to the water side in the direction of the rim with the loss of the inlet total pressure. Cavitation appears in hub before the blade rim, but the maximum value of gas content in blade rim is bigger than that in hub. Under large flow conditions, bubble along the direction of wheel hub extends to the rim gradually. Cavitation is found in the pressure surface of blade near the hub region under the critical point of cavitation nearby. When NPSHa is lower than critical point, the area covering by bubbles

  8. Implementation of two-phase tritium models for helium bubbles in HCLL breeding blanket modules

    NASA Astrophysics Data System (ADS)

    Fradera, J.; Sedano, L.; Mas de les Valls, E.; Batet, L.

    2011-10-01

    Tritium self-sufficiency requirement of future DT fusion reactors involves large helium production rates in the breeding blankets; this might impact on the conceptual design of diverse fusion power reactor units, such as Liquid Metal (LM) blankets. Low solubility, long residence-times and high production rates create the conditions for Helium nucleation, which could mean effective T sinks in LM channels. A model for helium nano-bubble formation and tritium conjugate transport phenomena in liquid Pb17.5Li and EUROFER is proposed. In a first approximation, it has been considered that He bubbles can be represented as a passive scalar. The nucleation model is based on the classical theory and includes a simplified bubble growth model. The model captures the interaction of tritium with bubbles and tritium diffusion through walls. Results show the influence of helium cavitation on tritium inventory and the importance of simulating the system walls instead of imposing fixed boundary conditions.

  9. Regulating Ultrasound Cavitation in order to Induce Reproducible Sonoporation

    NASA Astrophysics Data System (ADS)

    Mestas, J.-L.; Alberti, L.; El Maalouf, J.; Béra, J.-C.; Gilles, B.

    2010-03-01

    Sonoporation would be linked to cavitation, which generally appears to be a non reproducible and unstationary phenomenon. In order to obtain an acceptable trade-off between cell mortality and transfection, a regulated cavitation generator based on an acoustical cavitation measurement was developed and tested. The medium to be sonicated is placed in a sample tray. This tray is immersed in in degassed water and positioned above the face of a flat ultrasonic transducer (frequency: 445 kHz; intensity range: 0.08-1.09 W/cm2). This technical configuration was admitted to be conducive to standing-wave generation through reflection at the air/medium interface in the well thus enhancing the cavitation phenomenon. Laterally to the transducer, a homemade hydrophone was oriented to receive the acoustical signal from the bubbles. From this spectral signal recorded at intervals of 5 ms, a cavitation index was calculated as the mean of the cavitation spectrum integration in a logarithmic scale, and the excitation power is automatically corrected. The device generates stable and reproducible cavitation level for a wide range of cavitation setpoint from stable cavitation condition up to full-developed inertial cavitation. For the ultrasound intensity range used, the time delay of the response is lower than 200 ms. The cavitation regulation device was evaluated in terms of chemical bubble collapse effect. Hydroxyl radical production was measured on terephthalic acid solutions. In open loop, the results present a great variability whatever the excitation power. On the contrary the closed loop allows a great reproducibility. This device was implemented for study of sonodynamic effect. The regulation provides more reproducible results independent of cell medium and experimental conditions (temperature, pressure). Other applications of this regulated cavitation device concern internalization of different particles (Quantum Dot) molecules (SiRNA) or plasmids (GFP, DsRed) into different

  10. The Dynamics of Bubbles and Bubble Clouds.

    NASA Astrophysics Data System (ADS)

    Smereka, Peter Stenberg

    In an effort to understand acoustic cavitation noise the dynamics of periodically driven single bubbles and bubble clouds are examined. The single bubble equations are written as a perturbation of a Hamiltonian system and the conditions for resonances to occur are found, these can interact with the nonresonant orbit to produce jump and period-doubling bifurcations. To study the chaotic behavior a map which approximates the Poincare map in the resonant band is derived. The Poincare map is computed numerically which shows the formation of strange attractors which suddenly disappear leaving behind Smale horseshoe maps. The bubble cloud is studied using an averaged two-fluid model for bubbly flow with periodic driving at the boundary. The equations are examined both analytically and numerically. Local and global existence of solutions is proved and the existence of an absorbing set is established. An analysis of the linearized equations combined with estimates on the nonlinearity is used to prove the existence of nonlinear periodic orbit. This periodic orbit is a fixed point of the Poincare map and its stability is determined by finding the spectrum of the linearized Poincare map. This calculation combined with the absorbing set proves that the long term dynamics of the bubble cloud is finite dimensional. Numerical computations show the important attractors are a periodic -two orbit and a quasi-periodic orbit.

  11. Primary pulmonary cavitating carcinomas

    PubMed Central

    Chaudhuri, M. Ray

    1973-01-01

    A primary lung cancer can produce a cavity in three ways. The first is `cavitary necrosis' due to breakdown of the growth itself. The second is `stenotic abscess' due to infection and breakdown of the lung parenchyma distal to bronchial obstruction caused by the growth. The third type is `spill-over abscess'. In the present series, necrosis and cavitation were observed in 100 cases out of a total of 632 primary bronchial carcinomas seen at the London Chest Hospital from July 1967 to June 1970. There were 91 males and nine females with an average age of 58·45 years. All except one smoked very heavily and had considerable symptoms. The size of the cavities ranged from 1 to 10 cm and their wall thickness from 0·5 to 3 cm. They were single in 92 cases and multiple (up to four) in eight. In 42 cases, the cancerous cavitation was central, in 38 intermediate, and in 20 peripheral. The segments most frequently affected were the apicoposterior segment of the left upper lobe and the superior segment of the left lower lobe. For descriptive purposes, these cavitating carcinomas were also divided into six broad groups on the basis of radiological and pathological correlations. Neoplastic cells in the sputum were found in 64 cases. Bronchoscopy revealed growth in 42 cases and biopsy was positive in 48. The main microscopic feature was vascular invasion of medium-sized muscular arteries and veins found in the vicinity of every cavitating bronchial carcinoma. Invasion along with tumour plugging of the vessels was observed in 75 cases and thrombosis alone in 55 cases. There were 82 squamous-cell carcinomas, 11 undifferentiated carcinomas of large polygonal-cell type, and seven adeno-alveolar cell carcinomas. The single most important and noteworthy feature in the present series was that oat-cell carcinoma hardly ever undergoes necrosis. Out of a total of 95 cases observed, only three showed necrosis, and this was minimal and characteristically devoid of cavitation. In oat

  12. DO NOT DROP: MECHANICAL SHOCK IN VIALS CAUSES CAVITATION, PROTEIN AGGREGATION AND PARTICLE FORMATION

    PubMed Central

    Randolph, Theodore W.; Schiltz, Elise; Sederstrom, Donn; Steinmann, Daniel; Mozziconacci, Olivier; Schöneich, Christian; Freund, Erwin; Ricci, Margaret S.; Carpenter, John F.; Lengsfeld, Corrine S.

    2014-01-01

    Industry experience suggests that g-forces sustained when vials containing protein formulations are accidentally dropped can cause aggregation and particle formation. To study this phenomenon, a shock tower was used to apply controlled g-forces to glass vials containing formulations of two monoclonal antibodies and recombinant human growth hormone (rhGH). High-speed video analysis showed cavitation bubbles forming within 30 μs and subsequently collapsing in the formulations. As a result of echoing shock waves, bubbles collapsed and reappeared periodically over a millisecond timecourse. Fluid mechanics simulations showed low-pressure regions within the fluid where cavitation would be favored. A hydroxyphenylfluorescein assay determined that cavitation produced hydroxyl radicals. When mechanical shock was applied to vials containing protein formulations, gelatinous particles appeared on the vial walls. Size exclusion chromatographic analysis of the formulations after shock did not detect changes in monomer or soluble aggregate concentrations. However, subvisible particle counts determined by microflow image analysis increased. The mass of protein attached to the vial walls increased with increasing drop height. Both protein in bulk solution and protein that became attached to the vial walls after shock were analyzed by mass spectrometry. rhGH recovered from the vial walls in some samples revealed oxidation of Met and/or Trp residues. PMID:25418950

  13. Bubble in a corner flow

    NASA Technical Reports Server (NTRS)

    Vanden-Broeck, J. M.

    1982-01-01

    The distortion of a two-dimensional bubble (or drop) in a corner of angle delta, due to the flow of an inviscid incompressible fluid around it, is examined theoretically. The flow and the bubble shape are determined as functions of the angle delta, the contact angle beta and the cavitation number gamma. The problem is formulated as an integrodifferential equation for the bubble surface. This equation generalized the integrodifferential equations derived by Vanden-Broeck and Keller. The shape of the bubble is found approximately by using the slender body theory for bubbles. When gamma reaches a critical value gamma sub 0 (beta, delta), opposite sides of the bubble touch each other. Two different families of solution for gamma gamma sub 0 are obtained. In the first family opposite sides touch at one point. In the second family contact is allowed along a segment.

  14. Evaporation-induced cavitation in nanofluidic channels

    PubMed Central

    Duan, Chuanhua; Karnik, Rohit; Lu, Ming-Chang; Majumdar, Arun

    2012-01-01

    Cavitation, known as the formation of vapor bubbles when liquids are under tension, is of great interest both in condensed matter science as well as in diverse applications such as botany, hydraulic engineering, and medicine. Although widely studied in bulk and microscale-confined liquids, cavitation in the nanoscale is generally believed to be energetically unfavorable and has never been experimentally demonstrated. Here we report evaporation-induced cavitation in water-filled hydrophilic nanochannels under enormous negative pressures up to -7 MPa. As opposed to receding menisci observed in microchannel evaporation, the menisci in nanochannels are pinned at the entrance while vapor bubbles form and expand inside. Evaporation in the channels is found to be aided by advective liquid transport, which leads to an evaporation rate that is an order of magnitude higher than that governed by Fickian vapor diffusion in macro- and microscale evaporation. The vapor bubbles also exhibit unusual motion as well as translational stability and symmetry, which occur because of a balance between two competing mass fluxes driven by thermocapillarity and evaporation. Our studies expand our understanding of cavitation and provide new insights for phase-change phenomena at the nanoscale. PMID:22343530

  15. Towards numerical prediction of cavitation erosion

    PubMed Central

    Fivel, Marc; Franc, Jean-Pierre; Chandra Roy, Samir

    2015-01-01

    This paper is intended to provide a potential basis for a numerical prediction of cavitation erosion damage. The proposed method can be divided into two steps. The first step consists in determining the loading conditions due to cavitation bubble collapses. It is shown that individual pits observed on highly polished metallic samples exposed to cavitation for a relatively small time can be considered as the signature of bubble collapse. By combining pitting tests with an inverse finite-element modelling (FEM) of the material response to a representative impact load, loading conditions can be derived for each individual bubble collapse in terms of stress amplitude (in gigapascals) and radial extent (in micrometres). This step requires characterizing as accurately as possible the properties of the material exposed to cavitation. This characterization should include the effect of strain rate, which is known to be high in cavitation erosion (typically of the order of several thousands s−1). Nanoindentation techniques as well as compressive tests at high strain rate using, for example, a split Hopkinson pressure bar test system may be used. The second step consists in developing an FEM approach to simulate the material response to the repetitive impact loads determined in step 1. This includes a detailed analysis of the hardening process (isotropic versus kinematic) in order to properly account for fatigue as well as the development of a suitable model of material damage and failure to account for mass loss. Although the whole method is not yet fully operational, promising results are presented that show that such a numerical method might be, in the long term, an alternative to correlative techniques used so far for cavitation erosion prediction. PMID:26442139

  16. Towards numerical prediction of cavitation erosion.

    PubMed

    Fivel, Marc; Franc, Jean-Pierre; Chandra Roy, Samir

    2015-10-01

    This paper is intended to provide a potential basis for a numerical prediction of cavitation erosion damage. The proposed method can be divided into two steps. The first step consists in determining the loading conditions due to cavitation bubble collapses. It is shown that individual pits observed on highly polished metallic samples exposed to cavitation for a relatively small time can be considered as the signature of bubble collapse. By combining pitting tests with an inverse finite-element modelling (FEM) of the material response to a representative impact load, loading conditions can be derived for each individual bubble collapse in terms of stress amplitude (in gigapascals) and radial extent (in micrometres). This step requires characterizing as accurately as possible the properties of the material exposed to cavitation. This characterization should include the effect of strain rate, which is known to be high in cavitation erosion (typically of the order of several thousands s(-1)). Nanoindentation techniques as well as compressive tests at high strain rate using, for example, a split Hopkinson pressure bar test system may be used. The second step consists in developing an FEM approach to simulate the material response to the repetitive impact loads determined in step 1. This includes a detailed analysis of the hardening process (isotropic versus kinematic) in order to properly account for fatigue as well as the development of a suitable model of material damage and failure to account for mass loss. Although the whole method is not yet fully operational, promising results are presented that show that such a numerical method might be, in the long term, an alternative to correlative techniques used so far for cavitation erosion prediction. PMID:26442139

  17. Detailed Jet Dynamics in a Collapsing Bubble

    NASA Astrophysics Data System (ADS)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Farhat, Mohamed

    2015-12-01

    We present detailed visualizations of the micro-jet forming inside an aspherically collapsing cavitation bubble near a free surface. The high-quality visualizations of large and strongly deformed bubbles disclose so far unseen features of the dynamics inside the bubble, such as a mushroom-like flattened jet-tip, crown formation and micro-droplets. We also find that jetting near a free surface reduces the collapse time relative to the Rayleigh time.

  18. Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids.

    PubMed

    Faccio, D; Tamošauskas, G; Rubino, E; Darginavičius, J; Papazoglou, D G; Tzortzakis, S; Couairon, A; Dubietis, A

    2012-09-01

    We study cavitation dynamics when focusing ring-shaped femtosecond laser beams in water. This focusing geometry reduces detrimental nonlinear beam distortions and enhances energy deposition within the medium, localized at the focal spot. We observe remarkable postcollapse dynamics of elongated cavitation bubbles with high-speed ejection of microbubbles out of the laser focal region. Bubbles are ejected along the laser axis in both directions (away and towards the laser). The initial shape of the cavitation bubble is also seen to either enhance or completely suppress jet formation during collapse. In the absence of jetting, microbubble ejection occurs orthogonal to the laser propagation axis.

  19. High-speed motion picture camera experiments of cavitation in dynamically loaded journal bearings

    NASA Technical Reports Server (NTRS)

    Jacobson, B. O.; Hamrock, B. J.

    1982-01-01

    A high-speed camera was used to investigate cavitation in dynamically loaded journal bearings. The length-diameter ratio of the bearing, the speeds of the shaft and bearing, the surface material of the shaft, and the static and dynamic eccentricity of the bearing were varied. The results reveal not only the appearance of gas cavitation, but also the development of previously unsuspected vapor cavitation. It was found that gas cavitation increases with time until, after many hundreds of pressure cycles, there is a constant amount of gas kept in the cavitation zone of the bearing. The gas can have pressures of many times the atmospheric pressure. Vapor cavitation bubbles, on the other hand, collapse at pressures lower than the atmospheric pressure and cannot be transported through a high-pressure zone, nor does the amount of vapor cavitation in a bearing increase with time. Analysis is given to support the experimental findings for both gas and vapor cavitation.

  20. Vapor-Gas Bubble Evolution and Growth in Extremely Viscous Fluids Under Vacuum

    NASA Technical Reports Server (NTRS)

    Kizito, John; Balasubramaniam, R.; Nahra, Henry; Agui, Juan; Truong, Duc

    2008-01-01

    Formation of vapor and gas bubbles and voids is normal and expected in flow processes involving extremely viscous fluids in normal gravity. Practical examples of extremely viscous fluids are epoxy-like filler materials before the epoxy fluids cure to their permanent form to create a mechanical bond between two substrates. When these fluids flow with a free liquid interface exposed to vacuum, rapid bubble expansion process may ensue. Bubble expansion might compromise the mechanical bond strength. The potential sources for the origin of the gases might be incomplete out-gassing process prior to filler application; regasification due to seal leakage in the filler applicator; and/or volatiles evolved from cure reaction products formed in the hardening process. We embarked on a study that involved conducting laboratory experiments with imaging diagnostics in order to deduce the seriousness of bubbling caused by entrained air and volatile fluids under space vacuum and low gravity environment. We used clear fluids with the similar physical properties as the epoxy-like filler material to mimic the dynamics of bubbles. Another aspect of the present study was to determine the likelihood of bubbling resulting from dissolved gases nucleating from solution. These experimental studies of the bubble expansion are compared with predictions using a modified Rayleigh- Plesset equation, which models the bubble expansion.

  1. Growth and Collapse of a Single Bubble near a Plate by Spark Discharge in Water

    NASA Astrophysics Data System (ADS)

    Akcam, I.; Inaba, K.; Takahashi, K.; Kishimoto, K.

    2015-12-01

    Single bubble dynamics in the vicinity of a solid boundary submerged in water were studied experimentally. Single bubble inside a water tank was generated by a spark discharge of capacitor into a couple of copper wires closing a simple circuit. A circular polycarbonate plate was placed horizontally above the bubble creation site. Polycarbonate plates with two different thicknesses were tested by changing the distance between the plate and the creation site. The effects of distance to the wall and wall thickness on the bubble motion is observed by considering the fluid-structure interaction. It is shown that motion of the two boundaries during the bubble generation differ from each other. Jetting behavior of two cases is also different.

  2. Influence of the empirical coefficients of cavitation model on predicting cavitating flow in the centrifugal pump

    NASA Astrophysics Data System (ADS)

    Liu, Hou-lin; Wang, Jian; Wang, Yong; Zhang, Hua; Huang, Haoqin

    2014-03-01

    The phenomenon of cavitation is an unsteady flow, which is nearly inevitable in pump. It would degrade the pump performance, produce vibration and noise and even damage the pump. Hence, to improve accuracy of the nu¬merical prediction of the pump cavitation performance is much desirable. In the present work, a homogenous model, the Zwart-Gerber-Belamri cavitation model, is considered to investigate the influence of the empirical coefficients on predicting the pump cavitation performance, concerning a centrifugal pump. Three coefficients are analyzed, namely the nucleation site radius, evaporation and condensation coefficients. Also, the experiments are carried out to validate the numerical simulations. The results indicate that, to get a precise prediction, the approaches of declining the initial bubble radius, the condensation coefficient or increasing the evaporation coefficient are all feasible, especially for de¬clining the condensation coefficient, which is the most effective way.

  3. The effect of static pressure on the inertial cavitation threshold.

    PubMed

    Bader, Kenneth B; Raymond, Jason L; Mobley, Joel; Church, Charles C; Felipe Gaitan, D

    2012-08-01

    The amplitude of the acoustic pressure required to nucleate a gas or vapor bubble in a fluid, and to have that bubble undergo an inertial collapse, is termed the inertial cavitation threshold. The magnitude of the inertial cavitation threshold is typically limited by mechanisms other than homogeneous nucleation such that the theoretical maximum is never achieved. However, the onset of inertial cavitation can be suppressed by increasing the static pressure of the fluid. The inertial cavitation threshold was measured in ultrapure water at static pressures up to 30 MPa (300 bars) by exciting a radially symmetric standing wave field in a spherical resonator driven at a resonant frequency of 25.5 kHz. The threshold was found to increase linearly with the static pressure; an exponentially decaying temperature dependence was also found. The nature and properties of the nucleating mechanisms were investigated by comparing the measured thresholds to an independent analysis of the particulate content and available models for nucleation.

  4. FOREWORD: International Symposium of Cavitation and Multiphase Flow (ISCM 2014)

    NASA Astrophysics Data System (ADS)

    Wu, Yulin

    2015-01-01

    multiphase flow detection Fluid-structure interaction induced by cavitation and multiphase flow Multi-scale modelling of cavitating flows and Multiphase Flow Cavitation nuclei: theory and experiments Supercavitation and its applications Synergetic effects of cavitation and silt-laden erosion Shock waves and microjets generated by cavitation Nonlinear oscillations of gas and vapour bubbles Fundamentals of physics of acoustic cavitation Sonochemistry and sonoluminescence Biomedical applications of cavitation effects Ultrasonic cavitation for molten metal treatment Cavitation for enhanced heat transfer The ISCM 2014 brought together 95 scientists, researchers and graduate students from 11 countries, affiliated with universities, technology centers and industrial firms to debate topics related to advanced technologies for cavitation and Multiphase Flow, which would enhance the sustainable development of cavitation and Multiphase Flow in interdisciplinary sciences and technology. The technical committee selected 54 technical papers on the following topics: (i) Hydrodynamic Cavitation, (ii) Super Cavitation, (iii) Pump Cavitation, (iv) Acoustic Cavitation, (v) Interdisciplinary Research of Cavitation and Multi-Phase Flows, and 13 invited plenary and invited forum lectures, which were presented at the symposium, to be included in the proceedings. All the papers of ISCM 2014, which are published in this Volume of IOP Conference Series: Materials Science and Engineering, had been peer reviewed through processes administered by the editors of the ISCM 2014, those are Yulin WU, Shouqi YUAN, Zhengwei WANG, Shuhong LIU, Xingqi LUO, Fujun WANG and Guoyu WANG. The papers published in this Volume include 54 technical papers and 3 full length texts of the invited lectures. We sincerely hope that the International Symposium on Cavitation and Multiphase Flow is a significant step forward in the world wide efforts to address the present challenges in the modern science and technology. Professor

  5. Experimental study and modeling of swelling and bubble growth in carbon nanofiber filled mesophase pitch during carbonization

    NASA Astrophysics Data System (ADS)

    Calebrese, Christopher

    Graphite and all carbon bipolar plates show corrosion resistance in fuel cells and provide good electrical conductivity. These materials typically need to be individually machined, a time consuming and costly process. Mesophase pitch is used to manufacture carbon fibers and carbon-carbon composites. This material provides a good starting point for the production of a moldable, all carbon bipolar plate. However, processing of mesophase pitch to produce all carbon materials requires a time intensive oxidation step to prevent swelling during carbonization. In this work, carbon nanofibers were used to reduce swelling in mesophase pitch. It was found that the increase in viscosity with the addition of carbon nanofibers was responsible for the reduction in swelling. The influence of the filler became apparent above the percolation threshold. At loadings below the percolation threshold, the swelling of the mesophase pitch was not reduced after carbonization. The swelling of the mesophase pitch at a given carbon nanofiber loading was also dependent on the length of the carbon nanofibers. Longer carbon nanofibers led to greater increases in the viscosity of the melt and thus led to greater reduction in swelling. The final carbon product was evaluated for use as a low temperature fuel cell bipolar plate material. Constraining the mesophase pitch during carbonization led to a final product with strength and electrical conductivity comparable to current composite bipolar plate materials. The addition of micron size chopped glass fibers with a softening point near 850°C and carbon nanofibers led to a final product with air permeability less than that of graphite. A spherically symmetric, single bubble growth model was also developed. The model included temperature dependence, liquid to bubble mass transfer and reactions in the system. Results from simulations showed that that the increase in viscosity due to the addition of carbon nanofibers slows the growth of bubbles, but

  6. Modèle multi-bulles pour la cavitation

    NASA Astrophysics Data System (ADS)

    Adama Maiga, Mahamadou; Buisine, Daniel

    2009-11-01

    In this study we propose new multi-bubble model for cavitation, in which, to simulate the interactions within a cloud of cavitation at the initial stage, the dynamic behaviour of two nonidentical bubbles localised in a volume of control is studied. The presence of two bubbles introduces an instability in which the exchange of volume seems an additional degree of freedom. Depending on the conditions of expansion, the small bubble can disappear or not. If the small bubble disappears, the volume of control is readjusted to introduce a new small bubble and to continue calculation in a new sequence. The model makes it possible for many small bubbles to disappear as in the appearance of cavitation, which is at the origin of certain phenomena observed in the zone of the appearance, such as emission of the noise. The model reveals especially the pressure rather like a result than a datum. The comparison of the size of the bubbles and the pressure varying in time, obtained with the model are coherent with the measurements taken by Ohl [Phys. Fluids 14 (10) (2002) 3512-3521]. To cite this article: M. Adama Maiga, D. Buisine, C. R. Mecanique 337 (2009).

  7. Modeling of helium bubble nucleation and growth in austenitic stainless steels using an Object Kinetic Monte Carlo method

    NASA Astrophysics Data System (ADS)

    De Backer, A.; Adjanor, G.; Domain, C.; Lescoat, M. L.; Jublot-Leclerc, S.; Fortuna, F.; Gentils, A.; Ortiz, C. J.; Souidi, A.; Becquart, C. S.

    2015-06-01

    Implantation of 10 keV helium in 316L steel thin foils was performed in JANNuS-Orsay facility and modeled using a multiscale approach. Density Functional Theory (DFT) atomistic calculations [1] were used to obtain the properties of He and He-vacancy clusters, and the Binary Collision Approximation based code MARLOWE was applied to determine the damage and He-ion depth profiles as in [2,3]. The processes involved in the homogeneous He bubble nucleation and growth were defined and implemented in the Object Kinetic Monte Carlo code LAKIMOCA [4]. In particular as the He to dpa ratio was high, self-trapping of He clusters and the trap mutation of He-vacancy clusters had to be taken into account. With this multiscale approach, the formation of bubbles was modeled up to nanometer-scale size, where bubbles can be observed by Transmission Electron Microscopy. Their densities and sizes were studied as functions of fluence (up to 5 × 1019 He/m2) at two temperatures (473 and 723 K) and for different sample thicknesses (25-250 nm). It appears that the damage is not only due to the collision cascades but is also strongly controlled by the He accumulation in pressurized bubbles. Comparison with experimental data is discussed and sensible agreement is achieved.

  8. Hydrodynamic Nuclei Concentration Technique in Cavitation Research and Comparison to Phase-Doppler Measurements

    NASA Astrophysics Data System (ADS)

    Ebert, Eric; Kröger, Willfried; Damaschke, Nils

    2015-12-01

    Small particles, especially bubbles in the micro-meter range, influence the cavitation of the propellers. The prediction of cavitation inception and water quality measurements are important in cavitation research. The Hydrodynamic Nuclei Concentration (HDNC) technique can be used for reliable bubble concentration measurements in fluid flows. The HDNC technique bases on the analysis of scattered light from the cavitation nuclei in the water. The HDNC technique can distinguish between bubbles and solid particles. The particle type classification is important, because the number concentration of solid particles is often much higher than the nuclei concentration in cavitation tunnels and in seawater. Verification experiments show, that the HDNC technique reaches similar capabilities in number concentration estimation as Phase Doppler (PD) technique in much shorter acquisition time.

  9. Comments on the possibility of cavitation in liquid metal targets for pulsed spallation neutron sources

    SciTech Connect

    Carpenter J.M.

    1996-06-01

    When short pulses of protons strike the volume of a liquid target, the rapid heating produces a pressurized region which relaxes as the pressure wave propagates outward. Skala and Bauer have modeled the effects of the pressure wave impinging on the container walls of a liquid mercury target under ESS conditions. They find that high pressures and high wall stresses result if the medium is uniform, nearly incompressible liquid. The pressure and the stresses are much reduced if the liquid contains bubbles of helium, due to their high compressibility. However, according to the calculation, the pressure still reaches an atmosphere or so at the surface, which reflects the compressive wave as a rarefaction wave of the same magnitude. Even such modest underpressures can lead to the growth of bubbles (cavitation) at or near the surface, which can collapse violently and erode the container surface. It is necessary to avoid this. Leighton provides a wide ranging discussion of pressure waves in bubbly media, which may provide insights into the nature and control of cavitation phenomena. The paper surveys some of the relevant information from that source.

  10. High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips.

    PubMed

    Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L; Wang, Qianxi X; Leppinen, David M; Walmsley, A Damien

    2016-01-01

    Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation. PMID:26934340

  11. High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips

    PubMed Central

    Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L.; Wang, Qianxi X.; Leppinen, David M.; Walmsley, A. Damien

    2016-01-01

    Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation. PMID:26934340

  12. High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips.

    PubMed

    Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L; Wang, Qianxi X; Leppinen, David M; Walmsley, A Damien

    2016-01-01

    Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation.

  13. Calcium Is a Major Determinant of Xylem Vulnerability to Cavitation

    PubMed Central

    Herbette, Stephane; Cochard, Herve

    2010-01-01

    Xylem vulnerability to cavitation is a key parameter in the drought tolerance of trees, but little is known about the control mechanisms involved. Cavitation is thought to occur when an air bubble penetrates through a pit wall, and would hence be influenced by the wall's porosity. We first tested the role of wall-bound calcium in vulnerability to cavitation in Fagus sylvatica. Stems perfused with solutions of oxalic acid, EGTA, or sodium phosphate (NaPO4) were found to be more vulnerable to cavitation. The NaPO4-induced increase in vulnerability to cavitation was linked to calcium removal from the wall. In contrast, xylem hydraulic conductance was unaffected by the chemical treatments, demonstrating that the mechanisms controlling vulnerability to cavitation and hydraulic resistance are uncoupled. The NaPO4 solution was then perfused into stems from 13 tree species possessing highly contrasted vulnerability to cavitation. Calcium was found to be a major determinant of between-species differences in vulnerability to cavitation. This was evidenced in angiosperms as well as conifer species, thus supporting the hypothesis of a common mechanism in drought-induced cavitation. PMID:20547703

  14. Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials

    PubMed Central

    Maxwell, Adam D.; Cain, Charles A.; Hall, Timothy L.; Fowlkes, J. Brian; Xu, Zhen

    2012-01-01

    In this article, the negative pressure values at which inertial cavitation consistently occurs in response to a single, 2-cycle, focused ultrasound pulse were measured in several media relevant to cavitation-based ultrasound therapy. The pulse was focused into a chamber containing one of the media, which included liquids, tissue-mimicking materials, and ex-vivo canine tissue. Focal waveforms were measured by two separate techniques using a fiber-optic hydrophone. Inertial cavitation was identified by high-speed photography in optically transparent media and an acoustic passive cavitation detector. The probability of cavitation (Pcav) for a single pulse as a function of peak negative pressure (p−) followed a sigmoid curve, with the probability approaching 1 when the pressure amplitude was sufficient. The statistical threshold (defined as Pcav = 0.5) was between p− = 26.0–30.0 MPa in all samples with a high water content, but varied between p− = 13.7 to > 36 MPa for other media. A model for radial cavitation bubble dynamics was employed to evaluate the behavior of cavitation nuclei at these pressure levels. A single bubble nucleus with an inertial cavitation threshold of p− = 28.2 MPa was estimated to have a 2.5 nm radius in distilled water. These data may be valuable for cavitation-based ultrasound therapy to predict the likelihood of cavitation at different pressure levels and dimensions of cavitation-induced lesions in tissue. PMID:23380152

  15. Development of Luminescent Imaging for Capturing Cavitation in Water on Solid Surface

    NASA Astrophysics Data System (ADS)

    Aikawa, Akihisa; Ando, Jun; Sakaue, Hirotaka

    2012-11-01

    Two-color pressure-sensitive paint (PSP) is applied to a solid surface to capture the cavitation acting on the surface in water. It is found that the luminescent signal increases under a cavitation region. The luminescence change of a PSP can be related to the oxygen quenching. Based on these, we discuss the luminescence increase at the cavitation region related to the oxygen concentration in water and oxygen pressure of a cavitation bubble. To extract the cavitation from an acquired luminescent image, the motion-capturing PSP method is applied. It eliminates the variation in illumination caused by the bubble creations between the PSP-coated surface and the imaging-acquisition instruments. The time-resolved cavitation images on the PSP-coated surface are captured inside an ultrasonicate bath.

  16. Numerical simulation of viscous cavitating flow around a ship propeller

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi-Feng; Fang, Shi-Liang; Wang, Xiao-Yan; Meng, Zhao-Wen; Liu, Ping-Xiang; Du, Xuan-Min

    2011-09-01

    In the present study, cavitation and a ship propeller wake are reported by computed fluid dynamics based on viscous multiphase flow theory. Some recent validation results with a hybrid grid based on unsteady Navier-Stokes (N-S) and bubble dynamics equations are presented to predict velocity, pressure and vapor volume fraction in propeller wake in a uniform inflow. Numerical predictions of sheet cavitation, tip vortex cavitation and hub vortex cavitation are in agreement with the experimental data, same as numerical predictions of longitudinal and transversal evolution of the axial velocity. Blade and shaft rate frequency of propeller is well predicted by the computed results of pressure, and tip vortex is the most important to generate the pressure field within the near wake. The overall results indicate that the present approach is reliable for prediction of cavitation and propeller wake on the condition of uniform inflow.

  17. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method.

    PubMed

    Xu, Shanshan; Zong, Yujin; Li, Wusong; Zhang, Siyuan; Wan, Mingxi

    2014-05-01

    Performance and efficiency of numerous cavitation enhanced applications in a wide range of areas depend on the cavitation bubble size distribution. Therefore, cavitation bubble size estimation would be beneficial for biological and industrial applications that rely on cavitation. In this study, an acoustic method using a wide beam with low pressure is proposed to acquire the time intensity curve of the dissolution process for the cavitation bubble population and then determine the bubble size distribution. Dissolution of the cavitation bubbles in saline and in phase-shift nanodroplet emulsion diluted with undegassed or degassed saline was obtained to quantify the effects of pulse duration (PD) and acoustic power (AP) or peak negative pressure (PNP) of focused ultrasound on the size distribution of induced cavitation bubbles. It was found that an increase of PD will induce large bubbles while AP had only a little effect on the mean bubble size in saline. It was also recognized that longer PD and higher PNP increases the proportions of large and small bubbles, respectively, in suspensions of phase-shift nanodroplet emulsions. Moreover, degassing of the suspension tended to bring about smaller mean bubble size than the undegassed suspension. In addition, condensation of cavitation bubble produced in diluted suspension of phase-shift nanodroplet emulsion was involved in the calculation to discuss the effect of bubble condensation in the bubble size estimation in acoustic droplet vaporization. It was shown that calculation without considering the condensation might underestimate the mean bubble size and the calculation with considering the condensation might have more influence over the size distribution of small bubbles, but less effect on that of large bubbles. Without or with considering bubble condensation, the accessible minimum bubble radius was 0.4 or 1.7 μm and the step size was 0.3 μm. This acoustic technique provides an approach to estimate the size

  18. Modelling of single bubble-dynamics and thermal effects

    NASA Astrophysics Data System (ADS)

    Papoulias, D.; Gavaises, M.

    2015-12-01

    This paper evaluates the solution effects of different Rayleigh-Plesset models (R-P) for simulating the growth/collapse dynamics and thermal behaviour of homogeneous gas bubbles. The flow inputs used for the discrete cavitation bubble calculations are obtained from Reynolds-averaged Navier-Stokes simulations (RANS), performed in high-pressure nozzle holes. Parametric 1-D results are presented for the classical thermal R-P equation [1] as well as for refined models which incorporated compressibility corrections and thermal effects [2, 3]. The thermal bubble model is coupled with the energy equation, which provides the temperature of the bubble as a function of conduction/convection and radiation heat-transfer mechanisms. For approximating gas pressure variations a high-order virial equation of state (EOS) was used, based on Helmholtz free energy principle [4]. The coded thermal R-P model was validated against experimental measurements [5] and model predictions [6] reported in single-bubble sonoluminescence (SBSL).

  19. Prediction of cavitation erosion for marine applications

    NASA Astrophysics Data System (ADS)

    Maquil, T.; Yakubov, S.; Rung, T.

    2015-12-01

    The paper presents the development of a cavitation erosion prediction method. The approach is tailored to marine applications and embedded into a VoF-based procedure for the simulation of turbulent flows. Supplementary to the frequently employed Euler-Euler models, Euler-Lagrange approaches are employed to simulate cavitation. The study aims to convey the merits of an Euler-Lagrange approach for erosion simulations. Accordingly, the erosion model is able to separate different damage mechanisms, e.g. micro-jets, single and collective bubble collapse, and also quantifies their contribution to the total damage. Emphasis is devoted to the prediction of the cavitation extend, the influence of compressible effects and the performance of the material damage model in practical applications. Examples included refer to 2D validation test cases and reveal a fair predictive accuracy.

  20. Influence of cathodic and anodic currents on cavitation erosion

    SciTech Connect

    Auret, J.G.; Damm, O.F.R.A.; Wright, G.J. . Div. of Materials Science and Technology); Robinson, F.P.A. . Dept. of Metallurgy and Materials Engineering)

    1993-11-01

    A vibratory-type cavitation test rig was constructed to study the effect of polarizing currents applied to a cavitating body. The generation of gas by electrolysis reduced mechanical damage suffered by a cavitating body because of bubble collapse cushioning. However, the net effect on overall damage depended on several factors, including the intensity of mechanical attack, corrosion rate, and surface geometrical effects. A cathodic current was shown to always decrease the total volume loss rate, but the volume loss rate sometimes was increased and sometimes was reduced in the anodic current range.

  1. Memory effect and redistribution of cavitation nuclei in a thin liquid layer.

    PubMed

    Bai, Lixin; Lin, Weijun; Wu, Pengfei; Deng, Jingjun; Li, Chao; Xu, Delong; Wang, Dong; Chen, Lishuo

    2016-09-01

    Temporal evolution and spatial distribution of acoustic cavitation structures in a thin liquid layer were investigated experimentally with high-speed photography. The inception and disappearance processes of cavitation bubble cloud revealed that the metastable cavitaton structures formed in the thin liquid layer caused a long-term "memory effect". A factor which weakens the memory effect was identified. The distribution of cavitation nuclei was investigated by changing the temporal decay of the memory effect. PMID:27150763

  2. Optimization in design of scientific products for purposes of cavitation problems

    NASA Astrophysics Data System (ADS)

    Modorskii, V. Ya.; Gaynutdinova, D. F.; Gergel, V. P.; Barkalov, K. A.

    2016-06-01

    This paper presents an optimized computer simulation of cavitation phenomena that occurs when a piston moves in a closed liquid-filled pipe. We have developed physical and mathematical models in a three-dimensional dynamic setting, found out a dependence of cavitation parameters on vibration parameters and constructed a domain of vibration influence on concentration of air cavitation bubbles. We also detected a maximum that corresponds to a certain combination of vibration kinematic parameters.

  3. Experimental investigation of the flow-induced vibration of hydrofoils in cavitating flows

    NASA Astrophysics Data System (ADS)

    Wang, Guoyu; Wu, Qin; Huang, Biao; Gao, Yuan

    2015-12-01

    The objective of this paper is to investigate the correlation between fluid induced vibration and unsteady cavitation behaviours. Experimental results are presented for a modified NACA66 hydrofoil, which is fixed at α=8°. The high-speed camera is synchronized with a single point Laser Doppler Vibrometer to analyze the transient cavitating flow structures and the corresponding structural vibration characteristics. The results showed that, with the decreasing of the cavitation number, the cavitating flows in a water tunnel display several types of cavitation patterns, such as incipient cavitation, sheet cavitation and cloud cavitation. The cavity shedding frequency reduces with the decrease of the cavitation number. As for the cloud cavitation regime, the trend of the vibration velocity goes up with the growth of the attached cavity, accompanied with small amplitude fluctuations. Then the collapse and shedding of the large-scale cloud cavities leads to substantial increase of the vibration velocity fluctuations.

  4. AN EFFICIENT TREATMENT STRATEGY FOR HISTOTRIPSY BY REMOVING CAVITATION MEMORY

    PubMed Central

    Wang, Tzu-Yin; Xu, Zhen; Hall, Timothy L.; Fowlkes, J. Brian; Cain, Charles A.

    2012-01-01

    Cavitation memory effects occur when remnants of cavitation bubbles (nuclei) persist in the host medium and act as seeds for subsequent events. In pulsed cavitational ultrasound therapy, or histotripsy, this effect may cause cavitation to repeatedly occur at these seeded locations within a target volume, producing inhomogeneous tissue fractionation or requiring an excess number of pulses to completely homogenize the target volume. We hypothesized that by removing the cavitation memory, i.e., the persistent nuclei, the cavitation bubbles could be induced at random locations in response to each pulse; therefore, complete disruption of a tissue volume may be achieved with fewer pulses. To test the hypothesis, the cavitation memory was passively removed by increasing the intervals between successive pulses, Δt, from 2, 10, 20, 50 and 100, to 200 ms. Histotripsy treatments were performed in red blood cell tissue phantoms and ex vivo livers using 1-MHz ultrasound pulses of 10 cycles at P−/P+ pressure of 21/59 MPa. The phantom study allowed for direct visualization of the cavitation patterns and the lesion development process in real time using high-speed photography; the ex vivo tissue study provided validation of the memory effect in real tissues. Results of the phantom study showed an exponential decrease in the correlation coefficient between cavitation patterns in successive pulses from 0.5 ± 0.1 to 0.1 ± 0.1 as Δt increased from 2–200 ms; correspondingly, the lesion was completely fractionated with significantly fewer pulses for longer Δts. In the tissue study, given the same number of therapy pulses, complete and homogeneous tissue fractionation with well-defined lesion boundaries was achieved only for Δt ≥ 100 ms. These results indicated that the removal of the cavitation memory resulted in more efficient treatments and homogeneous lesions. PMID:22402025

  5. Microbubble Cavitation Imaging

    PubMed Central

    Vignon, Francois; Shi, William T.; Powers, Jeffry E.; Everbach, E. Carr; Liu, Jinjin; Gao, Shunji; Xie, Feng; Porter, Thomas R.

    2014-01-01

    Ultrasound cavitation of microbubble contrast agents has a potential for therapeutic applications such as sonothrombolysis (STL) in acute ischemic stroke. For safety, efficacy, and reproducibility of treatment, it is critical to evaluate the cavitation state (moderate oscillations, stable cavitation, and inertial cavitation) and activity level in and around a treatment area. Acoustic passive cavitation detectors (PCDs) have been used to this end but do not provide spatial information. This paper presents a prototype of a 2-D cavitation imager capable of producing images of the dominant cavitation state and activity level in a region of interest. Similar to PCDs, the cavitation imaging described here is based on the spectral analysis of the acoustic signal radiated by the cavitating microbubbles: ultraharmonics of the excitation frequency indicate stable cavitation, whereas elevated noise bands indicate inertial cavitation; the absence of both indicates moderate oscillations. The prototype system is a modified commercially available ultrasound scanner with a sector imaging probe. The lateral resolution of the system is 1.5 mm at a focal depth of 3 cm, and the axial resolution is 3 cm for a therapy pulse length of 20 µs. The maximum frame rate of the prototype is 2 Hz. The system has been used for assessing and mapping the relative importance of the different cavitation states of a microbubble contrast agent. In vitro (tissue-mimicking flow phantom) and in vivo (heart, liver, and brain of two swine) results for cavitation states and their changes as a function of acoustic amplitude are presented. PMID:23549527

  6. Impact of propagating and standing waves on cavitation appearance.

    PubMed

    Kenis, Alexander M; Grinfeld, Javier; Zadicario, Eyal; Vitek, Shuki

    2012-01-01

    Standing waves play a significant role in the appearance of cavitation phenomena. The goal of this study was to investigate the effect that the relation between standing and propagating waves in a focused field has on acoustic bubble cloud formation. Measurements of the cavitation signals were performed on five different configurations of a hemispheric phased array transducer (230 kHz) representing a wide range of relations between propagating and standing waves. The results show that configurations with a larger propagating component induce bubble clouds at lower pressures than configurations with a larger standing component.

  7. Air emission into a water shear layer through porous media. Part 2: Cavitation induced pressure attenuation

    SciTech Connect

    Myer, E.C.; Marboe, R.C.

    1994-12-31

    Cavitation near the casing of a hydroturbine can lead to damage through both cavitation erosion and mechanical vibration of the casing and the associated piping. Cavitation erosion results from the collapse of cavitation bubbles on or near a surface such as the casing wall. Mechanical vibrations transmitted to the casing directly through the collapse of bubbles on the casing wall indirectly through a coupling of the acoustic pressure pulse due to a nearby collapse on the turbine blade. Air emission along the casing can reduce the intensity of the tip vortex and the gap cavitation through ventilation of the cavity. Reduction in the machinery vibration is obtained by reduction of the intensity of cavitation bubble collapse and attenuation and scattering of the radiated acoustic pressure. This requires a bubble layer which may be introduced in the vicinity of the turbine blade tips. This layer remains for some distance downstream of the blades and is effective for attenuation of tip vortex induced noise and blade surface cavitation noise. For the purpose of characterizing this bubble layer within a water pipe, the authors spanned a pipe with a two dimensional hydrofoil and emitted air through porous media (20 and 100 micron porosity sintered stainless steel) into the shear flow over the hydrofoil. This paper is limited to an investigation of the attenuation of acoustic pressure propagating to the casing rather than the reduction in acoustic source level due to collapse cushioning effects.

  8. Characterization of periodic cavitation in optical tweezers.

    PubMed

    Carmona-Sosa, Viridiana; Alba-Arroyo, José Ernesto; Quinto-Su, Pedro A

    2016-03-10

    Microscopic vapor explosions or cavitation bubbles can be generated repeatedly in optical tweezers with a microparticle that partially absorbs at the trapping laser wavelength. In this work we measure the size distribution and the production rate of cavitation bubbles for microparticles with a diameter of 3 μm using high-speed video recording and a fast photodiode. We find that there is a lower bound for the maximum bubble radius R(max)∼2  μm which can be explained in terms of the microparticle size. More than 94% of the measured R(max) are in the range between 2 and 6 μm, while the same percentage of the measured individual frequencies f(i) or production rates are between 10 and 200 Hz. The photodiode signal yields an upper bound for the lifetime of the bubbles, which is at most twice the value predicted by the Rayleigh equation. We also report empirical relations between R(max), f(i), and the bubble lifetimes. PMID:26974779

  9. Non-Newtonian effects on flow-generated cavitation and on cavitation in a pressure field

    NASA Technical Reports Server (NTRS)

    Ellis, A. T.; Ting, R. Y.

    1974-01-01

    Observations are presented which show that the stresses in a flow field of very dilute polymer are not well enough described by the Navier-Stokes equations to accurately predict cavitation. The contitutive equation for the particular polymer and concentration used is needed. The second-order fluid form in which accelerations are relatively important appears capable of explaining observed cavitation suppression by changing the pressure field due to flow. Bubble dynamics in stationary dilute polymer solutions are also examined and found to be little different from those in water.

  10. Feasibility of noninvasive cavitation-guided blood-brain barrier opening using focused ultrasound and microbubbles in nonhuman primates

    NASA Astrophysics Data System (ADS)

    Tung, Yao-Sheng; Marquet, Fabrice; Teichert, Tobias; Ferrera, Vincent; Konofagou, Elisa E.

    2011-04-01

    In vivo transcranial and noninvasive cavitation detection with blood-brain barrier (BBB) opening in nonhuman primates is hereby reported. The BBB in monkeys was opened transcranically using focused ultrasound (FUS) in conjunction with microbubbles. A passive cavitation detector, confocal with the FUS transducer, was used to identify and monitor the bubble behavior. During sonication, the cavitation spectrum, which was found to be region-, pressure-, and bubble-dependent, provided real-time feedback regarding the opening occurrence and its properties. These findings demonstrate feasibility of transcranial, cavitation-guided BBB opening using FUS and microbubbles in noninvasive human applications.

  11. The Role of Acoustic Cavitation in Ultrasound-triggered Drug Release from Echogenic Liposomes

    NASA Astrophysics Data System (ADS)

    Kopechek, Jonathan A.

    Cardiovascular disease (CVD) is the leading cause of death in the United States and globally. CVD-related mortality, including coronary heart disease, heart failure, or stroke, generally occurs due to atherosclerosis, a condition in which plaques build up within arterial walls, potentially causing blockage or rupture. Targeted therapies are needed to achieve more effective treatments. Echogenic liposomes (ELIP), which consist of a lipid membrane surrounding an aqueous core, have been developed to encapsulate a therapeutic agent and/or gas bubbles for targeted delivery and ultrasound image enhancement. Under certain conditions ultrasound can cause nonlinear bubble growth and collapse, known as "cavitation." Cavitation activity has been associated with enhanced drug delivery across cellular membranes. However, the mechanisms of ultrasound-mediated drug release from ELIP have not been previously investigated. Thus, the objective of this dissertation is to elucidate the role of acoustic cavitation in ultrasound-mediated drug release from ELIP. To determine the acoustic and physical properties of ELIP, the frequency-dependent attenuation and backscatter coefficients were measured between 3 and 30 MHz. The results were compared to a theoretical model by measuring the ELIP size distribution in order to determine properties of the lipid membrane. It was found that ELIP have a broad size distribution and can provide enhanced ultrasound image contrast across a broad range of clinically-relevant frequencies. Calcein, a hydrophilic fluorescent dye, and papaverine, a lipophilic vasodilator, were separately encapsulated in ELIP and exposed to color Doppler ultrasound pulses from a clinical diagnostic ultrasound scanner in a flow system. Spectrophotometric techniques (fluorescence and absorbance measurements) were used to detect calcein or papaverine release. As a positive control, Triton X-100 (a non-ionic detergent) was added to ELIP samples not exposed to ultrasound in order

  12. Modelling cavitation erosion using fluid–material interaction simulations

    PubMed Central

    Chahine, Georges L.; Hsiao, Chao-Tsung

    2015-01-01

    Material deformation and pitting from cavitation bubble collapse is investigated using fluid and material dynamics and their interaction. In the fluid, a novel hybrid approach, which links a boundary element method and a compressible finite difference method, is used to capture non-spherical bubble dynamics and resulting liquid pressures efficiently and accurately. The bubble dynamics is intimately coupled with a finite-element structure model to enable fluid/structure interaction simulations. Bubble collapse loads the material with high impulsive pressures, which result from shock waves and bubble re-entrant jet direct impact on the material surface. The shock wave loading can be from the re-entrant jet impact on the opposite side of the bubble, the fast primary collapse of the bubble, and/or the collapse of the remaining bubble ring. This produces high stress waves, which propagate inside the material, cause deformation, and eventually failure. A permanent deformation or pit is formed when the local equivalent stresses exceed the material yield stress. The pressure loading depends on bubble dynamics parameters such as the size of the bubble at its maximum volume, the bubble standoff distance from the material wall and the pressure driving the bubble collapse. The effects of standoff and material type on the pressure loading and resulting pit formation are highlighted and the effects of bubble interaction on pressure loading and material deformation are preliminarily discussed. PMID:26442140

  13. Modelling cavitation erosion using fluid-material interaction simulations.

    PubMed

    Chahine, Georges L; Hsiao, Chao-Tsung

    2015-10-01

    Material deformation and pitting from cavitation bubble collapse is investigated using fluid and material dynamics and their interaction. In the fluid, a novel hybrid approach, which links a boundary element method and a compressible finite difference method, is used to capture non-spherical bubble dynamics and resulting liquid pressures efficiently and accurately. The bubble dynamics is intimately coupled with a finite-element structure model to enable fluid/structure interaction simulations. Bubble collapse loads the material with high impulsive pressures, which result from shock waves and bubble re-entrant jet direct impact on the material surface. The shock wave loading can be from the re-entrant jet impact on the opposite side of the bubble, the fast primary collapse of the bubble, and/or the collapse of the remaining bubble ring. This produces high stress waves, which propagate inside the material, cause deformation, and eventually failure. A permanent deformation or pit is formed when the local equivalent stresses exceed the material yield stress. The pressure loading depends on bubble dynamics parameters such as the size of the bubble at its maximum volume, the bubble standoff distance from the material wall and the pressure driving the bubble collapse. The effects of standoff and material type on the pressure loading and resulting pit formation are highlighted and the effects of bubble interaction on pressure loading and material deformation are preliminarily discussed.

  14. Analytical and experimental study of the acoustics and the flow field characteristics of cavitating self-resonating water jets

    SciTech Connect

    Chahine, G.L.; Genoux, P.F.; Johnson, V.E. Jr.; Frederick, G.S.

    1984-09-01

    Waterjet nozzles (STRATOJETS) have been developed which achieve passive structuring of cavitating submerged jets into discrete ring vortices, and which possess cavitation incipient numbers six times higher than obtained with conventional cavitating jet nozzles. In this study we developed analytical and numerical techniques and conducted experimental work to gain an understanding of the basic phenomena involved. The achievements are: (1) a thorough analysis of the acoustic dynamics of the feed pipe to the nozzle; (2) a theory for bubble ring growth and collapse; (3) a numerical model for jet simulation; (4) an experimental observation and analysis of candidate second-generation low-sigma STRATOJETS. From this study we can conclude that intensification of bubble ring collapse and design of highly resonant feed tubes can lead to improved drilling rates. The models here described are excellent tools to analyze the various parameters needed for STRATOJET optimizations. Further analysis is needed to introduce such important factors as viscosity, nozzle-jet interaction, and ring-target interaction, and to develop the jet simulation model to describe the important fine details of the flow field at the nozzle exit.

  15. Prediction of Bubble Growth and Size Distribution in Polymer Foaming Based on a New Heterogeneous Nucleation Model

    NASA Astrophysics Data System (ADS)

    Feng, Jimmy; Bertelo, Christopher A.

    2003-11-01

    The cell size distribution in a thermoplastic foam to a large extent determines its mechanical and thermal properties. It is difficult to predict because of the many physical processes involved, each affected in turn by an array of factors and parameters. In this work, we consider foaming by a physical blowing agent dissolved in a polymer melt that contains particulate nucleating agents. We propose a nucleation model based on the concept that heterogeneous nucleation originates from pre-existing microvoids on the solid particles. Once nucleated, the bubbles grow as the dissolved gas diffuses through the polymer melt into the bubbles, a processes that couples mass and momentum transport. By using the Oldroyd-B constitutive equation, we explore the role of melt viscoelasticity in this process. Finally, we integrate the nucleation and growth models to predict the evolution of the bubble size distribution. Using the physical and operating parameters of a recent foam extrusion experiment, we are able to predict a cell size distribution in reasonable agreement with measurements.

  16. Impact of bubble size on growth and CO2 uptake of Arthrospira (Spirulina) platensis KMMCC CY-007.

    PubMed

    Kim, Kisok; Choi, Jaeho; Ji, Yosep; Park, Soyoung; Do, Hyungki; Hwang, Cherwon; Lee, Bongju; Holzapfel, Wilhelm

    2014-10-01

    Optimisation of cyanobacterial cell productivity should consider the key factors light cycle and carbon source. We studied the influence of CO2 bubble size on carbon uptake and fixation, on basis of mRNA expression levels in Arthrospira platensis KMMCC CY-007 at 30°C (light intensity: 40μmolm(-2)s(-1); 1% CO2). Growth rate, carbon fixation and lipid accumulation were examined over 7days under fine bubble (FB) (100μm Ø) bulk bubble (BB) (5000μm Ø) and non-CO2 (NB) aeration. The low affinity CO2 uptake mRNA (NDH-I4 complex) was stronger expressed than the high affinity NDH-I3 complex (bicA and sbtA) under 1% CO2 and FB conditions, with no expression of bicA1 and sbtA1 after 4days. The high affinity CO2 uptake mRNA levels corresponded to biomass, carbon content and lipid accumulation, and increase in NDH-I3 complex (9.72-fold), bicA (5.69-fold), and sbtA (10.61-fold), compared to NB, or BB conditions. PMID:25151075

  17. Impact of bubble size on growth and CO2 uptake of Arthrospira (Spirulina) platensis KMMCC CY-007.

    PubMed

    Kim, Kisok; Choi, Jaeho; Ji, Yosep; Park, Soyoung; Do, Hyungki; Hwang, Cherwon; Lee, Bongju; Holzapfel, Wilhelm

    2014-10-01

    Optimisation of cyanobacterial cell productivity should consider the key factors light cycle and carbon source. We studied the influence of CO2 bubble size on carbon uptake and fixation, on basis of mRNA expression levels in Arthrospira platensis KMMCC CY-007 at 30°C (light intensity: 40μmolm(-2)s(-1); 1% CO2). Growth rate, carbon fixation and lipid accumulation were examined over 7days under fine bubble (FB) (100μm Ø) bulk bubble (BB) (5000μm Ø) and non-CO2 (NB) aeration. The low affinity CO2 uptake mRNA (NDH-I4 complex) was stronger expressed than the high affinity NDH-I3 complex (bicA and sbtA) under 1% CO2 and FB conditions, with no expression of bicA1 and sbtA1 after 4days. The high affinity CO2 uptake mRNA levels corresponded to biomass, carbon content and lipid accumulation, and increase in NDH-I3 complex (9.72-fold), bicA (5.69-fold), and sbtA (10.61-fold), compared to NB, or BB conditions.

  18. Removal of Residual Nuclei Following a Cavitation Event: A Parametric Study

    PubMed Central

    Duryea, Alexander P.; Tamaddoni, Hedieh A.; Cain, Charles A.; Roberts, William W.; Hall, Timothy L.

    2015-01-01

    The efficacy of ultrasound therapies such as shock wave lithotripsy and histotripsy can be compromised by residual cavitation bubble nuclei that persist following the collapse of primary cavitation. In our previous work, we have developed a unique strategy for mitigating the effects of these residual bubbles using low amplitude ultrasound pulses to stimulate their aggregation and subsequent coalescence—effectively removing them from the field. Here, we further develop this bubble removal strategy through an investigation of the effect of frequency on the consolidation process. Bubble removal pulses ranging from 0.5 – 2 MHz were used to sonicate the population of residual nuclei produced upon collapse of a histotripsy bubble cloud. For each frequency, mechanical index (MI) values ranging from 0 to approximately 1.5 were tested. Results indicated that, when evaluated as a function of bubble removal pulse MI, the efficacy of bubble removal shows markedly similar trends for all frequencies tested. This behavior divides into three distinct regimes (with provided cutoffs being approximate): (1) MI < 0.2: Minimal effect on the population of remnant cavitation nuclei; (2) 0.2 < MI < 1: Aggregation and subsequent coalescence of residual bubbles, the extent of which trends toward a maximum; (3) MI > 1: Bubble coalescence is compromised as bubble removal pulses induce high magnitude inertial cavitation of residual bubbles. The major distinction in these trends came for bubble removal pulses applied at 2 MHz, which were observed to generate the most effective bubble coalescence of all frequencies tested. We hypothesize that this is a consequence of the secondary Bjerknes force being the major facilitator of the consolidation process, the magnitude of which increases when the bubble size distribution is far from resonance such that the phase difference of oscillation of individual bubbles is minimal. PMID:26719861

  19. Removal of residual nuclei following a cavitation event: a parametric study.

    PubMed

    Duryea, Alexander P; Tamaddoni, Hedieh A; Cain, Charles A; Roberts, William W; Hall, Timothy L

    2015-09-01

    The efficacy of ultrasound therapies such as hock-wave lithotripsy and histotripsy can be compromised by residual cavitation bubble nuclei that persist following the collapse of primary cavitation. In our previous work, we have developed a unique strategy for mitigating the effects of these residual bubbles using low-amplitude ultrasound pulses to stimulate their aggregation and subsequent coalescence—effectively removing them from the field. Here, we further develop this bubble removal strategy through an investigation of the effect of frequency on the consolidation process. Bubble removal pulses ranging from 0.5 to 2 MHz were used to sonicate the population of residual nuclei produced upon collapse of a histotripsy bubble cloud. For each frequency, mechanical index(MI) values ranging from 0 to approximately 1.5 were tested.Results indicated that, when evaluated as a function of bubble removal pulse MI, the efficacy of bubble removal shows markedly similar trends for all frequencies tested. This behavior divides into three distinct regimes (with provided cutoffs being approximate): 1) MI < 0.2: Minimal effect on the population of remanent cavitation nuclei; 2) 0.2 < MI < 1: Aggregation and subsequent coalescence of residual bubbles, the extent of which trends toward a maximum; and 3) MI > 1: Bubble coalescence is compromised as bubble removal pulses induce high-magnitude inertial cavitation of residual bubbles. The major distinction in these trends came for bubble removal pulses applied at 2 MHz, which were observed to generate the most effective bubble coalescence of all frequencies tested. We hypothesize that this is a consequence of the secondary Bjerknes force being the major facilitator of the consolidation process, the magnitude of which increases when the bubble size distribution is far from resonance such that the phase difference of oscillation of individual bubbles is minimal. PMID:26719861

  20. Comparison between phase field simulations and experimental data from intragranular bubble growth in UO{sub 2}

    SciTech Connect

    Tonks, M. R.; Biner, S. B.; Mille, P. C.; Andersson, D. A.

    2013-07-01

    In this work, we used the phase field method to simulate the post-irradiation annealing of UO{sub 2} described in the experimental work by Kashibe et al., 1993 [1]. The simulations were carried out in 2D and 3D using the MARMOT FEM-based phase-field modeling framework. The 2-D results compared fairly well with the experiments, in spite of the assumptions made in the model. The 3-D results compare even more favorably to experiments, indicating that diffusion in all three directions must be considered to accurate represent the bubble growth. (authors)

  1. Interaction of two differently sized oscillating bubbles in a free field.

    PubMed

    Chew, Lup Wai; Klaseboer, Evert; Ohl, Siew-Wan; Khoo, Boo Cheong

    2011-12-01

    Most real life bubble dynamics applications involve multiple bubbles, for example, in cavitation erosion prevention, ultrasonic baths, underwater warfare, and medical applications involving microbubble contrast agents. Most scientific dealings with bubble-bubble interaction focus on two similarly sized bubbles. In this study, the interaction between two oscillating differently sized bubbles (generated in tap water) is studied using high speed photography. Four types of bubble behavior were observed, namely, jetting toward each other, jetting away from each other, bubble coalescence, and a behavior termed the "catapult" effect. In-phase bubbles jet toward each other, while out-of-phase bubbles jet away from each other. There exists a critical phase difference that separates the two regimes. The behavior of the bubbles is fully characterized by their dimensionless separation distance, their phase difference, and their size ratio. It is also found that for bubbles with large size difference, the smaller bubble behaves similarly to a single bubble oscillating near a free surface.

  2. Elasticity effects on cavitation in a squeeze film damper undergoing noncentered circular whirl

    NASA Technical Reports Server (NTRS)

    Brewe, David E.

    1988-01-01

    Elasticity of the liner and its effects on cavitation were numerically determined for a squeeze film damper subjected to dynamic loading. The loading was manifested as a prescribed motion of the rotor undergoing noncentered circular whirl. The boundary conditions were implemented using Elrod's algorithm which conserves lineal mass flux through the moving cavitation bubble as well as the oil film region of the damper. Computational movies were used to analyze the rapidly changing pressures and vapor bubble dynamics throughout the dynamic cycle for various flexibilities in the damper liner. The effects of liner elasticity on cavitation were only noticeable for the intermediate and high values of viscosity used in this study.

  3. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum.

    PubMed

    Gao, Libo; Ren, Wencai; Xu, Huilong; Jin, Li; Wang, Zhenxing; Ma, Teng; Ma, Lai-Peng; Zhang, Zhiyong; Fu, Qiang; Peng, Lian-Mao; Bao, Xinhe; Cheng, Hui-Ming

    2012-02-28

    Large single-crystal graphene is highly desired and important for the applications of graphene in electronics, as grain boundaries between graphene grains markedly degrade its quality and properties. Here we report the growth of millimetre-sized hexagonal single-crystal graphene and graphene films joined from such grains on Pt by ambient-pressure chemical vapour deposition. We report a bubbling method to transfer these single graphene grains and graphene films to arbitrary substrate, which is nondestructive not only to graphene, but also to the Pt substrates. The Pt substrates can be repeatedly used for graphene growth. The graphene shows high crystal quality with the reported lowest wrinkle height of 0.8 nm and a carrier mobility of greater than 7,100 cm(2) V(-1) s(-1) under ambient conditions. The repeatable growth of graphene with large single-crystal grains on Pt and its nondestructive transfer may enable various applications.

  4. Evaluation and interpretation of bubble size distributions in pulsed megasonic fields

    NASA Astrophysics Data System (ADS)

    Hauptmann, M.; Struyf, H.; De Gendt, S.; Glorieux, C.; Brems, S.

    2013-05-01

    The occurrence of acoustic cavitation is incorporating a multitude of interdependent effects that strongly depend on the bubble size. Therefore, bubble size control would be beneficial for biological and industrial processes that rely on acoustic cavitation. A pulsed acoustic field can result in bubble size control and the repeated dissolution and reactivation ("recycling") of potentially active bubbles. As a consequence, a pulsed field can strongly enhance cavitation activity. In this paper, we present a modified methodology for the evaluation of the active bubble size distribution by means of a combination of cavitation noise measurements and ultrasonic pulsing. The key component of this modified methodology is the definition of an upper size limit, below which bubbles—in between subsequent pulses—have to dissolve, in order to be sustainably recycled. This upper limit makes it possible to explain and link the enhancement of cavitation activity to a bubble size distribution. The experimentally determined bubble size distributions for different power densities are interpreted in the frame of numerical calculations of the oscillatory responses of the bubbles to the intermittent driving sound field. The distributions are found to be shaped by the size dependent interplay between bubble pulsations, rectified diffusion, coalescence, and the development of parametrically amplified shape instabilities. Also, a phenomenological reactivation-deactivation model is proposed to explain and quantify the observed enhancement of cavitation activity under pulsed, with respect to continuous sonication. In this model, the pulse-duration determines the magnitude of the reactivation of partially dissolved bubbles and the deactivation of activated bubbles by coalescence. It is shown that the subsequent recycling of previously active bubbles leads to an accumulation of cavitation activity, which saturates after a certain number of pulses. The model is fitted to the experimental

  5. Molecular emission from single-bubble sonoluminescence.

    PubMed

    Didenko, Y T; McNamara, W B; Suslick, K S

    2000-10-19

    Ultrasound can drive a single gas bubble in water into violent oscillation; as the bubble is compressed periodically, extremely short flashes of light (about 100 ps) are generated with clock-like regularity. This process, known as single-bubble sonoluminescence, gives rise to featureless continuum emission in water (from 200 to 800 nm, with increasing intensity into the ultraviolet). In contrast, the emission of light from clouds of cavitating bubbles at higher acoustic pressures (multi-bubble sonoluminescence) is dominated by atomic and molecular excited-state emission at much lower temperatures. These observations have spurred intense effort to uncover the origin of sonoluminescence and to generalize the conditions necessary for its creation. Here we report a series of polar aprotic liquids that generate very strong single-bubble sonoluminescence, during which emission from molecular excited states is observed. Previously, single-bubble sonoluminescence from liquids other than water has proved extremely elusive. Our results give direct proof of the existence of chemical reactions and the formation of molecular excited states during single-bubble cavitation, and provide a spectroscopic link between single- and multi-bubble sonoluminescence.

  6. Dynamics of vapor bubbles growth at boiling resulting from enthalpy excess of the surrounding superheated liquid and sound pulses generated by bubbles

    NASA Astrophysics Data System (ADS)

    Dorofeev, B. M.; Volkova, V. I.

    2016-01-01

    The results of experiments investigating the exponential dependence of the vapor bubble radius on time at saturated boiling are generalized. Three different methods to obtain this dependence are suggested: (1) by the application of the transient heat conduction equation, (2) by using the correlations of energy conservation, and (3) by solving a similar electrodynamic problem. Based on the known experimental data, the accuracy of the dependence up to one percent and a few percent accuracy of its description based on the sound pressure generated by a vapor bubble have been determined. A significant divergence of the power dependence of the vapor bubble radius on time (with an exponent of 1/2) with the experimental results and its inadequacy for the description of the sound pulse generated by the bubble have been demonstrated.

  7. Magnetic susceptibility based magnetic resonance estimation of micro-bubble size for the vertically upward bubbly flow.

    PubMed

    Arbabi, A; Mastikhin, I V

    2012-12-01

    The approach originally developed for the Nuclear Magnetic Resonance analysis of stable micro-bubbles is applied to studies of vertical bubbly flows. A very fast dispersion (diffusion) of water in bubbly flows extends the fast diffusion limit down to short (2-10 ms) measurement times, permitting the use of the simplified analytical expression to extract the micro-bubble size information both in bulk and spatially resolved. The observed strong bubble-induced reduction in T(2)(*) necessitates the use of very short encoding times and pure phase encoding methods to accurately measure the void fraction. There was an expected underestimation of bubble sizes at faster flow rates due to the limitations of the theory derived for small bubble sizes and non-interacting spherical bubbles (low void fractions and slow flow rates). This approach lends itself to studies of bubbly flows and cavitating media characterized by small bubble sizes and low void fractions. PMID:23117260

  8. Magnetic susceptibility based magnetic resonance estimation of micro-bubble size for the vertically upward bubbly flow

    NASA Astrophysics Data System (ADS)

    Arbabi, A.; Mastikhin, I. V.

    2012-12-01

    The approach originally developed for the Nuclear Magnetic Resonance analysis of stable micro-bubbles is applied to studies of vertical bubbly flows. A very fast dispersion (diffusion) of water in bubbly flows extends the fast diffusion limit down to short (2-10 ms) measurement times, permitting the use of the simplified analytical expression to extract the micro-bubble size information both in bulk and spatially resolved. The observed strong bubble-induced reduction in T2∗ necessitates the use of very short encoding times and pure phase encoding methods to accurately measure the void fraction. There was an expected underestimation of bubble sizes at faster flow rates due to the limitations of the theory derived for small bubble sizes and non-interacting spherical bubbles (low void fractions and slow flow rates). This approach lends itself to studies of bubbly flows and cavitating media characterized by small bubble sizes and low void fractions.

  9. Removal of Residual Cavitation Nuclei to Enhance Histotripsy Erosion of Model Urinary Stones

    PubMed Central

    Duryea, Alexander P.; Roberts, William W.; Cain, Charles A.; Hall, Timothy L.

    2015-01-01

    Histotripsy has been shown to be an effective treatment for model kidney stones, eroding their surface to tiny particulate debris via a cavitational bubble cloud. However, similar to shock wave lithotripsy, histotripsy stone treatments display a rate-dependent efficacy with pulses applied at low rate generating more efficient stone erosion in comparison to those applied at high rate. This is hypothesized to be the result of residual cavitation bubble nuclei generated by bubble cloud collapse. While the histotripsy bubble cloud only lasts on the order of 100 µs, these microscopic remnant bubbles can persist on the order of 1 second—inducing direct attenuation of subsequent histotripsy pulses and influencing bubble cloud dynamics. In an effort to mitigate these effects, we have developed a novel strategy to actively remove residual cavitation nuclei from the field using low-amplitude ultrasound pulses. Previous work has demonstrated that with selection of the appropriate acoustic parameters these bubble removal pulses can stimulate the aggregation and subsequent coalescence of microscopic bubble nuclei—effectively deleting them from the target volume. Here, we incorporate bubble removal pulses in histotripsy treatment of model kidney stones. It was found that when histotripsy is applied at low rate (1 Hz), bubble removal does not produce a statistically significant change in erosion. At higher pulse rates of 10, 100, and 500 Hz, incorporating bubble removal results in 3.7-, 7.5-, and 2.7-fold increases in stone erosion, respectively. High speed imaging indicates that the introduction of bubble removal pulses allows bubble cloud dynamics resulting from high pulse rates to more closely approximate those generated at the low rate of 1 Hz. These results corroborate previous work in the field of shock wave lithotripsy regarding the ill-effects of residual bubble nuclei, and suggest that high treatment efficiency can be recovered at high pulse rates through

  10. Application of computational fluid dynamics on cavitation in journal bearings

    NASA Astrophysics Data System (ADS)

    Riedel, Marco; Schmidt, Marcus; Reinke, Peter; Nobis, Matthias; Redlich, Marcel

    2014-03-01

    Journal bearings are applied in internal combustion engines due to their favourable wearing quality and operating characteristics. Under certain operating conditions damage of the journal bearing can occur caused by cavitation. The cavitation reduces the load capacity and leads to material erosion. Experimental investigations of cavitating flows in dimension of real journal bearing are difficult to realize or almost impossible caused by the small gap and transient flow conditions. Therefore numerical simulation is a very helpful engineering tool to research the cavitation behaviour. The CFD-Code OpenFOAM is used to analyse the flow field inside the bearing. The numerical cavitation model based on a bubble dynamic approach and requires necessary initial parameter for the calculation, such as nuclei bubble diameter, the number of nuclei and two empirical constants. The first part of this paper shows the influence of these parameters on the solution. For the adjustment of the parameters an experiment of Jakobsson et.al. [1] was used to validate the numerical flow model. The parameters have been varied according to the method Design of Experiments (DoE). With a defined model equation the parameters determined, to identify the parameter for CFD-calculations in comparison to the experimental values. The second part of the paper presents investigations on different geometrical changes in the bearing geometry. The effect of these geometrical changes on cavitation was compared with experimental results from Wollfarth [2] and Garner et.al. [3].

  11. Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL.

    PubMed

    Crum, L A

    1988-12-01

    The rarefaction shock wave produced by an extracorporeal shockwave lithotripter can result in liquid failure at numerous discrete sites near the second focus. When the liquid fails, vapor-filled cavities can grow to relatively large sizes and subsequently collapse with enormous violence. This phenomenon, called acoustic cavitation, has been shown to cause severe erosion in materials exposed to cavitation fields. It is proposed in this paper that ESWL devices generate acoustic cavitation in vivo and that the high speed liquid microjets produced during cavitation bubble collapse play an important role in renal calculi disintegration.

  12. Effect of dilute polymer additives on the acoustic cavitation threshold of water

    SciTech Connect

    Crum, L.A.; Brosey, J.E.

    1984-02-01

    Measurements are presented of the variation of the acoustic cavitation threshold of water with concentration of the polymer additives polyethylene oxide and guar gum. It was found that small amounts of these additives could significantly increase the cavitation threshold. A theoretical model, based upon nucleation of a gas bubble from a Harvey-type crevice in a mote or solid particle, is developed that gives good agreement with the measurements. The applicability of this approach to an explanation of cavitation index reduction in flow-generated or confined jet cavitation, when polymer additives are introduced, is discussed.

  13. Quantitative evaluation of erosive cavitation pressure field from pits in material: fact or myth?

    NASA Astrophysics Data System (ADS)

    Choi, J.-K.; Chahine, G. L.

    2015-12-01

    Material pitting in a cavitating flow has been used for a long time as an indicator of the vague ‘cavitation intensity’ concept. Periodically, some researchers suggest pitting tests as a “simple” means to provide quantitative measurements of the amplitude of the impulsive pressures in the cavitation field, especially when combined with Tabor's formula or with simple finite element computations with static loads. This paper examines the viability of such a method using fully coupled bubble dynamics and material response, and strongly concludes that the commonly accepted idea is a myth, as different loading scenarios with the same amplitude of the cavitation impulsive pressure result in different pit aspect ratios.

  14. The cavitation induced Becquerel effect and the hot spot theory of sonoluminescence.

    PubMed

    Prevenslik, T V

    2003-06-01

    Over 150 years ago, Becquerel discovered the ultraviolet illumination of one of a pair of identical electrodes in liquid water produced an electric current, the phenomenon called the Becquerel effect. Recently, a similar effect was observed if the water surrounding one electrode is made to cavitate by focused acoustic radiation, which by similarity is referred to as the cavitation induced Becquerel effect. The current in the cavitation induced Becquerel effect was found to be semi-logarithmic with the standard electrode potential that is consistent with the oxidation of the electrode surface by the photo-decomposition theory of photoelectrochemistry. But oxidation of the electrode surface usually requires high temperatures, say as in cavitation. Absent high bubble temperatures, cavitation may produce vacuum ultraviolet (VUV) light that excites water molecules in the electrode film to higher H(2)O(*) energy states, the excited states oxidizing the electrode surface by chemical reaction. Solutions of the Rayleigh-Plesset equation during bubble collapse that include the condensation of water vapor show any increase in temperature or pressure of the water vapor by compression heating is compensated by the condensation of vapor to the bubble wall, the bubbles collapsing almost isothermally. Hence, the cavitation induced Becquerel effect is likely caused by cavitation induced VUV light at ambient temperature. PMID:12782265

  15. The effect of acceleration on the growth and shedding of laminar separation bubbles

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Samik; Rival, David

    2015-11-01

    It has been observed that when a laminar boundary layer separates, the shear layer undergoes transition to turbulence and subsequently reattaches to form a laminar separation bubble (LSB). In this work, a SD7003 airfoil, held at an angle of attack of 8 degree, is towed with different acceleration profiles starting from rest. The separation region is then analyzed with time-resolved, planar PIV at short convective times during the initial acceleration phase. The aim of this work is to characterize the variation in size and shedding frequency of the laminar separation bubble with increasing acceleration. We show that the formation and shedding process in the LSB depends on the rate of vorticity-containing mass transported by the separated shear layer. Consequently, any changes in the structure of the shear layer affect the formation of the LSB downstream. Finally, attempts are also made to characterize the shedding frequency of the bubble with increasing acceleration. Here the unsteadiness of the LSB is found to be closely linked to the degree of boundary-layer acceleration on the airfoil surface.

  16. Sound field measurement in a double layer cavitation cluster by rugged miniature needle hydrophones.

    PubMed

    Koch, Christian

    2016-03-01

    During multi-bubble cavitation the bubbles tend to organize themselves into clusters and thus the understanding of properties and dynamics of clustering is essential for controlling technical applications of cavitation. Sound field measurements are a potential technique to provide valuable experimental information about the status of cavitation clouds. Using purpose-made, rugged, wide band, and small-sized needle hydrophones, sound field measurements in bubble clusters were performed and time-dependent sound pressure waveforms were acquired and analyzed in the frequency domain up to 20 MHz. The cavitation clusters were synchronously observed by an electron multiplying charge-coupled device (EMCCD) camera and the relation between the sound field measurements and cluster behaviour was investigated. Depending on the driving power, three ranges could be identified and characteristic properties were assigned. At low power settings no transient and no or very low stable cavitation activity can be observed. The medium range is characterized by strong pressure peaks and various bubble cluster forms. At high power a stable double layer was observed which grew with further increasing power and became quite dynamic. The sound field was irregular and the fundamental at driving frequency decreased. Between the bubble clouds completely different sound field properties were found in comparison to those in the cloud where the cavitation activity is high. In between the sound field pressure amplitude was quite small and no collapses were detected.

  17. Cost versus Enrollment Bubbles

    ERIC Educational Resources Information Center

    Vedder, Richard K.; Gillen, Andrew

    2011-01-01

    The defining characteristic of a bubble is unsustainable growth that eventually reverses. Bubbles typically arise when uncertainty leads to unsustainable trends, and the authors argue that there are two areas in which higher education has experienced what appear to be unsustainable trends, namely, college costs (the costs to students, parents, and…

  18. Cavitational hydrothermal oxidation: A new remediation process. Annual progress report, September 1996--August 1997

    SciTech Connect

    Suslick, K.S.

    1997-11-21

    'During the past year, the authors have continued to make substantial scientific progress on the understanding of cavitation phenomena in aqueous media and applications of cavitation to remediation processes. The efforts have focused on three separate areas: sonoluminescence as a probe of conditions created during cavitational collapse in aqueous media, the use of cavitation for remediation of contaminated water, and an addition of the use of ultrasound in the synthesis of novel heterogeneous catalysts for hydrodehalogenation of halocarbons under mild conditions. In order to gain further understanding of the conditions present during cavitation, the author has continued his studies of sonoluminescence. He has made recent breakthroughs in the use of emission spectroscopy for temperature and pressure measurement of cavitation events, which he expects to publish shortly. He has been able to measure for the first time the temperature of cavitation in water during multi-bubble cavitation in the presence of aromatic hydrocarbons. The emission from excited states of C{sub 2} in water gives temperatures that are consistent with adiabatic compressional heating, with maximum temperatures of 4,300 K. Prior measurements of cavitation temperatures in low vapor pressure nonaqueous media gave somewhat higher temperatures of 5,000 K. This work lays permanently to rest exotic mechanisms for cavitational chemistry, at least for cavitation fields.'

  19. Control of inertial acoustic cavitation in pulsed sonication using a real-time feedback loop system.

    PubMed

    Desjouy, Cyril; Poizat, Adrien; Gilles, Bruno; Inserra, Claude; Bera, Jean-Christophe

    2013-08-01

    Owing to the complex behavior of ultrasound-induced bubble clouds (nucleation, linear and nonlinear oscillations, collapse), acoustic cavitation remains a hardly controllable phenomenon, leading to poorly reproducible ultrasound-based therapies. A better control of the various aspects of cavitation phenomena for in vivo applications is a key requirement to improve emerging ultrasound therapies. Previous publications have reported on systems performing regulation of acoustic cavitation in continuous sonication when applied in vitro, but the main challenge today is to achieve real-time control of cavitation activity in pulsed sonication when used in vivo. The present work aims at developing a system to control acoustic cavitation in a pulsed wave condition using a real-time feedback loop. The experimental setup consists of a water bath in which is submerged a focused transducer (pulsed waves, frequency 550 kHz) used for sonication and a hydrophone used to listen to inertial cavitation. The designed regulation process allows the cavitation activity to be controlled through a 300 μs feedback loop. Without regulation, cavitation exhibits numerous bursts of intense activity and large variations of inertial cavitation level over time. In a regulated regime, the control of inertial cavitation activity within a pulse leads to consistent cavitation levels over time with an enhancement of the reproducibility.

  20. Cavitational hydrothermal oxidation: A new remediation process. 1998 annual progress report

    SciTech Connect

    Suslick, K.S.

    1998-06-01

    'The primary goal is to develop a quantitative understanding of cavitation phenomena in aqueous media and the development of applications of cavitation to remediation processes. Efforts have focused on three separate areas: sonoluminescence as a probe of conditions created during cavitational collapse in aqueous media, the use of cavitation for remediation of contaminated water, and an addition of the use of ultrasound in the synthesis of novel heterogeneous catalysts for hydrodehalogenation of halocarbons under mild conditions. This report summarizes work after one year of a three year project. In order to gain further understanding of the conditions present during cavitation, the author has continued his studies of sonoluminescence. He has made recent breakthroughs in the use of emission spectroscopy for temperature and pressure measurement of cavitation events, which he expects to publish shortly. He has been able to measure for the first time the temperature of cavitation in water during multi-bubble cavitation in the presence of aromatic hydrocarbons. The emission from excited states of C{sub 2} in water gives temperatures that are consistent with adiabatic compressional heating, with maximum temperatures of 4,300 K. Prior measurements of cavitation temperatures in low vapor pressure nonaqueous media gave somewhat higher temperatures of 5,000 K. This work lays permanently to rest exotic mechanisms for cavitational chemistry, at least for cavitation fields.'

  1. Removal of Residual Cavitation Nuclei to Enhance Histotripsy Fractionation of Soft Tissue

    PubMed Central

    Duryea, Alexander P.; Cain, Charles A.; Roberts, William W.; Hall, Timothy L.

    2015-01-01

    Remnant bubble nuclei generated by primary cavitation collapse can limit the efficiency of histotripsy soft tissue fractionation. When these residual bubbles persist from one histotripsy pulse to the next, they can seed the repetitive nucleation of cavitation bubbles at a discrete set of sites within the focal volume. This effect—referred to as cavitation memory—manifests in inefficient lesion formation, as certain sites within the focal volume are overtreated while others remain undertreated. While the cavitation memory effect can be passively mitigated by using a low pulse repetition frequency (PRF) that affords remnant nuclei sufficient time for dissolution between successive pulses, this low PRF also results in slow lesion production. As such, it would be highly desirable to maintain the high per-pulse efficiency associated with low pulse rates when much higher PRFs are utilized. In this vein we have developed a strategy for the active removal of the remnant bubble nuclei following primary cavitation collapse, using low amplitude ultrasound sequences (termed bubble removal sequences) to stimulate the aggregation and subsequent coalescence of these bubbles. In this study, bubble removal sequences were incorporated in high-PRF histotripsy treatment (100 Hz) of a red blood cell tissue-mimicking phantom that allows for the visualization of lesion development in real-time. A series of reference treatments were also conducted at the low PRF of 1 Hz in order to provide a point of comparison when cavitation memory effects are minimal. It was found that bubble removal sequences as short as 1 ms are capable of maintaining the efficacious lesion development characteristics associated with the low PRF of 1 Hz when the much higher pulse rate of 100 Hz is used. These results were then extended to the treatment of a large volume within the tissue phantom, and optimal bubble removal sequences identified for the single-focal-spot case were utilized to homogenize a 10 × 10

  2. Modelling of flow with cavitation in centrifugal pump

    NASA Astrophysics Data System (ADS)

    Homa, D.; Wróblewski, W.

    2014-08-01

    The paper concerns flow modelling in centrifugal pump with special consideration of cavitation phenomena. Cavitation occurs when local pressure drops below the saturation pressure according to the temperature of the flow. Vapour bubbles are created and then they flow through the areas with higher pressure. The bubbles collapse rapidly generating pressure wave, noise and vibration. Working under cavitation condition is very dangerous to a pump and can significantly shorten its lifetime. The investigated centrifugal pump consists of three two-flow rotors and stators working on a single shaft. The modelling process started with grid independence study. When the grid was chosen, the pump performance curve was obtained using the single phase fluid model. Next, using the results from pump performance curve calculations, the cavitation characteristic was obtained. The constant capacity was held when the pressure at the inlet was reduced. The two - phase model was used with Zwart cavitation model. The results indicate that the pump work in safe range of parameters. The analysis also provides wide range of information about the areas of vapour appearance. The most endangered regions are leading edges of rotor. When pressure at the inlet drops to about one third of pressure that calculations started from the cavitation cloud appears in whole rotor. The intense of vapour bubbles creation is greater near the shroud of the pump, rather than near the hub. As cavitation is strongly unsteady phenomena, the transient calculations were performed to check if the results are close to those obtained using the steady state type. The differences are not significant.

  3. A Generalized Eulerian-Lagrangian Analysis, with Application to Liquid Flows with Vapor Bubbles

    NASA Technical Reports Server (NTRS)

    Dejong, Frederik J.; Meyyappan, Meyya

    1993-01-01

    Under a NASA MSFC SBIR Phase 2 effort an analysis has been developed for liquid flows with vapor bubbles such as those in liquid rocket engine components. The analysis is based on a combined Eulerian-Lagrangian technique, in which Eulerian conservation equations are solved for the liquid phase, while Lagrangian equations of motion are integrated in computational coordinates for the vapor phase. The novel aspect of the Lagrangian analysis developed under this effort is that it combines features of the so-called particle distribution approach with those of the so-called particle trajectory approach and can, in fact, be considered as a generalization of both of those traditional methods. The result of this generalization is a reduction in CPU time and memory requirements. Particle time step (stability) limitations have been eliminated by semi-implicit integration of the particle equations of motion (and, for certain applications, the particle temperature equation), although practical limitations remain in effect for reasons of accuracy. The analysis has been applied to the simulation of cavitating flow through a single-bladed section of a labyrinth seal. Models for the simulation of bubble formation and growth have been included, as well as models for bubble drag and heat transfer. The results indicate that bubble formation is more or less 'explosive'. for a given flow field, the number density of bubble nucleation sites is very sensitive to the vapor properties and the surface tension. The bubble motion, on the other hand, is much less sensitive to the properties, but is affected strongly by the local pressure gradients in the flow field. In situations where either the material properties or the flow field are not known with sufficient accuracy, parametric studies can be carried out rapidly to assess the effect of the important variables. Future work will include application of the analysis to cavitation in inducer flow fields.

  4. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU)

    NASA Astrophysics Data System (ADS)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2016-09-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in clinics. Besides the thermal ablation, tissue disintegration is also possible because of the interaction between the distorted HIFU bursts and either bubble cloud or boiling bubble. Hydrodynamic cavitation is another type of cavitation and has been employed widely in industry, but its role in mechanical erosion to tissue is not clearly known. In this study, the bubble dynamics immediately after the termination of HIFU exposure in the transparent gel phantom was captured by high-speed photography, from which the bubble displacement towards the transducer and the changes of bubble size was quantitatively determined. The characteristics of hydrodynamic cavitation due to the release of the acoustic radiation force and relaxation of compressed surrounding medium were found to associate with the number of pulses delivered and HIFU parameters (i.e. pulse duration and pulse repetition frequency). Because of the initial big bubble (~1 mm), large bubble expansion (up to 1.76 folds), and quick bubble motion (up to ~1 m s-1) hydrodynamic cavitation is significant after HIFU exposure and may lead to mechanical erosion. The shielding effect of residual tiny bubbles would reduce the acoustic energy delivered to the pre-existing bubble at the focus and, subsequently, the hydrodynamic cavitation effect. Tadpole shape of mechanical erosion in ex vivo porcine kidney samples was similar to the contour of bubble dynamics in the gel. Liquefied tissue was observed to emit towards the transducer through the punctured tissue after HIFU exposure in the sonography. In summary, the release of HIFU exposure-induced hydrodynamic cavitation produces significant bubble expansion and motion, which may be another important mechanism of tissue erosion. Understanding its mechanism and optimizing the outcome would broaden and enhance HIFU applications.

  5. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU)

    NASA Astrophysics Data System (ADS)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2016-09-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in clinics. Besides the thermal ablation, tissue disintegration is also possible because of the interaction between the distorted HIFU bursts and either bubble cloud or boiling bubble. Hydrodynamic cavitation is another type of cavitation and has been employed widely in industry, but its role in mechanical erosion to tissue is not clearly known. In this study, the bubble dynamics immediately after the termination of HIFU exposure in the transparent gel phantom was captured by high-speed photography, from which the bubble displacement towards the transducer and the changes of bubble size was quantitatively determined. The characteristics of hydrodynamic cavitation due to the release of the acoustic radiation force and relaxation of compressed surrounding medium were found to associate with the number of pulses delivered and HIFU parameters (i.e. pulse duration and pulse repetition frequency). Because of the initial big bubble (~1 mm), large bubble expansion (up to 1.76 folds), and quick bubble motion (up to ~1 m s‑1) hydrodynamic cavitation is significant after HIFU exposure and may lead to mechanical erosion. The shielding effect of residual tiny bubbles would reduce the acoustic energy delivered to the pre-existing bubble at the focus and, subsequently, the hydrodynamic cavitation effect. Tadpole shape of mechanical erosion in ex vivo porcine kidney samples was similar to the contour of bubble dynamics in the gel. Liquefied tissue was observed to emit towards the transducer through the punctured tissue after HIFU exposure in the sonography. In summary, the release of HIFU exposure-induced hydrodynamic cavitation produces significant bubble expansion and motion, which may be another important mechanism of tissue erosion. Understanding its mechanism and optimizing the outcome would broaden and enhance HIFU applications.

  6. Cell mechanics in biomedical cavitation

    PubMed Central

    Wang, Qianxi; Manmi, Kawa; Liu, Kuo-Kang

    2015-01-01

    Studies on the deformation behaviours of cellular entities, such as coated microbubbles and liposomes subject to a cavitation flow, become increasingly important for the advancement of ultrasonic imaging and drug delivery. Numerical simulations for bubble dynamics of ultrasound contrast agents based on the boundary integral method are presented in this work. The effects of the encapsulating shell are estimated by adapting Hoff's model used for thin-shell contrast agents. The viscosity effects are estimated by including the normal viscous stress in the boundary condition. In parallel, mechanical models of cell membranes and liposomes as well as state-of-the-art techniques for quantitative measurement of viscoelasticity for a single cell or coated microbubbles are reviewed. The future developments regarding modelling and measurement of the material properties of the cellular entities for cutting-edge biomedical applications are also discussed. PMID:26442142

  7. Characterization of acoustic cavitation in water and molten aluminum alloy.

    PubMed

    Komarov, Sergey; Oda, Kazuhiro; Ishiwata, Yasuo; Dezhkunov, Nikolay

    2013-03-01

    High-intensive ultrasonic vibrations have been recognized as an attractive tool for refining the grain structure of metals in casting technology. However, the practical application of ultrasonics in this area remains rather limited. One of the reasons is a lack of data needed to optimize the ultrasonic treatment conditions, particularly those concerning characteristics of cavitation zone in molten aluminum. The main aim of the present study was to investigate the intensity and spectral characteristics of cavitation noise generated during radiation of ultrasonic waves into water and molten aluminum alloys, and to establish a measure for evaluating the cavitation intensity. The measurements were performed by using a high temperature cavitometer capable of measuring the level of cavitation noise within five frequency bands from 0.01 to 10MHz. The effect of cavitation treatment was verified by applying high-intense ultrasonic vibrations to a DC caster to refine the primary silicon grains of a model Al-17Si alloy. It was found that the level of high frequency noise components is the most adequate parameter for evaluating the cavitation intensity. Based on this finding, it was concluded that implosions of cavitation bubbles play a decisive role in refinement of the alloy structure.

  8. Generation and characterization of submicron size bubbles.

    PubMed

    Wu, Chendi; Nesset, Kirsten; Masliyah, Jacob; Xu, Zhenghe

    2012-11-01

    A baffled high intensity agitation (BHIA) cell was used to generate submicron size bubbles of an average diameter around 500nm by hydrodynamic cavitation. The generation of submicron size bubbles by BHIA cell was found to be largely dependent on the agitation speed of impellers. The duration of agitation and temperature showed only a marginal effect on generation of submicron size bubbles. Surface properties such as zeta-potential and stability of submicron size bubbles were found to be highly dependent on the chemistry of solutions in which the bubbles are generated. The presence of surfactant and frother in water was found to be beneficial for generating a larger number of submicron size bubbles that are more stable, having a life time of up to 24h.

  9. Bubble formation in microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1994-01-01

    Two KC-135 flight campaigns have been conducted to date which are specifically dedicated to study bubble formation in microgravity. The first flight was conducted during March 14-18, 1994, and the other during June 20-24, 1994. The results from the June 1994 flight have not been analyzed yet, while the results from the March flight have been partially analyzed. In the first flight three different experiments were performed, one with the specific aim at determining whether or not cavitation can take place during any of the fluid handling procedures adopted in the shuttle bioprocessing experiments. The other experiments were concerned with duplicating some of the procedures that resulted in bubble formation, namely the NCS filling procedure and the needle scratch of a solid surface. The results from this set of experiments suggest that cavitation did not take place during any of the fluid handling procedures. The results clearly indicate that almost all were generated as a result of the breakup of the gas/liquid interface. This was convincingly demonstrated in the scratch tests as well as in the liquid fill tests.

  10. Effect of Noble Gases on Sonoluminescence Temperatures during Multibubble Cavitation

    SciTech Connect

    Didenko, Yuri T.; McNamara, William B. III; Suslick, Kenneth S.

    2000-01-24

    Sonoluminescence spectra were collected from Cr(CO){sub 6} solutions in octanol and dodecane saturated with various noble gases. The emission from excited-state metal atoms serves as an internal thermometer of cavitation. The intensity and temperature of sonoluminescence increases from He to Xe. The intensity of the underlying continuum, however, grows faster with increasing temperature than the line emission. Dissociation of solvent molecules within the bubble consumes a significant fraction of the energy generated by the collapsing bubble, which can limit the final temperature inside the bubble. (c) 2000 The American Physical Society.

  11. Toward the development of erosion-free ultrasonic cavitation cleaning with gas-supersaturated water

    NASA Astrophysics Data System (ADS)

    Yamashita, Tatsuya; Ando, Keita

    2015-11-01

    In ultrasonic cleaning, contaminant particles attached at target surfaces are removed by liquid flow or acoustic waves that are induced by acoustic cavitation bubbles. However, the inertial collapse of such bubbles often involve strong shock emission or water hammer by re-entrant jets, thereby giving rise to material erosion. Here, we aim at developing an erosion-free ultrasonic cleaning technique with the aid of gas-supersaturated water. The key idea is that (gaseous) cavitation is triggered easily even with low-intensity sonication in water where gases are dissolved beyond Henry's saturation limit, allowing us to buffer violent bubble collapse. In this presentation, we report on observations of the removal of micron/submicron-sized particles attached at glass surfaces by the action of gaseous cavitation bubbles under low-intensity sonication.

  12. Predicting the growth of nanoscale nuclei by histotripsy pulses.

    PubMed

    Bader, Kenneth B; Holland, Christy K

    2016-04-01

    Histotripsy is a focused ultrasound therapy that ablates tissue through the mechanical action of cavitation. Histotripsy-initiated cavitation activity is generated from shocked ultrasound pulses that scatter from incidental nuclei (shock scattering histotripsy), or purely tensile ultrasound pulses (microtripsy). The Yang/Church model was numerically integrated to predict the behavior of the cavitation nuclei exposed to measured shock scattering histotripsy pulses. The bubble motion exhibited expansion only behavior, suggesting that the ablative action of a histotripsy pulse is related to the maximum size of the bubble. The analytic model of Holland and Apfel was extended to predict the maximum size of cavitation nuclei for both shock scattering histotripsy and microtripsy excitations. The predictions of the analytic model and the numerical model agree within 2% for fully developed shock scattering histotripsy pulses (>72 MPa peak positive pressure). For shock scattering histotripsy pulses that are not fully developed (<72 MPa), the analytic model underestimated the maximum size by less than 5%. The analytic model was also used to predict bubble growth nucleated from microtripsy insonations, and was found to be consistent with experimental observations. Based on the extended analytic model, metrics were developed to predict the extent of the treatment zone from histotripsy pulses.

  13. Predicting the growth of nanoscale nuclei by histotripsy pulses

    NASA Astrophysics Data System (ADS)

    Bader, Kenneth B.; Holland, Christy K.

    2016-04-01

    Histotripsy is a focused ultrasound therapy that ablates tissue through the mechanical action of cavitation. Histotripsy-initiated cavitation activity is generated from shocked ultrasound pulses that scatter from incidental nuclei (shock scattering histotripsy), or purely tensile ultrasound pulses (microtripsy). The Yang/Church model was numerically integrated to predict the behavior of the cavitation nuclei exposed to measured shock scattering histotripsy pulses. The bubble motion exhibited expansion only behavior, suggesting that the ablative action of a histotripsy pulse is related to the maximum size of the bubble. The analytic model of Holland and Apfel was extended to predict the maximum size of cavitation nuclei for both shock scattering histotripsy and microtripsy excitations. The predictions of the analytic model and the numerical model agree within 2% for fully developed shock scattering histotripsy pulses (>72 MPa peak positive pressure). For shock scattering histotripsy pulses that are not fully developed (<72 MPa), the analytic model underestimated the maximum size by less than 5%. The analytic model was also used to predict bubble growth nucleated from microtripsy insonations, and was found to be consistent with experimental observations. Based on the extended analytic model, metrics were developed to predict the extent of the treatment zone from histotripsy pulses.

  14. Predicting the growth of nanoscale nuclei by histotripsy pulses

    PubMed Central

    Bader, Kenneth B; Holland, Christy K

    2016-01-01

    Histotripsy is a focused ultrasound therapy that ablates tissue through the mechanical action of cavitation. Histotripsy-initiated cavitation activity is generated from shocked ultrasound pulses that scatter from incidental nuclei (shock scattering histotripsy), or purely tensile ultrasound pulses (microtripsy). The Yang/Church model was numerically integrated to predict the behavior of the cavitation nuclei exposed to measured shock scattering histotripsy pulses. The bubble motion exhibited expansion only behavior, suggesting that the ablative action of a histotripsy pulse is related to the maximum size of the bubble. The analytic model of Holland and Apfel was extended to predict the maximum size of cavitation nuclei for both shock scattering histotripsy and microtripsy excitations. The predictions of the analytic model and the numerical model agree within 2% for fully developed shock scattering histotripsy pulses (>72 MPa peak positive pressure). For shock scattering histotripsy pulses that are not fully developed (<72 MPa), the analytic model underestimated the maximum size by less than 5%. The analytic model was also used to predict bubble growth nucleated from microtripsy insonations, and was found to be consistent with experimental observations. Based on the extended analytic model, metrics were developed to predict the extent of the treatment zone from histotripsy pulses. PMID:26988374

  15. Nano bubbles in liquid of a noble-gas mixture.

    PubMed

    Yamamoto, Takenori; Ohnishi, Shuhei

    2010-02-01

    Large-scale molecular dynamics (MD) simulations with over one million atoms are used to investigate nano bubbles in Ar-Ne liquid. The simulations demonstrate cavitations in the stretched liquid, and bubble creation and collapse. We find that a small cavity created in the stretched liquid spontaneously transforms into a nano bubble with the homogeneous vapor region. The equilibrium spherical bubble of 11.4 nm in radius is obtained after the long-time MD run. The surface tension of the nano bubble is found to be larger than that of the flat surface.

  16. Stable tridimensional bubble clusters in multi-bubble sonoluminescence (MBSL).

    PubMed

    Rosselló, J M; Dellavale, D; Bonetto, F J

    2015-01-01

    In the present work, stable clusters made of multiple sonoluminescent bubbles are experimentally and theoretically studied. Argon bubbles were acoustically generated and trapped using bi-frequency driving within a cylindrical chamber filled with a sulfuric acid aqueous solution (SA85w/w). The intensity of the acoustic pressure field was strong enough to sustain, during several minutes, a large number of positionally and spatially fixed (without pseudo-orbits) sonoluminescent bubbles over an ellipsoidally-shaped tridimensional array. The dimensions of the ellipsoids were studied as a function of the amplitude of the applied low-frequency acoustic pressure (PAc(LF)) and the static pressure in the fluid (P0). In order to explain the size and shape of the bubble clusters, we performed a series of numerical simulations of the hydrodynamic forces acting over the bubbles. In both cases the observed experimental behavior was in excellent agreement with the numerical results. The simulations revealed that the positionally stable region, mainly determined by the null primary Bjerknes force (F→Bj), is defined as the outer perimeter of an axisymmetric ellipsoidal cluster centered in the acoustic field antinode. The role of the high-frequency component of the pressure field and the influence of the secondary Bjerknes force are discussed. We also investigate the effect of a change in the concentration of dissolved gas on the positional and spatial instabilities through the cluster dimensions. The experimental and numerical results presented in this paper are potentially useful for further understanding and modeling numerous current research topics regarding multi-bubble phenomena, e.g. forces acting on the bubbles in multi-frequency acoustic fields, transient acoustic cavitation, bubble interactions, structure formation processes, atomic and molecular emissions of equal bubbles and nonlinear or unsteady acoustic pressure fields in bubbly media. PMID:24974006

  17. Stable tridimensional bubble clusters in multi-bubble sonoluminescence (MBSL).

    PubMed

    Rosselló, J M; Dellavale, D; Bonetto, F J

    2015-01-01

    In the present work, stable clusters made of multiple sonoluminescent bubbles are experimentally and theoretically studied. Argon bubbles were acoustically generated and trapped using bi-frequency driving within a cylindrical chamber filled with a sulfuric acid aqueous solution (SA85w/w). The intensity of the acoustic pressure field was strong enough to sustain, during several minutes, a large number of positionally and spatially fixed (without pseudo-orbits) sonoluminescent bubbles over an ellipsoidally-shaped tridimensional array. The dimensions of the ellipsoids were studied as a function of the amplitude of the applied low-frequency acoustic pressure (PAc(LF)) and the static pressure in the fluid (P0). In order to explain the size and shape of the bubble clusters, we performed a series of numerical simulations of the hydrodynamic forces acting over the bubbles. In both cases the observed experimental behavior was in excellent agreement with the numerical results. The simulations revealed that the positionally stable region, mainly determined by the null primary Bjerknes force (F→Bj), is defined as the outer perimeter of an axisymmetric ellipsoidal cluster centered in the acoustic field antinode. The role of the high-frequency component of the pressure field and the influence of the secondary Bjerknes force are discussed. We also investigate the effect of a change in the concentration of dissolved gas on the positional and spatial instabilities through the cluster dimensions. The experimental and numerical results presented in this paper are potentially useful for further understanding and modeling numerous current research topics regarding multi-bubble phenomena, e.g. forces acting on the bubbles in multi-frequency acoustic fields, transient acoustic cavitation, bubble interactions, structure formation processes, atomic and molecular emissions of equal bubbles and nonlinear or unsteady acoustic pressure fields in bubbly media.

  18. Detecting vapour bubbles in simulations of metastable water.

    PubMed

    González, Miguel A; Menzl, Georg; Aragones, Juan L; Geiger, Philipp; Caupin, Frederic; Abascal, Jose L F; Dellago, Christoph; Valeriani, Chantal

    2014-11-14

    The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguish between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure. PMID:25399176

  19. Detecting vapour bubbles in simulations of metastable water

    SciTech Connect

    González, Miguel A.; Abascal, Jose L. F.; Valeriani, Chantal E-mail: cvaleriani@quim.ucm.es; Menzl, Georg; Geiger, Philipp; Dellago, Christoph E-mail: cvaleriani@quim.ucm.es; Aragones, Juan L.; Caupin, Frederic

    2014-11-14

    The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguish between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure.

  20. Detecting vapour bubbles in simulations of metastable water.

    PubMed

    González, Miguel A; Menzl, Georg; Aragones, Juan L; Geiger, Philipp; Caupin, Frederic; Abascal, Jose L F; Dellago, Christoph; Valeriani, Chantal

    2014-11-14

    The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguish between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure.

  1. Detecting vapour bubbles in simulations of metastable water

    NASA Astrophysics Data System (ADS)

    González, Miguel A.; Menzl, Georg; Aragones, Juan L.; Geiger, Philipp; Caupin, Frederic; Abascal, Jose L. F.; Dellago, Christoph; Valeriani, Chantal

    2014-11-01

    The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguish between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure.

  2. Removal of residual cavitation nuclei to enhance histotripsy fractionation of soft tissue.

    PubMed

    Duryea, Alexander P; Cain, Charles A; Roberts, William W; Hall, Timothy L

    2015-12-01

    Remanent bubble nuclei generated by primary cavitation collapse can limit the efficiency of histotripsy softtissue fractionation. When these residual bubbles persist from one histotripsy pulse to the next, they can seed the repetitive nucleation of cavitation bubbles at a discrete set of sites within the focal volume. This effect-referred to as cavitation memory- manifests in inefficient lesion formation, because certain sites within the focal volume are overtreated whereas others remain undertreated. Although the cavitation memory effect can be passively mitigated by using a low pulse repetition frequency (PRF) that affords remanent nuclei sufficient time for dissolution between successive pulses, this low PRF also results in slow lesion production. As such, it would be highly desirable to maintain the high per-pulse efficiency associated with low pulse rates when much higher PRFs are utilized. In this vein, we have developed a strategy for the active removal of the remanent bubble nuclei following primary cavitation collapse, using low-amplitude ultrasound sequences (termed bubble-removal sequences) to stimulate the aggregation and subsequent coalescence of these bubbles. In this study, bubbleremoval sequences were incorporated in high-PRF histotripsy treatment (100 Hz) of a red blood cell tissue-mimicking phantom that allows for the visualization of lesion development in real time. A series of reference treatments were also conducted at the low PRF of 1 Hz to provide a point of comparison for which cavitation memory effects are minimal. It was found that bubble-removal sequences as short as 1 ms are capable of maintaining the efficacious lesion development characteristics associated with the low PRF of 1 Hz when the much higher pulse rate of 100 Hz is used. These results were then extended to the treatment of a large volume within the tissue phantom, and optimal bubble-removal sequences identified for the singlefocal- spot case were utilized to homogenize a 10

  3. Elastic cavitation and fracture via injection.

    PubMed

    Hutchens, Shelby B; Fakhouri, Sami; Crosby, Alfred J

    2016-03-01

    The cavitation rheology technique extracts soft materials mechanical properties through pressure-monitored fluid injection. Properties are calculated from the system's response at a critical pressure that is governed by either elasticity or fracture (or both); however previous elementary analysis has not been capable of accurately determining which mechanism is dominant. We combine analyses of both mechanisms in order to determine how the full system thermodynamics, including far-field compliance, dictate whether a bubble in an elastomeric solid will grow through either reversible or irreversible deformations. Applying these analyses to experimental data, we demonstrate the sensitivity of cavitation rheology to microstructural variation via a co-dependence between modulus and fracture energy. PMID:26837798

  4. Comparative CFD Investigation on the Performance of a New Family of Super-Cavitating Hydrofoils

    NASA Astrophysics Data System (ADS)

    Brizzolara, S.; Bonfiglio, L.

    2015-12-01

    We present a CFD characterization of a new type of super-cavitating hydrofoil section designed to have optimal performance both in super-cavitating conditions and in sub-cavitating conditions (including transitional regime). The basic concepts of the new profile family are first introduced. Lift, drag and cavity shapes at different cavitation numbers are calculated for a new foil and compared with those of conventional sub-cavitating and super-cavitating profiles. Numerical calculations confirm the superior characteristics of the new hydrofoil family, which is able to attain high lift and efficiency both in sub-cavitating and super-cavitating conditions. Numerical calculations are based on a multi-phase fully turbulent URANSE solver with a bubble dynamic cavitation model to follow the generation and evaporation of the vapor phase. The new profile family, initially devised for ultra-high speed hydrofoil crafts, may result useful for diverse applications such as super-cavitating or surface-piercing propellers or high-speed sailing boats.

  5. Fuel Performance Experiments and Modeling: Fission Gas Bubble Nucleation and Growth in Alloy Nuclear Fuels

    SciTech Connect

    McDeavitt, Sean; Shao, Lin; Tsvetkov, Pavel; Wirth, Brian; Kennedy, Rory

    2014-04-07

    Advanced fast reactor systems being developed under the DOE's Advanced Fuel Cycle Initiative are designed to destroy TRU isotopes generated in existing and future nuclear energy systems. Over the past 40 years, multiple experiments and demonstrations have been completed using U-Zr, U-Pu-Zr, U-Mo and other metal alloys. As a result, multiple empirical and semi-empirical relationships have been established to develop empirical performance modeling codes. Many mechanistic questions about fission as mobility, bubble coalescience, and gas release have been answered through industrial experience, research, and empirical understanding. The advent of modern computational materials science, however, opens new doors of development such that physics-based multi-scale models may be developed to enable a new generation of predictive fuel performance codes that are not limited by empiricism.

  6. Experimental determination of cavitation thresholds in liquid water and mercury

    SciTech Connect

    Taleyarkhan, R.P.; Gulec, K.; West, C.D.; Haines, J.

    1998-09-01

    It is well-known that fluids (like solids) will break apart or form voids when put under sufficient tension. The present study has been motivated by the need to evaluate the impact of fluid cavitation in spallation neutron source target systems, more specifically for the proposed 1-MW Spallation Neutron Source (SNS) project, which is being designed in collaboration between Oak Ridge National Laboratory (ORNL), Los Alamos National Laboratory, Lawrence Berkeley National Laboratory, Brookhaven National Laboratory, and Argonne National Laboratory. Indeed, results of SNS-specific simulations have indicated that the onset of cavitation could play a very significant role in reducing imposed stresses in structural components of the SNS. In general, the cavitation of fluids is target systems is important to consider for a variety of reasons. Its occurrence can have significant impact on heat transfer, pressure pulse generation, fluid jetting on to structures, surface erosion, stresses induced in enclosures, etc. Therefore, it is important to evaluate the threshold pressure under which the fluid in tension will undergo cavitation. Another major aspect concerns the possible onset of cavitation in an oscillating pressure field; i.e., one would need to know if fluids such as mercury and water will cavitate if the imposed tensile pressure in the fluid is of short duration. If indeed it takes sufficiently long for cavitation bubbles to nucleate, then it would be possible to disregard the complexities involved with addressing cavitation-related issues. This paper provides an overview of preliminary work done to date to derive information on cavitation onset in a relatively static and in a high-frequency environment.

  7. Cavitation in ultrasound and shockwave therapy

    NASA Astrophysics Data System (ADS)

    Colonius, Tim

    2014-11-01

    Acoustic waves, especially high-intensity ultrasound and shock waves, are used for medical imaging and intra- and extra-corporeal manipulation of cells, tissue, and urinary calculi. Waves are currently used to treat kidney stone disease, plantar fasciitis, and bone nonunion, and they are being investigated as a technique to ablate cancer tumors and mediate drug delivery. In many applications, acoustic waves induce the expansion and collapse of preexisting or newly cavitating bubbles whose presence can either mediate the generation of localized stresses or lead to collateral damage, depending on how effectively they can be controlled. We describe efforts aimed at simulating the collapse of bubbles, both individually and in clusters, with the aim to characterize the induced mechanical stresses and strains. To simulate collapse of one or a few bubbles, compressible Euler and Navier-Stokes simulations of multi-component materials are performed with WENO-based shock and interface capturing schemes. Repetitive insonification generates numerous bubbles that are difficult to resolve numerically. Such clouds are also important in traditional engineering applications such as caveating hydrofoils. Models that incorporate the dynamics of an unresolved dispersed phase consisting of the bubble cloud are also developed. The results of several model problems including bubble collapse near rigid surfaces, bubble collapse near compliant surfaces and in small capillaries are analyzed. The results are processed to determine the potential for micron-sized preexisting gas bubbles to damage capillaries. The translation of the fundamental fluid dynamics into improvements in the design and clinical application of shockwave lithotripters will be discussed. NIH Grant PO1-DK043881.

  8. Cavitation by spall fracture of solid walls in liquids

    NASA Astrophysics Data System (ADS)

    Mikulich, V.; Brücker, Ch.

    2014-07-01

    Experiments are carried out to investigate the cavitation process induced by the spill-off from material from a surface in a liquid environment. Therefore, a simplified physical model was designed which allows the optical observation of the process next to a transparent glass rod submerged in a liquid where the rod is forced to fracture at a pre-defined groove. High-speed shadow-imaging and refractive index matching allow observation of the dynamics of the cavitation generation and cavitation bubble breakdown together with the flow. The results show that the initial phase of spill-off is a vertical lift-off of the rod from the surface that is normal to the direction of pendulum impact. A cavitation bubble is immediately formed during spill-off process and grows in size until lateral motion of the rod sets in. While the rod is transported away, the bubble shrinks into hyperbolic shape and finally collapses. This process is regarded as one contributing factor to the high efficiency of hydro-abrasive wear.

  9. Adaptive damping in shape memory TiNi during cavitation

    NASA Astrophysics Data System (ADS)

    Jardine, A. Peter

    Recent studies by this author and others has demonstrated that cavitation-erosion of NiTi coatings or bulk NiTi is exceptiona. Studies were undertaken to ascertain whether this property is a consequence of either the general intermetallic properties of NiTi or by an adaptive stress-dissipation mechanism of the cavitation-generated shock wave by a microstructural mechanism related to the shape memory effect. In cavitation, an oscillating pressure field causes the formation and implosion of air bubbles. As a surface easily nucleates bubbles, the subsequent implosion of the bubbles generates stresses approaching several MPa, which are large enough to ablate material, ansd are also high enough to generate stress-induced Martensite or Austenite, depending on whether the applied stress is tensile or compressive. The implication is that the stress wave may be partially accommodated by the stress-induced transformation, which can dissipate the energy as heat on retransformation to the materials unstressed phase. Calculations concerning the variation of the cavitation-induced stresses and temperature distribution with depth into the TiNi coupled with the associated problems of heat transfer will be presented. It will be shown that an adaptive mechanism is plausible.

  10. Can Cavitation Be Anticipated?

    SciTech Connect

    Allgood, G.O.; Dress, W.B.; Hylton, J.O.; Kercel, S.W.

    1999-04-25

    The major problem with cavitation in pumps and hydraulic systems is that there is no effective (conventional) method for detecting or predicting its inception. The traditional method of recognizing cavitation in a pump is to declare the event occurring when the total head drops by some arbitrary value (typically 3%) in response to a pressure reduction at the pump inlet. However, the device is already seriously cavitating when this happens. What is actually needed is a practical method to detect impending rather than incipient cavitation. Whereas the detection of incipient cavitation requires the detection of features just after cavitation starts, the anticipation of cavitation requires the detection and identification of precursor features just before it begins. Two recent advances that make this detection possible. The first is acoustic sensors with a bandwidth of 1 MHz and a dynamic range of 80 dB that preserve the fine details of the features when subjected to coarse vibrations. The second is the application of Bayesian parameter estimation which makes it possible to separate weak signals, such as those present in cavitation precursors, from strong signals, such as pump vibration. Bayesian parameter estimation derives a model based on cavitation hydrodynamics and produces a figure of merit of how well it fits the acquired data. Applying this model to an anticipatory engine should lead to a reliable method of anticipating cavitation before it occurs. This paper reports the findings of precursor features using high-performance sensors and Bayesian analysis of weak acoustic emissions in the 100-1000kHz band from an experimental flow loop.

  11. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy.

    PubMed

    Zhong, P; Cioanta, I; Cocks, F H; Preminger, G M

    1997-05-01

    The inertial cavitation and associated acoustic emission generated during electrohydraulic shock wave lithotripsy were studied using high-speed photography and acoustic pressure measurements. The dynamics of cavitation bubble clusters, induced in vitro by an experimental laboratory lithotripter, were recorded using a high-speed rotating drum camera at 20,000 frames/s. The acoustic emission, generated by the rapid initial expansion and subsequent violent collapse of the cavitation bubbles, was measured simultaneously using a 1-MHz focused hydrophone, The expansion duration of the cavitation bubble cluster was found to correlate closely with the time delay between the first two groups of pressure spikes in the acoustic emission signal. This correlation provides an essential physical basis to assess the inertial cavitation produced by a clinical Dornier HM-3 shock wave lithotripter, both in water and in renal parenchyma of a swine model. In the clinical output voltage range (16-24 kV), the expansion duration of the primary cavitation bubble cluster generated by the HM-3 lithotripter in water increases from 158 to 254 microseconds, whereas the corresponding values in renal parenchyma are much smaller and remain almost unchanged (from 71 to 72 microseconds). In contrast, subsequent oscillation of the bubble following its primary collapse is significantly prolonged (from 158-235 microseconds in water to 1364-1373 microseconds in renal parenchyma). These distinctive differences between lithotripsy-induced inertial cavitation in vitro and that in vivo are presumably due to the constraining effect of renal tissue on bubble expansion. PMID:9165740

  12. Cavitation erosion: Using the target material as a pressure sensor

    NASA Astrophysics Data System (ADS)

    Roy, Samir Chandra; Franc, Jean-Pierre; Fivel, Marc

    2015-10-01

    Numerical prediction of mass loss due to cavitation erosion requires the knowledge of the hydrodynamic impact loads generated by cavitation bubble collapses. Experimental measurements of such impact loads using conventional pressure sensors are not reliable (if not impossible) due to the micron size and the very small duration of the loading. In this paper, a new method to estimate these loading conditions is proposed based on cavitation pitting tests and an iterative inverse finite element modeling. The principle of the method is as follows. First, numerous pits corresponding to localized plastically deformed regions are identified from a cavitation test performed in a dedicated tunnel. Then each pit is numerically reproduced by finite element simulations of the material response to a representative Gaussian pressure field supposed to mimic a single bubble collapse. This gives the size and pressure distribution of the bubble impacts. The prime objective of this study is to find out if the target material itself could be used as a pressure sensor or not, i.e., if the cavitation pits left on the surface of the tested specimen could provide the characteristics of the cavitating flow in terms of pressure fields independently of the target material. Pitting tests were done on three materials, namely, 7075 Aluminum alloy (Al-7075), 2205 duplex stainless steel (A-2205), and Nickel-Aluminum Bronze (NAB) at three different flow conditions and the impact loads have been estimated for each identified pit. Very interestingly, a statistical analysis shows that the estimated impact loads are material independent at all flow conditions, provided the material properties are characterized properly. It is also shown that for some materials, the constitutive parameters obtained from compression tests are not satisfactory.

  13. Shock-induced collapse of a bubble inside a deformable vessel.

    PubMed

    Coralic, Vedran; Colonius, Tim

    2013-07-01

    Shockwave lithotripsy repeatedly focuses shockwaves on kidney stones to induce their fracture, partially through cavitation erosion. A typical side effect of the procedure is hemorrhage, which is potentially the result of the growth and collapse of bubbles inside blood vessels. To identify the mechanisms by which shock-induced collapse could lead to the onset of injury, we study an idealized problem involving a preexisting bubble in a deformable vessel. We utilize a high-order accurate, shock- and interface-capturing, finite-volume scheme and simulate the three-dimensional shock-induced collapse of an air bubble immersed in a cylindrical water column which is embedded in a gelatin/water mixture. The mixture is a soft tissue simulant, 10% gelatin by weight, and is modeled by the stiffened gas equation of state. The bubble dynamics of this model configuration are characterized by the collapse of the bubble and its subsequent jetting in the direction of the propagation of the shockwave. The vessel wall, which is defined by the material interface between the water and gelatin/water mixture, is invaginated by the collapse and distended by the impact of the jet. The present results show that the highest measured pressures and deformations occur when the volumetric confinement of the bubble is strongest, the bubble is nearest the vessel wall and/or the angle of incidence of the shockwave reduces the distance between the jet tip and the nearest vessel surface. For a particular case considered, the 40 MPa shockwave utilized in this study to collapse the bubble generated a vessel wall pressure of almost 450 MPa and produced both an invagination and distention of nearly 50% of the initial vessel radius on a (10) ns timescale. These results are indicative of the significant potential of shock-induced collapse to contribute to the injury of blood vessels in shockwave lithotripsy.

  14. Numerical simulations of the aspherical collapse of laser and acoustically generated bubbles.

    PubMed

    Tsiglifis, Kostas; Pelekasis, Nikos A

    2007-04-01

    The details of nonlinear axisymmetric oscillations and collapse of bubbles subject to large internal or external pressure disturbances, are studied via a boundary integral method. Weak viscous effects on the liquid side are accounted for by integrating the equations of motion across the boundary layer that is formed adjacent to the interface. Simulations of single-cavitation bubble luminescence (SCBL) and single-bubble sonoluminescence (SBSL) are performed under conditions similar to reported experimental observations, aiming at capturing the details of bubble collapse. It is shown that any small initial deviation from sphericity, modeled through a small initial elongation along the axis of symmetry, may result in the formation and impact of two counter-propagating jets during collapse of the bubble, provided the amplitude of the initial disturbance is large enough and the viscosity of the surrounding fluid is small enough. Comparison between simulations and experimental observations show that this is the case for bubbles induced via a nano-second laser pulse (SCBL) during a luminescence event. In a similar fashion, simulations show that loss of sphericity accompanied with jet formation and impact during collapse is also possible with acoustically trapped bubbles in a standing pressure wave (SBSL), due to the many afterbounces of the bubble during its collapse phase. In both cases jet impact occurs as a result of P(2) growth in the form of an afterbounce instability. When the sound amplitude is decreased or liquid viscosity is increased the intensity of the afterbounce is decreased and jet impact is suppressed. When the sound amplitude is increased jet formation is superceded by Rayleigh-Taylor instability. In the same context stable luminescence is quenched in experimental observations. In both SCBL and SBSL simulations the severity of jet impact during collapse is quite large, and its local nature quite distinct. This attests to the fact that it is an energy

  15. Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion

    SciTech Connect

    Nigmatulin, Robert I.; Akhatov, Iskander Sh.; Topolnikov, Andrey S.; Bolotnova, Raisa Kh.; Vakhitova, Nailya K.; Lahey, Richard T. Jr.; Taleyarkhan, Rusi P.

    2005-10-01

    This paper provides the theoretical basis for energetic vapor bubble implosions induced by a standing acoustic wave. Its primary goal is to describe, explain, and demonstrate the plausibility of the experimental observations by Taleyarkhan et al. [Science 295, 1868 (2002); Phys. Rev. E 69, 036109 (2004)] of thermonuclear fusion for imploding cavitation bubbles in chilled deuterated acetone. A detailed description and analysis of these data, including a resolution of the criticisms that have been raised, together with some preliminary HYDRO code simulations, has been given by Nigmatulin et al. [Vestnik ANRB (Ufa, Russia) 4, 3 (2002); J. Power Energy 218-A, 345 (2004)] and Lahey et al. [Adv. Heat Transfer (to be published)]. In this paper a hydrodynamic shock (i.e., HYDRO) code model of the spherically symmetric motion for a vapor bubble in an acoustically forced liquid is presented. This model describes cavitation bubble cluster growth during the expansion period, followed by a violent implosion during the compression period of the acoustic cycle. There are two stages of the bubble dynamics process. The first, low Mach number stage, comprises almost all the time of the acoustic cycle. During this stage, the radial velocities are much less than the sound speeds in the vapor and liquid, the vapor pressure is very close to uniform, and the liquid is practically incompressible. This process is characterized by the inertia of the liquid, heat conduction, and the evaporation or condensation of the vapor. The second, very short, high Mach number stage is when the radial velocities are the same order, or higher, than the sound speeds in the vapor and liquid. In this stage high temperatures, pressures, and densities of the vapor and liquid take place. The model presented herein has realistic equations of state for the compressible liquid and vapor phases, and accounts for nonequilibrium evaporation/condensation kinetics at the liquid/vapor interface. There are interacting

  16. Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion

    NASA Astrophysics Data System (ADS)

    Nigmatulin, Robert I.; Akhatov, Iskander Sh.; Topolnikov, Andrey S.; Bolotnova, Raisa Kh.; Vakhitova, Nailya K.; Lahey, Richard T.; Taleyarkhan, Rusi P.

    2005-10-01

    This paper provides the theoretical basis for energetic vapor bubble implosions induced by a standing acoustic wave. Its primary goal is to describe, explain, and demonstrate the plausibility of the experimental observations by Taleyarkhan et al. [Science 295, 1868 (2002); Phys. Rev. E 69, 036109 (2004)] of thermonuclear fusion for imploding cavitation bubbles in chilled deuterated acetone. A detailed description and analysis of these data, including a resolution of the criticisms that have been raised, together with some preliminary HYDRO code simulations, has been given by Nigmatulin et al. [Vestnik ANRB (Ufa, Russia) 4, 3 (2002); J. Power Energy 218-A, 345 (2004)] and Lahey et al. [Adv. Heat Transfer (to be published)]. In this paper a hydrodynamic shock (i.e., HYDRO) code model of the spherically symmetric motion for a vapor bubble in an acoustically forced liquid is presented. This model describes cavitation bubble cluster growth during the expansion period, followed by a violent implosion during the compression period of the acoustic cycle. There are two stages of the bubble dynamics process. The first, low Mach number stage, comprises almost all the time of the acoustic cycle. During this stage, the radial velocities are much less than the sound speeds in the vapor and liquid, the vapor pressure is very close to uniform, and the liquid is practically incompressible. This process is characterized by the inertia of the liquid, heat conduction, and the evaporation or condensation of the vapor. The second, very short, high Mach number stage is when the radial velocities are the same order, or higher, than the sound speeds in the vapor and liquid. In this stage high temperatures, pressures, and densities of the vapor and liquid take place. The model presented herein has realistic equations of state for the compressible liquid and vapor phases, and accounts for nonequilibrium evaporation/condensation kinetics at the liquid/vapor interface. There are interacting

  17. Numerical Modelling and Prediction of Erosion Induced by Hydrodynamic Cavitation

    NASA Astrophysics Data System (ADS)

    Peters, A.; Lantermann, U.; el Moctar, O.

    2015-12-01

    The present work aims to predict cavitation erosion using a numerical flow solver together with a new developed erosion model. The erosion model is based on the hypothesis that collapses of single cavitation bubbles near solid boundaries form high velocity microjets, which cause sonic impacts with high pressure amplitudes damaging the surface. The erosion model uses information from a numerical Euler-Euler flow simulation to predict erosion sensitive areas and assess the erosion aggressiveness of the flow. The obtained numerical results were compared to experimental results from tests of an axisymmetric nozzle.

  18. Cavitation: Hydrofoils. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Habercom, G. E., Jr.

    1980-05-01

    Studies are presented on the cavitation characteristics of various classes of hydrofoils such as fully submerged, ventilated, high speed, supercavitating, and jet flapped. Surface piercing struts are studies. Test facilities, models, and test methods are described. Lift, drag, oscillation, flutter, heaving, hydroelasticity, and loading are discussed. Other topics include entrainment, bubbles, unsteady forces, flow fields, sea states, cavitation noise, mathematical models, and boundary layers, along with investigations of hydrofoil craft performance. This updated bibliography contains 194 abstracts, 9 of which are new entries to the previous edition.

  19. Detection of cystic structures using pulsed ultrasonically induced resonant cavitation

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Kovach, John S. (Inventor)

    2002-01-01

    Apparatus and method for early detection of cystic structures indicative of ovarian and breast cancers uses ultrasonic wave energy at a unique resonance frequency for inducing cavitation in cystic fluid characteristic of cystic structures in the ovaries associated with ovarian cancer, and in cystic structures in the breast associated with breast cancer. Induced cavitation bubbles in the cystic fluid implode, creating implosion waves which are detected by ultrasonic receiving transducers attached to the abdomen of the patient. Triangulation of the ultrasonic receiving transducers enables the received signals to be processed and analyzed to identify the location and structure of the cyst.

  20. Cavitation in flowing superfluid helium

    NASA Technical Reports Server (NTRS)

    Daney, D. E.

    1988-01-01

    Flowing superfluid helium cavitates much more readily than normal liquid helium, and there is a marked difference in the cavitation behavior of the two fluids as the lambda point is traversed. Examples of cavitation in a turbine meter and centrifugal pump are given, together with measurements of the cavitation strength of flowing superfluid helium. The unusual cavitation behavior of superfluid helium is attributed to its immense thermal conductivity .

  1. Interaction of Two Differently Sized Bubbles in a Free Field

    NASA Astrophysics Data System (ADS)

    Chew, Lup Wai; Khoo, Boo Cheong; Klaseboer, Evert; Ohl, Siew-Wan

    The interaction between two different sized (spark created, non-equilibrium) bubbles is studied by using high speed photography. The bubble size ranges from 2 to 7 mm. The experimental results are compared to that of the similar sized bubbles reported in the literature. Interestingly, all the four major behaviors of bubble-bubble interactions (i.e. 'bubble-collapsed' induced liquid jets directed away from each other, liquid jets directed towards each other, bubble coalescence and the 'catapult' effect) are observed which bear much similarity to that found for similar sized bubbles' interaction. The main parameters studied/varied are the size of the bubbles, the dimensionless separation distance and the phase difference between the two bubbles. The results obtained are consistent with the cases of similar sized bubbles reported in the literature, with each type of behavior occupying a distinct region in the graphical plot. This indicates that the results for the (special) similar sized bubbles can be generalized to cases with different sized bubbles. Many of the real life applications such as cavitations corrosions often involve bubbles with significant size difference, thus the present findings are useful in predicting the behavior of multiple bubbles in many situations.

  2. Effect of geometrical parameters on submerged cavitation jet discharged from profiled central-body nozzle

    NASA Astrophysics Data System (ADS)

    Yang, Minguan; Xiao, Shengnan; Kang, Can; Wang, Yuli

    2013-05-01

    The flow characteristics of cavitation jets are essential issues among relevant studies. The physical properties of the jet are largely determined by the geometrical parameters of the nozzle. The structure and cavitation jets characteristics of the angular-nozzle and the self-resonating cavitation nozzle have been extensively studied, but little research is conducted in the central-body cavitation nozzle mainly because of its hard processing and the cavitation jet effect not satisfactory. In this paper, a novel central-body nozzle (a non-plunger central-body nozzle with square outlet) is studied to solve above problems. Submerged jets discharged from the novel central-body nozzle are simulated, employing the full cavitation model. The impact of nozzle configuration on jet properties is analyzed. The analysis results indicate that when central-body relative diameter keeps constant, there is an optimal contraction degree of nozzle's outlet, which can induce intense cavitation in the jet. The central-body relative diameter also affects jet profiles. In the case of large central-body relative diameter, most of the bubbles settle in the jet core. On the contrary, a smaller relative diameter makes bubbles concentrate in the interface between the jet and its surrounding fluid. Moreover, the shorter outlet part allows the cavitation zone further extend in both the axial and racial directions. The research results further consummate the study on the central-body nozzles and the correlation between cavitation jet and the structure, and elementarily reveal the mechanism of cavitation jet produced in a non-plunger novel central-body nozzle and the effect of the structure parameters on the cavitation jet, moreover, provide the theoretical basis for the optimal design of the nozzle.

  3. Combination of ultrasound and bubble liposome enhance the effect of doxorubicin and inhibit murine osteosarcoma growth.

    PubMed

    Ueno, Yoshinori; Sonoda, Shozo; Suzuki, Ryo; Yokouchi, Masahiro; Kawasoe, Yasuomi; Tachibana, Katsuro; Maruyama, Kazuo; Sakamoto, Taiji; Komiya, Setsuro

    2011-08-15

    If ultrasound (US) is applied to cells, permeability across the cell membrane temporarily increases, making it easier for drugs to be taken into the cells from around the cell membrane. Moreover, when used in combination with Bubble liposome (BL: liposomes which entrap an ultrasound imaging gas), even low-power ultrasound can facilitate drug delivery into cells. In the present study, we constructed a new drug delivery system (DDS) involving concomitant use of US and BL with doxorubicin (DOX), a key drug in the chemotherapy of osteosarcoma, and demonstrated both in vitro and in vivo that it markedly inhibited the proliferation of osteosarcoma cells. Furthermore, this system achieved an equivalent antitumor effect at about 1/5 the dose of antitumor agent employed in monotherapy with DOX. These findings suggest the possibility of reduction of adverse events. In this experiment, US and liposomes were tested, both of which are already in use in clinical practice. US and liposomes are both very safe in the body. The DDS composed of these elements we designed can be applied in simple and site-specific fashion and is therefore promising as a new, clinically feasible method of treatment.

  4. Mercury Cavitation Phenomenon in Pulsed Spallation Neutron Sources

    SciTech Connect

    Futakawa, Masatoshi; Naoe, Takashi; Kawai, Masayoshi

    2008-06-24

    Innovative researches will be performed at Materials and Life Science Experimental Facility in J-PARC, in which a mercury target system will be installed as MW-class pulse spallation neutron sources. Proton beams will be injected into mercury target to induce the spallation reaction. At the moment the intense proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. Localized impacts by micro-jets and/or shock waves which are caused by cavitation bubble collapse impose pitting damage on the vessel wall. The pitting damage which degrades the structural integrity of target vessels is a crucial issue for high power mercury targets. Micro-gas-bubbles injection into mercury may be useful to mitigate the pressure wave and the pitting damage. The visualization of cavitation-bubble and gas-bubble collapse behaviors was carried out by using a high-speed video camera. The differences between them are recognized.

  5. The effects of total dissolved gas on chum salmon fry survival, growth, gas bubble disease, and seawater tolerance

    SciTech Connect

    Geist, David R.; Linley, Timothy J.; Cullinan, Valerie I.; Deng, Zhiqun

    2013-02-01

    Chum salmon Oncorhynchus keta alevin developing in gravel habitats downstream of Bonneville Dam on the Columbia River are exposed to elevated levels of total dissolved gas (TDG) when water is spilled at the dam to move migrating salmon smolts downstream to the Pacific Ocean. Current water quality criteria for the management of dissolved gas in dam tailwaters were developed primarily to protect salmonid smolts and are assumed to be protective of alevin if adequate depth compensation is provided. We studied whether chum salmon alevin exposed to six levels of dissolved gas ranging from 100% to 130% TDG at three development periods between hatch and emergence (hereafter early, middle, and late stage) suffered differential mortality, growth, gas bubble disease, or seawater tolerance. Each life stage was exposed for 50 d (early stage), 29 d (middle stage), or 16 d (late stage) beginning at 13, 34, and 37 d post-hatch, respectively, through 50% emergence. The mortality for all stages from exposure to emergence was estimated to be 8% (95% confidence interval (CI) of 4% to 12%) when dissolved gas levels were between 100% and 117% TDG. Mortality significantly increased as dissolved gas levels rose above 117% TDG,; with the lethal concentration that produced 50% mortality (LC50 ) was estimated to be 128.7% TDG (95% CI of 127.2% to 130.2% TDG) in the early and middle stages. By contrast, there was no evidence that dissolved gas level significantly affected growth in any life stage except that the mean wet weight at emergence of early stage fish exposed to 130% TDG was significantly less than the modeled growth of unexposed fish. The proportion of fish afflicted with gas bubble disease increased with increasing gas concentrations and occurred most commonly in the nares and gastrointestinal tract. Early stage fish exhibited higher ratios of filament to lamellar gill chloride cells than late stage fish, and these ratios increased and decreased for early and late stage fish

  6. Processing of Microalgae: Acoustic Cavitation and Hydrothermal Conversion

    NASA Astrophysics Data System (ADS)

    Greenly, Justin Michael

    The production of energy dense fuels from renewable algal biomass feedstocks -- if sustainably developed at a sufficiently large scale -- may reduce the consumption of petroleum from fossil fuels and provide many environmental benefits. Achieving economic feasibility has several technical engineering challenges that arise from dilute concentration of growing algae in aqueous media, small cell sizes, and durable cell walls. For microalgae to be a sustainable source of biofuels and co-products, efficient fractionation and conversion of the cellular contents is necessary. Research was carried out to address two processing options for efficient microalgae biofuel production: 1. Ultrasonic cavitation for cell disruption and 2. Hydrothermal conversion of a model algal triglyceride. 1. Ultrasonic cell disruption, which relies on cavitating bubbles in the suspension to produce damaging shock waves, was investigated experimentally over a range of concentrations and species types. A few seconds of high intensity sonication at fixed frequency yielded significant cell disruption, even for the more durable cells. At longer exposure times, effectiveness was seen to decline and was attributed, using acoustic measurements, to ultrasonic power attenuation in the ensuing cloud of cavitating bubbles. Processing at higher cell concentrations slowed cell disintegration marginally, but increased the effectiveness of dissipating ultrasonic energy. A theoretical study effectively predicted optimal conditions for a variety of parameters that were inaccessible in this experimental investigation. In that study, single bubble collapse was modeled to identify operating conditions that would increase cavitation, and thus cell disruption. Simulations were conducted by varying frequency and pressure amplitude of the ultrasound wave, and initial bubble size. The simulation results indicated that low frequency, high sound wave amplitudes, and small initial bubble size generate the highest shock

  7. Bubble-cell interactions with laser-activated polymeric microcapsules

    NASA Astrophysics Data System (ADS)

    Versluis, Michel; Lajoinie, Guillaume; van Rooij, Tom; Skachkov, Ilya; Kooiman, Klazina; de Jong, Nico; Physics of Fluids Group, University of Twente Team; Biomedical Engineering, Erasmus MC Team

    2015-11-01

    Polymeric microcapsules that are made light-absorbing by the addition of a dye in their shell can generate cavitation microbubbles with spatiotemporal control when irradiated by a pulsed laser. These particles less than 3 μm in size can circulate through the body, bind to tissues and are expected to be readily detected, even if a single cavitation bubble is produced. In this paper, we study the impact of such cavitation bubbles on a cell monolayer and quantify it in terms of cell poration and cell viability. Two capsules formulations were used; the first one encapsulates a low boiling point oil and induced less cell damage than the second that was loaded with a high boiling point oil. We also report the generation of stable bubbles by the first capsule formulation that completely absorb the cells in their close vicinity. Physics of Fluid group MIRA Institute for Biomedical Technology and Technical Medicine MESA+ Institute for Nanotechnology.

  8. Investigation of a Method to Reduce Cavitation in Diesel Engine Bearings

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Honaker, Robert W.

    1998-01-01

    Sonoluminescence is the effect of producing light from sound and occurs when a gas bubble is trapped in a fluid filled cavity and is forced to collapse under a barrage of sound waves. Frenzel and Schultes discovered this phenomenon in 1934 while exposing acoustic waves to photographic plates. This effect was not well understood until 1988 when Crum and Gaitan discovered the necessary conditions for producing single bubble sonoluminescence in the laboratory. The luminescence is a result of the bubble violently collapsing from sound waves and this shares a close association with vibratory cavitation. Cavitation erosion is known to cause damage to rotational machinery when the collapse is near to surfaces due to the high pressures associated with bubble collapse. With these high pressures and temperatures there is a considerable amount of damage to the outside layer of a bearing, thereby, reducing its useful life. An experiment was constructed to generate sonoluminescence in the laboratory in order to obtain a greater understanding of this phenomenon and its association with bubble cavitation. Most of the research was done to investigate how to obtain single bubble sonoluminescence under different conditions and to determine how to detect it. Success in this has inspired several theories on how to use the methods for generating sonoluminescence to control cavitation in fluids under industrial conditions.

  9. Recalcitrant bubbles

    PubMed Central

    Shanahan, Martin E. R.; Sefiane, Khellil

    2014-01-01

    We demonstrate that thermocapillary forces may drive bubbles against liquid flow in ‘anomalous' mixtures. Unlike ‘ordinary' liquids, in which bubbles migrate towards higher temperatures, we have observed vapour bubbles migrating towards lower temperatures, therefore against the flow. This unusual behaviour may be explained by the temperature dependence of surface tension of these binary mixtures. Bubbles migrating towards their equilibrium position follow an exponential trend. They finally settle in a stationary position just ‘downstream' of the minimum in surface tension. The exponential trend for bubbles in ‘anomalous' mixtures and the linear trend in pure liquids can be explained by a simple model. For larger bubbles, oscillations were observed. These oscillations can be reasonably explained by including an inertial term in the equation of motion (neglected for smaller bubbles). PMID:24740256

  10. Recalcitrant bubbles.

    PubMed

    Shanahan, Martin E R; Sefiane, Khellil

    2014-04-17

    We demonstrate that thermocapillary forces may drive bubbles against liquid flow in 'anomalous' mixtures. Unlike 'ordinary' liquids, in which bubbles migrate towards higher temperatures, we have observed vapour bubbles migrating towards lower temperatures, therefore against the flow. This unusual behaviour may be explained by the temperature dependence of surface tension of these binary mixtures. Bubbles migrating towards their equilibrium position follow an exponential trend. They finally settle in a stationary position just 'downstream' of the minimum in surface tension. The exponential trend for bubbles in 'anomalous' mixtures and the linear trend in pure liquids can be explained by a simple model. For larger bubbles, oscillations were observed. These oscillations can be reasonably explained by including an inertial term in the equation of motion (neglected for smaller bubbles).

  11. Sonosensitive nanoparticles for controlled instigation of cavitation and drug delivery by ultrasound

    NASA Astrophysics Data System (ADS)

    Wagstaffe, Sarah J.; Schiffter, Heiko A.; Arora, Manish; Coussios, Constantin-C.

    2012-10-01

    Reliable instigation of cavitation in-vivo during ultrasound therapy is notoriously difficult. Lowering the peak rarefractional pressure required to initiate cavitation (the cavitation threshold) has been previously addressed using ultrasound contrast agents in the form of encapsulated stabilized micron scale bubbles. These agents lack stability and are generally too large to extravasate into tumours and other target tissues. Solid nanoparticles are proposed as novel cavitation nucleation agents, which overcome these limitations. Such agents are manufactured to achieve high surface roughness and hydrophobicity, facilitating air entrapment upon drying, thus harboring an abundance of cavitation nucleation sites. These nanoparticulate nucleating agents have been found to lower the cavitation threshold significantly in aqueous biological media, enabling reproducible cavitation activity during repeated exposure to therapeutic ultrasound. This paper investigates the engineering of core-shell nanoparticles and examines their ability to initiate inertial cavitation in the context of ultrasound-enhanced localized drug delivery for cancer. Core-shell nanoparticles have been found to decrease the peak focal pressure where the probability of cavitation is greater than 0.5, by factors of five- to ten-fold, dependent on particle size, total surface area and surface morphology.

  12. Cavitation Simulation with Consideration of the Viscous Effect at Large Liquid Temperature Variation

    NASA Astrophysics Data System (ADS)

    Yu, An; Luo, Xian-Wu; Ji, Bin; Huang, Ren-Fang; Hidalgo, Victor; Kim, Song Hak

    2014-08-01

    The phase change due to cavitation is not only driven by the pressure difference between the local pressure and vapor saturated pressure, but also affected by the physical property changes in the case of large liquid temperature variation. The present work simulates cavitation with consideration of the viscous effect as well as the local variation of vapor saturated pressure, density, etc. A new cavitation model is developed based on the bubble dynamics, and is applied to analyze the cavitating flow around an NACA0015 hydrofoil at different liquid temperatures from 25°C to 150°C. The results by the proposed model, such as the pressure distribution along the hydrofoil wall surface, vapor volume fraction, and source term of the mass transfer rate due to cavitation, are compared with the available experimental data and the numerical results by an existing thermodynamic model. It is noted that the numerical results by the proposed cavitation model have a slight discrepancy from the experimental results at room temperature, and the accuracy is better than the existing thermodynamic cavitation model. Thus the proposed cavitation model is acceptable for the simulation of cavitating flows at different liquid temperatures.

  13. An Experimental Study of Cavitation Detection in a Centrifugal Pump Using Envelope Analysis

    NASA Astrophysics Data System (ADS)

    Tan, Chek Zin; Leong, M. Salman

    Cavitation represents one of the most common faults in pumps and could potentially lead to a series of failure in mechanical seal, impeller, bearing, shaft, motor, etc. In this work, an experimental rig was setup to investigate cavitation detection using vibration envelope analysis method, and measured parameters included sound, pressure and flow rate for feasibility of cavitation detection. The experiment testing included 3 operating points of the centrifugal pump (B.E.P, 90% of B.E.P and 80% of B.E.P). Suction pressure of the centrifugal pump was decreased gradually until the inception point of cavitation. Vibration measurements were undertaken at various locations including casing, bearing, suction and discharge flange of the centrifugal pump. Comparisons of envelope spectrums under cavitating and non-cavitating conditions were presented. Envelope analysis was proven useful in detecting cavitation over the 3 testing conditions. During the normal operating condition, vibration peak synchronous to rotational speed was more pronounced. It was however during cavitation condition, the half order sub-harmonic vibration component was clearly evident in the envelope spectrums undertaken at all measurement locations except at the pump bearing. The possible explanation of the strong sub-harmonic (½ of BPF) during cavitation existence in the centrifugal pump was due to insufficient time for the bubbles to collapse completely before the end of the single cycle.

  14. Measurements of void fraction distribution in cavitating pipe flow using x-ray CT

    NASA Astrophysics Data System (ADS)

    Bauer, D.; Chaves, H.; Arcoumanis, C.

    2012-05-01

    Measuring the void fraction distribution is still one of the greatest challenges in cavitation research. In this paper, a measurement technique for the quantitative void fraction characterization in a cavitating pipe flow is presented. While it is almost impossible to visualize the inside of the cavitation region with visible light, it is shown that with x-ray computed tomography (CT) it is possible to capture the time-averaged void fraction distribution in a quasi-steady pipe flow. Different types of cavitation have been investigated including cloud-like cavitation, bubble cavitation and film cavitation at very high flow rates. A specially designed nozzle was employed to induce very stable quasi-steady cavitation. The obtained results demonstrate the advantages of the measurement technique compared to other ones; for example, structures were observed inside the cavitation region that could not be visualized by photographic images. Furthermore, photographic images and pressure measurements were used to allow comparisons to be made and to prove the superiority of the CT measurement technique.

  15. High-speed observation of bubble cloud generation near a rigid wall by second-harmonic superimposed ultrasound.

    PubMed

    Yoshizawa, Shin; Yasuda, Jun; Umemura, Shin-ichiro

    2013-08-01

    Cavitation bubbles are known to accelerate therapeutic effects of ultrasound. Although negative acoustic pressure is the principle factor of cavitation, positive acoustic pressure has a role for bubble cloud formation at a high intensity of focused ultrasound when cavitation bubbles provide pressure release surfaces converting the pressure from highly positive to negative. In this study, the second-harmonic was superimposed onto the fundamental acoustic pressure to emphasize either peak positive or negative pressure. The peak negative and positive pressure emphasized waves were focused on a surface of an aluminum block. Cavitation bubbles induced near the block were observed with a high-speed camera by backlight and the size of the cavitation generation region was measured from the high-speed images. The negative pressure emphasized waves showed an advantage in cavitation inception over the positive pressure emphasized waves. In the sequence of the negative pressure emphasized waves immediately followed by the positive pressure emphasized waves, cavitation bubbles were generated on the block by the former waves and the cavitation region were expanded toward the transducer in the latter waves with high reproducibility. The sequence demonstrated its potential usefulness in enhancing the effects of therapeutic ultrasound at a high acoustic intensity.

  16. Freezing of Xylem Sap Without Cavitation

    PubMed Central

    Hammel, H. T.

    1967-01-01

    Freezing of stem sections and entire twigs of hemlock (Tsuga canadensis) has been demonstrated to occur without increasing the resistance to the movement of water through the frozen part after rewarming. This was interpreted to mean that freezing did not produce cavitation in the xylem sap even though A) the sap was unquestionably frozen; B) it contained dissolved gases; and C) it was under tension before freezing and after. Freezing stem sections of some other evergreen gymnosperms during the summer again produced no evidence for cavitation of the xylem sap. On the other hand, freezing stem sections of some angiosperms invariably increased the resistance to sap flow leading to wilting and death in a few hours when the sap tension was at normal daytime values at the time of freezing. These results were interpreted to mean that the bordered pits on the tracheids of gymnosperms function to isolate the freezing sap in each tracheid so that the expansion of water upon freezing not only eliminates any existing tension but also develops positive pressure in the sap. Dissolved gases frozen out of solution may then be redissolved under this positive pressure as melting occurs. As the bubbles are reduced in size by this ice pressure developed in an isolated tracheid, further pressure is applied by the surface tension of the water against air. If the bubbles are redissolved or are reduced to sufficient small size by the time the tension returns to the sap as the last ice crystals melt, then the internal pressure from surface tension in any existing small bubbles may exceed the hydrostatic tension of the melted sap and the bubbles cannot expand and will continue to dissolve. PMID:16656485

  17. HIFU-Induced Hyperecho in Ultrasound Images, Cavitation Activity and Thermal Behavior

    NASA Astrophysics Data System (ADS)

    Rabkin, Brian A.; Zderic, Vesna; Vaezy, Shahram

    2005-03-01

    High Intensity Focused Ultrasound (HIFU) treatment of soft tissues has been shown to result in a hyperechoic region in B-mode ultrasound (US) images. This is believed to result from bubble activity at the HIFU focus. Here we report our in vivo results of detecting inertial and stable cavitation in correlation with the appearance of a hyperechoic region, along with in vitro confirmation of these results that included measurement of the temperature at the HIFU focus. The ultrasound system consisted of a HIFU transducer (3.3 MHz), a broadband A-mode transducer for active and passive cavitation detection (ACD and PCD), and an US-imaging probe that were all co-focal and synchronized. HIFU, at in situ intensities of 220- 1,710 W/cm2, was applied for 10 s to pig muscles in vivo or polyacrylamide in vitro at a focal depth of 2 cm. A thermocouple placed at the HIFU focus was added to the above system during the in vitro portion of this study. ACD and PCD results showed a strong correlation between the onset of cavitation and the appearance of a hyperechoic region. In vivo PCD results showed that inertial cavitation typically occurred prior (within 0.5 s) to the appearance of a hyperechoic region. In vitro PCD results show that inertial cavitation occurred at or within 1-2 pulses prior to the appearance of a hyperechoic region and typically preceded rapid heating up to 110 °C at the HIFU focus within 1-2 pulses. The observed cavitation activity suggests that bubbles are present during the formation of a hyperechoic region at the HIFU focus and that boiling occurs rapidly after the onset of cavitation. Further investigation is needed to determine if the hyperechoic region in the US image originates from bubbles formed during cavitation alone or during cavitation-induced boiling.

  18. A High-Speed Imaging and Modeling Study of Dendrite Fragmentation Caused by Ultrasonic Cavitation

    NASA Astrophysics Data System (ADS)

    Shu, Da; Sun, Baode; Mi, Jiawei; Grant, Patrick S.

    2012-10-01

    The dynamic behavior of ultrasound-induced cavitation bubbles and their effect on the fragmentation of dendritic grains of a solidifying succinonitrile 1 wt pct camphor organic transparent alloy have been studied experimentally using high-speed digital imaging and complementary numerical analysis of sound wave propagation, cavitation dynamics, and the velocity field in the vicinity of an imploding cavitation bubble. Real-time imaging and analysis revealed that the violent implosion of bubbles created local shock waves that could shatter dendrites nearby into small pieces in a few tens of milliseconds. These catastrophic events were effective in breaking up growing dendritic grains and creating abundant fragmented crystals that may act as embryonic grains; therefore, these events play an important role in grain refinement of metallurgical alloys.

  19. Evaluation of a shock wave induced cavitation activity both in vitro and in vivo.

    PubMed

    Tu, Juan; Matula, Thomas J; Bailey, Michael R; Crum, Lawrence A

    2007-10-01

    This study evaluated the cavitation activity induced by shock wave (SW) pulses, both in vitro and in vivo, based on the area measurements of echogenic regions observed in B-mode ultrasound images. Residual cavitation bubble clouds induced by SW pulses were detected as echogenic regions in B-mode images. The temporal evolution of residual bubble clouds, generated by SWs with varying lithotripter charging voltage and pulse repetition frequency (PRF), was analyzed by measuring the time-varying behaviors of the echogenic region areas recorded in B-mode images. The results showed that (1) the area of SW-induced echogenic regions enlarged with increased SW pulse number; (2) echogenic regions in the B-mode images dissipated gradually after ceasing the SWs, which indicated the dissolution of the cavitation bubbles; and (3) larger echogenic regions were generated with higher charging voltage or PRF.

  20. A detector for monitoring the onset of cavitation during therapy-level measurements of ultrasonic power

    NASA Astrophysics Data System (ADS)

    Hodnett, M.; Zeqiri, B.

    2004-01-01

    Acoustic cavitation occurring in the water path between a transducer and the target of a radiation force balance can provide a significant source of error during measurements of ultrasonic power. These problems can be particularly acute at physiotherapy levels (>1 W), and low frequencies (leq 1 MHz). The cavitating bubbles can absorb and scatter incident ultrasound, leading to an underestimate in the measured power. For these reasons, International Specification standards demand the use of degassed water. This imposes requirements that may actually be difficult to meet, for example, in the case of hospitals. Also, initially degassed water will rapidly re-gas, increasing the likelihood of cavitation occurring. For these reasons, NPL has developed a device that monitors acoustic emissions generated by bubble activity, for detecting the onset of cavitation during power measurements. A commercially available needle hydrophone is used to detect these emissions. The acoustic signals are then monitored using a Cavitation Detector (CD) unit, comprising an analogue electrical filter that may be tuned to detect frequency components generated by cavitating bubbles, and which provides an indication of when the measured level exceeds a pre-defined threshold. This paper describes studies to establish a suitable detection scheme, the principles of operation of the CD unit, and the performance tests carried out with a range of propagation media.

  1. Disruption of cultured cells by nitrogen cavitation.

    PubMed

    Simpson, Richard J

    2010-11-01

    Cell disruption by nitrogen decompression from a pressurized vessel is a rapid and effective way to homogenize cells and tissues, to release intact organelles, and to prepare cell membranes. Cells are placed in a pressure vessel and large quantities of oxygen-free nitrogen are dissolved in the cells under high pressure (~5500 kilopascals [kPa], equivalent to 800 pounds per square inch [psi]). When the pressure is released suddenly, the nitrogen bubbles out of solution, rupturing the cell membrane and releasing the cell contents. Nitrogen cavitation is well suited for mammalian and plant cells and fragile bacteria, but is less effective with yeast, fungi, spores, or other cell types with tough cell walls. The chemical and physical stresses imposed by nitrogen cavitation on enzymes and subcellular compartments are minimized compared with ultrasonic and mechanical homogenizing methods. Unlike lysis methods relying on shear stresses and friction, there is no heat damage to proteins and organelles during nitrogen cavitation. Indeed, the method is accompanied by an adiabatic expansion that cools the sample instead. Also, labile cell components are protected from oxidation by the inert nitrogen gas. Furthermore, nitrogen does not alter the pH of the suspending medium. The process is fast and uniform because the same disruptive forces are applied within each cell and throughout the sample, ensuring reproducible cell-free homogenates. Finally, variable sample sizes (e.g., from ~1 mL to 1 L or more) can be accommodated with most commercial systems.

  2. Histotripsy-Induced Cavitation Cloud Initiation Thresholds in Tissues of Different Mechanical Properties

    PubMed Central

    Vlaisavljevich, Eli; Maxwell, Adam; Warnez, Matthew; Johnsen, Eric; Cain, Charles A.; Xu, Zhen

    2014-01-01

    Histotripsy is an ultrasound ablation method that depends on the initiation and maintenance of a cavitation bubble cloud to fractionate soft tissue. This paper studies how tissue properties impact the pressure threshold to initiate the cavitation bubble cloud. Our previous study showed that shock scattering off one or more initial bubbles, expanded to sufficient size in the focus, plays an important role in initiating a dense cavitation cloud. In this process, the shock scattering causes the positive pressure phase to be inverted, resulting in a scattered wave that has the opposite polarity of the incident shock. The inverted shock is superimposed on the incident negative pressure phase to form extremely high negative pressures, resulting in a dense cavitation cloud growing toward the transducer. We hypothesize that increased tissue stiffness impedes the expansion of initial bubbles, reducing the scattered tensile pressure, and thus requiring higher initial intensities for cloud initiation. To test this hypothesis, 5-cycle histotripsy pulses at pulse repetition frequencies (PRFs) of 10, 100, or 1000 Hz were applied by a 1-MHz transducer focused inside mechanically tunable tissue-mimicking agarose phantoms and various ex vivo porcine tissues covering a range of Young’s moduli. The threshold to initiate a cavitation cloud and resulting bubble expansion were recorded using acoustic backscatter detection and optical imaging. In both phantoms and ex vivo tissue, results demonstrated a higher cavitation cloud initiation threshold for tissues of higher Young’s modulus. Results also demonstrated a decrease in bubble expansion in phantoms of higher Young’s modulus. These results support our hypothesis, improve our understanding of the effect of histotripsy in tissues with different mechanical properties, and provide a rational basis to tailor acoustic parameters for fractionation of specific tissues. PMID:24474139

  3. Histotripsy-induced cavitation cloud initiation thresholds in tissues of different mechanical properties.

    PubMed

    Vlaisavljevich, Eli; Maxwell, Adam; Warnez, Matthew; Johnsen, Eric; Cain, Charles A; Xu, Zhen

    2014-02-01

    Histotripsy is an ultrasound ablation method that depends on the initiation and maintenance of a cavitation bubble cloud to fractionate soft tissue. This paper studies how tissue properties impact the pressure threshold to initiate the cavitation bubble cloud. Our previous study showed that shock scattering off one or more initial bubbles, expanded to sufficient size in the focus, plays an important role in initiating a dense cavitation cloud. In this process, the shock scattering causes the positive pressure phase to be inverted, resulting in a scattered wave that has the opposite polarity of the incident shock. The inverted shock is superimposed on the incident negative pressure phase to form extremely high negative pressures, resulting in a dense cavitation cloud growing toward the transducer. We hypothesize that increased tissue stiffness impedes the expansion of initial bubbles, reducing the scattered tensile pressure, and thus requiring higher initial intensities for cloud initiation. To test this hypothesis, 5-cycle histotripsy pulses at pulse repetition frequencies (PRFs) of 10, 100, or 1000 Hz were applied by a 1-MHz transducer focused inside mechanically tunable tissue-mimicking agarose phantoms and various ex vivo porcine tissues covering a range of Young's moduli. The threshold to initiate a cavitation cloud and resulting bubble expansion were recorded using acoustic backscatter detection and optical imaging. In both phantoms and ex vivo tissue, results demonstrated a higher cavitation cloud initiation threshold for tissues of higher Young's modulus. Results also demonstrated a decrease in bubble expansion in phantoms of higher Young's modulus. These results support our hypothesis, improve our understanding of the effect of histotripsy in tissues with different mechanical properties, and provide a rational basis to tailor acoustic parameters for fractionation of specific tissues.

  4. Numerical investigation on cavitation in pressure relief valve for coal liquefaction

    NASA Astrophysics Data System (ADS)

    Ou, G. F.; Li, W. Z.; Xiao, D. H.; Zheng, Z. J.; Dou, H. S.; Wang, C.

    2015-01-01

    The pressure relief valve for regulating the level of the high-pressure separator works under a pressure difference up to 15 MPa in the temperature of 415 °C. Severe cavitation erosion and particle impact lead to the valve disc's mass loss. In this paper, three-dimensional turbulent cavitating flows in the pressure relief valve are numerically simulated to reveal the mechanism of mass loss at valve disc. The RNG k-epsilon turbulence model and the mixture model with a mass transfer for cavitation are employed to simulate the cavitating flow in the pressure relief valve. The result shows that there is phase change in the pressure relief process and cavitation bubbles would be transported by high-velocity backflow to the head of valve disc. For the local pressure higher than the saturated vapor pressure, the bubbles collapse at the head of disc and cavitation erosion is formed at the head of the disc. By comparing the cases of opening of 40%, 50%, and 60%, backflow velocity and cavitation region in front of the disc decrease with the opening increase. Therefore, during the actual operation, the pressure relief valve should be kept to a relatively large opening.

  5. Cavitation guide for control valves

    SciTech Connect

    Tullis, J.P.

    1993-04-01

    This guide teaches the basic fundamentals of cavitation to provide the reader with an understanding of what causes cavitation, when it occurs, and the potential problems cavitation can cause to a valve and piping system. The document provides guidelines for understanding how to reduce the cavitation and/or select control valves for a cavitating system. The guide provides a method for predicting the cavitation intensity of control valves, and how the effect of cavitation on a system will vary with valve type, valve function, valve size, operating pressure, duration of operation and details of the piping installation. The guide defines six cavitation limits identifying cavitation intensities ranging from inception to the maximum intensity possible. The intensity of the cavitation at each limit Is described, including a brief discussion of how each level of cavitation influences the valve and system. Examples are included to demonstrate how to apply the method, including making both size and pressure scale effects corrections. Methods of controlling cavitation are discussed providing information on various techniques which can be used to design a new system or modify an existing one so it can operate at a desired level of cavitation.

  6. Wetting and cavitation pathways on nanodecorated surfaces.

    PubMed

    Amabili, Matteo; Lisi, Emanuele; Giacomello, Alberto; Casciola, Carlo Massimo

    2016-03-28

    In this contribution we study the wetting and nucleation of vapor bubbles on nanodecorated surfaces via free energy molecular dynamics simulations. The results shed light on the stability of superhydrophobicity in submerged surfaces with nanoscale corrugations. The re-entrant geometry of the cavities under investigation is capable of sustaining a confined vapor phase within the surface roughness (Cassie state) both for hydrophobic and hydrophilic combinations of liquid and solid. The atomistic system is of nanometric size; on this scale thermally activated events can play an important role ultimately determining the lifetime of the Cassie state. Such a superhydrophobic state can break down by full wetting of the texture at large pressures (Cassie-Wenzel transition) or by nucleating a vapor bubble at negative pressures (cavitation). Specialized rare event techniques show that several pathways for wetting and cavitation are possible, due to the complex surface geometry. The related free energy barriers are of the order of 100kBT and vary with pressure. The atomistic results are found to be in semi-quantitative accord with macroscopic capillarity theory. However, the latter is not capable of capturing the density fluctuations, which determine the destabilization of the confined liquid phase at negative pressures (liquid spinodal). PMID:26905783

  7. Can diving-induced tissue nitrogen supersaturation increase the chance of acoustically driven bubble growth in marine mammals?

    PubMed

    Houser, D S; Howard, R; Ridgway, S

    2001-11-21

    The potential for acoustically mediated causes of stranding in cetaceans (whales and dolphins) is of increasing concern given recent stranding events associated with anthropogenic acoustic activity. We examine a potentially debilitating non-auditory mechanism called rectified diffusion. Rectified diffusion causes gas bubble growth, which in an insonified animal may produce emboli, tissue separation and high, localized pressure in nervous tissue. Using the results of a dolphin dive study and a model of rectified diffusion for low-frequency exposure, we demonstrate that the diving behavior of cetaceans prior to an intense acoustic exposure may increase the chance of rectified diffusion. Specifically, deep diving and slow ascent/descent speed contributes to increased gas-tissue saturation, a condition that amplifies the likelihood of rectified diffusion. The depth of lung collapse limits nitrogen uptake per dive and the surface interval duration influences the amount of nitrogen washout from tissues between dives. Model results suggest that low-frequency rectified diffusion models need to be advanced, that the diving behavior of marine mammals of concern needs to be investigated to identify at-risk animals, and that more intensive studies of gas dynamics within diving marine mammals should be undertaken.

  8. Can diving-induced tissue nitrogen supersaturation increase the chance of acoustically driven bubble growth in marine mammals?

    PubMed

    Houser, D S; Howard, R; Ridgway, S

    2001-11-21

    The potential for acoustically mediated causes of stranding in cetaceans (whales and dolphins) is of increasing concern given recent stranding events associated with anthropogenic acoustic activity. We examine a potentially debilitating non-auditory mechanism called rectified diffusion. Rectified diffusion causes gas bubble growth, which in an insonified animal may produce emboli, tissue separation and high, localized pressure in nervous tissue. Using the results of a dolphin dive study and a model of rectified diffusion for low-frequency exposure, we demonstrate that the diving behavior of cetaceans prior to an intense acoustic exposure may increase the chance of rectified diffusion. Specifically, deep diving and slow ascent/descent speed contributes to increased gas-tissue saturation, a condition that amplifies the likelihood of rectified diffusion. The depth of lung collapse limits nitrogen uptake per dive and the surface interval duration influences the amount of nitrogen washout from tissues between dives. Model results suggest that low-frequency rectified diffusion models need to be advanced, that the diving behavior of marine mammals of concern needs to be investigated to identify at-risk animals, and that more intensive studies of gas dynamics within diving marine mammals should be undertaken. PMID:11894990

  9. Nonlinear ultrasonic waves in bubbly liquids with nonhomogeneous bubble distribution: Numerical experiments.

    PubMed

    Vanhille, Christian; Campos-Pozuelo, Cleofé

    2009-06-01

    This paper deals with the nonlinear propagation of ultrasonic waves in mixtures of air bubbles in water, but for which the bubble distribution is nonhomogeneous. The problem is modelled by means of a set of differential equations which describes the coupling of the acoustic field and bubbles vibration, and solved in the time domain via the use and adaptation of the SNOW-BL code. The attenuation and nonlinear effects are assumed to be due to the bubbles exclusively. The nonhomogeneity of the bubble distribution is introduced by the presence of bubble layers (or clouds) which can act as acoustic screens, and alters the behaviour of the ultrasonic waves. The effect of the spatial distribution of bubbles on the nonlinearity of the acoustic field is analyzed. Depending on the bubble density, dimension, shape, and position of the layers, its effects on the acoustic field change. Effects such as shielding and resonance of the bubbly layers are especially studied. The numerical experiments are carried out in two configurations: linear and nonlinear, i.e. for low and high excitation pressure amplitude, respectively, and the features of the phenomenon are compared. The parameters of the medium are chosen such as to reproduce air bubbly water involved in the stable cavitation process.

  10. Prediction of pump cavitation performance

    NASA Technical Reports Server (NTRS)

    Moore, R. D.

    1974-01-01

    A method for predicting pump cavitation performance with various liquids, liquid temperatures, and rotative speeds is presented. Use of the method requires that two sets of test data be available for the pump of interest. Good agreement between predicted and experimental results of cavitation performance was obtained for several pumps operated in liquids which exhibit a wide range of properties. Two cavitation parameters which qualitatively evaluate pump cavitation performance are also presented.

  11. Detecting Cavitation Pitting Without Disassembly

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, S.

    1986-01-01

    Technique for detecting cavitation pitting in pumps, turbines, and other machinery uses low-level nuclear irradiation. Isotopes concentrated below surface emit gamma radiation, a portion of which is attenuated by overlying material. Where there are cavitation pits, output of gamma-ray detector fluctuates as detector is scanned near pits. Important to detect cavitation pits because nozzle, turbine blade, or other pump component weakened by cavitation could fail catastrophically and cause machine to explode.

  12. Transient cavitation and acoustic emission produced by different laser lithotripters.

    PubMed

    Zhong, P; Tong, H L; Cocks, F H; Pearle, M S; Preminger, G M

    1998-08-01

    Transient cavitation and shockwave generation produced by pulsed-dye and holmium:YAG laser lithotripters were studied using high-speed photography and acoustic emission measurements. In addition, stone phantoms were used to compare the fragmentation efficiency of various laser and electrohydraulic lithotripters. The pulsed-dye laser, with a wavelength (504 nm) strongly absorbed by most stone materials but not by water, and a short pulse duration of approximately 1 microsec, induces plasma formation on the surface of the target calculi. Subsequently, the rapid expansion of the plasma forms a cavitation bubble, which expands spherically to a maximum size and then collapses violently, leading to strong shockwave generation and microjet impingement, which comprises the primary mechanism for stone fragmentation with short-pulse lasers. In contrast, the holmium laser, with a wavelength (2100 nm) most strongly absorbed by water as well as by all stone materials and a long pulse duration of 250 to 350 microsec, produces an elongated, pear-shaped cavitation bubble at the tip of the optical fiber that forms a vapor channel to conduct the ensuing laser energy to the target stone (Moss effect). The expansion and subsequent collapse of the elongated bubble is asymmetric, resulting in weak shockwave generation and microjet impingement. Thus, stone fragmentation in holmium laser lithotripsy is caused primarily by thermal ablation (drilling effect).

  13. Multi million-to-Billion Atom Molecular Dynamics Simulations of Cavitation-Induced Damage on a Silica Slab

    NASA Astrophysics Data System (ADS)

    Shekhar, Adarsh; Nomura, Ken-Ichi; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya

    2012-02-01

    Cavitation bubble collapse causes severe damage to materials. For example, cavitation erosion is a major threat to the safety of nuclear power plants. The cavitation bubbles may also be utilized for preventing stress corrosion cracking with water jet peening technology. We have performed multi million-to-billion atoms molecular dynamics simulations to investigate the shock-induced cavitation damage mechanism on an amorphous silica slab in water. The system consists of a 60nm thick silica slab immersed in water in an MD box of dimension 285 x 200 x 200 nm3. A nanobubble is created by removing water molecules within a sphere of radius 100 nm. To apply a planar shock, we assign a uniform particle velocity vp on the entire system towards a planar momentum mirror. We have performed the simulation with two kinds of bubbles, an empty bubble and a bubble filled with inert gas. The simulation results reveal nanojet formation during bubble collapse causing damage on the silica surface; however, the damage was significantly reduced in the case of the filled bubble. We will discuss the effect of the presence of inter gas inside the nanobubble on the pressure distribution, the extent of damage, and collapse behavior corresponding the shock front.

  14. Stretching cells and delivering drugs with bubbles

    NASA Astrophysics Data System (ADS)

    Ohl, Claus-Dieter; Li, Fenfang; Chon U, Chan; Gao, Yu; Xu, Chenjie

    2015-11-01

    In this talk we'll review our work on impulsive cell stretching using cavitation bubbles and magnetic microbubbles for drug delivery. For sufficient short times cells can sustain a much larger areal strain than the yield strain obtained from quasi-static stretching. Experiments with red blood cells show that even then the rupture of the cell is slow process; it is caused by diffusive swelling rather than mechanical violation of the plasma membrane. In the second part we'll discuss bubbles coated with magnetic and drug loaded particles. These bubbles offer an interesting vector for on demand delivery of drugs using mild ultrasound and magnetic fields. We report on basic experiments in microfluidic channels revealing the release of the agent during bubble oscillations and first in vivo validation with a mouse tumor model. Singapore National Research Foundations Competitive Research Program funding (NRF-CRP9-2011-04).

  15. Computation of Cavitating Flow in a Francis Hydroturbine

    NASA Astrophysics Data System (ADS)

    Leonard, Daniel; Lindau, Jay

    2013-11-01

    In an effort to improve cavitation characteristics at off-design conditions, a steady, periodic, multiphase, RANS CFD study of an actual Francis hydroturbine was conducted and compared to experimental results. It is well-known that operating hydroturbines at off-design conditions usually results in the formation of large-scale vaporous cavities. These cavities, and their subsequent collapse, reduce efficiency and cause damage and wear to surfaces. The conventional hydro community has expressed interest in increasing their turbine's operating ranges, improving their efficiencies, and reducing damage and wear to critical turbine components. In this work, mixing planes were used to couple rotating and stationary stages of the turbine which have non-multiple periodicity, and provide a coupled solution for the stay vanes, wicket gates, runner blades, and draft tube. The mixture approach is used to simulate the multiphase flow dynamics, and cavitation models were employed to govern the mass transfer between liquid and gas phases. The solution is compared with experimental results across a range of cavitation numbers which display all the major cavitation features in the machine. Unsteady computations are necessary to capture inherently unsteady cavitation phenomena, such as the precessing vortex rope, and the shedding of bubbles from the wicket gates and their subsequent impingement upon the leading edge of the runner blades. To display these features, preliminary unsteady simulations of the full machine are also presented.

  16. Hydrodynamic cavitation in microsystems. II. Simulations and optical observations

    NASA Astrophysics Data System (ADS)

    Medrano, M.; Pellone, C.; Zermatten, P. J.; Ayela, F.

    2012-04-01

    Numerical calculations in the single liquid phase and optical observations in the two-phase cavitating flow regime have been performed on microdiaphragms and microventuris fed with deionized water. Simulations have confirmed the influence of the shape of the shrinkage upon the contraction of the jet, and so on the localisation of possible cavitating area downstream. Observations of cavitating flow patterns through hybrid silicon-pyrex microdevices have been performed either via a laser excitation with a pulse duration of 6 ns, or with the help of a high-speed camera. Recorded snapshots and movies are presented. Concerning microdiaphragms, it is confirmed that very high shear rates downstream the diaphragms are the cause of bubbly flows. Concerning microventuris, a gaseous cavity forms on a boundary downstream the throat. As a consequence of a microsystem instability, the cavity displays a high frequency pulsation. Low values Strouhal numbers are associated to such a sheet cavitation. Moreover, when the intensity of the cavitating flow is reduced, there is a mismatch between the frequency of the pulsation of the cavity and the frequency of shedded clouds downstream the channel. That may be the consequence of viscous effects limiting the impingement of a re-entrant liquid jet on the attached cavity.

  17. Diffuse interface modeling of a radial vapor bubble collapse

    NASA Astrophysics Data System (ADS)

    Magaletti, Francesco; Marino, Luca; Massimo Casciola, Carlo

    2015-12-01

    A diffuse interface model is exploited to study in details the dynamics of a cavitation vapor bubble, by including phase change, transition to supercritical conditions, shock wave propagation and thermal conduction. The numerical experiments show that the actual dynamic is a sequence of collapses and rebounds demonstrating the importance of nonequilibrium phase changes. In particular the transition to supercritical conditions avoids the full condensation and leads to shockwave emission after the collapse and to successive bubble rebound.

  18. Etiology of gas bubble disease

    SciTech Connect

    Bouck, G.R.

    1980-11-01

    Gas bubble disease is a noninfectious, physically induced process caused by uncompensated hyperbaric pressure of total dissolved gases. When pressure compensation is inadequate, dissolved gases may form emboli (in blood) and emphysema (in tissues). The resulting abnormal physical presence of gases can block blood vessels (hemostasis) or tear tissues, and may result in death. Population mortality is generally skewed, in that the median time to death occurs well before the average time to death. Judged from mortality curves, three stages occur in gas bubble disease: (1) a period of gas pressure equilibrium, nonlethal cavitation, and increasing morbidity; (2) a period of rapid and heavy mortality; and (3) a period of protracted survival, despite lesions, and dysfunction that eventually terminates in total mortality. Safe limits for gas supersaturation depend on species tolerance and on factors that differ among hatcheries and rivers, between continuous and intermittent exposures, and across ranges of temperature and salinity.

  19. High-speed motion picture camera experiments of cavitation in dynamically loaded journal bearings

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Jacobson, B. O.

    1983-01-01

    A high-speed camera was used to investigate cavitation in dynamically loaded journal bearings. The length-diameter ratio of the bearing, the speeds of the shaft and bearing, the surface material of the shaft, and the static and dynamic eccentricity of the bearing were varied. The results reveal not only the appearance of gas cavitation, but also the development of previously unsuspected vapor cavitation. It was found that gas cavitation increases with time until, after many hundreds of pressure cycles, there is a constant amount of gas kept in the cavitation zone of the bearing. The gas can have pressures of many times the atmospheric pressure. Vapor cavitation bubbles, on the other hand, collapse at pressures lower than the atmospheric pressure and cannot be transported through a high-pressure zone, nor does the amount of vapor cavitation in a bearing increase with time. Analysis is given to support the experimental findings for both gas and vapor cavitation. Previously announced in STAR as N82-20543

  20. Complete Inhibition Of Ultrasound Induced Cytolysis In The Presence Of Inertial Cavitation

    NASA Astrophysics Data System (ADS)

    Sostaric, Joe Z.; Miyoshi, Norio; Riesz, Peter; De Graff, William G.; Mitchell, James B.

    2006-05-01

    The investigation of ultrasound for biotechnological applications including non-invasive surgery (HIFU), drug/gene delivery to cells (sonoporation) or through the skin (sonophoresis) and ultrasound assisted bioreactors has focused mainly on the physical effects of ultrasound. The beneficial effects of ultrasound rely on a number of application-dependent mechanisms, and may include tissue heating, acoustic streaming or cavitation. Although acoustic cavitation is necessary in some systems, cavitation bubbles simultaneously result in uncontrollable cell damage and cytolysis. Thus, the development of a number of biotechnological uses of ultrasound has been hampered by the necessity to constrain exposure parameters in order to prevent the occurrence of acoustic cavitation or to at least limit the detrimental effects of cavitation. The current study shows that non-toxic concentrations of specific n-alkyl solutes completely inhibit ultrasound induced cytolysis of in vitro suspensions of human leukemia cells (HL-60). Protection of the whole cell population from cytolysis is achieved even under extreme ultrasound exposure conditions that result in cytolysis of 100 % of the cell population in the absence of the n-alkyl solutes. Furthermore, the n-alkyl solutes did not hinder the process of inertial cavitation. This method may allow utilization of beneficial effects of ultrasound and cavitation while protecting cells from cavitation induced cytolysis and thereby presents new possibilities for ultrasound in medicine and biology.

  1. Vortex structure analysis of unsteady cloud cavitating flows around a hydrofoil

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Wang, Guoyu; Huang, Biao

    2016-01-01

    In this paper, time dependent vortex structures are numerically analyzed for both noncavitating and cloud cavitating flows around a Clark-Y hydrofoil with angle of attack α = 8∘ at a moderate Reynolds number, Re = 7 × 105. The numerical simulations are performed using a transport equation-based cavitation model and the large eddy simulation (LES) approach with a classical eddy viscosity subgrid scale (SGS) model. Compared with experimental results, present numerical predictions are capable of capturing the initiation of cavity, growth toward the trailing edge and subsequent shedding process. Results indicate that in noncavitating conditions, the trailing edge vortex and induced positive vortex shed periodically into the wake region to form the vortex street. In cloud cavitating conditions, interrelations between cavity and vortex induce different vortex dynamics at different cavity developing stages. (i) As attached cavity grows, vorticity production is greatly enhanced by the favorable pressure gradient at the leading edge. The trailing edge flow does not have a direct impact on the attached cavity expansion process. Furthermore, the liquid-vapor interface that moves toward the trailing edge enhances the vorticity in the attached cavity closure region. (ii) When the stable attached sheet cavity grows to its maximum length, the accumulation process of vorticity is eventually interrupted by the formation of the re-entrant jet. Re-entrant jet’s moving upstream leads to a higher spreading rate of the attached cavity and the formation of a large coherent structure inside the attached cavity. Moreover, the wavy/bubbly cavity interface enhances the vorticity near the trailing edge. (iii) As the attached sheet cavity breaks up, this large vortex structure converts toward the trailing edge region, which will eventually couple with a trailing edge vortex shedding from the lower surface to form the cloud cavity. The breakup of the stable attached cavity is the main

  2. Enhancing gas-liquid mass transfer rates in non-newtonian fermentations by confining mycelial growth to microbeads in a bubble column

    SciTech Connect

    Gbewonyo, K.; Wang, D.I.C.

    1983-12-01

    The performance of a penicillin fermentation was assessed in a laboratory-scale bubble column fermentor, with mycelial growth confined to the pore matrix of celite beads. Final cell densities of 29 g/L and penicillin titres of 5.5 g/L were obtained in the confined cell cultures. In comparison, cultures of free mycelial cells grown in the absence of beads experienced dissolved oxygen limitations in the bubble column, giving only 17 g/L final cell concentrations with equally low penicillin titres of 2 g/L. The better performance of the confined cell cultures was attributed to enhanced gas liquid mass transfer rates, with mass transfer coefficients (k /SUB L/ a) two to three times higher than those determined in the free cell cultures. Furthermore, the confined cell cultures showed more efficient utilization of power input for mass transfer, providing up to 50% reduction in energy requirements for aeration.

  3. Dynamics of two interacting hydrogen bubbles in liquid aluminum under the influence of a strong acoustic field

    NASA Astrophysics Data System (ADS)

    Lebon, Gerard S. B.; Pericleous, Koulis; Tzanakis, Iakovos; Eskin, Dmitry G.

    2015-10-01

    Ultrasonic melt processing significantly improves the properties of metallic materials. However, this promising technology has not been successfully transferred to the industry because of difficulties in treating large volumes of melt. To circumvent these difficulties, a fundamental understanding of the efficiency of ultrasonic treatment of liquid metals is required. In this endeavor, the dynamics of two interacting hydrogen bubbles in liquid aluminum are studied to determine the effect of a strong acoustic field on their behavior. It is shown that coalescence readily occurs at low frequencies in the range of 16 to 20 kHz; forcing frequencies at these values are likely to promote degassing. Emitted acoustic pressures from relatively isolated bubbles that resonate with the driving frequency are in the megapascal range and these cavitation shock waves are presumed to promote grain refinement by disrupting the growth of the solidification front.

  4. Dynamics of two interacting hydrogen bubbles in liquid aluminum under the influence of a strong acoustic field.

    PubMed

    Lebon, Gerard S B; Pericleous, Koulis; Tzanakis, Iakovos; Eskin, Dmitry G

    2015-10-01

    Ultrasonic melt processing significantly improves the properties of metallic materials. However, this promising technology has not been successfully transferred to the industry because of difficulties in treating large volumes of melt. To circumvent these difficulties, a fundamental understanding of the efficiency of ultrasonic treatment of liquid metals is required. In this endeavor, the dynamics of two interacting hydrogen bubbles in liquid aluminum are studied to determine the effect of a strong acoustic field on their behavior. It is shown that coalescence readily occurs at low frequencies in the range of 16 to 20 kHz; forcing frequencies at these values are likely to promote degassing. Emitted acoustic pressures from relatively isolated bubbles that resonate with the driving frequency are in the megapascal range and these cavitation shock waves are presumed to promote grain refinement by disrupting the growth of the solidification front. PMID:26565329

  5. Cavitation on a semicircular leading-edge plate and NACA0015 hydrofoil: Visualization and velocity measurement

    NASA Astrophysics Data System (ADS)

    Kravtsova, A. Yu.; Markovich, D. M.; Pervunin, K. S.; Timoshevskii, M. V.; Hanjalić, K.

    2014-12-01

    Using high-speed visualization and particle image velocimetry (PIV), cavitating flows near a plane plate with a rounded leading edge and NACA0015 hydrofoil at angles of attack from 0° to 9° are studied. In the experiments, several known types of cavitation, as well as some differences, were detected with variation of the cavitation number. In particular, at small angles of attack (up to 3°), cavitation on the plate appears in the form of a streak array; on the hydrofoil, it appears in the form of individual bubbles. For the NACA0015 hydrofoil, isolated and intermittent streaks are divided and grow in regimes with developed cavitation; then, however, they merge in bubble clouds and form an extremely regular cellular structure. With an increase in the angle of attack to 9°, the structure of the cavitation cavity on the hydrofoil is changed by the streak structure, like in the case with the plate. In this work, it is shown that PIV permits one to measure the velocity in cavitating flows, in particular, within the gas-vapor phase. It was established from the analysis of distributions of the average flow velocity and moments of velocity fluctuations that the cavitation generation is caused by the development of the carrier fluid flow near the leading edge of the hydrofoil. Down the stream, however, the flow structure strongly depends on the cavitation regime, which is seen from the comparison of the distributions with the case of a single-phase flow. The presented measurements qualitatively verify general trends and show some quantitative distinctions for the two considered flowpast bodies.

  6. Investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury.

    PubMed

    Goeller, Jacques; Wardlaw, Andrew; Treichler, Derrick; O'Bruba, Joseph; Weiss, Greg

    2012-07-01

    Cavitation was investigated as a possible damage mechanism for war-related traumatic brain injury (TBI) due to an improvised explosive device (IED) blast. When a frontal blast wave encounters the head, a shock wave is transmitted through the skull, cerebrospinal fluid (CSF), and tissue, causing negative pressure at the contrecoup that may result in cavitation. Numerical simulations and shock tube experiments were conducted to determine the possibility of cranial cavitation from realistic IED non-impact blast loading. Simplified surrogate models of the head consisted of a transparent polycarbonate ellipsoid. The first series of tests in the 18-inch-diameter shock tube were conducted on an ellipsoid filled with degassed water to simulate CSF and tissue. In the second series, Sylgard gel, surrounded by a layer of degassed water, was used to represent the tissue and CSF, respectively. Simulated blast overpressure in the shock tube tests ranged from a nominal 10-25 pounds per square inch gauge (psig; 69-170 kPa). Pressure in the simulated CSF was determined by Kulite thin line pressure sensors at the coup, center, and contrecoup positions. Using video taken at 10,000 frames/sec, we verified the presence of cavitation bubbles at the contrecoup in both ellipsoid models. In all tests, cavitation at the contrecoup was observed to coincide temporally with periods of negative pressure. Collapse of the cavitation bubbles caused by the surrounding pressure and elastic rebound of the skull resulted in significant pressure spikes in the simulated CSF. Numerical simulations using the DYSMAS hydrocode to predict onset of cavitation and pressure spikes during cavity collapse were in good agreement with the tests. The numerical simulations and experiments indicate that skull deformation is a significant factor causing cavitation. These results suggest that cavitation may be a damage mechanism contributing to TBI that requires future study.

  7. A Study of Cavitation Erosion

    SciTech Connect

    Hiromu Isaka; Masatsugu Tsutsumi; Tadashi Shiraishi; Hiroyuki Kobayashi

    2002-07-01

    The authors performed experimental study for the purpose of the following two items from a viewpoint of cavitation erosion of a cylindrical orifice in view of a problem at the letdown orifice in PWR (Pressurized Water Reactor). 1. To get the critical cavitation parameter of the cylindrical orifice to establish the design criteria for prevention of cavitation erosion, and 2. to ascertain the erosion rate in such an eventuality that the cavitation erosion occurs with the orifice made of stainless steel with precipitation hardening (17-4-Cu hardening type stainless steel), so that we confirm the appropriateness of the design criteria. Regarding the 1. item, we carried out the cavitation tests to get the critical cavitation parameters inside and downstream of the orifice. The test results showed that the cavitation parameter at inception is independent of the length or the diameter of the orifice. Moreover, the design criteria of cavitation erosion of cylindrical orifices have been established. Regarding the 2. item, we tested the erosion rate under high-pressure conditions. The cavitation erosion actually occurred in the cylindrical orifice at the tests that was strongly resemble to the erosion occurred at the plant. It will be seldom to reproduce resemble cavitation erosion in a cylindrical orifice with the hard material used at plants. We could establish the criteria for preventing the cavitation erosion from the test results. (authors)

  8. Bubble, Bubble, Toil and Trouble.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2001

    2001-01-01

    Bubbles are a fun way to introduce the concepts of surface tension, intermolecular forces, and the use of surfactants. Presents two activities in which students add chemicals to liquid dishwashing detergent with water in order to create longer lasting bubbles. (ASK)

  9. Modeling bubble dynamics and radical kinetics in ultrasound induced microalgal cell disruption.

    PubMed

    Wang, Meng; Yuan, Wenqiao

    2016-01-01

    Microalgal cell disruption induced by acoustic cavitation was simulated through solving the bubble dynamics in an acoustical field and their radial kinetics (chemical kinetics of radical species) occurring in the bubble during its oscillation, as well as calculating the bubble wall pressure at the collapse point. Modeling results indicated that increasing ultrasonic intensity led to a substantial increase in the number of bubbles formed during acoustic cavitation, however, the pressure generated when the bubbles collapsed decreased. Therefore, cumulative collapse pressure (CCP) of bubbles was used to quantify acoustic disruption of a freshwater alga, Scenedesmus dimorphus, and a marine alga, Nannochloropsis oculata and compare with experimental results. The strong correlations between CCP and the intracellular lipid fluorescence density, chlorophyll-a fluorescence density, and cell particle/debris concentration were found, which suggests that the developed models could accurately predict acoustic cell disruption, and can be utilized in the scale up and optimization of the process. PMID:26384877

  10. Correlation between simulations and cavitation-induced erosion damage in Spallation Neutron Source target modules after operation

    SciTech Connect

    Riemer, Bernie; McClintock, David A; Kaminskas, Saulius; Abdou, Ashraf A

    2014-01-01

    An explicit finite element (FE) technique developed for estimating dynamic strain in the Spallation Neutron Source (SNS) mercury target module vessel is now providing insight into cavitation damage patterns observed in used targets. The technique uses an empirically developed material model for the mercury that describes liquid-like volumetric stiffness combined with a tensile pressure cut-off limit that approximates cavitation. The longest period each point in the mercury is at the tensile cut-off threshold is denoted its saturation time. Now, the pattern of saturation time can be obtained from these simulations and is being positively correlated with observed damage patterns and is interpreted as a qualitative measure of damage potential. Saturation time has been advocated by collaborators at J-Parc as a factor in predicting bubble nuclei growth and collapse intensity. The larger the ratio of maximum bubble size to nucleus, the greater the bubble collapse intensity to be expected; longer saturation times result in greater ratios. With the recent development of a user subroutine for the FE solver saturation time is now provided over the entire mercury domain. Its pattern agrees with spots of damage seen above and below the beam axis on the SNS inner vessel beam window and elsewhere. The other simulation result being compared to observed damage patterns is mercury velocity at the wall. Related R&D has provided evidence for the damage mitigation that higher wall velocity provides. In comparison to observations in SNS targets, inverse correlation of high velocity to damage is seen. In effect, it is the combination of the patterns of saturation time and low velocity that seems to match actual damage patterns.

  11. The temperature dependence of void and bubble formation and growth in aluminium during 600 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Victoria, M.; Green, W. V.; Singh, B. N.; Leffers, T.

    1984-05-01

    As a part of a continuing program, we report in the present paper results obtained from irradiating pure aluminium samples in the PIREX facility installed in the 600 MeV proton beam of the accelerator at the Swiss Institute for Nuclear Research (SIN). The aluminium foils have been irradiated at 8 different temperatures in the range from 130°-430°C, to displacement doses of up to 5 dpa and helium contents of over 1000 appm. The TEM examinations have shown that at all irradiation temperatures and displacement doses, helium bubbles are formed uniformly through the whole grain interior. No voids are observed at temperatures above 160° C. At all temperatures, irradiation induced dislocations have been observed, most of them linked to bubbles. At higher temperatures and doses, clear evidence of irradiation induced precipitation has been observed; the precipitates are normally decorated with helium bubbles.

  12. Development of an Acoustic Localization Method for Cavitation Experiments in Reverberant Environments

    NASA Astrophysics Data System (ADS)

    Ranjeva, Minna; Thompson, Lee; Perlitz, Daniel; Bonness, William; Capone, Dean; Elbing, Brian

    2011-11-01

    Cavitation is a major concern for the US Navy since it can cause ship damage and produce unwanted noise. The ability to precisely locate cavitation onset in laboratory scale experiments is essential for proper design that will minimize this undesired phenomenon. Measuring the cavitation onset is more accurately determined acoustically than visually. However, if other parts of the model begin to cavitate prior to the component of interest the acoustic data is contaminated with spurious noise. Consequently, cavitation onset is widely determined by optically locating the event of interest. The current research effort aims at developing an acoustic localization scheme for reverberant environments such as water tunnels. Currently cavitation bubbles are being induced in a static water tank with a laser, allowing the localization techniques to be refined with the bubble at a known location. The source is located with the use of acoustic data collected with hydrophones and analyzed using signal processing techniques. To verify the accuracy of the acoustic scheme, the events are simultaneously monitored visually with the use of a high speed camera. Once refined testing will be conducted in a water tunnel. This research was sponsored by the Naval Engineering Education Center (NEEC).

  13. Ozone and Cavitation Combination

    NASA Astrophysics Data System (ADS)

    Carreon, Ernestina; Traversoni, Leonardo

    2009-09-01

    From laboratory measurements it is well known that the addition of ozone and cavitation enhances the properties of both, understanding for that the ones related to disinfection and carbon removal from waste water. This paper shows modeling of such phenomena that gives some light to the understanding of it and also provides the opportunity to improve the effectiveness of the current procedures.

  14. Effects of local structure on helium bubble growth in bulk and at grain boundaries of bcc iron: A molecular dynamics study

    SciTech Connect

    Yang, Li; Gao, Fei; Kurtz, Richard J.; Zu, Xiaotao; Peng, S. M.; Long, X. G.; Zhou, X. S.

    2015-07-15

    The nucleation and growth of helium (He) bubbles in the bulk and at Σ3 <110> {112} and Σ73b <110> {661} grain boundaries (GBs) in bcc iron have been investigated using molecular dynamics simulations. The results show that a 1/2 <111> {111} dislocation loop is formed with the sequential collection of <111> interstitial crowdions at the periphery of the He cluster and is eventually emitted from the He cluster. Insertion of 45 He atoms into a He cluster leads to the formation of a 1/2 <111> dislocation loop in Σ3 GB. It is of interest to notice that the transition of a dislocation segment through the GB leads to the formation of a step at the GB plane following the loop formation, accounting for the formation of a residual GB defect. A 1/2 <111> loop, with a {110} habit plane, is emitted with further increase of the He bubble size in the Σ3 GB. In contrast, the sequential insertion of He atoms in Σ73b GB continuously emits self-interstitial atoms (SIAs), but these SIAs rearrange at the core of the inherent GB dislocation, instead of forming a dislocation loop, which leads the GB dislocation to propagate along the [1¯1¯ 1 2] direction. In the bulk and Σ3 GB, the He bubble exhibits three-dimensionally spherical shape, but it forms longitudinal shape along the dislocation line in the Σ73 GB, a shape commonly observed at GBs in experiments.

  15. Measurements of Gas Bubble Size Distributions in Flowing Liquid Mercury

    SciTech Connect

    Wendel, Mark W; Riemer, Bernie; Abdou, Ashraf A

    2012-01-01

    ABSTRACT Pressure waves created in liquid mercury pulsed spallation targets have been shown to induce cavitation damage on the target container. One way to mitigate such damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, measuring such a population in mercury is difficult since it is opaque and the mercury is involved in a turbulent flow. Ultrasonic measurements have been attempted on these types of flows, but the flow noise can interfere with the measurement, and the results are unverifiable and often unrealistic. Recently, a flow loop was built and operated at Oak Ridge National Labarotory to assess the capability of various bubbler designs to deliver an adequate population of bubbles to mitigate cavitation damage. The invented diagnostic technique involves flowing the mercury with entrained gas bubbles in a steady state through a horizontal piping section with a glass-window observation port located on the top. The mercury flow is then suddenly stopped and the bubbles are allowed to settle on the glass due to buoyancy. Using a bright-field illumination and a high-speed camera, the arriving bubbles are detected and counted, and then the images can be processed to determine the bubble populations. After using this technique to collect data on each bubbler, bubble size distributions were built for the purpose of quantifying bubbler performance, allowing the selection of the best bubbler options. This paper presents the novel procedure, photographic technique, sample visual results and some example bubble size distributions. The best bubbler options were subsequently used in proton beam irradiation tests performed at the Los Alamos National Laboratory. The cavitation damage results from the irradiated test plates in contact with the mercury are available for correlation with the bubble populations. The most effective mitigating population can now be designed into prototypical geometries for implementation into

  16. Bubble diagnostics

    DOEpatents

    Visuri, Steven R.; Mammini, Beth M.; Da Silva, Luiz B.; Celliers, Peter M.

    2003-01-01

    The present invention is intended as a means of diagnosing the presence of a gas bubble and incorporating the information into a feedback system for opto-acoustic thrombolysis. In opto-acoustic thrombolysis, pulsed laser radiation at ultrasonic frequencies is delivered intraluminally down an optical fiber and directed toward a thrombus or otherwise occluded vessel. Dissolution of the occlusion is therefore mediated through ultrasonic action of propagating pressure or shock waves. A vapor bubble in the fluid surrounding the occlusion may form as a result of laser irradiation. This vapor bubble may be used to directly disrupt the occlusion or as a means of producing a pressure wave. It is desirable to detect the formation and follow the lifetime of the vapor bubble. Knowledge of the bubble formation and lifetime yields critical information as to the maximum size of the bubble, density of the absorbed radiation, and properties of the absorbing material. This information can then be used in a feedback system to alter the irradiation conditions.