Sample records for cavity divergence angle

  1. Numerical Optimization of converging diverging miniature cavitating nozzles

    NASA Astrophysics Data System (ADS)

    Chavan, Kanchan; Bhingole, B.; Raut, J.; Pandit, A. B.

    2015-12-01

    The work focuses on the numerical optimization of converging diverging cavitating nozzles through nozzle dimensions and wall shape. The objective is to develop design rules for the geometry of cavitating nozzles for desired end-use. Two main aspects of nozzle design which affects the cavitation have been studied i.e. end dimensions of the geometry (i.e. angle and/or curvature of the inlet, outlet and the throat and the lengths of the converging and diverging sections) and wall curvatures(concave or convex). Angle of convergence at the inlet was found to control the cavity growth whereas angle of divergence of the exit controls the collapse of cavity. CFD simulations were carried out for the straight line converging and diverging sections by varying converging and diverging angles to study its effect on the collapse pressure generated by the cavity. Optimized geometry configurations were obtained on the basis of maximum Cavitational Efficacy Ratio (CER)i.e. cavity collapse pressure generated for a given permanent pressure drop across the system. With increasing capabilities in machining and fabrication, it is possible to exploit the effect of wall curvature to create nozzles with further increase in the CER. Effect of wall curvature has been studied for the straight, concave and convex shapes. Curvature has been varied and effect of concave and convex wall curvatures vis-à-vis straight walls studied for fixed converging and diverging angles.It is concluded that concave converging-diverging nozzles with converging angle of 20° and diverging angle of 5° with the radius of curvature 0.03 m and 0.1530 m respectively gives maximum CER. Preliminary experiments using optimized geometry are indicating similar trends and are currently being carried out. Refinements of the CFD technique using two phase flow simulations are planned.

  2. Computational Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for a Supersonic Aircraft Application

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Flamm, Jeffrey D.; Berrier, Bobby L.; Johnson, Stuart K.

    2007-01-01

    A computational investigation of an axisymmetric Dual Throat Nozzle concept has been conducted. This fluidic thrust-vectoring nozzle was designed with a recessed cavity to enhance the throat shifting technique for improved thrust vectoring. The structured-grid, unsteady Reynolds- Averaged Navier-Stokes flow solver PAB3D was used to guide the nozzle design and analyze performance. Nozzle design variables included extent of circumferential injection, cavity divergence angle, cavity length, and cavity convergence angle. Internal nozzle performance (wind-off conditions) and thrust vector angles were computed for several configurations over a range of nozzle pressure ratios from 1.89 to 10, with the fluidic injection flow rate equal to zero and up to 4 percent of the primary flow rate. The effect of a variable expansion ratio on nozzle performance over a range of freestream Mach numbers up to 2 was investigated. Results indicated that a 60 circumferential injection was a good compromise between large thrust vector angles and efficient internal nozzle performance. A cavity divergence angle greater than 10 was detrimental to thrust vector angle. Shortening the cavity length improved internal nozzle performance with a small penalty to thrust vector angle. Contrary to expectations, a variable expansion ratio did not improve thrust efficiency at the flight conditions investigated.

  3. A Computational Study of a New Dual Throat Fluidic Thrust Vectoring Nozzle Concept

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Berrier, Bobby L.; Flamm, Jeffrey D.; Johnson, Stuart K.

    2005-01-01

    A computational investigation of a two-dimensional nozzle was completed to assess the use of fluidic injection to manipulate flow separation and cause thrust vectoring of the primary jet thrust. The nozzle was designed with a recessed cavity to enhance the throat shifting method of fluidic thrust vectoring. Several design cycles with the structured-grid, computational fluid dynamics code PAB3D and with experiments in the NASA Langley Research Center Jet Exit Test Facility have been completed to guide the nozzle design and analyze performance. This paper presents computational results on potential design improvements for best experimental configuration tested to date. Nozzle design variables included cavity divergence angle, cavity convergence angle and upstream throat height. Pulsed fluidic injection was also investigated for its ability to decrease mass flow requirements. Internal nozzle performance (wind-off conditions) and thrust vector angles were computed for several configurations over a range of nozzle pressure ratios from 2 to 7, with the fluidic injection flow rate equal to 3 percent of the primary flow rate. Computational results indicate that increasing cavity divergence angle beyond 10 is detrimental to thrust vectoring efficiency, while increasing cavity convergence angle from 20 to 30 improves thrust vectoring efficiency at nozzle pressure ratios greater than 2, albeit at the expense of discharge coefficient. Pulsed injection was no more efficient than steady injection for the Dual Throat Nozzle concept.

  4. High brightness angled cavity quantum cascade lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari, D.; Bai, Y.; Bandyopadhyay, N.

    2015-03-02

    A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm{sup −2 }sr{sup −1} is obtained, which marks the brightestmore » QCL to date.« less

  5. Design Enhancements of the Two-Dimensional, Dual Throat Fluidic Thrust Vectoring Nozzle Concept

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.; Deere, Karen A.; Mason, Mary L.; Berrier, Bobby L.; Johnson, Stuart K.

    2006-01-01

    A Dual Throat Nozzle fluidic thrust vectoring technique that achieves higher thrust-vectoring efficiencies than other fluidic techniques, without sacrificing thrust efficiency has been developed at NASA Langley Research Center. The nozzle concept was designed with the aid of the structured-grid, Reynolds-averaged Navier-Stokes computational fluidic dynamics code PAB3D. This new concept combines the thrust efficiency of sonic-plane skewing with increased thrust-vectoring efficiencies obtained by maximizing pressure differentials in a separated cavity located downstream of the nozzle throat. By injecting secondary flow asymmetrically at the upstream minimum area, a new aerodynamic minimum area is formed downstream of the geometric minimum and the sonic line is skewed, thus vectoring the exhaust flow. The nozzle was tested in the NASA Langley Research Center Jet Exit Test Facility. Internal nozzle performance characteristics were defined for nozzle pressure ratios up to 10, with a range of secondary injection flow rates up to 10 percent of the primary flow rate. Most of the data included in this paper shows the effect of secondary injection rate at a nozzle pressure ratio of 4. The effects of modifying cavity divergence angle, convergence angle and cavity shape on internal nozzle performance were investigated, as were effects of injection geometry, hole or slot. In agreement with computationally predicted data, experimental data verified that decreasing cavity divergence angle had a negative impact and increasing cavity convergence angle had a positive impact on thrust vector angle and thrust efficiency. A curved cavity apex provided improved thrust ratios at some injection rates. However, overall nozzle performance suffered with no secondary injection. Injection holes were more efficient than the injection slot over the range of injection rates, but the slot generated larger thrust vector angles for injection rates less than 4 percent of the primary flow rate.

  6. An Optically Pumped Far-Infrared Folded Mirror-Less Cavity

    NASA Astrophysics Data System (ADS)

    Liu, Chuang; Wang, Dashuai; Zhang, Peng; Qu, Yanchen

    2017-12-01

    A compact and efficient mirror-less cavity is presented for an optically pumped 192-μm far-infrared laser. With a gold-coated mirror and 30°-inclined anti-reflection coated Ge plate serving as highly reflective mirrors, a folded mirror-less CH3F cavity is achieved. Maximum energy of 0.72 mJ is obtained with the pump energy of 600 mJ, which gives an energy increment of 75% in comparison with the previous 1.85-m mirror-less system. The beam divergence angle of the FIR radiation from this folded mirror-less cavity is measured to be 14.2 mrad.

  7. Investigation of 100 mJ all solid state end-pumped 1064 nm Q-switched laser

    NASA Astrophysics Data System (ADS)

    Xie, Shiyong; Wang, Caili; Liu, Hui; Bo, Yong; Xu, Zuyan

    2017-11-01

    High energy 1064 nm Q-switched laser output is obtained by LD vertical array end pumping Nd:YAG. Cylindrical lens are used for beam shaping of LD array for different divergence angle of fast and slow axis. Based on the theoretical simulation of fundamental mode radius using ABCD transfer matrix, the resonant cavity is optimized and curvature radius of cavity mirrors is determined. The intracavity power density is calculated according to the output laser pulse energy and transmittance of output coupling mirror is optimized under the condition that optical device is not damaged. 1064 nm laser with a maximum output of 110 mJ is generated under LD pump energy of 600 mJ, corresponding to optical conversion efficiency of 18.3%. The laser pulse width is 11 ns and divergence angle is 1.2 mrad. For saturation phenomenon of Q-switched laser output, LD temperature is adjusted to make wavelength deviate from absorption peak of Nd:YAG crystal. The parasitic oscillation, which affects the enhancement of Q-switched laser energy, can be effectively suppressed by reducing gain of pump end of laser medium, which provides an effective technical means for obtaining high energy end-pumped Q-switched laser.

  8. Axicon based conical resonators with high power copper vapor laser.

    PubMed

    Singh, Bijendra; Subramaniam, V V; Daultabad, S R; Chakraborty, Ashim

    2010-07-01

    We report for the first time the performance of axicon based conical resonators (ABCRs) in a copper vapor laser, with novel results. The unstable conical resonator comprising of conical mirror (reflecting axicon) with axicon angle approximately pi/18, cone angle approximately 160 degrees, and a convex mirror of 60 cm radius of curvature was effective in reducing the average beam divergence to approximately 0.15 mrad (approximately 25 fold reduction compared to standard multimode plane-plane cavity) with output power of approximately 31 W. Extraction efficiency of approximately 50%-60% and beam divergence of <1 mrad was achieved in other stable ABCR configurations using flat and concave mirrors with the axicon. This is a significant improvement compared to 4-5 mrad normally observed in conventional stable resonators in copper vapor lasers. The conical resonators with copper vapor laser provide high misalignment tolerance beta approximately 4-5 mrad where beta is the tilt angle of the conical mirror from optimum position responsible for approximately 20% decline in laser power. The depth of focus d was approximately three times larger in case of conical resonator as compared to that of standard spherical unstable resonator under similar beam divergence and focusing conditions.

  9. Internal Performance of Several Divergent-Shroud Ejector Nozzles with High Divergence Angles

    NASA Technical Reports Server (NTRS)

    Trout, Arthur M.; Papell, S. Stephen; Povolny, John H.

    1957-01-01

    Nine divergent-shroud ejector configurations were investigated to determine the effect of shroud divergence angle on ejector internal performance. Unheated dry air was used for both the primary and secondary flows. The decrease in the design-point thrust coefficient with increasing flow divergence angle (angle measured from primary exit to shroud exit) followed very closely a simple relation involving the cosine of the angle. This indicates that design-point thrust performance for divergent-shroud ejectors can be predicted with reasonable accuracy within the range investigated. The decrease in design-point thrust coefficient due to increasing the flow divergence engle from 120deg to 30deg (half-singles) was approximately 6 percent. Ejector air-handling characteristics and the primary-nozzle flow coefficient were not significantly affected by change in shroud divergence angle.

  10. Test technology on divergence angle of laser range finder based on CCD imaging fusion

    NASA Astrophysics Data System (ADS)

    Shi, Sheng-bing; Chen, Zhen-xing; Lv, Yao

    2016-09-01

    Laser range finder has been equipped with all kinds of weapons, such as tank, ship, plane and so on, is important component of fire control system. Divergence angle is important performance and incarnation of horizontal resolving power for laser range finder, is necessary appraised test item in appraisal test. In this paper, based on high accuracy test on divergence angle of laser range finder, divergence angle test system is designed based on CCD imaging, divergence angle of laser range finder is acquired through fusion technology for different attenuation imaging, problem that CCD characteristic influences divergence angle test is solved.

  11. Effect of Axisymmetric Aft Wall Angle Cavity in Supersonic Flow Field

    NASA Astrophysics Data System (ADS)

    Jeyakumar, S.; Assis, Shan M.; Jayaraman, K.

    2018-03-01

    Cavity plays a significant role in scramjet combustors to enhance mixing and flame holding of supersonic streams. In this study, the characteristics of axisymmetric cavity with varying aft wall angles in a non-reacting supersonic flow field are experimentally investigated. The experiments are conducted in a blow-down type supersonic flow facility. The facility consists of a supersonic nozzle followed by a circular cross sectional duct. The axisymmetric cavity is incorporated inside the duct. Cavity aft wall is inclined with two consecutive angles. The performance of the aft wall cavities are compared with rectangular cavity. Decreasing aft wall angle reduces the cavity drag due to the stable flow field which is vital for flame holding in supersonic combustor. Uniform mixing and gradual decrease in stagnation pressure loss can be achieved by decreasing the cavity aft wall angle.

  12. Design and properties of high-power highly-coherent single-frequency VECSEL emitting in the near- to mid-IR for photonic applications

    NASA Astrophysics Data System (ADS)

    Garnache, A.; Laurain, A.; Myara, M.; Sellahi, M.; Cerutti, L.; Perez, J. P.; Michon, A.; Beaudoin, G.; Sagnes, I.; Cermak, P.; Romanini, D.

    2017-11-01

    We demonstrate high power (multiwatt) low noise single frequency operation of tunable compact verical-external- cavity surface-emitting-lasers exhibiting a low divergence high beam quality, of great interest for photonics applications. The quantum-well based lasers are operating in CW at RT at 1μm and 2.3μm exploiting GaAs and Sb technologies. For heat management purpose the VECSEL membranes were bonded on a SiC substrate. Both high power diode pumping (using GaAs commercial diode) at large incidence angle and electrical pumping are developed. The design and physical properties of the coherent wave are presented. We took advantage of thermal lens-based stability to develop a short (0.5-5mm) external cavity without any intracavity filter. We measured a low divergence circular TEM00 beam (M2 = 1.2) close to diffraction limit, with a linear light polarization (> 30 dB). The side mode suppression ratio is > 45 dB. The free running laser linewidth is 37 kHz limited by pump induced thermal fluctuations. Thanks to this high-Q external cavity approach, the frequency noise is low and the dynamics is in the relaxation-oscillation-free regime, exhibiting low intensity noise (< 0.1%), with a cutoff frequency ∽ 41MHz above which the shot noise level is reached. The key parameters limiting the laser power and coherence will be discussed. These design/properties can be extended to other wavelengths.

  13. XeCl excimer laser with new prism resonator configurations and its performance characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benerji, N. S., E-mail: nsb@rrcat.gov.in, E-mail: bsingh@rrcat.gov.in; Singh, A.; Varshnay, N.

    2015-07-15

    New resonator cavity configurations, namely, the prism resonator and unstable prism resonator, are demonstrated for the first time in an excimer (XeCl) laser with interesting and novel results. High misalignment tolerance ∼50 mrad is achieved with considerably reduced beam divergence of less than ∼1 mrad without reduction in output power capabilities of the laser. The misalignment tolerance of ∼50 mrad is a dramatic improvement of ∼25 times compared to ∼2 mrad normally observed in standard excimer laser with plane-plane cavity. Increase in depth of focus from 3 mm to 5.5 mm was also achieved in case of prism resonator configurationmore » with an improvement of about 60%. Unstable prism resonator configuration is demonstrated here in this paper with further reduction in beam divergence to about 0.5 mrad using plano-convex lens as output coupler. The misalignment tolerance in case of unstable prism resonator was retained at about 30 mrad which is a high value compared to standard unstable resonators. The output beam spot was completely filled with flat-top profile with prism resonator configurations, which is desired for various material processing applications. Focusing properties and beam divergence in case of prism resonator have been investigated using SEM (scanning electron microscope) images. SEM images of the focused spot size (∼20 μm holes) on metal sheet indicate beam divergence of about 0.05 mrad which is about 1.5 times diffraction limit. Energy contained in this angle is thus sufficient for micro-machining applications. Clean and sharp edges of the micro-holes show high pointing stability with multiple shot exposures. Such characteristics of the excimer laser system will be extremely useful in micro-machining and other field applications.« less

  14. XeCl excimer laser with new prism resonator configurations and its performance characteristics.

    PubMed

    Benerji, N S; Singh, A; Varshnay, N; Singh, Bijendra

    2015-07-01

    New resonator cavity configurations, namely, the prism resonator and unstable prism resonator, are demonstrated for the first time in an excimer (XeCl) laser with interesting and novel results. High misalignment tolerance ∼50 mrad is achieved with considerably reduced beam divergence of less than ∼1 mrad without reduction in output power capabilities of the laser. The misalignment tolerance of ∼50 mrad is a dramatic improvement of ∼25 times compared to ∼2 mrad normally observed in standard excimer laser with plane-plane cavity. Increase in depth of focus from 3 mm to 5.5 mm was also achieved in case of prism resonator configuration with an improvement of about 60%. Unstable prism resonator configuration is demonstrated here in this paper with further reduction in beam divergence to about 0.5 mrad using plano-convex lens as output coupler. The misalignment tolerance in case of unstable prism resonator was retained at about 30 mrad which is a high value compared to standard unstable resonators. The output beam spot was completely filled with flat-top profile with prism resonator configurations, which is desired for various material processing applications. Focusing properties and beam divergence in case of prism resonator have been investigated using SEM (scanning electron microscope) images. SEM images of the focused spot size (∼20 μm holes) on metal sheet indicate beam divergence of about 0.05 mrad which is about 1.5 times diffraction limit. Energy contained in this angle is thus sufficient for micro-machining applications. Clean and sharp edges of the micro-holes show high pointing stability with multiple shot exposures. Such characteristics of the excimer laser system will be extremely useful in micro-machining and other field applications.

  15. Low Power Consumption Substrate-Emitting DFB Quantum Cascade Lasers.

    PubMed

    Liu, Chuan-Wei; Zhang, Jin-Chuan; Jia, Zhi-Wei; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo

    2017-09-02

    In the present work, an ultra-low power consumption substrate-emitting distributed feedback (DFB) quantum cascade laser (QCL) was developed. The continuous-wave (CW) threshold power dissipation is reduced to 0.43 W at 25 °C by shortening the cavity length to 0.5 mm and depositing high-reflectivity (HR) coating on both facets. As far as we know, this is the recorded threshold power dissipation of QCLs in the same conditions. Single-mode emission was achieved by employing a buried second-order grating. Mode-hop free emission can be observed within a wide temperature range from 15 to 105 °C in CW mode. The divergence angles are 22.5 o and 1.94 o in the ridge-width direction and cavity-length direction, respectively. The maximum optical power in CW operation was 2.4 mW at 25 °C, which is sufficient to spectroscopy applications.

  16. Low Power Consumption Substrate-Emitting DFB Quantum Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Liu, Chuan-Wei; Zhang, Jin-Chuan; Jia, Zhi-Wei; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo

    2017-09-01

    In the present work, an ultra-low power consumption substrate-emitting distributed feedback (DFB) quantum cascade laser (QCL) was developed. The continuous-wave (CW) threshold power dissipation is reduced to 0.43 W at 25 °C by shortening the cavity length to 0.5 mm and depositing high-reflectivity (HR) coating on both facets. As far as we know, this is the recorded threshold power dissipation of QCLs in the same conditions. Single-mode emission was achieved by employing a buried second-order grating. Mode-hop free emission can be observed within a wide temperature range from 15 to 105 °C in CW mode. The divergence angles are 22.5o and 1.94o in the ridge-width direction and cavity-length direction, respectively. The maximum optical power in CW operation was 2.4 mW at 25 °C, which is sufficient to spectroscopy applications.

  17. Numerical analysis of turbine blade tip treatments

    NASA Technical Reports Server (NTRS)

    Gopalaswamy, Nath S.; Whitaker, Kevin W.

    1992-01-01

    Three-dimensional solutions of the Navier-Stokes equations for a turbine blade with a turning angle of 180 degrees have been computed, including blade tip treatments involving cavities. The geometry approximates a preliminary design for the GGOT (Generic Gas Oxidizer Turbine). The data presented here will be compared with experimental data to be obtained from a linear cascade using original GGOT blades. Results have been computed for a blade with 1 percent clearance, based on chord, and three different cavity sizes. All tests were conducted at a Reynolds number of 4 x 10 exp 7. The grid contains 39,440 points with 10 spanwise planes in the tip clearance region of 5.008E-04 m. Streamline plots and velocity vectors together with velocity divergence plots reveal the general flow behavior in the clearance region. Blade tip temperature calculations suggest placement of a cavity close to the upstream side of the blade tip for reduction of overall blade tip temperature. The solutions do not account for the relative motion between the endwall and the turbine blade. The solutions obtained are generally consistent with previous work done in this area,

  18. High-frequency asymptotic methods for analyzing the EM scattering by open-ended waveguide cavities

    NASA Technical Reports Server (NTRS)

    Burkholder, R. J.; Pathak, P. H.

    1989-01-01

    Four high-frequency methods are described for analyzing the electromagnetic (EM) scattering by electrically large open-ended cavities. They are: (1) a hybrid combination of waveguide modal analysis and high-frequency asymptotics, (2) geometrical optics (GO) ray shooting, (3) Gaussian beam (GB) shooting, and (4) the generalized ray expansion (GRE) method. The hybrid modal method gives very accurate results but is limited to cavities which are made up of sections of uniform waveguides for which the modal fields are known. The GO ray shooting method can be applied to much more arbitrary cavity geometries and can handle absorber treated interior walls, but it generally only predicts the major trends of the RCS pattern and not the details. Also, a very large number of rays need to be tracked for each new incidence angle. Like the GO ray shooting method, the GB shooting method can handle more arbitrary cavities, but it is much more efficient and generally more accurate than the GO method because it includes the fields diffracted by the rim at the open end which enter the cavity. However, due to beam divergence effects the GB method is limited to cavities which are not very long compared to their width. The GRE method overcomes the length-to-width limitation of the GB method by replacing the GB's with GO ray tubes which are launched in the same manner as the GB's to include the interior rim diffracted field. This method gives good accuracy and is generally more efficient than the GO method, but a large number of ray tubes needs to be tracked.

  19. Lattice Boltzmann simulation of immiscible displacement in the cavity with different channel configurations

    NASA Astrophysics Data System (ADS)

    Lou, Qin; Zang, Chenqiang; Yang, Mo; Xu, Hongtao

    In this work, the immiscible displacement in a cavity with different channel configurations is studied using an improved pseudo-potential lattice Boltzmann equation (LBE) model. This model overcomes the drawback of the dependence of the fluid properties on the grid size, which exists in the original pseudo-potential LBE model. The approach is first validated by the Laplace law. Then, it is employed to study the immiscible displacement process. The influences of different factors, such as the surface wettability, the distance between the gas cavity and liquid cavity and the surface roughness of the channel are investigated. Numerical results show that the displacement efficiency increases and the displacement time decreases with the increase of the surface contact angle. On the other hand, the displacement efficiency increases with increasing distance between the gas cavity and the liquid cavity at first and finally reaches a constant value. As for the surface roughness, two structures (a semicircular cavity and a semicircular bulge) are studied. The comprehensive results show that although the displacement processes for both the structures depend on the surface wettability, they present quite different behaviors. Specially, for the roughness structure constituted by the semicircular cavity, the displacement efficiency decreases and displacement time increases evidently with the size of the semicircular cavity for the small contact angle. The trend slows down as the increase of the contact angle. Once the contact angle exceeds a certain value, the size of the semicircular cavity almost has no influence on the displacement process. While for the roughness structure of a semicircular bulge, the displacement efficiency increases with the size of bulge first and then it decreases for the small contact angle. The displacement efficiency increases first and finally reaches a constant for the large contact angle. The results also show that the displacement time has an extreme value in these cases for the small contact angles.

  20. The influence of wedge diffuser blade number and divergence angle on the performance of a high pressure ratio centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Han, Ge; Lu, Xingen; Zhu, Junqiang

    2018-02-01

    Wedge diffuser is widely used in centrifugal compressors due to its high performance and compact size. This paper is aimed to research the influence of wedge diffuser blade number and divergence angle on centrifugal compressor performance. The impact of wedge diffuser blade number on compressor stage performance is investigated, and then the wedge diffusers with different divergence angle are studied by varying diffuser wedge angle and blade number simultaneously. It is found that wedge diffuser with 27 blades could have about 0.8% higher adiabatic efficiency and 0.14 higher total pressure ratio than the wedge diffuser with 19 blades and the best compressor performance is achieved when diffuser divergence angle is 8.3°.These results could give some advices on centrifugal compressor design.

  1. Supersonic axial-force characteristics of a rectangular-box cavity with various length-to-depth ratios in a flat plate

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.; Stallings, R. L., Jr.

    1986-01-01

    A wind-tunnel investigation has been conducted at Mach numbers of 1.50, 2.16, and 2.86 to obtain axial-force data on a metric rectangular-box cavity with various length-to-depth ratios. The model was tested at angles of attack from -4 deg to -2 deg. The results are summarized to show variations in cavity axial-force coefficient for deep- and shallow-cavity configurations with detached and attached cavity flow fields, respectively. The results of the investigation indicate that for a wide range of cavity lengths and depths, good correlations of the cavity axial-force coefficients (based on cavity rear-face area) are obtained when these coefficients are plotted as a function of cavity length-to-depth ratio. Abrupt increases in the cavity axial-force coefficients at an angle of attack of 0 deg. reflect the transition from an open (detached) cavity flow field to a closed (attached) cavity flow field. Cavity length-to-depth ratio is the dominant factor affecting the switching of the cavity flow field from one type to the other. The type of cavity flow field (open or closed) is not dependent on the test angles of attack except near the critical value of length-to-depth ratio.

  2. Detection-gap-independent optical sensor design using divergence-beam-controlled slit lasers for wearable devices

    NASA Astrophysics Data System (ADS)

    Yoon, Young Zoon; Kim, Hyochul; Park, Yeonsang; Kim, Jineun; Lee, Min Kyung; Kim, Un Jeong; Roh, Young-Geun; Hwang, Sung Woo

    2016-09-01

    Wearable devices often employ optical sensors, such as photoplethysmography sensors, for detecting heart rates or other biochemical factors. Pulse waveforms, rather than simply detecting heartbeats, can clarify arterial conditions. However, most optical sensor designs require close skin contact to reduce power consumption while obtaining good quality signals without distortion. We have designed a detection-gap-independent optical sensor array using divergence-beam-controlled slit lasers and distributed photodiodes in a pulse-detection device wearable over the wrist's radial artery. It achieves high biosignal quality and low power consumption. The top surface of a vertical-cavity surface-emitting laser of 850 nm wavelength was covered by Au film with an open slit of width between 500 nm and 1500 nm, which generated laser emissions across a large divergence angle along an axis orthogonal to the slit direction. The sensing coverage of the slit laser diode (LD) marks a 50% improvement over nonslit LD sensor coverage. The slit LD sensor consumes 100% more input power than the nonslit LD sensor to obtain similar optical output power. The slit laser sensor showed intermediate performance between LD and light-emitting diode sensors. Thus, designing sensors with multiple-slit LD arrays can provide useful and convenient ways for incorporating optical sensors in wrist-wearable devices.

  3. 980 nm tapered lasers with photonic crystal structure for low vertical divergence

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolong; Qu, Hongwei; Zhao, Pengchao; Liu, Yun; Zheng, Wanhua

    2016-10-01

    High power tapered lasers with nearly diffraction-limited beam quality have attracted much attention in numerous applications such as nonlinear frequency conversion, optical pumping of solid-state and fiber lasers, medical treatment and others. However, the large vertical divergence of conventional tapered lasers is a disadvantage, which makes beam shaping difficult and expensive in applications. Diode lasers with photonic crystal structure can achieve a large mode size and a narrow vertical divergence. In this paper, we present tapered lasers with photonic crystal structure emitting at 980 nm. The epitaxial layer is grown using metal organic chemical vapor deposition. The device has a total cavity length of 2 mm, which consists of a 400-um long ridge-waveguide section and a 1600-um long tapered section. The taper angle is 4°. An output power of 3.3 W is achieved with a peak conversion efficiency of 35% in pulsed mode. The threshold current is 240 mA and the slope efficiency is 0.78 W/A. In continuous wave mode, the output power is 2.87 W, which is limited by a suddenly failure resulting from catastrophic optical mirror damage. The far field divergences with full width at half maximum are 12.3° in the vertical direction and 2.9° in the lateral direction at 0.5 A. At high injection level the vertical divergence doesn't exceed 16°. Beam quality factor M2 is measured based on second moment definition in CW mode. High beam quality is demonstrated by M2 value of less than 2 in both vertical and lateral directions.

  4. Performance-limiting factors for x-ray free electron laser oscillator as a highly coherent, high spectral purity x-ray source

    NASA Astrophysics Data System (ADS)

    Park, Gunn Tae

    X-ray Free Electron Laser (XFEL) is a light source for coherent X-ray using the radiation from relativistic electrons and interaction between the two. In particular, XFEL oscillator(XFELO) uses optical cavity to repeatedly bring back the radiation to electron beam for the interaction. Its optimal performance, maximum single pass gain and minimum round trip loss, critically depends on cavity optics. In ideal case, the optimal performance would be achieved by the periodic radiation mode maximally overlapping with electron beam while the radiation mode is impinging on curved mirror that gives the radiation the focusing, below critical angle and angular divergence being kept small enough at each crystal for Bragg scattering, which is used for near-normal reflection. In reality, there exist various performance degrading factors in the cavity such as heat load on the crystal surface, misalignments of crystals and mirrors and mirror surface errors. In this thesis, we study via both analytic computation and numerical simulation the optimal design and performance of XFELO cavity in the presence of these factors. In optimal design, we implement asymmetric crystals into cavity to enhance the performance. In general, it has undesirable effect of pulse dilation. We present the configuration that avoids pulse length dilation. Then the effects of misalignments, focal length errors and mirror surface errors are to be evaluated and their tolerances are estimated. In particular, the simulation demonstrates that the effect of mirror surface errors on gain and round trip loss is well-within desired performance of XFELO.

  5. Piezo activated mode tracking system for widely tunable mode-hop-free external cavity mid-IR semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Tittel, Frank K. (Inventor); Curl, Robert F. (Inventor); Wysocki, Gerard (Inventor)

    2010-01-01

    A widely tunable, mode-hop-free semiconductor laser operating in the mid-IR comprises a QCL laser chip having an effective QCL cavity length, a diffraction grating defining a grating angle and an external cavity length with respect to said chip, and means for controlling the QCL cavity length, the external cavity length, and the grating angle. The laser of claim 1 wherein said chip may be tuned over a range of frequencies even in the absence of an anti-reflective coating. The diffraction grating is controllably pivotable and translatable relative to said chip and the effective QCL cavity length can be adjusted by varying the injection current to the chip. The laser can be used for high resolution spectroscopic applications and multi species trace-gas detection. Mode-hopping is avoided by controlling the effective QCL cavity length, the external cavity length, and the grating angle so as to replicate a virtual pivot point.

  6. Effect of Varying the Angle of Attack of the Scales on a Biomimetic Shark Skin Model on Embedded Vortex Formation

    NASA Astrophysics Data System (ADS)

    Wheelus, Jennifer; Lang, Amy

    2009-11-01

    The skin of fast-swimming sharks is proposed to have mechanisms to reduce drag and delay flow separation. The skin of fast-swimming sharks is covered with small denticles, on the order of 0.2 mm, that if bristled create cavities. It has been shown that for an angle of attack of 90 degrees, vortices form within these cavities and impose a partial slip condition at the surface of the cavity. This experiment focuses on smaller angles of attack for denticle bristling, closer to the range thought to be achieved on real shark skin. A 3-D bristled shark skin model with varying angle of attack, embedded below a boundary layer, was used to study the formation of cavity vortices through fluorescent dye visualization and Digital Particle Image Velocimetry (DPIV). The effect of varying angle of attack on vortex formation will be discussed.

  7. High frame rate synthetic aperture vector flow imaging for transthoracic echocardiography

    NASA Astrophysics Data System (ADS)

    Villagómez-Hoyos, Carlos A.; Stuart, Matthias B.; Bechsgaard, Thor; Nielsen, Michael Bachmann; Jensen, Jørgen Arendt

    2016-04-01

    This work presents the first in vivo results of 2-D high frame rate vector velocity imaging for transthoracic cardiac imaging. Measurements are made on a healthy volunteer using the SARUS experimental ultrasound scanner connected to an intercostal phased-array probe. Two parasternal long-axis view (PLAX) are obtained, one centred at the aortic valve and another centred at the left ventricle. The acquisition sequence was composed of 3 diverging waves for high frame rate synthetic aperture flow imaging. For verification a phantom measurement is performed on a transverse straight 5 mm diameter vessel at a depth of 100 mm in a tissue-mimicking phantom. A flow pump produced a 2 ml/s constant flow with a peak velocity of 0.2 m/s. The average estimated flow angle in the ROI was 86.22° +/- 6.66° with a true flow angle of 90°. A relative velocity bias of -39% with a standard deviation of 13% was found. In-vivo acquisitions show complex flow patterns in the heart. In the aortic valve view, blood is seen exiting the left ventricle cavity through the aortic valve into the aorta during the systolic phase of the cardiac cycle. In the left ventricle view, blood flow is seen entering the left ventricle cavity through the mitral valve and splitting in two ways when approximating the left ventricle wall. The work presents 2-D velocity estimates on the heart from a non-invasive transthoracic scan. The ability of the method detecting flow regardless of the beam angle could potentially reveal a more complete view of the flow patterns presented on the heart.

  8. Effect of aperture geometry on heat transfer in tilted partially open cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsayed, M.M.; Chakroun, W.

    1999-11-01

    Heat transfer in cavities is receiving increasing attention because of the various applications in engineering; e.g., passive solar heating, energy conservation in buildings, solar concentrating receivers, and electronic equipment. Here, convection from a square, tilted partially open cavity was investigated experimentally. The experiment was carried out to study the effect of the aperture geometry on the heat transfer between the cavity and the surrounding air. Four different geometrical arrangements for the opening were investigated: (1) high wall slit, (2) low wall slit, (3) centered wall slit, and (4) uniform wall slots. Each opening arrangement was studied at opening ratios (i.e.,more » ratio of opening height to cavity height) of 0.25, 0.5, and 0.75. The average heat transfer coefficient between the cavity and the surrounding air was estimated for each geometrical arrangement for tilt angles ranging from {minus}90 deg to +90 deg with increments of 15 deg and at a constant heat flux Grashof number of 5.5 x 10{sup 8}. The results showed that for tilt angles between 90 and 75 deg, the heat transfer coefficient has a small value that is independent of the geometrical arrangement of the opening. The value of the heat transfer coefficient increases sharply with decreasing tilt angle until an angle value of zero degrees is reached. The increase in the heat transfer coefficient continues in the negative range of tilt angle but not in the same rate as in the positive range of the tilt angle. The uniform slot arrangement gave in general higher heat transfer coefficient than the other three arrangements of the opening. Large differences in the heat transfer coefficient were observed between the high and the low wall slits where the high wall slit is found to transfer more heat to the surroundings than the low wall slit. Correlations were developed to predict the average Nusselt number of the cavity in terms of the opening ratio and the cavity tilt angle for cavities with high wall slit, low wall slit, centered wall slit, and the uniform wall slots.« less

  9. A Passive Cavity Concept for Improving the Off-Design Performance of Fixed-Geometry Exhaust Nozzles

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Gunther, Christopher L.; Hunter, Craig A.

    1996-01-01

    An investigation was conducted in the model preparation area of the Langley 16-Foot Transonic Tunnel to study a passive cavity concept for improving the off-design performance of fixed-geometry exhaust nozzles. Passive cavity ventilation (through a porous surface) was applied to divergent flap surfaces and tested at static conditions in a sub-scale, nonaxisymmetric, convergent-divergent nozzle. As part of a comprehensive investigation, force, moment and pressure measurements were taken and focusing schlieren flow visualization was obtained for a baseline configuration and D passive cavity configurations. All tests were conducted with no external flow and high-pressure air was used to simulate jet-exhaust flow at nozzle pressure ratios from 1.25 to approximately 9.50. Results indicate that baseline nozzle performance was dominated by unstable shock-induced boundary-layer separation at off-design conditions, which came about through the natural tendency of overexpanded exhaust flow to satisfy conservation requirements by detaching from the nozzle divergent flaps. Passive cavity ventilation added the ability to control off-design separation in the nozzle by either alleviating separation or encouraging stable separation of the exhaust flow. Separation alleviation offers potential for installed nozzle performance benefits by reducing drag at forward flight speeds, even though it may reduce off-design static thrust efficiency as much as 3.2 percent. Encouraging stable separation of the exhaust flow offers significant performance improvements at static, low NPR and low Mach number flight conditions by improving off-design static thrust efficiency as much as 2.8 percent. By designing a fixed-geometry nozzle with fully porous divergent flaps, where both cavity location and percent open porosity of the flaps could be varied, passive flow control would make it possible to improve off-design nozzle performance across a wide operating range. In addition, the ability to encourage separation on one flap while alleviating it on the other makes it possible to generate thrust vectoring in the nozzle through passive flow control.

  10. High frequency estimation of 2-dimensional cavity scattering

    NASA Astrophysics Data System (ADS)

    Dering, R. S.

    1984-12-01

    This thesis develops a simple ray tracing approximation for the high frequency scattering from a two-dimensional cavity. Whereas many other cavity scattering algorithms are very time consuming, this method is very swift. The analytical development of the ray tracing approach is performed in great detail, and it is shown how the radar cross section (RCS) depends on the cavity's length and width along with the radar wave's angle of incidence. This explains why the cavity's RCS oscillates as a function of incident angle. The RCS of a two dimensional cavity was measured experimentally, and these results were compared to computer calculations based on the high frequency ray tracing theory. The comparison was favorable in the sense that angular RCS minima and maxima were exactly predicted even though accuracy of the RCS magnitude decreased for incident angles far off-axis. Overall, once this method is extended to three dimensions, the technique shows promise as a fast first approximation of high frequency cavity scattering.

  11. Multi-angle VECSEL cavities for dispersion control and multi-color operation

    NASA Astrophysics Data System (ADS)

    Baker, Caleb; Scheller, Maik; Laurain, Alexandre; Yang, Hwang-Jye; Ruiz Perez, Antje; Stolz, Wolfgang; Addamane, Sadhvikas J.; Balakrishnan, Ganesh; Jones, R. Jason; Moloney, Jerome V.

    2017-02-01

    We present a novel Vertical External Cavity Surface Emitting Laser (VECSEL) cavity design which makes use of multiple interactions with the gain region under different angles of incidence in a single round trip. This design allows for optimization of the net, round-trip Group Delay Dispersion (GDD) by shifting the GDD of the gain via cavity fold angle while still maintaining the high gain of resonant structures. The effectiveness of this scheme is demonstrated with femtosecond-regime pulses from a resonant structure and record pulse energies for the VECSEL gain medium. In addition, we show that the interference pattern of the intracavity mode within the active region, resulting from the double-angle multifold, is advantageous for operating the laser in CW on multiple wavelengths simultaneously. Power, noise, and mode competition characterization is presented.

  12. Computational Study of Fluidic Thrust Vectoring using Separation Control in a Nozzle

    NASA Technical Reports Server (NTRS)

    Deere, Karen; Berrier, Bobby L.; Flamm, Jeffrey D.; Johnson, Stuart K.

    2003-01-01

    A computational investigation of a two- dimensional nozzle was completed to assess the use of fluidic injection to manipulate flow separation and cause thrust vectoring of the primary jet thrust. The nozzle was designed with a recessed cavity to enhance the throat shifting method of fluidic thrust vectoring. The structured-grid, computational fluid dynamics code PAB3D was used to guide the design and analyze over 60 configurations. Nozzle design variables included cavity convergence angle, cavity length, fluidic injection angle, upstream minimum height, aft deck angle, and aft deck shape. All simulations were computed with a static freestream Mach number of 0.05. a nozzle pressure ratio of 3.858, and a fluidic injection flow rate equal to 6 percent of the primary flow rate. Results indicate that the recessed cavity enhances the throat shifting method of fluidic thrust vectoring and allows for greater thrust-vector angles without compromising thrust efficiency.

  13. Static internal performance of a two-dimensional convergent-divergent nozzle with thrust vectoring

    NASA Technical Reports Server (NTRS)

    Bare, E. Ann; Reubush, David E.

    1987-01-01

    A parametric investigation of the static internal performance of multifunction two-dimensional convergent-divergent nozzles has been made in the static test facility of the Langley 16-Foot Transonic Tunnel. All nozzles had a constant throat area and aspect ratio. The effects of upper and lower flap angles, divergent flap length, throat approach angle, sidewall containment, and throat geometry were determined. All nozzles were tested at a thrust vector angle that varied from 5.60 tp 23.00 deg. The nozzle pressure ratio was varied up to 10 for all configurations.

  14. Composite drill pipe and method for forming same

    DOEpatents

    Leslie, James C; Leslie, II, James C; Heard, James; Truong, Liem; Josephson, Marvin

    2014-04-15

    Metal inner and outer fittings configured, the inner fitting configured proximally with an external flange and projecting distally to form a cylindrical barrel and stepped down-in-diameter to form an abutment shoulder and then projecting further distally to form a radially inwardly angled and distally extending tapered inner sleeve. An outer sleeve defining a torque tube is configured with a cylindrical collar to fit over the barrel and is formed to be stepped up in diameter in alignment with the first abutment shoulder to then project distally forming a radially outwardly tapered and distally extending bonding surface to cooperate with the inner sleeve to cooperate with the inner sleeve in forming a annular diverging bonding cavity to receive the extremity of a composite pipe to abut against the abutment shoulders and to be bonded to the respective bonding surfaces by a bond.

  15. Laser interferometric high-precision angle monitor for JASMINE

    NASA Astrophysics Data System (ADS)

    Niwa, Yoshito; Arai, Koji; Sakagami, Masaaki; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki; Yano, Taihei

    2006-06-01

    The JASMINE instrument uses a beam combiner to observe two different fields of view separated by 99.5 degrees simultaneously. This angle is so-called basic angle. The basic angle of JASMINE should be stabilized and fluctuations of the basic angle should be monitored with the accuracy of 10 microarcsec in root-mean-square over the satellite revolution period of 5 hours. For this purpose, a high-precision interferometric laser metrogy system is employed. One of the available techniques for measuring the fluctuations of the basic angle is a method known as the wave front sensing using a Fabry-Perot type laser interferometer. This technique is to detect fluctuations of the basic angle as displacement of optical axis in the Fabry-Perot cavity. One of the advantages of the technique is that the sensor is made to be sensitive only to the relative fluctuations of the basic angle which the JASMINE wants to know and to be insensitive to the common one; in order to make the optical axis displacement caused by relative motion enhanced the Fabry-Perot cavity is formed by two mirrors which have long radius of curvature. To verify the principle of this idea, the experiment was performed using a 0.1m-length Fabry-Perot cavity with the mirror curvature of 20m. The mirrors of the cavity were artificially actuated in either relative way or common way and the resultant outputs from the sensor were compared.

  16. Oblique drop impact onto a deep liquid pool

    NASA Astrophysics Data System (ADS)

    Gielen, Marise V.; Sleutel, Pascal; Benschop, Jos; Riepen, Michel; Voronina, Victoria; Visser, Claas Willem; Lohse, Detlef; Snoeijer, Jacco H.; Versluis, Michel; Gelderblom, Hanneke

    2017-08-01

    Oblique impact of drops onto a solid or liquid surface is frequently observed in nature. Most studies on drop impact and splashing, however, focus on perpendicular impact. Here we study oblique impact of 100 μ m drops onto a deep liquid pool, where we quantify the splashing threshold, maximum cavity dimensions and cavity collapse by high-speed imaging above and below the water surface. Gravity can be neglected in these experiments. Three different impact regimes are identified: smooth deposition onto the pool, splashing in the direction of impact only, and splashing in all directions. We provide scaling arguments that delineate these regimes by accounting for the drop impact angle and Weber number. The angle of the axis of the cavity created below the water surface follows the impact angle of the drop irrespectively of the Weber number, while the cavity depth and its displacement with respect to the impact position do depend on the Weber number. Weber number dependency of both the cavity depth and displacement is modeled using an energy argument.

  17. An Investigation of Convergent-Divergent Diffusers at Mach Number 1.85

    NASA Technical Reports Server (NTRS)

    Wyatt, Demarquis D; Hunczak, Henry R

    1947-01-01

    An investigation has been conducted in the Cleveland 18- by 18-inch supersonic tunnel at a Mach number of 1.85 and angles of attack from 0 deg to 5 deg to determine optimum design configurations for a convergent-divergent type of supersonic diffuser with a subsonic diffuser of 5 deg included divergence angle. Total pressure recoveries in excess of theoretical recovery across a normal shock at a free-stream Mach number of 1.85 wore obtained with several configurations. The highest recovery for configurations without a cylindrical throat section was obtained with an inlet having an included convergence angle of 20 deg. Insertion of a 2-inch throat section between a 10 deg included angle inlet and the subsonic diffuser stabilized the shock inside the diffuser and resulted in recoveries as high as 0.838 free-stream total pressure at an angle of attack of 0 deg, corresponding to recovery of 92.4 percent of the kinetic energy of the free air stream. Use of the throat section also lessened the reduction in recovery of all configurations due to angle of attack.

  18. Highly Collimated Jets and Wide-angle Outflows in HH 46/47: New Evidence from Spitzer Infrared Images

    NASA Technical Reports Server (NTRS)

    Velusamy, T.; Langer, William D.; Marsh, Kenneth. A.

    2007-01-01

    We present new details of the structure and morphology of the jets and outflows in HH 46/47 as seen in Spitzer infrared images from IRAC and MIPS, reprocessed using the 'HiRes' deconvolution technique. HiRes improves the visualization of spatial morphology by enhancing resolution (to subarcsecond levels in IRAC bands) and removing the contaminating side lobes from bright sources. In addition to sharper views of previously reported bow shocks, we have detected (1) the sharply delineated cavity walls of the wide-angle biconical outflow, seen in scattered light on both sides of the protostar, (2) several very narrow jet features at distances approximately 400 AU to approximately 0.1 pc from the star, and (3) compact emissions at MIPS 24 m with the jet heads, tracing the hottest atomic/ionic gas in the bow shocks. Together the IRAC and MIPS images provide a more complete picture of the bow shocks, tracing both the molecular and atomic/ionic gases, respectively. The narrow width and alignment of all jet-related features indicate a high degree of jet collimation and low divergence (width of approximately 400 AU increasing by only a factor of 2.3 over 0.2 pc). The morphology of this jet, bow shocks, wide-angle outflows, and the fact that the jet is nonprecessing and episodic, constrain the mechanisms for producing the jet's entrained molecular gas, and origins of the fast jet, and slower wide-angle outflow.

  19. Omni-Directional Viewing-Angle Switching through Control of the Beam Divergence Angle in a Liquid Crystal Panel

    NASA Astrophysics Data System (ADS)

    Baek, Jong-In; Kim, Ki-Han; Kim, Jae Chang; Yoon, Tae-Hoon

    2010-01-01

    This paper proposes a method of omni-directional viewing-angle switching by controlling the beam diverging angle (BDA) in a liquid crystal (LC) panel. The LCs aligned randomly by in-cell polymer structures diffuse the collimated backlight for the bright state of the wide viewing-angle mode. We align the LCs homogeneously by applying an in-plane field for the narrow viewing-angle mode. By doing this the scattering is significantly reduced so that the small BDA is maintained as it passes through the LC layer. The dark state can be obtained by aligning the LCs homeotropically with a vertical electric field. We demonstrated experimentally the omni-directional switching of the viewing-angle, without an additional panel or backlighting system.

  20. Measurements of fluctuating pressure in a rectangular cavity in transonic flow at high Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Tracy, M. B.; Plentovich, E. B.; Chu, Julio

    1992-01-01

    An experiment was performed in the Langley 0.3 meter Transonic Cryogenic Tunnel to study the internal acoustic field generated by rectangular cavities in transonic and subsonic flows and to determine the effect of Reynolds number and angle of yaw on the field. The cavity was 11.25 in. long and 2.50 in. wide. The cavity depth was varied to obtain length-to-height (l/h) ratios of 4.40, 6.70, 12.67, and 20.00. Data were obtained for a free stream Mach number range from 0.20 to 0.90, a Reynolds number range from 2 x 10(exp 6) to 100 x 10(exp 6) per foot with a nearly constant boundary layer thickness, and for two angles of yaw of 0 and 15 degs. Results show that Reynolds number has little effect on the acoustic field in rectangular cavities at angle of yaw of 0 deg. Cavities with l/h = 4.40 and 6.70 generated tones at transonic speeds, whereas those with l/h = 20.00 did not. This trend agrees with data obtained previously at supersonic speeds. As Mach number decreased, the amplitude, and bandwidth of the tones changed. No tones appeared for Mach number = 0.20. For a cavity with l/h = 12.67, tones appeared at Mach number = 0.60, indicating a possible change in flow field type. Changes in acoustic spectra with angle of yaw varied with Reynolds number, Mach number, l/h ratios, and acoustic mode number.

  1. Method of lungs regional ventilation function assessment on the basis of continuous lung monitoring results using multi-angle electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Aleksanyan, Grayr; Shcherbakov, Ivan; Kucher, Artem; Sulyz, Andrew

    2018-04-01

    With continuous monitoring of the lungs using multi-angle electric impedance tomography method, a large array of images of impedance changes in the patient's chest cavity is accumulated. This article proposes a method for evaluating the regional ventilation function of lungs based on the results of continuous monitoring using the multi-angle electric impedance tomography method, which allows one image of the thoracic cavity to be formed on the basis of a large array of images of the impedance change in the patient's chest cavity. In the presence of pathologies in the lungs (neoplasms, fluid, pneumothorax, etc.) in these areas, air filling will be disrupted, which will be displayed on the generated image. When conducting continuous monitoring in several sections, a three-dimensional pattern of air filling of the thoracic cavity is possible.

  2. Large incidence angle and defocus influence cat's eye retro-reflector

    NASA Astrophysics Data System (ADS)

    Zhang, Lai-xian; Sun, Hua-yan; Zhao, Yan-zhong; Yang, Ji-guang; Zheng, Yong-hui

    2014-11-01

    Cat's eye lens make the laser beam retro-reflected exactly to the opposite direction of the incidence beam, called cat's eye effect, which makes rapid acquiring, tracking and pointing of free space optical communication possible. Study the influence of cat's eye effect to cat's eye retro-reflector at large incidence angle is useful. This paper analyzed the process of how the incidence angle and focal shit affect effective receiving area, retro-reflected beam divergence angle, central deviation of cat's eye retro-reflector at large incidence angle and cat's eye effect factor using geometrical optics method, and presented the analytic expressions. Finally, numerical simulation was done to prove the correction of the study. The result shows that the efficiency receiving area of cat's eye retro-reflector is mainly affected by incidence angle when the focal shift is positive, and it decreases rapidly when the incidence angle increases; the retro-reflected beam divergence and central deviation is mainly affected by focal shift, and within the effective receiving area, the central deviation is smaller than beam divergence in most time, which means the incidence beam can be received and retro-reflected to the other terminal in most time. The cat's eye effect factor gain is affected by both incidence angle and focal shift.

  3. Internal performance of two nozzles utilizing gimbal concepts for thrust vectoring

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Taylor, John G.

    1990-01-01

    The internal performance of an axisymmetric convergent-divergent nozzle and a nonaxisymmetric convergent-divergent nozzle, both of which utilized a gimbal type mechanism for thrust vectoring was evaluated in the Static Test Facility of the Langley 16-Foot Transonic Tunnel. The nonaxisymmetric nozzle used the gimbal concept for yaw thrust vectoring only; pitch thrust vectoring was accomplished by simultaneous deflection of the upper and lower divergent flaps. The model geometric parameters investigated were pitch vector angle for the axisymmetric nozzle and pitch vector angle, yaw vector angle, nozzle throat aspect ratio, and nozzle expansion ratio for the nonaxisymmetric nozzle. All tests were conducted with no external flow, and nozzle pressure ratio was varied from 2.0 to approximately 12.0.

  4. Effect of the angle of apical resection on apical leakage, measured with a computerized fluid filtration device.

    PubMed

    Garip, Hasan; Garip, Yıldız; Oruçoğlu, Hasan; Hatipoğlu, Seda

    2011-03-01

    We determined the effect of the angle of apical resection on apical leakage using a computerized fluid filtration meter with a laser system and a digital air pressure regulator in 46 extracted single-rooted human teeth. Orthograde endodontic treatment was performed. The root canals were prepared up to a size 50 K-type file with 17% EDTA solution (Roth International, Chicago, IL) and 5% NaOCl solution as the irrigant. Gates Glidden burs (Maillefer Instruments, Ballaigues, Switzerland) were used to flare the coronal two thirds of the canal. All canals were dried with paper points and then obturated using cold lateral condensation (except for the positive controls) of gutta-percha points and AH plus (Dentsply DeTrey, Konstanz, Germany). All 40 roots were sectioned 3 mm from the apex. Forty teeth were assigned randomly into 1 of 4 experimental groups of 10 teeth each: in group 1, the teeth were resected apically (90° angle) and the cavities were obturated with mineral trioxide aggregate (MTA); in group 2, after apical resection (90° angle), a root-end cavity was prepared using ultrasonic diamond retrotips and the cavities were obturated with MTA; in group 3, the teeth were resected apically (∼45° angle) and the cavities were obturated with MTA; and in group 4, after apical resection (∼45° angle), a root-end cavity was prepared using ultrasonic diamond retrotips and the cavities were obturated with MTA. An additional 6 teeth were used as controls (3 each, negative and positive controls). Apical leakage was measured using a computerized fluid filtration meter with a laser system. The mean apical microleakage was 2.0 ± 0.4 × 10(-4), 1.6 ± 0.6 × 10(-4), 1.6 ± 0.9 × 10(-4), and 1.8 ± 0.7 × 10(-4) μL/cmH(2)O/min(-1) at 1.2 atm, in groups 1 to 4, respectively. Although the mean apical microleakage was greater in group 1, the differences among the 4 groups were not statistically significant (P > .05). The results of these in vitro studies showed that when an adequate retrograde cavity depth is prepared, variation in the root-end cutting angle does not necessarily cause any difference in microleakage. Copyright © 2011 Mosby, Inc. All rights reserved.

  5. Cosmic ray propagation in interplanetary space

    NASA Technical Reports Server (NTRS)

    Voelk, H. J.

    1975-01-01

    The validity of the test-particle picture, the approximation of static fields, and the spatial-diffusion approximation are discussed in a general way before specific technical assumptions are introduced. It is argued that the spatial-diffusion equation for the intensity per unit energy has a much wider range of applicability than the kinetic (Fokker-Planck) equation it is derived from. This gives strong weight to the phenomenological propagation theory. The general success (and possible failure at small energies) of the phenomenological theory for the modulation of galactic cosmic rays and solar events is described. Apparent effects such as the 'free boundary' are given disproportionate weight since they establish the connection with the detailed plasma physics of the solar wind. Greatest attention is paid to the pitch-angle diffusion theory. A general theory is presented which removes the well-known secularities of the quasi-linear approximation. The possible breakdown of any pitch-angle diffusion theory at very small energies is perhaps connected with the observed 'turn up' of the spectrum at low energies. A first attempt to derive the spatial dependence of the diffusion coefficient in the solar cavity, using such a divergence free scattering theory, is described and compared with recent observations out to 5 AU.

  6. Performance Characteristics of Plane-Wall Two-Dimensional Diffusers

    NASA Technical Reports Server (NTRS)

    Reid, Elliott G

    1953-01-01

    Experiments have been made at Stanford University to determine the performance characteristics of plane-wall, two-dimensional diffusers which were so proportioned as to insure reasonable approximation of two-dimensional flow. All of the diffusers had identical entrance cross sections and discharged directly into a large plenum chamber; the test program included wide variations of divergence angle and length. During all tests a dynamic pressure of 60 pounds per square foOt was maintained at the diffuser entrance and the boundary layer there was thin and fully turbulent. The most interesting flow characteristics observed were the occasional appearance of steady, unseparated, asymmetric flow - which was correlated with the boundary-layer coalescence - and the rapid deterioration of flow steadiness - which occurred as soon as the divergence angle for maximum static pressure recovery was exceeded. Pressure efficiency was found to be controlled almost exclusively by divergence angle, whereas static pressure recovery was markedly influenced by area ratio (or length) as well as divergence angle. Volumetric efficiency. diminished as area ratio increased, and at a greater rate with small lengths than with large ones. Large values of the static-pressure-recovery coefficient were attained only with long diffusers of large area ratio; under these conditions pressure efficiency was high and. volumetric efficiency low. Auxiliary tests with asymmetric diffusers demonstrated that longitudinal pressure gradient, rather than wall divergence angle, controlled flow separation. Others showed that the addition of even a short exit duct of uniform section augmented pressure recovery. Finally, it was found that the installation of a thin, central, longitudinal partition suppressed flow separation in short diffusers and thereby improved pressure recovery

  7. On the measurement of airborne, angular-dependent sound transmission through supercritical bars.

    PubMed

    Shaw, Matthew D; Anderson, Brian E

    2012-10-01

    The coincidence effect is manifested by maximal sound transmission at angles at which trace wave number matching occurs. Coincidence effect theory is well-defined for unbounded thin plates using plane-wave excitation. However, experimental results for finite bars are known to diverge from theory near grazing angles. Prior experimental work has focused on pulse excitation. An experimental setup has been developed to observe coincidence using continuous- wave excitation and phased-array methods. Experimental results with an aluminum bar exhibit maxima at the predicted angles, showing that coincidence is observable using continuous waves. Transmission near grazing angles is seen to diverge from infinite plate theory.

  8. Widely Tunable Mode-Hop-Free External-Cavity Quantum Cascade Laser

    NASA Technical Reports Server (NTRS)

    Wysocki, Gerard; Curl, Robert F.; Tittel, Frank K.

    2010-01-01

    The external-cavity quantum cascade laser (EC-QCL) system is based on an optical configuration of the Littrow type. It is a room-temperature, continuous wave, widely tunable, mode-hop-free, mid-infrared, EC-QCL spectroscopic source. It has a single-mode tuning range of 155 cm(exp -1) (approximately equal to 8% of the center wavelength) with a maximum power of 11.1 mW and 182 cm(exp -1) (approximately equal to 15% of the center wavelength), and a maximum power of 50 mW as demonstrated for 5.3 micron and 8.4 micron EC-QCLs, respectively. This technology is particularly suitable for high-resolution spectroscopic applications, multi-species tracegas detection, and spectroscopic measurements of broadband absorbers. Wavelength tuning of EC-QCL spectroscopic source can be implemented by varying three independent parameters of the laser: (1) the optical length of the gain medium (which, in this case, is equivalent to QCL injection current modulation), (2) the length of the EC (which can be independently varied in the Rice EC-QCL setup), and (3) the angle of beam incidence at the diffraction grating (frequency tuning related directly to angular dispersion of the grating). All three mechanisms of frequency tuning have been demonstrated and are required to obtain a true mode-hop-free laser frequency tuning. The precise frequency tuning characteristics of the EC-QCL output have been characterized using a variety of diagnostic tools available at Rice University (e.g., a monochromator, FTIR spectrometer, and a Fabry-Perot spectrometer). Spectroscopic results were compared with available databases (such as HITRAN, PNNL, EPA, and NIST). These enable precision verification of complete spectral parameters of the EC-QCL, such as wavelength, tuning range, tuning characteristics, and line width. The output power of the EC-QCL is determined by the performance of the QC laser chip, its operating conditions, and parameters of the QC laser cavity such as mirror reflectivity or intracavity losses. In order to maximize the output power, an analysis and optimization of the EC laser parameters has been performed. The parameters of the beam emitted from the gain medium, such as divergence angle, beam profile, and astigmatism, have been investigated. The gain medium has been fully characterized before and after each stage of modification. The main modification steps are coating one facet of the gain chip with a high reflectivity mirror and the other facet with an anti-reflection layer. Then the chip is mounted in the EC-QCL. The optomechanical design has been reviewed and improved to provide for precise collimation of the strongly divergent beam of the QCL and the tuning diffraction grating.

  9. Experimental Investigation and Computer Modeling of Optical Switching in Distributed Bragg Reflector and Vertical Cavity Surface Emitting Laser Structures.

    DTIC Science & Technology

    1995-12-01

    of a Molecular Beam Epitaxy (MBE) system prior to growing a Vertical Cavity Surface Emitting Laser ( VCSEL ). VCSEL bistability is discussed later in...addition, optical bistability 1 in the reflectivity of a DBR, as well as in the lasing power, wavelength, and beam divergence of a lasing VCSEL are...Spectral Reflectivity of AlGaAs/AlAs VCSEL Top DBR Mirror Cavity Bottom DBR Mirror Substrate Output Beam Resonance Pump Minimum Stop Band Figure 2. VCSEL

  10. An experimental investigation of velocity fields in divergent glottal models of the human vocal tract

    NASA Astrophysics Data System (ADS)

    Erath, Byron D.; Plesniak, Michael W.

    2005-09-01

    In speech, sound production arises from fluid-structure interactions within the larynx as well as viscous flow phenomena that is most likely to occur during the divergent orientation of the vocal folds. Of particular interest are the flow mechanisms that influence the location of flow separation points on the vocal folds walls. Physiologically scaled pulsatile flow fields in 7.5 times real size static divergent glottal models were investigated. Three divergence angles were investigated using phase-averaged particle image velocimetry (PIV). The pulsatile glottal jet exhibited a bi-modal stability toward both glottal walls, although there was a significant amount of variance in the angle the jet deflected from the midline. The attachment of the Coanda effect to the glottal model walls occurred when the pulsatile velocity was a maximum, and the acceleration of the waveform was zero. The location of the separation and reattachment points of the flow from the glottal models was a function of the velocity waveform and divergence angle. Acoustic analogies show that a dipole sound source contribution arising from the fluid interaction (Coanda jet) with the vocal fold walls is expected. [Work funded by NIH Grant RO1 DC03577.

  11. Static investigation of two fluidic thrust-vectoring concepts on a two-dimensional convergent-divergent nozzle

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    1994-01-01

    A static investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel of two thrust-vectoring concepts which utilize fluidic mechanisms for deflecting the jet of a two-dimensional convergent-divergent nozzle. One concept involved using the Coanda effect to turn a sheet of injected secondary air along a curved sidewall flap and, through entrainment, draw the primary jet in the same direction to produce yaw thrust vectoring. The other concept involved deflecting the primary jet to produce pitch thrust vectoring by injecting secondary air through a transverse slot in the divergent flap, creating an oblique shock in the divergent channel. Utilizing the Coanda effect to produce yaw thrust vectoring was largely unsuccessful. Small vector angles were produced at low primary nozzle pressure ratios, probably because the momentum of the primary jet was low. Significant pitch thrust vector angles were produced by injecting secondary flow through a slot in the divergent flap. Thrust vector angle decreased with increasing nozzle pressure ratio but moderate levels were maintained at the highest nozzle pressure ratio tested. Thrust performance generally increased at low nozzle pressure ratios and decreased near the design pressure ratio with the addition of secondary flow.

  12. Noise Characteristics of Overexpanded Jets from Convergent-Divergent Nozzles

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2008-01-01

    A broadband noise component occurring in the overexpanded flow regime with convergent-divergent nozzles is identified. Relative to a convergent nozzle, at same pressure ratios, this excess noise can lead to a large increase in the overall sound pressure levels. Several features distinguish it from the more familiar broadband shock associated noise. Unlike the latter, it is observed even at shallow polar locations and there is no noticeable shift of the spectral content in frequency with observation angle. The amplitudes are found to be more pronounced with nozzles having larger half-angle of the divergent section. The noise apparently occurs when a shock resides within the divergent section of the nozzle and results from random unsteady motion of the shock.

  13. Heat Shield Cavity Parametric Experimental Aeroheating for a Proposed Mars Smart Lander Aeroshell

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Hollis, Brian R.

    2002-01-01

    The proposed Mars Smart Lander is to be attached through its aeroshell to the main spacecraft bus, thereby producing cavities in the heat shield. To study the effects these cavities will have on the heating levels experienced by the heat shield, an experimental aeroheating investigation was performed at the NASA Langley Research Center in the 20-Inch Mach 6 Air Tunnel. The effects of Reynolds number, angle-of-attack, and cavity size and location on aero-heating levels and distributions were determined and are presented. To aid the discussion on the effects of the cavities, laminar, thin-layer Navier-Stokes flow field solutions were post-processed to calculate relevant boundary layer properties such as boundary layer height and momentum thickness, edge Mach number, and streamwise pressure gradient. It was found that the effect of the cavities varies with angle-of-attack, freestream Reynolds number, and cavity size and location. The presence of a cavity raised the downstream heating rates by as much as 325% as a result of boundary layer transition.

  14. High-current, relativistic electron-beam transport in metals and the role of magnetic collimation.

    PubMed

    Storm, M; Solodov, A A; Myatt, J F; Meyerhofer, D D; Stoeckl, C; Mileham, C; Betti, R; Nilson, P M; Sangster, T C; Theobald, W; Guo, Chunlei

    2009-06-12

    High-resolution coherent transition radiation (CTR) imaging diagnoses electrons accelerated in laser-solid interactions with intensities of approximately 10;{19} W/cm;{2}. The CTR images indicate electron-beam filamentation and annular propagation. The beam temperature and half-angle divergence are inferred to be approximately 1.4 MeV and approximately 16 degrees , respectively. Three-dimensional hybrid-particle-in-cell code simulations reproduce the details of the CTR images assuming an initial half-angle divergence of approximately 56 degrees . Self-generated resistive magnetic fields are responsible for the difference between the initial and measured divergence.

  15. LASER APPLICATIONS AND OTHER ASPECTS OF QUANTUM ELECTRONICS Measurement of angular parameters of divergent optical radiation by light diffraction on sound

    NASA Astrophysics Data System (ADS)

    Kotov, V. M.; Averin, S. V.; Shkerdin, G. N.

    2010-12-01

    A method is proposed to measure the scattering angle of optical radiation, the method employing two Bragg diffraction processes in which divergent optical radiation propagates close to the optical axis of a uniaxial crystal, while the acoustic wave — orthogonally to this axis. The method does not require additional angular tuning of the acousto-optic cell. We suggest using a mask to measure the light divergence that is larger than the angle of Bragg scattering. The method can be used to measure the size of the polished glass plate inhomogeneities.

  16. Optical activity via Kerr nonlinearity in a spinning chiral medium

    NASA Astrophysics Data System (ADS)

    Khan, Anwar Ali; Bacha, Bakht Amin; Khan, Rahmat Ali

    2016-11-01

    Optical activity is investigated in a chiral medium by employing the four level cascade atomic model, in which the optical responses of the atomic medium are studied with Kerr nonlinearity. Light entering into a chiral medium splits into circular birefringent beams. The angle of divergence between the circular birefringent beams and the polarization states of the two light beams is manipulated with Kerr nonlinearity. In the stationary chiral medium the angle of divergence between the circular birefringent beams is calculated to be 1.3 radian. Furthermore, circular birefringence is optically controlled in a spinning chiral medium, where the maximum rotary photon drag angle for left (right) circularly polarized beam is ±1.1 (±1.5) microradian. The change in the angle of divergence between circular birefringent beams by rotary photon drag is calculated to be 0.4 microradian. The numerical results may help to understand image designing, image coding, discovery of photonic crystals and optical sensing technology.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checco, A.; Hofmann, T.; DiMasi, E.

    The details of air nanobubble trapping at the interface between water and a nanostructured hydrophobic silicon surface are investigated using X-ray scattering and contact angle measurements. Large-area silicon surfaces containing hexagonally packed, 20 nm wide hydrophobic cavities provide ideal model surfaces for studying the morphology of air nanobubbles trapped inside cavities and its dependence on the cavity depth. Transmission small-angle X-ray scattering measurements show stable trapping of air inside the cavities with a partial water penetration of 5-10 nm into the pores, independent of their large depth variation. This behavior is explained by consideration of capillary effects and the cavitymore » geometry. For parabolic cavities, the liquid can reach a thermodynamically stable configuration - a nearly planar nanobubble meniscus - by partially penetrating into the pores. This microscopic information correlates very well with the macroscopic surface wetting behavior.« less

  18. Kinetic measures of restabilisation during volitional stepping reveal age-related alterations in the control of mediolateral dynamic stability.

    PubMed

    Singer, Jonathan C; McIlroy, William E; Prentice, Stephen D

    2014-11-07

    Research examining age-related changes in dynamic stability during stepping has recognised the importance of the restabilisation phase, subsequent to foot-contact. While regulation of the net ground reaction force (GRFnet) line of action is believed to influence dynamic stability during steady-state locomotion, such control during restabilisation remains unknown. This work explored the origins of age-related decline in mediolateral dynamic stability by examining the line of action of GRFnet relative to the centre of mass (COM) during restabilisation following voluntary stepping. Healthy younger and older adults (n=20 per group) performed three single-step tasks (varying speed and step placement), altering the challenge to stability control. Age-related differences in magnitude and intertrial variability of the angle of divergence of GRFnet line of action relative to the COM were quantified, along with the peak mediolateral and vertical GRFnet components. The angle of divergence was further examined at discrete points during restabilisation, to uncover events of potential importance to stability control. Older adults exhibited a reduced angle of divergence throughout restabilisation. Temporal and spatial constraints on stepping increased the magnitude and intertrial variability of the angle of divergence, although not differentially among the older adults. Analysis of the time-varying angle of divergence revealed age-related reductions in magnitude, with increases in timing and intertrial timing variability during the later phase of restabilisation. This work further supports the idea that age-related challenges in lateral stability control emerge during restabilisation. Age-related alterations during the later phase of restabilisation may signify challenges with reactive control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Divergence thrust loss calculations for convergent-divergent nozzles: Extensions to the classical case

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    1991-01-01

    The analytical derivations of the non-axial thrust divergence losses for convergent-divergent nozzles are described as well as how these calculations are embodied in the Navy/NASA engine computer program. The convergent-divergent geometries considered are simple classic axisymmetric nozzles, two dimensional rectangular nozzles, and axisymmetric and two dimensional plug nozzles. A simple, traditional, inviscid mathematical approach is used to deduce the influence of the ineffectual non-axial thrust as a function of the nozzle exit divergence angle.

  20. Magneto-optical rotation in cavity QED with Zeeman coherence

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Jia, Xiaohua; Fan, Shuangli; Zhang, Hongjun; Guo, Hong

    2018-06-01

    We investigate theoretically the magneto-optical rotation in cavity QED system with atomic Zeeman coherence, which is established via coherent population trapping. Owing to Zeeman coherence, the ultranarrow transmission spectrum less than 1 MHz with gain can be achieved with a flat-top Faraday rotation angle. By controlling the parameters appropriately, the input probe components within the flat-top regime rotate with almost the same angle, and transmit through the cavity perpendicularly to the other components outside the flat-top regime. The concepts discussed here provide an important tool for perfect ultranarrow Faraday optical filter and quantum information processing.

  1. Links between dissipation and Rényi divergences in PT -symmetric quantum mechanics

    NASA Astrophysics Data System (ADS)

    Wei, Bo-Bo

    2018-01-01

    Thermodynamics and information theory have been intimately related since the times of Maxwell and Boltzmann. Recently it was shown that the dissipated work in an arbitrary nonequilibrium process is related to the Rényi divergences between two states along the forward and reversed dynamics. Here we show that the relation between dissipated work and Renyi divergences generalizes to PT -symmetric quantum mechanics with unbroken PT symmetry. In the regime of broken PT symmetry, the relation between dissipated work and Renyi divergences does not hold as the norm is not preserved during the dynamics. This finding is illustrated for an experimentally relevant system of two-coupled cavities.

  2. Metasurface external cavity laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Luyao, E-mail: luyaoxu.ee@ucla.edu; Curwen, Christopher A.; Williams, Benjamin S.

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  3. Proximal Intermetatarsal Divergence in Distal Chevron Osteotomy for Hallux Valgus: An Overlooked Finding.

    PubMed

    Akpinar, Evren; Buyuk, Abdul Fettah; Cetinkaya, Engin; Gursu, Sarper; Ucpunar, Hanifi; Albayrak, Akif

    2016-01-01

    The goal of distal chevron osteotomy for hallux valgus is to restore proper first-toe joint alignment by performing lateral translation of the distal first metatarsal fragment (the metatarsal head). We hypothesized that in some patients this procedure might also result in involuntary medial translation of the proximal first metatarsal fragment, which we called proximal intermetatarsal divergence. The aim of the present study was to compare the pre- and postoperative radiographs of patients with hallux valgus to determine whether we could identify proximal intermetatarsal divergence. We retrospectively compared the pre- and postoperative radiographs of 29 feet in 28 patients treated with distal chevron osteotomy. Two different methods were used to measure the intermetatarsal angles: the anatomic intermetatarsal angle (aIMA) and the mechanical intermetatarsal angle (mIMA). The maximum intermetatarsal distance (MID) was also measured. We defined proximal intermetatarsal divergence as a postoperative increase in the aIMA or MID, coupled with a decrease in the mIMA. For data analysis, we divided the patients into low-angle (mild deformity) and high-angle (severe deformity) groups, according to their preoperative mIMA. The mean ± standard deviation patient age was 41 ± 14 years. In the low-angle group, the mean mIMA decreased (from 10.91° to 7.00°), the mean aIMA increased (from 11.80° to 13.55°), and the mean MID increased (from 17.97 mm to 20.60 mm; p = .001, for all). In the high-angle group, the mean mIMA decreased (from 14.30° to 6.90°; p = .001), the mean aIMA decreased (from 14.77° to 13.54°; p = .06), and the mean MID decreased (from 20.74 mm to 20.37 mm; p = .64). The results of our study suggest that proximal intermetatarsal divergence might occur after distal chevron osteotomy for hallux valgus, primarily in patients with a low preoperative mIMA. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Vergence-dependent adaptation of the vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    Lewis, Richard F.; Clendaniel, Richard A.; Zee, David S.; Shelhamer, M. J. (Principal Investigator)

    2003-01-01

    The gain of the vestibulo-ocular reflex (VOR) normally depends on the distance between the subject and the visual target, but it remains uncertain whether vergence angle can be linked to changes in VOR gain through a process of context-dependent adaptation. In this study, we examined this question with an adaptation paradigm that modified the normal relationship between vergence angle and retinal image motion. Subjects were rotated sinusoidally while they viewed an optokinetic (OKN) stimulus through either diverging or converging prisms. In three subjects the diverging prisms were worn while the OKN stimulus moved out of phase with the head, and the converging prisms were worn when the OKN stimulus moved in-phase with the head. The relationship between the vergence angle and OKN stimulus was reversed in the fourth subject. After 2 h of training, the VOR gain at the two vergence angles changed significantly in all of the subjects, evidenced by the two different VOR gains that could be immediately accessed by switching between the diverged and converged conditions. The results demonstrate that subjects can learn to use vergence angle as the contextual cue that retrieves adaptive changes in the angular VOR.

  5. Performance of Several Conical Convergent-Divergent Rocket-Type Exhaust Nozzles

    NASA Technical Reports Server (NTRS)

    Campbell, C. E.; Farley, J. M.

    1960-01-01

    An investigation was conducted to obtain nozzle performance data with relatively large-scale models at pressure ratios as high as 120. Conical convergent-divergent nozzles with divergence angles alpha of 15, 25, and 29 deg. were each tested at area ratios of approximately 10, 25, and 40. Heated air (1200 F) was supplied at the nozzle inlet at pressures up to 145 pounds per square inch absolute and was exhausted into quiescent air at pressures as low as 1.2 pounds per square inch absolute. Thrust ratios for all nozzle configurations are presented over the range of pressure ratios attainable and were extrapolated when possible to design pressure ratio and beyond. Design thrust ratios decreased with increasing nozzle divergence angle according to the trend predicted by the (1 + cos alpha)/2 parameter. Decreasing the nozzle divergence angle resulted in sizable increases in thrust ratio for a given surface-area ratio (nozzle weight), particularly at low nozzle pressure ratios. Correlations of the nozzle static pressure at separation and of the average static pressure downstream of separation with various nozzle parameters permitted the calculation of thrust in the separated-flow region from unseparated static-pressure distributions. Thrust ratios calculated by this method agreed with measured values within about 1 percent.

  6. Atomizing nozzle and method

    DOEpatents

    Ting, Jason; Anderson, Iver E.; Terpstra, Robert L.

    2000-03-16

    A high pressure close-coupled gas atomizing nozzle includes multiple discrete gas jet discharge orifices having aerodynamically designed convergent-divergent geometry with an first converging section communicated to a gas supply manifold and to a diverging section by a constricted throat section to increase atomizing gas velocity. The gas jet orifices are oriented at gas jet apex angle selected relative to the melt supply tip apex angle to establish a melt aspiration condition at the melt supply tip.

  7. Effect of Varying the Angle of Attack of the Scales on a Biomimetic Shark Skin Model on Embedded Vortex Formation

    NASA Astrophysics Data System (ADS)

    Wheelus, Jennifer; Lang, Amy; Bradshaw, Michael; Jones, Emily; Afroz, Farhana; Motta, Philip; Habegger, Maria

    2012-11-01

    The skin of fast-swimming sharks is proposed to have mechanisms to reduce drag and delay flow separation. The skin of fast-swimming and agile sharks is covered with small teeth-like denticles on the order of 0.2 mm. The shortfin mako is one of the fastest and most agile ocean predators creating the need to minimize its pressure drag by controlling flow separation. Biological studies of the shortfin mako skin have shown the passive bristling angle of their denticles to exceed 50 degrees in areas on the flank corresponding to the locations likely to experience separation first. It has been shown that for an angle of attack of 90 degrees, vortices form within these cavities and impose a partial slip condition at the surface of the cavity. This experiment focuses on smaller angles of attack for denticle bristling, closer to the range thought to be achieved on real shark skin. A 3-D bristled shark skin model with varying angle of attack, embedded below a boundary layer, was used to study the formation of cavity vortices through fluorescent dye visualization and Digital Particle Image Velocimetry (DPIV). The effect of varying angle of attack on vortex formation will be discussed.

  8. Variation in multiring basic structures as a function of impact angle

    NASA Technical Reports Server (NTRS)

    Wichman, R. W.; Schultz, P. H.

    1992-01-01

    Previous studies have demonstrated that the impact process in the laboratory varies as a function of impact angle. This variation is attributed to changes in energy partitioning and projectile failure during the impact and, in simple craters, produces a sequence of progressively smaller and more asymmetric crater forms as impact angle decreases from approximately 20 degrees. Variations in impact angle can produce differences in the appearance of multiring impact basins. Comparisons of Orientale to the more oblique impact structure at Crisium also suggests that these differences primarily reflect the degree of cavity collapse. The relative changes in massif ring topography, basin scarp relief, and the distribution of peripheral mare units are consistent with a reduction in degree of cavity collapse with decreasing impact angle. The prominent uprange basin scarps and the restriction of tectonically derived peripheral mare units along uprange ring structures also may indicate an uprange enhancement of failure during cavity collapse. Finally, although basin ring faults appear to be preferred pathways for mare volcanism, fault-controlled peripheral mare volcanism occurs most readily uprange of an oblique impact; elsewhere such volcanism apparently requires superposition of an impact structure on the ring fault.

  9. Effects of internal yaw-vectoring devices on the static performance of a pitch-vectoring nonaxisymmetric convergent-divergent nozzle

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.

    1993-01-01

    An investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel to evaluate the internal performance of a nonaxisymmetric convergent divergent nozzle designed to have simultaneous pitch and yaw thrust vectoring capability. This concept utilized divergent flap deflection for thrust vectoring in the pitch plane and flow-turning deflectors installed within the divergent flaps for yaw thrust vectoring. Modifications consisting of reducing the sidewall length and deflecting the sidewall outboard were investigated as means to increase yaw-vectoring performance. This investigation studied the effects of multiaxis (pitch and yaw) thrust vectoring on nozzle internal performance characteristics. All tests were conducted with no external flow, and nozzle pressure ratio was varied from 2.0 to approximately 13.0. The results indicate that this nozzle concept can successfully generate multiaxis thrust vectoring. Deflection of the divergent flaps produced resultant pitch vector angles that, although dependent on nozzle pressure ratio, were nearly equal to the geometric pitch vector angle. Losses in resultant thrust due to pitch vectoring were small or negligible. The yaw deflectors produced resultant yaw vector angles up to 21 degrees that were controllable by varying yaw deflector rotation. However, yaw deflector rotation resulted in significant losses in thrust ratios and, in some cases, nozzle discharge coefficient. Either of the sidewall modifications generally reduced these losses and increased maximum resultant yaw vector angle. During multiaxis (simultaneous pitch and yaw) thrust vectoring, little or no cross coupling between the thrust vectoring processes was observed.

  10. Suction generation in white-spotted bamboo sharks Chiloscyllium plagiosum.

    PubMed

    Wilga, Cheryl D; Sanford, Christopher P

    2008-10-01

    After the divergence of chondrichthyans and teleostomes, the structure of the feeding apparatus also diverged leading to alterations in the suction mechanism. In this study we investigated the mechanism for suction generation during feeding in white-spotted bamboo sharks, Chiloscyllium plagiosum and compared it with that in teleosts. The internal movement of cranial elements and pressure in the buccal, hyoid and pharyngeal cavities that are directly responsible for suction generation was quantified using sonomicrometry and pressure transducers. Backward stepwise multiple linear regressions were used to explore the relationship between expansion and pressure, accounting for 60-96% of the variation in pressure among capture events. The progression of anterior to posterior expansion in the buccal, hyoid and pharyngeal cavities is accompanied by the sequential onset of subambient pressure in these cavities as prey is drawn into the mouth. Gape opening triggers the onset of subambient pressure in the oropharyngeal cavities. Peak gape area coincides with peak subambient buccal pressure. Increased velocity of hyoid area expansion is primarily responsible for generating peak subambient pressure in the buccal and hyoid regions. Pharyngeal expansion appears to function as a sink to receive water influx from the mouth, much like that of compensatory suction in bidirectional aquatic feeders. Interestingly, C. plagiosum generates large suction pressures while paradoxically compressing the buccal cavity laterally, delaying the time to peak pressure. This represents a fundamental difference from the mechanism used to generate suction in teleost fishes. Interestingly, pressure in the three cavities peaks in the posterior to anterior direction. The complex shape changes that the buccal cavity undergoes indicate that, as in teleosts, unsteady flow predominates during suction feeding. Several kinematic variables function together, with great variation over long gape cycles to generate the low subambient pressures used by C. plagiosum to capture prey.

  11. Static investigation of two STOL nozzle concepts with pitch thrust-vectoring capability

    NASA Technical Reports Server (NTRS)

    Mason, M. L.; Burley, J. R., II

    1986-01-01

    A static investigation of the internal performance of two short take-off and landing (STOL) nozzle concepts with pitch thrust-vectoring capability has been conducted. An axisymmetric nozzle concept and a nonaxisymmetric nozzle concept were tested at dry and afterburning power settings. The axisymmetric concept consisted of a circular approach duct with a convergent-divergent nozzle. Pitch thrust vectoring was accomplished by vectoring the approach duct without changing the nozzle geometry. The nonaxisymmetric concept consisted of a two dimensional convergent-divergent nozzle. Pitch thrust vectoring was implemented by blocking the nozzle exit and deflecting a door in the lower nozzle flap. The test nozzle pressure ratio was varied up to 10.0, depending on model geometry. Results indicate that both pitch vectoring concepts produced resultant pitch vector angles which were nearly equal to the geometric pitch deflection angles. The axisymmetric nozzle concept had only small thrust losses at the largest pitch deflection angle of 70 deg., but the two-dimensional convergent-divergent nozzle concept had large performance losses at both of the two pitch deflection angles tested, 60 deg. and 70 deg.

  12. Explicit and implicit calculations of turbulent cavity flows with and without yaw angle

    NASA Astrophysics Data System (ADS)

    Yen, Guan-Wei

    1989-08-01

    Computations were performed to simulate turbulent supersonic flows past three-dimensional deep cavities with and without yaw. Simulation of these self-sustained oscillatory flows were generated through time accurate solutions of the Reynolds averaged complete Navier-Stokes equations using two different schemes: (1) MacCormack, finite-difference; and (2) implicit, upwind, finite-volume schemes. The second scheme, which is approximately 30 percent faster, is found to produce better time accurate results. The Reynolds stresses were modeled, using the Baldwin-Lomax algebraic turbulence model with certain modifications. The computational results include instantaneous and time averaged flow properties everywhere in the computational domain. Time series analyses were performed for the instantaneous pressure values on the cavity floor. The time averaged computational results show good agreement with the experimental data along the cavity floor and walls. When the yaw angle is nonzero, there is no longer a single length scale (length-to-depth ratio) for the flow, as is the case for zero yaw angle flow. The dominant directions and inclinations of the vortices are dramatically different for this nonsymmetric flow. The vortex shedding from the cavity into the mainstream flow is captured computationally. This phenomenon, which is due to the oscillation of the shear layer, is confirmed by the solutions of both schemes.

  13. Explicit and implicit calculations of turbulent cavity flows with and without yaw angle. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Yen, Guan-Wei

    1989-01-01

    Computations were performed to simulate turbulent supersonic flows past three-dimensional deep cavities with and without yaw. Simulation of these self-sustained oscillatory flows were generated through time accurate solutions of the Reynolds averaged complete Navier-Stokes equations using two different schemes: (1) MacCormack, finite-difference; and (2) implicit, upwind, finite-volume schemes. The second scheme, which is approximately 30 percent faster, is found to produce better time accurate results. The Reynolds stresses were modeled, using the Baldwin-Lomax algebraic turbulence model with certain modifications. The computational results include instantaneous and time averaged flow properties everywhere in the computational domain. Time series analyses were performed for the instantaneous pressure values on the cavity floor. The time averaged computational results show good agreement with the experimental data along the cavity floor and walls. When the yaw angle is nonzero, there is no longer a single length scale (length-to-depth ratio) for the flow, as is the case for zero yaw angle flow. The dominant directions and inclinations of the vortices are dramatically different for this nonsymmetric flow. The vortex shedding from the cavity into the mainstream flow is captured computationally. This phenomenon, which is due to the oscillation of the shear layer, is confirmed by the solutions of both schemes.

  14. Conversion of energy in cross-sectional divergences under different conditions of inflow

    NASA Technical Reports Server (NTRS)

    Peters, H

    1934-01-01

    This investigation treats the conversion of energy in conically divergent channels with constant opening ratio and half included angle of from 2.6 to 90 degrees, the velocity distribution in the entrance section being varied from rectangular distribution to fully developed turbulence by changing the length of the approach. The energy conversion is not completed in the exit section of the diffuser; complete conversion requires a discharge length which depends upon the included angle and the velocity distribution in the entrance section. Lastly, a spiral fan was mounted in the extreme length and the effect of the spiral flow on the energy conversion in the cross-sectional divergence explored.

  15. Experimental measurements of heat transfer coefficient in a partially/fully opened tilted cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakroun, W.; Elsayed, M.M.; Al-Fahed, S.F.

    1997-11-01

    An experimental investigation was carried out to determine the heat transfer coefficient from a rectangular tilted cavity to the ambient due to the buoyancy driven flow in the cavity. The cavity is partially or fully open from one side. All the walls of the cavity are adiabatic except the wall facing the cavity opening which is heated at a constant heat flux. Air was used as the cavity fluid and the experiments were carried out at a flux Grashof number of 5.5 {times} 10{sup 8}. The tilt angle of the cavity, measured from the vertical direction, was changed between {minus}90more » deg to +90 deg in 15 deg increments. Also, geometries of aspect ratio (height-to-width of cavity) of 1.0, 0.5, and 0.25 and of opening ratio (opening height to cavity height) of 1.0, 0.5, and 0.25 were considered in the study. The results are presented in terms of the average Nusselt number for different values of the above experimental parameters. Conclusions are derived for the effect of changing the tilt angle, the aspect ratio, or the opening ratio of the cavity on the average heat transfer coefficient between the cavity and the ambient air. Buoyancy-driven flow in rectangular cavities has been widely investigated by many researchers. This geometry is of special interest in many solar applications such as in solar passive heating, solar concentrators, and solar central receivers. The importance of the geometry extends to other engineering applications such as electronic equipment, fire research, and energy conservation in buildings.« less

  16. Directional impulse response of a large cavity inside a sonic crystal.

    PubMed

    Spiousas, Ignacio; Eguia, Manuel C

    2012-10-01

    Both temporal and directional responses of a cavity inside a two-dimensional sonic crystal are investigated. The size of the cavity is large compared to the lattice parameter and the wavelength for the frequency range of interest. Hence, a hybrid method to compute the response is proposed, combining multiscattering theory for the calculation of the reflective properties of the sonic crystal with a modified ray-tracing algorithm for the sound propagation within the cavity. The response of this enclosure displays resonances for certain frequency bands that depend on the geometry of the lattice and the cavity. When a full band gap exists in the sonic crystal, rays cannot propagate through the medium and total reflection occurs for all incidence angles, leading to strong resonances with an isotropic intensity field inside the cavity. When only some propagation directions are forbidden, total reflection occurs for certain ranges of incidence angles, and resonances can also be elicited but with a highly anisotropic intensity field. The spectrum of resonances of the cavity is strongly affected by changes in the lattice geometry, suggesting that they can be tailored to some extent, a feature that can lead to potential applications in architectural acoustics.

  17. Cavity-enhanced measurements for determining dielectric-membrane thickness and complex index of refraction.

    PubMed

    Stambaugh, Corey; Durand, Mathieu; Kemiktarak, Utku; Lawall, John

    2014-08-01

    The material properties of silicon nitride (SiN) play an important role in the performance of SiN membranes used in optomechanical applications. An optimum design of a subwavelength high-contrast grating requires accurate knowledge of the membrane thickness and index of refraction, and its performance is ultimately limited by material absorption. Here we describe a cavity-enhanced method to measure the thickness and complex index of refraction of dielectric membranes with small, but nonzero, absorption coefficients. By determining Brewster's angle and an angle at which reflection is minimized by means of destructive interference, both the real part of the index of refraction and the sample thickness can be measured. A comparison of the losses in the empty cavity and the cavity containing the dielectric sample provides a measurement of the absorption.

  18. Waveguide and active region structure optimization for low-divergence InAs/InGaAs quantum dot comb lasers

    NASA Astrophysics Data System (ADS)

    Korenev, Vladimir V.; Savelyev, Artem V.; Zhukov, Alexey E.; Maximov, Mikhail V.; Omelchenko, Alexander V.

    2015-05-01

    Ways to improve beam divergence and energy consumption of quantum dot lasers emitting via the ground-state optical transitions by optimization of the key parameters of laser active region are discussed. It is shown that there exist an optimal cavity length, dispersion of inhomogeneous broadening and number of QD layers in active region allowing to obtain lasing spectrum of a given width at minimum injection current. The planar dielectric waveguide of the laser is optimized by analytical means for a better trade-off between high Γ-factor and low beam divergence.

  19. The influence of spray properties on intranasal deposition.

    PubMed

    Foo, Mow Yee; Cheng, Yung-Sung; Su, Wei-Chung; Donovan, Maureen D

    2007-01-01

    While numerous devices, formulations, and spray characteristics have been shown to influence nasal deposition efficiency, few studies have attempted to identify which of these interacting factors plays the greatest role in nasal spray deposition. The deposition patterns of solutions with a wide range of surface tensions and viscosities were measured using an MRI-derived nasal cavity replica. The resulting spray plumes had angles between 29 degrees and 80 degrees and contained droplet sizes (D(v50)) from 37-157 microm. Each formulation contained rhodamine 590 as a fluorescent marker for detection. Administration angles of 30 degrees , 40 degrees , or 50 degrees above horizontal were tested to investigate the role of user technique on nasal deposition. The amount of spray deposited within specific regions of the nasal cavity was determined by disassembling the replica and measuring the amount of rhodamine retained in each section. Most of the spray droplets were deposited onto the anterior region of the model, but sprays with small plume angles were capable of reaching the turbinate region with deposition efficiencies approaching 90%. Minimal dependence on droplet size, viscosity, or device was observed. Changes in inspiratory flow rate (0-60 L/min) had no significant effect on turbinate deposition efficiency. Both plume angle and administration angle were found to be important factors in determining deposition efficiency. For administration angles of 40 degrees or 50 degrees , maximal turbinate deposition efficiency (30-50%) occurred with plume angles of 55-65 degrees , whereas a 30 degrees administration angle gave an approximately 75% deposition efficiency for similar plume angles. Deposition efficiencies of approximately 90% could be achieved with plume angles <30 degrees using 30 degrees administration angles. Both the plume angle and administration angle are critical factors in determining deposition efficiency, while many other spray parameters, including particle size, have relatively minor influences on deposition within the nasal cavity.

  20. Real-time observation of fluctuations at the driven-dissipative Dicke phase transition

    PubMed Central

    Brennecke, Ferdinand; Mottl, Rafael; Baumann, Kristian; Landig, Renate; Donner, Tobias; Esslinger, Tilman

    2013-01-01

    We experimentally study the influence of dissipation on the driven Dicke quantum phase transition, realized by coupling external degrees of freedom of a Bose–Einstein condensate to the light field of a high-finesse optical cavity. The cavity provides a natural dissipation channel, which gives rise to vacuum-induced fluctuations and allows us to observe density fluctuations of the gas in real-time. We monitor the divergence of these fluctuations over two orders of magnitude while approaching the phase transition, and observe a behavior that deviates significantly from that expected for a closed system. A correlation analysis of the fluctuations reveals the diverging time scale of the atomic dynamics and allows us to extract a damping rate for the external degree of freedom of the atoms. We find good agreement with our theoretical model including dissipation via both the cavity field and the atomic field. Using a dissipation channel to nondestructively gain information about a quantum many-body system provides a unique path to study the physics of driven-dissipative systems. PMID:23818599

  1. Ordered roughness effects on NACA 0026 airfoil

    NASA Astrophysics Data System (ADS)

    Harun, Z.; Abbas, A. A.; Dheyaa, R. Mohammed; Ghazali, M. I.

    2016-10-01

    The effects of highly-ordered rough surface - riblets, applied onto the surface of a NACA 0026 airfoil, are investigated experimentally using wind tunnel. The riblets are arranged in directionally converging - diverging pattern with dimensions of height, h = 1 mm, pitch or spacing, s = 1 mm, yaw angle α = 0o and 10o The airfoil with external geometry of 500 mm span, 600 mm chord and 156 mm thickness has been built using mostly woods and aluminium. Turbulence quantities are collected using hotwire anemometry. Hotwire measurements show that flows past converging and diverging pattern inherit similar patterns in the near-wall region for both mean velocity and turbulence intensities profiles. The mean velocity profiles in logarithmic regions for both flows past converging and diverging riblet pattern are lower than that with yaw angle α = 0o. Converging riblets cause the boundary layer to thicken and the flow with yaw angle α = 0o produces the thinnest boundary layer. Both the converging and diverging riblets cause pronounced outer peaks in the turbulence intensities profiles. Most importantly, flows past converging and diverging pattern experience 30% skin friction reductions. Higher order statistics show that riblet surfaces produce similar effects due to adverse pressure gradient. It is concluded that a small strip of different ordered roughness features applied at a leading edge of an airfoil can change the turbulence characteristics dramatically.

  2. Three-gradient regular solution model for simple liquids wetting complex surface topologies

    PubMed Central

    Akerboom, Sabine; Kamperman, Marleen

    2016-01-01

    Summary We use regular solution theory and implement a three-gradient model for a liquid/vapour system in contact with a complex surface topology to study the shape of a liquid drop in advancing and receding wetting scenarios. More specifically, we study droplets on an inverse opal: spherical cavities in a hexagonal pattern. In line with experimental data, we find that the surface may switch from hydrophilic (contact angle on a smooth surface θY < 90°) to hydrophobic (effective advancing contact angle θ > 90°). Both the Wenzel wetting state, that is cavities under the liquid are filled, as well as the Cassie–Baxter wetting state, that is air entrapment in the cavities under the liquid, were observed using our approach, without a discontinuity in the water front shape or in the water advancing contact angle θ. Therefore, air entrapment cannot be the main reason why the contact angle θ for an advancing water front varies. Rather, the contact line is pinned and curved due to the surface structures, inducing curvature perpendicular to the plane in which the contact angle θ is observed, and the contact line does not move in a continuous way, but via depinning transitions. The pinning is not limited to kinks in the surface with angles θkink smaller than the angle θY. Even for θkink > θY, contact line pinning is found. Therefore, the full 3D-structure of the inverse opal, rather than a simple parameter such as the wetting state or θkink, determines the final observed contact angle. PMID:27826512

  3. Experimental Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for Supersonic Aircraft Application

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.; Deere, Karen A.; Mason, Mary L.; Berrier, Bobby L.; Johnson, Stuart K.

    2007-01-01

    An axisymmetric version of the Dual Throat Nozzle concept with a variable expansion ratio has been studied to determine the impacts on thrust vectoring and nozzle performance. The nozzle design, applicable to a supersonic aircraft, was guided using the unsteady Reynolds-averaged Navier-Stokes computational fluid dynamics code, PAB3D. The axisymmetric Dual Throat Nozzle concept was tested statically in the Jet Exit Test Facility at the NASA Langley Research Center. The nozzle geometric design variables included circumferential span of injection, cavity length, cavity convergence angle, and nozzle expansion ratio for conditions corresponding to take-off and landing, mid climb and cruise. Internal nozzle performance and thrust vectoring performance was determined for nozzle pressure ratios up to 10 with secondary injection rates up to 10 percent of the primary flow rate. The 60 degree span of injection generally performed better than the 90 degree span of injection using an equivalent injection area and number of holes, in agreement with computational results. For injection rates less than 7 percent, thrust vector angle for the 60 degree span of injection was 1.5 to 2 degrees higher than the 90 degree span of injection. Decreasing cavity length improved thrust ratio and discharge coefficient, but decreased thrust vector angle and thrust vectoring efficiency. Increasing cavity convergence angle from 20 to 30 degrees increased thrust vector angle by 1 degree over the range of injection rates tested, but adversely affected system thrust ratio and discharge coefficient. The dual throat nozzle concept generated the best thrust vectoring performance with an expansion ratio of 1.0 (a cavity in between two equal minimum areas). The variable expansion ratio geometry did not provide the expected improvements in discharge coefficient and system thrust ratio throughout the flight envelope of typical a supersonic aircraft. At mid-climb and cruise conditions, the variable geometry design compromised thrust vector angle achieved, but some thrust vector control would be available, potentially for aircraft trim. The fixed area, expansion ratio of 1.0, Dual Throat Nozzle provided the best overall compromise for thrust vectoring and nozzle internal performance over the range of NPR tested compared to the variable geometry Dual Throat Nozzle.

  4. Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Aslam, Muhammad, E-mail: klaira73@gmail.com; Altaf, Khurram, E-mail: khurram.altaf@petronas.com.my

    2015-07-22

    Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Randommore » orientation of fibers was noted in the composites test bars produced from divergent melt flow.« less

  5. Archimedean Voronoi spiral tilings

    NASA Astrophysics Data System (ADS)

    Yamagishi, Yoshikazu; Sushida, Takamichi

    2018-01-01

    We study the transition of the number of spirals (called parastichy in the theory of phyllotaxis) within a Voronoi tiling for Archimedean spiral lattices. The transition of local parastichy numbers within a tiling is regarded as a transition at the base site point in a continuous family of tilings. This gives a natural description of the quasiperiodic structure of the grain boundaries. It is proved that the number of tiles in the grain boundaries are denominators of rational approximations of the argument (called the divergence angle) of the generator. The local parastichy numbers are non-decreasing functions of the plastochron parameter. The bifurcation diagram of local parastichy numbers has a Farey tree structure. We also prove Richards’ formula of spiral phyllotaxis in the case of Archimedean Voronoi spiral tilings, and show that, if the divergence angle is a quadratic irrational number, then the shapes of tiles in the grain boundaries are close to rectangles. If the divergence angle is linearly equivalent to the golden section, then the shape of tiles in the grain boundaries is close to square.

  6. Static Thrust and Vectoring Performance of a Spherical Convergent Flap Nozzle with a Nonrectangular Divergent Duct

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    1998-01-01

    The static internal performance of a multiaxis-thrust-vectoring, spherical convergent flap (SCF) nozzle with a non-rectangular divergent duct was obtained in the model preparation area of the Langley 16-Foot Transonic Tunnel. Duct cross sections of hexagonal and bowtie shapes were tested. Additional geometric parameters included throat area (power setting), pitch flap deflection angle, and yaw gimbal angle. Nozzle pressure ratio was varied from 2 to 12 for dry power configurations and from 2 to 6 for afterburning power configurations. Approximately a 1-percent loss in thrust efficiency from SCF nozzles with a rectangular divergent duct was incurred as a result of internal oblique shocks in the flow field. The internal oblique shocks were the result of cross flow generated by the vee-shaped geometric throat. The hexagonal and bowtie nozzles had mirror-imaged flow fields and therefore similar thrust performance. Thrust vectoring was not hampered by the three-dimensional internal geometry of the nozzles. Flow visualization indicates pitch thrust-vector angles larger than 10' may be achievable with minimal adverse effect on or a possible gain in resultant thrust efficiency as compared with the performance at a pitch thrust-vector angle of 10 deg.

  7. Application of the three-component bidirectional reflectance distribution function model to Monte Carlo calculation of spectral effective emissivities of nonisothermal blackbody cavities.

    PubMed

    Prokhorov, Alexander; Prokhorova, Nina I

    2012-11-20

    We applied the bidirectional reflectance distribution function (BRDF) model consisting of diffuse, quasi-specular, and glossy components to the Monte Carlo modeling of spectral effective emissivities for nonisothermal cavities. A method for extension of a monochromatic three-component (3C) BRDF model to a continuous spectral range is proposed. The initial data for this method are the BRDFs measured in the plane of incidence at a single wavelength and several incidence angles and directional-hemispherical reflectance measured at one incidence angle within a finite spectral range. We proposed the Monte Carlo algorithm for calculation of spectral effective emissivities for nonisothermal cavities whose internal surface is described by the wavelength-dependent 3C BRDF model. The results obtained for a cylindroconical nonisothermal cavity are discussed and compared with results obtained using the conventional specular-diffuse model.

  8. Shuttle Debris Impact Tool Assessment Using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    DeLoach, R.; Rayos, E. M.; Campbell, C. H.; Rickman, S. L.

    2006-01-01

    Computational tools have been developed to estimate thermal and mechanical reentry loads experienced by the Space Shuttle Orbiter as the result of cavities in the Thermal Protection System (TPS). Such cavities can be caused by impact from ice or insulating foam debris shed from the External Tank (ET) on liftoff. The reentry loads depend on cavity geometry and certain Shuttle state variables, among other factors. Certain simplifying assumptions have been made in the tool development about the cavity geometry variables. For example, the cavities are all modeled as shoeboxes , with rectangular cross-sections and planar walls. So an actual cavity is typically approximated with an idealized cavity described in terms of its length, width, and depth, as well as its entry angle, exit angle, and side angles (assumed to be the same for both sides). As part of a comprehensive assessment of the uncertainty in reentry loads estimated by the debris impact assessment tools, an effort has been initiated to quantify the component of the uncertainty that is due to imperfect geometry specifications for the debris impact cavities. The approach is to compute predicted loads for a set of geometry factor combinations sufficient to develop polynomial approximations to the complex, nonparametric underlying computational models. Such polynomial models are continuous and feature estimable, continuous derivatives, conditions that facilitate the propagation of independent variable errors. As an additional benefit, once the polynomial models have been developed, they require fewer computational resources to execute than the underlying finite element and computational fluid dynamics codes, and can generate reentry loads estimates in significantly less time. This provides a practical screening capability, in which a large number of debris impact cavities can be quickly classified either as harmless, or subject to additional analysis with the more comprehensive underlying computational tools. The polynomial models also provide useful insights into the sensitivity of reentry loads to various cavity geometry variables, and reveal complex interactions among those variables that indicate how the sensitivity of one variable depends on the level of one or more other variables. For example, the effect of cavity length on certain reentry loads depends on the depth of the cavity. Such interactions are clearly displayed in the polynomial response models.

  9. The ABCD matrix for parabolic reflectors and its application to astigmatism free four-mirror cavities

    NASA Astrophysics Data System (ADS)

    Dupraz, K.; Cassou, K.; Martens, A.; Zomer, F.

    2015-10-01

    The ABCD matrix for parabolic reflectors is derived for any incident angles. It is used in numerical studies of four-mirror cavities composed of two flat and two parabolic mirrors. Constraints related to laser beam injection efficiency, optical stability, cavity-mode, beam-waist size and high stacking power are satisfied. A dedicated alignment procedure leading to stigmatic cavity-modes is employed to overcome issues related to the optical alignment of parabolic reflectors.

  10. Wind-tunnel static and free-flight investigation of high-angle-of-attack stability and control characteristics of a model of the EA-6B airplane

    NASA Technical Reports Server (NTRS)

    Jordan, Frank L., Jr.; Hahne, David E.

    1992-01-01

    An investigation was conducted in the Langley 30- by 60-Foot Tunnel and the Langley 12-Foot Low-Speed Tunnel to identify factors contributing to a directional divergence at high angles of attack for the EA-6B airplane. The study consisted of static wind-tunnel tests, smoke and tuft flow-visualization tests, and free-flight tests of a 1/8.5-scale model of the airplane. The results of the investigation indicate that the directional divergence of the airplane is brought about by a loss of directional stability and effective dihedral at high angles of attack. Several modifications were tested that significantly alleviate the stability problem. The results of the free-flight study show that the modified configuration exhibits good dynamic stability characteristics and could be flown at angles of attack significantly higher than those of the unmodified configuration.

  11. Analytical beam-width characteristics of distorted cat-eye reflected beam

    NASA Astrophysics Data System (ADS)

    Zhao, Yanzhong; Shan, Congmiao; Zheng, Yonghui; Zhang, Laixian; Sun, Huayan

    2015-02-01

    The analytical expression of beam-width of distorted cat-eye reflected beam under far-field condition is deduced using the approximate three-dimensional analytical formula for oblique detection laser beam passing through cat-eye optical lens with center shelter, and using the definition of second order moment, Gamma function and integral functions. The laws the variation of divergence angle and astigmatism degree of the reflected light with incident angle, focal shift, aperture size, and center shelter ratio are established by numerical calculation, and physical analysis. The study revealed that the cat-eye reflected beam is like a beam transmitted and collimated by the target optical lens, and has the same characteristics as that of Gaussian beam. A proper choice of positive focal shift would result in a divergence angle smaller than that of no focal shift. The astigmatism is mainly caused by incidence angle.

  12. Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement.

    PubMed

    Liu, Ye; Wang, D N; Chen, W P

    2016-12-02

    Optical Fabry-Perot interferometer sensors based on inner air-cavity is featured with compact size, good robustness and high strain sensitivity, especially when an ultra-thin air-cavity is adopted. The typical shape of Fabry-Perot inner air-cavity with reflection mode of operation is elliptic, with minor axis along with and major axis perpendicular to the fiber length. The first reflection surface is diverging whereas the second one is converging. To increase the visibility of the output interference pattern, the length of major axis should be large for a given cavity length. However, the largest value of the major axis is limited by the optical fiber diameter. If the major axis length reaches the fiber diameter, the robustness of the Fabry-Perot cavity device would be decreased. Here we demonstrate an ultra-thin crescent shaped Fabry-Perot cavity for strain sensing with ultra-high sensitivity and low temperature cross-sensitivity. The crescent-shape cavity consists of two converging reflection surfaces, which provide the advantages of enhanced strain sensitivity when compared with elliptic or D-shaped FP cavity. The device is fabricated by fusion splicing an etched multimode fiber with a single mode fiber, and hence is simple in structure and economic in cost.

  13. Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement

    NASA Astrophysics Data System (ADS)

    Liu, Ye; Wang, D. N.; Chen, W. P.

    2016-12-01

    Optical Fabry-Perot interferometer sensors based on inner air-cavity is featured with compact size, good robustness and high strain sensitivity, especially when an ultra-thin air-cavity is adopted. The typical shape of Fabry-Perot inner air-cavity with reflection mode of operation is elliptic, with minor axis along with and major axis perpendicular to the fiber length. The first reflection surface is diverging whereas the second one is converging. To increase the visibility of the output interference pattern, the length of major axis should be large for a given cavity length. However, the largest value of the major axis is limited by the optical fiber diameter. If the major axis length reaches the fiber diameter, the robustness of the Fabry-Perot cavity device would be decreased. Here we demonstrate an ultra-thin crescent shaped Fabry-Perot cavity for strain sensing with ultra-high sensitivity and low temperature cross-sensitivity. The crescent-shape cavity consists of two converging reflection surfaces, which provide the advantages of enhanced strain sensitivity when compared with elliptic or D-shaped FP cavity. The device is fabricated by fusion splicing an etched multimode fiber with a single mode fiber, and hence is simple in structure and economic in cost.

  14. New compact neutron supermirror transmission polarizer

    NASA Astrophysics Data System (ADS)

    Syromyatnikov, V. G.; Pusenkov, V. M.

    2017-06-01

    A new compact neutron supermirror transmission polarizer is suggested. The polarizer consists of a set of plates transparent to neutrons placed in the magnet gap. There are no air gaps between the plates. Polarizing supermirror coating without absorbing underlayer is deposited on the polished surfaces of the plates. Magnetic and nonmagnetic layers of the supermirror coating as well as the material of the plates have nearly equal neutron-optical potentials for spin-down neutrons. There is a considerable difference between neutron-optical potentials of layers in the supermirror structure for spin-up neutrons. As a result, spin-up neutrons reflect from the supermirror coating and deviate from their initial trajectories whereas spin-down neutrons do not practically reflect from the coating and, consequently, do not deviate from their initial trajectories. Thus, spin-down neutrons dominate near the axis of distribution of intensity on the angle for the beam transmitted through this polarizer, i.e., the beam is substantially polarized. Application is discussed of this polarizer in a research facility for small angle scattering of monochromatic neutrons with wavelengths λ = 4.5÷20 Å. The polarizing cross section of the beam of this facility is 30×30 mm2. Calculated parameters are presented of a polarizer on silicon plates with supermirror CoFe/TiZr (m = 2) coating. The suggested polarizer is compared with solid state bender, S-bender and widely known transmission neutron polarizer V- cavity in the same spectral range. Two polarizers are used to cover the wavelength range λ = 4.5 ÷20 Å: the first one whose length is 50 мм covers the range λ = 4.5 ÷10 Å and the second one whose length is 21.2 мм covers the range λ = 10 ÷20 Å. The length of each of these polarizers is more than 30 times smaller than that of V-cavity! On the other hand, basic parameters of the proposed polarizer, polarization of the beam falling on the sample P and transmission coefficient T- of the main spin component, exceed those of V-cavity. T- = 0.8 - 0.9 for both polarizers and for each wavelength range. Polarization P is very high. P is better than -0.99 for wavelength range λ = 12.5 ÷ 20 Å at the beam divergence of 24 mrad.

  15. Effect of Secondary Jet-flow Angle on Performance of Turbine Inter-guide-vane Burner Based on Jet-vortex Flow

    NASA Astrophysics Data System (ADS)

    Zheng, Haifei; Tang, Hao; Xu, Xingya; Li, Ming

    2014-08-01

    Four different secondary airflow angles for the turbine inter-guide-vane burners with trapped vortex cavity were designed. Comparative analysis between combustion performances influenced by the variation of secondary airflow angle was carried out by using numerical simulation method. The turbulence was modeled using the Scale-Adaptive Simulation (SAS) turbulence model. Four cases with different secondary jet-flow angles (-45°, 0°, 30°, 60°) were studied. It was observed that the case with secondary jet-flows at 60° angle directed upwards (1) has good mixing effect; (2) mixing effect is the best although the flow field distributions inside both of the cavity and the main flow passage for the four models are very similar; (3) has complete combustion and symmetric temperature distribution on the exit section of guide vane (X = 70 mm), with uniform temperature distribution, less temperature gradient, and shrank local high temperature regions in the notch located on the guide vane.

  16. Cavity Enhanced Absorption Spectroscopy using a Prism Cavity and Supercontinuum Source

    NASA Astrophysics Data System (ADS)

    Lehmann, Kevin K.; Johnston, Paul S.

    2010-03-01

    The multiplex advantage of current cavity enhanced spectrometers is limited by the limited high reflectivity bandwidth of the dielectric mirrors used to construct the high finesse cavity. We report on our development of a spectrometer that uses Brewster's angle retroreflectors that is excited with supercontinuum radiation generated by a 1.06 μm pumped photonic crystal fiber, which covers the 500-1800 nm spectral range. Recent progress will be discussed including modeling of the prism cavity losses, alternative prism materials for use in the UV and mid-IR, and a new higher power source pumped by a mode-locked laser.

  17. Dividers for reduction of aerodynamic drag of vehicles with open cavities

    NASA Technical Reports Server (NTRS)

    Storms, Bruce L. (Inventor)

    2007-01-01

    A drag-reduction concept for vehicles with open cavities includes dividing a cavity into smaller adjacent cavities through installation of one or more vertical dividers. The dividers may extend the full depth of the cavity or only partial depth. In either application, the top of the dividers are typically flush with the top of the bed or cargo bay of the vehicle. The dividers may be of any material, but are strong enough for both wind loads and forces encountered during cargo loading/unloading. For partial depth dividers, a structural angle may be desired to increase strength.

  18. Free-Energy Barrier of Filling a Spherical Cavity in the Presence of Line Tension: Implication to the Energy Barrier between the Cassie and Wenzel States on a Superhydrophobic Surface with Spherical Cavities.

    PubMed

    Iwamatsu, Masao

    2016-09-20

    The free-energy barrier of filling a spherical cavity having an inner wall of various wettabilities is studied. The morphology and free energy of a lens-shaped droplet are determined from the minimum of the free energy. The effect of line tension on the free energy is also studied. Then, the equilibrium contact angle of the droplet is determined from the generalized Young's equation. By increasing the droplet volume within the spherical cavity, the droplet morphology changes from spherical with an equilibrium contact angle of 180° to a lens with a convex meniscus, where the morphological complete drying transition occurs. By further increasing the droplet volume, the meniscus changes from convex to concave. Then, the lens-shaped droplet with concave meniscus spreads over the whole inner wall, resulting in an equilibrium contact angle of 0° to leave a spherical bubble, where the morphological complete wetting transition occurs. Finally, the whole cavity is filled with liquid. The free energy shows a barrier from complete drying to complete wetting as a function of droplet volume, which corresponds to the energy barrier between the Cassie and Wenzel states of the superhydrophobic surface with spherical cavities. The free-energy maximum occurs when the meniscus of the droplet becomes flat, and it is given by an analytic formula. The effect of line tension is expressed by the scaled line tension, and this effect is largest at the free-energy maximum. The positive line tension increases the free-energy maximum, which thus increases the stability of the Cassie superhydrophobic state, whereas the negative line tension destabilizes the superhydrophobic state.

  19. The contribution of two ears to the perception of vertical angle in sagittal planes.

    PubMed

    Morimoto, M

    2001-04-01

    Because the input signals to the left and right ears are not identical, it is important to clarify the role of these signals in the perception of the vertical angle of a sound source at any position in the upper hemisphere. To obtain basic findings on upper hemisphere localization, this paper investigates the contribution of each pinna to the perception of vertical angle. Tests measured localization of the vertical angle in five planes parallel to the median plane. In the localization tests, the pinna cavities of one or both ears were occluded. Results showed that pinna cavities of both the near and far ears play a role in determining the perceived vertical angle of a sound source in any plane, including the median plane. As a sound source shifts laterally away from the median plane, the contribution of the near ear increases and, conversely, that of the far ear decreases. For saggital planes at azimuths greater than 60 degrees from midline, the far ear no longer contributes measurably to the determination of vertical angle.

  20. Preliminary Results Obtained from Flight Test of a 1/7-Scale Rocket-Powered Model of the Grumman XF10F Airplane Configuration in the Swept-Wing Condition, TED No. NACA DE 354

    NASA Technical Reports Server (NTRS)

    Gardner, William N.

    1951-01-01

    A flight investigation of a 1/7-scale rocket-powered model of the XF10F Grumman XFl0F airplane in the swept-wing configuration has been made. The purpose of this test was to determine the static longitudinal stability, damping in pitch, and longitudinal control effectiveness of the airplane with the center of gravity at 20 percent of the wing mean aerodynamic chord. Only a small amount of data was obtained from the test because, immediately after booster separation at a Mach number of 0.88, the configuration was directionally unstable and diverged in sideslip. Simultaneous with the sideslip divergence, the model became longitudinally unstable at 3 degree angle of attack and -6 degree sideslip and diverged in pitch to a high angle of attack. During the pitch-up the free-floating horizontal tail became unstable at 5 degree angle of attack and the tail drifted against its positive deflection limit.

  1. Fast wavelength tuning techniques for external cavity lasers

    DOEpatents

    Wysocki, Gerard [Princeton, NJ; Tittel, Frank K [Houston, TX

    2011-01-11

    An apparatus comprising a laser source configured to emit a light beam along a first path, an optical beam steering component configured to steer the light beam from the first path to a second path at an angle to the first path, and a diffraction grating configured to reflect back at least a portion of the light beam along the second path, wherein the angle determines an external cavity length. Included is an apparatus comprising a laser source configured to emit a light beam along a first path, a beam steering component configured to redirect the light beam to a second path at an angle to the first path, wherein the optical beam steering component is configured to change the angle at a rate of at least about one Kilohertz, and a diffraction grating configured to reflect back at least a portion of the light beam along the second path.

  2. Guided endodontics: accuracy of a novel method for guided access cavity preparation and root canal location.

    PubMed

    Zehnder, M S; Connert, T; Weiger, R; Krastl, G; Kühl, S

    2016-10-01

    To present a novel method utilizing 3D printed templates to gain guided access to root canals and to evaluate its accuracy in vitro. Sixty extracted human teeth were placed into six maxillary jaw models. Preoperative CBCT scans were matched with intra-oral scans using the coDiagnostix(™) software. Access cavities, sleeves and templates for guidance were virtually planned. Templates were produced by a 3D printer. After access cavity preparation by two operators, a postoperative CBCT scan was superimposed on the virtual planning. Accuracy was measured by calculating the deviation of planned and prepared cavities in three dimensions and angle. Ninety-five per cent confidence intervals were calculated for both operators. All root canals were accessible after cavity preparation with 'Guided Endodontics'. Deviations of planned and prepared access cavities were low with means ranging from 0.16 to 0.21 mm for different aspects at the base of the bur and 0.17-0.47 mm at the tip of the bur. Mean of angle deviation was 1.81°. Overlapping 95% confidence intervals revealed no significant difference between operators. 'Guided Endodontics' allowed an accurate access cavity preparation up to the apical third of the root utilizing printed templates for guidance. All root canals were accessible after preparation. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  3. The influence of cavity parameters on the combustion oscillation in a single-side expansion scramjet combustor

    NASA Astrophysics Data System (ADS)

    Ouyang, Hao; Liu, Weidong; Sun, Mingbo

    2017-08-01

    Cavity has been validated to be efficient flameholders for scramjet combustors, but the influence of its parameters on the combustion oscillation in scramjet combustor has barely been studied. In the present work, a series of experiments focusing on this issue have been carried out. The influence of flameholding cavity position, its length to depth ratio L/D and aft wall angle θ and number on ethylene combustion oscillation characteristics in scramjet combustor has been researched. The obtained experimental results show that, as the premixing distance between ethylene injector and flameholding cavity varies, the ethylene combustion flame will take on two distinct forms, small-amplitude high frequency fluctuation, and large-amplitude low frequency oscillation. The dominant frequency of the large-amplitude combustion oscillation is in inverse proportion to the pre-mixing distance. Moreover, the influence of cavity length to depth ratio and the aft wall angleθexists diversity when the flameholding cavity position is different and can be recognized as unnoticeable compared to the impact of the premixing distance. In addition, we also find that, when the premixing distance is identical and sufficient, increasing the number of tandem flameholding cavities can change the dominant frequency of combustion oscillation hardly, let alone avoid the combustion oscillation. It is believed that the present investigation will provide a useful reference for the design of the scramjet combustor.

  4. A comparison of parallel and diverging screw angles in the stability of locked plate constructs.

    PubMed

    Wähnert, D; Windolf, M; Brianza, S; Rothstock, S; Radtke, R; Brighenti, V; Schwieger, K

    2011-09-01

    We investigated the static and cyclical strength of parallel and angulated locking plate screws using rigid polyurethane foam (0.32 g/cm(3)) and bovine cancellous bone blocks. Custom-made stainless steel plates with two conically threaded screw holes with different angulations (parallel, 10° and 20° divergent) and 5 mm self-tapping locking screws underwent pull-out and cyclical pull and bending tests. The bovine cancellous blocks were only subjected to static pull-out testing. We also performed finite element analysis for the static pull-out test of the parallel and 20° configurations. In both the foam model and the bovine cancellous bone we found the significantly highest pull-out force for the parallel constructs. In the finite element analysis there was a 47% more damage in the 20° divergent constructs than in the parallel configuration. Under cyclical loading, the mean number of cycles to failure was significantly higher for the parallel group, followed by the 10° and 20° divergent configurations. In our laboratory setting we clearly showed the biomechanical disadvantage of a diverging locking screw angle under static and cyclical loading.

  5. Evaluation of Aircraft Platforms for SOFIA by Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Klotz, S. P.; Srinivasan, G. R.; VanDalsem, William (Technical Monitor)

    1995-01-01

    The selection of an airborne platform for the Stratospheric Observatory for Infrared Astronomy (SOFIA) is based not only on economic cost, but technical criteria, as well. Technical issues include aircraft fatigue, resonant characteristics of the cavity-port shear layer, aircraft stability, the drag penalty of the open telescope bay, and telescope performance. Recently, two versions of the Boeing 747 aircraft, viz., the -SP and -200 configurations, were evaluated by computational fluid dynamics (CFD) for their suitability as SOFIA platforms. In each configuration the telescope was mounted behind the wings in an open bay with nearly circular aperture. The geometry of the cavity, cavity aperture, and telescope was identical in both platforms. The aperture was located on the port side of the aircraft and the elevation angle of the telescope, measured with respect to the vertical axis, was 500. The unsteady, viscous, three-dimensional, aerodynamic and acoustic flow fields in the vicinity of SOFIA were simulated by an implicit, finite-difference Navier-Stokes flow solver (OVERFLOW) on a Chimera, overset grid system. The computational domain was discretized by structured grids. Computations were performed at wind-tunnel and flight Reynolds numbers corresponding to one free-stream flow condition (M = 0.85, angle of attack alpha = 2.50, and sideslip angle beta = 0 degrees). The computational domains consisted of twenty-nine(29) overset grids in the wind-tunnel simulations and forty-five(45) grids in the simulations run at cruise flight conditions. The maximum number of grid points in the simulations was approximately 4 x 10(exp 6). Issues considered in the evaluation study included analysis of the unsteady flow field in the cavity, the influence of the cavity on the flow across empennage surfaces, the drag penalty caused by the open telescope bay, and the noise radiating from cavity surfaces and the cavity-port shear layer. Wind-tunnel data were also available to compare to the CFD results; the data permitted an assessment of CFD as a design tool for the SOFIA program.

  6. Shooting and bouncing rays - Calculating the RCS of an arbitrarily shaped cavity

    NASA Technical Reports Server (NTRS)

    Ling, Hao; Chou, Ri-Chee; Lee, Shung-Wu

    1989-01-01

    A ray-shooting approach is presented for calculating the interior radar cross section (RCS) from a partially open cavity. In the problem considered, a dense grid of rays is launched into the cavity through the opening. The rays bounce from the cavity walls based on the laws of geometrical optics and eventually exit the cavity via the aperture. The ray-bouncing method is based on tracking a large number of rays launched into the cavity through the opening and determining the geometrical optics field associated with each ray by taking into consideration (1) the geometrical divergence factor, (2) polarization, and (3) material loading of the cavity walls. A physical optics scheme is then applied to compute the backscattered field from the exit rays. This method is so simple in concept that there is virtually no restriction on the shape or material loading of the cavity. Numerical results obtained by this method are compared with those for the modal analysis for a circular cylinder terminated by a PEC plate. RCS results for an S-bend circular cylinder generated on the Cray X-MP supercomputer show significant RCS reduction. Some of the limitations and possible extensions of this technique are discussed.

  7. High-pulse-energy mode-locked picosecond oscillator

    NASA Astrophysics Data System (ADS)

    Chao, Yang; Chen, Meng; Li, Gang

    2014-02-01

    We report on a high-pulse-energy solid-state picosecond Nd:YVO4 oscillator with cavity-dumping. The laser is end-pumped by an 808 nm laser diode and passively mode-locked with a semiconductor saturable absorption mirror (SESAM). In pure cw-mode-locking, this laser produced 2.5 W of average power at a pulse repetition rate of 40 MHz and pulse duration around 12 ps. A cavity dumping technique using an intra-cavity BBO electro-optic crystal to which bidirectional voltage was applied was adopted, effectively improving the cavity-dumping rate. Tunable high repetition rate from 100 kHz to 1 MHz was achieved. With electro-optic cavity dumper working at 1 MHz repetition rate, we achieved average power 594 mW. The laser includes a 5 mm long, a-cut, 0.5% doped Nd:YVO4 crystal with a 5-degree angle at one end face. Laser radiation is coupled out from the crystal end face with a 5-degree angle, without requiring insertion of a thin-film polarizer (TFP), thus simplifying the laser structure. This picosecond laser system has the advantages of compact structure and high stability, providing a good oscillator for regenerative amplifiers.

  8. Design of a high-power Nd:YAG Q-switched laser cavity

    NASA Astrophysics Data System (ADS)

    Singh, Ikbal; Kumar, Avinash; Nijhawan, O. P.

    1995-06-01

    An electro-optically Q-switched Nd:YAG laser resonator that uses two end prisms placed orthogonally perpendicular to each other has been designed. This configuration improves the stability of the resonator and does not alter the characteristics of the electro-optical Q switch. The outcoupling ratio of the cavity is optimized by a change in the azimuthal angle of a phase-matched Porro prism placed at one end of the cavity. The prism placed at the other end of the cavity is designed so that it introduces a phase change of Pi , regardless of its orientation and index of refraction, resulting in a more efficient and stable cavity.

  9. A Fast Algorithm to Compute Conical Pockets in Proteins. Application to the Structural Characterization of γ-Carbonic Anhydrases.

    PubMed

    Petitjean, Michel

    2017-10-01

    Some major proteins families, such as carbonic anhydrases (CAs), have a conical cavity at the active site. No algorithm was available to compute conical cavities, so we needed to design one. The fast algorithm we designed let us show on a set of 717 CAs extracted from the PDB database that γ-CAs are characterized by active site cavity cone angles significantly larger than those of α-CAs and β-CAs: the generatrix-axis angles are greater than 60° for the γ-CAs while they are smaller than 50° for the other CAs. Free binaries of the CONICA software implementing the algorithm are available through a software repository at http://petitjeanmichel.free.fr/itoweb.petitjean.freeware.html. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Bifurcations, chaos and adaptive backstepping sliding mode control of a power system with excitation limitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Fuhong, E-mail: minfuhong@njnu.edu.cn; Wang, Yaoda; Peng, Guangya

    2016-08-15

    The bifurcation and Lyapunov exponent for a single-machine-infinite bus system with excitation model are carried out by varying the mechanical power, generator damping factor and the exciter gain, from which periodic motions, chaos and the divergence of system are observed respectively. From given parameters and different initial conditions, the coexisting motions are developed in power system. The dynamic behaviors in power system may switch freely between the coexisting motions, which will bring huge security menace to protection operation. Especially, the angle divergences due to the break of stable chaotic oscillation are found which causes the instability of power system. Finally,more » a new adaptive backstepping sliding mode controller is designed which aims to eliminate the angle divergences and make the power system run in stable orbits. Numerical simulations are illustrated to verify the effectivity of the proposed method.« less

  11. Maintaining ecosystem resilience: functional responses of tree cavity nesters to logging in temperate forests of the Americas.

    PubMed

    Ibarra, José Tomás; Martin, Michaela; Cockle, Kristina L; Martin, Kathy

    2017-06-30

    Logging often reduces taxonomic diversity in forest communities, but little is known about how this biodiversity loss affects the resilience of ecosystem functions. We examined how partial logging and clearcutting of temperate forests influenced functional diversity of birds that nest in tree cavities. We used point-counts in a before-after-control-impact design to examine the effects of logging on the value, range, and density of functional traits in bird communities in Canada (21 species) and Chile (16 species). Clearcutting, but not partial logging, reduced diversity in both systems. The effect was much more pronounced in Chile, where logging operations removed critical nesting resources (large decaying trees), than in Canada, where decaying aspen Populus tremuloides were retained on site. In Chile, logging was accompanied by declines in species richness, functional richness (amount of functional niche occupied by species), community-weighted body mass (average mass, weighted by species densities), and functional divergence (degree of maximization of divergence in occupied functional niche). In Canada, clearcutting did not affect species richness but nevertheless reduced functional richness and community-weighted body mass. Although some cavity-nesting birds can persist under intensive logging operations, their ecosystem functions may be severely compromised unless future nest trees can be retained on logged sites.

  12. Analysis of the restricting factors of laser countermeasure active detection technology

    NASA Astrophysics Data System (ADS)

    Zhang, Yufa; Sun, Xiaoquan

    2016-07-01

    The detection effect of laser active detection system is affected by various kinds of factors. In view of the application requirement of laser active detection, the influence factors for laser active detection are analyzed. The mathematical model of cat eye target detection distance has been built, influence of the parameters of laser detection system and the environment on detection range and the detection efficiency are analyzed. Various parameters constraint detection performance is simulated. The results show that the discovery distance of laser active detection is affected by the laser divergence angle, the incident angle and the visibility of the atmosphere. For a given detection range, the laser divergence angle and the detection efficiency are mutually restricted. Therefore, in view of specific application environment, it is necessary to select appropriate laser detection parameters to achieve optimal detection effect.

  13. Injection-controlled laser resonator

    DOEpatents

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  14. Injection-controlled laser resonator

    DOEpatents

    Chang, Jim J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality.

  15. Phase-locked laser array through global antenna mutual coupling

    DOE PAGES

    Kao, Tsung -Yu; Reno, John L.; Hu, Qing

    2016-01-01

    Here, phase locking of an array of lasers is a highly effective way in beam shaping, to increase the output power, and to reduce lasing threshold. In this work, we present a novel phase-locking mechanism based on "antenna mutual coupling" wherein laser elements interact through far-field radiations with definite phase relations. This allows long-range global coupling among array elements to achieve robust 2-dimensional phase-locked laser array. The new scheme is ideal for lasers with deep sub-wavelength confined cavity such as nanolasers, where the divergent beam pattern could be used to form strong coupling among elements in the array. We experimentallymore » demonstrated such a scheme using sub-wavelength short-cavity surface-emitting lasers at terahertz frequency. More than 37 laser elements are phase-locked to each other, delivering up to 6.5 mW single-mode radiations at ~3 terahertz, with maximum 450-mW/A slope efficiency and near diffraction limit beam divergence.« less

  16. Foam-on-Tile Damage Model

    NASA Technical Reports Server (NTRS)

    Koharchik, Michael; Murphy, Lindsay; Parker, Paul

    2012-01-01

    An impact model was developed to predict how three specific foam types would damage the Space Shuttle Orbiter insulating tiles. The inputs needed for the model are the foam type, the foam mass, the foam impact velocity, the foam impact incident angle, the type being impacted, and whether the tile is new or aged (has flown at least one mission). The model will determine if the foam impact will cause damage to the tile. If it can cause damage, the model will output the damage cavity dimensions (length, depth, entry angle, exit angle, and sidewall angles). It makes the calculations as soon as the inputs are entered (less than 1 second). The model allows for the rapid calculation of numerous scenarios in a short time. The model was developed from engineering principles coupled with significant impact testing (over 800 foam impact tests). This model is applicable to masses ranging from 0.0002 up to 0.4 pound (0.09 up to 181 g). A prior tool performed a similar function, but was limited to the assessment of a small range of masses and did not have the large test database for verification. In addition, the prior model did not provide outputs of the cavity damage length, entry angle, exit angle, or sidewall angles.

  17. Assessment of the effect of deviated nasal septum on the structure of nasal cavity.

    PubMed

    Wang, Junguo; Dou, Xin; Liu, Dingding; Song, Panpan; Qian, Xiaoyun; Wang, Shoulin; Gao, Xia

    2016-06-01

    The present study was aimed to investigate the effects of DNS on the structure of nasal cavity. The paranasal sinus coronal view CT of 108 patients with DNS and 129 hospitalized patients without DNS was retrospectively analyzed. The transverse diameter of nasal cavity (a), transverse diameter of nasal cavity and paranasal sinus (b), angle between maxillary and palatal bone, interalveolar distance, and maxillary rotation distance were measured. The ratio of a/b in experimental group was 0.367 ± 0.006 which was significantly (P = 0.0023) less than that in control group (0.391 ± 0.005). For the angle between maxillary and palatal bone, there was no significant difference found between DNS and control group for both right and left sides. The interalveolar distance was 40.75 mm in experimental group, and 38.8 mm in control (P = 0.0002). For the maxillary rotation distance, findings were considered as significant (P < 0.0001) in experimental group (11.25 mm) compared with control (10.1 mm). The present study demonstrates that long-term DNS affects the development of nasal cavity and paranasal sinus, as well as increases the interalveolar distance and maxillary rotation distance. These influences may be caused by the alteration of airflow inside the nasal cavities.

  18. Beam dynamic simulations of the CLIC crab cavity and implications on the BDS

    NASA Astrophysics Data System (ADS)

    Shinton, I. R. R.; Burt, G.; Glasman, C. J.; Jones, R. M.; Wolski, A.

    2011-11-01

    The Compact Linear Collider (CLIC) is a proposed electron positron linear collider design aiming to achieve a centre of mass energy of up to 3 TeV. The main accelerating structures in CLIC operate at an X-band frequency of 11.994 GHz with an accelerating gradient of 100 MV/m. The present design requires the beams to collide at a small crossing angle of 10 mrad per line giving a resultant overall crossing angle of 20 mrad. Transverse deflecting cavities, referred to as "Crab cavities", are installed in the beam delivery system (BDS) of linear collider designs in order to ensure the final luminosity at the interaction point (IP) is comparable to that in a head on collision. We utilise the beam tracking code PLACET combined with the beam-beam code GUINEA-PIG to calculate the resulting luminosity at the IP. We follow a similar tuning procedure to that used for the design of the ILC crab cavities and anitcrab cavities. However an unexpected loss in luminosity of 10% was observed for the 20 mrad design was observed. It was discovered that the action of the crab cavities can affect the geometric aberrations resulting from the sextupoles used to correct chromatic effects in the beam delivery system. This has direct consequences regarding the design of the present CLIC BDS.

  19. Intrauterine device for laser light diffusion and method of using the same

    DOEpatents

    Tadir, Yona; Berns, Michael W.; Svaasand, Lars O.; Tromberg, Bruce J.

    1995-01-01

    An improved device for delivery of photoenergy from a light source, such as a laser, into a uterine cavity for photodynamic therapy is comprised of a plurality of optic fibers, which are bundled together and inserted into the uterine cavity by means of a uterine cannula. The cannula is positioned within the uterine cavity at a preferred location and then withdrawn thereby allowing the plurality of optic fibers to splay or diverge one from the other within the cavity. Different portions of the distal tip of the optic fiber is provided with a light diffusing tip, the remainder being provided with a nondiffusing tip portion. The fiber optic shape, as well as the segment which is permitted to actively diffuse light through the tip, is selected in order to provide a more uniform exposure intensity of the photo energy or at least sufficient radiation directed to each segment of the uterine walls.

  20. Intrauterine device for laser light diffusion and method of using the same

    DOEpatents

    Tadir, Y.; Berns, M.W.; Svaasand, L.O.; Tromberg, B.J.

    1995-12-26

    An improved device for delivery of photoenergy from a light source, such as a laser, into a uterine cavity for photodynamic therapy is comprised of a plurality of optic fibers, which are bundled together and inserted into the uterine cavity by means of a uterine cannula. The cannula is positioned within the uterine cavity at a preferred location and then withdrawn thereby allowing the plurality of optic fibers to splay or diverge one from the other within the cavity. Different portions of the distal tip of the optic fiber is provided with a light diffusing tip, the remainder being provided with a nondiffusing tip portion. The fiber optic shape, as well as the segment which is permitted to actively diffuse light through the tip, is selected in order to provide a more uniform exposure intensity of the photo energy or at least sufficient radiation directed to each segment of the uterine walls. 5 figs.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Meng-Zheng; School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000; Ye, Liu, E-mail: yeliu@ahu.edu.cn

    An efficient scheme is proposed to implement phase-covariant quantum cloning by using a superconducting transmon qubit coupled to a microwave cavity resonator in the strong dispersive limit of circuit quantum electrodynamics (QED). By solving the master equation numerically, we plot the Wigner function and Poisson distribution of the cavity mode after each operation in the cloning transformation sequence according to two logic circuits proposed. The visualizations of the quasi-probability distribution in phase-space for the cavity mode and the occupation probability distribution in the Fock basis enable us to penetrate the evolution process of cavity mode during the phase-covariant cloning (PCC)more » transformation. With the help of numerical simulation method, we find out that the present cloning machine is not the isotropic model because its output fidelity depends on the polar angle and the azimuthal angle of the initial input state on the Bloch sphere. The fidelity for the actual output clone of the present scheme is slightly smaller than one in the theoretical case. The simulation results are consistent with the theoretical ones. This further corroborates our scheme based on circuit QED can implement efficiently PCC transformation.« less

  2. A blind area of origins of epistaxis: technical or cognitive?

    PubMed

    Wei, Wei; Lai, Yuting; Zang, Chaoping; Luo, Jiqin; Zhu, Bijun; Liu, Quan; Liu, Ying

    2018-04-24

    To investigate common origins and features of anterior epistaxis. Patients (168) with anterior nose bleed were studied from May to October 2013. Endoscopic examination with angled endoscope and then subsequent management (radiofrequency, selective packing,) was performed. Under thorough nasal endoscopy, anterior nasal bleeding origin was ranked in turn as follows: the anterior nasal septum (NS 83.3%), the small area of anterior lateral wall of nasal cavity corresponding to the nasal back (NB 7.1%), the anterior end of the inferior turbinate (IT 5.4%), and the nasal part of the nasal cavity roof (NR 4.2%). Arterial lesion and hypertension led to large instant quantity of bleeding; hypertension and negligible bleeding origin prolonged bleeding duration. Bleeding was successfully controlled with nasal endoscopy and radiofrequency or selective packing. The arterial bleeding small area of anterior lateral wall of nasal cavity corresponding to the nasal back and the nasal part of the nasal cavity roof accounted for more than 10% of anterior epistaxis and a thorough endoscopic examination should include these area with angled endoscope. Then radiofrequency and selective packing will sharply reduce the bleeding duration.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Jaejin; Woo, Jong-Hak; Mulchaey, John S.

    We perform a comprehensive study of X-ray cavities using a large sample of X-ray targets selected from the Chandra archive. The sample is selected to cover a large dynamic range including galaxy clusters, groups, and individual galaxies. Using β -modeling and unsharp masking techniques, we investigate the presence of X-ray cavities for 133 targets that have sufficient X-ray photons for analysis. We detect 148 X-ray cavities from 69 targets and measure their properties, including cavity size, angle, and distance from the center of the diffuse X-ray gas. We confirm the strong correlation between cavity size and distance from the X-raymore » center similar to previous studies. We find that the detection rates of X-ray cavities are similar among galaxy clusters, groups and individual galaxies, suggesting that the formation mechanism of X-ray cavities is independent of environment.« less

  4. On the stability of the zinc x-ray laser beam quality using a half cavity

    NASA Astrophysics Data System (ADS)

    Prag, A. R.; Mocek, T.; Kozlova, M.; Rus, B.

    2002-11-01

    At the Prague Asterix Laser System Center (PALS) the Asterix laser delivering up to 700 J in 0.5 ns is used as a pump source for x-ray laser experiments and applications. The prepulse technique was applied which is known to improve the neon-like x-ray laser at the J = 0 - 1 transition dramatically. Since Zn slab targets were used the output wavelength was 21.2 nm. A prepulse having up to 20 J precedes the main pulse by 10 ns. The main beam and the prepulse beam are focussed by two different optical systems separately and their foci are superimposed at the target surface. By implementing a half-cavity for double-pass amplification using a Mo/Si multilayer mirror - which can be used for 100 shots - the x-ray laser output was more than 10 times stronger than at the single pass in a 3 cm long plasma. Double-pass amplification was observed to be most efficient when the pump pulse was at least 150 ps longer than the round trip time (approximately 260 ps) in the half-cavity. Under this fundamental condition the x-ray laser reached saturation in the double-pass regime containing approx4mJ energy which was proved to be enough for applications. In this contribution, the x-ray laser features like divergence in two dimensions, the beam quality (symmetry), and the pointing angle are investigated over 110 shots. To characterize the stability of the x-ray laser the shot distribution, the mean value and the standard deviation for these parameters are evaluated. For 18 shots of a one-day-series these values are given, and a statistical analysis carrying out a chi-squared test characterize the Zn x-ray laser as a robust tool suitable for future applications.

  5. Summary of directional divergence characteristics of several high performance aircraft configurations

    NASA Technical Reports Server (NTRS)

    Greer, H. D.

    1972-01-01

    The present paper summarizes the high-angle-of-attack characteristics of a number of high-performance aircraft as determined from model force tests and free-flight model tests and correlates these characteristics with the dynamic directional-stability parameter. This correlation shows that the dynamic directional-stability parameter correlates fairly well with directional divergence. Data are also presented to show the effect of some airframe modifications on the directional divergence potential of the configuration. These results show that leading-edge slates seem to be the most effective airframe modification for reducing or eliminating the directional divergence potential of aircraft with moderately swept wings.

  6. Analysis of the EM scattering from arbitrary open-ended waveguide cavities using axial Gaussian Beam tracking

    NASA Technical Reports Server (NTRS)

    Burkholder, R. J.; Pathak, P. H.

    1988-01-01

    The electromagnetic (EM) scattering from a planar termination located inside relatively arbitrarily shaped open-ended waveguide cavities with smoothly curved interior walls is analyzed using a Gaussian Beam (GB) expansion of the incident plane wave fields in the open end. The cavities under consideration may contain perfectly-conducting interior walls with or without a thin layer of material coating, or the walls may be characterized by an impedance boundary condition. In the present approach, the GB's are tracked only to the termination of the waveguide cavity via beam reflections from interior waveguide cavity walls. The Gaussian beams are tracked approximately only along their beam axes; this approximation which remains valid for relatively well focussed beams assumes that an incident GB gives rise to a reflected GB with parameters related to the incident beam and the radius of curvature of the wall. It is found that this approximation breaks down for GB's which come close to grazing a convex surface and when the width of the incident beam is comparable to the radius of curvature of the surface. The expansion of the fields at the open end depend on the incidence angle only through the expansion coefficients, so the GB's need to be tracked through the waveguide cavity only once for a wide range of incidence angles. At the termination, the sum of all the GB's are integrated using a result developed from a generalized reciprocity principle, to give the fields scattered from the interior of the cavity. The rim edge at the open end of the cavity is assumed to be sharp and the external scattering from the rim is added separately using Geometrical Theory of Diffraction. The results based on the present approach are compared with solutions based on the hybrid asymptotic modal method. The agreement is found to be very good for cavities made up of planar surfaces, and also for cavities with curved surfaces which are not too long with respect to their width.

  7. Manufacturing Technology Development of Advanced Components for High Power Solid State Lasers

    DTIC Science & Technology

    2010-07-19

    commercially available that can support an intra-cavity wavelength of 1030 nm. Losses were reduced by ensuring that the apex angle provided a Brewster ...in Figure 2.2), one can map the optical path distance distribution near the interface region. An oblique angle may be used to resolve the order of...U:YAG) composite of a 62° incident angle in (A), and a .5% Er:YAG// U:YAG composite of a 20° incident angle in (B) The refractive index difference

  8. 80-GHz AlGaInAs/InP 1.55 μm colliding-pulse mode-locked laser with low divergence angle and timing jitter

    NASA Astrophysics Data System (ADS)

    Hou, L. P.; Haji, M.; Li, C.; Qiu, B. C.; Bryce, A. C.

    2011-07-01

    We present an 80-GHz λ ~ 1.55 μm passively colliding-pulse mode-locked laser based on a novel AlGaInAs/InP epitaxial structure, which consists of a strained 3-quantum-well active layer incorporated with a passive far-field reduction layer. The device generated 910 fs pulses with a state-of-art timing jitter value of 190 fs (4 - 80 MHz), while demonstrating a low divergence angle (12.7°×26.3°) with two fold butt coupling efficiency to a flat cleaved single mode fiber when compared with the conventional mode-locked laser.

  9. Morphology of a Hot Coronal Cavity Core as Observed by Hinode/XRT

    NASA Technical Reports Server (NTRS)

    Reeves, K. K.; Gibson, S. E.; Kucera, T. A.; Hudson, H. S.

    2010-01-01

    We follow a coronal cavity that was observed by Hinode/XRT during the summer of 2008. This cavity has a persistent area of relatively bright X-ray emission in its center. We use multifilter data from XRT to study the thermal emission from this cavity, and find that the bright center is hotter than the surrounding cavity plasma with temperatures of about 1.6 MK. We follow the morphology of this hot feature as the cavity structure rotates over the limb during the several days between July 19 - 23 2008. We find that the hot structure at first looks fairly circular, then appears to expand and elongate, and then shrinks again to a compact circular shape. We interpret this apparent change in shape as being due to the morphology of the filament channel associated with the cavity, and the change in viewing angle as the structure rotates over the limb of the Sun.

  10. Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators.

    PubMed

    Missey, M; Dominic, V; Powers, P; Schepler, K L

    2000-02-15

    We used elliptical beams to demonstrate aperture scaling effects in nanosecond single-grating and multigrating periodically poled lithium niobate (PPLN) monolithic optical parametric oscillators and generators. Increasing the cavity Fresnel number in single-grating crystals broadened both the beam divergence and the spectral bandwidth. Both effects are explained in terms of the phase-matching geometry. These effects are suppressed when a multigrating PPLN crystal is used because the individual gratings provide small effective subapertures. A flood-pumped multigrating optical parametric generator displayed a low output beam divergence and contained 19 pairs of signal and idler frequencies.

  11. Metal atomization spray nozzle

    DOEpatents

    Huxford, Theodore J.

    1993-01-01

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal.

  12. High-flux low-divergence positron beam generation from ultra-intense laser irradiated a tapered hollow target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jian-Xun; College of Electronic Engineering, Wuhan 430019; Ma, Yan-Yun, E-mail: yanyunma@126.com

    By using two-dimensional particle-in-cell simulations, we demonstrate high-flux dense positrons generation by irradiating an ultra-intense laser pulse onto a tapered hollow target. By using a laser with an intensity of 4 × 10{sup 23 }W/cm{sup 2}, it is shown that the Breit-Wheeler process dominates the positron production during the laser-target interaction and a positron beam with a total number >10{sup 15} is obtained, which is increased by five orders of magnitude than in the previous work at the same laser intensity. Due to the focusing effect of the transverse electric fields formed in the hollow cone wall, the divergence angle of the positronmore » beam effectively decreases to ∼15° with an effective temperature of ∼674 MeV. When the laser intensity is doubled, both the positron flux (>10{sup 16}) and temperature (963 MeV) increase, while the divergence angle gets smaller (∼13°). The obtained high-flux low-divergence positron beam may have diverse applications in science, medicine, and engineering.« less

  13. Cavity Enhanced Absorption Spectroscopy Using a Broadband Prism Cavity and a Supercontinuum Source

    NASA Astrophysics Data System (ADS)

    Johnston, Paul S.; Lehmann, Kevin K.

    2009-06-01

    The multiplex advantage of current cavity enhanced spectrometers is limited by the high reflectivity bandwidth of the mirrors used to construct the high finesse cavity. Previously, we reported the design and construction of a new spectrometer that circumvents this limitation by utilizing Brewster^{,}s angle prism retroreflectors. The prisms, made from fused silica and combined with a supercontinuum source generated by pumping a highly nonlinear photonic crystal fiber, yields a spectral window ranging from 500 nm to 1750 nm. Recent progress in the instruments development will be discussed, including work on modeling the prism cavity losses, alternative prism material for use in the UV and mid-IR spectral regions, and a new high power supercontinuum source based on mode-locked picosecond laser.

  14. Computations and turbulent flow modeling in support of helicopter rotor technology

    NASA Technical Reports Server (NTRS)

    Rose, W. C.

    1985-01-01

    The angle of attack (AOA) tandem cavity wind tunnel experiment was prepared. Actual wind tunnel testing started shortly after the beginning of 1985. A multi-probe aerodynamic rake was designed and installed for use in surveying the shear layers present over the open cavity on the Kuiper Airborne Observatory (KAO). The nature of the behavior of the thermal environment within the KAO cavity at operational altitudes was determined. Assistance was given in the design of the cavity for the University of Denver radiometer. Attempts to distinguish between the optical terms of blur circle size (or image size) and the term due to jitter were discussed.

  15. Cavity enhanced interference of orthogonal modes in a birefringent medium

    NASA Astrophysics Data System (ADS)

    Kolluru, Kiran; Saha, Sudipta; Gupta, S. Dutta

    2018-03-01

    Interference of orthogonal modes in a birefringent crystal mediated by a rotator is known to lead to interesting physical effects (Solli et al., 2003). In this paper we show that additional feedback offered by a Fabry-Perot cavity (containing the birefringent crystal and the rotator) can lead to a novel strong interaction regime. Usual signatures of the strong interaction regime like the normal mode splitting and avoided crossings, sensitive to the rotator orientation, are reported. A high finesse cavity is shown to offer an optical setup for measuring small angles. The results are based on direct calculations of the cavity transmissions along with an analysis of its dispersion relation.

  16. Blowing bubbles in Lennard-Jonesium along the saturation curve.

    PubMed

    Ashbaugh, Henry S

    2009-05-28

    Extensive molecular simulations of the Lennard-Jones fluid have been performed to determine its liquid-vapor coexistence properties and solvent contact densities with cavities up to ten times the diameter of the solvent from the triple point to the critical point. These simulations are analyzed using a revised scaled-particle theory [H. S. Ashbaugh and L. R. Pratt, Rev. Mod. Phys. 78, 159 (2006)] to evaluate the thermodynamics of cavity solvation and curvature dependent interfacial properties along the saturation curve. While the thermodynamic signatures of cavity solvation are distinct from those in water, exhibiting a chemical potential dominated by a large temperature independent enthalpy, the solvent dewets cavities of increasing size similar with water near coexistence. The interfacial tension for forming a liquid-wall interface is found to be consistently greater than the liquid-vapor surface tension of the Lennard-Jones fluid by up to 10% and potentially reflects the suppression of high amplitude fluctuations at the cavity surface. The first-order curvature correction for the surface tension is negative and appears to diverge to negative infinity at temperatures approaching the critical point. Our results point to the success of the revised scaled-particle theory at bridging molecular and macroscopic descriptions of cavity solvation.

  17. Electro-optically cavity dumped 2 μm semiconductor disk laser emitting 3 ns pulses of 30 W peak power

    NASA Astrophysics Data System (ADS)

    Kaspar, Sebastian; Rattunde, Marcel; Töpper, Tino; Schwarz, Ulrich T.; Manz, Christian; Köhler, Klaus; Wagner, Joachim

    2012-10-01

    A 2 μm electro-optically cavity-dumped semiconductor disk laser (SDL) with a pulse full width at half maximum of 3 ns, a pulse peak power of 30 W, and repetition rates adjustable between 87 kHz and 1 MHz is reported. For ns-pulse cavity dumping the SDL was set up with a 35-cm long cavity into which an intra-cavity Brewster-angled polarizer prism and a Pockels cell for rotation of the linear polarization were inserted. By means of internal total reflection in the birefringent polarizer, pulses are coupled out of the cavity sideways. This variant of ns-pulse 2-μm SDL is well suited for applications such as high-precision light detection and ranging or ns-pulse laser materials processing after further power amplification.

  18. Sensitivity of Beam Parameters to a Station C Solenoid Scan on Axis II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze, Martin E.

    Magnet scans are a standard technique for determining beam parameters in accelerators. Beam parameters are inferred from spot size measurements using a model of the beam optics. The sensitivity of the measured beam spot size to the beam parameters is investigated for typical DARHT Axis II beam energies and currents. In a typical S4 solenoid scan, the downstream transport is tuned to achieve a round beam at Station C with an envelope radius of about 1.5 cm with a very small divergence with S4 off. The typical beam energy and current are 16.0 MeV and 1.625 kA. Figures 1-3 showmore » the sensitivity of the bean size at Station C to the emittance, initial radius and initial angle respectively. To better understand the relative sensitivity of the beam size to the emittance, initial radius and initial angle, linear regressions were performed for each parameter as a function of the S4 setting. The results are shown in Figure 4. The measured slope was scaled to have a maximum value of 1 in order to present the relative sensitivities in a single plot. Figure 4 clearly shows the beam size at the minimum of the S4 scan is most sensitive to emittance and relatively insensitive to initial radius and angle as expected. The beam emittance is also very sensitive to the beam size of the converging beam and becomes insensitive to the beam size of the diverging beam. Measurements of the beam size of the diverging beam provide the greatest sensitivity to the initial beam radius and to a lesser extent the initial beam angle. The converging beam size is initially very sensitive to the emittance and initial angle at low S4 currents. As the S4 current is increased the sensitivity to the emittance remains strong while the sensitivity to the initial angle diminishes.« less

  19. Static performance investigation of a skewed-throat multiaxis thrust-vectoring nozzle concept

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    1994-01-01

    The static performance of a jet exhaust nozzle which achieves multiaxis thrust vectoring by physically skewing the geometric throat has been characterized in the static test facility of the 16-Foot Transonic Tunnel at NASA Langley Research Center. The nozzle has an asymmetric internal geometry defined by four surfaces: a convergent-divergent upper surface with its ridge perpendicular to the nozzle centerline, a convergent-divergent lower surface with its ridge skewed relative to the nozzle centerline, an outwardly deflected sidewall, and a straight sidewall. The primary goal of the concept is to provide efficient yaw thrust vectoring by forcing the sonic plane (nozzle throat) to form at a yaw angle defined by the skewed ridge of the lower surface contour. A secondary goal is to provide multiaxis thrust vectoring by combining the skewed-throat yaw-vectoring concept with upper and lower pitch flap deflections. The geometric parameters varied in this investigation included lower surface ridge skew angle, nozzle expansion ratio (divergence angle), aspect ratio, pitch flap deflection angle, and sidewall deflection angle. Nozzle pressure ratio was varied from 2 to a high of 11.5 for some configurations. The results of the investigation indicate that efficient, substantial multiaxis thrust vectoring was achieved by the skewed-throat nozzle concept. However, certain control surface deflections destabilized the internal flow field, which resulted in substantial shifts in the position and orientation of the sonic plane and had an adverse effect on thrust-vectoring and weight flow characteristics. By increasing the expansion ratio, the location of the sonic plane was stabilized. The asymmetric design resulted in interdependent pitch and yaw thrust vectoring as well as nonzero thrust-vector angles with undeflected control surfaces. By skewing the ridges of both the upper and lower surface contours, the interdependency between pitch and yaw thrust vectoring may be eliminated and the location of the sonic plane may be further stabilized.

  20. Metal atomization spray nozzle

    DOEpatents

    Huxford, T.J.

    1993-11-16

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

  1. Adiabatic partition effect on natural convection heat transfer inside a square cavity: experimental and numerical studies

    NASA Astrophysics Data System (ADS)

    Mahmoudinezhad, S.; Rezania, A.; Yousefi, T.; Shadloo, M. S.; Rosendahl, L. A.

    2018-02-01

    A steady state and two-dimensional laminar free convection heat transfer in a partitioned cavity with horizontal adiabatic and isothermal side walls is investigated using both experimental and numerical approaches. The experiments and numerical simulations are carried out using a Mach-Zehnder interferometer and a finite volume code, respectively. A horizontal and adiabatic partition, with angle of θ is adjusted such that it separates the cavity into two identical parts. Effects of this angel as well as Rayleigh number on the heat transfer from the side-heated walls are investigated in this study. The results are performed for the various Rayleigh numbers over the cavity side length, and partition angles ranging from 1.5 × 105 to 4.5 × 105, and 0° to 90°, respectively. The experimental verification of natural convective flow physics has been done by using FLUENT software. For a given adiabatic partition angle, the results show that the average Nusselt number and consequently the heat transfer enhance as the Rayleigh number increases. However, for a given Rayleigh number the maximum and the minimum heat transfer occurs at θ = 45°and θ = 90°, respectively. Two responsible mechanisms for this behavior, namely blockage ratio and partition orientation, are identified. These effects are explained by numerical velocity vectors and experimental temperatures contours. Based on the experimental data, a new correlation that fairly represents the average Nusselt number of the heated walls as functions of Rayleigh number and the angel of θ for the aforementioned ranges of data is proposed.

  2. Exploring cavity-mediated long-range interactions in a dilute quantum gas

    NASA Astrophysics Data System (ADS)

    Landig, Renate; Mottl, Rafael; Brennecke, Ferdinand; Baumann, Kristian; Donner, Tobias; Esslinger, Tilman

    2013-05-01

    We report on the observation of a characteristic change in the excitation spectrum of a Bose-Einstein condensate and increased density fluctuations due to cavity-mediated atom-atom interactions. Increasing the strength of the interaction leads to a softening of an excitation mode at finite momentum, preceding a superfluid to supersolid phase transition. The observed behavior is reminiscent of a roton minimum, as predicted for quantum gases with long-range interactions. We create long-range interactions in the BEC using a non-resonant transverse pump beam which induces virtual photon exchange via the vacuum field of an optical cavity. The mode softening is spectroscopically studied across the phase transition using a variant of Bragg spectroscopy. At the phase transition a diverging density response is observed which is linked to increased density fluctuations. Using the cavity dissipation channel we monitor these fluctuations in real-time and identify the influence of measurement backaction onto the critical behavior of the system.

  3. Multibeam collimator uses prism stack

    NASA Technical Reports Server (NTRS)

    Minott, P. O.

    1981-01-01

    Optical instrument creates many divergent light beams for surveying and machine element alignment applications. Angles and refractive indices of stack of prisms are selected to divert incoming laser beam by small increments, different for each prism. Angles of emerging beams thus differ by small, precisely-controlled amounts. Instrument is nearly immune to vibration, changes in gravitational force, temperature variations, and mechanical distortion.

  4. Estimated Performance of Radial-Flow Exit Nozzles for Air in Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Englert, Gerald W.; Kochendorfer, Fred D.

    1959-01-01

    The thrust, boundary-layer, and heat-transfer characteristics were computed for nozzles having radial flow in the divergent part. The working medium was air in chemical equilibrium, and the boundary layer was assumed to be all turbulent. Stagnation pressure was varied from 1 to 32 atmospheres, stagnation temperature from 1000 to 6000 R, and wall temperature from 1000 to 3000 R. Design pressure ratio was varied from 5 to 320, and operating pressure ratio was varied from 0.25 to 8 times the design pressure ratio. Results were generalized independent of divergence angle and were also generalized independent of stagnation pressure in the temperature range of 1000 to 3000 R. A means of determining the aerodynamically optimum wall angle is provided.

  5. Integrated MEMS-tunable VCSELs for reconfigurable optical interconnects

    NASA Astrophysics Data System (ADS)

    Kögel, Benjamin; Debernardi, Pierluigi; Westbergh, Petter; Gustavsson, Johan S.; Haglund, Åsa; Haglund, Erik; Bengtsson, Jörgen; Larsson, Anders

    2012-03-01

    A simple and low-cost technology for tunable vertical-cavity surface-emitting lasers (VCSELs) with curved movable micromirror is presented. The micro-electro-mechanical system (MEMS) is integrated with the active optical component (so-called half-VCSEL) by means of surface-micromachining using a reflown photoresist droplet as sacrificial layer. The technology is demonstrated for electrically pumped, short-wavelength (850 nm) tunable VCSELs. Fabricated devices with 10 μm oxide aperture are singlemode with sidemode suppression >35 dB, tunable over 24 nm with output power up to 0.5mW, and have a beam divergence angle <6 °. An improved high-speed design with reduced parasitic capacitance enables direct modulation with 3dB-bandwidths up to 6GHz and error-free data transmission at 5Gbit/s. The modulation response of the MEMS under electrothermal actuation has a bandwidth of 400 Hz corresponding to switching times of about 10ms. The thermal crosstalk between MEMS and half-VCSEL is negligible and not degrading the device performance. With these characteristics the integrated MEMS-tunable VCSELs are basically suitable for use in reconfigurable optical interconnects and ready for test in a prototype system. Schemes for improving output power, tuning speed, and modulation bandwidth are briefly discussed.

  6. Semi-monolithic cavity for external resonant frequency doubling and method of performing the same

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid (Inventor)

    1999-01-01

    The fabrication of an optical cavity for use in a laser, in a frequency doubling external cavity, or any other type of nonlinear optical device, can be simplified by providing the nonlinear crystal in combination with a surrounding glass having an index of refraction substantially equal to that of the nonlinear crystal. The closed optical path in this cavity is formed in the surrounding glass and through the nonlinear crystal which lies in one of the optical segments of the light path. The light is transmitted through interfaces between the surrounding glass in the nonlinear crystal through interfaces which are formed at the Brewster-angle to minimize or eliminate reflection.

  7. Giant enhancement in Goos-Hänchen shift at the singular phase of a nanophotonic cavity

    NASA Astrophysics Data System (ADS)

    Sreekanth, Kandammathe Valiyaveedu; Ouyang, Qingling; Han, Song; Yong, Ken-Tye; Singh, Ranjan

    2018-04-01

    In this letter, we experimentally demonstrate thirtyfold enhancement in Goos-Hänchen shift at the Brewster angle of a nanophotonic cavity that operates at the wavelength of 632.8 nm. In particular, the point-of-darkness and the singular phase are achieved using a four-layered metal-dielectric-dielectric-metal asymmetric Fabry-Perot cavity. A highly absorbing ultra-thin layer of germanium in the stack gives rise to the singular phase and the enhanced Goos-Hänchen shift at the point-of-darkness. The obtained giant Goos-Hänchen shift in the lithography-free nanophotonic cavity could enable many intriguing applications including cost-effective label-free biosensors.

  8. Characterization of a Plasmoid in the Afterglow of a Supersonic Flowing Microwave Discharge

    NASA Technical Reports Server (NTRS)

    Drake, D. J.; Miller, S.; Nikolic, M.; Popovic, S.; Vuskovic, L.

    2009-01-01

    We performed a detailed characterization a plasmoid in the afterglow region of an Ar supersonic microwave cavity discharge. The supersonic flow was generated using a convergent-divergent nozzle upstream of the discharge region. A cylindrical cavity was used to sustain a discharge in the pressure range of 100-600 Pa. Optical emission spectroscopy was used to observe populations of excited and ionic species in the plasmoid region. Plasmoid formation in the supersonic flowing afterglow located downstream from the primary microwave cavity discharge was characterized by measuring the radial and axial distributions of Argon excited states and Argon ions. More experiments are being carried out on the plasmoid to understand the discharge parameters within the region, i.e. rotational temperature, vibrational temperature, electron density, and how the electrodynamic and aerodynamic effects combine to form this plasmoid.

  9. Deduction of two-dimensional blood flow vector by dual angle diverging waves from a cardiac sector probe

    NASA Astrophysics Data System (ADS)

    Maeda, Moe; Nagaoka, Ryo; Ikeda, Hayato; Yaegashi, So; Saijo, Yoshifumi

    2018-07-01

    Color Doppler method is widely used for noninvasive diagnosis of heart diseases. However, the method can measure one-dimensional (1D) blood flow velocity only along an ultrasonic beam. In this study, diverging waves with two different angles were irradiated from a cardiac sector probe to estimate a two-dimensional (2D) blood flow vector from each velocity measured with the angles. The feasibility of the proposed method was evaluated in experiments using flow poly(vinyl alcohol) (PVA) gel phantoms. The 2D velocity vectors obtained with the proposed method were compared with the flow vectors obtained with the particle image velocimetry (PIV) method. Root mean square errors of the axial and lateral components were 11.3 and 29.5 mm/s, respectively. The proposed method was also applied to echo data from the left ventricle of the heart. The inflow from the mitral valve in diastole and the ejection flow concentrating in the aorta in systole were visualized.

  10. Diffraction properties of opaque disks outside and inside a laser cavity

    NASA Astrophysics Data System (ADS)

    de Saint Denis, Renaud; Passilly, Nicolas; Fromager, Michael; Cagniot, Emmanuel; Ait-Ameur, Kamel

    2008-02-01

    Diffraction of symmetrical Laguerre-Gauss TEMp0 beams incident on an opaque disk known as a stop is considered. The near- and far-field patterns are studied. Thanks to zero-field occluding, conversion from TEM10 beam to dark hollow beam can be achieved with better efficiency than from a TEM00 beam. It is shown that the fundamental mode of a laser cavity including a diaphragm and a stop can be TEM00- or TEM10-like in shape depending on their size. This result is interpreted from the new divergence hierarchy, which characterises the diffracted TEMp0 beams emerging from the stop.

  11. Performance of lead-free versus lead-based hunting ammunition in ballistic soap.

    PubMed

    Gremse, Felix; Krone, Oliver; Thamm, Mirko; Kiessling, Fabian; Tolba, René Hany; Rieger, Siegfried; Gremse, Carl

    2014-01-01

    Lead-free hunting bullets are an alternative to lead-containing bullets which cause health risks for humans and endangered scavenging raptors through lead ingestion. However, doubts concerning the effectiveness of lead-free hunting bullets hinder the wide-spread acceptance in the hunting and wildlife management community. We performed terminal ballistic experiments under standardized conditions with ballistic soap as surrogate for game animal tissue to characterize dimensionally stable, partially fragmenting, and deforming lead-free bullets and one commonly used lead-containing bullet. The permanent cavities created in soap blocks are used as a measure for the potential wound damage. The soap blocks were imaged using computed tomography to assess the volume and shape of the cavity and the number of fragments. Shots were performed at different impact speeds, covering a realistic shooting range. Using 3D image segmentation, cavity volume, metal fragment count, deflection angle, and depth of maximum damage were determined. Shots were repeated to investigate the reproducibility of ballistic soap experiments. All bullets showed an increasing cavity volume with increasing deposited energy. The dimensionally stable and fragmenting lead-free bullets achieved a constant conversion ratio while the deforming copper and lead-containing bullets showed a ratio, which increases linearly with the total deposited energy. The lead-containing bullet created hundreds of fragments and significantly more fragments than the lead-free bullets. The deflection angle was significantly higher for the dimensionally stable bullet due to its tumbling behavior and was similarly low for the other bullets. The deforming bullets achieved higher reproducibility than the fragmenting and dimensionally stable bullets. The deforming lead-free bullet closely resembled the deforming lead-containing bullet in terms of energy conversion, deflection angle, cavity shape, and reproducibility, showing that similar terminal ballistic behavior can be achieved. Furthermore, the volumetric image processing allowed superior analysis compared to methods that involve cutting of the soap blocks.

  12. Performance of Lead-Free versus Lead-Based Hunting Ammunition in Ballistic Soap

    PubMed Central

    Gremse, Felix; Krone, Oliver; Thamm, Mirko; Kiessling, Fabian; Tolba, René Hany; Rieger, Siegfried; Gremse, Carl

    2014-01-01

    Background Lead-free hunting bullets are an alternative to lead-containing bullets which cause health risks for humans and endangered scavenging raptors through lead ingestion. However, doubts concerning the effectiveness of lead-free hunting bullets hinder the wide-spread acceptance in the hunting and wildlife management community. Methods We performed terminal ballistic experiments under standardized conditions with ballistic soap as surrogate for game animal tissue to characterize dimensionally stable, partially fragmenting, and deforming lead-free bullets and one commonly used lead-containing bullet. The permanent cavities created in soap blocks are used as a measure for the potential wound damage. The soap blocks were imaged using computed tomography to assess the volume and shape of the cavity and the number of fragments. Shots were performed at different impact speeds, covering a realistic shooting range. Using 3D image segmentation, cavity volume, metal fragment count, deflection angle, and depth of maximum damage were determined. Shots were repeated to investigate the reproducibility of ballistic soap experiments. Results All bullets showed an increasing cavity volume with increasing deposited energy. The dimensionally stable and fragmenting lead-free bullets achieved a constant conversion ratio while the deforming copper and lead-containing bullets showed a ratio, which increases linearly with the total deposited energy. The lead-containing bullet created hundreds of fragments and significantly more fragments than the lead-free bullets. The deflection angle was significantly higher for the dimensionally stable bullet due to its tumbling behavior and was similarly low for the other bullets. The deforming bullets achieved higher reproducibility than the fragmenting and dimensionally stable bullets. Conclusion The deforming lead-free bullet closely resembled the deforming lead-containing bullet in terms of energy conversion, deflection angle, cavity shape, and reproducibility, showing that similar terminal ballistic behavior can be achieved. Furthermore, the volumetric image processing allowed superior analysis compared to methods that involve cutting of the soap blocks. PMID:25029572

  13. Static investigation of a two-dimensional convergent-divergent exhaust nozzle with multiaxis thrust-vectoring capability

    NASA Technical Reports Server (NTRS)

    Taylor, John G.

    1990-01-01

    An investigation was conducted in the Static Test Facility of the NASA Langley 16-Foot Transonic Tunnel to determine the internal performance of two-dimensional convergent-divergent nozzles designed to have simultaneous pitch and yaw thrust vectoring capability. This concept utilized divergent flap rotation of thrust vectoring in the pitch plane and deflection of flat yaw flaps hinged at the end of the sidewalls for yaw thrust vectoring. The hinge location of the yaw flaps was varied at four positions from the nozzle exit plane to the throat plane. The yaw flaps were designed to contain the flow laterally independent of power setting. In order to eliminate any physical interference between the yaw flap deflected into the exhaust stream and the divergent flaps, the downstream corners of both upper and lower divergent flaps were cut off to allow for up to 30 deg of yaw flap deflection. The impact of varying the nozzle pitch vector angle, throat area, yaw flap hinge location, yaw flap length, and yaw flap deflection angle on nozzle internal performance characteristics, was studied. High-pressure air was used to simulate jet exhaust at nozzle pressure ratios up to 7.0. Static results indicate that configurations with the yaw flap hinge located upstream of the exit plane provide relatively high levels of thrust vectoring efficiency without causing large losses in resultant thrust ratio. Therefore, these configurations represent a viable concept for providing simultaneous pitch and yaw thrust vectoring.

  14. Design of a Paraxial Inverse Compton Scattering Diagnostic for an Intense Relativistic Electron Beam

    DTIC Science & Technology

    2013-06-01

    with a 50 cm focal length plano-convex lens (Fig. 4). Prior to entering the vacuum the laser light passes through a Brewster angled window, which...1/γ ~ 25 mrad. Brewster angled windows Beam dump Spectra Physics 5J Nd:YAG Focusing lens Insertable power meter z x y 37.8 cm Figure 4...visible green light is upscattered into the soft X-ray range and diverges from the interception point downstream at an angle θs = 1/γ ~ 25 mrad

  15. Study on the shock interference in a wedged convergent-divergent channel

    NASA Astrophysics Data System (ADS)

    Yu, F. M.; Wang, C. Z.

    The investigation of shock reflection-to-diffraction phenomena upon a wedged convergent-divergent channel produced by a planar incident shock wave have been done in the shock tube facility of Institute of Aeronautics and Astronautics, National Cheng-Kung University. The experiment proceeds upon seven wedged convergent-divergent channels with the forward and rear wedge angles arrangement of them are (50°, 50°), (35°, 35°), (50°, 35°), (35°, 50°), (50°, 0°), (35°, 0°), and (90°, 0°), respectively. They were tested at Mach numbers of 1.1, 1.2, 1.3, 1.4, 1.5 and 1.6, respectively. On the first wedged channel, following the regular reflection on a 50°- wedged surface by the incident shock wave, shock diffraction with Mach stem has been observed as it moves to the downstream wedge surface. On the apex of the wedge, the secondary reflected shock behaviors as a sector of the blast shock moving toward the centerline of the channel. From the color schlieren pictures it has been observed that there exists a pattern of blast-wave-type high gas density gradient region near the wedge apex. Following the Mach reflection from the 35° -wedged surface on which only the Mach stem diffracted across the apex and following with a small region of disturbed acoustic wave front. The shock interference, which proceeds by the Mach reflection-to-diffraction generates a very complicate vortical flow structure. The measurement of the peak pressure along centerline of the channel downstream of the wedge apex indicates that it is larger near the apex and it decreases downstream. It is larger for larger convergent wedge angle and It is smaller for larger divergent wedge angle.

  16. PROTOSTELLAR OUTFLOWS AND RADIATIVE FEEDBACK FROM MASSIVE STARS. II. FEEDBACK, STAR-FORMATION EFFICIENCY, AND OUTFLOW BROADENING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuiper, Rolf; Turner, Neal J.; Yorke, Harold W., E-mail: rolf.kuiper@uni-tuebingen.de, E-mail: Neal.J.Turner@jpl.nasa.gov, E-mail: Harold.W.Yorke@jpl.nasa.gov

    2016-11-20

    We perform two-dimensional axially symmetric radiation hydrodynamic simulations to assess the impact of outflows and radiative force feedback from massive protostars by varying when the protostellar outflow starts, and to determine the ratio of ejection to accretion rates and the strength of the wide-angle disk wind component. The star-formation efficiency, i.e., the ratio of final stellar mass to initial core mass, is dominated by radiative forces and the ratio of outflow to accretion rates. Increasing this ratio has three effects. First, the protostar grows slower with a lower luminosity at any given time, lowering radiative feedback. Second, bipolar cavities clearedmore » by the outflow become larger, further diminishing radiative feedback on disk and core scales. Third, the higher momentum outflow sweeps up more material from the collapsing envelope, decreasing the protostar's potential mass reservoir via entrainment. The star-formation efficiency varies with the ratio of ejection to accretion rates from 50% in the case of very weak outflows to as low as 20% for very strong outflows. At latitudes between the low-density bipolar cavity and the high-density accretion disk, wide-angle disk winds remove some of the gas, which otherwise would be part of the accretion flow onto the disk; varying the strength of these wide-angle disk winds, however, alters the final star-formation efficiency by only ±6%. For all cases, the opening angle of the bipolar outflow cavity remains below 20° during early protostellar accretion phases, increasing rapidly up to 65° at the onset of radiation pressure feedback.« less

  17. Investigation into the limitations of straightness interferometers using a multisensor-based error separation method

    NASA Astrophysics Data System (ADS)

    Weichert, Christoph; Köchert, Paul; Schötka, Eugen; Flügge, Jens; Manske, Eberhard

    2018-06-01

    The uncertainty of a straightness interferometer is independent of the component used to introduce the divergence angle between the two probing beams, and is limited by three main error sources, which are linked to each other: their resolution, the influence of refractive index gradients and the topography of the straightness reflector. To identify the configuration with minimal uncertainties under laboratory conditions, a fully fibre-coupled heterodyne interferometer was successively equipped with three different wedge prisms, resulting in three different divergence angles (4°, 8° and 20°). To separate the error sources an independent reference with a smaller reproducibility is needed. Therefore, the straightness measurement capability of the Nanometer Comparator, based on a multisensor error separation method, was improved to provide measurements with a reproducibility of 0.2 nm. The comparison results revealed that the influence of the refractive index gradients of air did not increase with interspaces between the probing beams of more than 11.3 mm. Therefore, over a movement range of 220 mm, the lowest uncertainty was achieved with the largest divergence angle. The dominant uncertainty contribution arose from the mirror topography, which was additionally determined with a Fizeau interferometer. The measured topography agreed within  ±1.3 nm with the systematic deviations revealed in the straightness comparison, resulting in an uncertainty contribution of 2.6 nm for the straightness interferometer.

  18. Temporal laser pulse manipulation using multiple optical ring-cavities

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet (Inventor); Kojima, Jun (Inventor)

    2010-01-01

    An optical pulse stretcher and a mathematical algorithm for the detailed calculation of its design and performance is disclosed. The optical pulse stretcher has a plurality of optical cavities, having multiple optical reflectors such that an optical path length in each of the optical cavities is different. The optical pulse stretcher also has a plurality of beam splitters, each of which intercepts a portion of an input optical beam and diverts the portion into one of the plurality of optical cavities. The input optical beam is stretched and a power of an output beam is reduced after passing through the optical pulse stretcher and the placement of the plurality of optical cavities and beam splitters is optimized through a model that takes into account optical beam divergence and alignment in the pluralities of the optical cavities. The optical pulse stretcher system can also function as a high-repetition-rate (MHz) laser pulse generator, making it suitable for use as a stroboscopic light source for high speed ballistic projectile imaging studies, or it can be used for high speed flow diagnostics using a laser light sheet with digital particle imaging velocimetry. The optical pulse stretcher system can also be implemented using fiber optic components to realize a rugged and compact optical system that is alignment free and easy to use.

  19. From catʼs eyes to multiple disjoint natural convection flow in tall tilted cavities: A direct primitive variables approach

    NASA Astrophysics Data System (ADS)

    Báez, Elsa; Nicolás, Alfredo

    2013-11-01

    Natural convection fluid flow in air-filled tall tilted cavities is studied numerically with a new direct projection method on the Boussinesq approximation in primitive variables. The study deals with “cat's eyes” instabilities and multiple disjoint cells as the aspect ratio A and the angle of inclination ϕ of the cavity vary. The flows are validated with those reported before using the stream function-vorticity variables. New cases, A=12 and 20 varying ϕ, lead to get more insight on the physical phenomenon.

  20. Intranasal hemangiosarcoma in a dog.

    PubMed

    Fujita, Michio; Takaishi, Yumi; Yasuda, Daiji; Hasegawa, Daisuke; Taniguchi, Akiko; Takahashi, Kimimasa; Orima, Hiromitsu

    2008-05-01

    Magnetic resonance (MR) was conducted for an 8-year-old, intact male Spitz with sneezing, serous discharge and epistaxis from the left nasal cavity. MR imaging showed a nasal cavity-occupied mass of iso-intensity on T1WI , high-intensity on T2WI and markedly enhanced on contrast-enhanced T1WI at parts of rostal to medial ocular angle in the left cavity. After Surgery and intraoperative radiation, the mass was diagnosed intranasal hemangiosarcoma by histopathology. Although the dog showed the finding, which suggested recurrence after the treatment ending, about 30 months later, it maintained good conditions without evidence of metastasis.

  1. Emission polarization control in semiconductor quantum dots coupled to a photonic crystal microcavity.

    PubMed

    Gallardo, E; Martínez, L J; Nowak, A K; van der Meulen, H P; Calleja, J M; Tejedor, C; Prieto, I; Granados, D; Taboada, A G; García, J M; Postigo, P A

    2010-06-07

    We study the optical emission of single semiconductor quantum dots weakly coupled to a photonic-crystal micro-cavity. The linearly polarized emission of a selected quantum dot changes continuously its polarization angle, from nearly perpendicular to the cavity mode polarization at large detuning, to parallel at zero detuning, and reversing sign for negative detuning. The linear polarization rotation is qualitatively interpreted in terms of the detuning dependent mixing of the quantum dot and cavity states. The present result is relevant to achieve continuous control of the linear polarization in single photon emitters.

  2. Versatile Chromium-Doped Zinc Selenide Infrared Laser Sources

    DTIC Science & Technology

    2010-05-01

    ability of the fixed- angle curved mirrors in the Z- cavity to compensate for the increasing astigmatism from the Brewster - angle thermal lens in the...duty cycle at varying PRFs. 20 Table 4: Thermal Lensing Power at 1 kHz PRF, 1 W peak power, Q-switched Laser PRF (kHz) Thermal lens power (m-1...with it some negative astigmatism effects which are compounded by thermal lensing in the crystal which is now at an angle . To counteract this

  3. Lasers with intra-cavity phase elements

    NASA Astrophysics Data System (ADS)

    Gulses, A. Alkan; Kurtz, Russell; Islas, Gabriel; Anisimov, Igor

    2018-02-01

    Conventional laser resonators yield multimodal output, especially at high powers and short cavity lengths. Since highorder modes exhibit large divergence, it is desirable to suppress them to improve laser quality. Traditionally, such modal discriminations can be achieved by simple apertures that provide absorptive loss for large diameter modes, while allowing the lower orders, such as the fundamental Gaussian, to pass through. However, modal discrimination may not be sufficient for short-cavity lasers, resulting in multimodal operation as well as power loss and overheating in the absorptive part of the aperture. In research to improve laser mode control with minimal energy loss, systematic experiments have been executed using phase-only elements. These were composed of an intra-cavity step function and a diffractive out-coupler made of a computer-generated hologram. The platform was a 15-cm long solid-state laser that employs a neodymium-doped yttrium orthovanadate crystal rod, producing 1064 nm multimodal laser output. The intra-cavity phase elements (PEs) were shown to be highly effective in obtaining beams with reduced M-squared values and increased output powers, yielding improved values of radiance. The utilization of more sophisticated diffractive elements is promising for more difficult laser systems.

  4. An Investigation of Cavity Vortex Generators in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Hazlewood, Richard

    1996-01-01

    The purpose of this report is to document the results of experiments performed at the University of Kansas and at the NASA Langley Research Center (LaRC) into the use of shaped cavities to generate vortices in supersonic flow, as well as the progress made in simulating the observed flow using the PAB3D flow solver. The investigation was performed on 18 different cavity configurations installed in a convergent-divergent nozzle at the Jet Exit Facility at the LaRC. Pressure sensitive paint, static-pressure ports, focusing Schliern, and water tunnel flow visualization techniques were used to study the nature of the flow created by these cavities. The results of these investigations revealed that a shaped cavity can generate a pair of counter-rotating streamwise vortices in supersonic flow by creating weak, compression Mach waves and weak shocks. The PAB3D computer program, developed at the LaRC, was used to attempt to reproduce the experimental results. Unfortunately, due to problems with matching the grid blocks, no converged results were obtained. However, intermediate results, as well as a complete definition of the grid matching problems and suggested courses of actions are presented.

  5. Focusing of relativistic electrons in dense plasma using a resistivity-gradient-generated magnetic switchyard.

    PubMed

    Robinson, A P L; Key, M H; Tabak, M

    2012-03-23

    A method for producing a self-generated magnetic focussing structure for a beam of laser-generated relativistic electrons using a complex array of resistivity gradients is proposed and demonstrated using numerical simulations. The array of resistivity gradients is created by using a target consisting of alternating layers of different Z material. This new scheme is capable of effectively focussing the fast electrons even when the source is highly divergent. The application of this technique to cone-guided fast ignition inertial confinement fusion is considered, and it is shown that it may be possible to deposit over 25% of the fast electron energy into a hot spot even when the fast electron divergence angle is very large (e.g., 70° half-angle).

  6. An experimental investigation of thrust vectoring two-dimensional convergent-divergent nozzles installed in a twin-engine fighter model at high angles of attack

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Mason, Mary L.; Leavitt, Laurence D.

    1990-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine thrust vectoring capability of subscale 2-D convergent-divergent exhaust nozzles installed on a twin engine general research fighter model. Pitch thrust vectoring was accomplished by downward rotation of nozzle upper and lower flaps. The effects of nozzle sidewall cutback were studied for both unvectored and pitch vectored nozzles. A single cutback sidewall was employed for yaw thrust vectoring. This investigation was conducted at Mach numbers ranging from 0 to 1.20 and at angles of attack from -2 to 35 deg. High pressure air was used to simulate jet exhaust and provide values of nozzle pressure ratio up to 9.

  7. Light fluence dosimetry in lung-simulating cavities

    NASA Astrophysics Data System (ADS)

    Zhu, Timothy C.; Kim, Michele M.; Padawer, Jonah; Dimofte, Andreea; Potasek, Mary; Beeson, Karl; Parilov, Evgueni

    2018-02-01

    Accurate light dosimery is critical to ensure consistent outcome for pleural photodynamic therapy (pPDT). Ellipsoid shaped cavities with different sizes surrounded by turbid medium are used to simulate the intracavity lung geometry. An isotropic light source is introduced and surrounded by turbid media. Direct measurements of light fluence rate were compared to Monte Carlo simulated values on the surface of the cavities for various optical properties. The primary component of the light was determined by measurements performed in air in the same geometry. The scattered component was found by submerging the air-filled cavity in scattering media (Intralipid) and absorbent media (ink). The light source was located centrally with the azimuthal angle, but placed in two locations (vertically centered and 2 cm below the center) for measurements. Light fluence rate was measured using isotropic detectors placed at various angles on the ellipsoid surface. The measurements and simulations show that the scattered dose is uniform along the surface of the intracavity ellipsoid geometries in turbid media. One can express the light fluence rate empirically as φ =4S/As*Rd/(1- Rd), where Rd is the diffuse reflectance, As is the surface area, and S is the source power. The measurements agree with this empirical formula to within an uncertainty of 10% for the range of optical properties studied. GPU voxel-based Monte-Carlo simulation is performed to compare with measured results. This empirical formula can be applied to arbitrary geometries, such as the pleural or intraperitoneal cavity.

  8. Numerical method to optimize the polar-azimuthal orientation of infrared superconducting-nanowire single-photon detectors.

    PubMed

    Csete, Mária; Sipos, Áron; Najafi, Faraz; Hu, Xiaolong; Berggren, Karl K

    2011-11-01

    A finite-element method for calculating the illumination-dependence of absorption in three-dimensional nanostructures is presented based on the radio frequency module of the Comsol Multiphysics software package (Comsol AB). This method is capable of numerically determining the optical response and near-field distribution of subwavelength periodic structures as a function of illumination orientations specified by polar angle, φ, and azimuthal angle, γ. The method was applied to determine the illumination-angle-dependent absorptance in cavity-based superconducting-nanowire single-photon detector (SNSPD) designs. Niobium-nitride stripes based on dimensions of conventional SNSPDs and integrated with ~ quarter-wavelength hydrogen-silsesquioxane-filled nano-optical cavity and covered by a thin gold film acting as a reflector were illuminated from below by p-polarized light in this study. The numerical results were compared to results from complementary transfer-matrix-method calculations on composite layers made of analogous film-stacks. This comparison helped to uncover the optical phenomena contributing to the appearance of extrema in the optical response. This paper presents an approach to optimizing the absorptance of different sensing and detecting devices via simultaneous numerical optimization of the polar and azimuthal illumination angles. © 2011 Optical Society of America

  9. Solar energy apparatus with apertured shield

    NASA Technical Reports Server (NTRS)

    Collings, Roger J. (Inventor); Bannon, David G. (Inventor)

    1989-01-01

    A protective apertured shield for use about an inlet to a solar apparatus which includesd a cavity receiver for absorbing concentrated solar energy. A rigid support truss assembly is fixed to the periphery of the inlet and projects radially inwardly therefrom to define a generally central aperture area through which solar radiation can pass into the cavity receiver. A non-structural, laminated blanket is spread over the rigid support truss in such a manner as to define an outer surface area and an inner surface area diverging radially outwardly from the central aperture area toward the periphery of the inlet. The outer surface area faces away from the inlet and the inner surface area faces toward the cavity receiver. The laminated blanket includes at least one layer of material, such as ceramic fiber fabric, having high infra-red emittance and low solar absorption properties, and another layer, such as metallic foil, of low infra-red emittance properties.

  10. Colored ultra-thin hybrid photovoltaics with high quantum efficiency for decorative PV applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Guo, L. Jay

    2015-10-01

    This talk will describe an approach to create architecturally compatible and decorative thin-film-based hybrid photovoltaics [1]. Most current solar panels are fabricated via complex processes using expensive semiconductor materials, and they are rigid and heavy with a dull, black appearance. As a result of their non-aesthetic appearance and weight, they are primarily installed on rooftops to minimize their negative impact on building appearance. Recently we introduced dual-function solar cells based on ultra-thin dopant-free amorphous silicon embedded in an optical cavity that not only efficiently extract the photogenerated carriers but also display distinctive colors with the desired angle-insensitive appearances [1,2]. The angle-insensitive behavior is the result of an interesting phase cancellation effect in the optical cavity with respect to angle of light propagation [3]. In order to produce the desired optical effect, the semiconductor layer should be ultra-thin and the traditional doped layers need to be eliminated. We adopted the approach of employing charge transport/blocking layers used in organic solar cells to meet this demand. We showed that the ultra-thin (6 to 31 nm) undoped amorphous silicon/organic hybrid solar cell can transmit desired wavelength of light and that most of the absorbed photons in the undoped a-Si layer contributed to the extracted electric charges. This is because the a-Si layer thickness is smaller than the charge diffusion length, therefore the electron-hole recombination is strongly suppressed in such ultra-thin layer. Reflective colored PVs can be made in a similar fashion. Light-energy-harvesting colored signage was demonstrated. Furthermore, a cascaded photovoltaics scheme based on tunable spectrum splitting can be employed to increase power efficiency by absorbing a broader band of light energy. Our work provides a guideline for optimizing a photoactive layer thickness in high efficiency hybrid PV design, which can be adopted by other material systems as well. Based on these understandings, we have also developed colored perovskite PV by integrating an optical cavity with the perovskite semiconductors [4]. The principle and experimental results will be presented. 1. J. Y. Lee, K. T. Lee, S.Y. Seo, L. J. Guo, "Decorative power generating panels creating angle insensitive transmissive colors," Sci. Rep. 4, 4192, 2014. 2. K. T. Lee, J.Y. Lee, S.-Y. Seo, and L. J. Guo, "Colored ultra-thin hybrid photovoltaics with high quantum efficiency," Light: Science and Applications, 3, e215, 2014. 3. K. T. Lee, S.-Y. Seo, J.Y. Lee, and L. J. Guo, "Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters," Appl. Phys. Lett. 104, 231112, (2014); and "Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters," Adv. Mater, 26, 6324-6328, 2014. 4. K. T. Lee, M. Fukuda, L. J. Guo, "Colored, see-through perovskite solar cells employing an optical cavity," Submitted, 2015

  11. Using the combination refraction-reflection solid to design omni-directional light source used in underwater wireless optical communication

    NASA Astrophysics Data System (ADS)

    Rao, Jionghui; Yao, Wenming; Wen, Linqiang

    2015-10-01

    Underwater wireless optical communication is a communication technology which uses laser as an information carrier and transmits data through water. Underwater wireless optical communication has some good features such as broader bandwidth, high transmission rate, better security, anti—interference performance. Therefore, it is promising to be widely used in the civil and military communication domains. It is also suitable for high-speed, short-range communication between underwater mobile vehicles. This paper presents a design approach of omni-directional light source used in underwater wireless optical communication, using TRACEPRO simulation tool to help design a combination solid composed of the lens, conical reflector and parabolic reflector, and using the modulated DPSS green laser in the transmitter module to output the laser beam in small divergence angles, after expanded by the combination refraction-reflection solid, the angle turns into a space divergence angle of 2π, achieving the omni-directional light source of hemisphere space, and test in the air and underwater, the result shows that the effect is fine. This paper analyzes the experimental test in the air and water, in order to make further improvement of the uniformity of light distribution, we optimize the reflector surface parameters of combination refraction-reflection solid and test in the air and water. The result shows that omni-directional light source used in underwater wireless optical communication optimized could achieve the uniformity of light distribution of underwater space divergence angle of 2π. Omni-directional light source used in underwater wireless optical communication designed in this paper has the characteristics of small size and uniformity of light distribution, it is suitable for application between UUVs, AUVs, Swimmer Delivery Vehicles (SDVs) and other underwater vehicle fleet, it realizes point-to-multipoint communications.

  12. A scalable block-preconditioning strategy for divergence-conforming B-spline discretizations of the Stokes problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortes, Adriano M.; Dalcin, Lisandro; Sarmiento, Adel F.

    The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity–pressure pairs for viscous incompressible flows that are at the same time inf–sup stable and pointwise divergence-free. When applied to the discretized Stokes problem, these spaces generate a symmetric and indefinite saddle-point linear system. The iterative method of choice to solve such system is the Generalized Minimum Residual Method. This method lacks robustness, and one remedy is to use preconditioners. For linear systems of saddle-point type, a large family of preconditioners can be obtained by using a block factorization of the system. In this paper, we show howmore » the nesting of “black-box” solvers and preconditioners can be put together in a block triangular strategy to build a scalable block preconditioner for the Stokes system discretized by divergence-conforming B-splines. Lastly, besides the known cavity flow problem, we used for benchmark flows defined on complex geometries: an eccentric annulus and hollow torus of an eccentric annular cross-section.« less

  13. A scalable block-preconditioning strategy for divergence-conforming B-spline discretizations of the Stokes problem

    DOE PAGES

    Cortes, Adriano M.; Dalcin, Lisandro; Sarmiento, Adel F.; ...

    2016-10-19

    The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity–pressure pairs for viscous incompressible flows that are at the same time inf–sup stable and pointwise divergence-free. When applied to the discretized Stokes problem, these spaces generate a symmetric and indefinite saddle-point linear system. The iterative method of choice to solve such system is the Generalized Minimum Residual Method. This method lacks robustness, and one remedy is to use preconditioners. For linear systems of saddle-point type, a large family of preconditioners can be obtained by using a block factorization of the system. In this paper, we show howmore » the nesting of “black-box” solvers and preconditioners can be put together in a block triangular strategy to build a scalable block preconditioner for the Stokes system discretized by divergence-conforming B-splines. Lastly, besides the known cavity flow problem, we used for benchmark flows defined on complex geometries: an eccentric annulus and hollow torus of an eccentric annular cross-section.« less

  14. Composite Yb:YAG/SiC-prism thin disk laser.

    PubMed

    Newburgh, G A; Michael, A; Dubinskii, M

    2010-08-02

    We report the first demonstration of a Yb:YAG thin disk laser wherein the gain medium is intracavity face-cooled through bonding to an optical quality SiC prism. Due to the particular design of the composite bonded Yb:YAG/SiC-prism gain element, the laser beam impinges on all refractive index interfaces inside the laser cavity at Brewster's angles. The laser beam undergoes total internal reflection (TIR) at the bottom of the Yb(10%):YAG thin disk layer in a V-bounce cavity configuration. Through the use of TIR and Brewster's angles, no optical coatings, either anti-reflective (AR) or highly reflective (HR), are required inside the laser cavity. In this first demonstration, the 936.5-nm diode pumped laser performed with approximately 38% slope efficiency at 12 W of quasi-CW (Q-CW) output power at 1030 nm with a beam quality measured at M(2) = 1.5. This demonstration opens up a viable path toward novel thin disk laser designs with efficient double-sided room-temperature heatsinking via materials with the thermal conductivity of copper on both sides of the disk.

  15. LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties

    DOEpatents

    Tong, Tao; Le Toquin, Ronan; Keller, Bernd; Tarsa, Eric; Youmans, Mark; Lowes, Theodore; Medendorp, Jr., Nicholas W; Van De Ven, Antony; Negley, Gerald

    2014-11-11

    An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and an optical cavity. The optical cavity comprises a phosphor carrier having a conversions material and arranged over an opening to the cavity. The phosphor carrier comprises a thermally conductive transparent material and is thermally coupled to the heat sink structure. An LED based light source is mounted in the optical cavity remote to the phosphor carrier with light from the light source passing through the phosphor carrier. A diffuser dome is included that is mounted over the optical cavity, with light from the optical cavity passing through the diffuser dome. The properties of the diffuser, such as geometry, scattering properties of the scattering layer, surface roughness or smoothness, and spatial distribution of the scattering layer properties may be used to control various lamp properties such as color uniformity and light intensity distribution as a function of viewing angle.

  16. Control of Cavity Resonance Using Oscillatory Blowing

    NASA Technical Reports Server (NTRS)

    Scarfe, Alison Lamp; Chokani, Ndaona

    2000-01-01

    The near-zero net mass oscillatory blowing control of a subsonic cavity flow has been experimentally investigated. An actuator was designed and fabricated to provide both steady and oscillatory blowing over a range of blowing amplitudes and forcing frequencies. The blowing was applied just upstream of the cavity front Wall through interchangeable plate configurations These configurations enabled the effects of hole size, hole shape, and blowing angle to be examined. A significant finding is that in terms of the blowing amplitude, the near zero net mass oscillatory blowing is much more effective than steady blowing; momentum coefficients Lip two orders of magnitude smaller than those required for steady blowing are sufficient to accomplish the same control of cavity resonance. The detailed measurements obtained in the experiment include fluctuating pressure data within the cavity wall, and hot-wire measurements of the cavity shear layer. Spectral and wavelet analysis techniques are applied to understand the dynamics and mechanisms of the cavity flow with control. The oscillatory blowing, is effective in enhancing the mixing in the cavity shear layer and thus modifying the feedback loop associated with the cavity resonance. The nonlinear interactions in the cavity flow are no longer driven by the resonant cavity modes but by the forcing associated with the oscillatory blowing. The oscillatory blowing does not suppress the mode switching behavior of the cavity flow, but the amplitude modulation is reduced.

  17. Color rendering based on a plasmon fullerene cavity.

    PubMed

    Tsai, Fu-Cheng; Weng, Cheng-Hsi; Chen, Yu Lim; Shih, Wen-Pin; Chang, Pei-Zen

    2018-04-16

    Fullerene in the plasmon fullerene cavity is utilized to propagate plasmon energy in order to break the confinement of the plasmonic coupling effect, which relies on the influential near-field optical region. It acts as a plasmonic inductor for coupling gold nano-islands to the gold film; the separation distances of the upper and lower layers are longer than conventional plasmonic cavities. This coupling effect causes the discrete and continuum states to cooperate together in a cavity and produces asymmetric curve lines in the spectra, producing a hybridized resonance. The effect brings about a bright and saturated displaying film with abundant visible colors. In addition, the reflection spectrum is nearly omnidirectional, shifting by only 5% even when the incident angle changes beyond ± 60°. These advantages allow plasmon fullerene cavities to be applied to reflectors, color filters, visible chromatic sensors, and large-area display.

  18. Characterization of kerosene distribution around the ignition cavity in a scramjet combustor

    NASA Astrophysics Data System (ADS)

    Li, Xipeng; Liu, Weidong; Pan, Yu; Yang, Leichao; An, Bin; Zhu, Jiajian

    2017-05-01

    Kerosene distribution before its ignition in a scramjet combustor with dual cavity was measured using kerosene-PLIF under transverse injection upstream of the cavity and different injection pressures. The simulated flight condition is Ma 5.5, and the isolator entrance has a Mach number of 2.52, a total pressure of 1.6 MPa and a stagnation temperature of 1486 K. Effects of injection pressure on fuel distribution characteristics were analyzed. The majority of kerosene is present in the cavity shear layer as well as its upper region. Kerosene extends gradually into the cavity, almost, at a constant angle. Large scale structures are evident on the windward side of kerosene. The cavity shear layer plays an important role in determining the kerosene distribution and its entrainment into the cavity. The middle part of cavity is the most suitable location for ignition as a result of a favorable local equivalent ratio. As the injection pressure increases, the penetration height gets higher with the rate of increase getting slower at higher injection pressure. Meanwhile, the portion of kerosene entrained into cavity through shear layer becomes smaller as injection pressure increases. However, the kerosene entrained into cavity still increase due to the increased mass flow rate of kerosene.

  19. Optimizing Electrospray Interfaces Using Slowly Diverging Conical Duct (ConDuct) Electrodes

    PubMed Central

    Krutchinsky, Andrew N.; Padovan, Júlio C.; Cohen, Herbert; Chait, Brian T.

    2015-01-01

    We demonstrate that the efficiency of ion transmission from atmosphere to vacuum through stainless steel electrodes that contain slowly divergent conical duct (ConDuct) channels can be close to 100%. Here, we explore the properties of 2.5 cm long electrodes with angles of divergence of 0°, 1°, 2°, 3°, 5°, 8°, 13°, and 21°, respectively. The ion transmission efficiency was observed to jump from 10–20% for the 0° (straight) channels to 90–95% for channels with an angle of divergence as small as 1°. Furthermore, the 2–3° ConDuct electrodes produced extraordinarily low divergence ion beams that propagated in a laser-like fashion over long distances in vacuum. To take advantage of these newly discovered properties, we constructed a novel atmosphere-to-vacuum ion interface utilizing a 2° ConDuct as an inlet electrode and compared its ion transmission efficiency with that of the interface used in the commercial (Thermo) Velos Orbitrap and Q Exactive mass spectrometers. We observed that the ConDuct interface transmitted up to 17 times more ions than the commercial reference interface and also yielded improved signal-to-noise mass spectra of peptides. We infer from these results that the performance of many current atmosphere-tovacuum interfaces utilizing metal capillaries can be substantially improved by replacing them with 1° or 2° metal ConDuct electrodes, which should preserve the convenience of supplying ion desolvation energy by heating the electrode while greatly increasing the efficiency of ion transmission into the mass spectrometer. PMID:25667060

  20. High performance terahertz metasurface quantum-cascade VECSEL with an intra-cryostat cavity

    DOE PAGES

    Xu, Luyao; Curwen, Christopher A.; Reno, John L.; ...

    2017-09-04

    A terahertz quantum-cascade (QC) vertical-external-cavity surface-emitting-laser (VECSEL) is demonstrated with over 5 mW power in continuous-wave and single-mode operation above 77 K, in combination with a near-Gaussian beam pattern with full-width half-max divergence as narrow as ~5° × 5°, with no evidence of thermal lensing. This is realized by creating an intra-cryostat VECSEL cavity to reduce the cavity loss and designing an active focusing metasurface reflector with low power dissipation for efficient heat removal. Compared with a conventional quantumcascade laser based on a metal-metal waveguide, the intra-cryostat QC-VECSEL exhibits significant improvements in both output power level and beam pattern. Also,more » the intra-cryostat configuration newly allows evaluation of QC-VECSEL operation vs. temperature, showing a maximum pulsed mode operating temperature of 129 K. While the threshold current density in the QC-VECSEL is worse in comparison to a conventional edge-emitting metal-metal waveguide QClaser, the beam quality, slope efficiency, maximum power, and thermal resistance are all significantly improved.« less

  1. Study of the stability of beam characteristics of the neon-like Zn X-ray laser using a half cavity

    NASA Astrophysics Data System (ADS)

    Präg, A. R.; Mocek, T.; Kozlová, M.; Rus, B.; Jamelot, G.; Ros, D.

    2003-01-01

    At the Prague Asterix Laser System Center (PALS) the Asterix iodine laser delivering up to 700 J/0.5 ns is used as a pump source for X-ray laser experiments and applications. The prepulse technique was applied which is known to improve the neon-like X-ray laser output at the J = 0 {-} 1 transition dramatically. Since Zn slab targets were used the operating wavelength was 21.2 nm. A prepulse having up to 20 J precedes the main pulse by 10 ns. The main beam and the prepulse beam are focussed by two different optical systems separately and their foci are superimposed at the target surface. By implementing a half-cavity set-up for double-pass amplification using a Mo/Si multilayer mirror which can be used for more than 100 shots the X-ray laser output was more than 10 times stronger than at the single pass in a 30 mm long plasma. Double-pass amplification was observed to be most efficient when the pump pulse duration was at least 150 ps longer than the round trip time (≈ 260 ps) in the half-cavity. Under this fundamental condition the X-ray laser reached saturation in the double-pass regime containing approx. 4 mJ energy which has been proved to be enough for future applications. In this contribution, the X-ray laser features like divergence in two dimensions, the beam quality (symmetry), the pointing angle and the integrated intensity giving an estimation of the output energy are investigated over 110 shots. To characterize the stability of the X-ray laser the shot distribution, the mean value and the standard deviation for these parameters are evaluated. For 18 shots in a series what was achievable during one day the corresponding values are given, and a statistical analysis carrying out a chi-squared test characterize the Zn X-ray laser as a robust tool suitable for applications. In the future it is planned to allocate X-ray laser beam time to external research groups.

  2. Polarization mode control of long-wavelength VCSELs by intracavity patterning

    DOE PAGES

    Long, Christopher Michael; Mickovic, Zlatko; Dwir, Benjamin; ...

    2016-04-26

    Polarization mode control is enhanced in wafer-fused vertical-cavity surface-emitting lasers emitting at 1310 nm wavelength by etching two symmetrically arranged arcs above the gain structure within the laser cavity. The intracavity patterning introduces birefringence and dichroism, which discriminates between the two polarization states of the fundamental transverse modes. We find that the cavity modifications define the polarization angle at threshold with respect to the crystal axes, and increase the gain anisotropy and birefringence on average, leading to an increase in the polarization switching current. As a result, experimental measurements are explained using the spin-flip model of VCSEL polarization dynamics.

  3. Cavity-enhanced eigenmode and angular hybrid multiplexing in holographic data storage systems.

    PubMed

    Miller, Bo E; Takashima, Yuzuru

    2016-12-26

    Resonant optical cavities have been demonstrated to improve energy efficiencies in Holographic Data Storage Systems (HDSS). The orthogonal reference beams supported as cavity eigenmodes can provide another multiplexing degree of freedom to push storage densities toward the limit of 3D optical data storage. While keeping the increased energy efficiency of a cavity enhanced reference arm, image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at two Bragg angles. We experimentally confirmed write rates are enhanced by an average factor of 1.1, and page crosstalk is about 2.5%. This hybrid multiplexing opens up a pathway to increase storage density while minimizing modification of current angular multiplexing HDSS.

  4. Alternative irradiation schemes for NIF and LMJ hohlraums

    NASA Astrophysics Data System (ADS)

    Bourgade, Jean-Luc; Bowen, Christopher; Gauthier, Pascal; Landen, Otto

    2018-02-01

    We explore two alternative irradiation schemes for the large (‘outer’) and small (‘inner’) angle beams that currently illuminate National Ignition Facility (NIF) and Laser Mégajoule cavities. In the first, while the outer laser beams enter through the usual end laser entrance holes (LEH), the inner beams enter through slots along the cavity axis wall, illuminating the back wall of the cavity. This avoids the current interaction of the inner laser beams with the gold wall bubbles generated by the outer beams, which leads to large time-dependent changes in drive symmetry. Another scheme potentially useful for NIF uses only the outer beams. The radiative losses through the slots or from the use of outer beams only are compensated by using a smaller cavity and LEH.

  5. Alternative irradiation schemes for NIF and LMJ hohlraums

    DOE PAGES

    Bourgade, Jean-Luc; Bowen, Christopher; Gauthier, Pascal; ...

    2017-12-13

    Here, we explore two alternative irradiation schemes for the large ('outer') and small ('inner') angle beams that currently illuminate National Ignition Facility (NIF) and Laser Mégajoule cavities. In the first, while the outer laser beams enter through the usual end laser entrance holes (LEH), the inner beams enter through slots along the cavity axis wall, illuminating the back wall of the cavity. This avoids the current interaction of the inner laser beams with the gold wall bubbles generated by the outer beams, which leads to large time-dependent changes in drive symmetry. Another scheme potentially useful for NIF uses only themore » outer beams. The radiative losses through the slots or from the use of outer beams only are compensated by using a smaller cavity and LEH.« less

  6. Alternative irradiation schemes for NIF and LMJ hohlraums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourgade, Jean-Luc; Bowen, Christopher; Gauthier, Pascal

    Here, we explore two alternative irradiation schemes for the large ('outer') and small ('inner') angle beams that currently illuminate National Ignition Facility (NIF) and Laser Mégajoule cavities. In the first, while the outer laser beams enter through the usual end laser entrance holes (LEH), the inner beams enter through slots along the cavity axis wall, illuminating the back wall of the cavity. This avoids the current interaction of the inner laser beams with the gold wall bubbles generated by the outer beams, which leads to large time-dependent changes in drive symmetry. Another scheme potentially useful for NIF uses only themore » outer beams. The radiative losses through the slots or from the use of outer beams only are compensated by using a smaller cavity and LEH.« less

  7. Design of laser afocal zoom expander system

    NASA Astrophysics Data System (ADS)

    Jiang, Lian; Zeng, Chun-Mei; Hu, Tian-Tian

    2018-01-01

    Laser afocal zoom expander system due to the beam diameter variable, can be used in the light sheet illumination microscope to observe the samples of different sizes. Based on the principle of afocal zoom system, the laser collimation and beam expander system with a total length of less than 110mm, 6 pieces of spherical lens and a beam expander ratio of 10 is designed by using Zemax software. The system is focused on laser with a wavelength of 532nm, divergence angle of less than 4mrad and incident diameter of 4mm. With the combination of 6 spherical lens, the beam divergence angle is 0.4mrad at the maximum magnification ratio, and the RMS values at different rates are less than λ/4. This design is simple in structure and easy to process and adjust. It has certain practical value.

  8. Application of dynamical systems theory to the high angle of attack dynamics of the F-14

    NASA Technical Reports Server (NTRS)

    Jahnke, Craig C.; Culick, Fred E. C.

    1990-01-01

    Dynamical systems theory has been used to study the nonlinear dynamics of the F-14. An eight degree of freedom model that does not include the control system present in operational F-14s has been analyzed. The aerodynamic model, supplied by NASA, includes nonlinearities as functions of the angles of attack and sideslip, the rotation rate, and the elevator deflection. A continuation method has been used to calculate the steady states of the F-14 as continuous functions of the control surface deflections. Bifurcations of these steady states have been used to predict the onset of wing rock, spiral divergence, and jump phenomena which cause the aircraft to enter a spin. A simple feedback control system was designed to eliminate the wing rock and spiral divergence instabilities. The predictions were verified with numerical simulations.

  9. Tandem-Mirror Ion Source

    NASA Technical Reports Server (NTRS)

    Biddle, A.; Stone, N.; Reasoner, D.; Chisholm, W.; Reynolds, J.

    1986-01-01

    Improved ion source produces beam of ions at any kinetic energy from 1 to 1,000 eV, with little spread in energy or angle. Such ion beams useful in studies of surface properties of materials, surface etching, deposition, and development of plasma-diagnostic instrumentation. Tandemmirror ion source uses electrostatic and magnetic fields to keep electrons in ionization chamber and assure uniform output ion beam having low divergence in energy and angle.

  10. Static thrust-vectoring performance of nonaxisymmetric convergent-divergent nozzles with post-exit yaw vanes. M.S. Thesis - George Washington Univ., Aug. 1988

    NASA Technical Reports Server (NTRS)

    Foley, Robert J.; Pendergraft, Odis C., Jr.

    1991-01-01

    A static (wind-off) test was conducted in the Static Test Facility of the 16-ft transonic tunnel to determine the performance and turning effectiveness of post-exit yaw vanes installed on two-dimensional convergent-divergent nozzles. One nozzle design that was previously tested was used as a baseline, simulating dry power and afterburning power nozzles at both 0 and 20 degree pitch vectoring conditions. Vanes were installed on these four nozzle configurations to study the effects of vane deflection angle, longitudinal and lateral location, size, and camber. All vanes were hinged at the nozzle sidewall exit, and in addition, some were also hinged at the vane quarter chord (double-hinged). The vane concepts tested generally produced yaw thrust vectoring angles much less than the geometric vane angles, for (up to 8 percent) resultant thrust losses. When the nozzles were pitch vectored, yawing effectiveness decreased as the vanes were moved downstream. Thrust penalties and yawing effectiveness both decreased rapidly as the vanes were moved outboard (laterally). Vane length and height changes increased yawing effectiveness and thrust ratio losses, while using vane camber, and double-hinged vanes increased resultant yaw angles by 50 to 100 percent.

  11. Experiments on tandem diffusers with boundary-layer suction applied in between

    NASA Technical Reports Server (NTRS)

    Barna, P. S.

    1979-01-01

    Experiments were performed on conical diffusers of various configurations with the same, but rather unusually large, 16:1 area ratio. Because available performance data on diffusers fall short of very large area ratio configurations, an unconventional design, consisting of two diffusers following each other in tandem, was proposed. Both diffusers had the same area ratio of 4:1, but had different taper angles. While for the first diffuser (called leading) the angle remained constant, for the second (called follower), the taper angle was stepped up to higher values. Boundary layer control, by way of suction, was applied between the diffusers, and a single slot suction ring was inserted between them. The leading diffuser had an enclosed nominal divergence angle 2 theta = 5 degrees, while the follower diffusers had either 10, 20, 30, or 40 degrees, respectively, giving 4 combinations. The experiments were performed at four different Reynolds numbers with various suction rates. The rates indicate a general improvement in the performance of all diffusers with boundary layer suction. It appears that the improvement of the pressure recovery depends on both the Reynolds number and the suction rate, and the largest increase, 0.075, was found at the lowest R sub e when the follower divergence was 2 theta = 40 degrees.

  12. Diagnosing the Magnetic Field Structure of a Coronal Cavity Observed during the 2017 Total Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Chen, Yajie; Tian, Hui; Su, Yingna; Qu, Zhongquan; Deng, Linhua; Jibben, Patricia R.; Yang, Zihao; Zhang, Jingwen; Samanta, Tanmoy; He, Jiansen; Wang, Linghua; Zhu, Yingjie; Zhong, Yue; Liang, Yu

    2018-03-01

    We present an investigation of a coronal cavity observed above the western limb in the coronal red line Fe X 6374 Å using a telescope of Peking University and in the green line Fe XIV 5303 Å using a telescope of Yunnan Observatories, Chinese Academy of Sciences, during the total solar eclipse on 2017 August 21. A series of magnetic field models is constructed based on the magnetograms taken by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory (SDO) one week before the eclipse. The model field lines are then compared with coronal structures seen in images taken by the Atmospheric Imaging Assembly on board SDO and in our coronal red line images. The best-fit model consists of a flux rope with a twist angle of 3.1π, which is consistent with the most probable value of the total twist angle of interplanetary flux ropes observed at 1 au. Linear polarization of the Fe XIII 10747 Å line calculated from this model shows a “lagomorphic” signature that is also observed by the Coronal Multichannel Polarimeter of the High Altitude Observatory. We also find a ring-shaped structure in the line-of-sight velocity of Fe XIII 10747 Å, which implies hot plasma flows along a helical magnetic field structure, in the cavity. These results suggest that the magnetic structure of the cavity is a highly twisted flux rope, which may erupt eventually. The temperature structure of the cavity has also been investigated using the intensity ratio of Fe XIII 10747 Å and Fe X 6374 Å.

  13. Performance characteristics of axisymmetric convergent-divergent exhaust nozzles with longitudinal slots in the divergent

    NASA Technical Reports Server (NTRS)

    Leavitt, L. D.; Bangert, L. S.

    1982-01-01

    An investigation was conducted in the Langley 16 foot Transonic Tunnel and in the static test facility of that tunnel to determine the effects of divergent flap ventilation of an axisymmetric nozzle on nozzle internal (static) and wind on performance. Tests were conducted at 0 deg angle of attack at static conditions and at Mach numbers from 0.6 to 1.2. Ratios of jet total pressure to free stream static pressure were varied from 1.0 (jet off) to approximately 14.0 depending on Mach number. The results of this study indicate that divergent flap ventilation generally provided large performance benefits at overexpanded nozzle conditions and performance reductions at underexpanded nozzle conditions when compared to the baseline (unventilated) nozzles. Ventilation also reduced the peak static and wind on performance levels.

  14. Forces and moments on a slender, cavitating body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hailey, C.E.; Clark, E.L.; Buffington, R.J.

    1988-01-01

    Recently a numerical code has been developed at Sandia National Laboratories to predict the pitching moment, normal force, and axial force of a slender, supercavitating shape. The potential flow about the body and cavity is calculated using an axial distribution of source/sink elements. The cavity surface is assumed to be a constant pressure streamline, extending beyond the base of the model. Slender body approximation is used to model the crossflow for small angles of attack. A significant extension of previous work in cavitation flow is the inclusion of laminar and turbulent boundary layer solutions on the body. Predictions with thismore » code, for axial force at zero angle of attack, show good agreement with experiments. There are virtually no published data availble with which to benchmark the pitching moment and normal force predictions. An experiment was designed to measure forces and moments on a supercavitation shape. The primary reason for the test was to obtain much needed data to benchmark the hydrodynamic force and moment predictions. Since the numerical prediction is for super cavitating shapes at very small cavitation numbers, the experiment was designed to be a ventilated cavity test. This paper describes the experimental procedure used to measure the pitching moment, axial and normal forces, and base pressure on a slender body with a ventilated cavity. Limited results are presented for pitching moment and normal force. 5 refs., 7 figs.« less

  15. Calculation of three-dimensional (3-D) internal flow by means of the velocity-vorticity formulation on a staggered grid

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1995-01-01

    A method has been developed to accurately compute the viscous flow in three-dimensional (3-D) enclosures. This method is the 3-D extension of a two-dimensional (2-D) method developed for the calculation of flow over airfoils. The 2-D method has been tested extensively and has been shown to accurately reproduce experimental results. As in the 2-D method, the 3-D method provides for the non-iterative solution of the incompressible Navier-Stokes equations by means of a fully coupled implicit technique. The solution is calculated on a body fitted computational mesh incorporating a staggered grid methodology. In the staggered grid method, the three components of vorticity are defined at the centers of the computational cell sides, while the velocity components are defined as normal vectors at the centers of the computational cell faces. The staggered grid orientation provides for the accurate definition of the vorticity components at the vorticity locations, the divergence of vorticity at the mesh cell nodes and the conservation of mass at the mesh cell centers. The solution is obtained by utilizing a fractional step solution technique in the three coordinate directions. The boundary conditions for the vorticity and velocity are calculated implicitly as part of the solution. The method provides for the non-iterative solution of the flow field and satisfies the conservation of mass and divergence of vorticity to machine zero at each time step. To test the method, the calculation of simple driven cavity flows have been computed. The driven cavity flow is defined as the flow in an enclosure driven by a moving upper plate at the top of the enclosure. To demonstrate the ability of the method to predict the flow in arbitrary cavities, results will he shown for both cubic and curved cavities.

  16. Effect of Sweep on Cavity Flow Fields at Subsonic and Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Tracy, Maureen B.; Plentovich, Elizabeth B.; Hemsch, Michael J.; Wilcox, Floyd J.

    2012-01-01

    An experimental investigation was conducted in the NASA Langley 7 x 10-Foot High Speed Tunnel (HST) to study the effect of leading- and trailing-edge sweep on cavity flow fields for a range of cavity length-to-height (l/h) ratios. The free-stream Mach number was varied from 0.2 to 0.8. The cavity had a depth of 0.5 inches, a width of 2.5 inches, and a maximum length of 12.0 inches. The leading- and trailing-edge sweep was adjusted using block inserts to achieve leading edge sweep angles of 65 deg, 55 deg, 45 deg, 35 deg, and 0 deg. The fore and aft cavity walls were always parallel. The aft wall of the cavity was remotely positioned to achieve a range of length-to-depth ratios. Fluctuating- and static-pressure data were obtained on the floor of the cavity. The fluctuating pressure data were used to determine whether or not resonance occurred in the cavity rather than to provide a characterization of the fluctuating pressure field. Qualitative surface flow visualization was obtained using a technique in which colored water was introduced into the model through static-pressure orifices. A complete tabulation of the mean static-pressure data for the swept leading edge cavities is included.

  17. Static internal performance including thrust vectoring and reversing of two-dimensional convergent-divergent nozzles

    NASA Technical Reports Server (NTRS)

    Re, R. J.; Leavitt, L. D.

    1984-01-01

    The effects of geometric design parameters on two dimensional convergent-divergent nozzles were investigated at nozzle pressure ratios up to 12 in the static test facility. Forward flight (dry and afterburning power settings), vectored-thrust (afterburning power setting), and reverse-thrust (dry power setting) nozzles were investigated. The nozzles had thrust vector angles from 0 deg to 20.26 deg, throat aspect ratios of 3.696 to 7.612, throat radii from sharp to 2.738 cm, expansion ratios from 1.089 to 1.797, and various sidewall lengths. The results indicate that unvectored two dimensional convergent-divergent nozzles have static internal performance comparable to axisymmetric nozzles with similar expansion ratios.

  18. Static internal performance of an axisymmetric nozzle with multiaxis thrust-vectoring capability

    NASA Technical Reports Server (NTRS)

    Carson, George T., Jr.; Capone, Francis J.

    1991-01-01

    An investigation was conducted in the static test facility of the Langley 16 Foot Transonic Tunnel in order to determine the internal performance characteristics of a multiaxis thrust vectoring axisymmetric nozzle. Thrust vectoring for this nozzle was achieved by deflection of only the divergent section of this nozzle. The effects of nozzle power setting and divergent flap length were studied at nozzle deflection angles of 0 to 30 at nozzle pressure ratios up to 8.0.

  19. A coupled implicit method for chemical non-equilibrium flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun; Chen, Kuo-Huey; Choi, Yunho

    1993-01-01

    The present time-accurate coupled-solution procedure addresses the chemical nonequilibrium Navier-Stokes equations over a wide Mach-number range uses, in conjunction with the strong conservation form of the governing equations, five unknown primitive variables. The numerical tests undertaken address steady convergent-divergent nozzle flows with air dissociation/recombination, dump combustor flows with n-pentane/air chemistry, and unsteady nonreacting cavity flows.

  20. Nasal valve evaluation in the Mexican-Hispanic (mestizo) nose.

    PubMed

    Jasso-Ramírez, Elizabeth; Sánchez Y Béjar, Fernando; Arcaute Aizpuru, Fernando; Maulen Radován, Irene E; de la Garza Hesles, Héctor

    2018-04-01

    Our aim in this study was to determine the angle of the internal nasal valve in Mexican patients with the "mestizo nose" feature and without nasal obstructive symptoms. The work was prospective, comparative, and observational in nature and included patients >14 years of age who were seen in the Otolaryngology Department at the Los Angeles Lomas Hospital between April and May 2016. The angle of the internal nasal valve was measured in 30 patients without obstructive symptoms. Endoscopic examination was performed with a 0° endoscope framed with tape at a 13-mm distance from the endoscope's tip, and digital photographs of the internal nasal valve were taken. The measurement of the angle of the internal nasal valve was made in sexagesimal degrees using Golden Ratio v3.1 (2012) software. Statistical analysis was performed using Excel v15.13.3. The angles of the internal nasal valve of the patients were (mean ± standard deviation) 24.07 ± 4.8° for the right nasal cavity and 25.07 ± 5.0° for the left nasal cavity, wider than the angle reported in the normal Caucasian nose established in the literature. According to our results, the Mexican-Hispanic mestizo nose has a wider angle in the internal nasal valve than that considered normal in the literature (10°-15°). We believe it is necessary to undertake a second study and add an airflow resistance measurement with a rhinomanometry procedure so we can compare the results with those in the Caucasian population. © 2018 ARS-AAOA, LLC.

  1. Unsteady Airfoil Flow Solutions on Moving Zonal Grids

    DTIC Science & Technology

    1992-12-17

    for the angle-of-attack of 15.5’, the comparisons diverge. This happens because of the different turbulence models used . At this angle- of attack, the...downstream in the wake . This vortex shedding phenomenon alters the chordwise pressure distribution on the upper surface of the airfoil resulting in higher...in- terest, turbulence modeling is used . Turbulence models are implemented with the time-averaged forms of the Navier-Stokes equations. Two widely

  2. Angle amplifying optics using plane and ellipsoidal reflectors

    DOEpatents

    Glass, Alexander J.

    1977-01-01

    An optical system for providing a wide angle input beam into ellipsoidal laser fusion target illumination systems. The optical system comprises one or more pairs of centrally apertured plane and ellipsoidal mirrors disposed to accept the light input from a conventional lens of modest focal length and thickness, to increase the angular divergence thereof to a value equivalent to that of fast lenses, and to direct the light into the ellipsoidal target illumination system.

  3. Optimizing Electrospray Interfaces Using Slowly Diverging Conical Duct (ConDuct) Electrodes

    NASA Astrophysics Data System (ADS)

    Krutchinsky, Andrew N.; Padovan, Júlio C.; Cohen, Herbert; Chait, Brian T.

    2015-04-01

    We demonstrate that the efficiency of ion transmission from atmosphere to vacuum through stainless steel electrodes that contain slowly divergent conical duct (ConDuct) channels can be close to 100%. Here, we explore the properties of 2.5-cm-long electrodes with angles of divergence of 0°, 1°, 2°, 3°, 5°, 8°, 13°, and 21°, respectively. The ion transmission efficiency was observed to jump from 10-20% for the 0° (straight) channels to 90-95% for channels with an angle of divergence as small as 1°. Furthermore, the 2-3° ConDuct electrodes produced extraordinarily low divergence ion beams that propagated in a laser-like fashion over long distances in vacuum. To take advantage of these newly discovered properties, we constructed a novel atmosphere-to-vacuum ion interface utilizing a 2° ConDuct as an inlet electrode and compared its ion transmission efficiency with that of the interface used in the commercial (Thermo Fisher Scientific, San Jose, CA, USA) Velos Orbitrap and Q Exactive mass spectrometers. We observed that the ConDuct interface transmitted up to 17 times more ions than the commercial reference interface and also yielded improved signal-to-noise mass spectra of peptides. We infer from these results that the performance of many current atmosphere-to-vacuum interfaces utilizing metal capillaries can be substantially improved by replacing them with 1° or 2° metal ConDuct electrodes, which should preserve the convenience of supplying ion desolvation energy by heating the electrode while greatly increasing the efficiency of ion transmission into the mass spectrometer.

  4. Large angle nonmechanical laser beam steering at 4.6 μm using a digital micromirror device

    NASA Astrophysics Data System (ADS)

    Lindle, James Ryan; Watnik, Abbie T.

    2018-02-01

    Large angle, nonmechanical beam steering is demonstrated at 4.62 μm using the digital light processing technology. A 42-deg steering range is demonstrated, limited by the field-of-view of the recollimating lens. The measured diffraction efficiency is 8.1% on-axis and falls-off with a sin2 dependence with the steering angle. However, within the 42-deg steering range, the power varied less than 25%. The profile of the steered laser beam is Gaussian with a divergence of 5.2 mrad. Multibeam, randomly addressable beam steering, is also demonstrated.

  5. Arcjet nozzle design impacts

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Sovie, Amy J.; Haag, Thomas W.

    1989-01-01

    The effect of nozzle configuration on the operating characteristics of a low power dc arcjet thruster was determined. A conical nozzle with a 30 deg converging angle, a 20 deg diverging angle, and an area ratio of 225 served as the baseline case. Variations on the geometry included bell-shaped contours both up and downstream, and a downstream trumpet-shaped contour. The nozzles were operated over a range of specific power near that anticipated for on-orbit operation. Mass flow rate, thrust, current, and voltage were monitored to provide accurate comparisons between nozzles. The upstream contour was found to have minimal effect on arcjet operation. It was determined that the contour of the divergent section of the nozzle, that serves as the anode, was very important in determining the location of arc attachment, and thus had a significant impact on arcjet performance. The conical nozzle was judged to have the optimal current/voltage characteristics and produced the best performance of the nozzles tested.

  6. Arcjet Nozzle Design Impacts

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Sovie, Amy J.; Haag, Thomas W.

    1989-01-01

    The effect of nozzle configuration on the operating characteristics of a low power dc arcjet thruster was determined. A conical nozzle with a 30 deg converging angle, a 20 deg diverging angle, and an area ratio of 225 served as the baseline case. Variations on the geometry included bell-shaped contours both up and downstream, and a downstream trumpet-shaped contour. The nozzles were operated over a range of specific power near that anticipated for on-orbit operation. Mass flow rate, thrust, current, and voltage were monitored to provide accurate comparisons between nozzles. The upstream contour was found to have minimal effect on arcjet operation. It was determined that the contour of the divergent section of the nozzle, that serves as the anode, was very important in determining the location of arc attachment, and thus had a significant impact on arcjet performance. The conical nozzle was judged to have the optimal current/voltage characteristics and produced the best performance of the nozzles tested.

  7. Simulation of Natural Convection Heat Transfer in an Inclined Square Cavity With Perfectly Conducting Side Walls Using Finite Difference Approach

    NASA Astrophysics Data System (ADS)

    Azwadi, C. S. Nor; Fairus, M. Y. Mohd

    2010-06-01

    This study is about numerical simulation of natural heat transfer inside an inclined square cavity with perfectly conducting boundary conditions for the side walls. The Navier Stokes equations were solved using finite difference approach with uniform mesh procedure. Three different inclination angels were applied and the results are presented in terms of streamlines and isotherms plots. Based on the fluid flow pattern and the isothermal lines behaviour, the convection heat transfer has shown domination over the conduction as the tilt angle increases. The simulation of natural convection inside an air filled-tilted cavity is the first time to be done to the best of our knowledge.

  8. Single frequency free-running low noise compact extended-cavity semiconductor laser at high power level

    NASA Astrophysics Data System (ADS)

    Garnache, Arnaud; Myara, Mikhaël.; Laurain, A.; Bouchier, Aude; Perez, J. P.; Signoret, P.; Sagnes, I.; Romanini, D.

    2017-11-01

    We present a highly coherent semiconductor laser device formed by a ½-VCSEL structure and an external concave mirror in a millimetre high finesse stable cavity. The quantum well structure is diode-pumped by a commercial single mode GaAs laser diode system. This free running low noise tunable single-frequency laser exhibits >50mW output power in a low divergent circular TEM00 beam with a spectral linewidth below 1kHz and a relative intensity noise close to the quantum limit. This approach ensures, with a compact design, homogeneous gain behaviour and a sufficiently long photon lifetime to reach the oscillation-relaxation-free class-A regime, with a cut off frequency around 10MHz.

  9. Method for compression molding of thermosetting plastics utilizing a temperature gradient across the plastic to cure the article

    NASA Technical Reports Server (NTRS)

    Heier, W. C. (Inventor)

    1974-01-01

    A method is described for compression molding of thermosetting plastics composition. Heat is applied to the compressed load in a mold cavity and adjusted to hold molding temperature at the interface of the cavity surface and the compressed compound to produce a thermal front. This thermal front advances into the evacuated compound at mean right angles to the compression load and toward a thermal fence formed at the opposite surface of the compressed compound.

  10. Parabolic polarization splitting of Tamm states in a metal-organic microcavity

    NASA Astrophysics Data System (ADS)

    Brückner, R.; Sudzius, M.; Hintschich, S. I.; Fröb, H.; Lyssenko, V. G.; Kaliteevski, M. A.; Iorsh, I.; Abram, R. A.; Kavokin, A. V.; Leo, K.

    2012-02-01

    We observe hybrid states of cavity photons and Tamm plasmons in an organic microcavity with an incorporated thin silver layer of increasing thickness up to 40 nm. Via μ-photoluminescence spectroscopy, we investigate their angular dependence. At oblique angles, we observe a TE-TM polarization splitting of more than 40 meV for each mode. An analytical model is developed to describe the coupling of Tamm plasmons and cavity photons and to account for the splitting of the orthogonally polarized resonances.

  11. Higher-order mode-based cavity misalignment measurements at the free-electron laser FLASH

    NASA Astrophysics Data System (ADS)

    Hellert, Thorsten; Baboi, Nicoleta; Shi, Liangliang

    2017-12-01

    At the Free-Electron Laser in Hamburg (FLASH) and the European X-Ray Free-Electron Laser, superconducting TeV-energy superconducting linear accelerator (TESLA)-type cavities are used for the acceleration of electron bunches, generating intense free-electron laser (FEL) beams. A long rf pulse structure allows one to accelerate long bunch trains, which considerably increases the efficiency of the machine. However, intrabunch-train variations of rf parameters and misalignments of rf structures induce significant trajectory variations that may decrease the FEL performance. The accelerating cavities are housed inside cryomodules, which restricts the ability for direct alignment measurements. In order to determine the transverse cavity position, we use a method based on beam-excited dipole modes in the cavities. We have developed an efficient measurement and signal processing routine and present its application to multiple accelerating modules at FLASH. The measured rms cavity offset agrees with the specification of the TESLA modules. For the first time, the tilt of a TESLA cavity inside a cryomodule is measured. The preliminary result agrees well with the ratio between the offset and angle dependence of the dipole mode which we calculated with eigenmode simulations.

  12. Super-Cavitating Flow Around Two-Dimensional Conical, Spherical, Disc and Stepped Disc Cavitators

    NASA Astrophysics Data System (ADS)

    Sooraj, S.; Chandrasekharan, Vaishakh; Robson, Rony S.; Bhanu Prakash, S.

    2017-08-01

    A super-cavitating object is a high speed submerged object that is designed to initiate a cavitation bubble at the nose which extends past the aft end of the object, substantially reducing the skin friction drag that would be present if the sides of the object were in contact with the liquid in which the object is submerged. By reducing the drag force the thermal energy consumption to move faster can also be minimised. The super-cavitation behavioural changes with respect to Cavitators of various geometries have been studied by varying the inlet velocity. Two-dimensional computational fluid dynamics analysis has been carried out by applying k-ε turbulence model. The variation of drag coefficient, cavity length with respect to cavitation number and inlet velocity are analyzed. Results showed conical Cavitator with wedge angle of 30° has lesser drag coefficient and cavity length when compared to conical Cavitators with wedge angles 45° and 60°, spherical, disc and stepped disc Cavitators. Conical cavitator 60° and disc cavitator have the maximum cavity length but with higher drag coefficient. Also there is significant variation of supercavitation effect observed between inlet velocities of 32 m/s to 40 m/s.

  13. A tensor formulation of the equation of transfer for spherically symmetric flows. [radiative transfer in seven dimensional Riemannian space

    NASA Technical Reports Server (NTRS)

    Haisch, B. M.

    1976-01-01

    A tensor formulation of the equation of radiative transfer is derived in a seven-dimensional Riemannian space such that the resulting equation constitutes a divergence in any coordinate system. After being transformed to a spherically symmetric comoving coordinate system, the transfer equation contains partial derivatives in angle and frequency, as well as optical depth due to the effects of aberration and the Doppler shift. However, by virtue of the divergence form of this equation, the divergence theorem may be applied to yield a numerical differencing scheme which is expected to be stable and to conserve luminosity. It is shown that the equation of transfer derived by this method in a Lagrangian coordinate system may be reduced to that given by Castor (1972), although it is, of course, desirable to leave the equation in divergence form.

  14. High efficiency single transverse mode photonic band crystal lasers with low vertical divergence

    NASA Astrophysics Data System (ADS)

    Zhao, Shaoyu; Qu, Hongwei; Liu, Yun; Li, Lunhua; Chen, Yang; Zhou, Xuyan; Lin, Yuzhe; Liu, Anjin; Qi, Aiyi; Zheng, Wanhua

    2016-10-01

    High efficiency 980 nm longitudinal photonic band crystal (PBC) edge emitting laser diodes are designed and fabricated. The calculated results show that eight periods of Al0.1Ga0.9As and Al0.25Ga0.75As layer pairs can reduce the vertical far field divergence to 10.6° full width at half maximum (FWHM). The broad area (BA) lasers show a very high internal quantum efficiency ηi of 98% and low internal loss αi of 1.92 cm-1. Ridge waveguide (RW) lasers with 3 mm cavity length and 5um strip width provide 430 mW stable single transverse mode output at 500 mA injection current with power conversion efficiency (PCE) of 47% under continuous wave (CW) mode. A maximum PCE of 50% is obtained at the 300 mA injection current. A very low vertical far field divergence of 9.4° is obtained at 100 mA injection. At 500 mA injection, the vertical far field divergence increases to 11°, the beam quality factors M2 values are 1.707 in vertical direction and 1.769 in lateral direction.

  15. Spectral Analysis of Pressure, Noise and Vibration Velocity Measurement in Cavitation

    NASA Astrophysics Data System (ADS)

    Jablonská, Jana; Mahdal, Miroslav; Kozubková, Milada

    2017-12-01

    The article deals with experimental investigation of water cavitation in the convergent-divergent nozzle of rectangular cross-section. In practice, a quick and simple determination of cavitation is essential, especially if it is basic cavitation or cavitation generated additionally by the air being sucked. Air influences the formation, development and size of the cavity area in hydraulic elements. Removal or reduction of the cavity area is possible by structural changes of the element. In case of the cavitation with the suction air, it is necessary to find the source of the air and seal it. The pressure gradient, the flow, the oxygen content in the tank, and hence the air dissolved in the water, the air flow rate, the noise intensity and the vibration velocity on the nozzle wall were measured on laboratory equipment. From the selected measurements the frequency spectrum of the variation of the water flow of the cavity with cavitation without air saturation and with air saturation was compared and evaluated.

  16. Study of High Temperature Failure Mechanisms in Ceramics

    DTIC Science & Technology

    1988-06-01

    The major experimental 4 techniques employed in the program are the use of small- angle neutron scattering to characterize cavity nucleation and growth...creep crackgrowth. Of particular interest are the development of a stochastic model of grainboundary sliding and a micromechanical model that relates...Accession For NTIS GF.A&I DTIC T,’ IDi st ribut Ion’ ;i Avillii~diii l l= (~~ I. RESEARCH OBJECTIVES I. Utilize small- angle neutron scattering to

  17. Influence of thermal deformation in cavity mirrors on beam propagation characteristics of high-power slab lasers

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Xiao, Longsheng; Wang, Wei; Wu, Chao; Tang, Xiahui

    2018-01-01

    Owing to their good diffusion cooling and low sensitivity to misalignment, slab-shape negative-branch unstable-waveguide resonators are widely used for high-power lasers in industry. As the output beam of the resonator is astigmatic, an external beam shaping system is required. However, the transverse dimension of the cavity mirrors in the resonator is large. For a long-time operation, the heating of cavity mirrors can be non-uniform. This results in micro-deformation and a change in the radius of curvature of the cavity mirrors, and leads to an output beam of an offset optical axis of the resonator. It was found that a change in the radius of curvature of 0.1% (1 mm) caused by thermal deformation generates a transverse displacement of 1.65 mm at the spatial filter of the external beam shaping system, and an output power loss of more than 80%. This can potentially burn out the spatial filter. In order to analyze the effect of the offset optical axis of the beam on the external optical path, we analyzed the transverse displacement and rotational misalignments of the spatial filter. For instance, if the transverse displacement was 0.3 mm, the loss in the output power was 9.6% and a sidelobe appeared in the unstable direction. If the angle of rotation was 5°, the loss in the output power was 2%, and the poles were in the direction of the waveguide. Based on these results, by adjusting the bending mirror, the deviation angle of the output beam of the resonator cavity was corrected, in order to obtain maximum output power and optimal beam quality. Finally, the propagation characteristics of the corrected output beam were analyzed.

  18. An Excess Broadband Noise Observed with Overexpanded Jets

    NASA Technical Reports Server (NTRS)

    Zaman, K.B.M.Q.; Bridges, James E.; Brown, C.A.

    2009-01-01

    Results of an experiment on the characteristics of an excess noise occurring with convergent-divergent (C-D) nozzles in the overexpanded regime are presented in this paper. Data are obtained with five C-D nozzles and a convergent nozzle, all having the same exit diameter. The results clearly establish that the C-D nozzles are noisier in the low Mach number range of the overexpanded regime. This is evidenced from the directivity patterns as well as overall radiated sound power calculations. The excess noise is broadband in nature and is found to be more pronounced with nozzles having a larger half-angle of the divergent section. It appears to occur when a shock resides within the divergent section and results from random unsteady motion of the shock.

  19. Passively Q-switched side pumped monolithic ring laser

    NASA Technical Reports Server (NTRS)

    Li, Steven X. (Inventor)

    2012-01-01

    Disclosed herein are systems and methods for generating a side-pumped passively Q-switched non-planar ring oscillator. The method introduces a laser into a cavity of a crystal, the cavity having a round-trip path formed by a reflection at a dielectrically coated front surface, a first internal reflection at a first side surface of the crystal at a non-orthogonal angle with the front, a second internal reflection at a top surface of the crystal, and a third internal reflection at a second side surface of the crystal at a non-orthogonal angle with the front. The method side pumps the laser at the top or bottom surface with a side pump diode array beam and generates an output laser emanating at a location on the front surface. The design can include additional internal reflections to increase interaction with the side pump. Waste heat may be removed by mounting the crystal to a heatsink.

  20. Electron gun for a multiple beam klystron with magnetic compression of the electron beams

    DOEpatents

    Ives, R. Lawrence; Tran, Hien T; Bui, Thuc; Attarian, Adam; Tallis, William; David, John; Forstall, Virginia; Andujar, Cynthia; Blach, Noah T; Brown, David B; Gadson, Sean E; Kiley, Erin M; Read, Michael

    2013-10-01

    A multi-beam electron gun provides a plurality N of cathode assemblies comprising a cathode, anode, and focus electrode, each cathode assembly having a local cathode axis and also a central cathode point defined by the intersection of the local cathode axis with the emitting surface of the cathode. Each cathode is arranged with its central point positioned in a plane orthogonal to a device central axis, with each cathode central point an equal distance from the device axis and with an included angle of 360/N between each cathode central point. The local axis of each cathode has a cathode divergence angle with respect to the central axis which is set such that the diverging magnetic field from a solenoidal coil is less than 5 degrees with respect to the projection of the local cathode axis onto a cathode reference plane formed by the device axis and the central cathode point, and the local axis of each cathode is also set such that the angle formed between the cathode reference plane and the local cathode axis results in minimum spiraling in the path of the electron beams in a homogenous magnetic field region of the solenoidal field generator.

  1. An MDOE Investigation of Chevrons for Supersonic Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Bridges, James

    2010-01-01

    The impact of chevron design on the noise radiated from heated, overexpanded, supersonic jets is presented. The experiments used faceted bi-conic convergent-divergent nozzles with design Mach numbers equal to 1.51 and 1.65. The purpose of the facets was to simulate divergent seals on a military style nozzle. The nozzle throat diameter was equal to 4.5 inches. Modern Design of Experiment (MDOE) techniques were used to investigate the impact of chevron penetration, length, and width on the resulting acoustic radiation. All chevron configurations used 12 chevrons to match the number of facets in the nozzle. Most chevron designs resulted in increased broadband shock noise relative to the baseline nozzle. In the peak jet noise direction, the optimum chevron design reduced peak sound pressure levels by 4 dB relative to the baseline nozzle. The penetration was the parameter having the greatest impact on radiated noise at all observation angles. While increasing chevron penetration decreased acoustic radiation in the peak jet noise direction, broadband shock noise was adversely impacted. Decreasing chevron length increased noise at most observation angles. The impact of chevron width on radiated noise depended on frequency and observation angle.

  2. Injection Characteristics of Non-Swirling and Swirling Annular Liquid Sheets

    NASA Technical Reports Server (NTRS)

    Harper, Brent (Technical Monitor); Ibrahim, E. A.; McKinney, T. R.

    2004-01-01

    A simplified mathematical model, based on body-fitted coordinates, is formulated to study the evolution of non-swirling and swirling liquid sheet emanated from an annular nozzle in a quiescent surrounding medium. The model provides predictions of sheet trajectory, thickness and velocity at various liquid mass flow rates and liquid-swirler angles. It is found that a non-swirling annular sheet converges toward its centerline and assumes a bell shape as it moves downstream from the nozzle. The bell radius, and length are more pronounced at higher liquid mass flow rates. The thickness of the non-swirling annular sheet increases while its stream-wise velocity decreases with an increase in mass flow rate. The introduction of swirl results in the formation of a diverging hollow-cone sheet. The hollow-cone divergence from its centerline is enhanced by an increase in liquid mass flow rate or liquid-swirler angle. The hollow- cone sheet its radius, curvature and stream-wise velocity increase while its thickness and tangential velocity decrease as a result of increasing the mass flow rate or liquid-swirler angle. The present results are compared with previous studies and conclusions are drawn.

  3. Development of low angle grain boundaries in lightly deformed superconducting niobium and their influence on hydride distribution and flux perturbation

    NASA Astrophysics Data System (ADS)

    Sung, Z.-H.; Wang, M.; Polyanskii, A. A.; Santosh, C.; Balachandran, S.; Compton, C.; Larbalestier, D. C.; Bieler, T. R.; Lee, P. J.

    2017-05-01

    This study shows that low angle grain boundaries (LAGBs) can be created by small 5% strains in high purity (residual resistivity ratio ≥ 200) superconducting radio frequency (SRF)-grade single crystalline niobium (Nb) and that these boundaries act as hydrogen traps as indicated by the distribution of niobium hydrides (Nb1-xHx). Nb1-xHx is detrimental to SRF Nb cavities due to its normal conducting properties at cavity operating temperatures. By designing a single crystal tensile sample extracted from a large grain (>5 cm) Nb ingot slice for preferred slip on one slip plane, LAGBs and dense dislocation boundaries developed. With chemical surface treatments following standard SRF cavity fabrication practice, Nb1-xHx phases were densely precipitated at the LAGBs upon cryogenic cooling (8-10 K/min). Micro-crystallographic analysis confirmed heterogeneous hydride precipitation, which included significant hydrogen atom accumulation in LAGBs. Magneto-optical imaging analysis showed that these sites can then act as sites for both premature flux penetration and eventually flux trapping. However, this hydrogen related degradation at LAGBs did not completely disappear even after an 800 °C/2 h anneal typically used for hydrogen removal in SRF Nb cavities. These findings suggest that hydride precipitation at an LAGB is facilitated by a non-equilibrium concentration of vacancy-hydrogen (H) complexes aided by mechanical deformation and the hydride phase interferes with the recovery process under 800 °C annealing.

  4. Development of low angle grain boundaries in lightly deformed superconducting niobium and their influence on hydride distribution and flux perturbation

    DOE PAGES

    Sung, Z. -H.; Wang, M.; Polyanskii, A. A.; ...

    2017-05-19

    This study shows that low angle grain boundaries (LAGBs) can be created by small 5% strains in high purity (RRR ≥ 200) SRF-grade single crystalline niobium (Nb) and that these boundaries act as hydrogen traps as indicated by the distribution of niobium hydrides (Nb 1-xH x). Nb 1-xH x is detrimental to superconducting radio frequency (SRF) Nb cavities due to its normal conducting properties at cavity operating temperatures. By designing a single crystal tensile sample extracted from a large grain (>5 cm) Nb ingot slice for preferred slip on one slip plane, LAGBs and dense dislocation boundaries developed. With chemicalmore » surface treatments following standard SRF cavity fabrication practice, Nb1-xHx phases were densely precipitated at the LAGBs upon cryogenic cooling (8-10 K/min). Micro-crystallographic analysis confirmed heterogeneous hydride precipitation, which included significant hydrogen atom accumulation in LAGBs. Magneto-optical imaging (MOI) analysis showed that these sites can then act as sites for both premature flux penetration and eventually flux trapping. However, this hydrogen related degradation at LAGBs did not completely disappear even after a 800 °C/2hrs anneal typically used for hydrogen removal in SRF Nb cavities. These findings suggest that hydride precipitation at a LAGB is facilitated by a non-equilibrium concentration of vacancy-hydrogen (H) complexes aided by mechanical deformation and the hydride phase interferes with the recovery process under 800°C annealing.« less

  5. An integrative taxonomic study reveals a new species of Tylodelphys Diesing, 1950 (Digenea: Diplostomidae) in central and northern Mexico.

    PubMed

    García-Varela, M; Sereno-Uribe, A L; Pinacho-Pinacho, C D; Hernández-Cruz, E; Pérez-Ponce de León, G

    2016-11-01

    Tylodelphys aztecae n. sp. (Digenea: Diplostomidae) is described from adult specimens obtained from the intestine of the pied-billed grebe (Podilymbus podiceps) and the metacercariae found in the body cavity of freshwater fishes of the families Goodeidae and Cyprinidae in eight localities across central and northern Mexico. The new species is mainly distinguished from the other four described species of Tylodelphys from the Americas (T. adulta, T. americana, T. elongata and T. brevis) by having a forebody slightly concave, a larger ventral sucker, two larger pseudosuckers and by having between 2 and 7 eggs in the uterus. Partial DNA sequences of the mitochondrial gene cytochrome c oxidase subunit I (cox1), and the internal transcribed spacers (ITS1+5.8S+ ITS2) of the ribosomal DNA, were generated for both developmental stages and compared with available sequences in GenBank of other congeners. The genetic divergence estimated among Tylodelphys aztecae n. sp. and other congeneric species varied from 12 to 15% for cox1, and from 3 to 11% for ITS. In contrast, the genetic divergence among metacercariae and adults of the new species was very low, ranging between 0 and 1% for cox1 and between 0 and 0.3% for ITS. Phylogenetic analyses inferred with both molecular markers using maximum likelihood and Bayesian inference placed the adults and their metacercariae in a single clade, confirming that both stages are conspecific. The morphological evidence and the genetic divergence, in combination with the reciprocal monophyly in both phylogenetic trees, support the hypothesis that the diplostomids found in the intestines of the pied-billed grebe bird and the body cavity from goodeid and cyprinid fishes in central and northern Mexico represent a new species.

  6. Effects of changing canopy directional reflectance on feature selection

    NASA Technical Reports Server (NTRS)

    Smith, J. A.; Oliver, R. E.; Kilpela, O. E.

    1973-01-01

    The use of a Monte Carlo model for generating sample directional reflectance data for two simplified target canopies at two different solar positions is reported. Successive iterations through the model permit the calculation of a mean vector and covariance matrix for canopy reflectance for varied sensor view angles. These data may then be used to calculate the divergence between the target distributions for various wavelength combinations and for these view angles. Results of a feature selection analysis indicate that different sets of wavelengths are optimum for target discrimination depending on sensor view angle and that the targets may be more easily discriminated for some scan angles than others. The time-varying behavior of these results is also pointed out.

  7. On cat's eyes and multiple disjoint cells natural convection flow in tall tilted cavities

    NASA Astrophysics Data System (ADS)

    Báez, Elsa; Nicolás, Alfredo

    2014-10-01

    Natural convection fluid flow in air-filled tall tilted cavities is studied numerically with a direct projection method applied on the unsteady Boussinesq approximation in primitive variables. The study is focused on the so called cat's eyes and multiple disjoint cells as the aspect ratio A and the angle of inclination ϕ of the cavity vary. Results have already been reported with primitive and stream function-vorticity variables. The former are validated with the latter ones, which in turn were validated through mesh size and time-step independence studies. The new results complemented with the previous ones lead to find out the fluid motion and heat transfer invariant properties of this thermal phenomenon, which is the novelty here.

  8. Simulations of the failure scenarios of the crab cavities for the nominal scheme of the LHC

    NASA Astrophysics Data System (ADS)

    Yee, B.; Calaga, R.; Zimmermann, F.; Lopez, R.

    2012-02-01

    The Crab Cavity (CC) represents a possible solution to the problem of the reduction in luminosity due to the impact angle of two colliding beams. The CC is a Radio Frequency (RF) superconducting cavity which applies a transversal kick into a bunch of particles producing a rotation in order to have a head-on collision to improve the luminosity. For this reason people at the Beams Department-Accelerators & Beams Physics of CERN (BE-ABP) have studied the implementation of the CC scheme at the LHC. It is essential to study the failure scenarios and the damage that can be produced to the lattice devices. We have performed simulations of these failures for the nominal scheme.

  9. Vortex gas lens

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Berschauer, Andrew; Parker, Timothy W.; Vickers, Jesse E.

    1989-01-01

    A vortex gas lens concept is presented. Such a lens has a potential power density capability of 10 to the 9th - 10 to the 10th w/sq cm. An experimental prototype was constructed, and the divergence half angle of the exiting beam was measured as a function of the lens operating parameters. Reasonably good agreement is found between the experimental results and theoretical calculations. The expanded beam was observed to be steady, and no strong, potentially beam-degrading jets were found to issue from the ends of the lens. Estimates of random beam deflection angles to be expected due to boundary layer noise are presented; these angles are very small.

  10. A see-through holographic head-mounted display with the large viewing angle

    NASA Astrophysics Data System (ADS)

    Chen, Zhidong; sang, Xinzhu; Lin, Qiaojun; Li, Jin; Yu, Xunbo; Gao, Xin; Yan, Binbin; Wang, Kuiru; Yu, Chongxiu; Xie, Songlin

    2017-02-01

    A novel solution for the large view angle holographic head-mounted display (HHMD) is presented. Divergent light is used for the hologram illumination to construct a large size three-dimensional object outside the display in a short distance. A designed project-type lens with large numerical aperture projects the object constructed by the hologram to its real location. The presented solution can realize a compact HHMD system with a large field of view. The basic principle and the structure of the system are described. An augmented reality (AR) prototype with the size of 50 mm×40 mm and the view angle above 60° is demonstrated.

  11. ELECTRIC PHASE ANGLE OF CELL MEMBRANES

    PubMed Central

    Cole, Kenneth S.

    1932-01-01

    From the theory of an electric network containing any combination of resistances and a single variable impedance element having a constant phase angle independent of frequency, it is shown that the graph of the terminal series reactance against the resistance is an arc of a circle with the position of the center depending upon the phase angle of the variable element. If it be assumed that biological systems are equivalent to such a network, the hypotheses are supported at low and intermediate frequencies by data on red blood cells, muscle, nerve, and potato. For some tissues there is a marked divergence from the circle at high frequencies, which is not interpreted. PMID:19872673

  12. Ice-Shelf Melting Around Antarctica

    NASA Astrophysics Data System (ADS)

    Rignot, E.; Jacobs, S.; Mouginot, J.; Scheuchl, B.

    2013-07-01

    We compare the volume flux divergence of Antarctic ice shelves in 2007 and 2008 with 1979 to 2010 surface accumulation and 2003 to 2008 thinning to determine their rates of melting and mass balance. Basal melt of 1325 ± 235 gigatons per year (Gt/year) exceeds a calving flux of 1089 ± 139 Gt/year, making ice-shelf melting the largest ablation process in Antarctica. The giant cold-cavity Ross, Filchner, and Ronne ice shelves covering two-thirds of the total ice-shelf area account for only 15% of net melting. Half of the meltwater comes from 10 small, warm-cavity Southeast Pacific ice shelves occupying 8% of the area. A similar high melt/area ratio is found for six East Antarctic ice shelves, implying undocumented strong ocean thermal forcing on their deep grounding lines.

  13. Flight Tests of A 1/8-Scale Model of the Bell D-188A Jet VTOL Airplane

    NASA Technical Reports Server (NTRS)

    Smith, Charles C., Jr.

    1959-01-01

    The Bell D-188A VTOL airplane is a horizontal-attitude VTOL fighter with tilting engine nacelles at the tips of a low-aspect-ratio unswept wing and additional engines in the fuselage. The model could be flown smoothly in hovering and transition flight. In forward flight the model could be flown smoothly at the lower angles of attack but experienced an uncontrollable directional divergence at angles of attack above about 16 deg.

  14. Photoluminescence Mapping and Angle-Resolved Photoluminescence of MBE-Grown InGaAs/GaAs RC LED and VCSEL Structures

    DTIC Science & Technology

    2002-06-03

    resonant-cavity light-emitting diodes (RC LEDs) and vertical-cavity surface-emitting lasers ( VCSELs )] fabricated from molecular beam epitaxy (MBE)-grown...grown 8470-631. by molecular beam epitaxy (MBE) using a Riber 32P E-mail address: muszal@ite.waw.pl (0. Muszalski). reactor. Details of the growth can be... molecular beams hit the center of a rotating sion features of RC LED and VCSEL structures, as well sample. However, due to the transversal distribution of as

  15. Beam Shaped Single Mode Spiral Lasers

    DTIC Science & Technology

    2011-12-31

    θ// =30° in the plane of the cavity. The measured far-field profiles were in good agreement with simulations (C. Yan et al. Applied Physics Letters...gallery mode lasers with elliptical notched resonators The PI discovered that elliptical resonators with a notch at the boundary support in- plane ...model system, an in- plane beam divergence as small as 6 degrees with a peak optical power of ~ 5 mW at room temperature was been demonstrated. The

  16. A Resolved Near-Infrared Image of the Inner Cavity in the GM Aur Transitional Disk

    NASA Technical Reports Server (NTRS)

    Oh, Daehyeon; Hashimoto, Jun; Carson, Joseph C.; Janson, Markus; Kwon, Jungmi; Nakagawa, Takao; Mayama, Satoshi; Uyama, Taichi; Grady, Carol A.; McElwain, Michael W.

    2016-01-01

    We present high-contrast H-band polarized intensity (PI) images of the transitional disk around the young solar like star GM Aur. The near-infrared direct imaging of the disk was derived by polarimetric differential imaging using the Subaru 8.2 m Telescope and HiCIAO. An angular resolution and an inner working angle of 0 07 and radius approximately 0 05, respectively, were obtained. We clearly resolved a large inner cavity, with a measured radius of 18+/ 2 au, which is smaller than that of a submillimeter interferometric image (28 au). This discrepancy in the cavity radii at near-infrared and submillimeter wavelengths may be caused by a 34M(sub Jup) planet about 20 au away from the star, near the edge of the cavity. The presence of a near-infrared inner cavity is a strong constraint on hypotheses for inner cavity formation in a transitional disk. A dust filtration mechanism has been proposed to explain the large cavity in the submillimeter image, but our results suggest that this mechanism must be combined with an additional process. We found that the PI slope of the outer disk is significantly different from the intensity slope obtained from HSTNICMOS, and this difference may indicate the grain growth process in the disk.

  17. Wavelength-Agile External-Cavity Diode Laser for DWDM

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.; Bomse, David S.

    2006-01-01

    A prototype external-cavity diode laser (ECDL) has been developed for communication systems utilizing dense wavelength- division multiplexing (DWDM). This ECDL is an updated version of the ECDL reported in Wavelength-Agile External- Cavity Diode Laser (LEW-17090), NASA Tech Briefs, Vol. 25, No. 11 (November 2001), page 14a. To recapitulate: The wavelength-agile ECDL combines the stability of an external-cavity laser with the wavelength agility of a diode laser. Wavelength is modulated by modulating the injection current of the diode-laser gain element. The external cavity is a Littman-Metcalf resonator, in which the zeroth-order output from a diffraction grating is used as the laser output and the first-order-diffracted light is retro-reflected by a cavity feedback mirror, which establishes one end of the resonator. The other end of the resonator is the output surface of a Fabry-Perot resonator that constitutes the diode-laser gain element. Wavelength is selected by choosing the angle of the diffracted return beam, as determined by position of the feedback mirror. The present wavelength-agile ECDL is distinguished by design details that enable coverage of all 60 channels, separated by 100-GHz frequency intervals, that are specified in DWDM standards.

  18. All-Optical Electron Injector

    NASA Astrophysics Data System (ADS)

    Umstadter, Donald

    2002-04-01

    Conventional electron acceleration at a place like SLAC needs miles to boost particles up to 50 GeV energies by feeding microwaves into a succession of cavities. In recent years we have been developing alternative acceleration concepts, based on lasers focused into plasmas, that might someday do the job in a much smaller space without the use of cavities. Our near term goal is to produce a first stage accelerator that outputs electron beams with lower energy but with properties that are more suitable for x-ray sources, such as those based on Compton scattering or the proposed linear synchrotrons at SLAC and DESY. In the plasma wakefield approach, for example, a terawatt laser beam is focused onto a gas jet, ionizing it and driving plasma waves that move at relativistic speeds. If timed just right, electrons in the plasma can surf the plasma waves to high speeds, as high as 100 MeV in the space of only a millimeter. NanoCoulombs of charge have been accelerated in well-collimated beams (1-degree divergence angle). One problem with this concept is the mismatch between the electron source (sometimes an external photocathode, sometimes an uncontrolled cloud of electrons from the plasma itself) and the incoming laser pulse. We will be reporting methods for generating electrons in a controllable way, namely the use of a pair of crossed laser beams which position, heat, and synchronize the insertion of electrons into the plasma wave. We show that this "all-optical injection" increases the number and energy of energetic electrons as compared with use of only one laser beam. It has been shown theoretically that this approach can ultimately be used to reduce the electron energy spread to a few percent. Besides potential applications to particle physics and x-ray lasers, high gradient acceleration schemes are also expected to benefit the production of medical radioisotopes and the ignition of thermonuclear fusion reactions.

  19. The experimental and numerical investigation of pistol bullet penetrating soft tissue simulant.

    PubMed

    Wang, Yongjuan; Shi, Xiaoning; Chen, Aijun; Xu, Cheng

    2015-04-01

    Gelatin, a representative simulant for soft tissue of the human body, was used to study the effects of 9 mm pistol bullet's penetration. The behavior of a bullet penetrating gelatin was quantified by the temporary cavity sizes in ballistic gelatin and the pressure values of bullet's impact. A numerical simulation model of a bullet penetrating the soft tissue simulant gelatin was built using the finite element method (FEM). The model was validated by the comparison between the numerical results and the experimental results. During a bullet penetrating ballistic gelatin, four stages were clearly observed in both the experiment and the numerical simulation: a smooth attenuation stage, a rolling stage, a full penetration stage, and a stage of expansion and contraction. The cavity evolution, equivalent stress field and the strain field in gelatin were analyzed by numerical simulation. Moreover, the effects of the bullet's impact velocities and angles of incidence on the temporary cavity in gelatin, its velocity attenuation, and its rolling angle were investigated, as well as the bullet's resistance and energy variation. The physical process and the interactive mechanism during a pistol bullet penetrating gelatin were comprehensively revealed. This may be significant for research in wound ballistics. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Development of X-Ray Laser Media. Measurement of Gain and Development of Cavity Resonators for Wavelengths near 130 Angstroms. Volume 3.

    DTIC Science & Technology

    1983-02-01

    ray microscope (Kirkpatrick and Baez, 1948). At present such systems use single layer coatings illminated at very glancing angles. Ikltilayer coatings...might be useful as a means of operating such a system at an increased angle of incidence to the surface (this would reduce the geometrical aberrations...of the focussing elements); however our analysis of the LLE system indicates that one will have to accept a trade-off between collection aperture

  1. High-Power, Widely-Tunable Cr2+:ZnSe Master Oscillator Power Amplifier Systems

    DTIC Science & Technology

    2010-05-01

    Z-cavity to compensate for the increasing astigmatism from the Brewster - angle thermal lens in the gain element. However, it should be noted that the...crystal at Brewster’s angle carries with it some negative astigmatism effects which are compounded by thermal lensing in the crystal which is now at an...respect to physical properties [13, 14]. Power scaling of chromium lasers has long been hampered by the problem of thermal lensing due to the high thermo

  2. Laser Demonstration and Performance Characterization of an Optically Pumped Alkali Laser System

    DTIC Science & Technology

    2010-09-01

    long by 2.54 cm wide with Brewster angle quartz widows. The cell was housed in an aluminum oven with independent control of the temperatures of the...line. A 12.7 cm long Brewster angled glass cell 2.5 cm in diameter contained the rubidium vapor and was housed in an aluminum oven to provide...hypothesize that this increase in temperature can result in thermal lensing within the laser cavity which could change the laser configuration by

  3. Retroreflective Phase Retardation Prisms.

    DTIC Science & Technology

    1981-06-01

    resonant cavity of a 1.064 Mm laser. This report shows that it is possible to coat the reflecting surfaces of a porro prism so that incident plane...with controlled phase retardation can be made by coating each reflecting surface of a porro prism with a single dielectric film. The amount of phase...of angle of incidence (n, < n2) S. Phase change on reflection as a function of angle of incidence (n" n ) [RL-0202-’R 6. Porro prism 7. Phase change

  4. Space Shuttle Debris Impact Tool Assessment Using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard; Rayos, Elonsio M.; Campbell, Charles H.; Rickman, Steven L.; Larsen, Curtis E.

    2007-01-01

    Complex computer codes are used to estimate thermal and structural reentry loads on the Shuttle Orbiter induced by ice and foam debris impact during ascent. Such debris can create cavities in the Shuttle Thermal Protection System. The sizes and shapes of these cavities are approximated to accommodate a code limitation that requires simple "shoebox" geometries to describe the cavities -- rectangular areas and planar walls that are at constant angles with respect to vertical. These approximations induce uncertainty in the code results. The Modern Design of Experiments (MDOE) has recently been applied to develop a series of resource-minimal computational experiments designed to generate low-order polynomial graduating functions to approximate the more complex underlying codes. These polynomial functions were then used to propagate cavity geometry errors to estimate the uncertainty they induce in the reentry load calculations performed by the underlying code. This paper describes a methodological study focused on evaluating the application of MDOE to future operational codes in a rapid and low-cost way to assess the effects of cavity geometry uncertainty.

  5. Velocity field measurements in oblique static divergent vocal fold models

    NASA Astrophysics Data System (ADS)

    Erath, Byron

    2005-11-01

    During normal phonation, the vocal fold cycle is characterized by the glottal opening transitioning from a convergent to a divergent passage and then closing before the cycle is repeated. Under ordinary phonatory conditions, both vocal folds, which form the glottal passage, move in phase with each other, creating a time-varying symmetric opening. However, abnormal pathological conditions, such as unilateral paralysis, and polyps, can result in geometrical asymmetries between the vocal folds throughout the phonatory cycle. This study investigates pulsatile flow fields through 7.5 times life-size vocal fold models with included divergence angles of 5 to 30 degrees, and obliquities between the vocal folds of up to 15 degrees. Flow conditions were scaled to match physiological parameters. Data were taken at the anterior posterior mid-plane using phase-averaged Particle Image Velocimetry (PIV). Viscous flow phenomena including the Coanda effect, flow separation points, and jet "flapping" were investigated. The results are compared to previously reported work of flow through symmetric divergent vocal fold models.

  6. Speckle reduction using deformable mirrors with diffusers in a laser pico-projector.

    PubMed

    Chen, Hsuan-An; Pan, Jui-Wen; Yang, Zu-Po

    2017-07-24

    We propose a design for speckle reduction in a laser pico-projector adopting diffusers and deformable mirrors. This research focuses on speckle noise suppression by changing the angle of divergence of the diffuser. Moreover, the speckle contrast value can be further reduced by the addition of a deformable mirror. The speckle reduction ability obtained using diffusers with different divergence angles is compared. Three types of diffuser designs are compared in the experiments. For Type 1 which uses a circular symmetric diffuser the speckle contrast value can be decreased to 0.0264. For Type 2, the speckle contrast value can be reduced to 0.0267 because of the inclusion of an elliptical distribution diffuser. With Type 3 which includes a combination of the circular distribution diffuser and elliptical distribution diffuser, the speckle contrast value can be reduced to 0.0236. For all three types, the speckle contrast value is lower than 0.05. Under this speckle value, the speckle phenomenon is invisible to the human eye.

  7. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers.

    PubMed

    Arbabi, Amir; Briggs, Ryan M; Horie, Yu; Bagheri, Mahmood; Faraon, Andrei

    2015-12-28

    Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. Here we report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventional UV binary lithography. Mid-infrared radiation from a 4.8 μm distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36° and beam quality factor of M2=1.02.

  8. Analysis of operational limit of an aircraft: An aeroelastic approach

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Mehedi; Hassan, M. D. Mehedi; Sarrowar, S. M. Bayazid; Faisal, Kh. Md.; Ahmed, Sheikh Reaz, Dr.

    2017-06-01

    In classical theory of elasticity, external loading acting on the body is independent of deformation of the body. But, in aeroelasticity, aerodynamic forces depend on the attitude of the body relative to the flow. Aircraft's are subjected to a range of static loads resulting from equilibrium or steady flight maneuvers such as coordinated level turn, steady pitch and bank rate, steady and level flight. Interaction of these loads with elastic forces of aircraft structure creates some aeroelastic phenomena. In this paper, we have summarized recent developments in the area of aeroelasticity. A numerical approach has been applied for finding divergence speed, a static aeroelastic phenomena, of a typical aircraft. This paper also involves graphical representations of constraints on load factor and bank angle during different steady flight maneuvers taking flexibility into account and comparing it with the value without flexibility. Effect of wing skin thickness, spar web thickness and position of flexural axis of wing on this divergence speed as well as load factor and bank angle has also been observed using MATLAB.

  9. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers

    DOE PAGES

    Arbabi, Amir; Briggs, Ryan M.; Horie, Yu; ...

    2015-01-01

    Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. We report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventionalmore » UV binary lithography. Mid-infrared radiation from a 4.8 μm distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36° and beam quality factor of M² =1.02.« less

  10. Control torque generation of a CMG-based small satellite with MTGAC system: a trade-off study

    NASA Astrophysics Data System (ADS)

    Salleh, M. B.; Suhadis, N. M.; Rajendran, P.; Mazlan, N. M.

    2018-05-01

    In this paper, the gimbal angle compensation method using magnetic control law has been adopted for a small satellite operating in low earth orbit under disturbance toques influence. Three light weight magnetic torquers have been used to generate the magnetic compensation torque to bring diverge gimbals at preferable angle. The magnetic control torque required to compensate the gimbal angle is based on the gimbal error rate which depends on the gimbal angle converging time. A simulation study has been performed without and with the MTGAC system to investigate the amount of generated control torque as a trade-off between the power consumption, attitude control performance and CMG dynamic performance. Numerical simulations show that the satellite with the MTGAC system generates more control torques which leads to the additional power requirement but in return results in a favorable attitude control performance and gimbal angle management.

  11. The influence of finite cavities on the sound insulation of double-plate structures.

    PubMed

    Brunskog, Jonas

    2005-06-01

    Lightweight walls are often designed as frameworks of studs with plates on each side--a double-plate structure. The studs constitute boundaries for the cavities, thereby both affecting the sound transmission directly by short-circuiting the plates, and indirectly by disturbing the sound field between the plates. The paper presents a deterministic prediction model for airborne sound insulation including both effects of the studs. A spatial transform technique is used, taking advantage of the periodicity. The acoustic field inside the cavities is expanded by means of cosine-series. The transmission coefficient (angle-dependent and diffuse) and transmission loss are studied. Numerical examples are presented and comparisons with measurement are performed. The result indicates that a reasonably good agreement between theory and measurement can be achieved.

  12. Application of the CSCM method to the design of wedge cavities. [Conservative Supra Characteristic Method

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Nystrom, G. A.; Bardina, J.; Lombard, C. K.

    1987-01-01

    This paper describes the application of the conservative supra characteristic method (CSCM) to predict the flow around two-dimensional slot injection cooled cavities in hypersonic flow. Seven different numerical solutions are presented that model three different experimental designs. The calculations manifest outer flow conditions including the effects of nozzle/lip geometry, angle of attack, nozzle inlet conditions, boundary and shear layer growth and turbulance on the surrounding flow. The calculations were performed for analysis prior to wind tunnel testing for sensitivity studies early in the design process. Qualitative and quantitative understanding of the flows for each of the cavity designs and design recommendations are provided. The present paper demonstrates the ability of numerical schemes, such as the CSCM method, to play a significant role in the design process.

  13. Transverse emittance growth due to rf noise in the high-luminosity LHC crab cavities

    NASA Astrophysics Data System (ADS)

    Baudrenghien, P.; Mastoridis, T.

    2015-10-01

    The high-luminosity LHC (HiLumi LHC) upgrade with planned operation from 2025 onward has a goal of achieving a tenfold increase in the number of recorded collisions thanks to a doubling of the intensity per bunch (2.2e11 protons) and a reduction of β* to 15 cm. Such an increase would significantly expedite new discoveries and exploration. To avoid detrimental effects from long-range beam-beam interactions, the half crossing angle must be increased to 295 microrad. Without bunch crabbing, this large crossing angle and small transverse beam size would result in a luminosity reduction factor of 0.3 (Piwinski angle). Therefore, crab cavities are an important component of the LHC upgrade, and will contribute strongly to achieving an increase in the number of recorded collisions. The proposed crab cavities are electromagnetic devices with a resonance in the radio frequency (rf) region of the spectrum (400.789 MHz). They cause a kick perpendicular to the direction of motion (transverse kick) to restore an effective head-on collision between the particle beams, thereby restoring the geometric factor to 0.8 [K. Oide and K. Yokoya, Phys. Rev. A 40, 315 (1989).]. Noise injected through the rf/low level rf (llrf) system could cause significant transverse emittance growth and limit luminosity lifetime. In this work, a theoretical relationship between the phase and amplitude rf noise spectrum and the transverse emittance growth rate is derived, for a hadron machine assuming zero synchrotron radiation damping and broadband rf noise, excluding infinitely narrow spectral lines. This derivation is for a single beam. Both amplitude and phase noise are investigated. The potential improvement in the presence of the transverse damper is also investigated.

  14. Thermally stable surface-emitting tilted wave laser

    NASA Astrophysics Data System (ADS)

    Shchukin, V. A.; Ledentsov, N. N.; Kalosha, V. P.; Ledentsov, N.; Agustin, M.; Kropp, J. R.; Maximov, M. V.; Zubov, F. I.; Shernyakov, Yu. M.; Payusov, A. S.; Gordeev, N. Yu; Kulagina, M. M.; Zhukov, A. E.

    2018-02-01

    Novel lasing modes in a vertical-cavity surface-emitting laser (VCSEL)-type structure based on an antiwaveguding cavity are studied. Such a VCSEL cavity has an effective refractive index in the cavity region lower than the average index of the distributed Bragg reflectors (DBRs). Such device in a stripe geometry does not support in-plane waveguiding mode, and all modes with a high Q-factor are exclusively VCSEL-like modes with similar near field profile in the vertical direction. A GaAlAs-based VCSEL structure studied contains a resonant cavity with multiple GaInAs quantum wells as an active region. The VCSEL structure is processed as an edge-emitting laser with cleaved facets and top contact representing a non-alloyed metal grid. Rectangular-shaped 400x400 µm pieces are cleaved with perpendicular facets. The contact grid region has a total width of 70 μm. 7 μm-wide metal stripes serve as non-alloyed metal contact and form periodic rectangular openings having a size of 10x40 μm. Surface emission through the windows on top of the chip is measured at temperatures from 90 to 380 K. Three different types of modes are observed. The longest wavelength mode (mode A) is a VCSEL-like mode at 854 nm emitting normal to the surface with a full width at half maximum (FWHM) of the far field 10°. Accordingly the lasing wavelength demonstrates a thermal shift of the wavelength of 0.06 nm/K. Mode B is at shorter wavelengths of 840 nm at room temperature, emitting light at two symmetric lobes at tilt angles 40° with respect to the normal to the surface in the directions parallel to the stripe. The emission wavelength of this mode shifts at a rate 0.22 nm/K according to the GaAs bandgap shift. The angle of mode B with respect to the normal reduces as the wavelength approaches the vertical cavity etalon wavelength and this mode finally merges with the VCSEL mode. Mode B hops between different lateral modes of the VCSEL forming a dense spectrum due to significant longitudinal cavity length, and the thermal shift of its wavelength is governed by the shift of the gain spectrum. The most interesting observation is Mode C, which shifts at a rate 0.06 nm/K and has a spectral width of 1 nm. Mode C matches the wavelength of the critical angle for total internal reflection for light impinging from semiconductor chip on semiconductor/air interface and propagates essentially as an in-plane mode. According to modeling data we conclude that the lasing mode represents a coupled state between the TM-polarized surface-trapped optical mode and the VCSEL cavity mode. The resulting mode has an extended near field zone and low propagation losses. The intensity of the mode drastically enhances once is appears at resonance with Mode B. A clear threshold is revealed in the L-I curves of all modes and there is a strong competition of the lasing mechanisms once the gain maximum is scanned over the related wavelength range by temperature change.

  15. Angle-dependent modulated spectral peaks of proton beams generated in ultrashort intense laser-solid interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, L. N.; Hu, Z. D.; Zheng, Y.

    2014-09-15

    Proton acceleration from 4 μm thick aluminum foils irradiated by 30-TW Ti:sapphire laser pulses is investigated using an angle-resolved proton energy spectrometer. We find that a modulated spectral peak at ∼0.82 MeV is presented at 2.5° off the target normal direction. The divergence angle of the modulated zone is 3.8°. Two-dimensional particle-in-cell simulations reveal that self-generated toroidal magnetic field at the rear surface of the target foil is responsible for the modulated spectral feature. The field deflects the low energy protons, resulting in the modulated energy spectrum with certain peaks.

  16. High-Absorptance Radiative Heat Sink

    NASA Technical Reports Server (NTRS)

    Cafferty, T.

    1983-01-01

    Absorptance of black-painted open-cell aluminum honeycomb improved by cutting honeycomb at angle or bias rather than straight across. This ensures honeycomb cavities escapes. At each reflection radiation attenuated by absorption. Applications include space-background simulators, space radiators, solar absorbers, and passive coolers for terrestrial use.

  17. Tunability of temperature-dependent absorption in a graphene-based hybrid nanostructure cavity

    NASA Astrophysics Data System (ADS)

    Rashidi, Arezou; Namdar, Abdolrahman

    2018-04-01

    Enhanced absorption is obtained in a hybrid nanostructure composed of graphene and one-dimensional photonic crystal as a cavity in the visible wavelength range thanks to the localized electric field around the defect layers. The temperature-induced wavelength shift is revealed in the absorption spectra in which the peak wavelength is red-shifted by increasing the temperature. This temperature dependence comes from the thermal expansion and thermo-optical effects in the constituent layers of the structure. Moreover, the absorption peaks can be adjusted by varying the incident angle. The results show that absorption is sensitive to TE/TM polarization and its peak values for the TE mode are higher than the TM case. Also, the peak wavelength is blue-shifted by increasing the incident angle for both polarizations. Finally, the possibility of tuning the absorption using the electro-optical response of graphene sheets is discussed in detail. We believe our study may be beneficial for designing tunable graphene-based temperature-sensitive absorbers.

  18. Test Report for MSFC Test No. 83-2: Pressure scaled water impact test of a 12.5 inch diameter model of the Space Shuttle solid rocket booster filament wound case and external TVC PCD

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Water impact tests using a 12.5 inch diameter model representing a 8.56 percent scale of the Space Shuttle Solid Rocket Booster configuration were conducted. The two primary objectives of this SRB scale model water impact test program were: 1. Obtain cavity collapse applied pressure distributions for the 8.56 percent rigid body scale model FWC pressure magnitudes as a function of full-scale initial impact conditions at vertical velocities from 65 to 85 ft/sec, horizontal velocities from 0 to 45 ft/sec, and angles from -10 to +10 degrees. 2. Obtain rigid body applied pressures on the TVC pod and aft skirt internal stiffener rings at initial impact and cavity collapse loading events. In addition, nozzle loads were measured. Full scale vertical velocities of 65 to 85 ft/sec, horizontal velocities of 0 to 45 ft/sec, and impact angles from -10 to +10 degrees simulated.

  19. Multi-operational tuneable Q-switched mode-locking Er fibre laser

    NASA Astrophysics Data System (ADS)

    Qamar, F. Z.

    2018-01-01

    A wavelength-spacing tuneable, Q-switched mode-locking (QML) erbium-doped fibre laser based on non-linear polarization rotation controlled by four waveplates and a cube polarizer is proposed. A mode-locked pulse train using two quarter-wave plates and a half-wave plate (HWP) is obtained first, and then an extra HWP is inserted into the cavity to produce different operation regimes. The evolutions of temporal and spectral dynamics with different orientation angles of the extra HWP are investigated. A fully modulated stable QML pulse train is observed experimentally. This is, to the author’s best knowledge, the first experimental work reporting QML operation without adding an extra saturable absorber inside the laser cavity. Multi-wavelength pulse laser operation, multi-pulse train continuous-wave mode-locking operation and pulse-splitting operations are also reported at certain HWP angles. The observed operational dynamics are interpreted as a mutual interaction of dispersion, non-linear effect and insertion loss. This work provides a new mechanism for fabricating cheap tuneable multi-wavelength lasers with QML pulses.

  20. High-temperature, high-pressure oxygen metering valve

    NASA Technical Reports Server (NTRS)

    Christianson, Rollin C. (Inventor); Lycou, Peter P. (Inventor); Daniel, James A. (Inventor)

    1993-01-01

    A control valve includes a body defining a central cavity arranged between a fluid inlet and outwardly-diverging first and second fluid outlets respectively disposed in a common transverse plane. A valve member is arranged in the cavity for rotation between first and second operating positions where a transverse fluid passage through the valve member alternatively communicates the fluid inlet with one or the other of the fluid outlets. To minimize fluid turbulence when the valve member is rotated to an alternate operating position, the fluid passage has a convergent entrance for maintaining the passage in permanent communication with the fluid inlet as well as an oblong exit opening with spaced side walls for enabling the exit opening to temporarily span the first and second fluid outlets as the valve member is turned between its respective operating positions.

  1. Cavity enhanced eigenmode multiplexing for volume holographic data storage

    NASA Astrophysics Data System (ADS)

    Miller, Bo E.; Takashima, Yuzuru

    2017-08-01

    Previously, we proposed and experimentally demonstrated enhanced recording speeds by using a resonant optical cavity to semi-passively increase the reference beam power while recording image bearing holograms. In addition to enhancing the reference beam power the cavity supports the orthogonal reference beam families of its eigenmodes, which can be used as a degree of freedom to multiplex data pages and increase storage densities for volume Holographic Data Storage Systems (HDSS). While keeping the increased recording speed of a cavity enhanced reference arm, image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at two Bragg angles for expedited recording of four multiplexed holograms. We experimentally confirmed write rates are enhanced by an average factor of 1.1, and page crosstalk is about 2.5%. This hybrid multiplexing opens up a pathway to increase storage density while minimizing modifications to current angular multiplexing HDSS.

  2. [Comparison of clonal architecture between two divergent Leymus chinensis types in Songnen grassland].

    PubMed

    He, Nianpeng; Wu, Ling; Zhou, Daowei

    2004-12-01

    This paper studied the clonal architecture of two divergent Leymus chinensis types (grey-green type and yellow-green type) in Songnen grassland, and compared their internode length, spacer length, interbranching length, interbranching angle, and ramet population density and height under the same habitat. The results showed that there was no significant difference in these clonal characteristics except spacer length and ramet population density between the two types of L. chinensis, and yellow-green type, with less spacer length and more ramet density than grey-green type, should be more adaptable to the resourceful habitat. Moreover, the V-indices of the clonal architecture of two divergent L. chinensis types were all close to 1, and the difference was not significant. Therefore, both of the two types belonged to typical guerilla clonal plant.

  3. Cephalometric analysis of the middle part of the face in patients with mandibular prognathism.

    PubMed

    Cutović Tatjana; Jović, Nebojsa; Kozomara, Ruzica; Radojicić, Julija; Janosević, Mirjana; Mladenović, Irena; Matijević, Stevo

    2014-11-01

    The middle part of the face, that is the maxilla, has always been mentioned as a possible etiologic factor of skeletal Class III. However, the importance of the relationship of maxillary retroposition towards the cranial base is still unclear, although it has been examined many times. The aim of this study was to conduct cephalometric analysis of the morphology of maxilla, including the whole middle part of the face in patients with divergent and convergent facial types of mandibular prognathism, as well as to determine differences betweeen them. Lateral cephalometric teleradiograph images of 90 patients were analyzed at the Dental Clinic of the Military Medical Academy, Belgrade, Serbia. All the patients were male, aged 18-35 years, not previously treated orthodontically. On the basis of dentalskeletal relations of jaws and teeth, the patients were divided into three groups: the group P1 (patients with divergent facial type of mandibular prognathism), P2 (patients with convergent facial type of mandibular pragmathism) and the group E (control group or eugnathic patients). A total of 9 cephalometric parameters related to the middle face were measured and analyzed: the length of the hard palate--SnaSnp, the length of the maxillary corpus--AptmPP, the length of the soft palate, the angle between the hard and soft palate--SnaSnpUt, the angle of inclination of the maxillary alveolar process, the angle of inclination of the upper front teeth, the effective maxillary length--CoA, the posterior maxillary alveolar hyperplasia--U6PP and the angle of maxillary prognathism. The obtained results showed that the CoA, AptmPP and SnaSnp were significally shorter in patients with divergent facial type of mandibular prognathism compared to patients with convergent facial type of the mandibular prognathism and also in both experimental groups of patients compared to the control group. SnaSnp was significantly shorter in patients with divergent facial type of mandibular prognathism compared to the control group, whereas SnaSnp was significantly smaller in patients with convergent facial type of mandibular prognathism compared to the control group. Additionally, there was a pronounced incisor dentoalveolar compensation of skeletal discrepancy in both groups of patients with mandibular prognathism manifested in the form of a significant upper front teeth protrusion, but without significant differences among the groups, while the maxillary retrognathism was present in most patients of both experimental groups. A pronounced UGPP was found only in the patients with divergent type of mandibular prognathism. The maxilla is certainly one of the key factors which contributes to making the diagnosis, but primarily to making a plan for mandibular prognathism treatment Accurate assessment of the manifestation of abnormality, localization of skeletal problems and understanding of the biological potential are key factors of the stability of/the results of surgical-orthodontic treatment of this abnormality.

  4. A RESOLVED NEAR-INFRARED IMAGE OF THE INNER CAVITY IN THE GM Aur TRANSITIONAL DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Daehyeon; Yang, Yi; Hashimoto, Jun

    We present high-contrast H -band polarized intensity (PI) images of the transitional disk around the young solar-like star GM Aur. The near-infrared direct imaging of the disk was derived by polarimetric differential imaging using the Subaru 8.2 m Telescope and HiCIAO. An angular resolution and an inner working angle of 0.″07 and r ∼ 0.″05, respectively, were obtained. We clearly resolved a large inner cavity, with a measured radius of 18 ± 2 au, which is smaller than that of a submillimeter interferometric image (28 au). This discrepancy in the cavity radii at near-infrared and submillimeter wavelengths may be causedmore » by a 3–4 M {sub Jup} planet about 20 au away from the star, near the edge of the cavity. The presence of a near-infrared inner cavity is a strong constraint on hypotheses for inner cavity formation in a transitional disk. A dust filtration mechanism has been proposed to explain the large cavity in the submillimeter image, but our results suggest that this mechanism must be combined with an additional process. We found that the PI slope of the outer disk is significantly different from the intensity slope obtained from HST /NICMOS, and this difference may indicate the grain growth process in the disk.« less

  5. A new method for spatial structure detection of complex inner cavities based on 3D γ-photon imaging

    NASA Astrophysics Data System (ADS)

    Xiao, Hui; Zhao, Min; Liu, Jiantang; Liu, Jiao; Chen, Hao

    2018-05-01

    This paper presents a new three-dimensional (3D) imaging method for detecting the spatial structure of a complex inner cavity based on positron annihilation and γ-photon detection. This method first marks carrier solution by a certain radionuclide and injects it into the inner cavity where positrons are generated. Subsequently, γ-photons are released from positron annihilation, and the γ-photon detector ring is used for recording the γ-photons. Finally, the two-dimensional (2D) image slices of the inner cavity are constructed by the ordered-subset expectation maximization scheme and the 2D image slices are merged to the 3D image of the inner cavity. To eliminate the artifact in the reconstructed image due to the scattered γ-photons, a novel angle-traversal model is proposed for γ-photon single-scattering correction, in which the path of the single scattered γ-photon is analyzed from a spatial geometry perspective. Two experiments are conducted to verify the effectiveness of the proposed correction model and the advantage of the proposed testing method in detecting the spatial structure of the inner cavity, including the distribution of gas-liquid multi-phase mixture inside the inner cavity. The above two experiments indicate the potential of the proposed method as a new tool for accurately delineating the inner structures of industrial complex parts.

  6. Gas Inside the 97 AU Cavity around the Transition Disk Sz 91

    NASA Astrophysics Data System (ADS)

    Canovas, H.; Schreiber, M. R.; Cáceres, C.; Ménard, F.; Pinte, C.; Mathews, G. S.; Cieza, L.; Casassus, S.; Hales, A.; Williams, J. P.; Román, P.; Hardy, A.

    2015-05-01

    We present ALMA (Cycle 0) band 6 and band 3 observations of the transition disk Sz 91. The disk inclination and position angle are determined to be i = 49.°5 ± 3.°5°and PA = 18.°2 ± 3.°5 and the dusty and gaseous disk are detected up to ˜220 and ˜400 AU from the star, respectively. Most importantly, our continuum observations indicate that the cavity size in the millimeter-sized dust distribution must be ˜97 AU in radius, the largest cavity observed around a T Tauri star. Our data clearly confirm the presence of 12CO (2-1) well inside the dust cavity. Based on these observational constraints we developed a disk model that simultaneously accounts for the 12CO and continuum observations (i.e., gaseous and dusty disk). According to our model, most of the millimeter emission comes from a ring located between 97 and 140 AU. We also find that the dust cavity is divided into an innermost region largely depleted of dust particles ranging from the dust sublimation radius up to 85 AU, and a second, moderately dust-depleted region, extending from 85 to 97 AU. The extremely large size of the dust cavity, the presence of gas and small dust particles within the cavity, and the accretion rate of Sz 91 are consistent with the formation of multiple (giant) planets.

  7. Characterization of cavity flow fields using pressure data obtained in the Langley 0.3-Meter Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Tracy, M. B.; Plentovich, E. B.

    1993-01-01

    Static and fluctuating pressure distributions were obtained along the floor of a rectangular-box cavity in an experiment performed in the LaRC 0.3-Meter Transonic Cryogenic Tunnel. The cavity studied was 11.25 in. long and 2.50 in. wide with a variable height to obtain length-to-height ratios of 4.4, 6.7, 12.67, and 20.0. The data presented herein were obtained for yaw angles of 0 deg and 15 deg over a Mach number range from 0.2 to 0.9 at a Reynolds number of 30 x 10(exp 6) per ft with a boundary-layer thickness of approximately 0.5 in. The results indicated that open and transitional-open cavity flow supports tone generation at subsonic and transonic speeds at Mach numbers of 0.6 and above. Further, pressure fluctuations associated with acoustic tone generation can be sustained when static pressure distributions indicate that transitional-closed and closed flow fields exist in the cavity. Cavities that support tone generation at 0 deg yaw also supported tone generation at 15 deg yaw when the flow became transitional-closed. For the latter cases, a reduction in tone amplitude was observed. Both static and fluctuating pressure data must be considered when defining cavity flow fields, and the flow models need to be refined to accommodate steady and unsteady flows.

  8. Planar waveguide nanolaser configured by dye-doped hybrid nanofilm on substrate

    NASA Astrophysics Data System (ADS)

    Tikhonov, E. A.; Yashchuk, V. P.; Telbiz, G. M.

    2018-04-01

    Dye-doped hybrid silicate/titanium nanofilms on the glass substrate structures of asymmetrical waveguides were studied by way of laser systems. The threshold, spatial and spectral features of the laser oscillation of genuine and hollow waveguides were determined. The pattern of stimulated radiation included two concurrent processes: single-mode waveguide lasing and lateral small divergence emission. Comparison of the open angle of the lateral beams and grazing angles of the waveguide lasing mode provides an insight into the effect of leaky mode emission followed by Lummer-Gehrcke interference.

  9. Flow-structure interaction simulation of voice production in a canine larynx

    NASA Astrophysics Data System (ADS)

    Jiang, Weili; Zheng, Xudong; Xue, Qian; Oren, Liran; Khosla, Sid

    2017-11-01

    Experimental measurements conducted on a hemi-larynx canine vocal fold showed that negative pressures formed in the glottis near the superior surface of the vocal fold in the closing phase even without a supra-glottal vocal tract. It was hypothesized that such negative pressures were due to intraglottal vortices caused by flow separation in a divergent vocal tract during vocal fold closing phase. This work aims to test this hypothesis from the numerical aspect. Flow-structure interaction simulations are performed in realistic canine laryngeal shapes. In the simulations, a sharp interface immersed boundary method based incompressible flow solver is utilized to model the air flow; a finite element based solid mechanics solver is utilized to model the vocal fold vibration. The geometric structure of the vocal fold and vocal tract are based on MRI scans of a mongrel canine. The vocal fold tissue is modeled as transversely isotropic nonlinear materials with a vertical stiffness gradient. Numerical indentation is first performed and compared with the experiment data to obtain the material properties. Simulation setup about the inlet and outlet pressure follows the setup in the experiment. Simulation results including the fundamental frequency, air flow rate, the divergent angle will be compared with the experimental data, providing the validation of the simulation approach. The relationship between flow separation, intra-glottal vortices, divergent angle and flow rate will be comprehensively analyzed.

  10. Optical mode engineering and high power density per facet length (>8.4 kW/cm) in tilted wave laser diodes

    NASA Astrophysics Data System (ADS)

    Ledentsov, N. N.; Shchukin, V. A.; Maximov, M. V.; Gordeev, N. Y.; Kaluzhniy, N. A.; Mintairov, S. A.; Payusov, A. S.; Shernyakov, Yu. M.

    2016-03-01

    Tilted Wave Lasers (TWLs) based on optically coupled thin active waveguide and thick passive waveguide offer an ultimate solution for thick-waveguide diode laser, preventing catastrophic optical mirror damage and thermal smile in laser bars, providing robust operation in external cavity modules thus enabling wavelength division multiplexing and further increase in brightness enabling direct applications of laser diodes in the mainstream material processing. We show that by proper engineering of the waveguide one can realize high performance laser diodes at different tilt angles of the vertical lobes. Two vertical lobes directed at various angles (namely, +/-27° or +/-9°) to the junction plane are experimentally realized by adjusting the compositions and the thicknesses of the active and the passive waveguide sections. The vertical far field of a TWL with the two +/-9° vertical beams allows above 95% of all the power to be concentrated within a vertical angle below 25°, the fact which is important for laser stack applications using conventional optical coupling schemes. The full width at half maximum of each beam of the value of 1.7° evidences diffraction- limited operation. The broad area (50 μm) TWL chips at the cavity length of 1.5 mm reveal a high differential efficiency ~90% and a current-source limited pulsed power >42W for as-cleaved TWL device. Thus the power per facet length in a laser bar in excess of 8.4 kW/cm can be realized. Further, an ultimate solution for the smallest tilt angle is that where the two vertical lobes merge forming a single lobe directed at the zero angle is proposed.

  11. Underwater sound transmission through arrays of disk cavities in a soft elastic medium.

    PubMed

    Calvo, David C; Thangawng, Abel L; Layman, Christopher N; Casalini, Riccardo; Othman, Shadi F

    2015-10-01

    Scattering from a cavity in a soft elastic medium, such as silicone rubber, resembles scattering from an underwater bubble in that low-frequency monopole resonance is obtainable in both cases. Arrays of cavities can therefore be used to reduce underwater sound transmission using thin layers and low void fractions. This article examines the role of cavity shape by microfabricating arrays of disk-shaped air cavities into single and multiple layers of polydimethylsiloxane. Comparison is made with the case of equivalent volume cylinders which approximate spheres. Measurements of ultrasonic underwater sound transmission are compared with finite element modeling predictions. The disks provide a deeper transmission minimum at a lower frequency owing to the drum-type breathing resonance. The resonance of a single disk cavity in an unbounded medium is also calculated and compared with a derived estimate of the natural frequency of the drum mode. Variation of transmission is determined as a function of disk tilt angle, lattice constant, and layer thickness. A modeled transmission loss of 18 dB can be obtained at a wavelength about 20 times the three-layer thickness, and thinner results (wavelength/thickness ∼ 240) are possible for the same loss with a single layer depending on allowable hydrostatic pressure.

  12. Flight test experience with high-alpha control system techniques on the F-14 airplane

    NASA Technical Reports Server (NTRS)

    Gera, J.; Wilson, R. J.; Enevoldson, E. K.; Nguyen, L. T.

    1981-01-01

    Improved handling qualities of fighter aircraft at high angles of attack can be provided by various stability and control augmentation techniques. NASA and the U.S. Navy are conducting a joint flight demonstration of these techniques on an F-14 airplane. This paper reports on the flight test experience with a newly designed lateral-directional control system which suppresses such high angle of attack handling qualities problems as roll reversal, wing rock, and directional divergence while simultaneously improving departure/spin resistance. The technique of integrating a piloted simulation into the flight program was used extensively in this program. This technique had not been applied previously to high angle of attack testing and required the development of a valid model to simulate the test airplane at extremely high angles of attack.

  13. Effect of inlet cone pipe angle in catalytic converter

    NASA Astrophysics Data System (ADS)

    Amira Zainal, Nurul; Farhain Azmi, Ezzatul; Arifin Samad, Mohd

    2018-03-01

    The catalytic converter shows significant consequence to improve the performance of the vehicle start from it launched into production. Nowadays, the geometric design of the catalytic converter has become critical to avoid the behavior of backpressure in the exhaust system. The backpressure essentially reduced the performance of vehicles and increased the fuel consumption gradually. Consequently, this study aims to design various models of catalytic converter and optimize the volume of fluid flow inside the catalytic converter by changing the inlet cone pipe angles. Three different geometry angles of the inlet cone pipe of the catalytic converter were assessed. The model is simulated in Solidworks software to determine the optimum geometric design of the catalytic converter. The result showed that by decreasing the divergence angle of inlet cone pipe will upsurge the performance of the catalytic converter.

  14. Laser Diagnostic System Validation and Ultra-Compact Combustor Characterization

    DTIC Science & Technology

    2008-03-01

    conventional non-reheat Brayton cycle. An ITB consist of a fueled-cavity type flame holder combined with an injection of air in an angled manner from the...Applied Combustion Diagnostics. New York, NY: Taylor & Francis, 2002. 23. Kohse-Hoinghaus, K. Laser Techniques for the Quantitative

  15. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    NASA Astrophysics Data System (ADS)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  16. Intracavity Faraday modulation spectroscopy (INFAMOS): A tool for radical detection

    NASA Astrophysics Data System (ADS)

    Gianella, Michele; Pinto, Tomas H. P.; Wu, Xia; Ritchie, Grant A. D.

    2017-08-01

    We present the intra-cavity Faraday modulation spectroscopy technique, whereby optical feedback cavity-enhanced spectroscopy is coupled with Faraday modulation spectroscopy to greatly enhance the interaction path length of a laser beam with a paramagnetic sample in a magnetic field. We describe a first prototype based upon a cw quantum cascade laser targeting a selection of fundamental rovibrational R-branch transitions of nitric oxide (1890 cm-1), consisting of a linear cavity (finesse F =6300 ) and a water-cooled solenoid. We demonstrate a minimum detectable Verdet constant of Vmin=4.7 ×10-14 rad cm-1 G-1 H z-1/2 (at SNR = 1), corresponding to a single-pass rotation angle of 1.6 ×10-10 rad Hz-1/2 and a limit of detection of 0.21 ppbv Hz-1/2 NO.

  17. Evidence for preferential flux flow at the grain boundaries of superconducting RF-quality niobium

    NASA Astrophysics Data System (ADS)

    Sung, Z.-H.; Lee, P. J.; Gurevich, A.; Larbalestier, D. C.

    2018-04-01

    The question of whether grain boundaries (GBs) in niobium can be responsible for lowered operating field (B RF) or quality factor (Q 0) in superconducting radio frequency (SRF) cavities is still controversial. Here, we show by direct DC transport across planar GBs isolated from a slice of very large-grain SRF-quality Nb that vortices can preferentially flow along the grain boundary when the external magnetic field lies in the GB plane. However, increasing the misalignment between the GB plane and the external magnetic field vector markedly reduces preferential flux flow along the GB. Importantly, we find that preferential GB flux flow is more prominent for a buffered chemical polished than for an electropolished bi-crystal. The voltage-current characteristics of GBs are similar to those seen in low angle grain boundaries of high temperature superconductors where there is clear evidence of suppression of the superconducting order parameter at the GB. While local weakening of superconductivity at GBs in cuprates and pnictides is intrinsic, deterioration of current transparency of GBs in Nb appears to be extrinsic, since the polishing method clearly affect the local GB degradation. The dependence of preferential GB flux flow on important cavity preparation and experimental variables, particularly the final chemical treatment and the angle between the magnetic field and the GB plane, suggests two more reasons why real cavity performance can be so variable.

  18. Application of boundary element method to Stokes flows over a striped superhydrophobic surface with trapped gas bubbles

    NASA Astrophysics Data System (ADS)

    Ageev, A. I.; Golubkina, I. V.; Osiptsov, A. N.

    2018-01-01

    A slow steady flow of a viscous fluid over a superhydrophobic surface with a periodic striped system of 2D rectangular microcavities is considered. The microcavities contain small gas bubbles on the curved surface of which the shear stress vanishes. The general case is analyzed when the bubble occupies only a part of the cavity, and the flow velocity far from the surface is directed at an arbitrary angle to the cavity edge. Due to the linearity of the Stokes flow problem, the solution is split into two parts, corresponding to the flows perpendicular and along the cavities. Two variants of a boundary element method are developed and used to construct numerical solutions on the scale of a single cavity with periodic boundary conditions. By averaging these solutions, the average slip velocity and the slip length tensor components are calculated over a wide range of variation of governing parameters for the cases of a shear-driven flow and a pressure-driven channel flow. For a sufficiently high pressure drop in a microchannel of finite length, the variation of the bubble surface shift into the cavities induced by the streamwise pressure variation is estimated from numerical calculations.

  19. Femtosecond Laser Fabrication of Cavity Microball Lens (CMBL) inside a PMMA Substrate for Super-Wide Angle Imaging.

    PubMed

    Zheng, Chong; Hu, Anming; Kihm, Kenneth D; Ma, Qian; Li, Ruozhou; Chen, Tao; Duley, W W

    2015-07-01

    Since microlenses have to date been fabricated primarily by surface manufacturing, they are highly susceptible to surface damage, and their microscale size makes it cumbersome to handle. Thus, cavity lenses are preferred, as they alleviate these difficulties associated with the surface-manufactured microlenses. Here, it is shown that a high repetition femtosecond laser can effectively fabricate cavity microball lenses (CMBLs) inside a polymethyl methacrylate slice. Optimal CMBL fabrication conditions are determined by examining the pertinent parameters, including the laser processing time, the average irradiation power, and the pulse repetition rates. In addition, a heat diffusion modeling is developed to better understand the formation of the spherical cavity and the slightly compressed affected zone surrounding the cavity. A micro-telescope consisting of a microscope objective and a CMBL demonstrates a super-wide field-of-view imaging capability. Finally, detailed optical characterizations of CMBLs are elaborated to account for the refractive index variations of the affected zone. The results presented in the current study demonstrate that a femtosecond laser-fabricated CMBL can be used for robust and super-wide viewing micro imaging applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. An 80 au cavity in the disk around HD 34282

    NASA Astrophysics Data System (ADS)

    van der Plas, G.; Ménard, F.; Canovas, H.; Avenhaus, H.; Casassus, S.; Pinte, C.; Caceres, C.; Cieza, L.

    2017-11-01

    Context. Large cavities in disks are important testing grounds for the mechanisms proposed to drive disk evolution and dispersion, such as dynamical clearing by planets and photoevaporation. Aims: We aim to resolve the large cavity in the disk around HD 34282, whose presence has been predicted by previous studies modeling the spectral energy distribution of the disk. Methods: Using ALMA band 7 observations we studied HD 34282 with a spatial resolution of 0.10″ × 0.17'' at 345 GHz. Results: We resolve the disk around HD 34282 into a ring between 0.24'' and 1.15'' (78 and 374 au adopting a distance of 325 pc). The emission in this ring shows azimuthal asymmetry centered at a radial distance of 0.46'' and a position angle of 135° and an azimuthal FWHM of 51°. We detect CO emission both inside the disk cavity and as far out as 2.7 times the radial extent of the dust emission. Conclusions: Both the large disk cavity and the azimuthal structure in the disk around HD 34282 can be explained by the presence of a 50 Mjup brown dwarf companion at a separation of ≈0.1''.

  1. Comparison of cavity preparation quality using an electric motor handpiece and an air turbine dental handpiece.

    PubMed

    Kenyon, Brian J; Van Zyl, Ian; Louie, Kenneth G

    2005-08-01

    The high-speed high-torque (electric motor) handpiece is becoming more popular in dental offices and laboratories in the United States. It is reported to cut more precisely and to assist in the creation of finer margins that enhance cavity preparations. The authors conducted an in vitro study to compare the quality of cavity preparations fabricated with a high-speed high-torque (electric motor) handpiece and a high-speed low-torque (air turbine) handpiece. Eighty-six dental students each cut two Class I preparations, one with an air turbine handpiece and the other with an electric motor high-speed handpiece. The authors asked the students to cut each preparation accurately to a circular outline and to establish a flat pulpal floor with 1.5 millimeters' depth, 90-degree exit angles, parallel vertical walls and sharp internal line angles, as well as to refine the preparation to achieve flat, smooth walls with a well-defined cavosurface margin. A single faculty member scored the preparations for criteria and refinement using a nine-point scale (range, 1-9). The authors analyzed the data statistically using paired t tests. In preparation criteria, the electric motor high-speed handpiece had a higher average grade than did the air turbine handpiece (5.07 and 4.90, respectively). For refinement, the average grade for the air turbine high-speed handpiece was greater than that for the electric motor high-speed handpiece (5.72 and 5.52, respectively). The differences were not statistically significant. The electric motor high-speed handpiece performed as well as, but not better than, the air turbine handpiece in the fabrication of high-quality cavity preparations.

  2. Investigation of installation effects of single-engine convergent-divergent nozzles

    NASA Technical Reports Server (NTRS)

    Burley, J. R., II; Berrier, B. L.

    1982-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine installation effects on single-engine convergent-divergent nozzles applicable to reduced-power supersonic cruise aircraft. Tests were conducted at Mach numbers from 0.50 to 1.20, at angles of attack from -3 degrees to 9 degrees, and at nozzle pressure ratios from 1.0 (jet off) to 8.0. The effects of empennage arrangement, nozzle length, a cusp fairing, and afterbody closure on total aft-end drag coefficient and component drag coefficients were investigated. Basic lift- and drag-coefficient data and external static-pressure distributions on the nozzle and afterbody are presented and discussed.

  3. Parametric Study of Afterbody/nozzle Drag on Twin Two-dimensional Convergent-divergent Nozzles at Mach Numbers from 0.60 to 1.20

    NASA Technical Reports Server (NTRS)

    Pendergraft, Odis C., Jr.; Burley, James R., II; Bare, E. Ann

    1986-01-01

    An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of upper and lower external nozzle flap geometry on the external afterbody/nozzle drag of nonaxisymmetric two-dimensional convergent-divergent exhaust nozzles having parallel external sidewalls installed on a generic twin-engine, fighter-aircraft model. Tests were conducted over a Mach number range from 0.60 to 1.20 and over an angle-of-attack range from -5 to 9 deg. Nozzle pressure ratio was varied from jet off (1.0) to approximately 10.0, depending on Mach number.

  4. Results from flight and simulator studies of a Mach 3 cruise longitudinal autopilot

    NASA Technical Reports Server (NTRS)

    Gilyard, G. B.; Smith, J. W.

    1978-01-01

    At Mach numbers of approximately 3.0 and altitudes greater than 21,300 meters, the original altitude and Mach hold modes of the YF-12 autopilot produced aircraft excursions that were erratic or divergent, or both. Flight data analysis and simulator studies showed that the sensitivity of the static pressure port to angle of attack had a detrimental effect on the performance of the altitude and Mach hold modes. Good altitude hold performance was obtained when a high passed pitch rate feedback was added to compensate for angle of attack sensitivity and the altitude error and integral altitude gains were reduced. Good Mach hold performance was obtained when the angle of attack sensitivity was removed; however, the ride qualities remained poor.

  5. Investigation of the summation of copper-vapour laser frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpukhin, Vyacheslav T; Konev, Yu B; Malikov, Mikhail M

    1998-09-30

    An investigation was made of the conversion of the copper-vapour laser radiation ( {lambda}{sub 1} = 0.51 {mu}m and {lambda}{sub 2} = 0.578 {mu}m) into UV radiation at the sum frequency ({lambda}{sub 3} = 0.271 {mu}m) in a DKDP crystal. The operation of this frequency converter was compared for two magnifications of the laser cavity: M = 5 and 200. The best results were obtained for M = 200 (average UV radiation power 0.75 W, conversion efficiency 12%). A study was made of the characteristics of the formation of radiation pulses representing the two lines in the laser beam asmore » a whole and in its weakly diverging core. In a low-divergence beam the yellow- and green-line pulses were emitted practically simultaneously with approximately the same peak power, which facilitated the sum-frequency generation. (nonlinear optical phenomena)« less

  6. Terahertz plasmonic lasers with narrow beams and large tunability

    NASA Astrophysics Data System (ADS)

    Jin, Yuan; Wu, Chongzhao; Reno, John L.; Kumar, Sushil

    2017-02-01

    Plasmonic lasers generate coherent long-range or localized surface-plasmon-polaritons (SPPs), where the SPP mode exists at the interface of the metal (or a metallic nanoparticle) and a dielectric. Metallic-cavities sup- porting SPP modes are also utilized for terahertz quantum-cascade lasers (QCLs). Due to subwavelength apertures, plasmonic lasers have highly divergent radiation patterns. Recently, we theoretically and experimentally demonstrated a new technique for implementing distributed-feedback (DFB), which is termed as an antenna- feedback scheme, to establish a hybrid SPP mode in the surrounding medium of a plasmonic laser's cavity with a large wavefront. This technique allows such lasers to radiate in narrow beams without requirement of any specific design considerations for phase-matching. Experimental demonstration is done for terahertz QCLs that show beam-divergence as small as 4-degrees. The antenna-feedback scheme has a characteristic feature in that refractive-index of the laser's surrounding medium affects its radiative frequency in the same vein as refractive- index of the cavity. Hence, any perturbations in the refractive-index of the surrounding medium could lead to large modulation in the laser's emission frequency. Along this line, we report 57 GHz reversible, continuous, and mode-hop-free tuning of such QCLs operating at 78 K based on post-process deposition/etching of a dielectric on an already mounted QCL chip. This is the largest tuning range achieved for terahertz QCLs when operating much above the temperature of liquid-Helium. We review the aforementioned experimental results and discuss methods to increase optical power output from terahertz QCLs with antenna-feedback. Peak power output of 13 mW is realized for a 3.3 THz QCL operating in a Stirling cooler at 54 K. A new dual-slit photonic structure based on antenna-feedback scheme is proposed to further improve output power as well as provide enhanced tunability.

  7. Terahertz plasmonic laser radiating in an ultra-narrow beam

    DOE PAGES

    Wu, Chongzhao; Khanal, Sudeep; Reno, John L.; ...

    2016-07-07

    Plasmonic lasers (spasers) generate coherent surface plasmon polaritons (SPPs) and could be realized at subwavelength dimensions in metallic cavities for applications in nanoscale optics. Plasmonic cavities are also utilized for terahertz quantum-cascade lasers (QCLs), which are the brightest available solid-state sources of terahertz radiation. A long standing challenge for spasers that are utilized as nanoscale sources of radiation, is their poor coupling to the far-field radiation. Unlike conventional lasers that could produce directional beams, spasers have highly divergent radiation patterns due to their subwavelength apertures. Here, we theoretically and experimentally demonstrate a new technique for implementing distributed feedback (DFB) thatmore » is distinct from any other previously utilized DFB schemes for semiconductor lasers. The so-termed antenna-feedback scheme leads to single-mode operation in plasmonic lasers, couples the resonant SPP mode to a highly directional far-field radiation pattern, and integrates hybrid SPPs in surrounding medium into the operation of the DFB lasers. Experimentally, the antenna-feedback method, which does not require the phase matching to a well-defined effective index, is implemented for terahertz QCLs, and single-mode terahertz QCLs with a beam divergence as small as 4°×4° are demonstrated, which is the narrowest beam reported for any terahertz QCL to date. Moreover, in contrast to a negligible radiative field in conventional photonic band-edge lasers, in which the periodicity follows the integer multiple of half-wavelengths inside the active medium, antenna-feedback breaks this integer limit for the first time and enhances the radiative field of the lasing mode. Terahertz lasers with narrow-beam emission will find applications for integrated as well as standoff terahertz spectroscopy and sensing. Furthermore, the antenna-feedback scheme is generally applicable to any plasmonic laser with a Fabry–Perot cavity irrespective of its operating wavelength and could bring plasmonic lasers closer to practical applications.« less

  8. Efficient proton acceleration and focusing by an ultraintense laser interacting with a parabolic double concave target with an extended rear

    NASA Astrophysics Data System (ADS)

    Bake, Muhammad Ali; Xie, Bai-Song; Aimidula, Aimierding; Wang, Hong-Yu

    2013-07-01

    A new scheme for acceleration and focusing of protons via an improved parabolic double concave target irradiated by an ultraintense laser pulse is proposed. When an intense laser pulse illuminates a concave target, the hot electrons are concentrated on the focal region of the rear cavity and they form a strong space-charge-separation field, which accelerates the protons. For a simple concave target, the proton energy spectrum becomes very broad outside the rear cavity because of transverse divergence of the electromagnetic fields. However, particle-in-cell simulations show that, when the concave target has an extended rear, the hot electrons along the wall surface induce a transverse focusing sheath field, resulting in a clear enhancement of proton focusing, which makes the lower proton energy spread, while, leads to a little reduction of the proton bunch peak energy.

  9. Transverse diode-pumped neodymium-doped yttrium vanadate laser of simple design

    NASA Astrophysics Data System (ADS)

    Agüero, Mónica B.; Hnilo, Alejandro A.; Kovalsky, Marcelo G.

    2010-03-01

    The design and performance of an all-solid-state Nd:YVO4 laser, transversely pumped by a single 20-W (at 808 nm) diode with no coupling optics, are presented. The prototype, which is devised to be the source of a micro-LIDAR station, is very simple, easy to align, compact, and stable. The key element is a roof prism as the end mirror of the laser cavity, which is used to symmetrize the effects of the thermal distortion and the inhomogeneity of the population inversion distribution. Typical numbers are 4.2-W cw with a slightly astigmatic (3:2) homogeneous spot and a divergence of 0.5 mrad. The protoype is also tested in the active Q-switching mode, providing pulses 50-ns full width at half maximum (FWHM) at 14 KHz, 3.5 W average. Frequency doubling external to the cavity in a nonoptimized configuration provides 700 mW at 532 nm.

  10. Characterization of the Q-switched MOBLAS Laser Transmitter and Its Ranging Performance Relative to a PTM Q-switched System

    NASA Technical Reports Server (NTRS)

    Degnan, J. J., III; Zagwodski, T. W.

    1979-01-01

    A prototype Q-switched Nd:YAG laser transmitter intended for use in the NASA mobile laser ranging system was subjected to various tests of temporal pulse shape and stability, output energy and stability, beam divergence, and range bias errors. Peak to peak variations in the mean range were as large as 30 cm and drift rates of system bias with time as large as 6 mm per minute of operation were observed. The incorporation of a fast electro-optic cavity dump into the oscillator gave significantly improved results. Reevaluation of the ranging performance after modification showed a reduction in the peak to peak variation in the mean range to the 2 or 3 cm level and a drift rate of system time biases of less than 1 mm per minute of operation. A qualitative physical explanation for the superior performance of cavity dumped lasers is given.

  11. Investigation into the behaviors of ventilated supercavities in unsteady flow

    NASA Astrophysics Data System (ADS)

    Shao, Siyao; Wu, Yue; Haynes, Joseph; Arndt, Roger E. A.; Hong, Jiarong

    2018-05-01

    A systematic investigation of ventilated supercavitation behaviors in an unsteady flow is conducted using a high-speed water tunnel at the Saint Anthony Falls Laboratory. The cavity is generated with a forward facing model under varying ventilation rates and cavitator sizes. The unsteady flow is produced by a gust generator consisting of two hydrofoils flapping in unison with a varying angle of attack (AoA) and frequency (fg). The current experiment reveals five distinct cavity states, namely, the stable state, wavy state, pulsating state I, pulsating state II, and collapsing state, based on the variation of cavity geometry and pressure signatures inside the cavity. The distribution of cavity states over a broad range of unsteady conditions is summarized in a cavity state map. It shows that the transition of the supercavity from the stable state to pulsating and collapsing states is primarily induced by increasing AoA while the transition to the wavy state triggers largely by increasing fg. Remarkably, the state map over the non-dimensionalized half wavelength and wave amplitude of the perturbation indicates that the supercavity loses its stability and transitions to pulsating or collapsing states when the level of its distortion induced by the flow unsteadiness exceeds the cavity dimension under a steady condition. The state maps under different ventilation rates and cavitator sizes yield similar distribution but show that the occurrence of the cavity collapse can be suppressed with increasing ventilation coefficient or cavitator size. Such knowledge can be integrated into designing control strategies for the supercavitating devices operating under different unsteady conditions.

  12. Relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Simpkins, Blake S.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Spann, Bryan T.; Owrutsky, Jeffrey C.

    2016-09-01

    Coherent coupling between an optical transition and confined optical mode have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we demonstrate both static and dynamic results for vibrational bands strongly coupled to optical cavities. We experimentally and numerically describe strong coupling between a Fabry-Pérot cavity and carbonyl stretch ( 1730 cm 1) in poly-methylmethacrylate and provide evidence that the mixed-states are immune to inhomogeneous broadening. We investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of a urethane monomer. Rabi splittings are in excellent agreement with an analytical description using no fitting parameters. Ultrafast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band, as well as drastically modified relaxation rates. We speculate these modified kinetics are a consequence of the energy proximity between the vibration-cavity polariton modes and excited state transitions and that polaritons offer an alternative relaxation path for vibrational excitations. Varying the polariton energies by angle-tuning yields transient results consistent with this hypothesis. Furthermore, Rabi oscillations, or quantum beats, are observed at early times and we see evidence that these coherent vibration-cavity polariton excitations impact excited state population through cavity losses. Together, these results indicate that cavity coupling may be used to influence both excitation and relaxation rates of vibrations. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied in steady state and dynamically.

  13. Sensitivity of a three-mirror cavity to thermal and nonlinear lensing: Gaussian-beam analysis.

    PubMed

    Anctil, G; McCarthy, N; Piché, M

    2000-12-20

    We consider a compact three-mirror cavity consisting of a flat output coupler, a curved folding mirror, and an active medium with one facet cut at the Brewster angle and the other facet coated for unit reflectivity. We examine the sensitivity to thermal lensing and to self-focusing in the active medium of the Gaussian beam that is circulating in that cavity. We use a simple thin-lens model; the astigmatism of the beam that is circulating in the cavity and the nonlinear coupling between the field distributions along the two orthogonal axes are taken into account. We find configurations in which beam ellipticity is compensated for at either end of the cavity in the presence of thermal lensing. We have derived an analytical criterion that predicts the sensitivity of the beam size to nonlinear lensing. The ability of the cavity to favor self-mode locking is found to be sensitive to the strength of thermal lensing. In the absence of thermal lensing, cavities operated as telescopic systems (C = 0) or self-imaging systems (B = 0) are most appropriate for achieving self-mode locking, with nonlinear mode selection accomplished through saturation of the spatially varying laser gain. We identify conditions for which self-mode locking can be produced by variable-reflectivity output couplers with either maximum or minimum reflectivity at the center of the coupler. We use our model to estimate the nonlinear gain produced in laser cavities equipped with such output couplers. We identify a cavity configuration for which nonlinear lensing can simultaneously produce mode locking and correction of beam ellipticity at the output coupler.

  14. Sensitivity of a Three-Mirror Cavity to Thermal and Nonlinear Lensing: Gaussian-Beam Analysis

    NASA Astrophysics Data System (ADS)

    Anctil, Geneviève; McCarthy, Nathalie; Piché, Michel

    2000-12-01

    We consider a compact three-mirror cavity consisting of a flat output coupler, a curved folding mirror, and an active medium with one facet cut at the Brewster angle and the other facet coated for unit reflectivity. We examine the sensitivity to thermal lensing and to self-focusing in the active medium of the Gaussian beam that is circulating in that cavity. We use a simple thin-lens model; the astigmatism of the beam that is circulating in the cavity and the nonlinear coupling between the field distributions along the two orthogonal axes are taken into account. We find configurations in which beam ellipticity is compensated for at either end of the cavity in the presence of thermal lensing. We have derived an analytical criterion that predicts the sensitivity of the beam size to nonlinear lensing. The ability of the cavity to favor self-mode locking is found to be sensitive to the strength of thermal lensing. In the absence of thermal lensing, cavities operated as telescopic systems ( C 0 ) or self-imaging systems ( B 0 ) are most appropriate for achieving self-mode locking, with nonlinear mode selection accomplished through saturation of the spatially varying laser gain. We identify conditions for which self-mode locking can be produced by variable-reflectivity output couplers with either maximum or minimum reflectivity at the center of the coupler. We use our model to estimate the nonlinear gain produced in laser cavities equipped with such output couplers. We identify a cavity configuration for which nonlinear lensing can simultaneously produce mode locking and correction of beam ellipticity at the output coupler.

  15. Experimental observation of two phase flow of R123 inside a herringbone microfin tube

    NASA Astrophysics Data System (ADS)

    Miyara, Akio; Islam, Mohammad Ariful; Mizuta, Yoshihiko; Kibe, Atsushi

    2003-08-01

    Vapor-liquid two phase flow behavior of R123 inside herringbone microfin tubes has been studied. Herringbone microfin tube is a kind of internally finned tube in which microfins are installed inside the tube where the microfins form multi-V-shape in flow direction. For the present experiment three different types of herringbone microfin tubes with helix angle β=8°, 14° and 28° are used. Experimental observations showed how flow diverges and converges inside herringbone microfin tube due to fin arrangement. The effect is more remarkable for larger helix angle. From the measurements of the cross-sectional liquid flow rate distribution, the liquid removal and collection and the entrained droplet are discussed. Quantity of liquid droplets is increased with increase of helix angle. The tube with helix angle β=28° shows higher quantity of liquid droplets than others.

  16. Wide angle near-field optical probes by reverse tube etching.

    PubMed

    Patanè, S; Cefalì, E; Arena, A; Gucciardi, P G; Allegrini, M

    2006-04-01

    We present a simple modification of the tube etching process for the fabrication of fiber probes for near-field optical microscopy. It increases the taper angle of the probe by a factor of two. The novelty is that the fiber is immersed in hydrofluoric acid and chemically etched in an upside-down geometry. The tip formation occurs inside the micrometer tube cavity formed by the polymeric jacket. By applying this approach, called reverse tube etching, to multimode fibers with 200/250 microm core/cladding diameter, we have fabricated tapered regions featuring high surface smoothness and average cone angles of approximately 30 degrees . A simple model based on the crucial role of the gravity in removing the etching products, explains the tip formation process.

  17. Symbol recognition with kernel density matching.

    PubMed

    Zhang, Wan; Wenyin, Liu; Zhang, Kun

    2006-12-01

    We propose a novel approach to similarity assessment for graphic symbols. Symbols are represented as 2D kernel densities and their similarity is measured by the Kullback-Leibler divergence. Symbol orientation is found by gradient-based angle searching or independent component analysis. Experimental results show the outstanding performance of this approach in various situations.

  18. Study on the propagation properties of laser in aerosol based on Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Leng, Kun; Wu, Wenyuan; Zhang, Xi; Gong, Yanchun; Yang, Yuntao

    2018-02-01

    When laser propagate in the atmosphere, due to aerosol scattering and absorption, laser energy will continue to decline, affecting the effectiveness of the laser effect. Based on the Monte Carlo method, the relationship between the photon spatial energy distributions of the laser wavelengths of 10.6μm in marine, sand-type, water-soluble and soot aerosols ,and the propagation distance, visibility and the divergence angle were studied. The results show that for 10.6μm laser, the maximum number of attenuation of photons arriving at the receiving plane is sand-type aerosol, the minimal attenuation is water soluble aerosol; as the propagation distance increases, the number of photons arriving at the receiving plane decreases; as the visibility increases, the number of photons arriving at the receiving plane increases rapidly and then stabilizes; in the above cases, the photon energy distribution does not deviated from the Gaussian distribution; as the divergence angle increases, the number of photons arriving at the receiving plane is almost unchanged, but the photon energy distribution gradually deviates from the Gaussian distribution.

  19. Design of collimating and rearrangement systems of laser diode array beam

    NASA Astrophysics Data System (ADS)

    Gao, Runmei; Fang, Tao; Fu, Rulian; Yao, Jianquan

    2015-10-01

    To improve the laser diode output beam quality, micro-cylindrical lens and the step-type lens combination are designed. The former is used to collimate beam in fast-axis direction, while the latter plays a role in the slow-axis of splitting and the rearrangement. The micro-column semi-elliptical lens is made with the drops of spherical zoom lensin electric field and with the help of the material properties of light-cured production, which can reduce the reflection of the front surface and total reflection loss of the after. The divergence angle in the fast axis is compressed to roughly the same as that in the slow-axis direction; Stepped lens splits compressed long strip beam in the slow axis, with parallelogram style of level equidistant and rearrange in the fast axis direction. The spot in the slow axis gets smaller and the spot becomes larger in the fast axis. At last divergence angle and the beam spot achieve balanced in the fast axis and slow axis, optical parameters BPP integrates approximate the same, and beam quality can be improved.

  20. Tapered optical fiber tip probes based on focused ion beam-milled Fabry-Perot microcavities

    NASA Astrophysics Data System (ADS)

    André, Ricardo M.; Warren-Smith, Stephen C.; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Zibaii, M. I.; Latifi, H.; Marques, Manuel B.; Bartelt, Hartmut; Frazão, Orlando

    2016-09-01

    Focused ion beam technology is combined with dynamic chemical etching to create microcavities in tapered optical fiber tips, resulting in fiber probes for temperature and refractive index sensing. Dynamic chemical etching uses hydrofluoric acid and a syringe pump to etch standard optical fibers into cone structures called tapered fiber tips where the length, shape, and cone angle can be precisely controlled. On these tips, focused ion beam is used to mill several different types of Fabry-Perot microcavities. Two main cavity types are initially compared and then combined to form a third, complex cavity structure. In the first case, a gap is milled on the tapered fiber tip which allows the external medium to penetrate the light guiding region and thus presents sensitivity to external refractive index changes. In the second, two slots that function as mirrors are milled on the tip creating a silica cavity that is only sensitive to temperature changes. Finally, both cavities are combined on a single tapered fiber tip, resulting in a multi-cavity structure capable of discriminating between temperature and refractive index variations. This dual characterization is performed with the aid of a fast Fourier transform method to separate the contributions of each cavity and thus of temperature and refractive index. Ultimately, a tapered optical fiber tip probe with sub-standard dimensions containing a multi-cavity structure is projected, fabricated, characterized and applied as a sensing element for simultaneous temperature and refractive index discrimination.

  1. Implementation of augmented reality in operative dentistry learning.

    PubMed

    Llena, C; Folguera, S; Forner, L; Rodríguez-Lozano, F J

    2018-02-01

    To evaluate the efficacy of augmented reality (AR) in the gaining of knowledge and skills amongst dental students in the design of cavity preparations and analyse their degree of satisfaction. AR cavity models were prepared for use with computers and mobile devices. Forty-one students were divided into two groups (traditional teaching methods vs AR). Questionnaires were designed to evaluate knowledge and skills, with the administration of a satisfaction questionnaire for those using AR. The degree of compliance with the standards in cavity design was assessed. The Mann-Whitney U-test was used to compare knowledge and skills between the two groups, and the Wilcoxon test was applied to compare intragroup differences. The chi-square test in turn was used to compare the qualitative parameters of the cavity designs between the groups. Statistical significance was considered for P<.05 in all cases. No significant differences were observed in level of knowledge before, immediately after or 6 months after teaching between the two groups (P>.05). Although the results corresponding to most of the studied skills parameters were better in the experimental group, significant differences (P<.05) were only founded for cavity depth and extent for Class I and divergence of the buccal and lingual walls for the Class II. The experience was rated as favourable or very favourable by 100% of the participants. The students showed preference for computers (60%) vs mobile devices (10%). The AR techniques favoured the gaining of knowledge and skills and were regarded as a useful tool by the students. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Comparing resonant photon tunneling via cavity modes and Tamm plasmon polariton modes in metal-coated Bragg mirrors.

    PubMed

    Leosson, K; Shayestehaminzadeh, S; Tryggvason, T K; Kossoy, A; Agnarsson, B; Magnus, F; Olafsson, S; Gudmundsson, J T; Magnusson, E B; Shelykh, I A

    2012-10-01

    Resonant photon tunneling was investigated experimentally in multilayer structures containing a high-contrast (TiO(2)/SiO(2)) Bragg mirror capped with a semitransparent gold film. Transmission via a fundamental cavity resonance was compared with transmission via the Tamm plasmon polariton resonance that appears at the interface between a metal film and a one-dimensional photonic bandgap structure. The Tamm-plasmon-mediated transmission exhibits a smaller dependence on the angle and polarization of the incident light for similar values of peak transmission, resonance wavelength, and finesse. Implications for transparent electrical contacts based on resonant tunneling structures are discussed.

  3. Analysis of the Command and Control Segment (CCS) attitude estimation algorithm

    NASA Technical Reports Server (NTRS)

    Stockwell, Catherine

    1993-01-01

    This paper categorizes the qualitative behavior of the Command and Control Segment (CCS) differential correction algorithm as applied to attitude estimation using simultaneous spin axis sun angle and Earth cord length measurements. The categories of interest are the domains of convergence, divergence, and their boundaries. Three series of plots are discussed that show the dependence of the estimation algorithm on the vehicle radius, the sun/Earth angle, and the spacecraft attitude. Common qualitative dynamics to all three series are tabulated and discussed. Out-of-limits conditions for the estimation algorithm are identified and discussed.

  4. Visualization analysis of tiger-striped flow mark generation phenomena in injection molding

    NASA Astrophysics Data System (ADS)

    Owada, Shigeru; Yokoi, Hidetoshi

    2016-03-01

    The generation mechanism of tiger-striped flow marks of polypropylene (PP)/rubber/talc blends in injection molding was investigated by dynamic visualization analysis in a glass-inserted mold. The analysis revealed that the behavior of the melt flow front correlates with the flow mark generation. The cloudy part in the tiger-striped flow marks corresponded to the low transcription rate area of the melt diverging near the cavity wall, while the glossy part corresponded to the high transcription rate area of the melt converging toward the cavity wall side. The melt temperature at the high transcription rate area was slightly lower than that at the low transcription rate area. These phenomena resulted due to the difference in the temperature of the melt front that was caused by the asymmetric fountain flow. These results suggest the followings; At the moment when the melt is broken near the one side of cavity wall due to piling the extensional strains up to a certain level, the melt spurts out near the broken side. It results in generating asymmetric fountain flow temporarily to relax the extensional front surface, which moves toward the opposite side to form the high transcription area.

  5. Static Performance of a Fixed-Geometry Exhaust Nozzle Incorporating Porous Cavities for Shock-Boundary Layer Interaction Control

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Hunter, Craig A.

    1999-01-01

    An investigation was conducted in the model preparation area of the Langley 16-Foot Transonic Tunnel to determine the internal performance of a fixed-geometry exhaust nozzle incorporating porous cavities for shock-boundary layer interaction control. Testing was conducted at static conditions using a sub-scale nozzle model with one baseline and 27 porous configurations. For the porous configurations, the effects of percent open porosity, hole diameter, and cavity depth were determined. All tests were conducted with no external flow at nozzle pressure ratios from 1.25 to approximately 9.50. Results indicate that baseline nozzle performance was dominated by unstable, shock-induced, boundary-layer separation at over-expanded conditions. Porous configurations were capable of controlling off-design separation in the nozzle by either alleviating separation or encouraging stable separation of the exhaust flow. The ability of the porous nozzle concept to alternately alleviate separation or encourage stable separation of exhaust flow through shock-boundary layer interaction control offers tremendous off-design performance benefits for fixed-geometry nozzle installations. In addition, the ability to encourage separation on one divergent flap while alleviating it on the other makes it possible to generate thrust vectoring using a fixed-geometry nozzle.

  6. Crab cavities: Past, present, and future of a challenging device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Q.

    2015-05-03

    In two-ring facilities operating with a crossing-angle collision scheme, luminosity can be limited due to an incomplete overlapping of the colliding bunches. Crab cavities then are introduced to restore head-on collisions by providing the destined opposite deflection to the head and tail of the bunch. An increase in luminosity was demonstrated at KEKB with global crab-crossing, while the Large Hardron Collider (LHC) at CERN currently is designing local crab crossing for the Hi-Lumi upgrade. Future colliders may investigate both approaches. In this paper, we review the challenges in the technology, and the implementation of crab cavities, while discussing experience inmore » earlier colliders, ongoing R&D, and proposed implementations for future facilities, such as HiLumi-LHC, CERN’s compact linear collider (CLIC), the international linear collider (ILC), and the electron-ion collider under design at BNL (eRHIC).« less

  7. On the non-equilibrium dynamics of cavitation around the underwater projectile in variable motion

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Lu, C. J.; Li, J.; Chen, X.; Gong, Z. X.

    2015-12-01

    In this work, the dynamic behavior of the non-equilibrium cavitation occurring around the underwater projectiles navigating with variable speed was numerically and theoretically investigated. The cavity collapse induced by the decelerating motion of the projectiles can be classified into two types: periodic oscillation and damped oscillation. In each type the evolution of the total mass of vapor in cavity are found to have strict correlation with the pressure oscillation in far field. By defining the equivalent radius of cavity, we introduce the specific kinetic energy of collapse and demonstrate that its change-rate is in good agreement with the pressure disturbance. We numerically investigated the influence of angle of attack on the collapse effect. The result shows that when the projectile decelerates, an asymmetric-focusing effect of the pressure induced by collapse occurs on its pressure side. We analytically explained such asymmetric-focusing effect.

  8. Flowing gas, non-nuclear experiments on the gas core reactor

    NASA Technical Reports Server (NTRS)

    Kunze, J. F.; Suckling, D. H.; Copper, C. G.

    1972-01-01

    Flow tests were conducted on models of the gas core (cavity) reactor. Variations in cavity wall and injection configurations were aimed at establishing flow patterns that give a maximum of the nuclear criticality eigenvalue. Correlation with the nuclear effect was made using multigroup diffusion theory normalized by previous benchmark critical experiments. Air was used to simulate the hydrogen propellant in the flow tests, and smoked air, argon, or freon to simulate the central nuclear fuel gas. All tests were run in the down-firing direction so that gravitational effects simulated the acceleration effect of a rocket. Results show that acceptable flow patterns with high volume fraction for the simulated nuclear fuel gas and high flow rate ratios of propellant to fuel can be obtained. Using a point injector for the fuel, good flow patterns are obtained by directing the outer gas at high velocity along the cavity wall, using louvered or oblique-angle-honeycomb injection schemes.

  9. Two-dimensional frequency scanning from a metasurface-based Fabry–Pérot resonant cavity

    NASA Astrophysics Data System (ADS)

    Yang, Pei; Yang, Rui

    2018-06-01

    A spatial angular filtering metasurface is introduced into a Fabry–Pérot (FP) resonant cavity design for the frequency scanning performance in this paper. More specifically, asymmetrical unit cells printed on the metasurface enable the radiation energy to move in different directions as the frequency changes, and the released emissions, meanwhile, are split into dual-beams from the initial pencil beam. We continue to implement a patch array to provide excitation with the aim of achieving scanned beams in another dimension, and the proposed design ultimately demonstrates a two-dimensional dual-beam scanning performance with 42° and 9° scanning angles respectively in two dimensions of the coordinate system over a frequency range from 10.50 GHz–11.25 GHz. The proposed technique, by integrating a spatial angular filtering metasurface with a patch array feed to generate steerable beams, should offer an efficient way to fulfill FP resonant cavities with reconfigurable radiation.

  10. Implementing a quantum cloning machine in separate cavities via the optical coherent pulse as a quantum communication bus

    NASA Astrophysics Data System (ADS)

    Zhu, Meng-Zheng; Ye, Liu

    2015-04-01

    An efficient scheme is proposed to implement a quantum cloning machine in separate cavities based on a hybrid interaction between electron-spin systems placed in the cavities and an optical coherent pulse. The coefficient of the output state for the present cloning machine is just the direct product of two trigonometric functions, which ensures that different types of quantum cloning machine can be achieved readily in the same framework by appropriately adjusting the rotated angles. The present scheme can implement optimal one-to-two symmetric (asymmetric) universal quantum cloning, optimal symmetric (asymmetric) phase-covariant cloning, optimal symmetric (asymmetric) real-state cloning, optimal one-to-three symmetric economical real-state cloning, and optimal symmetric cloning of qubits given by an arbitrary axisymmetric distribution. In addition, photon loss of the qubus beams during the transmission and decoherence effects caused by such a photon loss are investigated.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shyu, Lih-Horng; Chang, Chung-Ping; Wang, Yung-Cheng

    Fabry-Perot interferometer is often used for the micro-displacement, because of its common optical path structure being insensitive to the environmental disturbances. Recently, the folded Fabry-Perot interferometer has been investigated for displacement measurements in large ranges. The advantages of a folded Fabry-Perot interferometer are insensitive to the tilt angle and higher optical resolution. But the design of the optical cavity has become more and more complicated. For this reason, the intensity loss in the cavity will be an important parameter for the distribution of the interferometric intensity. To obtain a more accurate result of such interferometer utilized for displacement measurements, themore » intensity loss of the cavity in the fabricated folded Fabry-Perot interferometer and the modified equation of the folded Fabry-Perot interferometer will be described. According to the theoretical and experimental results, the presented model is available for the analysis of displacement measurements by a folded Fabry-Perot interferometer.« less

  12. Apparatus for impingement cooling a side wall adjacent an undercut region of a turbine nozzle segment

    DOEpatents

    Burdgick, Steven Sebastian

    2002-01-01

    A gas turbine nozzle segment has outer and inner bands and vanes therebetween. Each band includes a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. Slots are formed through the inturned flange along the nozzle side wall. A plate having through-apertures extending between opposite edges thereof is disposed in each slot, the slots and plates being angled such that the cooling medium exiting the apertures in the second cavity lie close to the side wall for focusing and targeting cooling medium onto the side wall.

  13. From cat's eyes to disjoint multicellular natural convection flow in tall tilted cavities

    NASA Astrophysics Data System (ADS)

    Nicolás, Alfredo; Báez, Elsa; Bermúdez, Blanca

    2011-07-01

    Numerical results of two-dimensional natural convection problems, in air-filled tall cavities, are reported to study the change of the cat's eyes flow as some parameters vary, the aspect ratio A and the angle of inclination ϕ of the cavity, with the Rayleigh number Ra mostly fixed; explicitly, the range of the variation is given by 12⩽A⩽20 and 0°⩽ϕ⩽270°; about Ra=1.1×10. A novelty contribution of this work is the transition from the cat's eyes changes, as A varies, to a disjoint multicellular flow, as ϕ varies. These flows may be modeled by the unsteady Boussinesq approximation in stream function and vorticity variables which is solved with a fixed point iterative process applied to the nonlinear elliptic system that results after time discretization. The validation of the results relies on mesh size and time-step independence studies.

  14. Performance of a high resolution cavity beam position monitor system

    NASA Astrophysics Data System (ADS)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen

    2007-07-01

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than 1 nm. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 μrad over a dynamic range of approximately ±20 μm.

  15. Experimental results for a 1.5 MW, 110 GHz gyrotron oscillator with reduced mode competition

    NASA Astrophysics Data System (ADS)

    Choi, E. M.; Marchewka, C. D.; Mastovsky, I.; Sirigiri, J. R.; Shapiro, M. A.; Temkin, R. J.

    2006-02-01

    A new result from a 110GHz gyrotron at MIT is reported with an output power of 1.67MW and an efficiency of 42% when operated at 97kV and 41A for 3μs pulses in the TE22,6 mode. These results are a major improvement over results obtained with an earlier cavity design, which produced 1.43MW of power at 37% efficiency. These new results were obtained using a cavity with a reduced output taper angle and a lower ohmic loss when compared with the earlier cavity. The improved operation is shown experimentally to be the result of reduced mode competition from the nearby TE19,7 mode. The reduced mode competition agrees well with an analysis of the startup scenario based on starting current simulations. The present results should prove useful in planning long pulse and CW versions of the 110GHz gyrotron.

  16. Intracavity Faraday modulation spectroscopy (INFAMOS): A tool for radical detection.

    PubMed

    Gianella, Michele; Pinto, Tomas H P; Wu, Xia; Ritchie, Grant A D

    2017-08-07

    We present the intra-cavity Faraday modulation spectroscopy technique, whereby optical feedback cavity-enhanced spectroscopy is coupled with Faraday modulation spectroscopy to greatly enhance the interaction path length of a laser beam with a paramagnetic sample in a magnetic field. We describe a first prototype based upon a cw quantum cascade laser targeting a selection of fundamental rovibrational R-branch transitions of nitric oxide (1890 cm -1 ), consisting of a linear cavity (finesse F=6300) and a water-cooled solenoid. We demonstrate a minimum detectable Verdet constant of V min =4.7×10 -14  rad cm -1  G -1  Hz -1/2 (at SNR = 1), corresponding to a single-pass rotation angle of 1.6×10 -10  rad Hz -1/2 and a limit of detection of 0.21 ppbv Hz -1/2 NO.

  17. Three lateral divergent or parallel pin fixations for the treatment of displaced supracondylar humerus fractures in children.

    PubMed

    Lee, Young Ho; Lee, Sang Ki; Kim, Byung Sung; Chung, Moon Sang; Baek, Goo Hyun; Gong, Hyun Sik; Lee, Joon Kyu

    2008-06-01

    To evaluate the efficacy of lateral or parallel pin fixation using 3 smooth Kirschner wires (K-wires) or smooth Steinmann pins for the operative management of displaced supracondylar humeral fracture in a consecutive series of children. Sixty-one consecutive displaced or angled supracondylar humeral fractures (Gartland type II or III) in children (mean age, 5 years 6 months) treated by 2 orthopaedic surgeons between 2001 and 2004 according to the following protocol: close reduction under general anesthesia with fluoroscopic guidance and only lateral percutaneous pinning using 3 divergent or parallel Kirschner wires or Steinmann pins. Minimum 2 years' follow-up was done in all 61 patients (range, 2.0-3.3 years). Clinical assessment was obtained at final follow-up using Flynn criteria, and radiologic assessment was obtained using the Baumann and lateral humerocapitellar angles of both arms. Statistical analysis was performed by means of the Student t test (P < 0.05). The study group consisted of 61 patients, of whom 24 (39%) presented with Gartland type II fractures, and the remaining 37 (61%) presented with a type III fracture. A comparison of perioperative and final radiographs shows no loss of reduction of any fracture. There was also no clinically evident cubitus varus, hyperextension, or loss of motion. Eight patients had preoperative nerve palsy. Five of these nerve injuries resolved immediately after surgery, and the other 3 resolved completely within 12 weeks of surgery. After an average of 28 months postoperation, 56 (91.8%) patients had achieved an excellent clinical result, and 5 (8.2%) achieved a good result. There were no iatrogenic nerve palsies, and no patient required additional surgery. One patient had a minor pin-track infection. Our series demonstrates that only 3 lateral divergent or parallel pin fixations are effective and safe for avoiding iatrogenic ulnar nerve injury and are appropriate treatment options for displaced or angled supracondylar humeral fractures in children. Therapeutic study, level III.

  18. Dielectric-based subwavelength metallic meanders for wide-angle band absorbers.

    PubMed

    Shen, Su; Qiao, Wen; Ye, Yan; Zhou, Yun; Chen, Linsen

    2015-01-26

    We propose nano-meanders that can achieve wide-angle band absorption in visible regime. The nano-meander consists of a subwavelength dielectric grating covered by continuous ultra-thin Aluminum film (less than one tenth of the incident wavelength). The excited photonic resonant modes, such as cavity mode, surface plasmonic mode and Rayleigh-Wood anomaly, are discussed in detail. Nearly total resonant absorption due to funneling mechanism in the air nano-groove is almost invariant with large incident angle in transverse magnetic polarization. From both the structural geometry and the nanofabrication point of view, the light absorber has a very simple geometrical structure and it is easy to be integrated into complex photonic devices. The highly efficient angle-robust light absorber can be potential candidate for a range of passive and active photonic applications, including solar-energy harvesting as well as producing artificial colors on a large scale substrate.

  19. Development of the algorithm of measurement data and tomographic section reconstruction results processing for evaluating the respiratory activity of the lungs using the multi-angle electric impedance tomography

    NASA Astrophysics Data System (ADS)

    Aleksanyan, Grayr; Shcherbakov, Ivan; Kucher, Artem; Sulyz, Andrew

    2018-04-01

    Continuous monitoring of the patient's breathing by the method of multi-angle electric impedance tomography allows to obtain images of conduction change in the chest cavity during the monitoring. Direct analysis of images is difficult due to the large amount of information and low resolution images obtained by multi-angle electrical impedance tomography. This work presents a method for obtaining a graph of respiratory activity of the lungs based on the results of continuous lung monitoring using the multi-angle electrical impedance tomography method. The method makes it possible to obtain a graph of the respiratory activity of the left and right lungs separately, as well as a summary graph, to which it is possible to apply methods of processing the results of spirography.

  20. Hollow microgels squeezed in overcrowded environments

    NASA Astrophysics Data System (ADS)

    Scotti, A.; Brugnoni, M.; Rudov, A. A.; Houston, J. E.; Potemkin, I. I.; Richtering, W.

    2018-05-01

    We study how a cavity changes the response of hollow microgels with respect to regular ones in overcrowded environments. The structural changes of hollow poly(N-isopropylacrylamide) microgels embedded within a matrix of regular ones are probed by small-angle neutron scattering with contrast variation. The form factors of the microgels at increasing compressions are directly measured. The decrease of the cavity size with increasing concentration shows that the hollow microgels have an alternative way with respect to regular cross-linked ones to respond to the squeezing due to their neighbors. The structural changes under compression are supported by the radial density profiles obtained with computer simulations. The presence of the cavity offers to the polymer network the possibility to expand toward the center of the microgels in response to the overcrowded environment. Furthermore, upon increasing compression, a two step transition occurs: First the microgels are compressed but the internal structure is unchanged; then, further compression causes the fuzzy shell to collapse completely and reduce the size of the cavity. Computer simulations also allow studying higher compression degrees than in the experiments leading to the microgel's faceting.

  1. Second-law efficiency of solar-thermal cavity receivers

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.

    1983-01-01

    Properly quantified performance of a solar-thermal cavity receiver must not only account for the energy gains and losses as dictated by the First Law of thermodynamics, but it must also account for the quality of that energy. However, energy quality can only be determined from the Second Law. An equation for the Second Law efficiency of a cavity receiver is derived from the definition of available energy, which is a thermodynamic property that measures the maximum amount of work obtainable when a system is allowed to come into unrestrained equilibrium with the surrounding environment. The fundamental concepts of the entropy and availability of radiation were explored from which a workable relationship among the reflected cone half-angle, the insolation, and the concentrator geometric characteristics was developed as part of the derivation of the Second Law efficiency. First and Second Law efficiencies were compared for data collected from two receivers that were designed for different purposes. A Second Law approach to quantifying the performance of a solar-thermal cavity receiver lends greater insight into the total performance than does the conventional First Law method.

  2. Circumbinary, not transitional: on the spiral arms, cavity, shadows, fast radial flows, streamers, and horseshoe in the HD 142527 disc

    NASA Astrophysics Data System (ADS)

    Price, Daniel J.; Cuello, Nicolás; Pinte, Christophe; Mentiplay, Daniel; Casassus, Simon; Christiaens, Valentin; Kennedy, Grant M.; Cuadra, Jorge; Sebastian Perez, M.; Marino, Sebastian; Armitage, Philip J.; Zurlo, Alice; Juhasz, Attila; Ragusa, Enrico; Laibe, Guillaume; Lodato, Giuseppe

    2018-06-01

    We present 3D hydrodynamical models of the HD 142527 protoplanetary disc, a bright and well-studied disc that shows spirals and shadows in scattered light around a 100 au gas cavity, a large horseshoe dust structure in mm continuum emission, together with mysterious fast radial flows and streamers seen in gas kinematics. By considering several possible orbits consistent with the observed arc, we show that all of the main observational features can be explained by one mechanism - the interaction between the disc and the observed binary companion. We find that the spirals, shadows, and horseshoe are only produced in the correct position angles by a companion on an inclined and eccentric orbit approaching periastron - the `red' family from Lacour et al. Dust-gas simulations show radial and azimuthal concentration of dust around the cavity, consistent with the observed horseshoe. The success of this model in the HD 142527 disc suggests other mm-bright transition discs showing cavities, spirals, and dust asymmetries may also be explained by the interaction with central companions.

  3. Effects of injection pressure variation on mixing in a cold supersonic combustor with kerosene fuel

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Lai; Zhu, Lin; Qi, Yin-Yin; Ge, Jia-Ru; Luo, Feng; Zou, Hao-Ran; Wei, Min; Jen, Tien-Chien

    2017-10-01

    Spray jet in cold kerosene-fueled supersonic flow has been characterized under different injection pressures to assess the effects of the pressure variation on the mixing between incident shock wave and transverse cavity injection. Based on the real scramjet combustor, a detailed computational fluid dynamics model is developed. The injection pressures are specified as 0.5, 1.0, 2.0, 3.0 and 4.0 MPa, respectively, with the other constant operation parameters (such as the injection diameter, angle and velocity). A three dimensional Couple Level Set & Volume of Fluids approach incorporating an improved Kelvin-Helmholtz & Rayleigh-Taylor model is used to investigate the interaction between kerosene and supersonic air. The numerical simulations primarily concentrate on penetration depth, span expansion area, angle of shock wave and sauter mean diameter distribution of the kerosene droplets with/without evaporation. Validation has been implemented by comparing the calculated against the measured in literature with good qualitative agreement. Results show that the penetration depth, span-wise angle and expansion area of the transverse cavity jet are all increased with the injection pressure. However, when the injection pressure is further increased, the value in either penetration depth or expansion area increases appreciably. This study demonstrates the feasibility and effectiveness of the combination of Couple Level Set & Volume of Fluids approach and an improved Kelvin-Helmholtz & Rayleigh-Taylor model, in turn providing insights into scramjet design improvement.

  4. Experimental study of the competitive adsorption of HNO3 and H2O on surfaces by using Brewster angle cavity ring-down spectroscopy in the 295-345 nm region.

    PubMed

    Du, Juan; Keesee, Robert G; Zhu, Lei

    2014-09-18

    The competitive adsorption of HNO3 and H2O from the gas phase onto fused silica surfaces is investigated. Brewster angle cavity ring-down spectroscopy is used to measure absorption of a laser probe beam by the HNO3/H2O coadsorbed on fused silica surfaces as a function of the mixture pressure. The laser absorption measurements were made in the 295-345 nm region. Langmuir adsorption constants for nitric acid and water were found to be 107 ± 17 and 562 ± 21 Torr(-1), respectively. A method has been developed for calculating absorption by HNO3 and H2O codeposited on the surface as a function of the HNO3/H2O mixture pressure using multicomponent Langmuir adsorption isotherms and absorption cross-sections at a given wavelength for surface-adsorbed HNO3 and H2O. The validity of this treatment has been evaluated both as a function of wavelength and as a function of mixing ratio.

  5. Active flow control for a NACA-0012 Profile: Part II

    NASA Astrophysics Data System (ADS)

    Oualli, H.; Makadem, M.; Ouchene, H.; Ferfouri, A.; Bouabdallah, A.; Gad-El-Hak, M.

    2016-11-01

    Active flow control is applied to a NACA-0012 profile. The experiments are conducted in a wind tunnel. Using a high-resolution visible-light camera and tomography, flow visualizations are carried out. LES finite-volume 3D code is used to complement the physical experiments. The symmetric wing is clipped into two parts, and those parts extend and retract along the chord according to the same sinusoidal law we optimized last year for the same profile but clipped at an angle of 60 deg, instead of the original 90 deg. The Reynolds number range is extended to 500,000, thus covering the flying regimes of micro-UAVs, UAVs, as well as small aircraft. When the nascent cavity is open and the attack angle is 30 deg, the drag coefficient is increased by 1,300%, as compared to the uncontrolled case. However, when the cavity is covered and Re <=105 , a relatively small frequency, f <= 30 Hz, is required for the drag coefficient to drop to negative values. At the maximum Reynolds number, thrust is generated but only at much higher frequencies, 12 <= f <= 16 kHz.

  6. Analysis and Design of Ultra Wide-Band and High-Power Microwave Pulse Interactions With Electronic Circuits and Systems

    DTIC Science & Technology

    2007-02-28

    upset, latch -up or failure of systems of digital components. A digital system can be in many different states, depending on its internal functioning...the Interface between Isorefractive Half-spaces A Y,A0 + B I (c). Cavity-Backed Gap in a Corner (d). A Right-Angle Isorefractive Wedge Structure z LL...ikjI I E2,:, (e) . A +-l l(ii (c). e Ca ity-Backedfraptive MatCoeria (d. BeRgt-Angl Isorefractive Wedge -Structur B V-T A.. D .F V-0 G x V-:x C E Y’-2

  7. Pathophysiological Factors Associated with Left Ventricular Perforation in Transcatheter Aortic Valve Implantation by Transfemoral Approach.

    PubMed

    Owais, Tamer; El Garhy, Mohammad; Fuchs, Jürgen; Disha, Kushtrim; Elkaffas, Sameh; Breuer, Martin; Lauer, Bernward; Kuntze, Thomas

    2017-07-01

    Left ventricular (LV) perforation is one of the rare and most serious complications of transcatheter aortic valve implantation (TAVI). The study aim was to determine the pathophysiological factors associated with this serious complication. A retrospective study was conducted of pathophysiological factors shown in echocardiograms and computed tomography angiograms performed preoperatively in patients who developed LV perforation during transfemoral TAVI (study group) with regards to anatomic and functional variables. Results were then compared with data acquired from a randomly selected sample of patients without perforation (control group). Among 963 TAVI cases, LV perforation occurred in 11 patients (three males, eight females; mean age 79 years). These patients showed complications of LV perforation that required emergency sternotomy and repair of injury to the left ventricle. Ten patients were rescued by the procedure, but one patient died during surgery. Focus on preoperative factors and intraoperative steps was established in favor to identify possible predictors of LV perforation. A LV cavity size <4.2 cm and a hypercontractile ventricle were identified in 10 patients (90%). Only one patient had a dilated cardiomyopathic left ventricle, with a cavity size of 6.1 cm and an ejection fraction of 10%. The present study results revealed other specific patient-related factors, namely a narrow aorto-mitral angle and a thin ventricular muscular wall despite long-standing aortic stenosis. All 11 patients had an average mid-LV muscular wall thickness of 5 mm. An inverse proportional relationship between the aorto-mitral angle and the incidence of perforation was noted, where in all 11 patients the wire had directed itself towards the anterior free wall of the left ventricle, where it induced injury. A small LV cavity, a hypercontractile state, a thin muscular wall, and a narrow aorto-mitral angle may be considered potential predictors of the occurrence of LV perforation during TAVI.

  8. Shuttle Damage/Repair from the Perspective of Hypersonic Boundary Layer Transition - Experimental Results

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Berry, Scott A.; Merski, N. Ronald; Berger, Karen T.; Buck, Gregory M.; Liechty, Derek S.; Schneider, Steven P.

    2006-01-01

    An overview is provided of the experimental wind tunnel program conducted at the NASA Langley Research Center Aerothermodynamics Laboratory in support of an agency-wide effort to prepare the Shuttle Orbiter for Return-to-Flight. The effect of an isolated protuberance and an isolated rectangular cavity on hypersonic boundary layer transition onset on the windward surface of the Shuttle Orbiter has been experimentally characterized. These experimental studies were initiated to provide a protuberance and cavity effects database for developing hypersonic transition criteria to support on-orbit disposition of thermal protection system damage or repair. In addition, a synergistic experimental investigation was undertaken to assess the impact of an isolated mass-flow entrainment source (simulating pyrolysis/outgassing from a proposed tile repair material) on boundary layer transition. A brief review of the relevant literature regarding hypersonic boundary layer transition induced from cavities and localized mass addition from ablation is presented. Boundary layer transition results were obtained using 0.0075-scale Orbiter models with simulated tile damage (rectangular cavities) of varying length, width, and depth and simulated tile damage or repair (protuberances) of varying height. Cavity and mass addition effects were assessed at a fixed location (x/L = 0.3) along the model centerline in a region of near zero pressure gradient. Cavity length-to-depth ratio was systematically varied from 2.5 to 17.7 and length-to-width ratio of 1 to 8.5. Cavity depth-to-local boundary layer thickness ranged from 0.5 to 4.8. Protuberances were located at several sites along the centerline and port/starboard attachment lines along the chine and wing leading edge. Protuberance height-to-boundary layer thickness was varied from approximately 0.2 to 1.1. Global heat transfer images and heating distributions of the Orbiter windward surface using phosphor thermography were used to infer the state of the boundary layer (laminar, transitional, or turbulent). Test parametrics include angles-of-attack of 30 deg and 40 deg, sideslip angle of 0 deg, freestream Reynolds numbers from 0.02x106 to 7.3x106 per foot, edge-to-wall temperature ratio from 0.4 to 0.8, and normal shock density ratios of approximately 5.3, 6.0, and 12 in Mach 6 air, Mach 10 air, and Mach 6 CF4, respectively. Testing to simulate the effects of ablation from a proposed tile repair concept indicated that transition was not a concern. The experimental protuberance and cavity databases highlighted in this report were used to formulate boundary layer transition correlations that were an integral part of an analytical process to disposition observed Orbiter TPS damage during STS- 114.

  9. Evidence for preferential flux flow at the grain boundaries of superconducting RF-quality niobium

    DOE PAGES

    Sung, Z. -H.; Lee, P. J.; Gurevich, A.; ...

    2018-02-19

    Here, the question of whether grain boundaries (GBs) in niobium can be responsible for lowered operating field (B RF) or quality factor (Q 0) in superconducting radio-frequency (SRF) cavities is still controversial. Here, we show by direct DC transport across planar grain boundaries isolated from a slice of very large-grain SRF-quality Nb that vortices can preferentially flow along the grain boundary when the external magnetic field lies in the GB plane. However, increasing the misalignment between the GB plane and the external magnetic field vector markedly reduces preferential flux flow along GB. Importantly, we find that preferential GB flux flowmore » is more prominent for a buffered chemical polished than for an electropolished bi-crystal. The voltage-current characteristics of GBs are similar to those seen in low angle grain boundaries of high temperature superconductors where there is clear evidence of suppression of the superconducting order parameter at the GB. While local weakening of superconductivity at GBs in cuprates and pnictides is intrinsic, deterioration of current transparency of GBs in Nb appears to be extrinsic, since the polishing method clearly affect the local GB degradation. The dependence of preferential GB flux flow on important cavity preparation and experimental variables, particularly, the final chemical treatment and the angle between the magnetic field and the GB plane, suggests two more reasons why real cavity performance can be so variable.« less

  10. Optimal spacing within a tubed, volumetric, cavity receiver suitable for modular molten salt solar towers

    NASA Astrophysics Data System (ADS)

    Turner, Peter

    2016-05-01

    A 2-dimensional radiation analysis has been developed to analyse the radiative efficiency of an arrangement of heat transfer tubes distributed in layers but spaced apart to form a tubed, volumetric receiver. Such an arrangement could be suitable for incorporation into a cavity receiver. Much of the benefit of this volumetric approach is gained after using 5 layers although improvements do continue with further layers. The radiation analysis splits each tube into multiple segments in which each segment surface can absorb, reflect and radiate rays depending on its surface temperature. An iterative technique is used to calculate appropriate temperatures depending on the distribution of the net energy absorbed and assuming that the cool heat transfer fluid (molten salt) starts at the front layer and flows back through successive layers to the rear of the cavity. Modelling the finite diameter of each layer of tubes increases the ability of a layer to block radiation scattered at acute angles and this effect is shown to reduce radiation losses by nearly 25% compared to the earlier 1-d analysis. Optimum efficient designs tend to occur when the blockage factor is 0.2 plus the inverse of the number of tube layers. It is beneficial if the distance between successive layers is ≥ 2 times the diameter of individual tubes and in this situation, if the incoming radiation is spread over a range of angles, the performance is insensitive to the degree of any tube positional offset or stagger between layers.

  11. Evidence for preferential flux flow at the grain boundaries of superconducting RF-quality niobium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Z. -H.; Lee, P. J.; Gurevich, A.

    Here, the question of whether grain boundaries (GBs) in niobium can be responsible for lowered operating field (B RF) or quality factor (Q 0) in superconducting radio-frequency (SRF) cavities is still controversial. Here, we show by direct DC transport across planar grain boundaries isolated from a slice of very large-grain SRF-quality Nb that vortices can preferentially flow along the grain boundary when the external magnetic field lies in the GB plane. However, increasing the misalignment between the GB plane and the external magnetic field vector markedly reduces preferential flux flow along GB. Importantly, we find that preferential GB flux flowmore » is more prominent for a buffered chemical polished than for an electropolished bi-crystal. The voltage-current characteristics of GBs are similar to those seen in low angle grain boundaries of high temperature superconductors where there is clear evidence of suppression of the superconducting order parameter at the GB. While local weakening of superconductivity at GBs in cuprates and pnictides is intrinsic, deterioration of current transparency of GBs in Nb appears to be extrinsic, since the polishing method clearly affect the local GB degradation. The dependence of preferential GB flux flow on important cavity preparation and experimental variables, particularly, the final chemical treatment and the angle between the magnetic field and the GB plane, suggests two more reasons why real cavity performance can be so variable.« less

  12. Is there a correlation between the change in the interscrew angle of the eight-plate and the delta joint orientation angles?

    PubMed

    Marangoz, Salih; Buyukdogan, Kadir; Karahan, Sevilay

    2017-01-01

    It is known that the screws of the eight-plate hemiepiphysiodesis construct diverge as growth occurs through the physis. Our objective was to investigate whether there is a correlation between the amount of change of the joint orientation angle (JOA) and that of the interscrew angle (ISA) of the eight-plate hemiepiphysiodesis construct before and after correction. After the institutional review board approval, medical charts and X-rays of all patients operated for either genu valgum or genu varum with eight-plate hemiepiphysiodesis were analyzed retrospectively. All consecutive patients at various ages with miscellaneous diagnoses were included. JOA and ISA were measured before and after correction. After review of the X-rays, statistical analyses were performed which included Pearson correlation coefficient and regression analyses. There were 53 segments of 30 patients included in the study. Eighteen were males, and 12 were females. Mean age at surgery was 9.1 (range 3-17). Mean follow-up time was 21.5 (range, 7-46) months. The diagnoses were diverse. A strong correlation was found between the delta JOA (d-JOA) and delta ISA (d-ISA) of the eight-plate hemiepiphysiodesis construct (r = 0.759 (0.615-0.854, 95%CI), p < 0.001). This correlation was independent of the age and gender of the patient. There is a strong correlation between the d-ISA and the d-JOA. The d-ISA follows the d-JOA at a predictable amount through formulas which regression analysis yielded. This study confirms the clinical observation of the diverging angle between the screws is in correlation with the correction of the JOA. Level IV, Therapeutic study. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  13. Filling a Conical Cavity

    NASA Astrophysics Data System (ADS)

    Nye, Kyle; Eslam-Panah, Azar

    2016-11-01

    Root canal treatment involves the removal of infected tissue inside the tooth's canal system and filling the space with a dense sealing agent to prevent further infection. A good root canal treatment happens when the canals are filled homogeneously and tightly down to the root apex. Such a tooth is able to provide valuable service for an entire lifetime. However, there are some examples of poorly performed root canals where the anterior and posterior routes are not filled completely. Small packets of air can be trapped in narrow access cavities when restoring with resin composites. Such teeth can cause trouble even after many years and lead the conditions like acute bone infection or abscesses. In this study, the filling of dead-end conical cavities with various liquids is reported. The first case studies included conical cavity models with different angles and lengths to visualize the filling process. In this investigation, the rate and completeness at which a variety of liquids fill the cavity were observed to find ideal conditions for the process. Then, a 3D printed model of the scaled representation of a molar with prepared post spaces was used to simulate the root canal treatment. The results of this study can be used to gain a better understanding of the restoration for endodontically treated teeth.

  14. Performance Characteristics of Plane Wall Two Dimensional Diffusers

    DTIC Science & Technology

    1953-02-01

    die Umsetzung von Wässergeschwindigkeit in Druck . Mitt. Forsch.-Arb. Geb. Ing.-Wes., Heft 76, 1909. k6 NACA TN 2888 12. Hochschild, Heinrich...Wi 0 2/ .75 ■ /5.2s A //.00 D 7.75 • 5. 3D & \\\\ /2 /e Z d, &&3 20 24 Figure 15.- Variation of pressure efficiency with divergence angle

  15. Supersonic/Hypersonic Correlations for In-Cavity Transition and Heating Augmentation

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.

    2011-01-01

    Laminar-entry cavity heating data with a non-laminar boundary layer exit flow have been retrieved from the database developed at Mach 6 and 10 in air on large flat plate models for the Space Shuttle Return-To-Flight Program. Building on previously published fully laminar and fully turbulent analysis methods, new descriptive correlations of the in-cavity floor-averaged heating and endwall maximum heating have been developed for transitional-to-turbulent exit flow. These new local-cavity correlations provide the expected flow and geometry conditions for transition onset; they provide the incremental heating augmentation induced by transitional flow; and, they provide the transitional-to-turbulent exit cavity length. Furthermore, they provide an upper application limit for the previously developed fully-laminar heating correlations. An example is provided that demonstrates simplicity of application. Heating augmentation factors of 12 and 3 above the fully laminar values are shown to exist on the cavity floor and endwall, respectively, if the flow exits in fully tripped-to-turbulent boundary layer state. Cavity floor heating data in geometries installed on the windward surface of 0.075-scale Shuttle wind tunnel models have also been retrieved from the boundary layer transition database developed for the Return-To-Flight Program. These data were independently acquired at Mach 6 and Mach 10 in air, and at Mach 6 in CF4. The correlation parameters for the floor-averaged heating have been developed and they offer an exceptionally positive comparison to previously developed laminar-cavity heating correlations. Non-laminar increments have been extracted from the Shuttle data and they fall on the newly developed transitional in-cavity correlations, and they are bounded by the 95% correlation prediction limits. Because the ratio of specific heats changes along the re-entry trajectory, turning angle into a cavity and boundary layer flow properties may be affected, raising concerns regarding the application validity of the heating augmentation predictions.

  16. Bulk vertical micromachining of single-crystal sapphire using inductively coupled plasma etching for x-ray resonant cavities

    NASA Astrophysics Data System (ADS)

    Chen, P.-C.; Lin, P.-T.; Mikolas, D. G.; Tsai, Y.-W.; Wang, Y.-L.; Fu, C.-C.; Chang, S.-L.

    2015-01-01

    To provide coherent x-ray sources for probing the dynamic structures of solid or liquid biological substances on the picosecond timescale, a high-aspect-ratio x-ray resonator cavity etched from a single crystal substrate with a nearly vertical sidewall structure is required. Although high-aspect-ratio resonator cavities have been produced in silicon, they suffer from unwanted multiple beam effects. However, this problem can be avoided by using the reduced symmetry of single-crystal sapphire in which x-ray cavities may produce a highly monochromatic transmitted x-ray beam. In this study, we performed nominal 100 µm deep etching and vertical sidewall profiles in single crystal sapphire using inductively coupled plasma (ICP) etching. The large depth is required to intercept a useful fraction of a stopped-down x-ray beam, as well as for beam clearance. An electroplated Ni hard mask was patterned using KMPR 1050 photoresist and contact lithography. The quality and performance of the x-ray cavity depended upon the uniformity of the cavity gap and therefore verticality of the fabricated vertical sidewall. To our knowledge, this is the first report of such deep, vertical etching of single-crystal sapphire. A gas mixture of Cl2/BCl3/Ar was used to etch the sapphire with process variables including BCl3 flow ratio and bias power. By etching for 540 min under optimal conditions, we obtained an x-ray resonant cavity with a depth of 95 µm, width of ~30 µm, gap of ~115 µm and sidewall profile internal angle of 89.5°. The results show that the etching parameters affected the quality of the vertical sidewall, which is essential for good x-ray resonant cavities.

  17. Transverse single-mode edge-emitting lasers based on coupled waveguides.

    PubMed

    Gordeev, Nikita Yu; Payusov, Alexey S; Shernyakov, Yuri M; Mintairov, Sergey A; Kalyuzhnyy, Nikolay A; Kulagina, Marina M; Maximov, Mikhail V

    2015-05-01

    We report on the transverse single-mode emission from InGaAs/GaAs quantum well edge-emitting lasers with broadened waveguide. The lasers are based on coupled large optical cavity (CLOC) structures where high-order vertical modes of the broad active waveguide are suppressed due to their resonant tunneling into a coupled single-mode passive waveguide. The CLOC lasers have shown stable Gaussian-shaped vertical far-field profiles with a reduced divergence of ∼22° FWHM (full width at half-maximum) in CW (continuous-wave) operation.

  18. High power VCSELs for miniature optical sensors

    NASA Astrophysics Data System (ADS)

    Geske, Jon; Wang, Chad; MacDougal, Michael; Stahl, Ron; Follman, David; Garrett, Henry; Meyrath, Todd; Snyder, Don; Golden, Eric; Wagener, Jeff; Foley, Jason

    2010-02-01

    Recent advances in Vertical-cavity Surface-emitting Laser (VCSEL) efficiency and packaging have opened up alternative applications for VCSELs that leverage their inherent advantages over light emitting diodes and edge-emitting lasers (EELs), such as low-divergence symmetric emission, wavelength stability, and inherent 2-D array fabrication. Improvements in reproducible highly efficient VCSELs have allowed VCSELs to be considered for high power and high brightness applications. In this talk, Aerius will discuss recent advances with Aerius' VCSELs and application of these VCSELs to miniature optical sensors such as rangefinders and illuminators.

  19. Shaping Cutter Original Profile for Fine-module Ratchet Teeth Cutting

    NASA Astrophysics Data System (ADS)

    Sharkov, O. V.; Koryagin, S. I.; Velikanov, N. L.

    2018-03-01

    The methods for determining geometric characteristics of a theoretical original profile of the cutter for cutting ratchet teeth with a module of 0.3–1.0 mm are considered in the article. Design models describing the shaping process of cutting edges of cutter teeth are developed. Systems of expressions for determining coordinates of the points of front and back edges of cutter teeth; the workpiece angles of rotation during the cutting process; the minimum cutter radius are received. The basic data when using the proposed technique are: radii of circumferences passing through cavities of cutter teeth and external cut teeth; the gradient angle and length of straight section of the front edge of a cut tooth; angles of rotation of the cutter and the workpiece at the moment of shaping.

  20. Howard University Assembles Fund-Raising Juggernaut

    ERIC Educational Resources Information Center

    Masterson, Kathryn

    2008-01-01

    As a dental student 35 years ago, Leo E. Rouse and his Howard University classmates learned to fill cavities and cap teeth by crowding around one faculty member and angling for a clear view of the day's demonstration. Today students at Howard's College of Dentistry, where Dr. Rouse is now the dean, get an unobstructed view of dental procedures…

  1. Ultrafast Directional Beam Switching in Coupled VCSELs

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Goorjian, Peter

    2001-01-01

    We propose a new approach to performing ultrafast directional beam switching using two coupled Vertical-Cavity Surface-Emitting Lasers (VCSELs). The proposed strategy is demonstrated for two VCSELs of 5.6 microns in diameter placed about 1 micron apart from the edges, showing a switching speed of 42 GHz with a maximum far-field angle span of about 10 degrees.

  2. Fusional vergence detected by prism bar and synoptophore in chinese childhood intermittent exotropia.

    PubMed

    Fu, Tao; Wang, Jing; Levin, Moran; Su, Qing; Li, Dongguo; Li, Junfa

    2015-01-01

    Purpose. To measure the changes in fusional vergence in Chinese children with intermittent exotropia (IXT) and the association with the control of IXT. Methods. Ninety-two patients with IXT (8-15 years old) were compared with 86 controls. Exodeviation control was evaluated using the Revised Newcastle Control Score. Angle of deviation was measured using prism and alternate cover testing at distance and near. Fusional vergence was measured using prism bar and synoptophore. This study was registered with ChiCTR-RCC-13003920. Results. Using prism bar, convergence break points were lower whereas divergence break points were higher in children with IXT at distance (P < 0.001) and near (P < 0.001) compared with controls. There was no significant difference in mean divergence amplitudes between the two groups when testing using a synoptophore (P = 0.53). In children with IXT, the distance between recovery point and break point in both convergence (distance: P = 0.02; near: P = 0.02) and divergence (distance: P < 0.001; near: P < 0.001) was larger than controls when detected by prism bar and synoptophore (convergence: P = 0.005; divergence: P = 0.006). Conclusions. Children with IXT have reduced convergence amplitudes as detected by both prism bar and synoptophore.

  3. Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication

    PubMed Central

    Chi, Yu-Chieh; Hsieh, Dan-Hua; Lin, Chung-Yu; Chen, Hsiang-Yu; Huang, Chia-Yen; He, Jr-Hau; Ooi, Boon; DenBaars, Steven P.; Nakamura, Shuji; Kuo, Hao-Chung; Lin, Gong-Ru

    2015-01-01

    An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120o with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10−3 over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems. PMID:26687289

  4. Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication

    NASA Astrophysics Data System (ADS)

    Chi, Yu-Chieh; Hsieh, Dan-Hua; Lin, Chung-Yu; Chen, Hsiang-Yu; Huang, Chia-Yen; He-Hau, Jr.; Ooi, Boon; Denbaars, Steven P.; Nakamura, Shuji; Kuo, Hao-Chung; Lin, Gong-Ru

    2015-12-01

    An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120o with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10-3 over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems.

  5. Benefit of bi-ocular visual stimulation for postural control in children with strabismus.

    PubMed

    Gaertner, Chrystal; Creux, Charlotte; Espinasse-Berrod, Marie-Andrée; Orssaud, Christophe; Dufier, Jean-Louis; Kapoula, Zoï

    2013-01-01

    Vision is important for postural control as is shown by the Romberg quotient (RQ): with eyes closed, postural instability increases relative to eyes open (RQ = 2). Yet while fixating at far distance, postural stability is similar with eyes open and eyes closed (RQ = 1). Postural stability can be better with both eyes viewing than one eye, but such effect is not consistent among healthy subjects. The first goal of the study is to test the RQ as a function of distance for children with convergent versus divergent strabismus. The second goal is to test whether vision from two eyes relative to vision from one eye provides better postural stability. Thirteen children with divergent strabismus and eleven with convergent strabismus participated in this study. Posturtography was done with the Techno concept device. Experiment 1, four conditions: fixation at 40 cm and at 200 cm both with eyes open and eyes covered (evaluation of RQ). Experiment 2, six conditions: fixation at 40 cm and at 200 cm, with both eyes viewing or under monocular vision (dominant and non-dominant eye). For convergent strabismus, the groups mean value of RQ was 1.3 at near and 0.94 at far distance; for divergent, it was 1.06 at near and 1.68 at far. For all children, the surface of body sway was significantly smaller under both eyes viewing than monocular viewing (either eye). Increased RQ value at near for convergent and at far for divergent strabismus is attributed to the influence of the default strabismus angle and to better use of ocular motor signals. Vision with the two eyes improves postural control for both viewing distances and for both types of strabismus. Such benefit can be due to complementary mechanisms: larger visual field, better quality of fixation and vergence angle due to the use of visual inputs from both eyes.

  6. Regularized quasinormal modes for plasmonic resonators and open cavities

    NASA Astrophysics Data System (ADS)

    Kamandar Dezfouli, Mohsen; Hughes, Stephen

    2018-03-01

    Optical mode theory and analysis of open cavities and plasmonic particles is an essential component of optical resonator physics, offering considerable insight and efficiency for connecting to classical and quantum optical properties such as the Purcell effect. However, obtaining the dissipative modes in normalized form for arbitrarily shaped open-cavity systems is notoriously difficult, often involving complex spatial integrations, even after performing the necessary full space solutions to Maxwell's equations. The formal solutions are termed quasinormal modes, which are known to diverge in space, and additional techniques are frequently required to obtain more accurate field representations in the far field. In this work, we introduce a finite-difference time-domain technique that can be used to obtain normalized quasinormal modes using a simple dipole-excitation source, and an inverse Green function technique, in real frequency space, without having to perform any spatial integrations. Moreover, we show how these modes are naturally regularized to ensure the correct field decay behavior in the far field, and thus can be used at any position within and outside the resonator. We term these modes "regularized quasinormal modes" and show the reliability and generality of the theory by studying the generalized Purcell factor of dipole emitters near metallic nanoresonators, hybrid devices with metal nanoparticles coupled to dielectric waveguides, as well as coupled cavity-waveguides in photonic crystals slabs. We also directly compare our results with full-dipole simulations of Maxwell's equations without any approximations, and show excellent agreement.

  7. Hybrid Smith predictor and phase lead based divergence compensation for hardware-in-the-loop contact simulation with measurement delay

    NASA Astrophysics Data System (ADS)

    Qi, Chenkun; Gao, Feng; Zhao, Xianchao; Wang, Qian; Ren, Anye

    2018-06-01

    On the ground the hardware-in-the-loop (HIL) simulation is a good approach to test the contact dynamics of spacecraft docking process in space. Unfortunately, due to the time delay in the system the HIL contact simulation becomes divergent. However, the traditional first-order phase lead compensation approach still result in a small divergence for the pure time delay. The serial Smith predictor and phase lead compensation approach proposed by the authors recently will lead to an over-compensation and an obvious convergence. In this study, a hybrid Smith predictor and phase lead compensation approach is proposed. The hybrid Smith predictor and phase lead compensation can achieve a higher simulation fidelity with a little convergence. The phase angle of the compensator is analyzed and the stability condition of the HIL simulation system is given. The effectiveness of the proposed compensation approach is tested by simulations on an undamped elastic contact process.

  8. The Turbulent Flow in Diffusers of Small Divergence Angle

    NASA Technical Reports Server (NTRS)

    Gourzhienko, G. A.

    1947-01-01

    The turbulent flow in a conical diffuser represents the type of turbulent boundary layer with positive longitudinal pressure gradient. In contrast to the boundary layer problem, however, it is not necessary that the pressure distribution along the limits of the boundary layer(along the axis of the diffuser) be given, since this distribution can be obtained from the computation. This circumstance, together with the greater simplicity of the problem as a whole, provides a useful basis for the study of the extension of the results of semiempirical theories to the case of motion with a positive pressure gradient. In the first part of the paper,formulas are derived for the computation of the velocity and.pressure distributions in the turbulent flow along, and at right angles to, the axis of a diffuser of small cone angle. The problem is solved.

  9. Phyllotactic pattern and stem cell fate are determined by the Arabidopsis homeobox gene BELLRINGER

    Treesearch

    Mary E. Byrne; Andrew T. Groover; Joseph R. Fontana; Robert A. Martienssen

    2003-01-01

    Lateral organs in plants arise from the meristem in a stereotypical pattern known as phyllotaxy. Spiral patterns result from initiation of successive organs at a fixed angle of divergence but variable patterns of physical contact. Such patterns ultimately give rise to individual leaves and flowers at positions related to each other by consecutive terms in the...

  10. Ion beamlet steering for two-grid electrostatic thrusters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Homa, J. M.

    1984-01-01

    An experimental study of ion beamlet steering in which the direction of beamlets emitted from a two grid aperture system is controlled by relative translation of the grids, is described. The results can be used to design electrostatic accelerating devices for which the direction and focus of emerging beamlets are important. Deflection and divergence angle data are presented for two grid systems as a function of the relative lateral displacement of the holes in these grids. At large displacements, accelerator grid impingements become excessive and this determines the maximum allowable displacement and as a result the useful range of beamlet deflection. Beamlet deflection is shown to vary linearly with grid offset angle over this range. The divergence of the beamlets is found to be unaffected by deflection over the useful range of beamlet deflection. The grids of a typical dished grid ion thruster are examined to determine the effects of thermally induced grid distortion and prescribed offsets of grid hole centerlines on the characteristics of the emerging beamlets. The results are used to determine the region on the grid surface where ion beamlet deflections exceed the useful range. Over this region high accelerator grid impingement currents and rapid grid erosion are predicted.

  11. Enhanced laser radiation pressure acceleration of protons with a gold cone-capillary

    NASA Astrophysics Data System (ADS)

    Lv, Chong; Xie, Bai-Song; Wan, Feng; Hou, Ya-Juan; Jia, Mo-Ran; Sang, Hai-Bo; Hong, Xue-Ren; Liu, Shi-Bing

    2017-03-01

    A scheme with a gold cone-capillary is proposed to improve the protons acceleration, and involved problems are investigated by using the two-dimensional particle-in-cell simulations. It is demonstrated that the cone-capillary can efficiently guide and collimate the protons to a longer distance and result in a better beam quality with a dense density ≥ 10 n c , monoenergetic peak energy E k ˜ 1.51 GeV , spatial emittance ˜ 0.0088 mm mrad with divergence angle θ ˜ 1.0 ° and diameter ˜ 0.5 μ m . The enhancement is mainly attributed to the focusing effect by the transverse electric field generated by the cone as well as the capillary, which can prevent greatly the protons from expanding in the transverse direction. Comparable to without the capillary, the protons energy spectra have a stable monoenergetic peak and divergence angle nearby 1.0 ° in longer time. Besides, the efficiency of acceleration depending on the capillary length is explored, and the optimal capillary length is also achieved. Such a target may be beneficial to many applications such as ion fast ignition in inertial fusion, proton therapy and so on.

  12. Experimental investigation of the effects of variable expanding channel on the performance of a low-power cusped field thruster

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Zeng, Ming; Jiang, Wenjia; Yang, Chiyu; Ning, Zhongxi; Yu, Daren

    2018-04-01

    Due to a special magnetic field structure, the multi-cusped field thruster shows advantages of low wall erosion, low noise and high thrust density over a wide range of thrust. In this paper, expanding discharge channels are employed to make up for deficiencies on the range of thrust and plume divergence, which often emerges in conventional straight cylindrical channels. Three thruster geometries are fabricated with different expanding-angle channels, and a group of experiments are carried out to find out their influence on the performance and discharge characteristics of the thruster. A retarding potential analyzer and a Faraday probe are employed to analyze the structures of the plume in these three models. The results show that when the thrusters operate at low mass flow rate, the gradually-expanding channels exhibit lower propellant utilization and lower overall performance by amounts not exceeding 44.8% in ionization rate and 19.5% in anode efficiency, respectively. But the weakening of magnetic field intensity near the exit of expanding channels leads to an extended thrust throttling ability, a smaller plume divergence angle, and a relatively larger stable operating space without mode converting and the consequent performance degradation.

  13. Angular distributions of reflected and refracted relativistic electron beams crossing a thin planar target at a small angle to its surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serov, A. V., E-mail: serov@x4u.lebedev.ru; Mamonov, I. A.; Kol’tsov, A. V., E-mail: koltsov@x4u.lebedev.ru

    2015-10-15

    The scattering of electrons by aluminum, copper, and lead foils, as well as by bimetallic aluminum-lead and aluminum-copper foils, has been studied experimentally. A microtron with an energy of particles of 7.4 MeV has been used as a source of electrons. The beam of particles incident on a target at small angles is split into particles reflected from the foil, which constitute a reflected beam, and particles crossing the foil, which constitute a refracted beam. The effect of the material and thickness of the foil, as well as the angle between the initial trajectory of the beam and the planemore » of the target, on the direction of motion and the angular divergence of the beam crossing the foil and the beam reflected from the foil has been analyzed. Furthermore, the effect of the sequence of metal layers in bimetallic films on the angles of refraction and reflection of the beam has been examined.« less

  14. Non-astigmatic imaging with matched pairs of spherically bent reflectors

    DOEpatents

    Bitter, Manfred Ludwig [Princeton, NJ; Hill, Kenneth Wayne [Plainsboro, NJ; Scott, Steven Douglas [Wellesley, MA; Feder, Russell [Newton, PA; Ko, Jinseok [Cambridge, MA; Rice, John E [N. Billerica, MA; Ince-Cushman, Alexander Charles [New York, NY; Jones, Frank [Manalapan, NJ

    2012-07-10

    Arrangements for the point-to-point imaging of a broad spectrum of electromagnetic radiation and ultrasound at large angles of incidence employ matched pairs of spherically bent reflectors to eliminate astigmatic imaging errors. Matched pairs of spherically bent crystals or spherically bent multi-layers are used for X-rays and EUV radiation; and matched pairs of spherically bent mirrors that are appropriate for the type of radiation are used with microwaves, infrared and visible light, or ultrasound. The arrangements encompass the two cases, where the Bragg angle--the complement to the angle of incidence in optics--is between 45.degree. and 90.degree. on both crystals/mirrors or between 0.degree. and 45.degree. on the first crystal/mirror and between 45.degree. and 90.degree. on the second crystal/mirror, where the angles of convergence and divergence are equal. For x-rays and EUV radiation, also the Bragg condition is satisfied on both spherically bent crystals/multi-layers.

  15. Space shuttle: Static stability characteristics and control surface effectiveness of the Boeing .00435 scale model space shuttle booster H-32

    NASA Technical Reports Server (NTRS)

    Houser, J. F.; Runciman, W. H.

    1971-01-01

    Experimental aerodynamic investigations were made in the Grumman 36-inch hypersonic wind tunnel on a .00435 scale model of the H-32 reusable space shuttle booster. The objectives of the test were to determine the static stability characteristics and control surface effectiveness at hypersonic speeds. Data were taken at M = 8.12 over a range of angles of attack between -5 and 85 deg at beta = 0 deg and over a range of side slip angles between -10 and 10 deg at alpha = 0 and 70 deg. Six component balance data and base-cavity pressure data were recorded.

  16. Droplet impact dynamics for two liquids impinging on anisotropic superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Pearson, John T.; Maynes, Daniel; Webb, Brent W.

    2012-09-01

    Droplet impingement experiments were performed on grooved hydrophobic surfaces with cavity fractions of 0, 80, and 93 % using droplets of water and a 50 %/50 % water/glycerol mixture. The influence of liquid viscosity, cavity fraction, and spreading direction, relative to the surface grooves, is explored qualitatively and quantitatively. The maximum droplet spread diameter, velocity of the rebounding jet, and the time delay between droplet impact and jet emission were characterized for Weber numbers, We, based on droplet impact speed and diameter, up to 500. The unequal shear stresses and contact angles influence the maximum spread diameters in the two primary spread directions. At We > 100, the ratio of the spread diameter along the direction of the grooves to the spread diameter perpendicular to the grooves increases above unity with increasing We. The maximum droplet spread diameter is compared to recent predictive models, and the data reveal differing behavior for the two fluids considered. The results also reveal the existence of very high relative jet velocities in the range 5 ≤ We ≤ 15 for water droplets, while such jets were not observed for the more viscous mixture. Further, in the range 115 ≤ We ≤ 265, the water/glycerol jet formation dynamics are radically different from the water behavior. Most evident is the existence of two-pronged jets, which arise from the anisotropy of the surface and the unequal shear stresses and contact angles that prevail on the surfaces. It is these influences that give rise to differences in the maximum spread diameters in the two primary spread directions. Similar two-pronged jet emission was observed for water over the very narrow range of We from 91 to 96. The issuing jet velocities were also observed to increase with increasing cavity fraction for both fluids and over the entire range of We explored. Lastly, the elapsed time between droplet impact and jet emission decreased with increasing cavity fraction.

  17. Relationship between vertical facial patterns and dental arch form in class II malocclusion.

    PubMed

    Grippaudo, Cristina; Oliva, Bruno; Greco, Anna Lucia; Sferra, Simone; Deli, Roberto

    2013-11-07

    The purpose of this study is to evaluate the relationship between dental arch form and the vertical facial pattern determined by the angle between the mandibular plane and the anterior cranial base (Sella-nasion/mandibular plane angle (SN-MP)) in skeletal class II untreated patients. A sample of 73 Caucasians patients with untreated skeletal class II in permanent dentition was divided into three groups according to the values of the angle SN-MP. An evaluation of the arch form was performed by angular and linear relation values on each patient. Regression analysis was used to determine the statistical significance of the relationships between SN-MP angle and dental arch form. The differences among the three groups were analyzed for significance using a variance analysis. A decrease of the upper arch transversal diameters in high SN-MP angle patients and an increase in low angle SN-MP ones (P<0.05) were shown. Result analysis showed a change in upper arch shape, with a smaller intercanine width in patients with high SN-MP angle and a greater one in low angle patients. As SN-MP angle increased, the upper arch form tended to be narrower. No statistically significant difference in mandibular arch form among the three groups was found, except the angle value related to incisors position. The results showed the association between the upper dental arch form and the vertical facial pattern. On the contrary, the lower arch form was not related to the mandibular divergence.

  18. Cavity ring-down spectroscopy in the liquid phase

    NASA Astrophysics Data System (ADS)

    Xu, Shucheng; Sha, Guohe; Xie, Jinchun

    2002-02-01

    A new application for cavity ring-down spectroscopic (CRDS) technique using a pulsed polarized light source has been developed in the absorption measurement of liquids for "colorless" organic compounds using both a single sample cell and double sample cells inserted in an optical cavity at Brewster angle. At present an experimental capability of measuring absorption coefficients as small as 2-5×10-7 cm-1 has been demonstrated by measurement of the absorption baselines. The first spectra for CRDS in the liquid phase, the C-H stretching fifth vibrational overtones of benzene in the pure liquid and hexane solution are obtained. The optical absorption length for liquids in both a single sample cell and double sample cells of 1 cm length is up to 900 cm due to multipass of light within an optical cavity. Compared to the thermal lens and optoacoustic spectroscopic techniques, the sensitivity for CRDS mainly depends on the optical absorption path of the sample (single passing path of the sample times multipass times), is not determined by the laser power and the length of the sample cell. The absolute absorption coefficient and band intensity for the sample are determined directly by the spectroscopy.

  19. Optical manifold

    DOEpatents

    Falicoff, Waqidi; Chaves, Julio C.; Minano, Juan Carlos; Benitez, Pablo; Dross, Oliver; Parkyn, Jr., William A.

    2010-02-23

    Optical systems are described that have at least one source of a beam of blue light with divergence under 15.degree.. A phosphor emits yellow light when excited by the blue light. A collimator is disposed with the phosphor and forms a yellow beam with divergence under 15.degree.. A dichroic filter is positioned to transmit the beam of blue light to the phosphor and to reflect the beam of yellow light to an exit aperture. In different embodiments, the beams of blue and yellow light are incident upon said filter with central angles of 15.degree., 22.degree., and 45.degree.. The filter may reflect all of one polarization and part of the other polarization, and a polarization rotating retroreflector may then be provided to return the unreflected light to the filter.

  20. Characterization of microbial communities in subsurface nuclear blast cavities of the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Duane P; Czerwinski, Ken; Russell, Charles E

    2010-07-13

    This US Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program's Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse andmore » divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.« less

  1. Characterization of Microbial Communities in Subsurface Nuclear Blast Cavities of the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Duane P.; Bruckner, Jim; Fisher, Jen

    2010-09-01

    This U.S. Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program’s Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse andmore » divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.« less

  2. Local temperatures predict breeding phenology but do not result in breeding synchrony among a community of resident cavity-nesting birds.

    PubMed

    Drake, Anna; Martin, Kathy

    2018-02-09

    Weather and ecological factors are known to influence breeding phenology and thus individual fitness. We predicted concordance between weather conditions and annual variation in phenology within a community of eight resident, cavity-nesting bird species over a 17-year period. We show that, although clutch initiation dates for six of our eight species are correlated with local daily maximum temperatures, this common driver does not produce a high degree of breeding synchrony due to species-specific responses to conditions during different periods of the preceding winter or spring. These "critical temperature periods" were positively associated with average lay date for each species, although the interval between critical periods and clutch initiation varied from 4-78 days. The ecological factors we examined (cavity availability and a food pulse) had an additional influence on timing in only one of our eight focal species. Our results have strong implications for understanding heterogeneous wildlife responses to climate change: divergent responses would be expected within communities where species respond to local conditions within different temporal windows, due to differing warming trends between winter and spring. Our system therefore indicates that climate change could alter relative breeding phenology among sympatric species in temperate ecosystems.

  3. Compact multilayer film structure for angle insensitive color filtering.

    PubMed

    Yang, Chenying; Shen, Weidong; Zhang, Yueguang; Li, Kan; Fang, Xu; Zhang, Xing; Liu, Xu

    2015-03-19

    Here we report a compact multilayer film structure for angle robust color filtering, which is verified by theoretical calculations and experiment results. The introduction of the amorphous silicon in the proposed unsymmetrical resonant cavity greatly reduces the angular sensitivity of the filters, which is confirmed by the analysis of the phase shift within the structure. The temperature of the substrate during the deposition is expressly investigated to obtain the best optical performance with high peak reflectance and good angle insensitive color filtering by compromising the refractive index of dielectric layer and the surface roughness of the multilayer film. And the outlayer of the structure, worked as the anti-reflection layer, have an enormous impact on the filtering performance. This method, described in this paper, can have enormous potential for diverse applications in display, colorful decoration, anti-counterfeiting and so forth.

  4. Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance.

    PubMed

    Zhang, Changlei; Huang, Cheng; Pu, Mingbo; Song, Jiakun; Zhao, Zeyu; Wu, Xiaoyu; Luo, Xiangang

    2017-07-18

    In this article, a dual-band wide-angle metamaterial perfect absorber is proposed to achieve absorption at the wavelength where laser radar operates. It is composed of gold ring array and a Helmholtz resonance cavity spaced by a Si dielectric layer. Numerical simulation results reveal that the designed absorber displays two absorption peaks at the target wavelength of 10.6 μm and 1.064 μm with the large frequency ratio and near-unity absorptivity under the normal incidence. The wide-angle absorbing property and the polarization-insensitive feature are also demonstrated. Localized surface plasmons resonance and Helmholtz resonance are introduced to analyze and interpret the absorbing mechanism. The designed perfect absorber can be developed for potential applications in infrared stealth field.

  5. Stable room-temperature LiF:F2+* tunable color-center laser for the 830-1060-nm spectral range pumped by second-harmonic radiation from a neodymium laser

    NASA Astrophysics Data System (ADS)

    Ter-Mikirtychev, V. V.

    1995-09-01

    Simultaneous photostability and thermostability of a room-temperature LiF:F2+ * tunable color-center laser, with an operating range over 830-1060 nm, pumped by second-harmonic radiation of a YAG:Nd3+ laser with a 532-nm wavelength has been achieved. The main lasing characteristics of the obtained LiF:F2+* laser have been measured. Twenty-five percent real efficiency in a nonselective resonator cavity and 15% real efficiency in a selective resonator cavity have been obtained. The stable LiF:F2 +* laser operates at a 1-100-Hz pulse-repetition rate with a 15-ns pulse duration, a 1-1.5-cm-1 narrow-band oscillation bandwidth, and divergency of better than 6 \\times 10-4. Doubling the fundamental frequencies of F2+ * oscillation made it possible to obtain stable blue-green tunable radiation over the 415-530-nm range.

  6. Ferritins: dynamic management of biological iron and oxygen chemistry.

    PubMed

    Liu, Xiaofeng; Theil, Elizabeth C

    2005-03-01

    Ferritins are spherical, cage-like proteins with nanocavities formed by multiple polypeptide subunits (four-helix bundles) that manage iron/oxygen chemistry. Catalytic coupling yields diferric oxo/hydroxo complexes at ferroxidase sites in maxi-ferritin subunits (24 subunits, 480 kDa; plants, animals, microorganisms). Oxidation occurs at the cavity surface of mini-ferritins/Dps proteins (12 subunits, 240 kDa; bacteria). Oxidation products are concentrated as minerals in the nanocavity for iron-protein cofactor synthesis (maxi-ferritins) or DNA protection (mini-ferritins). The protein cage and nanocavity characterize all ferritins, although amino acid sequences diverge, especially in bacteria. Catalytic oxidation/di-iron coupling in the protein cage (maxi-ferritins, 480 kDa; plants, bacteria and animal cell-specific isoforms) or on the cavity surface (mini-ferritins/Dps proteins, 280 kDa; bacteria) initiates mineralization. Gated pores (eight or four), symmetrically arranged, control iron flow. The multiple ferritin functions combine pore, channel, and catalytic functions in compact protein structures required for life and disease response.

  7. Linearly polarized photoluminescence of anisotropically strained c-plane GaN layers on stripe-shaped cavity-engineered sapphire substrate

    NASA Astrophysics Data System (ADS)

    Kim, Jongmyeong; Moon, Daeyoung; Lee, Seungmin; Lee, Donghyun; Yang, Duyoung; Jang, Jeonghwan; Park, Yongjo; Yoon, Euijoon

    2018-05-01

    Anisotropic in-plane strain and resultant linearly polarized photoluminescence (PL) of c-plane GaN layers were realized by using a stripe-shaped cavity-engineered sapphire substrate (SCES). High resolution X-ray reciprocal space mapping measurements revealed that the GaN layers on the SCES were under significant anisotropic in-plane strain of -0.0140% and -0.1351% along the directions perpendicular and parallel to the stripe pattern, respectively. The anisotropic in-plane strain in the GaN layers was attributed to the anisotropic strain relaxation due to the anisotropic arrangement of cavity-incorporated membranes. Linearly polarized PL behavior such as the observed angle-dependent shift in PL peak position and intensity comparable with the calculated value based on k.p perturbation theory. It was found that the polarized PL behavior was attributed to the modification of valence band structures induced by anisotropic in-plane strain in the GaN layers on the SCES.

  8. Power scaling of diode-pumped neodymium yttrium aluminum borate laser

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    1991-01-01

    Preliminary results are presented of the efficient diode-pumped operation of a neodymium yttrium aluminum borate (NYAB) laser at 531.5 nm using two 1-W diode-laser arrays for the pump. With 1380 mW of CW power incident on the crystal, as much as 51 mW of 532.5-nm laser radiation was obtained with the unoptimized cavity. The corresponding optical-to-optical conversion efficiency was 3.7 percent. A plot of the output 531.5 nm vs incident 807 nm pump power is shown. The crystal output power was critically dependent on the rotational and translational adjustment of the NYAB crystal inside the cavity. It is suggested that a crystal cut at the exact phase matching angle, placed in a cavity with proper optimal reflection and transmission mirror coatings, and pumped at proper wavelength can result in higher output power. Thus, the NYAB output power approaches that of a CW intracavity frequency doubled Nd:YAG laser.

  9. An optical biosensor using MEMS-based V-grooves

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Ma, Xiaodong; Zou, Xiaotian; Wu, Nan; Wang, Xingwei

    2011-05-01

    An optical fiber biosensor featuring miniaturization, electromagnetic interference (EMI)-immunity, and flexibility is presented. The sensor was fabricated by aligning two gold-deposited optical single-mode fiber facets inside V-grooves on a silicon chip to form a Fabry-Perot (FP) cavity. The mirrors on the fiber facets were made of deposited gold (Au) films, which provided a high finesse to produce a highly sensitivity. Microelectromechanical systems (MEMS) fabrication techniques were used to precisely control the profile and angle of the V-grooves on the silicon. The biotin-terminated thiol molecule was firstly immobilized on the gold surface. Subsequently, the molecules of Neutravidin were specifically bound to the biotin-terminated self-assembled monolayers (SAMs). The induced changes of cavity length and refractive index (RI) upon the gold surface lead to an optical path difference (OPD) of the FP cavity, which was detected by demodulating the transmission spectrum phase shift. By taking advantage of MEMS techniques, multiple biosensors can be integrated into one small silicon chip for detecting various biomolecule targets simultaneously.

  10. Open-cavity fiber laser with distributed feedback based on externally or self-induced dynamic gratings.

    PubMed

    Lobach, Ivan A; Drobyshev, Roman V; Fotiadi, Andrei A; Podivilov, Evgeniy V; Kablukov, Sergey I; Babin, Sergey A

    2017-10-15

    Dynamic population inversion gratings induced in an active medium by counter-propagating optical fields may have a reverse effect on writing laser radiation via feedback they provide. In this Letter we report, to the best of our knowledge, on the first demonstration of an open-cavity fiber laser in which the distributed feedback is provided by a dynamic grating "written" in a Yb-doped active fiber, either by an external source or self-induced via a weak (∼0.1%) reflection from an angle-cleaved fiber end. It has been shown that meters-long dynamic grating is formed with a narrow bandwidth (<50  MHz) and a relatively high-reflection coefficient (>7%) securing single-frequency operation, but the subsequent hole-burning effects accompanied by new grating formation lead to the switching from one longitudinal mode to another. providing a regular pulse-mode dynamics. As a result, periodically generated pulse trains cover a spectrum range of several terahertz delivering millions of cavity modes in sequent pulses.

  11. Tunable, high-repetition-rate, dual-signal-wavelength femtosecond optical parametric oscillator based on BiB3O6

    NASA Astrophysics Data System (ADS)

    Meng, Xianghao; Wang, Zhaohua; Tian, Wenlong; Fang, Shaobo; Wei, Zhiyi

    2018-01-01

    We have demonstrated a high-repetition-rate tunable femtosecond dual-signal-wavelength optical parametric oscillator (OPO) based on BiB3O6 (BiBO) crystal, synchronously pumped by a frequency-doubled mode-locked Yb:KGW laser. The cavity is simple since no dispersion compensators are used in the cavity. The wavelength range of dual-signal is widely tunable from 710 to 1000 nm. Tuning is accomplished by rotating phase-matching angle of BiBO, and optimizing cavity length and output coupler. Using a 3.75 W pump laser, the maximum average dual-signal output power is 760 mW at 707 and 750 nm, leading to a conversion efficiency of 20.3% not taking into account the idler power. Our experimental results show a non-critical phase-matching configuration pumped by a high peak power laser source. The operation of the dual-signal benefits from the balance of phase matching and group velocity mismatching between the two signals.

  12. Ferromagnetic Resonance of a Single Magnetochiral Metamolecule of Permalloy

    NASA Astrophysics Data System (ADS)

    Kodama, Toshiyuki; Tomita, Satoshi; Kato, Takeshi; Oshima, Daiki; Iwata, Satoshi; Okamoto, Satoshi; Kikuchi, Nobuaki; Kitakami, Osamu; Hosoito, Nobuyoshi; Yanagi, Hisao

    2016-08-01

    We investigate the ferromagnetic resonance (FMR) of a single chiral structure of a ferromagnetic metal—the magnetochiral (MCh) metamolecule. Using a strain-driven self-coiling technique, micrometer-sized MCh metamolecules of metallic permalloy (Py) are fabricated without any residual Py films. The magnetization curves of ten Py MCh metamolecules obtained by an alternating gradient magnetometer show soft magnetic behavior. In cavity FMR with a magnetic-field sweep and coplanar-waveguide (CPW) FMR with a frequency sweep, the Kittel-mode FMR of the single Py metamolecule is observed. The CPW-FMR results, which are consistent with the cavity-FMR results, bring about the effective g factor, effective magnetization, and Gilbert damping of the single metamolecule. Together with calculations using these parameters, the angle-resolved cavity FMR reveals that the magnetization in the Py MCh metamolecule is most likely to be the hollow-bar type of configuration when the external magnetic field is applied parallel to the chiral axis, although the expected magnetization state at remanence is the corkscrew type of configuration.

  13. Effect of beam arrangement on oral cavity dose in external beam radiotherapy of nasopharyngeal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Vincent W.C.; Yang Zhining; Zhang Wuzhe

    This study compared the oral cavity dose between the routine 7-beam intensity-modulated radiotherapy (IMRT) beam arrangement and 2 other 7-beam IMRT with the conventional radiotherapy beam arrangements in the treatment of nasopharyngeal carcinoma (NPC). Ten NPC patients treated by the 7-beam routine IMRT technique (IMRT-7R) between April 2009 and June 2009 were recruited. Using the same computed tomography data, target information, and dose constraints for all the contoured structures, 2 IMRT plans with alternative beam arrangements (IMRT-7M and IMRT-7P) by avoiding the anterior facial beam and 1 conventional radiotherapy plan (CONRT) were computed using the Pinnacle treatment planning system. Dose-volumemore » histograms were generated for the planning target volumes (PTVs) and oral cavity from which the dose parameters and the conformity index of the PTV were recorded for dosimetric comparisons among the plans with different beam arrangements. The dose distributions to the PTVs were similar among the 3 IMRT beam arrangements, whereas the differences were significant between IMRT-7R and CONRT plans. For the oral cavity dose, the 3 IMRT beam arrangements did not show significant difference. Compared with IMRT-7R, CONRT plan showed a significantly lower mean dose, V30 and V-40, whereas the V-60 was significantly higher. The 2 suggested alternative beam arrangements did not significantly reduce the oral cavity dose. The impact of varying the beam angles in IMRT of NPC did not give noticeable effect on the target and oral cavity. Compared with IMRT, the 2-D conventional radiotherapy irradiated a greater high-dose volume in the oral cavity.« less

  14. Effects of wind on the dynamics of the central jet during drop impact onto a deep-water surface

    NASA Astrophysics Data System (ADS)

    Liu, Xinan; Wang, An; Wang, Shuang; Dai, Dejun

    2018-05-01

    The cavity and central jet generated by the impact of a single water drop on a deep-water surface in a wind field are experimentally studied. Different experiments are performed by varying the impacting drop diameter and wind speed. The contour profile histories of the cavity (also called crater) and central jet (also called stalk) are measured in detail with a backlit cinematic shadowgraph technique. The results show that shortly after the drop hits the water surface an asymmetrical cavity appears along the wind direction, with a train of capillary waves on the cavity wall. This is followed by the formation of an inclined central jet at the location of the drop impact. It is found that the wind has little effect on the penetration depth of the cavity at the early stage of the cavity expansion, but markedly changes the capillary waves during the retraction of the cavity. The capillary waves in turn shift the position of the central jet formation leeward. The dynamics of the central jet are dominated by two mechanisms: (i) the oblique drop impact produced by the wind and (ii) the wind drag force directly acting on the jet. The maximum height of the central jet, called the stalk height, is drastically affected by the wind, and the nondimensional stalk height H /D decreases with increasing θ Re-1 , where D is the drop diameter, θ is the impingement angle of drop impact, and Re=ρaUwD /μa is the Reynolds number with air density ρa, wind speed Uw, and air viscosity μa.

  15. Coherent Rabi Dynamics of a Superradiant Spin Ensemble in a Microwave Cavity

    NASA Astrophysics Data System (ADS)

    Rose, B. C.; Tyryshkin, A. M.; Riemann, H.; Abrosimov, N. V.; Becker, P.; Pohl, H.-J.; Thewalt, M. L. W.; Itoh, K. M.; Lyon, S. A.

    2017-07-01

    We achieve the strong-coupling regime between an ensemble of phosphorus donor spins in a highly enriched 28Si crystal and a 3D dielectric resonator. Spins are polarized beyond Boltzmann equilibrium using spin-selective optical excitation of the no-phonon bound exciton transition resulting in N =3.6 ×1 013 unpaired spins in the ensemble. We observe a normal mode splitting of the spin-ensemble-cavity polariton resonances of 2 g √{N }=580 kHz (where each spin is coupled with strength g ) in a cavity with a quality factor of 75 000 (γ ≪κ ≈60 kHz , where γ and κ are the spin dephasing and cavity loss rates, respectively). The spin ensemble has a long dephasing time (T2*=9 μ s ) providing a wide window for viewing the dynamics of the coupled spin-ensemble-cavity system. The free-induction decay shows up to a dozen collapses and revivals revealing a coherent exchange of excitations between the superradiant state of the spin ensemble and the cavity at the rate g √{N }. The ensemble is found to evolve as a single large pseudospin according to the Tavis-Cummings model due to minimal inhomogeneous broadening and uniform spin-cavity coupling. We demonstrate independent control of the total spin and the initial Z projection of the psuedospin using optical excitation and microwave manipulation, respectively. We vary the microwave excitation power to rotate the pseudospin on the Bloch sphere and observe a long delay in the onset of the superradiant emission as the pseudospin approaches full inversion. This delay is accompanied by an abrupt π -phase shift in the peusdospin microwave emission. The scaling of this delay with the initial angle and the sudden phase shift are explained by the Tavis-Cummings model.

  16. Free-standing nanomechanical and nanophotonic structures in single-crystal diamond

    NASA Astrophysics Data System (ADS)

    Burek, Michael John

    Realizing complex three-dimensional structures in a range of material systems is critical to a variety of emerging nanotechnologies. This is particularly true of nanomechanical and nanophotonic systems, both relying on free-standing small-scale components. In the case of nanomechanics, necessary mechanical degrees of freedom require physically isolated structures, such as suspended beams, cantilevers, and membranes. For nanophotonics, elements like waveguides and photonic crystal cavities rely on light confinement provided by total internal reflection or distributed Bragg reflection, both of which require refractive index contrast between the device and surrounding medium (often air). Such suspended nanostructures are typically fabricated in a heterolayer structure, comprising of device (top) and sacrificial (middle) layers supported by a substrate (bottom), using standard surface nanomachining techniques. A selective, isotropic etch is then used to remove the sacrificial layer, resulting in free-standing devices. While high-quality, crystalline, thin film heterolayer structures are readily available for silicon (as silicon-on-insulator (SOI)) or III-V semiconductors (i.e. GaAs/AlGaAs), there remains an extensive list of materials with attractive electro-optic, piezoelectric, quantum optical, and other properties for which high quality single-crystal thin film heterolayer structures are not available. These include complex metal oxides like lithium niobate (LiNbO3), silicon-based compounds such as silicon carbide (SiC), III-V nitrides including gallium nitride (GaN), and inert single-crystals such as diamond. Diamond is especially attractive for a variety of nanoscale technologies due to its exceptional physical and chemical properties, including high mechanical hardness, stiffness, and thermal conductivity. Optically, it is transparent over a wide wavelength range (from 220 nm to the far infrared), has a high refractive index (n ~ 2.4), and is host to a vast inventory of luminescent defect centers (many with direct optical access to highly coherent electron and nuclear spins). Diamond has many potential applications ranging from radio frequency nanoelectromechanical systems (RF-NEMS), to all-optical signal processing and quantum optics. Despite the commercial availability of wafer-scale nanocrystalline diamond thin films on foreign substrates (namely SiO2), this diamond-on-insulator (DOI) platform typically exhibits inferior material properties due to friction, scattering, and absorption losses at grain boundaries, significant surface roughness, and large interfacial stresses. In the absence of suitable heteroepitaxial diamond growth, substantial research and development efforts have focused on novel processing techniques to yield nanoscale single-crystal diamond mechanical and optical elements. In this thesis, we demonstrate a scalable 'angled-etching' nanofabrication method for realizing nanomechanical systems and nanophotonic networks starting from bulk single-crystal diamond substrates. Angled-etching employs anisotropic oxygen-based plasma etching at an oblique angle to the substrate surface, resulting in suspended optical structures with triangular cross-sections. Using this approach, we first realize single-crystal diamond nanomechanical resonant structures. These nanoscale diamond resonators exhibit high mechanical quality-factors (approaching Q ~ 105) with mechanical resonances up to 10 MHz. Next, we demonstrate engineered nanophotonic structures, specifically racetrack resonators and photonic crystal cavities, in bulk single-crystal diamond. Our devices feature large optical Q-factors, in excess of 10 5, and operate over a wide wavelength range, spanning visible and telecom. These newly developed high-Q diamond optical nanocavities open the door for a wealth of applications, ranging from nonlinear optics and chemical sensing, to quantum information processing and cavity optomechanics. Beyond isolated nanophotonic devices, we also developed free-standing angled-etched diamond waveguides which efficiently route photons between optical nanocavities, realizing true on-chip diamond nanophotonic networks. A high efficiency fiber-optical interface with aforementioned on-chip diamond nanophotonic networks, achieving > 90% power coupling, is also demonstrated. Lastly, we demonstrate a cavity-optomechanical system in single-crystal diamond, which builds upon previously realized diamond nanobeam photonic crystal cavities fabricated by angled-etching. Specifically, we demonstrate diamond optomechanical crystals (OMCs), where the engineered co-localization of photons and phonons in a quasi-periodic diamond nanostructure leads to coupling of an optical cavity field to a mechanical mode via the radiation pressure of light. In contrast to other material systems, diamond OMCs possess large intracavity photon capacity and sufficient optomechanical coupling rates to exceed a cooperativity of ~ 1 at room temperature and realize large amplitude optomechanical self-oscillations.

  17. Storage and retrieval of time-entangled soliton trains in a three-level atom system coupled to an optical cavity

    NASA Astrophysics Data System (ADS)

    Welakuh, Davis D. M.; Dikandé, Alain M.

    2017-11-01

    The storage and subsequent retrieval of coherent pulse trains in the quantum memory (i.e. cavity-dark state) of three-level Λ atoms, are considered for an optical medium in which adiabatic photon transfer occurs under the condition of quantum impedance matching. The underlying mechanism is based on intracavity Electromagnetically-Induced Transparency, by which properties of a cavity filled with three-level Λ-type atoms are manipulated by an external control field. Under the impedance matching condition, we derive analytic expressions that suggest a complete transfer of an input field into the cavity-dark state by varying the mixing angle in a specific way, and its subsequent retrieval at a desired time. We illustrate the scheme by demonstrating the complete transfer and retrieval of a Gaussian, a single hyperbolic-secant and a periodic train of time-entangled hyperbolic-secant input photon pulses in the atom-cavity system. For the time-entangled hyperbolic-secant input field, a total controllability of the periodic evolution of the dark state population is made possible by changing the Rabi frequency of the classical driving field, thus allowing to alternately store and retrieve high-intensity photons from the optically dense Electromagnetically-Induced transparent medium. Such multiplexed photon states, which are expected to allow sharing quantum information among many users, are currently of very high demand for applications in long-distance and multiplexed quantum communication.

  18. Diving wedges

    NASA Astrophysics Data System (ADS)

    Vincent, Lionel; Kanso, Eva

    2017-11-01

    Diving induces large pressures during water entry, accompanied by the creation of cavity behind the diver and water splash ejected from the free water surface. To minimize impact forces, divers streamline their shape at impact. Here, we investigate the impact forces and splash evolution of diving wedges as a function of the wedge opening angle. A gradual transition from impactful to smooth entry is observed as the wedge angle decreases. After submersion, diving wedges experience significantly smaller drag forces (two-fold smaller) than immersed wedges. We characterize the shapes of the cavity and splash created by the wedge and find that they are independent of the entry velocity at short times, but that the splash exhibits distinct variations in shape at later times. Combining experimental approach and a discrete fluid particle model, we show that the splash shape is governed by a destabilizing Venturi-suction force due to air rushing between the splash and the water surface and a stabilizing force due to surface tension. These findings may have implications in a wide range of water entry problems, with applications in engineering and bio-related problems, including naval engineering, disease spreading and platform diving. This work was funded by the National Science Foundation.

  19. MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity

    NASA Astrophysics Data System (ADS)

    Mehrez, Zouhaier; El Cafsi, Afif; Belghith, Ali; Le Quéré, Patrick

    2015-01-01

    The present numerical work investigates the effect of an external oriented magnetic field on heat transfer and entropy generation of Cu-water nanofluid flow in an open cavity heated from below. The governing equations are solved numerically by the finite-volume method. The study has been carried out for a wide range of solid volume fraction 0≤φ≤0.06, Hartmann number 0≤Ha≤100, Reynolds number 100≤Re≤500 and Richardson number 0.001≤Ri≤1 at three inclination angles of magnetic field γ: 0°, 45° and 90°. The numerical results are given by streamlines, isotherms, average Nusselt number, average entropy generation and Bejan number. The results show that flow behavior, temperature distribution, heat transfer and entropy generation are strongly affected by the presence of a magnetic field. The average Nusselt number and entropy generation, which increase by increasing volume fraction of nanoparticles, depend mainly on the Hartmann number and inclination angle of the magnetic field. The variation rates of heat transfer and entropy generation while adding nanoparticles or applying a magnetic field depend on the Richardson and Reynolds numbers.

  20. Rifle bullet penetration into ballistic gelatin.

    PubMed

    Wen, Yaoke; Xu, Cheng; Jin, Yongxi; Batra, R C

    2017-03-01

    The penetration of a rifle bullet into a block of ballistic gelatin is experimentally and computationally studied for enhancing our understanding of the damage caused to human soft tissues. The gelatin is modeled as an isotropic and homogeneous elastic-plastic linearly strain-hardening material that obeys a polynomial equation of state. Effects of numerical uncertainties on penetration characteristics are found by repeating simulations with minute variations in the impact speed and the angle of attack. The temporary cavity formed in the gelatin and seen in pictures taken by two high speed cameras is found to compare well with the computed one. The computed time histories of the hydrostatic pressure at points situated 60 mm above the line of impact are found to have "two peaks", one due to the bullet impact and the other due to the bullet tumbling. Contours of the von Mises stress and of the effective plastic strain in the gelatin block imply that a very small region adjacent to the cavity surface is plastically deformed. The angle of attack is found to noticeably affect the penetration depth at the instant of the bullet tumbling through 90°. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A substellar-mass protostar and its outflow of IRAS 15398–3359 revealed by subarcsecond-resolution observations of H{sub 2}CO and CCH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oya, Yoko; Sakai, Nami; Watanabe, Yoshimasa

    2014-11-10

    Subarcsecond (0.''5) images of H{sub 2}CO and CCH line emission have been obtained in the 0.8 mm band toward the low-mass protostar IRAS 15398–3359 in the Lupus 1 cloud as one of the Cycle 0 projects of the Atacama Large Millimeter/Submillimeter Array. We have detected a compact component concentrated in the vicinity of the protostar and a well-collimated outflow cavity extending along the northeast-southwest axis. The inclination angle of the outflow is found to be about 20°, or almost edge-on, based on the kinematic structure of the outflow cavity. This is in contrast to previous suggestions of a more pole-onmore » geometry. The centrally concentrated component is interpreted by use of a model of the infalling rotating envelope with the estimated inclination angle and the mass of the protostar is estimated to be less than 0.09 M {sub ☉}. Higher spatial resolution data are needed to infer the presence of a rotationally supported disk for this source, hinted at by a weak high-velocity H{sub 2}CO emission associated with the protostar.« less

  2. SU-F-T-504: Non-Divergent Planning Method for Craniospinal Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sperling, N; Bogue, J; Parsai, E

    2016-06-15

    Purpose: Traditional Craniospinal Irradiation (CSI) planning techniques require careful field placement to allow optimal divergence and field overlap at depth, and measurement of skin gap. The result of this is a necessary field overlap resulting in dose heterogeneity in the spinal canal. A novel, nondivergent field matching method has been developed to allow simple treatment planning and delivery without the need to measure skin gap. Methods: The CSI patient was simulated in the prone, and a plan was developed. Bilateral cranial fields were designed with couch and collimator rotation to eliminate divergence with the upper spine field and minimize anteriormore » divergence into the lenses. Spinal posterior-to-anterior fields were designed with the couch rotated to 90 degrees to allow gantry rotation to eliminate divergence at the match line, and the collimator rotated to 90 degrees to allow appropriate field blocking with the MLCs. A match line for the two spinal fields was placed and the gantry rotated to equal angles in opposite directions about the match line. Jaw positions were then defined to allow 1mm overlap at the match line to avoid cold spots. A traditional CSI plan was generated using diverging spinal fields, and a comparison between the two techniques was generated. Results: The non-divergent treatment plan was able to deliver a highly uniform dose to the spinal cord with a cold spot of only 95% and maximum point dose of 115.8%, as compared to traditional plan cold spots of 87% and hot spots of 132% of the prescription dose. Conclusion: A non-divergent method for planning CSI patients has been developed and clinically implemented. Planning requires some geometric manipulation in order to achieve an adequate dose distribution, however, it can help to manage cold spots and simplify the shifts needed between spinal fields.« less

  3. Laser Oscillator Incorporating a Wedged Polarization Rotator and a Porro Prism as Cavity Mirror

    NASA Technical Reports Server (NTRS)

    Li, Steven

    2011-01-01

    A laser cavity was designed and implemented by using a wedged polarization rotator and a Porro prism in order to reduce the parts count, and to improve the laser reliability. In this invention, a z-cut quartz polarization rotator is used to compensate the wavelength retardance introduced by the Porro prism. The polarization rotator rotates the polarization of the linear polarized beam with a designed angle that is independent of the orientation of the rotator. This unique property was used to combine the retardance compensation and a Risley prism to a single optical component: a wedged polarization rotator. This greatly simplifies the laser alignment procedure and reduces the number of the laser optical components.

  4. Structural parameters that influence the noise reduction characteristics of typical general aviation materials

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Grosveld, F.

    1980-01-01

    Effect of panel curvature and oblique angle of sound incidence on noise reduction characteristics of an aluminum panel are experimentally investigated. Panel curvature results show significant increase in stiffness with comparable decrease of sound transmission through the panel in the frequency region below the panel/cavity resonance frequency. Noise reduction data have been achieved for aluminum panels with clamped, bonded and riveted edge conditions. These edge conditions are shown to influence noise reduction characteristics of aluminum panels. Experimentally measured noise reduction characteristics of flat aluminum panels with uniaxial and biaxial in-plane stresses are presented and discussed. Results indicate important improvement in noise reduction of these panels in the frequency range below the fundamental panel/cavity resonance frequency.

  5. Studies of electron-molecule collisions - Applications to e-H2O

    NASA Technical Reports Server (NTRS)

    Brescansin, L. M.; Lima, M. A. P.; Gibson, T. L.; Mckoy, V.; Huo, W. M.

    1986-01-01

    Elastic differential and momentum transfer cross sections for the elastic scattering of electrons by H2O are reported for collision energies from 2 to 20 eV. These fixed-nuclei static-exchange cross sections were obtained using the Schwinger variational approach. In these studies the exchange potential is directly evaluated and not approximated by local models. The calculated differential cross sections, obtained with a basis set expansion of the scattering wave function, agree well with available experimental data at intermediate and larger angles. As used here, the results cannot adequately describe the divergent cross sections at small angles. An interesting feature of the calculated cross sections, particularly at 15 and 20 eV, is their significant backward peaking. This peaking occurs in the experimentally inaccessible region beyond a scattering angle of 120 deg. The implication of this feature for the determination of momentum transfer cross sections is described.

  6. Maximizing Ion Transmission from Atmospheric Pressure into the Vacuum of Mass Spectrometers with a Novel Electrospray Interface

    PubMed Central

    Krutchinsky, Andrew N.; Padovan, Júlio C.; Cohen, Herbert; Chait, Brian T.

    2015-01-01

    We have discovered that an electrode containing a conical channel with a small angular divergence can transmit into the vacuum almost 100% of an electrospray ion current produced at atmospheric pressure. Our first implementation of such a conical duct, which we term “ConDuct”, uses a conductive plastic pipette tip containing a ≈1.6° divergent channel at its entrance. We observed that the beam formed by the ConDuct electrode has a very low divergence (< 1°) and persisted for long distances in vacuum. Intrigued by these properties, we incorporated this electrode into a novel atmosphere-to-vacuum ion transmission interface, and devised a technique for evaluating its performance relative to commercial reference interfaces that contain heated metal capillaries. We determined that our new interface transmits at least 400 times more ions than the commercial Thermo LCQ DECA XP atmosphere-to-vacuum interface and 2–3 times more than the commercial interface in the Thermo Velos Orbitrap and the Q Exactive mass spectrometers. We conclude that it might be possible to optimize the properties of the transmitted ions further by manufacturing ConDuct inlet electrodes from metal rather than conductive plastic and by determining the optimum angle of channel divergence and channel length. PMID:25588722

  7. Performance characteristics of two multiaxis thrust-vectoring nozzles at Mach numbers up to 1.28

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Capone, Francis J.

    1993-01-01

    The thrust-vectoring axisymmetric (VA) nozzle and a spherical convergent flap (SCF) thrust-vectoring nozzle were tested along with a baseline nonvectoring axisymmetric (NVA) nozzle in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0 to 1.28 and nozzle pressure ratios from 1 to 8. Test parameters included geometric yaw vector angle and unvectored divergent flap length. No pitch vectoring was studied. Nozzle drag, thrust minus drag, yaw thrust vector angle, discharge coefficient, and static thrust performance were measured and analyzed, as well as external static pressure distributions. The NVA nozzle and the VA nozzle displayed higher static thrust performance than the SCF nozzle throughout the nozzle pressure ratio (NPR) range tested. The NVA nozzle had higher overall thrust minus drag than the other nozzles throughout the NPR and Mach number ranges tested. The SCF nozzle had the lowest jet-on nozzle drag of the three nozzles throughout the test conditions. The SCF nozzle provided yaw thrust angles that were equal to the geometric angle and constant with NPR. The VA nozzle achieved yaw thrust vector angles that were significantly higher than the geometric angle but not constant with NPR. Nozzle drag generally increased with increases in thrust vectoring for all the nozzles tested.

  8. Excitation of the Magnetospheric Cavity

    DTIC Science & Technology

    2007-06-16

    gyrofrequency of 880 kHz at the ground at the equator, and uses a diffusive equilibrium model [ Angerami and Thomas, 1964] to calculate charged particle...significantly damped [Smith and Angerami , 1968; Edgar, 1976; Gurnett and Inan, 1988], resonantly interacting with, and pitch angle scattering...2429, 1999. Angerami , J. J., and J. O. Thomas, Studies of planetary Atmospheres, 1, The distribution of electrons and ions in the Earth’s

  9. Internal Performance of a Fixed-Shroud Nonaxisymmetric Nozzle Equipped with an Aft-Hood Exhaust Deflector

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.

    1997-01-01

    An investigation was conducted in the model preparation area of the Langley 16-Foot Transonic Tunnel to determine the internal performance of a fixed-shroud nonaxisymmetric nozzle equipped with an aft-hood exhaust deflector. Model geometric parameters investigated included nozzle power setting, aft-hood deflector angle, throat area control with the aft-hood deflector deployed, and yaw vector angle. Results indicate that cruise configurations produced peak performance in the range consistent with previous investigations of nonaxisymmetric convergent-divergent nozzles. The aft-hood deflector produced resultant pitch vector angles that were always less than the geometric aft-hood deflector angle when the nozzle throat was positioned upstream of the deflector exit. Significant losses in resultant thrust ratio occurred when the aft-hood deflector was deployed with an upstream throat location. At each aft-hood deflector angle, repositioning the throat to the deflector exit improved pitch vectoring performance and, in some cases, substantially improved resultant thrust ratio performance. Transferring the throat to the deflector exit allowed the flow to be turned upstream of the throat at subsonic Mach numbers, thereby eliminating losses associated with turning supersonic flow. Internal throat panel deflections were largely unsuccessful in generating yaw vectoring.

  10. Cosmic microwave background power asymmetry from non-Gaussian modulation.

    PubMed

    Schmidt, Fabian; Hui, Lam

    2013-01-04

    Non-Gaussianity in the inflationary perturbations can couple observable scales to modes of much longer wavelength (even superhorizon), leaving as a signature a large-angle modulation of the observed cosmic microwave background power spectrum. This provides an alternative origin for a power asymmetry that is otherwise often ascribed to a breaking of statistical isotropy. The non-Gaussian modulation effect can be significant even for typical ~10(-5) perturbations while respecting current constraints on non-Gaussianity if the squeezed limit of the bispectrum is sufficiently infrared divergent. Just such a strongly infrared-divergent bispectrum has been claimed for inflation models with a non-Bunch-Davies initial state, for instance. Upper limits on the observed cosmic microwave background power asymmetry place stringent constraints on the duration of inflation in such models.

  11. An investigation into the mechanisms of drag reduction of a boat tailed base cavity on a blunt based body

    NASA Astrophysics Data System (ADS)

    Kehs, Joshua Paul

    It is well documented in the literature that boat-tailed base cavities reduce the drag on blunt based bodies. The majority of the previous work has been focused on the final result, namely reporting the resulting drag reduction or base pressure increase without examining the methods in which such a device changes the fluid flow to enact such end results. The current work investigates the underlying physical means in which these devices change the flow around the body so as to reduce the overall drag. A canonical model with square cross section was developed for the purpose of studying the flow field around a blunt based body. The boat-tailed base cavity tested consisted of 4 panels of length equal to half the width of the body extending from the edges of the base at an angle towards the models center axis of 12°. Drag and surface pressure measurements were made at Reynolds numbers based on width from 2.3x105 to 3.6x10 5 in the Clarkson University high-speed wind tunnel over a range of pitch and yaw angles. Cross-stream hotwire wake surveys were used to identify wake width and turbulence intensities aft of the body at Reynolds numbers of 2.3x105 to 3.0x105. Particle Image Velocimetry (PIV) was used to quantify the flow field in the wake of the body, including the mean flow, vorticity, and turbulence measurements. The results indicated that the boat-tailed aft cavity decreases the drag significantly due to increased pressure on the base. Hotwire measurements indicated a reduction in wake width as well as a reduction in turbulence in the wake. PIV measurements indicated a significant reduction in wake turbulence and revealed that there exists a co-flowing stream that exits the cavity parallel to the free stream, reducing the shear in the flow at the flow separation point. The reduction in shear at the separation point indicated the method by which the turbulence was reduced. The reduction in turbulence combined with the reduction in wake size provided the mechanism of drag reduction by limiting the rate of entrainment of fluid in the recirculating wake to the free stream and by limiting the area over which this entrainment occurs.

  12. Identification of cardiac rhythm features by mathematical analysis of vector fields.

    PubMed

    Fitzgerald, Tamara N; Brooks, Dana H; Triedman, John K

    2005-01-01

    Automated techniques for locating cardiac arrhythmia features are limited, and cardiologists generally rely on isochronal maps to infer patterns in the cardiac activation sequence during an ablation procedure. Velocity vector mapping has been proposed as an alternative method to study cardiac activation in both clinical and research environments. In addition to the visual cues that vector maps can provide, vector fields can be analyzed using mathematical operators such as the divergence and curl. In the current study, conduction features were extracted from velocity vector fields computed from cardiac mapping data. The divergence was used to locate ectopic foci and wavefront collisions, and the curl to identify central obstacles in reentrant circuits. Both operators were applied to simulated rhythms created from a two-dimensional cellular automaton model, to measured data from an in situ experimental canine model, and to complex three-dimensional human cardiac mapping data sets. Analysis of simulated vector fields indicated that the divergence is useful in identifying ectopic foci, with a relatively small number of vectors and with errors of up to 30 degrees in the angle measurements. The curl was useful for identifying central obstacles in reentrant circuits, and the number of velocity vectors needed increased as the rhythm became more complex. The divergence was able to accurately identify canine in situ pacing sites, areas of breakthrough activation, and wavefront collisions. In data from human arrhythmias, the divergence reliably estimated origins of electrical activity and wavefront collisions, but the curl was less reliable at locating central obstacles in reentrant circuits, possibly due to the retrospective nature of data collection. The results indicate that the curl and divergence operators applied to velocity vector maps have the potential to add valuable information in cardiac mapping and can be used to supplement human pattern recognition.

  13. High-power laser diodes with high polarization purity

    NASA Astrophysics Data System (ADS)

    Rosenkrantz, Etai; Yanson, Dan; Peleg, Ophir; Blonder, Moshe; Rappaport, Noam; Klumel, Genady

    2017-02-01

    Fiber-coupled laser diode modules employ power scaling of single emitters for fiber laser pumping. To this end, techniques such as geometrical, spectral and polarization beam combining (PBC) are used. For PBC, linear polarization with high degree of purity is important, as any non-perfectly polarized light leads to losses and heating. Furthermore, PBC is typically performed in a collimated portion of the beams, which also cancels the angular dependence of the PBC element, e.g., beam-splitter. However, we discovered that single emitters have variable degrees of polarization, which depends both on the operating current and far-field divergence. We present data to show angle-resolved polarization measurements that correlate with the ignition of high-order modes in the slow-axis emission of the emitter. We demonstrate that the ultimate laser brightness includes not only the standard parameters such as power, emitting area and beam divergence, but also the degree of polarization (DoP), which is a strong function of the latter. Improved slow-axis divergence, therefore, contributes not only to high brightness but also high beam combining efficiency through polarization.

  14. Performance Characterization of a Novel Plasma Thruster to Provide a Revolutionary Operationally Responsive Space Capability with Micro- and Nano-Satellites

    DTIC Science & Technology

    2011-03-24

    and radiation resistance of rare earth permanent magnets for applications such as ion thrusters and high efficiency Stirling Radioisotope Generators...from Electron Transitioning Discharge Current Discharge Power Discharge Voltage Θ Divergence Angle Earths Gravity at Sea Level...Hall effect thruster HIVAC High Voltage Hall Accelerator LEO Low Earth Orbit LDS Laser Displacement System LVDT Linear variable differential

  15. [The influence of breathing mode on the oral cavity].

    PubMed

    Surtel, Anna; Klepacz, Robert; Wysokińska-Miszczuk, Joanna

    2015-12-01

    Nose breathing is one of the key factors in the proper development and functioning of the oral cavity. The air passing through the nasal cavity is warmed and humidified while dust and other particulate matter is removed. It is also important as far as bone formation is concerned. The obstruction or congestions of the upper respiratory tract may negatively affect the correct and most optimal (nasal) respiratory tract. The switch from nasal to mouth breathing may lead to serious clinical consequences. Children with the clinical diagnosis of mouth breathing are usually pale, apathetic and they lack concentration and often get tired. Disorders resulting from hypoxy may also be the reason from sleep disturbances, such as frequent waking-up, nocturia, difficulties falling aslee. The main clinical manifestations of mouth breathing appear in the craniofacial structures. Mouth breathers frequently suffer from dental malocclusions and craniofacial bone abnormalities. Chronic muscle tension around the oral cavity could result in the widening of cranio-vertebral angle, posterior position of mandibula and narrow maxillary arch. Among dental alterations the most common are class II malocclusion (total or partial) with the protrusion of the anterior teeth, cross bite (unilateral or bilateral), anterior open bite and primary crowded teeth. Apart from malocclusion, chronic gingivitis, periodontitis, candida infections and halitosis are frequently present in mouth--breathing patients. © 2015 MEDPRESS.

  16. Kinetic theory of heterogeneous nucleation; effect of nonuniform density in the nuclei.

    PubMed

    Berim, Gersh O; Ruckenstein, Eli

    2011-03-01

    The heterogeneous nucleation of a liquid from a vapor in contact with a planar solid surface or a solid surface with cavities is examined on the basis of the kinetic theory of nucleation developed by Nowakowski and Ruckenstein [J. Phys. Chem. 96 (1992) 2313] which is extended to nonuniform fluid density distribution (FDD) in the nucleus. The latter is determined under the assumption that at each moment the FDD in the nucleus is provided by the density functional theory (DFT) for a nanodrop. As a result of this assumption, the theory does not require to consider that the contact angle which the nucleus makes with the solid surface and the density of the nucleus are independent parameters since they are provided by the DFT. For all considered cases, the nucleation rate is higher in the cavities than on a planar surface and increases with increasing strength of the fluid-solid interactions and decreasing cavity radius. The difference is small at high supersaturations (small critical nuclei), but becomes larger at low supersaturations when the critical nucleus has a size comparable with the size of the cavity. The nonuniformity of the FDD in the nucleus decreases the nucleation rate when compared to the uniform FDD. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Transonic Investigation of Two-Dimensional Nozzles Designed for Supersonic Cruise

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Deere, Karen A.

    2015-01-01

    An experimental and computational investigation has been conducted to determine the off-design uninstalled drag characteristics of a two-dimensional convergent-divergent nozzle designed for a supersonic cruise civil transport. The overall objectives were to: (1) determine the effects of nozzle external flap curvature and sidewall boattail variations on boattail drag; (2) develop an experimental data base for 2D nozzles with long divergent flaps and small boattail angles and (3) provide data for correlating computational fluid dynamic predictions of nozzle boattail drag. The experimental investigation was conducted in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0.80 to 1.20 at nozzle pressure ratios up to 9. Three-dimensional simulations of nozzle performance were obtained with the computational fluid dynamics code PAB3D using turbulence closure and nonlinear Reynolds stress modeling. The results of this investigation indicate that excellent correlation between experimental and predicted results was obtained for the nozzle with a moderate amount of boattail curvature. The nozzle with an external flap having a sharp shoulder (no curvature) had the lowest nozzle pressure drag. At a Mach number of 1.2, sidewall pressure drag doubled as sidewall boattail angle was increased from 4deg to 8deg. Reducing the height of the sidewall caused large decreases in both the sidewall and flap pressure drags. Summary

  18. Influence of lateral discomfort on the stability of traffic flow based on visual angle car-following model

    NASA Astrophysics Data System (ADS)

    Zheng, Liang; Zhong, Shiquan; Jin, Peter J.; Ma, Shoufeng

    2012-12-01

    Due to the poor road markings and irregular driving behaviors, not every vehicle is positioned in the center of the lane. The deviation from the center can cause discomfort to drivers in the neighboring lane, which is referred to as lateral discomfort (or lateral friction). Such lateral discomfort can be incorporated into the driver stimulus-response framework by considering the visual angle and its changing rate from the psychological viewpoint. In this study, a two-lane visual angle based car-following model is proposed and its stability condition is obtained through linear stability theory. Further derivations indicate that the neutral stability line of the model is asymmetry and four factors including the vehicle width and length, the lateral separation and the sensitivity regarding the changing rate of visual angle have large impacts on the stability of traffic flow. Numerical simulations further verify these theoretical results, and demonstrate that the behaviors of diverging, merging and lane changing can break the original steady state and cause traffic fluctuations. However, these fluctuations may be alleviated to some extent by reducing the lateral discomfort.

  19. Generation of low-divergence laser beams

    DOEpatents

    Kronberg, James W.

    1993-01-01

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source.

  20. Optimal design of radial Bragg cavities and lasers.

    PubMed

    Ben-Bassat, Eyal; Scheuer, Jacob

    2015-07-01

    We present a new and optimal design approach for obtaining maximal confinement of the field in radial Bragg cavities and lasers for TM polarization. The presented approach outperforms substantially the previously employed periodic and semi-periodic design schemes of such lasers. We show that in order to obtain maximal confinement, it is essential to consider the complete reflection properties (amplitude and phase) of the propagating radial waves at the interfaces between Bragg layers. When these properties are taken into account, we find that it is necessary to introduce a wider ("half-wavelength") layer at a specific radius in the "quarter-wavelength" radial Bragg stack. It is shown that this radius corresponds to the cylindrical equivalent of Brewster's angle. The confinement and field profile are calculated numerically by means of transfer matrix method.

  1. A compact time reversal emitter-receiver based on a leaky random cavity

    PubMed Central

    Luong, Trung-Dung; Hies, Thomas; Ohl, Claus-Dieter

    2016-01-01

    Time reversal acoustics (TRA) has gained widespread applications for communication and measurements. In general, a scattering medium in combination with multiple transducers is needed to achieve a sufficiently large acoustical aperture. In this paper, we report an implementation for a cost-effective and compact time reversal emitter-receiver driven by a single piezoelectric element. It is based on a leaky cavity with random 3-dimensional printed surfaces. The random surfaces greatly increase the spatio-temporal focusing quality as compared to flat surfaces and allow the focus of an acoustic beam to be steered over an angle of 41°. We also demonstrate its potential use as a scanner by embedding a receiver to detect an object from its backscatter without moving the TRA emitter. PMID:27811957

  2. Impulse generation by detonation tubes

    NASA Astrophysics Data System (ADS)

    Cooper, Marcia Ann

    Impulse generation with gaseous detonation requires conversion of chemical energy into mechanical energy. This conversion process is well understood in rocket engines where the high pressure combustion products expand through a nozzle generating high velocity exhaust gases. The propulsion community is now focusing on advanced concepts that utilize non-traditional forms of combustion like detonation. Such a device is called a pulse detonation engine in which laboratory tests have proven that thrust can be achieved through continuous cyclic operation. Because of poor performance of straight detonation tubes compared to conventional propulsion systems and the success of using nozzles on rocket engines, the effect of nozzles on detonation tubes is being investigated. Although previous studies of detonation tube nozzles have suggested substantial benefits, up to now there has been no systematic investigations over a range of operating conditions and nozzle configurations. As a result, no models predicting the impulse when nozzles are used exist. This lack of data has severely limited the development and evaluation of models and simulations of nozzles on pulse detonation engines. The first experimental investigation measuring impulse by gaseous detonation in plain tubes and tubes with nozzles operating in varying environment pressures is presented. Converging, diverging, and converging-diverging nozzles were tested to determine the effect of divergence angle, nozzle length, and volumetric fill fraction on impulse. The largest increases in specific impulse, 72% at an environment pressure of 100 kPa and 43% at an environment pressure of 1.4 kPa, were measured with the largest diverging nozzle tested that had a 12° half angle and was 0.6 m long. Two regimes of nozzle operation that depend on the environment pressure are responsible for these increases and were first observed from these data. To augment this experimental investigation, all data in the literature regarding partially filled detonation tubes was compiled and analyzed with models investigating concepts of energy conservation and unsteady gas dynamics. A model to predict the specific impulse was developed for partially filled tubes. The role of finite chemical kinetics in detonation products was examined through numerical simulations of the flow in nonsteady expansion waves.

  3. Impaired Air Conditioning within the Nasal Cavity in Flat-Faced Homo

    PubMed Central

    Nishimura, Takeshi; Mori, Futoshi; Hanida, Sho; Kumahata, Kiyoshi; Ishikawa, Shigeru; Samarat, Kaouthar; Miyabe-Nishiwaki, Takako; Hayashi, Misato; Tomonaga, Masaki; Suzuki, Juri; Matsuzawa, Tetsuro; Matsuzawa, Teruo

    2016-01-01

    We are flat-faced hominins with an external nose that protrudes from the face. This feature was derived in the genus Homo, along with facial flattening and reorientation to form a high nasal cavity. The nasal passage conditions the inhaled air in terms of temperature and humidity to match the conditions required in the lung, and its anatomical variation is believed to be evolutionarily sensitive to the ambient atmospheric conditions of a given habitat. In this study, we used computational fluid dynamics (CFD) with three-dimensional topology models of the nasal passage under the same simulation conditions, to investigate air-conditioning performance in humans, chimpanzees, and macaques. The CFD simulation showed a horizontal straight flow of inhaled air in chimpanzees and macaques, contrasting with the upward and curved flow in humans. The inhaled air is conditioned poorly in humans compared with nonhuman primates. Virtual modifications to the human external nose topology, in which the nasal vestibule and valve are modified to resemble those of chimpanzees, change the airflow to be horizontal, but have little influence on the air-conditioning performance in humans. These findings suggest that morphological variation of the nasal passage topology was only weakly sensitive to the ambient atmosphere conditions; rather, the high nasal cavity in humans was formed simply by evolutionary facial reorganization in the divergence of Homo from the other hominin lineages, impairing the air-conditioning performance. Even though the inhaled air is not adjusted well within the nasal cavity in humans, it can be fully conditioned subsequently in the pharyngeal cavity, which is lengthened in the flat-faced Homo. Thus, the air-conditioning faculty in the nasal passages was probably impaired in early Homo members, although they have survived successfully under the fluctuating climate of the Plio-Pleistocene, and then they moved “Out of Africa” to explore the more severe climates of Eurasia. PMID:27010321

  4. Impaired Air Conditioning within the Nasal Cavity in Flat-Faced Homo.

    PubMed

    Nishimura, Takeshi; Mori, Futoshi; Hanida, Sho; Kumahata, Kiyoshi; Ishikawa, Shigeru; Samarat, Kaouthar; Miyabe-Nishiwaki, Takako; Hayashi, Misato; Tomonaga, Masaki; Suzuki, Juri; Matsuzawa, Tetsuro; Matsuzawa, Teruo

    2016-03-01

    We are flat-faced hominins with an external nose that protrudes from the face. This feature was derived in the genus Homo, along with facial flattening and reorientation to form a high nasal cavity. The nasal passage conditions the inhaled air in terms of temperature and humidity to match the conditions required in the lung, and its anatomical variation is believed to be evolutionarily sensitive to the ambient atmospheric conditions of a given habitat. In this study, we used computational fluid dynamics (CFD) with three-dimensional topology models of the nasal passage under the same simulation conditions, to investigate air-conditioning performance in humans, chimpanzees, and macaques. The CFD simulation showed a horizontal straight flow of inhaled air in chimpanzees and macaques, contrasting with the upward and curved flow in humans. The inhaled air is conditioned poorly in humans compared with nonhuman primates. Virtual modifications to the human external nose topology, in which the nasal vestibule and valve are modified to resemble those of chimpanzees, change the airflow to be horizontal, but have little influence on the air-conditioning performance in humans. These findings suggest that morphological variation of the nasal passage topology was only weakly sensitive to the ambient atmosphere conditions; rather, the high nasal cavity in humans was formed simply by evolutionary facial reorganization in the divergence of Homo from the other hominin lineages, impairing the air-conditioning performance. Even though the inhaled air is not adjusted well within the nasal cavity in humans, it can be fully conditioned subsequently in the pharyngeal cavity, which is lengthened in the flat-faced Homo. Thus, the air-conditioning faculty in the nasal passages was probably impaired in early Homo members, although they have survived successfully under the fluctuating climate of the Plio-Pleistocene, and then they moved "Out of Africa" to explore the more severe climates of Eurasia.

  5. Ultra-Stable Laser Clock.

    DTIC Science & Technology

    1983-03-01

    43. L circumference of ring laser cavity 44. LF pathlength through Faraday rotator 45. 1 distance between resonator mirrors of linear laser 46. M...limited clock stability 68. q mode number 69. Ri reflectivity of mirror i 70. eF angle between magnetic field and direction of light propagation 71...containing low pressure methane. The light reflects off a mirror and passes back through the cell. Then the light reflects from the beam splitter into

  6. Supercavitating Vehicle Control

    DTIC Science & Technology

    2008-10-10

    herein as winglets , are supported by a strut attached to the vehicle. The angle of attack of each winglet is controlled by a winglet actuator. The... winglet assembly may be extended into or retracted from the water by means of a spring-loaded actuated mount, which pivots the strut supporting the... winglet . When fully retracted, the winglet assembly is contained completely within the cavity. [0014] The segmented ring wing is controlled by one or more

  7. Planet Formation in AB Aurigae: Imaging of the Inner Gaseous Spirals Observed inside the Dust Cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Ya-Wen; Gu, Pin-Gao; Ho, Paul T. P.

    2017-05-01

    We report the results of ALMA observations of a protoplanetary disk surrounding the Herbig Ae star AB Aurigae. We obtained high-resolution (0.″1; 14 au) images in {sup 12}CO J = 2 − 1 emission and in the dust continuum at the wavelength of 1.3 mm. The continuum emission is detected at the center and at the ring with a radius ( r ) of ∼120 au. The CO emission is dominated by two prominent spirals within the dust ring. These spirals are trailing and appear to be about 4 times brighter than their surrounding medium. Their kinematics is consistent withmore » Keplerian rotation at an inclination of 23°. The apparent two-arm-spiral pattern is best explained by tidal disturbances created by an unseen companion located at r of 60–80 au, with dust confined in the pressure bumps created outside this companion orbit. An additional companion at r of 30 au, coinciding with the peak CO brightness and a large pitch angle of the spiral, would help to explain the overall emptiness of the cavity. Alternative mechanisms to excite the spirals are discussed. The origin of the large pitch angle detected here remains puzzling.« less

  8. A qualitative study of vortex trapping capability for lift enhancement on unconventional wing

    NASA Astrophysics Data System (ADS)

    Salleh, M. B.; Kamaruddin, N. M.; Mohamed-Kassim, Z.

    2018-05-01

    Lift enhancement by using passive vortex trapping technique offers great advantage in small aircraft design as it can improve aerodynamics performance and reduce weight of the wing. To achieve this aim, a qualitative study on the flow structures across wing models with cavities has been performed using smoke wire visualisation technique. An experiment has been conducted at low Reynolds number of 26,000 with angle of attack (α) = 0°, 5°, 10° and 15° to investigate the vortex trapping capability of semi-circular leading edge (SCLE) flat-plate wing model and elliptical leading edge (ELE) flat-plate wing model with cavities, respectively. Results from the qualitative study indicated unique characteristics in the flow structures between the tested wing models. The SCLE wing models were able to trap stable rotating vortices for α ≤ 10° whereas the ability of ELE wing models to suppress flow separation allowed stable clockwise vortices to be trapped inside the cavities even at α > 10°. The trapped vortices found to have the potential to increase lift on the unconventional wing models.

  9. Measurements of the frequency stability of ultralow thermal expansion glass ceramic optical cavity lasers

    NASA Astrophysics Data System (ADS)

    Oram, R. J.; Latimer, I. D.; Spoor, S. P.

    1997-05-01

    This paper reports on a technique for providing a frequency-stabilized helium - neon gas laser by using inherently stable ultralow thermal expansion optical cavities. Four longitudinal monoblock cavity lasers were constructed and tested. These had their laser mirrors optically contacted to the bulk material. A 1 mm diameter hole along the axis of the block served as the discharge channel with electrodes optically contacted to the sides of the block. One of these lasers had a glass capilliary for the discharge channel. A fifth laser had a gain tube with Brewster angle windows fixed in a Zerodur box with the mirrors contacted to the ends. The warm-up characteristics of the five different lasers have been obtained and a theoretical model using finite element analysis was developed to determine the thermal expansion during warm-up. Using this computer model the thermal expansion coefficient of the material Zerodur was obtained. The results suggest that monoblock lasers can produce a free-running laser frequency stability of better than 10 MHz and show a repeatable warm-up characteristic of 100 MHz frequency drift.

  10. A study of performance parameters on drag and heat flux reduction efficiency of combinational novel cavity and opposing jet concept in hypersonic flows

    NASA Astrophysics Data System (ADS)

    Sun, Xi-wan; Guo, Zhen-yun; Huang, Wei; Li, Shi-bin; Yan, Li

    2017-02-01

    The drag reduction and thermal protection system applied to hypersonic re-entry vehicles have attracted an increasing attention, and several novel concepts have been proposed by researchers. In the current study, the influences of performance parameters on drag and heat reduction efficiency of combinational novel cavity and opposing jet concept has been investigated numerically. The Reynolds-average Navier-Stokes (RANS) equations coupled with the SST k-ω turbulence model have been employed to calculate its surrounding flowfields, and the first-order spatially accurate upwind scheme appears to be more suitable for three-dimensional flowfields after grid independent analysis. Different cases of performance parameters, namely jet operating conditions, freestream angle of attack and physical dimensions, are simulated based on the verification of numerical method, and the effects on shock stand-off distance, drag force coefficient, surface pressure and heat flux distributions have been analyzed. This is the basic study for drag reduction and thermal protection by multi-objective optimization of the combinational novel cavity and opposing jet concept in hypersonic flows in the future.

  11. Three-Dimensional Analysis of Mandibular Angle Classification and Aesthetic Evaluation of the Lower Face in Chinese Female Adults.

    PubMed

    Mao, Xiaoyan; Fu, Xi; Niu, Feng; Chen, Ying; Jin, Qi; Qiao, Jia; Gui, Lai

    2018-05-14

    Reduction gonioplasty is very popular in East Asia. However, there has been little quantitative criteria for mandibular angle classification or aesthetics. The aim of this study was to investigate the quantitative differences of mandibular angle types and determine the morphologic features of mandibular angle in attractive women. We created a database of skull computed tomography and standardized frontal and lateral photographs of 96 Chinese female adults. Mandibular angle was classified into 3 groups, namely, extraversion, introversion, and healthy group, based on the position of gonion. We used a 5-point Likert scale to quantify attractiveness based on photographs. Those who scored 4 or higher were defined as attractive women. Three types of computed tomography measurements of the mandible were taken, including 4 distances, 4 angles, and 3 proportions. Discriminant analysis was applied to establish a mathematic model for mandibular angle aesthetics evaluation. Significant differences were observed between the different types of mandibular angle in lower facial width (Gol-Gor), mandibular angle (Co-Go-Me), and gonion divergence angle (Gol-Me-Gor) (P < 0.01). Chinese attractive women had a mandibular angle of 123.913 ± 2.989 degrees, a FH-MP of 27.033 ± 2.695 degrees, and a Go-Me/Co-Go index of 2.0. The "healthy" women had a mandibular angle of 116.402 ± 5.373 degrees, a FH-MP of 19.556 ± 5.999 degrees, and a Go-Me/Co-Go index of 1.6. The estimated Fisher linear discriminant function for the identification of attractive women was as follows: Y = -0.1516X1(Co-Go) + 0.128X2(Go-Me) + 0.04936X3(Co-Go-Me) +0.0218X4(FH-MP). Our study quantified the differences of mandibular angle types and identified the morphological features of mandibular angle in attractive Chinese female adults. Our results could assist plastic surgeons in presurgical designing of new aesthetic gonion and help to evaluate lower face aesthetics.

  12. Many-body self-localization in a translation-invariant Hamiltonian

    NASA Astrophysics Data System (ADS)

    Mondaini, Rubem; Cai, Zi

    2017-07-01

    We study the statistical and dynamical aspects of a translation-invariant Hamiltonian, without quench disorder, as an example of the manifestation of the phenomenon of many-body localization. This is characterized by the breakdown of thermalization and by information preservation of initial preparations at long times. To realize this, we use quasiperiodic long-range interactions, which are now achievable in high-finesse cavity experiments, to find evidence suggestive of a divergent time-scale in which charge inhomogeneities in the initial state survive asymptotically. This is reminiscent of a glassy behavior, which appears in the ground state of this system, being also present at infinite temperatures.

  13. Off-axis spectral beam combining of Bragg reflection waveguide photonic crystal diode lasers

    NASA Astrophysics Data System (ADS)

    Sun, Fangyuan; Wang, Lijie; Zhao, Yufei; Hou, Guanyu; Shu, Shili; Zhang, Jun; Peng, Hangyu; Tian, Sicong; Tong, Cunzhu; Wang, Lijun

    2018-06-01

    The spectral beam combining (SBC) of Bragg reflection waveguide photonic crystal (BRW-PC) diode lasers was studied for the first time. An off-axis feedback system was constructed using a stripe mirror and a spatial filter to control beam quality in the external cavity. It was found that the BRW-PC diode lasers with a low divergence and a circular beam provided a simplified and cost-effective SBC. The off-axis feedback broke the beam quality limit of a single element, and an M 2 factor of 3.8 times lower than that of a single emitter in the slow axis was demonstrated.

  14. Potential for bias and low precision in molecular divergence time estimation of the Canopy of Life: an example from aquatic bird families

    PubMed Central

    van Tuinen, Marcel; Torres, Christopher R.

    2015-01-01

    Uncertainty in divergence time estimation is frequently studied from many angles but rarely from the perspective of phylogenetic node age. If appropriate molecular models and fossil priors are used, a multi-locus, partitioned analysis is expected to equally minimize error in accuracy and precision across all nodes of a given phylogeny. In contrast, if available models fail to completely account for rate heterogeneity, substitution saturation and incompleteness of the fossil record, uncertainty in divergence time estimation may increase with node age. While many studies have stressed this concern with regard to deep nodes in the Tree of Life, the inference that molecular divergence time estimation of shallow nodes is less sensitive to erroneous model choice has not been tested explicitly in a Bayesian framework. Because of available divergence time estimation methods that permit fossil priors across any phylogenetic node and the present increase in efficient, cheap collection of species-level genomic data, insight is needed into the performance of divergence time estimation of shallow (<10 MY) nodes. Here, we performed multiple sensitivity analyses in a multi-locus data set of aquatic birds with six fossil constraints. Comparison across divergence time analyses that varied taxon and locus sampling, number and position of fossil constraint and shape of prior distribution showed various insights. Deviation from node ages obtained from a reference analysis was generally highest for the shallowest nodes but determined more by temporal placement than number of fossil constraints. Calibration with only the shallowest nodes significantly underestimated the aquatic bird fossil record, indicating the presence of saturation. Although joint calibration with all six priors yielded ages most consistent with the fossil record, ages of shallow nodes were overestimated. This bias was found in both mtDNA and nDNA regions. Thus, divergence time estimation of shallow nodes may suffer from bias and low precision, even when appropriate fossil priors and best available substitution models are chosen. Much care must be taken to address the possible ramifications of substitution saturation across the entire Tree of Life. PMID:26106406

  15. An experimental study of transmission, reflection and scattering of sound in a free-jet flight simulation facility and comparison with theory

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Tester, B. J.; Tanna, H. K.; Searle, N.

    1977-01-01

    Acoustic time delays across a free-jet shear layer are measured and compared with predictions based on (1) ray paths refracted abruptly across a cylindrical vortex sheet and (2) ray paths traced through a more realistic diverging flow model. The close agreement between measurement and theory confirms that Snell's law provides an accurate prediction of wavefront refraction or angle changes across a diverging shear layer. Microphones are placed on calculated ray paths to determine the coherent transmission and internal reflection characteristics of the shear layer and also the scattering of sound by the shear-layer turbulence. The transmission data essentially verify the proposed, theoretical calibration factor which forms part of a computational procedure that is being developed to convert model jet data from a free-jet facility to inflight conditions.

  16. Effect of low-frequency oscillation on performance of Hall thrusters

    NASA Astrophysics Data System (ADS)

    Liqiu, WEI; Wenbo, LI; Yongjie, DING; Daren, YU

    2018-07-01

    In this paper, a direct connection between the discharge current amplitude and the thruster performance is established by varying solely the capacitance of the filter unit of the Hall thrusters. To be precise, the variation characteristics of ion current, propellant utilization efficiency, and divergence angle of plume at different low-frequency oscillation amplitudes are measured. The findings demonstrate that in the case of the propellant in the discharge channel just meets or falls below the full ionization condition, the increase of low-frequency oscillation amplitude can significantly enhance the ionization degree of the neutral gas in the channel and increase the thrust and anode efficiency of thruster. On the contrary, the increase in the amplitude of low-frequency oscillation will lead to increase the loss of plume divergence, therefore the thrust and anode efficiency of thruster decrease.

  17. Vertical cavity surface emitting lasers from all-inorganic perovskite quantum dots

    NASA Astrophysics Data System (ADS)

    Sun, Handong; Wang, Yue; Li, Xiaoming; Zeng, Haibo

    We report the breakthrough in realizing the challenging while practically desirable vertical cavity surface emitting lasers (VCSELs) based on the CsPbX3 inorganic perovskite nanocrystals (IPNCs). These laser devices feature record low threshold (9 µJ/cm2), unidirectional output (beam divergence of 3.6º) and superb stability. We show that both single-mode and multimode lasing operation are achievable in the device. In contrast to traditional metal chacogenide colloidal quantum dots based lasers where the pump thresholds for the green and blue wavelengths are typically much higher than that of the red, these CsPbX3 IPNC-VCSEL devices are able to lase with comparable thresholds across the whole visible spectral range, which is appealing for achieving single source-pumped full-color lasers. We further reveal that these lasers can operate in quasi-steady state regime, which is very practical and cost-effective. Given the facile solution processibility, our CsPbX3 IPNC-VCSEL devices may hold great potential in developing low-cost yet high-performance lasers, promising in revolutionizing the vacuum-based epitaxial semiconductor lasers.

  18. Design Of A Novel Open-Path Aerosol Extinction Cavity Ringdown Spectrometer And Initial Data From Deployment At NOAA's Atmospheric Observatory

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Wagner, N. L.; Richardson, M.; Law, D. C.; Wolfe, D. E.; Brock, C. A.; Erdesz, F.; Murphy, D. M.

    2014-12-01

    The ability to frame effective climate change policy depends strongly on reducing the uncertainty in aerosol radiative forcing, which is currently nearly as great as best estimates of its magnitude. Achieving this goal will require significant progress in measuring aerosol properties, including aerosol optical depth, single scattering albedo and the effect of relative humidity on these properties for both fine and coarse particles. However both ground- and space-based instruments fail or are highly biased in the presence of clouds, severely limiting quantitative estimates of the radiative effects of aerosols where they are advected over low-level clouds. Moreover, many in situ aerosol measurements exclude the coarse fraction, which can be very important in and downwind of desert regions. By measuring the decay rate of a pulsed laser in an optically resonant cavity, cavity ringdown spectrometers (CRDSs) have been employed successfully in measuring aerosol extinction for particles in relative humidities below 90%. At very high humidities (as found in and near clouds), however, existing CRDSs perform poorly, diverging significantly from theoretical extinction values as humidities approach 100%. The new open-path aerosol extinction CRDS described in this poster measures extinction as aerosol is drawn through the sample cavity directly without inlets or tubing for channeling the flow, which cause particle losses, condensation at high RH and other artifacts. This poster presents the key elements of the new open-path CRDS design as well as comparisons with an earlier generation closed-path CRDS and preliminary data obtained during a field study at the 300 meter tower at NOAA's Boulder Atmospheric Observatory (BAO) in Colorado.

  19. Active ocular vergence improves postural control in elderly as close viewing distance with or without a single cognitive task.

    PubMed

    Matheron, Eric; Yang, Qing; Delpit-Baraut, Vincent; Dailly, Olivier; Kapoula, Zoï

    2016-01-01

    Performance of the vestibular, visual, and somatosensory systems decreases with age, reducing the capacity of postural control, and increasing the risk of falling. The purpose of this study is to measure the effects of vision, active vergence eye movements, viewing distance/vergence angle and a simple cognitive task on postural control during an upright stance, in completely autonomous elderly individuals. Participated in the study, 23 elderly subjects (73.4 ± 6.8 years) who were enrolled in a center dedicated to the prevention of falling. Their body oscillations were measured with the DynaPort(®) device, with three accelerometers, placed at the lumbosacral level, near the center of mass. The conditions were the following: eyes open fixating on LED at 20 cm or 150 cm (vergence angle 17.0° and 2.3° respectively) with or without additional cognitive tasks (counting down from one hundred), performing active vergence by alternating the fixation between the far and the near LED (convergence and divergence), eyes closed after having fixated the far LED. The results showed that the postural stability significantly decreased when fixating on the LED at a far distance (weak convergence angle) with or without cognitive tasks; active convergence-divergence between the LEDs improved the postural stability while eye closure decreased it. The privilege of proximity (with increased convergence at near), previously established with foot posturography, is shown here to be valid for accelerometry with the center of mass in elderly. Another major result is the beneficial contribution of active vergence eye movements to better postural stability. The results bring new perspectives for the role of eye movement training to preserve postural control and autonomy in elderly. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. A Parametric Investigation of Nozzle Planform and Internal/External Geometry at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Cler, Daniel L.

    1995-01-01

    An experimental investigation of multidisciplinary (scarfed trailing edge) nozzle divergent flap geometry was conducted at transonic speeds in the NASA Langley 16-Foot Transonic Tunnel. The geometric parameters investigated include nozzle planform, nozzle contouring location (internal and/or external), and nozzle area ratio (area ratio 1.2 and 2.0). Data were acquired over a range of Mach Numbers from 0.6 to 1.2, angle-of-attack from 0.0 degrees to 9.6 degrees and nozzle pressure ratios from 1.0 to 20.0. Results showed that increasing the rate of change internal divergence angle across the width of the nozzle or increasing internal contouring will decrease static, aeropropulsive and thrust removed drag performance regardless of the speed regime. Also, increasing the rate of change in boattail angle across the width of the nozzle or increasing external contouring will provide the lowest thrust removed drag. Scarfing of the nozzle trailing edges reduces the aeropropulsive performance for the most part and adversely affects the nozzle plume shape at higher nozzle pressure ratios thus increasing the thrust removed drag. The effects of contouring were primary in nature and the effects of planform were secondary in nature. Larger losses occur supersonically than subsonically when scarfing of nozzle trailing edges occurs. The single sawtooth nozzle almost always provided lower thrust removed drag than the double sawtooth nozzles regardless the speed regime. If internal contouring is required, the double sawtooth nozzle planform provides better static and aeropropulsive performance than the single sawtooth nozzle and if no internal contouring is required the single sawtooth provides the highest static and aeropropulsive performance.

  1. Analysis of Fuel Vaporization, Fuel-Air Mixing, and Combustion in Integrated Mixer-Flame Holders

    NASA Technical Reports Server (NTRS)

    Deur, J. M.; Cline, M. C.

    2004-01-01

    Requirements to limit pollutant emissions from the gas turbine engines for the future High-Speed Civil Transport (HSCT) have led to consideration of various low-emission combustor concepts. One such concept is the Integrated Mixer-Flame Holder (IMFH). This report describes a series of IMFH analyses performed with KIVA-II, a multi-dimensional CFD code for problems involving sprays, turbulence, and combustion. To meet the needs of this study, KIVA-II's boundary condition and chemistry treatments are modified. The study itself examines the relationships between fuel vaporization, fuel-air mixing, and combustion. Parameters being considered include: mixer tube diameter, mixer tube length, mixer tube geometry (converging-diverging versus straight walls), air inlet velocity, air inlet swirl angle, secondary air injection (dilution holes), fuel injection velocity, fuel injection angle, number of fuel injection ports, fuel spray cone angle, and fuel droplet size. Cases are run with and without combustion to examine the variations in fuel-air mixing and potential for flashback due to the above parameters. The degree of fuel-air mixing is judged by comparing average, minimum, and maximum fuel/air ratios at the exit of the mixer tube, while flame stability is monitored by following the location of the flame front as the solution progresses from ignition to steady state. Results indicate that fuel-air mixing can be enhanced by a variety of means, the best being a combination of air inlet swirl and a converging-diverging mixer tube geometry. With the IMFH configuration utilized in the present study, flashback becomes more common as the mixer tube diameter is increased and is instigated by disturbances associated with the dilution hole flow.

  2. Focus-tunable low-power electrowetting lenses with thin parylene films.

    PubMed

    Watson, Alexander M; Dease, Kevin; Terrab, Soraya; Roath, Christopher; Gopinath, Juliet T; Bright, Victor M

    2015-07-10

    Electrowetting lenses with record low power consumption (microwatts) have been demonstrated using high-quality parylene AF-4 dielectric layers and large dodecyl sulfate ions. Water and propylene glycol are interchanged as the polar liquid to enable diverging and converging lens operation achievable with the application of 15 V. The optical quality of the lenses is comparable to conventional microlenses and the tuning exhibits very little (<0.5°) contact angle hysteresis.

  3. Experimental evaluation of LED-based solar blind NLOS communication links.

    PubMed

    Chen, Gang; Abou-Galala, Feras; Xu, Zhengyuan; Sadler, Brian M

    2008-09-15

    Experimental results are reported demonstrating non-line of sight short-range ultraviolet communication link losses, and performance of photon counting detectors, operating in the solar blind spectrum regime. We employ light emitting diodes with divergent beams, a solar blind filter, and a wide field-of-view detector. Signal and noise statistics are characterized, and receiver performance is demonstrated. The effects of transmitter and receiver elevation angles, separation distance, and path loss are included.

  4. Study of solid rocket motors for a space shuttle booster, volume 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Additional technical data have been prepared to supplement the data supplied in the SRM shuttle booster final report. These data cover performance characteristics utilizing motor efficiencies of 0.960 and 0.947 with nozzle divergence half angles of 15 deg and 20 deg, respectively; PBAN propellant characteristics; parametric data to extend baseline designs to varying states of SRM's; summary of SRM mass properties; and SRM exhaust plume profiles.

  5. Change in Abdominal Morphology After Surgical Correction of Thoracolumbar Kyphosis Secondary to Ankylosing Spondylitis: A Computed Tomographic Study.

    PubMed

    Ji, Ming-Liang; Qian, Bang-Ping; Qiu, Yong; Wang, Bin; Mao, Sai-Hu; Zhu, Ze-Zhang; Yu, Yang

    2015-12-01

    A computed tomographic study. To investigate the change in abdominal morphology in surgically treated patients with ankylosing spondylitis (AS) and thoracolumbar kyphosis. Severe thoracolumbar kyphosis in patients with AS exerts pressure on the abdominal cavity and subsequently causes intra-abdominal complications. Several spinal osteotomy techniques have been widely used to correct AS-related thoracolumbar kyphosis. To date, the changed abdominal morphology in patients with AS undergoing surgical correction of thoracolumbar kyphosis has not been addressed. A total of 29 patients with AS undergoing lumbar pedicle subtraction osteotomy for correction of thoracolumbar kyphosis were retrospectively reviewed. Computed tomographic scans of the spine were used to measure the longitudinal, transverse, and anterior-posterior diameters of the abdominal cavity. Furthermore, the abdominal cavity was considered as an ellipsoid structure, thereby allowing calculation of its volume. Radiographical evaluations included global kyphosis (GK), thoracic kyphosis, lumbar lordosis (LL), and angle of fusion levels (AFL). The longitudinal diameter of abdominal cavity significantly increased (P < 0.01), whereas the transverse and anterior-posterior diameters of the abdominal cavity did not change, postoperatively (P > 0.05). Significant changes in GK, LL, and AFL were observed (P < 0.01). The abdominal cavity volume (ACV) increased by an average of 652  mL. The change in ACV was significantly correlated with the changes in GK (r = 0.453, P = 0.014), LL (r = 0.42, P = 0.023), and AFL (r = 0.388, P = 0.037). The increased ACV after correction of thoracolumbar kyphosis was quantitatively confirmed by this study. Thus, the improvement in digestive function after correction of thoracolumbar kyphosis secondary to AS, which has been previously documented, may be because of an increase in ACV. Moreover, spine surgeons should be aware of the potential risk for the development of abdominal complications caused by the lengthening of longitudinal diameter of the abdominal cavity. 3.

  6. Two families of astrophysical diverging lens models

    NASA Astrophysics Data System (ADS)

    Er, Xinzhong; Rogers, Adam

    2018-03-01

    In the standard gravitational lensing scenario, rays from a background source are bent in the direction of a foreground lensing mass distribution. Diverging lens behaviour produces deflections in the opposite sense to gravitational lensing, and is also of astrophysical interest. In fact, diverging lensing due to compact distributions of plasma has been proposed as an explanation for the extreme scattering events that produce frequency-dependent dimming of extragalactic radio sources, and may also be related to the refractive radio wave phenomena observed to affect the flux density of pulsars. In this work we study the behaviour of two families of astrophysical diverging lenses in the geometric optics limit, the power law, and the exponential plasma lenses. Generally, the members of these model families show distinct behaviour in terms of image formation and magnification, however the inclusion of a finite core for certain power-law lenses can produce a caustic and critical curve morphology that is similar to the well-studied Gaussian plasma lens. Both model families can produce dual radial critical curves, a novel distinction from the tangential distortion usually produced by gravitational (converging) lenses. The deflection angle and magnification of a plasma lens vary with the observational frequency, producing wavelength-dependent magnifications that alter the amplitudes and the shape of the light curves. Thus, multiwavelength observations can be used to physically constrain the distribution of the electron density in such lenses.

  7. Resonant cavity light-emitting diodes based on dielectric passive cavity structures

    NASA Astrophysics Data System (ADS)

    Ledentsov, N.; Shchukin, V. A.; Kropp, J.-R.; Zschiedrich, L.; Schmidt, F.; Ledentsov, N. N.

    2017-02-01

    A novel design for high brightness planar technology light-emitting diodes (LEDs) and LED on-wafer arrays on absorbing substrates is proposed. The design integrates features of passive dielectric cavity deposited on top of an oxide- semiconductor distributed Bragg reflector (DBR), the p-n junction with a light emitting region is introduced into the top semiconductor λ/4 DBR period. A multilayer dielectric structure containing a cavity layer and dielectric DBRs is further processed by etching into a micrometer-scale pattern. An oxide-confined aperture is further amended for current and light confinement. We study the impact of the placement of the active region into the maximum or minimum of the optical field intensity and study an impact of the active region positioning on light extraction efficiency. We also study an etching profile composed of symmetric rings in the etched passive cavity over the light emitting area. The bottom semiconductor is an AlGaAs-AlAs multilayer DBR selectively oxidized with the conversion of the AlAs layers into AlOx to increase the stopband width preventing the light from entering the semiconductor substrate. The approach allows to achieve very high light extraction efficiency in a narrow vertical angle keeping the reasonable thermal and current conductivity properties. As an example, a micro-LED structure has been modeled with AlGaAs-AlAs or AlGaAs-AlOx DBRs and an active region based on InGaAlP quantum well(s) emitting in the orange spectral range at 610 nm. A passive dielectric SiO2 cavity is confined by dielectric Ta2O5/SiO2 and AlGaAs-AlOx DBRs. Cylindrically-symmetric structures with multiple ring patterns are modeled. It is demonstrated that the extraction coefficient of light to the air can be increased from 1.3% up to above 90% in a narrow vertical angle (full width at half maximum (FWHM) below 20°). For very small oxide-confined apertures 100nm the narrowing of the FWHM for light extraction can be reduced down to 5°. Consequently high efficiency high brightness arrays of micro-LEDs becomes possible. For single emitters the approach is particularly interesting for oscillator strength engineering allowing high speed data transmission and for single photonics applying single quantum dot (QD) emitters and allowing >90% coupling of the emission into single mode fiber. We also note that for longer wavelength ( 1300nm) QDs the thickness of the layers and surface patterns significantly increase allowing greatly reduced processing tolerances and applying further simplifications due to the possibility of using high contrast GaAs-AlOx DBRs.

  8. Predictors of favorable soft tissue profile outcomes following Class II Twin-block treatment.

    PubMed

    Kim, Ji-Eun; Mah, Su-Jung; Kim, Tae-Woo; Kim, Su-Jung; Park, Ki-Ho; Kang, Yoon-Goo

    2018-01-01

    The aim of this study was to determine cephalometric factors that help predict favorable soft-tissue profile outcomes following treatment with the Class II Twin-block appliance. Pre- and post-treatment lateral cephalograms of 45 patients treated with the Class II Twin-block appliance were retrospectively analyzed. Profile silhouettes were drawn from the cephalograms and evaluated by three orthodontists in order to determine the extent of improvement. Samples were divided into a favorable group (upper 30% of visual analogue scale [VAS] scores, n = 14) and an unfavorable group (lower 30% of VAS scores, n = 14). Skeletal and soft-tissue measurements were performed on the cephalograms and an intergroup comparison was conducted. An independent t -test revealed that the following pre-treatment values were lower in the favorable group compared to the unfavorable group: lower incisor to mandibular plane angle, lower incisor to pogonion distance, point A-nasion-point B angle, sella-nasion line (SN) to maxillary plane angle, SN to mandibular plane angle, gonial angle, and symphysis inclination. The favorable group had a larger incisor inclination to occlusal plane. Moreover, the favorable group showed larger post-treatment changes in gonial angle, B point projection, and pogonion projection than did the unfavorable group. Class II malocclusion patients with a low divergent skeletal pattern and reduced lower incisor protrusions are likely to show more improvement in soft-tissue profile outcomes following Class II Twin-block treatment.

  9. Medium power hydrogen arcjet performance

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Bullock, S. Ray; Haag, Thomas W.; Sarmiento, Charles J.; Sankovic, John M.

    1991-01-01

    An experimental investigation was performed to evaluate hydrogen arcjet operating characteristics in the range of 1 to 4 kW. A series of nozzles were operated in modular laboratory thrusters to examine the effects of geometric parameters such as constrictor diameter and nozzle divergence angle. Each nozzle was tested over a range of current and mass flow rates to explore stability and performance. In the range of mass flow rates and power levels tested, specific impulse values between 650 and 1250 sec were obtained at efficiencies between 30 and 40 percent. The performance of the two larger half angle (20, 15 deg) nozzles was similar for each of the two constrictor diameters tested. The nozzles with the smallest half angle (10 deg) were difiicult to operate. A restrike mode of operation was identified and described. Damage in the form of melting was observed in the constrictor region of all the nozzle inserts tested. Arcjet ignition was also difficult in many tests and a glow discharge mode that prevents starting was identified.

  10. Comparative analysis of intraoral radiographs with variation of tube angulation to detect insufficient crown margins.

    PubMed

    Sailer, Benjamin F; Geibel, Margrit-Ann

    2013-01-01

    Variations in angulation of the x-ray tube affect the appearance of insufficient approximal crown margins on intraoral radiographs. This study examines the impact of such angular variation on the assessment of digital radiographs using three different X-ray tubes--Heliodent DS (Sirona), Gendex Expert DC (KaVo Dental) and Focus (KaVo Dental)--as well as the Gendex Visualix eHD CCD sensor (KaVo Dental). The test specimens, crowned teeth 46 from two mandibles provided by the Institute of Anatomy and Cell Biology, were examined with each tube. The results indicate great differences in the angles indicative of insufficient crown margins on X-ray images. Because of beam divergence and the crown marginal gap, the length and width of which frequently varies, it is difficult to infer any optimum angle from the data. This leads to the conclusion that at present, it is not possible to establish ideal angles for visualization of insufficient approximal crown margins.

  11. Angular Spacing Control for Segmented Data Pages in Angle-Multiplexed Holographic Memory

    NASA Astrophysics Data System (ADS)

    Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Kikuchi, Hiroshi; Shimidzu, Naoki; Ando, Toshio; Masaki, Kazuyoshi; Shimizu, Takehiro

    2011-09-01

    To improve the recording density of angle-multiplexed holographic memory, it is effective to increase the numerical aperture of the lens and to shorten the wavelength of the laser source as well as to increase the multiplexing number. The angular selectivity of a hologram, which determines the multiplexing number, is dependent on the incident angle of not only the reference beam but also the signal beam to the holographic recording medium. The actual signal beam, which is a convergent or divergent beam, is regarded as the sum of plane waves that have different propagation directions, angular selectivities, and optimal angular spacings. In this paper, focusing on the differences in the optimal angular spacing, we proposed a method to control the angular spacing for each segmented data page. We investigated the angular selectivity of a hologram and crosstalk for segmented data pages using numerical simulation. The experimental results showed a practical bit-error rate on the order of 10-3.

  12. Medium power hydrogen arcjet performance

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Bullock, S. R.; Haag, Thomas W.; Sarmiento, Charles J.; Sankovic, John M.

    1991-01-01

    An experimental investigation was performed to evaluate hydrogen arcjet operating characteristics in the range of 1 to 4 kW. A series of nozzles were operated in modular laboratory thrusters to examine the effects of geometric parameters such as constrictor diameter and nozzle divergence angle. Each nozzle was tested over a range of current and mass flow rates to explore stability and performance. In the range of mass flow rates and power levels tested, specific impulse values between 650 and 1250 sec were obtained at efficiencies between 30 and 40 percent. The performance of the two larger half angle (20, 15 deg) nozzles was similar for each of the two constrictor diameters tested. The nozzles with the smallest half angle (10 deg) were difficult to operate. A restrike mode of operation was identified and described. Damage in the form of melting was observed in the constrictor region of all the nozzle inserts tested. Arcjet ignition was also difficult in many tests and a glow discharge mode that prevents starting was identified.

  13. Experimental and Theoretical Studies of Axisymmetric Free Jets

    NASA Technical Reports Server (NTRS)

    Love, Eugene S.; Grigsby, Carl E.; Lee, Louise P.; Woodling, Mildred J.

    1959-01-01

    Some experimental and theoretical studies have been made of axisymmetric free jets exhausting from sonic and supersonic nozzles into still air and into supersonic streams with a view toward problems associated with propulsive jets and the investigation of these problems. For jets exhausting into still air, consideration is given to the effects of jet Mach number, nozzle divergence angle, and jet static pressure ratio upon jet structure, jet wavelength, and the shape and curvature of the jet boundary. Studies of the effects of the ratio of specific heats of the jets are included are observations pertaining to jet noise and jet simulation. For jets exhausting into supersonic streams, an attempt has been made to present primarily theoretical certain jet interference effects and in formulating experimental studies. The primary variables considered are jet Mach number, free stream Mach number, jet static pressure ratio, ratio of specific heats of the jet, nozzle exit angle, and boattail angle. The simulation problem and the case of a hypothetical hypersonic vehicle are examined, A few experimental observations are included.

  14. Fabrication of Ni-silicide/Si heterostructured nanowire arrays by glancing angle deposition and solid state reaction.

    PubMed

    Hsu, Hsun-Feng; Huang, Wan-Ru; Chen, Ting-Hsuan; Wu, Hwang-Yuan; Chen, Chun-An

    2013-05-10

    This work develops a method for growing Ni-silicide/Si heterostructured nanowire arrays by glancing angle Ni deposition and solid state reaction on ordered Si nanowire arrays. Samples of ordered Si nanowire arrays were fabricated by nanosphere lithography and metal-induced catalytic etching. Glancing angle Ni deposition deposited Ni only on the top of Si nanowires. When the annealing temperature was 500°C, a Ni3Si2 phase was formed at the apex of the nanowires. The phase of silicide at the Ni-silicide/Si interface depended on the diameter of the Si nanowires, such that epitaxial NiSi2 with a {111} facet was formed at the Ni-silicide/Si interface in Si nanowires with large diameter, and NiSi was formed in Si nanowires with small diameter. A mechanism that is based on flux divergence and a nucleation-limited reaction is proposed to explain this phenomenon of size-dependent phase formation.

  15. Fabrication of Ni-silicide/Si heterostructured nanowire arrays by glancing angle deposition and solid state reaction

    PubMed Central

    2013-01-01

    This work develops a method for growing Ni-silicide/Si heterostructured nanowire arrays by glancing angle Ni deposition and solid state reaction on ordered Si nanowire arrays. Samples of ordered Si nanowire arrays were fabricated by nanosphere lithography and metal-induced catalytic etching. Glancing angle Ni deposition deposited Ni only on the top of Si nanowires. When the annealing temperature was 500°C, a Ni3Si2 phase was formed at the apex of the nanowires. The phase of silicide at the Ni-silicide/Si interface depended on the diameter of the Si nanowires, such that epitaxial NiSi2 with a {111} facet was formed at the Ni-silicide/Si interface in Si nanowires with large diameter, and NiSi was formed in Si nanowires with small diameter. A mechanism that is based on flux divergence and a nucleation-limited reaction is proposed to explain this phenomenon of size-dependent phase formation. PMID:23663726

  16. Strength Property Estimation for Dry, Cohesionless Soils Using the Military Cone Penetrometer

    DTIC Science & Technology

    1992-05-01

    by Meier and Baladi (1988). Their methodology is based on a theoretical formulation of the CI problem using cavity expansion theory to relate cone... Baladi (1981), incorporates three mechanical properties (cohesion, fric- tion angle, and shear modulus) and the total unit weight. Obviously, these four...unknown soil propertieE cannot be back-calculated directly from a single CI measurement. To ameliorate this problem, Meier and Baladi estimate the total

  17. The Effects of Optical Feedback on Polarization of Vertical Cavity Surface Emitting Lasers

    DTIC Science & Technology

    1993-12-01

    Beam Mode TEMN Dichroic Beam Splitters (2) Manufacturer CVI Maximum Reflectance 375 mrn, 950 un Maximum Transmission 830 rnm, 910 mn Design Angle 5... beam splitter (DBS). The DBS reflects the majority of the light at the VCSEL wavelength (and passes most of the pump wavelength). A normal beamsplitter...degrees Beam Splitters Manufacturer Melles Griot Reflectancetrransnittance -50/50 Filters (2) Manufacturer Ealing Center Wavelength 880 urn, 940 mun

  18. A Guide for Estimation of Aeroacoustic Loads on Flight Vehicle Surfaces

    DTIC Science & Technology

    1977-02-01

    Nozzle aspect ratio correction of one-third octave band sound pressure levels of USB noise . 122 31. Impingement angle correction of one-third octave...breech weapons ....................... 175 IX •: •-•,..i .•,z. •... LIST OF FIGURES (Cont.) page Figure 61. Rectangular cavity ...and a nozzle aspect ratio of 4.0, and without a deflector. Obtain the corrected one-third octave band level SPL from the baseline level, from " b

  19. Lambertian white top-emitting organic light emitting device with carbon nanotube cathode

    NASA Astrophysics Data System (ADS)

    Freitag, P.; Zakhidov, Al. A.; Luessem, B.; Zakhidov, A. A.; Leo, K.

    2012-12-01

    We demonstrate that white organic light emitting devices (OLEDs) with top carbon nanotube (CNT) electrodes show almost no microcavity effect and exhibit essentially Lambertian emission. CNT top electrodes were applied by direct lamination of multiwall CNT sheets onto white small molecule OLED stack. The devices show an external quantum efficiency of 1.5% and high color rendering index of 70. Due to elimination of the cavity effect, the devices show good color stability for different viewing angles. Thus, CNT electrodes are a viable alternative to thin semitransparent metallic films, where the strong cavity effect causes spectral shift and non-Lambertian angular dependence. Our method of the device fabrication is simple yet effective and compatible with virtually any small molecule organic semiconductor stack. It is also compatible with flexible substrates and roll-to-roll fabrication.

  20. Plasmonic resonances in ordered and disordered aluminum nanocavities arrays.

    NASA Astrophysics Data System (ADS)

    Campuzano, R. G.; Mendoza, D.

    2017-01-01

    Nanocavities arrays were synthesized by electrochemical anodization of aluminum using oxalic and phosphoric acids as electrolytes. The morphology and topography of these structures were evaluated by SEM and AFM. Plasmonic properties of Al cavities arrays with different ordering and dimensions were analysed based on specular reflectivity. Al cavities arrays fabricated with phosphoric acid dramatically reduced the optical reflectivity as compared with unstructured Al. At the same time pronounced reflectivity dips were detectable in the 300nm-400nm range, which were ascribed to (0,1) plasmonic mode, and also a colored appearance in the samples is noticeably depending on the observation angle. These changes are not observed in samples made with oxalic acid and this fact was explained, based on a theoretical model, in terms that the surface plasmons are excited far in the UV range.

  1. Pixel-level plasmonic microcavity infrared photodetector

    PubMed Central

    Jing, You Liang; Li, Zhi Feng; Li, Qian; Chen, Xiao Shuang; Chen, Ping Ping; Wang, Han; Li, Meng Yao; Li, Ning; Lu, Wei

    2016-01-01

    Recently, plasmonics has been central to the manipulation of photons on the subwavelength scale, and superior infrared imagers have opened novel applications in many fields. Here, we demonstrate the first pixel-level plasmonic microcavity infrared photodetector with a single quantum well integrated between metal patches and a reflection layer. Greater than one order of magnitude enhancement of the peak responsivity has been observed. The significant improvement originates from the highly confined optical mode in the cavity, leading to a strong coupling between photons and the quantum well, resulting in the enhanced photo-electric conversion process. Such strong coupling from the localized surface plasmon mode inside the cavity is independent of incident angles, offering a unique solution to high-performance focal plane array devices. This demonstration paves the way for important infrared optoelectronic devices for sensing and imaging. PMID:27181111

  2. MARGATS cruise: investigation of the deep internal structure and the heterogeneous margins of the Demerara plateau reveals a polyphased volcanic history

    NASA Astrophysics Data System (ADS)

    Graindorge, D.; Museur, T.; Roest, W. R.; Klingelhoefer, F.; Loncke, L.; Basile, C.; Poetisi, E.; Deverchere, J.; Heuret, A.; Jean-Frederic, L.; Perrot, J.

    2017-12-01

    The MARGATS scientific cruise was carried out from October 20th to November 16th 2016 on board the R/V L'Atalante, offshore Suriname and French Guiana. This cruise is part of a program dedicated to the geological investigation of the continental margin, including the Demerara plateau, following the GUYAPLAC (2003), IGUANES (2013) and DRADEM (2016) cruises. The aim of MARGATS was to image the internal structure of the Demerara plateau and its different margins using coincident deep penetrating wide angle refraction and multi channel reflection seismic (MCS) methods. During the MARGATS experiment 171 OBS deployments were distributed along 4 wide-angle lines. Along each wide-angle line we also recorded coincident MCS data using a 3 km long 480 channel streamer. The dataset was completed by three MCS lines along the eastern part of the Demerara plateau. MCS MAR007 line which is coincident with line OBS MAR-3 was extended on land by 13 land stations deployed along the Maroni River. This line, together with MCS MAR001 and the coincident OBS MAR-1 line reveal the highly homogeneous deep structure of the internal part of the plateau. MCS MAR005 line, which is coincident with OBS MAR-2, MCS MAR006 line coincident with OBS MAR-4, MCS MAR002, MCS MAR003 and MCS MAR004 helps to elucidate the structural complexity of the northern transform margin and the eastern divergent margin of the plateau. These new datasets are highly complementary to the DRADEM dredge results which provide evidence for mid Jurassic volcanic rocks along the plateau and significant vertical displacements along the transform margin. These results allow to interpret the plateau as the remains of a huge jurassic volcanic divergent margin along the Central Atlantic ocean to the west, possibly remobilized during the cretaceous opening of the Equatorial Atlantic ocean as an highly oblique margin to the north and a divergent margin to the east in persistent presence of volcanism. This AGU session will be a great opportunity to present the exceptional quality of the seismic data, after the initial processing steps and how these data are conditioning a new understanding of the Demarara plateau and its margins which implies the hypothetic role of a new hot spot shaping the complex polyphased history of the structure.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Z. -H.; Wang, M.; Polyanskii, A. A.

    This study shows that low angle grain boundaries (LAGBs) can be created by small 5% strains in high purity (RRR ≥ 200) SRF-grade single crystalline niobium (Nb) and that these boundaries act as hydrogen traps as indicated by the distribution of niobium hydrides (Nb 1-xH x). Nb 1-xH x is detrimental to superconducting radio frequency (SRF) Nb cavities due to its normal conducting properties at cavity operating temperatures. By designing a single crystal tensile sample extracted from a large grain (>5 cm) Nb ingot slice for preferred slip on one slip plane, LAGBs and dense dislocation boundaries developed. With chemicalmore » surface treatments following standard SRF cavity fabrication practice, Nb1-xHx phases were densely precipitated at the LAGBs upon cryogenic cooling (8-10 K/min). Micro-crystallographic analysis confirmed heterogeneous hydride precipitation, which included significant hydrogen atom accumulation in LAGBs. Magneto-optical imaging (MOI) analysis showed that these sites can then act as sites for both premature flux penetration and eventually flux trapping. However, this hydrogen related degradation at LAGBs did not completely disappear even after a 800 °C/2hrs anneal typically used for hydrogen removal in SRF Nb cavities. These findings suggest that hydride precipitation at a LAGB is facilitated by a non-equilibrium concentration of vacancy-hydrogen (H) complexes aided by mechanical deformation and the hydride phase interferes with the recovery process under 800°C annealing.« less

  4. Long term dynamics of the high luminosity Large Hadron Collider with crab cavities

    NASA Astrophysics Data System (ADS)

    Barranco García, J.; De Maria, R.; Grudiev, A.; Tomás García, R.; Appleby, R. B.; Brett, D. R.

    2016-10-01

    The High Luminosity upgrade of the Large Hadron Collider (HL-LHC) aims to achieve an integrated luminosity of 200 - 300 fb-1 per year, including the contribution from the upgrade of the injector chain. For the HL-LHC the larger crossing angle together with a smaller beta function at the collision point would result in more than 70% luminosity loss due to the incomplete geometric overlap of colliding bunches. To recover head-on collisions at the high-luminosity particle-physics detectors ATLAS and CMS and benefit from the very low β* provided by the Achromatic Telescopic Squeezing (ATS) optics, a local crab cavity scheme provides transverse kicks to the proton bunches. The tight space constraints at the location of these cavities leads to designs which are axially non-symmetric, giving rise to high order multipoles components of the main deflecting mode and, since these kicks are harmonic in time, we expand them in a series of multipoles in a similar fashion as is done for static field magnets. In this work we calculate, for the first time, the higher order multipoles and their impact on beam dynamics for three different crab cavity prototypes. Different approaches to calculate the multipoles are presented. Furthermore, we perform the first calculation of their impact on the long term stability of the machine using the concept of dynamic aperture.

  5. Peripapillary Schisis in Glaucoma Patients With Narrow Angles and Increased Intraocular Pressure

    PubMed Central

    Kahook, Malik Y.; Noecker, Robert J.; Ishikawa, Hiroshi; Wollstein, Gadi; Kagemann, Larry; Wojtkowski, Maciej; Duker, Jay S.; Srinivasan, Vivek J.; Fujimoto, James G.; Schuman, Joel S.

    2007-01-01

    PURPOSE To describe two cases of peripapillary retinal schisis in patients with glaucoma without evidence of optic nerve pits, pseudopits, or X-linked retinoschisis. DESIGN Two observational case reports and literature review. METHODS Imaging of the peripapillary nerve fiber layer and schisis cavities was completed in two patients, and one patient was followed over time. RESULTS The first patient, diagnosed with narrow angle glaucoma, was noted to have peripapillary schisis in the right eye with matching changes on visual field and optical coherence tomographic (OCT) results. Follow-up examination revealed that the schisis disappeared in the right eye while appearing in the left. The findings were verified with high-speed ultra-high-resolution OCT performed in both eyes. The second case involved a patient with anatomically narrow angles, high intraocular pressure (IOP), and peripapillary schisis extending into the macula. CONCLUSIONS Peripapillary retinoschisis may represent a unique sequelae of intraocular fluctuations in patients with uncontrolled glaucoma. Further studies are needed to better understand this disease process. PMID:17386284

  6. Orientation effect in d(d,n)3He reaction initiated by 20 keV deuterons at channeling in textured CVD-Diamond target

    NASA Astrophysics Data System (ADS)

    Bagulya, A. V.; Dalkarov, O. D.; Negodaev, M. A.; Pivovarov, Yu. L.; Rusetskii, A. S.; Tukhfatullin, T. A.

    2017-07-01

    Orientation effect of increasing the enhancement factor of DD-reaction in CVD-Diamond was investigated by simulation. It is obtained that the flux peaking effect up to 2.2 times increases the relative enhancement factor for a parallel beam and up to 1.2 times for the deuteron beam with angular divergence equals 3 critical channeling angles. Qualitative agreement with the experiment was obtained.

  7. Achromatic and uncoupled medical gantry

    DOEpatents

    Tsoupas, Nicholaos [Center Moriches, NY; Kayran, Dmitry [Rocky Point, NY; Litvinenko, Vladimir [Mt. Sinai, NY; MacKay, William W [Wading River, NY

    2011-11-22

    A medical gantry that focus the beam from the beginning of the gantry to the exit of the gantry independent of the rotation angle of the gantry by keeping the beam achromatic and uncoupled, thus, avoiding the use of collimators or rotators, or additional equipment to control the beam divergence, which may cause beam intensity loss or additional time in irradiation of the patient, or disadvantageously increase the overall gantry size inapplicable for the use in the medical treatment facility.

  8. Tip-leakage cavitation in the clearance of a 2D hydrofoil with fillets: high-speed visualization and PIV/PTV measurements

    NASA Astrophysics Data System (ADS)

    Zapryagaev, Ivan I.; Timoshevskiy, Mikhail V.; Pervunin, Konstantin S.

    2017-09-01

    Tip-clearance cavitation is one of the most aggressive forms of cavitation as it can cause surface erosion of hydraulic machinery elements and, as a result, their fatigue damage and disturb designed operating conditions. At present, the literature lacks for detailed experimental data on the inception and development of this type of cavitation at various flow conditions. In the paper, a tip-leakage cavitation occurring in the clearance between an end face of a 2D hydrofoil (a scaled-down model of guide vanes (GV) of a Francis turbine) and a transparent wall of the test section was studied. The experiments were carried out for different cavitating regimes on the cavitation number and two attack angles of 3° and 9°, with the gap size (tip clearance width) varied in the range from 0.4 to 0.8 mm. In order to determine the cavitation inception conditions and investigate the dynamics of the tip-leakage cavitation, a high-speed visualization was applied. A modified PIV/PTV technique with a diverging laser beam instead of a laser light sheet was used to measure the mean velocity distributions within the gap. It was shown that the cavitation pattern on the suction side of the GV model impacts the dynamics of the leakage flow in the gap but does not affect the sheet cavity formed close to the foil leading edge in the clearance as well as its size and dynamics. When the gap size is increased, the tip-leakage cavitation initiates at higher cavitation numbers or, in other words, conditions for the cavitation occurrence become more favorable.

  9. Numerical Simulation of Rarefied Plume Flow Exhausting from a Small Nozzle

    NASA Astrophysics Data System (ADS)

    Hyakutake, Toru; Yamamoto, Kyoji

    2003-05-01

    This paper describes the numerical studies of a rarefied plume flow expanding through a nozzle into a vacuum, especially focusing on investigating the nozzle performance, the angular distributions of molecular flux in the nozzle plume and the influence of the backflow contamination for the variation of nozzle geometries and gas/surface interaction models. The direct simulation Monte Carlo (DSMC) method is employed for determining inside the nozzle and in the nozzle plume. The simulation results indicate that the half-angle of the diverging section in the highest thrust coefficient is 25° - 30° and this value varies with the expansion ratio of the nozzle. The descent of the half-angle brings about the increase of the molecules that are scattered in the backflow region.

  10. Effect of screens in wide-angle diffusers

    NASA Technical Reports Server (NTRS)

    Schubauer, G B; Spangenberg, W G

    1949-01-01

    An experimental investigation at low airspeeds was made of the filling effect observed when a screen or similar resistance is placed across a diffuser. The filling effect is found to be real in that screens can prevent separation or restore separated flow in diffusers even of extreme divergence and to depend principally on screen location and pressure-drop coefficient of the screen. Results are given for three different diffusers of circular cross section with a variety of screen arrangements. Effects of single screens and multiple screens are shown. The mechanics of the filling effect is explained, and possible efficiencies are discussed. Results of arrangements of multiple screens in wide-angle diffusers are given to show a possible application to damping screens as used in wind tunnels to reduce turbulence. (author)

  11. Self-Pinched Transport Theory for the SABRE Ion Diode

    NASA Astrophysics Data System (ADS)

    Welch, Dale R.; Olson, Craig L.; Hanson, David L.

    1997-05-01

    In anticipation of a 90 kA 4 MV SABRE ion diode experiment, we have been examining self-pinch transport of ions for application to ion-driven inertial confinement fusion. The Li^+3 beam will exit the diode with a 30-40 mradian divergence and a shallow focusing angle of 75 mradians. The beam is annular with an 4.6-cm inner radius and a 6.8-cm outer radius. Self-pinch theory and simulation predict that large residual currents are possible in 2-20 mtorr argon gas. The simulations suggest that ≈ 50 kA of Li particle current is necessary to contain the beam's transverse momentum. Some non-ideal effects include large beam divergence, large focusing angle and beam annularity. To address these problems, we have been studying the benefits of beam conditioning in the focus region between the diode and the self pinch region after the beam has reached a small radius. We have found some benefit from including a passive conical structure and a low-pressure gas. A significant lens effect can be attained using only the beam fields in vacuum or a low pressure gas. In this configuration, a large focusing force, that keeps the ions off an inner cone and outer wall as the beam converges, has been calculated using the numerical simulation code uc(iprop.) Results from integrated simulation of the condition cell and self-pinch region look encouraging.

  12. Generation of low-divergence laser beams

    DOEpatents

    Kronberg, J.W.

    1993-09-14

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source. 11 figures.

  13. Study of a temporal bone of Homo heildelbergensis.

    PubMed

    Urquiza, Rafael; Botella, Miguel; Ciges, Miguel

    2005-05-01

    The characteristic features of the Hh specimen conformed to those of other Pleistocene human fossils, indicating strong cranial structures and a heavy mandible. The mastoid was large and suggested a powerful sternocleidomastoid muscle. The inner ear and tympanic cavities were similar in size and orientation, suggesting that their functions were probably similar. Our observations suggest that the left ear of this Hh specimen was healthy. The large canaliculo-fenestral angle confirms that this ancestor was bipedal. It also strongly suggests that Hh individuals were predisposed to develop certain pathologies of the labyrinth capsule associated with bipedalism, in particular otosclerosis. We studied a temporal bone of Homo heidelbergensis (Hh) in order to investigate the clinical and physiological implications of certain morphological features, especially those associated with the evolutionary reorganization of the inner ear. The bone, found in a breach of a cave near MAáaga in southern Spain, together with Middle Upper Pleistocene faunal remains, is >300000 years old. Four analytical methods were employed. A 3D high-resolution surface laser scan was used for anatomical measurements. For the sectional analysis of the middle and inner ears of Hh we used high-resolution CT, simultaneously studying a normal temporal bone from Homo sapiens sapiens (Hss). To study the middle and inner ear spaces we used 3D reconstruction CT preceded by an intra-bone air shielding technique. To examine the tympanic cavities and measure the canaliculo fenestral angle, we used a special minimally invasive endoscopic procedure. The surface, sectional and 3D CT examinations showed that the Hh specimen was generally more robust and larger than the Hss specimen. It had a large glenoid fossa. The external meatus was wide and deep. The middle ear, and especially the mastoid, was large and widely pneumatized. There were no appreciable differences in the position and size of the labyrinthine spaces and tympanic cavity. The dimensions of the semicircular canals were similar to those of the Hss specimen. Endoscopy revealed normal, healthy tympanic walls and an ossicle fragment in the atticum that probably belonged to the body of the malleus. The diameters of the fallopian duct and the tympanic opening of the Eustachian tube were large. The canaliculo-fenestral angle was approximately 114 degrees

  14. A static investigation of yaw vectoring concepts on two-dimensional convergent-divergent nozzles

    NASA Technical Reports Server (NTRS)

    Berrier, B. L.; Mason, M. L.

    1983-01-01

    The flow-turning capability and nozzle internal performance of yaw-vectoring nozzle geometries were tested in the NASA Langley 16-ft Transonic wind tunnel. The concept was investigated as a means of enhancing fighter jet performance. Five two-dimensional convergent-divergent nozzles were equipped for yaw-vectoring and examined. The configurations included a translating left sidewall, left and right sidewall flaps downstream of the nozzle throat, left sidewall flaps or port located upstream of the nozzle throat, and a powered rudder. Trials were also run with 20 deg of pitch thrust vectoring added. The feasibility of providing yaw-thrust vectoring was demonstrated, with the largest yaw vector angles being obtained with sidewall flaps downstream of the nozzle primary throat. It was concluded that yaw vector designs that scoop or capture internal nozzle flow provide the largest yaw-vector capability, but decrease the thrust the most.

  15. NONLINEAR OPTICAL EFFECTS AND FIBER OPTICS: Pulsed neodymium amplifier with phase conjugation and direct amplification

    NASA Astrophysics Data System (ADS)

    Basov, N. G.; Efimkov, V. F.; Zubarev, I. G.; Kolobrodov, V. V.; Pastukhov, S. A.; Smirnov, M. G.; Sobolev, V. B.

    1988-12-01

    A study was made of the characteristics of an amplifier containing neodymium-activated silicate rods, 45 mm in diameter, used in direct amplification and phase conjugation systems. At low output energies the divergence of the output radiation in the presence of a phase-conjugating mirror was half ( ~ 10- 4 rad) that in the case of direct amplification. An increase in the output power caused the divergence to rise more rapidly in the presence of a phase-conjugating mirror, which was tentatively attributed to an earlier manifestation of large-scale self-focusing. Output energies of 130 J in the case of direct amplification and 80 J in the presence of a phase-conjugating mirror were obtained when the output pulse duration was ~ 2 ns and the fraction of the total energy contained within an angle of ~ 10- 4 rad was ~ 0.3.

  16. NASA Common Research Model Test Envelope Extension With Active Sting Damping at NTF

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa B.; Balakrishna, S.

    2014-01-01

    The NASA Common Research Model (CRM) high Reynolds number transonic wind tunnel testing program was established to generate an experimental database for applied Computational Fluid Dynamics (CFD) validation studies. During transonic wind tunnel tests, the CRM encounters large sting vibrations when the angle of attack approaches the second pitching moment break, which can sometimes become divergent. CRM transonic test data analysis suggests that sting divergent oscillations are related to negative net sting damping episodes associated with flow separation instability. The National Transonic Facility (NTF) has been addressing remedies to extend polar testing up to and beyond the second pitching moment break point of the test articles using an active piezoceramic damper system for both ambient and cryogenic temperatures. This paper reviews CRM test results to gain understanding of sting dynamics with a simple model describing the mechanics of a sting-model system and presents the performance of the damper under cryogenic conditions.

  17. Flow in a discrete slotted nozzle with massive injection. [water table tests

    NASA Technical Reports Server (NTRS)

    Perkins, H. C.

    1974-01-01

    An experimental investigation has been conducted to determine the effect of massive wall injection on the flow characteristics in a slotted nozzle. Some of the experiments were performed on a water table with a slotted-nozzle test section. This has 45 deg and 15 deg half angles of convergence and divergence, respectively, throat radius of 2.5 inches, and throat width of 3 inches. The hydraulic analogy was employed to qualitatively extend the results to a compressible gas flow through the nozzle. Experimental results from the water table include contours of constant Froude and Mach number with and without injection. Photographic results are also presented for the injection through slots of CO2 and Freon-12 into a main-stream air flow in a convergent-divergent nozzle in a wind tunnel. Schlieren photographs were used to visualize the flow, and qualititative agreement between the results from the gas tunnel and water table is good.

  18. Finite mass enhancement across bandwidth controlled Mott transition in NiS2-xSex

    NASA Astrophysics Data System (ADS)

    Han, Garam; Kyung, W. S.; Kim, Y. K.; Cheng, C. M.; Tsuei, K. D.; Lee, K. D.; Hur, N.; Kim, H.-D.; Kim, C.

    One of the most important and still debated issues in the strongly correlated electron systems is on the metal insulator transition (MIT) mechanism. In the bandwidth controlled Mott transition (BCMT) scenario, which Mott originally proposed, MIT occurs through a mass divergence in which the effective mass of the quasi-particle (QP) diverges approaching the MIT. The interpretation is supported by dynamic mean field theory (DMFT) model calculations. However, few direct observations have been made yet due to various experimental restrictions. In this talk, I present systematic angle resolved photoemission studies on the MIT in NiS2-xSex, which is a well-known BCMT material. We observed not only the bandwidth shrinkage but also the coherent quasi-particle peak (QP) which is not of the surface origin. In addition, we experimentally showed the mass of the QP remains finite approaching the MIT. This work was supported by IBS-R009-D1.

  19. Large tuning of narrow-beam terahertz plasmonic lasers operating at 78 K

    DOE PAGES

    Wu, Chongzhao; Jin, Yuan; Reno, John L.; ...

    2016-12-19

    A new tuning mechanism is demonstrated for single-mode metal-clad plasmonic lasers, in which the refractive-index of the laser’s surrounding medium affects the resonant-cavity mode in the same vein as the refractive-index of gain medium inside the cavity. Reversible, continuous, and mode-hop-free tuning of ~57 GHz is realized for single-mode narrow-beam terahertz plasmonic quantum-cascade lasers (QCLs), which is demonstrated at a much more practical temperature of 78 K. The tuning is based on post-process deposition/etching of a dielectric (silicon-dioxide) on a QCL chip that has already been soldered and wire-bonded onto a copper mount. This is a considerably larger tuning rangemore » compared to previously reported results for terahertz QCLs with directional far-field radiation patterns. The key enabling mechanism for tuning is a recently developed antenna-feedback scheme for plasmonic lasers, which leads to the generation of hybrid surface-plasmon-polaritons propagating outside the cavity of the laser with a large spatial extent. The effect of dielectric deposition on QCL’s characteristics is investigated in detail including that on maximum operating temperature, peak output power, and far-field radiation patterns. Single-lobed beam with low divergence (<7°) is maintained through the tuning range. The antenna-feedback scheme is ideally suited for modulation of plasmonic lasers and their sensing applications due to the sensitive dependence of spectral and radiative properties of the laser on its surrounding medium.« less

  20. Evaluation and Prism Management of Divergence Insufficiency Esotropia.

    PubMed

    Haller, Terra

    2015-01-01

    An esodeviation that is greater at distance than near in an adult patient requires a full sensorimotor exam to rule out any cofounding neurological conditions. Many etiologies are described in the literature to cause an esodeviation that is greater at distance than near in adult patients and some exist in conjunction with a neurological condition. However, many adult patients present to the adult strabismus clinic with no other findings on exam and have a purely benign divergence insufficiency esotropia. A review of the literature on divergence insufficiency reveals a few attempts of classifying these entities, but none have been completely accepted.Recently benign non-neurological divergence insufficiency esotropia has been described as a resulting condition due to a mechanical etiology. Currently, the literature only describes a couple of different etiologies.Regardless of the etiology, these patients are quite symptomatic and present to the adult strabismus clinic with various complaints and require a thorough examination. The primary focus of the exam is to first rule out the need for further neurological work-up, but secondly, to also determine the best treatment option for the patient. To determine the best treatment plan, a thorough evaluation, including a sensorimotor exam with proper testing, can help. Many of these patients do very well with base-out prism management; however, some have decompensated to a larger angle and prefer surgical intervention. However, the focus of this paper will be on nonsurgical prism management of patients with divergence insufficiency that is not associated with any neurological disorder. © 2015 Board of regents of the University of Wisconsin System, American Orthoptic Journal, Volume 65, 2015, ISSN 0065-955X, E-ISSN 1553-4448.

  1. An ultrafast angle-resolved photoemission apparatus for measuring complex materials

    NASA Astrophysics Data System (ADS)

    Smallwood, Christopher L.; Jozwiak, Christopher; Zhang, Wentao; Lanzara, Alessandra

    2012-12-01

    We present technical specifications for a high resolution time- and angle-resolved photoemission spectroscopy setup based on a hemispherical electron analyzer and cavity-dumped solid state Ti:sapphire laser used to generate pump and probe beams, respectively, at 1.48 and 5.93 eV. The pulse repetition rate can be tuned from 209 Hz to 54.3 MHz. Under typical operating settings the system has an overall energy resolution of 23 meV, an overall momentum resolution of 0.003 Å-1, and an overall time resolution of 310 fs. We illustrate the system capabilities with representative data on the cuprate superconductor Bi2Sr2CaCu2O8+δ. The descriptions and analyses presented here will inform new developments in ultrafast electron spectroscopy.

  2. Effect of light dispersion of LED curing lights on resin composite polymerization.

    PubMed

    Vandewalle, Kraig S; Roberts, Howard W; Andrus, Jeffrey L; Dunn, William J

    2005-01-01

    This study evaluated the effect of light dispersion of halogen and LED curing lights on resin composite polymerization. One halogen (Optilux 501, SDS/Kerr, Orange, CA, USA) and five light-emitting diode (LED) curing lights (SmartLite iQ, Dentsply Caulk, Milford, DE, USA; LEDemetron 1, SDS/Kerr; FLASHlite 1001, Discus Dental, Culver City, CA, USA; UltraLume LED 5, Ultradent Products, South Jordan, UT, USA; Allegro, Den-Mat, Santa Maria, CA, USA) were used in this study. Specimens (8 mm diameter by 2 mm thick) were made in polytetrafluoroethylene molds using hybrid (Z100, 3M ESPE, St. Paul, MN, USA) and microfill (A110, 3M ESPE) composite resins. The top surface was polymerized for 5 seconds with the curing light guide tip positioned at a distance of 1 and 5 mm. Degree of conversion (DC) of the composite specimens was analyzed on the bottom surface using micro-Fourier Transform Infrared (FTIR) spectroscopy (Perkin-Elmer FTIR Spectrometer, Wellesley, PA, USA) 10 minutes after light activation. DC at the bottom of the 2 mm specimen was expressed as a percentage of the mean maximum DC. Five specimens were created per curing light and composite type (n=5). Percent mean DC ratios and SDs were calculated for each light under each testing condition. Data were analyzed by analysis of variance (ANOVA)/Tukey's test (alpha = .05). A beam analyzer (LBA-700, Spiricon, Logan, UT, USA) was used to record the emitted light from the curing lights at 0 and 5 mm distances (n=5). A Top Hat factor was used to compare the quality of the emitted beam profile (LBA/PC, Spiricon). The divergence angle from vertical was also determined in the x- and y-axes (LBA/PC). Mean values and SDs were calculated for each light under each testing condition (0 and 5 mm, x- and y-axes) and analyzed by a two-way ANOVA/Tukey's test (alpha = .05). For DC ratios, significant differences were found based on curing light and curing distance (p < .05). At 1 mm, Optilux 501 and FLASHlite 1001 produced significantly higher DC ratios with the hybrid resin composite. No differences were found among lights with the microfill at 1 mm. At 5 mm, SmartLite iQ, FLASHlite 1001, LEDemetron 1, and UltraLume LED 5 produced significantly higher DC ratios with the hybrid resin composite, whereas LEDemetron 1 and SmartLite iQ produced significantly higher DC ratios with the microfill resin composite. The UltraLume LED 5, Allegro, and Optilux 501 had significant reductions in mean DC ratios at curing distances of 1 and 5 mm with both resin composite types. For dispersion of light, significant differences were found in Top Hat factor and divergence angle (p < .001). SmartLite iQ had overall the highest Top Hat factor and lowest divergence angle of tested lights. A linear regression analysis relating pooled DC with pooled Top Hat factors and divergence angles found a very good correlation (r2 = .86) between dispersion of light over distance and the ability to polymerize resin composite. The latest generation of LED curing lights provides DC ratios similar to or better than the halogen curing light at a curing distance of 5 mm. Dispersion of light plays a significant role in the DC of resin composite. To maximize curing effectiveness, light guides should be maintained in close proximity to the surface of the light-activated restorative material.

  3. Suppressing ghost beams: Backlink options for LISA

    NASA Astrophysics Data System (ADS)

    Isleif, K.-S.; Gerberding, O.; Penkert, D.; Fitzsimons, E.; Ward, H.; Robertson, D.; Livas, J.; Mueller, G.; Reiche, J.; Heinzel, G.; Danzmann, K.

    2017-05-01

    In this article we discuss possible design options for the optical phase reference system, the so called backlink, between two moving optical benches in a LISA satellite. The candidates are based on two approaches: Fiber backlinks, with additional features like mode cleaning cavities and Faraday isolators, and free beam backlinks with angle compensation techniques. We will indicate dedicated ghost beam mitigation strategies for the design options and we will point out critical aspects in case of an implementation in LISA.

  4. LEOS Summer Topical Meetings (1991) on Spaceborne Photonics: Aerospace Applications of Lasers and Electro-Optics and Optical Millimeter-Wave Interactions: Measurements, Generation, Transmission and Control Held in Newport Beach, California on July 22-26, 1991

    DTIC Science & Technology

    1992-02-29

    are co-boresighted with dual-axis Risley prisms which are mounted in the extension of the laser cavity at the periphery of the telescope primary...unwanted optical feedback into the lasers, the fiber was polished with a wedge angle of approximately 10 degrees. The fiber tip was brought to less

  5. Low-Loss Hollow Waveguide Fibers for Mid-Infrared Quantum Cascade Laser Sensing Applications

    PubMed Central

    Patimisco, Pietro; Spagnolo, Vincenzo; Vitiello, Miriam S.; Scamarcio, Gaetano; Bledt, Carlos M.; Harrington, James A.

    2013-01-01

    We report on single mode optical transmission of hollow core glass waveguides (HWG) coupled with an external cavity mid-IR quantum cascade lasers (QCLs). The QCL mode results perfectly matched to the hybrid HE11 waveguide mode and the higher losses TE-like modes have efficiently suppressed by the deposited inner dielectric coating. Optical losses down to 0.44 dB/m and output beam divergence of ∼5 mrad were measured. Using a HGW fiber with internal core size of 300 μm we obtained single mode laser transmission at 10.54 μm and successful employed it in a quartz enhanced photoacoustic gas sensor setup. PMID:23337336

  6. A time-accurate algorithm for chemical non-equilibrium viscous flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, J.-S.; Chen, K.-H.; Choi, Y.

    1992-01-01

    A time-accurate, coupled solution procedure is described for the chemical nonequilibrium Navier-Stokes equations over a wide range of Mach numbers. This method employs the strong conservation form of the governing equations, but uses primitive variables as unknowns. Real gas properties and equilibrium chemistry are considered. Numerical tests include steady convergent-divergent nozzle flows with air dissociation/recombination chemistry, dump combustor flows with n-pentane-air chemistry, nonreacting flow in a model double annular combustor, and nonreacting unsteady driven cavity flows. Numerical results for both the steady and unsteady flows demonstrate the efficiency and robustness of the present algorithm for Mach numbers ranging from the incompressible limit to supersonic speeds.

  7. Improvement of infrared single-photon detectors absorptance by integrated plasmonic structures

    PubMed Central

    Csete, Mária; Sipos, Áron; Szalai, Anikó; Najafi, Faraz; Szabó, Gábor; Berggren, Karl K.

    2013-01-01

    Plasmonic structures open novel avenues in photodetector development. Optimized illumination configurations are reported to improve p-polarized light absorptance in superconducting-nanowire single-photon detectors (SNSPDs) comprising short- and long-periodic niobium-nitride (NbN) stripe-patterns. In OC-SNSPDs consisting of ~quarter-wavelength dielectric layer closed by a gold reflector the highest absorptance is attainable at perpendicular incidence onto NbN patterns in P-orientation due to E-field concentration at the bottom of nano-cavities. In NCAI-SNSPDs integrated with nano-cavity-arrays consisting of vertical and horizontal gold segments off-axis illumination in S-orientation results in polar-angle-independent perfect absorptance via collective resonances in short-periodic design, while in long-periodic NCAI-SNSPDs grating-coupled surface waves promote EM-field transportation to the NbN stripes and result in local absorptance maxima. In NCDAI-SNSPDs integrated with nano-cavity-deflector-array consisting of longer vertical gold segments large absorptance maxima appear in 3p-periodic designs due to E-field enhancement via grating-coupled surface waves synchronized with the NbN stripes in S-orientation, which enable to compensate fill-factor-related retrogression. PMID:23934331

  8. Energy dissipation in plasma treated Nb and Secondary Electron Emission for modeling of multipactor discharges

    NASA Astrophysics Data System (ADS)

    Samolov, Ana; Popovic, Svetozar; Vuskovic, Leposava; Basovic, Milos; Cuckov, Filip; Raitses, Yevgeny; Kaganovich, Igor

    2013-09-01

    Electron-induced Secondary Electron Emission (SEE) is important in many gas discharge applications such as Hall thrusters, surface and multipactor discharges. Often they present the inhibiting phenomena in designing and operating of these systems, examples being the Superconducting Radio Frequency (SRF) accelerator cavities. The multipactor discharges depend on the resonant field configuration and on the SEE from the cavity surface. SEE is proportional to the energy dissipated by the primary electrons near the surface. Our analysis of energy spectra of secondary electrons indicates that the fraction of dissipated energy of primary electrons in solid reaches the maximum at the primary energies that produce the maximum yield. The better understanding of this mechanism is crucial for successful modeling of the multipactor discharge and design of vacuum electronic devices. We have developed an experimental set up to measure energy distribution of SEE from Nb coupons under different incident angles, since Nb is used for manufacturing of SRF accelerating cavities. Samples are placed in carousel target manifolds which are manipulated by robotic arm providing multiple degrees of freedom of a whole target system. Work supported by JSA/DOE contract No. DE-AC05-06OR23177.

  9. Tsunami Generation from Asteroid Airburst and Ocean Impact and Van Dorn Effect

    NASA Technical Reports Server (NTRS)

    Robertson, Darrel

    2016-01-01

    Airburst - In the simulations explored energy from the airburst couples very weakly with the water making tsunami dangerous over a shorter distance than the blast for asteroid sizes up to the maximum expected size that will still airburst (approx.250MT). Future areas of investigation: - Low entry angle airbursts create more cylindrical blasts and might couple more efficiently - Bursts very close to the ground will increase coupling - Inclusion of thermosphere (>80km altitude) may show some plume collapse effects over a large area although with much less pressure center dot Ocean Impact - Asteroid creates large cavity in ocean. Cavity backfills creating central jet. Oscillation between the cavity and jet sends out tsunami wave packet. - For deep ocean impact waves are deep water waves (Phase speed = 2x Group speed) - If the tsunami propagation and inundation calculations are correct for the small (<250MT) asteroids in these simulations where they impact deep ocean basins, the resulting tsunami is not a significant hazard unless particularly close to vulnerable communities. Future work: - Shallow ocean impact. - Effect of continental shelf and beach profiles - Tsunami vs. blast damage radii for impacts close to populated areas - Larger asteroids below presumed threshold of global effects (Ø200 - 800m).

  10. Cavitation in Poly(4-methyl-1-pentene) during Tensile Deformation.

    PubMed

    Chen, Ran; Lu, Ying; Jiang, Zhiyong; Men, Yongfeng

    2018-04-12

    The poly(4-methyl-1-pentene) sample was used to investigate the cavitation-induced stress-whitening phenomenon during stretching at different temperatures via the ultrasmall-angle X-ray scattering technique. Two modes of cavitation were found that mode I cavitation activated around yield point followed by mode II cavitation generated in highly oriented state. The critical strain for initiating the mode II cavitation increases with the increase of the stretching temperature, whereas the critical stress grew steadily in the lower temperature regime (30-60 °C) and reached a plateau at 70 °C. The appearance of mode II cavitation at large strains was independent of the mode I cavitation. The mode I cavitation was attributed to the competitive process between the formation of cavities and shearing yield of lamellae, whereas the mode II cavitation was proven to be related to the failure of the whole highly oriented entangled amorphous network because of the breaking of interfibrillar load-bearing tie molecules. Size distribution of cavities has been successfully calculated using a model fitting procedure. The results showed that the quantity of cavities increased heavily while the size was kept nearly constant during the propagation of the mode II cavitation.

  11. Predictors of favorable soft tissue profile outcomes following Class II Twin-block treatment

    PubMed Central

    Kim, Ji-Eun; Mah, Su-Jung; Kim, Tae-Woo; Kim, Su-Jung; Park, Ki-Ho

    2018-01-01

    Objective The aim of this study was to determine cephalometric factors that help predict favorable soft-tissue profile outcomes following treatment with the Class II Twin-block appliance. Methods Pre- and post-treatment lateral cephalograms of 45 patients treated with the Class II Twin-block appliance were retrospectively analyzed. Profile silhouettes were drawn from the cephalograms and evaluated by three orthodontists in order to determine the extent of improvement. Samples were divided into a favorable group (upper 30% of visual analogue scale [VAS] scores, n = 14) and an unfavorable group (lower 30% of VAS scores, n = 14). Skeletal and soft-tissue measurements were performed on the cephalograms and an intergroup comparison was conducted. Results An independent t-test revealed that the following pre-treatment values were lower in the favorable group compared to the unfavorable group: lower incisor to mandibular plane angle, lower incisor to pogonion distance, point A-nasion-point B angle, sella-nasion line (SN) to maxillary plane angle, SN to mandibular plane angle, gonial angle, and symphysis inclination. The favorable group had a larger incisor inclination to occlusal plane. Moreover, the favorable group showed larger post-treatment changes in gonial angle, B point projection, and pogonion projection than did the unfavorable group. Conclusions Class II malocclusion patients with a low divergent skeletal pattern and reduced lower incisor protrusions are likely to show more improvement in soft-tissue profile outcomes following Class II Twin-block treatment. PMID:29291184

  12. Fabrication of Multi-point Side-Firing Optical Fiber by Laser Micro-ablation

    PubMed Central

    Nguyen, Hoang; Arnob, Md Masud Parvez; Becker, Aaron T; Wolfe, John C; Hogan, Matthew K; Horner, Philip J; Shih, Wei-Chuan

    2018-01-01

    A multi-point, side-firing design enables an optical fiber to output light at multiple desired locations along the fiber body. This provides advantages over traditional end-to-end fibers, especially in applications requiring fiber bundles such as brain stimulation or remote sensing. This paper demonstrates that continuous wave (CW) laser micro-ablation can controllably create conical-shaped cavities, or side windows, for outputting light. The dimensions of these cavities determine the amount of firing light and their firing angle. Experimental data show that a single side window on a 730 μm fiber can deliver more than 8 % of the input light. This was increased to more than 19 % on a 65 μm fiber with side windows created using femtosecond (fs) laser ablation and chemical etching. Fine control of light distribution along an optical fiber is critical for various biomedical applications such as light activated drug-release and optogenetics studies. PMID:28454166

  13. Beam shaping in high-power broad-area quantum cascade lasers using optical feedback

    PubMed Central

    Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric

    2017-01-01

    Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources. PMID:28287175

  14. Wear model simulating clinical abrasion on composite filling materials.

    PubMed

    Johnsen, Gaute Floer; Taxt-Lamolle, Sébastien F; Haugen, Håvard J

    2011-01-01

    The aim of this study was to establish a wear model for testing composite filling materials with abrasion properties closer to a clinical situation. In addition, the model was used to evaluate the effect of filler volume and particle size on surface roughness and wear resistance. Each incisor tooth was prepared with nine identical standardized cavities with respect to depth, diameter, and angle. Generic composite of 3 different filler volumes and 3 different particle sizes held together with the same resin were randomly filled in respective cavities. A multidirectional wet-grinder with molar cusps as antagonist wore the surface of the incisors containing the composite fillings in a bath of human saliva at a constant temperature of 37°C. The present study suggests that the most wear resistant filling materials should consist of medium filling content (75%) and that particles size is not as critical as earlier reported.

  15. Beam shaping in high-power broad-area quantum cascade lasers using optical feedback.

    PubMed

    Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric

    2017-03-13

    Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources.

  16. Fabrication of multipoint side-firing optical fiber by laser micro-ablation.

    PubMed

    Nguyen, Hoang; Parvez Arnob, Md Masud; Becker, Aaron T; Wolfe, John C; Hogan, Matthew K; Horner, Philip J; Shih, Wei-Chuan

    2017-05-01

    A multipoint, side-firing design enables an optical fiber to output light at multiple desired locations along the fiber body. This provides advantages over traditional end-to-end fibers, especially in applications requiring fiber bundles such as brain stimulation or remote sensing. This Letter demonstrates that continuous wave (CW) laser micro-ablation can controllably create conical-shaped cavities, or side windows, for outputting light. The dimensions of these cavities determine the amount of firing light and their firing angle. Experimental data show that a single side window on a 730 μm fiber can deliver more than 8% of the input light. This can be increased to more than 19% on a 65 μm fiber with side windows created using femtosecond laser ablation and chemical etching. Fine control of light distribution along an optical fiber is critical for various biomedical applications such as light-activated drug-release and optogenetics studies.

  17. Experimental Effects of Propulsive Jets and Afterbody Configurations on the Zero-lift Drag of Bodies of Revolution at a Mach Number of 1.59

    NASA Technical Reports Server (NTRS)

    De Moraes, Carlos A; Nowitzky, Albin M

    1954-01-01

    The present investigation was made at a free-stream Mach number of 1.59 to compare the afterbody drags to a series of conical boattailed models at zero angle of attack. Afterbody drags were obtained for both the power-off and the power-on conditions. Power-on drags were obtained as a function of afterbody fineness ratio, jet pressure ratio and divergence, and jet Mach number.

  18. Average capacity optimization in free-space optical communication system over atmospheric turbulence channels with pointing errors.

    PubMed

    Liu, Chao; Yao, Yong; Sun, Yun Xu; Xiao, Jun Jun; Zhao, Xin Hui

    2010-10-01

    A model is proposed to study the average capacity optimization in free-space optical (FSO) channels, accounting for effects of atmospheric turbulence and pointing errors. For a given transmitter laser power, it is shown that both transmitter beam divergence angle and beam waist can be tuned to maximize the average capacity. Meanwhile, their optimum values strongly depend on the jitter and operation wavelength. These results can be helpful for designing FSO communication systems.

  19. VCSEL End-Pumped Passively Q-Switched Nd:YAG Laser with Adjustable Pulse Energy

    DTIC Science & Technology

    2011-02-28

    entire VCSEL array. Neglecting lens aberrations, the focused spot diameter is given by focal length of the lens times the full divergence angle of the...pump intensity distribution generated by a pump-light-focusing lens . ©2011 Optical Society of America OCIS codes: (140.3530) Lasers Neodymium...Passive Q-Switch and Brewster Plate in a Pulsed Nd: YAG Laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995). 6. G. Xiao, and M. Bass, “A

  20. Calculation of laminar heating rates on three-dimensional configurations using the axisymmetric analogue

    NASA Technical Reports Server (NTRS)

    Hamilton, H. H., II

    1980-01-01

    A theoretical method was developed for computing approximate laminar heating rates on three dimensional configurations at angle of attack. The method is based on the axisymmetric analogue which is used to reduce the three dimensional boundary layer equations along surface streamlines to an equivalent axisymmetric form by using the metric coefficient which describes streamline divergence (or convergence). The method was coupled with a three dimensional inviscid flow field program for computing surface streamline paths, metric coefficients, and boundary layer edge conditions.

  1. Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles

    NASA Technical Reports Server (NTRS)

    Yetter, J. A.; Leavitt, L. D.

    1980-01-01

    The investigation was conducted at static conditions and over a Mach number range from 0.6 to 1.2. Angle of attack was held constant at 0 deg. High pressure air was used to simulate jet exhaust flow at ratios of jet total pressure to free-stream static pressure from 1 (jet off) to approximately 10. Sidewall cutback appears to be a viable way of reducing nozzle weight and cooling requirements without compromising installed performance.

  2. ARPA/NRL X-Ray Laser Program - Semiannual Technical Report to Defense Advanced Research Projects Agency, 1 Jul 1974-31 December 1974

    DTIC Science & Technology

    1975-05-01

    Finally, diagnostics for quantitative measurements of all these properties are necessary for meaningful comparison of the experiments with theoretical ...width (FWHM) of 120 ^rad. For comparison, a beam which fills the last amplifier rod has a corresponding theoretical divergence angle of 108 urad...hydrogen the protons produced by photoionization do not absorb). Also shown are the spontaneous lifetimes tu of the upper laser level, of use for self

  3. Numerical and theoretical analyses of underground explosion cavity decoupling

    NASA Astrophysics Data System (ADS)

    Jensen, R.; Aldridge, D. F.; Chael, E. P.

    2013-12-01

    It has long been established that the amplitudes of seismic waves radiated from an underground explosion can be reduced by detonating the explosive within a fluid-filled cavity of adequate size. Significant amplitude reduction occurs because the reflection coefficient at the fluid/rock interface (i.e., the cavity wall) is large. In fact, the DC frequency limit of the reflection coefficient for a spherically-diverging seismic wave incident upon a concentric spherical interface is -1.0, independent of radius of curvature and all material properties. In order to quantify to the degree of amplitude reduction expected in various realistic scenarios, we are conducting mathematical and numerical investigations into the so-called 'cavity decoupling problem' for a buried explosion. Our working tool is a numerical algorithm for simulating fully-coupled seismic and acoustic wave propagation in mixed solid/fluid media. Solution methodology involves explicit, time-domain, finite differencing of the elastodynamic velocity-stress partial differential system on a three-dimensional staggered spatial grid. Conditional logic is used to avoid shear stress updating within fluid zones; this approach leads to computational efficiency gains for models containing a significant proportion of ideal fluid. Numerical stability and accuracy are maintained at air/rock interfaces (where the contrast in mass density is on the order of 1 to 2000) via an FD operator 'order switching' formalism. The fourth-order spatial FD operator used throughout the bulk of the earth model is reduced to second-order in the immediate vicinity of a high-contrast interface. Point explosions detonated at the center of an air-filled or water-filled spherical cavity lead to strong resonant oscillations in radiated seismic energy, with period controlled by cavity radius and sound speed of the fill fluid. If the explosion is off-center, or the cavity is non-spherical, shear waves are generated in the surrounding elastic wholespace. Equilibrating the moment magnitudes of explosions for differing fill materials leads to misleading results in the amplitudes of the radiated elastic waves. The proper procedure entails equalizing the intrinsic energies of the explosions. Numerically-calculated results are in reasonable agreement with a theoretical model based on acoustic and elastic spherical wave propagation from a point center of symmetry. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Characteristics of GaN-based 500 nm light-emitting diodes with embedded hemispherical air-cavity structure

    NASA Astrophysics Data System (ADS)

    Zhang, Minyan; Li, Yufeng; Li, Qiang; Su, Xilin; Wang, Shuai; Feng, Lungang; Tian, Zhenhuan; Guo, Maofeng; Zhang, Guowei; Ding, Wen; Yun, Feng

    2018-03-01

    GaN-based 500 nm light-emitting diodes (LEDs) with an air-cavity formed on a laser-drilled hemispherical patterned sapphire substrate (HPSS) were investigated. The cross-section transmission electron microscopy image of the HPSS-LED epilayer indicated that most of the threading dislocations were bent towards the lateral directions. It was found that in InGaN/GaN multiple quantum wells (MQWs) of HPSS-LEDs, there were fewer V-pits and lower surface roughness than those of conventional LEDs which were grown on flat sapphire substrates (FSSs). The high-resolution x-ray diffraction showed that the LED grown on a HPSS has better crystal quality than that grown on a FSS. Compared to FSS-LEDs, the photoluminescence (PL) intensity, the light output power, and the external quantum efficiency at an injected current of 20 mA for the HPSS-LED were enhanced by 81%, 65%, and 62%, respectively, such enhancements can be attributed to better GaN epitaxial quality and higher light extraction. The slightly peak wavelength blueshift of electroluminescence for the HPSS-LED indicated that the quantum confined Stark effect in the InGaN/GaN MQWs has been reduced. Furthermore, it was found that the far-field radiation patterns of the HPSS-LED have smaller view angles than that of the FSS-LED. In addition, the scanning near field optical microscope results revealed that the area above the air-cavity has a larger PL intensity than that without an air-cavity, and the closer to the middle of the air-cavity the stronger the PL intensity. These nano-light distribution findings were in good agreement with the simulation results obtained by the finite difference time domain method.

  5. Numerical Investigation of the Interaction between Mainstream and Tip Shroud Leakage Flow in a 2-Stage Low Pressure Turbine

    NASA Astrophysics Data System (ADS)

    Jia, Wei; Liu, Huoxing

    2014-06-01

    The pressing demand for future advanced gas turbine requires to identify the losses in a turbine and to understand the physical mechanisms producing them. In low pressure turbines with shrouded blades, a large portion of these losses is generated by tip shroud leakage flow and associated interaction. For this reason, shroud leakage losses are generally grouped into the losses of leakage flow itself and the losses caused by the interaction between leakage flow and mainstream. In order to evaluate the influence of shroud leakage flow and related losses on turbine performance, computational investigations for a 2-stage low pressure turbine is presented and discussed in this paper. Three dimensional steady multistage calculations using mixing plane approach were performed including detailed tip shroud geometry. Results showed that turbines with shrouded blades have an obvious advantage over unshrouded ones in terms of aerodynamic performance. A loss mechanism breakdown analysis demonstrated that the leakage loss is the main contributor in the first stage while mixing loss dominates in the second stage. Due to the blade-to-blade pressure gradient, both inlet and exit cavity present non-uniform leakage injection and extraction. The flow in the exit cavity is filled with cavity vortex, leakage jet attached to the cavity wall and recirculation zone induced by main flow ingestion. Furthermore, radial gap and exit cavity size of tip shroud have a major effect on the yaw angle near the tip region in the main flow. Therefore, a full calculation of shroud leakage flow is necessary in turbine performance analysis and the shroud geometric features need to be considered during turbine design process.

  6. The influence of surface roughness on cloud cavitation flow around hydrofoils

    NASA Astrophysics Data System (ADS)

    Hao, Jiafeng; Zhang, Mindi; Huang, Xu

    2018-02-01

    The aim of this study is to investigate experimentally the effect of surface roughness on cloud cavitation around Clark-Y hydrofoils. High-speed video and particle image velocimetry (PIV) were used to obtain cavitation patterns images (Prog. Aerosp. Sci. 37: 551-581, 2001), as well as velocity and vorticity fields. Results are presented for cloud cavitating conditions around a Clark-Y hydrofoil fixed at angle of attack of α =8{°} for moderate Reynolds number of Re=5.6 × 105. The results show that roughness had a great influence on the pattern, velocity and vorticity distribution of cloud cavitation. For cavitating flow around a smooth hydrofoil (A) and a rough hydrofoil (B), cloud cavitation occurred in the form of finger-like cavities and attached subulate cavities, respectively. The period of cloud cavitation around hydrofoil A was shorter than for hydrofoil B. Surface roughness had a great influence on the process of cloud cavitation. The development of cloud cavitation around hydrofoil A consisted of two stages: (1) Attached cavities developed along the surface to the trailing edge; (2) A reentrant jet developed, resulting in shedding and collapse of cluster bubbles or vortex structure. Meanwhile, its development for hydrofoil B included three stages: (1) Attached cavities developed along the surface to the trailing edge, with accumulation and rotation of bubbles at the trailing edge of the hydrofoil affecting the flow field; (2) Development of a reentrant jet resulted in the first shedding of cavities. Interaction and movement of flows from the pressure side and suction side brought liquid water from the pressure side to the suction side of the hydrofoil, finally forming a reentrant jet. The jet kept moving along the surface to the leading edge of the hydrofoil, resulting in large-scale shedding of cloud bubbles. Several vortices appeared and dissipated during the process; (3) Cavities grew and shed again.

  7. Effects of spray angle variation on mixing in a cold supersonic combustor with kerosene fuel

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Luo, Feng; Qi, Yin-Yin; Wei, Min; Ge, Jia-Ru; Liu, Wei-Lai; Li, Guo-Li; Jen, Tien-Chien

    2018-03-01

    Effective fuel injection and mixing is of particular importance for scramjet engines to be operated reliably because the fuel must be injected into high-speed crossflow and mixed with the supersonic air at an extremely short time-scale. This study numerically characterizes an injection jet under different spray angles in a cold kerosene-fueled supersonic flow and thus assesses the effects of the spray angle on the mixing between incident shock wave and transverse cavity injection. A detailed computational fluid dynamics model is developed in accordance with the real scramjet combustor. Next, the spray angles are designated as 45°, 90°, and 135° respectively with the other constant operational conditions (such as the injection diameter, velocity and pressure). Next, a combination of a three dimensional Couple Level Set & Volume of Fluids with an improved Kelvin-Helmholtz & Rayleigh-Taylor model is used to investigate the interaction between kerosene and supersonic air. The numerical predictions are focused on penetration depth, span expansion area, angle of shock wave and sauter mean diameter distribution of the kerosene droplets with or without evaporation. Finally, validation has been implemented by comparing the calculated to the measured in literature with good qualitative agreement. Results show that no matter whether the evaporation is considered, the penetration depth, span-wise angle and expansion area of the kerosene droplets are all increased with the spray angle, and most especially, that the size of the kerosene droplets is surely reduced with the spray angle increase. These calculations are beneficial to better understand the underlying atomization mechanism in the cold kerosene-fueled supersonic flow and hence provide insights into scramjet design improvement.

  8. Flight Dynamics of an Aeroshell Using an Attached Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Schoenenberger, Mark; Axdahl, Erik; Wilhite, Alan

    2009-01-01

    An aeroelastic analysis of the behavior of an entry vehicle utilizing an attached inflatable aerodynamic decelerator during supersonic flight is presented. The analysis consists of a planar, four degree of freedom simulation. The aeroshell and the IAD are assumed to be separate, rigid bodies connected with a spring-damper at an interface point constraining the relative motion of the two bodies. Aerodynamic forces and moments are modeled using modified Newtonian aerodynamics. The analysis includes the contribution of static aerodynamic forces and moments as well as pitch damping. Two cases are considered in the analysis: constant velocity flight and planar free flight. For the constant velocity and free flight cases with neutral pitch damping, configurations with highly-stiff interfaces exhibit statically stable but dynamically unstable aeroshell angle of attack. Moderately stiff interfaces exhibit static and dynamic stability of aeroshell angle of attack due to damping induced by the pitch angle rate lag between the aeroshell and IAD. For the free-flight case, low values of both the interface stiffness and damping cause divergence of the aeroshell angle of attack due to the offset of the IAD drag force with respect to the aeroshell center of mass. The presence of dynamic aerodynamic moments was found to influence the stability characteristics of the vehicle. The effect of gravity on the aeroshell angle of attack stability characteristics was determined to be negligible for the cases investigated.

  9. LIGHT - from laser ion acceleration to future applications

    NASA Astrophysics Data System (ADS)

    Roth, Markus; Light Collaboration

    2013-10-01

    Creation of high intensity multi-MeV ion bunches by high power lasers became a reliable tool during the last 15 years. The laser plasma source provides for TV/m accelerating field gradients and initially sub-ps bunch lengths. However, the large envelope divergence and the continuous exponential energy spectrum are substential drawbacks for many possible applications. To face this problem, the LIGHT collaboration was founded (Laser Ion Generation, Handling and Transport). The collaboration consists of several university groups and research centers, namely TU Darmstadt, JWGU Frankfurt, HI Jena, HZDR Dresden and GSI Darmstadt. The central goal is building a test beamline for merging laser ion acceleration with conventional accelerator infrastructure at the GSI facility. In the latest experiments, low divergent proton bunches with a central energy of up to 10 MeV and containing >109 particles could be provided at up to 2.2 m behind the plasma source, using a pulsed solenoid. In a next step, a radiofrequency cavity will be added to the beamline for phase rotation of these bunches, giving access to sub-ns bunch lengths and reaching highest intensities. An overview of the LIGHT objectives and the recent experimental results will be given. This work was supported by HIC4FAIR.

  10. CESR Upgrade: Plans and Recent Performance

    NASA Astrophysics Data System (ADS)

    Rogers, Joseph T.

    1996-05-01

    We are now in the second phase of a program to substantially upgrade the luminosity of the CESR e^+ e^- collider by increasing the number of stored bunches. In the first phase, completed in 1995, we progressed from collisions of beams of 7 bunches to beams of 9 trains of two bunches each, achieving a record luminosity of 3.2 × 10^32 cm-2s-1. To avoid unwanted collisions at each side of the interaction point, we electrostatically separate the beams on antisymmetric orbits, with a ± 2.1 mrad crossing angle at the interaction point. For the second phase we have altered the interaction region quadrupole magnets to increase the physical aperture and to reduce the maximum horizontal β in this region. We plan to store 9 trains of 3 bunches in the second phase, and anticipate a luminosity of 6 × 10^32 cm-2s-1. In the third phase installation, to begin in late 1997, we will replace the interaction region quadrupoles with a combination of a permanent magnet quadrupole and superconducting quadrupole pair on each side of the interaction point, which will further reduce the β functions throughout the interaction region and at the interaction point. To accomodate the higher currents we will replace each of the four 5-cell copper RF cavities with a single-cell superconducting cavity. In this phase we expect to achieve a luminosity in excess of 10^33 cm-2s-1 with 9 trains of 5 bunches. Recent development work includes the successful test of a superconducting RF cavity in CESR, installation of low-impedance electrostatic separators, upgrades to the vacuum system, a fast digital transverse feedback system, and new beam diagnostics. Recent studies have revealed the effects of collision at a crossing angle, the behavior of the long range beam-beam interaction at parasitic crossings, and the relationship of the dominant multibunch instability to photoemission in the beam chamber.

  11. A new species of decorator crabs, genus Menaethiops Alcock, 1895 (Crustacea: Decapoda: Brachyura: Majoidea: Epialthidae), from Abu-Musa Island, Persian Gulf, Iran.

    PubMed

    Naderloo, Reza

    2015-03-02

    Menaethiops abumusa n. sp. is closely similar to M. bicornis Alcock, 1985, and M. gadaniensis Kazmi & Tirmizi, 1999, regarding the relatively contiguous rostral spines. The new species is easily distinguishable from its two congeners by having distinctly round angles of orbital eaves and distally divergent rostral spines. Whereas in M. bicornis, and M. gadaniensis, the angles of orbital eaves are anteriorly produced and rostral spines are closely attached to each other along their entire length.  Other morphological differences include the carapace spination/granulation, basal antennal segments, and morphology of the male's first gonopod. Menaethiops gadaniensis was described from Gadani, Pakistan and was only known from the type locality, but is here recorded for the first time from the Gulf of Oman.

  12. Further studies of stall flutter and nonlinear divergence of two-dimensional wings

    NASA Technical Reports Server (NTRS)

    Dugundji, J.; Chopra, I.

    1975-01-01

    An experimental investigation is made of the purely torsional stall flutter of a two-dimensional wing pivoted about the midchord, and also of the bending-torsion stall flutter of a two-dimensional wing pivoted about the quarterchord. For the purely torsional flutter case, large amplitude limit cycles ranging from + or - 11 to + or - 160 degrees were observed. Nondimensional harmonic coefficients were extracted from the free transient vibration tests for amplitudes up to 80 degrees. Reasonable nondimensional correlation was obtained for several wing configurations. For the bending-torsion flutter case, large amplitude coupled limit cycles were observed with torsional amplitudes as large as + or - 40 degrees. The torsion amplitudes first increased, then decreased with increasing velocity. Additionally, a small amplitude, predominantly torsional flutter was observed when the static equilibrium angle was near the stall angle.

  13. The use of CVD diamond burs for ultraconservative cavity preparations: a report of two cases.

    PubMed

    Carvalho, Carlos Augusto R; Fagundes, Ticiane C; Barata, Terezinha J E; Trava-Airoldi, Vladimir Jesus; Navarro, Maria Fidela L

    2007-01-01

    During the past decades, scientific developments in cutting instruments have changed the conventional techniques used to remove caries lesions. Ultrasound emerged as an alternative for caries removal since the 1950s. However, the conventional technology for diamond powder aggregation with nickel metallic binders could not withstand ultrasonic power. Around 5 years ago, an alternative approach using chemical vapor deposition (CVD) resulted in synthetic diamond technology. CVD diamond burs are obtained with high adherence of the diamond as a unique stone on the metallic surface with excellent abrading performance. This technology allows for diamond deposition with coalescent granulation in different formats of substrates. When connected to an ultrasonic handpiece, CVD diamond burs become an option for cavity preparation, maximizing preservation of tooth structure. Potential advantages such as reduced noise, minimal damage to the gingival tissue, extended bur durability, improved proximal cavity access, reduced risk of hitting the adjacent tooth resulting from the high inclination angles, and minimal patient's risk of metal contamination. These innovative instruments also potentially eliminate some problems regarding decreased cutting efficiency of conventional diamond burs. This clinical report presents the benefits of using CVD diamond burs coupled with an ultrasonic handpiece in the treatment of incipient caries. CVD diamond burs coupled with an ultrasonic device offer a promising alternative for removal of carious lesions when ultraconservative cavity preparations are required. Additionally, this system provides a less-painful technique for caries removal, with minimal noise.

  14. Evaluation and comparison of nasal airway flow patterns among three subjects from Caucasian, Chinese and Indian ethnic groups using computational fluid dynamics simulation.

    PubMed

    Zhu, Jian Hua; Lee, Heow Pueh; Lim, Kian Meng; Lee, Shu Jin; Wang, De Yun

    2011-01-31

    Nasal airflow is one of the most important determinants for nasal physiology. During the long evolution of human beings, different races have developed their own attributes of nasal morphologies which result in variations of nasal airflow patterns and nasal functions. This study evaluated and compared the effects of differences of nasal morphology among three healthy male subjects from Caucasian, Chinese and Indian ethnic groups on nasal airflow patterns using computational fluid dynamics simulation. By examining the anterior nasal airway, the nasal indices and the nostril shapes of the three subjects were found to be similar to nasal cavities of respective ethnic groups. Computed tomography images of these three subjects were obtained to reconstruct 3-dimensional models of nasal cavities. To retain the flow characteristics around the nasal vestibules, a 40 mm-radius semi sphere was assembled around the human face for the prescription of zero ambient gauge pressure. The results show that more airflow tends to pass through the middle passage of the nasal airway in the Caucasian model, and through the inferior portion in the Indian model. The Indian model was found with extremely low flow flux flowing through the olfactory region. The sizes of vortexes near the anterior cavity were found to be correlated with the angles between the upper nasal valve wall and the anterior head of the nasal cavity. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Characterization of etch pits found on a large-grain bulk niobium superconducting radio-frequency resonant cavity

    DOE PAGES

    Zhao, Xin; Ciovati, G.; Bieler, T. R.

    2010-12-15

    The performance of superconducting radio-frequency (SRF) resonant cavities made of bulk niobium is limited by nonlinear localized effects. Surface analysis of regions of higher power dissipation is thus of intense interest. Such areas (referred to as “hotspots”) were identified in a large-grain single-cell cavity that had been buffered-chemical polished and dissected for examination by high resolution electron microscopy, electron backscattered diffraction microscopy (EBSD), and optical microscopy. Pits with clearly discernible crystal facets were observed in both “hotspot” and “coldspot” specimens. The pits were found in-grain, at bicrystal boundaries, and on tricrystal junctions. They are interpreted as etch pits induced bymore » crystal defects (e.g. dislocations). All coldspots examined had a qualitatively lower density of etch pits or relatively smooth tricrystal boundary junctions. EBSD mapping revealed the crystal orientation surrounding the pits. Locations with high pit density are correlated with higher mean values of the local average misorientation angle distributions, indicating a higher geometrically necessary dislocation content. In addition, a survey of the samples by energy dispersive x-ray analysis did not show any significant contamination of the samples’ surface. In conclusion, the local magnetic field enhancement produced by the sharp-edge features observed on the samples is not sufficient to explain the observed degradation of the cavity quality factor, which starts at peak surface magnetic field as low as 20 mT.« less

  16. Center for Automation and Manufacturing Science Established at Stanford University.

    DTIC Science & Technology

    1985-12-01

    robotic aspect of automated manufacturing will draw upon more of-the new technologies, and more deeply, than any other aspect. If the right aet of...manipulator in Fig. 3a.-Ib, the motor in the right cavity of the base drives the shoulder joint and upper arm link through four springs, while the motor...on the motor shaft to detect the shaft angle. Four pairs of strain gauges are attached to both sides of the right aluminum side plate. First-order

  17. Control of Supercavitation Flow and Stability of Supercavitating Motion of Bodies

    DTIC Science & Technology

    2001-02-01

    sign opposite to a sign of angle Vf - accidental deflection of the model Sgn M = -Sgn i. 4.3. EQUATIONS OF THE SCM DYNAMICS The most effective method of...the motion stability in interactive regime "researcher - computer" [ 16]. The complete mathematical model of the SCM motion includes a set of equations ...of solid body dynamics, equations to calculate the unsteady cavity shape and relations to calculate the acting forces. A set of dynamic equations of

  18. Failure detection and fault management techniques for flush airdata sensing systems

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Moes, Timothy R.; Leondes, Cornelius T.

    1992-01-01

    A high-angle-of-attack flush airdata sensing system was installed and flight tested on the F-18 High Alpha Research Vehicle at NASA-Dryden. This system uses a matrix of pressure orifices arranged in concentric circles on the nose of the vehicle to determine angles of attack, angles of sideslip, dynamic pressure, and static pressure as well as other airdata parameters. Results presented use an arrangement of 11 symmetrically distributed ports on the aircraft nose. Experience with this sensing system data indicates that the primary concern for real-time implementation is the detection and management of overall system and individual pressure sensor failures. The multiple port sensing system is more tolerant to small disturbances in the measured pressure data than conventional probe-based intrusive airdata systems. However, under adverse circumstances, large undetected failures in individual pressure ports can result in algorithm divergence and catastrophic failure of the entire system. How system and individual port failures may be detected using chi sq. analysis is shown. Once identified, the effects of failures are eliminated using weighted least squares.

  19. Jet Mixing Noise Scaling Laws SHJAR Data Vs. Predictions

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2008-01-01

    High quality jet noise spectral data measured at the anechoic dome at the NASA Glenn Research Center is used to examine a number of jet noise scaling laws. Configurations considered in the present study consist of convergent as well as convergent-divergent axisymmetric nozzles. The spectral measurements are shown in narrow band and cover 8193 equally spaced points in a typical Strouhal number range of (0.01 10.0). Measurements are reported as lossless (i.e. atmospheric attenuation is added to as-measured data), and at 24 equally spaced angles (50deg to 165deg) on a 100-diameter arc. Following the work of Viswanathan [Ref. 1], velocity power laws are derived using a least square fit on spectral power density as a function of jet temperature and observer angle. The goodness of the fit is studied at each angle, and alternative relationships are proposed to improve the spectral collapse when certain conditions are met. On the application side, power laws are extremely useful in identifying components from various noise generation mechanisms. From this analysis, jet noise prediction tools can be developed with physics derived from the different spectral components.

  20. A Fabry-Perot interferometric imaging spectrometer in LWIR

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Gao, Jiaobo; Wang, Nan; Wu, Jianghui; Meng, Hemin; Zhang, Lei; Gao, Shan

    2017-02-01

    With applications ranging from the desktop to remote sensing, the long wave infrared (LWIR) interferometric spectral imaging system is always with huge volume and large weight. In order to miniaturize and light the instrument, a new method of LWIR spectral imaging system based on a variable gap Fabry-Perot (FP) interferometer is researched. With the system working principle analyzed, theoretically, it is researched that how to make certain the primary parameter, such as, wedge angle of interferometric cavity, f-number of the imaging lens and the relationship between the wedge angle and the modulation of the interferogram. A prototype is developed and a good experimental result of a uniform radiation source, a monochromatic source, is obtained. The research shows that besides high throughput and high spectral resolution, the advantage of miniaturization is also simultaneously achieved in this method.

Top