Cavity parameters identification for TESLA control system development
NASA Astrophysics Data System (ADS)
Czarski, Tomasz; Pozniak, Krysztof T.; Romaniuk, Ryszard S.; Simrock, Stefan
2005-08-01
Aim of the control system development for TESLA cavity is a more efficient stabilization of the pulsed, accelerating EM field inside resonator. Cavity parameters identification is an essential task for the comprehensive control algorithm. TESLA cavity simulator has been successfully implemented using high-speed FPGA technology. Electromechanical model of the cavity resonator includes Lorentz force detuning and beam loading. The parameters identification is based on the electrical model of the cavity. The model is represented by state space equation for envelope of the cavity voltage driven by current generator and beam loading. For a given model structure, the over-determined matrix equation is created covering long enough measurement range with the solution according to the least-squares method. A low-degree polynomial approximation is applied to estimate the time-varying cavity detuning during the pulse. The measurement channel distortion is considered, leading to the external cavity model seen by the controller. The comprehensive algorithm of the cavity parameters identification was implemented in the Matlab system with different modes of operation. Some experimental results were presented for different cavity operational conditions. The following considerations have lead to the synthesis of the efficient algorithm for the cavity control system predicted for the potential FPGA technology implementation.
Identification of the Parameters of Menétrey -Willam Failure Surface of Calcium Silicate Units
NASA Astrophysics Data System (ADS)
Radosław, Jasiński
2017-10-01
The identification of parameters of Menétrey-Willamsurface made of concrete, masonry or autoclaved aerated concrete is not complicated. It is much more difficult to identify failure parameters of masonry units with cavities. This paper describes the concept of identifying the parameters of Menétrey-Willam failure surface (M-W-3) with reference to masonry units with vertical cavities. The M-W-3 surface is defined by uniaxial compressive strength fc, uniaxial tensile strength ft and eccentricity of elliptical function e. A test stand was built to identify surface parameters. It was used to test behaviour of masonry units under triaxial stress and conduct tests on whole masonry units in the uniaxial state. Results from tests on tens of silicate masonry units are presented in the Haigh-Westergaard (H-W) space. Statistical analyses were used to identify the shape of surface meridian, and then to determine eccentricity of the elliptical function.
NASA Astrophysics Data System (ADS)
Kwon, Sung-il; Lynch, M.; Prokop, M.
2005-02-01
This paper addresses the system identification and the decoupling PI controller design for a normal conducting RF cavity. Based on the open-loop measurement data of an SNS DTL cavity, the open-loop system's bandwidths and loop time delays are estimated by using batched least square. With the identified system, a PI controller is designed in such a way that it suppresses the time varying klystron droop and decouples the In-phase and Quadrature of the cavity field. The Levenberg-Marquardt algorithm is applied for nonlinear least squares to obtain the optimal PI controller parameters. The tuned PI controller gains are downloaded to the low-level RF system by using channel access. The experiment of the closed-loop system is performed and the performance is investigated. The proposed tuning method is running automatically in real time interface between a host computer with controller hardware through ActiveX Channel Access.
Commissioning Cornell OSTs for SRF cavity testing at Jlab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eremeev, Grigory
2011-07-01
Understanding the current quench limitations in SRF cavities is a topic essential for any SRF accelerator that requires high fields. This understanding crucially depends on correct and precise quench identification. Second sound quench detection in superfluid liquid helium with oscillating superleak transducers is a technique recently applied at Cornell University as a fast and versatile method for quench identification in SRF cavities. Having adopted Cornell design, we report in this contribution on our experience with OST for quench identification in different cavities at JLab.
NASA Technical Reports Server (NTRS)
1998-01-01
An adaptive control algorithm with on-line system identification capability has been developed. One of the great advantages of this scheme is that an additional system identification mechanism such as an additional uncorrelated random signal generator as the source of system identification is not required. A time-varying plate-cavity system is used to demonstrate the control performance of this algorithm. The time-varying system consists of a stainless-steel plate which is bolted down on a rigid cavity opening where the cavity depth was changed with respect to time. For a given externally located harmonic sound excitation, the system identification and the control are simultaneously executed to minimize the transmitted sound in the cavity. The control performance of the algorithm is examined for two cases. First, all the water was drained, the external disturbance frequency is swept with 1 Hz/sec. The result shows an excellent frequency tracking capability with cavity internal sound suppression of 40 dB. For the second case, the water level is initially empty and then raised to 3/20 full in 60 seconds while the external sound excitation is fixed with a frequency. Hence, the cavity resonant frequency decreases and passes the external sound excitation frequency. The algorithm shows 40 dB transmitted noise suppression without compromising the system identification tracking capability.
Forensic identification in teeth with caries.
Alia-García, Esther; Parra-Pecharromán, David; Sánchez-Díaz, Ana; Mendez, Susy; Royuela, Ana; Gil-Alberdi, Laura; López-Palafox, Juan; Del Campo, Rosa
2015-12-01
Human teeth are biological structures that resist extreme conditions thus becoming a useful source of DNA for human forensic identification purposes. When it is possible, forensic prefer only non-damaged teeth whereas those with cavities are usually rejected to avoid both external and internal bacterial contamination. Cavities are one of the most prevalent dental pathology and its incidence increases with ageing. The aim of this study was to validate the use of teeth with cavities for forensic identification. A total of 120 individual teeth from unrelated patients (60 healthy and 60 with cavities, respectively) extracted by a dentist as part of the normal process of treatment, were submitted for further analysis. Dental pulp was obtained after tooth fragmentation, complete DNA was extracted and the corresponding human identification profile was obtained by the AmpFlSTR® NGM SElect™ kit. Cariogenic microbiota was determined by PCR-DGGE with bacterial universal primers and bands were excised, re-amplified and sequenced. From the 120 dental pieces analyzed, a defined genetic profile was obtained in 81 (67.5%) of them, with no statistical differences between the healthy and the cavities-affected teeth. Statistical association between teeth status, DNA content and genetic profiles was not observed. Complex bacterial communities were only detected in the cavities group, being the Streptococcus/Enterococcus, and Lactobacillus genera the most represented. We conclude that teeth with cavities are as valid as healthy dental pieces for forensic human identification. Moreover, the severity of the cariogenic lesion as well as associated bacterial communities seems not to influence the establishment of human dental profiles. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Gudur, Madhu Sudhan Reddy; Kumon, Ronald E; Zhou, Yun; Deng, Cheri X
2012-08-01
The goal of this study was to examine the ability of high-frame-rate, high-resolution imaging to monitor tissue necrosis and gas-body activities formed during high-intensity focused ultrasound (HIFU) application. Ex vivo porcine cardiac tissue specimens (n = 24) were treated with HIFU exposure (4.33 MHz, 77 to 130 Hz pulse repetition frequency (PRF), 25 to 50% duty cycle, 0.2 to 1 s, 2600 W/cm(2)). RF data from B-mode ultrasound imaging were obtained before, during, and after HIFU exposure at a frame rate ranging from 77 to 130 Hz using an ultrasound imaging system with a center frequency of 55 MHz. The time history of changes in the integrated backscatter (IBS), calibrated spectral parameters, and echo-decorrelation parameters of the RF data were assessed for lesion identification by comparison against gross sections. Temporal maximum IBS with +12 dB threshold achieved the best identification with a receiver-operating characteristic (ROC) curve area of 0.96. Frame-to-frame echo decorrelation identified and tracked transient gas-body activities. Macroscopic (millimeter-sized) cavities formed when the estimated initial expansion rate of gas bodies (rate of expansion in lateral-to-beam direction) crossed 0.8 mm/s. Together, these assessments provide a method for monitoring spatiotemporal evolution of lesion and gas-body activity and for predicting macroscopic cavity formation.
Xu, Youjun; Wang, Shiwei; Hu, Qiwan; Gao, Shuaishi; Ma, Xiaomin; Zhang, Weilin; Shen, Yihang; Chen, Fangjin; Lai, Luhua; Pei, Jianfeng
2018-05-10
CavityPlus is a web server that offers protein cavity detection and various functional analyses. Using protein three-dimensional structural information as the input, CavityPlus applies CAVITY to detect potential binding sites on the surface of a given protein structure and rank them based on ligandability and druggability scores. These potential binding sites can be further analysed using three submodules, CavPharmer, CorrSite, and CovCys. CavPharmer uses a receptor-based pharmacophore modelling program, Pocket, to automatically extract pharmacophore features within cavities. CorrSite identifies potential allosteric ligand-binding sites based on motion correlation analyses between cavities. CovCys automatically detects druggable cysteine residues, which is especially useful to identify novel binding sites for designing covalent allosteric ligands. Overall, CavityPlus provides an integrated platform for analysing comprehensive properties of protein binding cavities. Such analyses are useful for many aspects of drug design and discovery, including target selection and identification, virtual screening, de novo drug design, and allosteric and covalent-binding drug design. The CavityPlus web server is freely available at http://repharma.pku.edu.cn/cavityplus or http://www.pkumdl.cn/cavityplus.
Adaptive Identification and Control of Flow-Induced Cavity Oscillations
NASA Technical Reports Server (NTRS)
Kegerise, M. A.; Cattafesta, L. N.; Ha, C.
2002-01-01
Progress towards an adaptive self-tuning regulator (STR) for the cavity tone problem is discussed in this paper. Adaptive system identification algorithms were applied to an experimental cavity-flow tested as a prerequisite to control. In addition, a simple digital controller and a piezoelectric bimorph actuator were used to demonstrate multiple tone suppression. The control tests at Mach numbers of 0.275, 0.40, and 0.60 indicated approx. = 7dB tone reductions at multiple frequencies. Several different adaptive system identification algorithms were applied at a single freestream Mach number of 0.275. Adaptive finite-impulse response (FIR) filters of orders up to N = 100 were found to be unsuitable for modeling the cavity flow dynamics. Adaptive infinite-impulse response (IIR) filters of comparable order better captured the system dynamics. Two recursive algorithms, the least-mean square (LMS) and the recursive-least square (RLS), were utilized to update the adaptive filter coefficients. Given the sample-time requirements imposed by the cavity flow dynamics, the computational simplicity of the least mean squares (LMS) algorithm is advantageous for real-time control.
21 CFR 872.3250 - Calcium hydroxide cavity liner.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of a...
21 CFR 872.3250 - Calcium hydroxide cavity liner.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of a...
21 CFR 872.3250 - Calcium hydroxide cavity liner.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of a...
21 CFR 872.3250 - Calcium hydroxide cavity liner.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of a...
21 CFR 872.3250 - Calcium hydroxide cavity liner.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of a...
Thermal modeling of a pressurized air cavity receiver for solar dish Stirling system
NASA Astrophysics Data System (ADS)
Zou, Chongzhe; Zhang, Yanping; Falcoz, Quentin; Neveu, Pierre; Li, Jianlan; Zhang, Cheng
2017-06-01
A solar cavity receiver model for the dish collector system is designed in response to growing demand of renewable energy. In the present research field, no investigations into the geometric parameters of a cavity receiver have been performed. The cylindrical receiver in this study is composed of an enclosed bottom at the back, an aperture at the front, a helical pipe inside the cavity and an insulation layer on the external surface of the cavity. The influence of several critical receiver parameters on the thermal efficiency is analyzed in this paper: cavity inner diameter and cavity length. The thermal model in this paper is solved considering the cavity dimensions as variables. Implementing the model into EES, each parameter influence is separately investigated, and a preliminary optimization method is proposed.
Controlling the non-linear intracavity dynamics of large He-Ne laser gyroscopes
NASA Astrophysics Data System (ADS)
Cuccato, D.; Beghi, A.; Belfi, J.; Beverini, N.; Ortolan, A.; Di Virgilio, A.
2014-02-01
A model based on Lamb's theory of gas lasers is applied to a He-Ne ring laser (RL) gyroscope to estimate and remove the laser dynamics contribution from the rotation measurements. The intensities of the counter-propagating laser beams exiting one cavity mirror are continuously observed together with a monitor of the laser population inversion. These observables, once properly calibrated with a dedicated procedure, allow us to estimate cold cavity and active medium parameters driving the main part of the non-linearities of the system. The quantitative estimation of intrinsic non-reciprocal effects due to cavity and active medium non-linear coupling plays a key role in testing fundamental symmetries of space-time with RLs. The parameter identification and noise subtraction procedure has been verified by means of a Monte Carlo study of the system, and experimentally tested on the G-PISA RL oriented with the normal to the ring plane almost parallel to the Earth's rotation axis. In this configuration the Earth's rotation rate provides the maximum Sagnac effect while the contribution of the orientation error is reduced to a minimum. After the subtraction of laser dynamics by a Kalman filter, the relative systematic errors of G-PISA reduce from 50 to 5 parts in 103 and can be attributed to the residual uncertainties on geometrical scale factor and orientation of the ring.
Forensic dentistry in human identification: A review of the literature.
Ata-Ali, Javier; Ata-Ali, Fadi
2014-04-01
An update is provided of the literature on the role of odontology in human identification, based on a PubMed-Medline search of the last 5 years and using the terms: "forensic dentistry" (n = 464 articles), "forensic odontology" (n = 141 articles) and "forensic dentistry identification" (n = 169 articles). Apart from these initial 774 articles, others considered to be important and which were generated by a manual search and cited as references in review articles were also included. Forensic dentistry requires interdisciplinary knowledge, since the data obtained from the oral cavity can contribute to identify an individual or provide information needed in a legal process. Furthermore, the data obtained from the oral cavity can narrow the search range of an individual and play a key role in the victim identification process following mass disasters or catastrophes. This literature search covering the last 5 years describes the novelties referred to buccodental studies in comparative identification, buccodental evaluation in reconstructive identification, human bites as a method for identifying the aggressor, and the role of DNA in dental identification. The oral cavity is a rich and noninvasive source of DNA, and can be used to solve problems of a social, economic or legal nature. Key words:Forensic identification, DNA, forensic dentistry, rugoscopy, cheiloscopy, saliva.
Moreno, Freddy; Vallejo, Diego; Garzón, Herney; Moreno, Sandra
2013-01-01
Objective: To evaluate the in vitro behavior of a passive Radio Frequency Identification (RFID) microchip implanted in human molars subjected to compression forces to determine its technical and clinical viability. Materials and Methods: In vitro experimental study to evaluate the physical behavior of a passive RFID microchip (VeriChip™) implanted in human molars through resin restoration (Filtek P90™ Silorane 3M-ESPE®) to determine the clinical and technical possibilities of the implant and the viability to withstand compression forces exerted by the stomatognathic system during mastication. Results: Through the ANOVA test, it was found that the teeth on which a microchip was implanted show great resistance to compressive forces. It was also evident that teeth with microchips implanted in Class V cavities are more resistant than those implanted in Class I cavities. Conclusions: Although microchip dimensions are big, requiring a sufficiently large cavity, from the biomechanical point of view it is plausible to implant a microchip in a Class V cavity employing restoration material based on resin for forensic purposes of human identification. PMID:24255554
Resonant-cavity apparatus for cytometry or particle analysis
Gourley, Paul L.
1998-01-01
A resonant-cavity apparatus for cytometry or particle analysis. The apparatus comprises a resonant optical cavity having an analysis region within the cavity for containing one or more biological cells or dielectric particles to be analyzed. In the presence of a cell or particle, a light beam in the form of spontaneous emission or lasing is generated within the resonant optical cavity and is encoded with information about the cell or particle. An analysis means including a spectrometer and/or a pulse-height analyzer is provided within the apparatus for recovery of the information from the light beam to determine a size, shape, identification or other characteristics about the cells or particles being analyzed. The recovered information can be grouped in a multi-dimensional coordinate space for identification of particular types of cells or particles. In some embodiments of the apparatus, the resonant optical cavity can be formed, at least in part, from a vertical-cavity surface-emitting laser. The apparatus and method are particularly suited to the analysis of biological cells, including blood cells, and can further include processing means for manipulating, sorting, or eradicating cells after analysis thereof.
Forensic dentistry in human identification: A review of the literature
Ata-Ali, Fadi
2014-01-01
An update is provided of the literature on the role of odontology in human identification, based on a PubMed-Medline search of the last 5 years and using the terms: “forensic dentistry” (n = 464 articles), “forensic odontology” (n = 141 articles) and “forensic dentistry identification” (n = 169 articles). Apart from these initial 774 articles, others considered to be important and which were generated by a manual search and cited as references in review articles were also included. Forensic dentistry requires interdisciplinary knowledge, since the data obtained from the oral cavity can contribute to identify an individual or provide information needed in a legal process. Furthermore, the data obtained from the oral cavity can narrow the search range of an individual and play a key role in the victim identification process following mass disasters or catastrophes. This literature search covering the last 5 years describes the novelties referred to buccodental studies in comparative identification, buccodental evaluation in reconstructive identification, human bites as a method for identifying the aggressor, and the role of DNA in dental identification. The oral cavity is a rich and noninvasive source of DNA, and can be used to solve problems of a social, economic or legal nature. Key words:Forensic identification, DNA, forensic dentistry, rugoscopy, cheiloscopy, saliva. PMID:24790717
Nayal, Murad; Honig, Barry
2006-06-01
In this article we introduce a new method for the identification and the accurate characterization of protein surface cavities. The method is encoded in the program SCREEN (Surface Cavity REcognition and EvaluatioN). As a first test of the utility of our approach we used SCREEN to locate and analyze the surface cavities of a nonredundant set of 99 proteins cocrystallized with drugs. We find that this set of proteins has on average about 14 distinct cavities per protein. In all cases, a drug is bound at one (and sometimes more than one) of these cavities. Using cavity size alone as a criterion for predicting drug-binding sites yields a high balanced error rate of 15.7%, with only 71.7% coverage. Here we characterize each surface cavity by computing a comprehensive set of 408 physicochemical, structural, and geometric attributes. By applying modern machine learning techniques (Random Forests) we were able to develop a classifier that can identify drug-binding cavities with a balanced error rate of 7.2% and coverage of 88.9%. Only 18 of the 408 cavity attributes had a statistically significant role in the prediction. Of these 18 important attributes, almost all involved size and shape rather than physicochemical properties of the surface cavity. The implications of these results are discussed. A SCREEN Web server is available at http://interface.bioc.columbia.edu/screen. 2006 Wiley-Liss, Inc.
Resonant-cavity apparatus for cytometry or particle analysis
Gourley, P.L.
1998-08-11
A resonant-cavity apparatus for cytometry or particle analysis is described. The apparatus comprises a resonant optical cavity having an analysis region within the cavity for containing one or more biological cells or dielectric particles to be analyzed. In the presence of a cell or particle, a light beam in the form of spontaneous emission or lasing is generated within the resonant optical cavity and is encoded with information about the cell or particle. An analysis means including a spectrometer and/or a pulse-height analyzer is provided within the apparatus for recovery of the information from the light beam to determine a size, shape, identification or other characteristics about the cells or particles being analyzed. The recovered information can be grouped in a multi-dimensional coordinate space for identification of particular types of cells or particles. In some embodiments of the apparatus, the resonant optical cavity can be formed, at least in part, from a vertical-cavity surface-emitting laser. The apparatus and method are particularly suited to the analysis of biological cells, including blood cells, and can further include processing means for manipulating, sorting, or eradicating cells after analysis. 35 figs.
Customizing vacuum fluctuations for enhanced entanglement creation
NASA Astrophysics Data System (ADS)
Wang, Jin
2018-07-01
This paper connects the creation of entanglement through cavity enhanced decay rate with practical design parameters such as cavity dimension and cavity mirror reflectivity. The clarification of specific physical parameters on cavity enhanced emission in relation to entanglement creation is discussed. It is found that entanglement increases as the size of the cavity decreases, or the reflectivity of the cavity mirrors increases. Additionally, the negative effect of individual qubit decoherence on the entanglement is discussed. These results can be used to design or choose a practical system for implementing entanglement between two qubits for quantum computation and information processing.
Yang, Chui-Ping; Chu, Shih-I; Han, Siyuan
2004-03-19
We investigate the experimental feasibility of realizing quantum information transfer (QIT) and entanglement with SQUID qubits in a microwave cavity via dark states. Realistic system parameters are presented. Our results show that QIT and entanglement with two-SQUID qubits can be achieved with a high fidelity. The present scheme is tolerant to device parameter nonuniformity. We also show that the strong coupling limit can be achieved with SQUID qubits in a microwave cavity. Thus, cavity-SQUID systems provide a new way for production of nonclassical microwave source and quantum communication.
Optimisation of cavity parameters for lasers based on AlGaInAsP/InP solid solutions (λ = 1470 nm)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veselov, D A; Ayusheva, K R; Shashkin, I S
2015-10-31
We have studied the effect of laser cavity parameters on the light–current characteristics of lasers based on the AlGaInAs/GaInAsP/InP solid solution system that emit in the spectral range 1400 – 1600 nm. It has been shown that optimisation of cavity parameters (chip length and front facet reflectivity) allows one to improve heat removal from the laser, without changing other laser characteristics. An increase in the maximum output optical power of the laser by 0.5 W has been demonstrated due to cavity design optimisation. (lasers)
Quench studies of ILC cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eremeev, Grigory; Geng, Rongli; Palczewski, Ari
2011-07-01
Quench limits accelerating gradient in SRF cavities to a gradient lower than theoretically expected for superconducting niobium. Identification of the quenching site with thermometry and OST, optical inspection, and replica of the culprit is an ongoing effort at Jefferson Lab aimed at better understanding of this limiting phenomenon. In this contribution we present our finding with several SRF cavities that were limited by quench.
HOM identification by bead pulling in the Brookhaven ERL cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn H.; Calaga, R.; Jain, P.
2012-06-25
Several past measurements of the Brookhaven ERL at superconducting temperature produced a long list of higher order modes (HOMs). The Niobium 5-cell cavity is terminated with HOM ferrite dampers that successfully reduce the Q-factors to tolerable levels. However, a number of undamped resonances with Q {ge} 10{sup 6} were found at 4 K and their mode identification remained as a goal for this paper. The approach taken here consists in taking different S{sub 21} measurements on a copper cavity replica of the ERL which can be compared with the actual data and also with Microwave Studio computer simulations. Several differentmore » S{sub 21} transmission measurements are used, including those taken from the fundamental input coupler to the pick-up probe across the cavity, between probes in a single cell, and between beam-position monitor probes in the beam tubes. Mode identification is supported by bead pulling with a metallic needle or a dielectric sphere that are calibrated in the fundamental mode. This paper presents results for HOMs in the first two dipole bands with the prototypical 958 MHz trapped mode, the lowest beam tube resonances, and high-Q modes in the first quadrupole band and beyond.« less
The momentum transfer of incompressible turbulent separated flow due to cavities with steps
NASA Technical Reports Server (NTRS)
White, R. E.; Norton, D. J.
1977-01-01
An experimental study was conducted using a plate test bed having a turbulent boundary layer to determine the momentum transfer to the faces of step/cavity combinations on the plate. Experimental data were obtained from configurations including an isolated configuration and an array of blocks in tile patterns. A momentum transfer correlation model of pressure forces on an isolated step/cavity was developed with experimental results to relate flow and geometry parameters. Results of the experiments reveal that isolated step/cavity excrecences do not have a unique and unifying parameter group due in part to cavity depth effects and in part to width parameter scale effects. Drag predictions for tile patterns by a kinetic pressure empirical method predict experimental results well. Trends were not, however, predicted by a method of variable roughness density phenomenology.
NASA Astrophysics Data System (ADS)
Bi, Chuan-Xing; Hu, Ding-Yu; Zhang, Yong-Bin; Jing, Wen-Qian
2015-06-01
In previous studies, an equivalent source method (ESM)-based technique for recovering the free sound field in a noisy environment has been successfully applied to exterior problems. In order to evaluate its performance when applied to a more general noisy environment, that technique is used to identify active sources inside cavities where the sound field is composed of the field radiated by active sources and that reflected by walls. A patch approach with two semi-closed surfaces covering the target active sources is presented to perform the measurements, and the field that would be radiated by these target active sources into free space is extracted from the mixed field by using the proposed technique, which will be further used as the input of nearfield acoustic holography for source identification. Simulation and experimental results validate the effectiveness of the proposed technique for source identification in cavities, and show the feasibility of performing the measurements with a double layer planar array.
Large Area Microcorrals and Cavity Formation on Cantilevers using a Focused Ion Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saraf, Laxmikant V.; Britt, David W.
2011-09-14
We utilize focused ion beam (FIB) to explore various sputtering parameters to form large area microcorrals and cavities on cantilevers. Microcorrals were rapidly created by modifying ion beam blur and overlaps. Modification in FIB sputtering parameters affects the periodicity and shape of corral microstructure. Cantilever deflections show ion beam amorphization effects as a function of sputtered area and cantilever base cavities with or without side walls. The FIB sputtering parameters address a method for rapid creation of a cantilever tensiometer with integrated fluid storage and delivery.
21 CFR 874.4780 - Intranasal splint.
Code of Federal Regulations, 2013 CFR
2013-04-01
... DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4780 Intranasal splint. (a) Identification... septum and the nasal cavity. It is placed in the nasal cavity after surgery or trauma. The intranasal splint is constructed from plastic, silicone, or absorbent material. (b) Classification. Class I (general...
21 CFR 874.4780 - Intranasal splint.
Code of Federal Regulations, 2011 CFR
2011-04-01
... DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4780 Intranasal splint. (a) Identification... septum and the nasal cavity. It is placed in the nasal cavity after surgery or trauma. The intranasal splint is constructed from plastic, silicone, or absorbent material. (b) Classification. Class I (general...
21 CFR 874.4780 - Intranasal splint.
Code of Federal Regulations, 2012 CFR
2012-04-01
... DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4780 Intranasal splint. (a) Identification... septum and the nasal cavity. It is placed in the nasal cavity after surgery or trauma. The intranasal splint is constructed from plastic, silicone, or absorbent material. (b) Classification. Class I (general...
21 CFR 874.4780 - Intranasal splint.
Code of Federal Regulations, 2010 CFR
2010-04-01
... DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4780 Intranasal splint. (a) Identification... septum and the nasal cavity. It is placed in the nasal cavity after surgery or trauma. The intranasal splint is constructed from plastic, silicone, or absorbent material. (b) Classification. Class I (general...
21 CFR 874.4780 - Intranasal splint.
Code of Federal Regulations, 2014 CFR
2014-04-01
... DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4780 Intranasal splint. (a) Identification... septum and the nasal cavity. It is placed in the nasal cavity after surgery or trauma. The intranasal splint is constructed from plastic, silicone, or absorbent material. (b) Classification. Class I (general...
The 4-parameter Compressible Packing Model (CPM) including a critical cavity size ratio
NASA Astrophysics Data System (ADS)
Roquier, Gerard
2017-06-01
The 4-parameter Compressible Packing Model (CPM) has been developed to predict the packing density of mixtures constituted by bidisperse spherical particles. The four parameters are: the wall effect and the loosening effect coefficients, the compaction index and a critical cavity size ratio. The two geometrical interactions have been studied theoretically on the basis of a spherical cell centered on a secondary class bead. For the loosening effect, a critical cavity size ratio, below which a fine particle can be inserted into a small cavity created by touching coarser particles, is introduced. This is the only parameter which requires adaptation to extend the model to other types of particles. The 4-parameter CPM demonstrates its efficiency on frictionless glass beads (300 values), spherical particles numerically simulated (20 values), round natural particles (125 values) and crushed particles (335 values) with correlation coefficients equal to respectively 99.0%, 98.7%, 97.8%, 96.4% and mean deviations equal to respectively 0.007, 0.006, 0.007, 0.010.
Transition disks: four candidates for ongoing giant planet formation in Ophiuchus
NASA Astrophysics Data System (ADS)
Orellana, M.; Cieza, L. A.; Schreiber, M. R.; Merín, B.; Brown, J. M.; Pellizza, L. J.; Romero, G. A.
2012-03-01
Among the large set of Spitzer-selected transitional disks that we have examined in the Ophiuchus molecular, four disks have been identified as (giant) planet-forming candidates based on the morphology of their spectral energy distributions (SEDs), their apparent lack of stellar companions, and evidence of accretion. Here we characterize the structures of these disks modeling their optical, infrared, and (sub)millimeter SEDs. We use the Monte Carlo radiative transfer package RADMC to construct a parametric model of the dust distribution in a flared disk with an inner cavity and calculate the temperature structure that is consistent with the density profile, when the disk is in thermal equilibrium with the irradiating star. For each object, we conducted a Bayesian exploration of the parameter space generating Monte Carlo Markov chains (MCMC) that allow the identification of the best-fit model parameters and to constrain their range of statistical confidence. Our calculations imply that evacuated cavities with radii ~2-8 AU are present that appear to have been carved by embedded giant planets. We found parameter values that are consistent with those previously given in the literature, indicating that there has been a mild degree of grain growth and dust settling, which deserves to be investigated with further modeling and follow-up observations. Resolved images with (sub)millimeter interferometers would be required to break some of the degeneracies of the models and more tightly constrain the physical properties of these fascinating disks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kant, Deepender, E-mail: dkc@ceeri.ernet.in; Joshi, L. M.; Janyani, Vijay
The klystron is a well-known microwave amplifier which uses kinetic energy of an electron beam for amplification of the RF signal. There are some limitations of conventional single beam klystron such as high operating voltage, low efficiency and bulky size at higher power levels, which are very effectively handled in Multi Beam Klystron (MBK) that uses multiple low purveyance electron beams for RF interaction. Each beam propagates along its individual transit path through a resonant cavity structure. Multi-Beam klystron cavity design is a critical task due to asymmetric cavity structure and can be simulated by 3D code only. The presentmore » paper shall discuss the design of multi beam RF cavities for klystrons operating at 2856 MHz (S-band) and 5 GHz (C-band) respectively. The design approach uses some scaling laws for finding the electron beam parameters of the multi beam device from their single beam counter parts. The scaled beam parameters are then used for finding the design parameters of the multi beam cavities. Design of the desired multi beam cavity can be optimized through iterative simulations in CST Microwave Studio.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veselov, D A; Pikhtin, N A; Lyutetskiy, A V
2015-07-31
We report an experimental study of power characteristics of semiconductor lasers based on MOVPE-grown asymmetric separate-confinement heterostructures with a broadened waveguide as functions of cavity length, stripe contact width and mirror reflectivities. It is shown that at high current pump levels, the variation of the cavity parameters of a semiconductor laser (width, length and mirror reflectivities) influences the light – current (L – I) characteristic saturation and maximum optical power by affecting such laser characteristics, as the current density and the optical output loss. A model is elaborated and an optical power of semiconductor lasers is calculated by taking intomore » account the dependence of the internal optical loss on pump current density and concentration distribution of charge carriers and photons along the cavity axis of the cavity. It is found that only introduction of the dependence of the internal optical loss on pump current density to the calculation model provides a good agreement between experimental and calculated L – I characteristics for all scenarios of variations in the laser cavity parameters. (lasers)« less
Jet dynamics post drop impact on a deep pool
NASA Astrophysics Data System (ADS)
Michon, Guy-Jean; Josserand, Christophe; Séon, Thomas
2017-02-01
We investigate experimentally the jet formed by the collapse of a cavity created by the impact of a drop on a pool of the same aqueous liquid. We show that jets can emerge with very different shapes and velocities, depending on the impact parameters, thus generating droplets with various initial sizes and velocities. After presenting the jet velocity and top drop radius variation as a function of the impact parameters, we discuss the influence of the liquid parameters on the jet velocity. This allows us to define two different regimes: the singular jet and the cavity jet regimes, where the mechanisms leading to the cavity retraction and subsequent jet dynamics are drastically different. In particular, we demonstrate that in the first regime, a singular capillary wave collapse sparks the whole jet dynamics, making the jet's fast, thin, liquid parameters dependent and barely reproducible. On the contrary, in the cavity jet regime, defined for higher impact Froude numbers, the jets are fat and slow. We show that jet velocity is simply proportional to the capillary velocity √{γ /ρlDd }, where γ is the liquid surface tension, ρl the liquid density, and Dd the impacting drop diameter, and it is in particular independent of viscosity, impact velocity, and gravity, even though the cavity is larger than the capillary length. Finally, we demonstrate that capillary wave collapse and cavity retraction are correlated in the singular regime and decorrelated in the cavity jet regime.
Nanofriction in Cavity Quantum Electrodynamics
NASA Astrophysics Data System (ADS)
Fogarty, T.; Cormick, C.; Landa, H.; Stojanović, Vladimir M.; Demler, E.; Morigi, Giovanna
2015-12-01
The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics.
Scheme for quantum state manipulation in coupled cavities
NASA Astrophysics Data System (ADS)
Lin, Jin-Zhong
By controlling the parameters of the system, the effective interaction between different atoms is achieved in different cavities. Based on the interaction, scheme to generate three-atom Greenberger-Horne-Zeilinger (GHZ) is proposed in coupled cavities. Spontaneous emission of excited states and decay of cavity modes can be suppressed efficiently. In addition, the scheme is robust against the variation of hopping rate between cavities.
Microcavity morphology optimization
NASA Astrophysics Data System (ADS)
Ferdous, Fahmida; Demchenko, Alena A.; Vyatchanin, Sergey P.; Matsko, Andrey B.; Maleki, Lute
2014-09-01
High spectral mode density of conventional optical cavities is detrimental to the generation of broad optical frequency combs and to other linear and nonlinear applications. In this work we optimize the morphology of high-Q whispering gallery (WG) and Fabry-Perot (FP) cavities and find a set of parameters that allows treating them, essentially, as single-mode structures, thus removing limitations associated with a high density of cavity mode spectra. We show that both single-mode WGs and single-mode FP cavities have similar physical properties, in spite of their different loss mechanisms. The morphology optimization does not lead to a reduction of quality factors of modes belonging to the basic family. We study the parameter space numerically and find the region where the highest possible Q factor of the cavity modes can be realized while just having a single bound state in the cavity. The value of the Q factor is comparable with that achieved in conventional cavities. The proposed cavity structures will be beneficial for generation of octave spanning coherent frequency combs and will prevent undesirable effects of parametric instability in laser gravitational wave detectors.
Effects of discharge parameters on the micro-hollow cathode sustained glow discharge
NASA Astrophysics Data System (ADS)
Shoujie, HE; Peng, WANG; Jing, HA; Baoming, ZHANG; Zhao, ZHANG; Qing, LI
2018-05-01
The effects of parameters such as pressure, first anode radius, and the cavity diameter on the micro-hollow cathode sustained glow discharge are investigated by using a two-dimensional self-consistent fluid model in pure argon. The results indicate that the three parameters influence the discharge in the regions inside and outside of the cavity. Under a fixed voltage on each electrode, a larger volume of high density plasma can be produced in the region between the first and the second anodes by selecting the appropriate pressure, the higher first anode, and the appropriate cavity diameter. As the pressure increases, the electron density inside the hollow cathode, the high density plasma volume between the first anode and second anodes, and the radial electric field in the cathode cavity initially increase and subsequently decrease. As the cavity diameter increases, the high-density plasma volume between the first and second anodes initially increases and subsequently decreases; whereas the electron density inside the hollow cathode decreases. As the first anode radius increases, the electron density increases both inside and outside of the cavity. Moreover, the increase of the electron density is more obvious in the microcathode sustained region than in the micro cavity region. The results reveal that the discharge inside the cavity interacts with that outside the cavity. The strong hollow cathode effect and the high-density plasma inside the cavity favor the formation of a sustained discharge between the first anode and the second anodes. Results also show that the radial boundary conditions exert a considerably weaker influence on the discharge except for a little change in the region close to the radial boundary.
Cavitation in liquid cryogens. 2: Hydrofoil
NASA Technical Reports Server (NTRS)
Hord, J.
1973-01-01
Boundary layer principles, along with two-phase concepts, are used to improve existing correlative theory for developed cavity data. Details concerning cavity instrumentation, data analysis, correlative techniques, and experimental and theoretical aspects of a cavitating hydrofoil are given. Both desinent and thermodynamic data, using liquid hydrogen and liquid nitrogen, are reported. The thermodynamic data indicated that stable thermodynamic equilibrium exists throughout the vaporous cryogen cavities. The improved correlative formulas were used to evaluate these data. A new correlating parameter based on consideration of mass limiting two-phase flow flux across the cavity interface, is proposed. This correlating parameter appears attractive for future correlative and predictive applications. Agreement between theory and experiment is discussed, and directions for future analysis are suggested. The front half of the cavities, developed on the hydrofoil, may be considered as parabolically shaped.
Study on Silicon Microstructure Processing Technology Based on Porous Silicon
NASA Astrophysics Data System (ADS)
Shang, Yingqi; Zhang, Linchao; Qi, Hong; Wu, Yalin; Zhang, Yan; Chen, Jing
2018-03-01
Aiming at the heterogeneity of micro - sealed cavity in silicon microstructure processing technology, the technique of preparing micro - sealed cavity of porous silicon is proposed. The effects of different solutions, different substrate doping concentrations, different current densities, and different etching times on the rate, porosity, thickness and morphology of the prepared porous silicon were studied. The porous silicon was prepared by different process parameters and the prepared porous silicon was tested and analyzed. For the test results, optimize the process parameters and experiments. The experimental results show that the porous silicon can be controlled by optimizing the parameters of the etching solution and the doping concentration of the substrate, and the preparation of porous silicon with different porosity can be realized by different doping concentration, so as to realize the preparation of silicon micro-sealed cavity, to solve the sensor sensitive micro-sealed cavity structure heterogeneous problem, greatly increasing the application of the sensor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Ashutosh, E-mail: asingh.rs.ece@iitbhu.ac.in; Center of Research in Microwave Tubes, Department of Electronics Engineering, Indian Institute of Technology; Jain, P. K.
In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE{sub 041}–like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code “CST Particle Studio” has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typicalmore » PBG gyrotron has been obtained ∼108 kW with ∼15.5% efficiency in a well confined TE{sub 041}–like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.« less
Spectral and Radiometric Calibration Using Tunable Lasers
NASA Technical Reports Server (NTRS)
McCorkel, Joel (Inventor)
2017-01-01
A tunable laser system includes a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, and a controller operable to simultaneously control parameters of at least the tunable laser, the first optical parametric oscillator, and the adjustable laser cavity to produce a range of wavelengths emitted from the tunable laser system. A method of operating a tunable laser system includes using a controller to simultaneously control parameters of a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, and a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, to produce a range of wavelengths emitted from the tunable laser system.
Cavity Heating Experiments Supporting Shuttle Columbia Accident Investigation
NASA Technical Reports Server (NTRS)
Everhart, Joel L.; Berger, Karen T.; Bey, Kim S.; Merski, N. Ronald; Wood, William A.
2011-01-01
The two-color thermographic phosphor method has been used to map the local heating augmentation of scaled idealized cavities at conditions simulating the windward surface of the Shuttle Orbiter Columbia during flight STS-107. Two experiments initiated in support of the Columbia Accident Investigation were conducted in the Langley 20-Inch Mach 6 Tunnel. Generally, the first test series evaluated open (length-to-depth less than 10) rectangular cavity geometries proposed as possible damage scenarios resulting from foam and ice impact during launch at several discrete locations on the vehicle windward surface, though some closed (length-to-depth greater than 13) geometries were briefly examined. The second test series was designed to parametrically evaluate heating augmentation in closed rectangular cavities. The tests were conducted under laminar cavity entry conditions over a range of local boundary layer edge-flow parameters typical of re-entry. Cavity design parameters were developed using laminar computational predictions, while the experimental boundary layer state conditions were inferred from the heating measurements. An analysis of the aeroheating caused by cavities allowed exclusion of non-breeching damage from the possible loss scenarios being considered during the investigation.
Ananieva, Maiia M; Faustova, Mariia O; Basarab, Iaroslav O; Loban', Galina A
2017-01-01
Recently, opportunistic microflora are increasingly known to be involved in the development of pathological processes in various systems and organs. This situation promotes interest in their detailed study as causative agents of bacterial infections. To study the microbial species residing in carious cavities in acute profound caries. The study involved 14 people with a diagnosis of acute profound caries. Microbiological methods included determining species of microorganisms' cultures from carious cavities in acute profound caries. Final identification was carried out by automatic bacteriological analyzer Vitec-2compact bioMérieux. Among the bacteria isolated, Kocuria rosae, Kocuria kristinae, and Leuconostoc mesenteroides are the focus of the authors' attention due to their identification rate in the patients. These microbial species are little studied due to the lack of data on their cariogenic associations.The meticulous study of the microorganisms, isolated from carious cavities in patients with acute profound caries by automatic bacteriological analyzer Vitec-2 Systems bioMérieux, and findings on their biochemical properties allow us to conclude that Kocuria rosae, Kocuria kristinae, and Leuconostoc mesenteroides are among the microorganisms making up the microflora of carious cavities under acute profound caries and are involved in the development of the caries process.
Clinical and mycological analysis of dog’s oral cavity
Santin, Rosema; Mattei, Antonella Souza; Waller, Stefanie Bressan; Madrid, Isabel Martins; Cleff, Marlete Brum; Xavier, Melissa Orzechowski; de Oliveira Nobre, Márcia; Nascente, Patrícia da Silva; de Mello, João Roberto Braga; Meireles, Mário Carlos Araújo
2013-01-01
The oral microbiota of humans and animals is made up of a wide variety of yeasts and bacteria, but microbiota of dogs is not totally described. Although such identification is an important step to establish the etiopathogenesis and adequate therapy for the periodontal disease The aim of this study was to evaluate and correlate oral alterations with the presence of yeasts in oral cavity of female dogs. After clinical evaluation samples from healthy and from dogs with oral diseases were obtained from three different oral sites by swabs, curettes, millimeter periodontal probes and HA membrane tip in cellulose ester. Yeast identification was performed through macroscopic and microscopic colony features and biochemical tests. Dental calculus was the most prevalent occurrence in the oral cavity of 59 females. However, the isolation of yeasts was significantly higher (p < 0.05) in animals suffering from halitosis. Eleven yeast species were identified, namely: Malassezia pachydermatis, Rhodotorula spp., Candida albicans, C. catenulata, C. famata, C. guilliermondii, C. parapsilosis, C. intermedia, Trichosporon asahii, T. mucoides and Cryptococcus albidus. It could be concluded that the yeasts are part of the microbiota from the different sites of the oral cavity of the female canines studied without causing any significant alterations except halitosis. PMID:24159296
Relativistic Klystron Amplifiers Driven by Modulated Intense Relativistic Electron Beams
1990-04-11
electrical parameters of the cavity were calculated using the SUPERFISH computer code. We found: (1) that the gap voltage, V was half as high as the...SUPERFISH computer code and experimenting with various cavities we found the best cavity geometry that fulfilled the above conditions. For this cavity...paths. Experiments along this line are being planned (T. Godlove and F. Mako, private communciation ). A somewhat different concept which also
NASA Astrophysics Data System (ADS)
Artemenko, S. N.; Samoylenko, G. M.
2016-11-01
We study the processes of radiation output from a microwave storage cavity through a superconducting interference switch, which is based on a H-junction with a superconducting switching cavity connected to the side branch of the junction for various ways of controlling the parameters of the switching cavity. It is shown that efficient control over radiation output in such a switch can be achieved by varying the resonance frequency or Q-factor of the switching cavity, as well as by varying these parameters simultaneously. It is found that in the case of controlling the resonance frequency of the switching cavity, there exists an optimal interval of the frequency variation, within which the total efficiency and extraction efficiency are maximum. When the Q-factor of the switching cavity changes, the dependence of the total efficiency and extraction efficiency on the Q-factor has the monotonic character. The mixed regime of radiation output control is also studied. The envelopes of the output compressor pulses are plotted on the basis of recurrent relationships between the amplitudes of the waves in the system for three regimes of switch operation. It is shown that pulses with an almost rectangular shape of the envelope can be formed in the regime of controlling the switching cavity by varying the Q-factor. An example of possible realization of the switching cavity is considered.
Triple coupling and parameter resonance in quantum optomechanics with a single atom
NASA Astrophysics Data System (ADS)
Chang, Yue; Ian, H.; Sun, C. P.
2009-11-01
We study the energy level structure and quantum dynamics for a cavity optomechanical system assisted by a single atom. It is found that a triple coupling involving a photon, a phonon and an atom cannot be described only by the quasi-orbital angular momentum at frequency resonance, there also exists the phenomenon of parameter resonance, namely, when the system parameters are matched in some way, the evolution of the end mirror of the cavity is conditioned by the dressed states of the photon-atom subsystem. The quantum decoherence due to this conditional dynamics is studied in detail. In the quasi-classical limit of very large angular momentum, this system will behave like a standard cavity-QED system described by the Jaynes-Cummings (J-C) model when the angular momentum operators are transformed to bosonic operators of a single mode. We test this observation with an experimentally accessible parameter.
High-resolution infrared spectrum of triacetylene: The ν5 state revisited and new vibrational states
NASA Astrophysics Data System (ADS)
Doney, K. D.; Zhao, D.; Linnartz, H.
2015-10-01
New data are presented that follow from a high-resolution survey, from 3302 to 3352 cm-1, through expanding acetylene plasma, and covering the Csbnd H asymmetric (ν5) fundamental band of triacetylene (HC6H). Absorption signals are recorded using continuous wave cavity ring-down spectroscopy (cw-CRDS). A detailed analysis of the resulting spectra allows revisiting the molecular parameters of the ν5 fundamental band in terms of interactions with a perturbing state, which is observed for the first time. Moreover, four fully resolved hot bands (501 1011, 501 1111, 501 1311, and 101 801 1110), with band origins at 3328.5829(2), 3328.9994(2), 3328.2137(2) and 3310.8104(2) cm-1, respectively, are reported for the first time. These involve low lying bending vibrations that have been studied previously, which guarantees unambiguous identifications. Combining available data allows to derive accurate molecular parameters, both for the ground state as well as the excited states involved in the bands.
Demountable damped cavity for HOM-damping in ILC superconducting accelerating cavities
NASA Astrophysics Data System (ADS)
Konomi, T.; Yasuda, F.; Furuta, F.; Saito, K.
2014-01-01
We have designed a new higher-order-mode (HOM) damper called a demountable damped cavity (DDC) as part of the R&D efforts for the superconducting cavity of the International Linear Collider (ILC). The DDC has two design concepts. The first is an axially symmetrical layout to obtain high damping efficiency. The DDC has a coaxial structure along the beam axis to realize strong coupling with HOMs. HOMs are damped by an RF absorber at the end of the coaxial waveguide and the accelerating mode is reflected by a choke filter mounted at the entrance of the coaxial waveguide. The second design concept is a demountable structure to facilitate cleaning, in order to suppress the Q-slope problem in a high field. A single-cell cavity with the DDC was fabricated to test four performance parameters. The first was frequency matching between the accelerating cavity and the choke filter. Since the bandwidth of the resonance frequency in a superconducting cavity is very narrow, there is a possibility that the accelerating field will leak to the RF absorber because of thermal shrinkage. The design bandwidth of the choke filter is 25 kHz. It was demonstrated that frequency matching adjusted at room temperature could be successfully maintained at 2 K. The second parameter was the performance of the demountable structure. At the joint, the magnetic field is 1/6 of the maximum field in the accelerating cavity. Ultimately, the accelerating field reached 19 MV/m and Q0 was 1.5×1010 with a knife-edge shape. The third parameter was field emission and multipacting. Although the choke structure has numerous parallel surfaces that are susceptible to the multipacting problem, it was found that neither field emission nor multipacting presented problems in both an experiment and simulation. The final parameter was the Q values of the HOM. The RF absorber adopted in the system is a Ni-Zn ferrite type. The RF absorber shape was designed based on the measurement data of permittivity and permeability at 77 K. The Q values of the HOM in the DDC are 10-100 times lower than those of a TESLA-type HOM coupler.
Cavity solitons and localized patterns in a finite-size optical cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozyreff, G.; Gelens, L.
2011-08-15
In appropriate ranges of parameters, laser-driven nonlinear optical cavities can support a wide variety of optical patterns, which could be used to carry information. The intensity peaks appearing in these patterns are called cavity solitons and are individually addressable. Using the Lugiato-Lefever equation to model a perfectly homogeneous cavity, we show that cavity solitons can only be located at discrete points and at a minimal distance from the edges. Other localized states which are attached to the edges are identified. By interpreting these patterns in an information coding frame, the information capacity of this dynamical system is evaluated. The resultsmore » are explained analytically in terms of the the tail characteristics of the cavity solitons. Finally, the influence of boundaries and of cavity imperfections on cavity solitons are compared.« less
Modeling and flow analysis of pure nylon polymer for injection molding process
NASA Astrophysics Data System (ADS)
Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.
2016-02-01
In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.
Thermal Properties of A Solar Coronal Cavity Observed with the X-Ray Telescope on Hinode
NASA Technical Reports Server (NTRS)
Reeves, Katherine K.; Gibson, Sarah E.; Kucera, Theresa A.; Hudson, Hugh S.; Kano, Ryouhei
2011-01-01
Coronal cavities are voids in coronal emission often observed above high latitude filament channels. Sometimes, these cavities have areas of bright X-ray emission in their centers. In this study, we use data from the X-ray Telescope (XRT) on the Hinode satellite to examine the thermal emission properties of a cavity observed during July 2008 that contains bright X-ray emission in its center. Using ratios of XRT filters, we find evidence for elevated temperatures in the cavity center. The area of elevated temperature evolves from a ring-shaped structure at the beginning of the observation, to an elongated structure two days later, finally appearing as a compact round source four days after the initial observation. We use a morphological model to fit the cavity emission, and find that a uniform structure running through the cavity does not fit the observations well. Instead, the observations are reproduced by modeling several short cylindrical cavity "cores" with different parameters on different days. These changing core parameters may be due to some observed activity heating different parts of the cavity core at different times. We find that core temperatures of 1.75 MK, 1.7 MK and 2.0 MK (for July 19, July 21 and July 23, respectively) in the model lead to structures that are consistent with the data, and that line-of-sight effects serve to lower the effective temperature derived from the filter ratio.
NASA Astrophysics Data System (ADS)
Fang, Bao-Long; Yang, Zhen; Ye, Liu
2009-05-01
We propose a scheme for implementing a partial general quantum cloning machine with superconducting quantum-interference devices coupled to a nonresonant cavity. By regulating the time parameters, our system can perform optimal symmetric (asymmetric) universal quantum cloning, optimal symmetric (asymmetric) phase-covariant cloning, and optimal symmetric economical phase-covariant cloning. In the scheme the cavity is only virtually excited, thus, the cavity decay is suppressed during the cloning operations.
NASA Astrophysics Data System (ADS)
Han, Maeum; Keon Kim, Jae; Kong, Seong Ho; Kang, Shin-Won; Jung, Daewoong
2018-06-01
This paper reports a micro-electro-mechanical-system (MEMS)-based tilt sensor using air medium. Since the working mechanism of the sensor is the thermal convection in a sealed chamber, structural parameters that can affect thermal convection must be considered to optimize the performance of the sensor. This paper presents the experimental results that were conducted by optimizing several parameters such as the heater geometry, input power and cavity volume. We observed that an increase in the heating power and cavity volume can improve the sensitivity, and heater geometry plays important role in performance of the sensor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang Baolong; Department of Mathematics and Physics, Hefei University, Hefei 230022; Yang Zhen
We propose a scheme for implementing a partial general quantum cloning machine with superconducting quantum-interference devices coupled to a nonresonant cavity. By regulating the time parameters, our system can perform optimal symmetric (asymmetric) universal quantum cloning, optimal symmetric (asymmetric) phase-covariant cloning, and optimal symmetric economical phase-covariant cloning. In the scheme the cavity is only virtually excited, thus, the cavity decay is suppressed during the cloning operations.
Optimisation of thulium fibre laser parameters with generation of pulses by pump modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obronov, I V; Larin, S V; Sypin, V E
2015-07-31
The formation of relaxation pulses of a thulium fibre laser (λ = 1.9 μm) by modulating the power of a pump erbium fibre laser (λ = 1.55 μm) is studied. A theoretical model is developed to find the dependences of pulse duration and peak power on different cavity parameters. The optimal cavity parameters for achieving the minimal pulse duration are determined. The results are confirmed by experimental development of a laser emitting pulses with a duration shorter than 10 ns, a peak power of 1.8 kW and a repetition rate of 50 kHz. (control of radiation parameters)
Effects of Energy Dissipation on the Parametric Excitation of a Coupled Qubit-Cavity System
NASA Astrophysics Data System (ADS)
Remizov, S. V.; Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.
2018-06-01
We consider a parametrically driven system of a qubit coupled to a cavity taking into account different channels of energy dissipation. We focus on the periodic modulation of a single parameter of this hybrid system, which is the coupling constant between the two subsystems. Such a modulation is possible within the superconducting realization of qubit-cavity coupled systems, characterized by an outstanding degree of tunability and flexibility. Our major result is that energy dissipation in the cavity can enhance population of the excited state of the qubit in the steady state, while energy dissipation in the qubit subsystem can enhance the number of photons generated from vacuum. We find optimal parameters for the realization of such dissipation-induced amplification of quantum effects. Our results might be of importance for the full control of quantum states of coupled systems as well as for the storage and engineering of quantum states.
Cavity approach to noisy learning in nonlinear perceptrons.
Luo, P; Michael Wong, K Y
2001-12-01
We analyze the learning of noisy teacher-generated examples by nonlinear and differentiable student perceptrons using the cavity method. The generic activation of an example is a function of the cavity activation of the example, which is its activation in the perceptron that learns without the example. Mean-field equations for the macroscopic parameters and the stability condition yield results consistent with the replica method. When a single value of the cavity activation maps to multiple values of the generic activation, there is a competition in learning strategy between preferentially learning an example and sacrificing it in favor of the background adjustment. We find parameter regimes in which examples are learned preferentially or sacrificially, leading to a gap in the activation distribution. Full phase diagrams of this complex system are presented, and the theory predicts the existence of a phase transition from poor to good generalization states in the system. Simulation results confirm the theoretical predictions.
Effects of Energy Dissipation on the Parametric Excitation of a Coupled Qubit-Cavity System
NASA Astrophysics Data System (ADS)
Remizov, S. V.; Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.
2018-02-01
We consider a parametrically driven system of a qubit coupled to a cavity taking into account different channels of energy dissipation. We focus on the periodic modulation of a single parameter of this hybrid system, which is the coupling constant between the two subsystems. Such a modulation is possible within the superconducting realization of qubit-cavity coupled systems, characterized by an outstanding degree of tunability and flexibility. Our major result is that energy dissipation in the cavity can enhance population of the excited state of the qubit in the steady state, while energy dissipation in the qubit subsystem can enhance the number of photons generated from vacuum. We find optimal parameters for the realization of such dissipation-induced amplification of quantum effects. Our results might be of importance for the full control of quantum states of coupled systems as well as for the storage and engineering of quantum states.
Optimization of CW Fiber Lasers With Strong Nonlinear Cavity Dynamics
NASA Astrophysics Data System (ADS)
Shtyrina, O. V.; Efremov, S. A.; Yarutkina, I. A.; Skidin, A. S.; Fedoruk, M. P.
2018-04-01
In present work the equation for the saturated gain is derived from one-level gain equations describing the energy evolution inside the laser cavity. It is shown how to derive the parameters of the mathematical model from the experimental results. The numerically-estimated energy and spectrum of the signal are in good agreement with the experiment. Also, the optimization of the output energy is performed for a given set of model parameters.
NASA Astrophysics Data System (ADS)
Frigenti, G.; Arjmand, M.; Barucci, A.; Baldini, F.; Berneschi, S.; Farnesi, D.; Gianfreda, M.; Pelli, S.; Soria, S.; Aray, A.; Dumeige, Y.; Féron, P.; Nunzi Conti, G.
2018-06-01
An original method able to fully characterize high-Q resonators in an add-drop configuration has been implemented. The method is based on the study of two cavity ringdown (CRD) signals, which are produced at the transmission and drop ports by wavelength sweeping a resonance in a time interval comparable with the photon cavity lifetime. All the resonator parameters can be assessed with a single set of simultaneous measurements. We first developed a model describing the two CRD output signals and a fitting program able to deduce the key parameters from the measured profiles. We successfully validated the model with an experiment based on a fiber ring resonator of known characteristics. Finally, we characterized a high-Q, home-made, MgF2 whispering gallery mode disk resonator in the add-drop configuration, assessing its intrinsic and coupling parameters.
NASA Astrophysics Data System (ADS)
Penkov, V. B.; Levina, L. V.; Novikova, O. S.; Shulmin, A. S.
2018-03-01
Herein we propose a methodology for structuring a full parametric analytical solution to problems featuring elastostatic media based on state-of-the-art computing facilities that support computerized algebra. The methodology includes: direct and reverse application of P-Theorem; methods of accounting for physical properties of media; accounting for variable geometrical parameters of bodies, parameters of boundary states, independent parameters of volume forces, and remote stress factors. An efficient tool to address the task is the sustainable method of boundary states originally designed for the purposes of computerized algebra and based on the isomorphism of Hilbertian spaces of internal states and boundary states of bodies. We performed full parametric solutions of basic problems featuring a ball with a nonconcentric spherical cavity, a ball with a near-surface flaw, and an unlimited medium with two spherical cavities.
NASA Technical Reports Server (NTRS)
Reddy C. J.
1998-01-01
Model Based Parameter Estimation (MBPE) is presented in conjunction with the hybrid Finite Element Method (FEM)/Method of Moments (MoM) technique for fast computation of the input characteristics of cavity-backed aperture antennas over a frequency range. The hybrid FENI/MoM technique is used to form an integro-partial- differential equation to compute the electric field distribution of a cavity-backed aperture antenna. In MBPE, the electric field is expanded in a rational function of two polynomials. The coefficients of the rational function are obtained using the frequency derivatives of the integro-partial-differential equation formed by the hybrid FEM/ MoM technique. Using the rational function approximation, the electric field is obtained over a frequency range. Using the electric field at different frequencies, the input characteristics of the antenna are obtained over a wide frequency range. Numerical results for an open coaxial line, probe-fed coaxial cavity and cavity-backed microstrip patch antennas are presented. Good agreement between MBPE and the solutions over individual frequencies is observed.
Shape of the human nasal cavity promotes retronasal smell
NASA Astrophysics Data System (ADS)
Trastour, Sophie; Melchionna, Simone; Mishra, Shruti; Zwicker, David; Lieberman, Daniel E.; Kaxiras, Efthimios; Brenner, Michael P.
2015-11-01
Humans are exceptionally good at perceiving the flavor of food. Flavor includes sensory input from taste receptors but is dominated by olfactory (smell) receptors. To smell food while eating, odors must be transported to the nasal cavity during exhalation. Olfactory performance of this retronasal route depends, among other factors, on the position of the olfactory receptors and the shape of the nasal cavity. One biological hypothesis is that the derived configuration of the human nasal cavity has resulted in a greater capacity for retronasal smell, hence enhanced flavor perception. We here study the air flow and resulting odor deposition as a function of the nasal geometry and the parameters of exhalation. We perform computational fluid dynamics simulations in realistic geometries obtained from CT scans of humans. Using the resulting flow fields, we then study the deposition of tracer particles in the nasal cavity. Additionally, we derive scaling laws for the odor deposition rate as a function of flow parameters and geometry using boundary layer theory. These results allow us to assess which changes in the evolution of the human nose led to significant improvements of retronasal smell.
Mapping of ligand-binding cavities in proteins.
Andersson, C David; Chen, Brian Y; Linusson, Anna
2010-05-01
The complex interactions between proteins and small organic molecules (ligands) are intensively studied because they play key roles in biological processes and drug activities. Here, we present a novel approach to characterize and map the ligand-binding cavities of proteins without direct geometric comparison of structures, based on Principal Component Analysis of cavity properties (related mainly to size, polarity, and charge). This approach can provide valuable information on the similarities and dissimilarities, of binding cavities due to mutations, between-species differences and flexibility upon ligand-binding. The presented results show that information on ligand-binding cavity variations can complement information on protein similarity obtained from sequence comparisons. The predictive aspect of the method is exemplified by successful predictions of serine proteases that were not included in the model construction. The presented strategy to compare ligand-binding cavities of related and unrelated proteins has many potential applications within protein and medicinal chemistry, for example in the characterization and mapping of "orphan structures", selection of protein structures for docking studies in structure-based design, and identification of proteins for selectivity screens in drug design programs. 2009 Wiley-Liss, Inc.
Mapping of Ligand-Binding Cavities in Proteins
Andersson, C. David; Chen, Brian Y.; Linusson, Anna
2010-01-01
The complex interactions between proteins and small organic molecules (ligands) are intensively studied because they play key roles in biological processes and drug activities. Here, we present a novel approach to characterise and map the ligand-binding cavities of proteins without direct geometric comparison of structures, based on Principal Component Analysis of cavity properties (related mainly to size, polarity and charge). This approach can provide valuable information on the similarities, and dissimilarities, of binding cavities due to mutations, between-species differences and flexibility upon ligand-binding. The presented results show that information on ligand-binding cavity variations can complement information on protein similarity obtained from sequence comparisons. The predictive aspect of the method is exemplified by successful predictions of serine proteases that were not included in the model construction. The presented strategy to compare ligand-binding cavities of related and unrelated proteins has many potential applications within protein and medicinal chemistry, for example in the characterisation and mapping of “orphan structures”, selection of protein structures for docking studies in structure-based design and identification of proteins for selectivity screens in drug design programs. PMID:20034113
Zawadzki, Paweł J; Perkowski, Konrad; Starościak, Bohdan; Baltaza, Wanda; Padzik, Marcin; Pionkowski, Krzysztof; Chomicz, Lidia
2016-12-23
This study presents the results of comparative investigations aimed to determine microbiota that can occur in the oral environment in different human populations. The objective of the research was to identify pathogenic oral microbiota, the potential cause of health complications in patients of different population groups. The study included 95 patients requiring dental or surgical treatment; their oral cavity environment microbiota as risk factors of local and general infections were assessed. In clinical assessment, differences occurred in oral cavity conditions between patients with malformations of the masticatory system, kidney allograft recipients and individuals without indications for surgical procedures. The presence of various pathogenic and opportunistic bacterial strains in oral cavities were revealed by direct microscopic and in vitro culture techniques. Colonization of oral cavities of patients requiring surgical treatment by the potentially pathogenic bacteria constitutes the threat of their spread, and development of general infections. Assessment of oral cavity infectious microbiota should be performed as a preventive measure against peri-surgical complications.
NASA Astrophysics Data System (ADS)
Ouyang, Hao; Liu, Weidong; Sun, Mingbo
2017-08-01
Cavity has been validated to be efficient flameholders for scramjet combustors, but the influence of its parameters on the combustion oscillation in scramjet combustor has barely been studied. In the present work, a series of experiments focusing on this issue have been carried out. The influence of flameholding cavity position, its length to depth ratio L/D and aft wall angle θ and number on ethylene combustion oscillation characteristics in scramjet combustor has been researched. The obtained experimental results show that, as the premixing distance between ethylene injector and flameholding cavity varies, the ethylene combustion flame will take on two distinct forms, small-amplitude high frequency fluctuation, and large-amplitude low frequency oscillation. The dominant frequency of the large-amplitude combustion oscillation is in inverse proportion to the pre-mixing distance. Moreover, the influence of cavity length to depth ratio and the aft wall angleθexists diversity when the flameholding cavity position is different and can be recognized as unnoticeable compared to the impact of the premixing distance. In addition, we also find that, when the premixing distance is identical and sufficient, increasing the number of tandem flameholding cavities can change the dominant frequency of combustion oscillation hardly, let alone avoid the combustion oscillation. It is believed that the present investigation will provide a useful reference for the design of the scramjet combustor.
Width effects in transonic flow over a rectangular cavity
Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; ...
2015-07-24
A previous experiment by the present authors studied the flow over a finite-width rectangular cavity at freestream Mach numbers 1.5–2.5. In addition, this investigation considered the influence of three-dimensional geometry that is not replicated by simplified cavities that extend across the entire wind-tunnel test section. The latter configurations have the attraction of easy optical access into the depths of the cavity, but they do not reproduce effects upon the turbulent structures and acoustic modes due to the length-to-width ratio, which is becoming recognized as an important parameter describing the nature of the flow within narrower cavities.
Electron trajectory evaluation in laser-plasma interaction for effective output beam
NASA Astrophysics Data System (ADS)
Zobdeh, P.; Sadighi-Bonabi, R.; Afarideh, H.
2010-06-01
Using the ellipsoidal cavity model, the quasi-monoenergetic electron output beam in laser-plasma interaction is described. By the cavity regime the quality of electron beam is improved in comparison with those generated from other methods such as periodic plasma wave field, spheroidal cavity regime and plasma channel guided acceleration. Trajectory of electron motion is described as hyperbolic, parabolic or elliptic paths. We find that the self-generated electron bunch has a smaller energy width and more effective gain in energy spectrum. Initial condition for the ellipsoidal cavity is determined by laser-plasma parameters. The electron trajectory is influenced by its position, energy and cavity electrostatic potential.
Adiabatic transfer of energy fluctuations between membranes inside an optical cavity
NASA Astrophysics Data System (ADS)
Garg, Devender; Chauhan, Anil K.; Biswas, Asoka
2017-08-01
A scheme is presented for the adiabatic transfer of average fluctuations in the phonon number between two membranes in an optical cavity. We show that by driving the cavity modes with external time-delayed pulses, one can obtain an effect analogous to stimulated Raman adiabatic passage in the atomic systems. The adiabatic transfer of fluctuations from one membrane to the other is attained through a "dark" mode, which is robust against decay of the mediating cavity mode. The results are supported with analytical and numerical calculations with experimentally feasible parameters.
Fundamental limitations of cavity-assisted atom interferometry
NASA Astrophysics Data System (ADS)
Dovale-Álvarez, M.; Brown, D. D.; Jones, A. W.; Mow-Lowry, C. M.; Miao, H.; Freise, A.
2017-11-01
Atom interferometers employing optical cavities to enhance the beam splitter pulses promise significant advances in science and technology, notably for future gravitational wave detectors. Long cavities, on the scale of hundreds of meters, have been proposed in experiments aiming to observe gravitational waves with frequencies below 1 Hz, where laser interferometers, such as LIGO, have poor sensitivity. Alternatively, short cavities have also been proposed for enhancing the sensitivity of more portable atom interferometers. We explore the fundamental limitations of two-mirror cavities for atomic beam splitting, and establish upper bounds on the temperature of the atomic ensemble as a function of cavity length and three design parameters: the cavity g factor, the bandwidth, and the optical suppression factor of the first and second order spatial modes. A lower bound to the cavity bandwidth is found which avoids elongation of the interaction time and maximizes power enhancement. An upper limit to cavity length is found for symmetric two-mirror cavities, restricting the practicality of long baseline detectors. For shorter cavities, an upper limit on the beam size was derived from the geometrical stability of the cavity. These findings aim to aid the design of current and future cavity-assisted atom interferometers.
Investigation of short cavity CRDS noise terms by optical correlation
NASA Astrophysics Data System (ADS)
Griffin, Steven T.; Fathi, Jason
2013-05-01
Cavity Ring Down Spectroscopy (CRDS) has been identified as having significant potential for Department of Defense security and sensing applications. Significant factors in the development of new sensor architectures are portability, robustness and economy. A significant factor in new CRDS sensor architectures is cavity length. Prior publication has examined the role of cavity length in sensing modality both from the standpoint of the system's design and the identification of potential difficulties presented by novel approaches. Two of interest here are new noise terms that have been designated turbulence-like and speckle-like in prior publication. In the prior publication the theoretical and some empirical data was presented. This presentation addresses the automation of the experimental apparatus, new data analysis, and implications regarding the significance of the two noise terms. This is accomplished through an Analog-to- Digital Conversion (ADC) from the output of a custom designed optical correlator. Details of the unique application of the developed instrument and implications for short cavity (portable) CRDS applications are presented.
Efficient Characterization of Protein Cavities within Molecular Simulation Trajectories: trj_cavity.
Paramo, Teresa; East, Alexandra; Garzón, Diana; Ulmschneider, Martin B; Bond, Peter J
2014-05-13
Protein cavities and tunnels are critical in determining phenomena such as ligand binding, molecular transport, and enzyme catalysis. Molecular dynamics (MD) simulations enable the exploration of the flexibility and conformational plasticity of protein cavities, extending the information available from static experimental structures relevant to, for example, drug design. Here, we present a new tool (trj_cavity) implemented within the GROMACS ( www.gromacs.org ) framework for the rapid identification and characterization of cavities detected within MD trajectories. trj_cavity is optimized for usability and computational efficiency and is applicable to the time-dependent analysis of any cavity topology, and optional specialized descriptors can be used to characterize, for example, protein channels. Its novel grid-based algorithm performs an efficient neighbor search whose calculation time is linear with system size, and a comparison of performance with other widely used cavity analysis programs reveals an orders-of-magnitude improvement in the computational cost. To demonstrate its potential for revealing novel mechanistic insights, trj_cavity has been used to analyze long-time scale simulation trajectories for three diverse protein cavity systems. This has helped to reveal, respectively, the lipid binding mechanism in the deep hydrophobic cavity of a soluble mite-allergen protein, Der p 2; a means for shuttling carbohydrates between the surface-exposed substrate-binding and catalytic pockets of a multidomain, membrane-proximal pullulanase, PulA; and the structural basis for selectivity in the transmembrane pore of a voltage-gated sodium channel (NavMs), embedded within a lipid bilayer environment. trj_cavity is available for download under an open-source license ( http://sourceforge.net/projects/trjcavity ). A simplified, GROMACS-independent version may also be compiled.
Hydrodynamic cavitation for sonochemical effects.
Moholkar, V S; Kumar, P S; Pandit, A B
1999-03-01
A comparative study of hydrodynamic and acoustic cavitation has been made on the basis of numerical solutions of the Rayleigh-Plesset equation. The bubble/cavity behaviour has been studied under both acoustic and hydrodynamic cavitation conditions. The effect of varying pressure fields on the collapse of the cavity (sinusoidal for acoustic and linear for hydrodynamic) and also on the latter's dynamic behaviour has been studied. The variations of parameters such as initial cavity size, intensity of the acoustic field and irradiation frequency in the case of acoustic cavitation, and initial cavity size, final recovery pressure and time for pressure recovery in the case of hydrodynamic cavitation, have been found to have significant effects on cavity/bubble dynamics. The simulations reveal that the bubble/cavity collapsing behaviour in the case of hydrodynamic cavitation is accompanied by a large number of pressure pulses of relatively smaller magnitude, compared with just one or two pulses under acoustic cavitation. It has been shown that hydrodynamic cavitation offers greater control over operating parameters and the resultant cavitation intensity. Finally, a brief summary of the experimental results on the oxidation of aqueous KI solution with a hydrodynamic cavitation set-up is given which supports the conclusion of this numerical study. The methodology presented allows one to manipulate and optimise of specific process, either physical or chemical.
Pool boiling on surfaces with mini-fins and micro-cavities
NASA Astrophysics Data System (ADS)
Pastuszko, Robert; Piasecka, Magdalena
2012-11-01
The experimental studies presented here focused on pool boiling heat transfer on mini-fin arrays, mini-fins with perforated covering and surfaces with micro-cavities. The experiments were carried out for water and fluorinert FC-72 at atmospheric pressure. Mini-fins of 0.5 and 1 mm in height were uniformly spaced on the base surface. The copper foil with holes of 0.1 mm in diameter (pitch 0.2/0.4 mm), sintered with the fin tips, formed a system of connected perpendicular and horizontal tunnels. The micro-cavities were obtained through spark erosion. The maximal depth of the craters of these cavities was 15 - 30 μm and depended on the parameters of the branding-pen settings. At medium and small heat fluxes, structures with mini-fins showed the best boiling heat transfer performance both for water and FC-72. At medium and high heat fluxes (above 70 kW/m2 for water and 25 kW/m2 for FC-72), surfaces with mini-fins without porous covering and micro-cavities produced the highest heat transfer coefficients. The surfaces obtained with spark erosion require a proper selection of geometrical parameters for particular liquids - smaller diameters of cavities are suitable for liquids with lower surface tension (FC-72).
NASA Astrophysics Data System (ADS)
Curà, F.; Curti, G.; Mantovani, M.
1996-03-01
The subject of this paper is an experimental and analytical study of a structural-acoustical coupling problem. To simplify the issue, the analytical model considered here consists of a uni-dimensional acoustic cavity coupled to a one-degree-of-freedom system (mass, spring and damper). An harmonic excitation force is applied to the mass of the oscillator. In the theoretical analysis, the uni-dimensional cavity is subjected, in correspondence of its end sections, to boundary conditions, which are either the usual ones (closed or open ended) or those deriving from the coupling with the oscillator. This simple model proved to be very useful to investigate the influence of the variation of both the geometrical parameters (i.e., the length of the cavity) and the physical parameters (i.e., mass, damping coefficient and stiffness of the oscillator). The analytical results are compared to those obtained experimentally on a real coupled system, consisting of a cavity enclosed by an acoustically rigid steel cylinder, closed at one end by a movable, acoustically rigid piston and at the other end by a flexible plate, clamped around its edge by the cylinder. Thus the length of the cavity can be varied by simply moving the rigid piston.
Adapting TESLA technology for future cw light sources using HoBiCaT
NASA Astrophysics Data System (ADS)
Kugeler, O.; Neumann, A.; Anders, W.; Knobloch, J.
2010-07-01
The HoBiCaT facility has been set up and operated at the Helmholtz-Zentrum-Berlin and BESSY since 2005. Its purpose is testing superconducting cavities in cw mode of operation and it was successfully demonstrated that TESLA pulsed technology can be used for cw mode of operation with only minor changes. Issues that were addressed comprise of elevated dynamic thermal losses in the cavity walls, necessary modifications in the cryogenics and the cavity processing, the optimum choice of operational parameters such as cavity temperature or bandwidth, the characterization of higher order modes in the cavity, and the usability of existing tuners and couplers for cw.
High-Q resonant cavities for terahertz quantum cascade lasers.
Campa, A; Consolino, L; Ravaro, M; Mazzotti, D; Vitiello, M S; Bartalini, S; De Natale, P
2015-02-09
We report on the realization and characterization of two different designs for resonant THz cavities, based on wire-grid polarizers as input/output couplers, and injected by a continuous-wave quantum cascade laser (QCL) emitting at 2.55 THz. A comparison between the measured resonators parameters and the expected theoretical values is reported. With achieved quality factor Q ≈ 2.5 × 10(5), these cavities show resonant peaks as narrow as few MHz, comparable with the typical Doppler linewidth of THz molecular transitions and slightly broader than the free-running QCL emission spectrum. The effects of the optical feedback from one cavity to the QCL are examined by using the other cavity as a frequency reference.
21 CFR 882.4100 - Ventricular catheter.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) Identification. A ventricular catheter is a device used to gain access to the cavities of the brain for injection of material into, or removal of material from, the brain. (b) Classification. Class II (performance...
21 CFR 882.4100 - Ventricular catheter.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) Identification. A ventricular catheter is a device used to gain access to the cavities of the brain for injection of material into, or removal of material from, the brain. (b) Classification. Class II (performance...
21 CFR 882.4100 - Ventricular catheter.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Identification. A ventricular catheter is a device used to gain access to the cavities of the brain for injection of material into, or removal of material from, the brain. (b) Classification. Class II (performance...
21 CFR 882.4100 - Ventricular catheter.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) Identification. A ventricular catheter is a device used to gain access to the cavities of the brain for injection of material into, or removal of material from, the brain. (b) Classification. Class II (performance...
21 CFR 882.4100 - Ventricular catheter.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Identification. A ventricular catheter is a device used to gain access to the cavities of the brain for injection of material into, or removal of material from, the brain. (b) Classification. Class II (performance...
Choi, Yoon Seong; Park, Mina; Kwon, Hyeong Ju; Koh, Yoon Woo; Lee, Seung-Koo; Kim, Jinna
2016-02-01
The objective of this study was to investigate differences in dynamic contrast-enhanced MRI (DCE-MRI) parameters on the basis of the status of human papillomavirus (HPV) and epidermal growth factor receptor (EGFR) biomarkers in patients with squamous cell carcinoma (SCC) of the oral cavity and oropharynx by use of histogram analysis. A total of 22 consecutive patients with oral cavity and oropharyngeal SCC underwent DCE-MRI before receiving treatment. DCE parameter maps of the volume transfer constant (K(trans)), the flux rate constant (kep), and the extravascular extracellular volume fraction (ve) were obtained. The histogram parameters were calculated using the entire enhancing tumor volume and were compared between the patient subgroups on the basis of HPV and EGFR biomarker statuses. The cumulative histogram parameters of K(trans) and kep showed lower values in the HPV-negative and EFGR-overexpression group than in the HPV-positive EGFR-negative group. These differences were statistically significant for the mean (p = 0.009), 25th, 50th, and 75th percentile values of K(trans) and for the 25th percentile value of kep when correlated with HPV status in addition to the mean K(trans) value (p = 0.047) and kep value (p = 0.004) when correlated with EGFR status. No statistically significant difference in ve was found on the basis of HPV and EGFR status. DCE-MRI is useful for the assessment of the tumor microenvironment associated with HPV and EGFR biomarkers before treatment of patients with oral cavity and oropharyngeal SCC.
Volumetrical Characterization of Sheet Molding Compounds
Calvimontes, Alfredo; Grundke, Karina; Müller, Anett
2010-01-01
For a comprehensive study of Sheet Molding Compound (SMC) surfaces, topographical data obtained by chromatic confocal imaging were submitted systematically for the development of a profile model to understand the formation of cavities on the surface. In order to qualify SMC surfaces and to predict their coatability, a characterization of cavities is applied. To quantify the effect of surface modification treatments, a new parameter (Surface Relative Smooth) is presented, applied and probed. The parameter proposed can be used for any surface modification of any solid material. PMID:28883370
Generalized classes of continuous symmetries in two-mode Dicke models
NASA Astrophysics Data System (ADS)
Moodie, Ryan I.; Ballantine, Kyle E.; Keeling, Jonathan
2018-03-01
As recently realized experimentally [Nature (London) 543, 87 (2017), 10.1038/nature21067], one can engineer models with continuous symmetries by coupling two cavity modes to trapped atoms via a Raman pumping geometry. Considering specifically cases where internal states of the atoms couple to the cavity, we show an extended range of parameters for which continuous symmetry breaking can occur, and we classify the distinct steady states and time-dependent states that arise for different points in this extended parameter regime.
RF Behavior of Cylindrical Cavity Based 240 GHz, 1 MW Gyrotron for Future Tokamak System
NASA Astrophysics Data System (ADS)
Kumar, Nitin; Singh, Udaybir; Bera, Anirban; Sinha, A. K.
2017-11-01
In this paper, we present the RF behavior of conventional cylindrical interaction cavity for 240 GHz, 1 MW gyrotron for futuristic plasma fusion reactors. Very high-order TE mode is searched for this gyrotron to minimize the Ohmic wall loading at the interaction cavity. The mode selection process is carried out rigorously to analyze the mode competition and design feasibility. The cold cavity analysis and beam-wave interaction computation are carried out to finalize the cavity design. The detail parametric analyses for interaction cavity are performed in terms of mode stability, interaction efficiency and frequency. In addition, the design of triode type magnetron injection gun is also discussed. The electron beam parameters such as velocity ratio and velocity spread are optimized as per the requirement at interaction cavity. The design studies presented here confirm the realization of CW, 1 MW power at 240 GHz frequency at TE46,17 mode.
Optically thin hybrid cavity for terahertz photo-conductive detectors
Thompson, Robert J.; Siday, T.; Glass, S.; ...
2017-01-23
Here, the efficiency of photoconductive (PC) devices, including terahertz detectors, is constrained by the bulk optical constants of PC materials. Here, we show that optical absorption in a PC layer can be modified substantially within a hybrid cavity containing nanoantennas and a Distributed Bragg Reflector. We find that a hybrid cavity, consisting of a GaAs PC layer of just 50 nm, can be used to absorb >75% of incident photons by trapping the light within the cavity. We provide an intuitive model, which describes the dependence of the optimum operation wavelength on the cavity thickness. We also find that themore » nanoantenna size is a critical parameter, small variations of which lead to both wavelength shifting and reduced absorption in the cavity, suggesting that impedance matching is key for achieving efficient absorption in the optically thin hybrid cavities.« less
Design And Commissioning Status Of New Cylindrical HiPIMS Nb Coating System for SRF Cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, H. Lawrence; Macha, Kurt M.; Valente-Feliciano, Anne-Marie
2014-02-01
For the past 19 years Jefferson Lab has sustained a program studying niobium films deposited on small samples in order to develop an understanding of the correlation between deposition parameters, film micro-structure, and RF performance. A new cavity deposition system employing a cylindrical cathode using the HiPIMS technique has been developed to apply this work to cylindrical cavities. The status of this system will be presented.
Cavity cooling of an optically levitated submicron particle
Kiesel, Nikolai; Blaser, Florian; Delić, Uroš; Grass, David; Kaltenbaek, Rainer; Aspelmeyer, Markus
2013-01-01
The coupling of a levitated submicron particle and an optical cavity field promises access to a unique parameter regime both for macroscopic quantum experiments and for high-precision force sensing. We report a demonstration of such controlled interactions by cavity cooling the center-of-mass motion of an optically trapped submicron particle. This paves the way for a light–matter interface that can enable room-temperature quantum experiments with mesoscopic mechanical systems. PMID:23940352
Mode structure of a quantum cascade laser
NASA Astrophysics Data System (ADS)
Bogdanov, A. A.; Suris, R. A.
2011-03-01
We analyze the mode structure of a quantum cascade laser (QCL) cavity considering the surface plasmon-polariton modes and familiar modes of hollow resonator jointly, within a single model. We present a comprehensive mode structure analysis of the laser cavity, varying its geometric parameters and free electron concentration inside cavity layers within a wide range. Our analysis covers, in particular, the cases of metal-insulator-metal and insulator-metal-insulator waveguides. We discuss the phenomenon of negative dispersion for eigenmodes in detail and explain the nature of this phenomenon. We specify a waveguide parameters domain in which negative dispersion exists. The mode structure of QCL cavity is considered in the case of the anisotropic electrical properties of the waveguide materials. We show that anisotropy of the waveguide core results in propagation of Langmuir modes that are degenerated in the case of the isotropic core. Comparative analysis of optical losses due to free carrier absorption is presented for different modes within the frequency range from terahertz to ultraviolet frequencies.
Efficient model for low-energy transverse beam dynamics in a nine-cell 1.3 GHz cavity
NASA Astrophysics Data System (ADS)
Hellert, Thorsten; Dohlus, Martin; Decking, Winfried
2017-10-01
FLASH and the European XFEL are SASE-FEL user facilities, at which superconducting TESLA cavities are operated in a pulsed mode to accelerate long bunch-trains. Several cavities are powered by one klystron. While the low-level rf system is able to stabilize the vector sum of the accelerating gradient of one rf station sufficiently, the rf parameters of individual cavities vary within the bunch-train. In correlation with misalignments, intrabunch-train trajectory variations are induced. An efficient model is developed to describe the effect at low beam energy, using numerically adjusted transfer matrices and discrete coupler kick coefficients, respectively. Comparison with start-to-end tracking and dedicated experiments at the FLASH injector will be shown. The short computation time of the derived model allows for comprehensive numerical studies on the impact of misalignments and variable rf parameters on the transverse intra-bunch-train beam stability at the injector module. Results from both, statistical multibunch performance studies and the deduction of misalignments from multibunch experiments are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, L.; Klebaner, A.; Theilacker, J.
2011-06-01
The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.
General Linewidth Formula for Steady-State Multimode Lasing in Arbitrary Cavities
NASA Astrophysics Data System (ADS)
Chong, Y. D.; Stone, A. Douglas
2012-08-01
A formula for the laser linewidth of arbitrary cavities in the multimode nonlinear regime is derived from a scattering analysis of the solutions to semiclassical laser theory. The theory generalizes previous treatments of the effects of gain and openness described by the Petermann factor. The linewidth is expressed using quantities based on the nonlinear scattering matrix, which can be computed from steady-state ab initio laser theory; unlike previous treatments, no passive cavity or phenomenological parameters are involved. We find that low cavity quality factor, combined with significant dielectric dispersion, can cause substantial deviations from the Shawlow-Townes-Petermann theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durand, Mathieu; Morville, Jerome; Romanini, Daniele
2010-09-15
We report on a promising approach to high-sensitivity anisotropy measurements using a high-finesse cavity locked by optical feedback to a diode laser. We provide a simple and effective way to decouple the weak anisotropy of interest from the inherent mirror's birefringence whose drift may be identified as the key limiting parameter in cavity-based techniques. We demonstrate a shot-noise-limited phase shift resolution previously inaccessible in an optical cavity, readily achieving the state-of-the-art level of 3x10{sup -13} rad.
Schumacher, Stefan; Förstner, Jens; Zrenner, Artur; Florian, Matthias; Gies, Christopher; Gartner, Paul; Jahnke, Frank
2012-02-27
We study the quantum properties and statistics of photons emitted by a quantum-dot biexciton inside a cavity. In the biexciton-exciton cascade, fine-structure splitting between exciton levels degrades polarization-entanglement for the emitted pair of photons. However, here we show that the polarization-entanglement can be preserved in such a system through simultaneous emission of two degenerate photons into cavity modes tuned to half the biexciton energy. Based on detailed theoretical calculations for realistic quantum-dot and cavity parameters, we quantify the degree of achievable entanglement.
Superconducting accelerator cavity with a heat affected zone having a higher RRR
Brawley, John; Phillips, H. Lawrence
2000-01-01
An improved method for welding accelerator cavities without the need for time consuming and expensive faying surface treatments comprising electron beam welding such cavities in a vacuum welding chamber within a vacuum envelope and using the following welding parameters: a beam voltage of between about 45 KV and 55 KV; a beam current between about 38 ma and 47 ma; a weld speed of about 15 cm/min; and a sharp focus and a rhombic raster of between about 9 KHz and 10 Khz. A welded cavity made according to the method of the present invention is also described.
Simultaneous Bistability of a Qubit and Resonator in Circuit Quantum Electrodynamics
NASA Astrophysics Data System (ADS)
Mavrogordatos, Th. K.; Tancredi, G.; Elliott, M.; Peterer, M. J.; Patterson, A.; Rahamim, J.; Leek, P. J.; Ginossar, E.; Szymańska, M. H.
2017-01-01
We explore the joint activated dynamics exhibited by two quantum degrees of freedom: a cavity mode oscillator which is strongly coupled to a superconducting qubit in the strongly coherently driven dispersive regime. Dynamical simulations and complementary measurements show a range of parameters where both the cavity and the qubit exhibit sudden simultaneous switching between two metastable states. This manifests in ensemble averaged amplitudes of both the cavity and qubit exhibiting a partial coherent cancellation. Transmission measurements of driven microwave cavities coupled to transmon qubits show detailed features which agree with the theory in the regime of simultaneous switching.
Wu, Haipeng; Cao, Wanlin; Qiao, Qiyun; Dong, Hongying
2016-01-01
A method is presented to predict the complete stress-strain curves of concrete subjected to triaxial stresses, which were caused by axial load and lateral force. The stress can be induced due to the confinement action inside a special-shaped steel tube having multiple cavities. The existing reinforced confined concrete formulas have been improved to determine the confinement action. The influence of cross-sectional shape, of cavity construction, of stiffening ribs and of reinforcement in cavities has been considered in the model. The parameters of the model are determined on the basis of experimental results of an axial compression test for two different kinds of special-shaped concrete filled steel tube (CFT) columns with multiple cavities. The complete load-strain curves of the special-shaped CFT columns are estimated. The predicted concrete strength and the post-peak behavior are found to show good agreement within the accepted limits, compared with the experimental results. In addition, the parameters of proposed model are taken from two kinds of totally different CFT columns, so that it can be concluded that this model is also applicable to concrete confined by other special-shaped steel tubes. PMID:28787886
Wu, Haipeng; Cao, Wanlin; Qiao, Qiyun; Dong, Hongying
2016-01-29
A method is presented to predict the complete stress-strain curves of concrete subjected to triaxial stresses, which were caused by axial load and lateral force. The stress can be induced due to the confinement action inside a special-shaped steel tube having multiple cavities. The existing reinforced confined concrete formulas have been improved to determine the confinement action. The influence of cross-sectional shape, of cavity construction, of stiffening ribs and of reinforcement in cavities has been considered in the model. The parameters of the model are determined on the basis of experimental results of an axial compression test for two different kinds of special-shaped concrete filled steel tube (CFT) columns with multiple cavities. The complete load-strain curves of the special-shaped CFT columns are estimated. The predicted concrete strength and the post-peak behavior are found to show good agreement within the accepted limits, compared with the experimental results. In addition, the parameters of proposed model are taken from two kinds of totally different CFT columns, so that it can be concluded that this model is also applicable to concrete confined by other special-shaped steel tubes.
Micromachined Integrated Quantum Circuit Containing a Superconducting Qubit
NASA Astrophysics Data System (ADS)
Brecht, T.; Chu, Y.; Axline, C.; Pfaff, W.; Blumoff, J. Z.; Chou, K.; Krayzman, L.; Frunzio, L.; Schoelkopf, R. J.
2017-04-01
We present a device demonstrating a lithographically patterned transmon integrated with a micromachined cavity resonator. Our two-cavity, one-qubit device is a multilayer microwave-integrated quantum circuit (MMIQC), comprising a basic unit capable of performing circuit-QED operations. We describe the qubit-cavity coupling mechanism of a specialized geometry using an electric-field picture and a circuit model, and obtain specific system parameters using simulations. Fabrication of the MMIQC includes lithography, etching, and metallic bonding of silicon wafers. Superconducting wafer bonding is a critical capability that is demonstrated by a micromachined storage-cavity lifetime of 34.3 μ s , corresponding to a quality factor of 2 ×106 at single-photon energies. The transmon coherence times are T1=6.4 μ s , and T2echo=11.7 μ s . We measure qubit-cavity dispersive coupling with a rate χq μ/2 π =-1.17 MHz , constituting a Jaynes-Cummings system with an interaction strength g /2 π =49 MHz . With these parameters we are able to demonstrate circuit-QED operations in the strong dispersive regime with ease. Finally, we highlight several improvements and anticipated extensions of the technology to complex MMIQCs.
Cavity-assisted mesoscopic transport of fermions: Coherent and dissipative dynamics
NASA Astrophysics Data System (ADS)
Hagenmüller, David; Schütz, Stefan; Schachenmayer, Johannes; Genes, Claudiu; Pupillo, Guido
2018-05-01
We study the interplay between charge transport and light-matter interactions in a confined geometry by considering an open, mesoscopic chain of two-orbital systems resonantly coupled to a single bosonic mode close to its vacuum state. We introduce and benchmark different methods based on self-consistent solutions of nonequilibrium Green's functions and numerical simulations of the quantum master equation, and derive both analytical and numerical results. It is shown that in the dissipative regime where the cavity photon decay rate is the largest parameter, the light-matter coupling is responsible for a steady-state current enhancement scaling with the cooperativity parameter. We further identify different regimes of interest depending on the ratio between the cavity decay rate and the electronic bandwidth. Considering the situation where the lower band has a vanishing bandwidth, we show that for a high-finesse cavity, the properties of the resonant Bloch state in the upper band are transferred to the lower one, giving rise to a delocalized state along the chain. Conversely, in the dissipative regime with low-cavity quality factors, we find that the current enhancement is due to a collective decay of populations from the upper to the lower band.
Operation and investigation of a tilted bottom cavity for pyrgeometer characterizations.
Gröbner, Julian
2008-08-20
A new cavity for pyrgeometer characterizations has been built at the Infrared Radiometry Section of the World Radiation Center (WRC-IRS) at PMOD/WRC. The calculated effective emissivity of 0.99993+/-0.00033 was obtained from Monte Carlo simulations taking into account the geometry and the measured temperature distributions of the cavity. The cavity is operated in a temperature range of -30 degrees C to +30 degrees C and is initially flushed with nitrogen to reduce the relative humidity in the cavity. The estimated uncertainties of retrieved pyrgeometer parameters k1, k2, and k3 are +/-0.024, +/-0.0008, and +/-0.03, respectively. The relative uncertainty of pyrgeometer sensitivity C is 0.8%. The comparison with the cavity used since 1995 at PMOD/WRC gave average differences of 0.005, 0.00026, and 0.08 for k1, k2, and k3, respectively. The pyrgeometer sensitivity retrieved with the new cavity is on average 1.0% higher than with the original cavity.
Aeropropulsion Technology (APT). Task 23 - Stator Seal Cavity Flow Investigation
NASA Technical Reports Server (NTRS)
Heidegger, N. J.; Hall, E. J.; Delaney, R. A.
1996-01-01
The focus of NASA Contract NAS3-25950 Task 23 was to numerically investigate the flow through an axial compressor inner-banded stator seal cavity. The Allison/NASA developed ADPAC code was used to obtain all flow predictions. Flow through a labyrinth stator seal cavity of a high-speed compressor was modeled by coupling the cavity flow path and the main flow path of the compressor. A grid resolution study was performed to guarantee adequate grid spacing was used. Both unsteady rotor-stator-rotor interactions and steady-state isolated blade calculations were performed with and without the seal cavity present. A parameterized seal cavity study of the high-speed stator seal cavity collected a series of solutions for geometric variations. The parameter list included seal tooth gap, cavity depth, wheel speed, radial mismatch of hub flowpath, axial trench gap, hub corner treatments, and land edge treatments. Solution data presented includes radial and pitchwise distributions of flow variables and particle traces describing the flow character.
Yüce, Emre; Ctistis, Georgios; Claudon, Julien; Gérard, Jean-Michel; Vos, Willem L
2016-01-11
We have switched GaAs/AlAs and AlGaAs/AlAs planar microcavities that operate in the "Original" (O) telecom band by exploiting the instantaneous electronic Kerr effect. We observe that the resonance frequency reversibly shifts within one picosecond when the nanostructure is pumped with low-energy photons. We investigate experimentally and theoretically the role of several parameters: the material backbone and its electronic bandgap, the quality factor, and the duration of the switch pulse. The magnitude of the frequency shift is reduced when the backbone of the central λ-layer has a greater electronic bandgap compared to the cavity resonance frequency and the frequency of the pump. This observation is caused by the fact that pumping with photon energies near the bandgap resonantly enhances the switched magnitude. We thus find that cavities operating in the telecom O-band are more amenable to ultrafast Kerr switching than those operating at lower frequencies, such as the C-band. Our results indicate that the large bandgap of AlGaAs/AlAs cavity allows to tune both the pump and the probe to the telecom range to perform Kerr switching without detrimental two-photon absorption. We observe that the magnitude of the resonance frequency shift decreases with increasing quality factor of the cavity. Our model shows that the magnitude of the resonance frequency shift depends on the pump pulse duration and is maximized when the duration matches the cavity storage time to within a factor two. In our experiments, we obtain a maximum shift of the cavity resonance relative to the cavity linewidth of 20%. We project that the shift of the cavity resonance can be increased twofold with a pump pulse duration that better matches the cavity storage time. We provide the essential parameter settings for different materials so that the frequency shift of the cavity resonance can be maximized using the electronic Kerr effect.
NASA Astrophysics Data System (ADS)
Rajaram, Sara; Trivedi, Nandini
2013-12-01
We show that photon number measurement can be used to detect superfluidity for a two-band Bose-Hubbard model coupled to a cavity field. The atom-photon coupling induces transitions between the two internal atomic levels and results in entangled polaritonic states. In the presence of a cavity field, we find different photon numbers in the Mott-insulating versus superfluid phases, providing a method of distinguishing the atomic phases by photon counting. Furthermore, we examine the dynamics of the photon field after a rapid quench to zero atomic hopping by increasing the well depth. We find a robust correlation between the field’s quench dynamics and the initial superfluid order parameter, thereby providing a novel and accurate method of determining the order parameter.
NASA Astrophysics Data System (ADS)
Glagoleva, A. A.; Vasilevskaya, V. V.; Yoshikawa, K.; Khokhlov, A. R.
2013-12-01
In general, bio-macromolecules are composed of hydrophilic and hydrophobic moieties and are confined within small cavities, such as cell membranes and intracellular organelles. Here, we studied the self-organization of macromolecules having groups with different affinities to solvents under spherical nano-scale confinement by means of computer modeling. It is shown that depending on the interaction parameters of monomer units composed of side- and main-chain monomer groups along a single linear macromolecule and on cavity size, such amphiphilic polymers undergo the conformational transitions between hollow nanospheres, rod-like and folded cylindrical structures, and a necklace conformation with and without a particular ordering of beads. The diagram of the conformations in the variables the incompatibility parameter of monomer units and the cavity radius is constructed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schunk, Peter Randall; King, William P.; Sun, Amy Cha-Tien
2006-08-01
This paper presents continuum simulations of polymer flow during nanoimprint lithography (NIL). The simulations capture the underlying physics of polymer flow from the nanometer to millimeter length scale and examine geometry and thermophysical process quantities affecting cavity filling. Variations in embossing tool geometry and polymer film thickness during viscous flow distinguish different flow driving mechanisms. Three parameters can predict polymer deformation mode: cavity width to polymer thickness ratio, polymer supply ratio, and Capillary number. The ratio of cavity width to initial polymer film thickness determines vertically or laterally dominant deformation. The ratio of indenter width to residual film thickness measuresmore » polymer supply beneath the indenter which determines Stokes or squeeze flow. The local geometry ratios can predict a fill time based on laminar flow between plates, Stokes flow, or squeeze flow. Characteristic NIL capillary number based on geometry-dependent fill time distinguishes between capillary or viscous driven flows. The three parameters predict filling modes observed in published studies of NIL deformation over nanometer to millimeter length scales. The work seeks to establish process design rules for NIL and to provide tools for the rational design of NIL master templates, resist polymers, and process parameters.« less
Identification of Candida species in the oral cavity of diabetic patients
Mohammadi, F; Javaheri, MR; Nekoeian, S; Dehghan, P
2016-01-01
Background and Purpose: Diabetic patients are more susceptible to oral candidiasis infection than non-diabetics due to the factors promoting oral carriage of Candida. Several factors can increase colonization of Candida species in the oral cavity such as xerostomia, which reduces the salivary flow and is a salivary pH disorder. In the current study, we aimed to identify and compare the colonization level of Candida spp. in the oral cavity of diabetic and non-diabetic groups. Materials and Methods: Swabs were taken from the mouth of 106 participants and were cultured on Sabouraud dextrose agar (SDA) medium. Likewise, the saliva samples were collected for salivary glucose and pH measurements. The study was performed during June 2014-September 2015 on two groups of diabetic patients (n=58) and non-diabetics (n=48) as the control group. The Candida spp. were identified with PCR-restriction fragment length polymorphism (RFLP) using the restriction enzymes HinfI and MspI and were differentiated by culture on CHROMagar Candida medium. Results: The frequency of Candida spp. was higher in diabetic patients compared to non-diabetics. The most frequent Candida spp. in the diabetic patients were Candida albicans (%36.2), C. Krusei (%10.4), C. Glabrata (%5.1), and C. tropcalis .(%3.4)Likewise, C. albicans was the most frequent species (%27) in the non-diabetic individuals. In this study, the results of both methods for identification of the isolates were consistent with each other. Conclusion: Xerostomia and disturbance of physiological factors including pH and glucose can promote overgrowth of Candida flora in the oral cavity. These factors are considered important predisposing factors for oral candidiasis in diabetic patients. In the present study, it was observed that application of CHROMagar Candida and PCR-RFLP methods at the same time contributes to more accurate identification of isolates. PMID:28681013
NASA Astrophysics Data System (ADS)
Chen, Bin; Wang, Xiao-Fang; Yan, Jia-Kai; Zhu, Xiao-Fei; Jiang, Cheng
2018-01-01
We theoretically investigate the optical bistable behavior in a three-mode optomechanical system with atom-cavity-mirror couplings. The effects of the cavity-pump detuning and the pump power on the bistable behavior are discussed detailedly, the impacts of the atom-pump detuning and the atom-cavity coupling strength on the bistability of the system are also explored, and the influences of the cavity-resonator coupling strength and the cavity decay rate are also taken into consideration. The numerical results demonstrate that by tuning these parameters the bistable behavior of the system can be freely switched on or off, and the threshold of the pump power for the bistability as well as the bistable region width can also be effectively controlled. These results can find potential applications in optical bistable switch in the quantum information processing.
Theory of active mode locking of a semiconductor laser in an external cavity
NASA Technical Reports Server (NTRS)
Yeung, J. A.
1981-01-01
An analytical treatment is given for the active mode locking of a semiconductor laser in an external resonator. The width of the mode-locked pulses is obtained as a function of the laser and cavity parameters and the amount of frequency detuning. The effects of self-modulation and saturation are included in the treatment. The pulse output is compared with that obtained by a strong modulation of the laser diode with no external cavity.
Accuracy of a teleported squeezed coherent-state superposition trapped into a high-Q cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sales, J. S.; Silva, L. F. da; Almeida, N. G. de
2011-03-15
We propose a scheme to teleport a superposition of squeezed coherent states from one mode of a lossy cavity to one mode of a second lossy cavity. Based on current experimental capabilities, we present a calculation of the fidelity demonstrating that accurate quantum teleportation can be achieved for some parameters of the squeezed coherent states superposition. The signature of successful quantum teleportation is present in the negative values of the Wigner function.
Accuracy of a teleported squeezed coherent-state superposition trapped into a high-Q cavity
NASA Astrophysics Data System (ADS)
Sales, J. S.; da Silva, L. F.; de Almeida, N. G.
2011-03-01
We propose a scheme to teleport a superposition of squeezed coherent states from one mode of a lossy cavity to one mode of a second lossy cavity. Based on current experimental capabilities, we present a calculation of the fidelity demonstrating that accurate quantum teleportation can be achieved for some parameters of the squeezed coherent states superposition. The signature of successful quantum teleportation is present in the negative values of the Wigner function.
NASA Astrophysics Data System (ADS)
Chen, Zhengwei; Wang, Yueshe; Hao, Yun; Wang, Qizhi
2013-07-01
The solar cavity receiver is an important light-energy to thermal-energy convector in the tower solar thermal power plant system. The heat flux in the inner surface of the cavity will show the characteristics of non-continuous step change especially in non-normal and transient weather conditions, which may result in a continuous dynamic variation of the characteristic parameters. Therefore, the research of dynamic characteristics of the receiver plays a very important role in the operation and the control safely in solar cavity receiver system. In this paper, based on the non-continuous step change of radiation flux, a non-linear dynamic model is put forward to obtain the effects of the non-continuous step change radiation flux and step change feed water flow on the receiver performance by sequential modular approach. The subject investigated in our study is a 1MW solar power station constructed in Yanqing County, Beijing. This study has obtained the dynamic responses of the characteristic parameters in the cavity receiver, such as drum pressure, drum water level, main steam flow and main steam enthalpy under step change radiation flux. And the influence law of step-change feed water flow to the dynamic characteristics in the receiver also has been analyzed. The results have a reference value for the safe operation and the control in solar cavity receiver system.
Shuttle Return To Flight Experimental Results: Cavity Effects on Boundary Layer Transition
NASA Technical Reports Server (NTRS)
Liechty, Derek S.; Horvath, Thomas J.; Berry, Scott A.
2006-01-01
The effect of an isolated rectangular cavity on hypersonic boundary layer transition of the windward surface of the Shuttle Orbiter has been experimentally examined in the Langley Aerothermodynamics Laboratory in support of an agency-wide effort to prepare the Shuttle Orbiter for return to flight. This experimental study was initiated to provide a cavity effects database for developing hypersonic transition criteria to support on-orbit decisions to repair a damaged thermal protection system. Boundary layer transition results were obtained using 0.0075-scale Orbiter models with simulated tile damage (rectangular cavities) of varying length, width, and depth. The database contained within this report will be used to formulate cavity-induced transition correlations using predicted boundary layer edge parameters.
Heating Augmentation in Laminar Flow Due to Heat-Shield Cavities on the Project Orion CEV
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
2008-01-01
An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion CEV heat-shield at laminar conditions. Testing was conducted in Mach 6 and Mach 10 perfect-gas wind tunnels to obtain heating measurements on and around the compression pads using global phosphor thermography. Consistent trends in heating augmentation levels were observed in the data and correlations of average and maximum heating at the cavities were formulated in terms of the local boundary-layer parameters and cavity dimensions. Additional heating data from prior testing of Genesis and Mars Science Laboratory models were also examined to extend the parametric range of cavity heating correlations.
NASA Astrophysics Data System (ADS)
Tian, Jiajun; Jiao, Yuzhu; Ji, Shaobo; Dong, Xiaolong; Yao, Yong
2018-04-01
We propose and demonstrate a fiber sensor for simultaneous temperature and strain measurements. The proposed sensor is implemented by a cascaded-cavity Fabry-Perot (FP) fiber interferometer. The two cascaded FP cavities comprise a micro-air-cavity in a hollow-core tube fiber and a micro-silica-cavity in a standard single-mode fiber. To separate the interference spectrum of each FP cavity, the total spectrum is filtered in the frequency domain through band-pass filters, whose central frequencies were predesigned based on the relationship between the spatial frequency and free spectral range of each FP cavity. The different cross-sectional areas and thermal-optic coefficients of the two FP cavities confer different sensitivities to temperature and strain. Both parameters were measured simultaneously by tracking the wavelength shifts in the filtered interference spectra of the FP cavities. Moreover, the temperature-strain cross-sensitivity was compensated by solving a sensitivity-coefficient matrix equation for the two cavities, using the calibrated temperatures and strains. Other advantages of the proposed sensor are simple fabrication and an all-fiber structure. Owing to these properties, the proposed sensor is potentially applicable to real sensing applications.
[Study on the automatic parameters identification of water pipe network model].
Jia, Hai-Feng; Zhao, Qi-Feng
2010-01-01
Based on the problems analysis on development and application of water pipe network model, the model parameters automatic identification is regarded as a kernel bottleneck of model's application in water supply enterprise. The methodology of water pipe network model parameters automatic identification based on GIS and SCADA database is proposed. Then the kernel algorithm of model parameters automatic identification is studied, RSA (Regionalized Sensitivity Analysis) is used for automatic recognition of sensitive parameters, and MCS (Monte-Carlo Sampling) is used for automatic identification of parameters, the detail technical route based on RSA and MCS is presented. The module of water pipe network model parameters automatic identification is developed. At last, selected a typical water pipe network as a case, the case study on water pipe network model parameters automatic identification is conducted and the satisfied results are achieved.
Aero-Heating of Shallow Cavities in Hypersonic Freestream Flow
NASA Technical Reports Server (NTRS)
Everhart, Joel L.; Berger, Karen T.; Merski, N. R., Jr.; Woods, William A.; Hollingsworth, Kevin E.; Hyatt, Andrew; Prabhu, Ramadas K.
2010-01-01
The purpose of these experiments and analysis was to augment the heating database and tools used for assessment of impact-induced shallow-cavity damage to the thermal protection system of the Space Shuttle Orbiter. The effect of length and depth on the local heating disturbance of rectangular cavities tested at hypersonic freestream conditions has been globally assessed using the two-color phosphor thermography method. These rapid-response experiments were conducted in the Langley 31-Inch Mach 10 Tunnel and were initiated immediately prior to the launch of STS-114, the initial flight in the Space Shuttle Return-To-Flight Program, and continued during the first week of the mission. Previously-designed and numerically-characterized blunted-nose baseline flat plates were used as the test surfaces. Three-dimensional computational predictions of the entire model geometry were used as a check on the design process and the two-dimensional flow assumptions used for the data analysis. The experimental boundary layer state conditions were inferred using the measured heating distributions on a no-cavity test article. Two test plates were developed, each containing 4 equally-spaced spanwise-distributed cavities. The first test plate contained cavities with a constant length-to-depth ratio of 8 with design point depth-to-boundary-layer-thickness ratios of 0.1, 0.2, 0.35, and 0.5. The second test plate contained cavities with a constant design point depth-to-boundary-layer-thickness ratio of 0.35 with length-to-depth ratios of 8, 12, 16, and 20. Cavity design parameters and the test condition matrix were established using the computational predictions. Preliminary results indicate that the floor-averaged Bump Factor (local heating rate nondimensionalized by upstream reference) at the tested conditions is approximately 0.3 with a standard deviation of 0.04 for laminar-in/laminar-out conditions when the cavity length-to-boundary-layer thickness is between 2.5 and 10 and for cavities in the depth-to-boundary-layer-thickness range of 0.3 to 0.8. Over this same range of conditions and parameters, preliminary results also indicate that the maximum Bump Factor on the cavity centerline falls between 2.0 and 2.75, as long as the cavity-exit conditions remain laminar. Cavities with length-to-boundary-layer-thickness ratio less than 2.5 can not be easily classified with this approach and require further analysis.
NASA Technical Reports Server (NTRS)
Clement, J. D.; Kirby, K. D.
1973-01-01
Exploratory calculations were performed for several gas core breeder reactor configurations. The computational method involved the use of the MACH-1 one dimensional diffusion theory code and the THERMOS integral transport theory code for thermal cross sections. Computations were performed to analyze thermal breeder concepts and nonbreeder concepts. Analysis of breeders was restricted to the (U-233)-Th breeding cycle, and computations were performed to examine a range of parameters. These parameters include U-233 to hydrogen atom ratio in the gaseous cavity, carbon to thorium atom ratio in the breeding blanket, cavity size, and blanket size.
NASA Astrophysics Data System (ADS)
Zhu, Jianxiong; Chen, Cong; Guo, Xiaoyu
2018-04-01
We report a suspended polytetrafluoroethylene (PTFE) nanostructure electret film in dual variable cavities for a self-powered micro-shock sensing application. The prototype contained series variable air cavities, a suspended nanostructure PTFE electret film and independent electrode films. The charges on the suspended nanostructure PTFE electret film provided the electrostatic field around the electret film in the series variable air cavities. When the reported device was driven by a micro-shock pressure, the inducted electrostatic charges on both the top and bottom electrodes would vary as the micro-shock pressing or releasing. Experimental results showed that the maximum of a short-circuit current density (J sc ) and an open-circuit voltage (V oc ) reached 3 ± 0.1 nA cm‑2 and 3.6 ± 0.1 V, respectively. It was found that the parameter J sc was more advantageous in identifying stronger shocks (parameter acceleration a bigger than 0.1 m s‑2), whereas the parameter V oc was more sensitive for weaker shocks, such as acceleration a smaller than 0.1 m s‑2. Moreover, finger continuous micro-shock pressure taps application was used to demonstrate the mechanical energy conversion performance with 4.5 ± 0.2 V open-circuit voltages. The research on the nanostructure electret PTFE film in series dual variable air cavities not only gave us a fresh idea about the principle and design of the shocking sensor, but also provided an easy fabrication and a low cost shocking sensor for the Internet of Things (IoT) systems.
Evaluation of age-related changes with cross-sectional CT imaging of teeth
NASA Astrophysics Data System (ADS)
Fukui, Tatsumasa; Kita, Kanade; Kamemoto, Hiromasa; Nishiyama, Wataru; Yoshida, Hiroyasu; Iida, Yukihiro; Katsumata, Akitoshi; Muramatsu, Chisako; Fujita, Hiroshi
2017-03-01
Tooth pulp atrophy occurs with increasing age. An age estimation procedure using dental cone beam computed tomography (CBCT) imaging was developed. Clinical dental CBCT images of 60 patients (aged from 20 to 80 years) were evaluated. The ratio of the cross-sectional area of the pulp cavity to the cross-sectional area of the tooth (pulp cavity ratio) was calculated. The pulp cavity ratio in the labio-lingual plane of the mandibular anterior teeth and the mesio-distal plane of the maxillary anterior teeth was strongly correlated with the patients' age. The pulp cavity ratio of anterior teeth may be a useful parameter for estimating age.
Effect of the qubit relaxation on transport properties of microwave photons
NASA Astrophysics Data System (ADS)
Sultanov, A. N.; Greenberg, Ya. S.
2017-11-01
In this work, using the non-Hermitian Hamiltonian method, the transmission of a single photon in a one-dimensional waveguide interacting with the cavity containing an arbitrary number of photons and the two-level artificial atom is studied with allowance for the relaxation of the latter. For transport factors, analytical expressions which explicitly take into account the qubit relaxation parameter have been obtained. The form of the transmission (reflection) coefficient when there is more than one photon in the cavity qualitatively differs from the single-photon cavity and contains the manifestation of the photon blockade effect. The qubit lifetime depends on the number of photons in the cavity.
Dissipative preparation of entanglement in optical cavities.
Kastoryano, M J; Reiter, F; Sørensen, A S
2011-03-04
We propose a novel scheme for the preparation of a maximally entangled state of two atoms in an optical cavity. Starting from an arbitrary initial state, a singlet state is prepared as the unique fixed point of a dissipative quantum dynamical process. In our scheme, cavity decay is no longer undesirable, but plays an integral part in the dynamics. As a result, we get a qualitative improvement in the scaling of the fidelity with the cavity parameters. Our analysis indicates that dissipative state preparation is more than just a new conceptual approach, but can allow for significant improvement as compared to preparation protocols based on coherent unitary dynamics.
Laser polishing for topography management of accelerator cavity surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Liang; Klopf, J. Mike; Reece, Charles E.
2015-07-20
Improved energy efficiency and reduced cost are greatly desired for advanced particle accelerators. Progress toward both can be made by atomically-smoothing the interior surface of the niobium superconducting radiofrequency accelerator cavities at the machine's heart. Laser polishing offers a green alternative to the present aggressive chemical processes. We found parameters suitable for polishing niobium in all surface states expected for cavity production. As a result, careful measurement of the resulting surface chemistry revealed a modest thinning of the surface oxide layer, but no contamination.
[Multi-center study of the Jenaer model of the temporal bone].
Schneider, G; Müller, A
2004-06-01
Preparing exercises at the temporal bone are a prerequisite for the knowledge of the anatomical special features of this region and for learning the fundamentals of the tympanic cavity surgery. Since however fewer human temporal bones are available, the search for back-up models already took place in the last years. Based on the experiences of the handling and visualization of CT data for the 3D-implant construction in the ent department Jena a temporal bone model was developed. The model was sent away to surgeons of different training. On the basis of identification of anatomical structures and evaluation of general parameters by means of a point system the model was evaluated. The Jenaer temporal bone model is suitable as entrance into the preparing exercises. The anatomical structures are good to identify for the beginner. The handling with drill and chisel can be learned.
NASA Astrophysics Data System (ADS)
He, Juan; Wu, Tao; Ye, Liu
2013-10-01
In this paper, we study the dynamics of quantum discord and entanglement of three identical two-level atoms simultaneously resonantly interacting with three spatially separate single-mode of high- Q cavities respectively. Taking advantage of the depiction quantum discord and entanglement of formation (EoF), we conclude that the discord and entanglement of atoms and cavities can be mediated by changing some parameters and the maximum values of discord and entanglement are independent on the couplings of cavities and atoms. In particular, there also exists quantum discord sudden death as well as entanglement sudden death and the time interval of the former is shorter than that of the later in the proposed quantum system. It is shown that the discord and entanglement of any two atoms among three atoms can be transferred to the corresponding cavities, and there exists discord and entanglement exchanging between the atoms and the corresponding cavities.
Fiber cavities with integrated mode matching optics.
Gulati, Gurpreet Kaur; Takahashi, Hiroki; Podoliak, Nina; Horak, Peter; Keller, Matthias
2017-07-17
In fiber based Fabry-Pérot Cavities (FFPCs), limited spatial mode matching between the cavity mode and input/output modes has been the main hindrance for many applications. We have demonstrated a versatile mode matching method for FFPCs. Our novel design employs an assembly of a graded-index and large core multimode fiber directly spliced to a single mode fiber. This all-fiber assembly transforms the propagating mode of the single mode fiber to match with the mode of a FFPC. As a result, we have measured a mode matching of 90% for a cavity length of ~400 μm. This is a significant improvement compared to conventional FFPCs coupled with just a single mode fiber, especially at long cavity lengths. Adjusting the parameters of the assembly, the fundamental cavity mode can be matched with the mode of almost any single mode fiber, making this approach highly versatile and integrable.
A low threshold nanocavity in a two-dimensional 12-fold photonic quasicrystal
NASA Astrophysics Data System (ADS)
Ren, Jie; Sun, XiaoHong; Wang, Shuai
2018-05-01
In this article, a low threshold nanocavity is built and investigated in a two-dimensional 12-fold holographic photonic quasicrystal (PQC). The cavity is formed by using the method of multi-beam common-path interference. By finely adjusting the structure parameters of the cavity, the Q factor and the mode volume are optimized, which are two keys to low-threshold on the basis of Purcell effect. Finally, an optimal cavity is obtained with Q value of 6023 and mode volume of 1.24 ×10-12cm3 . On the other hand, by Fourier Transformation of the electric field components in the cavity, the in-plane wave vectors are calculated and fitted to evaluate the cavity performance. The performance analysis of the cavity further proves the effectiveness of the optimization process. This has a guiding significance for the research of low threshold nano-laser.
Magnetic flux studies in horizontally cooled elliptical superconducting cavities
Martinello, M.; Checchin, M.; Grassellino, A.; ...
2015-07-29
Previous studies on magnetic flux expulsion as a function of cooldown procedures for elliptical superconducting radio frequency (SRF) niobium cavities showed that when the cavity beam axis is placed parallel to the helium cooling flow and sufficiently large thermal gradients are achieved, all magnetic flux could be expelled and very low residual resistance could be achieved. In this paper, we investigate flux trapping for the case of resonators positioned perpendicularly to the helium cooling flow, which is more representative of how SRF cavities are cooled in accelerators and for different directions of the applied magnetic field surrounding the resonator. Wemore » show that different field components have a different impact on the surface resistance, and several parameters have to be considered to fully understand the flux dynamics. A newly discovered phenomenon of concentration of flux lines at the cavity top leading to temperature rise at the cavity equator is presented.« less
Chen, Pengcheng; Shu, Xuewen; Cao, Haoran; Sugden, Kate
2017-08-15
Most sensors face a common trade-off between high sensitivity and a large dynamic range. We demonstrate here an all-fiber refractometer based on a dual-cavity Fabry-Perot interferometer (FPI) that possesses the advantage of both high sensitivity and a large dynamic range. Since the two composite cavities have a large cavity length difference, one can observe both fine and coarse fringes, which correspond to the long cavity and the short cavity, respectively. The short-cavity FPI and the use of an intensity demodulation method mean that the individual fine fringe dips correspond to a series of quasi-continuous highly sensitive zones for refractive index measurement. By calculating the parameters of the composite FPI, we find that the range of the ultra-sensitive zones can be considerably adjusted to suit the end requirements. The experimental trends are in good agreement with the theoretical predictions. The co-existence of high sensitivity and a large dynamic range in a composite FPI is of great significance to practical RI measurements.
SRF Cavity Surface Topography Characterization Using Replica Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Xu, M.J. Kelley, C.E. Reece
2012-07-01
To better understand the roll of topography on SRF cavity performance, we seek to obtain detailed topographic information from the curved practical cavity surfaces. Replicas taken from a cavity interior surface provide internal surface molds for fine Atomic Force Microscopy (AFM) and stylus profilometry. In this study, we confirm the replica resolution both on surface local defects such as grain boundary and etching pits and compare the surface uniform roughness with the aid of Power Spectral Density (PSD) where we can statistically obtain roughness parameters at different scales. A series of sampling locations are at the same magnetic field chosenmore » at the same latitude on a single cell cavity to confirm the uniformity. Another series of sampling locations at different magnetic field amplitudes are chosen for this replica on the same cavity for later power loss calculation. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.« less
Liu, Huijie; Li, Nianqiang; Zhao, Qingchun
2015-05-10
Optical chaos generated by chaotic lasers has been widely used in several important applications, such as chaos-based communications and high-speed random-number generators. However, these applications are susceptible to degradation by the presence of time-delay (TD) signature identified from the chaotic output. Here we propose to achieve the concealment of TD signature, along with the enhancement of chaos bandwidth, in three-cascaded vertical-cavity surface-emitting lasers (VCSELs). The cascaded system is composed of an external-cavity master VCSEL, a solitary intermediate VCSEL, and a solitary slave VCSEL. Through mapping the evolutions of TD signature and chaos bandwidth in the parameter space of the injection strength and frequency detuning, photonic generation of polarization-resolved wideband chaos with TD concealment is numerically demonstrated for wide regions of the injection parameters.
Performance of the x-ray free-electron laser oscillator with crystal cavity
NASA Astrophysics Data System (ADS)
Lindberg, R. R.; Kim, K.-J.; Shvyd'Ko, Yu.; Fawley, W. M.
2011-01-01
Simulations of the x-ray free-electron laser (FEL) oscillator are presented that include the frequency-dependent Bragg crystal reflectivity and the transverse diffraction and focusing using the two-dimensional FEL code GINGER. A review of the physics of Bragg crystal reflectors and the x-ray FEL oscillator is made, followed by a discussion of its numerical implementation in GINGER. The simulation results for a two-crystal cavity and realistic FEL parameters indicate ˜109 photons in a nearly Fourier-limited, ps pulse. Compressing the electron beam to 100 A and 100 fs results in comparable x-ray characteristics for relaxed beam emittance, energy spread, and/or undulator parameters, albeit in a larger radiation bandwidth. Finally, preliminary simulation results indicate that the four-crystal FEL cavity can be tuned in energy over a range of a few percent.
[New approaches to oral cavity opportunistic microbiota study].
Tets, G V; Vikina, D S; Vecherkovskaia, M F; Domorad, A A; Kharlamova, V V; Tets, V V
2013-01-01
Identification of some bacteria of the oral microbiota in humans including opportunistic pathogens capable of causing infections of various locations is a challenging problem for dentistry. Lack of knowledge on oral microbiota is the result of the absence of appropriate culture technique for isolation of pure cultures of those bacteria. The paper presents the study on mixed oral microbial biofilms with isolation and identification of insufficiently explored or still unknown aerobic opportunistic bacteria.
On the tunneling time of ultracold atoms through a system of two mazer cavities.
Badshah, Fazal; Ge, Guo-Qin; Irfan, Muhammad; Qamar, Sajid; Qamar, Shahid
2018-01-30
We study the resonant tunneling of ultraslow atoms through a system of high quality microwave cavities. We find that the phase tunneling time across the two coupled cavities exhibits more frequent resonances as compared to the single cavity interaction. The increased resonances are instrumental in the display of an alternate sub and superclassical character of the tunneling time along the momentum axis with increasing energies of the incident slow atoms. Here, the intercavity separation appears as an additional controlling parameter of the system that provides an efficient control of the superclassical behavior of the phase tunneling time. Further, we find that the phase time characteristics through two cavity system has the combined features of the tunneling through a double barrier and a double well arrangements.
NASA Astrophysics Data System (ADS)
Lu, Mei; Chen, Qing-Qin
2018-05-01
We propose an efficient scheme to generate the maximal entangle states in an atom–cavity system between two three-level atoms in cavity quantum electronic dynamics system based on shortcuts to adiabatic passage. In the accelerate scheme, there is no need to design a time-varying coupling coefficient for the cavity. We only need to tactfully design time-dependent lasers to drive the system into the desired entangled states. Controlling the detuning between the cavity mode and lasers, we deduce a determinate analysis formula for this quantum information processing. The lasers do not need to distinguish which atom is to be affected, therefore the implementation of the experiment is simpler. The method is also generalized to generate a W state. Moreover, the accelerated program can be extended to a multi-body system and an analytical solution in a higher-dimensional system can be achieved. The influence of decoherence and variations of the parameters are discussed by numerical simulation. The results show that the maximally entangled states can be quickly prepared in a short time with high fidelity, and which are robust against both parameter fluctuations and dissipation. Our study enriches the physics and applications of multi-particle quantum entanglement preparation via shortcuts to adiabatic passage in quantum electronic dynamics.
Plasma processing of large curved surfaces for superconducting rf cavity modification
Upadhyay, J.; Im, Do; Popović, S.; ...
2014-12-15
In this study, plasma based surface modification of niobium is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. The development of the technology based on Cl 2/Ar plasma etching has to address several crucial parameters which influence the etching rate and surface roughness, and eventually, determine cavity performance. This includes dependence of the process on the frequency of the RF generator, gas pressure, power level, the driven (inner) electrode configuration, and the chlorine concentration in the gas mixture during plasma processing. To demonstrate surface layer removal in the asymmetric non-planar geometry, we are using a simplemore » cylindrical cavity with 8 ports symmetrically distributed over the cylinder. The ports are used for diagnosing the plasma parameters and as holders for the samples to be etched. The etching rate is highly correlated with the shape of the inner electrode, radio-frequency (RF) circuit elements, chlorine concentration in the Cl 2/Ar gas mixtures, residence time of reactive species and temperature of the cavity. Using cylindrical electrodes with variable radius, large-surface ring-shaped samples and d.c. bias implementation in the external circuit we have demonstrated substantial average etching rates and outlined the possibility to optimize plasma properties with respect to maximum surface processing effect.« less
Passive tire pressure sensor and method
Pfeifer, Kent Bryant; Williams, Robert Leslie; Waldschmidt, Robert Lee; Morgan, Catherine Hook
2006-08-29
A surface acoustic wave device includes a micro-machined pressure transducer for monitoring tire pressure. The device is configured having a micro-machined cavity that is sealed with a flexible conductive membrane. When an external tire pressure equivalent to the cavity pressure is detected, the membrane makes contact with ridges on the backside of the surface acoustic wave device. The ridges are electrically connected to conductive fingers of the device. When the detected pressure is correct, selected fingers on the device will be grounded producing patterned acoustic reflections to an impulse RF signal. When the external tire pressure is less than the cavity reference pressure, a reduced reflected signal to the receiver results. The sensor may further be constructed so as to identify itself by a unique reflected identification pulse series.
Passive tire pressure sensor and method
Pfeifer, Kent Bryant; Williams, Robert Leslie; Waldschmidt, Robert Lee; Morgan, Catherine Hook
2007-09-04
A surface acoustic wave device includes a micro-machined pressure transducer for monitoring tire pressure. The device is configured having a micro-machined cavity that is sealed with a flexible conductive membrane. When an external tire pressure equivalent to the cavity pressure is detected, the membrane makes contact with ridges on the backside of the surface acoustic wave device. The ridges are electrically connected to conductive fingers of the device. When the detected pressure is correct, selected fingers on the device will be grounded producing patterned acoustic reflections to an impulse RF signal. When the external tire pressure is less than the cavity reference pressure, a reduced reflected signal to the receiver results. The sensor may further be constructed so as to identify itself by a unique reflected identification pulse series.
On the problem of modeling for parameter identification in distributed structures
NASA Technical Reports Server (NTRS)
Norris, Mark A.; Meirovitch, Leonard
1988-01-01
Structures are often characterized by parameters, such as mass and stiffness, that are spatially distributed. Parameter identification of distributed structures is subject to many of the difficulties involved in the modeling problem, and the choice of the model can greatly affect the results of the parameter identification process. Analogously to control spillover in the control of distributed-parameter systems, identification spillover is shown to exist as well and its effect is to degrade the parameter estimates. Moreover, as in modeling by the Rayleigh-Ritz method, it is shown that, for a Rayleigh-Ritz type identification algorithm, an inclusion principle exists in the identification of distributed-parameter systems as well, so that the identified natural frequencies approach the actual natural frequencies monotonically from above.
NASA Astrophysics Data System (ADS)
Rangani Jahromi, Hossein
2017-08-01
We address in detail the process of parameter estimation for an n-qubit system dissipating into a cavity in which the qubits are coupled to the single-mode cavity field via coupling constant g which should be estimated. In addition, the cavity field interacts with an external field considered as a set of continuum harmonic oscillators. We analyse the behaviour of the quantum Fisher information (QFI) for both weak and strong coupling regimes. In particular, we show that in strong coupling regime, the memory effects are dominant, leading to an oscillatory variation in the dynamics of the QFI and consequently information flowing from the environment to the quantum system. We show that when the number of the qubits or the coupling strength rises, the oscillations, signs of non-Markovian evolution of the QFI, increase. This indicates that in the strong-coupling regime, increasing the size of the system or the coupling strength remarkably enhances the reversed flow of information. Moreover, we find that it is possible to retard the QFI loss during the time evolution and therefore enhance the estimation of the parameter using a cavity with a larger decay rate factor. Furthermore, analysing the dynamics of the QFI and negativity of the probe state, we reveal a close relationship between the entanglement of probes and their capability for estimating the parameter. It is shown that in order to perform a better estimation of the parameter, we should avoid measuring when the entanglement between the probes is maximized.
NASA Astrophysics Data System (ADS)
Dal Forno, Massimo; Craievich, Paolo; Baruzzo, Roberto; De Monte, Raffaele; Ferianis, Mario; Lamanna, Giuseppe; Vescovo, Roberto
2012-01-01
The Cavity Beam Position Monitor (BPM) is a beam diagnostic instrument which, in a seeded Free Electron Laser (FEL), allows the measurement of the electron beam position in a non-destructive way and with sub-micron resolution. It is composed by two resonant cavities called reference and position cavity, respectively. The measurement exploits the dipole mode that arises when the electron bunch passes off axis. In this paper we describe the Cavity BPM that has been designed and realized in the context of the FERMI@Elettra project [1]. New strategies have been adopted for the microwave design, for both the reference and the position cavities. Both cavities have been simulated by means of Ansoft HFSS [2] and CST Particle Studio [3], and have been realized using high precision lathe and wire-EDM (Electro-Discharge) machine, with a new technique that avoids the use of the sinker-EDM machine. Tuners have been used to accurately adjust the working frequencies for both cavities. The RF parameters have been estimated, and the modifications of the resonant frequencies produced by brazing and tuning have been evaluated. Finally, the Cavity BPM has been installed and tested in the presence of the electron beam.
Liu, Yu-Ching; Lee, Miau-Rong; Chen, Chao-Jung; Lin, Yung-Chang; Ho, Heng-Chien
2015-03-04
The aim of this study was to purify protein(s) from Piper betle leaf for identification and further characterization. A functionally unknown protein was purified to apparent homogeneity with a molecular mass of 15.7 kDa and identified as Cu/Zn superoxide dismutase (SOD). The purified SOD appeared to be monomeric and converted to its dimeric form with increased enzymatic activity in betel nut oral extract. This irreversible conversion was mainly induced by slaked lime, resulting from the increase in pH of the oral cavity. Oral extract from chewing areca nut alone also induced SOD dimerization due to the presence of arginine. The enhanced activity of the SOD dimer was responsible for the continuous production of hydrogen peroxide in the oral cavity. Thus, SOD may contribute to oral carcinogenesis through the continuous formation of hydrogen peroxide in the oral cavity, in spite of its protective role against cancer in vivo.
Zhang, Zhen-yu; Zhang, Hui-sheng
2004-11-01
Surface tension effects on the behavior of a pure vapor cavity or a cavity containing some noncondensible contents, which is growing, collapsing, and rebounding axisymmetrically near a rigid wall, are investigated numerically by the boundary integral method for different values of dimensionless stand-off parameter gamma, buoyancy parameter delta, and surface tension parameter beta. It is found that at the late stage of the collapse, if the resultant action of the Bjerknes force and the buoyancy force is not small, surface tension will not have significant effects on bubble behavior except that the bubble collapse time is shortened and the liquid jet becomes wider. If the resultant action of the two force is small enough, surface tension will have significant and in some cases substantial effects on bubble behavior, such as changing the direction of the liquid jet, making a new liquid jet appear, in some cases preventing the bubble from rebound before jet impact, and in other cases causing the bubble to rebound or even recollapse before jet impact. The mechanism of surface tension effects on the collapsing behavior of a cavity has been analyzed. The mechanisms of some complicated phenomena induced by surface tension effects are illustrated by analysis of the computed velocity fields and pressure contours of the liquid flow outside the bubble at different stages of the bubble evolution.
NASA Astrophysics Data System (ADS)
Sun, Xi-wan; Guo, Zhen-yun; Huang, Wei; Li, Shi-bin; Yan, Li
2017-02-01
The drag reduction and thermal protection system applied to hypersonic re-entry vehicles have attracted an increasing attention, and several novel concepts have been proposed by researchers. In the current study, the influences of performance parameters on drag and heat reduction efficiency of combinational novel cavity and opposing jet concept has been investigated numerically. The Reynolds-average Navier-Stokes (RANS) equations coupled with the SST k-ω turbulence model have been employed to calculate its surrounding flowfields, and the first-order spatially accurate upwind scheme appears to be more suitable for three-dimensional flowfields after grid independent analysis. Different cases of performance parameters, namely jet operating conditions, freestream angle of attack and physical dimensions, are simulated based on the verification of numerical method, and the effects on shock stand-off distance, drag force coefficient, surface pressure and heat flux distributions have been analyzed. This is the basic study for drag reduction and thermal protection by multi-objective optimization of the combinational novel cavity and opposing jet concept in hypersonic flows in the future.
Constraints on Jet Formation Mechanisms with the Most Energetic Giant Outbursts in MS 0735+7421
NASA Astrophysics Data System (ADS)
Li, Shuang-Liang; Cao, Xinwu
2012-07-01
Giant X-ray cavities lie in some active galactic nuclei (AGNs) locating in central galaxies of clusters, which are estimated to have stored 1055-1062 erg of energy. Most of these cavities are thought to be inflated by jets of AGNs on a timescale of >~ 107 years. The jets can be either powered by rotating black holes or the accretion disks surrounding black holes, or both. The observations of giant X-ray cavities can therefore be used to constrain jet formation mechanisms. In this work, we choose the most energetic cavity, MS 0735+7421, with stored energy ~1062 erg, to constrain the jet formation mechanisms and the evolution of the central massive black hole in this source. The bolometric luminosity of the AGN in this cavity is ~10-5 L Edd, however, the mean power of the jet required to inflate the cavity is estimated as ~0.02L Edd, which implies that the source has previously experienced strong outbursts. During outbursts, the jet power and the mass accretion rate should be significantly higher than its present values. We construct an accretion disk model in which the angular momentum and energy carried away by jets are properly included to calculate the spin and mass evolution of the massive black hole. In our calculations, different jet formation mechanisms are employed, and we find that the jets generated with the Blandford-Znajek (BZ) mechanism are unable to produce the giant cavity with ~1062 erg in this source. Only the jets accelerated with a combination of the Blandford-Payne and BZ mechanisms can successfully inflate such a giant cavity if the magnetic pressure is close to equipartition with the total (radiation+gas) pressure of the accretion disk. For a dynamo-generated magnetic field in the disk, such an energetic giant cavity can be inflated by the magnetically driven jets only if the initial black hole spin parameter a 0 >~ 0.95. Our calculations show that the final spin parameter a of the black hole is always ~0.9-0.998 for all the computational examples that can provide sufficient energy for the cavity of MS 0735+7421.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dong-Yang; Wen, Jing-Ji; Bai, Cheng-Hua
2015-09-15
An effective scheme is proposed to generate the singlet state with three four-level atoms trapped in three distant cavities connected with each other by three optical fibers, respectively. After a series of appropriate atom–cavity interactions, which can be arbitrarily controlled via the selective pairing of Raman transitions and corresponding optical switches, a three-atom singlet state can be successfully generated. The influence of atomic spontaneous decay, photon leakage of cavities and optical fibers on the fidelity of the state is numerically simulated showing that the three-atom singlet state can be generated with high fidelity by choosing the experimental parameters appropriately.
Ayoub, Fouad; Aoun, Nicole; el Husseini, Hassan; Jassar, Houssam; Sayah, Fida; Salameh, Ziad
2015-01-01
Background: Forensic dentistry is one of the most reliable methods used in human identification when other technique as fingerprint, DNA, visual identification cannot be used. Genetic disorders have several manifestations that can target the intra-oral cavity, the cranio-facial area or any location in the human body. Materials and Methods: A literature search of the scientific database (Medline and Science Direct) for the years 1990 to 2014 was carried out to find out all the available papers that indicate oral, cranio-facial signs, genetic and human identification. Results: A table with 10 genetic conditions was described with oral and cranio-facial signs that can help forensic specialist in human identification. Conclusion: This review showed a correlation between genetics, facial and intra-oral signs that would help forensic ondontologist in the identification procedures. PMID:26028912
Design of 28 GHz, 200 kW Gyrotron for ECRH Applications
NASA Astrophysics Data System (ADS)
Yadav, Vivek; Singh, Udaybir; Kumar, Nitin; Kumar, Anil; Deorani, S. C.; Sinha, A. K.
2013-01-01
This paper presents the design of 28 GHz, 200 kW gyrotron for Indian TOKAMAK system. The paper reports the designs of interaction cavity, magnetron injection gun and RF window. EGUN code is used for the optimization of electron gun parameters. TE03 mode is selected as the operating mode by using the in-house developed code GCOMS. The simulation and optimization of the cavity parameters are carried out by using the Particle-in-cell, three dimensional (3-D)-electromagnetic simulation code MAGIC. The output power more than 250 kW is achieved.
Stable optical soliton in the ring-cavity fiber system with carbon nanotube as saturable absorber
NASA Astrophysics Data System (ADS)
Li, Bang-Qing; Ma, Yu-Lan; Yang, Tie-Mei
2018-01-01
Main attention focuses on the theoretical study of the ring-cavity fiber laser system with carbon nanotubes (CNT) as saturable absorber (SA). The system is modelled as a non-standard Schrödinger equation with the coefficients blended real and imaginary numbers. New stable exact soliton solution is constructed by the bilinear transformation method for the system. The influences of the key parameters related to CNTs and SA on the optical pulse soliton are discussed in simulation. The soliton amplitude and phase can be tuned by choosing suitable parameters.
Multigrid Approach to Incompressible Viscous Cavity Flows
NASA Technical Reports Server (NTRS)
Wood, William A.
1996-01-01
Two-dimensional incompressible viscous driven-cavity flows are computed for Reynolds numbers on the range 100-20,000 using a loosely coupled, implicit, second-order centrally-different scheme. Mesh sequencing and three-level V-cycle multigrid error smoothing are incorporated into the symmetric Gauss-Seidel time-integration algorithm. Parametrics on the numerical parameters are performed, achieving reductions in solution times by more than 60 percent with the full multigrid approach. Details of the circulation patterns are investigated in cavities of 2-to-1, 1-to-1, and 1-to-2 depth to width ratios.
Design and performance of an astigmatism-compensated self-mode-locked ring-cavity Ti:sapphire laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Y.; Dai, J.; Wang, Q.
1996-12-31
Based on the nonlinear ABCD matrix and the renormalized q-parameter for Gaussian-beam propagation, self-focusing in conjunction with a spatial gain profile for self-mode locking in a ring-cavity Ti:sapphire laser is analyzed. In the experiment, an astigmatism-compensated self-mode-locked ring-cavity Ti:sapphire laser is demonstrated, and self-mode-locked operation is achieved in both bidirection and unidirection with pulse durations as short as 36 fs and 32 fs, respectively. The experimental observations are in good agreement with theoretical predictions.
Concurrence of three Jaynes-Cummings systems
NASA Astrophysics Data System (ADS)
Qiang, Wen-Chao; Sun, Guo-Hua; Dong, Qian; Camacho-Nieto, Oscar; Dong, Shi-Hai
2018-04-01
We apply genuine multipartite concurrence to investigate entanglement properties of three Jaynes-Cummings systems. Three atoms are initially put in GHZ-like state and locally interact with three independent cavities, respectively. We present analytical concurrence expressions for various subsystems including three-atom, three-cavity and some atom-cavity mixed systems. We also examine the global system and illustrate the evolution of its concurrence. Except for the sudden death of entanglement, we find for some initial entanglement parameter θ , the concurrence of the global system may maintain unchanged in some time intervals.
Electron Plasmas Cooled by Cyclotron-Cavity Resonance
Povilus, A. P.; DeTal, N. D.; Evans, L. T.; ...
2016-10-21
We observe that high-Q electromagnetic cavity resonances increase the cyclotron cooling rate of pure electron plasmas held in a Penning-Malmberg trap when the electron cyclotron frequency, controlled by tuning the magnetic field, matches the frequency of standing wave modes in the cavity. For certain modes and trapping configurations, this can increase the cooling rate by factors of 10 or more. In this paper, we investigate the variation of the cooling rate and equilibrium plasma temperatures over a wide range of parameters, including the plasma density, plasma position, electron number, and magnetic field.
Method for accurate growth of vertical-cavity surface-emitting lasers
Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.
1995-01-01
We report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, we can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%.
USDA-ARS?s Scientific Manuscript database
Field trials to determine the effect of carrot pigmentation and weather parameters on cavity spot of carrot (CS) were conducted in the Holland/Bradford Marsh region of Ontario between 2002 and 2009. Twenty three colored carrots from the USDA-ARS breeding program at the University of Wisconsin (5) an...
Liu, Qiang; Ouyang, Zhengbiao; Albin, Sacharia
2011-02-28
We propose coupled cavities to realize a strong enhancement of the Raman scattering. Five sub cavities are embedded in the photonic crystals. Simulations through finite-difference time-domain (FDTD) method demonstrate that one cavity, which is used to propagate the pump beam at the optical-communication wavelength, has a Q factor as high as 1.254×10⁸ and modal volume as small as 0.03 μm3 (0.3192(λ/n)3). These parameters result in ultra-small threshold lasing power~17.7 nW and 2.58 nW for Stokes and anti-Stokes respectively. The cavities are designed to support the required Stokes and anti-Stokes modal spacing in silicon. The proposed structure has the potential for sensor devices, especially for biological and medical diagnoses.
NASA Astrophysics Data System (ADS)
Tlidi, M.; Averlant, E.; Vladimirov, A.; Panajotov, K.
2012-09-01
We consider a broad area vertical-cavity surface-emitting laser (VCSEL) operating below the lasing threshold and subject to optical injection and time-delayed feedback. We derive a generalized delayed Swift-Hohenberg equation for the VCSEL system, which is valid close to the nascent optical bistability. We first characterize the stationary-cavity solitons by constructing their snaking bifurcation diagram and by showing clustering behavior within the pinning region of parameters. Then, we show that the delayed feedback induces a spontaneous motion of two-dimensional (2D) cavity solitons in an arbitrary direction in the transverse plane. We characterize moving cavity solitons by estimating their threshold and calculating their velocity. Numerical 2D solutions of the governing semiconductor laser equations are in close agreement with those obtained from the delayed generalized Swift-Hohenberg equation.
Carrier-Envelope Phase Effects in Plasma-Based Electron Acceleration with Few-Cycle Laser Pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nerush, E. N.; Kostyukov, I. Yu.
2009-07-17
Carrier-envelope phase effects during the interaction of relativistically intense few-cycle laser pulses with a plasma are studied in the 'bubble' regime when an electron cavity (bubble) is formed behind the pulse. We show that for few-cycle laser pulses the cavity shape becomes asymmetric and depends strongly on the carrier-envelope phase. The carrier-envelope phase varies when the laser pulse propagates in plasma, which causes transverse oscillations of the cavity. Furthermore, the beam of electrons trapped by the cavity becomes modulated in the polarization plane. To describe these effects we derive an analytical model extended beyond the ponderomotive approximation. The degree ofmore » plasma cavity asymmetry as a function of the laser-plasma parameters is calculated. The obtained results are verified by particle-in-cell simulations.« less
Automatic Phase Calibration for RF Cavities using Beam-Loading Signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, J. P.; Chase, B. E.
Precise calibration of the cavity phase signals is necessary for the operation of any particle accelerator. For many systems this requires human in the loop adjustments based on measurements of the beam parameters downstream. Some recent work has developed a scheme for the calibration of the cavity phase using beam measurements and beam-loading however this scheme is still a multi-step process that requires heavy automation or human in the loop. In this paper we analyze a new scheme that uses only RF signals reacting to beam-loading to calculate the phase of the beam relative to the cavity. This technique couldmore » be used in slow control loops to provide real-time adjustment of the cavity phase calibration without human intervention thereby increasing the stability and reliability of the accelerator.« less
No oral-cavity-only discrimination of purely olfactory odorants.
Stephenson, Dejaimenay; Halpern, Bruce P
2009-02-01
The purely olfactory odorants coumarin, octanoic acid, phenylethyl alcohol, and vanillin had been found to be consistently identified when presented retronasally but could not be identified when presented oral-cavity only (OCO). However, OCO discrimination of these odorants was not tested. Consequently, it remained possible that the oral cavity trigeminal system might provide sufficient information to differentiate these purely olfactory odorants. To evaluate this, 20 participants attempted to discriminate vapor-phase coumarin, octanoic acid, phenylethyl alcohol, and vanillin and, as a control, the trigeminal stimulus peppermint extract, from their glycerin solvent, all presented OCO. None of the purely olfactory odorants could be discriminated OCO, but, as expected, peppermint extract was consistently discriminated. This inability to discriminate clarifies and expands the previous report of lack of OCO identification of purely olfactory odorants. Taken together with prior data, these results suggest that the oral cavity trigeminal system is fully unresponsive to these odorants in vapor phase and that coumarin, octanoic acid, phenylethyl alcohol, and vanillin are indeed purely olfactory stimuli. The OCO discrimination of peppermint extract demonstrated that the absence of discrimination for the purely olfactory odorants was odorant dependent and confirmed that the oral cavity trigeminal system will provide differential response information to some vapor-phase stimuli.
Dynamics of interacting Dicke model in a coupled-cavity array
NASA Astrophysics Data System (ADS)
Badshah, Fazal; Qamar, Shahid; Paternostro, Mauro
2014-09-01
We consider the dynamics of an array of mutually interacting cavities, each containing an ensemble of N two-level atoms. By exploring the possibilities offered by ensembles of various dimensions and a range of atom-light and photon-hopping values, we investigate the generation of multisite entanglement, as well as the performance of excitation transfer across the array, resulting from the competition between on-site nonlinearities of the matter-light interaction and intersite photon hopping. In particular, for a three-cavity interacting system it is observed that the initial excitation in the first cavity completely transfers to the ensemble in the third cavity through the hopping of photons between the adjacent cavities. Probabilities of the transfer of excitation of the cavity modes and ensembles exhibit characteristics of fast and slow oscillations governed by coupling and hopping parameters, respectively. In the large-hopping case, by seeding an initial excitation in the cavity at the center of the array, a tripartite W state, as well as a bipartite maximally entangled state, is obtained, depending on the interaction time. Population of the ensemble in a cavity has a positive impact on the rate of excitation transfer between the ensembles and their local cavity modes. In particular, for ensembles of five to seven atoms, tripartite W states can be produced even when the hopping rate is comparable to the cavity-atom coupling rate. A similar behavior of the transfer of excitation is observed for a four-coupled-cavity system with two initial excitations.
NASA Technical Reports Server (NTRS)
Soderman, P. T.
1982-01-01
Acoustical performance and pressure drop were measured for two types of splitters designed to attenuate sound propagating in ducts - resonant-cavity baffles and fiberglass-filled baffles. Arrays of four baffles were evaluated in the 7- by 10-foot wind tunnel number 1 at Ames Research Center at flow speeds from 0 to 41 m/sec. The baffles were 2.1 m high, 305 to 406 mm thick, and 3.1 to 4.4 m long. Emphasis was on measurements of silencer insertion loss as affected by variations of such parameters as baffle length, baffle thickness, perforated skin geometry, cavity size and shape, cavity damping, wind speed, and acoustic field directivity. An analytical method for predicting silencer performance is described and compared with measurements. With the addition of cavity damping in the form of 25-mm foam linings, the insertion loss above 250 Hz of the resonant-cavity baffles was improved 2 to 7 db compared with the undamped baffles; the loss became equal to or greater than the insertion loss of comparable size fiberglass baffles at frequencies above 250 Hz. Variations of cavity size and shape showed that a series of cavities with triangular cross-sections (i.e., variable depth) were superior to cavities with rectangular cross sections (i.e., constant depth). In wind, the undamped, resonant-cavity baffles generated loud cavity-resonance tones; the tones could be eliminated by cavity damping.
Identification of complex flows in Taylor-Couette counter-rotating cavities
NASA Technical Reports Server (NTRS)
Czarny, O.; Serre, E.; Bontoux, P.; Lueptow, R. M.
2001-01-01
The transition in confined rotating flows is a topical problem with many industrial and fundamental applications. The purpose of this study is to investigate the Taylor-Couette flow in a finite-length cavity with counter-rotating walls, for two aspect ratios L=5 or L=6. Two complex regimes of wavy vortex and spirals are emphasized for the first time via direct numerical simulation, by using a three-dimensional spectral method. The spatio-temporal behavior of the solutions is analyzed and compared to the few data actually available. c2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
Flow over a membrane-covered, fluid-filled cavity.
Thomson, Scott L; Mongeau, Luc; Frankel, Steven H
2007-01-01
The flow-induced response of a membrane covering a fluid-filled cavity located in a section of a rigid-walled channel was explored using finite element analysis. The membrane was initially aligned with the channel wall and separated the channel fluid from the cavity fluid. As fluid flowed over the membrane-covered cavity, a streamwise-dependent transmural pressure gradient caused membrane deformation. This model has application to synthetic models of the vocal fold cover layer used in voice production research. In this paper, the model is introduced and responses of the channel flow, the membrane, and the cavity flow are summarized for a range of flow and membrane parameters. It is shown that for high values of cavity fluid viscosity, the intracavity pressure and the beam deflection both reached steady values. For combinations of low cavity viscosity and sufficiently large upstream pressures, large-amplitude membrane vibrations resulted. Asymmetric conditions were introduced by creating cavities on opposing sides of the channel and assigning different stiffness values to the two membranes. The asymmetry resulted in reduction in or cessation of vibration amplitude, depending on the degree of asymmetry, and in significant skewing of the downstream flow field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Qixiang, E-mail: zxqi1105@gmail.com; Yu, Sheng; Zhang, Tianzhong
2015-10-15
In this paper, the nonlinear dynamics of mode competition in the complex cavity gyrotron are studied by using multi-frequency, time-dependent theory with the cold-cavity longitudinal profile approximation. Based on the theory, a code is written to simulate the mode competition in the gradually tapered complex cavity gyrotron operating at second harmonic oscillation. The simulations tracking seven competition modes show that single mode oscillation of the desired mode TE{sub 17.4} at 150 kW level can be expected with proper choice of operating parameters. Through studying on mode competition, it is proved that the complex cavity has a good capability for suppressing themore » mode competition. Meanwhile, it is found that TE{sub 17.3} could be excited in the first cavity as a competition mode when the gyrotron operating at large beam current, which leads to that TE{sub 17.3} and TE{sub 17.4} with different frequencies can coexist stably in the complex cavity gyrotron with very close amplitudes. Thus, the complex cavity might be used for multi-frequency output gyrotron.« less
NASA Astrophysics Data System (ADS)
James, P.
2011-12-01
With a growing need for housing in the U.K., the government has proposed increased development of brownfield sites. However, old mine workings and natural cavities represent a potential hazard before, during and after construction on such sites, and add further complication to subsurface parameters. Cavities are hence a limitation to certain redevelopment and their detection is an ever important consideration. The current standard technique for cavity detection is a borehole grid, which is intrusive, non-continuous, slow and expensive. A new robust investigation standard in the detection of cavities is sought and geophysical techniques offer an attractive alternative. Geophysical techniques have previously been utilised successfully in the detection of cavities in various geologies, but still has an uncertain reputation in the engineering industry. Engineers are unsure of the techniques and are inclined to rely on well known techniques than utilise new technologies. Bad experiences with geophysics are commonly due to the indiscriminate choice of particular techniques. It is imperative that a geophysical survey is designed with the specific site and target in mind at all times, and the ability and judgement to rule out some, or all, techniques. To this author's knowledge no comparative software exists to aid technique choice. Also, previous modelling software limit the shapes of bodies and hence typical cavity shapes are not represented. Here, we introduce 3D modelling software (Matlab) which computes and compares the response to various cavity targets from a range of techniques (gravity, gravity gradient, magnetic, magnetic gradient and GPR). Typical near surface cavity shapes are modelled including shafts, bellpits, various lining and capping materials, and migrating voids. The probability of cavity detection is assessed in typical subsurface and noise conditions across a range of survey parameters. Techniques can be compared and the limits of detection distance assessed. The density of survey points required to achieve a required probability of detection can be calculated. The software aids discriminate choice of technique, improves survey design, and increases the likelihood of survey success; all factors sought in the engineering industry. As a simple example, the response from magnetometry, gravimetry, and gravity gradient techniques above an example 3m deep, 1m cube air cavity in limestone across a 15m grid was calculated. The maximum responses above the cavity are small (amplitudes of 0.018nT, 0.0013mGal, 8.3eotvos respectively), but at typical site noise levels the detection reliability is over 50% for the gradient gravity method on a single survey line. Increasing the number of survey points across the site increases the reliability of detection of the anomaly by the addition of probabilities. We can calculate the probability of detection at different profile spacings to assess the best possible survey design. At 1m spacing the overall probability of by the gradient gravity method is over 90%, and over 60% for magnetometry (at 3m spacing the probability drops to 32%). The use of modelling in near surface surveys is a useful tool to assess the feasibility of a range of techniques to detect subtle signals. Future work will integrate this work with borehole measured parameters.
Resonant-frequency discharge in a multi-cell radio frequency cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovic, S; Upadhyay, J; Mammosser, J
2014-11-07
We are reporting experimental results on microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency (SRF) cryomodule (in situ operation). This discharge offers an efficient mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the problemsmore » related to generation and sustaining the multi-cell cavity plasma, which are breakdown and resonant detuning. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.« less
Cavity-based architecture to preserve quantum coherence and entanglement
NASA Astrophysics Data System (ADS)
Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario
2015-09-01
Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability.
Heralded entangling quantum gate via cavity-assisted photon scattering
NASA Astrophysics Data System (ADS)
Borges, Halyne S.; Rossatto, Daniel Z.; Luiz, Fabrício S.; Villas-Boas, Celso J.
2018-01-01
We theoretically investigate the generation of heralded entanglement between two identical atoms via cavity-assisted photon scattering in two different configurations, namely, either both atoms confined in the same cavity or trapped into locally separated ones. Our protocols are given by a very simple and elegant single-step process, the key mechanism of which is a controlled-phase-flip gate implemented by impinging a single photon on single-sided cavities. In particular, when the atoms are localized in remote cavities, we introduce a single-step parallel quantum circuit instead of the serial process extensively adopted in the literature. We also show that such parallel circuit can be straightforwardly applied to entangle two macroscopic clouds of atoms. Both protocols proposed here predict a high entanglement degree with a success probability close to unity for state-of-the-art parameters. Among other applications, our proposal and its extension to multiple atom-cavity systems step toward a suitable route for quantum networking, in particular for quantum state transfer, quantum teleportation, and nonlocal quantum memory.
Cavity-based architecture to preserve quantum coherence and entanglement.
Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario
2015-09-09
Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability.
Cavity-based architecture to preserve quantum coherence and entanglement
Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario
2015-01-01
Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability. PMID:26351004
Blackbody for metrological control of ear thermometers
NASA Astrophysics Data System (ADS)
Cárdenas-García, D.; Méndez-Lango, E.
2013-09-01
Body temperature is an important parameter in medical practice, and most of health diagnoses are made based upon measured temperature values. Non-contact measurements are attractive to both patients and physicians, and ear thermometers (ET) are part of the set of infrared thermometers for medical applications. ETs sense the tympanic membrane temperature which best represents body temperature. They take advantage of the natural high effective emissivity cavity that is formed as radiation source. To calibrate or to check the performance of ETs, we designed a high-emissivity spherical cavity as a blackbody source which can be placed in a dry block oven. Although the blackbody cavity can have any shape, we decided to build it spherical because its effective emissivity can be easily calculated in a closed form. The cavity is made of Aluminum to take advantage of its high thermal conductivity while its inner side is covered with a black paint to increase the cavity effective emissivity. Based on paint emissivity measurements and the geometrical shape, we calculated that the cavity has an effective emissivity higher than 0.999. Blackbody temperature is measured with a calibrated contact thermometer placed inside the bottom wall of the cavity. We present the design of the cavity, the experimental setup, and results of three commercial ETs compared with this cavity.
Experimental measurements of heat transfer coefficient in a partially/fully opened tilted cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakroun, W.; Elsayed, M.M.; Al-Fahed, S.F.
1997-11-01
An experimental investigation was carried out to determine the heat transfer coefficient from a rectangular tilted cavity to the ambient due to the buoyancy driven flow in the cavity. The cavity is partially or fully open from one side. All the walls of the cavity are adiabatic except the wall facing the cavity opening which is heated at a constant heat flux. Air was used as the cavity fluid and the experiments were carried out at a flux Grashof number of 5.5 {times} 10{sup 8}. The tilt angle of the cavity, measured from the vertical direction, was changed between {minus}90more » deg to +90 deg in 15 deg increments. Also, geometries of aspect ratio (height-to-width of cavity) of 1.0, 0.5, and 0.25 and of opening ratio (opening height to cavity height) of 1.0, 0.5, and 0.25 were considered in the study. The results are presented in terms of the average Nusselt number for different values of the above experimental parameters. Conclusions are derived for the effect of changing the tilt angle, the aspect ratio, or the opening ratio of the cavity on the average heat transfer coefficient between the cavity and the ambient air. Buoyancy-driven flow in rectangular cavities has been widely investigated by many researchers. This geometry is of special interest in many solar applications such as in solar passive heating, solar concentrators, and solar central receivers. The importance of the geometry extends to other engineering applications such as electronic equipment, fire research, and energy conservation in buildings.« less
NASA Astrophysics Data System (ADS)
Pandian, S.; Desikan, S. L. N.; Niranjan, Sahoo
2018-01-01
Experiments were carried out on a shallow open cavity (L/D = 5) at a supersonic Mach number (M = 1.8) to understand its transient starting characteristics, wave propagation (inside and outside the cavity) during one vortex shedding cycle, and acoustic emission. Starting characteristics and wave propagation were visualized through time resolved schlieren images, while acoustic emissions were captured through unsteady pressure measurements. Results showed a complex shock system during the starting process which includes characteristics of the bifurcated shock system, shock train, flow separation, and shock wave boundary layer interaction. In one vortex shedding cycle, vortex convection from cavity leading edge to cavity trailing edge was observed. Flow features outside the cavity demonstrated the formation and downstream movement of a λ-shock due to the interaction of shock from the cavity leading edge and shock due to vortex and generation of waves on account of shear layer impingement at the cavity trailing edge. On the other hand, interesting wave structures and its propagation were monitored inside the cavity. In one vortex shedding cycle, two waves such as a reflected compression wave from a cavity leading edge in the previous vortex shedding cycle and a compression wave due to the reflection of Mach wave at the cavity trailing edge corner in the current vortex shedding cycle were visualized. The acoustic emission from the cavity indicated that the 2nd to 4th modes/tones are dominant, whereas the 1st mode contains broadband spectrum. In the present studies, the cavity feedback mechanism was demonstrated through a derived parameter coherence coefficient.
Dynamic parameter identification of robot arms with servo-controlled electrical motors
NASA Astrophysics Data System (ADS)
Jiang, Zhao-Hui; Senda, Hiroshi
2005-12-01
This paper addresses the issue of dynamic parameter identification of the robot manipulator with servo-controlled electrical motors. An assumption is made that all kinematical parameters, such as link lengths, are known, and only dynamic parameters containing mass, moment of inertia, and their functions need to be identified. First, we derive dynamics of the robot arm with a linear form of the unknown dynamic parameters by taking dynamic characteristics of the motor and servo unit into consideration. Then, we implement the parameter identification approach to identify the unknown parameters with respect to individual link separately. A pseudo-inverse matrix is used for formulation of the parameter identification. The optimal solution is guaranteed in a sense of least-squares of the mean errors. A Direct Drive (DD) SCARA type industrial robot arm AdeptOne is used as an application example of the parameter identification. Simulations and experiments for both open loop and close loop controls are carried out. Comparison of the results confirms the correctness and usefulness of the parameter identification and the derived dynamic model.
Factors influencing microinjection molding replication quality
NASA Astrophysics Data System (ADS)
Vera, Julie; Brulez, Anne-Catherine; Contraires, Elise; Larochette, Mathieu; Trannoy-Orban, Nathalie; Pignon, Maxime; Mauclair, Cyril; Valette, Stéphane; Benayoun, Stéphane
2018-01-01
In recent years, there has been increased interest in producing and providing high-precision plastic parts that can be manufactured by microinjection molding: gears, pumps, optical grating elements, and so on. For all of these applications, the replication quality is essential. This study has two goals: (1) fabrication of high-precision parts using the conventional injection molding machine; (2) identification of robust parameters that ensure production quality. Thus, different technological solutions have been used: cavity vacuuming and the use of a mold coated with DLC or CrN deposits. AFM and SEM analyses were carried out to characterize the replication profile. The replication quality was studied in terms of the process parameters, coated and uncoated molds and crystallinity of the polymer. Specific studies were processed to quantify the replicability of injection molded parts (ABS, PC and PP). Analysis of the Taguchi experimental designs permits prioritization of the impact of each parameter on the replication quality. A discussion taking into account these new parameters and the thermal and spreading properties on the coatings is proposed. It appeared that, in general, increasing the mold temperature improves the molten polymer fill in submicron features except for the steel insert (for which the presence of a vacuum is the most important factor). Moreover, the DLC coating was the best coating to increase the quality of the replication. This result could be explained by the lower thermal diffusivity of this coating. We noted that the viscosity of the polymers is not a primordial factor of the replication quality.
NASA Astrophysics Data System (ADS)
Gururaja Rao, C.; Nagabhushana Rao, V.; Krishna Das, C.
2008-04-01
Prominent results of a simulation study on conjugate convection with surface radiation from an open cavity with a traversable flush mounted discrete heat source in the left wall are presented in this paper. The open cavity is considered to be of fixed height but with varying spacing between the legs. The position of the heat source is varied along the left leg of the cavity. The governing equations for temperature distribution along the cavity are obtained by making energy balance between heat generated, conducted, convected and radiated. Radiation terms are tackled using radiosity-irradiation formulation, while the view factors, therein, are evaluated using the crossed-string method of Hottel. The resulting non-linear partial differential equations are converted into algebraic form using finite difference formulation and are subsequently solved by Gauss Seidel iterative technique. An optimum grid system comprising 111 grids along the legs of the cavity, with 30 grids in the heat source and 31 grids across the cavity has been used. The effects of various parameters, such as surface emissivity, convection heat transfer coefficient, aspect ratio and thermal conductivity on the important results, including local temperature distribution along the cavity, peak temperature in the left and right legs of the cavity and relative contributions of convection and radiation to heat dissipation in the cavity, are studied in great detail.
A novel nano-sensor based on optomechanical crystal cavity
NASA Astrophysics Data System (ADS)
Zhang, Yeping; Ai, Jie; Ma, Jingfang
2017-10-01
Optical devices based on new sensing principle are widely used in biochemical and medical area. Nowadays, mass sensing based on monitoring the frequency shifts induced by added mass in oscillators is a well-known and widely used technique. It is interesting to note that for nanoscience and nanotechnology applications there is a strong demand for very sensitive mass sensors, being the target a sensor for single molecule detection. The desired mass resolution for very few or even single molecule detection, has to be below the femtogram range. Considering the strong interaction between high co-localized optical mode and mechanical mode in optomechanical crystal (OMC) cavities, we investigate OMC splitnanobeam cavities in silicon operating near at the 1550nm to achieve high optomechanical coupling rate and ultra-small motion mass. Theoretical investigations of the optical and mechanical characteristic for the proposed cavity are carried out. By adjusting the structural parameters, the cavity's effective motion mass below 10fg and mechanical frequency exceed 10GHz. The transmission spectrum of the cavity is sensitive to the sample which located on the center of the cavity. We conducted the fabrication and the characterization of this cavity sensor on the silicon-on-insulator (SOI) chip. By using vertical coupling between the tapered fiber and the SOI chip, we measured the transmission spectrum of the cavity, and verify this cavity is promising for ultimate precision mass sensing and detection.
NASA Astrophysics Data System (ADS)
Abdelhamid, Mostafa R.; El-Batawy, Yasser M.; Deen, M. Jamal
2018-02-01
In Resonant Cavity Enhanced Photodetectors (RCE-PDs), the trade-off between the bandwidth and the quantum efficiency in the conventional photodetectors is overcome. In RCE-PDs, large bandwidth can be achieved using a thin absorption layer while the use of a resonant cavity allows for multiple passes of light in the absorption which boosts the quantum efficiency. In this paper, a complete bias-dependent model for the Resonant Cavity Enhanced-Separated Absorption Graded Charge Multiplication-Avalanche Photodetector (RCE-SAGCM-APD) is presented. The proposed model takes into account the case of drift velocities other than the saturation velocity, thus modeling this effect on the photodetector different design parameters such as Gain, Bandwidth and Gain-Bandwidth product.
Simultaneously exciting two atoms with photon-mediated Raman interactions
NASA Astrophysics Data System (ADS)
Zhao, Peng; Tan, Xinsheng; Yu, Haifeng; Zhu, Shi-Liang; Yu, Yang
2017-06-01
We propose an approach to simultaneously excite two atoms by using a cavity-assisted Raman process in combination with a cavity-photon-mediated interaction. The system consists of a two-level atom and a Λ -type or V -type three-level atom, which are coupled together with a cavity mode. Having derived the effective Hamiltonian, we find that under certain circumstances a single photon can simultaneously excite two atoms. In addition, multiple photons and even a classical field can also simultaneously excite two atoms. As an example, we show a scheme to realize our proposal in a circuit QED setup, which is artificial atoms coupled with a cavity. The dynamics and the quantum-statistical properties of the process are investigated with experimentally feasible parameters.
Enhanced Raman scattering of single nanoparticles in a high-Q whispering-gallery microresonator
NASA Astrophysics Data System (ADS)
Liu, Rui-Shan; Jin, Wei-Liang; Yu, Xiao-Chong; Liu, Yong-Chun; Xiao, Yun-Feng
2015-04-01
We study Raman scattering of single nanoparticles coupled to a high-Q whispering-gallery microresonator. It is found that cavity resonances greatly enhance the Raman signal, and the enhancement factor is as high as 108. Unlike the noncavity case, the signal power exhibits a nonmonotonic dependence on particle size, and it reaches the maximum when the Rayleigh scattering loss and the cavity intrinsic loss are comparable. We further analyze how the Raman signal intensity is influenced by different parameters including cavity quality factors and taper-cavity coupling strength. The detection limit of observing single-nanoparticle Raman signal is discussed finally. As a potential application, this mechanism may provide an alternative way to detect specific biological targets without the need of precovered biorecognitions.
NASA Technical Reports Server (NTRS)
Maruschek, Joseph W.; Kory, Carol L.; Wilson, Jeffrey D.
1993-01-01
The frequency-phase dispersion and Pierce on-axis interaction impedance of a ferruled, coupled-cavity, traveling-wave tube (TWT), slow-wave circuit were calculated using the three-dimensional simulation code Micro-SOS. The utilization of the code to reduce costly and time-consuming experimental cold tests is demonstrated by the accuracy achieved in calculating these parameters. A generalized input file was developed so that ferruled coupled-cavity TWT slow-wave circuits of arbitrary dimensions could be easily modeled. The practicality of the generalized input file was tested by applying it to the ferruled coupled-cavity slow-wave circuit of the Hughes Aircraft Company model 961HA TWT and by comparing the results with experimental results.
21 CFR 872.3700 - Dental mercury.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental mercury. 872.3700 Section 872.3700 Food and... DENTAL DEVICES Prosthetic Devices § 872.3700 Dental mercury. (a) Identification. Dental mercury is a... dental cavity or a broken tooth. (b) Classification. Class I. ...
Plasma processing of superconducting radio frequency cavities
NASA Astrophysics Data System (ADS)
Upadhyay, Janardan
The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb SRF cavities. In the process of developing plasma etching technology, an apparatus was built and a method was developed to plasma etch a single cell Pill Box cavity. The plasma characterization was done with the help of optical emission spectroscopy. The Nb etch rate at various points of this cavity was measured before processing the SRF cavity. Cylindrical ring-type samples of Nb placed on the inner surface of the outer wall were used to measure the dependence of the process parameters on plasma etching. The measured etch rate dependence on the pressure, rf power, dc bias, temperature, Cl2 concentration and diameter of the inner electrode was determined. The etch rate mechanism was studied by varying the temperature of the outer wall, the dc bias on the inner electrode and gas conditions. In a coaxial plasma reactor, uniform plasma etching along the cylindrical structure is a challenging task due to depletion of the active radicals along the gas flow direction. The dependence of etch rate uniformity along the cylindrical axis was determined as a function of process parameters. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the asymmetry was studied by changing the contour of the inner electrode. The optimized contour of the electrode based on these measurements was chosen for SRF cavity processing.
Alvarez, María Inés; Suárez, Blanca Lynne; Caicedo, Luz Dary
2009-01-01
Candida dubliniensis is an emerging pathogenic yeast isolated mainly from the oral cavity of HIV-infected patients. The close phenotypic and genotypic relationship between C. albicans and C. dubliniensis has led to incorrectly identifying isolates of C. dubliniensis as C. albicans. The oral cavities of 107 diabetic patients were studied in Cali, Colombia, and 72 colonies of Candida, with shades of green on CHROMagar Candida culture media, were obtained. Various phenotypic tests were carried out, which included germ tube formation and production of chlamydospores on corn meal Agar. Additionally, growth studies were carried out at 42 degrees C and 45 degrees C and on Sabouraud agar with 6.5%, sodium chloride. Identification of C. dubliniensis with these tests was confirmed with API 20C Aux. We identified 65 and 7 colonies of C. albicans and C. dubliniensis, respectively. This is the first time that C. dubliniensis is identified with phenotypic methods in Colombia.
Scattering of E Polarized Plane Wave by Rectangular Cavity With Finite Flanges
NASA Astrophysics Data System (ADS)
Vinogradova, Elena D.
2017-11-01
The rigorous Method of Regularization is implemented for accurate analysis of wave scattering by rectangular cavity with finite flanges. The solution is free from limitations on problem parameters. The calculation of the induced surface current, bistatic radar cross section (RCS) and frequency dependence of monostatic RCS are performed with controlled accuracy in a wide frequency band.
Optimizing RF gun cavity geometry within an automated injector design system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alicia Hofler ,Pavel Evtushenko
2011-03-28
RF guns play an integral role in the success of several light sources around the world, and properly designed and optimized cw superconducting RF (SRF) guns can provide a path to higher average brightness. As the need for these guns grows, it is important to have automated optimization software tools that vary the geometry of the gun cavity as part of the injector design process. This will allow designers to improve existing designs for present installations, extend the utility of these guns to other applications, and develop new designs. An evolutionary algorithm (EA) based system can provide this capability becausemore » EAs can search in parallel a large parameter space (often non-linear) and in a relatively short time identify promising regions of the space for more careful consideration. The injector designer can then evaluate more cavity design parameters during the injector optimization process against the beam performance requirements of the injector. This paper will describe an extension to the APISA software that allows the cavity geometry to be modified as part of the injector optimization and provide examples of its application to existing RF and SRF gun designs.« less
Laser-assisted electrochemical micromachining of mould cavity on the stainless steel surface
NASA Astrophysics Data System (ADS)
Li, Xiaohai; Wang, Shuming; Wang, Dong; Tong, Han
2018-02-01
In order to fabricate the micro mould cavities with complex structures on 304 stainless steel, laser-assisted electrochemical micromachining (EMM) based on surface modification by fiber laser masking was studied,and a new device of laser-assisted EMM was developed. Laser marking on the surface of 304 stainless steel can first be realized by fiber laser heating scanning. Through analysis of X ray diffraction analysis (XRD), metal oxide layer with predefined pattern can be formed by laser marking, and phase transformation can also occur on the 304 stainless steel surface, which produce the laser masking layer with corrosion resistance. The stainless steel surface with laser masking layer is subsequently etched by EMM, the laser masking layer severs as the temporary protective layer without relying on lithography mask, the fabrication of formed electrodes is also avoided, so micro pattern cavities can fast be fabricated. The impacts on machining accuracy during EMM with laser masking were discussed to optimize machining parameters, such as machining voltage, electrolyte concentration, duty cycle of pulse power supply and electrode gap size, the typical mould cavities 23μm deep were fabricated under the optimized parameters.
NASA Astrophysics Data System (ADS)
Rotter, Stefan; Aigner, Florian; Burgdörfer, Joachim
2007-03-01
We investigate the statistical distribution of transmission eigenvalues in phase-coherent transport through quantum dots. In two-dimensional ab initio simulations for both clean and disordered two-dimensional cavities, we find markedly different quantum-to-classical crossover scenarios for these two cases. In particular, we observe the emergence of “noiseless scattering states” in clean cavities, irrespective of sharp-edged entrance and exit lead mouths. We find the onset of these “classical” states to be largely independent of the cavity’s classical chaoticity, but very sensitive with respect to bulk disorder. Our results suggest that for weakly disordered cavities, the transmission eigenvalue distribution is determined both by scattering at the disorder potential and the cavity walls. To properly account for this intermediate parameter regime, we introduce a hybrid crossover scheme, which combines previous models that are valid in the ballistic and the stochastic limit, respectively.
Proposed Cavity for Reduced Slip-Stacking Loss
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, J.; Zwaska, R.
This paper employs a novel dynamical mechanism to improve the performance of slip-stacking. Slip-stacking in an accumulation technique used at Fermilab since 2004 which nearly double the proton intensity. During slip-stacking, the Recycler or the Main Injector stores two particles beams that spatially overlap but have different momenta. The two particle beams are longitudinally focused by two 53 MHz 100 kV RF cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV RF cavity, with a frequency at the double the average of the upper and lower main RF frequencies. In simulation, we findmore » the proposed RF cavity significantly enhances the stable bucket area and reduces slip-stacking losses under reasonable injection scenarios. We quantify and map the stability of the parameter space for any accelerator implementing slip-stacking with the addition of a harmonic RF cavity.« less
Identification of Karstic Features in Lateritic Soil by an Integrated Geophysical Approach
NASA Astrophysics Data System (ADS)
Anbazhagan, P.; Rohit, Divyesh; Prabhakaran, Athul; Vidyaranya, B.
2018-06-01
Lateritic soils are widely spread across the southern and central parts of India. Lateritic formations usually have soft sediments, entrapped between hard to medium soft lateritic rock, which are leached due to the ingress of water during rainy seasons creating hollow sections or cavities which span over large lengths. Laterites are highly heterogeneous and prone to cavitation due to its weathering process; a sound knowledge of the subsurface condition is required before starting any construction. This study presents the application of integrated geophysical investigation for the identification of cavities at a mega construction site in Kerala State, India. Geophysical survey methods, namely ground penetrating radar (GPR) and multichannel analysis of surface waves (MASWs) techniques, are used to identify the heterogeneities in lateritic soils and localized cavities. The survey areas identified are critical sections of a mega construction project subjected to heavy dynamic and static loads. The preliminary GPR survey is carried out across the study areas at specific interval spacing to identify probable heterogeneities. Confirmative survey or detailed GPR and MASW surveys are carried out at the locations identified in the preliminary survey at close intervals to confirm the presence of an anomaly and identify its location. The anomalies in the GPR radargram are identified by visual inspection and trace amplitude approach. Using MASW survey, a 2D shear wave velocity profile is generated to identify low shear wave velocity zones which confirm the presence of an anomaly. On comparing the data from both GPR and MASW survey techniques, the underground cavities were successfully identified at multiple locations with further crosschecking with borings. The study further provided details on subsurface lithology at survey locations.
Wu, Jin-Lei; Ji, Xin; Zhang, Shou
2017-01-01
We propose a dressed-state scheme to achieve shortcuts to adiabaticity in atom-cavity quantum electrodynamics for speeding up adiabatic two-atom quantum state transfer and maximum entanglement generation. Compared with stimulated Raman adiabatic passage, the dressed-state scheme greatly shortens the operation time in a non-adiabatic way. By means of some numerical simulations, we determine the parameters which can guarantee the feasibility and efficiency both in theory and experiment. Besides, numerical simulations also show the scheme is robust against the variations in the parameters, atomic spontaneous emissions and the photon leakages from the cavity. PMID:28397793
Mártin, Daniel A; Hoyuelos, Miguel
2009-11-01
We study evolution equations for electric and magnetic field amplitudes in a ring cavity with plane mirrors. The cavity is filled with a positive or negative-refraction-index material with third-order effective electric and magnetic nonlinearities. Two coupled nonlinear equations for the electric and magnetic amplitudes are obtained. We prove that the description can be reduced to one Lugiato-Lefever equation with generalized coefficients. A stability analysis of the homogeneous solution, complemented with numerical integration, shows that any combination of the parameters should correspond to one of three characteristic behaviors.
Method for accurate growth of vertical-cavity surface-emitting lasers
Chalmers, S.A.; Killeen, K.P.; Lear, K.L.
1995-03-14
The authors report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, they can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%. 4 figs.
Magneto-optical rotation in cavity QED with Zeeman coherence
NASA Astrophysics Data System (ADS)
Sun, Hui; Jia, Xiaohua; Fan, Shuangli; Zhang, Hongjun; Guo, Hong
2018-06-01
We investigate theoretically the magneto-optical rotation in cavity QED system with atomic Zeeman coherence, which is established via coherent population trapping. Owing to Zeeman coherence, the ultranarrow transmission spectrum less than 1 MHz with gain can be achieved with a flat-top Faraday rotation angle. By controlling the parameters appropriately, the input probe components within the flat-top regime rotate with almost the same angle, and transmit through the cavity perpendicularly to the other components outside the flat-top regime. The concepts discussed here provide an important tool for perfect ultranarrow Faraday optical filter and quantum information processing.
NASA Astrophysics Data System (ADS)
Zhao, Hui; Zheng, Mingwen; Li, Shudong; Wang, Weiping
2018-03-01
Some existing papers focused on finite-time parameter identification and synchronization, but provided incomplete theoretical analyses. Such works incorporated conflicting constraints for parameter identification, therefore, the practical significance could not be fully demonstrated. To overcome such limitations, the underlying paper presents new results of parameter identification and synchronization for uncertain complex dynamical networks with impulsive effect and stochastic perturbation based on finite-time stability theory. Novel results of parameter identification and synchronization control criteria are obtained in a finite time by utilizing Lyapunov function and linear matrix inequality respectively. Finally, numerical examples are presented to illustrate the effectiveness of our theoretical results.
Three-Dimensional Morphology of a Coronal Prominence Cavity
NASA Technical Reports Server (NTRS)
Gibson, S. E.; Kucera, T. A.; Rastawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hill, S.; Hudson, H. S.; Marque, C.; McIntosh, P. S.;
2010-01-01
We present a three-dimensional density model of coronal prominence cavities, and a morphological fit that has been tightly constrained by a uniquely well-observed cavity. Observations were obtained as part of an International Heliophysical Year campaign by instruments from a variety of space- and ground-based observatories, spanning wavelengths from radio to soft-X-ray to integrated white light. From these data it is clear that the prominence cavity is the limb manifestation of a longitudinally-extended polar-crown filament channel, and that the cavity is a region of low density relative to the surrounding corona. As a first step towards quantifying density and temperature from campaign spectroscopic data, we establish the three-dimensional morphology of the cavity. This is critical for taking line-of-sight projection effects into account, since cavities are not localized in the plane of the sky and the corona is optically thin. We have augmented a global coronal streamer model to include a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. We have developed a semi-automated routine that fits ellipses to cross-sections of the cavity as it rotates past the solar limb, and have applied it to Extreme Ultraviolet Imager (EUVI) observations from the two Solar Terrestrial Relations Observatory (STEREO) spacecraft. This defines the morphological parameters of our model, from which we reproduce forward-modeled cavity observables. We find that cavity morphology and orientation, in combination with the viewpoints of the observing spacecraft, explains the observed variation in cavity visibility for the east vs. west limbs
21 CFR 872.4600 - Intraoral ligature and wire lock.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) Identification. An intraoral ligature and wire lock is a metal device intended to constrict fractured bone segments in the oral cavity. The bone segments are stabilized by wrapping the ligature (wire) around the fractured bone segments and locking the ends together. (b) Classification. Class II. ...
21 CFR 872.4600 - Intraoral ligature and wire lock.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Identification. An intraoral ligature and wire lock is a metal device intended to constrict fractured bone segments in the oral cavity. The bone segments are stabilized by wrapping the ligature (wire) around the fractured bone segments and locking the ends together. (b) Classification. Class II. ...
21 CFR 872.4600 - Intraoral ligature and wire lock.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) Identification. An intraoral ligature and wire lock is a metal device intended to constrict fractured bone segments in the oral cavity. The bone segments are stabilized by wrapping the ligature (wire) around the fractured bone segments and locking the ends together. (b) Classification. Class II. ...
21 CFR 872.4600 - Intraoral ligature and wire lock.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) Identification. An intraoral ligature and wire lock is a metal device intended to constrict fractured bone segments in the oral cavity. The bone segments are stabilized by wrapping the ligature (wire) around the fractured bone segments and locking the ends together. (b) Classification. Class II. ...
21 CFR 872.4600 - Intraoral ligature and wire lock.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Identification. An intraoral ligature and wire lock is a metal device intended to constrict fractured bone segments in the oral cavity. The bone segments are stabilized by wrapping the ligature (wire) around the fractured bone segments and locking the ends together. (b) Classification. Class II. ...
Search-based model identification of smart-structure damage
NASA Technical Reports Server (NTRS)
Glass, B. J.; Macalou, A.
1991-01-01
This paper describes the use of a combined model and parameter identification approach, based on modal analysis and artificial intelligence (AI) techniques, for identifying damage or flaws in a rotating truss structure incorporating embedded piezoceramic sensors. This smart structure example is representative of a class of structures commonly found in aerospace systems and next generation space structures. Artificial intelligence techniques of classification, heuristic search, and an object-oriented knowledge base are used in an AI-based model identification approach. A finite model space is classified into a search tree, over which a variant of best-first search is used to identify the model whose stored response most closely matches that of the input. Newly-encountered models can be incorporated into the model space. This adaptativeness demonstrates the potential for learning control. Following this output-error model identification, numerical parameter identification is used to further refine the identified model. Given the rotating truss example in this paper, noisy data corresponding to various damage configurations are input to both this approach and a conventional parameter identification method. The combination of the AI-based model identification with parameter identification is shown to lead to smaller parameter corrections than required by the use of parameter identification alone.
Hemsley, S; Palmer, H; Canfield, R B; Stewart, M E B; Krockenberger, M B; Malik, R
2013-09-01
To use cross-sectional imaging (helical computed tomography (CT)) combined with conventional anatomical dissection to define the normal anatomy of the nasal cavity and bony cavitations of the koala skull. Helical CT scans of the heads of nine adult animals were obtained using a multislice scanner acquiring thin slices reconstructed in the transverse, sagittal and dorsal planes. Subsequent anatomical dissection permitted confirmation of correct identification and further delineation of bony and air-filled structures visible in axial and multiplanar reformatted CT images. The nasal cavity was relatively simple, with little scrolling of nasal conchae, but bony cavitations were complex and extensive. A rostral maxillary recess and ventral conchal, caudal maxillary, frontal and sphenoidal paranasal sinuses were identified and characterised. Extensive temporal bone cavitation was shown to be related to a large epitympanic recess. The detailed anatomical data provided are applicable to future functional and comparative anatomical studies, as well as providing a preliminary atlas for clinical investigation of conditions such as cryptococcal rhinosinusitis, a condition more common in the koala than in many other species. © 2013 Australian Veterinary Association.
Quantum and classical chaos in kicked coupled Jaynes-Cummings cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayward, A. L. C.; Greentree, Andrew D.
2010-06-15
We consider two Jaynes-Cummings cavities coupled periodically with a photon hopping term. The semiclassical phase space is chaotic, with regions of stability over some ranges of the parameters. The quantum case exhibits dynamic localization and dynamic tunneling between classically forbidden regions. We explore the correspondence between the classical and quantum phase space and propose an implementation in a circuit QED system.
An AI-based approach to structural damage identification by modal analysis
NASA Technical Reports Server (NTRS)
Glass, B. J.; Hanagud, S.
1990-01-01
Flexible-structure damage is presently addressed by a combined model- and parameter-identification approach which employs the AI methodologies of classification, heuristic search, and object-oriented model knowledge representation. The conditions for model-space search convergence to the best model are discussed in terms of search-tree organization and initial model parameter error. In the illustrative example of a truss structure presented, the use of both model and parameter identification is shown to lead to smaller parameter corrections than would be required by parameter identification alone.
A density based algorithm to detect cavities and holes from planar points
NASA Astrophysics Data System (ADS)
Zhu, Jie; Sun, Yizhong; Pang, Yueyong
2017-12-01
Delaunay-based shape reconstruction algorithms are widely used in approximating the shape from planar points. However, these algorithms cannot ensure the optimality of varied reconstructed cavity boundaries and hole boundaries. This inadequate reconstruction can be primarily attributed to the lack of efficient mathematic formulation for the two structures (hole and cavity). In this paper, we develop an efficient algorithm for generating cavities and holes from planar points. The algorithm yields the final boundary based on an iterative removal of the Delaunay triangulation. Our algorithm is mainly divided into two steps, namely, rough and refined shape reconstructions. The rough shape reconstruction performed by the algorithm is controlled by a relative parameter. Based on the rough result, the refined shape reconstruction mainly aims to detect holes and pure cavities. Cavity and hole are conceptualized as a structure with a low-density region surrounded by the high-density region. With this structure, cavity and hole are characterized by a mathematic formulation called as compactness of point formed by the length variation of the edges incident to point in Delaunay triangulation. The boundaries of cavity and hole are then found by locating a shape gradient change in compactness of point set. The experimental comparison with other shape reconstruction approaches shows that the proposed algorithm is able to accurately yield the boundaries of cavity and hole with varying point set densities and distributions.
Mehta, Shahil; Gajjar, Shefali R; Padgett, Kyle R; Asher, David; Stoyanova, Radka; Ford, John C; Mellon, Eric A
2018-03-19
Radiation therapy (RT) plays a critical role in the treatment of glioblastoma. Studies of brain imaging during RT for glioblastoma have demonstrated changes in the brain during RT. However, frequent or daily utilization of standalone magnetic resonance imaging (MRI) scans during RT have limited feasibility. The recent release of the tri-cobalt-60 MRI-guided RT (MR-IGRT) device (ViewRay MRIdian, Cleveland, OH) allows for daily brain MRI for the RT setup. Daily MRI of three postoperative patients undergoing RT and temozolomide for glioblastoma over a six-week course allowed for the identification of changes to the cavity, edema, and visible tumor on a daily basis. The volumes and dimensions of the resection cavities, edema, and T2-hyperintense tumor were measured. A general trend of daily decreases in cavity measurements was observed in all patients. For the one patient with edema, a trend of daily increases followed by a trend of daily decreases were observed. These results suggest that daily MRI could be used for onboard resimulation and adaptive RT for future fluctuations in the sizes of brain tumors, cavities, or cystic components. This could improve tumor targeting and reduce RT of healthy brain tissue.
Mehta, Shahil; Gajjar, Shefali R; Padgett, Kyle R; Asher, David; Stoyanova, Radka; Ford, John C
2018-01-01
Radiation therapy (RT) plays a critical role in the treatment of glioblastoma. Studies of brain imaging during RT for glioblastoma have demonstrated changes in the brain during RT. However, frequent or daily utilization of standalone magnetic resonance imaging (MRI) scans during RT have limited feasibility. The recent release of the tri-cobalt-60 MRI-guided RT (MR-IGRT) device (ViewRay MRIdian, Cleveland, OH) allows for daily brain MRI for the RT setup. Daily MRI of three postoperative patients undergoing RT and temozolomide for glioblastoma over a six-week course allowed for the identification of changes to the cavity, edema, and visible tumor on a daily basis. The volumes and dimensions of the resection cavities, edema, and T2-hyperintense tumor were measured. A general trend of daily decreases in cavity measurements was observed in all patients. For the one patient with edema, a trend of daily increases followed by a trend of daily decreases were observed. These results suggest that daily MRI could be used for onboard resimulation and adaptive RT for future fluctuations in the sizes of brain tumors, cavities, or cystic components. This could improve tumor targeting and reduce RT of healthy brain tissue. PMID:29796358
Higher-order mode-based cavity misalignment measurements at the free-electron laser FLASH
NASA Astrophysics Data System (ADS)
Hellert, Thorsten; Baboi, Nicoleta; Shi, Liangliang
2017-12-01
At the Free-Electron Laser in Hamburg (FLASH) and the European X-Ray Free-Electron Laser, superconducting TeV-energy superconducting linear accelerator (TESLA)-type cavities are used for the acceleration of electron bunches, generating intense free-electron laser (FEL) beams. A long rf pulse structure allows one to accelerate long bunch trains, which considerably increases the efficiency of the machine. However, intrabunch-train variations of rf parameters and misalignments of rf structures induce significant trajectory variations that may decrease the FEL performance. The accelerating cavities are housed inside cryomodules, which restricts the ability for direct alignment measurements. In order to determine the transverse cavity position, we use a method based on beam-excited dipole modes in the cavities. We have developed an efficient measurement and signal processing routine and present its application to multiple accelerating modules at FLASH. The measured rms cavity offset agrees with the specification of the TESLA modules. For the first time, the tilt of a TESLA cavity inside a cryomodule is measured. The preliminary result agrees well with the ratio between the offset and angle dependence of the dipole mode which we calculated with eigenmode simulations.
The combination of high Q factor and chirality in twin cavities and microcavity chain
Song, Qinghai; Zhang, Nan; Zhai, Huilin; Liu, Shuai; Gu, Zhiyuan; Wang, Kaiyang; Sun, Shang; Chen, Zhiwei; Li, Meng; Xiao, Shumin
2014-01-01
Chirality in microcavities has recently shown its bright future in optical sensing and microsized coherent light sources. The key parameters for such applications are the high quality (Q) factor and large chirality. However, the previous reported chiral resonances are either low Q modes or require very special cavity designs. Here we demonstrate a novel, robust, and general mechanism to obtain the chirality in circular cavity. By placing a circular cavity and a spiral cavity in proximity, we show that ultra-high Q factor, large chirality, and unidirectional output can be obtained simultaneously. The highest Q factors of the non-orthogonal mode pairs are almost the same as the ones in circular cavity. And the co-propagating directions of the non-orthogonal mode pairs can be reversed by tuning the mode coupling. This new mechanism for the combination of high Q factor and large chirality is found to be very robust to cavity size, refractive index, and the shape deformation, showing very nice fabrication tolerance. And it can be further extended to microcavity chain and microcavity plane. We believe that our research will shed light on the practical applications of chirality and microcavities. PMID:25262881
Directional impulse response of a large cavity inside a sonic crystal.
Spiousas, Ignacio; Eguia, Manuel C
2012-10-01
Both temporal and directional responses of a cavity inside a two-dimensional sonic crystal are investigated. The size of the cavity is large compared to the lattice parameter and the wavelength for the frequency range of interest. Hence, a hybrid method to compute the response is proposed, combining multiscattering theory for the calculation of the reflective properties of the sonic crystal with a modified ray-tracing algorithm for the sound propagation within the cavity. The response of this enclosure displays resonances for certain frequency bands that depend on the geometry of the lattice and the cavity. When a full band gap exists in the sonic crystal, rays cannot propagate through the medium and total reflection occurs for all incidence angles, leading to strong resonances with an isotropic intensity field inside the cavity. When only some propagation directions are forbidden, total reflection occurs for certain ranges of incidence angles, and resonances can also be elicited but with a highly anisotropic intensity field. The spectrum of resonances of the cavity is strongly affected by changes in the lattice geometry, suggesting that they can be tailored to some extent, a feature that can lead to potential applications in architectural acoustics.
Rf system for the NSLS coherent infrared radiation source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broome, W.; Biscardi, R.; Keane, J.
1995-05-01
The existing NSLS X-ray Lithography Source (XLS Phase I) is being considered for a coherent synchrotron radiation source. The existing 211 MHz warm cavity will be replaced with a 5-cell 2856 MHz superconducting RF cavity, driven by a series of 2 kW klystrons. The RF system will provide a total V{sub RF} of 1.5 MV to produce {sigma}{sub L} = 0.3 mm electron bunches at an energy of 150 MeV. Superconducting technology significantly reduces the required space and power needed to achieve the higher voltage. It is the purpose of this paper to describe the superconducting RF system and cavity,more » power requirements, and cavity design parameters such as input coupling, Quality Factor, and Higher Order Modes.« less
NASA Astrophysics Data System (ADS)
Xu, Yonggen; Li, Yude; Feng, Ting; Qiu, Yi
2009-12-01
The principle of phase-locking of an axisymmetric fold combination cavity CO2 laser, fulfilled by the reflection-injection of the back surface of the output-mirror, has been studied in detail. Variation of the equiphase surface and the influence of some characteristic parameters on phase-locking are analyzed—for example, phase error, changes in the cavity length and curvature radius, line-width and temperature. It is shown that the injected beam can excite a stable mode in the cavities, and the value of the energy coupling coefficient directly reflects the degree of phase-locking. Therefore, the output beams have a fixed phase relation between each other, and good coherent beams can be obtained by using the phase-locking method.
Severe congenital cyclic neutropenia: A case report
Patil, Vidyavathi H; Hugar, Shivayogi M; Balikai, Girish; Patil, Sudha
2016-01-01
Congenital cyclic neutropenia syndrome is a constitutional genetic disorder which is characterized by very low number of neutrophils (neutropenia). Patients suffering from this disorder clinically present with neutropenia at early age, history of recurrent fever, ulcerations in the oral cavity, gingivitis, and other recurrent infections. This paper describes a case report of a child with recurrent mouth ulcers, fever, and later diagnosed with severe congenital cyclic neutropenia. This also emphasizes the importance of identification of rare causes of immunosuppressive conditions in children presenting with recurrent oral ulcers and poor dental hygiene, to prevent long-term complications of oral cavity and also morbidity and mortality secondary to neutropenic sepsis. PMID:27857902
Navarro, Ricardo Scarparo; Gouw-Soares, Sheila; Cassoni, Alessandra; Haypek, Patricia; Zezell, Denise Maria; de Paula Eduardo, Carlos
2010-11-01
The objective of this study was to evaluate the influence of various pulse widths with different energy parameters of erbium:yttrium-aluminum-garnet (Er:YAG) laser (2.94 mum) on the morphology and microleakage of cavities restored with composite resin. Identically sized class V cavities were prepared on the buccal surfaces of 54 bovine teeth by high-speed drill (n = 6, control, group 1) and prepared by Er:YAG laser (Fidelis 320A, Fotona, Slovenia) with irradiation parameters of 350 mJ/ 4 Hz or 400 mJ/2 Hz and pulse width: group 2, very short pulse (VSP); group 3, short pulse (SP); group 4, long pulse (LP); group 5, very long pulse (VLP). All cavities were filled with composite resin (Z-250-3 M), stored at 37 degrees C in distilled water, polished after 24 h, and thermally stressed (700 cycles/5-55 degrees C). The teeth were impermeabilized, immersed in 50% silver nitrate solution for 8 h, sectioned longitudinally, and exposed to Photoflood light for 10 min to reveal the stain. The leakage was evaluated under stereomicroscope by three different examiners, in a double-blind fashion, and scored (0-3). The results were analyzed by Kruskal-Wallis test (P > 0.05) and showed that there was no significant differences between the groups tested. Under scanning electron microscopy (SEM) the morphology of the cavities prepared by laser showed irregular enamel margins and dentin internal walls, and a more conservative pattern than that of conventional cavities. The different power settings and pulse widths of Er:YAG laser in cavity preparation had no influence on microleakage of composite resin restorations.
Loss-induced super scattering and gain-induced absorption.
Feng, Simin
2016-01-25
Giant transmission and reflection of a finite bandwidth are demonstrated at the same wavelength when the electromagnetic wave is incident on a subwavelength array of parity-time (PT) symmetric dimers embedded in a metallic film. Remarkably, this phenomenon vanishes if the metallic substrate is lossless while keeping other parameters unchanged. Moreover super scattering can also occur when increasing the loss of the dimers while keeping the gain unchanged. When the metafilm is adjusted to the vicinity of an exceptional point, tuning either the substrate dissipation or the loss of the dimers can lead to supper scattering in stark contrast to what would be expected in conventional systems. In addition, increasing the gain of the dimers can increase the absorption near the exceptional point. These phenomena indicate that the PT-synthetic plasmonic metafilm can function as a thinfilm PT-plasmonic laser or absorber depending on the tuning parameter. One implication is that super radiation is possible from a cavity by tuning cavity dissipation or lossy element inside the cavity.
NASA Astrophysics Data System (ADS)
Jaman, Md. Shah; Islam, Showmic; Saha, Sumon; Hasan, Mohammad Nasim; Islam, Md. Quamrul
2016-07-01
A numerical analysis is carried out to study the performance of steady laminar mixed convection flow inside a square lid-driven cavity filled with water-Al2O3 nanofluid. The top wall of the cavity is moving at a constant velocity and is heated by an isothermal heat source. Two-dimensional Navier-stokes equations along with the energy equations are solved using Galerkin finite element method. Results are obtained for a range of Reynolds and Grashof numbers by considering with and without the presence of nanoparticles. The parametric studies for a wide range of governing parameters in case of pure mixed convective flow show significant features of the present problem in terms of streamline and isotherm contours, average Nusselt number and average temperature profiles. The computational results indicate that the heat transfer coeffcient is strongly influenced by the above governing parameters at the pure mixed convection regime.
The effect of nonadiabaticity on the efficiency of quantum memory based on an optical cavity
NASA Astrophysics Data System (ADS)
Veselkova, N. G.; Sokolov, I. V.
2017-07-01
Quantum efficiency is an important characteristic of quantum memory devices that are aimed at recording the quantum state of light signals and its storing and reading. In the case of memory based on an ensemble of cold atoms placed in an optical cavity, the efficiency is restricted, in particular, by relaxation processes in the system of active atomic levels. We show how the effect of the relaxation on the quantum efficiency can be determined in a regime of the memory usage in which the evolution of signals in time is not arbitrarily slow on the scale of the field lifetime in the cavity and when the frequently used approximation of the adiabatic elimination of the quantized cavity mode field cannot be applied. Taking into account the effect of the nonadiabaticity on the memory quality is of interest in view of the fact that, in order to increase the field-medium coupling parameter, a higher cavity quality factor is required, whereas storing and processing of sequences of many signals in the memory implies that their duration is reduced. We consider the applicability of the well-known efficiency estimates via the system cooperativity parameter and estimate a more general form. In connection with the theoretical description of the memory of the given type, we also discuss qualitative differences in the behavior of a random source introduced into the Heisenberg-Langevin equations for atomic variables in the cases of a large and a small number of atoms.
21 CFR 884.5050 - Metreurynter-balloon abortion system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Metreurynter-balloon abortion system. 884.5050... Devices § 884.5050 Metreurynter-balloon abortion system. (a) Identification. A metreurynter-balloon abortion system is a device used to induce abortion. The device is inserted into the uterine cavity...
21 CFR 884.5050 - Metreurynter-balloon abortion system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Metreurynter-balloon abortion system. 884.5050... Devices § 884.5050 Metreurynter-balloon abortion system. (a) Identification. A metreurynter-balloon abortion system is a device used to induce abortion. The device is inserted into the uterine cavity...
21 CFR 884.5050 - Metreurynter-balloon abortion system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Metreurynter-balloon abortion system. 884.5050... Devices § 884.5050 Metreurynter-balloon abortion system. (a) Identification. A metreurynter-balloon abortion system is a device used to induce abortion. The device is inserted into the uterine cavity...
21 CFR 884.5050 - Metreurynter-balloon abortion system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Metreurynter-balloon abortion system. 884.5050... Devices § 884.5050 Metreurynter-balloon abortion system. (a) Identification. A metreurynter-balloon abortion system is a device used to induce abortion. The device is inserted into the uterine cavity...
21 CFR 884.5050 - Metreurynter-balloon abortion system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Metreurynter-balloon abortion system. 884.5050... Devices § 884.5050 Metreurynter-balloon abortion system. (a) Identification. A metreurynter-balloon abortion system is a device used to induce abortion. The device is inserted into the uterine cavity...
Cavity-based quantum networks with single atoms and optical photons
NASA Astrophysics Data System (ADS)
Reiserer, Andreas; Rempe, Gerhard
2015-10-01
Distributed quantum networks will allow users to perform tasks and to interact in ways which are not possible with present-day technology. Their implementation is a key challenge for quantum science and requires the development of stationary quantum nodes that can send and receive as well as store and process quantum information locally. The nodes are connected by quantum channels for flying information carriers, i.e., photons. These channels serve both to directly exchange quantum information between nodes and to distribute entanglement over the whole network. In order to scale such networks to many particles and long distances, an efficient interface between the nodes and the channels is required. This article describes the cavity-based approach to this goal, with an emphasis on experimental systems in which single atoms are trapped in and coupled to optical resonators. Besides being conceptually appealing, this approach is promising for quantum networks on larger scales, as it gives access to long qubit coherence times and high light-matter coupling efficiencies. Thus, it allows one to generate entangled photons on the push of a button, to reversibly map the quantum state of a photon onto an atom, to transfer and teleport quantum states between remote atoms, to entangle distant atoms, to detect optical photons nondestructively, to perform entangling quantum gates between an atom and one or several photons, and even provides a route toward efficient heralded quantum memories for future repeaters. The presented general protocols and the identification of key parameters are applicable to other experimental systems.
NASA Astrophysics Data System (ADS)
Bui, Huu Nguyen; Pham, Thanh Son; Ngo, Viet; Lee, Jong-Wook
2017-09-01
Controlling power to an unintended area is an important issue for enabling wireless power transfer (WPT) systems. The control allows us to enhance efficiency as well as suppress unnecessary flux leakage. The flux leakage from WPT can be reduced effectively via selective field localization. To realize field localization, we propose the use of cavities formed on a single metamaterial slab that acts as a defected metasurface. The cavity is formed by strong field confinement using a hybridization bandgap (HBG), which is created by wave interaction with a two-dimensional array of local resonators on the metasurface. This approach using an HBG demonstrates strong field localization around the cavity regions. Motivated by this result, we further investigate various cavity configurations for different sizes of the transmitter (Tx) and receiver (Rx) resonators. Experiments show that the area of field localization increases with the number of cavities, confirming the successful control of different cavity configurations on the metasurface. Transmission measurements of different cavities show that the number of cavities is an important parameter for efficiency, and excess cavities do not enhance the efficiency but increase unnecessary power leakage. Thus, there exists an optimum number of cavities for a given size ratio between the Tx and Rx resonators. For a 6:1 size ratio, this approach achieves efficiency improvements of 3.69× and 1.59× compared to free space and a uniform metasurface, respectively. For 10:1 and 10:2 size ratios, the efficiency improvements are 3.26× and 1.98× compared to free space and a uniform metasurface, respectively.
Observations of pockmark flow structure in Belfast Bay, Maine, Part 2: evidence for cavity flow
Fandel, Christina L.; Lippmann, Thomas C.; Foster, Diane L.; Brothers, Laura L.
2017-01-01
Pockmark flow circulation patterns were investigated through current measurements along the rim and center of two pockmarks in Belfast Bay, Maine. Observed time-varying current profiles have a complex vertical and directional structure that rotates significantly with depth and is strongly dependent on the phase of the tide. Observations of the vertical profiles of horizontal velocities in relation to relative geometric parameters of the pockmark are consistent with circulation patterns described qualitatively by cavity flow models (Ashcroft and Zhang 2005). The time-mean behavior of the shear layer is typically used to characterize cavity flow, and was estimated using vorticity thickness to quantify the growth rate of the shear layer horizontally across the pockmark. Estimated positive vorticity thickness spreading rates are consistent with cavity flow predictions, and occur at largely different rates between the two pockmarks. Previously modeled flow (Brothers et al. 2011) and laboratory measurements (Pau et al. 2014) over pockmarks of similar geometry to those examined herein are also qualitatively consistent with cavity flow circulation, suggesting that cavity flow may be a good first-order flow model for pockmarks in general.
A geometric approach to identify cavities in particle systems
NASA Astrophysics Data System (ADS)
Voyiatzis, Evangelos; Böhm, Michael C.; Müller-Plathe, Florian
2015-11-01
The implementation of a geometric algorithm to identify cavities in particle systems in an open-source python program is presented. The algorithm makes use of the Delaunay space tessellation. The present python software is based on platform-independent tools, leading to a portable program. Its successful execution provides information concerning the accessible volume fraction of the system, the size and shape of the cavities and the group of atoms forming each of them. The program can be easily incorporated into the LAMMPS software. An advantage of the present algorithm is that no a priori assumption on the cavity shape has to be made. As an example, the cavity size and shape distributions in a polyethylene melt system are presented for three spherical probe particles. This paper serves also as an introductory manual to the script. It summarizes the algorithm, its implementation, the required user-defined parameters as well as the format of the input and output files. Additionally, we demonstrate possible applications of our approach and compare its capability with the ones of well documented cavity size estimators.
Benoussaad, Mourad; Poignet, Philippe; Hayashibe, Mitsuhiro; Azevedo-Coste, Christine; Fattal, Charles; Guiraud, David
2013-06-01
We investigated the parameter identification of a multi-scale physiological model of skeletal muscle, based on Huxley's formulation. We focused particularly on the knee joint controlled by quadriceps muscles under electrical stimulation (ES) in subjects with a complete spinal cord injury. A noninvasive and in vivo identification protocol was thus applied through surface stimulation in nine subjects and through neural stimulation in one ES-implanted subject. The identification protocol included initial identification steps, which are adaptations of existing identification techniques to estimate most of the parameters of our model. Then we applied an original and safer identification protocol in dynamic conditions, which required resolution of a nonlinear programming (NLP) problem to identify the serial element stiffness of quadriceps. Each identification step and cross validation of the estimated model in dynamic condition were evaluated through a quadratic error criterion. The results highlighted good accuracy, the efficiency of the identification protocol and the ability of the estimated model to predict the subject-specific behavior of the musculoskeletal system. From the comparison of parameter values between subjects, we discussed and explored the inter-subject variability of parameters in order to select parameters that have to be identified in each patient.
Tengher-Barna, Iulia; Hequet, Delphine; Reboul-Marty, Jeanne; Frassati-Biaggi, Annonciade; Seince, Nathalie; Rodrigues-Faure, Anabela; Uzan, Michèle; Ziol, Marianne
2009-02-01
Margin resection status is a major risk factor for the development of local recurrence in breast conservation therapy for carcinoma. Tumor bed excision sent as separate orientated cavity margins represents a tool to verify the completeness of the carcinoma resection. We aimed to (1) determine the prevalence of positive cavity margin and its influence on subsequent surgical treatment and (2) identify potential predictive factors for positive cavity margins. From 2003 to 2006, 107 (57 years; 30-88) consecutive patients who underwent a lumpectomy for carcinoma with four orientated cavity margins for carcinoma were selected. Preoperative clinical, radiological and histological data, perioperative macroscopic characteristics and definitive histological analysis results were recorded. Lumpectomy or cavity margins were considered as positive when the distance from carcinoma to the margin was less than or equal to 3 mm. Histological examination of cavity margins showed carcinoma in 38 patients (35%), therefore modifying subsequent surgical therapy in 33 cases. Examination of the cavity margins led (1) to avoiding surgical re-excision in 20 cases (lumpectomy margins were positive and the cavity margins negative), (2) to performing a mastectomy or a re-excision in 13 cases (carcinoma was detected in the cavity margins although the lumpectomy margins were negative or tumor size was superior to 3 cm). Between preoperative and perioperative parameters, US scan and macroscopic size of the tumor were predictive factors for positive cavity margins whereas characteristics of the carcinoma determined on biopsy samples and macroscopic status of the lumpectomy margins were not. Our study confirms that the systematic practice of cavity margin resection avoids surgical re-excision and reduces the likelihood of underestimating the extent of the tumor.
Mathematical correlation of modal-parameter-identification methods via system-realization theory
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan
1987-01-01
A unified approach is introduced using system-realization theory to derive and correlate modal-parameter-identification methods for flexible structures. Several different time-domain methods are analyzed and treated. A basic mathematical foundation is presented which provides insight into the field of modal-parameter identification for comparison and evaluation. The relation among various existing methods is established and discussed. This report serves as a starting point to stimulate additional research toward the unification of the many possible approaches for modal-parameter identification.
Topological superfluids confined in a nanoscale slab geometry
NASA Astrophysics Data System (ADS)
Saunders, John
2013-03-01
Nanofluidic samples of superfluid 3He provide a route to explore odd-parity topological superfluids and their surface, edge and defect-bound excitations under well controlled conditions. We have cooled superfluid 3He confined in a precisely defined nano-fabricated cavity to well below 1 mK for the first time. We fingerprint the order parameter by nuclear magnetic resonance, exploiting a SQUID NMR spectrometer of exquisite sensitivity. We demonstrate that dimensional confinement, at length scales comparable to the superfluid Cooper-pair diameter, has a profound influence on the superfluid order of 3He. The chiral A-phase is stabilized at low pressures, in a cavity of height 650 nm. At higher pressures we observe 3He-B with a surface induced planar distortion. 3He-B is a time-reversal invariant topological superfluid, supporting gapless Majorana surface states. In the presence of the small symmetry breaking NMR static magnetic field we observe two possible B-phase states of the order parameter manifold, which can coexist as domains. Non-linear NMR on these states enables a measurement of the surface induced planar distortion, which determines the spectral weight of the surface excitations. The expected structure of the domain walls is such that, at the cavity surface, the line separating the two domains is predicted to host fermion zero modes, protected by symmetry and topology. Increasing confinement should stabilize new p-wave superfluid states of matter, such as the quasi-2D gapped A phase, which breaks time reversal symmetry, has a protected chiral edge mode, and may host half-quantum vortices with a Majorana zero-mode at the core. We discuss experimental progress toward this phase, through measurements on a 100 nm cavity. On the other hand, a cavity height of 1000 nm may stabilize a novel ``striped'' superfluid with spatially modulated order parameter. Supported by EPSRC (UK) GR/J022004/1 and European Microkelvin Consortium, FP7 grant 228464
Natural oscillations of a gas bubble in a liquid-filled cavity located in a viscoelastic medium
NASA Astrophysics Data System (ADS)
Doinikov, Alexander A.; Marmottant, Philippe
2018-04-01
The present study is motivated by cavitation phenomena that occur in the stems of trees. The internal pressure in tree conduits can drop down to significant negative values. This drop gives rise to cavitation bubbles, which undergo high-frequency eigenmodes. The aim of the present study is to determine the parameters of the bubble natural oscillations. To this end, a theory is developed that describes the pulsation of a spherical bubble located at the center of a spherical cavity surrounded by an infinite solid medium. It is assumed that the medium inside the bubble is a gas-vapor mixture, the cavity is filled with a compressible viscous liquid, and the medium surrounding the cavity behaves as a viscoelastic solid. The theoretical solution takes into account the outgoing acoustic wave produced by the bubble pulsation, the incoming wave caused by reflection from the liquid-solid boundary, and the outgoing wave propagating in the solid. A dispersion equation for the calculation of complex wavenumbers of the bubble eigenmodes is derived. Approximate analytical solutions to the dispersion equation are found. Numerical simulations are performed to reveal the effect of different physical parameters on the resonance frequency and the attenuation coefficient of the bubble oscillations.
Modeling of Turbulent Natural Convection in Enclosed Tall Cavities
NASA Astrophysics Data System (ADS)
Goloviznin, V. M.; Korotkin, I. A.; Finogenov, S. A.
2017-12-01
It was shown in our previous work (J. Appl. Mech. Tech. Phys 57 (7), 1159-1171 (2016)) that the eddy-resolving parameter-free CABARET scheme as applied to two-and three-dimensional de Vahl Davis benchmark tests (thermal convection in a square cavity) yields numerical results on coarse (20 × 20 and 20 × 20 × 20) grids that agree surprisingly well with experimental data and highly accurate computations for Rayleigh numbers of up to 1014. In the present paper, the sensitivity of this phenomenon to the cavity shape (varying from cubical to highly elongated) is analyzed. Box-shaped computational domains with aspect ratios of 1: 4, 1: 10, and 1: 28.6 are considered. The results produced by the CABARET scheme are compared with experimental data (aspect ratio of 1: 28.6), DNS results (aspect ratio of 1: 4), and an empirical formula (aspect ratio of 1: 10). In all the cases, the CABARET-based integral parameters of the cavity flow agree well with the other authors' results. Notably coarse grids with mesh refinement toward the walls are used in the CABARET calculations. It is shown that acceptable numerical accuracy on extremely coarse grids is achieved for an aspect ratio of up to 1: 10. For higher aspect ratios, the number of grid cells required for achieving prescribed accuracy grows significantly.
Purification and switching protocols for dissipatively stabilized entangled qubit states
NASA Astrophysics Data System (ADS)
Hein, Sven M.; Aron, Camille; Türeci, Hakan E.
2016-06-01
Pure dephasing processes limit the fidelities achievable in driven-dissipative schemes for stabilization of entangled states of qubits. We propose a scheme which, combined with already existing entangling methods, purifies the desired entangled state by driving out of equilibrium auxiliary dissipative cavity modes coupled to the qubits. We lay out the specifics of our scheme and compute its efficiency in the particular context of two superconducting qubits in a cavity-QED architecture, where the strongly coupled auxiliary modes provided by collective cavity excitations can drive and sustain the qubits in maximally entangled Bell states with fidelities reaching 90% for experimentally accessible parameters.
Focusing metasurface quantum-cascade laser with a near diffraction-limited beam
Xu, Luyao; Chen, Daguan; Itoh, Tatsuo; ...
2016-10-17
A terahertz vertical-external-cavity surface-emitting-laser (VECSEL) is demonstrated using an active focusing reflectarray metasurface based on quantum-cascade gain material. The focusing effect enables a hemispherical cavity with flat optics, which exhibits higher geometric stability than a plano-plano cavity and a directive and circular near-diffraction limited Gaussian beam with M 2 beam parameter as low as 1.3 and brightness of 1.86 × 10 6 Wsr –1m –2. As a result, this work initiates the potential of leveraging inhomogeneous metasurface and reflectarray designs to achieve high-power and high-brightness terahertz quantum-cascade VECSELs.
Gu, Rui; Xu, Jinglei
2014-01-01
The dual throat nozzle (DTN) technique is capable to achieve higher thrust-vectoring efficiencies than other fluidic techniques, without compromising thrust efficiency significantly during vectoring operation. The excellent performance of the DTN is mainly due to the concaved cavity. In this paper, two DTNs of different scales have been investigated by unsteady numerical simulations to compare the parameter variations and study the effects of cavity during the vector starting process. The results remind us that during the vector starting process, dynamic loads may be generated, which is a potentially challenging problem for the aircraft trim and control.
NASA Astrophysics Data System (ADS)
Ge, Xiaochen; Minkov, Momchil; Fan, Shanhui; Li, Xiuling; Zhou, Weidong
2018-04-01
We report here design and experimental demonstration of heterostructure photonic crystal cavities resonating near the Γ point with simultaneous strong lateral confinement and highly directional vertical radiation patterns. The lateral confinement is provided by a mode gap originating from a gradual modulation of the hole radii. High quality factor resonance is realized with a low index contrast between silicon nitride and quartz. The near surface-normal directional emission is preserved when the size of the core region is scaled down. The influence of the cavity size parameters on the resonant modes is also investigated theoretically and experimentally.
Optical response of two coupled optomechanical systems in the presence of nonlinear mediums
NASA Astrophysics Data System (ADS)
Asghari Nejad, A.; Askari, H. R.; Baghshahi, H. R.
2018-01-01
In this paper, we investigate response of a hybrid optomechanical system in different situations. This system is composed of two coupled optomechanical cavities, which one of them is filled with an optical parametric amplifier (OPA) and the other one encompasses a nonlinear Kerr medium. The Hamiltonian of the system is written in a rotating frame. The dynamics of the system is obtained by the quantum Langevin equations of motion in a steady state regime. The results show that the presence of OPA and the Kerr medium in the system can considerably change the behavior of both cavities. For this reason, we show that by choosing different values for the optical parameters of the system, one can switches the behaviors of the cavities between mono-, bi- and tristability. Also, we show that by changing the detunings of the cavities, one can obtain uncommon responses from the system. Furthermore, we show that it is possible to create proper optical multistability regions for both cavities.
A study on the high-order mode oscillation in a four-cavity intense relativistic klystron amplifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ying-Hui; Niu, Xin-Jian; Wang, Hui
The high-order mode oscillation is studied in designing a four-cavity intense relativistic klystron amplifier. The reason for the oscillation caused by high-order modes and a method to suppress these kinds of spurious modes are found through theoretical analyses and the study on the influence of major parameters of a high frequency structure (such as the oscillation frequency of cavities, the cavity Q value, the length of drift tube section, and the characteristic impedance). Based on much simulation, a four-cavity intense relativistic klystron amplifier with a superior performance has been designed, built, and tested. An output power of 2.22 GW corresponding tomore » 27.4% efficiency and 61 dB gain has been obtained. Moreover, the high-order mode oscillation is suppressed effectively, and an output power of 1.95 GW corresponding to 26% efficiency and 62 dB gain has been obtained in our laboratory.« less
Posen, S.; Checchin, M.; Crawford, A. C.; ...
2016-06-03
Even when cooled through its transition temperature in the presence of an external magnetic field, a superconductor can expel nearly all external magnetic flux. This Letter presents an experimental study to identify the parameters that most strongly influence flux trapping in high purity niobium during cooldown. This is critical to the operation of superconducting radiofrequency cavities, in which trapped flux degrades the quality factor and therefore cryogenic efficiency. Flux expulsion was measured on a large survey of 1.3 GHz cavities prepared in various ways. It is shown that both spatial thermal gradient and high temperature treatment are critical to expellingmore » external magnetic fields, while surface treatment has minimal effect. For the first time, it is shown that a cavity can be converted from poor expulsion behavior to strong expulsion behavior after furnace treatment, resulting in a substantial improvement in quality factor. In conclusion, future plans are described to build on this result in order to optimize treatment for future cavities.« less
Thermal radiation from optically driven Kerr (χ{sup (3)}) photonic cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khandekar, Chinmay; Rodriguez, Alejandro W.; Lin, Zin
2015-04-13
We describe thermal radiation from nonlinear (χ{sup (3)}) photonic cavities coupled to external channels and subject to incident monochromatic light. Our work extends related work on nonlinear mechanical oscillators to the problem of thermal radiation, demonstrating that bistability can enhance thermal radiation by orders of magnitude and result in strong lineshape alternations, including “super-narrow spectral peaks” occurring at the onset of kinetic phase transitions. We show that when the cavities are designed to exhibit perfect linear emissivity (rate matching), such thermally activated transitions can be exploited to dramatically tune the output power and radiative properties of the cavity, leading tomore » a kind of Kerr-mediated thermo-optic effect. Finally, we demonstrate that in certain parameter regimes, the output radiation exhibits Stokes and anti-Stokes side peaks whose relative magnitudes can be altered by tuning the internal temperature of the cavity relative to its surroundings, a consequence of strong correlations and interference between the emitted and reflected radiation.« less
A Covering Type Extrusion Die with Twin Cavities for Semi-Hollow Al-Profiles
NASA Astrophysics Data System (ADS)
Deng, Rurong; Huang, Xuemei
2018-03-01
A new structure named covering type with twin cavities in a die for the semi-hollow aluminum profiles was present. The determination of structure parameters was introduced in detail. Mainly including the selection of the machine, the arrangement of portholes, the structure design of chamber and the selection of bearing. The method of checking the die strength was introduced. According to the extrusion results, the structure of the traditional solid die, the porthole die with single cavity and the covering type structure with twin cavities were compared. The characteristics of the latter structure were simple and easy to process. The practical application shows that the new die structure can enhance the die life, improve the production efficiency and reduce the cost. The high precision and the surface brightness of the profiles were obtained. The structure is worth promoting. The aim is to provide reliable data and reference for the further research and development of this technology on the extrusion die with multi-cavities in a die.
On Markov parameters in system identification
NASA Technical Reports Server (NTRS)
Phan, Minh; Juang, Jer-Nan; Longman, Richard W.
1991-01-01
A detailed discussion of Markov parameters in system identification is given. Different forms of input-output representation of linear discrete-time systems are reviewed and discussed. Interpretation of sampled response data as Markov parameters is presented. Relations between the state-space model and particular linear difference models via the Markov parameters are formulated. A generalization of Markov parameters to observer and Kalman filter Markov parameters for system identification is explained. These extended Markov parameters play an important role in providing not only a state-space realization, but also an observer/Kalman filter for the system of interest.
Cavitation in liquid cryogens. 3: Ogives
NASA Technical Reports Server (NTRS)
Hord, J.
1973-01-01
Experimental results for three, scaled, quarter-caliber ogives are given. Both desinent and developed cavity data, using liquid hydrogen and liquid nitrogen, are reported. The desinent data do not exhibit a consistent ogive size effect, but the developed cavity data were consistently influenced by ogive size; B-factor increases with increasing ogive diameter. The developed cavity data indicated that stable thermodynamic equilibrium exists throughout the vaporous cavities. These data were correlated by using the extended theory derived in NASA-CR-2156 (volume II of this report series). The new correlating parameter MTWO, improves data correlation for the ogives, hydrofoil, and venturi and appears attractive for future predictive applications. The cavitation coefficient and equipment size effects are shown to vary with specific equipment-fluid combinations. A method of estimating cavitation coefficient from knowledge of the noncavitating pressure coefficient is suggested.
Asymptotic entanglement dynamics phase diagrams for two electromagnetic field modes in a cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drumond, R. C.; Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, Vienna; Souza, L. A. M.
We investigate theoretically an open dynamics for two modes of electromagnetic field inside a microwave cavity. The dynamics is Markovian and determined by two types of reservoirs: the ''natural'' reservoirs due to dissipation and temperature of the cavity, and an engineered one, provided by a stream of atoms passing trough the cavity, as devised by Pielawa et al. [Phys. Rev. Lett. 98, 240401 (2007)]. We found that, depending on the reservoir parameters, the system can have distinct ''phases'' for the asymptotic entanglement dynamics: it can disentangle at finite time or it can have persistent entanglement for large times, with themore » transition between them characterized by the possibility of asymptotical disentanglement. Incidentally, we also discuss the effects of dissipation on the scheme proposed in the above reference for generation of entangled states.« less
Li, Dong-Xiao; Shao, Xiao-Qiang; Wu, Jin-Hui; Yi, X X
2017-10-01
A new mechanism is proposed for dissipatively preparing maximal Bell entangled state of two atoms in an optical cavity. This scheme integrates the spontaneous emission, the light shift of atoms in the presence of dispersive microwave field, and the quantum Zeno dynamics induced by continuous coupling, to obtain a unique steady state irrespective of initial state. Even for a large cavity decay, a high-fidelity entangled state is achievable at a short convergence time, since the occupation of the cavity mode is inhibited by the Zeno requirement. Therefore, a low single-atom cooperativity C=g 2 /(κγ) is good enough for realizing a high fidelity of entanglement in a wide range of decoherence parameters. As a straightforward extension, the feasibility for preparation of two-atom Knill-Laflamme-Milburn state with the same mechanism is also discussed.
NASA Astrophysics Data System (ADS)
Paczesny, Daniel; Mikłaszewicz, Franciszek
2013-10-01
This article describes the design, construction and parameters of diagnostic medical system for air humidity measurement which can be proceeded in various places of human nasal cavities and also human throat. The system can measure dynamic changes of dew point temperature (absolute value of humidity) of inspired and expired air in different places of human upper airways. During regular respiration process dew point temperature is measured in nasal cavity, middle part cavity and nasopharynx. The presented system is the next step in construction of measurement system based on specialized microsystem for laryngological application. The microsystem fabricated on silicon substrate includes microheater, microthermoresistor and interdigitated electrodes. In comparison with previously built measurement system with current version some system functionalities and measurement parameters were improved. Additionally 3D printing technology was applied for rapid prototyping a measurement system housing. Presented measurement system is set of microprocessor module with signal conditioning circuits; heated measurement head based on specialized microsystem with disposable heated pipe for air sucking from various places of upper airways; power supplier and computer application for monitoring all system parameters and presenting on-line and off-line measured results. Some example results of constructed measurement system and dew point temperature measurements during respiration cycle are presented.
Role of thermal resistance on the performance of superconducting radio frequency cavities
Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati Rao
2017-03-07
Thermal stability is an important parameter for the operation of the superconducting radio frequency (SRF) cavities used in particle accelerators. The rf power dissipated on the inner surface of the cavities is conducted to the helium bath cooling the outer cavity surface and the equilibrium temperature of the inner surface depends on the thermal resistance. In this manuscript, we present the results of direct measurements of thermal resistance on 1.3 GHz single cell SRF cavities made from high purity large-grain and fine-grain niobium as well as their rf performance for different treatments applied to outer cavity surface in order tomore » investigate the role of the Kapitza resistance to the overall thermal resistance and to the SRF cavity performance. The results show no significant impact of the thermal resistance to the SRF cavity performance after chemical polishing, mechanical polishing or anodization of the outer cavity surface. Temperature maps taken during the rf test show nonuniform heating of the surface at medium rf fields. Calculations of Q 0(B p) curves using the thermal feedback model show good agreement with experimental data at 2 and 1.8 K when a pair-braking term is included in the calculation of the Bardeen-Cooper-Schrieffer surface resistance. In conclusion, these results indicate local intrinsic nonlinearities of the surface resistance, rather than purely thermal effects, to be the main cause for the observed field dependence of Q 0(B p).« less
Role of thermal resistance on the performance of superconducting radio frequency cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati Rao
Thermal stability is an important parameter for the operation of the superconducting radio frequency (SRF) cavities used in particle accelerators. The rf power dissipated on the inner surface of the cavities is conducted to the helium bath cooling the outer cavity surface and the equilibrium temperature of the inner surface depends on the thermal resistance. In this manuscript, we present the results of direct measurements of thermal resistance on 1.3 GHz single cell SRF cavities made from high purity large-grain and fine-grain niobium as well as their rf performance for different treatments applied to outer cavity surface in order tomore » investigate the role of the Kapitza resistance to the overall thermal resistance and to the SRF cavity performance. The results show no significant impact of the thermal resistance to the SRF cavity performance after chemical polishing, mechanical polishing or anodization of the outer cavity surface. Temperature maps taken during the rf test show nonuniform heating of the surface at medium rf fields. Calculations of Q 0(B p) curves using the thermal feedback model show good agreement with experimental data at 2 and 1.8 K when a pair-braking term is included in the calculation of the Bardeen-Cooper-Schrieffer surface resistance. In conclusion, these results indicate local intrinsic nonlinearities of the surface resistance, rather than purely thermal effects, to be the main cause for the observed field dependence of Q 0(B p).« less
Lim, Tau Meng; Cheng, Shanbao; Chua, Leok Poh
2009-07-01
Axial flow blood pumps are generally smaller as compared to centrifugal pumps. This is very beneficial because they can provide better anatomical fit in the chest cavity, as well as lower the risk of infection. This article discusses the design, levitated responses, and parameter estimation of the dynamic characteristics of a compact hybrid magnetic bearing (HMB) system for axial flow blood pump applications. The rotor/impeller of the pump is driven by a three-phase permanent magnet brushless and sensorless motor. It is levitated by two HMBs at both ends in five degree of freedom with proportional-integral-derivative controllers, among which four radial directions are actively controlled and one axial direction is passively controlled. The frequency domain parameter estimation technique with statistical analysis is adopted to validate the stiffness and damping coefficients of the HMB system. A specially designed test rig facilitated the estimation of the bearing's coefficients in air-in both the radial and axial directions. Experimental estimation showed that the dynamic characteristics of the HMB system are dominated by the frequency-dependent stiffness coefficients. By injecting a multifrequency excitation force signal onto the rotor through the HMBs, it is noticed in the experimental results the maximum displacement linear operating range is 20% of the static eccentricity with respect to the rotor and stator gap clearance. The actuator gain was also successfully calibrated and may potentially extend the parameter estimation technique developed in the study of identification and monitoring of the pump's dynamic properties under normal operating conditions with fluid.
Mathematical correlation of modal parameter identification methods via system realization theory
NASA Technical Reports Server (NTRS)
Juang, J. N.
1986-01-01
A unified approach is introduced using system realization theory to derive and correlate modal parameter identification methods for flexible structures. Several different time-domain and frequency-domain methods are analyzed and treated. A basic mathematical foundation is presented which provides insight into the field of modal parameter identification for comparison and evaluation. The relation among various existing methods is established and discussed. This report serves as a starting point to stimulate additional research towards the unification of the many possible approaches for modal parameter identification.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bone plate. 872.4760 Section 872.4760 Food and... DENTAL DEVICES Surgical Devices § 872.4760 Bone plate. (a) Identification. A bone plate is a metal device intended to stabilize fractured bone structures in the oral cavity. The bone segments are attached to the...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Bone plate. 872.4760 Section 872.4760 Food and... DENTAL DEVICES Surgical Devices § 872.4760 Bone plate. (a) Identification. A bone plate is a metal device intended to stabilize fractured bone structures in the oral cavity. The bone segments are attached to the...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bone plate. 872.4760 Section 872.4760 Food and... DENTAL DEVICES Surgical Devices § 872.4760 Bone plate. (a) Identification. A bone plate is a metal device intended to stabilize fractured bone structures in the oral cavity. The bone segments are attached to the...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Bone plate. 872.4760 Section 872.4760 Food and... DENTAL DEVICES Surgical Devices § 872.4760 Bone plate. (a) Identification. A bone plate is a metal device intended to stabilize fractured bone structures in the oral cavity. The bone segments are attached to the...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Bone plate. 872.4760 Section 872.4760 Food and... DENTAL DEVICES Surgical Devices § 872.4760 Bone plate. (a) Identification. A bone plate is a metal device intended to stabilize fractured bone structures in the oral cavity. The bone segments are attached to the...
PATHOLOGY of POST PRIMARY TUBERCULOSIS of the LUNG: AN ILLUSTRATED CRITICAL REVIEW
Hunter, Robert L.
2011-01-01
Post primary tuberculosis occurs in immunocompetent adults, is restricted to the lungs and accounts for 80% of all clinical cases and nearly 100% of transmission of infection. The supply of human tissues with post primary tuberculosis plummeted with the introduction of antibiotics decades before the flowering of research using molecular methods in animal models. Unfortunately, the paucity of human tissues prevented validation of the models. As a result, it is a paradigm of contemporary research that caseating granulomas are the characteristic lesion of all tuberculosis and that cavities form when they erode into bronchi. This differs from descriptions of the preantibiotic era when many investigators had access to thousands of cases. They reported that post primary tuberculosis begins as an exudative reaction: a tuberculous lipid pneumonia of foamy alveolar macrophages that undergoes caseation necrosis and fragmentation to produce cavities. Granulomas in post primary disease arise only in response to old caseous pneumonia and produce fibrosis, not cavities. We confirmed and extended these observations with study of 104 cases of untreated tuberculosis. In addition, studies of the lungs of infants and immunosuppressed adults revealed a second type of tuberculous pneumonia that seldom produces cavities. Since the concept that cavities arise from caseating granulomas was supported by studies of animals infected with Mycobacterium bovis, we investigated its pathology. We found that M. bovis does not produce post primary tuberculosis in any species. It only produces an aggressive primary tuberculosis that can develop small cavities by erosion of caseating granulomas. Consequently, a key unresolved question in the pathogenesis of tuberculosis is identification of the mechanisms by which Mycobacterium tuberculosis establish a localized safe haven in alveolar macrophages in an otherwise solidly immune host where it can develop conditions for formation of cavities and transmission to new hosts. PMID:21733755
Goldstuck, Norman
2012-09-01
Uterine cavity measurement began with evaluation of post-mortem and surgical specimens. It has been extended in vivo by use of mechanical instruments and visualization techniques. This is a systematic review of the range of values for the uterine cavity and the practical implications of these measurements, Following a review of multiple data bases & a QUORUM analysis. Only articles with clearly defined quantitative measurements were included. Mechanical cavity measurements with a variety of instruments gave a mean endometrial cavity length (ECL) of 33.73 mm (18-22.1) and a mean endometrial cavity width (ECW) of 25.1 mm (17.8-32.2) for nulliparae. The values for multiparae were mean ECL 38.6mm(20.61-40.3) and mean ECW 34.9 mm (23.4-53). Imaging measurements for the uterine cavity by hysterography and ultrasound were mean ECL 44.3 mm (29-64) for multiparae and ECL 37 mm for nulliparae. Mean ECW was 28.2 mm (21-33) for nulliparae and 32.1 mm (26-38) for multiparae. There were wide variations due to parity, ethnicity and gestational states. Accurate measurement of intrauterine parameters is valuable for improving and enhancing many intrauterine procedures including IUD insertion, endometrial ablation, embryo placement in IVF and management of spontaneous and therapeutic abortion.
A laser-powered hydrokinetic system for caries removal and cavity preparation.
Hadley, J; Young, D A; Eversole, L R; Gornbein, J A
2000-06-01
Laser systems have been developed for the cutting of dental hard tissues. The erbium, chromium:yttrium-scandium-gallium-garnet, or Er,Cr:YSGG, laser system used in conjunction with an air-water spray has been shown to be efficacious in vitro for cavity preparation. The authors randomly selected subjects for cavity preparation with conventional air turbine/bur dental surgery or an Er,Cr:YSGG laser-powered system using a split-mouth design. They prepared Class I, III and V cavities, placed resin restorations and evaluated subjects on the day of the procedure and 30 days and six months postoperatively for pulp vitality, recurrent caries, pain and discomfort, and restoration retention. Sixty-seven subjects completed the study. There were no statistical differences between the two treatment groups for the parameters measured with one exception; there was a statistically significant decrease in discomfort levels for the laser system at the time of cavity preparation for subjects who declined to receive local anesthetic. The Er,Cr:YSGG laser system is effective for preparation of Class I, III and V cavities and resin restorations are retained by lased tooth surfaces. Hard-tissue cutting lasers are being introduced for use in operative dentistry. In this study, an Er,Cr:YSGG laser has been shown to be effective for cavity preparation and restoration replacement.
Effect of cathode shape on vertical buffered electropolishing for niobium SRF cavities
NASA Astrophysics Data System (ADS)
Jin, S.; Wu, A. T.; Lu, X. Y.; Rimmer, R. A.; Lin, L.; Zhao, K.; Mammosser, J.; Gao, J.
2013-09-01
This paper reports the research results of the effect of cathode shape during vertical buffered electropolishing (BEP) by employing a demountable single cell niobium (Nb) superconducting radio frequency (SRF) cavity. Several different cathode shapes such as, for instance, bar, ball, ellipsoid, and wheels of different diameters have been tested. Detailed electropolishing parameters including I-V characteristic, removal rate, surface roughness, and polishing uniformity at different locations inside the demountable cavity are measured. Similar studies are also done on conventional electropolishing (EP) for comparison. It is revealed that cathode shape has dominant effects for BEP especially on the obtaining of a suitable polishing condition and a uniform polishing rate in an Nb SRF single cell cavity. EP appears to have the same tendency. This paper demonstrates that a more homogeneous polishing result can be obtained by optimizing the electric field distribution inside the cavity through the modification of the cathode shape given the conditions that temperature and electrolyte flow are kept constant. Electric field distribution and electrolyte flow patterns inside the cavity are simulated via Poisson-Superfish and Solidworks respectively. With the optimal cathode shape, BEP shows a much faster polishing rate of ∼2.5 μm/min and is able to produce a smoother surface finish in the treatments of single cell cavities in comparison with EP.
Simulation of plasma loading of high-pressure RF cavities
NASA Astrophysics Data System (ADS)
Yu, K.; Samulyak, R.; Yonehara, K.; Freemire, B.
2018-01-01
Muon beam-induced plasma loading of radio-frequency (RF) cavities filled with high pressure hydrogen gas with 1% dry air dopant has been studied via numerical simulations. The electromagnetic code SPACE, that resolves relevant atomic physics processes, including ionization by the muon beam, electron attachment to dopant molecules, and electron-ion and ion-ion recombination, has been used. Simulations studies have been performed in the range of parameters typical for practical muon cooling channels.
Solar receiver performance of point focusing collector system
NASA Technical Reports Server (NTRS)
Wu, Y. C.; Wen, L. C.
1978-01-01
The solar receiver performance of cavity receivers and external receivers used in dispersed solar power systems was evaluated for the temperature range 300-1300 C. Several parameters of receiver and concentrator are examined. It was found that cavity receivers are generally more efficient than external receivers, especially at high temperatures which require a large heat transfer area. The effects of variation in the ratio of receiver area to aperture area are considered.
Implementation of augmented reality in operative dentistry learning.
Llena, C; Folguera, S; Forner, L; Rodríguez-Lozano, F J
2018-02-01
To evaluate the efficacy of augmented reality (AR) in the gaining of knowledge and skills amongst dental students in the design of cavity preparations and analyse their degree of satisfaction. AR cavity models were prepared for use with computers and mobile devices. Forty-one students were divided into two groups (traditional teaching methods vs AR). Questionnaires were designed to evaluate knowledge and skills, with the administration of a satisfaction questionnaire for those using AR. The degree of compliance with the standards in cavity design was assessed. The Mann-Whitney U-test was used to compare knowledge and skills between the two groups, and the Wilcoxon test was applied to compare intragroup differences. The chi-square test in turn was used to compare the qualitative parameters of the cavity designs between the groups. Statistical significance was considered for P<.05 in all cases. No significant differences were observed in level of knowledge before, immediately after or 6 months after teaching between the two groups (P>.05). Although the results corresponding to most of the studied skills parameters were better in the experimental group, significant differences (P<.05) were only founded for cavity depth and extent for Class I and divergence of the buccal and lingual walls for the Class II. The experience was rated as favourable or very favourable by 100% of the participants. The students showed preference for computers (60%) vs mobile devices (10%). The AR techniques favoured the gaining of knowledge and skills and were regarded as a useful tool by the students. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Wincheski, Buzz A.; Simpson, John W.; Koshti, Ajay
2007-01-01
A recent identification of cracking in the Space Shuttle Primary Reaction Control System (PRCS) thrusters triggered an extensive nondestructive evaluation effort to develop techniques capable of identifying such damage on installed shuttle hardware. As a part of this effort, specially designed eddy current probes inserted into the acoustic cavity were explored for the detection of such flaws and for evaluation of the remaining material between the crack tip and acoustic cavity. The technique utilizes two orthogonal eddy current probes which are scanned under stepper motor control in the acoustic cavity to identify cracks hidden with as much as 0.060 remaining wall thickness to the cavity. As crack growth rates in this area have been determined to be very slow, such an inspection provides a large safety margin for continued operation of the critical shuttle hardware. Testing has been performed on thruster components with both actual and fabricated defects. This paper will review the design and performance of the developed eddy current inspection system. Detection of flaws as a function of remaining wall thickness will be presented along with the proposed system configuration for depot level or on-vehicle inspection capabilities.
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Simpson, John; Koshti, Ajay
2006-01-01
A recent identification of stress corrosion cracking in the Space Shuttle Primary Reaction Control System (PRCS) thrusters triggered an extensive nondestructive evaluation effort to develop techniques capable of identifying such damage on installed shuttle hardware. As a part of this effort, specially designed eddy current probes inserted into the acoustic cavity were explored for the detection of such flaws and for evaluation of the remaining material between the crack tip and acoustic cavity. The technique utilizes two orthogonal eddy current probes which are scanned under stepper motor control in the acoustic cavity to identify cracks hidden with as much as 0.060 remaining wall thickness to the cavity. As crack growth rates in this area have been determined to be very slow, such an inspection provides a large safety margin for continued operation of the critical shuttle hardware. Testing has been performed on thruster components with both actual and fabricated defects. This paper will review the design and performance of the developed eddy current inspection system. Detection of flaws as a function of remaining wall thickness will be presented along with the proposed system configuration for depot level or on-vehicle inspection capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casassus, S.; Marino, S.; Pérez, S.
2015-10-01
The finding of residual gas in the large central cavity of the HD 142527 disk motivates questions regarding the origin of its non-Keplerian kinematics and possible connections with planet formation. We aim to understand the physical structure that underlies the intra-cavity gaseous flows, guided by new molecular-line data in CO(6–5) with unprecedented angular resolutions. Given the warped structure inferred from the identification of scattered-light shadows cast on the outer disk, the kinematics are consistent, to first order, with axisymmetric accretion onto the inner disk occurring at all azimuths. A steady-state accretion profile, fixed at the stellar accretion rate, explains themore » depth of the cavity as traced in CO isotopologues. The abrupt warp and evidence for near free-fall radial flows in HD 142527 resemble theoretical models for disk tearing, which could be driven by the reported low-mass companion, whose orbit may be contained in the plane of the inner disk. The companion’s high inclination with respect to the massive outer disk could drive Kozai oscillations over long timescales; high-eccentricity periods may perhaps account for the large cavity. While shadowing by the tilted disk could imprint an azimuthal modulation in the molecular-line maps, further observations are required to ascertain the significance of azimuthal structure in the density field inside the cavity of HD 142527.« less
Bipolar Cascade Vertical-Cavity Surface-Emitting Lasers for RF Photonic Link Applications
2007-09-01
6 IV Current versus Voltage . . . . . . . . . . . . . . . . . . . . . 7 MBE Molecular Beam Epitaxy ...of carrying maximum photocur- rent. Numerous material parameters have been studied. Growth parameters for molecular beam epitaxy (MBE), metal-organic...12 MOCVD Metal-Organic Chemical Vapor Deposition . . . . . . . . . . 12 CBE Chemical Beam Epitaxy . . . . . . . . . . . . . . . . . . . . 12 LPE
Quantitative analysis of periodontal pathogens by ELISA and real-time polymerase chain reaction.
Hamlet, Stephen M
2010-01-01
The development of analytical methods enabling the accurate identification and enumeration of bacterial species colonizing the oral cavity has led to the identification of a small number of bacterial pathogens that are major factors in the etiology of periodontal disease. Further, these methods also underpin more recent epidemiological analyses of the impact of periodontal disease on general health. Given the complex milieu of over 700 species of microorganisms known to exist within the complex biofilms found in the oral cavity, the identification and enumeration of oral periodontopathogens has not been an easy task. In recent years however, some of the intrinsic limitations of the more traditional microbiological analyses previously used have been overcome with the advent of immunological and molecular analytical methods. Of the plethora of methodologies reported in the literature, the enzyme-linked immunosorbent assay (ELISA), which combines the specificity of antibody with the sensitivity of simple enzyme assays and the polymerase chain reaction (PCR), has been widely utilized in both laboratory and clinical applications. Although conventional PCR does not allow quantitation of the target organism, real-time PCR (rtPCR) has the ability to detect amplicons as they accumulate in "real time" allowing subsequent quantitation. These methods enable the accurate quantitation of as few as 10(2) (using rtPCR) to 10(4) (using ELISA) periodontopathogens in dental plaque samples.
The influence of dentin demineralization on morphological features of cavities using Er:YAG laser.
Melo, Mary A S; Lima, Juliana P M; Passos, Vanara F; Rodrigues, Lidiany K A
2015-01-01
The purpose of this study was to evaluate the influence of erbium-doped: yttrium-aluminum-garnet (Er:YAG) laser parameters and different degrees of demineralization on morphological features, diameter, and depth of prepared cavities. Minimally invasive dentin caries removal has been recommended. Ablation of deep caries lesions using Er:YAG laser should preserve remaining demineralized dentin; however, the influence of the degree of mineralization of this substrate had not been entirely described. A randomized, factorial design was used to study the effects of two factors. Laser parameter was tested at two levels (250 mJ/4 Hz vs. 200 mJ/2 Hz) and degree of demineralization was tested at four levels (control, two-four-eight cycles). Twelve slabs of human dentin were divided into four groups according to the number of cycles induced by pH-cycling: G1, zero cycles; G2, two cycles, G3, four cycles, and G4, eight cycles. An Er:YAG laser was used at an output energy of 250 mJ/4 Hz and 200 mJ/2 Hz for all groups, for 10 sec at 12 mm distance focus/object. Circumference and depth of the cavities were measured on scanning electron microscopy (SEM) images using image analysis software. The mean values were subjected to two way analysis of variance (ANOVA) and Tukey tests. When using 250 mJ/4 Hz, the mean values of circumferential area increased significantly in relation to control (503.54 μm(2)) with increasing demineralization level (eight cycles) (555.45 μm(2)). Regardless of the demineralization level, there was also significant statistical difference in the studied measurements of the cavities when 250 mJ/4 Hz and 200 mJ/2 Hz were used. SEM also showed that laser cavity preparations left no smear layer, and the dentinal tubules were clear. The circumferential area and depth measurements were affected by laser parameter and demineralization level (eight cycles). Energy level output represents a relevant factor for increased circumferential area and depth measurements. High demineralized artificially caries-affected dentin may also imply higher ablation. Appropriated parameter of laser pulse frequency/power density for demineralized dentin should be used for effective less-invasive caries treatment.
Quantum Phase Transitions in Cavity Coupled Dot systems
NASA Astrophysics Data System (ADS)
Kasisomayajula, Vijay; Russo, Onofrio
2011-03-01
We investigate a Quantum Dot System, in which the transconductance, in part, is due to spin coupling, with each dot subjected to a biasing voltage. When this system is housed in a QED cavity, the cavity dot coupling alters the spin coupling of the coupled dots significantly via the Purcell Effect. In this paper we show the extent to which one can control the various coupling parameters: the inter dot coupling, the individual dots coupling with the cavity and the coupled dots coupling with the cavity as a single entity. We show that the dots coupled to each other and to the cavity, the spin transport can be controlled selectively. We derive the conditions for such control explicitly. Further, we discuss the Quantum phase transition effects due to the charge and spin transport through the dots. The electron transport through the dots, electron-electron spin interaction and the electron-photon interaction are treated using the Non-equilibrium Green's Function Formalism. http://publish.aps.org/search/field/author/Trif_Mircea (Trif Mircea), http://publish.aps.org/search/field/author/Golovach_Vitaly_N (Vitaly N. Golovach), and http://publish.aps.org/search/field/author/Loss_Daniel (Daniel Loss), Phys. Rev. B 75, 085307 (2007)
Studies of a driven Alfvénic cavity and cylindrical Alfven eigenmodes in LAPD
NASA Astrophysics Data System (ADS)
Lybarger, Warren; Carter, Troy; Brugman, Brian; Pribyl, Pat
2004-11-01
An Alfven wave MASER has been observed in the Large Plasma Device (LAPD), where an instability drives a resonant Alfven wave in the cavity defined by the cathode and anode of the discharge source(J.E. Maggs and G.J. Morales, PRL, 91, 035004-1 (2003)). We will present a study of external driving of this cavity, motivated by a desire to find a source of large amplitude Alfvén waves for studies of nonlinear interactions. The cavity is driven by modulating the discharge current using a broadband, high power push-pull amplifier. The Alfvén waves launched by exciting the cavity are large amplitude (δ B/B ˜ 1%) and are eigenmodes of the cylindrical column. Experimental results will be presented on the structure of the eigenmodes in the plasma column, the Q-value of the cavity and its dependence on plasma parameters, and deviations in the structure of the eigenmodes from ideal MHD due to kinetic effects. Experimental results will be compared to theories of Alfvén eigenmodes in a cylindrical column. * Work supported by DOE grant # DE-FG03-02ER54688
The deep planetary magnetotail revisited
NASA Technical Reports Server (NTRS)
Macek, Wieslaw M.
1989-01-01
The magnetotail model of Grzedzielski and Macek (1988) is extended to great distances in the antisolar direction. For typical solar wind parameters at 1 AU and the most probable set of parameters of the model as determined for the ISEE-3 region of 200 earth radii, R(E), the open geotail extends to at least 3000 - 4000 R(E) downstream from earth, where it forms a cavity filled with a dense hot plasma and low magnetic field strengths. The cross section of this cavity in the plane perpendicular to the earth-sun line has dimensions of 300 - 400 R(E) parallel to the ecliptic plane, but only 5 R(E) in the direction normal to the ecliptic. It seems likely that the magnetotail would become filamentary at such distances.
[Design of Complex Cavity Structure in Air Route System of Automated Peritoneal Dialysis Machine].
Quan, Xiaoliang
2017-07-30
This paper introduced problems about Automated Peritoneal Dialysis machine(APD) that the lack of technical issues such as the structural design of the complex cavities. To study the flow characteristics of this special structure, the application of ANSYS CFX software is used with k-ε turbulence model as the theoretical basis of fluid mechanics. The numerical simulation of flow field simulation result in the internal model can be gotten after the complex structure model is imported into ANSYS CFX module. Then, it will present the distribution of complex cavities inside the flow field and the flow characteristics parameter, which will provide an important reference design for APD design.
Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy.
Hou, Zongyu; Wang, Zhe; Liu, Jianmin; Ni, Weidou; Li, Zheng
2013-07-01
In our previous work, we found that there was great potential to improve the pulse-to-pulse signal repeatability using a moderate cylindrical cavity confinement. However, the improvement was achieved only with certain experimental parameters; while under other conditions, there was no improvement or even worse repeatability. In the present work, the experimental configuration was redesigned and unexpected uncertainty from the variation of the laser and cavity alignment and the laser ablated aerosols were avoided. With these two improvements, we demonstrated that the cavity can always increase the signal repeatability. In addition, image taken by ICCD verified that the confinement improved the stability of the plasma morphology as expected.
Kim, Jae Hwan Eric; Chrostowski, Lukas; Bisaillon, Eric; Plant, David V
2007-08-06
We demonstrate a Finite-Difference Time-Domain (FDTD) phase methodology to estimate resonant wavelengths in Fabry-Perot (FP) cavity structures. We validate the phase method in a conventional Vertical-Cavity Surface-Emitting Laser (VCSEL) structure using a transfer-matrix method, and compare results with a FDTD reflectance method. We extend this approach to a Sub-Wavelength Grating (SWG) and a Photonic Crystal (Phc) slab, either of which may replace one of the Distributed Bragg Reflectors (DBRs) in the VCSEL, and predict resonant conditions with varying lithographic parameters. Finally, we compare the resonant tunabilities of three different VCSEL structures, taking quality factors into account.
NASA Astrophysics Data System (ADS)
Alperovich, Z.; Buchinsky, O.; Greenstein, S.; Ishaaya, A. A.
2017-08-01
We investigate the misalignment sensitivity in a crossed-Porro resonator configuration when coherently combining two pulsed multimode Nd:YAG laser channels. To the best of our knowledge, this is the first reported study of this configuration. The configuration is based on a passive intra-cavity interferometric combiner that promotes self-phase locking and coherent combining. Detailed misalignment sensitivity measurements are presented, examining both translation and angular deviations of the end prisms and combiner, and are compared to the results for standard flat end-mirror configurations. The results show that the most sensitive parameter in the crossed-Porro resonator configuration is the angular tuning of the intra-cavity interferometric combiner, which is ~±54 µrad. In comparison, with the flat end mirror configuration, the most sensitive parameter in the resonator is the angular tuning of the output coupler, which is ~±11 µrad. Thus, with the crossed-Porro configuration, we obtain significantly reduced sensitivity. This ability to reduce the misalignment sensitivity in coherently combined solid-state configurations may be beneficial in paving their way into practical use in a variety of demanding applications.
Harmonic cavities and the transverse mode-coupling instability driven by a resistive wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venturini, M.
The effect of rf harmonic cavities on the transverse mode-coupling instability (TMCI) is still not very well understood. We offer a fresh perspective on the problem by proposing a new numerical method for mode analysis and investigating a regime of potential interest to the new generation of light sources where resistive wall is the dominant source of transverse impedance. When the harmonic cavities are tuned for maximum flattening of the bunch profile we demonstrate that at vanishing chromaticities the transverse single-bunch motion is unstable at any current, with growth rate that in the relevant range scales as the 6th powermore » of the current. With these assumptions and radiation damping included, we find that for machine parameters typical of 4th-generation light sources the presence of harmonic cavities could reduce the instability current threshold by more than a factor two.« less
Harmonic cavities and the transverse mode-coupling instability driven by a resistive wall
Venturini, M.
2018-02-01
The effect of rf harmonic cavities on the transverse mode-coupling instability (TMCI) is still not very well understood. We offer a fresh perspective on the problem by proposing a new numerical method for mode analysis and investigating a regime of potential interest to the new generation of light sources where resistive wall is the dominant source of transverse impedance. When the harmonic cavities are tuned for maximum flattening of the bunch profile we demonstrate that at vanishing chromaticities the transverse single-bunch motion is unstable at any current, with growth rate that in the relevant range scales as the 6th powermore » of the current. With these assumptions and radiation damping included, we find that for machine parameters typical of 4th-generation light sources the presence of harmonic cavities could reduce the instability current threshold by more than a factor two.« less
Millikelvin cooling of the center-of-mass motion of a levitated nanoparticle
NASA Astrophysics Data System (ADS)
Bullier, Nathanaël. P.; Pontin, Antonio; Barker, Peter F.
2017-08-01
Cavity optomechanics has been used to cool the center-of-mass motion of levitated nanospheres to millikelvin temperatures. Trapping the particle in the cavity field enables high mechanical frequencies bringing the system close to the resolved-sideband regime. Here we describe a Paul trap constructed from a printed circuit board that is small enough to fit inside the optical cavity and which should enable an accurate positioning of the particle inside the cavity field. This will increase the optical damping and therefore reduce the final temperature by at least one order of magnitude. Simulations of the potential inside the trap enable us to estimate the charge- to-mass ratio of trapped particles by measuring the secular frequencies as a function of the trap parameters. Lastly, we show the importance of reducing laser noise to reach lower temperatures and higher sensitivity in the phase-sensitive readout.
Harmonic cavities and the transverse mode-coupling instability driven by a resistive wall
NASA Astrophysics Data System (ADS)
Venturini, M.
2018-02-01
The effect of rf harmonic cavities on the transverse mode-coupling instability (TMCI) is still not very well understood. We offer a fresh perspective on the problem by proposing a new numerical method for mode analysis and investigating a regime of potential interest to the new generation of light sources where resistive wall is the dominant source of transverse impedance. When the harmonic cavities are tuned for maximum flattening of the bunch profile we demonstrate that at vanishing chromaticities the transverse single-bunch motion is unstable at any current, with growth rate that in the relevant range scales as the 6th power of the current. With these assumptions and radiation damping included, we find that for machine parameters typical of 4th-generation light sources the presence of harmonic cavities could reduce the instability current threshold by more than a factor two.
Cavity-enhanced Raman microscopy of individual carbon nanotubes
Hümmer, Thomas; Noe, Jonathan; Hofmann, Matthias S.; Hänsch, Theodor W.; Högele, Alexander; Hunger, David
2016-01-01
Raman spectroscopy reveals chemically specific information and provides label-free insight into the molecular world. However, the signals are intrinsically weak and call for enhancement techniques. Here, we demonstrate Purcell enhancement of Raman scattering in a tunable high-finesse microcavity, and utilize it for molecular diagnostics by combined Raman and absorption imaging. Studying individual single-wall carbon nanotubes, we identify crucial structural parameters such as nanotube radius, electronic structure and extinction cross-section. We observe a 320-times enhanced Raman scattering spectral density and an effective Purcell factor of 6.2, together with a collection efficiency of 60%. Potential for significantly higher enhancement, quantitative signals, inherent spectral filtering and absence of intrinsic background in cavity-vacuum stimulated Raman scattering render the technique a promising tool for molecular imaging. Furthermore, cavity-enhanced Raman transitions involving localized excitons could potentially be used for gaining quantum control over nanomechanical motion and open a route for molecular cavity optomechanics. PMID:27402165
Weakly modulated silicon-dioxide-cladding gratings for silicon waveguide Fabry-Pérot cavities.
Grote, Richard R; Driscoll, Jeffrey B; Biris, Claudiu G; Panoiu, Nicolae C; Osgood, Richard M
2011-12-19
We show by theory and experiment that silicon-dioxide-cladding gratings for Fabry-Pérot cavities on silicon-on-insulator channel ("wire") waveguides provide a low-refractive-index perturbation, which is required for several important integrated photonics components. The underlying refractive index perturbation of these gratings is significantly weaker than that of analogous silicon gratings, leading to finer control of the coupling coefficient κ. Our Fabry-Pérot cavities are designed using the transfer-matrix method (TMM) in conjunction with the finite element method (FEM) for calculating the effective index of each waveguide section. Device parameters such as coupling coefficient, κ, Bragg mirror stop band, Bragg mirror reflectivity, and quality factor Q are examined via TMM modeling. Devices are fabricated with representative values of distributed Bragg reflector lengths, cavity lengths, and propagation losses. The measured transmission spectra show excellent agreement with the FEM/TMM calculations.
Sitki-Green, Diane; Covington, Mary; Raab-Traub, Nancy
2003-01-01
Infection with the Epstein-Barr virus (EBV) is often subclinical in the presence of a healthy immune response; thus, asymptomatic infection is largely uncharacterized. This study analyzed the nature of EBV infection in 20 asymptomatic immunocompetent hosts over time through the identification of EBV strain variants in the peripheral blood and oral cavity. A heteroduplex tracking assay specific for the EBV gene LMP1 precisely identified the presence of multiple EBV strains in each subject. The strains present in the peripheral blood and oral cavity were often completely discordant, indicating the existence of distinct infections, and the strains present and their relative abundance changed considerably between time points. The possible transmission of strains between the oral cavity and peripheral blood compartments could be tracked within subjects, suggesting that reactivation in the oral cavity and subsequent reinfection of B lymphocytes that reenter the periphery contribute to the maintenance of persistence. In addition, distinct virus strains persisted in the oral cavity over many time points, suggesting an important role for epithelial cells in the maintenance of persistence. Asymptomatic individuals without tonsillar tissue, which is believed to be an important source of virus for the oral cavity, also exhibited multiple strains and a cyclic pattern of transmission between compartments. This study revealed that the majority of patients with infectious mononucleosis were infected with multiple strains of EBV that were also compartmentalized, suggesting that primary infection involves the transmission of multiple strains. Both the primary and carrier states of infection with EBV are more complex than previously thought. PMID:12525618
Sitki-Green, Diane; Covington, Mary; Raab-Traub, Nancy
2003-02-01
Infection with the Epstein-Barr virus (EBV) is often subclinical in the presence of a healthy immune response; thus, asymptomatic infection is largely uncharacterized. This study analyzed the nature of EBV infection in 20 asymptomatic immunocompetent hosts over time through the identification of EBV strain variants in the peripheral blood and oral cavity. A heteroduplex tracking assay specific for the EBV gene LMP1 precisely identified the presence of multiple EBV strains in each subject. The strains present in the peripheral blood and oral cavity were often completely discordant, indicating the existence of distinct infections, and the strains present and their relative abundance changed considerably between time points. The possible transmission of strains between the oral cavity and peripheral blood compartments could be tracked within subjects, suggesting that reactivation in the oral cavity and subsequent reinfection of B lymphocytes that reenter the periphery contribute to the maintenance of persistence. In addition, distinct virus strains persisted in the oral cavity over many time points, suggesting an important role for epithelial cells in the maintenance of persistence. Asymptomatic individuals without tonsillar tissue, which is believed to be an important source of virus for the oral cavity, also exhibited multiple strains and a cyclic pattern of transmission between compartments. This study revealed that the majority of patients with infectious mononucleosis were infected with multiple strains of EBV that were also compartmentalized, suggesting that primary infection involves the transmission of multiple strains. Both the primary and carrier states of infection with EBV are more complex than previously thought.
Diversity of Lactobacilli in the Oral Cavities of Young Women with Dental Caries
Caufield, P.W.; Li, Y.; Dasanayake, A.; Saxena, D.
2009-01-01
For nearly a century, lactobacilli (LB) in the oral cavity have been generally associated with dental caries. Here, we characterized the LB isolated from the saliva of 6 women with active caries using genetic-based taxonomical identification methods. From each subject, 30 isolates growing on Rogosa medium and presumed to be LB were analyzed. Of the 180 isolates, 176 were further characterized by biotyping, DNA melting points, DNA chromosomal fingerprinting, genotyping, and phylogenetic cluster assessment. We found a total of 30 unique genotypes of LB in the saliva of caries-active women, with each woman harboring between 2 and 8 distinct genotypes. Although Lactobacillus vaginalis, Lactobacillus fermentum, and Lactobacillus salivarius were found in 4 of 6 of the subjects, results from other studies using comparable methods show an entirely different array of LB associated with caries. These collective observations lead us to surmise that LB associated with dental caries are likely exogenous and opportunistic colonizers, arising from food or other reservoirs outside the oral cavity. PMID:17167253
Impact of Viscosity on Filling the Injection Mould Cavity
NASA Astrophysics Data System (ADS)
Satin, Lukáš; Bílik, Jozef
2016-09-01
The aim of this paper is to look closer at the rheological properties of plastics and their impact on technology in the plastics processing industry. The paper focuses on the influence of viscosity of the material on filling the mould cavity. Four materials were tested with the settings of process parameters with different viscosity. Using simulation software of Moldex3D, we can see the effect of change in viscosity in the material to be filled.
Noncritical quadrature squeezing through spontaneous polarization symmetry breaking.
Garcia-Ferrer, Ferran V; Navarrete-Benlloch, Carlos; de Valcárcel, Germán J; Roldán, Eugenio
2010-07-01
We discuss the possibility of generating noncritical quadrature squeezing by spontaneous polarization symmetry breaking. We first consider Type II frequency-degenerate optical parametric oscillators but discard them for a number of reasons. Then we propose a four-wave-mixing cavity, in which the polarization of the output mode is always linear but has an arbitrary orientation. We show that in such a cavity, complete noise suppression in a quadrature of the output field occurs, irrespective of the parameter values.
Optical analysis of grazing incidence ring resonators for free-electron lasers
NASA Astrophysics Data System (ADS)
Gabardi, David R.; Shealy, David L.
1990-06-01
Two types of grazing incidence ring resonators for use with free-electron lasers have been investigated. These cavities utilize off-axis conical and flat mirrors and have been designed to operate in the extreme ultraviolet region of the spectrum. In this paper, a design algorithm that calculates the mirror parameters for propagation of Gaussian TEM mode beams in the two cavity types is presented. Results concerning the angular stability of each type are also shown.
Simulation of plasma loading of high-pressure RF cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, K.; Samulyak, R.; Yonehara, K.
2018-01-11
Muon beam-induced plasma loading of radio-frequency (RF) cavities filled with high pressure hydrogen gas with 1% dry air dopant has been studied via numerical simulations. The electromagnetic code SPACE, that resolves relevant atomic physics processes, including ionization by the muon beam, electron attachment to dopant molecules, and electron-ion and ion-ion recombination, has been used. Simulations studies have also been performed in the range of parameters typical for practical muon cooling channels.
NASA Technical Reports Server (NTRS)
Turner, James E.; Mccluney, D. Scott
1991-01-01
Fixture tests O-rings for sealing ability under dynamic conditions after extended periods of compression. Hydraulic cylinder moves plug in housing. Taper of 15 degrees on plug and cavity of housing ensures that gap created between O-ring under test and wall of cavity. Secondary O-rings above and below test ring maintain pressure applied to test ring. Evaluates effects of variety of parameters, including temperature, pressure, rate of pressurization, rate and magnitude of radial gap movement, and pretest compression time.
3D Printed Scintillators For Use in Field Emission Detection and Other Nuclear Physics Experiments
NASA Astrophysics Data System (ADS)
Ficenec, Karen
2015-10-01
In accelerator cavities, field emission electrons - electrons that get stripped away from the cavity walls due to the high electromagnetic field necessary to accelerate the main beam - are partially accelerated and can crash into the cavity walls, adding to the heat-load of the cryogenic system. Because these field electrons emit gamma rays when bent by the electromagnetic field, a scintillator, if made to fit the cavity enclosure, can detect their presence. Eliminating the waste of subtractive manufacturing techniques and allowing for the production of unique, varied shapes, 3D printing of scintillators may allow for an efficient detection system. UV light is used to start a chemical polymerization process that links the monomers of the liquid resin together into larger, intertwined molecules, forming the solid structure. Each shape requires slightly different calibration of its optimal printing parameters, such as slice thickness and exposure time to UV light. Thus far, calibration parameters have been optimized for cylinders of 20 mm diameter, cones of 30 mm diameter and 30 mm height, rectangular prisms 30 by 40 by 10 mm, and square pyramids 20 mm across. Calibration continues on creating holes in the prints (for optical fibers), as well as shapes with overhangs. Scintill This work was supported in part by the National Science Foundation under Grant No. PHY-1405857.
Metamodel-based inverse method for parameter identification: elastic-plastic damage model
NASA Astrophysics Data System (ADS)
Huang, Changwu; El Hami, Abdelkhalak; Radi, Bouchaïb
2017-04-01
This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic-plastic damage model parameter identification. An elastic-plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic-plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.
Full-envelope aerodynamic modeling of the Harrier aircraft
NASA Technical Reports Server (NTRS)
Mcnally, B. David
1986-01-01
A project to identify a full-envelope model of the YAV-8B Harrier using flight-test and parameter identification techniques is described. As part of the research in advanced control and display concepts for V/STOL aircraft, a full-envelope aerodynamic model of the Harrier is identified, using mathematical model structures and parameter identification methods. A global-polynomial model structure is also used as a basis for the identification of the YAV-8B aerodynamic model. State estimation methods are used to ensure flight data consistency prior to parameter identification.Equation-error methods are used to identify model parameters. A fixed-base simulator is used extensively to develop flight test procedures and to validate parameter identification software. Using simple flight maneuvers, a simulated data set was created covering the YAV-8B flight envelope from about 0.3 to 0.7 Mach and about -5 to 15 deg angle of attack. A singular value decomposition implementation of the equation-error approach produced good parameter estimates based on this simulated data set.
Effect of low temperature baking on niobium cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Kneisel; Ganapati Myneni; William Lanford
A low temperature (100 C-150 C) ''in situ'' baking under ultra-high vacuum has been successfully applied as final preparation of niobium RF cavities by several laboratories over the last few years. The benefits reported consist mainly of an improvement of the cavity quality factor and a recovery from the so-called ''Q-drop'' without field emission at high field. A series of experiments with a CEBAF single cell cavity have been carried out at Jefferson Lab to carefully investigate the effect of baking at progressively higher temperatures for a fixed time on all the relevant material parameters. Measurements of the cavity qualitymore » factor in the temperature range 1.37K-280K and resonant frequency shift between 6K-9.3K provide information about the surface resistance, energy gap, penetration depth and mean free path. The experimental data have been analyzed with the complete BCS theory of superconductivity using a modified version of the computer code originally written by J. Halbritter [1] . Small niobium samples inserted in the cavity during its surface preparation were analyzed with respect to their hydrogen content with a Nuclear Reaction Analysis (NRA). The single cell cavity has been tested at three different temperatures before and after baking to gain some insight on thermal conductivity and Kapitza resistance and the data are compared with different models. This paper describes the results from these experiments and comments on the existing models to explain the effect of baking on the performance of niobium RF cavities.« less
Parameter identification for structural dynamics based on interval analysis algorithm
NASA Astrophysics Data System (ADS)
Yang, Chen; Lu, Zixing; Yang, Zhenyu; Liang, Ke
2018-04-01
A parameter identification method using interval analysis algorithm for structural dynamics is presented in this paper. The proposed uncertain identification method is investigated by using central difference method and ARMA system. With the help of the fixed memory least square method and matrix inverse lemma, a set-membership identification technology is applied to obtain the best estimation of the identified parameters in a tight and accurate region. To overcome the lack of insufficient statistical description of the uncertain parameters, this paper treats uncertainties as non-probabilistic intervals. As long as we know the bounds of uncertainties, this algorithm can obtain not only the center estimations of parameters, but also the bounds of errors. To improve the efficiency of the proposed method, a time-saving algorithm is presented by recursive formula. At last, to verify the accuracy of the proposed method, two numerical examples are applied and evaluated by three identification criteria respectively.
Computer program for analysis of coupled-cavity traveling wave tubes
NASA Technical Reports Server (NTRS)
Connolly, D. J.; Omalley, T. A.
1977-01-01
A flexible, accurate, large signal computer program was developed for the design of coupled cavity traveling wave tubes. The program is written in FORTRAN IV for an IBM 360/67 time sharing system. The beam is described by a disk model and the slow wave structure by a sequence of cavities, or cells. The computational approach is arranged so that each cavity may have geometrical or electrical parameters different from those of its neighbors. This allows the program user to simulate a tube of almost arbitrary complexity. Input and output couplers, severs, complicated velocity tapers, and other features peculiar to one or a few cavities may be modeled by a correct choice of input data. The beam-wave interaction is handled by an approach in which the radio frequency fields are expanded in solutions to the transverse magnetic wave equation. All significant space harmonics are retained. The program was used to perform a design study of the traveling-wave tube developed for the Communications Technology Satellite. Good agreement was obtained between the predictions of the program and the measured performance of the flight tube.
Self-trapping and tunneling of Bose-Einstein condensates in a cavity-mediated triple-well system
NASA Astrophysics Data System (ADS)
Wang, Bin; Zhang, Hui; Chen, Yan; Tan, Lei
2017-03-01
We have investigated tunneling characteristics of Bose-Einstein condensates (BECs) in a triple-well potential coupled to a high finesse optical cavity within a mean field approach. Due to the intrinsic atom-cavity field nonlinearity, several interesting phenomena arise which are the focuses of this work. In the dynamical process, an extensive numerical simulation of localization of the BECs for atoms initially trapped in one-, two-, and three-wells are performed for the symmetric and asymmetric cases in detail. It is shown that the the transition from the oscillation to the localization can be modified by the cavity-mediated potential, which will enlarge the regions of oscillation. With the increasing of the atomic interaction, the oscillation is blocked and the localization emerges. The condensates atoms can be trapped either in one-, two-, or in three wells eventually where they are initially uploaded for certain parameters. In particular, we find that the transition from the oscillation to the localization is accompanied with some irregular regime where tunneling dynamics is dominated by chaos for this cavity-mediated system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Posen, S., E-mail: sposen@fnal.gov; Checchin, M.; Crawford, A. C.
2016-06-07
Even when cooled through its transition temperature in the presence of an external magnetic field, a superconductor can expel nearly all external magnetic flux. This paper presents an experimental study to identify the parameters that most strongly influence flux trapping in high purity niobium during cooldown. This is critical to the operation of superconducting radiofrequency cavities, in which trapped flux degrades the quality factor and therefore cryogenic efficiency. Flux expulsion was measured on a large survey of 1.3 GHz cavities prepared in various ways. It is shown that both spatial thermal gradient and high temperature treatment are critical to expelling externalmore » magnetic fields, while surface treatment has minimal effect. For the first time, it is shown that a cavity can be converted from poor expulsion behavior to strong expulsion behavior after furnace treatment, resulting in a substantial improvement in quality factor. Microscopic investigations are performed to study the relevant changes in the material from this treatment. Future plans are described to build on this result in order to optimize treatment for future cavities.« less
Feedback-controlled radiation pressure cooling
NASA Astrophysics Data System (ADS)
Prior, Yehiam; Vilensky, Mark; Averbukh, Ilya Sh.
2008-03-01
We propose a new approach to laser cooling of micromechanical devices, which is based on the phenomenon of optical bistability. These devices are modeled as a Fabry-Perot resonator with one fixed and one oscillating mirror. The bistability may be induced by an external feedback loop. When excited by an external laser, the cavity field has two co-existing stable steady-states depending on the position of the moving mirror. If the latter moves slow enough, the field in the cavity adjusts itself adiabatically to the mirror's instantaneous position. The mirror experiences radiation pressure corresponding to the intensity value. A sharp transition between two values of the radiation pressure force happens twice per every period of the mirror oscillation at non-equivalent positions (hysteresis effect), which leads to a non-zero net energy loss. The cooling mechanism resembles Sisyphus cooling in which the cavity mode performs sudden transitions between two stable states. We provide a dynamical stability analysis of the coupled moving mirror -- cavity field system, and find the parameters for efficient cooling. Direct numerical simulations show that a bistable cavity provides much more efficient cooling compared to the regular one.
NASA Astrophysics Data System (ADS)
Alsabery, A. I.; Chamkha, A. J.; Saleh, H.; Hashim, I.; Chanane, B.
2017-03-01
The effects of finite wall thickness and sinusoidal heating on convection in a nanofluid-saturated local thermal non-equilibrium (LTNE) porous cavity are studied numerically using the finite difference method. The finite thickness vertical wall of the cavity is maintained at a constant temperature and the right wall is heated sinusoidally. The horizontal insulated walls allow no heat transfer to the surrounding. The Darcy law is used along with the Boussinesq approximation for the flow. Water-based nanofluids with Cu nanoparticles are chosen for investigation. The results of this study are obtained for various parameters such as the Rayleigh number, periodicity parameter, nanoparticles volume fraction, thermal conductivity ratio, ratio of wall thickness to its height and the modified conductivity ratio. Explanation for the influence of the various above-mentioned parameters on the streamlines, isotherms, local Nusselt number and the weighted average heat transfer is provided with regards to the thermal conductivities of nanoparticles suspended in the pure fluid and the porous medium. It is shown that the overall heat transfer is significantly increased with the relative non-uniform heating. Further, the convection heat transfer is shown to be inhibited by the presence of the solid wall. The results have possible applications in the heat-storage fluid-saturated porous systems and the applications of the high power heat transfer.
NASA Astrophysics Data System (ADS)
Mett, Richard R.; Anderson, James R.; Sidabras, Jason W.; Hyde, James S.
2005-09-01
Magnetic field modulation is often introduced into a cylindrical TE011 electron paramagnetic resonance (EPR) cavity through silver plating over a nonconductive substrate. The plating thickness must be many times the skin depth of the rf and smaller than the skin depth of the modulation. We derive a parameter that quantifies the modulation field penetration and find that it also depends on resonator dimensions. Design criteria based on this parameter are presented graphically. This parameter is then used to predict the behavior of eddy currents in substrates of moderate conductivity, such as graphite. The conductivity of the graphite permits improved plating uniformity and permits use of electric discharge machining (EDM) techniques to make the resonator. EDM offers precision tolerances of 0.005 mm and is suitable for small, complicated shapes that are difficult to machine by other methods. Analytic predictions of the modulation penetration are compared with the results of finite-element simulations. Simulated magnetic field modulation uniformity and penetration are shown for several elemental coils and structures including the plated graphite TE011 cavity. Fabrication and experimental testing of the structure are discussed. Spatial inhomogeneity of the modulation phase is also investigated by computer simulation. We find that the modulation phase is uniform to within 1% over the TE011 cavity. Structures of lower symmetry have increased phase nonuniformity.
Tunneling study of SRF cavity-grade niobium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proslier, T.; Zasadzinski, J.; Cooley, L.
Niobium, with its very high H{sub C1}, has been used in superconducting radio frequency (SRF) cavities for accelerator systems for 40 years with continual improvement. The quality factor of cavities (Q) is governed by the surface impedance R{sub BCS}, which depends on the quasiparticle gap, delta, and the superfluid density. Both of these parameters are seriously affected by surface imperfections (metallic phases, dissolved oxygen, magnetic impurities). Loss mechanism and surface treatments of Nb cavities found to improve the Q factor are still unsolved mysteries. We present here an overview of the capabilities of the point contact tunneling spectroscopy and Atomicmore » layer deposition methods and how they can help understanding the High field Q-drop and the mild baking effect. Tunneling spectroscopy was performed on Nb pieces from the same processed material used to fabricate SRF cavities. Air exposed, electropolished Nb exhibited a surface superconducting gap Delta = 1.55 meV, characteristic of clean, bulk Nb, however the tunneling density of states (DOS) was broadened significantly. Nb pieces treated with the same mild baking used to improve the Q-slope in SRF cavities revealed a much sharper DOS. Good fits to the DOS are obtained using Shiba theory suggesting that magnetic scattering of quasiparticles is the origin of the degraded surface superconductivity and the Q-slope problem of Nb SRF cavities.« less
Pressure Gradient Effects on Hypersonic Cavity Flow Heating
NASA Technical Reports Server (NTRS)
Everhart, Joel L.; Alter, Stephen J.; Merski, N. Ronald; Wood, William A.; Prabhu, Ramadas K.
2006-01-01
The effect of a pressure gradient on the local heating disturbance of rectangular cavities tested at hypersonic freestream conditions has been globally assessed using the two-color phosphor thermography method. These experiments were conducted in the Langley 31-Inch Mach 10 Tunnel and were initiated in support of the Space Shuttle Return-To-Flight Program. Two blunted-nose test surface geometries were developed, including an expansion plate test surface with nearly constant negative pressure gradient and a flat plate surface with nearly zero pressure gradient. The test surface designs and flow characterizations were performed using two-dimensional laminar computational methods, while the experimental boundary layer state conditions were inferred using the measured heating distributions. Three-dimensional computational predictions of the entire model geometry were used as a check on the design process. Both open-flow and closed-flow cavities were tested on each test surface. The cavity design parameters and the test condition matrix were established using the computational predictions. Preliminary conclusions based on an analysis of only the cavity centerline data indicate that the presence of the pressure gradient did not alter the open cavity heating for laminar-entry/laminar-exit flows, but did raise the average floor heating for closed cavities. The results of these risk-reduction studies will be used to formulate a heating assessment of potential damage scenarios occurring during future Space Shuttle flights.
Pressure Gradient Effects on Hypersonic Cavity Flow Heating
NASA Technical Reports Server (NTRS)
Everhart, Joel L.; Alter, Stephen J.; Merski, N. Ronald; Wood, William A.; Prabhu, Ramdas K.
2007-01-01
The effect of a pressure gradient on the local heating disturbance of rectangular cavities tested at hypersonic freestream conditions has been globally assessed using the two-color phosphor thermography method. These experiments were conducted in the Langley 31-Inch Mach 10 Tunnel and were initiated in support of the Space Shuttle Return-To-Flight Program. Two blunted-nose test surface geometries were developed, including an expansion plate test surface with nearly constant negative pressure gradient and a flat plate surface with nearly zero pressure gradient. The test surface designs and flow characterizations were performed using two-dimensional laminar computational methods, while the experimental boundary layer state conditions were inferred using the measured heating distributions. Three-dimensional computational predictions of the entire model geometry were used as a check on the design process. Both open-flow and closed-flow cavities were tested on each test surface. The cavity design parameters and the test condition matrix were established using the computational predictions. Preliminary conclusions based on an analysis of only the cavity centerline data indicate that the presence of the pressure gradient did not alter the open cavity heating for laminar-entry/laminar-exit flows, but did raise the average floor heating for closed cavities. The results of these risk-reduction studies will be used to formulate a heating assessment of potential damage scenarios occurring during future Space Shuttle flights.
Cavity Solitons in Vertical Cavity Surface Emitting Lasers and their Applications
NASA Astrophysics Data System (ADS)
Giudici, Massimo; Pedaci, Francesco; Caboche, Emilie; Genevet, Patrice; Barland, Stephane; Tredicce, Jorge; Tissoni, Giovanna; Lugiato, Luigi
Cavity solitons (CS) are single peak localized structures which form over a homogeneous background in the section of broad-area non linear resonator driven by a coherent holding beam. They can be switched on and off by shining a writing/ erasing local laser pulse into the optical cavity. Moreover, when a phase or amplitude gradient is introduced in the holding beam, CS are set in motion along the gradient with a speed that depends on gradient strength. The ability to address CS and to control their location as well as their motion makes them interesting for alloptical processing units. In this chapter we report on several functionalities of CS that have been experimentally implemented in a Vertical Cavity Surface Emitting Laser (VCSEL) biased below threshold. We show that CS positions in the transverse section of the resonator can be reconfigured according to a phase landscape introduced in the holding beam. CS drifting propelled by a phase gradient in the holding beam can be used for realizing an all-optical delay line. Information bits are written in form of CS at a point of the device and a time delayed version of the written information can be read elsewhere along the gradient direction. CS existence and functionalities are deeply affected by presence of device defects generated during the fabrication process and randomly distributed through the device section. The sensitivity of CS to parameters gradients can be used to probe these defects, otherwise not detectable, and mapping their positions. Finally, a periodic flow of moving CS can be obtained by the interplay between a device defect and an external parameter gradient. This suggests the possibility of engineering a CS source directly onto the device.
Positron annihilation study of cavities in black Au films
NASA Astrophysics Data System (ADS)
Melikhova, O.; Čížek, J.; Hruška, P.; Vlček, M.; Procházka, I.; Anwand, W.; Novotný, M.; Bulíř, J.
2017-01-01
Defects in a black Au film were studied using variable energy positron annihilation spectroscopy. Black Au films exhibit porous morphology similar to cauliflower. This type of structure enhances the optical absorption due to a multiple reflections in the micro-cavities. A nanostructured black Au film was compared with conventional smooth Au films with high reflectivity. The black Au film exhibited a remarkably enhanced S-parameter in sub-surface region. This is caused by a narrow para-Positronium contribution to the annihilation peak.
Ballistic transport in nanowires through non-magnetic or magnetic cavity
NASA Astrophysics Data System (ADS)
Nonoyama, Shinji; Honma, Yukari; Ono, Miyuki; Nakamura, Atsunobu
2015-07-01
Ballistic transport phenomena through a region containing a cavity in a quasi-one-dimensional quantum nanowire are investigated. Conductance curves calculated as a function of a structural parameter show quantum interference effects on transport clearly. In a special geometry, very narrow periodic dips, which are attributable to the anti-resonance, appear on the conductance curve. The nature of the virtual bound state resulting in the anti-resonance is studied in detail. Electron conductions through a small dilute magnetic semiconductor are also investigated.
Storage and retrieval of quantum information with a hybrid optomechanics-spin system
NASA Astrophysics Data System (ADS)
Feng, Zhi-Bo; Zhang, Jian-Qi; Yang, Wan-Li; Feng, Mang
2016-08-01
We explore an efficient scheme for transferring the quantum state between an optomechanical cavity and an electron spin of diamond nitrogen-vacancy center. Assisted by a mechanical resonator, quantum information can be controllably stored (retrieved) into (from) the electron spin by adjusting the external field-induced detuning or coupling. Our scheme connects effectively the cavity photon and the electron spin and transfers quantum states between two regimes with large frequency difference. The experimental feasibility of our protocol is justified with accessible laboratory parameters.
Tesfaye, Biruk; Sisay Tessema, Tesfaye; Tefera, Genene
2013-06-01
A study was conducted to isolate bacterial species/pathogens from the nasal cavity of apparently healthy and pneumonic sheep. Nasal swabs were collected aseptically, transported in tryptose soya broth and incubated for 24 h. Then, each swab was streaked onto chocolate and blood agar for culture. Bacterial species were identified following standard bacteriological procedures. Accordingly, a total of 1,556 bacteria were isolated from 960 nasal swabs collected from three different highland areas of Ethiopia, namely Debre Berhan, Asella, and Gimba. In Debre Berhan, 140 Mannheimia haemolytica, 81 Histophilus somni, 57 Staphylococcus species, and 52 Bibersteinia trehalosi were isolated. While from Gimba M. haemolytica, Staphylococcus, Streptococcus, and H. somni were isolated at rates of 25.2, 15.9, 11.4, and 5.9 %, respectively, of the total 647 bacterial species. In Asella from 352 bacterial species isolated, 93 (26.4 %) were M. haemolytica, 48 (13.6 %) were Staphylococcus species, 26 (7.4 %) were B. trehalosi, and 17 (4.8 %) H. somni were recognized. Further identification and characterization using BIOLOG identification system Enterococcus avium and Sphingomonas sanguinis were identified at 100 % probability, while, H. somni and Actinobacillus lignerisii were suggested by the system. The study showed that a variety of bacterial species colonize the nasal cavity of the Ethiopian highland sheep with variable proportion between healthy and pneumonic ones. To our knowledge, this is the first report on isolation of H. somni, an important pathogen in cattle, from the respiratory tract of a ruminant species in the country.
Maddipati, Krishna Rao; Romero, Roberto; Chaiworapongsa, Tinnakorn; Chaemsaithong, Piya; Zhou, Sen-Lin; Xu, Zhonghui; Tarca, Adi L.; Kusanovic, Juan Pedro; Gomez, Ricardo; Chaiyasit, Noppadol; Honn, Kenneth V.
2016-01-01
Bioactive lipids derived from the metabolism of polyunsaturated fatty acids are important mediators of the inflammatory response. Labor per se is considered a sterile inflammatory process. Intra-amniotic inflammation (IAI) due to microorganisms (i.e., intra-amniotic infection) or danger signals (i.e., sterile IAI) has been implicated in the pathogenesis of preterm labor and clinical chorioamnionitis at term. Early and accurate diagnosis of microbial invasion of the amniotic cavity (MIAC) requires analysis of amniotic fluid (AF). It is possible that IAI caused by microorganisms is associated with a stereotypic lipidomic profile, and that analysis of AF may help in the identification of patients with this condition. To test this hypothesis, we analyzed the fatty acyl lipidome of AF by liquid chromatography—mass spectrometry from patients in spontaneous labor at term and preterm gestations. We report that the AF concentrations of proinflammatory lipid mediators of the 5-lipoxygenase pathway are significantly higher in MIAC than in cases of sterile IAI. These results suggest that the concentrations of 5-lipoxygenase metabolites of arachidonic acid, 5-hydroxyeicosatetraenoic acid, and leukotriene B4 in particular could serve as potential biomarkers of MIAC. This finding could have important implications for the rapid identification of patients who may benefit from anti-microbial treatment.—Maddipati, K. R., Romero, R., Chaiworapongsa ,T., Chaemsaithong, P., Zhou, S.-L., Xu, Z., Tarca, A. L., Kusanovic, J. P., Gomez, R., Chaiyasit, N., Honn, K. V. Lipidomic analysis of patients with microbial invasion of the amniotic cavity reveals up-regulation of leukotriene B4. PMID:27312808
Niobium thin film coating on a 500-MHz copper cavity by plasma deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haipeng Wang; Genfa Wu; H. Phillips
2005-05-16
A system using an Electron Cyclotron Resonance (ECR) plasma source for the deposition of a thin niobium film inside a copper cavity for superconducting accelerator applications has been designed and is being constructed. The system uses a 500-MHz copper cavity as both substrate and vacuum chamber. The ECR plasma will be created to produce direct niobium ion deposition. The central cylindrical grid is DC biased to control the deposition energy. This paper describes the design of several subcomponents including the vacuum chamber, RF supply, biasing grid and magnet coils. Operational parameters are compared between an operating sample deposition system andmore » this system. Engineering work progress toward the first plasma creation will be reported here.« less
Testing relativity with orbiting clocks
NASA Astrophysics Data System (ADS)
Nissen, J. A.; Lipa, J. A.; Wang, S.; Avaloff, D.; Stricker, D. A.
2011-02-01
We describe the background and status of a superconducting microwave clock suitable for relativity experiments in earth orbit. The project has the capability of performing improved tests of Lorentz invariance via a Michelson-Morley type experiment, and setting new limits on nine parameters in the Standard Model Extension. If flown with a high stability atomic clock, a Kennedy-Thorndike experiment along with additional tests in general relativity could be performed.In orbit, unwanted cavity frequency variations are expected to be caused mainly by acceleration effects due to residual drag and vibration, temperature variations, and fluctuations in the energy stored in the cavity. A cavity support system has been designed to reduce acceleration effects and a high resolution thermometer has been implemented to improve temperature control.
Cavitation in Amorphous Solids
NASA Astrophysics Data System (ADS)
Guan, Pengfei; Lu, Shuo; Spector, Michael J. B.; Valavala, Pavan K.; Falk, Michael L.
2013-05-01
Molecular dynamics simulations of cavitation in a Zr50Cu50 metallic glass exhibit a waiting time dependent cavitation rate. On short time scales nucleation rates and critical cavity sizes are commensurate with a classical theory of nucleation that accounts for both the plastic dissipation during cavitation and the cavity size dependence of the surface energy. All but one parameter, the Tolman length, can be extracted directly from independent calculations or estimated from physical principles. On longer time scales strain aging in the form of shear relaxations results in a systematic decrease of cavitation rate. The high cavitation rates that arise due to the suppression of the surface energy in small cavities provide a possible explanation for the quasibrittle fracture observed in metallic glasses.
Analysis and application of minimum variance discrete time system identification
NASA Technical Reports Server (NTRS)
Kaufman, H.; Kotob, S.
1975-01-01
An on-line minimum variance parameter identifier is developed which embodies both accuracy and computational efficiency. The formulation results in a linear estimation problem with both additive and multiplicative noise. The resulting filter which utilizes both the covariance of the parameter vector itself and the covariance of the error in identification is proven to be mean square convergent and mean square consistent. The MV parameter identification scheme is then used to construct a stable state and parameter estimation algorithm.
Semi-empirical "leaky-bucket" model of laser-driven x-ray cavities
NASA Astrophysics Data System (ADS)
Moody, J. D.; Landen, O. L.; Divol, L.; LePape, S.; Michel, P.; Town, R. P. J.; Hall, G.; Widmann, K.; Moore, A.
2017-04-01
A semi-empirical analytical model is shown to approximately describe the energy balance in a laser-driven x-ray cavity, such as a hohlraum, for general laser pulse-shapes. Agreement between the model and measurements relies on two scalar parameters, one characterizes the efficiency of x-ray generation for a given laser power and the other represents a characteristic power-loss rate. These parameters, once obtained through estimation or optimization for a particular hohlraum design, can be used to predict either the x-ray flux or the coupled laser power time-history in terms of other quantities for similar hohlraum designs. The value of the model is that it can be used as an approximate "first-look" at hohlraum energy balance prior to a more detailed radiation hydrodynamic modeling.
NASA Astrophysics Data System (ADS)
Long, D. A.; Wójtewicz, S.; Miller, C. E.; Hodges, J. T.
2015-08-01
We present new high accuracy measurements of the (30012)←(00001) CO2 band near 1575 nm recorded with a frequency-agile, rapid scanning cavity ring-down spectrometer. The resulting spectra were fit with the partially correlated, quadratic-speed-dependent Nelkin-Ghatak profile with line mixing. Significant differences were observed between the fitted line shape parameters and those found in existing databases, which are based upon more simplistic line profiles. Absolute transition frequencies, which were referenced to an optical frequency comb, are given, as well as the other line shape parameters needed to model this line profile. These high accuracy measurements should allow for improved atmospheric retrievals of greenhouse gas concentrations by current and future remote sensing missions.
Identification and stochastic control of helicopter dynamic modes
NASA Technical Reports Server (NTRS)
Molusis, J. A.; Bar-Shalom, Y.
1983-01-01
A general treatment of parameter identification and stochastic control for use on helicopter dynamic systems is presented. Rotor dynamic models, including specific applications to rotor blade flapping and the helicopter ground resonance problem are emphasized. Dynamic systems which are governed by periodic coefficients as well as constant coefficient models are addressed. The dynamic systems are modeled by linear state variable equations which are used in the identification and stochastic control formulation. The pure identification problem as well as the stochastic control problem which includes combined identification and control for dynamic systems is addressed. The stochastic control problem includes the effect of parameter uncertainty on the solution and the concept of learning and how this is affected by the control's duel effect. The identification formulation requires algorithms suitable for on line use and thus recursive identification algorithms are considered. The applications presented use the recursive extended kalman filter for parameter identification which has excellent convergence for systems without process noise.
MHD natural convection in open inclined square cavity with a heated circular cylinder
NASA Astrophysics Data System (ADS)
Hosain, Sheikh Anwar; Alim, M. A.; Saha, Satrajit Kumar
2017-06-01
MHD natural convection in open cavity becomes very important in many scientific and engineering problems, because of it's application in the design of electronic devices, solar thermal receivers, uncovered flat plate solar collectors having rows of vertical strips, geothermal reservoirs, etc. Several experiments and numerical investigations have been presented for describing the phenomenon of natural convection in open cavity for two decades. MHD natural convection and fluid flow in a two-dimensional open inclined square cavity with a heated circular cylinder was considered. The opposite wall to the opening side of the cavity was first kept to constant heat flux q, at the same time the surrounding fluid interacting with the aperture was maintained to an ambient temperature T∞. The top and bottom wall was kept to low and high temperature respectively. The fluid with different Prandtl numbers. The properties of the fluid are assumed to be constant. As a result a buoyancy force is created inside the cavity due to temperature difference and natural convection is formed inside the cavity. The Computational Fluid Dynamics (CFD) code are used to discretize the solution domain and represent the numerical result to graphical form.. Triangular meshes are used to obtain the solution of the problem. The streamlines and isotherms are produced, heat transfer parameter Nu are obtained. The results are presented in graphical as well as tabular form. The results show that heat flux decreases for increasing inclination of the cavity and the heat flux is a increasing function of Prandtl number Pr and decreasing function of Hartmann number Ha. It is observed that fluid moves counterclockwise around the cylinder in the cavity. Various recirculations are formed around the cylinder. The almost all isotherm lines are concentrated at the right lower corner of the cavity. The object of this work is to develop a Mathematical model regarding the effect of MHD natural convection flow around a heated circular cylinder at the centre of an inclined open square cavity.
NASA Astrophysics Data System (ADS)
Marhauser, Frank
2017-06-01
Research and development for superconducting radio-frequency cavities has made enormous progress over the last decades from the understanding of theoretical limitations to the industrial mass fabrication of cavities for large-scale particle accelerators. Key technologies remain hot topics due to continuously growing demands on cavity performance, particularly when in pursuit of high quality beams at higher beam currents or higher luminosities than currently achievable. This relates to higher order mode (HOM) damping requirements. Meeting the desired beam properties implies avoiding coupled multi-bunch or beam break-up instabilities depending on the machine and beam parameters that will set the acceptable cavity impedance thresholds. The use of cavity HOM-dampers is crucial to absorb the wakefields, comprised by all beam-induced cavity Eigenmodes, to beam-dynamically safe levels and to reduce the heat load at cryogenic temperature. Cavity damping concepts may vary, but are principally based on coaxial and waveguide couplers as well as beam line absorbers or any combination. Next generation energy recovery linacs and circular colliders call for cavities with strong HOM-damping that can exceed the state-of-the-art, while the operating mode efficiency shall not be significantly compromised concurrently. This imposes major challenges given the rather limited damping concepts. A detailed survey of established cavities is provided scrutinizing the achieved damping performance, shortcomings, and potential improvements. The scaling of the highest passband mode impedances is numerically evaluated in dependence on the number of cells for a single-cell up to a nine-cell cavity, which reveals the increased probability of trapped modes. This is followed by simulations for single-cell and five-cell cavities, which incorporate multiple damping schemes to assess the most efficient concepts. The usage and viability of on-cell dampers is elucidated for the single-cell cavity since it can push the envelope towards quasi HOM-free operation suited for next generation storage and collider rings. Geometrical end-cell shape alterations for the five-cell cavity with already efficient mode damping are discussed as a possibility to further lower specific high impedance modes. The findings are eventually put into relation with demanding impedance instability thresholds in future collider rings.
Marhauser, Frank
2017-05-15
Research and development for superconducting radio-frequency cavities has made enormous progress over the last decades from the understanding of theoretical limitations to the industrial mass fabrication of cavities for large-scale particle accelerators. Key technologies remain hot topics due to continuously growing demands on cavity performance, particularly when in pursuit of high quality beams at higher beam currents or higher luminosities than currently achievable. This relates to Higher Order Mode (HOM) damping requirements. Meeting the desired beam properties implies avoiding coupled multi-bunch or beam break-up instabilities depending on the machine and beam parameters that will set the acceptable cavity impedance thresholds.more » The use of cavity HOM-dampers is crucial to absorb the wakefields, comprised by all beam-induced cavity Eigenmodes, to beam-dynamically safe levels and to reduce the heat load at cryogenic temperature. Cavity damping concepts may vary, but are principally based on coaxial and waveguide couplers as well as beam line absorbers or any combination. Next generation Energy Recovery Linacs and circular colliders call for cavities with strong HOM-damping that can exceed the state-of-the-art, while the operating mode efficiency shall not be significantly compromised concurrently. This imposes major challenges given the rather limited damping concepts. A detailed survey of established cavities is provided scrutinizing the achieved damping performance, shortcomings, and potential improvements. The scaling of the highest passband mode impedances is numerically evaluated in dependence on the number of cells for a single-cell up to a nine-cell cavity, which reveals the increased probability of trapped modes. This is followed by simulations for single-cell and five-cell cavities, which incorporate multiple damping schemes to assess the most efficient concepts. The usage and viability of on-cell dampers is elucidated for the single-cell cavity since it can push the envelope towards quasi HOM-free operation suited for next generation storage and collider rings. Geometrical end-cell shape alterations for the five-cell cavity with already efficient mode damping are discussed as a possibility to further lower specific high impedance modes. Lastly, the findings are eventually put into relation with demanding impedance instability thresholds in future collider rings.« less
Efficient 525 nm laser generation in single or double resonant cavity
NASA Astrophysics Data System (ADS)
Liu, Shilong; Han, Zhenhai; Liu, Shikai; Li, Yinhai; Zhou, Zhiyuan; Shi, Baosen
2018-03-01
This paper reports the results of a study into highly efficient sum frequency generation from 792 and 1556 nm wavelength light to 525 nm wavelength light using either a single or double resonant ring cavity based on a periodically poled potassium titanyl phosphate crystal (PPKTP). By optimizing the cavity's parameters, the maximum power achieved for the resultant 525 nm laser was 263 and 373 mW for the single and double resonant cavity, respectively. The corresponding quantum conversion efficiencies were 8 and 77% for converting 1556 nm photons to 525 nm photons with the single and double resonant cavity, respectively. The measured intra-cavity single pass conversion efficiency for both configurations was about 5%. The performances of the sum frequency generation in these two configurations was studied and compared in detail. This work will provide guidelines for optimizing the generation of sum frequency generated laser light for a variety of configurations. The high conversion efficiency achieved in this work will help pave the way for frequency up-conversion of non-classical quantum states, such as the squeezed vacuum and single photon states. The proposed green laser source will be used in our future experiments, which includes a plan to generate two-color entangled photon pairs and achieve the frequency down-conversion of single photons carrying orbital angular momentum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Facco, A; Binkowski, J; Compton, C
2012-07-01
The superconducting driver and post-accelerator linacs of the FRIB project, the large scale radioactive beam facility under construction at MSU, require the construction of about 400 low-{beta} Quarter-wave (QWR) and Half-wave resonators (HWR) with four different optimum velocities. 1st and 2nd generation prototypes of {beta}{sub 0} = 0.041 and 0.085 QWRs and {beta}{sub 0} = 0.53 HWRs have been built and tested, and have more than fulfilled the FRIB and ReA design goals. The present cavity surface preparation at MSU allowed production of low-{beta} cavities nearly free from field emission. The first two cryostats of {beta}{sub 0} = 0.041 QWRsmore » are now in operation in the ReA3 linac. A 3rd generation design of the FRIB resonators allowed to further improve the cavity parameters, reducing the peak magnetic field in operation and increasing the possible operation gradient, with consequent reduction of the number of required resonators. The construction of the cavities for FRIB, which includes three phases for each cavity type (development, pre-production and production runs) has started. Cavity design, construction, treatment and performance will be described and discussed.« less
Enhanced dynamical stability with harmonic slip stacking
Eldred, Jeffrey; Zwaska, Robert
2016-10-26
We develop a configuration of radio-frequency (rf) cavities to dramatically improve the performance of slip-stacking. Slip-stacking is an accumulation technique used at Fermilab to nearly double proton intensity by maintaining two beams of different momenta in the same storage ring. The two particle beams are longitudinally focused in the Recycler by two 53 MHz 100 kV rf cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV rf cavity with a frequency at the double the average of the upper and lower main rf frequencies. We show the harmonic rf cavity cancels out themore » resonances generated between the two main rf cavities and we derive the relationship between the harmonic rf voltage and the main rf voltage. We find the area factors that can be used to calculate the available phase space area for any set of beam parameters without individual simulation. We establish Booster beam quality requirements to achieve 99\\% slip-stacking efficiency. We measure the longitudinal distribution of the Booster beam and use it to generate a realistic beam model for slip-stacking simulation. In conclusion, we demonstrate that the harmonic rf cavity can not only reduce particle loss during slip-stacking, but also reduce the final longitudinal emittance.« less
Enhanced dynamical stability with harmonic slip stacking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, Jeffrey; Zwaska, Robert
We develop a configuration of radio-frequency (rf) cavities to dramatically improve the performance of slip-stacking. Slip-stacking is an accumulation technique used at Fermilab to nearly double proton intensity by maintaining two beams of different momenta in the same storage ring. The two particle beams are longitudinally focused in the Recycler by two 53 MHz 100 kV rf cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV rf cavity with a frequency at the double the average of the upper and lower main rf frequencies. We show the harmonic rf cavity cancels out themore » resonances generated between the two main rf cavities and we derive the relationship between the harmonic rf voltage and the main rf voltage. We find the area factors that can be used to calculate the available phase space area for any set of beam parameters without individual simulation. We establish Booster beam quality requirements to achieve 99\\% slip-stacking efficiency. We measure the longitudinal distribution of the Booster beam and use it to generate a realistic beam model for slip-stacking simulation. In conclusion, we demonstrate that the harmonic rf cavity can not only reduce particle loss during slip-stacking, but also reduce the final longitudinal emittance.« less
Single-photon blockade in a hybrid cavity-optomechanical system via third-order nonlinearity
NASA Astrophysics Data System (ADS)
Sarma, Bijita; Sarma, Amarendra K.
2018-04-01
Photon statistics in a weakly driven optomechanical cavity, with Kerr-type nonlinearity, are analyzed both analytically and numerically. The single-photon blockade effect is demonstrated via calculations of the zero-time-delay second-order correlation function g (2)(0). The analytical results obtained by solving the Schrödinger equation are in complete conformity with the results obtained through numerical solution of the quantum master equation. A systematic study on the parameter regime for observing photon blockade in the weak coupling regime is reported. The parameter regime where the photon blockade is not realizable due to the combined effect of nonlinearities owing to the optomechanical coupling and the Kerr-effect is demonstrated. The experimental feasibility with state-of-the-art device parameters is discussed and it is observed that photon blockade could be generated at the telecommunication wavelength. An elaborate analysis of the thermal effects on photon antibunching is presented. The system is found to be robust against pure dephasing-induced decoherences and thermal phonon number fluctuations.
Carrete, Martina; Ibáñez, Carlos; Juste, Javier; Tella, José L.
2018-01-01
The identification of effects of invasive species is challenging owing to their multifaceted impacts on native biota. Negative impacts are most often reflected in individual fitness rather than in population dynamics of native species and are less expected in low-biodiversity habitats, such as urban environments. We report the long-term effects of invasive rose-ringed parakeets on the largest known population of a threatened bat species, the greater noctule, located in an urban park. Both species share preferences for the same tree cavities for breeding. While the number of parakeet nests increased by a factor of 20 in 14 years, the number of trees occupied by noctules declined by 81%. Parakeets occupied most cavities previously used by noctules, and spatial analyses showed that noctules tried to avoid cavities close to parakeets. Parakeets were highly aggressive towards noctules, trying to occupy their cavities, often resulting in noctule death. This led to a dramatic population decline, but also an unusual aggregation of the occupied trees, probably disrupting the complex social behaviour of this bat species. These results indicate a strong impact through site displacement and killing of competitors, and highlight the need for long-term research to identify unexpected impacts that would otherwise be overlooked. PMID:29892437
Yang, Qingxia; Xu, Jun; Cao, Binggang; Li, Xiuqing
2017-01-01
Identification of internal parameters of lithium-ion batteries is a useful tool to evaluate battery performance, and requires an effective model and algorithm. Based on the least square genetic algorithm, a simplified fractional order impedance model for lithium-ion batteries and the corresponding parameter identification method were developed. The simplified model was derived from the analysis of the electrochemical impedance spectroscopy data and the transient response of lithium-ion batteries with different states of charge. In order to identify the parameters of the model, an equivalent tracking system was established, and the method of least square genetic algorithm was applied using the time-domain test data. Experiments and computer simulations were carried out to verify the effectiveness and accuracy of the proposed model and parameter identification method. Compared with a second-order resistance-capacitance (2-RC) model and recursive least squares method, small tracing voltage fluctuations were observed. The maximum battery voltage tracing error for the proposed model and parameter identification method is within 0.5%; this demonstrates the good performance of the model and the efficiency of the least square genetic algorithm to estimate the internal parameters of lithium-ion batteries. PMID:28212405
Victório, Cristiane Pimentel; Moreira, Claudio B; Souza, Marcelo da Costa; Sato, Alice; Arruda, Rosani do Carmo de Oliveira
2011-07-01
In this study, we investigated the leaf anatomy and the composition of volatiles in Myrrhinium atropurpureum var. atropurpureum endemic to Rio de Janeiro restingas. Particularly, leaf secretory structures were described using light microscopy, and histochemical tests were performed from fresh leaves to localize the secondary metabolites. To observe secretory cavities, fixed leaf samples were free-hand sectioned. To evaluate lipophilic compounds and terpenoids the following reagents were employed: Sudans III and IV, Red oil O and Nile blue. Leaf volatiles were characterized by gas chromatography after hydrodistillation (HD) or simultaneous distillation-extraction (SDE). Leaf analysis showed several cavities in mesophyll that are the main sites of lipophilic and terpenoid production. Monoterpenes, which represented more than 80% of the major volatiles, were characterized mainly by alpha- and beta-pinene and 1,8-cineole. In order to provide tools for M. atropurpureum identification, the following distinguishing characteristics were revealed by the following data: 1) adaxial face clear and densely punctuated by the presence of round or ellipsoidal secretory cavities randomly distributed in the mesophyll; 2) the presence of cells overlying the upper neck cells of secretory cavities; 3) the presence of numerous paracytic stomata distributed on the abaxial leaf surface, but absent in vein regions and leaf margin; and 4) non-glandular trichomes on both leaf surfaces. Our study of the compounds produced by the secretory cavities of M. atropurpureum led us to conclude that volatile terpenoid class are the main secretory compounds and that they consist of a high concentration of monoterpenes, which may indicate the phytotherapeutic importance of this plant.
[The occurrence of Escherichia coli with K1 surface antigen in pregnant women and in newborns].
Kaczmarek, Agnieszka; Budzyńska, Anna; Gospodarek, Eugenia
2010-01-01
The aim of the study was to determine the frequency of occurrence of K1 surface antigen in Escherichia coli strains isolated from the pregnant women and newborns. A total of 425 of E. coli strains isolated from the faecal samples, 67 strains isolated from the vagina of pregnant women and 40 strains isolated from the newborns' nasal cavity were included into the study. All strains were collected between June and September of 2008. Identification of isolates was followed by the assessment of presence of K1 surface antigen in E. coli strains. The presence of K1 antigen was found in 17,6% of E. coli strains isolated from the faecal samples, 20,9% of E. coli strains isolated from the vagina of pregnant women and in 17,5% of E. coli strains isolated from the newborns' nasal cavity. Routine screening of E. coli K1 colonization gives an opportunity to identify women with the risk of E. coli K1 transmission to neonates during delivery and thereby with major probability of perinatal infections. Latex agglutination test Pastorex Meningitis (Bio-Rad) provides fast identification of E. coli K1 strains.
NASA Astrophysics Data System (ADS)
Simpkins, Blake S.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Spann, Bryan T.; Owrutsky, Jeffrey C.
2016-09-01
Coherent coupling between an optical transition and confined optical mode have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we demonstrate both static and dynamic results for vibrational bands strongly coupled to optical cavities. We experimentally and numerically describe strong coupling between a Fabry-Pérot cavity and carbonyl stretch ( 1730 cm 1) in poly-methylmethacrylate and provide evidence that the mixed-states are immune to inhomogeneous broadening. We investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of a urethane monomer. Rabi splittings are in excellent agreement with an analytical description using no fitting parameters. Ultrafast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band, as well as drastically modified relaxation rates. We speculate these modified kinetics are a consequence of the energy proximity between the vibration-cavity polariton modes and excited state transitions and that polaritons offer an alternative relaxation path for vibrational excitations. Varying the polariton energies by angle-tuning yields transient results consistent with this hypothesis. Furthermore, Rabi oscillations, or quantum beats, are observed at early times and we see evidence that these coherent vibration-cavity polariton excitations impact excited state population through cavity losses. Together, these results indicate that cavity coupling may be used to influence both excitation and relaxation rates of vibrations. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied in steady state and dynamically.
[Relationship between salivary occult blood and level of volatile sulphur compounds in oral cavity].
An, Yue-bang; He, Lu; Meng, Huan-xin; Liu, Ting-ting; Liu, Jian
2010-07-01
To observe the change of the salivary occult blood after periodontal mechanical therapy, and to assess the correlations between salivary occult blood and the level of volatile sulphur compounds (VSC) in oral cavity, periodontal clinical parameters, respectively. Fifty patients with gingivititis, mild or moderate periodontitis were included. The level of VSC were measured by Halimeter(®) and salivary occult blood was tested by Perioscreen(®) before periodontal examination. Then full mouth plaque index (PLI), probing depth (PD), bleeding index (BI) were charted. Attachment loss (AL) of the Ramfjörd teeth were recorded lastly. Intensive periodontal mechanical therapy was conducted including oral hygiene instruction, scaling and root planing (SRP). Four weeks after SRP, the same examinations were repeated. Salivary occult blood was significantly correlated with BI (r = 0.294) and PLI (r = 0.308) before periodontal therapy (P < 0.01), and also significantly correlated with VSC level (r = 0.386), PLI (r = 0.456), BI (r = 0.352), AL (r = 0.325) after therapy (P < 0.05). The improvement of VSC level [211.0 (111.0 - 389.5) × 10⁻⁹ vs 100.0 (46.3 - 165.3) × 10⁻⁹], the clinical periodontal parameters including PLI [(1.3 ± 1.0) vs (0.4 ± 0.6)], PD [(3.7 ± 1.5) mm vs (2.7 ± 0.9) mm], BI [(1.8 ± 1.2) vs (0.4 ± 0.7)] and AL [(1.0 ± 1.1) mm vs (0.1 ± 0.5) mm after the treatment was statistically significant (P < 0.001). However, standing on the viewpoint of salivary occult blood changes from positive before therapy to negative after therapy, only 80% (40/50) individuals were totally cured. VSC level in oral cavity and periodontal clinical parameters significantly decreased (P < 0.001) following the trends from strong positive, weak positive, to negative results of salivary occult blood test. Salivary occult blood was correlated with VSC level in oral cavity of periodontal treated patients. It may be an objective parameter to evaluate the gingival inflammation and the efficacy of the periodontal therapy at individual level.
High-frequency ultrasound M-mode monitoring of HIFU ablation in cardiac tissue
NASA Astrophysics Data System (ADS)
Kumon, R. E.; Gudur, M. S. R.; Zhou, Y.; Deng, C. X.
2012-10-01
Effective real-time HIFU lesion detection is important for expanded use of HIFU in interventional electrophysiology (e.g., epicardial ablation of cardiac arrhythmia). The goal of this study was to investigate rapid, high-frequency M-mode ultrasound imaging for monitoring spatiotemporal changes in tissue during HIFU application. The HIFU application (4.33 MHz, 1000 Hz PRF, 50% duty cycle, 1 s exposure, 6100 W/cm2) was perpendicularly applied to porcine cardiac tissue with a high-frequency imaging system (Visualsonics Vevo 770, 55 MHz, 4.5 mm focal distance) confocally aligned. Radiofrequency (RF) M-mode data (1 kHz PRF, 4 s × 7 mm) was acquired before, during, and after HIFU treatment. Gross lesions were compared with M-mode data to correlate lesion and cavity formation. Integrated backscatter, echo-decorrelation parameters, and their cumulative extrema over time were analyzed for automatically identifying lesion width and bubble formation. Cumulative maximum integrated backscatter showed the best results for identifying the final lesion width, and a criterion based on line-to-line decorrelation was proposed for identification of transient bubble activity.
Bubble nucleation in simple and molecular liquids via the largest spherical cavity method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, Miguel A., E-mail: m.gonzalez12@imperial.ac.uk; Department of Chemistry, Imperial College London, London SW7 2AZ; Abascal, José L. F.
2015-04-21
In this work, we propose a methodology to compute bubble nucleation free energy barriers using trajectories generated via molecular dynamics simulations. We follow the bubble nucleation process by means of a local order parameter, defined by the volume of the largest spherical cavity (LSC) formed in the nucleating trajectories. This order parameter simplifies considerably the monitoring of the nucleation events, as compared with the previous approaches which require ad hoc criteria to classify the atoms and molecules as liquid or vapor. The combination of the LSC and the mean first passage time technique can then be used to obtain themore » free energy curves. Upon computation of the cavity distribution function the nucleation rate and free-energy barrier can then be computed. We test our method against recent computations of bubble nucleation in simple liquids and water at negative pressures. We obtain free-energy barriers in good agreement with the previous works. The LSC method provides a versatile and computationally efficient route to estimate the volume of critical bubbles the nucleation rate and to compute bubble nucleation free-energies in both simple and molecular liquids.« less
Battery management system with distributed wireless sensors
Farmer, Joseph C.; Bandhauer, Todd M.
2016-02-23
A system for monitoring parameters of an energy storage system having a multiplicity of individual energy storage cells. A radio frequency identification and sensor unit is connected to each of the individual energy storage cells. The radio frequency identification and sensor unit operates to sense the parameter of each individual energy storage cell and provides radio frequency transmission of the parameters of each individual energy storage cell. A management system monitors the radio frequency transmissions from the radio frequency identification and sensor units for monitoring the parameters of the energy storage system.
Recent Progress on High-Current SRF Cavities at Jlab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Rimmer, William Clemens, James Henry, Peter Kneisel, Kurt Macha, Frank Marhauser, Larry Turlington, Haipeng Wang, Daniel Forehand
2010-05-01
JLab has designed and fabricated several prototype SRF cavities with cell shapes optimized for high current beams and with strong damping of unwanted higher order modes. We report on the latest test results of these cavities and on developments of concepts for new variants optimized for particular applications such as light sources and high-power proton accelerators, including betas less than one. We also report on progress towards a first beam test of this design in the recirculation loop of the JLab ERL based FEL. With growing interest worldwide in applications of SRF for high-average power electron and hadron machines, amore » practical test of these concepts is highly desirable. We plan to package two prototype cavities in a de-mountable cryomodule for temporary installation into the JLab FEL for testing with RF and beam. This will allow verification of all critical design and operational parameters paving the way to a full-scale prototype cryomodule.« less
NASA Astrophysics Data System (ADS)
Liu, Li-Wei; Gengzang, Duo-Jie; An, Xiu-Jia; Wang, Pei-Yu
2018-03-01
We propose a novel technique of generating multiple optomechanically induced transparency (OMIT) of a weak probe field in hybrid optomechanical system. This system consists of a cigar-shaped Bose–Einstein condensate (BEC), trapped inside each high finesse Fabry-Pérot cavity. In the resolved sideband regime, the analytic solutions of the absorption and the dispersion spectrum are given. The tunneling strength of the two resonators and the coupling parameters of the each BEC in combination with the cavity field have the appearance of three distinct OMIT windows in the absorption spectrum. Furthermore, whether there is BEC in each cavity is a key factor in the number of OMIT windows determination. The technique presented may have potential applications in quantum engineering and quantum information networks. Project supported by the National Natural Science Foundation of China (Grant Nos. 11564034, 11105062, and 21663026) and the Scientific Research Funds of College of Electrical Engineering, Northwest University, China (Grant No. xbmuyjrc201115).
Histology and ultrastructure of picosecond laser intrastromal photorefractive keratectomy (ISPRK)
NASA Astrophysics Data System (ADS)
Krueger, Ronald R.; Quantock, Andrew J.; Ito, Mitsutoshi; Assil, Kerry K.; Schanzlin, David J.
1995-05-01
Picosecond intrastromal ablation is currently under investigation as a new minimally invasive way of correcting refractive error. When the laser pulses are placed in an expanding spiral pattern along a lamellar plane, the technique is called intrastromal photorefractive keratectomy (ISPRK). We performed ISPRK on six human eye bank eyes. Thirty picosecond pulses at 1000 Hz and 20 - 25 (mu) J per pulse were separated by 15 microns. A total of 3 layers were placed in the anterior stroma separated by 15 microns. The eyes were then preserved and sectioned for light, scanning and transmission electron microscopy. Light and scanning electron microscopy reveals that picosecond intrastromal ablation using an ISPRK pattern demonstrates multiple, coalescing intrastromal cavities oriented parallel to the corneal surface. These cavities possess a smooth appearing inner wall. Using transmission electron microscopy, we noticed tissue loss surrounding some cavities with collagen fibril termination and thinning of collagen lamella. Other cavities we formed by separation of lamella with little evidence of tissue loss. A pseudomembrane lines the edge of some cavities. Although underlying tissue disruption was occasionally seen along the border of a cavity in no case was there any evidence of thermal damage or tissue necrosis. Ablation and loss of tissue in ISPRK results in nonthermal microscopic corneal thinning around some cavities whereas others demonstrate only lamellar separation. Alternative patterns and energy parameters should be investigated to bring this technology to its full potential in refractive surgery.
Clinical dental application of Er:YAG laser for Class V cavity preparation.
Matsumoto, K; Nakamura, Y; Mazeki, K; Kimura, Y
1996-06-01
Following the development of the ruby laser by Maiman in 1960, the Nd:YAG laser, the CO2 laser, the semiconductor laser, the He-Ne laser, excimer lasers, the argon laser, and finally the Er:YAG laser capable of cutting hard tissue easily were developed and have come to be applied clinically. In the present study, the Er:YAG laser emitting at a wavelength of 2.94 microns developed by Luxar was used for the clinical preparation of class V cavities. Parameters of 8 Hz and approx. 250 mJ/pulse maximum output were used for irradiation. Sixty teeth of 40 patients were used in this clinical study. The Er:YAG laser used in this study was found to be a system suitable for clinical application. No adverse reaction was observed in any of the cases. Class V cavity preparation was performed without inducing any pain in 48/60 cases (80%). All of the 12 cases that complained of mild or severe intraoperative pain had previously complained of cervical dentin hypersensibility during the preoperative examination. Cavity preparation was completed with this laser system in 58/60 cases (91.7%). No treatment-related clinical problems were observed during the follow-up period of approx. 30 days after cavity preparation and resin filling. Cavity preparation took between approx. 10 sec and 3 min and was related more or less to cavity size and depth. Overall clinical evaluation showed no safety problem with very good rating in 49 cases (81.7%).
Docherty, Paul D; Schranz, Christoph; Chase, J Geoffrey; Chiew, Yeong Shiong; Möller, Knut
2014-05-01
Accurate model parameter identification relies on accurate forward model simulations to guide convergence. However, some forward simulation methodologies lack the precision required to properly define the local objective surface and can cause failed parameter identification. The role of objective surface smoothness in identification of a pulmonary mechanics model was assessed using forward simulation from a novel error-stepping method and a proprietary Runge-Kutta method. The objective surfaces were compared via the identified parameter discrepancy generated in a Monte Carlo simulation and the local smoothness of the objective surfaces they generate. The error-stepping method generated significantly smoother error surfaces in each of the cases tested (p<0.0001) and more accurate model parameter estimates than the Runge-Kutta method in three of the four cases tested (p<0.0001) despite a 75% reduction in computational cost. Of note, parameter discrepancy in most cases was limited to a particular oblique plane, indicating a non-intuitive multi-parameter trade-off was occurring. The error-stepping method consistently improved or equalled the outcomes of the Runge-Kutta time-integration method for forward simulations of the pulmonary mechanics model. This study indicates that accurate parameter identification relies on accurate definition of the local objective function, and that parameter trade-off can occur on oblique planes resulting prematurely halted parameter convergence. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Burkholder, R. J.; Pathak, P. H.
1988-01-01
The electromagnetic (EM) scattering from a planar termination located inside relatively arbitrarily shaped open-ended waveguide cavities with smoothly curved interior walls is analyzed using a Gaussian Beam (GB) expansion of the incident plane wave fields in the open end. The cavities under consideration may contain perfectly-conducting interior walls with or without a thin layer of material coating, or the walls may be characterized by an impedance boundary condition. In the present approach, the GB's are tracked only to the termination of the waveguide cavity via beam reflections from interior waveguide cavity walls. The Gaussian beams are tracked approximately only along their beam axes; this approximation which remains valid for relatively well focussed beams assumes that an incident GB gives rise to a reflected GB with parameters related to the incident beam and the radius of curvature of the wall. It is found that this approximation breaks down for GB's which come close to grazing a convex surface and when the width of the incident beam is comparable to the radius of curvature of the surface. The expansion of the fields at the open end depend on the incidence angle only through the expansion coefficients, so the GB's need to be tracked through the waveguide cavity only once for a wide range of incidence angles. At the termination, the sum of all the GB's are integrated using a result developed from a generalized reciprocity principle, to give the fields scattered from the interior of the cavity. The rim edge at the open end of the cavity is assumed to be sharp and the external scattering from the rim is added separately using Geometrical Theory of Diffraction. The results based on the present approach are compared with solutions based on the hybrid asymptotic modal method. The agreement is found to be very good for cavities made up of planar surfaces, and also for cavities with curved surfaces which are not too long with respect to their width.
Supersonic/Hypersonic Correlations for In-Cavity Transition and Heating Augmentation
NASA Technical Reports Server (NTRS)
Everhart, Joel L.
2011-01-01
Laminar-entry cavity heating data with a non-laminar boundary layer exit flow have been retrieved from the database developed at Mach 6 and 10 in air on large flat plate models for the Space Shuttle Return-To-Flight Program. Building on previously published fully laminar and fully turbulent analysis methods, new descriptive correlations of the in-cavity floor-averaged heating and endwall maximum heating have been developed for transitional-to-turbulent exit flow. These new local-cavity correlations provide the expected flow and geometry conditions for transition onset; they provide the incremental heating augmentation induced by transitional flow; and, they provide the transitional-to-turbulent exit cavity length. Furthermore, they provide an upper application limit for the previously developed fully-laminar heating correlations. An example is provided that demonstrates simplicity of application. Heating augmentation factors of 12 and 3 above the fully laminar values are shown to exist on the cavity floor and endwall, respectively, if the flow exits in fully tripped-to-turbulent boundary layer state. Cavity floor heating data in geometries installed on the windward surface of 0.075-scale Shuttle wind tunnel models have also been retrieved from the boundary layer transition database developed for the Return-To-Flight Program. These data were independently acquired at Mach 6 and Mach 10 in air, and at Mach 6 in CF4. The correlation parameters for the floor-averaged heating have been developed and they offer an exceptionally positive comparison to previously developed laminar-cavity heating correlations. Non-laminar increments have been extracted from the Shuttle data and they fall on the newly developed transitional in-cavity correlations, and they are bounded by the 95% correlation prediction limits. Because the ratio of specific heats changes along the re-entry trajectory, turning angle into a cavity and boundary layer flow properties may be affected, raising concerns regarding the application validity of the heating augmentation predictions.
NASA Astrophysics Data System (ADS)
Belikov, Andrey V.; Fomicheva, Yana Yu.; Gagarskiy, Sergey V.; Sergeev, Andrey N.; Smirnov, Sergey N.; Zagorulko, Alexey M.
2018-04-01
The results of strobe-photographic study of steam-gas cavities formation in a bulk of saline as a result of high-power Yb,Er:Glass laser pulses impact are presented. The data on dynamics of laser pulse transmission through the laserproduced steam-gas cavity for different values of the distance h between the fiber end and the cuvette bottom (quartz plate) are presented. It was observed that the steam-gas cavity might be used for effective non-contact delivery of laser radiation to the submerged target: transmission value at maximum steam-gas cavity size reached 0.87 for h = 0.5 mm. The influence of steam-gas cavities parameters on ablation efficiency of eye lens destruction in vitro is also discussed. The ablation of cataract eye lens in liquid environment is more effective than in air. The efficiency of eye lens ablation decreases with the increase of h . The maximal values of ablation efficiency (2.14·10-3 mm3/pulse) were obtained in the case of underwater ablation at h = 0 mm.
Devices for SRF material characterization
Goudket, Philippe; Xiao, B.; Junginger, T.
2016-10-07
The surface resistance Rs of superconducting materials can be obtained by measuring the quality factor of an elliptical cavity excited in a transverse magnetic mode (TM010). The value obtained has however to be taken as averaged over the whole surface. A more convenient way to obtain Rs, especially of materials which are not yet technologically ready for cavity production, is to measure small samples instead. These can be easily man ufactured at low cost, duplicated and placed in film deposition and surface analytical tools. A commonly used design for a device to measure Rs consists of a cylindrical cavity excitedmore » in a transverse electric (TE110) mode with the sample under test serving as one replaceable endplate. Such a cavity has two drawbacks. For reasonably small samples the resonant frequency will be larger than frequencies of interest concerning SRF application and it requires a reference sample of known Rs. In this article we review several devices which have been designed to overcome these limitations, reaching sub - nΩ resolution in some cases. Some of these devices also comprise a parameter space in frequency and temperature which is inaccessible to standard cavity tests, making them ideal tools to test theoretical surface resistance models.« less
Devices for SRF material characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goudket, Philippe; Xiao, B.; Junginger, T.
The surface resistance Rs of superconducting materials can be obtained by measuring the quality factor of an elliptical cavity excited in a transverse magnetic mode (TM010). The value obtained has however to be taken as averaged over the whole surface. A more convenient way to obtain Rs, especially of materials which are not yet technologically ready for cavity production, is to measure small samples instead. These can be easily man ufactured at low cost, duplicated and placed in film deposition and surface analytical tools. A commonly used design for a device to measure Rs consists of a cylindrical cavity excitedmore » in a transverse electric (TE110) mode with the sample under test serving as one replaceable endplate. Such a cavity has two drawbacks. For reasonably small samples the resonant frequency will be larger than frequencies of interest concerning SRF application and it requires a reference sample of known Rs. In this article we review several devices which have been designed to overcome these limitations, reaching sub - nΩ resolution in some cases. Some of these devices also comprise a parameter space in frequency and temperature which is inaccessible to standard cavity tests, making them ideal tools to test theoretical surface resistance models.« less
NASA Astrophysics Data System (ADS)
Ageev, A. I.; Golubkina, I. V.; Osiptsov, A. N.
2018-01-01
A slow steady flow of a viscous fluid over a superhydrophobic surface with a periodic striped system of 2D rectangular microcavities is considered. The microcavities contain small gas bubbles on the curved surface of which the shear stress vanishes. The general case is analyzed when the bubble occupies only a part of the cavity, and the flow velocity far from the surface is directed at an arbitrary angle to the cavity edge. Due to the linearity of the Stokes flow problem, the solution is split into two parts, corresponding to the flows perpendicular and along the cavities. Two variants of a boundary element method are developed and used to construct numerical solutions on the scale of a single cavity with periodic boundary conditions. By averaging these solutions, the average slip velocity and the slip length tensor components are calculated over a wide range of variation of governing parameters for the cases of a shear-driven flow and a pressure-driven channel flow. For a sufficiently high pressure drop in a microchannel of finite length, the variation of the bubble surface shift into the cavities induced by the streamwise pressure variation is estimated from numerical calculations.
A semi-analytical model of a time reversal cavity for high-amplitude focused ultrasound applications
NASA Astrophysics Data System (ADS)
Robin, J.; Tanter, M.; Pernot, M.
2017-09-01
Time reversal cavities (TRC) have been proposed as an efficient approach for 3D ultrasound therapy. They allow the precise spatio-temporal focusing of high-power ultrasound pulses within a large region of interest with a low number of transducers. Leaky TRCs are usually built by placing a multiple scattering medium, such as a random rod forest, in a reverberating cavity, and the final peak pressure gain of the device only depends on the temporal length of its impulse response. Such multiple scattering in a reverberating cavity is a complex phenomenon, and optimisation of the device’s gain is usually a cumbersome process, mostly empirical, and requiring numerical simulations with extremely long computation times. In this paper, we present a semi-analytical model for the fast optimisation of a TRC. This model decouples ultrasound propagation in an empty cavity and multiple scattering in a multiple scattering medium. It was validated numerically and experimentally using a 2D-TRC and numerically using a 3D-TRC. Finally, the model was used to determine rapidly the optimal parameters of the 3D-TRC which had been confirmed by numerical simulations.
Zheng, Chong; Hu, Anming; Kihm, Kenneth D; Ma, Qian; Li, Ruozhou; Chen, Tao; Duley, W W
2015-07-01
Since microlenses have to date been fabricated primarily by surface manufacturing, they are highly susceptible to surface damage, and their microscale size makes it cumbersome to handle. Thus, cavity lenses are preferred, as they alleviate these difficulties associated with the surface-manufactured microlenses. Here, it is shown that a high repetition femtosecond laser can effectively fabricate cavity microball lenses (CMBLs) inside a polymethyl methacrylate slice. Optimal CMBL fabrication conditions are determined by examining the pertinent parameters, including the laser processing time, the average irradiation power, and the pulse repetition rates. In addition, a heat diffusion modeling is developed to better understand the formation of the spherical cavity and the slightly compressed affected zone surrounding the cavity. A micro-telescope consisting of a microscope objective and a CMBL demonstrates a super-wide field-of-view imaging capability. Finally, detailed optical characterizations of CMBLs are elaborated to account for the refractive index variations of the affected zone. The results presented in the current study demonstrate that a femtosecond laser-fabricated CMBL can be used for robust and super-wide viewing micro imaging applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Controlling the opto-mechanics of a cantilever in an interferometer via cavity loss
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidsfeld, A. von, E-mail: avonschm@uos.de; Reichling, M., E-mail: reichling@uos.de
2015-09-21
In a non-contact atomic force microscope, based on interferometric cantilever displacement detection, the optical return loss of the system is tunable via the distance between the fiber end and the cantilever. We utilize this for tuning the interferometer from a predominant Michelson to a predominant Fabry-Pérot characteristics and introduce the Fabry-Pérot enhancement factor as a quantitative measure for multibeam interference in the cavity. This experimentally easily accessible and adjustable parameter provides a control of the opto-mechanical interaction between the cavity light field and the cantilever. The quantitative assessment of the light pressure acting on the cantilever oscillating in the cavitymore » via the frequency shift allows an in-situ measurement of the cantilever stiffness with remarkable precision.« less
Spin-dependent heat and thermoelectric currents in a Rashba ring coupled to a photon cavity
NASA Astrophysics Data System (ADS)
Abdullah, Nzar Rauf; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar
2018-01-01
Spin-dependent heat and thermoelectric currents in a quantum ring with Rashba spin-orbit interaction placed in a photon cavity are theoretically calculated. The quantum ring is coupled to two external leads with different temperatures. In a resonant regime, with the ring structure in resonance with the photon field, the heat and the thermoelectric currents can be controlled by the Rashba spin-orbit interaction. The heat current is suppressed in the presence of the photon field due to contribution of the two-electron and photon replica states to the transport while the thermoelectric current is not sensitive to changes in parameters of the photon field. Our study opens a possibility to use the proposed interferometric device as a tunable heat current generator in the cavity photon field.
Design of crusher liner based on time - varying uncertainty theory
NASA Astrophysics Data System (ADS)
Tang, J. C.; Shi, B. Q.; Yu, H. J.; Wang, R. J.; Zhang, W. Y.
2017-09-01
This article puts forward the time-dependent design method considering the load fluctuation factors for the liner based on the time-varying uncertainty theory. In this method, the time-varying uncertainty design model of liner is constructed by introducing the parameters that affect the wear rate, the volatility and the drift rate. Based on the design example, the timevarying design outline of the moving cone liner is obtained. Based on the theory of minimum wear, the gap curve of wear resistant cavity is designed, and the optimized cavity is obtained by the combination of the thickness of the cone and the cavity gap. Taking the PYGB1821 multi cylinder hydraulic cone crusher as an example, it is proved that the service life of the new liner is improved by more than 14.3%.
NASA Astrophysics Data System (ADS)
Liu, Siqi; Luo, Zhifu; Tan, Zhongqi; Long, Xingwu
2016-11-01
Cavity-enhanced absorption spectroscopy (CEAS) is a technology in which the intracavity absorption is deduced from the intensity of light transmitted by the high finesse optical cavity. Then the samples' parameters, such as their species, concentration and absorption cross section, would be detection. It was first proposed and demonstrated by Engeln R. [1] and O'Keefe[2] in 1998. This technology has extraordinary detection sensitivity, high resolution and good practicability, so it is used in many fields , such as clinical medicine, gas detection and basic physics research. In this paper, we focus on the use of gas trace detection, including the advance of CEAS over the past twenty years, the newest research progresses, and the prediction of this technology's development direction in the future.
Dynamic evolution of double Λ five-level atom interacting with one-mode electromagnetic cavity field
NASA Astrophysics Data System (ADS)
Abdel-Wahab, N. H.; Salah, Ahmed
2017-12-01
In this paper, the model describing a double Λ five-level atom interacting with a single mode electromagnetic cavity field in the (off) non-resonate case is studied. We obtained the constants of motion for the considered model. Also, the state vector of the wave function is given by using the Schrödinger equation when the atom is initially prepared in its excited state. The dynamical evolutions for the collapse revivals, the antibunching of photons and the field squeezing phenomena are investigated when the field is considered in a coherent state. The influence of detuning parameters on these phenomena is investigated. We noticed that the atom-field properties are influenced by changing the detuning parameters. The investigation of these aspects by numerical simulations is carried out using the Quantum Toolbox in Python (QuTip).
NASA Astrophysics Data System (ADS)
Faghihi, M. J.; Tavassoly, M. K.; Hooshmandasl, M. R.
2013-05-01
In this paper, the interaction between a $\\Lambda$-type three-level atom and two-mode cavity field is discussed. The detuning parameters and cross-Kerr nonlinearity are taken into account and it is assumed that atom-field coupling and Kerr medium to be $f$-deformed. Even though the system seems to be complicated, the analytical form of the state vector of the entire system for considered model is exactly obtained. The time evolution of nonclassical properties such as quantum entanglement and position-momentum entropic uncertainty relation (entropy squeezing) of the field are investigated. In each case, the influences of the detuning parameters, generalized Kerr medium and intensity-dependent coupling on the latter nonclassicality signs are analyzed, in detail.
Graham, K A; Mulhall, H J; Labeed, F H; Lewis, M P; Hoettges, K F; Kalavrezos, N; McCaul, J; Liew, C; Porter, S; Fedele, S; Hughes, M P
2015-08-07
Despite the accessibility of the oral cavity to clinical examination, delays in diagnosis of oral and oropharyngeal carcinoma (OOPC) are observed in a large majority of patients, with negative impact on prognosis. Diagnostic aids might help detection and improve early diagnosis, but there remains little robust evidence supporting the use of any particular diagnostic technology at the moment. The aim of the present feasibility first-in-human study was to evaluate the preliminary diagnostic validity of a novel technology platform based on dielectrophoresis (DEP). DEP does not require labeling with antibodies or stains and it is an ideal tool for rapid analysis of cell properties. Cells from OOPC/dysplasia tissue and healthy oral mucosa were collected from 57 study participants via minimally-invasive brush biopsies and tested with a prototype DEP platform using median membrane midpoint frequency as main analysis parameter. Results indicate that the current DEP platform can discriminate between brush biopsy samples from cancerous and healthy oral tissue with a diagnostic sensitivity of 81.6% and a specificity of 81.0%. The present ex vivo results support the potential application of DEP testing for identification of OOPC. This result indicates that DEP has the potential to be developed into a low-cost, rapid platform as an assistive tool for the early identification of oral cancer in primary care; given the rapid, minimally-invasive and non-expensive nature of the test, dielectric characterization represents a promising platform for cost-effective early cancer detection.
Nowroozilarki, Negar; Jamshidi, Shahram; Zahraei Salehi, Taghi; Kolahian, Saeed
2017-09-01
Periodontal diseases are the most common oral cavity infectious diseases in adult dogs. We aimed in this study to identify Helicobacter and Wolinella spp. in saliva and dental plaque of dogs with periodontitis. Sixty-two small-breed pet dogs, aged more than 6 years from both sexes, were categorized into healthy and periodontitis groups. Samples from saliva and dental plaques were collected, and Helicobacter and Wolinella were identified on genus and species levels using polymerase chain reaction. Our results showed significant increase in infection rate of Wolinella spp. in periodontitis compared with healthy dogs (P = .002). Furthermore, infection rate of Helicobacter genus was significantly higher in periodontitis compared with healthy dogs (P = .007). Infection with Wolinella spp. showed higher rate than Helicobacter spp. in dogs with periodontitis. According to species-specific polymerase chain reaction results, Helicobacter felis (9.76%) was the main Helicobacter spp. in dogs with periodontitis compared with healthy dogs (P < .001). Oral cavity of pet dogs with periodontitis could be considered as an important source of Wolinella and Helicobacter spp. infections. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ding, Liang; Gao, Haibo; Liu, Zhen; Deng, Zongquan; Liu, Guangjun
2015-12-01
Identifying the mechanical property parameters of planetary soil based on terramechanics models using in-situ data obtained from autonomous planetary exploration rovers is both an important scientific goal and essential for control strategy optimization and high-fidelity simulations of rovers. However, identifying all the terrain parameters is a challenging task because of the nonlinear and coupling nature of the involved functions. Three parameter identification methods are presented in this paper to serve different purposes based on an improved terramechanics model that takes into account the effects of slip, wheel lugs, etc. Parameter sensitivity and coupling of the equations are analyzed, and the parameters are grouped according to their sensitivity to the normal force, resistance moment and drawbar pull. An iterative identification method using the original integral model is developed first. In order to realize real-time identification, the model is then simplified by linearizing the normal and shearing stresses to derive decoupled closed-form analytical equations. Each equation contains one or two groups of soil parameters, making step-by-step identification of all the unknowns feasible. Experiments were performed using six different types of single-wheels as well as a four-wheeled rover moving on planetary soil simulant. All the unknown model parameters were identified using the measured data and compared with the values obtained by conventional experiments. It is verified that the proposed iterative identification method provides improved accuracy, making it suitable for scientific studies of soil properties, whereas the step-by-step identification methods based on simplified models require less calculation time, making them more suitable for real-time applications. The models have less than 10% margin of error comparing with the measured results when predicting the interaction forces and moments using the corresponding identified parameters.
High-power lightweight external-cavity quantum cascade lasers
NASA Astrophysics Data System (ADS)
Day, Timothy; Takeuchi, Eric B.; Weida, Miles; Arnone, David; Pushkarsky, Michael; Boyden, David; Caffey, David
2009-05-01
Commercially available quantum cascade gain media has been integrated with advanced coating and die attach technologies, mid-IR micro-optics and telecom-style assembly and packaging to yield cutting edge performance. When combined into Daylight's external-cavity quantum cascade laser (ECqcL) platform, multi-Watt output power has been obtained. Daylight will describe their most recent results obtained from this platform, including high cw power from compact hermetically sealed packages and narrow spectral linewidth devices. Fiber-coupling and direct amplitude modulation from such multi-Watt lasers will also be described. In addition, Daylight will present the most recent results from their compact, portable, battery-operated "thermal laser pointers" that are being used for illumination and aiming applications. When combined with thermal imaging technology, such devices provide significant benefits in contrast and identification.
NASA Astrophysics Data System (ADS)
1991-12-01
The major results of an experimental study of a slab Nd:YAG laser are reported in the article; the laser was successfully developed by the authors. The major findings include the following: (1) a method for cooling the blended flowing air and water, as well the related experimental parameters; (2) by using a crossed lens cavity, the authors further improved the anomalous capability within the compensation cavity of the slab laser, as well as higher insensitivity of the system to maladjustment; and (3) a processing technique and major points of slab YAG laser medium.
Cold Cathode Electron Beam Controlled CO2 Laser Performance.
1974-10-01
Siegman (ref. 7), the cavity parameters are g, - 3/2, g2 3/4 so that 0he cavity will be confocal when the mirror separation is 2.5 m. The laser output was...E. Siegman , Laser Focus 7, 42, 1971. 8. W. F. Krupke and W. R. Sooy, IEEE Journal Quant. Elec. QE-5, 575, 1969. 9. 0. R. Wood, et al., Appl. Phys...U t AD/A-000 413 COLD CATHODE ELECTRON BEAM CONTROLLED C02 LASER PERFORMANCE Leslie L. McKee, 1II, et al Air Force Weapons Laboratory Kirtland Air
NASA Astrophysics Data System (ADS)
Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Maximov, M. V.
2015-11-01
The ways to optimize key parameters of active region and edge reflectivity of edge- emitting semiconductor quantum dot laser are provided. It is shown that in the case of optimal cavity length and sufficiently large dispersion lasing spectrum of a given width can be obtained at injection current up to an order of magnitude lower in comparison to non-optimized sample. The influence of internal loss and edge reflection is also studied in details.
Singlet vs. triplet interelectronic repulsion in confined atoms
NASA Astrophysics Data System (ADS)
Sarsa, A.; Buendía, E.; Gálvez, F. J.; Katriel, J.
2018-06-01
Hund's multiplicity rule invariably holds for the ground configurations of few-electron atoms as well as those of multi-electron quantum dots. However, the ordering of the corresponding interelectronic repulsions exhibits a reversal in the former but not in the latter system, upon varying the system parameters. Here, we investigate the transition between these two types of behaviour by studying few-electron atoms confined in spherical cavities. "Counter-intuitive" ordering of the interelectronic repulsions is confirmed when the nuclear charge is low enough and the cavity radius is large enough.
R & D of a Gas-Filled RF Beam Profile Monitor for Intense Neutrino Beam Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yonehara, K.; Backfish, M.; Moretti, A.
We report the R&D of a novel radiation-robust hadron beam profile monitor based on a gas-filled RF cavity for intense neutrino beam experiments. An equivalent RF circuit model was made and simulated to optimize the RF parameter in a wide beam intensity range. As a result, the maximum acceptable beam intensity in the monitor is significantly increased by using a low-quality factor RF cavity. The plan for the demonstration test is set up to prepare for future neutrino beam experiments.
Priol, Pauline; Mazerolle, Marc J; Imbeau, Louis; Drapeau, Pierre; Trudeau, Caroline; Ramière, Jessica
2014-06-01
Dynamic N-mixture models have been recently developed to estimate demographic parameters of unmarked individuals while accounting for imperfect detection. We propose an application of the Dail and Madsen (2011: Biometrics, 67, 577-587) dynamic N-mixture model in a manipulative experiment using a before-after control-impact design (BACI). Specifically, we tested the hypothesis of cavity limitation of a cavity specialist species, the northern flying squirrel, using nest box supplementation on half of 56 trapping sites. Our main purpose was to evaluate the impact of an increase in cavity availability on flying squirrel population dynamics in deciduous stands in northwestern Québec with the dynamic N-mixture model. We compared abundance estimates from this recent approach with those from classic capture-mark-recapture models and generalized linear models. We compared apparent survival estimates with those from Cormack-Jolly-Seber (CJS) models. Average recruitment rate was 6 individuals per site after 4 years. Nevertheless, we found no effect of cavity supplementation on apparent survival and recruitment rates of flying squirrels. Contrary to our expectations, initial abundance was not affected by conifer basal area (food availability) and was negatively affected by snag basal area (cavity availability). Northern flying squirrel population dynamics are not influenced by cavity availability at our deciduous sites. Consequently, we suggest that this species should not be considered an indicator of old forest attributes in our study area, especially in view of apparent wide population fluctuations across years. Abundance estimates from N-mixture models were similar to those from capture-mark-recapture models, although the latter had greater precision. Generalized linear mixed models produced lower abundance estimates, but revealed the same relationship between abundance and snag basal area. Apparent survival estimates from N-mixture models were higher and less precise than those from CJS models. However, N-mixture models can be particularly useful to evaluate management effects on animal populations, especially for species that are difficult to detect in situations where individuals cannot be uniquely identified. They also allow investigating the effects of covariates at the site level, when low recapture rates would require restricting classic CMR analyses to a subset of sites with the most captures.
Han, M; Lee, S J; Lee, D; Kim, S Y; Choi, J W
2018-05-17
To investigate the differences in perfusion/diffusion/metabolic imaging parameters according to human papilloma virus (HPV) status in the oral cavity and oropharyngeal squamous cell carcinoma (OC-OPSCC), separately in primary tumour sites and metastatic lymph nodes. This retrospective study comprised 41 patients with primary OC-OPSCCs and 29 patients with metastatic lymph nodes. The perfusion/diffusion/metabolic imaging parameters were measured at the primary tumour and the largest ipsilateral metastatic lymph node. The quantitative parameters were compared between the HPV-positive and -negative groups. The HPV-positivity was 39% (16 patients) for the primary tumours and 51.7% (15 patients) for the metastatic lymph nodes. Patients with HPV-positive tumours had a lower T stage (p=0.034). The metastatic lymph nodes for the HPV-positive patients were bulkier (p=0.016) and more frequently had cystic morphology (p=0.005). The perfusion parameters were not different, regardless of HPV status. The diffusion parameter (ADC min , p=0.011) of the metastatic lymph nodes in the HPV-positive groups was lower and metabolic parameter (metabolic tumour volume p=0.035 and total lesion glycolysis p=0.037) were higher than those in HPV-negative groups. The diffusion and metabolic parameters of metastatic lymph nodes from OC-OPSCC were different according to HPV status. The perfusion parameters did not clearly represent HPV status. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
[Simplified identification and filter device of carbon dioxide].
Mei, Xue-qin; Zhang, Yi-ping
2009-11-01
This paper presents the design and implementation ways of a simplified device to identify and filter carbon dioxide. The gas went through the test interface which had wet litmus paper before entering the abdominal cavity. Carbon dioxide dissolving in water turned acidic, making litmus paper change color to identify carbon dioxide, in order to avoid malpractice by connecting the wrong gas when making Endoscopic surgery.
Understanding Caries From the Oral Microbiome Perspective.
Tanner, Anne C R; Kressirer, Christine A; Faller, Lina L
2016-07-01
Dental caries is a major disease of the oral cavity with profound clinical significance. Caries results from a transition of a healthy oral microbiome into an acidogenic community of decreased microbial diversity in response to excessive dietary sugar intake. Microbiological cultivation, molecular identification, gene expression and metabolomic analyses show the importance of the entire microbial community in understanding the role of the microbiome in the pathology of caries.
Dental DNA fingerprinting in identification of human remains
Girish, KL; Rahman, Farzan S; Tippu, Shoaib R
2010-01-01
The recent advances in molecular biology have revolutionized all aspects of dentistry. DNA, the language of life yields information beyond our imagination, both in health or disease. DNA fingerprinting is a tool used to unravel all the mysteries associated with the oral cavity and its manifestations during diseased conditions. It is being increasingly used in analyzing various scenarios related to forensic science. The technical advances in molecular biology have propelled the analysis of the DNA into routine usage in crime laboratories for rapid and early diagnosis. DNA is an excellent means for identification of unidentified human remains. As dental pulp is surrounded by dentin and enamel, which forms dental armor, it offers the best source of DNA for reliable genetic type in forensic science. This paper summarizes the recent literature on use of this technique in identification of unidentified human remains. PMID:21731342
NASA Technical Reports Server (NTRS)
Wilson, Edward (Inventor)
2006-01-01
The present invention is a method for identifying unknown parameters in a system having a set of governing equations describing its behavior that cannot be put into regression form with the unknown parameters linearly represented. In this method, the vector of unknown parameters is segmented into a plurality of groups where each individual group of unknown parameters may be isolated linearly by manipulation of said equations. Multiple concurrent and independent recursive least squares identification of each said group run, treating other unknown parameters appearing in their regression equation as if they were known perfectly, with said values provided by recursive least squares estimation from the other groups, thereby enabling the use of fast, compact, efficient linear algorithms to solve problems that would otherwise require nonlinear solution approaches. This invention is presented with application to identification of mass and thruster properties for a thruster-controlled spacecraft.
Role of cavities and hydration in the pressure unfolding of T4 lysozyme
Nucci, Nathaniel V.; Fuglestad, Brian; Athanasoula, Evangelia A.; Wand, A. Joshua
2014-01-01
It is well known that high hydrostatic pressures can induce the unfolding of proteins. The physical underpinnings of this phenomenon have been investigated extensively but remain controversial. Changes in solvation energetics have been commonly proposed as a driving force for pressure-induced unfolding. Recently, the elimination of void volumes in the native folded state has been argued to be the principal determinant. Here we use the cavity-containing L99A mutant of T4 lysozyme to examine the pressure-induced destabilization of this multidomain protein by using solution NMR spectroscopy. The cavity-containing C-terminal domain completely unfolds at moderate pressures, whereas the N-terminal domain remains largely structured to pressures as high as 2.5 kbar. The sensitivity to pressure is suppressed by the binding of benzene to the hydrophobic cavity. These results contrast to the pseudo-WT protein, which has a residual cavity volume very similar to that of the L99A–benzene complex but shows extensive subglobal reorganizations with pressure. Encapsulation of the L99A mutant in the aqueous nanoscale core of a reverse micelle is used to examine the hydration of the hydrophobic cavity. The confined space effect of encapsulation suppresses the pressure-induced unfolding transition and allows observation of the filling of the cavity with water at elevated pressures. This indicates that hydration of the hydrophobic cavity is more energetically unfavorable than global unfolding. Overall, these observations point to a range of cooperativity and energetics within the T4 lysozyme molecule and illuminate the fact that small changes in physical parameters can significantly alter the pressure sensitivity of proteins. PMID:25201963
NASA Astrophysics Data System (ADS)
Chen, P.-C.; Lin, P.-T.; Mikolas, D. G.; Tsai, Y.-W.; Wang, Y.-L.; Fu, C.-C.; Chang, S.-L.
2015-01-01
To provide coherent x-ray sources for probing the dynamic structures of solid or liquid biological substances on the picosecond timescale, a high-aspect-ratio x-ray resonator cavity etched from a single crystal substrate with a nearly vertical sidewall structure is required. Although high-aspect-ratio resonator cavities have been produced in silicon, they suffer from unwanted multiple beam effects. However, this problem can be avoided by using the reduced symmetry of single-crystal sapphire in which x-ray cavities may produce a highly monochromatic transmitted x-ray beam. In this study, we performed nominal 100 µm deep etching and vertical sidewall profiles in single crystal sapphire using inductively coupled plasma (ICP) etching. The large depth is required to intercept a useful fraction of a stopped-down x-ray beam, as well as for beam clearance. An electroplated Ni hard mask was patterned using KMPR 1050 photoresist and contact lithography. The quality and performance of the x-ray cavity depended upon the uniformity of the cavity gap and therefore verticality of the fabricated vertical sidewall. To our knowledge, this is the first report of such deep, vertical etching of single-crystal sapphire. A gas mixture of Cl2/BCl3/Ar was used to etch the sapphire with process variables including BCl3 flow ratio and bias power. By etching for 540 min under optimal conditions, we obtained an x-ray resonant cavity with a depth of 95 µm, width of ~30 µm, gap of ~115 µm and sidewall profile internal angle of 89.5°. The results show that the etching parameters affected the quality of the vertical sidewall, which is essential for good x-ray resonant cavities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palczewski, Ari; Geng, Rongli; Eremeev, Grigory
Jefferson Lab (JLab) processed six nine-cell cavities as part of a small-scale production for LCLS-II cavity processing development utilizing the promising nitrogen-doping process. Various nitrogen-doping recipes have been scrutinized to optimize process parameters with the aim to guarantee an unloaded quality factor (Q_0) of 2.7∙10 10 at an accelerating field (Eacc) of 16 MV/m at 2.0 K in the cryomodule. During the R&D phase the characteristic Q0 vs. Eacc performance curve of the cavities has been measured in JLab’s vertical test area at 2 K. The findings showed the characteristic rise of the Q0 with Eacc as expected from nitrogen-doping.more » Initially, five cavities achieved an average Q0 of 3.3·10 10 at the limiting Eacc averaging to 16.8 MV/m, while one cavity experienced an early quench accompanied by an unusual Q_0 vs. Eacc curve. The project accounts for a cavity performance loss from the vertical dewar test (with or without the helium vessel) to the horizontal performance in a cryomodule, such that these results leave no save margin to the cryomodule specification. Consequently, a refinement of the nitrogen-doping has been initiated to guarantee an average quench field above 20 MV/m without impeding the Q_0. This paper covers the refinement work performed for each cavity, which depends on the initial results, as well as a quench analysis carried out before and after the rework during the vertical RF tests as far as applicable.« less
Fine sediment trapping in river lateral cavities
NASA Astrophysics Data System (ADS)
Juez, C.; Maechler, G.; Schleiss, A. J.; Franca, M. J.
2016-12-01
River restoration is nowadays a major issue in the field of hydraulics. The natural course and geometry of the rivers have been artificially changed by human activities for different purposes (land gaining, flood protection, agriculture). From a morphologic point of view, channelized rivers often display a straight path and monotonous river banks. This is in contradiction with natural morphology, where a high diversity can be found across the channel path (meanders) and the banks (pools, riffles). One way to restore rivers consist of transforming the artificial banks by adding macro-roughness elements in the lateral river banks (also called cavities and lateral embayments). The creation of irregularities on the banks causes new flow patterns that diversify the river habitat. However, these lateral cavities may be also responsible of the change of the river morphology, since they may trap the fine sediments travelling within the water. This is particularly important in glacier-fed streams such as the upper Rhone River in Switzerland. These are charged with fine sediments resulting from the erosion of the underlying glaciers bottom. The creation of lateral cavities may affect the sediment and morphological equilibrium of the river since these may trap sediments. This work aims to study the influence of the lateral cavities on the transport of fine sediments in the main channel. A set of laboratory experiments were done which covered a wide range of rectangular cavity configurations. Key parameters such as the flow discharge, the aspect ratio of the cavities and the initial sediment concentration were tested. Surface PIV, sediment samples and turbidity temporal records were collected during the experiments. The trapping efficiency of the cavities and the associated flow patterns were analyzed. The resulting conclusions provide a useful information for the future design of river restoration projects.
Method for studying gas composition in the human mastoid cavity by use of laser spectroscopy.
Lindberg, Sven; Lewander, Märta; Svensson, Tomas; Siemund, Roger; Svanberg, Katarina; Svanberg, Sune
2012-04-01
We evaluated a method for gas monitoring in the mastoid cavity using tunable diode laser spectroscopy by comparing it to simultaneously obtained computed tomographic (CT) scans. The presented optical technique measures free gases, oxygen (O2), and water vapor (H2O) within human tissue by use of low-power diode lasers. Laser light was sent into the tip of the mastoid process, and the emerging light at the level of the antrum was captured with a detector placed on the skin. The absorption of H2O was used to monitor the probed gas volume of the mastoid cavity, and it was compared to the CT scan-measured volume. The ratio between O2 absorption and H2O absorption estimated the O2 content in the mastoid cavity and thus the ventilation. The parameters were compared to the grading of mastoid cavities based on the CT scans (n = 31). The reproducibility of the technique was investigated by measuring each mastoid cavity 4 times. Both O2 and H2O were detected with good reproducibility. The H2O absorption and the CT volume correlated (r = 0.69). The average ratio between the normalized O2 absorption and the H2O absorption signals was 0.7, indicating a lower O2 content than in surrounding air (expected ratio, 1.0), which is consistent with previous findings made by invasive techniques. All mastoid cavities with radiologic signs of disease were detected. Laser spectroscopy monitoring appears to be a usable tool for noninvasive investigations of gas composition in the mastoid cavity, providing important clinical information regarding size and ventilation.
NASA Astrophysics Data System (ADS)
Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu; Zhu, Feng
2017-10-01
Accurate material parameters are critical to construct the high biofidelity finite element (FE) models. However, it is hard to obtain the brain tissue parameters accurately because of the effects of irregular geometry and uncertain boundary conditions. Considering the complexity of material test and the uncertainty of friction coefficient, a computational inverse method for viscoelastic material parameters identification of brain tissue is presented based on the interval analysis method. Firstly, the intervals are used to quantify the friction coefficient in the boundary condition. And then the inverse problem of material parameters identification under uncertain friction coefficient is transformed into two types of deterministic inverse problem. Finally the intelligent optimization algorithm is used to solve the two types of deterministic inverse problems quickly and accurately, and the range of material parameters can be easily acquired with no need of a variety of samples. The efficiency and convergence of this method are demonstrated by the material parameters identification of thalamus. The proposed method provides a potential effective tool for building high biofidelity human finite element model in the study of traffic accident injury.
Tongue prints: A novel biometric and potential forensic tool.
Radhika, T; Jeddy, Nadeem; Nithya, S
2016-01-01
Tongue is a vital internal organ well encased within the oral cavity and protected from the environment. It has unique features which differ from individual to individual and even between identical twins. The color, shape, and surface features are characteristic of every individual, and this serves as a tool for identification. Many modes of biometric systems have come into existence such as fingerprint, iris scan, skin color, signature verification, voice recognition, and face recognition. The search for a new personal identification method secure has led to the use of the lingual impression or the tongue print as a method of biometric authentication. Tongue characteristics exhibit sexual dimorphism thus aiding in the identification of the person. Emerging as a novel biometric tool, tongue prints also hold the promise of a potential forensic tool. This review highlights the uniqueness of tongue prints and its superiority over other biometric identification systems. The various methods of tongue print collection and the classification of tongue features are also elucidated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gianluigi Ciovati
Radio-frequency superconducting (SRF) cavities are widely used to accelerate a charged particle beam in particle accelerators. The performance of SRF cavities made of bulk niobium has significantly improved over the last ten years and is approaching the theoretical limit for niobium. Nevertheless, RF tests of niobium cavities are still showing some ''anomalous'' losses that require a better understanding in order to reliably obtain better performance. These losses are characterized by a marked dependence of the surface resistance on the surface electromagnetic field and can be detected by measuring the quality factor of the resonator as a function of the peakmore » surface field. A low temperature (100 C-150 C) ''in situ'' bake under ultra-high vacuum has been successfully applied as final preparation of niobium RF cavities by several laboratories over the last few years. The benefits reported consist mainly of an improvement of the cavity quality factor at low field and a recovery from ''anomalous'' losses (so-called ''Q-drop'') without field emission at higher field. A series of experiments with a CEBAF single-cell cavity have been carried out at Jefferson Lab to carefully investigate the effect of baking at progressively higher temperatures for a fixed time on all the relevant material parameters. Measurements of the cavity quality factor in the temperature range 1.37 K-280 K and resonant frequency shift between 6 K-9.3 K provide information about the surface resistance, energy gap, penetration depth and mean free path. The experimental data have been analyzed with the complete BCS theory of superconductivity. The hydrogen content of small niobium samples inserted in the cavity during its surface preparation was analyzed with Nuclear Reaction Analysis (NRA). The single-cell cavity has been tested at three different temperatures before and after baking to gain some insight on thermal conductivity and Kapitza resistance and the data are compared with different models. This paper describes the results of these experiments and comments on existing models to explain the effect of baking on the performance of niobium RF cavities.« less
Identification of Bouc-Wen hysteretic parameters based on enhanced response sensitivity approach
NASA Astrophysics Data System (ADS)
Wang, Li; Lu, Zhong-Rong
2017-05-01
This paper aims to identify parameters of Bouc-Wen hysteretic model using time-domain measured data. It follows a general inverse identification procedure, that is, identifying model parameters is treated as an optimization problem with the nonlinear least squares objective function. Then, the enhanced response sensitivity approach, which has been shown convergent and proper for such kind of problems, is adopted to solve the optimization problem. Numerical tests are undertaken to verify the proposed identification approach.
Tartaglione, Girolamo; Vigili, Maurizio G; Rahimi, Siavash; Celebrini, Alessandra; Pagan, Marco; Lauro, Luigi; Al-Nahhas, Adil; Rubello, Domenico
2008-04-01
To evaluate the role of dynamic lymphoscintigraphy with a same-day protocol for sentinel node biopsy in oral cavity cancer. Twenty-two consecutive patients affected by cT1-2N0 squamous cell carcinoma of the oral cavity were enrolled between September 2001 and November 2005. After a local anaesthetic (10% lidocaine spray), a dose of 30-50 MBq of Tc human serum albumin nanocolloid, in ml saline, was injected superficially (1-2 mm subendothelial injection) into four points around the lesion. Dynamic lymphoscintigraphy was acquired immediately (256x256 matrix, 5 min pre-set time, LEGP collimator) in lateral and anterior projections. The imaging was prolonged until the lymph nodes of at least two neck levels were visualized (time required min). About 3 h later (same-day protocol) the patients had a radioguided sentinel node biopsy. Elective neck dissection was performed in the first 13 patients; whereas the last nine patients had elective neck dissection only if the sentinel node was positive. Sentinel nodes were dissected into 1 mm thick block sections and studied by haematoxylin & eosin staining and immunohistochemistry (anticytokeratin antibody). The sentinel nodes were found on the 1st neck level in 13 cases, on the 2nd neck level in eight cases, and on the 3rd neck level in one case (100% sensitivity). The average number of sentinel nodes was 2.2 for each patient. The sentinel node was positive in eight patients (36%); with six of them having the sentinel node as the exclusive site of metastasis. No skip metastases were found in the 14 patients with negative sentinel node (100% specificity). Our preliminary data indicate that superficial injections of radiocolloid and dynamic lymphoscintigraphy provide a high success rate in sentinel node identification in oral cavity cancers. Dynamic lymphoscintigraphy helps in distinguishing sentinel node from second-tier lymph nodes. The same-day protocol is advisable in order to correctly identify the first sentinel node, avoiding multiple and unnecessary node biopsies, without reducing sensitivity.
Migration of a foreign body into the colon and its autonomous excretion.
Modrzejewski, Andrzej; Kiciak, Adam; Sledż, Marcin; Sygit, Katarzyna; Borycka-Kiciak, Katarzyna; Grzesiak, Wilhelm; Tarnowski, Wiesław
2011-02-25
The frequency of foreign body retention in the abdominal cavity ranges from 1 in 100 to 1 in 3000 surgeries performed. Worldwide literature describes only a few cases of the migration of misplaced surgical gauze into the colon. The first case is a 60-year-old patient following laparoscopic cholecystectomy, who excreted (on his own) a cotton sheet 30 × 65 cm after 26 weeks, which did not possess a radiological locator. The latter fact caused diagnostic difficulties in interpreting ultrasonography, CT-scans and abdominal X-rays. Colonoscopy after 4 months following the excretion of the sheet showed flat, stretched ulceration of the colonic wall near the hepatic turn. The second case is a 76-year-old who had undergone several abdominal surgeries, including a classical cholecystectomy and extirpation of the uterus along with related tissues, as a result of cancer and with subsequent radiotherapy. The reason for the last intervention was an occlusion, which required a resection due to abscesses inside the peritoneal cavity. Abdominal pain continued after the surgery. Uroscopy and abdominal X-rays were performed 3 months later, which confirmed the presence of foreign matter in the abdominal cavity. Most foreign objects that have migrated into the colon will be excreted autonomously, which warrants a conservative assessment. Radiologically-tagged materials should be used, which will greatly ease identification in cases of suspected retention of surgical materials in the abdominal cavity.
Adaptive Modal Identification for Flutter Suppression Control
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Drew, Michael; Swei, Sean S.
2016-01-01
In this paper, we will develop an adaptive modal identification method for identifying the frequencies and damping of a flutter mode based on model-reference adaptive control (MRAC) and least-squares methods. The least-squares parameter estimation will achieve parameter convergence in the presence of persistent excitation whereas the MRAC parameter estimation does not guarantee parameter convergence. Two adaptive flutter suppression control approaches are developed: one based on MRAC and the other based on the least-squares method. The MRAC flutter suppression control is designed as an integral part of the parameter estimation where the feedback signal is used to estimate the modal information. On the other hand, the separation principle of control and estimation is applied to the least-squares method. The least-squares modal identification is used to perform parameter estimation.
Controlling the transmitted information of a multi-photon interacting with a single-Cooper pair box
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadry, Heba, E-mail: hkadry1@yahoo.com; Abdel-Aty, Abdel-Haleem, E-mail: hkadry1@yahoo.com; Zakaria, Nordin, E-mail: hkadry1@yahoo.com
2014-10-24
We study a model of a multi-photon interaction of a single Cooper pair box with a cavity field. The exchange of the information using this system is studied. We quantify the fidelity of the transmitted information. The effect of the system parameters (detuning parameter, field photons, state density and mean photon number) in the fidelity of the transmitted information is investigated. We found that the fidelity of the transmitted information can be controlled using the system parameters.
The role of disc self-gravity in circumbinary planet systems - I. Disc structure and evolution
NASA Astrophysics Data System (ADS)
Mutter, Matthew M.; Pierens, Arnaud; Nelson, Richard P.
2017-03-01
We present the results of two-dimensional hydrodynamic simulations of self-gravitating circumbinary discs around binaries whose parameters match those of the circumbinary planet-hosting systems Kepler-16, Kepler-34 and Kepler-35. Previous work has shown that non-self-gravitating discs in these systems form an eccentric precessing inner cavity due to tidal truncation by the binary, and planets which form at large radii migrate until stalling at this cavity. Whilst this scenario appears to provide a natural explanation for the observed orbital locations of the circumbinary planets, previous simulations have failed to match the observed planet orbital parameters. The aim of this work is to examine the role of self-gravity in modifying circumbinary disc structure as a function of disc mass, prior to considering the evolution of embedded circumbinary planets. In agreement with previous work, we find that for disc masses between one and five times the minimum mass solar nebula (MMSN), disc self-gravity affects modest changes in the structure and evolution of circumbinary discs. Increasing the disc mass to 10 or 20 MMSN leads to two dramatic changes in disc structure. First, the scale of the inner cavity shrinks substantially, bringing its outer edge closer to the binary. Secondly, in addition to the eccentric inner cavity, additional precessing eccentric ring-like features develop in the outer regions of the discs. If planet formation starts early in the disc lifetime, these changes will have a significant impact on the formation and evolution of planets and precursor material.
NASA Technical Reports Server (NTRS)
Everhart, Joel L.
2008-01-01
Impact and debris damage to the Space Shuttle Orbiter Thermal Protection System tiles is a random phenomenon, occurring at random locations on the vehicle surface, resulting in random geometrical shapes that are exposed to a definable range of surface flow conditions. In response to the 2003 Final Report of the Columbia Accident Investigation Board, wind tunnel aeroheating experiments approximating a wide range of possible damage scenarios covering both open and closed cavity flow conditions were systematically tested in hypersonic ground based facilities. These data were analyzed and engineering assessment tools for damage-induced fully-laminar heating were developed and exercised on orbit. These tools provide bounding approximations for the damaged-surface heating environment. This paper presents a further analysis of the baseline, zero-pressure-gradient, idealized, rectangular-geometry cavity heating data, yielding new laminar correlations for the floor-averaged heating, peak cavity endwall heating, and the downstream decay rate. Correlation parameters are derived in terms of cavity geometry and local flow conditions. Prediction Limit Uncertainty values are provided at the 95%, 99% and 99.9% levels of significance. Non-baseline conditions, including non-rectangular geometries and flows with known pressure gradients, are used to assess the range of applicability of the new correlations. All data variations fall within the 99% Prediction Limit Uncertainty bounds. Importantly, both open-flow and closed-flow cavity heating are combined into a single-curve parameterization of the heating predictions, and provide a concise mathematical model of the laminar cavity heating flow field with known uncertainty.
Confinement dynamics of a semiflexible chain inside nano-spheres
NASA Astrophysics Data System (ADS)
Fathizadeh, A.; Heidari, Maziar; Eslami-Mossallam, B.; Ejtehadi, M. R.
2013-07-01
We study the conformations of a semiflexible chain, confined in nano-scaled spherical cavities, under two distinct processes of confinement. Radial contraction and packaging are employed as two confining procedures. The former method is performed by gradually decreasing the diameter of a spherical shell which envelopes a confined chain. The latter procedure is carried out by injecting the chain inside a spherical shell through a hole on the shell surface. The chain is modeled with a rigid body molecular dynamics simulation and its parameters are adjusted to DNA base-pair elasticity. Directional order parameter is employed to analyze and compare the confined chain and the conformations of the chain for two different sizes of the spheres are studied in both procedures. It is shown that for the confined chains in the sphere sizes of our study, they appear in spiral or tennis-ball structures, and the tennis-ball structure is more likely to be observed in more compact confinements. Our results also show that the dynamical procedure of confinement and the rate of the confinement are influential parameters of the structure of the chain inside spherical cavities.
Synthetic Jet Flow Field Database for CFD Validation
NASA Technical Reports Server (NTRS)
Yao, Chung-Sheng; Chen, Fang Jenq; Neuhart, Dan; Harris, Jerome
2004-01-01
An oscillatory zero net mass flow jet was generated by a cavity-pumping device, namely a synthetic jet actuator. This basic oscillating jet flow field was selected as the first of the three test cases for the Langley workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control. The purpose of this workshop was to assess the current CFD capabilities to predict unsteady flow fields of synthetic jets and separation control. This paper describes the characteristics and flow field database of a synthetic jet in a quiescent fluid. In this experiment, Particle Image Velocimetry (PIV), Laser Doppler Velocimetry (LDV), and hot-wire anemometry were used to measure the jet velocity field. In addition, the actuator operating parameters including diaphragm displacement, internal cavity pressure, and internal cavity temperature were also documented to provide boundary conditions for CFD modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalaria, P. C., E-mail: parth.kalaria@partner.kit.edu; Avramidis, K. A.; Franck, J.
High frequency (>230 GHz) megawatt-class gyrotrons are planned as RF sources for electron cyclotron resonance heating and current drive in DEMOnstration fusion power plants (DEMOs). In this paper, for the first time, a feasibility study of a 236 GHz DEMO gyrotron is presented by considering all relevant design goals and the possible technical limitations. A mode-selection procedure is proposed in order to satisfy the multi-frequency and frequency-step tunability requirements. An effective systematic design approach for the optimal design of a gradually tapered cavity is presented. The RF-behavior of the proposed cavity is verified rigorously, supporting 920 kW of stable output power withmore » an interaction efficiency of 36% including the considerations of realistic beam parameters.« less
Effective spin physics in two-dimensional cavity QED arrays
NASA Astrophysics Data System (ADS)
Minář, Jiří; Güneş Söyler, Şebnem; Rotondo, Pietro; Lesanovsky, Igor
2017-06-01
We investigate a strongly correlated system of light and matter in two-dimensional cavity arrays. We formulate a multimode Tavis-Cummings (TC) Hamiltonian for two-level atoms coupled to cavity modes and driven by an external laser field which reduces to an effective spin Hamiltonian in the dispersive regime. In one-dimension we provide an exact analytical solution. In two-dimensions, we perform mean-field study and large scale quantum Monte Carlo simulations of both the TC and the effective spin models. We discuss the phase diagram and the parameter regime which gives rise to frustrated interactions between the spins. We provide a quantitative description of the phase transitions and correlation properties featured by the system and we discuss graph-theoretical properties of the ground states in terms of graph colourings using Pólya’s enumeration theorem.
Characterization of a Plasmoid in the Afterglow of a Supersonic Flowing Microwave Discharge
NASA Technical Reports Server (NTRS)
Drake, D. J.; Miller, S.; Nikolic, M.; Popovic, S.; Vuskovic, L.
2009-01-01
We performed a detailed characterization a plasmoid in the afterglow region of an Ar supersonic microwave cavity discharge. The supersonic flow was generated using a convergent-divergent nozzle upstream of the discharge region. A cylindrical cavity was used to sustain a discharge in the pressure range of 100-600 Pa. Optical emission spectroscopy was used to observe populations of excited and ionic species in the plasmoid region. Plasmoid formation in the supersonic flowing afterglow located downstream from the primary microwave cavity discharge was characterized by measuring the radial and axial distributions of Argon excited states and Argon ions. More experiments are being carried out on the plasmoid to understand the discharge parameters within the region, i.e. rotational temperature, vibrational temperature, electron density, and how the electrodynamic and aerodynamic effects combine to form this plasmoid.
Quantum cooling and squeezing of a levitating nanosphere via time-continuous measurements
NASA Astrophysics Data System (ADS)
Genoni, Marco G.; Zhang, Jinglei; Millen, James; Barker, Peter F.; Serafini, Alessio
2015-07-01
With the purpose of controlling the steady state of a dielectric nanosphere levitated within an optical cavity, we study its conditional dynamics under simultaneous sideband cooling and additional time-continuous measurement of either the output cavity mode or the nanosphere’s position. We find that the average phonon number, purity and quantum squeezing of the steady-states can all be made more non-classical through the addition of time-continuous measurement. We predict that the continuous monitoring of the system, together with Markovian feedback, allows one to stabilize the dynamics for any value of the laser frequency driving the cavity. By considering state of the art values of the experimental parameters, we prove that one can in principle obtain a non-classical (squeezed) steady-state with an average phonon number {n}{ph}≈ 0.5.
NASA Astrophysics Data System (ADS)
Bunker, R. S.; Metzger, D. E.; Wittig, S.
1990-06-01
Detailed radial heat-transfer coefficient distributions applicable to the cooling of disk-cavity regions of gas turbines are obtained experimentally from local heat-transfer data on both the rotating and stationary surfaces of a parallel-geometry disk-cavity system. Attention is focused on the hub injection of a coolant over a wide range of parameters including disk rotational Reynolds numbers of 200,000 to 50,000, rotor/stator spacing-to-disk ratios of 0.025 to 0.15, and jet mass flow rates between 0.10 and 0.40 times the turbulent pumped flow rate of a free disk. It is shown that rotor heat transfer exhibits regions of impingement and rotational domination with a transition region between, while stator heat transfer displays flow reattachment and convection regions with an inner recirculation zone.
A Preliminary Attempt at Sintering an Ultrafine Alumina Powder Using Microwaves
1994-09-01
and unusual properties [Ref. B4]. Dielectric properties of individual ceramic phases differ depending on parameters such as compositicn...useful parameter is an estimate of the amount of power dissipated into a dielectric with a known effective loss factor. For a high frequency electric...cavities, and their influence in ceramic samples must be considered. Therefore scattering, diffraction, interference, and reflection and refraction
Sub-poissonian photon statistics in the coherent state Jaynes-Cummings model in non-resonance
NASA Astrophysics Data System (ADS)
Zhang, Jia-tai; Fan, An-fu
1992-03-01
We study a model with a two-level atom (TLA) non-resonance interacting with a single-mode quantized cavity field (QCF). The photon number probability function, the mean photon number and Mandel's fluctuation parameter are calculated. The sub-Poissonian distributions of the photon statistics are obtained in non-resonance interaction. This statistical properties are strongly dependent on the detuning parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Som, Sumit; Seth, Sudeshna; Mandal, Aditya
2013-02-15
Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and {+-}0.2{sup 0}, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ('Dee' voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTemore » X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.« less
Dissipation induced asymmetric steering of distant atomic ensembles
NASA Astrophysics Data System (ADS)
Cheng, Guangling; Tan, Huatang; Chen, Aixi
2018-04-01
The asymmetric steering effects of separated atomic ensembles denoted by the effective bosonic modes have been explored by the means of quantum reservoir engineering in the setting of the cascaded cavities, in each of which an atomic ensemble is involved. It is shown that the steady-state asymmetric steering of the mesoscopic objects is unconditionally achieved via the dissipation of the cavities, by which the nonlocal interaction occurs between two atomic ensembles, and the direction of steering could be easily controlled through variation of certain tunable system parameters. One advantage of the present scheme is that it could be rather robust against parameter fluctuations, and does not require the accurate control of evolution time and the original state of the system. Furthermore, the double-channel Raman transitions between the long-lived atomic ground states are used and the atomic ensembles act as the quantum network nodes, which makes our scheme insensitive to the collective spontaneous emission of atoms.
NASA Astrophysics Data System (ADS)
Baudrenghien, P.; Mastoridis, T.
2017-01-01
The interaction between beam dynamics and the radio frequency (rf) station in circular colliders is complex and can lead to longitudinal coupled-bunch instabilities at high beam currents. The excitation of the cavity higher order modes is traditionally damped using passive devices. But the wakefield developed at the cavity fundamental frequency falls in the frequency range of the rf power system and can, in theory, be compensated by modulating the generator drive. Such a regulation is the responsibility of the low-level rf (llrf) system that measures the cavity field (or beam current) and generates the rf power drive. The Large Hadron Collider (LHC) rf was designed for the nominal LHC parameter of 0.55 A DC beam current. At 7 TeV the synchrotron radiation damping time is 13 hours. Damping of the instability growth rates due to the cavity fundamental (400.789 MHz) can only come from the synchrotron tune spread (Landau damping) and will be very small (time constant in the order of 0.1 s). In this work, the ability of the present llrf compensation to prevent coupled-bunch instabilities with the planned high luminosity LHC (HiLumi LHC) doubling of the beam current to 1.1 A DC is investigated. The paper conclusions are based on the measured performances of the present llrf system. Models of the rf and llrf systems were developed at the LHC start-up. Following comparisons with measurements, the system was parametrized using these models. The parametric model then provides a more realistic estimation of the instability growth rates than an ideal model of the rf blocks. With this modeling approach, the key rf settings can be varied around their set value allowing for a sensitivity analysis (growth rate sensitivity to rf and llrf parameters). Finally, preliminary measurements from the LHC at 0.44 A DC are presented to support the conclusions of this work.
Physical modeling of vortical cross-step flow in the American paddlefish, Polyodon spathula
Brooks, Hannah; Haines, Grant E.; Lin, M. Carly
2018-01-01
Vortical cross-step filtration in suspension-feeding fish has been reported recently as a novel mechanism, distinct from other biological and industrial filtration processes. Although crossflow passing over backward-facing steps generates vortices that can suspend, concentrate, and transport particles, the morphological factors affecting this vortical flow have not been identified previously. In our 3D-printed models of the oral cavity for ram suspension-feeding fish, the angle of the backward-facing step with respect to the model’s dorsal midline affected vortex parameters significantly, including rotational, tangential, and axial speed. These vortices were comparable to those quantified downstream of the backward-facing steps that were formed by the branchial arches of preserved American paddlefish in a recirculating flow tank. Our data indicate that vortices in cross-step filtration have the characteristics of forced vortices, as the flow of water inside the oral cavity provides the external torque required to sustain forced vortices. Additionally, we quantified a new variable for ram suspension feeding termed the fluid exit ratio. This is defined as the ratio of the total open pore area for water leaving the oral cavity via spaces between branchial arches that are not blocked by gill rakers, divided by the total area for water entering through the gape during ram suspension feeding. Our experiments demonstrated that the fluid exit ratio in preserved paddlefish was a significant predictor of the flow speeds that were quantified anterior of the rostrum, at the gape, directly dorsal of the first ceratobranchial, and in the forced vortex generated by the first ceratobranchial. Physical modeling of vortical cross-step filtration offers future opportunities to explore the complex interactions between structural features of the oral cavity, vortex parameters, motile particle behavior, and particle morphology that determine the suspension, concentration, and transport of particles within the oral cavity of ram suspension-feeding fish. PMID:29561890
Urbizu, Aintzane; Ferré, Alex; Poca, Maria-Antonia; Rovira, Alex; Sahuquillo, Juan; Martin, Bryn A; Macaya, Alfons
2017-02-01
OBJECTIVE Traditionally, Chiari malformation Type I has been related to downward herniation of the cerebellar tonsils as a consequence of an underdeveloped posterior cranial fossa. Although the common symptoms of Chiari malformation Type I are occipital headaches, cervical pain, dizziness, paresthesia, and sensory loss, patients often report symptoms related to pharyngeal dysfunction such as choking, regurgitation, dysphagia, aspiration, chronic cough, and sleep disorders. In addition, tracheal intubation is often difficult in these patients. The purpose of this study was to analyze the morphological features of the oropharynx and oral cavity in patients with Chiari malformation Type I to help identify underlying anatomical anomalies leading to these debilitating symptoms. METHODS Seventy-six adult patients with symptomatic Chiari malformation Type I with cerebellar tonsillar descent greater than 5 mm below the foramen magnum and a small posterior cranial fossa and 49 sex-matched controls were selected to perform a retrospective case-control MRI-based morphometric study in a tertiary hospital. Eleven linear and areal parameters of the oropharyngeal cavity on midsagittal T1-weighted MRI were measured and the average values between patients and control cohorts were compared. Correlations between variables showing or approaching statistical significance in these structures and posterior cranial fossa measurements related with the occipital bone were sought. RESULTS Significant differences were detected for several oropharynx and oral cavity measures in the patient cohort, primarily involving the length and thickness of the soft palate (p = 9.5E-05 and p = 3.0E-03, respectively). A statistically significant (p < 0.01) moderate correlation between some of these variables and posterior cranial fossa parameters was observed. CONCLUSIONS The existence of structural oropharyngeal and oral cavity anomalies in patients with Chiari malformation Type I was confirmed, which may contribute to the frequent occurrence of respiratory and deglutitory complications and sleep disorders in this syndrome.
Barchuk, A A; Podolsky, M D; Tarakanov, S A; Kotsyuba, I Yu; Gaidukov, V S; Kuznetsov, V I; Merabishvili, V M; Barchuk, A S; Levchenko, E V; Filochkina, A V; Arseniev, A I
2015-01-01
This review article analyzes data of literature devoted to the description, interpretation and classification of focal (nodal) changes in the lungs detected by computed tomography of the chest cavity. There are discussed possible criteria for determining the most likely of their character--primary and metastatic tumor processes, inflammation, scarring, and autoimmune changes, tuberculosis and others. Identification of the most characteristic, reliable and statistically significant evidences of a variety of pathological processes in the lungs including the use of modern computer-aided detection and diagnosis of sites will optimize the diagnostic measures and ensure processing of a large volume of medical data in a short time.
Goldstone radio spectrum signal identification, March 1980 - March 1982
NASA Technical Reports Server (NTRS)
Gaudian, B. A.
1982-01-01
The signal identification process is described. The Goldstone radio spectrum environment contains signals that are a potential source of electromagnetic interference to the Goldstone tracking receivers. The identification of these signals is accomplished by the use of signal parameters and environment parameters. Statistical data on the Goldstone radio spectrum environment from 2285 to 2305 MHz are provided.
Anbarasu, K; Jayanthi, S
2018-05-01
Human lemur tyrosine kinase-3 (LMTK3) is primarily involved in regulation of estrogen receptor-α (ERα) by phosphorylation activity. LMTK3 acts as key biomarker for ERα positive breast cancer and identified as novel drug target for breast cancer. Due to the absence of experimental reports, the computational approach has been followed to screen LMTK3 inhibitors from natural product curcumin derivatives based on rational inhibitor design. The initial virtual screening and re-docking resulted in identification of top three leads with favorable binding energy and strong interactions in critical residues of ATP-binding cavity. ADME prediction confirmed the pharmacological activity of the leads with various properties. The stability and binding affinity of leads were well refined in dynamic system from 25 ns MD simulations. The behavior of protein motion towards closure of ATP-binding cavity was evaluated based on eigenvectors by PCA. In addition, MM/PBSA calculations also confirmed the relative binding free energy of LMTK3-lead complexes in favor of the effective binding. From our study, novel LMTK3 inhibitors tetrahydrocurcumin, curcumin 4,4'-diacetate, and demethoxycurcumin have been proposed with inhibition mechanism. Further experimental evaluation on reported lead candidates might prove its role in breast cancer therapeutics.
NASA Astrophysics Data System (ADS)
Aucejo, M.; Totaro, N.; Guyader, J.-L.
2010-08-01
In noise control, identification of the source velocity field remains a major problem open to investigation. Consequently, methods such as nearfield acoustical holography (NAH), principal source projection, the inverse frequency response function and hybrid NAH have been developed. However, these methods require free field conditions that are often difficult to achieve in practice. This article presents an alternative method known as inverse patch transfer functions, designed to identify source velocities and developed in the framework of the European SILENCE project. This method is based on the definition of a virtual cavity, the double measurement of the pressure and particle velocity fields on the aperture surfaces of this volume, divided into elementary areas called patches and the inversion of impedances matrices, numerically computed from a modal basis obtained by FEM. Theoretically, the method is applicable to sources with complex 3D geometries and measurements can be carried out in a non-anechoic environment even in the presence of other stationary sources outside the virtual cavity. In the present paper, the theoretical background of the iPTF method is described and the results (numerical and experimental) for a source with simple geometry (two baffled pistons driven in antiphase) are presented and discussed.
NASA Astrophysics Data System (ADS)
Takayanagi, Masayoshi; Kurisaki, Ikuo; Nagaoka, Masataka
2015-12-01
Each subunit of human hemoglobin (HbA) stores an oxygen molecule (O2) in the binding site (BS) cavity near the heme group. The BS is buried in the interior of the subunit so that there is a debate over the O2 entry pathways from solvent to the BS; histidine gate or multiple pathways. To elucidate the O2 entry pathways, we executed ensemble molecular dynamics (MD) simulations of T-state tetramer HbA in high concentration O2 solvent to simulate spontaneous O2 entry from solvent into the BS. By analyzing 128 independent 8 ns MD trajectories by intrinsic pathway identification by clustering (IPIC) method, we found 141 and 425 O2 entry events into the BS of the α and β subunits, respectively. In both subunits, we found that multiple O2 entry pathways through inside cavities play a significant role for O2 entry process of HbA. The rate constants of O2 entry estimated from the MD trajectories correspond to the experimentally observed values. In addition, by analyzing monomer myoglobin, we verified that the high O2 concentration condition can reproduce the ratios of each multiple pathway in the one-tenth lower O2 concentration condition. These indicate the validity of the multiple pathways obtained in our MD simulations.
NASA Astrophysics Data System (ADS)
Bayrakli, Ismail; Turkmen, Aysenur; Akman, Hatice; Sezer, M. Tugrul; Kutluhan, Suleyman
2016-08-01
An external cavity laser (ECL)-based off-axis cavity-enhanced absorption spectroscopy was applied to noninvasive clinical diagnosis using expired breath ammonia analysis: (1) the correlation between breath ammonia levels and blood parameters related to chronic kidney disease (CKD) was investigated and (2) the relationship between breath ammonia levels and blood concentrations of valproic acid (VAP) was studied. The concentrations of breath ammonia in 15 healthy volunteers, 10 epilepsy patients (before and after taking VAP), and 27 patients with different stages of CKD were examined. The range of breath ammonia levels was 120 to 530 ppb for healthy subjects and 710 to 10,400 ppb for patients with CKD. There was a statistically significant positive correlation between breath ammonia concentrations and urea, blood urea nitrogen, creatinine, or estimated glomerular filtration rate in 27 patients. It was demonstrated that taking VAP gave rise to increasing breath ammonia levels. A statistically significant difference was found between the levels of exhaled ammonia (NH3) in healthy subjects and in patients with epilepsy before and after taking VAP. The results suggest that our breath ammonia measurement system has great potential as an easy, noninvasive, real-time, and continuous monitor of the clinical parameters related to epilepsy and CKD.
Experimental investigation of solidification in metal foam enhanced phase change material
NASA Astrophysics Data System (ADS)
Beyne, W.; Bağci, O.; Huisseune, H.; Canière, H.; Danneels, J.; Daenens, D.; De Paepe, M.
2017-10-01
A major challenge for the use of phase change materials (PCMs) in thermal energy storage (TES) is overcoming the low thermal conductivity of PCM’s. The low conductivity gives rise to limited power during charging and discharging TES. Impregnating metal foam with PCM, however, has been found to enhance the heat transfer. On the other hand, the effect of foam parameters such as porosity, pore size and material type has remained unclear. In this paper, the effect of these foam parameters on the solidification time is investigated. Different samples of PCM-impregnated metal foam were experimentally tested and compared to one without metal foam. The samples varied with respect to choice of material, porosity and pore size. They were placed in a rectangular cavity and cooled from one side using a coolant flowing through a cold plate. The other sides of the rectangular cavity were Polymethyl Methacrylate (PM) walls exposed to ambient. The temperature on the exterior walls of the cavity was monitored as well as the coolant flow rate and its temperature. The metal foam inserts reduced the solidification times by at least 25 %. However, the difference between the best performing and worst performing metal foam is about 28 %. This shows a large potential for future research.
Hydrodynamical models of cometary H II regions
NASA Astrophysics Data System (ADS)
Steggles, H. G.; Hoare, M. G.; Pittard, J. M.
2017-04-01
We have modelled the evolution of cometary H II regions produced by zero-age main-sequence stars of O and B spectral types, which are driving strong winds and are born off-centre from spherically symmetric cores with power-law (α = 2) density slopes. A model parameter grid was produced that spans stellar mass, age and core density. Exploring this parameter space, we investigated limb-brightening, a feature commonly seen in cometary H II regions. We found that stars with mass M⋆ ≥ 12 M⊙ produce this feature. Our models have a cavity bounded by a contact discontinuity separating hot shocked wind and ionized ambient gas that is similar in size to the surrounding H II region. Because of early pressure confinement, we did not see shocks outside of the contact discontinuity for stars with M⋆ ≤ 40 M⊙, but the cavities were found to continue to grow. The cavity size in each model plateaus as the H II region stagnates. The spectral energy distributions of our models are similar to those from identical stars evolving in uniform density fields. The turn-over frequency is slightly lower in our power-law models as a result of a higher proportion of low-density gas covered by the H II regions.
Improving the efficiency of an Er:YAG laser on enamel and dentin.
Rizcalla, Nicolas; Bader, Carl; Bortolotto, Tissiana; Krejci, Ivo
2012-02-01
To evaluate the influence of air pressure, water flow rate, and pulse frequency on the removal speed of enamel and dentin as well as on their surface morphology. Twenty-four bovine incisors were horizontally cut in slices. Each sample was mounted on an experimental assembly, allowing precise orientation. Eighteen cavities were prepared, nine in enamel and nine in dentin. Specific parameters for frequency, water flow rate, and air pressure were applied for each experimental group. Three groups were randomly formed according to the air pressure settings. Cavity depth was measured using a digital micrometer gauge, and surface morphology was checked by means of scanning electron microscopy. Data was analyzed with ANOVA and Duncan post hoc test. Irradiation at 25 Hz for enamel and 30 Hz for dentin provided the best ablation rates within this study, but efficiency decreased if the frequency was raised further. Greater tissue ablation was found with water flow rate set to low and dropped with higher values. Air pressure was found to have an interaction with the other settings, since ablation rates varied with different air pressure values. Fine-tuning of all parameters to get a good ablation rate with minimum surface damage seems to be key in achieving optimal efficiency for cavity preparation with an Er:YAG laser.
Selection of noisy measurement locations for error reduction in static parameter identification
NASA Astrophysics Data System (ADS)
Sanayei, Masoud; Onipede, Oladipo; Babu, Suresh R.
1992-09-01
An incomplete set of noisy static force and displacement measurements is used for parameter identification of structures at the element level. Measurement location and the level of accuracy in the measured data can drastically affect the accuracy of the identified parameters. A heuristic method is presented to select a limited number of degrees of freedom (DOF) to perform a successful parameter identification and to reduce the impact of measurement errors on the identified parameters. This pretest simulation uses an error sensitivity analysis to determine the effect of measurement errors on the parameter estimates. The selected DOF can be used for nondestructive testing and health monitoring of structures. Two numerical examples, one for a truss and one for a frame, are presented to demonstrate that using the measurements at the selected subset of DOF can limit the error in the parameter estimates.
NASA Technical Reports Server (NTRS)
Greenwood, Eric, II; Schmitz, Fredric H.
2010-01-01
A new physics-based parameter identification method for rotor harmonic noise sources is developed using an acoustic inverse simulation technique. This new method allows for the identification of individual rotor harmonic noise sources and allows them to be characterized in terms of their individual non-dimensional governing parameters. This new method is applied to both wind tunnel measurements and ground noise measurements of two-bladed rotors. The method is shown to match the parametric trends of main rotor Blade-Vortex Interaction (BVI) noise, allowing accurate estimates of BVI noise to be made for operating conditions based on a small number of measurements taken at different operating conditions.
Implosion of Cylindrical Cavities via Short Duration Impulsive Loading
NASA Astrophysics Data System (ADS)
Huneault, Justin; Higgins, Andrew
2014-11-01
An apparatus has been developed to study the collapse of a cylindrical cavity in gelatin subjected to a symmetric impact-driven impulsive loading. A gas-driven annular projectile is accelerated to approximately 50 m/s, at which point it impacts a gelatin casting confined by curved steel surfaces that allow a transition from an annular geometry to a cylindrically imploding motion. The implosion is visualized by a high-speed camera through a window which forms the top confining wall of the implosion cavity. The initial size of the cavity is such that the gelatin wall is two to five times thicker than the impacting projectile. Thus, during impact the compression wave which travels towards the cavity is closely followed by a rarefaction resulting from the free surface reflection of the compression wave in the projectile. As the compression wave in the gelatin reaches the inner surface, it will also reflect as a rarefaction wave. The interaction between the rarefaction waves from the gelatin and projectile free surfaces leads to large tensile stresses resulting in the spallation of a relatively thin shell. The study focuses on the effect of impact parameters on the thickness and uniformity of the imploding shell formed by the cavitation in the imploding gelatin cylinder.
NASA Astrophysics Data System (ADS)
Li, Guolong; Xiao, Xiao; Li, Yong; Wang, Xiaoguang
2018-02-01
We propose a multimode optomechanical system to realize tunable optical nonreciprocity that has the prospect of making an optical diode for information technology. The proposed model consists of two subsystems, each of which contains two optical cavities, injected with a classical field and a quantum signal via a 50:50 beam splitter, and a mechanical oscillator, coupled to both cavities via optomechanical coupling. Meanwhile two cavities and an oscillator in a subsystem are respectively coupled to their corresponding cavities and an oscillator in the other subsystem. Our scheme yields nonreciprocal effects at different frequencies with opposite directions, but each effective linear optomechanical coupling can be controlled by an independent classical one-frequency pump. With this setup one is able to apply quantum states with large fluctuations, which extends the scope of applicable quantum states, and exploit the independence of paths. Moreover, the optimal frequencies for nonreciprocal effects can be controlled by adjusting the relevant parameters. We also exhibit the path switching of two directions, from a mechanical input to two optical output channels, via tuning the signal frequency. In experiment, the considered scheme can be tuned to reach small damping rates of the oscillators relative to those of the cavities, which is more practical and requires less power than in previous schemes.
Optical tristability in a hybrid optomechanical system
NASA Astrophysics Data System (ADS)
Asghari Nejad, A.; Askari, H. R.; Baghshahi, H. R.
2018-05-01
In this paper, we investigate a hybrid optomechanical system consisting of two cavities, which one of them is an optomechanical cavity that includes an optical parametric amplifier (OPA) and the other is a traditional cavity which contains an atomic medium. Hamiltonian of the system is written in a rotating frame with a rotation frequency of the frequency of input field to the system. Using Heisenberg-Langevin equations of motion, the dynamics of the system is described. Applying the steady-state conditions leads to a system of equations of the mean values of the operators of the system. The stability condition of the system is satisfied numerically and behavior of optomechanical cavity is investigated in different situations to find the effect of changing of the parameters of the system on the type of its stability. We show proposed system has the capability of tristable behavior, where, the gain coefficient of OPA acts as a switch in changing the bistability of the system to a tristable manner. The building block of the tristability in this system can be figured out as the enhanced nonlinearity of the system due to the presence of OPA.
High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm.
Fu, Xing; Kutz, J Nathan
2013-03-11
We theoretically demonstrate that in a laser cavity mode-locked by nonlinear polarization rotation (NPR) using sets of waveplates and passive polarizer, the energy performance can be significantly increased by incorporating multiple NPR filters. The NPR filters are engineered so as to mitigate the multi-pulsing instability in the laser cavity which is responsible for limiting the single pulse per round trip energy in a myriad of mode-locked cavities. Engineering of the NPR filters for performance is accomplished by implementing a genetic algorithm that is capable of systematically identifying viable and optimal NPR settings in a vast parameter space. Our study shows that five NPR filters can increase the cavity energy by approximately a factor of five, with additional NPRs contributing little or no enhancements beyond this. With the advent and demonstration of electronic controls for waveplates and polarizers, the analysis suggests a general design and engineering principle that can potentially close the order of magnitude energy gap between fiber based mode-locked lasers and their solid state counterparts.
Temporal complexity in emission from Anderson localized lasers
NASA Astrophysics Data System (ADS)
Kumar, Randhir; Balasubrahmaniyam, M.; Alee, K. Shadak; Mujumdar, Sushil
2017-12-01
Anderson localization lasers exploit resonant cavities formed due to structural disorder. The inherent randomness in the structure of these cavities realizes a probability distribution in all cavity parameters such as quality factors, mode volumes, mode structures, and so on, implying resultant statistical fluctuations in the temporal behavior. Here we provide direct experimental measurements of temporal width distributions of Anderson localization lasing pulses in intrinsically and extrinsically disordered coupled-microresonator arrays. We first illustrate signature exponential decays in the spatial intensity distributions of the lasing modes that quantify their localized character, and then measure the temporal width distributions of the pulsed emission over several configurations. We observe a dependence of temporal widths on the disorder strength, wherein the widths show a single-peaked, left-skewed distribution in extrinsic disorder and a dual-peaked distribution in intrinsic disorder. We propose a model based on coupled rate equations for an emitter and an Anderson cavity with a random mode structure, which gives excellent quantitative and qualitative agreement with the experimental observations. The experimental and theoretical analyses bring to the fore the temporal complexity in Anderson-localization-based lasing systems.
NASA Astrophysics Data System (ADS)
Qin, Wei; Miranowicz, Adam; Li, Peng-Bo; Lü, Xin-You; You, J. Q.; Nori, Franco
2018-03-01
We propose an experimentally feasible method for enhancing the atom-field coupling as well as the ratio between this coupling and dissipation (i.e., cooperativity) in an optical cavity. It exploits optical parametric amplification to exponentially enhance the atom-cavity interaction and, hence, the cooperativity of the system, with the squeezing-induced noise being completely eliminated. Consequently, the atom-cavity system can be driven from the weak-coupling regime to the strong-coupling regime for modest squeezing parameters, and even can achieve an effective cooperativity much larger than 100. Based on this, we further demonstrate the generation of steady-state nearly maximal quantum entanglement. The resulting entanglement infidelity (which quantifies the deviation of the actual state from a maximally entangled state) is exponentially smaller than the lower bound on the infidelities obtained in other dissipative entanglement preparations without applying squeezing. In principle, we can make an arbitrarily small infidelity. Our generic method for enhancing atom-cavity interaction and cooperativities can be implemented in a wide range of physical systems, and it can provide diverse applications for quantum information processing.
Design of 95 GHz gyrotron based on continuous operation copper solenoid with water cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borodin, Dmitri; Ben-Moshe, Roey; Einat, Moshe
2014-07-15
The design work for 2nd harmonic 95 GHz, 50 kW gyrotron based on continuous operation copper solenoid is presented. Thermionic magnetron injection gun specifications were calculated according to the linear trade off equation, and simulated with CST program. Numerical code is used for cavity design using the non-uniform string equation as well as particle motion in the “cold” cavity field. The mode TE02 with low Ohmic losses in the cavity walls was chosen as the operating mode. The Solenoid is designed to induce magnetic field of 1.8 T over a length of 40 mm in the interaction region with homogeneitymore » of ±0.34%. The solenoid has six concentric cylindrical segments (and two correction segments) of copper foil windings separated by water channels for cooling. The predicted temperature in continuous operation is below 93 °C. The parameters of the design together with simulation results of the electromagnetic cavity field, magnetic field, electron trajectories, and thermal analyses are presented.« less
Tu, Hsi-Feng; Liu, Chung-Ji; Liu, Shyun-Yeu; Chen, Yu-Ping; Yu, En-Hao; Lin, Shu-Chun; Chang, Kuo-Wei
2011-03-01
Validating markers for prediction of nodal metastasis could be beneficial in treatment of oral cavity cancer. Decoy receptor 3 (DcR3), locus on 20q13, functions as a death decoy inhibiting apoptosis mediated by the tumor necrosis factor receptor (TNFR) family. This study analyzed the serum level of DcR3 in relationship to the clinical parameters of oral cavity cancer patients together with detection of DcR3 genomic copy number in primary and recurrent tumors. Elevated serum DcR3 was associated with nodal metastasis and worse prognosis. Gain of DcR3 copy number was detected in 17% of primary tumor tissue but not found in healthy areca chewers. Tissue from recurrent tumors showed more frequent DcR3 copy number alteration (48%) than the paired primary tumor tissue. Serum DcR3 level is a predictor for the nodal metastasis and survival among oral cavity cancer patients and the DcR3 copy number alteration could underlie oral carcinogenesis progression. Copyright © 2010 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Grison, B.; Escoubet, C. P.; Pitout, F.; Cornilleau-Wehrlin, N.; Dandouras, I.; Lucek, E.
2009-04-01
In the mid altitude cusp region the DC magnetic field presents a diamagnetic cavity due to intense ion earthward flux coming from the magnetosheath. A strong ultra low frequency (ULF) magnetic activity is also commonly observed in this region. Most of the mid altitude cusp statistical studies have focused on the location of the cusp and its dependence and response to solar wind, interplanetary magnetic field, dipole tilt angle parameters. In our study we use the database build by Pitout et al. (2006) in order to study the link of wave power in the ULF range (0.35-10Hz) measured by STAFF SC instrument with the ion plasma properties as measured by CIS (and CODIF) instrument as well as the diamagnetic cavity in the mid-altitude cusp region with FGM data. To compare the different crossings we don`t use the cusp position and dynamics but we use a normalized cusp crossing duration that permits to easily average the properties over a large number of crossings. As usual in the cusp, it is particularly relevant to sort the crossings by the corresponding interplanetary magnetic field (IMF) orientation in order to analyse the results. In particular we try to find out what is the most relevant parameter to link the strong wave activity with. The global statistic confirms previous single case observations that have noticed a simultaneity between ion injections and wave activity enhancements. We will also present results concerning other ion parameters and the diamagnetic cavity observed in the mid altitude cusp region.
NASA Technical Reports Server (NTRS)
Duong, N.; Winn, C. B.; Johnson, G. R.
1975-01-01
Two approaches to an identification problem in hydrology are presented, based upon concepts from modern control and estimation theory. The first approach treats the identification of unknown parameters in a hydrologic system subject to noisy inputs as an adaptive linear stochastic control problem; the second approach alters the model equation to account for the random part in the inputs, and then uses a nonlinear estimation scheme to estimate the unknown parameters. Both approaches use state-space concepts. The identification schemes are sequential and adaptive and can handle either time-invariant or time-dependent parameters. They are used to identify parameters in the Prasad model of rainfall-runoff. The results obtained are encouraging and confirm the results from two previous studies; the first using numerical integration of the model equation along with a trial-and-error procedure, and the second using a quasi-linearization technique. The proposed approaches offer a systematic way of analyzing the rainfall-runoff process when the input data are imbedded in noise.
Böl, Markus; Kruse, Roland; Ehret, Alexander E; Leichsenring, Kay; Siebert, Tobias
2012-10-11
Due to the increasing developments in modelling of biological material, adequate parameter identification techniques are urgently needed. The majority of recent contributions on passive muscle tissue identify material parameters solely by comparing characteristic, compressive stress-stretch curves from experiments and simulation. In doing so, different assumptions concerning e.g. the sample geometry or the degree of friction between the sample and the platens are required. In most cases these assumptions are grossly simplified leading to incorrect material parameters. In order to overcome such oversimplifications, in this paper a more reliable parameter identification technique is presented: we use the inverse finite element method (iFEM) to identify the optimal parameter set by comparison of the compressive stress-stretch response including the realistic geometries of the samples and the presence of friction at the compressed sample faces. Moreover, we judge the quality of the parameter identification by comparing the simulated and experimental deformed shapes of the samples. Besides this, the study includes a comprehensive set of compressive stress-stretch data on rabbit soleus muscle and the determination of static friction coefficients between muscle and PTFE. Copyright © 2012 Elsevier Ltd. All rights reserved.
A subsystem identification method based on the path concept with coupling strength estimation
NASA Astrophysics Data System (ADS)
Magrans, Francesc Xavier; Poblet-Puig, Jordi; Rodríguez-Ferran, Antonio
2018-02-01
For complex geometries, the definition of the subsystems is not a straightforward task. We present here a subsystem identification method based on the direct transfer matrix, which represents the first-order paths. The key ingredient is a cluster analysis of the rows of the powers of the transfer matrix. These powers represent high-order paths in the system and are more affected than low-order paths by damping. Once subsystems are identified, the proposed approach also provides a quantification of the degree of coupling between subsystems. This information is relevant to decide whether a subsystem may be analysed in a computer model or measured in the laboratory independently of the rest or subsystems or not. The two features (subsystem identification and quantification of the degree of coupling) are illustrated by means of numerical examples: plates coupled by means of springs and rooms connected by means of a cavity.
Identification of drought in Dhalai river watershed using MCDM and ANN models
NASA Astrophysics Data System (ADS)
Aher, Sainath; Shinde, Sambhaji; Guha, Shantamoy; Majumder, Mrinmoy
2017-03-01
An innovative approach for drought identification is developed using Multi-Criteria Decision Making (MCDM) and Artificial Neural Network (ANN) models from surveyed drought parameter data around the Dhalai river watershed in Tripura hinterlands, India. Total eight drought parameters, i.e., precipitation, soil moisture, evapotranspiration, vegetation canopy, cropping pattern, temperature, cultivated land, and groundwater level were obtained from expert, literature and cultivator survey. Then, the Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP) were used for weighting of parameters and Drought Index Identification (DII). Field data of weighted parameters in the meso scale Dhalai River watershed were collected and used to train the ANN model. The developed ANN model was used in the same watershed for identification of drought. Results indicate that the Limited-Memory Quasi-Newton algorithm was better than the commonly used training method. Results obtained from the ANN model shows the drought index developed from the study area ranges from 0.32 to 0.72. Overall analysis revealed that, with appropriate training, the ANN model can be used in the areas where the model is calibrated, or other areas where the range of input parameters is similar to the calibrated region for drought identification.
Hsu, Ling-Yuan; Chen, Tsung-Lin
2012-11-13
This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficients. With above two systems, the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from the parameter identification system, to propagate with time the current vehicle state values, obtained from the sensor fusion system. Comparing with most existing literatures in this field, the proposed approach improves the prediction accuracy both by incorporating more vehicle dynamics to the prediction system and by on-line identification to minimize the vehicle modeling errors. Simulation results show that the proposed method successfully predicts the vehicle dynamics in a left-hand turn event and a rollover event. The prediction inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event.
Hsu, Ling-Yuan; Chen, Tsung-Lin
2012-01-01
This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficients. With above two systems, the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from the parameter identification system, to propagate with time the current vehicle state values, obtained from the sensor fusion system. Comparing with most existing literatures in this field, the proposed approach improves the prediction accuracy both by incorporating more vehicle dynamics to the prediction system and by on-line identification to minimize the vehicle modeling errors. Simulation results show that the proposed method successfully predicts the vehicle dynamics in a left-hand turn event and a rollover event. The prediction inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event. PMID:23202231
Solvation thermodynamics of L-cystine, L-tyrosine, and L-leucine in aqueous-electrolyte media
NASA Astrophysics Data System (ADS)
Roy, Sanjay; Guin, Partha Sarathi; Mahali, Kalachand; Dolui, Bijoy Krishna
2017-12-01
Solubilities of L-cystine, L-tyrosine, and L-leucine in aqueous NaCl media at 298.15 K have been studied. Indispensable and related solvent parameters such as molar mass, molar volume, etc., were also determined. The results are used to evaluate the standard transfer Gibbs free energy, cavity forming enthalpy of transfer, cavity forming transfer Gibbs free energy and dipole-dipole interaction effects during the course of solvation. Various weak interactions involving solute-solvent or solvent-solvent molecules were characterized in order to find their role on the solvation of these amino acids.
Forward-facing cavity and opposing jet combined thermal protection system
NASA Astrophysics Data System (ADS)
Lu, H. B.; Liu, W. Q.
2012-12-01
This paper focuses on the design of a forward-facing cavity and opposing jet combined configuration for thermal protection system (TPS) of hypersonic vehicles. The cooling efficiency of the combined TPS was investigated numerically, and the numerical method was validated by the related experiment in the open literature. The flow field parameters, aerodynamic force, and surface heat flux distribution were obtained. The detailed numerical results show that this kind of combined TPS has an excellent impact on cooling the nose-tip, and it is suitable for the thermal protection of hypersonic vehicles which require long-range and time to cruise.
NASA Astrophysics Data System (ADS)
Wang, Jing; Tian, Xue-Dong; Liu, Yi-Mou; Cui, Cui-Li; Wu, Jin-Hui
2018-06-01
We investigate the stationary entanglement properties in a hybrid system consisting of an optical cavity, a mechanical resonator, a charged object, and an atomic ensemble. Numerical results show that this hybrid system exhibits three kinds of controllable bipartite entanglements in an experimentally accessible parameter regime with the help of the charged object. More importantly, it is viable to enhance on demand each bipartite entanglement at the expense of reducing others by modulating the Coulomb coupling strength. Last but not least, these bipartite entanglements seem more robust against on the environmental temperature for the positive Coulomb interaction.
Exploring the nonlinear regime of light-matter interaction using electronic spins in diamond
NASA Astrophysics Data System (ADS)
Alfasi, Nir; Masis, Sergei; Winik, Roni; Farfurnik, Demitry; Shtempluck, Oleg; Bar-Gill, Nir; Buks, Eyal
2018-06-01
The coupling between defects in diamond and a superconducting microwave resonator is studied in the nonlinear regime. Both negatively charged nitrogen-vacancy and P1 defects are explored. The measured cavity mode response exhibits strong nonlinearity near a spin resonance. Data is compared with theoretical predictions and a good agreement is obtained in a wide range of externally controlled parameters. The nonlinear effect under study in the current paper is expected to play a role in any cavity-based magnetic resonance imaging technique and to impose a fundamental limit upon its sensitivity.
Optical levitation of a mirror for reaching the standard quantum limit.
Michimura, Yuta; Kuwahara, Yuya; Ushiba, Takafumi; Matsumoto, Nobuyuki; Ando, Masaki
2017-06-12
We propose a new method to optically levitate a macroscopic mirror with two vertical Fabry-Pérot cavities linearly aligned. This configuration gives the simplest possible optical levitation in which the number of laser beams used is the minimum of two. We demonstrate that reaching the standard quantum limit (SQL) of a displacement measurement with our system is feasible with current technology. The cavity geometry and the levitated mirror parameters are designed to ensure that the Brownian vibration of the mirror surface is smaller than the SQL. Our scheme provides a promising tool for testing macroscopic quantum mechanics.
Optical levitation of a mirror for reaching the standard quantum limit
NASA Astrophysics Data System (ADS)
Michimura, Yuta; Kuwahara, Yuya; Ushiba, Takafumi; Matsumoto, Nobuyuki; Ando, Masaki
2017-06-01
We propose a new method to optically levitate a macroscopic mirror with two vertical Fabry-P{\\'e}rot cavities linearly aligned. This configuration gives the simplest possible optical levitation in which the number of laser beams used is the minimum of two. We demonstrate that reaching the standard quantum limit (SQL) of a displacement measurement with our system is feasible with current technology. The cavity geometry and the levitated mirror parameters are designed to ensure that the Brownian vibration of the mirror surface is smaller than the SQL. Our scheme provides a promising tool for testing macroscopic quantum mechanics.
NASA Astrophysics Data System (ADS)
Burger, J.; Gross, A.; Mark, D.; Roth, G.; von Stetten, F.; Zengerle, R.
2011-06-01
The direct on-disk wireless temperature measurement system [1,2] presented at μTAS 2010 was further improved in its robustness. We apply it to an IR thermocycler as part of a centrifugal microfluidic analyzer for polymerase chain reactions (PCR). This IR thermocycler allows the very efficient direct heating of aqueous liquids in microfluidic cavities by an IR radiation source. The efficiency factor of this IR heating system depends on several parameters. First there is the efficiency of the IR radiator considering the transformation of electrical energy into radiation energy. This radiation energy needs to be focused by a reflector to the center of the cavity. Both, the reflectors shape and the quality of the reflecting layer affect the efficiency. On the way to the center of the cavity the radiation energy will be diminished by absorption in the surrounding air/humidity and especially in the cavity lid of the microfluidic disk. The transmission spectrum of the lid material and its thickness is of significant impact. We chose a COC polymer film with a thickness of 150 μm. At a peak frequency of the IR radiator of ~2 μm approximately 85 % of the incoming radiation energy passes the lid and is absorbed within the first 1.5 mm depth of liquid in the cavity. As we perform the thermocycling for a PCR, after heating to the denaturation temperature of ~ 92 °C we need to cool down rapidly to the primer annealing temperature of ~ 55 °C. Cooling is realized by 3 ventilators venting air of room temperature into the disk chamber. Due to the air flow itself and an additional rotation of the centrifugal microfluidic disk the PCR reagents in the cavities are cooled by forced air convection. Simulation studies based upon analogous electrical models enable to optimize the disk geometry and the optical path. Both the IR heater and the ventilators are controlled by the digital PID controller HAPRO 0135 [3]. The sampling frequency is set to 2 Hz. It could be further increased up to a maximum value being permitted by the wireless temperature data transmission system. As we are controlling a significantly non-linear process the controller parameters need to be optimized for all temperatures relevant for the PCR thermocycling process. Such we get a dynamic system for both, the heating and the cooling process. Heating rates up to 5 K/s with our IR heater (100 W electrical power) could be achieved. Cooling rates of instantly 1.3 K/s at 20 Hz rotation frequency could be even further increased by higher rotation frequencies, faster air circulation, optimization of the controller parameters or an active air cooling unit.
Quantum phase gate based on electromagnetically induced transparency in optical cavities
NASA Astrophysics Data System (ADS)
Borges, Halyne S.; Villas-Bôas, Celso J.
2016-11-01
We theoretically investigate the implementation of a quantum controlled-phase gate in a system constituted by a single atom inside an optical cavity, based on the electromagnetically induced transparency effect. First we show that a probe pulse can experience a π phase shift due to the presence or absence of a classical control field. Considering the interplay of the cavity-EIT effect and the quantum memory process, we demonstrated a controlled-phase gate between two single photons. To this end, first one needs to store a (control) photon in the ground atomic states. In the following, a second (target) photon must impinge on the atom-cavity system. Depending on the atomic state, this second photon will be either transmitted or reflected, acquiring different phase shifts. This protocol can then be easily extended to multiphoton systems, i.e., keeping the control photon stored, it may induce phase shifts in several single photons, thus enabling the generation of multipartite entangled states. We explore the relevant parameter space in the atom-cavity system that allows the implementation of quantum controlled-phase gates using the recent technologies. In particular, we have found a lower bound for the cooperativity of the atom-cavity system which enables the implementation of phase shift on single photons. The induced shift on the phase of a photonic qubit and the controlled-phase gate between single photons, combined with optical devices, enable one to perform universal quantum computation.
Identification of quasi-steady compressor characteristics from transient data
NASA Technical Reports Server (NTRS)
Nunes, K. B.; Rock, S. M.
1984-01-01
The principal goal was to demonstrate that nonlinear compressor map parameters, which govern an in-stall response, can be identified from test data using parameter identification techniques. The tasks included developing and then applying an identification procedure to data generated by NASA LeRC on a hybrid computer. Two levels of model detail were employed. First was a lumped compressor rig model; second was a simplified turbofan model. The main outputs are the tools and procedures generated to accomplish the identification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundararaman, Ravishankar; Gunceler, Deniz; Arias, T. A.
2014-10-07
Continuum solvation models enable efficient first principles calculations of chemical reactions in solution, but require extensive parametrization and fitting for each solvent and class of solute systems. Here, we examine the assumptions of continuum solvation models in detail and replace empirical terms with physical models in order to construct a minimally-empirical solvation model. Specifically, we derive solvent radii from the nonlocal dielectric response of the solvent from ab initio calculations, construct a closed-form and parameter-free weighted-density approximation for the free energy of the cavity formation, and employ a pair-potential approximation for the dispersion energy. We show that the resulting modelmore » with a single solvent-independent parameter: the electron density threshold (n c), and a single solvent-dependent parameter: the dispersion scale factor (s 6), reproduces solvation energies of organic molecules in water, chloroform, and carbon tetrachloride with RMS errors of 1.1, 0.6 and 0.5 kcal/mol, respectively. We additionally show that fitting the solvent-dependent s 6 parameter to the solvation energy of a single non-polar molecule does not substantially increase these errors. Parametrization of this model for other solvents, therefore, requires minimal effort and is possible without extensive databases of experimental solvation free energies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundararaman, Ravishankar; Gunceler, Deniz; Arias, T. A.
2014-10-07
Continuum solvation models enable efficient first principles calculations of chemical reactions in solution, but require extensive parametrization and fitting for each solvent and class of solute systems. Here, we examine the assumptions of continuum solvation models in detail and replace empirical terms with physical models in order to construct a minimally-empirical solvation model. Specifically, we derive solvent radii from the nonlocal dielectric response of the solvent from ab initio calculations, construct a closed-form and parameter-free weighted-density approximation for the free energy of the cavity formation, and employ a pair-potential approximation for the dispersion energy. We show that the resulting modelmore » with a single solvent-independent parameter: the electron density threshold (n{sub c}), and a single solvent-dependent parameter: the dispersion scale factor (s{sub 6}), reproduces solvation energies of organic molecules in water, chloroform, and carbon tetrachloride with RMS errors of 1.1, 0.6 and 0.5 kcal/mol, respectively. We additionally show that fitting the solvent-dependent s{sub 6} parameter to the solvation energy of a single non-polar molecule does not substantially increase these errors. Parametrization of this model for other solvents, therefore, requires minimal effort and is possible without extensive databases of experimental solvation free energies.« less
Piehowski, Paul D; Petyuk, Vladislav A; Sandoval, John D; Burnum, Kristin E; Kiebel, Gary R; Monroe, Matthew E; Anderson, Gordon A; Camp, David G; Smith, Richard D
2013-03-01
For bottom-up proteomics, there are wide variety of database-searching algorithms in use for matching peptide sequences to tandem MS spectra. Likewise, there are numerous strategies being employed to produce a confident list of peptide identifications from the different search algorithm outputs. Here we introduce a grid-search approach for determining optimal database filtering criteria in shotgun proteomics data analyses that is easily adaptable to any search. Systematic Trial and Error Parameter Selection--referred to as STEPS--utilizes user-defined parameter ranges to test a wide array of parameter combinations to arrive at an optimal "parameter set" for data filtering, thus maximizing confident identifications. The benefits of this approach in terms of numbers of true-positive identifications are demonstrated using datasets derived from immunoaffinity-depleted blood serum and a bacterial cell lysate, two common proteomics sample types. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A study of parameter identification
NASA Technical Reports Server (NTRS)
Herget, C. J.; Patterson, R. E., III
1978-01-01
A set of definitions for deterministic parameter identification ability were proposed. Deterministic parameter identificability properties are presented based on four system characteristics: direct parameter recoverability, properties of the system transfer function, properties of output distinguishability, and uniqueness properties of a quadratic cost functional. Stochastic parameter identifiability was defined in terms of the existence of an estimation sequence for the unknown parameters which is consistent in probability. Stochastic parameter identifiability properties are presented based on the following characteristics: convergence properties of the maximum likelihood estimate, properties of the joint probability density functions of the observations, and properties of the information matrix.
Glacier surge mechanism based on linked cavity configuration of the basal water conduit system
NASA Astrophysics Data System (ADS)
Kamb, Barclay
1987-08-01
Based on observations of the 1982-1983 surge of Variegated Glacier, Alaska, a model of the surge mechanism is developed in terms of a transition from the normal tunnel configuration of the basal water conduit system to a linked cavity configuration that tends to restrict the flow of water, resulting in increased basal water pressures that cause rapid basal sliding. The linked cavity system consists of basal cavities formed by ice-bedrock separation (cavitation), ˜1 m high and ˜10 m in horizontal dimensions, widely scattered over the glacier bed, and hydraulically linked by narrow connections where separation is minimal (separation gap ≲ 0.1 m). The narrow connections, called orifices, control the water flow through the conduit system; by throttling the flow through the large cavities, the orifices keep the water flux transmitted by the basal water system at normal levels even though the total cavity cross-sectional area (˜200 m2) is much larger than that of a tunnel system (˜10 m2). A physical model of the linked cavity system is formulated in terms of the dimensions of the "typical" cavity and orifice and the numbers of these across the glacier width. The model concentrates on the detailed configuration of the typical orifice and its response to basal water pressure and basal sliding, which determines the water flux carried by the system under given conditions. Configurations are worked out for two idealized orifice types, step orifices that form in the lee of downglacier-facing bedrock steps, and wave orifices that form on the lee slopes of quasisinusoidal bedrock waves and are similar to transverse "N channels." The orifice configurations are obtained from the results of solutions of the basal-sliding-with-separation problem for an ice mass constituting of linear half-space of linear rheology, with nonlinearity introduced by making the viscosity stress-dependent on an intuitive basis. Modification of the orifice shapes by melting of the ice roof due to viscous heat dissipation in the flow of water through the orifices is treated in detail under the assumption of local heat transfer, which guarantees that the heating effects are not underestimated. This treatment brings to light a melting-stability parameter Ξ that provides a measure of the influence of viscous heating on orifice cavitation, similar but distinct for step and wave orifices. Orifice shapes and the amounts of roof meltback are determined by Ξ. When Ξ ≳ 1, so that the system is "viscous-heating-dominated," the orifices are unstable against rapid growth in response to a modest increase in water pressure or in orifice size over their steady state values. This growth instability is somewhat similar to the jökulhlaup-type instability of tunnels, which are likewise heating-dominated. When Ξ ≲ 1, the orifices are stable against perturbations of modest to even large size. Stabilization is promoted by high sliding velocity ν, expressed in terms of a ν-½ and ν-1 dependence of Ξ for step and wave cavities. The relationships between basal water pressure and water flux transmitted by linked cavity models of step and wave orifice type are calculated for an empirical relation between water pressure and sliding velocity and for a particular, reasonable choice of system parameters. In all cases the flux is an increasing function of the water pressure, in contrast to the inverse flux-versus-pressure relation for tunnels. In consequence, a linked cavity system can exist stably as a system of many interconnected conduits distributed across the glacier bed, in contrast to a tunnel system, which must condense to one or at most a few main tunnels. The linked cavity model gives basal water pressures much higher than the tunnel model at water fluxes ≳1 m3/s if the bed roughness features that generate the orifices have step heights or wave amplitudes less than about 0.1 m. The calculated basal water pressure of the particular linked cavity models evaluated is about 2 to 5 bars below ice overburden pressure for water fluxes in the range from about 2 to 20 m3/s, which matches reasonably the observed conditions in Variegated Glacier in surge; in contrast, the calculated water pressure for a single-tunnel model is about 14 to 17 bars below overburden over the same flux range. The contrast in water pressures for the two types of basal conduit system furnishes the basis for a surge mechanism involving transition from a tunnel system at low pressure to a linked cavity system at high pressure. The parameter Ξ is about 0.2 for the linked cavity models evaluated, meaning that they are stable but that a modest change in system parameters could produce instability. Unstable orifice growth results in the generation of tunnel segments, which may connect up in a cooperative fashion, leading to conversion of the linked cavity system to a tunnel system, with large decrease in water pressure and sliding velocity. This is what probably happens in surge termination. Glaciers for which Ξ ≲ 1 can go into surge, while those for which Ξ ≳ 1 cannot. Because Ξ varies as α3/2 (where α is surface slope), low values of Ξ are more probable for glaciers of low slope, and because slope correlates inversely with glacier length in general, the model predicts a direct correlation between glacier length and probability of surging; such a correlation is observed (Clarke et al., 1986). Because Ξ varies inversely with the basal shear stress τ, the increase of τ that takes place in the reservoir area in the buildup between surges causes a decrease in Ξ there, which, by reducing Ξ below the critical value ˜1, can allow surge initiation and the start of a new surge cycle. Transition to a linked cavity system without tunnels should occur spontaneously at low enough water flux, in agreement with observed surge initiation in winter.
Estimation of hysteretic damping of structures by stochastic subspace identification
NASA Astrophysics Data System (ADS)
Bajrić, Anela; Høgsberg, Jan
2018-05-01
Output-only system identification techniques can estimate modal parameters of structures represented by linear time-invariant systems. However, the extension of the techniques to structures exhibiting non-linear behavior has not received much attention. This paper presents an output-only system identification method suitable for random response of dynamic systems with hysteretic damping. The method applies the concept of Stochastic Subspace Identification (SSI) to estimate the model parameters of a dynamic system with hysteretic damping. The restoring force is represented by the Bouc-Wen model, for which an equivalent linear relaxation model is derived. Hysteretic properties can be encountered in engineering structures exposed to severe cyclic environmental loads, as well as in vibration mitigation devices, such as Magneto-Rheological (MR) dampers. The identification technique incorporates the equivalent linear damper model in the estimation procedure. Synthetic data, representing the random vibrations of systems with hysteresis, validate the estimated system parameters by the presented identification method at low and high-levels of excitation amplitudes.
[Juvenile idiopathic arthritis and oral health].
Kobus, Agnieszka; Kierklo, Anna; Sielicka, Danuta; Szajda, Sławomir Dariusz
2016-05-04
Juvenile idiopathic arthritis (JIA) is the most common autoimmune inflammatory disease of connective tissue in children. It is characterized by progressive joint destruction which causes preserved changes in the musculoskeletal system. The literature describes fully clinical symptoms and radiological images in different subtypes of JIA. However, there is still a limited number of studies reporting on the medical condition of the oral cavity of ill children. JIA can affect hard and soft tissues of the oral cavity by: the general condition of the child's health, arthritis of the upper limbs, as the result of the pharmacotherapy, changes in secretion and composition of saliva, inflammation of the temporomandibular joint and facial deformity. The study summarizes the available literature on the condition of the teeth and periodontal and oral hygiene in the course of JIA. The presence of diverse factors that modify the oral cavity, such as facial growth, functioning of salivary glands, or the supervision and care provided by adults, prevents clear identification if JIA leads to severe dental caries and periodontal disease. Despite conflicting results in studies concerning the clinical oral status, individuals with JIA require special attention regarding disease prevention and maintenance of oral health.
Vector nature of multi-soliton patterns in a passively mode-locked figure-eight fiber laser.
Ning, Qiu-Yi; Liu, Hao; Zheng, Xu-Wu; Yu, Wei; Luo, Ai-Ping; Huang, Xu-Guang; Luo, Zhi-Chao; Xu, Wen-Cheng; Xu, Shan-Hui; Yang, Zhong-Min
2014-05-19
The vector nature of multi-soliton dynamic patterns was investigated in a passively mode-locked figure-eight fiber laser based on the nonlinear amplifying loop mirror (NALM). By properly adjusting the cavity parameters such as the pump power level and intra-cavity polarization controllers (PCs), in addition to the fundamental vector soliton, various vector multi-soliton regimes were observed, such as the random static distribution of vector multiple solitons, vector soliton cluster, vector soliton flow, and the state of vector multiple solitons occupying the whole cavity. Both the polarization-locked vector solitons (PLVSs) and the polarization-rotating vector solitons (PRVSs) were observed for fundamental soliton and each type of multi-soliton patterns. The obtained results further reveal the fundamental physics of multi-soliton patterns and demonstrate that the figure-eight fiber lasers are indeed a good platform for investigating the vector nature of different soliton types.
NASA Astrophysics Data System (ADS)
Kovalevsky, Louis; Langley, Robin S.; Caro, Stephane
2016-05-01
Due to the high cost of experimental EMI measurements significant attention has been focused on numerical simulation. Classical methods such as Method of Moment or Finite Difference Time Domain are not well suited for this type of problem, as they require a fine discretisation of space and failed to take into account uncertainties. In this paper, the authors show that the Statistical Energy Analysis is well suited for this type of application. The SEA is a statistical approach employed to solve high frequency problems of electromagnetically reverberant cavities at a reduced computational cost. The key aspects of this approach are (i) to consider an ensemble of system that share the same gross parameter, and (ii) to avoid solving Maxwell's equations inside the cavity, using the power balance principle. The output is an estimate of the field magnitude distribution in each cavity. The method is applied on a typical aircraft structure.
Generation of large scale GHZ states with the interactions of photons and quantum-dot spins
NASA Astrophysics Data System (ADS)
Miao, Chun; Fang, Shu-Dong; Dong, Ping; Yang, Ming; Cao, Zhuo-Liang
2018-03-01
We present a deterministic scheme for generating large scale GHZ states in a cavity-quantum dot system. A singly charged quantum dot is embedded in a double-sided optical microcavity with partially reflective top and bottom mirrors. The GHZ-type Bell spin state can be created and two n-spin GHZ states can be perfectly fused to a 2n-spin GHZ state with the help of n ancilla single-photon pulses. The implementation of the current scheme only depends on the photon detection and its need not to operate multi-qubit gates and multi-qubit measurements. Discussions about the effect of the cavity loss, side leakage and exciton cavity coupling strength for the fidelity of generated states show that the fidelity can remain high enough by controlling system parameters. So the current scheme is simple and feasible in experiment.
Absence of Vacuum Induced Berry Phases without the Rotating Wave Approximation in Cavity QED
NASA Astrophysics Data System (ADS)
Larson, Jonas
2012-01-01
We revisit earlier studies on Berry phases suggested to appear in certain cavity QED settings. It has been especially argued that a nontrivial geometric phase is achievable even in the situation of no cavity photons. We, however, show that such results hinge on imposing the rotating wave approximation (RWA), while without the RWA no Berry phases occur in these schemes. A geometrical interpretation of our results is obtained by introducing semiclassical energy surfaces which in a simple way brings out the phase-space dynamics. With the RWA, a conical intersection between the surfaces emerges and encircling it gives rise to the Berry phase. Without the RWA, the conical intersection is absent and therefore the Berry phase vanishes. It is believed that this is a first example showing how the application of the RWA in the Jaynes-Cummings model may lead to false conclusions, regardless of the mutual strengths between the system parameters.
NASA Astrophysics Data System (ADS)
Wang, Ping; Zha, Hao; Syratchev, Igor; Shi, Jiaru; Chen, Huaibi
2017-11-01
We present an X-band high-power pulse compression system for a klystron-based compact linear collider. In this system design, one rf power unit comprises two klystrons, a correction cavity chain, and two SLAC Energy Doubler (SLED)-type X-band pulse compressors (SLEDX). An rf pulse passes the correction cavity chain, by which the pulse shape is modified. The rf pulse is then equally split into two ways, each deploying a SLEDX to compress the rf power. Each SLEDX produces a short pulse with a length of 244 ns and a peak power of 217 MW to power four accelerating structures. With the help of phase-to-amplitude modulation, the pulse has a dedicated shape to compensate for the beam loading effect in accelerating structures. The layout of this system and the rf design and parameters of the new pulse compressor are described in this work.
Sound absorption of a finite micro-perforated panel backed by a shunted loudspeaker.
Tao, Jiancheng; Jing, Ruixiang; Qiu, Xiaojun
2014-01-01
Deep back cavities are usually required for micro-perforated panel (MPP) constructions to achieve good low frequency absorption. To overcome the problem, a close-box loudspeaker with a shunted circuit is proposed to substitute the back wall of the cavity of the MPP constructions to constitute a composite absorber. Based on the equivalent circuit model, the acoustic impedance of the shunted loudspeaker is formulated first, then a prediction model of the sound absorption of the MPP backed by shunted loudspeaker is developed by employing the mode solution of a finite size MPP coupled by an air cavity with an impendence back wall. The MPP absorbs mid to high frequency sound, and with properly adjusted electrical parameters of its shunted circuit, the shunted loudspeaker absorbs low frequency sound, so the composite absorber provides a compact solution to broadband sound control. Numerical simulations and experiments are carried out to validate the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shyu, Lih-Horng; Chang, Chung-Ping; Wang, Yung-Cheng
Fabry-Perot interferometer is often used for the micro-displacement, because of its common optical path structure being insensitive to the environmental disturbances. Recently, the folded Fabry-Perot interferometer has been investigated for displacement measurements in large ranges. The advantages of a folded Fabry-Perot interferometer are insensitive to the tilt angle and higher optical resolution. But the design of the optical cavity has become more and more complicated. For this reason, the intensity loss in the cavity will be an important parameter for the distribution of the interferometric intensity. To obtain a more accurate result of such interferometer utilized for displacement measurements, themore » intensity loss of the cavity in the fabricated folded Fabry-Perot interferometer and the modified equation of the folded Fabry-Perot interferometer will be described. According to the theoretical and experimental results, the presented model is available for the analysis of displacement measurements by a folded Fabry-Perot interferometer.« less
NASA Astrophysics Data System (ADS)
Fan, C.; Tian, Y.; Wang, Z. Q.; Nie, J. K.; Wang, G. K.; Liu, X. S.
2017-06-01
In view of the noise feature and service environment of urban power substations, this paper explores the idea of compound impedance, fills some porous sound-absorption material in the first resonance cavity of the double-resonance sound-absorption material, and designs a new-type of composite acoustic board. We conduct some acoustic characterizations according to the standard test of impedance tube, and research on the influence of assembly order, the thickness and area density of the filling material, and back cavity on material sound-absorption performance. The results show that the new-type of acoustic board consisting of aluminum fibrous material as inner structure, micro-porous board as outer structure, and polyester-filled space between them, has good sound-absorption performance for low frequency and full frequency noise. When the thickness, area density of filling material and thickness of back cavity increase, the sound absorption coefficient curve peak will move toward low frequency.
NASA Astrophysics Data System (ADS)
Lyubimova, T. P.; Zubova, N. A.
2017-06-01
This paper presents the results of numerical simulation of the Soret-induced convection of ternary mixture in the rectangular cavity elongated in horizontal direction in gravity field. The cavity has rigid impermeable boundaries. It is heated from the bellow and undergoes translational linearly polarized vibrations of finite amplitude and frequency in the horizontal direction. The problem is solved by finite difference method in the framework of full unsteady non-linear approach. The procedure of diagonalization of the molecular diffusion coefficient matrix is applied, allowing to eliminate cross-diffusion components in the equations and to reduce the number of the governing parameters. The calculations are performed for model ternary mixture with positive separation ratios of the components. The data on the vibration effect on temporal evolution of instantaneous and average fields and integral characteristics of the flow and heat and mass transfer at different levels of gravity are obtained.
Signatures of the A2 term in ultrastrongly coupled oscillators
NASA Astrophysics Data System (ADS)
Tufarelli, Tommaso; McEnery, K. R.; Maier, S. A.; Kim, M. S.
2015-06-01
We study a bosonic matter excitation coupled to a single-mode cavity field via electric dipole. Counter-rotating and A2 terms are included in the interaction model, A being the vector potential of the cavity field. In the ultrastrong coupling regime the vacuum of the bare modes is no longer the ground state of the Hamiltonian and contains a nonzero population of polaritons, the true normal modes of the system. If the parameters of the model satisfy the Thomas-Reiche-Kuhn sum rule, we find that the two polaritons are always equally populated. We show how this prediction could be tested in a quenching experiment, by rapidly switching on the coupling and analyzing the radiation emitted by the cavity. A refinement of the model based on a microscopic minimal coupling Hamiltonian is also provided, and its consequences on our results are characterized analytically.
From cat's eyes to disjoint multicellular natural convection flow in tall tilted cavities
NASA Astrophysics Data System (ADS)
Nicolás, Alfredo; Báez, Elsa; Bermúdez, Blanca
2011-07-01
Numerical results of two-dimensional natural convection problems, in air-filled tall cavities, are reported to study the change of the cat's eyes flow as some parameters vary, the aspect ratio A and the angle of inclination ϕ of the cavity, with the Rayleigh number Ra mostly fixed; explicitly, the range of the variation is given by 12⩽A⩽20 and 0°⩽ϕ⩽270°; about Ra=1.1×10. A novelty contribution of this work is the transition from the cat's eyes changes, as A varies, to a disjoint multicellular flow, as ϕ varies. These flows may be modeled by the unsteady Boussinesq approximation in stream function and vorticity variables which is solved with a fixed point iterative process applied to the nonlinear elliptic system that results after time discretization. The validation of the results relies on mesh size and time-step independence studies.
All-optical on-chip sensor for high refractive index sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yazhao; Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft; Salemink, H. W. M., E-mail: H.Salemink@science.ru.nl
2015-01-19
A highly sensitive sensor design based on two-dimensional photonic crystal cavity is demonstrated. The geometric structure of the cavity is modified to gain a high quality factor, which enables a sensitive refractive index sensing. A group of slots with optimized parameters is created in the cavity. The existence of the slots enhances the light-matter interactions between confined photons and analytes. The interactions result in large wavelength shifts in the transmission spectra and are denoted by high sensitivities. Experiments show that a change in refractive index of Δn ∼ 0.12 between water and oil sample 1 causes a spectral shift of 23.5 nm, andmore » the spectral shift between two oil samples is 5.1 nm for Δn ∼ 0.039. These results are in good agreement with simulations, which are 21.3 and 7.39 nm for the same index changes.« less
NASA Astrophysics Data System (ADS)
Bridel-Bertomeu, Thibault; Gicquel, L. Y. M.; Staffelbach, G.
2017-06-01
Rotating cavity flows are essential components of industrial applications but their dynamics are still not fully understood when it comes to the relation between the fluid organization and monitored pressure fluctuations. From computer hard-drives to turbo-pumps of space launchers, designed devices often produce flow oscillations that can either destroy the component prematurely or produce too much noise. In such a context, large scale dynamics of high Reynolds number rotor/stator cavities need better understanding especially at the flow limit-cycle or associated statistically stationary state. In particular, the influence of curvature as well as cavity aspect ratio on the large scale organization and flow stability at a fixed rotating disc Reynolds number is fundamental. To probe such flows, wall-resolved large eddy simulation is applied to two different rotor/stator cylindrical cavities and one annular cavity. Validation of the predictions proves the method to be suited and to capture the disc boundary layer patterns reported in the literature. It is then shown that in complement to these disc boundary layer analyses, at the limit-cycle the rotating flows exhibit characteristic patterns at mid-height in the homogeneous core pointing the importance of large scale features. Indeed, dynamic modal decomposition reveals that the entire flow dynamics are driven by only a handful of atomic modes whose combination links the oscillatory patterns observed in the boundary layers as well as in the core of the cavity. These fluctuations form macro-structures, born in the unstable stator boundary layer and extending through the homogeneous inviscid core to the rotating disc boundary layer, causing its instability under some conditions. More importantly, the macro-structures significantly differ depending on the configuration pointing the need for deeper understanding of the influence of geometrical parameters as well as operating conditions.
Irie, M; Suzuki, K; Watts, D C
2004-11-01
The purpose of this study was to evaluate the performance of both single and double applications of (Adper Prompt L-Pop) self-etching dental adhesive, when used with three classes of light-activated restorative materials, in comparison to the performance of each restorative system adhesive. Evaluation parameters to be considered for the adhesive systems were (a) immediate marginal adaptation (or gap formation) in tooth cavities, (b) free setting shrinkage-strain determined by the immediate marginal gap-width in a non-bonding Teflon cavity, and (c) their immediate shear bond-strengths to enamel and to dentin. The maximum marginal gap-width and the opposing-width (if any) in the tooth cavities and in the Teflon cavities were measured immediately (3 min) after light-activation. The shear bond-strengths to enamel and to dentin were also measured at 3 min. For light-activated restorative materials during early setting (<3 min), application of Adper Prompt L-Pop exhibited generally superior marginal adaptation to most system adhesives. But there was no additional benefit from double application. The marginal-gaps in tooth cavities and the marginal-gaps in Teflon cavities were highly correlated (r = 0.86-0.89, p < 0.02-0.01). For enamel and dentin shear bond-strengths, there were no significant differences between single and double applications, for all materials tested except Toughwell and Z 250 with enamel. Single application of a self-etch adhesive was a feasible and beneficial alternative to system adhesives for several classes of restorative. Marginal gap-widths in tooth cavities correlated more strongly with free shrinkage-strain magnitudes than with bond-strengths to tooth structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Vincent W.C.; Yang Zhining; Zhang Wuzhe
This study compared the oral cavity dose between the routine 7-beam intensity-modulated radiotherapy (IMRT) beam arrangement and 2 other 7-beam IMRT with the conventional radiotherapy beam arrangements in the treatment of nasopharyngeal carcinoma (NPC). Ten NPC patients treated by the 7-beam routine IMRT technique (IMRT-7R) between April 2009 and June 2009 were recruited. Using the same computed tomography data, target information, and dose constraints for all the contoured structures, 2 IMRT plans with alternative beam arrangements (IMRT-7M and IMRT-7P) by avoiding the anterior facial beam and 1 conventional radiotherapy plan (CONRT) were computed using the Pinnacle treatment planning system. Dose-volumemore » histograms were generated for the planning target volumes (PTVs) and oral cavity from which the dose parameters and the conformity index of the PTV were recorded for dosimetric comparisons among the plans with different beam arrangements. The dose distributions to the PTVs were similar among the 3 IMRT beam arrangements, whereas the differences were significant between IMRT-7R and CONRT plans. For the oral cavity dose, the 3 IMRT beam arrangements did not show significant difference. Compared with IMRT-7R, CONRT plan showed a significantly lower mean dose, V30 and V-40, whereas the V-60 was significantly higher. The 2 suggested alternative beam arrangements did not significantly reduce the oral cavity dose. The impact of varying the beam angles in IMRT of NPC did not give noticeable effect on the target and oral cavity. Compared with IMRT, the 2-D conventional radiotherapy irradiated a greater high-dose volume in the oral cavity.« less
Use of conventional tomography to evaluate changes in the nasal cavity with rapid palatal expansion.
Palaisa, Jacqueline; Ngan, Peter; Martin, Chris; Razmus, Thomas
2007-10-01
The relationship between nasal airway resistance and the use of rapid palatal expansion appliances remains controversial. The purpose of this study was to use conventional tomography to determine the anatomical changes in the nasal cavity after maxillary expansion. Nineteen patients (aged 8-15 years) were included in the study. Tomograms were taken before expansion (T1), immediately after expansion (T2), and 3 months after expansion (T3). Areas for the left and right anterior, middle, and posterior nasal cavity and total volume were calculated by using the computer software, AutoCAD LT 2005. Data were analyzed with paired t tests. Significant increases in area were found in the anterior nasal cavity from T1 to T2 (0.85 +/- 1.19 cm2, 11.7% increase), T2 to T3 (1.18 +/- 1.2 cm2, 22.2% increase), and T1 to T3 (2.6 +/- 1.7 cm2, 35.7% increase) (P <.05). Similar increases were found in the middle and posterior nasal cavity. Significant increases in volume were found from T1 to T2 (2.1 +/- 2.7 cm3, 10.7% increase), T2 to T3 (4.9 +/- 2.3 cm3, 22.6% increase), and T1 to T3 (6.99 +/- 2.45 cm3, 27.8% increase). No significant differences were found in the area or the volume of the left and right sides of the nasal cavity. Individual variations in response to maxillary expansion were large for most of the parameters tested. These data suggest that rapid palatal expansion is usually accompanied by increases in area and volume of the nasal cavity, and these changes remain stable 3 months after maxillary expansion.
Fishelson, Lev; Baldwin, Carole C; Hastings, Philip A
2012-06-01
The present study describes the distribution of taste buds and teeth in the oropharyngeal cavity of 13 species of adult (18-60 mm SL) Starksiini fishes inhabiting subtidal waters of the Neotropical region. Four types of taste buds described previously in other fish groups were observed within the oropharyngeal cavity, of which type I, situated on prominent protruding papillae, is the most common. The number of taste buds in this cavity varies considerably, ranging from ca. 202 in Starksia lepicoelia to ca. 770 in S. sluiteri. In all the studied species, taste buds are more numerous on the posterior (160-396) than on the anterior (42-294) part of the oropharyngeal cavity. The presence of different numbers of taste buds in different Starksiini species of the same standard length suggests that numbers of taste buds are not directly correlated with size and may be species-specific. Teeth are found on the premaxilla, dentary, vomer, palatine (in some species) and the upper and lower pharyngeal jaws (third pharyngobranchials and fifth ceratobranchials, respectively); the form and number of teeth and taste buds on each of these sites differs among the various species of Starksiini and between them and closely related species of the labrisomid tribes Labrisomini, Mnierpini, and Paraclinini. The results thus suggest potential systematic value in certain features of the oropharyngeal cavity for blenniiform fishes. It is also shown that benthic-feeding omnivorous fishes have higher densities of taste buds than piscivorous fishes. A possible correlation among numbers of taste buds, their positions in the oropharyngeal cavity, and other parameters is discussed. Copyright © 2012 Wiley Periodicals, Inc.
Identification of internal properties of fibres and micro-swimmers
NASA Astrophysics Data System (ADS)
Plouraboué, Franck; Thiam, E. Ibrahima; Delmotte, Blaise; Climent, Eric
2017-01-01
In this paper, we address the identifiability of constitutive parameters of passive or active micro-swimmers. We first present a general framework for describing fibres or micro-swimmers using a bead-model description. Using a kinematic constraint formulation to describe fibres, flagellum or cilia, we find explicit linear relationship between elastic constitutive parameters and generalized velocities from computing contact forces. This linear formulation then permits one to address explicitly identifiability conditions and solve for parameter identification. We show that both active forcing and passive parameters are both identifiable independently but not simultaneously. We also provide unbiased estimators for generalized elastic parameters in the presence of Langevin-like forcing with Gaussian noise using a Bayesian approach. These theoretical results are illustrated in various configurations showing the efficiency of the proposed approach for direct parameter identification. The convergence of the proposed estimators is successfully tested numerically.
JUPITER PROJECT - JOINT UNIVERSAL PARAMETER IDENTIFICATION AND EVALUATION OF RELIABILITY
The JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) project builds on the technology of two widely used codes for sensitivity analysis, data assessment, calibration, and uncertainty analysis of environmental models: PEST and UCODE.
NASA Astrophysics Data System (ADS)
Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Schweiger, Gustav; Ostendorf, Andreas
2012-04-01
A novel emerging technique for the label-free analysis of nanoparticles and biomolecules in liquid fluids using optical micro cavity resonance of whispering-gallery-type modes is being developed.A scheme based on polymer microspheres fixed by adhesive on the evanescence wave coupling element has been used. We demonstrated that the only spectral shift can't be used for identification of biological agents by developed approach. So neural network classifier for biological agents and micro/nano particles classification has been developed. The developed technique is the following. While tuning the laser wavelength images were recorded as avi-file. All sequences were broken into single frames and the location of the resonance was allocated in each frame. The image was filtered for noise reduction and integrated over two coordinates for evaluation of integrated energy of a measured signal. As input data normalized resonance shift of whispering-gallery modes and the relative efficiency of whispering-gallery modes excitation were used. Other parameters such as polarization of excited light, "center of gravity" of a resonance spectra etc. are also tested as input data for probabilistic neural network. After network designing and training we estimated the accuracy of classification. The classification of antibiotics such as penicillin and cephasolin have been performed with the accuracy of not less 97 %. Developed techniques can be used for lab-on-chip sensor based diagnostic tools as for identification of different biological molecules, e.g. proteins, oligonucleotides, oligosaccharides, lipids, small molecules, viral particles, cells and for dynamics of a delivery of medicines to bodies.
Fabrication of elliptical SRF cavities
NASA Astrophysics Data System (ADS)
Singer, W.
2017-03-01
The technological and metallurgical requirements of material for high-gradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10 μg g-1. The hydrogen content should be kept below 2 μg g-1 to prevent degradation of the quality factor (Q-value) under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Traditional and alternative cavity mechanical fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and electron beam welding. The welding of half-cells is a delicate procedure, requiring intermediate cleaning steps and a careful choice of weld parameters to achieve full penetration of the joints. A challenge for a welded construction is the tight mechanical and electrical tolerances. These can be maintained by a combination of mechanical and radio-frequency measurements on half-cells and by careful tracking of weld shrinkage. The main aspects of quality assurance and quality management are mentioned. The experiences of 800 cavities produced for the European XFEL are presented. Another cavity fabrication approach is slicing discs from the ingot and producing cavities by deep drawing and electron beam welding. Accelerating gradients at the level of 35-45 MV m-1 can be achieved by applying electrochemical polishing treatment. The single-crystal option (grain boundary free) is discussed. It seems that in this case, high performance can be achieved by a simplified treatment procedure. Fabrication of the elliptical resonators from a seamless pipe as an alternative is briefly described. This technology has yielded good performance and is already available for multi-cell structures.
NASA Astrophysics Data System (ADS)
Smith, D. L.; Mazarakis, M. G.; Skogmo, P.; Bennett, L. F.; Olson, W. R.; George, M.; Harden, M. J.; Turman, B. N.; Moya, S. A.; Henderson, J. L.
The Recirculating Linear Accelerator (RLA) is returning to operation with a new relativistic electron beam (REB) injector and a modified accelerating cavity. Upon completion of our pulsed-power test program, we will capture the injected beam on an Ion Focussed Regime (IFR) guiding channel in either a spiral or a closed racetrack drift tube. The relativistic beam will recirculate for four passes through two accelerating cavities, in phase with the ringing cavity voltage, and increase to 8--12 MeV before being extracted. We designed the METGLAS ribbon-wound core, inductively isolated, four-stage injector to produce beam parameters of 4 MeV, 10--20 kA, and 40--55 ns FWHM. The three-line radial cavity is being modified to improve the 1-MV accelerating pulse shape while an advanced cavity design study is in progress. This is a continuation of the Sandia National Laboratory program to develop compact, high-voltage gradient, linear induction accelerators. The RLA concept is based on guiding an injected REB with an IFR channel. This channel is formed from a plasma created with a low energy electron beam inside a beam line containing about 2 x 10(exp -4) Torr of argon. The REB is injected onto the IFR channel and is transported down the beamline through a water dielectric accelerating cavity based on the ET-2 design. If the round-tip path of the beam matches the period of the cavity, the REB can be further accelerated by the ringing waveform on every subsequent pass. We have installed the new REB injector because we need a higher amplitude, longer duration, flat-topped pulse shape with a colder beam than that produced by the previous injector. We made extensive use of computer simulations in the form of network solver and electrostatic field stress analysis codes to aid in the design and modifications for the new RLA. The pulsed-power performance of the RLA injector and cavity and the associated driving hardware are discussed.
NASA Astrophysics Data System (ADS)
Chu, Zhongyi; Ma, Ye; Hou, Yueyang; Wang, Fengwen
2017-02-01
This paper presents a novel identification method for the intact inertial parameters of an unknown object in space captured by a manipulator in a space robotic system. With strong dynamic and kinematic coupling existing in the robotic system, the inertial parameter identification of the unknown object is essential for the ideal control strategy based on changes in the attitude and trajectory of the space robot via capturing operations. Conventional studies merely refer to the principle and theory of identification, and an error analysis process of identification is deficient for a practical scenario. To solve this issue, an analysis of the effect of errors on identification is illustrated first, and the accumulation of measurement or estimation errors causing poor identification precision is demonstrated. Meanwhile, a modified identification equation incorporating the contact force, as well as the force/torque of the end-effector, is proposed to weaken the accumulation of errors and improve the identification accuracy. Furthermore, considering a severe disturbance condition caused by various measured noises, the hybrid immune algorithm, Recursive Least Squares and Affine Projection Sign Algorithm (RLS-APSA), is employed to decode the modified identification equation to ensure a stable identification property. Finally, to verify the validity of the proposed identification method, the co-simulation of ADAMS-MATLAB is implemented by multi-degree of freedom models of a space robotic system, and the numerical results show a precise and stable identification performance, which is able to guarantee the execution of aerospace operations and prevent failed control strategies.
Synthesis of coupled resonator optical waveguides by cavity aggregation.
Muñoz, Pascual; Doménech, José David; Capmany, José
2010-01-18
In this paper, the layer aggregation method is applied to coupled resonator optical waveguides. Starting from the frequency transfer function, the method yields the coupling constants between the resonators. The convergence of the algorithm developed is examined and the related parameters discussed.
Permutation entropy with vector embedding delays
NASA Astrophysics Data System (ADS)
Little, Douglas J.; Kane, Deb M.
2017-12-01
Permutation entropy (PE) is a statistic used widely for the detection of structure within a time series. Embedding delay times at which the PE is reduced are characteristic timescales for which such structure exists. Here, a generalized scheme is investigated where embedding delays are represented by vectors rather than scalars, permitting PE to be calculated over a (D -1 ) -dimensional space, where D is the embedding dimension. This scheme is applied to numerically generated noise, sine wave and logistic map series, and experimental data sets taken from a vertical-cavity surface emitting laser exhibiting temporally localized pulse structures within the round-trip time of the laser cavity. Results are visualized as PE maps as a function of embedding delay, with low PE values indicating combinations of embedding delays where correlation structure is present. It is demonstrated that vector embedding delays enable identification of structure that is ambiguous or masked, when the embedding delay is constrained to scalar form.
Active mode locking of quantum cascade lasers in an external ring cavity.
Revin, D G; Hemingway, M; Wang, Y; Cockburn, J W; Belyanin, A
2016-05-05
Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents.
Active mode locking of quantum cascade lasers in an external ring cavity
Revin, D. G.; Hemingway, M.; Wang, Y.; Cockburn, J. W.; Belyanin, A.
2016-01-01
Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents. PMID:27147409
Submucosal tunneling techniques: current perspectives.
Kobara, Hideki; Mori, Hirohito; Rafiq, Kazi; Fujihara, Shintaro; Nishiyama, Noriko; Ayaki, Maki; Yachida, Tatsuo; Matsunaga, Tae; Tani, Johji; Miyoshi, Hisaaki; Yoneyama, Hirohito; Morishita, Asahiro; Oryu, Makoto; Iwama, Hisakazu; Masaki, Tsutomu
2014-01-01
Advances in endoscopic submucosal dissection include a submucosal tunneling technique, involving the introduction of tunnels into the submucosa. These tunnels permit safer offset entry into the peritoneal cavity for natural orifice transluminal endoscopic surgery. Technical advantages include the visual identification of the layers of the gut, blood vessels, and subepithelial tumors. The creation of a mucosal flap that minimizes air and fluid leakage into the extraluminal cavity can enhance the safety and efficacy of surgery. This submucosal tunneling technique was adapted for esophageal myotomy, culminating in its application to patients with achalasia. This method, known as per oral endoscopic myotomy, has opened up the new discipline of submucosal endoscopic surgery. Other clinical applications of the submucosal tunneling technique include its use in the removal of gastrointestinal subepithelial tumors and endomicroscopy for the diagnosis of functional and motility disorders. This review suggests that the submucosal tunneling technique, involving a mucosal safety flap, can have potential values for future endoscopic developments.
NASA Astrophysics Data System (ADS)
Wang, Xu; Bi, Fengrong; Du, Haiping
2018-05-01
This paper aims to develop an 5-degree-of-freedom driver and seating system model for optimal vibration control. A new method for identification of the driver seating system parameters from experimental vibration measurement has been developed. The parameter sensitivity analysis has been conducted considering the random excitation frequency and system parameter uncertainty. The most and least sensitive system parameters for the transmissibility ratio have been identified. The optimised PID controllers have been developed to reduce the driver's body vibration.
Finite-time master-slave synchronization and parameter identification for uncertain Lurie systems.
Wang, Tianbo; Zhao, Shouwei; Zhou, Wuneng; Yu, Weiqin
2014-07-01
This paper investigates the finite-time master-slave synchronization and parameter identification problem for uncertain Lurie systems based on the finite-time stability theory and the adaptive control method. The finite-time master-slave synchronization means that the state of a slave system follows with that of a master system in finite time, which is more reasonable than the asymptotical synchronization in applications. The uncertainties include the unknown parameters and noise disturbances. An adaptive controller and update laws which ensures the synchronization and parameter identification to be realized in finite time are constructed. Finally, two numerical examples are given to show the effectiveness of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Dental Evidence in Forensic Identification - An Overview, Methodology and Present Status.
Krishan, Kewal; Kanchan, Tanuj; Garg, Arun K
2015-01-01
Forensic odontology is primarily concerned with the use of teeth and oral structures for identification in a legal context. Various forensic odontology techniques help in the identification of the human remains in incidents such as terrorists' attacks, airplane, train and road accidents, fires, mass murders, and natural disasters such as tsunamis, earth quakes and floods, etc. (Disaster Victim Identification-DVI). Dental structures are the hardest and well protected structures in the body. These structures resist decomposition and high temperatures and are among the last ones to disintegrate after death. The principal basis of the dental identification lies in the fact that no two oral cavities are alike and the teeth are unique to an individual. The dental evidence of the deceased recovered from the scene of crime/occurrence is compared with the ante-mortem records for identification. Dental features such as tooth morphology, variations in shape and size, restorations, pathologies, missing tooth, wear patterns, crowding of the teeth, colour and position of the tooth, rotations and other peculiar dental anomalies give every individual a unique identity. In absence of ante-mortem dental records for comparison, the teeth can help in the determination of age, sex, race/ethnicity, habits, occupations, etc. which can give further clues regarding the identity of the individuals. This piece of writing gives an overview of dental evidence, its use in forensic identification and its limitations.
Dental Evidence in Forensic Identification – An Overview, Methodology and Present Status
Krishan, Kewal; Kanchan, Tanuj; Garg, Arun K
2015-01-01
Forensic odontology is primarily concerned with the use of teeth and oral structures for identification in a legal context. Various forensic odontology techniques help in the identification of the human remains in incidents such as terrorists’ attacks, airplane, train and road accidents, fires, mass murders, and natural disasters such as tsunamis, earth quakes and floods, etc. (Disaster Victim Identification-DVI). Dental structures are the hardest and well protected structures in the body. These structures resist decomposition and high temperatures and are among the last ones to disintegrate after death. The principal basis of the dental identification lies in the fact that no two oral cavities are alike and the teeth are unique to an individual. The dental evidence of the deceased recovered from the scene of crime/occurrence is compared with the ante-mortem records for identification. Dental features such as tooth morphology, variations in shape and size, restorations, pathologies, missing tooth, wear patterns, crowding of the teeth, colour and position of the tooth, rotations and other peculiar dental anomalies give every individual a unique identity. In absence of ante-mortem dental records for comparison, the teeth can help in the determination of age, sex, race/ethnicity, habits, occupations, etc. which can give further clues regarding the identity of the individuals. This piece of writing gives an overview of dental evidence, its use in forensic identification and its limitations. PMID:26312096
Improving substructure identification accuracy of shear structures using virtual control system
NASA Astrophysics Data System (ADS)
Zhang, Dongyu; Yang, Yang; Wang, Tingqiang; Li, Hui
2018-02-01
Substructure identification is a powerful tool to identify the parameters of a complex structure. Previously, the authors developed an inductive substructure identification method for shear structures. The identification error analysis showed that the identification accuracy of this method is significantly influenced by the magnitudes of two key structural responses near a certain frequency; if these responses are unfavorable, the method cannot provide accurate estimation results. In this paper, a novel method is proposed to improve the substructure identification accuracy by introducing a virtual control system (VCS) into the structure. A virtual control system is a self-balanced system, which consists of some control devices and a set of self-balanced forces. The self-balanced forces counterbalance the forces that the control devices apply on the structure. The control devices are combined with the structure to form a controlled structure used to replace the original structure in the substructure identification; and the self-balance forces are treated as known external excitations to the controlled structure. By optimally tuning the VCS’s parameters, the dynamic characteristics of the controlled structure can be changed such that the original structural responses become more favorable for the substructure identification and, thus, the identification accuracy is improved. A numerical example of 6-story shear structure is utilized to verify the effectiveness of the VCS based controlled substructure identification method. Finally, shake table tests are conducted on a 3-story structural model to verify the efficacy of the VCS to enhance the identification accuracy of the structural parameters.
Kumar, Sudhir; Deshpande, Deepak D; Nahum, Alan E
2016-04-07
Cavity theory is fundamental to understanding and predicting dosimeter response. Conventional cavity theories have been shown to be consistent with one another by deriving the electron (+positron) and photon fluence spectra with the FLURZnrc user-code (EGSnrc Monte-Carlo system) in large volumes under quasi-CPE for photon beams of 1 MeV and 10 MeV in three materials (water, aluminium and copper) and then using these fluence spectra to evaluate and then inter-compare the Bragg-Gray, Spencer-Attix and 'large photon' 'cavity integrals'. The behaviour of the 'Spencer-Attix dose' (aka restricted cema), D S-A(▵), in a 1-MeV photon field in water has been investigated for a wide range of values of the cavity-size parameter ▵: D S-A(▵) decreases far below the Monte-Carlo dose (D MC) for ▵ greater than ≈ 30 keV due to secondary electrons with starting energies below ▵ not being 'counted'. We show that for a quasi-scatter-free geometry (D S-A(▵)/D MC) is closely equal to the proportion of energy transferred to Compton electrons with initial (kinetic) energies above ▵, derived from the Klein-Nishina (K-N) differential cross section. (D S-A(▵)/D MC) can be used to estimate the maximum size of a detector behaving as a Bragg-Gray cavity in a photon-irradiated medium as a function of photon-beam quality (under quasi CPE) e.g. a typical air-filled ion chamber is 'Bragg-Gray' at (monoenergetic) beam energies ⩾260 keV. Finally, by varying the density of a silicon cavity (of 2.26 mm diameter and 2.0 mm thickness) in water, the response of different cavity 'sizes' was simulated; the Monte-Carlo-derived ratio D w/D Si for 6 MV and 15 MV photons varied from very close to the Spencer-Attix value at 'gas' densities, agreed well with Burlin cavity theory as ρ increased, and approached large photon behaviour for ρ ≈ 10 g cm(-3). The estimate of ▵ for the Si cavity was improved by incorporating a Monte-Carlo-derived correction for electron 'detours'. Excellent agreement was obtained between the Burlin 'd' factor for the Si cavity and D S-A(▵)/D MC at different (detour-corrected) ▵, thereby suggesting a further application for the D S-A(▵)/D MC ratio.
Scheinker, Alexander; Baily, Scott; Young, Daniel; ...
2014-08-01
In this work, an implementation of a recently developed model-independent adaptive control scheme, for tuning uncertain and time varying systems, is demonstrated on the Los Alamos linear particle accelerator. The main benefits of the algorithm are its simplicity, ability to handle an arbitrary number of components without increased complexity, and the approach is extremely robust to measurement noise, a property which is both analytically proven and demonstrated in the experiments performed. We report on the application of this algorithm for simultaneous tuning of two buncher radio frequency (RF) cavities, in order to maximize beam acceptance into the accelerating electromagnetic fieldmore » cavities of the machine, with the tuning based only on a noisy measurement of the surviving beam current downstream from the two bunching cavities. The algorithm automatically responds to arbitrary phase shift of the cavity phases, automatically re-tuning the cavity settings and maximizing beam acceptance. Because it is model independent it can be utilized for continuous adaptation to time-variation of a large system, such as due to thermal drift, or damage to components, in which the remaining, functional components would be automatically re-tuned to compensate for the failing ones. We start by discussing the general model-independent adaptive scheme and how it may be digitally applied to a large class of multi-parameter uncertain systems, and then present our experimental results.« less
NASA Astrophysics Data System (ADS)
Schöttl, Peter; Bern, Gregor; van Rooyen, De Wet; Heimsath, Anna; Fluri, Thomas; Nitz, Peter
2017-06-01
A transient simulation methodology for cavity receivers for Solar Tower Central Receiver Systems with molten salt as heat transfer fluid is described. Absorbed solar radiation is modeled with ray tracing and a sky discretization approach to reduce computational effort. Solar radiation re-distribution in the cavity as well as thermal radiation exchange are modeled based on view factors, which are also calculated with ray tracing. An analytical approach is used to represent convective heat transfer in the cavity. Heat transfer fluid flow is simulated with a discrete tube model, where the boundary conditions at the outer tube surface mainly depend on inputs from the previously mentioned modeling aspects. A specific focus is put on the integration of optical and thermo-hydraulic models. Furthermore, aiming point and control strategies are described, which are used during the transient performance assessment. Eventually, the developed simulation methodology is used for the optimization of the aperture opening size of a PS10-like reference scenario with cavity receiver and heliostat field. The objective function is based on the cumulative gain of one representative day. Results include optimized aperture opening size, transient receiver characteristics and benefits of the implemented aiming point strategy compared to a single aiming point approach. Future work will include annual simulations, cost assessment and optimization of a larger range of receiver parameters.
LEM Characterization of Synthetic Jet Actuators Driven by Piezoelectric Element: A Review
Chiatto, Matteo; Capuano, Francesco; Coppola, Gennaro; de Luca, Luigi
2017-01-01
In the last decades, Synthetic jet actuators have gained much interest among the flow control techniques due to their short response time, high jet velocity and absence of traditional piping, which matches the requirements of reduced size and low weight. A synthetic jet is generated by the diaphragm oscillation (generally driven by a piezoelectric element) in a relatively small cavity, producing periodic cavity pressure variations associated with cavity volume changes. The pressured air exhausts through an orifice, converting diaphragm electrodynamic energy into jet kinetic energy. This review paper considers the development of various Lumped-Element Models (LEMs) as practical tools to design and manufacture the actuators. LEMs can quickly predict device performances such as the frequency response in terms of diaphragm displacement, cavity pressure and jet velocity, as well as the efficiency of energy conversion of input Joule power into useful kinetic power of air jet. The actuator performance is also analyzed by varying typical geometric parameters such as cavity height and orifice diameter and length, through a suited dimensionless form of the governing equations. A comprehensive and detailed physical modeling aimed to evaluate the device efficiency is introduced, shedding light on the different stages involved in the process. Overall, the influence of the coupling degree of the two oscillators, the diaphragm and the Helmholtz frequency, on the device performance is discussed throughout the paper. PMID:28587141
NASA Astrophysics Data System (ADS)
Chen, Jianjun; Duan, Yingni; Zhong, Zhuqiang
2018-06-01
A chaotic system is constructed on the basis of vertical-cavity surface-emitting lasers (VCSELs), where a slave VCSEL subject to chaotic optical injection (COI) from a master VCSEL with the external feedback. The complex degree (CD) and time-delay signature (TDS) of chaotic signals generated by this chaotic system are investigated numerically via permutation entropy (PE) and self-correlation function (SF) methods, respectively. The results show that, compared with master VCSEL subject to optical feedback, complex-enhanced chaotic signals with TDS suppression can be achieved for S-VCSEL subject to COI. Meanwhile, the influences of several controllable parameters on the evolution maps of CD of chaotic signals are carefully considered. It is shown that the CD of chaotic signals for S-VCSEL is always higher than that for M-VCSEL due to the CIO effect. The TDS of chaotic signals can be significantly suppressed by choosing the reasonable parameters in this system. Furthermore, TDS suppression and high CD chaos can be obtained simultaneously in the specific parameter ranges. The results confirm that this chaotic system may effectively improve the security of a chaos-based communication scheme.
NASA Astrophysics Data System (ADS)
Chen, Jianjun; Duan, Yingni; Zhong, Zhuqiang
2018-03-01
A chaotic system is constructed on the basis of vertical-cavity surface-emitting lasers (VCSELs), where a slave VCSEL subject to chaotic optical injection (COI) from a master VCSEL with the external feedback. The complex degree (CD) and time-delay signature (TDS) of chaotic signals generated by this chaotic system are investigated numerically via permutation entropy (PE) and self-correlation function (SF) methods, respectively. The results show that, compared with master VCSEL subject to optical feedback, complex-enhanced chaotic signals with TDS suppression can be achieved for S-VCSEL subject to COI. Meanwhile, the influences of several controllable parameters on the evolution maps of CD of chaotic signals are carefully considered. It is shown that the CD of chaotic signals for S-VCSEL is always higher than that for M-VCSEL due to the CIO effect. The TDS of chaotic signals can be significantly suppressed by choosing the reasonable parameters in this system. Furthermore, TDS suppression and high CD chaos can be obtained simultaneously in the specific parameter ranges. The results confirm that this chaotic system may effectively improve the security of a chaos-based communication scheme.
Azevedo, João L M C; Azevedo, Otavio C; Sorbello, Albino A; Becker, Otavio M; Hypolito, Otavio; Freire, Dalmer; Miyahira, Susana; Guedes, Afonso; Azevedo, Glicia C
2009-12-01
The aim of this work was to establish reliable parameters of the correct position of the Veress needle in the peritoneal cavity during creation of pneumoperitoneum. The Veress needle was inserted into the peritoneal cavity of 100 selected patients, and a carbon-dioxide flow rate of 1.2 L/min and a maximum pressure of 12 mm Hg were established. Intraperitoneal pressure (IP) and the volume of gas injected (VG) were recorded at the beginning of insufflation and at every 20 seconds. Correlations were established for pressure and volume in function of time. Values of IP and VG were predicted at 1, 2, 3, and 4 minutes of insufflation, by applying the following formulas: IP = 2.3083 + 0.0266 x time +8.3 x 10(-5) x time(2) - 2.44 x 10(-7) x time(3); and VG = 0.813 + 0.0157 x time. A strong correlation was observed between IP and preestablished time points during creation of the pneumoperitoneum, as well as between VG and preestablished time points during creation of the pneumoperitoneum, with a coefficient of determination of 0.8011 for IP and of 0.9604 for VG. The predicted values were as follows: 1 minute = 4.15; 2 minutes = 6.27; 3 minutes = 8.36; and 4 minutes = 10.10 for IP (mm Hg); and 1 minute = 1.12; 2 minutes = 2.07; 3 minutes = 3.01; and 4 minutes = 3.95 for VG (L). Values of IP and VG at given time points during insufflation for creation of the pneumoperitoneum, using the Veress needle, can be effective parameters to determine whether the needle is correctly positioned in the peritoneal cavity.
Experimental investigation on frequency characteristics of plasma synthetic jets
NASA Astrophysics Data System (ADS)
Zong, Haohua; Kotsonis, Marios
2017-11-01
The performance of a two-electrode plasma synthetic jet actuator (PSJA) is investigated for a wide range of dimensionless actuation frequencies ( f*) using high-speed phase-locked particle imaging velocimetry measurements. The jet-induced velocity fields in the axisymmetric plane are measured during both transient and steady working stages of the PSJA. When f* increases, the jet duration time (Tjet) is reduced, while the peak suction velocity (Us) increases consistently. Three integral parameters including the total expelled gas mass, impulse, and issued mechanical energy also decline considerably with increasing frequency, which is shown to relate to both the reduced cavity density and the decreasing jet duration. Theoretical analysis reveals that the mean cavity density decreases monotonically with the square root of the discharge frequency. The decreasing rate is inversely proportional to a thermal cut-off frequency ( fc, 210 Hz for the current study), which scales with the convective heat transfer coefficient between the actuator cavity walls and the cavity gas, as well as the area of the cavity internal surface. In the time-averaged velocity fields, the jet centreline velocity (U¯ c) exhibits a local maximum in the axial coordinate. The nondimensional maximum centreline velocity reduces with increasing frequency of operation. The jet spreading rate of the plasma synthetic jets (PSJs) decreases from 0.14 to 0.09 with increasing frequency. During the transient working stage of a PSJ, the exit velocity trace elapses 20 successive actuation cycles to stabilize. In contrast to the exit velocity, approximately 130 cycles are needed for the mean cavity density/temperature to reach steady values.
A Digital Phase Lock Loop for an External Cavity Diode Laser
NASA Astrophysics Data System (ADS)
Wang, Xiao-Long; Tao, Tian-Jiong; Cheng, Bing; Wu, Bin; Xu, Yun-Fei; Wang, Zhao-Ying; Lin, Qiang
2011-08-01
A digital optical phase lock loop (OPLL) is implemented to synchronize the frequency and phase between two external cavity diode lasers (ECDL), generating Raman pulses for atom interferometry. The setup involves all-digital phase detection and a programmable digital proportional-integral-derivative (PID) loop in locking. The lock generates a narrow beat-note linewidth below 1 Hz and low phase-noise of 0.03rad2 between the master and slave ECDLs. The lock proves to be stable and robust, and all the locking parameters can be set and optimized on a computer interface with convenience, making the lock adaptable to various setups of laser systems.
Ristić, Davor; Mazzola, Maurizio; Chiappini, Andrea; Rasoloniaina, Alphonse; Féron, Patrice; Ramponi, Roberta; Righini, Giancarlo C; Cibiel, Gilles; Ivanda, Mile; Ferrari, Maurizio
2014-09-01
The modal dispersion of a whispering gallery mode (WGM) resonator is a very important parameter for use in all nonlinear optics applications. In order to tailor the WGM modal dispersion of a microsphere, we have coated a silica microsphere with a high-refractive-index coating in order to study its effect on the WGM modal dispersion. We used Er(3+) ions as a probe for a modal dispersion assessment. We found that, by varying the coating thickness, the geometrical cavity dispersion can be used to shift overall modal dispersion in a very wide range in both the normal and anomalous dispersion regime.
Multi-wavelength VCSEL arrays using high-contrast gratings
NASA Astrophysics Data System (ADS)
Haglund, Erik; Gustavsson, Johan S.; Sorin, Wayne V.; Bengtsson, Jörgen; Fattal, David; Haglund, Àsa; Tan, Michael; Larsson, Anders
2017-02-01
The use of a high-contrast grating (HCG) as the top mirror in a vertical-cavity surface-emitting laser (VCSEL) allows for setting the resonance wavelength by the grating parameters in a post-epitaxial growth fabrication process. Using this technique, we demonstrate electrically driven multi-wavelength VCSEL arrays at 980 nm wavelength. The VCSELs are GaAs-based and the suspended GaAs HCGs were fabricated using electron-beam lithography, dry etching and selective removal of an InGaP sacrificial layer. The air-coupled cavity design enabled 4-channel arrays with 5 nm wavelength spacing and sub-mA threshold currents thanks to the high HCG reflectance.
Dark localized structures in a cavity filled with a left-handed material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tlidi, Mustapha; Kockaert, Pascal; Gelens, Lendert
2011-07-15
We consider a nonlinear passive optical cavity filled with left-handed and right-handed materials and driven by a coherent injected beam. We assume that both left-handed and right-handed materials possess a Kerr focusing type of nonlinearity. We show that close to the zero-diffraction regime, high-order diffraction allows us to stabilize dark localized structures in this device. These structures consist of dips in the transverse profile of the intracavity field and do not exist without high-order diffraction. We analyze the snaking bifurcation diagram associated with these structures. Finally, a realistic estimation of the model parameters is provided.
Microwave magnetic field detection based on Cs vapor cell in free space
NASA Astrophysics Data System (ADS)
Liu, Xiaochi; Jiang, Zhiyuan; Qu, Jifeng; Hou, Dong; Huang, Xianhe; Sun, Fuyu
2018-06-01
In this study, we demonstrate the direct measurement of a microwave (MW) magnetic field through the detection of atomic Rabi resonances with Cs vapor cells in a free-space low-Q cavity. The line shape (amplitude and linewidth) of detected Rabi resonances is investigated versus several experimental parameters such as the laser intensity, cell buffer gas pressure, and cell length. The specially designed low-Q cavity creates a suitable MW environment allowing easy testing of different vapor cells with distinct properties. Obtained results are analyzed to optimize the performances of a MW magnetic field sensor based on the present atom-based detection technique.
Heat transfer prediction in a square porous medium using artificial neural network
NASA Astrophysics Data System (ADS)
Ahamad, N. Ameer; Athani, Abdulgaphur; Badruddin, Irfan Anjum
2018-05-01
Heat transfer in porous media has been investigated extensively because of its applications in various important fields. Neural network approach is applied to analyze steady two dimensional free convection flows through a porous medium fixed in a square cavity. The backpropagation neural network is trained and used to predict the heat transfer. The results are compared with available information in the literature. It is found that the heat transfer increases with increase in Rayleigh number. It is further found that the local Nusselt number decreases along the height of cavity. The neural network is found to predict the heat transfer behavior accurately for given parameters.
PIV in the two phases of hydrodynamic cavitation in a venturi type section
NASA Astrophysics Data System (ADS)
Fuzier, Sylvie; Coudert, Sébastien; Coutier Delgosha, Olivier
2012-11-01
The presence of cavitation can affect the performance of turbomachinery. Attached sheet cavities on the blades induce modifications of flow dynamics and turbulence properties. This phenomenon is studied here in a configuration of 2D flow in a venturi type section. Images of the bubbles as well as of the light emitted by fluorescent particles placed in the liquid are recorded simultaneously. Velocities of the bubbles and of the liquid phase are obtained by PIV. The slip velocity is analyzed function of the number of cavitation and other physical parameters. Different levels of turbulence are correlated with different bubble structures in the dipahasic cavity.
Seismic wave interaction with underground cavities
NASA Astrophysics Data System (ADS)
Schneider, Felix M.; Esterhazy, Sofi; Perugia, Ilaria; Bokelmann, Götz
2016-04-01
Realization of the future Comprehensive Nuclear Test Ban Treaty (CTBT) will require ensuring its compliance, making the CTBT a prime example of forensic seismology. Following indications of a nuclear explosion obtained on the basis of the (IMS) monitoring network further evidence needs to be sought at the location of the suspicious event. For such an On-Site Inspection (OSI) at a possible nuclear test site the treaty lists several techniques that can be carried out by the inspection team, including aftershock monitoring and the conduction of active seismic surveys. While those techniques are already well established, a third group of methods labeled as "resonance seismometry" is less well defined and needs further elaboration. A prime structural target that is expected to be present as a remnant of an underground nuclear explosion is a cavity at the location and depth the bomb was fired. Originally "resonance seismometry" referred to resonant seismic emission of the cavity within the medium that could be stimulated by an incident seismic wave of the right frequency and observed as peaks in the spectrum of seismic stations in the vicinity of the cavity. However, it is not yet clear which are the conditions for which resonant emissions of the cavity could be observed. In order to define distance-, frequency- and amplitude ranges at which resonant emissions could be observed we study the interaction of seismic waves with underground cavities. As a generic model for possible resonances we use a spherical acoustic cavity in an elastic full-space. To solve the forward problem for the full elastic wave field around acoustic spherical inclusions, we implemented an analytical solution (Korneev, 1993). This yields the possibility of generating scattering cross-sections, amplitude spectrums and synthetic seismograms for plane incident waves. Here, we focus on the questions whether or not we can expect resonant responses in the wave field scattered from the cavity. We show results for varying input parameters such as dimensions, densities, and seismic velocities in and around the cavity, in order to discuss the applicability of such observations during an OSI.
Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication and Characterization
NASA Astrophysics Data System (ADS)
Geels, Randall Scott
The theory, design, fabrication, and testing of vertical-cavity surface-emitting lasers (VCSELs) is explored in depth. The design of the distributed Bragg reflector (DBR) mirrors is thoroughly treated and both analytic and numerical approaches for computing the reflectivity are covered. The electrical properties of the DBR mirrors are also considered and graded interfaces are found to be critical in reducing the series voltage drop in the mirrors. Thickness variations due to growth rate uncertainties are considered and the permissible thickness inaccuracies are discussed. Layer thickness variations of several percent can be tolerated without large changes in the threshold current. The growth of VCSELs by molecular beam epitaxy (MBE) is described in detail as is the device processing technology for broad area as well as small area devices. Results from numerous devices are reported. Broad area in-plane lasers were used to characterize the material and determine the internal parameters. Broad area VCSELs were fabricated to determine the characteristics of the VCSEL cavity. Small area VCSELs were fabricated and extensively tested. Measured and derived parameters from small area devices include: threshold current (~0.7 mA), peak output power (>3 mW), maximum operation temperature (>110^ circC), output power at 100^ circC (~0.4 mW), and linewidth (85 MHz). The near field, far field, and polarization characteristics were also measured.