Sample records for cavity perturbation method

  1. Apparatus and method for microwave processing of materials using field-perturbing tool

    DOEpatents

    Tucker, Denise A.; Fathi, Zakaryae; Lauf, Robert J.

    2001-01-01

    A variable frequency microwave heating apparatus designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity for heating or other selected applications. A field-perturbing tool is disposed within the cavity to perturb the microwave power distribution in order to apply a desired level of microwave power to the workpiece.

  2. Microwave measurement of the mass of frozen hydrogen pellets

    DOEpatents

    Talanker, Vera; Greenwald, Martin

    1990-01-01

    A nondestructive apparatus and method for measuring the mass of a moving object, based on the perturbation of the dielectric character of a resonant microwave cavity caused by the object passing through the cavity. An oscillator circuit is formed with a resonant cavity in a positive feedback loop of a microwave power amplifier. The moving object perturbs the resonant characteristics of the cavity causing a shift in the operating frequency of the oscillator proportional to the ratio of the pellet volume to the volume of the cavity. Signals from the cavity oscillation are mixed with a local oscillator. Then the IF frequency from the mixer is measured thereby providing a direct measurement of pellet mass based upon known physical properties and relationships. This apparatus and method is particularly adapted for the measurement of frozen hydrogen pellets.

  3. Fluid and microfluidic dielectric measurement using a cavity perturbation method at microwave C-band

    NASA Astrophysics Data System (ADS)

    Asghari, Aref

    The utilization of cavity perturbation technique in dielectric property measurement of fluid and micro-fluid is investigated in this thesis to better assist the ever-growing needs of science and technology for analysis and characterization of such materials in various applications from genetics, MEMS devices, to consumer product industry. Development of different techniques for measuring complex dielectric properties of fluid and micro-fluids at Giga (10 9)-Hz frequencies is of significant importance as their usage is increasingly coupled with infrared and microwave electromagnetic wavelengths. Conventional cavity perturbation method could provide a sensitive and convenient system for measuring fluids of low (e.g., epsilonr <10) permittivity that meets the assumptions of negligible perturbation to the electromagnetic field distribution in the cavity. Developing a methodology that uses conventional cavity perturbation method that is however suitable for a sensitive, accurate, and reliable measurement of high permittivity polar liquids at microwave C-band is the goal in the current work. Systematic studies are carried out, using de-ionic (DI) water as test specimens, to evaluate the influence of sample's container, volume, dimension, and temperature on the sensitivity and reliability of microwave dielectric measurement. The cavity perturbation measurement of DI water in a 1 mm diameter capillary tube showed well-defined temperature dependence of dielectric permittivity and loss coefficients of water. Observation of a permittivity peak in temperature range tested at 4GHz around -10 °C implies an important relaxation in low temperatures at microwave C-band, which corresponds to a critical slowing down of polarization reorientation in crystallized (icy) H2O. Numerical simulations using Finite Element Analysis (FEA) COMSOL suites were conducted to established the optimum amount of liquid water for cavity perturbation testing at microwave C-band (in perfectly conducting condition). The results showed at TE103 mode the tube D4= 4mm diameter (272 muL liquid volume capacity) provides the best measurement sensitivity in terms of resonant shift and low loss while for TE105 the 2mm 68 (muL liquid volume capacity) tube is the most promising. The experimental results yielded a shape factor of around 2 and 1 for epsilon' and epsilon", respectively. The examination of epsilon' and epsilon" interdependence using Kramers-Kronig concept showed the permittivity loss values is 4 times more dependent to the quality factor of resonant peak than permittivity. On the other hand, the dielectric permittivity dependence to resonant frequency was calculated around 2 times bigger than dielectric loss which signifies the importance of epsilon" in high loss liquid measurement by the cavity resonant perturbation method.

  4. Weakly modulated silicon-dioxide-cladding gratings for silicon waveguide Fabry-Pérot cavities.

    PubMed

    Grote, Richard R; Driscoll, Jeffrey B; Biris, Claudiu G; Panoiu, Nicolae C; Osgood, Richard M

    2011-12-19

    We show by theory and experiment that silicon-dioxide-cladding gratings for Fabry-Pérot cavities on silicon-on-insulator channel ("wire") waveguides provide a low-refractive-index perturbation, which is required for several important integrated photonics components. The underlying refractive index perturbation of these gratings is significantly weaker than that of analogous silicon gratings, leading to finer control of the coupling coefficient κ. Our Fabry-Pérot cavities are designed using the transfer-matrix method (TMM) in conjunction with the finite element method (FEM) for calculating the effective index of each waveguide section. Device parameters such as coupling coefficient, κ, Bragg mirror stop band, Bragg mirror reflectivity, and quality factor Q are examined via TMM modeling. Devices are fabricated with representative values of distributed Bragg reflector lengths, cavity lengths, and propagation losses. The measured transmission spectra show excellent agreement with the FEM/TMM calculations.

  5. A systematic Monte Carlo study of secondary electron fluence perturbation in clinical proton beams (70-250 MeV) for cylindrical and spherical ion chambers.

    PubMed

    Verhaegen, F; Palmans, H

    2001-10-01

    Current dosimetry protocols for clinical protons do not take into account any secondary electron fluence perturbation in ion chambers. In this work, we performed a systematic study of secondary electron fluence perturbation factors for spherical and cylindrical ion chambers in proton beams (70-250 MeV). The electron fluence perturbation factor, pe, was calculated using Monte Carlo transport of protons and secondary electrons. The influence of proton energy, cavity wall material (graphite, water, A150, PMMA, polystyrene), cavity radius, cavity wall thickness and positioning depth in water is studied. The influence of inelastic nuclear proton interactions is briefly discussed. It was found that pe depends on wall material; the largest values for pe were obtained for ion chambers with A150 walls (pe=1.009), the smallest values for graphite walls. The perturbation factor was found to be largely independent of proton energy. A slight decrease of pe with cavity radius was obtained, especially for low energy protons. The wall thickness was found to have no effect on pe in the range studied (0.025-0.1 cm). The depth of the cavity in a water phantom was also found to have an insignificant effect on pe. Based on the results in the paper for spherical and cylindrical ion chambers, a method to calculate pe for a thimble ion chamber is presented. The results presented in this paper for cylindrical and spherical ion chambers are in contradiction to the calculated electron fluence perturbation factors for planar ion chambers in the paper by Casnati et al.

  6. Eigenmode computation of cavities with perturbed geometry using matrix perturbation methods applied on generalized eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Gorgizadeh, Shahnam; Flisgen, Thomas; van Rienen, Ursula

    2018-07-01

    Generalized eigenvalue problems are standard problems in computational sciences. They may arise in electromagnetic fields from the discretization of the Helmholtz equation by for example the finite element method (FEM). Geometrical perturbations of the structure under concern lead to a new generalized eigenvalue problems with different system matrices. Geometrical perturbations may arise by manufacturing tolerances, harsh operating conditions or during shape optimization. Directly solving the eigenvalue problem for each perturbation is computationally costly. The perturbed eigenpairs can be approximated using eigenpair derivatives. Two common approaches for the calculation of eigenpair derivatives, namely modal superposition method and direct algebraic methods, are discussed in this paper. Based on the direct algebraic methods an iterative algorithm is developed for efficiently calculating the eigenvalues and eigenvectors of the perturbed geometry from the eigenvalues and eigenvectors of the unperturbed geometry.

  7. Perturbed Partial Cavity Drag Reduction at High Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Makiharju, Simo; Elbing, Brian; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2010-11-01

    Ventilated partial cavities were investigated at Reynolds numbers to 80 million. These cavities could be suitable for friction drag reduction on ocean going vessels and thereby lead to environmental and economical benefits. The test model was a 3.05 m wide by 12.9 m long flat plate, with a 0.18 m backward-facing step and a cavity-terminating beach, which had an adjustable slope, tilt and height. The step and beach trapped a ventilated partial cavity over the longitudinal mid-section of the model. Large-scale flow perturbations, mimicking the effect of ambient ocean waves were investigated. For the conditions tested a cavity could be maintained under perturbed flow conditions when the gas flux supplied was greater than the minimum required to maintain a cavity under steady conditions, with larger perturbations requiring more excess gas flux to maintain the cavity. High-speed video was used to observe the unsteady three dimensional cavity closure, the overall cavity shape, and the cavity oscillations. Cavities with friction drag reduction exceeding 95% were attained at optimal conditions. A simplified energy cost-benefit analysis of partial cavity drag reduction was also performed. The results suggest that PCDR could potentially lead to energy savings.

  8. A system for measuring complex dielectric properties of thin films at submillimeter wavelengths using an open hemispherical cavity and a vector network analyzer.

    PubMed

    Rahman, Rezwanur; Taylor, P C; Scales, John A

    2013-08-01

    Quasi-optical (QO) methods of dielectric spectroscopy are well established in the millimeter and submillimeter frequency bands. These methods exploit standing wave structure in the sample produced by a transmitted Gaussian beam to achieve accurate, low-noise measurement of the complex permittivity of the sample [e.g., J. A. Scales and M. Batzle, Appl. Phys. Lett. 88, 062906 (2006); R. N. Clarke and C. B. Rosenberg, J. Phys. E 15, 9 (1982); T. M. Hirovnen, P. Vainikainen, A. Lozowski, and A. V. Raisanen, IEEE Trans. Instrum. Meas. 45, 780 (1996)]. In effect the sample itself becomes a low-Q cavity. On the other hand, for optically thin samples (films of thickness much less than a wavelength) or extremely low loss samples (loss tangents below 10(-5)) the QO approach tends to break down due to loss of signal. In such a case it is useful to put the sample in a high-Q cavity and measure the perturbation of the cavity modes. Provided that the average mode frequency divided by the shift in mode frequency is less than the Q (quality factor) of the mode, then the perturbation should be resolvable. Cavity perturbation techniques are not new, but there are technological difficulties in working in the millimeter/submillimeter wave region. In this paper we will show applications of cavity perturbation to the dielectric characterization of semi-conductor thin films of the type used in the manufacture of photovoltaics in the 100 and 350 GHz range. We measured the complex optical constants of hot-wire chemical deposition grown 1-μm thick amorphous silicon (a-Si:H) film on borosilicate glass substrate. The real part of the refractive index and dielectric constant of the glass-substrate varies from frequency-independent to linearly frequency-dependent. We also see power-law behavior of the frequency-dependent optical conductivity from 316 GHz (9.48 cm(-1)) down to 104 GHz (3.12 cm(-1)).

  9. SU-E-T-280: Reconstructed Rectal Wall Dose Map-Based Verification of Rectal Dose Sparing Effect According to Rectum Definition Methods and Dose Perturbation by Air Cavity in Endo-Rectal Balloon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J; Research Institute of Biomedical Engineering, The Catholic University of Korea, Seoul; Park, H

    Purpose: Dosimetric effect and discrepancy according to the rectum definition methods and dose perturbation by air cavity in an endo-rectal balloon (ERB) were verified using rectal-wall (Rwall) dose maps considering systematic errors in dose optimization and calculation accuracy in intensity-modulated radiation treatment (IMRT) for prostate cancer patients. Methods: When the inflated ERB having average diameter of 4.5 cm and air volume of 100 cc is used for patient, Rwall doses were predicted by pencil-beam convolution (PBC), anisotropic analytic algorithm (AAA), and AcurosXB (AXB) with material assignment function. The errors of dose optimization and calculation by separating air cavity from themore » whole rectum (Rwhole) were verified with measured rectal doses. The Rwall doses affected by the dose perturbation of air cavity were evaluated using a featured rectal phantom allowing insert of rolled-up gafchromic films and glass rod detectors placed along the rectum perimeter. Inner and outer Rwall doses were verified with reconstructed predicted rectal wall dose maps. Dose errors and extent at dose levels were evaluated with estimated rectal toxicity. Results: While AXB showed insignificant difference of target dose coverage, Rwall doses underestimated by up to 20% in dose optimization for the Rwhole than Rwall at all dose range except for the maximum dose. As dose optimization for Rwall was applied, the Rwall doses presented dose error less than 3% between dose calculation algorithm except for overestimation of maximum rectal dose up to 5% in PBC. Dose optimization for Rwhole caused dose difference of Rwall especially at intermediate doses. Conclusion: Dose optimization for Rwall could be suggested for more accurate prediction of rectal wall dose prediction and dose perturbation effect by air cavity in IMRT for prostate cancer. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP) (Grant No. 200900420)« less

  10. A system for measuring complex dielectric properties of thin films at submillimeter wavelengths using an open hemispherical cavity and a vector network analyzer

    NASA Astrophysics Data System (ADS)

    Rahman, Rezwanur; Taylor, P. C.; Scales, John A.

    2013-08-01

    Quasi-optical (QO) methods of dielectric spectroscopy are well established in the millimeter and submillimeter frequency bands. These methods exploit standing wave structure in the sample produced by a transmitted Gaussian beam to achieve accurate, low-noise measurement of the complex permittivity of the sample [e.g., J. A. Scales and M. Batzle, Appl. Phys. Lett. 88, 062906 (2006);, 10.1063/1.2172403 R. N. Clarke and C. B. Rosenberg, J. Phys. E 15, 9 (1982);, 10.1088/0022-3735/15/1/002 T. M. Hirovnen, P. Vainikainen, A. Lozowski, and A. V. Raisanen, IEEE Trans. Instrum. Meas. 45, 780 (1996)], 10.1109/19.516996. In effect the sample itself becomes a low-Q cavity. On the other hand, for optically thin samples (films of thickness much less than a wavelength) or extremely low loss samples (loss tangents below 10-5) the QO approach tends to break down due to loss of signal. In such a case it is useful to put the sample in a high-Q cavity and measure the perturbation of the cavity modes. Provided that the average mode frequency divided by the shift in mode frequency is less than the Q (quality factor) of the mode, then the perturbation should be resolvable. Cavity perturbation techniques are not new, but there are technological difficulties in working in the millimeter/submillimeter wave region. In this paper we will show applications of cavity perturbation to the dielectric characterization of semi-conductor thin films of the type used in the manufacture of photovoltaics in the 100 and 350 GHz range. We measured the complex optical constants of hot-wire chemical deposition grown 1-μm thick amorphous silicon (a-Si:H) film on borosilicate glass substrate. The real part of the refractive index and dielectric constant of the glass-substrate varies from frequency-independent to linearly frequency-dependent. We also see power-law behavior of the frequency-dependent optical conductivity from 316 GHz (9.48 cm-1) down to 104 GHz (3.12 cm-1).

  11. Technique for Performing Dielectric Property Measurements at Microwave Frequencies

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Jackson, Henry W.

    2010-01-01

    A paper discusses the need to perform accurate dielectric property measurements on larger sized samples, particularly liquids at microwave frequencies. These types of measurements cannot be obtained using conventional cavity perturbation methods, particularly for liquids or powdered or granulated solids that require a surrounding container. To solve this problem, a model has been developed for the resonant frequency and quality factor of a cylindrical microwave cavity containing concentric cylindrical samples. This model can then be inverted to obtain the real and imaginary dielectric constants of the material of interest. This approach is based on using exact solutions to Maxwell s equations for the resonant properties of a cylindrical microwave cavity and also using the effective electrical conductivity of the cavity walls that is estimated from the measured empty cavity quality factor. This new approach calculates the complex resonant frequency and associated electromagnetic fields for a cylindrical microwave cavity with lossy walls that is loaded with concentric, axially aligned, lossy dielectric cylindrical samples. In this approach, the calculated complex resonant frequency, consisting of real and imaginary parts, is related to the experimentally measured quantities. Because this approach uses Maxwell's equations to determine the perturbed electromagnetic fields in the cavity with the material(s) inserted, one can calculate the expected wall losses using the fields for the loaded cavity rather than just depending on the value of the fields obtained from the empty cavity quality factor. These additional calculations provide a more accurate determination of the complex dielectric constant of the material being studied. The improved approach will be particularly important when working with larger samples or samples with larger dielectric constants that will further perturb the cavity electromagnetic fields. Also, this approach enables the ability to have a larger sample of interest, such as a liquid or powdered or granulated solid, inside a cylindrical container.

  12. Uniform batch processing using microwaves

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Jackson, Henry W. (Inventor)

    2000-01-01

    A microwave oven and microwave heating method generates microwaves within a cavity in a predetermined mode such that there is a known region of uniform microwave field. Samples placed in the region will then be heated in a relatively identical manner. Where perturbations induced by the samples are significant, samples are arranged in a symmetrical distribution so that the cumulative perturbation at each sample location is the same.

  13. Effects of cavity-cavity interaction on the entanglement dynamics of a generalized double Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Pandit, Mahasweta; Das, Sreetama; Singha Roy, Sudipto; Shekhar Dhar, Himadri; Sen, Ujjwal

    2018-02-01

    We consider a generalized double Jaynes-Cummings model consisting of two isolated two-level atoms, each contained in a lossless cavity that interact with each other through a controlled photon-hopping mechanism. We analytically show that at low values of such a mediated cavity-cavity interaction, the temporal evolution of entanglement between the atoms, under the effects of cavity perturbation, exhibits the well-known phenomenon of entanglement sudden death (ESD). Interestingly, for moderately large interaction values, a complete preclusion of ESD is achieved, irrespective of its value in the initial atomic state. Our results provide a model to sustain entanglement between two atomic qubits, under the adverse effect of cavity induced perturbation, by introducing a non-intrusive inter-cavity photon exchange that can be physically realized through cavity-QED setups in contemporary experiments.

  14. New approach to CT pixel-based photon dose calculations in heterogeneous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, J.W.; Henkelman, R.M.

    The effects of small cavities on dose in water and the dose in a homogeneous nonunit density medium illustrate that inhomogeneities do not act independently in photon dose perturbation, and serve as two constraints which should be satisfied by approximate methods of computed tomography (CT) pixel-based dose calculations. Current methods at best satisfy only one of the two constraints and show inadequacies in some intermediate geometries. We have developed an approximate method that satisfies both these constraints and treats much of the synergistic effect of multiple inhomogeneities correctly. The method calculates primary and first-scatter doses by first-order ray tracing withmore » the first-scatter contribution augmented by a component of second scatter that behaves like first scatter. Multiple-scatter dose perturbation values extracted from small cavity experiments are used in a function which approximates the small residual multiple-scatter dose. For a wide range of geometries tested, our method agrees very well with measurements. The average deviation is less than 2% with a maximum of 3%. In comparison, calculations based on existing methods can have errors larger than 10%.« less

  15. Measurement of the complex permittivity of microbubbles using a cavity perturbation technique for contrast enhanced ultra-wideband breast cancer detection.

    PubMed

    Ogunlade, Olumide; Chen, Yifan; Kosmas, Panagiotis

    2010-01-01

    Measurements of the complex permittivity of various concentrations of microbubbles in ethylene glycol liquid phantom have been carried out. A cavity perturbation technique using custom rectangular waveguide cavities, which are sensitive to small changes in the permittivity of the perturber, has been employed. Three different frequencies within the ultra-wideband (UWB) frequency spectrum have been used for the experiments. The results show that the concentration of the air filled microbubbles required to achieve a dielectric contrast as little as 2% exceeds the recommended dosage used in clinical ultrasound applications, by more than two orders of magnitude.

  16. Monochromatic radio frequency accelerating cavity

    DOEpatents

    Giordano, S.

    1984-02-09

    A radio frequency resonant cavity having a fundamental resonant frequency and characterized by being free of spurious modes. A plurality of spaced electrically conductive bars are arranged in a generally cylindrical array within the cavity to define a chamber between the bars and an outer solid cylindrically shaped wall of the cavity. A first and second plurality of mode perturbing rods are mounted in two groups at determined random locations to extend radially and axially into the cavity thereby to perturb spurious modes and cause their fields to extend through passageways between the bars and into the chamber. At least one body of lossy material is disposed within the chamber to damp all spurious modes that do extend into the chamber thereby enabling the cavity to operate free of undesired spurious modes.

  17. Monochromatic radio frequency accelerating cavity

    DOEpatents

    Giordano, Salvatore

    1985-01-01

    A radio frequency resonant cavity having a fundamental resonant frequency and characterized by being free of spurious modes. A plurality of spaced electrically conductive bars are arranged in a generally cylindrical array within the cavity to define a chamber between the bars and an outer solid cylindrically shaped wall of the cavity. A first and second plurality of mode perturbing rods are mounted in two groups at determined random locations to extend radially and axially into the cavity thereby to perturb spurious modes and cause their fields to extend through passageways between the bars and into the chamber. At least one body of lossy material is disposed within the chamber to damp all spurious modes that do extend into the chamber thereby enabling the cavity to operate free of undesired spurious modes.

  18. Quasi-continuous frequency tunable terahertz quantum cascade lasers with coupled cavity and integrated photonic lattice.

    PubMed

    Kundu, Iman; Dean, Paul; Valavanis, Alexander; Chen, Li; Li, Lianhe; Cunningham, John E; Linfield, Edmund H; Davies, A Giles

    2017-01-09

    We demonstrate quasi-continuous tuning of the emission frequency from coupled cavity terahertz frequency quantum cascade lasers. Such coupled cavity lasers comprise a lasing cavity and a tuning cavity which are optically coupled through a narrow air slit and are operated above and below the lasing threshold current, respectively. The emission frequency of these devices is determined by the Vernier resonance of longitudinal modes in the lasing and the tuning cavities, and can be tuned by applying an index perturbation in the tuning cavity. The spectral coverage of the coupled cavity devices have been increased by reducing the repetition frequency of the Vernier resonance and increasing the ratio of the free spectral ranges of the two cavities. A continuous tuning of the coupled cavity modes has been realized through an index perturbation of the lasing cavity itself by using wide electrical heating pulses at the tuning cavity and exploiting thermal conduction through the monolithic substrate. Single mode emission and discrete frequency tuning over a bandwidth of 100 GHz and a quasi-continuous frequency coverage of 7 GHz at 2.25 THz is demonstrated. An improvement in the side mode suppression and a continuous spectral coverage of 3 GHz is achieved without any degradation of output power by integrating a π-phase shifted photonic lattice in the laser cavity.

  19. Dielectric behavior of semiconductors at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Dahiya, Jai N.

    1992-01-01

    A cylindrical microwave resonant cavity in TE(011) (Transverse Electric) mode is used to study the dielectric relaxation in germanium and silicon. The samples of these semiconductors are used to perturb the electric field in the cavity, and Slater's perturbation equations are used to calculate the real and imaginary parts of the dielectric constant. The dielectric loss of germanium and silicon is studied at different temperatures, and Debye's equations are used to calculate the relaxation time at these temperatures.

  20. Remote Sensing of Salinity: The Dielectric Constant of Sea Water

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Lang, R.; Utku, C.; Tarkocin, Y.

    2011-01-01

    Global monitoring of sea surface salinity from space requires an accurate model for the dielectric constant of sea water as a function of salinity and temperature to characterize the emissivity of the surface. Measurements are being made at 1.413 GHz, the center frequency of the Aquarius radiometers, using a resonant cavity and the perturbation method. The cavity is operated in a transmission mode and immersed in a liquid bath to control temperature. Multiple measurements are made at each temperature and salinity. Error budgets indicate a relative accuracy for both real and imaginary parts of the dielectric constant of about 1%.

  1. Electromagnetic Scattering by Multiple Cavities Embedded in the Infinite 2D Ground Plane

    DTIC Science & Technology

    2014-07-01

    Electromagnetic Scattering by Multiple Cavities Embedded in the Infinite 2D Ground Plane Peijun Li 1 and Aihua W. Wood 2 1 Department of...of the electromagnetic wave scattering by multiple open cavities, which are embedded in an infinite two-dimensional ground plane . By introducing a...equation, variational formulation. I. INTRODUCTION A cavity is referred to as a local perturbation of the infinite ground plane . Given the cavity

  2. Quantum correlations in non-inertial cavity systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harsij, Zeynab, E-mail: z.harsij@ph.iut.ac.ir; Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir

    2016-10-15

    Non-inertial cavities are utilized to store and send Quantum Information between mode pairs. A two-cavity system is considered where one is inertial and the other accelerated in a finite time. Maclaurian series are applied to expand the related Bogoliubov coefficients and the problem is treated perturbatively. It is shown that Quantum Discord, which is a measure of quantumness of correlations, is degraded periodically. This is almost in agreement with previous results reached in accelerated systems where increment of acceleration decreases the degree of quantum correlations. As another finding of the study, it is explicitly shown that degradation of Quantum Discordmore » disappears when the state is in a single cavity which is accelerated for a finite time. This feature makes accelerating cavities useful instruments in Quantum Information Theory. - Highlights: • Non-inertial cavities are utilized to store and send information in Quantum Information Theory. • Cavities include boundary conditions which will protect the entanglement once it has been created. • The problem is treated perturbatively and the maclaurian series are applied to expand the related Bogoliubov coefficients. • When two cavities are considered degradation in the degree of quantum correlation happens and it appears periodically. • The interesting issue is when a single cavity is studied and the degradation in quantum correlations disappears.« less

  3. Discrete mode lasers for communications applications

    NASA Astrophysics Data System (ADS)

    Barry, L. P.; Herbert, C.; Jones, D.; Kaszubowska-Anandarajah, A.; Kelly, B.; O'Carroll, J.; Phelan, R.; Anandarajah, P.; Shi, K.; O'Gorman, J.

    2009-02-01

    The wavelength spectra of ridge waveguide Fabry Perot lasers can be modified by perturbing the effective refractive index of the guided mode along very small sections of the laser cavity. One way of locally perturbing the effective index of the lasing mode is by etching features into the ridge waveguide such that each feature has a small overlap with the transverse field profile of the unperturbed mode, consequently most of the light in the laser cavity is unaffected by these perturbations. A proportion of the propagating light is however reflected at the boundaries between the perturbed and the unperturbed sections. Suitable positioning of these interfaces allows the mirror loss spectrum of a Fabry Perot laser to be manipulated. In order to achieve single longitudinal mode emission, the mirror loss of a specified mode must be reduced below that of the other cavity modes. Here we review the latest results obtained from devices containing such features. These results clearly demonstrate that these devices exceed the specifications required for a number of FTTH and Datacomms applications, such as GEPON, LX4 and CWDM. As well as this we will also present initial results on the linewidth of these devices.

  4. Variational Perturbation Treatment of the Confined Hydrogen Atom

    ERIC Educational Resources Information Center

    Montgomery, H. E., Jr.

    2011-01-01

    The Schrodinger equation for the ground state of a hydrogen atom confined at the centre of an impenetrable cavity is treated using variational perturbation theory. Energies calculated from variational perturbation theory are comparable in accuracy to the results from a direct numerical solution. The goal of this exercise is to introduce the…

  5. Lunar electromagnetic scattering. 1: Propagation parallel to the diamagnetic cavity axis

    NASA Technical Reports Server (NTRS)

    Schwartz, K.; Schubert, G.

    1972-01-01

    An analytic theory is developed for the time dependent magnetic fields inside the Moon and the diamagnetic cavity when the interplanetary electromagnetic field fluctuation propagates parallel to the cavity axis. The Moon model has an electrical conductivity which is an arbitrary function of radius. The lunar cavity is modelled by a nonconducting cylinder extending infinitely far downstream. For frequencies less than about 50 Hz, the cavity is a cylindrical waveguide below cutoff. Thus, cavity field perturbations due to the Moon do not propagate down the cavity, but are instead attenuated with distance downstream from the Moon.

  6. Ideal quantum gas in an expanding cavity: nature of nonadiabatic force.

    PubMed

    Nakamura, K; Avazbaev, S K; Sobirov, Z A; Matrasulov, D U; Monnai, T

    2011-04-01

    We consider a quantum gas of noninteracting particles confined in the expanding cavity and investigate the nature of the nonadiabatic force which is generated from the gas and acts on the cavity wall. First, with use of the time-dependent canonical transformation, which transforms the expanding cavity to the nonexpanding one, we can define the force operator. Second, applying the perturbative theory, which works when the cavity wall begins to move at time origin, we find that the nonadiabatic force is quadratic in the wall velocity and thereby does not break the time-reversal symmetry, in contrast with general belief. Finally, using an assembly of the transitionless quantum states, we obtain the nonadiabatic force exactly. The exact result justifies the validity of both the definition of the force operator and the issue of the perturbative theory. The mysterious mechanism of nonadiabatic transition with the use of transitionless quantum states is also explained. The study is done for both cases of the hard- and soft-wall confinement with the time-dependent confining length. ©2011 American Physical Society

  7. Ionization chamber-based reference dosimetry of intensity modulated radiation beams.

    PubMed

    Bouchard, Hugo; Seuntjens, Jan

    2004-09-01

    The present paper addresses reference dose measurements using thimble ionization chambers for quality assurance in IMRT fields. In these radiation fields, detector fluence perturbation effects invalidate the application of open-field dosimetry protocol data for the derivation of absorbed dose to water from ionization chamber measurements. We define a correction factor C(Q)IMRT to correct the absorbed dose to water calibration coefficient N(D, w)Q for fluence perturbation effects in individual segments of an IMRT delivery and developed a calculation method to evaluate the factor. The method consists of precalculating, using accurate Monte Carlo techniques, ionization chamber, type-dependent cavity air dose, and in-phantom dose to water at the reference point for zero-width pencil beams as a function of position of the pencil beams impinging on the phantom surface. These precalculated kernels are convolved with the IMRT fluence distribution to arrive at the dose-to-water-dose-to-cavity air ratio [D(a)w (IMRT)] for IMRT fields and with a 10x10 cm2 open-field fluence to arrive at the same ratio D(a)w (Q) for the 10x10 cm2 reference field. The correction factor C(Q)IMRT is then calculated as the ratio of D(a)w (IMRT) and D(a)w (Q). The calculation method was experimentally validated and the magnitude of chamber correction factors in reference dose measurements in single static and dynamic IMRT fields was studied. The results show that, for thimble-type ionization chambers the correction factor in a single, realistic dynamic IMRT field can be of the order of 10% or more. We therefore propose that for accurate reference dosimetry of complete n-beam IMRT deliveries, ionization chamber fluence perturbation correction factors must explicitly be taken into account.

  8. Cavity Detection and Delineation Research. Report 5. Electromagnetic (Radar) Techniques Applied to Cavity Detection.

    DTIC Science & Technology

    1983-07-01

    tranverse lines, all of which overlapped test areas previously investigated by Technos. The lines were chosen to be representative of cavity areas and...cavities and may be con- sidered as competent rock for this site. It is interesting to note that amplitude perturbations do appear in the zone 95 to 100 ft...tunnels are man-made (regular in shape) and are in reasonably competent rock (not heavily fractured), the tunnel signature wiil be quite evident and

  9. Total body water measurements using resonant cavity perturbation techniques.

    PubMed

    Stone, Darren A; Robinson, Martin P

    2004-05-07

    A recent paper proposed a novel technique for determining the total body water (TBW) of patients suffering with abnormal hydration levels, using a resonant cavity perturbation method. Current techniques to measure TBW are limited by resolution and technical constraints. However, this new method involves measuring the dielectric properties of the body, by placing a subject in a large cavity resonator and measuring the subsequent change in its resonant frequency, fres and its Q-factor. Utilizing the relationship that water content correlates to these dielectric properties, it has been shown that the measured response of these parameters enables determination of TBW. Results are presented for a preliminary study using data estimated from anthropometric measurements, where volunteers were asked to lie and stand in an electromagnetic screened room, before and after drinking between 1 and 2 l of water, and in some cases, after voiding the bladder. Notable changes in the parameters were observed; fres showed a negative shift and Q was reduced. Preliminary calibration curves using estimated values of water content have been developed from these results, showing that for each subject the measured resonant frequency is a linear function of TBW. Because the gradients of these calibration curves correlate to the mass-to-height-ratio of the volunteers, it has proved that a system in which TBW can be unequivocally obtained is possible. Measured values of TBW have been determined using this new pilot-technique, and the values obtained correlate well with theoretical values of body water (r = 0.87) and resolution is very good (750 ml). The results obtained are measurable, repeatable and statistically significant. This leads to confidence in the integrity of the proposed technique.

  10. Total body water measurements using resonant cavity perturbation techniques

    NASA Astrophysics Data System (ADS)

    Stone, Darren A.; Robinson, Martin P.

    2004-05-01

    A recent paper proposed a novel technique for determining the total body water (TBW) of patients suffering with abnormal hydration levels, using a resonant cavity perturbation method. Current techniques to measure TBW are limited by resolution and technical constraints. However, this new method involves measuring the dielectric properties of the body, by placing a subject in a large cavity resonator and measuring the subsequent change in its resonant frequency, fres and its Q-factor. Utilizing the relationship that water content correlates to these dielectric properties, it has been shown that the measured response of these parameters enables determination of TBW. Results are presented for a preliminary study using data estimated from anthropometric measurements, where volunteers were asked to lie and stand in an electromagnetic screened room, before and after drinking between 1 and 2 l of water, and in some cases, after voiding the bladder. Notable changes in the parameters were observed; fres showed a negative shift and Q was reduced. Preliminary calibration curves using estimated values of water content have been developed from these results, showing that for each subject the measured resonant frequency is a linear function of TBW. Because the gradients of these calibration curves correlate to the mass-to-height-ratio of the volunteers, it has proved that a system in which TBW can be unequivocally obtained is possible. Measured values of TBW have been determined using this new pilot-technique, and the values obtained correlate well with theoretical values of body water (r = 0.87) and resolution is very good (750 ml). The results obtained are measurable, repeatable and statistically significant. This leads to confidence in the integrity of the proposed technique.

  11. Accurate ω-ψ Spectral Solution of the Singular Driven Cavity Problem

    NASA Astrophysics Data System (ADS)

    Auteri, F.; Quartapelle, L.; Vigevano, L.

    2002-08-01

    This article provides accurate spectral solutions of the driven cavity problem, calculated in the vorticity-stream function representation without smoothing the corner singularities—a prima facie impossible task. As in a recent benchmark spectral calculation by primitive variables of Botella and Peyret, closed-form contributions of the singular solution for both zero and finite Reynolds numbers are subtracted from the unknown of the problem tackled here numerically in biharmonic form. The method employed is based on a split approach to the vorticity and stream function equations, a Galerkin-Legendre approximation of the problem for the perturbation, and an evaluation of the nonlinear terms by Gauss-Legendre numerical integration. Results computed for Re=0, 100, and 1000 compare well with the benchmark steady solutions provided by the aforementioned collocation-Chebyshev projection method. The validity of the proposed singularity subtraction scheme for computing time-dependent solutions is also established.

  12. A Tester for Carbon Nanotube Mode Lockers

    NASA Astrophysics Data System (ADS)

    Song, Yong-Won; Yamashita, Shinji

    2007-05-01

    We propose and demonstrate a tester for laser pulsating operation of carbon nanotubes employing a circulator with the extra degree of freedom of the second port to access diversified nanotube samples. The nanotubes are deposited onto the end facet of a dummy optical fiber by spray method that guarantees simple sample loading along with the minimized perturbation of optimized laser cavity condition. Resultant optical spectra, autocorrelation traces and pulse train of the laser outputs with qualified samples are presented.

  13. A Comprehensive Investigation and Coupler Design for Higher-Order Modes in the BNL Energy Recovery Linear Accelerator

    NASA Astrophysics Data System (ADS)

    Marques, Carlos

    A next generation Energy Recovery Linac (ERL) is under development in the Collider-Accelerator Department at Brookhaven National Laboratory (BNL). This ERL uses a superconducting radio frequency (SFR) cavity to produce an electric field gradient ideal to accelerate charged particles. As with many accelerators, higher-order modes (HOMs) can be induced by a beam of charged particles traversing the linear accelerator cavity. The excitation of these modes can result in problematic single and multi-bunch effects and also produce undesirable heat loads to the cryogenic system. Understanding HOM prevalence and structure inside the accelerator cavity is crucial for devising a procedure for extracting HOM power and promoting excellent beam quality. In this work, a method was created to identify and characterize HOMs using a perturbation technique on a copper (Cu) cavity prototype of the BNL3 linac and a double lambda/4 crab cavity. Both analyses and correlation between simulated and measured results are shown. A coaxial to dual-ridge waveguide HOM coupler was designed, constructed and implemented to extract power from HOMs simultaneously making an evanescent fundamental mode for the BNL3 cavity. A full description of the design is given along with a simulated analysis of its performance. Comparison between previous HOM coupler designs as well as correspondence between simulation and measurement is also given.

  14. Novel High Cooperativity Photon-Magnon Cavity QED

    NASA Astrophysics Data System (ADS)

    Tobar, Michael; Bourhill, Jeremy; Kostylev, Nikita; G, Maxim; Creedon, Daniel

    Novel microwave cavities are presented, which couple photons and magnons in YIG spheres in a super- and ultra-strong way at around 20 mK in temperature. Few/Single photon couplings (or normal mode splitting, 2g) of more than 6 GHz at microwave frequencies are obtained. Types of cavities include multiple post reentrant cavities, which co-couple photons at different frequencies with a coupling greater that the free spectral range, as well as spherical loaded dielectric cavity resonators. In such cavities we show that the bare dielectric properties can be obtained by polarizing all magnon modes to high energy using a 7 Tesla magnet. We also show that at zero-field, collective effects of the spins significantly perturb the photon modes. Other effects like time-reversal symmetry breaking are observed.

  15. Determination of Dielectric Properties of Cryoprotective Agent Solutions with a Resonant Cavity for the Electromagnetic Rewarming in Cryopreservation.

    PubMed

    Pan, Jiaji; Shu, Zhiquan; Ren, Shen; Gao, Dayong

    2017-10-01

    In the rewarming process during cryopreservation, preventing ice recrystallization and thermal stress is important, especially for large tissues and organs. Uniform and rapid heating is essential in ameliorating the problem and maintaining the viability of cryopreserved biological samples. Currently, the most promising method is heating by application of electromagnetic (EM) waves, the effectiveness of which is dependent on the dielectric properties (DP) of the cryopreserved materials. In this work, the cavity perturbation method was adopted to measure the DP of cryoprotectant solutions. Based on the values of DP, the cryoprotectant solutions most amenable to EM heating can be identified. A system composed of a rectangular resonant cavity, a network analyzer, and a fiber optic temperature meter was implemented for the measurement. The DP of three cryoprotectant solutions during cooling to -80°C were measured and presented. The data can be used to optimize the rewarming process with the numerical method. The results show that a cryoprotectant solution consisting of 41% (w/v) dimethyl sulfoxide and 6% (w/v) polyvinylpyrrolidone has the highest dielectric loss for EM rewarming among the tested solutions. In addition, the developed DP measurement system could not only improve the EM heating in cryopreservation but also benefit hyperthermia or other therapies associated with EM waves.

  16. Multifunctional Material Systems for Reconfigurable Antennas in Superconfigurable Structures

    DTIC Science & Technology

    2016-01-05

    reconFig.d states of the antenna. A polarization-reconfigurable substrate-integrated waveguide ( SIW ) cavity-resonator slot antenna has also been...the automation and control. Fig. 36 Polarization-reconfigurable substrate-integrated waveguide ( SIW ) cavity-resonator slot antenna with a...22, 3833–3839, 2012. [3] Analysis of a Variable SIW Resonator Enabled by Dielectric Material Perturbations and Applications, Barrera, J.D. ; Huff

  17. Enhancing the sensitivity of mid-IR quantum cascade laser-based cavity-enhanced absorption spectroscopy using RF current perturbation.

    PubMed

    Manfred, Katherine M; Kirkbride, James M R; Ciaffoni, Luca; Peverall, Robert; Ritchie, Grant A D

    2014-12-15

    The sensitivity of mid-IR quantum cascade laser (QCL) off-axis cavity-enhanced absorption spectroscopy (CEAS), often limited by cavity mode structure and diffraction losses, was enhanced by applying a broadband RF noise to the laser current. A pump-probe measurement demonstrated that the addition of bandwidth-limited white noise effectively increased the laser linewidth, thereby reducing mode structure associated with CEAS. The broadband noise source offers a more sensitive, more robust alternative to applying single-frequency noise to the laser. Analysis of CEAS measurements of a CO(2) absorption feature at 1890  cm(-1) averaged over 100 ms yielded a minimum detectable absorption of 5.5×10(-3)  Hz(-1/2) in the presence of broadband RF perturbation, nearly a tenfold improvement over the unperturbed regime. The short acquisition time makes this technique suitable for breath applications requiring breath-by-breath gas concentration information.

  18. Near field optical probe for critical dimension measurements

    DOEpatents

    Stallard, Brian R.; Kaushik, Sumanth

    1999-01-01

    A resonant planar optical waveguide probe for measuring critical dimensions on an object in the range of 100 nm and below. The optical waveguide includes a central resonant cavity flanked by Bragg reflector layers with input and output means at either end. Light is supplied by a narrow bandwidth laser source. Light resonating in the cavity creates an evanescent electrical field. The object with the structures to be measured is translated past the resonant cavity. The refractive index contrasts presented by the structures perturb the field and cause variations in the intensity of the light in the cavity. The topography of the structures is determined from these variations.

  19. Photonic all-silicon microsensor for electromagnetic power in the microwave and millimeter-wave range

    NASA Astrophysics Data System (ADS)

    Rendina, Ivo; Bellucci, Marco; Cocorullo, Giuseppe; Della Corte, Francesco G.; Iodice, Mario

    2000-03-01

    A new type of non-perturbing electromagnetic power sensor for microwaves and millimeter-waves, based on the thermo- optical effect in a silicon interferometric etalon cavity is presented. The incident field power is partially dissipated into the all-silicon metal-less etalon, constituting the sensing element of the detector, so causing its temperature increase. This, in turn, induces the intensity modulation of a probe laser beam reflected by the cavity after a multiple beam interference process. The sensing element is directly connected to an optical fiber for remote interrogation, so avoiding the use of perturbing coaxial cables. The performances of such a new class of non-perturbing and wideband probes, in terms of sensitivity and resolution are discussed in detail. The experimental results concerning the characterization of a preliminary prototype sensor are presented and compared with theoretical data. The dependence of the sensor response on the electromagnetic frequency and on the sensing element characteristics is finally discussed.

  20. L-band Dielectric Constant Measurements of Seawater (Oral presentation and SMOS Poster)

    NASA Technical Reports Server (NTRS)

    Lang, Roger H.; Utku, Cuneyt; LeVine, David M.

    2003-01-01

    This paper describes a resonant cavity technique for the measurement of the dielectric constant of seawater as a function of its salinity. Accurate relationships between salinity and dielectric constant (which determines emissivity) are needed for sensor systems such as SMOS and Aquarius that will monitor salinity from space in the near future. The purpose of the new measurements is to establish the dependence of the dielectric constant of seawater on salinity in contemporary units (e.g. psu) and to take advantage of modern instrumentation to increase the accuracy of these measurements. The measurement device is a brass cylindrical cavity 16cm in diameter and 7cm in height. The seawater is introduced into the cavity through a slender glass tube having an inner diameter of 0.1 mm. By assuming that this small amount of seawater slightly perturbs the internal fields in the cavity, perturbation theory can be employed. A simple formula results relating the real part of the dielectric constant to the change in resonant frequency of the cavity. In a similar manner, the imaginary part of the dielectric constant is related to the change in the cavity s Q. The expected accuracy of the cavity technique is better than 1% for the real part and 1 to 2% for the imaginary part. Presently, measurements of methanol have been made and agree with precision measurements in the literature to within 1% in both real and imaginary parts. Measurements have been made of the dielectric constant of seawater samples from Ocean Scientific in the United Kingdom with salinities of 10, 30, 35 and 38 psu. All measurements were made at room temperature. Plans to make measurements at a range of temperatures and salinities will be discussed.

  1. The comparison of SRs' variation affected by solar events observed in America and in China

    NASA Astrophysics Data System (ADS)

    Yu, H.; Williams, E.

    2017-12-01

    Schumann Resonances(SRs) are the electromagnetic resonance wave propagating in the earth-ionosphere cavity. Its characteristic of propagation are modified by the variation of ionosphere. So SRs can be the tools of monitoring the ionosphere which is often perturbed by solar events, x-ray emission and some other space-weather events (Roldugin et.al., 2004, De et al., 2010; Satori et.al., 2015). In present work, the amplitude and intrinsic frequencies of SRs observed at RID station in America and YSH station in China are compared. The variation of SRs during the solar flare on Feb. 15, 2011 are analyzed. Two-Dimensional Telegraph Equation(TDTE) method is used to simulate the perturbation of ionosphere by solar proton events. From the simulation and observation, the asymmetric construction of ionoshphere which is perturbed by the solar event will affect the amplitudes and frequencies of SRs. Due to the interfere influence of forward and backward propagation of electromagnetic field, the SR amplitude on different station will present different variation. The distance among the lightning source, observer and perturbed area will produce the different variation of amplitude and frequency for different station' SR.

  2. First order perturbations of the Einstein-Straus and Oppenheimer-Snyder models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mars, Marc; Mena, Filipe C.; Vera, Rauel

    We derive the linearly perturbed matching conditions between a Schwarzschild spacetime region with stationary and axially symmetric perturbations and a Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime with arbitrary perturbations. The matching hypersurface is also perturbed arbitrarily and, in all cases, the perturbations are decomposed into scalars using the Hodge operator on the sphere. This allows us to write down the matching conditions in a compact way. In particular, we find that the existence of a perturbed (rotating, stationary, and vacuum) Schwarzschild cavity in a perturbed FLRW universe forces the cosmological perturbations to satisfy constraints that link rotational and gravitational wave perturbations. We alsomore » prove that if the perturbation on the FLRW side vanishes identically, then the vacuole must be perturbatively static and hence Schwarzschild. By the dual nature of the problem, the first result translates into links between rotational and gravitational wave perturbations on a perturbed Oppenheimer-Snyder model, where the perturbed FLRW dust collapses in a perturbed Schwarzschild environment which rotates in equilibrium. The second result implies, in particular, that no region described by FLRW can be a source of the Kerr metric.« less

  3. Near field optical probe for critical dimension measurements

    DOEpatents

    Stallard, B.R.; Kaushik, S.

    1999-05-18

    A resonant planar optical waveguide probe for measuring critical dimensions on an object in the range of 100 nm and below is disclosed. The optical waveguide includes a central resonant cavity flanked by Bragg reflector layers with input and output means at either end. Light is supplied by a narrow bandwidth laser source. Light resonating in the cavity creates an evanescent electrical field. The object with the structures to be measured is translated past the resonant cavity. The refractive index contrasts presented by the structures perturb the field and cause variations in the intensity of the light in the cavity. The topography of the structures is determined from these variations. 8 figs.

  4. Accuracy of Spencer-Attix cavity theory and calculations of fluence correction factors for the air kerma formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Russa, D. J.; Rogers, D. W. O.

    EGSnrc calculations of ion chamber response and Spencer-Attix (SA) restricted stopping-power ratios are used to test the assumptions of the SA cavity theory and to assess the accuracy of this theory as it applies to the air kerma formalism for {sup 60}Co beams. Consistent with previous reports, the EGSnrc calculations show that the SA cavity theory, as it is normally applied, requires a correction for the perturbation of the charged particle fluence (K{sub fl}) by the presence of the cavity. The need for K{sub fl} corrections arises from the fact that the standard prescription for choosing the low-energy threshold {Delta}more » in the SA restricted stopping-power ratio consistently underestimates the values of {Delta} needed if no perturbation to the fluence is assumed. The use of fluence corrections can be avoided by appropriately choosing {Delta}, but it is not clear how {Delta} can be calculated from first principles. Values of {Delta} required to avoid K{sub fl} corrections were found to be consistently higher than {Delta} values obtained using the conventional approach and are also observed to be dependent on the composition of the wall in addition to the cavity size. Values of K{sub fl} have been calculated for many of the graphite-walled ion chambers used by the national metrology institutes around the world and found to be within 0.04% of unity in all cases, with an uncertainty of about 0.02%.« less

  5. DENSITY PERTURBATION BY ALFVÉN WAVES IN MAGNETO-PLASMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S.; Moon, Y.-J.; Sharma, R. P.

    In this article, we attempt to investigate the density perturbations along magnetic field by ponderomotive effects due to inertial Alfvén waves (AWs) in auroral ionosphere. For this study, we take high-frequency inertial AWs (pump) and their nonlinear interactions with low-frequency slow modes of AWs in that region. The dynamical equations representing these wave modes are known as the Zakharov like equation, and are solved numerically. From the results presented here, we notice the density perturbations in the direction of background magnetic fields. We also find that the deepest density cavity is associated with the strongest magnetic fields. The main reasonmore » for these nonlinear structures could be the ponderomotive effects due to the pump waves. The amplitude of these density structures varies with time until the modulation instability saturates. From our results, we estimate the amplitude of most intense cavity as ∼15% of the unperturbed plasma number density n {sub 0}, which is consistent with the observations. These density structures could be the locations for particle energizations in this region.« less

  6. Feedback stabilization of quantum cascade laser beams for stand-off applications

    NASA Astrophysics Data System (ADS)

    Müller, Reik; Kendziora, Christopher A.; Furstenberg, Robert

    2017-05-01

    Techniques which apply tunable quantum cascade lasers (QCLs) for target illumination suffer from fluctuations of the laser beam direction. This manuscript describes a method to stabilize the beam direction by using an active feedback loop. This approach corrects and stabilizes the laser pointing direction using the signal from a 4-element photo sensor as input to control an active 2 dimensional Galvo mirror system. Results are presented for measurements using known perturbations as well as actual mode hops intrinsic to external cavity QCL during wavelength tuning.

  7. Energy dependence of the response of lithium fluoride TLD rods in high energy electron fields.

    PubMed

    Holt, J G; Edelstein, G R; Clark, T E

    1975-07-01

    The energy dependence of lithium fluoride dosemeters is a complicated function of energy as well as of cavity size. In the application of TLD to charged particle dosimetry, a cavity perturbation effect may exist even though the ratios of the mass stopping powers are constant over the energies encountered. This effect was investigated for lithium fluoride rods in electron fields ranging in energy from 2-5 to 20 MeV. A 13% change of TL response per unit of absorbed dose was measured over that energy range. A semi-empirical theory was developed to account for the cavity effect, using Burlin cavity theory as a starting point. The agreement between theory and measurement is satisfactory.

  8. High-temperature material characterization for multispectral window

    NASA Astrophysics Data System (ADS)

    Park, James; Arida, Marvin-Ray; Ku, Zahyun; Jang, Woo-Yong; Urbas, Augustine M.

    2017-05-01

    A microwave cylindrical cavity combined with a laser has been investigated to characterize the temperature dependence of widow materials in the Air Force Research Laboratory (AFRL). This paper discusses the requirements of high temperature RF material characterizations for transparent ceramic materials, such as ALON, that can potentially be used for multispectral windows. The RF cylindrical resonator was designed and the numerical model was studied to characterize the dielectric constant of materials. The dielectric constant can be extracted from the resonant frequency shift based on the cavity perturbation method (CPM), which is sensitive to the sample size and shape. Laser heating was applied to the material under test (MUT), which could easily be heated above 1000°C by the laser irradiation, in order to conduct CPM at high temperature. The temperature distribution in a material was also analyzed to investigate the impact of the thermal properties and the sample shape.

  9. Selective Amplification of the Primary Exciton in a MoS_{2} Monolayer.

    PubMed

    Lee, Hyun Seok; Kim, Min Su; Jin, Youngjo; Han, Gang Hee; Lee, Young Hee; Kim, Jeongyong

    2015-11-27

    Optoelectronics applications for transition-metal dichalcogenides are still limited by weak light absorption and their complex exciton modes are easily perturbed by varying excitation conditions because they are inherent in atomically thin layers. Here, we propose a method of selectively amplifying the primary exciton (A^{0}) among the exciton complexes in monolayer MoS_{2} via cyclic reexcitation of cavity-free exciton-coupled plasmon propagation. This was implemented by partially overlapping a Ag nanowire on a MoS_{2} monolayer separated by a thin SiO_{2} spacer. Exciton-coupled plasmons in the nanowire enhance the A^{0} radiation in MoS_{2}. The cumulative amplification of emission enhancement by cyclic plasmon traveling reaches approximately twentyfold selectively for the A^{0}, while excluding other B exciton and multiexciton by significantly reduced band filling, without oscillatory spectra implying plasmonic cavity effects.

  10. The response of a radiophotoluminescent glass dosimeter in megavoltage photon and electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araki, Fujio, E-mail: f-araki@kumamoto-u.ac.jp; Ohno, Takeshi

    Purpose: This study investigated the response of a radiophotoluminescent glass dosimeter (RGD) in megavoltage photon and electron beams. Methods: The RGD response was compared with ion chamber measurements for 4–18 MV photons and 6–20 MeV electrons in plastic water phantoms. The response was also calculated via Monte Carlo (MC) simulations with EGSnrc/egs-chamber and Cavity user-codes, respectively. In addition, the response of the RGD cavity was analyzed as a function of field sizes and depths according to Burlin’s general cavity theory. The perturbation correction factor, P{sub Q}, in the RGD cavity was also estimated from MC simulations for photon and electronmore » beams. Results: The calculated and measured RGD energy response at reference conditions with a 10 × 10 cm{sup 2} field and 10 cm depth in photons was lower by up to 2.5% with increasing energy. The variation in RGD response in the field size range of 5 × 5 cm{sup 2} to 20 × 20 cm{sup 2} was 3.9% and 0.7%, at 10 cm depth for 4 and 18 MV, respectively. The depth dependence of the RGD response was constant within 1% for energies above 6 MV but it increased by 2.6% and 1.6% for a large (20 × 20 cm{sup 2}) field at 4 and 6 MV, respectively. The dose contributions from photon interactions (1 − d) in the RGD cavity, according to Burlin’s cavity theory, decreased with increasing energy and decreasing field size. The variation in (1 − d) between field sizes became larger with increasing depth for the lower energies of 4 and 6 MV. P{sub Q} for the RGD cavity was almost constant between 0.96 and 0.97 at 10 MV energies and above. Meanwhile, P{sub Q} depends strongly on field size and depth for 4 and 6 MV photons. In electron beams, the RGD response at a reference depth, d{sub ref}, varied by less than 1% over the electron energy range but was on average 4% lower than the response for 6 MV photons. Conclusions: The RGD response for photon beams depends on both (1 − d) and perturbation effects in the RGD cavity. Therefore, it is difficult to predict the energy dependence of RGD response by Burlin’s theory and it is recommended to directly measure RGD response or use the MC-calculated RGD response, regarding the practical use. The response for electron beams decreased rapidly at a depth beyond d{sub ref} for lower mean electron energies <3 MeV and in contrast P{sub Q} increased.« less

  11. Non-linear wave phenomena in Josephson elements for superconducting electronics

    NASA Astrophysics Data System (ADS)

    Christiansen, P. L.; Parmentier, R. D.; Skovgaard, O.

    1985-07-01

    The long and intermediate length Josephson tunnel junction oscillator with overlap geometry of linear and circular configuration, is investigated by computational solution of the perturbed sine-Gordon equation model and by experimental measurements. The model predicts the experimental results very well. Line oscillators as well as ring oscillators are treated. For long junctions soliton perturbation methods are developed and turn out to be efficient prediction tools, also providing physical understanding of the dynamics of the oscillator. For intermediate length junctions expansions in terms of linear cavity modes reduce computational costs. The narrow linewidth of the electromagnetic radiation (typically 1 kHz of a line at 10 GHz) is demonstrated experimentally. Corresponding computer simulations requiring a relative accuracy of less than 10 to the -7th power are performed on supercomputer CRAY-1-S. The broadening of linewidth due to external microradiation and internal thermal noise is determined.

  12. Breakdown of Bragg-Gray behaviour for low-density detectors under electronic disequilibrium conditions in small megavoltage photon fields.

    PubMed

    Kumar, Sudhir; Fenwick, John D; Underwood, Tracy S A; Deshpande, Deepak D; Scott, Alison J D; Nahum, Alan E

    2015-10-21

    In small photon fields ionisation chambers can exhibit large deviations from Bragg-Gray behaviour; the EGSnrc Monte Carlo (MC) code system has been employed to investigate this 'Bragg-Gray breakdown'. The total electron (+positron) fluence in small water and air cavities in a water phantom has been computed for a full linac beam model as well as for a point source spectrum for 6 MV and 15 MV qualities for field sizes from 0.25  ×  0.25 cm(2) to 10  ×  10 cm(2). A water-to-air perturbation factor has been derived as the ratio of total electron (+positron) fluence, integrated over all energies, in a tiny water volume to that in a 'PinPoint 3D-chamber-like' air cavity; for the 0.25  ×  0.25 cm(2) field size the perturbation factors are 1.323 and 2.139 for 6 MV and 15 MV full linac geometries respectively. For the 15 MV full linac geometry for field sizes of 1  ×  1 cm(2) and smaller not only the absolute magnitude but also the 'shape' of the total electron fluence spectrum in the air cavity is significantly different to that in the water 'cavity'. The physics of this 'Bragg-Gray breakdown' is fully explained, making reference to the Fano theorem. For the 15 MV full linac geometry in the 0.25  ×  0.25 cm(2) field the directly computed MC dose ratio, water-to-air, differs by 5% from the product of the Spencer-Attix stopping-power ratio (SPR) and the perturbation factor; this 'difference' is explained by the difference in the shapes of the fluence spectra and is also formulated theoretically. We show that the dimensions of an air-cavity with a perturbation factor within 5% of unity would have to be impractically small in these highly non-equilibrium photon fields. In contrast the dose to water in a 0.25  ×  0.25 cm(2) field derived by multiplying the dose in the single-crystal diamond dosimeter (SCDDo) by the Spencer-Attix ratio is within 2.9% of the dose computed directly in the water voxel for full linac geometry at both 6 and 15 MV, thereby demonstrating that this detector exhibits quasi Bragg-Gray behaviour over a wide range of field sizes and beam qualities.

  13. A Laboratory Test Setup for in Situ Measurements of the Dielectric Properties of Catalyst Powder Samples under Reaction Conditions by Microwave Cavity Perturbation: Set up and Initial Tests

    PubMed Central

    Dietrich, Markus; Rauch, Dieter; Porch, Adrian; Moos, Ralf

    2014-01-01

    The catalytic behavior of zeolite catalysts for the ammonia-based selective catalytic reduction (SCR) of nitrogen oxides (NOX) depends strongly on the type of zeolite material. An essential precondition for SCR is a previous ammonia gas adsorption that occurs on acidic sites of the zeolite. In order to understand and develop SCR active materials, it is crucial to know the amount of sorbed ammonia under reaction conditions. To support classical temperature-programmed desorption (TPD) experiments, a correlation of the dielectric properties with the catalytic properties and the ammonia sorption under reaction conditions appears promising. In this work, a laboratory test setup, which enables direct measurements of the dielectric properties of catalytic powder samples under a defined gas atmosphere and temperature by microwave cavity perturbation, has been developed. Based on previous investigations and computational simulations, a resonator cavity and a heating system were designed, installed and characterized. The resonator cavity is designed to operate in its TM010 mode at 1.2 GHz. The first measurement of the ammonia loading of an H-ZSM-5 zeolite confirmed the operating performance of the test setup at constant temperatures of up to 300 °C. It showed how both real and imaginary parts of the relative complex permittivity are strongly correlated with the mass of stored ammonia. PMID:25211199

  14. A laboratory test setup for in situ measurements of the dielectric properties of catalyst powder samples under reaction conditions by microwave cavity perturbation: set up and initial tests.

    PubMed

    Dietrich, Markus; Rauch, Dieter; Porch, Adrian; Moos, Ralf

    2014-09-10

    The catalytic behavior of zeolite catalysts for the ammonia-based selective catalytic reduction (SCR) of nitrogen oxides (NOX) depends strongly on the type of zeolite material. An essential precondition for SCR is a previous ammonia gas adsorption that occurs on acidic sites of the zeolite. In order to understand and develop SCR active materials, it is crucial to know the amount of sorbed ammonia under reaction conditions. To support classical temperature-programmed desorption (TPD) experiments, a correlation of the dielectric properties with the catalytic properties and the ammonia sorption under reaction conditions appears promising. In this work, a laboratory test setup, which enables direct measurements of the dielectric properties of catalytic powder samples under a defined gas atmosphere and temperature by microwave cavity perturbation, has been developed. Based on previous investigations and computational simulations, a resonator cavity and a heating system were designed, installed and characterized. The resonator cavity is designed to operate in its TM010 mode at 1.2 GHz. The first measurement of the ammonia loading of an H-ZSM-5 zeolite confirmed the operating performance of the test setup at constant temperatures of up to 300 °C. It showed how both real and imaginary parts of the relative complex permittivity are strongly correlated with the mass of stored ammonia.

  15. Study of the hydrodynamics of the formation of flows caused by the interaction of a shock wave with two-dimensional density perturbations on the Iskra-5 laser facility

    NASA Astrophysics Data System (ADS)

    Babanov, A. V.; Barinov, M. A.; Barinov, S. P.; Garanin, R. V.; Zhidkov, N. V.; Kalmykov, N. A.; Kovalenko, V. P.; Kokorin, S. N.; Pinegin, A. V.; Solomatina, E. Yu.; Solomatin, I. I.; Suslov, N. A.

    2017-03-01

    The hydrodynamics of the flow formation due to the interaction of a shock wave with two-dimensional density perturbations is experimentally investigated on the Iskra-5 laser facility. Shadow images of a jet arising as a result of the impact of a shock wave (formed by a soft X-ray pulse from a target-illuminator) on a flat aluminium target with a blind cylindrical cavity are recorded in experiments with point-like X-ray backlighting having a photon energy of ~4.5 keV. The sizes and mass of the jet ejected from the aluminium cavity by this shock wave are estimated. The experimental data are compared with the results of numerical simulation of the jet formation and dynamics according to the two-dimensional MID-ND2D code.

  16. Exceptional points enhance sensing in an optical microcavity

    NASA Astrophysics Data System (ADS)

    Chen, Weijian; Kaya Özdemir, Şahin; Zhao, Guangming; Wiersig, Jan; Yang, Lan

    2017-08-01

    Sensors play an important part in many aspects of daily life such as infrared sensors in home security systems, particle sensors for environmental monitoring and motion sensors in mobile phones. High-quality optical microcavities are prime candidates for sensing applications because of their ability to enhance light-matter interactions in a very confined volume. Examples of such devices include mechanical transducers, magnetometers, single-particle absorption spectrometers, and microcavity sensors for sizing single particles and detecting nanometre-scale objects such as single nanoparticles and atomic ions. Traditionally, a very small perturbation near an optical microcavity introduces either a change in the linewidth or a frequency shift or splitting of a resonance that is proportional to the strength of the perturbation. Here we demonstrate an alternative sensing scheme, by which the sensitivity of microcavities can be enhanced when operated at non-Hermitian spectral degeneracies known as exceptional points. In our experiments, we use two nanoscale scatterers to tune a whispering-gallery-mode micro-toroid cavity, in which light propagates along a concave surface by continuous total internal reflection, in a precise and controlled manner to exceptional points. A target nanoscale object that subsequently enters the evanescent field of the cavity perturbs the system from its exceptional point, leading to frequency splitting. Owing to the complex-square-root topology near an exceptional point, this frequency splitting scales as the square root of the perturbation strength and is therefore larger (for sufficiently small perturbations) than the splitting observed in traditional non-exceptional-point sensing schemes. Our demonstration of exceptional-point-enhanced sensitivity paves the way for sensors with unprecedented sensitivity.

  17. Electromagnetic fields backscattered from an s-shaped inlet cavity with an absorber coating on its inner walls

    NASA Technical Reports Server (NTRS)

    Burkholder, R. J.; Chuang, C. W.; Pathak, P. H.

    1987-01-01

    The EM backscatter from a two-dimensional S-shaped inlet cavity is analyzed using three different techniques, namely a hybrid combination of asymptotic high frequency and modal methods, an integral equation method, and the geometrical optics ray method, respectively. This inlet has a thin absorber coating on its perfectly conducting inner walls and the planar interior termination is made perfectly conducting. The effect of the absorber on the inner wall is treated via a perturbation scheme in the hybrid approach where it is assumed that the loss is sufficiently small for the method to be valid. The results are compared with the backscatter from a straight inlet cavity to evaluate the effect of offsetting the termination in the S-bend configuration such that it is not visible from the open end of the inlet. The envelope of the backscatter pattern for the straight inlet is always seen to peak around the forward axis due to the large return from the directly visible termination, and the pattern envelope tapers off away from the forward axis. Offsetting the termination causes the envelope of the backscatter pattern to flatten out, thereby reducing the return near the forward axis by several dB. The absorber coating reduces the pattern level of the straight inlet in directions away from the forward axis but has little effect on the peak near the axis; furthermore, the absorber coating is seen to consistently reduce the backscatter from the S-bend inlet for almost all incidence angles. The hybrid method gives excellent agreement with experimental data and with the integral equation solution, whereas, the geometrical optics ray tracing method is able to generally predict the average of the bachscatter pattern but not the pattern details.

  18. Effect of flow oscillations on cavity drag and a technique for their control

    NASA Technical Reports Server (NTRS)

    Gharib, M.; Roshko, A.; Sarohia, V.

    1985-01-01

    Experiments to relate the state of the shear layer to cavity drag have been performed in a water channel using a 4" axisymmetric cavity model. Detailed flow measurements in various cavity flow oscillation phases, amplitude amplification along the flow direction, distribution of shear stress, and other momentum flux obtained by laser Doppler velocimeter are presented. Measurements show exponential dependence of cavity drag on the length of the cavity. A jump in the cavity drag coefficient is observed as the cavity flow shows a bluff body wake type behavior. Natural and forced oscillations are introduced by a sinusoidally heated thin-film strip which excites the Tollmein-Schlichting waves in the boundary layer upstream of the gap. For a large gap, self-sustained periodic oscillations are observed, while for smaller gaps, which do not oscillate naturally, periodical oscillations can be obtained by external forcing through the strip heater. The drag of the cavity can be increased by one order of magnitude in the non-oscillating case through external forcing. Also, it is possible to completely eliminate mode switching by external forcing. For the first time, it is demonstrated that amplitude of cavity flow Kelvin-Helmholtz wave is dampened or cancelled by introduction of external perturbation of natural flow frequency but different phase.

  19. Mode-locking observation of a CO2 laser by intracavity plasma injection

    NASA Astrophysics Data System (ADS)

    John, P. K.; Dembinski, M.

    1980-06-01

    A TEA CO2 laser was simultaneously Q-switched and mode-locked when an underdense plasma was injected into the cavity. The plasma was produced in an electromagnetic shock tube. Plasma density and temperature were N sub e of approximately 10 to the 17th/cu cm and T sub e of approximately 2 eV, respectively. Phase perturbation of the cavity due to the time dependent plasma refractive index could account for the observed mode-locking.

  20. On the wall perturbation correction for a parallel-plate NACP-02 chamber in clinical electron beams.

    PubMed

    Zink, K; Wulff, J

    2011-02-01

    In recent years, several Monte Carlo studies have been published concerning the perturbation corrections of a parallel-plate chamber in clinical electron beams. In these studies, a strong depth dependence of the relevant correction factors (p(wall) and P(cav)) for depth beyond the reference depth is recognized and it has been shown that the variation with depth is sensitive to the choice of the chamber's effective point of measurement. Recommendations concerning the positioning of parallel-plate ionization chambers in clinical electron beams are not the same for all current dosimetry protocols. The IAEA TRS-398 as well as the IPEM protocol and the German protocol DIN 6800-2 interpret the depth of measurement within the phantom as the water equivalent depth, i.e., the nonwater equivalence of the entrance window has to be accounted for by shifting the chamber by an amount deltaz. This positioning should ensure that the primary electrons traveling from the surface of the water phantom through the entrance window to the chamber's reference point sustain the same energy loss as the primary electrons in the undisturbed phantom. The objective of the present study is the determination of the shift deltaz for a NACP-02 chamber and the calculation of the resulting wall perturbation correction as a function of depth. Moreover, the contributions of the different chamber walls to the wall perturbation correction are identified. The dose and fluence within the NACP-02 chamber and a wall-less air cavity is calculated using the Monte Carlo code EGSnrc in a water phantom at different depths for different clinical electron beams. In order to determine the necessary shift to account for the nonwater equivalence of the entrance window, the chamber is shifted in steps deltaz around the depth of measurement. The optimal shift deltaz is determined from a comparison of the spectral fluence within the chamber and the bare cavity. The wall perturbation correction is calculated as the ratio between doses for the complete chamber and a wall-less air cavity. The high energy part of the fluence spectra within the chamber strongly varies even with small chamber shifts, allowing the determination of deltaz within micrometers. For the NACP-02 chamber a shift deltaz = -0.058 cm results. This value is independent of the energy of the primary electrons as well as of the depth within the phantom and it is in good agreement with the value recommended in the German dosimetry protocol. Applying this shift, the calculated wall perturbation correction as a function of depth is varying less than 1% from zero up to the half value depth R50 for electron energies in the range of 6-21 MeV. The remaining depth dependence can mainly be attributed to the scatter properties of the entrance window. When neglecting the nonwater equivalence of the entrance window, the variation of p(wall) with depth is up to 10% and more, especially for low electron energies. The variation of the wall perturbation correction for the NACP-02 chamber in clinical electron beams strongly depends on the positioning of the chamber. Applying a shift deltaz = -0.058 cm toward the focus ensures that the primary electron spectrum within the chamber bears the largest resemblance to the fluence of a wall-less cavity. Hence, the influence of the chamber walls on the perturbation correction can be separated out and the residual variation of p(wall) with depth is minimized.

  1. Radiotherapy Dose Perturbation of Esophageal Stents Examined in an Experimental Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atwood, Todd F.; Hsu, Annie; Ogara, Maydeen M.

    2012-04-01

    Purpose: To investigate the radiotherapy dose perturbations caused by esophageal stents in patients undergoing external beam treatments for esophageal cancer. Methods and Materials: Four esophageal stents were examined (three metallic stents: WallFlex, Ultraflex, and Alveolus; one nonmetallic stent with limited radiopaque markers for visualization: Polyflex). All experiments were performed in a liquid water phantom with a custom acrylic stent holder. Radiochromic film was used to measure the dose distributions adjacent to the stents at locations proximal and distal to the radiation source. The stents were placed in an air-filled cavity to simulate the esophagus. Treatment plans were created and deliveredmore » for photon energies of 6 and 15 MV, and data analysis was performed on uniform regions of interest, according to the size and geometric placement of the films, to quantify the dose perturbations. Results: The three metallic stents produced the largest dose perturbations with distinct patterns of 'hot' spots (increased dose) measured proximal to the radiation source (up to 15.4%) and both 'cold' (decreased dose) and hot spots measured distal to the radiation source (range, -6.1%-5.8%). The polymeric Polyflex stent produced similar dose perturbations when the radiopaque markers were examined (range, -7.6%-15.4%). However, when the radiopaque markers were excluded from the analysis, the Polyflex stent produced significantly smaller dose perturbations, with maximum hot spots of 7.3% and cold spots of -3.2%. Conclusions: The dose perturbations caused by esophageal stents during the treatment of esophageal cancer using external beam radiotherapy should be understood. These perturbations will result in hot and cold spots in the esophageal mucosa, with varying magnitudes depending on the stent. The nonmetallic Polyflex stent appears to be the most suitable for patients undergoing radiotherapy, but further studies are necessary to determine the clinical significance of the dose perturbations.« less

  2. Ferromagnetic linewidth measurements employing electrodynamic model of the magnetic plasmon resonance

    NASA Astrophysics Data System (ADS)

    Krupka, Jerzy; Aleshkevych, Pavlo; Salski, Bartlomiej; Kopyt, Pawel

    2018-02-01

    The mode of uniform precession, or Kittel mode, in a magnetized ferromagnetic sphere, has recently been proven to be the magnetic plasmon resonance. In this paper we show how to apply the electrodynamic model of the magnetic plasmon resonance for accurate measurements of the ferromagnetic resonance linewidth ΔH. Two measurement methods are presented. The first one employs Q-factor measurements of the magnetic plasmon resonance coupled to the resonance of an empty metallic cavity. Such coupled modes are known as magnon-polariton modes, i.e. hybridized modes between the collective spin excitation and the cavity excitation. The second one employs direct Q-factor measurements of the magnetic plasmon resonance in a filter setup with two orthogonal semi-loops used for coupling. Q-factor measurements are performed employing a vector network analyser. The methods presented in this paper allow one to extend the measurement range of the ferromagnetic resonance linewidth ΔH well beyond the limits of the commonly used measurement standards in terms of the size of the samples and the lowest measurable linewidths. Samples that can be measured with the newly proposed methods may have larger size as compared to the size of samples that were used in the standard methods restricted by the limits of perturbation theory.

  3. Evaluation of the aero-optical properties of the SOFIA cavity by means of computional fluid dynamics and a super fast diagnostic camera

    NASA Astrophysics Data System (ADS)

    Engfer, Christian; Pfüller, Enrico; Wiedemann, Manuel; Wolf, Jürgen; Lutz, Thorsten; Krämer, Ewald; Röser, Hans-Peter

    2012-09-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5 m reflecting telescope housed in an open cavity on board of a Boeing 747SP. During observations, the cavity is exposed to transonic flow conditions. The oncoming boundary layer evolves into a free shear layer being responsible for optical aberrations and for aerodynamic and aeroacoustic disturbances within the cavity. While the aero-acoustical excitation of an airborne telescope can be minimized by using passive flow control devices, the aero-optical properties of the flow are difficult to improve. Hence it is important to know how much the image seen through the SOFIA telescope is perturbed by so called seeing effects. Prior to the SOFIA science fights Computational Fluid Dynamics (CFD) simulations using URANS and DES methods were carried out to determine the flow field within and above the cavity and hence in the optical path in order to provide an assessment of the aero-optical properties under baseline conditions. In addition and for validation purposes, out of focus images have been taken during flight with a Super Fast Diagnostic Camera (SFDC). Depending on the binning factor and the sub-array size, the SFDC is able to take and to read out images at very high frame rates. The paper explains the numerical approach based on CFD to evaluate the aero-optical properties of SOFIA. The CFD data is then compared to the high speed images taken by the SFDC during flight.

  4. Tunable Thin-Film Resonator Coupled to Two Qubits in a 3D Cavity

    NASA Astrophysics Data System (ADS)

    Ballard, Cody; Dutta, S. K.; Budoyo, R. P.; Voigt, K. D.; Lobb, C. J.; Wellstood, F. C.

    We present preliminary results on using a tunable, thin-film lumped element LC resonator to couple two transmon qubits in a 3D microwave cavity. The cavity, which is used for readout, is made of aluminum and has a TE101 mode at 6.3 GHz. The LC resonator has a base frequency of about 5 GHz and the inductor contains two loops, each having a single Josephson junction. Applying magnetic flux to the loops modulates the overall inductance of the resonator allowing tuning over a 500 MHz range. Two Al/AlOx/Al transmon qubits are fabricated on the same sapphire substrate as the resonator, and are designed to have a charging energy of 200 MHz and a frequency that falls within the tuning range of the resonator. Observing the perturbations of the resonant frequencies of the qubits and the cavity as the LC resonator is tuned allows us to determine the coupling strengths between each qubit and the LC resonator and between the LC resonator and the cavity.

  5. Dynamical formation of a Reissner-Nordström black hole with scalar hair in a cavity

    NASA Astrophysics Data System (ADS)

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Herdeiro, Carlos; Font, José A.; Montero, Pedro J.

    2016-08-01

    In a recent Letter [Sanchis-Gual et al., Phys. Rev. Lett. 116, 141101 (2016)], we presented numerical relativity simulations, solving the full Einstein-Maxwell-Klein-Gordon equations, of superradiantly unstable Reissner-Nordström black holes (BHs), enclosed in a cavity. Low frequency, spherical perturbations of a charged scalar field trigger this instability. The system's evolution was followed into the nonlinear regime, until it relaxed into an equilibrium configuration, found to be a hairy BH: a charged horizon in equilibrium with a scalar field condensate, whose phase is oscillating at the (final) critical frequency. Here, we investigate the impact of adding self-interactions to the scalar field. In particular, we find sufficiently large self-interactions suppress the exponential growth phase, known from linear theory, and promote a nonmonotonic behavior of the scalar field energy. Furthermore, we discuss in detail the influence of the various parameters in this model: the initial BH charge, the initial scalar perturbation, the scalar field charge, the mass, and the position of the cavity's boundary (mirror). We also investigate the "explosive" nonlinear regime previously reported to be akin to a bosenova. A mode analysis shows that the "explosions" can be interpreted as the decay into the BH of modes that exit the superradiant regime.

  6. Energy Pooling Upconversion in Free Space and Optical Cavities

    NASA Astrophysics Data System (ADS)

    LaCount, Michael D.

    The ability to efficiently convert the wavelength of light has value in a wide range of disciplines that include the fields of photovoltaics, plant growth, optics and medicine. The processes by which such transformations are carried out are known as upconversions and downconversions. There are several ways to up/down convert light, each with its own attributes, issues, and competing mechanisms. Most are associated with one-body or two-body processes. Three-body dynamics are also possible though, going by the names of quantum cutting (downconversion) and energy pooling (upconversion). These use virtual excited electronic states to mediate conversions as has been experimentally realized using lanthanide ions embedded in wide bandgap materials. The use of lanthanides to convert light is not ideal due to their relative scarcity, toxicity, and the limited range of light frequencies that can be absorbed and emitted. Organic molecules, on the other hand, are typically non-toxic, are made up of abundant elements, and can be designed with tailored spectral properties. At issue is whether or not they can be used to carry out efficient energy pooling, the central question to be answered in this thesis. The research presented here draws on a perturbative quantum electrodynamics framework previously established for generic energy pooling. It was used to develop a computational methodology for determining the rate of energy pooling and its competing processes. This, in turn, draws on a combination of time-dependent density functional theory, quantum electrodynamics, and perturbation theory to generate the requisite material property data. This computational model was applied to two test systems consisting of stilbene-fluorescein and hexabenzocoronene-oligothiophene. The stilbene-fluorescein system was found to have a maximum energy pooling rate efficiency (as compared to competing processes) of 17% and the hexabenzocoronene-oligothiophene system was found to have a maximum energy pooling rate efficiency of 99%. This demonstrates that the energy pooling rate can be made faster than its competing processes. Based on the results of this study, a set of design rules was developed to optimize the rate efficiency of energy pooling. Prior to this research, no attempt had been made to determine if energy pooling could be made to out-pace competing processes--i.e. whether or not a molecular system could be designed to utilize energy pooling as an efficient means of upconversion. This initial investigation was part of a larger effort involving a team of researchers at the University of Colorado, Boulder and at the National Renewable Energy Laboratory. After establishing our computational proof-of-concept, we collectively used the new design rules to select an improved system for energy pooling. This consisted of rhodamine 6G and stilbene-420. These molecules were fabricated into a thin film, and the maximum internal quantum yield was measured to be 36% under sufficiently high intensity light. To further increase the efficiency of energy pooling, encapsulation within optical cavities was considered as a way of changing the rate of processes characterized by electric dipole-dipole coupling. This was carried out using a combination of classical electromagnetism, quantum electrodynamics, and perturbation theory. It was found that, in the near field, if the distance of the energy transfer is smaller than the distance from the energy transfer site and the cavity wall, then the electric dipole-dipole coupling tensor is not influenced by the cavity environment and the rates of energy transfer processes are the same as those in free space. Any increase in energy transfer efficiencies that are experimentally measured must therefore be caused by changing the rate of light absorption and emission. This is an important finding because earlier, less rigorous studies had concluded otherwise. It has been previously demonstrated that an optical cavity can be used to inhibit the spontaneous emission of atoms or molecules placed within it. This too was examined as a possible means of increasing energy pooling efficiency. Using first-principles methods, quantum electrodynamics, perturbation theory, and a kinetic model, the efficiency of energy pooling upconversion within a tuned rectangular cavity was found to be significantly larger than in free space. A model system with a free-space energy pooling upconversion efficiency of 23% was found to increase to 47% when placed in a tuned rectangular cavity.

  7. Phase measurement by using a forced delay-line oscillator and its application for an acoustic fiber sensor.

    PubMed

    Fleyer, Michael; Horowitz, Moshe

    2018-04-02

    We demonstrate, theoretically and experimentally, a new method to measure small changes in the cavity length of oscillators. The method is based on the high sensitivity of the phase of forced delay-line oscillators to changes in their cavity length. The oscillator phase is directly detected by mixing the oscillator output with the injected signal. We describe a comprehensive theoretical model for studying the signal and the noise at the output of a general forced delay-line oscillator with an instantaneous gain saturation and an amplitude-to-phase conversion. The results indicate that the magnitude and the bandwidth of the oscillator response to a small perturbation can be controlled by adjusting the injection ratio and the injected frequency. For signals with a frequency that is smaller than the device bandwidth, the oscillator noise is dominated by the noise of the injected signal. This noise is highly suppressed by mixing the oscillator output with the injected signal. Hence, the device sensitivity at frequencies below its bandwidth is limited only by the internal noise that is added in a single roundtrip in the oscillator cavity. We demonstrate the use of a forced oscillator as an acoustic fiber sensor in an optoelectronic oscillator. A good agreement is obtained between theory and experiments. The magnitude of the output signal can be controlled by adjusting the injection ratio while the noise power at low frequencies is not enhanced as in sensors that are based on a free-running oscillator.

  8. Perturbation measurement of waveguides for acoustic thermometry

    NASA Astrophysics Data System (ADS)

    Lin, H.; Feng, X. J.; Zhang, J. T.

    2013-09-01

    Acoustic thermometers normally embed small acoustic transducers in the wall bounding a gas-filled cavity resonator. At high temperature, insulators of transducers loss electrical insulation and degrade the signal-to-noise ratio. One essential solution to this technical trouble is to couple sound by acoustic waveguides between resonator and transducers. But waveguide will break the ideal acoustic surface and bring perturbations(Δf+ig) to the ideal resonance frequency. The perturbation model for waveguides was developed based on the first-order acoustic theory in this paper. The frequency shift Δf and half-width change g caused by the position, length and radius of waveguides were analyzed using this model. Six different length of waveguides (52˜1763 mm) were settled on the cylinder resonator and the perturbation (Δf+ig) were measured at T=332 K and p=250˜500 kPa. The experiment results agreed with the theoretical prediction very well.

  9. Novel design of electrical sensing interface for prosthetic limbs using optical micro cavities

    NASA Astrophysics Data System (ADS)

    Ali, Amir R.; Kamel, Mohamed A.

    2018-04-01

    This paper uses optical whispering galley modes (WGM) cavities to construct a new electrical sensing interface between prosthetic limb and the brain. The sensing element will detect the action potential signal in the neural membrane and the prosthetic limb will be actuated accordingly. The element is a WGM dielectric polymeric cavity. WGM based optical cavities can achieve very high values of sensitivity and quality factor; thus, any minute perturbations in the morphology of the cavity can be captured and measured. The action potential signal will produce an applied external electric field on the dielectric cavity causing it to deform due to the electrostriction effect. The resulting deformation will cause WGM shifts in the transmission spectrum of the cavity. Thus, the action potential or the applied electric field can be measured using these shifts. In this paper the action potential signal will be simulated through the use of a function generator and two metal electrodes. The sensing element will be situated between these electrodes to detect the electrical signal passing through. The achieved sensitivity is 27.5 pm/V in measuring the simulated action potential signal; and 0.32 pm/V.m-1 in measuring the applied electric field due to the passage of the simulated signal.

  10. Magnetoelectric behavior of carbonyl iron mixed Mn oxide-coated ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahad, Faris B. Abdul; Lee, Shang-Fan; Hung, Dung-Shing; Yao, Yeong-Der; Yang, Ruey-Bin; Lin, Chung-Kwei; Tsay, Chien-Yie

    2010-05-01

    The dielectric and magnetic properties of manganese oxide-coated Fe3O4 nanoparticles (NPs) were measured by the cavity perturbation method at x-band microwave frequencies ranging from 7-12.5 GHz with controlled external magnetic field up to 2.2 kOe at room temperature. Different ratios (5%, 10%, and 20% by weight) of coated NPs were prepared by sol-gel method then mixed with carbonyl iron powder in epoxy matrix. The saturation magnetization is inversely proportional to the NPs ratio in the mixture between 150 and 180 emu/g. The real part of the permittivity decreased with increasing NPs concentration, but the permittivity change by magnetic field increased. The tunability behavior is explained by insulator-ferromagnetic interface magnetoelectricity and the large surface volume ratio for the NPs.

  11. Wavelength references for interferometry in air

    NASA Astrophysics Data System (ADS)

    Fox, Richard W.; Washburn, Brian R.; Newbury, Nathan R.; Hollberg, Leo

    2005-12-01

    Cavity-mode wavelengths in air are determined by measuring a laser's frequency while it is locked to the mode in vacuum during a calibration step and subsequently correcting the mode wavelength for atmospheric pressure compression, temperature difference, and material aging. Using a Zerodur ring cavity, we demonstrate a repeatability of ±2×10-8 (3σ), with the wavelength accuracy limited to ±4×10-8 by knowledge of the absolute helium gas temperature during the pressure calibration. Mirror cleaning perturbed the mode frequency by less than Δ ν/ν˜3×10-9, limited by temperature correction residuals.

  12. Wavelength references for interferometry in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Richard W.; Washburn, Brian R.; Newbury, Nathan R.

    2005-12-20

    Cavity-mode wavelengths in air are determined by measuring a laser's frequency while it is locked to the mode in vacuum during a calibration step and subsequently correcting the mode wavelength for atmospheric pressure compression, temperature difference, and material aging. Using a Zerodur ring cavity, we demonstrate a repeatability of {+-}2x10-8(3{sigma}), with the wavelength accuracy limited to {+-}4x10-8by knowledge of the absolute helium gas temperature during the pressure calibration. Mirror cleaning perturbed the mode frequency by less than {delta} {nu}/{nu}{approx}3x10-9, limited by temperature correction residuals.

  13. Wavelength references for interferometry in air.

    PubMed

    Fox, Richard W; Washburn, Brian R; Newbury, Nathan R; Hollberg, Leo

    2005-12-20

    Cavity-mode wavelengths in air are determined by measuring a laser's frequency while it is locked to the mode in vacuum during a calibration step and subsequently correcting the mode wavelength for atmospheric pressure compression, temperature difference, and material aging. Using a Zerodur ring cavity, we demonstrate a repeatability of +/- 2 x 10(-8) (3sigma), with the wavelength accuracy limited to +/- 4 x 10(-8) by knowledge of the absolute helium gas temperature during the pressure calibration. Mirror cleaning perturbed the mode frequency by less than deltav/v approximately 3 x 10(-9), limited by temperature correction residuals.

  14. CARE activities on superconducting RF cavities at INFN Milano

    NASA Astrophysics Data System (ADS)

    Bosotti, A.; Pierini, P.; Michelato, P.; Pagani, C.; Paparella, R.; Panzeri, N.; Monaco, L.; Paulon, R.; Novati, M.

    2005-09-01

    The SC RF group at INFN Milano-LASA is involved both in the TESLA/TTF collaboration and in the research and design activity on superconducting cavities for proton accelerators. Among these activities, some are supported by the European community within the CARE project. In the framework of the JRASRF collaboration we are developing a coaxial blade tuner for ILC (International Linear Collider) cavities, integrated with piezoelectric actuators for the compensation of the Lorenz force detuning and microphonics perturbation. Another activity, regarding the improved component design on SC technology, based on the information retrieving about the status of art on ancillaries and experience of various laboratories involved in SCRF, has started in our laboratory. Finally, in the framework of the HIPPI collaboration, we are testing two low beta superconducting cavities, built for the Italian TRASCO project, to verify the possibility to use them for pulsed operation. All these activities will be described here, together with the main results and the future perspectives.

  15. Cavity-QED interactions of two correlated atoms

    NASA Astrophysics Data System (ADS)

    Esfandiarpour, Saeideh; Safari, Hassan; Bennett, Robert; Yoshi Buhmann, Stefan

    2018-05-01

    We consider the resonant van der Waals (vdW) interaction between two correlated identical two-level atoms (at least one of which being excited) within the framework of macroscopic cavity quantum electrodynamics in linear, dispersing and absorbing media. The interaction of both atoms with the body-assisted electromagnetic field of the cavity is assumed to be strong. Our time-independent evaluation is based on an extended Jaynes–Cummings model. For a system prepared in a superposition of its dressed states, we derive the general form of the vdW forces, using a Lorentzian single-mode approximation. We demonstrate the applicability of this approach by considering the case of a planar cavity and showing the position dependence of Rabi oscillations. We also show that in the limiting case of weak coupling, our results reproduce the perturbative ones for the case where the field is initially in vacuum state while the atomic state is in a superposition of two correlated states sharing one excitation.

  16. Observation of laser formation inside a laser cavity containing a phase conjugate mirror

    NASA Astrophysics Data System (ADS)

    Wu, Frank F.

    2012-03-01

    Adaptive optics (AO) systems are used to compensate atmospheric perturbations on a propagating laser beam. However, AO needs a beacon to obtain the phase information. This paper presents a possible formation of beacon in target-in-theloop (TIL) geometry which is analog to a laser cavity. The TIL laser cavity is formed with a high reflectivity mirror on one end and an optical phase conjugate mirror as the second mirror. The TIL laser is initialized by a single frequency 10 ns Q-switched laser pulse. This is very similar to how an injection seeding or regenerative amplifier scheme starts a laser oscillation. With a cavity length of around 11 meters and an initial laser pulse of 10 ns, we have been able to isolate laser field images related to each round-trip pulse. Furthermore, by replacing the first mirror with a rough-surface target to simulate an uncooperative target and adding phase distortion elements to simulate atmospheric effects, we can observe the image status under such conditions.

  17. In Situ Generation of Plasmonic Nanoparticles for Manipulating Photon-Plasmon Coupling in Microtube Cavities.

    PubMed

    Yin, Yin; Wang, Jiawei; Lu, Xueyi; Hao, Qi; Saei Ghareh Naz, Ehsan; Cheng, Chuanfu; Ma, Libo; Schmidt, Oliver G

    2018-04-24

    In situ generation of silver nanoparticles for selective coupling between localized plasmonic resonances and whispering-gallery modes (WGMs) is investigated by spatially resolved laser dewetting on microtube cavities. The size and morphology of the silver nanoparticles are changed by adjusting the laser power and irradiation time, which in turn effectively tune the photon-plasmon coupling strength. Depending on the relative position of the plasmonic nanoparticles spot and resonant field distribution of WGMs, selective coupling between the localized surface plasmon resonances (LSPRs) and WGMs is experimentally demonstrated. Moreover, by creating multiple plasmonic-nanoparticle spots on the microtube cavity, the field distribution of optical axial modes is freely tuned due to multicoupling between LSPRs and WGMs. The multicoupling mechanism is theoretically investigated by a modified quasipotential model based on perturbation theory. This work provides an in situ fabrication of plasmonic nanoparticles on three-dimensional microtube cavities for manipulating photon-plasmon coupling which is of interest for optical tuning abilities and enhanced light-matter interactions.

  18. Stability of a viscous fluid in a rectangular cavity in the presence of a magnetic field

    NASA Technical Reports Server (NTRS)

    Liang, C. Y.; Hung, Y. Y.

    1976-01-01

    The stability of an electrically conducting fluid subjected to two dimensional disturbance was investigated. A physical system consisting of two parallel infinite vertical plates which are thermally insulated was studied. An external magnetic field of constant strength was applied to normal plates. The fluid was heated from below so that a steady temperature gradient was maintained in the fluid. The governing equations were derived by perturbation technique, and solutions were obtained by a modified Galerkin method. It was found that the presence of the magnetic field increases the stability of the physical system and instability can occur in the form of neutral or oscillatory instability.

  19. Measurement of the Dielectric Constant of Seawater at L-Band: Techniques and Measurements

    NASA Technical Reports Server (NTRS)

    Lang, R.; Utku, C.; Tarkocin, Y.; LeVine, D.

    2009-01-01

    Satellite instruments, that will monitor salinity from space in the near future, require an accurate relationship between salinity/temperature and seawater dielectric constant. This paper will review measurements that were made of the dielectric constant of seawater during the past several years. The objective of the measurements is to determine the dependence of the dielectric constant of seawater on salinity and on temperature, more accurately than in the past. by taking advantage of modem instrumentation. The measurements of seawater permittivity have been performed as a function of salinity and temperature using a transmission resonant cavity technique. The measurements have been made in the salinity range of 10 to 38 psu and in the temperature range of IOU C to 35 C. These results will be useful in algorithm development for sensor systems such as SMOS and Aquarius. The measurement system consists of a brass microwave cavity that is resonant at 1.413 GHz. The seawater is introduced into the cavity through a capillary glass tube having an inner diameter of 0.1 mm. The diameter of the tube has been made very small so that the amount of seawater introduced in the cavity is small - thus maintaining the sensitivity of the measurements and allowing the use of perturbation theory predicting the seawater permittivity. The change in resonant frequency and the change in cavity Q can be used to determine the real and imaginary pare of the dielectric constant of seawater introduced into the slender tube. The microwave measurements are made by an HPS722D network analyzer. The cavity has been immersed in a uateriethylene-glycol bath which is connected to a Lauda circulator. The circulator keeps the brass cavity at a temperature constant to within 0.01 degrees. The system is automated using a Visual Basic program to control the analyzer and to collect the data. The results of the dielectric constant measurements of seawater will be presented. The measurement results will be compared with permittivity values generated from the Kline and Swift relationship. Two methods of calibration will be discussed, The errors that each technique introduces into the measurement resulls will be reviewed. Temperature stability, frequency drift and the effect of increasing cavity transmission loss on the unloaded cavity Q will also be discussed.

  20. Interferometer design and controls for pulse stacking in high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Wilcox, Russell; Yang, Yawei; Dahlen, Dar; Xu, Yilun; Huang, Gang; Qiang, Du; Doolittle, Lawrence; Byrd, John; Leemans, Wim; Ruppe, John; Zhou, Tong; Sheikhsofla, Morteza; Nees, John; Galvanauskas, Almantas; Dawson, Jay; Chen, Diana; Pax, Paul

    2017-03-01

    In order to develop a design for a laser-plasma accelerator (LPA) driver, we demonstrate key technologies that enable fiber lasers to produce high energy, ultrafast pulses. These technologies must be scalable, and operate in the presence of thermal drift, acoustic noise, and other perturbations typical of an operating system. We show that coherent pulse stacking (CPS), which requires optical interferometers, can be made robust by image-relaying, multipass optical cavities, and by optical phase control schemes that sense pulse train amplitudes from each cavity. A four-stage pulse stacking system using image-relaying cavities is controlled for 14 hours using a pulse-pattern sensing algorithm. For coherent addition of simultaneous ultrafast pulses, we introduce a new scheme using diffractive optics, and show experimentally that four pulses can be added while a preserving pulse width of 128 fs.

  1. Lagrangian chaos in three- dimensional steady buoyancy-driven flows

    NASA Astrophysics Data System (ADS)

    Contreras, Sebastian; Speetjens, Michel; Clercx, Herman

    2016-11-01

    Natural convection plays a key role in fluid dynamics owing to its ubiquitous presence in nature and industry. Buoyancy-driven flows are prototypical systems in the study of thermal instabilities and pattern formation. The differentially heated cavity problem has been widely studied for the investigation of buoyancy-induced oscillatory flow. However, far less attention has been devoted to the three-dimensional Lagrangian transport properties in such flows. This study seeks to address this by investigating Lagrangian transport in the steady flow inside a cubic cavity differentially-heated from the side. The theoretical and numerical analysis expands on previously reported similarities between the current flow and lid-driven flows. The Lagrangian dynamics are controlled by the Péclet number (Pe) and the Prandtl number (Pr). Pe controls the behaviour qualitatively in that growing Pe progressively perturbs the integable state (Pe =0), thus paving the way to chaotic dynamics. Pr plays an entirely quantitative role in that Pr<1 and Pr>1 amplifies and diminishes, respectively, the perturbative effect of non-zero Pe. S.C. acknowledges financial support from Consejo Nacional de Ciencia y Tecnología (CONACYT).

  2. The response of a radiophotoluminescent glass dosimeter in megavoltage photon and electron beams.

    PubMed

    Araki, Fujio; Ohno, Takeshi

    2014-12-01

    This study investigated the response of a radiophotoluminescent glass dosimeter (RGD) in megavoltage photon and electron beams. The RGD response was compared with ion chamber measurements for 4-18 MV photons and 6-20 MeV electrons in plastic water phantoms. The response was also calculated via Monte Carlo (MC) simulations with EGSnrc/egs_chamber and Cavity user-codes, respectively. In addition, the response of the RGD cavity was analyzed as a function of field sizes and depths according to Burlin's general cavity theory. The perturbation correction factor, PQ, in the RGD cavity was also estimated from MC simulations for photon and electron beams. The calculated and measured RGD energy response at reference conditions with a 10 × 10 cm(2) field and 10 cm depth in photons was lower by up to 2.5% with increasing energy. The variation in RGD response in the field size range of 5 × 5 cm(2) to 20 × 20 cm(2) was 3.9% and 0.7%, at 10 cm depth for 4 and 18 MV, respectively. The depth dependence of the RGD response was constant within 1% for energies above 6 MV but it increased by 2.6% and 1.6% for a large (20 × 20 cm(2)) field at 4 and 6 MV, respectively. The dose contributions from photon interactions (1 - d) in the RGD cavity, according to Burlin's cavity theory, decreased with increasing energy and decreasing field size. The variation in (1 - d) between field sizes became larger with increasing depth for the lower energies of 4 and 6 MV. PQ for the RGD cavity was almost constant between 0.96 and 0.97 at 10 MV energies and above. Meanwhile, PQ depends strongly on field size and depth for 4 and 6 MV photons. In electron beams, the RGD response at a reference depth, dref, varied by less than 1% over the electron energy range but was on average 4% lower than the response for 6 MV photons. The RGD response for photon beams depends on both (1 - d) and perturbation effects in the RGD cavity. Therefore, it is difficult to predict the energy dependence of RGD response by Burlin's theory and it is recommended to directly measure RGD response or use the MC-calculated RGD response, regarding the practical use. The response for electron beams decreased rapidly at a depth beyond dref for lower mean electron energies <3 MeV and in contrast PQ increased.

  3. Modeling the interaction of a heavily beam loaded SRF cavity with its low-level RF feedback loops

    NASA Astrophysics Data System (ADS)

    Liu, Zong-Kai; Wang, Chaoen; Chang, Lung-Hai; Yeh, Meng-Shu; Chang, Fu-Yu; Chang, Mei-Hsia; Chang, Shian-Wen; Chen, Ling-Jhen; Chung, Fu-Tsai; Lin, Ming-Chyuan; Lo, Chih-Hung; Yu, Tsung-Chi

    2018-06-01

    A superconducting radio frequency (SRF) cavity provides superior stability to power high intensity light sources and can suppress coupled-bunch instabilities due to its smaller impedance for higher order modes. Because of these features, SRF cavities are commonly used for modern light sources, such as the TLS, CLS, DLS, SSRF, PLS-II, TPS, and NSLS-II, with an aggressive approach to operate the light sources at high beam currents. However, operating a SRF cavity at high beam currents may result with unacceptable stability problems of the low level RF (LLRF) system, due to drifts of the cavity resonant frequency caused by unexpected perturbations from the environment. As the feedback loop gets out of control, the cavity voltage may start to oscillate with a current-dependent characteristic frequency. Such situations can cause beam abort due to the activation of the interlock protection system, i.e. false alarm of quench detection. This malfunction of the light source reduces the reliability of SRF operation. Understanding this unstable mechanism to prevent its appearance becomes a primary task in the pursuit of highly reliable SRF operation. In this paper, a Pedersen model, including the response of the LLRF system, was used to simulate the beam-cavity interaction of a SRF cavity under heavy beam loading. Causes for the onset of instability at high beam current will be discussed as well as remedies to assure the design of a stable LLRF system.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taddese, Biniyam Tesfaye; Antonsen, Thomas M.; Ott, Edward

    Classical analogs of the quantum mechanical concepts of the Loschmidt Echo and quantum fidelity are developed with the goal of detecting small perturbations in a closed wave chaotic region. Sensing techniques that employ a one-recording-channel time-reversal-mirror, which in turn relies on time reversal invariance and spatial reciprocity of the classical wave equation, are introduced. In analogy with quantum fidelity, we employ scattering fidelity techniques which work by comparing response signals of the scattering region, by means of cross correlation and mutual information of signals. The performance of the sensing techniques is compared for various perturbations induced experimentally in an acousticmore » resonant cavity. The acoustic signals are parametrically processed to mitigate the effect of dissipation and to vary the spatial diversity of the sensing schemes. In addition to static boundary condition perturbations at specified locations, perturbations to the medium of wave propagation are shown to be detectable, opening up various real world sensing applications in which a false negative cannot be tolerated.« less

  5. Lowest triplet (n, π*) electronic state of acrolein: Determination of structural parameters by cavity ringdown spectroscopy and quantum-chemical methods

    NASA Astrophysics Data System (ADS)

    Hlavacek, Nikolaus C.; McAnally, Michael O.; Drucker, Stephen

    2013-02-01

    The cavity ringdown absorption spectrum of acrolein (propenal, CH2=CH—CH=O) was recorded near 412 nm, under bulk-gas conditions at room temperature and in a free-jet expansion. The measured spectral region includes the 0^0_0 band of the T1(n, π*) ← S0 system. We analyzed the 0^0_0 rotational contour by using the STROTA computer program [R. H. Judge et al., J. Chem. Phys. 103, 5343 (1995)], 10.1063/1.470569, which incorporates an asymmetric rotor Hamiltonian for simulating and fitting singlet-triplet spectra. We used the program to fit T1(n, π*) inertial constants to the room-temperature contour. The determined values (cm-1), with 2σ confidence intervals, are A = 1.662 ± 0.003, B = 0.1485 ± 0.0006, C = 0.1363 ± 0.0004. Linewidth analysis of the jet-cooled spectrum yielded a value of 14 ± 2 ps for the lifetime of isolated acrolein molecules in the T1(n, π*), v = 0 state. We discuss the observed lifetime in the context of previous computational work on acrolein photochemistry. The spectroscopically derived inertial constants for the T1(n, π*) state were used to benchmark a variety of computational methods. One focus was on complete active space methods, such as complete active space self-consistent field (CASSCF) and second-order perturbation theory with a CASSCF reference function (CASPT2), which are applicable to excited states. We also examined the equation-of-motion coupled-cluster and time-dependent density function theory excited-state methods, and finally unrestricted ground-state techniques, including unrestricted density functional theory and unrestricted coupled-cluster theory with single and double and perturbative triple excitations. For each of the above methods, we or others [O. S. Bokareva et al., Int. J. Quantum Chem. 108, 2719 (2008)], 10.1002/qua.21803 used a triple zeta-quality basis set to optimize the T1(n, π*) geometry of acrolein. We find that the multiconfigurational methods provide the best agreement with fitted inertial constants, while the economical unrestricted Perdew-Burke-Ernzerhof exchange-correlation hybrid functional (UPBE0) technique performs nearly as well.

  6. Amplitude and polarization asymmetries in a ring laser

    NASA Technical Reports Server (NTRS)

    Campbell, L. L.; Buholz, N. E.

    1971-01-01

    Asymmetric amplitude effects between the oppositely directed traveling waves in a He-Ne ring laser are analyzed both theoretically and experimentally. These effects make it possible to detect angular orientations of an inner-cavity bar with respect to the plane of the ring cavity. The amplitude asymmetries occur when a birefringent bar is placed in the three-mirror ring cavity, and an axial magnetic field is applied to the active medium. A simplified theoretical analysis is performed by using a first order perturbation theory to derive an expression for the polarization of the active medium, and a set of self-consistent equations are derived to predict threshold conditions. Polarization asymmetries between the oppositely directed waves are also predicted. Amplitude asymmetries similar in nature to those predicted at threshold occur when the laser is operating in 12-15 free-running modes, and polarization asymmetry occurs simultaneously.

  7. Effect of granular media on the vibrational response of a resonant structure: theory and experiment.

    PubMed

    Valenza, John J; Hsu, Chaur-Jian; Johnson, David Linton

    2010-11-01

    The acoustic response of a structure that contains a cavity filled with a loose granular material is analyzed. The inputs to the theory are the effective masses of each subsystem: that of the empty-cavity resonating structure and that of the granular medium within the cavity. This theory accurately predicts the frequencies, widths, and relative amplitudes of the various flexural mode resonances observed with rectangular bars, each having a cavity filled with loose tungsten granules. Inasmuch as the dominant mechanism for damping is due to adsorbed water at the grain-grain contacts, the significant effects of humidity on both the effective mass of the granular medium as well as on the response of the grain-loaded bars are monitored. Here, depending upon the humidity and the preparation protocol, it is possible to observe one, two, or three distinct resonances in a wide frequency range (1-5 kHz) over which the empty bar has but one resonance. These effects are understood in terms of the theoretical framework, which may simplify in terms of perturbation theories.

  8. Performance of an untethered micro-optical pressure sensor

    NASA Astrophysics Data System (ADS)

    Ioppolo, Tindaro; Manzo, Maurizio; Krueger, Paul

    2012-11-01

    We present analytical and computational studies of the performance of a novel untethered micro-optical pressure sensor for fluid dynamics measurements. In particular, resolution and dynamic range will be presented. The sensor concept is based on the whispering galley mode (WGM) shifts that are observed in micro-scale dielectric optical cavities. A micro-spherical optical cavity (liquid or solid) is embedded in a thin polymeric sheet. The applied external pressure perturbs the morphology of the optical cavity leading to a shift in its optical resonances. The optical sensors are interrogated remotely, by embedding quantum dots or fluorescent dye in the micro-optical cavity. This allows a free space coupling of excitation and monitoring of the optical modes without the need of optical fibers or other cabling. With appropriate excitation and monitoring equipment, the micro-scale sensors can be distributed over a surface (e.g., including flexible biological surfaces) to monitor the local pressure field. We acknowledge the financial support from the National Science Foundation through grant CBET-1133876 with Dr. Horst Henning Winter as the program director.

  9. Investigation into the behaviors of ventilated supercavities in unsteady flow

    NASA Astrophysics Data System (ADS)

    Shao, Siyao; Wu, Yue; Haynes, Joseph; Arndt, Roger E. A.; Hong, Jiarong

    2018-05-01

    A systematic investigation of ventilated supercavitation behaviors in an unsteady flow is conducted using a high-speed water tunnel at the Saint Anthony Falls Laboratory. The cavity is generated with a forward facing model under varying ventilation rates and cavitator sizes. The unsteady flow is produced by a gust generator consisting of two hydrofoils flapping in unison with a varying angle of attack (AoA) and frequency (fg). The current experiment reveals five distinct cavity states, namely, the stable state, wavy state, pulsating state I, pulsating state II, and collapsing state, based on the variation of cavity geometry and pressure signatures inside the cavity. The distribution of cavity states over a broad range of unsteady conditions is summarized in a cavity state map. It shows that the transition of the supercavity from the stable state to pulsating and collapsing states is primarily induced by increasing AoA while the transition to the wavy state triggers largely by increasing fg. Remarkably, the state map over the non-dimensionalized half wavelength and wave amplitude of the perturbation indicates that the supercavity loses its stability and transitions to pulsating or collapsing states when the level of its distortion induced by the flow unsteadiness exceeds the cavity dimension under a steady condition. The state maps under different ventilation rates and cavitator sizes yield similar distribution but show that the occurrence of the cavity collapse can be suppressed with increasing ventilation coefficient or cavitator size. Such knowledge can be integrated into designing control strategies for the supercavitating devices operating under different unsteady conditions.

  10. Importance of Hydrophobic Cavities in Allosteric Regulation of Formylglycinamide Synthetase: Insight from Xenon Trapping and Statistical Coupling Analysis

    PubMed Central

    Choudhary, Deepanshu; Panjikar, Santosh; Anand, Ruchi

    2013-01-01

    Formylglycinamide ribonucleotide amidotransferase (FGAR-AT) is a 140 kDa bi-functional enzyme involved in a coupled reaction, where the glutaminase active site produces ammonia that is subsequently utilized to convert FGAR to its corresponding amidine in an ATP assisted fashion. The structure of FGAR-AT has been previously determined in an inactive state and the mechanism of activation remains largely unknown. In the current study, hydrophobic cavities were used as markers to identify regions involved in domain movements that facilitate catalytic coupling and subsequent activation of the enzyme. Three internal hydrophobic cavities were located by xenon trapping experiments on FGAR-AT crystals and further, these cavities were perturbed via site-directed mutagenesis. Biophysical characterization of the mutants demonstrated that two of these three voids are crucial for stability and function of the protein, although being ∼20 Å from the active centers. Interestingly, correlation analysis corroborated the experimental findings, and revealed that amino acids lining the functionally important cavities form correlated sets (co-evolving residues) that connect these regions to the amidotransferase active center. It was further proposed that the first cavity is transient and allows for breathing motion to occur and thereby serves as an allosteric hotspot. In contrast, the third cavity which lacks correlated residues was found to be highly plastic and accommodated steric congestion by local adjustment of the structure without affecting either stability or activity. PMID:24223728

  11. Dipole-dipole interaction in cavity QED: The weak-coupling, nondegenerate regime

    NASA Astrophysics Data System (ADS)

    Donaire, M.; Muñoz-Castañeda, J. M.; Nieto, L. M.

    2017-10-01

    We compute the energies of the interaction between two atoms placed in the middle of a perfectly reflecting planar cavity, in the weak-coupling nondegenerate regime. Both inhibition and enhancement of the interactions can be obtained by varying the size of the cavity. We derive exact expressions for the dyadic Green's function of the cavity field which mediates the interactions and apply time-dependent quantum perturbation theory in the adiabatic approximation. We provide explicit expressions for the van der Waals potentials of two polarizable atomic dipoles and the electrostatic potential of two induced dipoles. We compute the van der Waals potentials in three different scenarios: two atoms in their ground states, two atoms excited, and two dissimilar atoms with one of them excited. In addition, we calculate the phase-shift rate of the two-atom wave function in each case. The effect of the two-dimensional confinement of the electromagnetic field on the dipole-dipole interactions is analyzed. This effect depends on the atomic polarization. For dipole moments oriented parallel to the cavity plates, both the electrostatic and the van der Waals interactions are exponentially suppressed for values of the cavity width much less than the interatomic distance, whereas for values of the width close to the interatomic distance, the strength of both interactions is higher than their values in the absence of cavity. For dipole moments perpendicular to the plates, the strength of the van der Waals interaction decreases for values of the cavity width close to the interatomic distance, while it increases for values of the width much less than the interatomic distance with respect to its strength in the absence of cavity. We illustrate these effects by computing the dipole-dipole interactions between two alkali atoms in circular Rydberg states.

  12. Method for producing smooth inner surfaces

    DOEpatents

    Cooper, Charles A.

    2016-05-17

    The invention provides a method for preparing superconducting cavities, the method comprising causing polishing media to tumble by centrifugal barrel polishing within the cavities for a time sufficient to attain a surface smoothness of less than 15 nm root mean square roughness over approximately a 1 mm.sup.2 scan area. The method also provides for a method for preparing superconducting cavities, the method comprising causing polishing media bound to a carrier to tumble within the cavities. The method also provides for a method for preparing superconducting cavities, the method comprising causing polishing media in a slurry to tumble within the cavities.

  13. Statistical physics of community ecology: a cavity solution to MacArthur’s consumer resource model

    NASA Astrophysics Data System (ADS)

    Advani, Madhu; Bunin, Guy; Mehta, Pankaj

    2018-03-01

    A central question in ecology is to understand the ecological processes that shape community structure. Niche-based theories have emphasized the important role played by competition for maintaining species diversity. Many of these insights have been derived using MacArthur’s consumer resource model (MCRM) or its generalizations. Most theoretical work on the MCRM has focused on small ecosystems with a few species and resources. However theoretical insights derived from small ecosystems many not scale up to large ecosystems with many resources and species because large systems with many interacting components often display new emergent behaviors that cannot be understood or deduced from analyzing smaller systems. To address these shortcomings, we develop a statistical physics inspired cavity method to analyze MCRM when both the number of species and the number of resources is large. Unlike previous work in this limit, our theory addresses resource dynamics and resource depletion and demonstrates that species generically and consistently perturb their environments and significantly modify available ecological niches. We show how our cavity approach naturally generalizes niche theory to large ecosystems by accounting for the effect of collective phenomena on species invasion and ecological stability. Our theory suggests that such phenomena are a generic feature of large, natural ecosystems and must be taken into account when analyzing and interpreting community structure. It also highlights the important role that statistical-physics inspired approaches can play in furthering our understanding of ecology.

  14. Study of Dose Perturbation at Bone-Tissue Interfaces in Megavoltage Photon Beam Therapy.

    NASA Astrophysics Data System (ADS)

    Das, Indra Jeet

    Dose perturbations during photon beam irradiation occur at interfaces between two dissimilar media due to the loss of electronic equilibrium. The human body contains many different types of interfaces between soft tissue and other media such as, air cavities, lungs, bones, and high atomic number (Z) materials. The dose to critical organs in the vicinity of high Z interfaces, is what leads to this project. This work describes the dose perturbation at high Z (from bone to lead) interfaces with soft tissue for clinically used megavoltage photon beams in the range of CO-60 gamma rays to 24 MV X-rays. It is divided into three main sections: (1) the dose outside the inhomogeneity in the direction of backscatter, (2) the dose inside the inhomogeneity, and (3) the dose on the photon transmission side of the inhomogeneity. Using different types of parallel plate ion chambers, TLD (powder and chip), and film as dosimeters, the dose perturbation is studied as a function of photon energy, thickness, width, and depth of inhomogeneity, distance from the interface and radiation field size. The concept of Bragg-Gray cavity theory is applied and verified for dose determination inside the inhomogeneity. A significant dose enhancement has been observed on the backscatter side for all photon energies. It is strongly dependent on the atomic number of the inhomogeneity and less dependent on the photon energy, thickness, depth, width, and field size. In the forward direction, a dose reduction occurs at the interface at beam energies lower than 10 MV, whereas a dose enhancement occurs for higher photon energies. The interface effect persists up to a few millimeters on the backscatter side but a distance equivalent to the secondary electron range for the particular photon beams in the forward direction. The dose perturbation is explained on the basis of production and transport of secondary electrons. Empirical functions are derived from the experimental data to predict the dose distribution in the vicinity of an inhomogeneity. These equations could form the basis of a treatment planning system that would accurately represent the dose both at the interface and surrounding tissue.

  15. Microwave-Assisted Curing of Silicon Carbide-Reinforced Epoxy Composites: Role of Dielectric Properties

    NASA Astrophysics Data System (ADS)

    Pal, Ranu; Akhtar, M. J.; Kar, Kamal K.

    2018-05-01

    In this work, the dielectric properties of epoxy-based composites are significantly improved with the help of the silicon carbide (SiC) filler at an operating frequency of 2.45 GHz to make them ideal candidates for microwave curing. The improvement is due to enhancement of the interfacial polarization because of the presence of the SiC filler. The dielectric properties are measured using the microwave cavity perturbation method. The cavity structure is simulated using the COMSOL@Multiphysics software to verify the measured data in terms of the resonant frequency. Finally, all the SiC-based composites including the neat epoxy resin are heated in the 2.45 GHz microwave oven at 300 W for 20 min. The thermal and mechanical properties of all the cured composites are measured, and the data are compared with their room temperature pre-cured counterparts. The dielectric properties of composite samples using SiC as a reinforcing agent in the epoxy are found to be substantially improved compared with those of the pure epoxy sample, which actually leads to better curing of these composite using the 2.45 GHz microwave system.

  16. Improvement and performance evaluation of the perturbation source method for an exact Monte Carlo perturbation calculation in fixed source problems

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hiroki; Yamamoto, Toshihiro

    2017-09-01

    This paper presents improvement and performance evaluation of the "perturbation source method", which is one of the Monte Carlo perturbation techniques. The formerly proposed perturbation source method was first-order accurate, although it is known that the method can be easily extended to an exact perturbation method. A transport equation for calculating an exact flux difference caused by a perturbation is solved. A perturbation particle representing a flux difference is explicitly transported in the perturbed system, instead of in the unperturbed system. The source term of the transport equation is defined by the unperturbed flux and the cross section (or optical parameter) changes. The unperturbed flux is provided by an "on-the-fly" technique during the course of the ordinary fixed source calculation for the unperturbed system. A set of perturbation particle is started at the collision point in the perturbed region and tracked until death. For a perturbation in a smaller portion of the whole domain, the efficiency of the perturbation source method can be improved by using a virtual scattering coefficient or cross section in the perturbed region, forcing collisions. Performance is evaluated by comparing the proposed method to other Monte Carlo perturbation methods. Numerical tests performed for a particle transport in a two-dimensional geometry reveal that the perturbation source method is less effective than the correlated sampling method for a perturbation in a larger portion of the whole domain. However, for a perturbation in a smaller portion, the perturbation source method outperforms the correlated sampling method. The efficiency depends strongly on the adjustment of the new virtual scattering coefficient or cross section.

  17. Prediction of sound fields in acoustical cavities using the boundary element method. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kipp, C. R.; Bernhard, R. J.

    1985-01-01

    A method was developed to predict sound fields in acoustical cavities. The method is based on the indirect boundary element method. An isoparametric quadratic boundary element is incorporated. Pressure, velocity and/or impedance boundary conditions may be applied to a cavity by using this method. The capability to include acoustic point sources within the cavity is implemented. The method is applied to the prediction of sound fields in spherical and rectangular cavities. All three boundary condition types are verified. Cases with a point source within the cavity domain are also studied. Numerically determined cavity pressure distributions and responses are presented. The numerical results correlate well with available analytical results.

  18. Pondermotive versus mirror force in creation of the filamentary cavities in auroral plasma

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra

    1994-01-01

    Recently rocket observations on spikelets of lower-hybrid waves along with strong density cavities and transversely heated ions were reported. The observed thin filamentary cavities oriented along the magnetic field in the auroral plasma have density depletions up to several tens of percent. These observations have been interpreted in terms of a theory for lower-hybrid wave condensation and collapse. The modulational instability leading to the wave consensation of the lower-hybrid waves yields only weak density perturbations, which cannot explain the above strong density depletions. The wave collapse theory is based on the nonlinear pondermotive force in a homogeneous ambient plasma and the density depletion is determined by the balance between the wave pressure (pondermotive force) and the plasma pressure. In the auroral plasma, the balance is achieved in a time tau(sub wc) equal to or less than 1 ms. It is shown here that the mirror force, acting on the transversely heated ions at a relatively long time scale, is an effective mechanism for creating the strong plasma cavities. We suggest that the process of wave condensation, through the pondermotive force causing generation of short wavelength waves from relatively long wavelength waves, is a dominant process until the former waves evolve and become effective in the transverse heating of ions. As soon as this happens, mirror force on ions becomes an important factor in the creation of the density cavities, which may further trap and enhance the waves. Results from a model of cavity formation by transverse ion heating show that the observed depletions in the density cavities can be produced by the heating rates determined by the observed wave amplitudes near the lower-hybrid frequency. It is found that the creation of a strong density cavity takes a few minutes.

  19. Designing Kerr interactions using multiple superconducting qubit types in a single circuit

    NASA Astrophysics Data System (ADS)

    Elliott, Matthew; Joo, Jaewoo; Ginossar, Eran

    2018-02-01

    The engineering of Kerr interactions is of great interest for processing quantum information in multipartite quantum systems and for investigating many-body physics in a complex cavity-qubit network. We study how coupling multiple different types of superconducting qubits to the same cavity modes can be used to modify the self- and cross-Kerr effects acting on the cavities and demonstrate that this type of architecture could be of significant benefit for quantum technologies. Using both analytical perturbation theory results and numerical simulations, we first show that coupling two superconducting qubits with opposite anharmonicities to a single cavity enables the effective self-Kerr interaction to be diminished, while retaining the number splitting effect that enables control and measurement of the cavity field. We demonstrate that this reduction of the self-Kerr effect can maintain the fidelity of coherent states and generalised Schrödinger cat states for much longer than typical coherence times in realistic devices. Next, we find that the cross-Kerr interaction between two cavities can be modified by coupling them both to the same pair of qubit devices. When one of the qubits is tunable in frequency, the strength of entangling interactions between the cavities can be varied on demand, forming the basis for logic operations on the two modes. Finally, we discuss the feasibility of producing an array of cavities and qubits where intermediary and on-site qubits can tune the strength of self- and cross-Kerr interactions across the whole system. This architecture could provide a way to engineer interesting many-body Hamiltonians and be a useful platform for quantum simulation in circuit quantum electrodynamics.

  20. The perturbation correction factors for cylindrical ionization chambers in high-energy photon beams.

    PubMed

    Yoshiyama, Fumiaki; Araki, Fujio; Ono, Takeshi

    2010-07-01

    In this study, we calculated perturbation correction factors for cylindrical ionization chambers in high-energy photon beams by using Monte Carlo simulations. We modeled four Farmer-type cylindrical chambers with the EGSnrc/Cavity code and calculated the cavity or electron fluence correction factor, P (cav), the displacement correction factor, P (dis), the wall correction factor, P (wall), the stem correction factor, P (stem), the central electrode correction factor, P (cel), and the overall perturbation correction factor, P (Q). The calculated P (dis) values for PTW30010/30013 chambers were 0.9967 +/- 0.0017, 0.9983 +/- 0.0019, and 0.9980 +/- 0.0019, respectively, for (60)Co, 4 MV, and 10 MV photon beams. The value for a (60)Co beam was about 1.0% higher than the 0.988 value recommended by the IAEA TRS-398 protocol. The P (dis) values had a substantial discrepancy compared to those of IAEA TRS-398 and AAPM TG-51 at all photon energies. The P (wall) values were from 0.9994 +/- 0.0020 to 1.0031 +/- 0.0020 for PTW30010 and from 0.9961 +/- 0.0018 to 0.9991 +/- 0.0017 for PTW30011/30012, in the range of (60)Co-10 MV. The P (wall) values for PTW30011/30012 were around 0.3% lower than those of the IAEA TRS-398. Also, the chamber response with and without a 1 mm PMMA water-proofing sleeve agreed within their combined uncertainty. The calculated P (stem) values ranged from 0.9945 +/- 0.0014 to 0.9965 +/- 0.0014, but they are not considered in current dosimetry protocols. The values were no significant difference on beam qualities. P (cel) for a 1 mm aluminum electrode agreed within 0.3% with that of IAEA TRS-398. The overall perturbation factors agreed within 0.4% with those for IAEA TRS-398.

  1. Spectral perturbations from silicon diode detector encapsulation and shielding in photon fields.

    PubMed

    Eklund, Karin; Ahnesjö, Anders

    2010-11-01

    Silicon diodes are widely used as detectors for relative dose measurements in radiotherapy. The common manufacturing practice is to encapsulate the diodes in plastic for protection and to facilitate mounting in scanning devices. Diodes intended for use in photon fields commonly also have a shield of a high atomic number material (usually tungsten) integrated into the encapsulation to selectively absorb low-energy photons to which silicon diodes would otherwise over-response. However, new response models based on cavity theories and spectra calculations have been proposed for direct correction of the readout from unshielded (e.g., "electron") diodes used in photon fields. This raises the question whether it is correct to assume that the spectrum in a water phantom at the location of the detector cavity is not perturbed by the detector encapsulation materials. The aim of this work is to investigate the spectral effects of typical encapsulations, including shielding, used for clinical diodes. The effects of detector encapsulation of an unshielded and a shielded commercial diode on the spectra at the detector cavity location are studied through Monte Carlo simulations with PENELOPE-2005. Variance reduction based on correlated sampling is applied to reduce the CPU time needed for the simulations. The use of correlated sampling is found to be efficient and to not introduce any significant bias to the results. Compared to reference spectra calculated in water, the encapsulation for an unshielded diode is demonstrated to not perturb the spectrum, while a tungsten shielded diode caused not only the desired decrease in low-energy scattered photons but also a large increase of the primary electron fluence. Measurements with a shielded diode in a 6 MV photon beam proved that the shielding does not completely remove the field-size dependence of the detector response caused by the over-response from low-energy photons. Response factors of a properly corrected unshielded diode were shown to give comparable, or better, results than the traditionally used shielded diode. Spectra calculated for photon fields in water can be directly used for modeling the response of unshielded silicon diodes with plastic encapsulations. Unshielded diodes used together with appropriate corrections can replace shielded diodes in photon dose measurements.

  2. Method for filling the cavities of cells with a chromogenic fluid

    DOEpatents

    Tonazzi, J.C.L.; Kucharczyk, J.E. Jr.; Agrawal, A.

    1999-01-05

    A method and apparatus are disclosed for filling a cell cavity positioned between a first substrate and a second substrate with a cell filling liquid. The method entails forming at least one evacuation cavity encompassing at least a portion of an outer surface of each of the first and second substrates of a cell containing a cell cavity and isolating the cell cavity from the evacuation cavity; reducing a pressure in each of the evacuation cavity and the cell cavity; and dispensing the cell filling fluid into the cell cavity. The application is to the fabrication of electrochromic windows. 22 figs.

  3. Short-range wakefields generated in the blowout regime of plasma-wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Stupakov, G.

    2018-04-01

    In the past, calculation of wakefields generated by an electron bunch propagating in a plasma has been carried out in linear approximation, where the plasma perturbation can be assumed small and plasma equations of motion linearized. This approximation breaks down in the blowout regime where a high-density electron driver expels plasma electrons from its path and creates a cavity void of electrons in its wake. In this paper, we develop a technique that allows us to calculate short-range longitudinal and transverse wakes generated by a witness bunch being accelerated inside the cavity. Our results can be used for studies of the beam loading and the hosing instability of the witness bunch in plasma-wakefield and laser-wakefield acceleration.

  4. Controlling Nanoantenna Polarizability through Backaction via a Single Cavity Mode

    NASA Astrophysics Data System (ADS)

    Ruesink, Freek; Doeleman, Hugo M.; Verhagen, Ewold; Koenderink, A. Femius

    2018-05-01

    The polarizability α determines the absorption, extinction, and scattering by small particles. Beyond being purely set by scatterer size and material, in fact polarizability can be affected by backaction: the influence of the photonic environment on the scatterer. As such, controlling the strength of backaction provides a tool to tailor the (radiative) properties of nanoparticles. Here, we control the backaction between broadband scatterers and a single mode of a high-quality cavity. We demonstrate that backaction from a microtoroid ring resonator significantly alters the polarizability of an array of nanorods: the polarizability is renormalized as fields scattered from—and returning to—the nanorods via the ring resonator depolarize the rods. Moreover, we show that it is possible to control the strength of the backaction by exploiting the diffractive properties of the array. This perturbation of a strong scatterer by a nearby cavity has important implications for hybrid plasmonic-photonic resonators and the understanding of coupled optical resonators in general.

  5. Linearly polarized photoluminescence of anisotropically strained c-plane GaN layers on stripe-shaped cavity-engineered sapphire substrate

    NASA Astrophysics Data System (ADS)

    Kim, Jongmyeong; Moon, Daeyoung; Lee, Seungmin; Lee, Donghyun; Yang, Duyoung; Jang, Jeonghwan; Park, Yongjo; Yoon, Euijoon

    2018-05-01

    Anisotropic in-plane strain and resultant linearly polarized photoluminescence (PL) of c-plane GaN layers were realized by using a stripe-shaped cavity-engineered sapphire substrate (SCES). High resolution X-ray reciprocal space mapping measurements revealed that the GaN layers on the SCES were under significant anisotropic in-plane strain of -0.0140% and -0.1351% along the directions perpendicular and parallel to the stripe pattern, respectively. The anisotropic in-plane strain in the GaN layers was attributed to the anisotropic strain relaxation due to the anisotropic arrangement of cavity-incorporated membranes. Linearly polarized PL behavior such as the observed angle-dependent shift in PL peak position and intensity comparable with the calculated value based on k.p perturbation theory. It was found that the polarized PL behavior was attributed to the modification of valence band structures induced by anisotropic in-plane strain in the GaN layers on the SCES.

  6. On viscoelastic cavitating flows: A numerical study

    NASA Astrophysics Data System (ADS)

    Naseri, Homa; Koukouvinis, Phoevos; Malgarinos, Ilias; Gavaises, Manolis

    2018-03-01

    The effect of viscoelasticity on turbulent cavitating flow inside a nozzle is simulated for Phan-Thien-Tanner (PTT) fluids. Two different flow configurations are used to show the effect of viscoelasticity on different cavitation mechanisms, namely, cloud cavitation inside a step nozzle and string cavitation in an injector nozzle. In incipient cavitation condition in the step nozzle, small-scale flow features including cavitating microvortices in the shear layer are suppressed by viscoelasticity. Flow turbulence and mixing are weaker compared to the Newtonian fluid, resulting in suppression of microcavities shedding from the cavitation cloud. Moreover, mass flow rate fluctuations and cavity shedding frequency are reduced by the stabilizing effect of viscoelasticity. Time averaged values of the liquid volume fraction show that cavitation formation is strongly suppressed in the PTT viscoelastic fluid, and the cavity cloud is pushed away from the nozzle wall. In the injector nozzle, a developed cloud cavity covers the nozzle top surface, while a vortex-induced string cavity emerges from the turbulent flow inside the sac volume. Similar to the step nozzle case, viscoelasticity reduces the vapor volume fraction in the cloud region. However, formation of the streamwise string cavity is stimulated as turbulence is suppressed inside the sac volume and the nozzle orifice. Vortical perturbations in the vicinity of the vortex are damped, allowing more vapor to develop in the string cavity region. The results indicate that the effect of viscoelasticity on cavitation depends on the alignment of the cavitating vortices with respect to the main flow direction.

  7. Room temperature acoustic transducers for high-temperature thermometry

    NASA Astrophysics Data System (ADS)

    Ripple, D. C.; Murdock, W. E.; Strouse, G. F.; Gillis, K. A.; Moldover, M. R.

    2013-09-01

    We have successfully conducted highly-accurate, primary acoustic thermometry at 600 K using a sound source and a sound detector located outside the thermostat, at room temperature. We describe the source, the detector, and the ducts that connected them to our cavity resonator. This transducer system preserved the purity of the argon gas, generated small, predictable perturbations to the acoustic resonance frequencies, and can be used well above 600 K.

  8. MHD SIMULATIONS OF CORONAL SUPRA-ARCADE DOWNFLOWS INCLUDING ANISOTROPIC THERMAL CONDUCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zurbriggen, E.; Costa, A.; Schneiter, M.

    2016-11-20

    Coronal supra-arcade downflows (SADs) are observed as dark trails descending toward hot turbulent-fan-shaped regions. Due to the large temperature values and gradients in these fan regions, the thermal conduction (TC) should be very efficient. While several models have been proposed to explain the triggering and the evolution of SADs, none of these scenarios address a systematic consideration of TC. Thus, we accomplish this task numerically simulating the evolution of SADs within this framework. That is, SADs are conceived as voided (subdense) cavities formed by nonlinear waves triggered by downflowing bursty localized reconnection events in a perturbed hot fan. We generatemore » a properly turbulent fan, obtained by a stirring force that permits control of the energy and vorticity input in the medium where SADs develop. We include anisotropic TC and consider plasma properties consistent with observations. Our aim is to study whether it is possible to prevent SADs from vanishing by thermal diffusion. We find that this will be the case, depending on the turbulence parameters, in particular if the magnetic field lines are able to envelope the voided cavities, thermally isolating them from the hot environment. Velocity shear perturbations that are able to generate instabilities of the Kelvin–Helmholtz type help to produce magnetic islands, extending the lifetime of SADs.« less

  9. Manipulation of the micro and macro-structure of beams extracted from cyclotrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laxdal, R.E.

    1995-09-01

    It is standard practice in cyclotrons to alter the extracted micro-pulse width by using center-region slits and/or by chopping the beam before injection. The macro-structure can also be varied by means of pulsed or sinusoidal deflection devices before injection and/or after extraction. All above methods, however, involve cutting away the unwanted beam, thus reducing the time-averaged intensity. This paper will focus on some methods used to alter the time structure of extracted beams without significant beam loss. For example radial gradients in the accelerating fields from rf cavities can be utilized to compress, expand or even split longitudinally the circulatingmore » particle bunches. The macro-structure of the extracted beam can be altered by employing resonant extraction methods and replacing the static magnetic bump with either a pulsed or a sinusoidal transverse perturbation. The methods are most suitable for H cyclotrons but may also be considered in a limited scope for cyclotrons using direct extraction. Results of computer simulations and beam tests on the TRIUMF 500 MeV H{sup {minus}} cyclotron will be presented.« less

  10. An historical overview of cavity-enhanced methods

    NASA Astrophysics Data System (ADS)

    Paldus, B. A.; Kachanov, A. A.

    2005-10-01

    An historical overview of laser-based, spectroscopic methods that employ high-finesse optical resonators is presented. The overview begins with the early work in atomic absorption (1962) and optical cavities (1974) that led to the first mirror reflectivity measurements in 1980. This paper concludes with very recent extensions of cavity-enhanced methods for the study of condensed-phase media and biological systems. Methods described here include cavity ring-down spectroscopy, integrated cavity output spectroscopy, and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy. Given the explosive growth of the field over the past decade, this review does not attempt to present a comprehensive bibliography of all work published in cavity-enhanced spectroscopy, but rather strives to illustrate the rich history, creative diversity, and broad applications potential of these methods.

  11. Slip-stacking Dynamics for High-Power Proton Beams at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldred, Jeffrey Scott

    Slip-stacking is a particle accelerator configuration used to store two particle beams with different momenta in the same ring. The two beams are longitudinally focused by two radiofrequency (RF) cavities with a small frequency difference between them. Each beam is synchronized to one RF cavity and perturbed by the other RF cavity. Fermilab uses slip-stacking in the Recycler so as to double the power of the 120 GeV proton beam in the Main Injector. This dissertation investigates the dynamics of slip-stacking beams analytically, numerically and experimentally. In the analytic analysis, I find the general trajectory of stable slip-stacking particles andmore » identify the slip-stacking parametric resonances. In the numerical analysis, I characterize the stable phase-space area and model the particle losses. In particular, I evaluate the impact of upgrading the Fermilab Booster cycle-rate from 15 Hz to 20 Hz as part of the Proton Improvement Plan II (PIP-II). The experimental analysis is used to verify my approach to simulating slip-stacking loss. I design a study for measuring losses from the longitudinal single-particle dynamics of slip-stacking as a function of RF cavity voltage and RF frequency separation. I further propose the installation of a harmonic RF cavity and study the dynamics of this novel slip-stacking configuration. I show the harmonic RF cavity cancels out parametric resonances in slip-stacking, reduces emittance growth during slip-stacking, and dramatically enhances the stable phase-space area. The harmonic cavity is expected to reduce slip-stacking losses to far exceed PIP-II requirements. These results raise the possibility of extending slip-stacking beyond the PIP-II era.« less

  12. Prototype Control System for Compensation of Superconducting Cavities Detuning Using Piezoelectric Actuators

    NASA Astrophysics Data System (ADS)

    Przygoda, K.; Piotrowski, A.; Jablonski, G.; Makowski, D.; Pozniak, T.; Napieralski, A.

    2009-08-01

    Pulsed operation of high gradient superconducting radio frequency (SCRF) cavities results in dynamic Lorentz force detuning (LFD) approaching or exceeding the bandwidth of the cavity of order of a few hundreds of Hz. The resulting modulation of the resonance frequency of the cavity is leading to a perturbation of the amplitude and phase of the accelerating field, which can be controlled only at the expense of RF power. Presently, at various labs, a piezoelectric fast tuner based on an active compensation scheme for the resonance frequency control of the cavity is under study. The tests already performed in the Free Electron Laser in Hamburg (FLASH), proved the possibility of Lorentz force detuning compensation by the means of the piezo element excited with the single period of sine wave prior to the RF pulse. The X-Ray Free Electron Laser (X-FEL) accelerator, which is now under development in Deutsche Elektronen-Synchrotron (DESY), will consists of around 800 cavities with a fast tuner fixture including the actuator/sensor configuration. Therefore, it is necessary to design a distributed control system which would be able to supervise around 25 RF stations, each one comprised of 32 cavities. The Advanced Telecomunications Computing Architecture (ATCA) was chosen to design, develop, and build a Low Level Radio Frequency (LLRF) controller for X-FEL. The prototype control system for Lorentz force detuning compensation was designed and developed. The control applications applied in the system were fitted to the main framework of interfaces and communication protocols proposed for the ATCA-based LLRF control system. The paper presents the general view of a designed control system and shows the first experimental results from the tests carried out in FLASH facility. Moreover, the possibilities for integration of the piezo control system to the ATCA standards are discussed.

  13. Short-range wakefields generated in the blowout regime of plasma-wakefield acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stupakov, G.

    In the past, calculation of wakefields generated by an electron bunch propagating in a plasma has been carried out in linear approximation, where the plasma perturbation can be assumed small and plasma equations of motion linearized. This approximation breaks down in the blowout regime where a high-density electron driver expels plasma electrons from its path and creates a cavity void of electrons in its wake. Here in this paper, we develop a technique that allows us to calculate short-range longitudinal and transverse wakes generated by a witness bunch being accelerated inside the cavity. Our results can be used for studiesmore » of the beam loading and the hosing instability of the witness bunch in plasma-wakefield and laser-wakefield acceleration.« less

  14. Short-range wakefields generated in the blowout regime of plasma-wakefield acceleration

    DOE PAGES

    Stupakov, G.

    2018-04-02

    In the past, calculation of wakefields generated by an electron bunch propagating in a plasma has been carried out in linear approximation, where the plasma perturbation can be assumed small and plasma equations of motion linearized. This approximation breaks down in the blowout regime where a high-density electron driver expels plasma electrons from its path and creates a cavity void of electrons in its wake. Here in this paper, we develop a technique that allows us to calculate short-range longitudinal and transverse wakes generated by a witness bunch being accelerated inside the cavity. Our results can be used for studiesmore » of the beam loading and the hosing instability of the witness bunch in plasma-wakefield and laser-wakefield acceleration.« less

  15. A quantitative method for defining high-arched palate using the Tcof1(+/-) mutant mouse as a model.

    PubMed

    Conley, Zachary R; Hague, Molly; Kurosaka, Hiroshi; Dixon, Jill; Dixon, Michael J; Trainor, Paul A

    2016-07-15

    The palate functions as the roof of the mouth in mammals, separating the oral and nasal cavities. Its complex embryonic development and assembly poses unique susceptibilities to intrinsic and extrinsic disruptions. Such disruptions may cause failure of the developing palatal shelves to fuse along the midline resulting in a cleft. In other cases the palate may fuse at an arch, resulting in a vaulted oral cavity, termed high-arched palate. There are many models available for studying the pathogenesis of cleft palate but a relative paucity for high-arched palate. One condition exhibiting either cleft palate or high-arched palate is Treacher Collins syndrome, a congenital disorder characterized by numerous craniofacial anomalies. We quantitatively analyzed palatal perturbations in the Tcof1(+/-) mouse model of Treacher Collins syndrome, which phenocopies the condition in humans. We discovered that 46% of Tcof1(+/-) mutant embryos and new born pups exhibit either soft clefts or full clefts. In addition, 17% of Tcof1(+/-) mutants were found to exhibit high-arched palate, defined as two sigma above the corresponding wild-type population mean for height and angular based arch measurements. Furthermore, palatal shelf length and shelf width were decreased in all Tcof1(+/-) mutant embryos and pups compared to controls. Interestingly, these phenotypes were subsequently ameliorated through genetic inhibition of p53. The results of our study therefore provide a simple, reproducible and quantitative method for investigating models of high-arched palate. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. A quantitative method for defining high-arched palate using the Tcof1+/− mutant mouse as a model

    PubMed Central

    Conley, Zachary R.; Hague, Molly; Kurosaka, Hiroshi; Dixon, Jill; Dixon, Michael J.; Trainor, Paul A.

    2016-01-01

    The palate functions as the roof of the mouth in mammals, separating the oral and nasal cavities. Its complex embryonic development and assembly poses unique susceptibilities to intrinsic and extrinsic disruptions. Such disruptions may cause failure of the developing palatal shelves to fuse along the midline resulting in a cleft. In other cases the palate may fuse at an arch, resulting in a vaulted oral cavity, termed high-arched palate. There are many models available for studying the pathogenesis of cleft palate but a relative paucity for high-arched palate. One condition exhibiting either cleft palate or high-arched palate is Treacher Collins syndrome, a congenital disorder characterized by numerous craniofacial anomalies. We quantitatively analyzed palatal perturbations in the Tcof1+/− mouse model of Treacher Collins syndrome, which phenocopies the condition in humans. We discovered that 46% of Tcof1+/− mutant embryos and new born pups exhibit either soft clefts or full clefts. In addition, 17% of Tcof1+/− mutants were found to exhibit high-arched palate, defined as two sigma above the corresponding wild-type population mean for height and angular based arch measurements. Furthermore, palatal shelf length and shelf width were decreased in all Tcof1+/− mutant embryos and pups compared to controls. Interestingly, these phenotypes were subsequently ameliorated through genetic inhibition of p53. The results of our study therefore provide a simple, reproducible and quantitative method for investigating models of high-arched palate. PMID:26772999

  17. All optical mode controllable Er-doped random fiber laser with distributed Bragg gratings.

    PubMed

    Zhang, W L; Ma, R; Tang, C H; Rao, Y J; Zeng, X P; Yang, Z J; Wang, Z N; Gong, Y; Wang, Y S

    2015-07-01

    An all-optical method to control the lasing modes of Er-doped random fiber lasers (RFLs) is proposed and demonstrated. In the RFL, an Er-doped fiber (EDF) recoded with randomly separated fiber Bragg gratings (FBG) is used as the gain medium and randomly distributed reflectors, as well as the controllable element. By combining random feedback of the FBG array and Fresnel feedback of a cleaved fiber end, multi-mode coherent random lasing is obtained with a threshold of 14 mW and power efficiency of 14.4%. Moreover, a laterally-injected control light is used to induce local gain perturbation, providing additional gain for certain random resonance modes. As a result, active mode selection of the RFL is realized by changing locations of the laser cavity that is exposed to the control light.

  18. The influence of Monte Carlo source parameters on detector design and dose perturbation in small field dosimetry

    NASA Astrophysics Data System (ADS)

    Charles, P. H.; Crowe, S. B.; Kairn, T.; Knight, R.; Hill, B.; Kenny, J.; Langton, C. M.; Trapp, J. V.

    2014-03-01

    To obtain accurate Monte Carlo simulations of small radiation fields, it is important model the initial source parameters (electron energy and spot size) accurately. However recent studies have shown that small field dosimetry correction factors are insensitive to these parameters. The aim of this work is to extend this concept to test if these parameters affect dose perturbations in general, which is important for detector design and calculating perturbation correction factors. The EGSnrc C++ user code cavity was used for all simulations. Varying amounts of air between 0 and 2 mm were deliberately introduced upstream to a diode and the dose perturbation caused by the air was quantified. These simulations were then repeated using a range of initial electron energies (5.5 to 7.0 MeV) and electron spot sizes (0.7 to 2.2 FWHM). The resultant dose perturbations were large. For example 2 mm of air caused a dose reduction of up to 31% when simulated with a 6 mm field size. However these values did not vary by more than 2 % when simulated across the full range of source parameters tested. If a detector is modified by the introduction of air, one can be confident that the response of the detector will be the same across all similar linear accelerators and the Monte Carlo modelling of each machine is not required.

  19. Radiotherapy dose perturbation of esophageal stents examined in an experimental model.

    PubMed

    Atwood, Todd F; Hsu, Annie; Ogara, Maydeen M; Luba, Daniel G; Tamler, Bradley J; Disario, James A; Maxim, Peter G

    2012-04-01

    To investigate the radiotherapy dose perturbations caused by esophageal stents in patients undergoing external beam treatments for esophageal cancer. Four esophageal stents were examined (three metallic stents: WallFlex, Ultraflex, and Alveolus; one nonmetallic stent with limited radiopaque markers for visualization: Polyflex). All experiments were performed in a liquid water phantom with a custom acrylic stent holder. Radiochromic film was used to measure the dose distributions adjacent to the stents at locations proximal and distal to the radiation source. The stents were placed in an air-filled cavity to simulate the esophagus. Treatment plans were created and delivered for photon energies of 6 and 15 MV, and data analysis was performed on uniform regions of interest, according to the size and geometric placement of the films, to quantify the dose perturbations. The three metallic stents produced the largest dose perturbations with distinct patterns of "hot" spots (increased dose) measured proximal to the radiation source (up to 15.4%) and both "cold" (decreased dose) and hot spots measured distal to the radiation source (range, -6.1%-5.8%). The polymeric Polyflex stent produced similar dose perturbations when the radiopaque markers were examined (range, -7.6%-15.4%). However, when the radiopaque markers were excluded from the analysis, the Polyflex stent produced significantly smaller dose perturbations, with maximum hot spots of 7.3% and cold spots of -3.2%. The dose perturbations caused by esophageal stents during the treatment of esophageal cancer using external beam radiotherapy should be understood. These perturbations will result in hot and cold spots in the esophageal mucosa, with varying magnitudes depending on the stent. The nonmetallic Polyflex stent appears to be the most suitable for patients undergoing radiotherapy, but further studies are necessary to determine the clinical significance of the dose perturbations. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Model-Based, Closed-Loop Control of PZT Creep for Cavity Ring-Down Spectroscopy.

    PubMed

    McCartt, A D; Ognibene, T J; Bench, G; Turteltaub, K W

    2014-09-01

    Cavity ring-down spectrometers typically employ a PZT stack to modulate the cavity transmission spectrum. While PZTs ease instrument complexity and aid measurement sensitivity, PZT hysteresis hinders the implementation of cavity-length-stabilized, data-acquisition routines. Once the cavity length is stabilized, the cavity's free spectral range imparts extreme linearity and precision to the measured spectrum's wavelength axis. Methods such as frequency-stabilized cavity ring-down spectroscopy have successfully mitigated PZT hysteresis, but their complexity limits commercial applications. Described herein is a single-laser, model-based, closed-loop method for cavity length control.

  1. A hybrid-perturbation-Galerkin technique which combines multiple expansions

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1989-01-01

    A two-step hybrid perturbation-Galerkin method for the solution of a variety of differential equations type problems is found to give better results when multiple perturbation expansions are employed. The method assumes that there is parameter in the problem formulation and that a perturbation method can be sued to construct one or more expansions in this perturbation coefficient functions multiplied by computed amplitudes. In step one, regular and/or singular perturbation methods are used to determine the perturbation coefficient functions. The results of step one are in the form of one or more expansions each expressed as a sum of perturbation coefficient functions multiplied by a priori known gauge functions. In step two the classical Bubnov-Galerkin method uses the perturbation coefficient functions computed in step one to determine a set of amplitudes which replace and improve upon the gauge functions. The hybrid method has the potential of overcoming some of the drawbacks of the perturbation and Galerkin methods as applied separately, while combining some of their better features. The proposed method is applied, with two perturbation expansions in each case, to a variety of model ordinary differential equations problems including: a family of linear two-boundary-value problems, a nonlinear two-point boundary-value problem, a quantum mechanical eigenvalue problem and a nonlinear free oscillation problem. The results obtained from the hybrid methods are compared with approximate solutions obtained by other methods, and the applicability of the hybrid method to broader problem areas is discussed.

  2. Computation of a controlled store separation from a cavity

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher A.

    1993-01-01

    Coupling of the Reynolds-averaged Navier-Stokes equations, rigid-body dynamics, and a pitch attitude control law is demonstrated in two- and three-dimensions. The application problem was the separation of a canard-controlled store from an open-flow rectangular cavity bay at a freestream Mach number of 1.2. The transient flowfield was computed using a diagonal scheme in an overset mesh framework, with the resultant aerodynamic loads used as the forcing functions in the nonlinear dynamics equations. The proportional and rate gyro sensitivities were computed a priori using pole placement techniques for the linearized dynamical equations. These fixed gain values were used in the controller for the nonlinear simulation. Reasonable comparison between the full and linearized equations for a perturbed two-dimensional missile was found. Also in two-dimensions, a controlled store was found to possess improved separation characteristics over a canard-fixed store. In three-dimensions, trajectory comparisons with wind-tunnel data for the canard-fixed case will be made. In addition, it will be determined if a canard-controlled store is an effective means of improving cavity store separation characteristics.

  3. Characterization of an ultra-stable optical cavity developed in the industry for space applications

    NASA Astrophysics Data System (ADS)

    Argence, Berengere; Bize, S.; Lemonde, P.; Santarelli, G.; Prevost, E.; Le Goff, R.; Lévèque, T.

    2017-11-01

    We report the main characteristics and performances of the first - to our knowledge - prototype of an ultra-stable cavity designed and produced by industry with the aim of space missions. The cavity is a 100 mm long cylinder rigidly held at its midplane by an engineered mechanical interface providing an efficient decoupling from thermal and vibration perturbations. The spacer is made from Ultra-Low Expansion (ULE) glass and mirrors substrate from fused silica to reduce the thermal noise limit to 4x10-16. Finite element modeling was performed in order to minimize thermal and vibration sensitivities while getting a high fundamental resonance frequency. The system was designed to be transportable, acceleration tolerant (up to several g) and temperature range compliant [-33°C +73°C]. The axial vibration sensitivity was evaluated at 4x10-11 /(ms-2), while the transverse one is < 1x10-11 /(ms-2). The fractional frequency instability is < 1x10-15 from 0.1 to few seconds and reaches 5-6x10-16 at 1s.

  4. Feasibility of geophysical methods as a tool to detect urban subsurface cavity

    NASA Astrophysics Data System (ADS)

    Bang, E.; Kim, C.; Rim, H.; Ryu, D.; Lee, H.; Jeong, S. W.; Jung, B.; Yum, B. W.

    2016-12-01

    Urban road collapse problem become a social issue in Korea these days. Underground cavity cannot be cured by itself, we need to detect existing underground cavity before road collapse. We should consider cost, reliability, availability, skill requirement for field work and interpretation procedure in selecting detecting method because it's huge area and very long length to complete. We constructed a real-scale ground model for this purpose. Its size is about 15m*8m*3m (L*W*D) and sewer pipes are buried at the depth of 1.2m. We modeled upward moving or enlargement of underground cavity by digging the ground through the hole of sewer pipe inside. There are two or three steps having different cavity size and depth. We performed all five methods on the ground model to monitor ground collapse and detect underground cavity at each step. The first one is GPR method, which is very popular for this kind of project. GPR provided very good images showing underground cavity well at each step. DC resistivity survey is also selected because it is a common tool to locate underground anomaly. It provided the images showing underground cavity, but field setup is not favorable for the project. The third method is micro gravity method which can differentiate cavity zone from gravity distribution. Micro Gravity gave smaller g values around the cavity compared to normal condition, but it takes very long time to perform. The fourth method is thermal image. The temperature of the ground surface on the cavity will be different from the other area. We used multi-copter for rapid thermal imaging and we could pick the area of underground cavity from the aerial thermal image of ground surface. The last method we applied is RFID/magnetic survey. When the ground is collapsed around the buried RFID/magnetic tag in depth, tag will be moved downward. We can know the ground collapse through checking tag detecting condition. We could pick the area of ground collapse easily. When we compared each method from a variety of views, we could check GPR method, aerial thermal imaging method and RFID/magnetic survey show better performance as a tool to detect subsurface cavity.

  5. Millimeter-Wave Chemical Sensor Using Substrate-Integrated-Waveguide Cavity

    PubMed Central

    Memon, Muhammad Usman; Lim, Sungjoon

    2016-01-01

    This research proposes a substrate-integrated waveguide (SIW) cavity sensor to detect several chemicals using the millimeter-wave frequency range. The frequency response of the presented SIW sensor is switched by filling a very small quantity of chemical inside of the fluidic channel, which also causes a difference in the effective permittivity. The fluidic channel on this structure is either empty or filled with a chemical; when it is empty the structure resonates at 17.08 GHz. There is always a different resonant frequency when any chemical is injected into the fluidic channel. The maximum amount of chemical after injection is held in the center of the SIW structure, which has the maximum magnitude of the electric field distribution. Thus, the objective of sensing chemicals in this research is achieved by perturbing the electric fields of the SIW structure. PMID:27809240

  6. Dynamic Metasurface Aperture as Smart Around-the-Corner Motion Detector.

    PubMed

    Del Hougne, Philipp; F Imani, Mohammadreza; Sleasman, Timothy; Gollub, Jonah N; Fink, Mathias; Lerosey, Geoffroy; Smith, David R

    2018-04-25

    Detecting and analysing motion is a key feature of Smart Homes and the connected sensor vision they embrace. At present, most motion sensors operate in line-of-sight Doppler shift schemes. Here, we propose an alternative approach suitable for indoor environments, which effectively constitute disordered cavities for radio frequency (RF) waves; we exploit the fundamental sensitivity of modes of such cavities to perturbations, caused here by moving objects. We establish experimentally three key features of our proposed system: (i) ability to capture the temporal variations of motion and discern information such as periodicity ("smart"), (ii) non line-of-sight motion detection, and (iii) single-frequency operation. Moreover, we explain theoretically and demonstrate experimentally that the use of dynamic metasurface apertures can substantially enhance the performance of RF motion detection. Potential applications include accurately detecting human presence and monitoring inhabitants' vital signs.

  7. Precise single-qubit control of the reflection phase of a photon mediated by a strongly-coupled ancilla–cavity system

    NASA Astrophysics Data System (ADS)

    Motzoi, F.; Mølmer, K.

    2018-05-01

    We propose to use the interaction between a single qubit atom and a surrounding ensemble of three level atoms to control the phase of light reflected by an optical cavity. Our scheme employs an ensemble dark resonance that is perturbed by the qubit atom to yield a single-atom single photon gate. We show here that off-resonant excitation towards Rydberg states with strong dipolar interactions offers experimentally-viable regimes of operations with low errors (in the 10‑3 range) as required for fault-tolerant optical-photon, gate-based quantum computation. We also propose and analyze an implementation within microwave circuit-QED, where a strongly-coupled ancilla superconducting qubit can be used in the place of the atomic ensemble to provide high-fidelity coupling to microwave photons.

  8. Finite-Amplitude Standing Waves in a Cavity with Boundary Perturbations.

    DTIC Science & Technology

    1982-04-01

    report is authorized. This report was prepared by: A.B. PEN .------ 7 V. -SANDERS Pro of Physics .. Professor of Physics Approved by: / J . Rilliam H...Toi " Department of Physics Dean of Research +ECUNITY CLASS IICATION OP TNI PAGE fUm e. be, _ _ REPOR DOCUMNTTO PAGE 1. NUPORT RuIMIKN ILOV-ACCESION...capacities,and t an operator describing the physical processes for absorption and dispersion. The term on the right can be interpreted as a

  9. Bubble-on-fiber (BoF): a built-in tunable broadband acousto-optic sensor for liquid-immersible in situ measurements.

    PubMed

    Xu, Hongsong; Wang, Guanyu; Ma, Jun; Jin, Long; Oh, Kyunghwan; Guan, Bai-Ou

    2018-04-30

    A new type of tunable broadband fiber-optic acousto-optic sensor was experimentally demonstrated by utilizing a bubble-on-fiber (BoF) interferometer. A single micro-bubble was generated by injecting a heating laser at λ = 980 nm on the metalized facet of an optical fiber. The BoF formed a spherical micro-cavity in water whose acoustic deformation was precisely detected by using a narrowband DFB laser at 1550 nm. The heating light and the interrogating light were fed into a single fiber probe by wavelength division multiplexing (WDM) realizing a small footprint all-fiber configuration. The diameter of the BoF was stabilized with a variation less than 0.5 nm by fast servo-control of the heating laser power. The stabilized BoF served as a Fabry-Pérot cavity that can be deformed by acoustic perturbation, and a minimum detectable pressure level of as low as ~1 mPa/Hz 1/2 was achieved in a frequency range of over 60 kHz in water at room temperature. Our proposed BoF technology can provide a tunable, flexible and all-fiber solution to detect minute acoustically driven perturbations combining high-precision interferometry. Due to the very small form-factor, the technique can find applications of liquid-immersible in situ measurements in bio-molecular/cell detection and biochemical phenomena study.

  10. Method for generating maximally entangled states of multiple three-level atoms in cavity QED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Guangsheng; Li Shushen; Feng Songlin

    2004-03-01

    We propose a scheme to generate maximally entangled states (MESs) of multiple three-level atoms in microwave cavity QED based on the resonant atom-cavity interaction. In the scheme, multiple three-level atoms initially in their ground states are sequently sent through two suitably prepared cavities. After a process of appropriate atom-cavity interaction, a subsequent measurement on the second cavity field projects the atoms onto the MESs. The practical feasibility of this method is also discussed.

  11. Electrophoresis of a charged soft particle in a charged cavity with arbitrary double-layer thickness.

    PubMed

    Chen, Wei J; Keh, Huan J

    2013-08-22

    An analysis for the quasi-steady electrophoretic motion of a soft particle composed of a charged spherical rigid core and an adsorbed porous layer positioned at the center of a charged spherical cavity filled with an arbitrary electrolyte solution is presented. Within the porous layer, frictional segments with fixed charges are assumed to distribute uniformly. Through the use of the linearized Poisson-Boltzmann equation and the Laplace equation, the equilibrium double-layer potential distribution and its perturbation caused by the applied electric field are separately determined. The modified Stokes and Brinkman equations governing the fluid flow fields outside and inside the porous layer, respectively, are solved subsequently. An explicit formula for the electrokinetic migration velocity of the soft particle in terms of the fixed charge densities on the rigid core surface, in the porous layer, and on the cavity wall is obtained from a balance between its electrostatic and hydrodynamic forces. This formula is valid for arbitrary values of κa, λa, r0/a, and a/b, where κ is the Debye screening parameter, λ is the reciprocal of the length characterizing the extent of flow penetration inside the porous layer, a is the radius of the soft particle, r0 is the radius of the rigid core of the particle, and b is the radius of the cavity. In the limiting cases of r0 = a and r0 = 0, the migration velocity for the charged soft sphere reduces to that for a charged impermeable sphere and that for a charged porous sphere, respectively, in the charged cavity. The effect of the surface charge at the cavity wall on the particle migration can be significant, and the particle may reverse the direction of its migration.

  12. Additive manufacturing method for SRF components of various geometries

    DOEpatents

    Rimmer, Robert; Frigola, Pedro E; Murokh, Alex Y

    2015-05-05

    An additive manufacturing method for forming nearly monolithic SRF niobium cavities and end group components of arbitrary shape with features such as optimized wall thickness and integral stiffeners, greatly reducing the cost and technical variability of conventional cavity construction. The additive manufacturing method for forming an SRF cavity, includes atomizing niobium to form a niobium powder, feeding the niobium powder into an electron beam melter under a vacuum, melting the niobium powder under a vacuum in the electron beam melter to form an SRF cavity; and polishing the inside surface of the SRF cavity.

  13. Model-Based, Closed-Loop Control of PZT Creep for Cavity Ring-Down Spectroscopy

    PubMed Central

    McCartt, A D; Ognibene, T J; Bench, G; Turteltaub, K W

    2014-01-01

    Cavity ring-down spectrometers typically employ a PZT stack to modulate the cavity transmission spectrum. While PZTs ease instrument complexity and aid measurement sensitivity, PZT hysteresis hinders the implementation of cavity-length-stabilized, data-acquisition routines. Once the cavity length is stabilized, the cavity’s free spectral range imparts extreme linearity and precision to the measured spectrum’s wavelength axis. Methods such as frequency-stabilized cavity ring-down spectroscopy have successfully mitigated PZT hysteresis, but their complexity limits commercial applications. Described herein is a single-laser, model-based, closed-loop method for cavity length control. PMID:25395738

  14. Absolute-length determination of a long-baseline Fabry-Perot cavity by means of resonating modulation sidebands.

    PubMed

    Araya, A; Telada, S; Tochikubo, K; Taniguchi, S; Takahashi, R; Kawabe, K; Tatsumi, D; Yamazaki, T; Kawamura, S; Miyoki, S; Moriwaki, S; Musha, M; Nagano, S; Fujimoto, M K; Horikoshi, K; Mio, N; Naito, Y; Takamori, A; Yamamoto, K

    1999-05-01

    A new method has been demonstrated for absolute-length measurements of a long-baseline Fabry-Perot cavity by use of phase-modulated light. This method is based on determination of a free spectral range (FSR) of the cavity from the frequency difference between a carrier and phase-modulation sidebands, both of which resonate in the cavity. Sensitive response of the Fabry-Perot cavity near resonant frequencies ensures accurate determination of the FSR and thus of the absolute length of the cavity. This method was applied to a 300-m Fabry-Perot cavity of the TAMA gravitational wave detector that is being developed at the National Astronomical Observatory, Tokyo. With a modulation frequency of approximately 12 MHz, we successfully determined the absolute cavity length with resolution of 1 microm (3 x 10(-9) in strain) and observed local ground strain variations of 6 x 10(-8).

  15. Experimental validation of an ultra-thin metasurface cloak for hiding a metallic obstacle from an antenna radiation at low frequencies

    NASA Astrophysics Data System (ADS)

    Teperik, Tatiana V.; Burokur, Shah Nawaz; de Lustrac, André; Sabanowski, Guy; Piau, Gérard-Pascal

    2017-07-01

    We demonstrate numerically and experimentally an ultra-thin (≈ λ/240) metasurface-based invisibility cloak for low frequency antenna applications. We consider a monopole antenna mounted on a ground plane and a cylindrical metallic obstacle of diameter smaller than the wavelength located in its near-field. To restore the intrinsic radiation patterns of the antenna perturbed by this obstacle, a metasurface cloak consisting simply of a metallic patch printed on a dielectric substrate is wrapped around the obstacle. Using a finite element method based commercial electromagnetic solver, we show that the radiation patterns of the monopole antenna can be restored completely owing to electromagnetic modes of the resonant cavity formed between the patch and obstacle. The metasurface cloak is fabricated, and the concept is experimentally demonstrated at 125 MHz. Performed measurements are in good agreement with numerical simulations, verifying the efficiency of the proposed cloak.

  16. Interpretation of Data from Uphole Refraction Surveys

    DTIC Science & Technology

    1980-06-01

    Seismic refraction Seismic refraction method Seismic surveys Subsurface exploration ""-. 20, AI0SrRACT -(CmtuamU 00MvaO eL If naaaaamr and Identlfyby...by the presence of subsurface cavities and large cavities are identifiable, the sensitivity of the method is marginal for practical use in cavity...detection. Some cavities large enough to be of engineering signifi- cance (e.g., a tunnel of h-m diameter) may be practically undetectable by this method

  17. Development of buoyant currents in yield stress fluids

    NASA Astrophysics Data System (ADS)

    Rossi, P.; Karimfazli, I.

    2017-11-01

    Infinitesimal perturbations are known to decay in a motionless yield stress fluid. We present experimental evidence to reveal other mechanisms promoting free advection from a motionless background state. Development of natural convection in a cavity with differentially heated side-walls is investigated as a benchmark. Velocity and temperature fields are measured using particle image velocimetry/thermometry. We examine time evolution of the flow, compare experimental findings with theoretical predictions and comment on the striking features brought about by the yield stress.

  18. Investigation of laser dynamics, modulation and control by means of intra-cavity time varying perturbation

    NASA Technical Reports Server (NTRS)

    Harris, S. E.; Siegman, A. E.; Kuizenga, D. J.; Kung, A. H.; Young, J. F.; Bekkers, G. W.; Bloom, D. M.; Newton, J. H.; Phillion, D. W.

    1975-01-01

    The generation of tunable visible, infrared, and ultraviolet light is examined, along with the control of this light by means of novel mode-locking and modulation techniques. Transient mode-locking of the Nd:YAG laser and generation of short tunable pulses in the visible and the alkali metal inert gas excimer laser systems were investigated. Techniques for frequency conversion of high power and high energy laser radiation are discussed, along with high average power blue and UV laser light sources.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurtado, Antonio, E-mail: antonio.hurtado@strath.ac.uk; Javaloyes, Julien

    Multiple controllable spiking patterns are achieved in a 1310 nm Vertical-Cavity Surface Emitting Laser (VCSEL) in response to induced perturbations and for two different cases of polarized optical injection, namely, parallel and orthogonal. Furthermore, reproducible spiking responses are demonstrated experimentally at sub-nanosecond speed resolution and with a controlled number of spikes fired. This work opens therefore exciting research avenues for the use of VCSELs in ultrafast neuromorphic photonic systems for non-traditional computing applications, such as all-optical binary-to-spiking format conversion and spiking information encoding.

  20. Method for determining hydrogen mobility as a function of temperature in superconducting niobium cavities

    DOEpatents

    May, Robert [Virginia Beach, VA

    2008-03-11

    A method for determining the mobility of hydrogen as a function of temperature in superconducting niobium cavities comprising: 1) heating a cavity under test to remove free hydrogen; 2) introducing hydrogen-3 gas into the cavity; 3) cooling the cavity to allow absorption of hydrogen-3; and 4) measuring the amount of hydrogen-3 by: a) cooling the cavity to about 4.degree. K while flowing a known and regulated amount of inert carrier gas such as argon or helium into the cavity; b) allowing the cavity to warm at a stable rate from 4.degree. K to room temperature as it leaves the chamber; and c) directing the exit gas to an ion chamber radiation detector.

  1. Analytical expression for Risken-Nummedal-Graham-Haken instability threshold in quantum cascade lasers.

    PubMed

    Vukovic, N; Radovanovic, J; Milanovic, V; Boiko, D L

    2016-11-14

    We have obtained a closed-form expression for the threshold of Risken-Nummedal-Graham-Haken (RNGH) multimode instability in a Fabry-Pérot (FP) cavity quantum cascade laser (QCL). This simple analytical expression is a versatile tool that can easily be applied in practical situations which require analysis of QCL dynamic behavior and estimation of its RNGH multimode instability threshold. Our model for a FP cavity laser accounts for the carrier coherence grating and carrier population grating as well as their relaxation due to carrier diffusion. In the model, the RNGH instability threshold is analyzed using a second-order bi-orthogonal perturbation theory and we confirm our analytical solution by a comparison with the numerical simulations. In particular, the model predicts a low RNGH instability threshold in QCLs. This agrees very well with experimental data available in the literature.

  2. On the singular perturbations for fractional differential equation.

    PubMed

    Atangana, Abdon

    2014-01-01

    The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method.

  3. A hybrid perturbation Galerkin technique with applications to slender body theory

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1989-01-01

    A two-step hybrid perturbation-Galerkin method to solve a variety of applied mathematics problems which involve a small parameter is presented. The method consists of: (1) the use of a regular or singular perturbation method to determine the asymptotic expansion of the solution in terms of the small parameter; (2) construction of an approximate solution in the form of a sum of the perturbation coefficient functions multiplied by (unknown) amplitudes (gauge functions); and (3) the use of the classical Bubnov-Galerkin method to determine these amplitudes. This hybrid method has the potential of overcoming some of the drawbacks of the perturbation method and the Bubnov-Galerkin method when they are applied by themselves, while combining some of the good features of both. The proposed method is applied to some singular perturbation problems in slender body theory. The results obtained from the hybrid method are compared with approximate solutions obtained by other methods, and the degree of applicability of the hybrid method to broader problem areas is discussed.

  4. A hybrid perturbation Galerkin technique with applications to slender body theory

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1987-01-01

    A two step hybrid perturbation-Galerkin method to solve a variety of applied mathematics problems which involve a small parameter is presented. The method consists of: (1) the use of a regular or singular perturbation method to determine the asymptotic expansion of the solution in terms of the small parameter; (2) construction of an approximate solution in the form of a sum of the perturbation coefficient functions multiplied by (unknown) amplitudes (gauge functions); and (3) the use of the classical Bubnov-Galerkin method to determine these amplitudes. This hybrid method has the potential of overcoming some of the drawbacks of the perturbation method and the Bubnov-Galerkin method when they are applied by themselves, while combining some of the good features of both. The proposed method is applied to some singular perturbation problems in slender body theory. The results obtained from the hybrid method are compared with approximate solutions obtained by other methods, and the degree of applicability of the hybrid method to broader problem areas is discussed.

  5. High-frequency asymptotic methods for analyzing the EM scattering by open-ended waveguide cavities

    NASA Technical Reports Server (NTRS)

    Burkholder, R. J.; Pathak, P. H.

    1989-01-01

    Four high-frequency methods are described for analyzing the electromagnetic (EM) scattering by electrically large open-ended cavities. They are: (1) a hybrid combination of waveguide modal analysis and high-frequency asymptotics, (2) geometrical optics (GO) ray shooting, (3) Gaussian beam (GB) shooting, and (4) the generalized ray expansion (GRE) method. The hybrid modal method gives very accurate results but is limited to cavities which are made up of sections of uniform waveguides for which the modal fields are known. The GO ray shooting method can be applied to much more arbitrary cavity geometries and can handle absorber treated interior walls, but it generally only predicts the major trends of the RCS pattern and not the details. Also, a very large number of rays need to be tracked for each new incidence angle. Like the GO ray shooting method, the GB shooting method can handle more arbitrary cavities, but it is much more efficient and generally more accurate than the GO method because it includes the fields diffracted by the rim at the open end which enter the cavity. However, due to beam divergence effects the GB method is limited to cavities which are not very long compared to their width. The GRE method overcomes the length-to-width limitation of the GB method by replacing the GB's with GO ray tubes which are launched in the same manner as the GB's to include the interior rim diffracted field. This method gives good accuracy and is generally more efficient than the GO method, but a large number of ray tubes needs to be tracked.

  6. Radio frequency plasma method for uniform surface processing of RF cavities and other three-dimensional structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovic, Svetozar; Upadhyay, Janardan; Vuskovic, Leposava

    2017-12-26

    A method for efficient plasma etching of surfaces inside three-dimensional structures can include positioning an inner electrode within the chamber cavity; evacuating the chamber cavity; adding a first inert gas to the chamber cavity; regulating the pressure in the chamber; generating a plasma sheath along the inner wall of the chamber cavity; adjusting a positive D.C. bias on the inner electrode to establish an effective plasma sheath voltage; adding a first electronegative gas to the chamber cavity; optionally readjusting the positive D.C. bias on the inner electrode reestablish the effective plasma sheath voltage at the chamber cavity; etching the innermore » wall of the chamber cavity; and polishing the inner wall to a desired surface roughness.« less

  7. Solution of Fifth-order Korteweg and de Vries Equation by Homotopy perturbation Transform Method using He's Polynomial

    NASA Astrophysics Data System (ADS)

    Sharma, Dinkar; Singh, Prince; Chauhan, Shubha

    2017-06-01

    In this paper, a combined form of the Laplace transform method with the homotopy perturbation method is applied to solve nonlinear fifth order Korteweg de Vries (KdV) equations. The method is known as homotopy perturbation transform method (HPTM). The nonlinear terms can be easily handled by the use of He's polynomials. Two test examples are considered to illustrate the present scheme. Further the results are compared with Homotopy perturbation method (HPM).

  8. Vibrational and thermodynamic properties of Ar, N2, O2, H2 and CO adsorbed and condensed into (H,Na)-Y zeolite cages as studied by variable temperature IR spectroscopy.

    PubMed

    Gribov, Evgueni N; Cocina, Donato; Spoto, Giuseppe; Bordiga, Silvia; Ricchiardi, Gabriele; Zecchina, Adriano

    2006-03-14

    The adsorption of Ar, H2, O2, N2 and CO on (H,Na)-Y zeolite (Si/Al = 2.9, H+/Na+ approximately 5) has been studied at variable-temperature (90-20 K) and sub-atmospheric pressure (0-40 mbar) by FTIR spectroscopy. Unprecedented filling conditions of the zeolite cavities were attained, which allowed the investigation of very weakly adsorbed species and of condensed, liquid-like or solid-like, phases. Two pressure regimes were singled out, characterized by: (i) specific interaction at low pressure of the probe molecules (P) with the internal Brønsted and Lewis sites, and (ii) multilayer adsorption at higher pressure. In the case of CO the perturbation of the protonic sites located inside the sodalite cages was also observed. As the molecule is too large to penetrate the sodalite cage, the perturbation is thought to involve a proton jump tunneling mechanism. The adsorption energy for the (HF)OH...P (P = Ar, H2, O2, N2 and CO) specific interaction involving the high frequency Brønsted acid sites exposed in the supercages was derived following the VTIR (variable temperature infrared spectroscopy) method described by E. Garrone and C. Otero Areán (Chem. Soc. Rev., 2005, 34, 846).

  9. Implications of solar p-mode frequency shifts

    NASA Technical Reports Server (NTRS)

    Goldreich, Peter; Murray, Norman; Willette, Gregory; Kumar, Pawan

    1991-01-01

    An expression is derived that relates solar p-mode frequency shifts to changes in the entropy and magnetic field of the sun. The frequency variations result from changes in path length and propagation speed. Path length changes dominate for entropy perturbations, and propagation speed changes dominate for most types of magnetic field peturbations. The p-mode frequencies increased along with solar activity between 1986 and 1989; these frequency shifts exhibited a rapid rise with increasing frequency followed by a precipitous drop. The positive component of the shifts can be accounted for by variations of the mean square magnetic field strength in the vicinity of the photosphere. The magnetic stress perturbation decays above the top of the convection zone on a length scale comparable to the pressure scale height and grows gradually with depth below. The presence of a resonance in the chromospheric cavity means that the transition layer maintains enough coherence to partially reflect acoustic waves even near cycle maximum.

  10. Roos and NACP-02 ion chamber perturbations and water-air stopping-power ratios for clinical electron beams for energies from 4 to 22 MeV

    NASA Astrophysics Data System (ADS)

    Bailey, M.; Shipley, D. R.; Manning, J. W.

    2015-02-01

    Empirical fits are developed for depth-compensated wall- and cavity-replacement perturbations in the PTW Roos 34001 and IBA / Scanditronix NACP-02 parallel-plate ionisation chambers, for electron beam qualities from 4 to 22 MeV for depths up to approximately 1.1 × R50,D. These are based on calculations using the Monte Carlo radiation transport code EGSnrc and its user codes with a full simulation of the linac treatment head modelled using BEAMnrc. These fits are used with calculated restricted stopping-power ratios between air and water to match measured depth-dose distributions in water from an Elekta Synergy clinical linear accelerator at the UK National Physical Laboratory. Results compare well with those from recent publications and from the IPEM 2003 electron beam radiotherapy Code of Practice.

  11. Quantum nondemolition measurement of optical field fluctuations by optomechanical interaction

    NASA Astrophysics Data System (ADS)

    Pontin, A.; Bonaldi, M.; Borrielli, A.; Marconi, L.; Marino, F.; Pandraud, G.; Prodi, G. A.; Sarro, P. M.; Serra, E.; Marin, F.

    2018-03-01

    According to quantum mechanics, if we keep observing a continuous variable we generally disturb its evolution. For a class of observables, however, it is possible to implement a so-called quantum nondemolition measurement: by confining the perturbation to the conjugate variable, the observable is estimated with arbitrary accuracy, or prepared in a well-known state. For instance, when the light bounces on a movable mirror, its intensity is not perturbed (the effect is just seen on the phase of the radiation), but the radiation pressure allows one to trace back its fluctuations by observing the mirror motion. In this work, we implement a cavity optomechanical experiment based on an oscillating micromirror, and we measure correlations between the output light intensity fluctuations and the mirror motion. We demonstrate that the uncertainty of the former is reduced below the shot-noise level determined by the corpuscular nature of light.

  12. Quantum-optical nonlinearities induced by Rydberg-Rydberg interactions: A perturbative approach

    NASA Astrophysics Data System (ADS)

    Grankin, A.; Brion, E.; Bimbard, E.; Boddeda, R.; Usmani, I.; Ourjoumtsev, A.; Grangier, P.

    2015-10-01

    In this article, we theoretically study the quantum statistical properties of the light transmitted through or reflected from an optical cavity, filled by an atomic medium with strong optical nonlinearity induced by Rydberg-Rydberg van der Waals interactions. Atoms are driven on a two-photon transition from their ground state to a Rydberg level via an intermediate state by the combination of a weak signal field and a strong control beam. By using a perturbative approach, we get analytic results which remain valid in the regime of weak feeding fields, even when the intermediate state becomes resonant thus generalizing our previous results. We can thus investigate quantitatively new features associated with the resonant behavior of the system. We also propose an effective nonlinear three-boson model of the system which, in addition to leading to the same analytic results as the original problem, sheds light on the physical processes at work in the system.

  13. Pre-form ceramic matrix composite cavity and method of forming and method of forming a ceramic matrix composite component

    DOEpatents

    Monaghan, Philip Harold; Delvaux, John McConnell; Taxacher, Glenn Curtis

    2015-06-09

    A pre-form CMC cavity and method of forming pre-form CMC cavity for a ceramic matrix component includes providing a mandrel, applying a base ply to the mandrel, laying-up at least one CMC ply on the base ply, removing the mandrel, and densifying the base ply and the at least one CMC ply. The remaining densified base ply and at least one CMC ply form a ceramic matrix component having a desired geometry and a cavity formed therein. Also provided is a method of forming a CMC component.

  14. Molecular beam epitaxy growth method for vertical-cavity surface-emitting laser resonators based on substrate thermal emission

    NASA Astrophysics Data System (ADS)

    Talghader, J. J.; Hadley, M. A.; Smith, J. S.

    1995-12-01

    A molecular beam epitaxy growth monitoring method is developed for distributed Bragg reflectors and vertical-cavity surface-emitting laser (VCSEL) resonators. The wavelength of the substrate thermal emission that corresponds to the optical cavity resonant wavelength is selected by a monochromator and monitored during growth. This method allows VCSEL cavities of arbitrary design wavelength to be grown with a single control program. This letter also presents a theoretical model for the technique which is based on transmission matrices and simple thermal emission properties. Demonstrated reproducibility of the method is well within 0.1%.

  15. On the Singular Perturbations for Fractional Differential Equation

    PubMed Central

    Atangana, Abdon

    2014-01-01

    The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method. PMID:24683357

  16. Fluorinated graphene oxide for enhanced S and X-band microwave absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudeep, P. M.; TIFR-Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500075; Vinayasree, S.

    2015-06-01

    Here we report the microwave absorbing properties of three graphene derivatives, namely, graphene oxide (GO), fluorinated GO (FGO, containing 5.6 at. % Fluorine (F)), and highly FGO (HFGO, containing 23 at. % F). FGO is known to be exhibiting improved electrochemical and electronic properties when compared to GO. Fluorination modifies the dielectric properties of GO and hence thought of as a good microwave absorber. The dielectric permittivities of GO, FGO, and HFGO were estimated in the S (2 GHz to 4 GHz) and X (8 GHz to 12 GHz) bands by employing cavity perturbation technique. For this, suspensions containing GO/FGO/HFGO were made in N-Methylmore » Pyrrolidone (NMP) and were subjected to cavity perturbation. The reflection loss was then estimated and it was found that −37 dB (at 3.2 GHz with 6.5 mm thickness) and −31 dB (at 2.8 GHz with 6 mm thickness) in the S band and a reflection loss of −18 dB (at 8.4 GHz with 2.5 mm thickness) and −10 dB (at 11 GHz with 2 mm thickness) in the X band were achieved for 0.01 wt. % of FGO and HFGO in NMP, respectively, suggesting that these materials can serve as efficient microwave absorbers even at low concentrations.« less

  17. Optical Sensors Using Stimulated Brillouin Scattering

    NASA Technical Reports Server (NTRS)

    Christensen, Caleb A (Inventor); Zavriyev, Anton (Inventor)

    2017-01-01

    A method for enhancing a sensitivity of an optical sensor having an optical cavity counter-propagates beams of pump light within the optical cavity to produce scattered light based on Stimulated Brillouin Scattering (SBS). The properties of the pump light are selected to generate fast-light conditions for the scattered light, such that the scattered light includes counter-propagating beams of fast light. The method prevents the pump light from resonating within the optical cavity, while allowing the scattered light to resonate within the optical cavity. At least portions of the scattered light are interfered outside of the optical cavity to produce a beat note for a measurement of the optical sensor. The disclosed method is particularly applicable to optical gyroscopes.

  18. Structural, morphological and dielectric properties of BiNbO{sub 4} ceramics prepared by the sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devesa, S.; Graça, M.P.; Costa, L.C., E-mail: kady@ua.pt

    2016-06-15

    Highlights: • The thermal treatment at 1200 °C generates a non-stoichiometric secondary phase. • The secondary phase Bi{sub 3.54}Nb{sub 7.09}O{sub 22.7}, is responsible for the highest Q × f and density. • The samples with triclinic BiNbO{sub 4} have the highest ε′. - Abstract: BiNbO{sub 4} ceramic powders were prepared using the sol-gel method. The fine particles were pressed into cylinders and, then, they were treated at temperatures between 500 and 1150 °C. The structure was studied by X-ray diffraction and Raman spectroscopy and the morphology was observed by scanning electron microscopy. The measurements of the complex permittivity were mademore » in a resonant cavity operating at 2.7 GHz, using the small perturbation method. The reversible phase transformation between β-BiNbO{sub 4} and α-BiNbO{sub 4} was observed. The density, dielectric constant (ε') and the dielectric loss (tg δ) of the prepared powders increase with the sintering temperature, and the sample treated at 1150 °C shows the highest ε' and the highest Q × f.« less

  19. Time-resolved particle image velocimetry measurements of the 3D single-mode Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Xu, Qian; Krivets, Vitaliy V.; Sewell, Everest G.; Jacobs, Jeffrey W.

    2016-11-01

    A vertical shock tube is used to perform experiments on the single-mode three-dimensional Richtmyer-Meshkov Instability (RMI). The light gas (Air) and the heavy gas (SF6) enter from the top and the bottom of the shock tube driven section to form the interface. The initial perturbation is then generated by oscillating the gases vertically. Both gases are seeded with particles generated through vaporizing propylene glycol. An incident shock wave (M 1.2) impacts the interface to create an impulsive acceleration. The seeded particles are illuminated by a dual cavity 75W, Nd: YLF laser. Three high-speed CMOS cameras record time sequences of image pairs at a rate of 2 kHz. The initial perturbation used is that of a single, square-mode perturbation with either a single spike or a single bubble positioned at the center of the shock tube. The full time dependent velocity field is obtained allowing the determination of the circulation versus time. In addition, the evolution of time dependent amplitude is also determined. The results are compared with PIV measurements from previous two-dimensional single mode experiments along with PLIF measurements from previous three-dimensional single mode experiments.

  20. Method for photolithographic definition of recessed features on a semiconductor wafer utilizing auto-focusing alignment

    DOEpatents

    Farino, A.J.; Montague, S.; Sniegowski, J.J.; Smith, J.H.; McWhorter, P.J.

    1998-07-21

    A method is disclosed for photolithographically defining device features up to the resolution limit of an auto-focusing projection stepper when the device features are to be formed in a wafer cavity at a depth exceeding the depth of focus of the stepper. The method uses a focusing cavity located in a die field at the position of a focusing light beam from the auto-focusing projection stepper, with the focusing cavity being of the same depth as one or more adjacent cavities wherein a semiconductor device is to be formed. The focusing cavity provides a bottom surface for referencing the focusing light beam and focusing the stepper at a predetermined depth below the surface of the wafer, whereat the device features are to be defined. As material layers are deposited in each device cavity to build up a semiconductor structure such as a microelectromechanical system (MEMS) device, the same material layers are deposited in the focusing cavity, raising the bottom surface and re-focusing the stepper for accurately defining additional device features in each succeeding material layer. The method is especially applicable for forming MEMS devices within a cavity or trench and integrating the MEMS devices with electronic circuitry fabricated on the wafer surface. 15 figs.

  1. Method for photolithographic definition of recessed features on a semiconductor wafer utilizing auto-focusing alignment

    DOEpatents

    Farino, Anthony J.; Montague, Stephen; Sniegowski, Jeffry J.; Smith, James H.; McWhorter, Paul J.

    1998-01-01

    A method is disclosed for photolithographically defining device features up to the resolution limit of an auto-focusing projection stepper when the device features are to be formed in a wafer cavity at a depth exceeding the depth of focus of the stepper. The method uses a focusing cavity located in a die field at the position of a focusing light beam from the auto-focusing projection stepper, with the focusing cavity being of the same depth as one or more adjacent cavities wherein a semiconductor device is to be formed. The focusing cavity provides a bottom surface for referencing the focusing light beam and focusing the stepper at a predetermined depth below the surface of the wafer, whereat the device features are to be defined. As material layers are deposited in each device cavity to build up a semiconductor structure such as a microelectromechanical system (MEMS) device, the same material layers are deposited in the focusing cavity, raising the bottom surface and re-focusing the stepper for accurately defining additional device features in each succeeding material layer. The method is especially applicable for forming MEMS devices within a cavity or trench and integrating the MEMS devices with electronic circuitry fabricated on the wafer surface.

  2. Comparison of two perturbation methods to estimate the land surface modeling uncertainty

    NASA Astrophysics Data System (ADS)

    Su, H.; Houser, P.; Tian, Y.; Kumar, S.; Geiger, J.; Belvedere, D.

    2007-12-01

    In land surface modeling, it is almost impossible to simulate the land surface processes without any error because the earth system is highly complex and the physics of the land processes has not yet been understood sufficiently. In most cases, people want to know not only the model output but also the uncertainty in the modeling, to estimate how reliable the modeling is. Ensemble perturbation is an effective way to estimate the uncertainty in land surface modeling, since land surface models are highly nonlinear which makes the analytical approach not applicable in this estimation. The ideal perturbation noise is zero mean Gaussian distribution, however, this requirement can't be satisfied if the perturbed variables in land surface model have physical boundaries because part of the perturbation noises has to be removed to feed the land surface models properly. Two different perturbation methods are employed in our study to investigate their impact on quantifying land surface modeling uncertainty base on the Land Information System (LIS) framework developed by NASA/GSFC land team. One perturbation method is the built-in algorithm named "STATIC" in LIS version 5; the other is a new perturbation algorithm which was recently developed to minimize the overall bias in the perturbation by incorporating additional information from the whole time series for the perturbed variable. The statistical properties of the perturbation noise generated by the two different algorithms are investigated thoroughly by using a large ensemble size on a NASA supercomputer and then the corresponding uncertainty estimates based on the two perturbation methods are compared. Their further impacts on data assimilation are also discussed. Finally, an optimal perturbation method is suggested.

  3. Experimental investigation of the microscale rotor-stator cavity flow with rotating superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Wang, Chunze; Tang, Fei; Li, Qi; Wang, Xiaohao

    2018-03-01

    The flow characteristics of microscale rotor-stator cavity flow and the drag reduction mechanism of the superhydrophobic surface with high shearing stress were investigated. A microscale rotating flow testing system was established based on micro particle image velocimetry (micro-PIV), and the flow distribution under different Reynolds numbers (7.02 × 103 ≤ Re ≤ 3.51 × 104) and cavity aspect ratios (0.013 ≤ G ≤ 0.04) was measured. Experiments show that, for circumferential velocity, the flow field distributes linearly in rotating Couette flow in the case of low Reynolds number along the z-axis, while the boundary layer separates and forms Batchelor flow as the Reynolds number increases. The separation of the boundary layer is accelerated with the increase of cavity aspect ratio. The radial velocities distribute in an S-shape along the z-axis. As the Reynolds number and cavity aspect ratio increase, the maximum value of radial velocity increases, but the extremum position at rotating boundary remains at Z* = 0.85 with no obvious change, while the extremum position at the stationary boundary changes along the z-axis. The model for the generation of flow disturbance and the transmission process from the stationary to the rotating boundary was given by perturbation analysis. Under the action of superhydrophobic surface, velocity slip occurs near the rotating boundary and the shearing stress reduces, which leads to a maximum drag reduction over 51.4%. The contours of vortex swirling strength suggest that the superhydrophobic surface can suppress the vortex swirling strength and repel the vortex structures, resulting in the decrease of shearing Reynolds stress and then drag reduction.

  4. AGN-driven perturbations in the intracluster medium of the cool-core cluster ZwCl 2701

    NASA Astrophysics Data System (ADS)

    Vagshette, Nilkanth D.; Sonkamble, Satish S.; Naik, Sachindra; Patil, Madhav K.

    2016-09-01

    We present the results obtained from a total of 123 ks X-ray (Chandra) and 8 h of 1.4 GHz radio (Giant Metrewave Radio Telescope - GMRT) observations of the cool-core cluster ZwCl 2701 (z = 0.214). These observations of ZwCl 2701 showed the presence of an extensive pair of ellipsoidal cavities along the east and west directions within the central region < 20 kpc. Detection of bright rims around the cavities suggested that the radio lobes displaced X-ray-emitting hot gas forming shell-like structures. The total cavity power (mechanical power) that directly heated the surrounding gas and cooling luminosity of the cluster were estimated to be ˜2.27 × 1045 erg s-1 and 3.5 × 1044 erg s-1 , respectively. Comparable values of cavity power and cooling luminosity of ZwCl 2701 suggested that the mechanical power of the active galactic nuclei (AGN) outburst is large enough to balance the radiative cooling in the system. The star formation rate derived from the Hα luminosity was found to be ˜0.60 M⊙ yr-1, which is about three orders of magnitude lower than the cooling rate of ˜196 M⊙ yr-1. Detection of the floor in entropy profile of ZwCl 2701 suggested the presence of an alternative heating mechanism at the centre of the cluster. Lower value of the ratio (˜10-2) between black hole mass accretion rate and Eddington mass accretion rate suggested that launching of jet from the super massive black hole is efficient in ZwCl 2701. However, higher value of ratio (˜103) between black hole mass accretion rate and Bondi accretion rate indicated that the accretion rate required to create cavities is well above the Bondi accretion rate.

  5. Double power series method for approximating cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Wren, Andrew J.; Malik, Karim A.

    2017-04-01

    We introduce a double power series method for finding approximate analytical solutions for systems of differential equations commonly found in cosmological perturbation theory. The method was set out, in a noncosmological context, by Feshchenko, Shkil' and Nikolenko (FSN) in 1966, and is applicable to cases where perturbations are on subhorizon scales. The FSN method is essentially an extension of the well known Wentzel-Kramers-Brillouin (WKB) method for finding approximate analytical solutions for ordinary differential equations. The FSN method we use is applicable well beyond perturbation theory to solve systems of ordinary differential equations, linear in the derivatives, that also depend on a small parameter, which here we take to be related to the inverse wave-number. We use the FSN method to find new approximate oscillating solutions in linear order cosmological perturbation theory for a flat radiation-matter universe. Together with this model's well-known growing and decaying Mészáros solutions, these oscillating modes provide a complete set of subhorizon approximations for the metric potential, radiation and matter perturbations. Comparison with numerical solutions of the perturbation equations shows that our approximations can be made accurate to within a typical error of 1%, or better. We also set out a heuristic method for error estimation. A Mathematica notebook which implements the double power series method is made available online.

  6. Development of low angle grain boundaries in lightly deformed superconducting niobium and their influence on hydride distribution and flux perturbation

    NASA Astrophysics Data System (ADS)

    Sung, Z.-H.; Wang, M.; Polyanskii, A. A.; Santosh, C.; Balachandran, S.; Compton, C.; Larbalestier, D. C.; Bieler, T. R.; Lee, P. J.

    2017-05-01

    This study shows that low angle grain boundaries (LAGBs) can be created by small 5% strains in high purity (residual resistivity ratio ≥ 200) superconducting radio frequency (SRF)-grade single crystalline niobium (Nb) and that these boundaries act as hydrogen traps as indicated by the distribution of niobium hydrides (Nb1-xHx). Nb1-xHx is detrimental to SRF Nb cavities due to its normal conducting properties at cavity operating temperatures. By designing a single crystal tensile sample extracted from a large grain (>5 cm) Nb ingot slice for preferred slip on one slip plane, LAGBs and dense dislocation boundaries developed. With chemical surface treatments following standard SRF cavity fabrication practice, Nb1-xHx phases were densely precipitated at the LAGBs upon cryogenic cooling (8-10 K/min). Micro-crystallographic analysis confirmed heterogeneous hydride precipitation, which included significant hydrogen atom accumulation in LAGBs. Magneto-optical imaging analysis showed that these sites can then act as sites for both premature flux penetration and eventually flux trapping. However, this hydrogen related degradation at LAGBs did not completely disappear even after an 800 °C/2 h anneal typically used for hydrogen removal in SRF Nb cavities. These findings suggest that hydride precipitation at an LAGB is facilitated by a non-equilibrium concentration of vacancy-hydrogen (H) complexes aided by mechanical deformation and the hydride phase interferes with the recovery process under 800 °C annealing.

  7. Development of low angle grain boundaries in lightly deformed superconducting niobium and their influence on hydride distribution and flux perturbation

    DOE PAGES

    Sung, Z. -H.; Wang, M.; Polyanskii, A. A.; ...

    2017-05-19

    This study shows that low angle grain boundaries (LAGBs) can be created by small 5% strains in high purity (RRR ≥ 200) SRF-grade single crystalline niobium (Nb) and that these boundaries act as hydrogen traps as indicated by the distribution of niobium hydrides (Nb 1-xH x). Nb 1-xH x is detrimental to superconducting radio frequency (SRF) Nb cavities due to its normal conducting properties at cavity operating temperatures. By designing a single crystal tensile sample extracted from a large grain (>5 cm) Nb ingot slice for preferred slip on one slip plane, LAGBs and dense dislocation boundaries developed. With chemicalmore » surface treatments following standard SRF cavity fabrication practice, Nb1-xHx phases were densely precipitated at the LAGBs upon cryogenic cooling (8-10 K/min). Micro-crystallographic analysis confirmed heterogeneous hydride precipitation, which included significant hydrogen atom accumulation in LAGBs. Magneto-optical imaging (MOI) analysis showed that these sites can then act as sites for both premature flux penetration and eventually flux trapping. However, this hydrogen related degradation at LAGBs did not completely disappear even after a 800 °C/2hrs anneal typically used for hydrogen removal in SRF Nb cavities. These findings suggest that hydride precipitation at a LAGB is facilitated by a non-equilibrium concentration of vacancy-hydrogen (H) complexes aided by mechanical deformation and the hydride phase interferes with the recovery process under 800°C annealing.« less

  8. Solution of the Time-Dependent Schrödinger Equation by the Laplace Transform Method

    PubMed Central

    Lin, S. H.; Eyring, H.

    1971-01-01

    The time-dependent Schrödinger equation for two quite general types of perturbation has been solved by introducing the Laplace transforms to eliminate the time variable. The resulting time-independent differential equation can then be solved by the perturbation method, the variation method, the variation-perturbation method, and other methods. PMID:16591898

  9. Dual frequency optical cavity

    DOEpatents

    George, E.V.; Schipper, J.F.

    Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a T configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.

  10. Dual frequency optical cavity

    DOEpatents

    George, E. Victor; Schipper, John F.

    1985-01-01

    Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a "T" configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.

  11. Terahertz imaging through self-mixing in a quantum cascade laser.

    PubMed

    Dean, Paul; Lim, Yah Leng; Valavanis, Alex; Kliese, Russell; Nikolić, Milan; Khanna, Suraj P; Lachab, Mohammad; Indjin, Dragan; Ikonić, Zoran; Harrison, Paul; Rakić, Aleksandar D; Linfield, Edmund H; Davies, A Giles

    2011-07-01

    We demonstrate terahertz (THz) frequency imaging using a single quantum cascade laser (QCL) device for both generation and sensing of THz radiation. Detection is achieved by utilizing the effect of self-mixing in the THz QCL, and, specifically, by monitoring perturbations to the voltage across the QCL, induced by light reflected from an external object back into the laser cavity. Self-mixing imaging offers high sensitivity, a potentially fast response, and a simple, compact optical design, and we show that it can be used to obtain high-resolution reflection images of exemplar structures.

  12. Improved perturbation method for gadolinia worth calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, R.T.; Congdon, S.P.

    1986-01-01

    Gadolinia is utilized in light water power reactors as burnable poison for reserving excess reactivity. Good gadolinia worth estimation is useful for evaluating fuel bundle designs, core operating strategies, and fuel cycle economics. The authors have developed an improved perturbation method based on exact perturbation theory for gadolinia worth calculations in fuel bundles. The method predicts much more accurate gadolinia worth than the first-order perturbation method (commonly used to estimate nuclide worths) for bundles containing fresh or partly burned gadolinia.

  13. Modeling of mode-locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Shaulov, Gary

    This thesis presents the results of analytical and numerical simulations of mode-locked fiber lasers and their components: multiple quantum well saturable absorbers and nonlinear optical loop mirrors. Due to the growing interest in fiber lasers as a compact source of ultrashort pulses there is a need to develop a full understanding of the advantages and limitations of the different mode-locked techniques. The mode-locked fiber laser study performed in this thesis can be used to optimize the design and performance of mode-locked fiber laser systems. A group at Air Force Research Laboratory reported a fiber laser mode-locked by multiple quantum well (MQW) saturable absorber with stable pulses generated as short as 2 ps [21]. The laser cavity incorporates a chirped fiber Bragg grating as a dispersion element; our analysis showed that the laser operates in the soliton regime. Soliton perturbation theory was applied and conditions for stable pulse operation were investigated. Properties of MQW saturable absorbers and their effect on cavity dynamics were studied and the cases of fast and slow saturable absorbers were considered. Analytical and numerical results are in a good agreement with experimental data. In the case of the laser cavity with a regular fiber Bragg grating, the properties of MQW saturable absorbers dominate the cavity dynamics. It was shown that despite the lack of a soliton shaping mechanism, there is a regime in parameter space where stable or quasi-stable solitary waves solutions can exist. Further a novel technique of fiber laser mode-locking by nonlinear polarization rotation was proposed. Polarization rotation of vector solitons was simulated in a birefringent nonlinear optical loop mirror (NOLM) and the switching characteristics of this device was studied. It was shown that saturable absorber-like action of NOLM allows mode-locked operation of the two fiber laser designs. Laser cavity designs were proposed: figure-eight-type and sigma-type cavity.

  14. Adaptive Modeling Procedure Selection by Data Perturbation.

    PubMed

    Zhang, Yongli; Shen, Xiaotong

    2015-10-01

    Many procedures have been developed to deal with the high-dimensional problem that is emerging in various business and economics areas. To evaluate and compare these procedures, modeling uncertainty caused by model selection and parameter estimation has to be assessed and integrated into a modeling process. To do this, a data perturbation method estimates the modeling uncertainty inherited in a selection process by perturbing the data. Critical to data perturbation is the size of perturbation, as the perturbed data should resemble the original dataset. To account for the modeling uncertainty, we derive the optimal size of perturbation, which adapts to the data, the model space, and other relevant factors in the context of linear regression. On this basis, we develop an adaptive data-perturbation method that, unlike its nonadaptive counterpart, performs well in different situations. This leads to a data-adaptive model selection method. Both theoretical and numerical analysis suggest that the data-adaptive model selection method adapts to distinct situations in that it yields consistent model selection and optimal prediction, without knowing which situation exists a priori. The proposed method is applied to real data from the commodity market and outperforms its competitors in terms of price forecasting accuracy.

  15. Spin-labeled derivatives of cardiotonic steroids as tools for characterization of the extracellular entrance to the binding site on Na+ ,K+ -ATPase.

    PubMed

    Guo, Jin-Hua; Jiang, Ren-Wang; Andersen, Jacob Lauwring; Esmann, Mikael; Fedosova, Natalya U

    2018-04-24

    The information obtained from crystallized complexes of the Na + ,K + -ATPase with cardiotonic steroids (CTS) is not sufficient to explain differences in the inhibitory properties of CTS such as stereoselectivity of CTS binding or effect of glycosylation on the preference to enzyme isoforms. The uncertainty is related to the spatial organization of the hydrophilic cavity at the entrance of the CTS-binding site. Therefore, there is a need to supplement the crystallographic description with data obtained in aqueous solution, where molecules have significant degree of flexibility. This work addresses the applicability of the electron paramagnetic resonance (EPR) method for the purpose. We have designed and synthesized spin-labeled compounds based on the cinobufagin steroid core. The length of the spacer arms between the steroid core and the nitroxide group determines the position of the reporting group (N-O) confined to the binding site. High affinity to Na + ,K + -ATPase is inferred from their ability to inhibit enzymatic activity. The differences between the EPR spectra in the absence and presence of high ouabain concentrations identify the signature peaks originating from the fraction of the spin labels bound within the ouabain site. The degree of perturbations of the EPR spectra depends on the length of the spacer arm. Docking of the compounds into the CTS site suggests which elements of the protein structure might be responsible for interference with the spin label (e.g., steric clashes or immobilization). Thus, the method is suitable for gathering information on the cavity leading to the CTS-binding site in Na + ,K + -ATPase in all conformations with high affinity to CTS. © 2018 Federation of European Biochemical Societies.

  16. Investigation of an Ultrafast Harmonic Resonant RF Kicker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yulu

    An Energy Recovery Linac (ERL) based multi-turn electron Circulator Cooler Ring (CCR) is envisaged in the proposed Jefferson Lab Electron Ion Collider (JLEIC) to cool the ion bunches with high energy (55 MeV), high current (1.5 A), high repetition frequency (476.3 MHz), high quality magnetized electron bunches. A critical component in this scheme is a pair of ultrafast kickers for the exchange of electron bunches between the ERL and the CCR. The ultrafast kicker should operate with the rise and fall time in less than 2.1 ns, at the repetition rate of ~10s MHz, and should be able to runmore » continuously during the whole period of cooling. These -and-fall time being combined together, are well beyond the state-of-art of traditional pulsed power supplies and magnet kickers. To solve this technical challenge, an alternative method is to generate this high repetition rate, fast rise-and-fall time short pulse continuous waveform by summing several finite number of (co)sine waves at harmonic frequencies of the kicking repetition frequency, and these harmonic modes can be generated by the Quarter Wave Resonater (QWR) based multifrequency cavities. Assuming the recirculator factor is 10, 10 harmonic modes (from 47.63 MHz to 476.3 MHz) with proper amplitudes and phases, plus a DC offset are combined together, a continuous short pulse waveform with the rise-and-fall time in less than 2.1 ns, repetition rate of 47.63 MHz waveform can be generated. With the compact and matured technology of QWR cavities, the total cost of both hardware development and operation can be reduced to a modest level. Focuse on the technical scheme, three main topics will be discussed in this thesis: the synthetization of the kicking pulse, the design and optimization of the deflecting QWR multi-integer harmonic frequency resonator and the fabrication and bench measurements of a half scale copper prototype. In the kicking pulse synthetization part, we begin with the Fourier Series expansion of an ideal square pulse, and get a Flat-Top waveform which will give a uniform kick over the bunch length of the kicked electron bunches, thus the transverse emittance of these kicked electron bunches can be maintained. By using two identical kickers with the betatron phase advance of 180 degree or its odd multiples, the residual kick voltage wave slopes at the unkicked bunch position will be totally cancelled out. Flat-Top waveform combined with two kicker scheme, the transverse emittance of the cooling electron bunches will be conserved during the whole injection, recirculation, and ejection processes. In the cavity design part, firstly, the cavity geometry is optimized to get high transverse shunt impedance thus less than 100 W of RF losses on the cavity wall can be achieved for all these 10 harmonic modes. To support all these 10 harmonic modes, group of four QWRs are adopted with the mode distribution of 5:3:1:1. In the multi-frequency cavities such as the five-mode-cavity and the three-mode-cavity, tunings are required to achieve the design frequencies for each mode. Slight segments of taper design on the inner conductor help to get the frequencies to be exactly on the odd harmonic modes. Stub tuners equal to the number of resonant modes are inserted to the outer conductor wall to compensate the frequency shifts due manufacturing errors and other perturbations during the operation such as the change of the cavity temperature. Single loop couple is designed for all harmonic modes in each cavity. By adjusting its loop size, position and rotation, it is possible to get the fundamental mode critical coupled and other higher harmonic modes slightly over coupled. A broadband circulator will be considered for absorbing the reflected power. Finally in this part, multipole field components due to the asymmetric cylindrical structure around the beam axis of the cavity as well as the beam-induced higher order mode (HOM) issues will be analyzed and discussed in this thesis. A half-scale copper prototype cavity (resonant frequencies from 95.26 MHz to 857.34 MHz) was fabricated to validate the electromagnetic characteristics. With this half scale prototype, the tuning processes of multiple harmonic frequencies, unloaded quality factor measurements of each mode, and bead-pull measurements are performed. The bench measurement results matched well with the simulation results, which have validated our cavity design and construction methods. Finally, a simple mode combining experiment with five separate signal generators was performed on this prototype cavity and the desired fast rise/fall time (1.2 ns), high repetition rate (95.26 MHz) waveform was captured, which finally proved our design of this ultrafast harmonic kicker.« less

  17. Shooting and bouncing rays - Calculating the RCS of an arbitrarily shaped cavity

    NASA Technical Reports Server (NTRS)

    Ling, Hao; Chou, Ri-Chee; Lee, Shung-Wu

    1989-01-01

    A ray-shooting approach is presented for calculating the interior radar cross section (RCS) from a partially open cavity. In the problem considered, a dense grid of rays is launched into the cavity through the opening. The rays bounce from the cavity walls based on the laws of geometrical optics and eventually exit the cavity via the aperture. The ray-bouncing method is based on tracking a large number of rays launched into the cavity through the opening and determining the geometrical optics field associated with each ray by taking into consideration (1) the geometrical divergence factor, (2) polarization, and (3) material loading of the cavity walls. A physical optics scheme is then applied to compute the backscattered field from the exit rays. This method is so simple in concept that there is virtually no restriction on the shape or material loading of the cavity. Numerical results obtained by this method are compared with those for the modal analysis for a circular cylinder terminated by a PEC plate. RCS results for an S-bend circular cylinder generated on the Cray X-MP supercomputer show significant RCS reduction. Some of the limitations and possible extensions of this technique are discussed.

  18. Pyrolyzed thin film carbon

    NASA Technical Reports Server (NTRS)

    Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor); Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  19. Application of Classical and Lie Transform Methods to Zonal Perturbation in the Artificial Satellite

    NASA Astrophysics Data System (ADS)

    San-Juan, J. F.; San-Martin, M.; Perez, I.; Lopez-Ochoa, L. M.

    2013-08-01

    A scalable second-order analytical orbit propagator program is being carried out. This analytical orbit propagator combines modern perturbation methods, based on the canonical frame of the Lie transform, and classical perturbation methods in function of orbit types or the requirements needed for a space mission, such as catalog maintenance operations, long period evolution, and so on. As a first step on the validation of part of our orbit propagator, in this work we only consider the perturbation produced by zonal harmonic coefficients in the Earth's gravity potential, so that it is possible to analyze the behaviour of the perturbation methods involved in the corresponding analytical theories.

  20. Differential Estimates of Southern Flying Squirrel (Glaucomys volans) Population Structure Based on Capture Method.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laves, Kevin S.; Loeb, Susan C.

    2006-01-01

    ABSTRACT.—It is commonly assumed that population estimates derived from trapping small mammals are accurate and unbiased or that estimates derived from different capture methods are comparable. We captured southern flying squirrels (Glaucomys volans) using two methods to study their effect on red-cockaded woodpecker (Picoides borealis) reproductive success. Southern flying squirrels were captured at and removed from 30 red-cockaded woodpecker cluster sites during March to July 1994 and 1995 using Sherman traps placed in a grid encompassing a red-cockaded woodpecker nest tree and by hand from red-cockaded woodpecker cavities. Totals of 195 (1994) and 190 (1995) red-cockaded woodpecker cavities were examinedmore » at least three times each year. Trappability of southern flying squirrels in Sherman traps was significantly greater in 1995 (1.18%; 22,384 trap nights) than in 1994 (0.42%; 20,384 trap nights), and capture rate of southern flying squirrels in cavities was significantly greater in 1994 (22.7%; 502 cavity inspections) than in 1995 (10.8%; 555 cavity inspections). However, more southern flying squirrels were captured per cavity inspection than per Sherman trap night in both years. Male southern flying squirrels were more likely to be captured from cavities than in Sherman traps in 1994, but not in 1995. Both male and female juveniles were more likely to be captured in cavities than in traps in both years. In 1994 males in reproductive condition were more likely to be captured in cavities than in traps and in 1995 we captured significantly more reproductive females in cavities than in traps. Our data suggest that population estimates based solely on one trapping method may not represent true population size or structure of southern flying squirrels.« less

  1. Apparatus and method for plasma processing of SRF cavities

    NASA Astrophysics Data System (ADS)

    Upadhyay, J.; Im, Do; Peshl, J.; Bašović, M.; Popović, S.; Valente-Feliciano, A.-M.; Phillips, L.; Vušković, L.

    2016-05-01

    An apparatus and a method are described for plasma etching of the inner surface of superconducting radio frequency (SRF) cavities. Accelerator SRF cavities are formed into a variable-diameter cylindrical structure made of bulk niobium, for resonant generation of the particle accelerating field. The etch rate non-uniformity due to depletion of the radicals has been overcome by the simultaneous movement of the gas flow inlet and the inner electrode. An effective shape of the inner electrode to reduce the plasma asymmetry for the coaxial cylindrical rf plasma reactor is determined and implemented in the cavity processing method. The processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise way to establish segmented plasma columns. The test structure was a pillbox cavity made of steel of similar dimension to the standard SRF cavity. This was adopted to experimentally verify the plasma surface reaction on cylindrical structures with variable diameter using the segmented plasma generation approach. The pill box cavity is filled with niobium ring- and disk-type samples and the etch rate of these samples was measured.

  2. A new method for spatial structure detection of complex inner cavities based on 3D γ-photon imaging

    NASA Astrophysics Data System (ADS)

    Xiao, Hui; Zhao, Min; Liu, Jiantang; Liu, Jiao; Chen, Hao

    2018-05-01

    This paper presents a new three-dimensional (3D) imaging method for detecting the spatial structure of a complex inner cavity based on positron annihilation and γ-photon detection. This method first marks carrier solution by a certain radionuclide and injects it into the inner cavity where positrons are generated. Subsequently, γ-photons are released from positron annihilation, and the γ-photon detector ring is used for recording the γ-photons. Finally, the two-dimensional (2D) image slices of the inner cavity are constructed by the ordered-subset expectation maximization scheme and the 2D image slices are merged to the 3D image of the inner cavity. To eliminate the artifact in the reconstructed image due to the scattered γ-photons, a novel angle-traversal model is proposed for γ-photon single-scattering correction, in which the path of the single scattered γ-photon is analyzed from a spatial geometry perspective. Two experiments are conducted to verify the effectiveness of the proposed correction model and the advantage of the proposed testing method in detecting the spatial structure of the inner cavity, including the distribution of gas-liquid multi-phase mixture inside the inner cavity. The above two experiments indicate the potential of the proposed method as a new tool for accurately delineating the inner structures of industrial complex parts.

  3. Free Energy Perturbation Hamiltonian Replica-Exchange Molecular Dynamics (FEP/H-REMD) for Absolute Ligand Binding Free Energy Calculations.

    PubMed

    Jiang, Wei; Roux, Benoît

    2010-07-01

    Free Energy Perturbation with Replica Exchange Molecular Dynamics (FEP/REMD) offers a powerful strategy to improve the convergence of free energy computations. In particular, it has been shown previously that a FEP/REMD scheme allowing random moves within an extended replica ensemble of thermodynamic coupling parameters "lambda" can improve the statistical convergence in calculations of absolute binding free energy of ligands to proteins [J. Chem. Theory Comput. 2009, 5, 2583]. In the present study, FEP/REMD is extended and combined with an accelerated MD simulations method based on Hamiltonian replica-exchange MD (H-REMD) to overcome the additional problems arising from the existence of kinetically trapped conformations within the protein receptor. In the combined strategy, each system with a given thermodynamic coupling factor lambda in the extended ensemble is further coupled with a set of replicas evolving on a biased energy surface with boosting potentials used to accelerate the inter-conversion among different rotameric states of the side chains in the neighborhood of the binding site. Exchanges are allowed to occur alternatively along the axes corresponding to the thermodynamic coupling parameter lambda and the boosting potential, in an extended dual array of coupled lambda- and H-REMD simulations. The method is implemented on the basis of new extensions to the REPDSTR module of the biomolecular simulation program CHARMM. As an illustrative example, the absolute binding free energy of p-xylene to the nonpolar cavity of the L99A mutant of T4 lysozyme was calculated. The tests demonstrate that the dual lambda-REMD and H-REMD simulation scheme greatly accelerates the configurational sampling of the rotameric states of the side chains around the binding pocket, thereby improving the convergence of the FEP computations.

  4. Cyclization strategies of meditopes: affinity and diffraction studies of meditope–Fab complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzymek, Krzysztof P.; Ma, Yuelong; Avery, Kendra A.

    An overview of cyclization strategies of a Fab-binding peptide to maximize affinity. Recently, a unique binding site for a cyclic 12-residue peptide was discovered within a cavity formed by the light and heavy chains of the cetuximab Fab domain. In order to better understand the interactions that drive this unique complex, a number of variants including the residues within the meditope peptide and the antibody, as well as the cyclization region of the meditope peptide, were created. Here, multiple crystal structures of meditope peptides incorporating different cyclization strategies bound to the central cavity of the cetuximab Fab domain are presented.more » The affinity of each cyclic derivative for the Fab was determined by surface plasmon resonance and correlated to structural differences. Overall, it was observed that the disulfide bond used to cyclize the peptide favorably packs against a hydrophobic ‘pocket’ and that amidation and acetylation of the original disulfide meditope increased the overall affinity ∼2.3-fold. Conversely, replacing the terminal cysteines with serines and thus creating a linear peptide reduced the affinity over 50-fold, with much of this difference being reflected in a decrease in the on-rate. Other cyclization methods, including the formation of a lactam, reduced the affinity but not to the extent of the linear peptide. Collectively, the structural and kinetic data presented here indicate that small perturbations introduced by different cyclization strategies can significantly affect the affinity of the meditope–Fab complex.« less

  5. Dielectric perturbations and Rayleigh scattering from an optical fiber near a superconducting resonator

    NASA Astrophysics Data System (ADS)

    Voigt, Kristen; Hertzberg, Jared; Dutta, Sudeep; Budoyo, Rangga; Ballard, Cody; Lobb, Chris; Wellstood, Frederick

    As part of an experiment to optically trap 87Rb atoms near a superconducting device, we have coupled an optical fiber to a translatable thin-film lumped-element superconducting Al microwave resonator that is cooled to 15 mK in a dilution refrigerator. The lumped-element resonator has a resonance frequency of 6.15 GHz, a quality factor of 8 x 105 at high powers, and is mounted inside a superconducting aluminum 3D cavity. The 60-µm-diameter optical fiber passes through small openings in the cavity and close to the lumped-element resonator. The 3D cavity is mounted on an x-z Attocube-translation stage that allows the lumped-element resonator and optical fiber to be moved relative to each other. When the resonator is brought near to the fiber, we observe a shift in resonance frequency, of up to 8 MHz, due to the presence of the fiber dielectric. When optical power is sent through the fiber, Rayleigh scattering in the fiber causes a position-dependent weak illumination of the thin-film resonator affecting its resonance frequency and Q. We model the optical response of the resonator by taking into account optical production, recombination, and diffusion of quasiparticles as well as the non-uniform position-dependent illumination of the resonator.

  6. The B-type channel is a major route for iron entry into the ferroxidase center and central cavity of bacterioferritin

    DOE PAGES

    Wong, Steve G.; Grigg, Jason C.; Le Brun, Nick E.; ...

    2014-12-15

    Bacterioferritin is a bacterial iron storage and detoxification protein that is capable of forming a ferric oxyhydroxide mineral core within its central cavity. To do this, iron must traverse the bacterioferritin protein shell, which is expected to occur through one or more of the channels through the shell identified by structural studies. The size and negative electrostatic potential of the 24 B-type channels suggest that they could provide a route for iron into bacterioferritin. Residues at the B-type channel (Asn-34, Glu-66, Asp-132, and Asp-139) of E. coli bacterioferritin were substituted to determine if they are important for iron core formation.more » A significant decrease in the rates of initial oxidation of Fe(II) at the ferroxidase center and subsequent iron mineralization was observed for the D132F variant. The crystal structure of this variant shows that substitution of residue 132 with phenylalanine caused a steric blockage of the B-type channel and no other material structural perturbation. Here, we conclude that the B-type channel is a major route for iron entry into both the ferroxidase center and the iron storage cavity of bacterioferritin.« less

  7. HOM frequency control of SRF cavity in high current ERLs

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Ben-Zvi, Ilan

    2018-03-01

    The acceleration of high-current beam in Superconducting Radio Frequency (SRF) cavities is a challenging but essential for a variety of advanced accelerators. SRF cavities should be carefully designed to minimize the High Order Modes (HOM) power generated in the cavities by the beam current. The reduction of HOM power we demonstrate in a particular case can be quite large. This paper presents a method to systematically control the HOM resonance frequencies in the initial design phase to minimize the HOM power generation. This method is expected to be beneficial for the design of high SRF cavities addressing a variety of Energy Recovery Linac (ERL) applications.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ioannisian, Ara N.; Kazarian, Narine; Millar, Alexander J.

    Axion-photon conversion at dielectric interfaces, immersed in a near-homogeneous magnetic field, is the basis for the dielectric haloscope method to search for axion dark matter. In analogy to transition radiation, this process is possible because the photon wave function is modified by the dielectric layers ('Garibian wave function') and is no longer an eigenstate of momentum. A conventional first-order perturbative calculation of the transition probability between a quantized axion state and these distorted photon states provides the microwave production rate. It agrees with previous results based on solving the classical Maxwell equations for the combined system of axions and electromagneticmore » fields. We argue that in general the average photon production rate is given by our result, independently of the detailed quantum state of the axion field. Moreover, our result provides a new perspective on axion-photon conversion in dielectric haloscopes because the rate is based on an overlap integral between unperturbed axion and photon wave functions, in analogy to the usual treatment of microwave-cavity haloscopes.« less

  9. A Nonlinear Elasticity Model of Macromolecular Conformational Change Induced by Electrostatic Forces

    PubMed Central

    Zhou, Y. C.; Holst, Michael; McCammon, J. Andrew

    2008-01-01

    In this paper we propose a nonlinear elasticity model of macromolecular conformational change (deformation) induced by electrostatic forces generated by an implicit solvation model. The Poisson-Boltzmann equation for the electrostatic potential is analyzed in a domain varying with the elastic deformation of molecules, and a new continuous model of the electrostatic forces is developed to ensure solvability of the nonlinear elasticity equations. We derive the estimates of electrostatic forces corresponding to four types of perturbations to an electrostatic potential field, and establish the existance of an equilibrium configuration using a fixed-point argument, under the assumption that the change in the ionic strength and charges due to the additional molecules causing the deformation are sufficiently small. The results are valid for elastic models with arbitrarily complex dielectric interfaces and cavities, and can be generalized to large elastic deformation caused by high ionic strength, large charges, and strong external fields by using continuation methods. PMID:19461946

  10. Numerical solution of the exact cavity equations of motion for an unstable optical resonator.

    PubMed

    Bowers, M S; Moody, S E

    1990-09-20

    We solve numerically, we believe for the first time, the exact cavity equations of motion for a realistic unstable resonator with a simple gain saturation model. The cavity equations of motion, first formulated by Siegman ["Exact Cavity Equations for Lasers with Large Output Coupling," Appl. Phys. Lett. 36, 412-414 (1980)], and which we term the dynamic coupled modes (DCM) method of solution, solve for the full 3-D time dependent electric field inside the optical cavity by expanding the field in terms of the actual diffractive transverse eigenmodes of the bare (gain free) cavity with time varying coefficients. The spatially varying gain serves to couple the bare cavity transverse modes and to scatter power from mode to mode. We show that the DCM method numerically converges with respect to the number of eigenmodes in the basis set. The intracavity intensity in the numerical example shown reaches a steady state, and this steady state distribution is compared with that computed from the traditional Fox and Li approach using a fast Fourier transform propagation algorithm. The output wavefronts from both methods are quite similar, and the computed output powers agree to within 10%. The usefulness and advantages of using this method for predicting the output of a laser, especially pulsed lasers used for coherent detection, are discussed.

  11. [Cardiac Synchronization Function Estimation Based on ASM Level Set Segmentation Method].

    PubMed

    Zhang, Yaonan; Gao, Yuan; Tang, Liang; He, Ying; Zhang, Huie

    At present, there is no accurate and quantitative methods for the determination of cardiac mechanical synchronism, and quantitative determination of the synchronization function of the four cardiac cavities with medical images has a great clinical value. This paper uses the whole heart ultrasound image sequence, and segments the left & right atriums and left & right ventricles of each frame. After the segmentation, the number of pixels in each cavity and in each frame is recorded, and the areas of the four cavities of the image sequence are therefore obtained. The area change curves of the four cavities are further extracted, and the synchronous information of the four cavities is obtained. Because of the low SNR of Ultrasound images, the boundary lines of cardiac cavities are vague, so the extraction of cardiac contours is still a challenging problem. Therefore, the ASM model information is added to the traditional level set method to force the curve evolution process. According to the experimental results, the improved method improves the accuracy of the segmentation. Furthermore, based on the ventricular segmentation, the right and left ventricular systolic functions are evaluated, mainly according to the area changes. The synchronization of the four cavities of the heart is estimated based on the area changes and the volume changes.

  12. Thermal radiation characteristics of nonisothermal cylindrical enclosures using a numerical ray tracing technique

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.

    1990-01-01

    Analysis of energy emitted from simple or complex cavity designs can lead to intricate solutions due to nonuniform radiosity and irradiation within a cavity. A numerical ray tracing technique was applied to simulate radiation propagating within and from various cavity designs. To obtain the energy balance relationships between isothermal and nonisothermal cavity surfaces and space, the computer code NEVADA was utilized for its statistical technique applied to numerical ray tracing. The analysis method was validated by comparing results with known theoretical and limiting solutions, and the electrical resistance network method. In general, for nonisothermal cavities the performance (apparent emissivity) is a function of cylinder length-to-diameter ratio, surface emissivity, and cylinder surface temperatures. The extent of nonisothermal conditions in a cylindrical cavity significantly affects the overall cavity performance. Results are presented over a wide range of parametric variables for use as a possible design reference.

  13. Structure and method for controlling the thermal emissivity of a radiating object

    DOEpatents

    DeSteese, John G.; Antoniak, Zenen I.; White, Michael; Peters, Timothy J.

    2004-03-30

    A structure and method for changing or controlling the thermal emissivity of the surface of an object in situ, and thus, changing or controlling the radiative heat transfer between the object and its environment in situ, is disclosed. Changing or controlling the degree of blackbody behavior of the object is accomplished by changing or controlling certain physical characteristics of a cavity structure on the surface of the object. The cavity structure, defining a plurality of cavities, may be formed by selectively removing material(s) from the surface, selectively adding a material(s) to the surface, or adding an engineered article(s) to the surface to form a new radiative surface. The physical characteristics of the cavity structure that are changed or controlled include cavity area aspect ratio, cavity longitudinal axis orientation, and combinations thereof. Controlling the cavity area aspect ratio may be by controlling the size of the cavity surface area, the size of the cavity aperture area, or a combination thereof. The cavity structure may contain a gas, liquid, or solid that further enhances radiative heat transfer control and/or improves other properties of the object while in service.

  14. On the stability of radiation-pressure-dominated cavities

    NASA Astrophysics Data System (ADS)

    Kuiper, R.; Klahr, H.; Beuther, H.; Henning, Th.

    2012-01-01

    Context. When massive stars exert a radiation pressure onto their environment that is higher than their gravitational attraction (super-Eddington condition), they launch a radiation-pressure-driven outflow, which creates cleared cavities. These cavities should prevent any further accretion onto the star from the direction of the bubble, although it has been claimed that a radiative Rayleigh-Taylor instability should lead to the collapse of the outflow cavity and foster the growth of massive stars. Aims: We investigate the stability of idealized radiation-pressure-dominated cavities, focusing on its dependence on the radiation transport approach used in numerical simulations for the stellar radiation feedback. Methods: We compare two different methods for stellar radiation feedback: gray flux-limited diffusion (FLD) and ray-tracing (RT). Both methods are implemented in our self-gravity radiation hydrodynamics simulations for various initial density structures of the collapsing clouds, eventually forming massive stars. We also derive simple analytical models to support our findings. Results: Both methods lead to the launch of a radiation-pressure-dominated outflow cavity. However, only the FLD cases lead to prominent instability in the cavity shell. The RT cases do not show such instability; once the outflow has started, it precedes continuously. The FLD cases display extended epochs of marginal Eddington equilibrium in the cavity shell, making them prone to the radiative Rayleigh-Taylor instability. In the RT cases, the radiation pressure exceeds gravity by 1-2 orders of magnitude. The radiative Rayleigh-Taylor instability is then consequently suppressed. It is a fundamental property of the gray FLD method to neglect the stellar radiation temperature at the location of absorption and thus to underestimate the opacity at the location of the cavity shell. Conclusions: Treating the stellar irradiation in the gray FLD approximation underestimates the radiative forces acting on the cavity shell. This can lead artificially to situations that are affected by the radiative Rayleigh-Taylor instability. The proper treatment of direct stellar irradiation by massive stars is crucial for the stability of radiation-pressure-dominated cavities. Movies are available in electronic form at http://www.aanda.org

  15. Open-ended formulation of self-consistent field response theory with the polarizable continuum model for solvation.

    PubMed

    Di Remigio, Roberto; Beerepoot, Maarten T P; Cornaton, Yann; Ringholm, Magnus; Steindal, Arnfinn Hykkerud; Ruud, Kenneth; Frediani, Luca

    2016-12-21

    The study of high-order absorption properties of molecules is a field of growing importance. Quantum-chemical studies can help design chromophores with desirable characteristics. Given that most experiments are performed in solution, it is important to devise a cost-effective strategy to include solvation effects in quantum-chemical studies of these properties. We here present an open-ended formulation of self-consistent field (SCF) response theory for a molecular solute coupled to a polarizable continuum model (PCM) description of the solvent. Our formulation relies on the open-ended, density matrix-based quasienergy formulation of SCF response theory of Thorvaldsen, et al., [J. Chem. Phys., 2008, 129, 214108] and the variational formulation of the PCM, as presented by Lipparini et al., [J. Chem. Phys., 2010, 133, 014106]. Within the PCM approach to solvation, the mutual solute-solvent polarization is represented by means of an apparent surface charge (ASC) spread over the molecular cavity defining the solute-solvent boundary. In the variational formulation, the ASC is an independent, variational degree of freedom. This allows us to formulate response theory for molecular solutes in the fixed-cavity approximation up to arbitrary order and with arbitrary perturbation operators. For electric dipole perturbations, pole and residue analyses of the response functions naturally lead to the identification of excitation energies and transition moments. We document the implementation of this approach in the Dalton program package using a recently developed open-ended response code and the PCMSolver libraries and present results for one-, two-, three-, four- and five-photon absorption processes of three small molecules in solution.

  16. Effect of electric field and temperature gradient on orientational dynamics of nematics encapsulated in a hallow cylindrical cavity

    NASA Astrophysics Data System (ADS)

    Zakharov, A. V.; Maslennikov, P. V.

    2018-05-01

    We have considered a homogeneously oriented liquid crystal (HOLC) microvolume, confined between two infinitely long horizontal coaxial cylinders subjected to both a temperature gradient ∇T and a radially applied electric field E . We have investigated dynamic field pumping, i.e. studied the interactions between director, velocity, electric fields, as well as a radially applied temperature gradient, where the inner cylinder is kept at a lower temperature than the outer one. In order to elucidate the role of ∇T and E in producing hydrodynamic flow, we have carried out a numerical study of a system of hydrodynamic equations including director reorientation, fluid flow, and temperature redistribution across the HOLC cavity. Calculations show that, under the effect of the named perturbations and at high curvature of the inner cylinder, the HOLC microvolume settles down to a nonstandard pumping regime with maximum flow in the vicinity of the cooler inner cylinder.

  17. Hyperfine-resolved 3.4-{mu}m spectroscopy of CH{sub 3}I with a widely tunable difference frequency generation source and a cavity-enhanced cell: A case study of a local Coriolis interaction between the v{sub 1}=1 and (v{sub 2},v{sub 6}{sup l})=(1,2{sup 2}) states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okubo, Sho; Nakayama, Hirotaka; Sasada, Hiroyuki

    Saturated absorption spectra of the {nu}{sub 1} fundamental band of CH{sub 3}I are recorded with a cavity-enhanced cell and a tunable difference frequency generation source having an 86-cm{sup -1} range. The recorded spectral lines are 250 kHz wide, and most of them are resolved into the individual hyperfine components. The Coriolis interaction between the v{sub 1}=1 and (v{sub 2},v{sub 6}{sup l})=(1,2{sup 2}) states locally perturbing the hyperfine structures is analyzed to yield the Coriolis and hyperfine coupling constants with uncertainties similar to those in typical microwave spectroscopy. The spectrometer has demonstrated the potential for precisely determining the energy structure inmore » the vibrational excited states.« less

  18. Theoretical exploration of competing phases of lattice Bose gases in a cavity

    NASA Astrophysics Data System (ADS)

    Liao, Renyuan; Chen, Huang-Jie; Zheng, Dong-Chen; Huang, Zhi-Gao

    2018-01-01

    We consider bosonic atoms loaded into optical lattices with cavity-mediated infinite-range interactions. Competing short- and global-range interactions cultivate a rich phase diagram. With a systematic field-theoretical perspective, we present an analytical construction of a global ground-state phase diagram. We find that the infinite-range interaction enhances the fluctuation of the number density. In the strong-coupling regime, we find four branches of elementary excitations, with two being "particlelike" and two being "holelike," and that the excitation gap becomes soft at the phase boundary between compressible phases and incompressible phases. We derive an effective theory describing compressible superfluid and supersolid states. To complement this perturbative study, we construct a self-consistent mean-field theory and find numerical results consistent with our theoretical analysis. We map out the phase diagram and find that a charge density wave may undergo a structure phase transition to a different charge density wave before it finally enters into the supersolid phase driven by increasing the hopping amplitude.

  19. Terahertz plasmonic lasers with narrow beams and large tunability

    NASA Astrophysics Data System (ADS)

    Jin, Yuan; Wu, Chongzhao; Reno, John L.; Kumar, Sushil

    2017-02-01

    Plasmonic lasers generate coherent long-range or localized surface-plasmon-polaritons (SPPs), where the SPP mode exists at the interface of the metal (or a metallic nanoparticle) and a dielectric. Metallic-cavities sup- porting SPP modes are also utilized for terahertz quantum-cascade lasers (QCLs). Due to subwavelength apertures, plasmonic lasers have highly divergent radiation patterns. Recently, we theoretically and experimentally demonstrated a new technique for implementing distributed-feedback (DFB), which is termed as an antenna- feedback scheme, to establish a hybrid SPP mode in the surrounding medium of a plasmonic laser's cavity with a large wavefront. This technique allows such lasers to radiate in narrow beams without requirement of any specific design considerations for phase-matching. Experimental demonstration is done for terahertz QCLs that show beam-divergence as small as 4-degrees. The antenna-feedback scheme has a characteristic feature in that refractive-index of the laser's surrounding medium affects its radiative frequency in the same vein as refractive- index of the cavity. Hence, any perturbations in the refractive-index of the surrounding medium could lead to large modulation in the laser's emission frequency. Along this line, we report 57 GHz reversible, continuous, and mode-hop-free tuning of such QCLs operating at 78 K based on post-process deposition/etching of a dielectric on an already mounted QCL chip. This is the largest tuning range achieved for terahertz QCLs when operating much above the temperature of liquid-Helium. We review the aforementioned experimental results and discuss methods to increase optical power output from terahertz QCLs with antenna-feedback. Peak power output of 13 mW is realized for a 3.3 THz QCL operating in a Stirling cooler at 54 K. A new dual-slit photonic structure based on antenna-feedback scheme is proposed to further improve output power as well as provide enhanced tunability.

  20. Electrochemical, spectral, and computational studies of metalloporphyrin dimers formed by cation complexation of crown ether cavities.

    PubMed

    Chitta, Raghu; Rogers, Lisa M; Wanklyn, Amber; Karr, Paul A; Kahol, Pawan K; Zandler, Melvin E; D'Souza, Francis

    2004-11-01

    The effect on the electrochemical oxidation and reduction potentials of 5,10,15,20-tetrakis(benzo-15-crown-5)porphyrin (TCP) and its metal derivatives (MTCP; M = Mg(II), VO(IV), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Ag(II)) upon potassium ion induced dimerization of the porphyrins was systematically performed in benzonitrile containing 0.1 M (TBA)ClO(4) by differential pulse voltammetry technique. The HOMO--LUMO energy level diagram constructed from the electrochemical data revealed destabilization of the HOMO level and stabilization of the LUMO level upon dimer formation while such a perturbation was larger for the HOMO level than the LUMO level. The geometry and electronic structure of a representative ZnTCP and its dimer, K(4)(ZnTCP)(2), were evaluated by the ab initio B3LYP method utilizing a mixed basis set of 3-21G(*) for Zn, K, O, and N and STO-3G for C and H. The inter-porphyrin ring distance of the dimer calculated from the optimized geometry agreed with the spectroscopically determined one, and the calculated HOMO and LUMO frontier orbitals revealed delocalization on both of the porphyrins rings. The metal-metal distances calculated from the triplet ESR spectra of the K(+) induced porphyrin dimers bearing paramagnetic metal ions in the cavity followed the trend Cu--Cu < VO--VO < Ag--Ag. However, the spectral shifts resulting from the exciton coupling of the interacting porphyrin pi-systems revealed no specific trend with respect to the metal ion in the porphyrin cavity. Additionally, linear trends in the electrochemically measured HOMO--LUMO gap and the energy corresponding to the most intense visible band of both MTCP and K(4)(MTCP)(2) were observed. A reduced HOMO--LUMO gap predicted for the dimer by B3LYP/(3-21G(), STO-3G) calculations was confirmed by the results of optical absorption and electrochemical studies.

  1. A modified homotopy perturbation method and the axial secular frequencies of a non-linear ion trap.

    PubMed

    Doroudi, Alireza

    2012-01-01

    In this paper, a modified version of the homotopy perturbation method, which has been applied to non-linear oscillations by V. Marinca, is used for calculation of axial secular frequencies of a non-linear ion trap with hexapole and octopole superpositions. The axial equation of ion motion in a rapidly oscillating field of an ion trap can be transformed to a Duffing-like equation. With only octopole superposition the resulted non-linear equation is symmetric; however, in the presence of hexapole and octopole superpositions, it is asymmetric. This modified homotopy perturbation method is used for solving the resulting non-linear equations. As a result, the ion secular frequencies as a function of non-linear field parameters are obtained. The calculated secular frequencies are compared with the results of the homotopy perturbation method and the exact results. With only hexapole superposition, the results of this paper and the homotopy perturbation method are the same and with hexapole and octopole superpositions, the results of this paper are much more closer to the exact results compared with the results of the homotopy perturbation method.

  2. Method and apparatus for varying accelerator beam output energy

    DOEpatents

    Young, Lloyd M.

    1998-01-01

    A coupled cavity accelerator (CCA) accelerates a charged particle beam with rf energy from a rf source. An input accelerating cavity receives the charged particle beam and an output accelerating cavity outputs the charged particle beam at an increased energy. Intermediate accelerating cavities connect the input and the output accelerating cavities to accelerate the charged particle beam. A plurality of tunable coupling cavities are arranged so that each one of the tunable coupling cavities respectively connect an adjacent pair of the input, output, and intermediate accelerating cavities to transfer the rf energy along the accelerating cavities. An output tunable coupling cavity can be detuned to variably change the phase of the rf energy reflected from the output coupling cavity so that regions of the accelerator can be selectively turned off when one of the intermediate tunable coupling cavities is also detuned.

  3. Least Squares Moving-Window Spectral Analysis.

    PubMed

    Lee, Young Jong

    2017-08-01

    Least squares regression is proposed as a moving-windows method for analysis of a series of spectra acquired as a function of external perturbation. The least squares moving-window (LSMW) method can be considered an extended form of the Savitzky-Golay differentiation for nonuniform perturbation spacing. LSMW is characterized in terms of moving-window size, perturbation spacing type, and intensity noise. Simulation results from LSMW are compared with results from other numerical differentiation methods, such as single-interval differentiation, autocorrelation moving-window, and perturbation correlation moving-window methods. It is demonstrated that this simple LSMW method can be useful for quantitative analysis of nonuniformly spaced spectral data with high frequency noise.

  4. A hybrid perturbation-Galerkin technique for partial differential equations

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Anderson, Carl M.

    1990-01-01

    A two-step hybrid perturbation-Galerkin technique for improving the usefulness of perturbation solutions to partial differential equations which contain a parameter is presented and discussed. In the first step of the method, the leading terms in the asymptotic expansion(s) of the solution about one or more values of the perturbation parameter are obtained using standard perturbation methods. In the second step, the perturbation functions obtained in the first step are used as trial functions in a Bubnov-Galerkin approximation. This semi-analytical, semi-numerical hybrid technique appears to overcome some of the drawbacks of the perturbation and Galerkin methods when they are applied by themselves, while combining some of the good features of each. The technique is illustrated first by a simple example. It is then applied to the problem of determining the flow of a slightly compressible fluid past a circular cylinder and to the problem of determining the shape of a free surface due to a sink above the surface. Solutions obtained by the hybrid method are compared with other approximate solutions, and its possible application to certain problems associated with domain decomposition is discussed.

  5. Cubic spline anchored grid pattern algorithm for high-resolution detection of subsurface cavities by the IR-CAT method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassab, A.J.; Pollard, J.E.

    An algorithm is presented for the high-resolution detection of irregular-shaped subsurface cavities within irregular-shaped bodies by the IR-CAT method. The theoretical basis of the algorithm is rooted in the solution of an inverse geometric steady-state heat conduction problem. A Cauchy boundary condition is prescribed at the exposed surface, and the inverse geometric heat conduction problem is formulated by specifying the thermal condition at the inner cavities walls, whose unknown geometries are to be detected. The location of the inner cavities is initially estimated, and the domain boundaries are discretized. Linear boundary elements are used in conjunction with cubic splines formore » high resolution of the cavity walls. An anchored grid pattern (AGP) is established to constrain the cubic spline knots that control the inner cavity geometry to evolve along the AGP at each iterative step. A residual is defined measuring the difference between imposed and computed boundary conditions. A Newton-Raphson method with a Broyden update is used to automate the detection of inner cavity walls. During the iterative procedure, the movement of the inner cavity walls is restricted to physically realistic intermediate solutions. Numerical simulation demonstrates the superior resolution of the cubic spline AGP algorithm over the linear spline-based AGP in the detection of an irregular-shaped cavity. Numerical simulation is also used to test the sensitivity of the linear and cubic spline AGP algorithms by simulating bias and random error in measured surface temperature. The proposed AGP algorithm is shown to satisfactorily detect cavities with these simulated data.« less

  6. Theory of Stellar Oscillations

    NASA Astrophysics Data System (ADS)

    Cunha, Margarida S.

    In recent years, astronomers have witnessed major progresses in the field of stellar physics. This was made possible thanks to the combination of a solid theoretical understanding of the phenomena of stellar pulsations and the availability of a tremendous amount of exquisite space-based asteroseismic data. In this context, this chapter reviews the basic theory of stellar pulsations, considering small, adiabatic perturbations to a static, spherically symmetric equilibrium. It starts with a brief discussion of the solar oscillation spectrum, followed by the setting of the theoretical problem, including the presentation of the equations of hydrodynamics, their perturbation, and a discussion of the functional form of the solutions. Emphasis is put on the physical properties of the different types of modes, in particular acoustic (p-) and gravity (g-) modes and their propagation cavities. The surface (f-) mode solutions are also discussed. While not attempting to be comprehensive, it is hoped that the summary presented in this chapter addresses the most important theoretical aspects that are required for a solid start in stellar pulsations research.

  7. Structure-Function Perturbation and Dissociation of Tetrameric Urate Oxidase by High Hydrostatic Pressure

    PubMed Central

    Girard, Eric; Marchal, Stéphane; Perez, Javier; Finet, Stéphanie; Kahn, Richard; Fourme, Roger; Marassio, Guillaume; Dhaussy, Anne-Claire; Prangé, Thierry; Giffard, Marion; Dulin, Fabienne; Bonneté, Françoise; Lange, Reinhard; Abraini, Jacques H.; Mezouar, Mohamed; Colloc'h, Nathalie

    2010-01-01

    Abstract Structure-function relationships in the tetrameric enzyme urate oxidase were investigated using pressure perturbation. As the active sites are located at the interfaces between monomers, enzyme activity is directly related to the integrity of the tetramer. The effect of hydrostatic pressure on the enzyme was investigated by x-ray crystallography, small-angle x-ray scattering, and fluorescence spectroscopy. Enzymatic activity was also measured under pressure and after decompression. A global model, consistent with all measurements, discloses structural and functional details of the pressure-induced dissociation of the tetramer. Before dissociating, the pressurized protein adopts a conformational substate characterized by an expansion of its substrate binding pocket at the expense of a large neighboring hydrophobic cavity. This substate should be adopted by the enzyme during its catalytic mechanism, where the active site has to accommodate larger intermediates and product. The approach, combining several high-pressure techniques, offers a new (to our knowledge) means of exploring structural and functional properties of transient states relevant to protein mechanisms. PMID:20483346

  8. HOM frequency control of SRF cavity in high current ERLs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Chen; Ben-Zvi, Ilan

    The acceleration of high-current beam in Superconducting Radio Frequency (SRF) cavities is a challenging but essential for a variety of advanced accelerators. SRF cavities should be carefully designed to minimize the High Order Modes (HOM) power generated in the cavities by the beam current. The reduction of HOM power we demonstrate in a particular case can be quite large. This paper presents a method to systematically control the HOM resonance frequencies in the initial design phase to minimize the HOM power generation. This method is expected to be beneficial for the design of high SRF cavities addressing a variety ofmore » Energy Recovery Linac (ERL) applications.« less

  9. HOM frequency control of SRF cavity in high current ERLs

    DOE PAGES

    Xu, Chen; Ben-Zvi, Ilan

    2017-12-06

    The acceleration of high-current beam in Superconducting Radio Frequency (SRF) cavities is a challenging but essential for a variety of advanced accelerators. SRF cavities should be carefully designed to minimize the High Order Modes (HOM) power generated in the cavities by the beam current. The reduction of HOM power we demonstrate in a particular case can be quite large. This paper presents a method to systematically control the HOM resonance frequencies in the initial design phase to minimize the HOM power generation. This method is expected to be beneficial for the design of high SRF cavities addressing a variety ofmore » Energy Recovery Linac (ERL) applications.« less

  10. Neutron-detecting apparatuses and methods of fabrication

    DOEpatents

    Dahal, Rajendra P.; Huang, Jacky Kuan-Chih; Lu, James J. Q.; Danon, Yaron; Bhat, Ishwara B.

    2015-10-06

    Neutron-detecting structures and methods of fabrication are provided which include: a substrate with a plurality of cavities extending into the substrate from a surface; a p-n junction within the substrate and extending, at least in part, in spaced opposing relation to inner cavity walls of the substrate defining the plurality of cavities; and a neutron-responsive material disposed within the plurality of cavities. The neutron-responsive material is responsive to neutrons absorbed for releasing ionization radiation products, and the p-n junction within the substrate spaced in opposing relation to and extending, at least in part, along the inner cavity walls of the substrate reduces leakage current of the neutron-detecting structure.

  11. A Two-Dimensional Helmholtz Equation Solution for the Multiple Cavity Scattering Problem

    DTIC Science & Technology

    2013-02-01

    obtained by using the block Gauss – Seidel iterative meth- od. To show the convergence of the iterative method, we define the error between two...models to the general multiple cavity setting. Numerical examples indicate that the convergence of the Gauss – Seidel iterative method depends on the...variational approach. A block Gauss – Seidel iterative method is introduced to solve the cou- pled system of the multiple cavity scattering problem, where

  12. Electromagnetic scattering analysis of a three-dimensional-cavity-backed aperture in an infinite ground plane using a combined finite element method/method of moments approach

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, Manohar D.; Cockrell, C. R.; Beck, F. B.

    1995-01-01

    A combined finite element method/method of moments (FEM/MoM) approach is used to analyze the electromagnetic scattering properties of a three-dimensional-cavity-backed aperture in an infinite ground plane. The FEM is used to formulate the fields inside the cavity, and the MoM (with subdomain bases) in both spectral and spatial domains is used to formulate the fields above the ground plane. Fields in the aperture and the cavity are solved using a system of equations resulting from the combination of the FEM and the MoM. By virtue of the FEM, this combined approach is applicable to all arbitrarily shaped cavities with inhomogeneous material fillings, and because of the subdomain bases used in the MoM, the apertures can be of any arbitrary shape. This approach leads to a partly sparse and partly full symmetric matrix, which is efficiently solved using a biconjugate gradient algorithm. Numerical results are presented to validate the analysis.

  13. Frequency-comb referenced spectroscopy of v₄₋ and v₅₋excited hot bands in the 1.5 and μm spectrum of C₂H₂

    DOE PAGES

    Twagirayezu, Sylvestre; Cich, Matthew J.; Sears, Trevor J.; ...

    2015-07-14

    Doppler-free transition frequencies for v₄₋ and v₅₋excited hot bands have been measured in the v₁ + v₃ band region of the spectrum of acetylene using saturation dip spectroscopy with an extended cavity diode laser referenced to a frequency comb. The frequency accuracy of the measured transitions, as judged from line shape model fits and comparison to known frequencies in the v₁ + v₃ band itself, is between 3 and 22 kHz. This is some three orders of magnitude improvement on the accuracy and precision of previous line position estimates that were derived from the analysis of high-resolution Fourier transform infraredmore » absorption spectra. Comparison to transition frequencies computed from constants derived from published Fourier transform infrared spectra shows that some upper rotational energy levels suffer specific perturbations causing energy level shifts of up to several hundred MHz. These perturbations are due to energy levels of the same rotational quantum number derived from nearby vibrational levels that become degenerate at specific energies. Future identification of the perturbing levels will provide accurate relative energies of excited vibrational levels of acetylene in the 7100–7600 cm⁻¹ energy region.« less

  14. Scaling Symmetries in Elastic-Plastic Dynamic Cavity Expansion Equations Using the Isovector Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albright, Eric Jason; Ramsey, Scott D.; Schmidt, Joseph H.

    Cavity-expansion approximations are widely-used in the study of penetration mechanics and indentation phenomena. We apply the isovector method to a well-established model in the literature for elastic-plastic cavity-expansion to systematically demonstrate the existence of Lie symmetries corresponding to scale-invariant solutions. Here we use the symmetries obtained from the equations of motion to determine compatible auxiliary conditions describing the cavity wall trajectory and the elastic-plastic material interface. The admissible conditions are then compared with specific similarity solutions in the literature.

  15. Pre-form ceramic matrix composite cavity and a ceramic matrix composite component

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monaghan, Philip Harold; Delvaux, John McConnell; Taxacher, Glenn Curtis

    A pre-form CMC cavity and method of forming pre-form CMC cavity for a ceramic matrix component includes providing a mandrel, applying a base ply to the mandrel, laying-up at least one CMC ply on the base ply, removing the mandrel, and densifying the base ply and the at least one CMC ply. The remaining densified base ply and at least one CMC ply form a ceramic matrix component having a desired geometry and a cavity formed therein. Also provided is a method of forming a CMC component.

  16. Scaling Symmetries in Elastic-Plastic Dynamic Cavity Expansion Equations Using the Isovector Method

    DOE PAGES

    Albright, Eric Jason; Ramsey, Scott D.; Schmidt, Joseph H.; ...

    2017-09-16

    Cavity-expansion approximations are widely-used in the study of penetration mechanics and indentation phenomena. We apply the isovector method to a well-established model in the literature for elastic-plastic cavity-expansion to systematically demonstrate the existence of Lie symmetries corresponding to scale-invariant solutions. Here we use the symmetries obtained from the equations of motion to determine compatible auxiliary conditions describing the cavity wall trajectory and the elastic-plastic material interface. The admissible conditions are then compared with specific similarity solutions in the literature.

  17. Cavity enhancement by controlled directional scattering

    NASA Astrophysics Data System (ADS)

    Winston, R.

    1980-01-01

    A method for designing cavity enclosures is presented that can be applied to the design of a nonimaging concentrator. The method maintains high transmission at the expense of some concentration in the presence of a gap between the reflector and the receiver. The slight loss of concentration may be partly offset by enhanced absorption of radiation by the receiver, resulting from the cavity effect.

  18. Measurement of a free spectral range of a Fabry-Perot cavity using frequency modulation and null method under off-resonance conditions

    NASA Astrophysics Data System (ADS)

    Aketagawa, Masato; Kimura, Shohei; Yashiki, Takuya; Iwata, Hiroshi; Banh, Tuan Quoc; Hirata, Kenji

    2011-02-01

    In this paper, we discuss a method to measure the free spectral range (FSR) of a Fabry-Perot cavity (FP-cavity) using frequency modulation with one electric optical modulator (EOM) and the null method. A laser beam modulated by the EOM, to which a sine wave signal is supplied from a radio frequency (RF) oscillator, is incident on the FP-cavity. The transmitted or reflected light from the FP-cavity is observed and converted to an RF signal by a high-speed photodetector, and the RF signal is synchronously demodulated with a lock-in amplifier by referring to a cosine wave signal from the oscillator. We theoretically and experimentally demonstrate that the lock-in amplifier signal for the transmitted or reflected light becomes null with a steep slope when the modulation frequency is equal to the FSR under the condition that the carrier frequency of the laser is slightly detuned from the resonance of the FP-cavity. To reduce the measurement uncertainty for the FSR, we also discuss a selection method for laser power, a modulation index and the detuning shift of the carrier frequency, respectively.

  19. Validation and application of auxiliary density perturbation theory and non-iterative approximation to coupled-perturbed Kohn-Sham approach for calculation of dipole-quadrupole polarizability

    NASA Astrophysics Data System (ADS)

    Shedge, Sapana V.; Pal, Sourav; Köster, Andreas M.

    2011-07-01

    Recently, two non-iterative approaches have been proposed to calculate response properties within density functional theory (DFT). These approaches are auxiliary density perturbation theory (ADPT) and the non-iterative approach to the coupled-perturbed Kohn-Sham (NIA-CPKS) method. Though both methods are non-iterative, they use different techniques to obtain the perturbed Kohn-Sham matrix. In this Letter, for the first time, both of these two independent methods have been used for the calculation of dipole-quadrupole polarizabilities. To validate these methods, three tetrahedral molecules viz., P4,CH4 and adamantane (C10H16) have been used as examples. The comparison with MP2 and CCSD proves the reliability of the methodology.

  20. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    We report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, we can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%.

  1. Method of forming a ceramic matrix composite and a ceramic matrix component

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Diego, Peter; Zhang, James

    A method of forming a ceramic matrix composite component includes providing a formed ceramic member having a cavity, filling at least a portion of the cavity with a ceramic foam. The ceramic foam is deposited on a barrier layer covering at least one internal passage of the cavity. The method includes processing the formed ceramic member and ceramic foam to obtain a ceramic matrix composite component. Also provided is a method of forming a ceramic matrix composite blade and a ceramic matrix composite component.

  2. Comparison of Micro-Leakage from Resin-Modified Glass Ionomer Restorations in Cavities Prepared by Er:YAG (Erbium-Doped Yttrium Aluminum Garnet) Laser and Conventional Method in Primary Teeth

    PubMed Central

    Bahrololoomi, Zahra; Razavi, Forooghosadat; Soleymani, Ali Asghar

    2014-01-01

    Introduction: In recent years, significant developments have been taking place in caries removal and cavity preparation using laser in dentistry. As laser use is considered for cavity preparation, it is necessary to determine the quality of restoration margins. Glass ionomer cements have great applications for conservative restoration in the pediatric field. The purpose of this in vitro study was to compare resin-modified glass ionomer restorations micro-leakage in cavities prepared by Er:YAG (Erbium-Doped Yttrium Aluminum Garnet) laser irradiation and conventional method in primary teeth. Methods: This was an in vitro experimental study. Forty primary canine teeth were divided into 2 groups: group 1 represented cavities prepared by the no. 008 diamond bur, group 2 represented cavities prepared by Er:YAG laser. After cavity preparation, samples were restored by resin-modified glass ionomer. The teeth were thermocycled for 700 cycles, placed in 2% methylene blue for 24h and sectioned in the buccolingual direction. The degree of dye penetration was scored by 3 examiners. Data was analyzed using Mann-Whitney Test. Results: There was no statistical difference in micro-leakage between the two modes of cavity preparation (P=0.862) Conclusion: Since preparing conservative cavities is very important in pediatric dentistry, it is possible to use Er:YAG laser because of its novel and portable technology. However, further investigations of other restorative materials and other laser powers are required. PMID:25653819

  3. Numerical analyses of ventilated cavitation over a 2-D NACA0015 hydrofoil using two turbulence modeling methods

    NASA Astrophysics Data System (ADS)

    Yang, Dan-dan; Yu, An; Ji, Bin; Zhou, Jia-jian; Luo, Xian-wu

    2018-04-01

    The present paper studies the ventilated cavitation over a NACA0015 hydrofoil by numerical methods. The corresponding cavity evolutions are obtained at three ventilation rates by using the level set method. To depict the complicated turbulent flow structure, the filter-based density corrected model (FBDCM) and the modified partially-averaged Navier-Stokes (MPANS) model are applied in the present numerical analyses. It is indicated that the predicted results of the cavitation shedding dynamics by both turbulence models agree fairly well with the experimental data. It is also noted that the shedding frequency and the super cavity length predicted by the MPANS method are closer to the experiment data as compared to that predicted by the FBDCM model. The simulation results show that in the ventilated cavitation, the vapor cavity and the air cavity have the same shedding frequency. As the ventilated rate increases, the vapor cavity is depressed rapidly. The cavitation-vortex interaction in the ventilated cavitation is studied based on the vorticity transport equation (VTE) and the Lagrangian coherent structure (LCS). Those results demonstrate that the vortex dilatation and baroclinic torque terms are highly dependent on the evolution of the cavitation. In addition, from the LCSs and the tracer particles in the flow field, one may see the process from the attached cavity to the cloud cavity.

  4. Scattering and radiation analysis of three-dimensional cavity arrays via a hybrid finite element method

    NASA Technical Reports Server (NTRS)

    Jin, Jian-Ming; Volakis, John L.

    1992-01-01

    A hybrid numerical technique is presented for a characterization of the scattering and radiation properties of three-dimensional cavity arrays recessed in a ground plane. The technique combines the finite element and boundary integral methods and invokes Floquet's representation to formulate a system of equations for the fields at the apertures and those inside the cavities. The system is solved via the conjugate gradient method in conjunction with the Fast Fourier Transform (FFT) thus achieving an O(N) storage requirement. By virtue of the finite element method, the proposed technique is applicable to periodic arrays comprised of cavities having arbitrary shape and filled with inhomogeneous dielectrics. Several numerical results are presented, along with new measured data, which demonstrate the validity, efficiency, and capability of the technique.

  5. Precise positioning of an ion in an integrated Paul trap-cavity system using radiofrequency signals

    NASA Astrophysics Data System (ADS)

    Kassa, Ezra; Takahashi, Hiroki; Christoforou, Costas; Keller, Matthias

    2018-03-01

    We report a novel miniature Paul ion trap design with an integrated optical fibre cavity which can serve as a building block for a fibre-linked quantum network. In such cavity quantum electrodynamic set-ups, the optimal coupling of the ions to the cavity mode is of vital importance and this is achieved by moving the ion relative to the cavity mode. The trap presented herein features an endcap-style design complemented with extra electrodes on which additional radiofrequency voltages are applied to fully control the pseudopotential minimum in three dimensions. This method lifts the need to use three-dimensional translation stages for moving the fibre cavity with respect to the ion and achieves high integrability, mechanical rigidity and scalability. Not based on modifying the capacitive load of the trap, this method leads to precise control of the pseudopotential minimum allowing the ion to be moved with precisions limited only by the ion's position spread. We demonstrate this by coupling the ion to the fibre cavity and probing the cavity mode profile.

  6. Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves

    DOEpatents

    Efthimion, Philip C.; Helfritch, Dennis J.

    1989-11-28

    An apparatus and method for creating high temperature plasmas for enhanced chemical processing of gaseous fluids, toxic chemicals, and the like, at a wide range of pressures, especially at atmospheric and high pressures includes an electro-magnetic resonator cavity, preferably a reentrant cavity, and a wave guiding structure which connects an electro-magnetic source to the cavity. The cavity includes an intake port and an exhaust port, each having apertures in the conductive walls of the cavity sufficient for the intake of the gaseous fluids and for the discharge of the processed gaseous fluids. The apertures are sufficiently small to prevent the leakage of the electro-magnetic radiation from the cavity. Gaseous fluid flowing from the direction of the electro-magnetic source through the guiding wave structure and into the cavity acts on the plasma to push it away from the guiding wave structure and the electro-magnetic source. The gaseous fluid flow confines the high temperature plasma inside the cavity and allows complete chemical processing of the gaseous fluids at a wide range of pressures.

  7. Visualizing breathing motion of internal cavities in concert with ligand migration in myoglobin

    PubMed Central

    Tomita, Ayana; Sato, Tokushi; Ichiyanagi, Kouhei; Nozawa, Shunsuke; Ichikawa, Hirohiko; Chollet, Matthieu; Kawai, Fumihiro; Park, Sam-Yong; Tsuduki, Takayuki; Yamato, Takahisa; Koshihara, Shin-ya; Adachi, Shin-ichi

    2009-01-01

    Proteins harbor a number of cavities of relatively small volume. Although these packing defects are associated with the thermodynamic instability of the proteins, the cavities also play specific roles in controlling protein functions, e.g., ligand migration and binding. This issue has been extensively studied in a well-known protein, myoglobin (Mb). Mb reversibly binds gas ligands at the heme site buried in the protein matrix and possesses several internal cavities in which ligand molecules can reside. It is still an open question as to how a ligand finds its migration pathways between the internal cavities. Here, we report on the dynamic and sequential structural deformation of internal cavities during the ligand migration process in Mb. Our method, the continuous illumination of native carbonmonoxy Mb crystals with pulsed laser at cryogenic temperatures, has revealed that the migration of the CO molecule into each cavity induces structural changes of the amino acid residues around the cavity, which results in the expansion of the cavity with a breathing motion. The sequential motion of the ligand and the cavity suggests a self-opening mechanism of the ligand migration channel arising by induced fit, which is further supported by computational geometry analysis by the Delaunay tessellation method. This result suggests a crucial role of the breathing motion of internal cavities as a general mechanism of ligand migration in a protein matrix. PMID:19204297

  8. Visualization of the Mode Shapes of Pressure Oscillation in a Cylindrical Cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Xin; Qi, Yunliang; Wang, Zhi

    Our work describes a novel experimental method to visualize the mode shapes of pressure oscillation in a cylindrical cavity. Acoustic resonance in a cavity is a grand old problem that has been under investigation (using both analytical and numerical methods) for more than a century. In this article, a novel method based on high speed imaging of combustion chemiluminescence was presented to visualize the mode shapes of pressure oscillation in a cylindrical cavity. By generating high-temperature combustion gases and strong pressure waves simultaneously in a cylindrical cavity, the pressure oscillation can be inferred due to the chemiluminescence emissions of themore » combustion products. We can then visualized the mode shapes by reconstructing the images based on the amplitudes of the luminosity spectrum at the corresponding resonant frequencies. Up to 11 resonant mode shapes were clearly visualized, each matching very well with the analytical solutions.« less

  9. Linear and nonlinear pattern selection in Rayleigh-Benard stability problems

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    1993-01-01

    A new algorithm is introduced to compute finite-amplitude states using primitive variables for Rayleigh-Benard convection on relatively coarse meshes. The algorithm is based on a finite-difference matrix-splitting approach that separates all physical and dimensional effects into one-dimensional subsets. The nonlinear pattern selection process for steady convection in an air-filled square cavity with insulated side walls is investigated for Rayleigh numbers up to 20,000. The internalization of disturbances that evolve into coherent patterns is investigated and transient solutions from linear perturbation theory are compared with and contrasted to the full numerical simulations.

  10. Microwave properties of n-type InSb in a magnetic field between 4 and 300 K.

    NASA Technical Reports Server (NTRS)

    Eldumiati, I. I.; Haddad, G. I.

    1973-01-01

    A two-band conduction model is used to determine the properties of shallow-type impurity semiconductors in the presence of microwave and dc magnetic fields as a function of temperature. Measurements using cavity perturbation techniques are employed to determine the properties of n-type InSb and theoretical and experimental results between 4 and 300 K are compared. The hot-electron effect was found to be insignificant between 77 and 300 K, and the scattering mechanisms are dominated by acoustic and polar modes over the same temperature range.-

  11. Rolled-up Functionalized Nanomembranes as Three-Dimensional Cavities for Single Cell Studies

    PubMed Central

    2014-01-01

    We use micropatterning and strain engineering to encapsulate single living mammalian cells into transparent tubular architectures consisting of three-dimensional (3D) rolled-up nanomembranes. By using optical microscopy, we demonstrate that these structures are suitable for the scrutiny of cellular dynamics within confined 3D-microenvironments. We show that spatial confinement of mitotic mammalian cells inside tubular architectures can perturb metaphase plate formation, delay mitotic progression, and cause chromosomal instability in both a transformed and nontransformed human cell line. These findings could provide important clues into how spatial constraints dictate cellular behavior and function. PMID:24598026

  12. Dark solitons in laser radiation build-up dynamics.

    PubMed

    Woodward, R I; Kelleher, E J R

    2016-03-01

    We reveal the existence of slowly decaying dark solitons in the radiation build-up dynamics of bright pulses in all-normal dispersion mode-locked fiber lasers, numerically modeled in the framework of a generalized nonlinear Schrödinger equation. The evolution of noise perturbations to quasistationary dark solitons is examined, and the significance of background shape and soliton-soliton collisions on the eventual soliton decay is established. We demonstrate the role of a restoring force in extending soliton interactions in conservative systems to include the effects of dissipation, as encountered in laser cavities, and generalize our observations to other nonlinear systems.

  13. Dynamic analysis of gas-core reactor system

    NASA Technical Reports Server (NTRS)

    Turner, K. H., Jr.

    1973-01-01

    A heat transfer analysis was incorporated into a previously developed model CODYN to obtain a model of open-cycle gaseous core reactor dynamics which can predict the heat flux at the cavity wall. The resulting model was used to study the sensitivity of the model to the value of the reactivity coefficients and to determine the system response for twenty specified perturbations. In addition, the model was used to study the effectiveness of several control systems in controlling the reactor. It was concluded that control drums located in the moderator region capable of inserting reactivity quickly provided the best control.

  14. Measurements of the microwave conductivity of the organic superconductor ET2 (IAuI)

    NASA Astrophysics Data System (ADS)

    Tanner, D. B.; Jacobsen, C. S.; Williams, J. M.; Wang, H. H.

    The microwave conductivity of ET2(IAuI), which is superconducting below 4 K, has been measured between 20 and 300 K. The measurements were done by cavity perturbation at 35 GHz for electric field along the highly conducting direction. The samples were in the skin-depth limit. The room temperature conductivity is quite low, approximately 6 mu/cm. With a decrease in temperature the conductivity increases as T sup -2 reaching nearly 900 mu/cm at 20 K. These values are rather close to extrapolations of the frequency-dependent conductivity determined from far-infrared experiments.

  15. Calculation and measurement of the influence of flow parameters on rotordynamic coefficients in labyrinth seals

    NASA Technical Reports Server (NTRS)

    Kwanka, K.; Ortinger, W.; Steckel, J.

    1994-01-01

    First experimental investigations performed on a new test rig are presented. For a staggered labyrinth seal with fourteen cavities the stiffness coefficient and the leakage flow are measured. The experimental results are compared to calculated results which are obtained by a one-volume bulk-flow theory. A perturbation analysis is made for seven terms. It is found out that the friction factors have great impact on the dynamic coefficients. They are obtained by turbulent flow computation by a finite-volume model with the Reynolds equations used as basic equations.

  16. A new method to compute lunisolar perturbations in satellite motions

    NASA Technical Reports Server (NTRS)

    Kozai, Y.

    1973-01-01

    A new method to compute lunisolar perturbations in satellite motion is proposed. The disturbing function is expressed by the orbital elements of the satellite and the geocentric polar coordinates of the moon and the sun. The secular and long periodic perturbations are derived by numerical integrations, and the short periodic perturbations are derived analytically. The perturbations due to the tides can be included in the same way. In the Appendix, the motion of the orbital plane for a synchronous satellite is discussed; it is concluded that the inclination cannot stay below 7 deg.

  17. Estimation of the Binding Free Energy of AC1NX476 to HIV-1 Protease Wild Type and Mutations Using Free Energy Perturbation Method.

    PubMed

    Ngo, Son Tung; Mai, Binh Khanh; Hiep, Dinh Minh; Li, Mai Suan

    2015-10-01

    The binding mechanism of AC1NX476 to HIV-1 protease wild type and mutations was studied by the docking and molecular dynamics simulations. The binding free energy was calculated using the double-annihilation binding free energy method. It is shown that the binding affinity of AC1NX476 to wild type is higher than not only ritonavir but also darunavir, making AC1NX476 become attractive candidate for HIV treatment. Our theoretical results are in excellent agreement with the experimental data as the correlation coefficient between calculated and experimentally measured binding free energies R = 0.993. Residues Asp25-A, Asp29-A, Asp30-A, Ile47-A, Gly48-A, and Val50-A from chain A, and Asp25-B from chain B play a crucial role in the ligand binding. The mutations were found to reduce the receptor-ligand interaction by widening the binding cavity, and the binding propensity is mainly driven by the van der Waals interaction. Our finding may be useful for designing potential drugs to combat with HIV. © 2015 John Wiley & Sons A/S.

  18. Converging ligand-binding free energies obtained with free-energy perturbations at the quantum mechanical level.

    PubMed

    Olsson, Martin A; Söderhjelm, Pär; Ryde, Ulf

    2016-06-30

    In this article, the convergence of quantum mechanical (QM) free-energy simulations based on molecular dynamics simulations at the molecular mechanics (MM) level has been investigated. We have estimated relative free energies for the binding of nine cyclic carboxylate ligands to the octa-acid deep-cavity host, including the host, the ligand, and all water molecules within 4.5 Å of the ligand in the QM calculations (158-224 atoms). We use single-step exponential averaging (ssEA) and the non-Boltzmann Bennett acceptance ratio (NBB) methods to estimate QM/MM free energy with the semi-empirical PM6-DH2X method, both based on interaction energies. We show that ssEA with cumulant expansion gives a better convergence and uses half as many QM calculations as NBB, although the two methods give consistent results. With 720,000 QM calculations per transformation, QM/MM free-energy estimates with a precision of 1 kJ/mol can be obtained for all eight relative energies with ssEA, showing that this approach can be used to calculate converged QM/MM binding free energies for realistic systems and large QM partitions. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  19. Converging ligand‐binding free energies obtained with free‐energy perturbations at the quantum mechanical level

    PubMed Central

    Olsson, Martin A.; Söderhjelm, Pär

    2016-01-01

    In this article, the convergence of quantum mechanical (QM) free‐energy simulations based on molecular dynamics simulations at the molecular mechanics (MM) level has been investigated. We have estimated relative free energies for the binding of nine cyclic carboxylate ligands to the octa‐acid deep‐cavity host, including the host, the ligand, and all water molecules within 4.5 Å of the ligand in the QM calculations (158–224 atoms). We use single‐step exponential averaging (ssEA) and the non‐Boltzmann Bennett acceptance ratio (NBB) methods to estimate QM/MM free energy with the semi‐empirical PM6‐DH2X method, both based on interaction energies. We show that ssEA with cumulant expansion gives a better convergence and uses half as many QM calculations as NBB, although the two methods give consistent results. With 720,000 QM calculations per transformation, QM/MM free‐energy estimates with a precision of 1 kJ/mol can be obtained for all eight relative energies with ssEA, showing that this approach can be used to calculate converged QM/MM binding free energies for realistic systems and large QM partitions. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:27117350

  20. Atraumatic Restorative Treatment: Restorative Component.

    PubMed

    Leal, Soraya; Bonifacio, Clarissa; Raggio, Daniela; Frencken, Jo

    2018-01-01

    Atraumatic restorative treatment (ART) is a method of managing dental caries based on 2 pillars: sealants for preventing carious lesions in pits and fissures, and restorations for cavitated dentine carious lesions. ART uses only hand instruments for opening/enlarging the cavity and for removing carious tissue. The amount of carious tissue that should be removed depends mainly on the cavity depth. In cavities of shallow and medium depth, carious tissue is removed up to firm dentine. In deep/very deep cavities, in which there is no sign of pulp exposure, pulp inflammation and/or history of spontaneous pain, some soft dentine can be left in the pulpal floor/wall with the aim of avoiding pulp exposure. The ART restorative method is indicated for treating single-surface cavities in primary and permanent teeth, and in multiple-surface cavities in primary teeth. Insufficient information is available to conclude on its use for treating multiple-surface cavities in permanent teeth. © 2018 S. Karger AG, Basel.

  1. High frequency estimation of 2-dimensional cavity scattering

    NASA Astrophysics Data System (ADS)

    Dering, R. S.

    1984-12-01

    This thesis develops a simple ray tracing approximation for the high frequency scattering from a two-dimensional cavity. Whereas many other cavity scattering algorithms are very time consuming, this method is very swift. The analytical development of the ray tracing approach is performed in great detail, and it is shown how the radar cross section (RCS) depends on the cavity's length and width along with the radar wave's angle of incidence. This explains why the cavity's RCS oscillates as a function of incident angle. The RCS of a two dimensional cavity was measured experimentally, and these results were compared to computer calculations based on the high frequency ray tracing theory. The comparison was favorable in the sense that angular RCS minima and maxima were exactly predicted even though accuracy of the RCS magnitude decreased for incident angles far off-axis. Overall, once this method is extended to three dimensions, the technique shows promise as a fast first approximation of high frequency cavity scattering.

  2. Comparison on different repetition rate locking methods in Er-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Yang, Kangwen; Zhao, Peng; Luo, Jiang; Huang, Kun; Hao, Qiang; Zeng, Heping

    2018-05-01

    We demonstrate a systematic comparative research on the all-optical, mechanical and opto-mechanical repetition rate control methods in an Er-doped fiber laser. A piece of Yb-doped fiber, a piezoelectric transducer and an electronic polarization controller are simultaneously added in the laser cavity as different cavity length modulators. By measuring the cavity length tuning ranges, the output power fluctuations, the temporal and frequency repetition rate stability, we show that all-optical method introduces the minimal disturbances under current experimental condition.

  3. A hybrid perturbation-Galerkin method for differential equations containing a parameter

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1989-01-01

    A two-step hybrid perturbation-Galerkin method to solve a variety of differential equations which involve a parameter is presented and discussed. The method consists of: (1) the use of a perturbation method to determine the asymptotic expansion of the solution about one or more values of the parameter; and (2) the use of some of the perturbation coefficient functions as trial functions in the classical Bubnov-Galerkin method. This hybrid method has the potential of overcoming some of the drawbacks of the perturbation method and the Bubnov-Galerkin method when they are applied by themselves, while combining some of the good features of both. The proposed method is illustrated first with a simple linear two-point boundary value problem and is then applied to a nonlinear two-point boundary value problem in lubrication theory. The results obtained from the hybrid method are compared with approximate solutions obtained by purely numerical methods. Some general features of the method, as well as some special tips for its implementation, are discussed. A survey of some current research application areas is presented and its degree of applicability to broader problem areas is discussed.

  4. Estimating cavity tree and snag abundance using negative binomial regression models and nearest neighbor imputation methods

    Treesearch

    Bianca N.I. Eskelson; Hailemariam Temesgen; Tara M. Barrett

    2009-01-01

    Cavity tree and snag abundance data are highly variable and contain many zero observations. We predict cavity tree and snag abundance from variables that are readily available from forest cover maps or remotely sensed data using negative binomial (NB), zero-inflated NB, and zero-altered NB (ZANB) regression models as well as nearest neighbor (NN) imputation methods....

  5. A hybrid asymptotic-modal analysis of the EM scattering by an open-ended S-shaped rectangular waveguide cavity

    NASA Technical Reports Server (NTRS)

    Law, P. H.; Burkholder, R. J.; Pathak, P. H.

    1988-01-01

    The electromagnetic fields (EM) backscatter from a 3-dimensional perfectly conducting S-shaped open-ended cavity with a planar interior termination is analyzed when it is illuminated by an external plane wave. The analysis is based on a self-consistent multiple scattering method which accounts for the multiple wave interactions between the open end and the interior termination. The scattering matrices which described the reflection and transmission coefficients of the waveguide modes reflected and transmitted at each junction between the different waveguide sections, as well at the scattering from the edges at the open end are found via asymptotic high frequency methods such as the geometrical and physical theories of diffraction used in conjunction with the equivalent current method. The numerical results for an S-shaped inlet cavity are compared with the backscatter from a straight inlet cavity; the backscattered patterns are different because the curvature of an S-shaped inlet cavity redistributes the energy reflected from the interior termination in a way that is different from a straight inlet cavity.

  6. Application of extremum seeking for time-varying systems to resonance control of RF cavities

    DOE PAGES

    Scheinker, Alexander

    2016-09-13

    A recently developed form of extremum seeking for time-varying systems is implemented in hardware for the resonance control of radio-frequency cavities without phase measurements. Normal conducting RF cavity resonance control is performed via a slug tuner, while superconducting TESLA-type cavity resonance control is performed via piezo actuators. The controller maintains resonance by minimizing reflected power by utilizing model-independent adaptive feedback. Unlike standard phase-measurement-based resonance control, the presented approach is not sensitive to arbitrary phase shifts of the RF signals due to temperature-dependent cable length or phasemeasurement hardware changes. The phase independence of this method removes common slowly varying drifts andmore » required periodic recalibration of phase-based methods. A general overview of the adaptive controller is presented along with the proof of principle experimental results at room temperature. Lastly, this method allows us to both maintain a cavity at a desired resonance frequency and also to dynamically modify its resonance frequency to track the unknown time-varying frequency of an RF source, thereby maintaining maximal cavity field strength, based only on power-level measurements.« less

  7. Assessment of Flow Control Devices for Transonic Cavity Flows Using DES and LES

    NASA Astrophysics Data System (ADS)

    Barakos, G. N.; Lawson, S. J.; Steijl, R.; Nayyar, P.

    Since the implementation of internal carriage of stores on military aircraft, transonic flows in cavities were put forward as a model problem for validation of CFD methods before design studies of weapon bays can be undertaken. Depending on the free-stream Mach number and the cavity dimensions, the flow inside the cavity can become very unsteady. Below a critical length-to-depth ratio (L/D), the flow has enough energy to span across the cavity opening and a shear layer develops. When the shear layer impacts the downstream cavity corner, acoustical disturbances are generated and propagated upstream, which in turn causes further instabilities at the cavity front and a feedback loop is maintained. The acoustic environment in the cavity is so harsh in these circumstances that the noise level at the cavity rear has been found to approach 170 dB and frequencies near 1 kHz are created. The effect of this unsteady environment on the structural integrity of the contents of the cavity (e.g. stores, avionics, etc.) can be serious. Above the critical L/D ratio, the shear layer no longer has enough energy to span across the cavity and dips into it. Although this does not produce as high noise levels and frequencies as shorter cavities, the differential pressure along the cavity produces large pitching moments making store release difficult. Computational fluid dynamics analysis of cavity flows, based on the Reynolds-Averaged Navier—Stokes equations was only able to capture some of the flow physics present. On the other hand, results obtained with Large-Eddy Simulation or Detached-Eddy Simulation methods fared much better and for the cases computed, quantitative and qualitative agreement with experimental data has been obtained.

  8. Discrete wavelength-locked external cavity laser

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S. (Inventor); Silver, Joel A. (Inventor)

    2005-01-01

    An external cavity laser (and method of generating laser light) comprising: a laser light source; means for collimating light output by the laser light source; a diffraction grating receiving collimated light; a cavity feedback mirror reflecting light received from the diffraction grating back to the diffraction grating; and means for reliably tuning the external cavity laser to discrete wavelengths.

  9. Extreme diffusion limited electropolishing of niobium radiofrequency cavities

    DOE PAGES

    Crawford, Anthony C.

    2017-01-04

    In this study, a deeply modulated, regular, continuous, oscillating current waveform is reliably and repeatably achieved during electropolishing of niobium single-cell elliptical radiofrequency cavities. Details of the technique and cavity test results are reported here. The method is applicable for cavity frequencies in the range 500 MHz to 3.9 GHz and can be extended to multicell structures.

  10. Microfabrication of cavities in polydimethylsiloxane using DRIE silicon molds

    PubMed Central

    Giang, Ut-Binh T.; Lee, Dooyoung; King, Michael R.; DeLouise, Lisa A.

    2008-01-01

    We present a novel method to create cavities in PDMS that is simple and exhibits wide process latitude allowing control over the radius of curvature to form shallow concave pits or deep spherical cavities. PMID:18030383

  11. Superconducting accelerator cavity with a heat affected zone having a higher RRR

    DOEpatents

    Brawley, John; Phillips, H. Lawrence

    2000-01-01

    An improved method for welding accelerator cavities without the need for time consuming and expensive faying surface treatments comprising electron beam welding such cavities in a vacuum welding chamber within a vacuum envelope and using the following welding parameters: a beam voltage of between about 45 KV and 55 KV; a beam current between about 38 ma and 47 ma; a weld speed of about 15 cm/min; and a sharp focus and a rhombic raster of between about 9 KHz and 10 Khz. A welded cavity made according to the method of the present invention is also described.

  12. Propagation of nonlinear shock waves for the generalised Oskolkov equation and its dynamic motions in the presence of an external periodic perturbation

    NASA Astrophysics Data System (ADS)

    Ak, Turgut; Aydemir, Tugba; Saha, Asit; Kara, Abdul Hamid

    2018-06-01

    Propagation of nonlinear shock waves for the generalised Oskolkov equation and dynamic motions of the perturbed Oskolkov equation are investigated. Employing the unified method, a collection of exact shock wave solutions for the generalised Oskolkov equations is presented. Collocation finite element method is applied to the generalised Oskolkov equation for checking the accuracy of the proposed method by two test problems including the motion of shock wave and evolution of waves with Gaussian and undular bore initial conditions. Considering an external periodic perturbation, the dynamic motions of the perturbed generalised Oskolkov equation are studied depending on the system parameters with the help of phase portrait and time series plot. The perturbed generalised Oskolkov equation exhibits period-3, quasiperiodic and chaotic motions for some special values of the system parameters, whereas the generalised Oskolkov equation presents shock waves in the absence of external periodic perturbation.

  13. Structural stability and chaotic solutions of perturbed Benjamin-Ono equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birnir, B.; Morrison, P.J.

    1986-11-01

    A method for proving chaos in partial differential equations is discussed and applied to the Benjamin-Ono equation subject to perturbations. The perturbations are of two types: one that corresponds to viscous dissipation, the so-called Burger's term, and one that involves the Hilbert transform and has been used to model Landau damping. The method proves chaos in the PDE by proving temporal chaos in its pole solutions. The spatial structure of the pole solutions remains intact, but their positions are chaotic in time. Melnikov's method is invoked to show this temporal chaos. It is discovered that the pole behavior is verymore » sensitive to the Burger's perturbation, but is quite insensitive to the perturbation involving the Hilbert transform.« less

  14. Subsurface Cavity Detection by Using Integrated Geophysical Methods

    NASA Astrophysics Data System (ADS)

    Aykaç, Sinem; Rezzan Ozerk, Zeynep; Işıkdeniz Şerifoǧlu, Betül; Bihter Demirci, Büşra; Timur, Emre; Çakir, Korhan

    2016-04-01

    Global warming experienced in recent years in Turkey has led to a severe drought around the Konya Plain in central Anatolia .As a result, excessive amount of ground water was drawn in the region for the sustainability of agricultural activities. So, five small-scale shallow depth sinkholes have occured at different times, at an average interval between 400-450 m. in the study area; Konya-Atlantı. Generally, sinkholes formation occurres among natural processes has turned into disasters caused by humans due to excessive use of groundwater. Consequently, investigations were carried out within a partnership research programme on cavity detection and ground penetration radar, microgravity and multi-frequency electromagnetic methods were jointly utilized. . Exact locations and dimensions of two possible hidden cavities were determined by using these multidisciplinary methods. Keywords: Cavity;Ground-penetrating radar;Konya;Microgravimetry;Multi-frequency electromagnetic method.

  15. Tissue Modeling and Analyzing with Finite Element Method: A Review for Cranium Brain Imaging

    PubMed Central

    Yue, Xianfang; Wang, Li; Wang, Ruonan

    2013-01-01

    For the structure mechanics of human body, it is almost impossible to conduct mechanical experiments. Then the finite element model to simulate mechanical experiments has become an effective tool. By introducing several common methods for constructing a 3D model of cranial cavity, this paper carries out systematically the research on the influence law of cranial cavity deformation. By introducing the new concepts and theory to develop the 3D cranial cavity model with the finite-element method, the cranial cavity deformation process with the changing ICP can be made the proper description and reasonable explanation. It can provide reference for getting cranium biomechanical model quickly and efficiently and lay the foundation for further biomechanical experiments and clinical applications. PMID:23476630

  16. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOEpatents

    Chalmers, S.A.; Killeen, K.P.; Lear, K.L.

    1995-03-14

    The authors report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, they can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%. 4 figs.

  17. Time-Lapse Electrical Resistivity Investigations for Imaging the Grouting Injection in Shallow Subsurface Cavities

    PubMed Central

    Farooq, Muhammad; Kim, Jung Ho; Song, Young Soo; Amjad Sabir, Mohammad; Umar, Muhammad; Tariq, Mohammad; Muhammad, Said

    2014-01-01

    The highway of Yongweol-ri, Muan-gun, south-western part of the South Korean Peninsula, is underlain by the abandoned of subsurface cavities, which were discovered in 2005. These cavities lie at shallow depths with the range of 5∼15 meters below the ground surface. Numerous subsidence events have repeatedly occurred in the past few years, damaging infrastructure and highway. As a result of continuing subsidence issues, the Korean Institute of Geosciences and Mineral Resources (KIGAM) was requested by local administration to resolve the issue. The KIGAM used geophysical methods to delineate subsurface cavities and improve more refined understanding of the cavities network in the study area. Cement based grouting has been widely employed in the construction industry to reinforce subsurface ground. In this research work, time-lapse electrical resistivity surveys were accomplished to monitor the grouting injection in the subsurface cavities beneath the highway, which have provided a quasi-real-time monitoring for modifying the subsurface cavities related to ground reinforcement, which would be difficult with direct methods. The results obtained from time-lapse electrical resistivity technique have satisfactory imaged the grouting injection experiment in the subsurface cavities beneath the highway. Furthermore, the borehole camera confirmed the presence of grouting material in the subsurface cavities, and hence this procedure increases the mechanical resistance of subsurface cavities below the highway. PMID:24578621

  18. Time-lapse electrical resistivity investigations for imaging the grouting injection in shallow subsurface cavities.

    PubMed

    Farooq, Muhammad; Park, Samgyu; Kim, Jung Ho; Song, Young Soo; Amjad Sabir, Mohammad; Umar, Muhammad; Tariq, Mohammad; Muhammad, Said

    2014-01-01

    The highway of Yongweol-ri, Muan-gun, south-western part of the South Korean Peninsula, is underlain by the abandoned of subsurface cavities, which were discovered in 2005. These cavities lie at shallow depths with the range of 5∼15 meters below the ground surface. Numerous subsidence events have repeatedly occurred in the past few years, damaging infrastructure and highway. As a result of continuing subsidence issues, the Korean Institute of Geosciences and Mineral Resources (KIGAM) was requested by local administration to resolve the issue. The KIGAM used geophysical methods to delineate subsurface cavities and improve more refined understanding of the cavities network in the study area. Cement based grouting has been widely employed in the construction industry to reinforce subsurface ground. In this research work, time-lapse electrical resistivity surveys were accomplished to monitor the grouting injection in the subsurface cavities beneath the highway, which have provided a quasi-real-time monitoring for modifying the subsurface cavities related to ground reinforcement, which would be difficult with direct methods. The results obtained from time-lapse electrical resistivity technique have satisfactory imaged the grouting injection experiment in the subsurface cavities beneath the highway. Furthermore, the borehole camera confirmed the presence of grouting material in the subsurface cavities, and hence this procedure increases the mechanical resistance of subsurface cavities below the highway.

  19. On the nature of cavities on protein surfaces: application to the identification of drug-binding sites.

    PubMed

    Nayal, Murad; Honig, Barry

    2006-06-01

    In this article we introduce a new method for the identification and the accurate characterization of protein surface cavities. The method is encoded in the program SCREEN (Surface Cavity REcognition and EvaluatioN). As a first test of the utility of our approach we used SCREEN to locate and analyze the surface cavities of a nonredundant set of 99 proteins cocrystallized with drugs. We find that this set of proteins has on average about 14 distinct cavities per protein. In all cases, a drug is bound at one (and sometimes more than one) of these cavities. Using cavity size alone as a criterion for predicting drug-binding sites yields a high balanced error rate of 15.7%, with only 71.7% coverage. Here we characterize each surface cavity by computing a comprehensive set of 408 physicochemical, structural, and geometric attributes. By applying modern machine learning techniques (Random Forests) we were able to develop a classifier that can identify drug-binding cavities with a balanced error rate of 7.2% and coverage of 88.9%. Only 18 of the 408 cavity attributes had a statistically significant role in the prediction. Of these 18 important attributes, almost all involved size and shape rather than physicochemical properties of the surface cavity. The implications of these results are discussed. A SCREEN Web server is available at http://interface.bioc.columbia.edu/screen. 2006 Wiley-Liss, Inc.

  20. A method for detecting fungal contaminants in wall cavities.

    PubMed

    Spurgeon, Joe C

    2003-01-01

    This article describes a practical method for detecting the presence of both fungal spores and culturable fungi in wall cavities. Culturable fungi were collected in 25 mm cassettes containing 0.8 microm mixed cellulose ester filters using aggressive sampling conditions. Both culturable fungi and fungal spores were collected in modified slotted-disk cassettes. The sample volume was 4 L. The filters were examined microscopically and dilution plated onto multiple culture media. Collecting airborne samples in filter cassettes was an effective method for assessing wall cavities for fungal contaminants, especially because this method allowed the sample to be analyzed by both microscopy and culture media. Assessment criteria were developed that allowed the sample results to be used to classify wall cavities as either uncontaminated or contaminated. As a criterion, wall cavities with concentrations of culturable fungi below the limit of detection (LOD) were classified as uncontaminated, whereas those cavities with detectable concentrations of culturable fungi were classified as contaminated. A total of 150 wall cavities was sampled as part of a field project. The concentrations of culturable fungi were below the LOD in 34% of the samples, whereas Aspergillus and/or Penicillium were the only fungal genera detected in 69% of the samples in which culturable fungi were detected. Spore counting resulted in the detection of Stachybotrys-like spores in 25% of the samples that were analyzed, whereas Stachybotrys chartarum colonies were only detected on 2% of malt extract agar plates and on 6% of corn meal agar plates.

  1. STUDY OF THE 3D GEOMETRIC STRUCTURE AND TEMPERATURE OF A CORONAL CAVITY USING THE LIMB SYNOPTIC MAP METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karna, N.; Pesnell, W. Dean; Webber, S. A. Hess

    2015-09-10

    We present the three-dimensional geometric structure and thermal properties of a coronal cavity deduced from limb synoptic maps. The observations are extreme ultraviolet images from the Atmospheric Imager Assembly (AIA) and magnetic images from the Helioseismic Magnetic Imager instruments on board the Solar Dynamics Observatory. We describe a limb synoptic-map method used to effectively identify and measure cavities from annuli of radiance above the solar limb. We find that cavities are best seen in the 211, 193, and 171 Å passbands. The prominence associated with each cavity is best seen in the 304 Å synoptic maps. We also estimate themore » thermal properties of the cavity and surrounding plasma by combining the AIA radiances with a differential emission measure analysis. This paper focuses on one long cavity from a catalog of coronal cavities that we are developing. Cavities in this catalog are designated by a coded name using the Carrington Rotation number and position. Cavity C211347177N was observed during Carrington Rotation 2113 at the northwestern limb of the solar disk with an average latitude of 47° N and a central longitude of 177°. We showed the following. (1) The cavity is a long tube with an elliptical cross-section with ratios of the length to width and the length to height of 11:1 and 7:1, respectively. (2) The cavity is about 1360 Mm long, or 170° in longitude. (3) It is tilted in latitude. (4) And it is slightly hotter than its surroundings.« less

  2. Reduction of the radar cross section of arbitrarily shaped cavity structures

    NASA Technical Reports Server (NTRS)

    Chou, R.; Ling, H.; Lee, S. W.

    1987-01-01

    The problem of the reduction of the radar cross section (RCS) of open-ended cavities was studied. The issues investigated were reduction through lossy coating materials on the inner cavity wall and reduction through shaping of the cavity. A method was presented to calculate the RCS of any arbitrarily shaped structure in order to study the shaping problem. The limitations of this method were also addressed. The modal attenuation was studied in a multilayered coated waveguide. It was shown that by employing two layers of coating, it was possible to achieve an increase in both the magnitude of attenuation and the frequency band of effectiveness. The numerical method used in finding the roots of the characteristic equation breaks down when the coating thickness is very lossy and large in terms of wavelength. A new method of computing the RCS of an arbitrary cavity was applied to study the effects of longitudinal bending on RCS reduction. The ray and modal descriptions for the fields in a parallel plate waveguide were compared. To extend the range of validity of the Shooting and Bouncing Ray (SBR) method, the simple ray picture must be modified to account for the beam blurring.

  3. Investigation on flow oscillation modes and aero-acoustics generation mechanism in cavity

    NASA Astrophysics Data System (ADS)

    Yang, Dang-Guo; Lu, Bo; Cai, Jin-Sheng; Wu, Jun-Qiang; Qu, Kun; Liu, Jun

    2018-05-01

    Unsteady flow and multi-scale vortex transformation inside a cavity of L/D = 6 (ratio of length to depth) at Ma = 0.9 and 1.5 were studied using the numerical simulation method of modified delayed detached eddy simulation (DDES) in this paper. Aero-acoustic characteristics for the cavity at same flow conditions were obtained by the numerical method and 0.6 m by 0.6 m transonic and supersonic wind-tunnel experiments. The analysis on the computational and experimental results indicates that some vortex generates from flow separation in shear-layer over the cavity, and the vortex moves from forward to downward of the cavity at some velocity, and impingement of the vortex and the rear-wall of the cavity occurs. Some sound waves spread abroad to the cavity fore-wall, which induces some new vortex generation, and the vortex sheds, moves and impinges on the cavity rear-wall. New sound waves occur. The research results indicate that sound wave feedback created by the impingement of the shedding-vortices and rear cavity face leads to flow oscillations and noise generation inside the cavity. Analysis on aero-acoustic characteristics inside the cavity is feasible. The simulated self-sustained flow-oscillation modes and peak sound pressure on typical frequencies inside the cavity agree well with Rossiter’s and Heller’s predicated results. Moreover, the peak sound pressure occurs in the first and second flow-oscillation modes and most of sound energy focuses on the low-frequency region. Compared with subsonic speed (Ma = 0.9), aerodynamic noise is more intense at Ma = 1.5, which is induced by compression wave or shock wave in near region of fore and rear cavity face.

  4. Estimating cavity tree abundance using nearest neighbor imputation methods for western Oregon and Washington forests

    Treesearch

    Hailemariam Temesgen; Tara M. Barrett; Greg Latta

    2008-01-01

    Cavity trees contribute to diverse forest structure and wildlife habitat. For a given stand, the size and density of cavity trees indicate its diversity, complexity, and suitability for wildlife habitat. Size and density of cavity trees vary with stand age, density, and structure. Using Forest Inventory and Analysis (FIA) data collected in western Oregon and western...

  5. Tracking perturbations in Boolean networks with spectral methods

    NASA Astrophysics Data System (ADS)

    Kesseli, Juha; Rämö, Pauli; Yli-Harja, Olli

    2005-08-01

    In this paper we present a method for predicting the spread of perturbations in Boolean networks. The method is applicable to networks that have no regular topology. The prediction of perturbations can be performed easily by using a presented result which enables the efficient computation of the required iterative formulas. This result is based on abstract Fourier transform of the functions in the network. In this paper the method is applied to show the spread of perturbations in networks containing a distribution of functions found from biological data. The advances in the study of the spread of perturbations can directly be applied to enable ways of quantifying chaos in Boolean networks. Derrida plots over an arbitrary number of time steps can be computed and thus distributions of functions compared with each other with respect to the amount of order they create in random networks.

  6. On Spatial Structuring of the F2 Layer Studied by the Satellite Radio Sounding of the Ionosphere Disturbed by High-Power HF Radio Waves

    NASA Astrophysics Data System (ADS)

    Tereshchenko, E. D.; Turyansky, V. A.; Khudukon, B. Z.; Yurik, R. Yu.; Frolov, V. L.

    2018-01-01

    We present the results of studying the characteristics of the artificial plasma structures excited in the ionospheric F2 region modified by high-power HF radio waves. The experiments were carried out at the Sura heating facility using satellite radio sounding of the ionosphere. The plasma density profile was reconstructed with the highest possible spatial resolution for today, about 4 km. In a direction close to the magnetic zenith of the pump wave, the following phenomena were observed: the formation of a cavity with a 15% lower plasma density at the altitudes of the F2 layer and below; the formation of an area with plasma density increased by 12% at altitudes greater than 400 km. With a long-term quasiperiodic impact of the pump wave on the ionosphere, wavy large-scale electron-density perturbations (the meridional scale λx ≈ 130 km and the vertical scale λz ≈ 440 km) are also formed above the Sura facility. These perturbations can be due to the plasma density modulation by an artificial acoustic-gravity wave with a period of 10.6 m, which was formed by the heat source inside a large-scale cavity with low plasma density; there is generation of the electron density irregularities for the electrons with ΔNe/Ne ≈ 3% in the form of layers having the sizes 10-12 km along and about 24 km across the geomagnetic field, which are found both below and above the F2-layer maximum. The mechanisms of the formation of these plasma structures are discussed.

  7. Mixing driven by transient buoyancy flows. I. Kinematics

    NASA Astrophysics Data System (ADS)

    Duval, W. M. B.; Zhong, H.; Batur, C.

    2018-05-01

    Mixing of two miscible liquids juxtaposed inside a cavity initially separated by a divider, whose buoyancy-driven motion is initiated via impulsive perturbation of divider motion that can generate the Richtmyer-Meshkov instability, is investigated experimentally. The measured Lagrangian history of interface motion that contains the continuum mechanics of mixing shows self-similar nearly Gaussian length stretch distribution for a wide range of control parameters encompassing an approximate Hele-Shaw cell to a three-dimensional cavity. Because of the initial configuration of the interface which is parallel to the gravitational field, we show that at critical initial potential energy mixing occurs through the stretching of the interface, which shows frontogenesis, and folding, owing to an overturning motion that results in unstable density stratification and produces an ideal condition for the growth of the single wavelength Rayleigh-Taylor instability. The initial perturbation of the interface and flow field generates the Kelvin-Helmholtz instability and causes kinks at the interface, which grow into deep fingers during overturning motion and unfold into local whorl structures that merge and self-organize into the Rayleigh-Taylor morphology (RTM) structure. For a range of parametric space that yields two-dimensional flows, the unfolding of the instability through a supercritical bifurcation yields an asymmetric pairwise structure exhibiting smooth RTM that transitions to RTM fronts with fractal structures that contain small length scales for increasing Peclet numbers. The late stage of the RTM structure unfolds into an internal breakwave that breaks down through wall and internal collision and sets up the condition for self-induced sloshing that decays exponentially as the two fluids become stably stratified with a diffusive region indicating local molecular diffusion.

  8. Rapid Fabrication of Flat Plate Cavity Phosphor Thermography Test Models for Shuttle Return-to-Flight Aero-Heating

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.; Powers, Michael A.; Nevins, Stephen C.; Griffith, Mark S.; Wainwright, Gary A.

    2006-01-01

    Methods, materials and equipment are documented for fabricating flat plate test models at NASA Langley Research Center for Shuttle return-to-flight aeroheating experiments simulating open and closed cavity interactions in Langley s hypersonic 20-Inch Mach 6 air wind tunnel. Approximately 96 silica ceramic flat plate cavity phosphor thermography test models have been fabricated using these methods. On one model, an additional slot is machined through the back of the plate and into the cavity and vented into an evacuated plenum chamber to simulate a further opening in the cavity. After sintering ceramic to 2150 F, and mounting support hardware, a ceramic-based two-color thermographic phosphor coating is applied for global temperature and heat transfer measurements, with fiducial markings for image registration.

  9. Experience in estimating neutron poison worths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, R.T.; Congdon, S.P.

    1989-01-01

    Gadolinia, {sup 135}Xe, {sup 149}Sm, control rod, and soluble boron are five neutron poisons that may appear in light water reactor assemblies. Reliable neutron poison worth estimation is useful for evaluating core operating strategies, fuel cycle economics, and reactor safety design. Based on physical presence, neutron poisons can be divided into two categories: local poisons and global poisons. Gadolinia and control rod are local poisons, and {sup 135}Xe, {sup 149}Sm, and soluble boron are global poisons. The first-order perturbation method is commonly used to estimate nuclide worths in fuel assemblies. It is well known, however, that the first-order perturbation methodmore » was developed for small perturbations, such as the perturbation due to weak absorbers, and that neutron poisons are not weak absorbers. The authors have developed an improved method to replace the first-order perturbation method, which yields very poor results, for estimating local poison worths. It has also been shown that the first-order perturbation method seems adequate to estimate worths for global poisons caused by flux compensation.« less

  10. Modularity and the spread of perturbations in complex dynamical systems

    NASA Astrophysics Data System (ADS)

    Kolchinsky, Artemy; Gates, Alexander J.; Rocha, Luis M.

    2015-12-01

    We propose a method to decompose dynamical systems based on the idea that modules constrain the spread of perturbations. We find partitions of system variables that maximize "perturbation modularity," defined as the autocovariance of coarse-grained perturbed trajectories. The measure effectively separates the fast intramodular from the slow intermodular dynamics of perturbation spreading (in this respect, it is a generalization of the "Markov stability" method of network community detection). Our approach captures variation of modular organization across different system states, time scales, and in response to different kinds of perturbations: aspects of modularity which are all relevant to real-world dynamical systems. It offers a principled alternative to detecting communities in networks of statistical dependencies between system variables (e.g., "relevance networks" or "functional networks"). Using coupled logistic maps, we demonstrate that the method uncovers hierarchical modular organization planted in a system's coupling matrix. Additionally, in homogeneously coupled map lattices, it identifies the presence of self-organized modularity that depends on the initial state, dynamical parameters, and type of perturbations. Our approach offers a powerful tool for exploring the modular organization of complex dynamical systems.

  11. Modularity and the spread of perturbations in complex dynamical systems.

    PubMed

    Kolchinsky, Artemy; Gates, Alexander J; Rocha, Luis M

    2015-12-01

    We propose a method to decompose dynamical systems based on the idea that modules constrain the spread of perturbations. We find partitions of system variables that maximize "perturbation modularity," defined as the autocovariance of coarse-grained perturbed trajectories. The measure effectively separates the fast intramodular from the slow intermodular dynamics of perturbation spreading (in this respect, it is a generalization of the "Markov stability" method of network community detection). Our approach captures variation of modular organization across different system states, time scales, and in response to different kinds of perturbations: aspects of modularity which are all relevant to real-world dynamical systems. It offers a principled alternative to detecting communities in networks of statistical dependencies between system variables (e.g., "relevance networks" or "functional networks"). Using coupled logistic maps, we demonstrate that the method uncovers hierarchical modular organization planted in a system's coupling matrix. Additionally, in homogeneously coupled map lattices, it identifies the presence of self-organized modularity that depends on the initial state, dynamical parameters, and type of perturbations. Our approach offers a powerful tool for exploring the modular organization of complex dynamical systems.

  12. Concept of multiple-cell cavity for axion dark matter search

    NASA Astrophysics Data System (ADS)

    Jeong, Junu; Youn, SungWoo; Ahn, Saebyeok; Kim, Jihn E.; Semertzidis, Yannis K.

    2018-02-01

    In cavity-based axion dark matter search experiments exploring high mass regions, multiple-cavity design is under consideration as a method to increase the detection volume within a given magnet bore. We introduce a new idea, referred to as a multiple-cell cavity, which provides various benefits including a larger detection volume, simpler experimental setup, and easier phase-matching mechanism. We present the characteristics of this concept and demonstrate the experimental feasibility with an example of a double-cell cavity.

  13. Vented Cavity Radiant Barrier Assembly And Method

    DOEpatents

    Dinwoodie, Thomas L.; Jackaway, Adam D.

    2000-05-16

    A vented cavity radiant barrier assembly (2) includes a barrier (12), typically a PV module, having inner and outer surfaces (18, 22). A support assembly (14) is secured to the barrier and extends inwardly from the inner surface of the barrier to a building surface (14) creating a vented cavity (24) between the building surface and the barrier inner surface. A low emissivity element (20) is mounted at or between the building surface and the barrier inner surface. At least part of the cavity exit (30) is higher than the cavity entrance (28) to promote cooling air flow through the cavity.

  14. Method and apparatus for thermal processing of semiconductor substrates

    DOEpatents

    Griffiths, Stewart K.; Nilson, Robert H.; Mattson, Brad S.; Savas, Stephen E.

    2002-01-01

    An improved apparatus and method for thermal processing of semiconductor wafers. The apparatus and method provide the temperature stability and uniformity of a conventional batch furnace as well as the processing speed and reduced time-at-temperature of a lamp-heated rapid thermal processor (RTP). Individual wafers are rapidly inserted into and withdrawn from a furnace cavity held at a nearly constant and isothermal temperature. The speeds of insertion and withdrawal are sufficiently large to limit thermal stresses and thereby reduce or prevent plastic deformation of the wafer as it enters and leaves the furnace. By processing the semiconductor wafer in a substantially isothermal cavity, the wafer temperature and spatial uniformity of the wafer temperature can be ensured by measuring and controlling only temperatures of the cavity walls. Further, peak power requirements are very small compared to lamp-heated RTPs because the cavity temperature is not cycled and the thermal mass of the cavity is relatively large. Increased speeds of insertion and/or removal may also be used with non-isothermal furnaces.

  15. Method and apparatus for thermal processing of semiconductor substrates

    DOEpatents

    Griffiths, Stewart K.; Nilson, Robert H.; Mattson, Brad S.; Savas, Stephen E.

    2000-01-01

    An improved apparatus and method for thermal processing of semiconductor wafers. The apparatus and method provide the temperature stability and uniformity of a conventional batch furnace as well as the processing speed and reduced time-at-temperature of a lamp-heated rapid thermal processor (RTP). Individual wafers are rapidly inserted into and withdrawn from a furnace cavity held at a nearly constant and isothermal temperature. The speeds of insertion and withdrawal are sufficiently large to limit thermal stresses and thereby reduce or prevent plastic deformation of the wafer as it enters and leaves the furnace. By processing the semiconductor wafer in a substantially isothermal cavity, the wafer temperature and spatial uniformity of the wafer temperature can be ensured by measuring and controlling only temperatures of the cavity walls. Further, peak power requirements are very small compared to lamp-heated RTPs because the cavity temperature is not cycled and the thermal mass of the cavity is relatively large. Increased speeds of insertion and/or removal may also be used with non-isothermal furnaces.

  16. System and method for generating a displacement with ultra-high accuracy using a fabry-perot interferometer

    DOEpatents

    McIntyre, Timothy J.

    1994-01-01

    A system and method for generating a desired displacement of an object, i.e., a target, from a reference position with ultra-high accuracy utilizes a Fabry-Perot etalon having an expandable tube cavity for resolving, with an Iodine stabilized laser, displacements with high accuracy and for effecting (as an actuator) displacements of the target. A mechanical amplifier in the form of a micropositioning stage has a platform and a frame which are movable relative to one another, and the tube cavity of the etalon is connected between the platform and frame so that an adjustment in length of the cavity effects a corresponding, amplified movement of the frame relative to the cavity. Therefore, in order to provide a preselected magnitude of displacement of the stage frame relative to the platform, the etalon tube cavity is adjusted in length by a corresponding amount. The system and method are particularly well-suited for use when calibrating a high accuracy measuring device.

  17. Three-dimensional numerical simulation for plastic injection-compression molding

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Yu, Wenjie; Liang, Junjie; Lang, Jianlin; Li, Dequn

    2018-03-01

    Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian- Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.

  18. Method of lungs regional ventilation function assessment on the basis of continuous lung monitoring results using multi-angle electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Aleksanyan, Grayr; Shcherbakov, Ivan; Kucher, Artem; Sulyz, Andrew

    2018-04-01

    With continuous monitoring of the lungs using multi-angle electric impedance tomography method, a large array of images of impedance changes in the patient's chest cavity is accumulated. This article proposes a method for evaluating the regional ventilation function of lungs based on the results of continuous monitoring using the multi-angle electric impedance tomography method, which allows one image of the thoracic cavity to be formed on the basis of a large array of images of the impedance change in the patient's chest cavity. In the presence of pathologies in the lungs (neoplasms, fluid, pneumothorax, etc.) in these areas, air filling will be disrupted, which will be displayed on the generated image. When conducting continuous monitoring in several sections, a three-dimensional pattern of air filling of the thoracic cavity is possible.

  19. Electrochemical Polishing Applications and EIS of a Novel Choline Chloride-Based Ionic Liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.

    2013-06-01

    Minimal surface roughness is a critical feature for high-field superconducting radio frequency (SRF) cavities used to engineer particle accelerators. Current methods for polishing Niobium cavities typically utilize solutions containing a mixture of concentrated sulfuric and hydrofluoric acid. Polishing processes such as these are effective, yet there are many hazards and costs associated with the use (and safe disposal) of the concentrated acid solutions. An alternative method for electrochemical polishing of the cavities was explored using a novel ionic liquid solution containing choline chloride. Potentiostatic electrochemical impedance spectroscopy (EIS) was used to analyze the ionic polishing solution. Final surface roughness ofmore » the Nb was found to be comparable to that of the acid-polishing method, as assessed by atomic force microscopy (AFM). This indicates that ionic liquid-based electrochemical polishing of Nb is a viable replacement for acid-based methods for preparation of SRF cavities.« less

  20. Foam patterns

    DOEpatents

    Chaudhry, Anil R; Dzugan, Robert; Harrington, Richard M; Neece, Faurice D; Singh, Nipendra P; Westendorf, Travis

    2013-11-26

    A method of creating a foam pattern comprises mixing a polyol component and an isocyanate component to form a liquid mixture. The method further comprises placing a temporary core having a shape corresponding to a desired internal feature in a cavity of a mold and inserting the mixture into the cavity of the mold so that the mixture surrounds a portion of the temporary core. The method optionally further comprises using supporting pins made of foam to support the core in the mold cavity, with such pins becoming integral part of the pattern material simplifying subsequent processing. The method further comprises waiting for a predetermined time sufficient for a reaction from the mixture to form a foam pattern structure corresponding to the cavity of the mold, wherein the foam pattern structure encloses a portion of the temporary core and removing the temporary core from the pattern independent of chemical leaching.

  1. Mode conversion in metal-insulator-metal waveguide with a shifted cavity

    NASA Astrophysics Data System (ADS)

    Wang, Yueke; Yan, Xin

    2018-01-01

    We propose a method, which is utilized to achieve the plasmonic mode conversion in metal-insulator-metal (MIM) waveguide, theoretically. Our proposed structure is composed of bus waveguides and a shifted cavity. The shifted cavity can choose out a plasmonic mode (a- or s-mode) when it is in Fabry-Perot (FP) resonance. The length of the shifted cavity L is carefully chosen, and our structure can achieve the mode conversion between a- and s-mode in the communication region. Besides, our proposed structure can also achieve plasmonic mode-division multiplexing. All the numerical simulations are carried on by the finite element method to verify our design.

  2. Influence maximization in time bounded network identifies transcription factors regulating perturbed pathways

    PubMed Central

    Jo, Kyuri; Jung, Inuk; Moon, Ji Hwan; Kim, Sun

    2016-01-01

    Motivation: To understand the dynamic nature of the biological process, it is crucial to identify perturbed pathways in an altered environment and also to infer regulators that trigger the response. Current time-series analysis methods, however, are not powerful enough to identify perturbed pathways and regulators simultaneously. Widely used methods include methods to determine gene sets such as differentially expressed genes or gene clusters and these genes sets need to be further interpreted in terms of biological pathways using other tools. Most pathway analysis methods are not designed for time series data and they do not consider gene-gene influence on the time dimension. Results: In this article, we propose a novel time-series analysis method TimeTP for determining transcription factors (TFs) regulating pathway perturbation, which narrows the focus to perturbed sub-pathways and utilizes the gene regulatory network and protein–protein interaction network to locate TFs triggering the perturbation. TimeTP first identifies perturbed sub-pathways that propagate the expression changes along the time. Starting points of the perturbed sub-pathways are mapped into the network and the most influential TFs are determined by influence maximization technique. The analysis result is visually summarized in TF-Pathway map in time clock. TimeTP was applied to PIK3CA knock-in dataset and found significant sub-pathways and their regulators relevant to the PIP3 signaling pathway. Availability and Implementation: TimeTP is implemented in Python and available at http://biohealth.snu.ac.kr/software/TimeTP/. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: sunkim.bioinfo@snu.ac.kr PMID:27307609

  3. Manipulating Conserved Heme Cavity Residues of Chlorite Dismutase: Effect on Structure, Redox Chemistry, and Reactivity

    PubMed Central

    2013-01-01

    Chlorite dismutases (Clds) are heme b containing oxidoreductases that convert chlorite to chloride and molecular oxygen. In order to elucidate the role of conserved heme cavity residues in the catalysis of this reaction comprehensive mutational and biochemical analyses of Cld from “Candidatus Nitrospira defluvii” (NdCld) were performed. Particularly, point mutations of the cavity-forming residues R173, K141, W145, W146, and E210 were performed. The effect of manipulation in 12 single and double mutants was probed by UV–vis spectroscopy, spectroelectrochemistry, pre-steady-state and steady-state kinetics, and X-ray crystallography. Resulting biochemical data are discussed with respect to the known crystal structure of wild-type NdCld and the variants R173A and R173K as well as the structures of R173E, W145V, W145F, and the R173Q/W146Y solved in this work. The findings allow a critical analysis of the role of these heme cavity residues in the reaction mechanism of chlorite degradation that is proposed to involve hypohalous acid as transient intermediate and formation of an O=O bond. The distal R173 is shown to be important (but not fully essential) for the reaction with chlorite, and, upon addition of cyanide, it acts as a proton acceptor in the formation of the resulting low-spin complex. The proximal H-bonding network including K141-E210-H160 keeps the enzyme in its ferric (E°′ = −113 mV) and mainly five-coordinated high-spin state and is very susceptible to perturbation. PMID:24364531

  4. A Minimally Invasive Method for Sampling Nest and Roost Cavities for Fungi: a Novel Approach to Identify the Fungi Associated with Cavity-Nesting Birds

    Treesearch

    Michelle A. Jusino; Daniel Lindner; John K. Cianchetti; Adam T. Grisé; Nicholas J. Brazee; Jeffrey R. Walters

    2014-01-01

    Relationships among cavity-nesting birds, trees, and wood decay fungi pose interesting management challenges and research questions in many systems. Ornithologists need to understand the relationships between cavity-nesting birds and fungi in order to understand the habitat requirements of these birds. Typically, researchers rely on fruiting body surveys to identify...

  5. Cavity contour segmentation in chest radiographs using supervised learning and dynamic programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maduskar, Pragnya, E-mail: pragnya.maduskar@radboudumc.nl; Hogeweg, Laurens; Sánchez, Clara I.

    Purpose: Efficacy of tuberculosis (TB) treatment is often monitored using chest radiography. Monitoring size of cavities in pulmonary tuberculosis is important as the size predicts severity of the disease and its persistence under therapy predicts relapse. The authors present a method for automatic cavity segmentation in chest radiographs. Methods: A two stage method is proposed to segment the cavity borders, given a user defined seed point close to the center of the cavity. First, a supervised learning approach is employed to train a pixel classifier using texture and radial features to identify the border pixels of the cavity. A likelihoodmore » value of belonging to the cavity border is assigned to each pixel by the classifier. The authors experimented with four different classifiers:k-nearest neighbor (kNN), linear discriminant analysis (LDA), GentleBoost (GB), and random forest (RF). Next, the constructed likelihood map was used as an input cost image in the polar transformed image space for dynamic programming to trace the optimal maximum cost path. This constructed path corresponds to the segmented cavity contour in image space. Results: The method was evaluated on 100 chest radiographs (CXRs) containing 126 cavities. The reference segmentation was manually delineated by an experienced chest radiologist. An independent observer (a chest radiologist) also delineated all cavities to estimate interobserver variability. Jaccard overlap measure Ω was computed between the reference segmentation and the automatic segmentation; and between the reference segmentation and the independent observer's segmentation for all cavities. A median overlap Ω of 0.81 (0.76 ± 0.16), and 0.85 (0.82 ± 0.11) was achieved between the reference segmentation and the automatic segmentation, and between the segmentations by the two radiologists, respectively. The best reported mean contour distance and Hausdorff distance between the reference and the automatic segmentation were, respectively, 2.48 ± 2.19 and 8.32 ± 5.66 mm, whereas these distances were 1.66 ± 1.29 and 5.75 ± 4.88 mm between the segmentations by the reference reader and the independent observer, respectively. The automatic segmentations were also visually assessed by two trained CXR readers as “excellent,” “adequate,” or “insufficient.” The readers had good agreement in assessing the cavity outlines and 84% of the segmentations were rated as “excellent” or “adequate” by both readers. Conclusions: The proposed cavity segmentation technique produced results with a good degree of overlap with manual expert segmentations. The evaluation measures demonstrated that the results approached the results of the experienced chest radiologists, in terms of overlap measure and contour distance measures. Automatic cavity segmentation can be employed in TB clinics for treatment monitoring, especially in resource limited settings where radiologists are not available.« less

  6. Thermal modeling of a pressurized air cavity receiver for solar dish Stirling system

    NASA Astrophysics Data System (ADS)

    Zou, Chongzhe; Zhang, Yanping; Falcoz, Quentin; Neveu, Pierre; Li, Jianlan; Zhang, Cheng

    2017-06-01

    A solar cavity receiver model for the dish collector system is designed in response to growing demand of renewable energy. In the present research field, no investigations into the geometric parameters of a cavity receiver have been performed. The cylindrical receiver in this study is composed of an enclosed bottom at the back, an aperture at the front, a helical pipe inside the cavity and an insulation layer on the external surface of the cavity. The influence of several critical receiver parameters on the thermal efficiency is analyzed in this paper: cavity inner diameter and cavity length. The thermal model in this paper is solved considering the cavity dimensions as variables. Implementing the model into EES, each parameter influence is separately investigated, and a preliminary optimization method is proposed.

  7. Athermalization of resonant optical devices via thermo-mechanical feedback

    DOEpatents

    Rakich, Peter; Nielson, Gregory N.; Lentine, Anthony L.

    2016-01-19

    A passively athermal photonic system including a photonic circuit having a substrate and an optical cavity defined on the substrate, and passive temperature-responsive provisions for inducing strain in the optical cavity of the photonic circuit to compensate for a thermo-optic effect resulting from a temperature change in the optical cavity of the photonic circuit. Also disclosed is a method of passively compensating for a temperature dependent thermo-optic effect resulting on an optical cavity of a photonic circuit including the step of passively inducing strain in the optical cavity as a function of a temperature change of the optical cavity thereby producing an elasto-optic effect in the optical cavity to compensate for the thermo-optic effect resulting on an optical cavity due to the temperature change.

  8. Detecting and correcting the bias of unmeasured factors using perturbation analysis: a data-mining approach.

    PubMed

    Lee, Wen-Chung

    2014-02-05

    The randomized controlled study is the gold-standard research method in biomedicine. In contrast, the validity of a (nonrandomized) observational study is often questioned because of unknown/unmeasured factors, which may have confounding and/or effect-modifying potential. In this paper, the author proposes a perturbation test to detect the bias of unmeasured factors and a perturbation adjustment to correct for such bias. The proposed method circumvents the problem of measuring unknowns by collecting the perturbations of unmeasured factors instead. Specifically, a perturbation is a variable that is readily available (or can be measured easily) and is potentially associated, though perhaps only very weakly, with unmeasured factors. The author conducted extensive computer simulations to provide a proof of concept. Computer simulations show that, as the number of perturbation variables increases from data mining, the power of the perturbation test increased progressively, up to nearly 100%. In addition, after the perturbation adjustment, the bias decreased progressively, down to nearly 0%. The data-mining perturbation analysis described here is recommended for use in detecting and correcting the bias of unmeasured factors in observational studies.

  9. Perturbations of non-resonant satellite orbits due to a rotating earth. [tesseral harmonics and the Von Ziepel method

    NASA Technical Reports Server (NTRS)

    Mueller, A.

    1978-01-01

    The dominant perturbations of the motion of a satellite near the earth are due to atmospheric drag and the non-symmetrical gravitational field. Atmospheric drag perturbation continually pulls the satellite in and out of the different long period resonant frequencies. The result is that the resonances never become apparent and may be neglected. The tesseral harmonics have no true secular perturbation but the periodicities in the mean motion induce a secular perturbation in the mean anomaly. This secular perturbation may be determined by simply using the average mean motion instead of the osculating mean motion. The Von Ziepel method is used to determine tesseral perturbations. The solution is found first in the singular DS phi elements and then rewritten in the PS phi elements to remove singularities. The notation used in the development is described in the appendix.

  10. Shielding application of perturbation theory to determine changes in neutron and gamma doses due to changes in shield layers

    NASA Technical Reports Server (NTRS)

    Fieno, D.

    1972-01-01

    Perturbation theory formulas were derived and applied to determine changes in neutron and gamma-ray doses due to changes in various radiation shield layers for fixed sources. For a given source and detector position, the perturbation method enables dose derivatives with respect to density, or equivalently thickness, for every layer to be determined from one forward and one inhomogeneous adjoint calculation. A direct determination without the perturbation approach would require two forward calculations to evaluate the dose derivative due to a change in a single layer. Hence, the perturbation method for obtaining dose derivatives requires fewer computations for design studies of multilayer shields. For an illustrative problem, a comparison was made of the fractional change in the dose per unit change in the thickness of each shield layer in a two-layer spherical configuration as calculated by perturbation theory and by successive direct calculations; excellent agreement was obtained between the two methods.

  11. Yield strength measurement of shock-loaded metal by flyer-impact perturbation method

    NASA Astrophysics Data System (ADS)

    Ma, Xiaojuan; Shi, Zhan

    2018-06-01

    Yield strength is one of the most important physical properties of a solid material, especially far from its melting line. The flyer-impact perturbation method measures material yield strength on the basis of correlation between the yield strength under shock compression and the damping of oscillatory perturbations in the shape of a shock front passing through the material. We used flyer-impact experiments on targets with machined grooves on the impact surface of shock 6061-T6 aluminum to between 32 and 61 GPa and recorded the evolution of the shock front perturbation amplitude in the sample with electric pins. Simulations using the elastic-plastic model can be matched to the experiments, explaining well the form of the perturbation decay and constraining the yield strength of 6061-T6 aluminum to be 1.31-1.75 GPa. These results are in agreement with values obtained from reshock and release wave profiles. We conclude that the flyer-impact perturbation method is indeed a new means to measure material strength.

  12. Perturbation Selection and Local Influence Analysis for Nonlinear Structural Equation Model

    ERIC Educational Resources Information Center

    Chen, Fei; Zhu, Hong-Tu; Lee, Sik-Yum

    2009-01-01

    Local influence analysis is an important statistical method for studying the sensitivity of a proposed model to model inputs. One of its important issues is related to the appropriate choice of a perturbation vector. In this paper, we develop a general method to select an appropriate perturbation vector and a second-order local influence measure…

  13. Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-Dioxane.

    PubMed

    Chandran, Satheesh; Varma, Ravi

    2016-01-15

    1, 4-Dioxane (DX) is a commonly found ether in industrially polluted atmosphere. The near infrared absorption spectra of this compound has been recorded in the region 5900-8230 cm(-1) with a resolution of 0.08 cm(-1) using a novel Fourier transform incoherent broadband cavity-enhanced absorption spectrometer (FT-IBBCEAS). All recorded spectra were found to contain regions that are only weakly perturbed. The possible combinations of fundamental modes and their overtone bands corresponding to selected regions in the measured spectra are tabulated. Two interesting spectral regions were identified as 5900-6400 cm(-1) and 8100-8230 cm(-1). No significant spectral interference due to presence of water vapor was observed suggesting the suitability of these spectral signatures for spectroscopic in situ detection of DX. The technique employed here is much more sensitive than standard Fourier transform spectrometer measurements on account of long effective path length achieved. Hence significant enhancement of weaker absorption lines above the noise level was observed as demonstrated by comparison with an available measurement from database. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Computer modeling of pulsed CO2 lasers for lidar applications

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.; Smithers, Martin E.; Murty, Rom

    1991-01-01

    The experimental results will enable a comparison of the numerical code output with experimental data. This will ensure verification of the validity of the code. The measurements were made on a modified commercial CO2 laser. Results are listed as following. (1) The pulse shape and energy dependence on gas pressure were measured. (2) The intrapulse frequency chirp due to plasma and laser induced medium perturbation effects were determined. A simple numerical model showed quantitative agreement with these measurements. The pulse to pulse frequency stability was also determined. (3) The dependence was measured of the laser transverse mode stability on cavity length. A simple analysis of this dependence in terms of changes to the equivalent fresnel number and the cavity magnification was performed. (4) An analysis was made of the discharge pulse shape which enabled the low efficiency of the laser to be explained in terms of poor coupling of the electrical energy into the vibrational levels. And (5) the existing laser resonator code was changed to allow it to run on the Cray XMP under the new operating system.

  15. Surface plasmon polariton laser based on a metallic trench Fabry-Perot resonator

    PubMed Central

    Zhu, Wenqi; Xu, Ting; Wang, Haozhu; Zhang, Cheng; Deotare, Parag B.; Agrawal, Amit; Lezec, Henri J.

    2017-01-01

    Recent years have witnessed a growing interest in the development of small-footprint lasers for potential applications in small-volume sensing and on-chip optical communications. Surface plasmons—electromagnetic modes evanescently confined to metal-dielectric interfaces—offer an effective route to achieving lasing at nanometer-scale dimensions when resonantly amplified in contact with a gain medium. We achieve narrow-linewidth visible-frequency lasing at room temperature by leveraging surface plasmons propagating in an open Fabry-Perot cavity formed by a flat metal surface coated with a subwavelength-thick layer of optically pumped gain medium and orthogonally bound by a pair of flat metal sidewalls. We show how the lasing threshold and linewidth can be lowered by incorporating a low-profile tapered grating on the cavity floor to couple the excitation beam into a pump surface plasmon polariton providing a strong modal overlap with the gain medium. Low-perturbation transmission-configuration sampling of the lasing plasmon mode is achieved via an evanescently coupled recessed nanoslit, opening the way to high–figure of merit refractive index sensing of analytes interacting with the open metallic trench. PMID:28989962

  16. Dynamical formation of a hairy black hole in a cavity from the decay of unstable solitons

    NASA Astrophysics Data System (ADS)

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Font, José A.; Herdeiro, Carlos; Radu, Eugen

    2017-08-01

    Recent numerical relativity simulations within the Einstein-Maxwell-(charged-)Klein-Gordon (EMcKG) system have shown that the non-linear evolution of a superradiantly unstable Reissner-Nordström black hole (BH) enclosed in a cavity, leads to the formation of a BH with scalar hair. Perturbative evidence for the stability of such hairy BHs has been independently established, confirming they are the true endpoints of superradiant instability. The same EMcKG system admits also charged scalar soliton-type solutions, which can be either stable or unstable. Using numerical relativity techniques, we provide evidence that the time evolution of some of these unstable solitons leads, again, to the formation of a hairy BH. In some other cases, unstable solitons evolve into a (bald) Reissner-Nordström BH. These results establish that the system admits two distinct channels to form hairy BHs at the threshold of superradiance: growing hair from an unstable (bald) BH, or growing a horizon from an unstable (horizonless) soliton. Some parallelism with the case of asymptotically flat boson stars and Kerr BHs with scalar hair is drawn.

  17. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: robust virtual sensor design.

    PubMed

    Halim, Dunant; Cheng, Li; Su, Zhongqing

    2011-03-01

    The work was aimed to develop a robust virtual sensing design methodology for sensing and active control applications of vibro-acoustic systems. The proposed virtual sensor was designed to estimate a broadband acoustic interior sound pressure using structural sensors, with robustness against certain dynamic uncertainties occurring in an acoustic-structural coupled enclosure. A convex combination of Kalman sub-filters was used during the design, accommodating different sets of perturbed dynamic model of the vibro-acoustic enclosure. A minimax optimization problem was set up to determine an optimal convex combination of Kalman sub-filters, ensuring an optimal worst-case virtual sensing performance. The virtual sensing and active noise control performance was numerically investigated on a rectangular panel-cavity system. It was demonstrated that the proposed virtual sensor could accurately estimate the interior sound pressure, particularly the one dominated by cavity-controlled modes, by using a structural sensor. With such a virtual sensing technique, effective active noise control performance was also obtained even for the worst-case dynamics. © 2011 Acoustical Society of America

  18. Fabrication of plasmonic cavity arrays for SERS analysis

    NASA Astrophysics Data System (ADS)

    Li, Ning; Feng, Lei; Teng, Fei; Lu, Nan

    2017-05-01

    The plasmonic cavity arrays are ideal substrates for surface enhanced Raman scattering analysis because they can provide hot spots with large volume for analyte molecules. The large area increases the probability to make more analyte molecules on hot spots and leads to a high reproducibility. Therefore, to develop a simple method for creating cavity arrays is important. Herein, we demonstrate how to fabricate a V and W shape cavity arrays by a simple method based on self-assembly. Briefly, the V and W shape cavity arrays are respectively fabricated by taking KOH etching on a nanohole and a nanoring array patterned silicon (Si) slides. The nanohole array is generated by taking a reactive ion etching on a Si slide assembled with monolayer of polystyrene (PS) spheres. The nanoring array is generated by taking a reactive ion etching on a Si slide covered with a monolayer of octadecyltrichlorosilane before self-assembling PS spheres. Both plasmonic V and W cavity arrays can provide large hot area, which increases the probability for analyte molecules to deposit on the hot spots. Taking 4-Mercaptopyridine as analyte probe, the enhancement factor can reach 2.99 × 105 and 9.97 × 105 for plasmonic V cavity and W cavity array, respectively. The relative standard deviations of the plasmonic V and W cavity arrays are 6.5% and 10.2% respectively according to the spectra collected on 20 random spots.

  19. Fabrication of plasmonic cavity arrays for SERS analysis.

    PubMed

    Li, Ning; Feng, Lei; Teng, Fei; Lu, Nan

    2017-05-05

    The plasmonic cavity arrays are ideal substrates for surface enhanced Raman scattering analysis because they can provide hot spots with large volume for analyte molecules. The large area increases the probability to make more analyte molecules on hot spots and leads to a high reproducibility. Therefore, to develop a simple method for creating cavity arrays is important. Herein, we demonstrate how to fabricate a V and W shape cavity arrays by a simple method based on self-assembly. Briefly, the V and W shape cavity arrays are respectively fabricated by taking KOH etching on a nanohole and a nanoring array patterned silicon (Si) slides. The nanohole array is generated by taking a reactive ion etching on a Si slide assembled with monolayer of polystyrene (PS) spheres. The nanoring array is generated by taking a reactive ion etching on a Si slide covered with a monolayer of octadecyltrichlorosilane before self-assembling PS spheres. Both plasmonic V and W cavity arrays can provide large hot area, which increases the probability for analyte molecules to deposit on the hot spots. Taking 4-Mercaptopyridine as analyte probe, the enhancement factor can reach 2.99 × 10 5 and 9.97 × 10 5 for plasmonic V cavity and W cavity array, respectively. The relative standard deviations of the plasmonic V and W cavity arrays are 6.5% and 10.2% respectively according to the spectra collected on 20 random spots.

  20. Effects of Slag Ejection on Solid Rocket Motor Performance

    NASA Technical Reports Server (NTRS)

    Whitesides, R. Harold; Purinton, David C.; Hengel, John E.; Skelley, Stephen E.

    1995-01-01

    In past firings of the Reusable Solid Rocket Motor (RSRM) both static test and flight motors have shown small pressure perturbations occurring primarily between 65 and 80 seconds. A joint NASA/Thiokol team investigation concluded that the cause of the pressure perturbations was the periodic ingestion and ejection of molten aluminum oxide slag from the cavity around the submerged nozzle nose which tends to trap and collect individual aluminum oxide droplets from the approach flow. The conclusions of the team were supported by numerous data and observations from special tests including high speed photographic films, real time radiography, plume calorimeters, accelerometers, strain gauges, nozzle TVC system force gauges, and motor pressure and thrust data. A simplistic slag ballistics model was formulated to relate a given pressure perturbation to a required slag quantity. Also, a cold flow model using air and water was developed to provide data on the relationship between the slag flow rate and the chamber pressure increase. Both the motor and the cold flow model exhibited low frequency oscillations in conjunction with periods of slag ejection. Motor and model frequencies were related to scaling parameters. The data indicate that there is a periodicity to the slag entrainment and ejection phenomena which is possibly related to organized oscillations from instabilities in the dividing streamline shear layer which impinges on the underneath surface of the nozzle.

  1. Method and mold for casting thin metal objects

    DOEpatents

    Pehrson, Brandon P; Moore, Alan F

    2014-04-29

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  2. Method for casting thin metal objects

    DOEpatents

    Pehrson, Brandon P; Moore, Alan F

    2015-04-14

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  3. The momentum transfer of incompressible turbulent separated flow due to cavities with steps

    NASA Technical Reports Server (NTRS)

    White, R. E.; Norton, D. J.

    1977-01-01

    An experimental study was conducted using a plate test bed having a turbulent boundary layer to determine the momentum transfer to the faces of step/cavity combinations on the plate. Experimental data were obtained from configurations including an isolated configuration and an array of blocks in tile patterns. A momentum transfer correlation model of pressure forces on an isolated step/cavity was developed with experimental results to relate flow and geometry parameters. Results of the experiments reveal that isolated step/cavity excrecences do not have a unique and unifying parameter group due in part to cavity depth effects and in part to width parameter scale effects. Drag predictions for tile patterns by a kinetic pressure empirical method predict experimental results well. Trends were not, however, predicted by a method of variable roughness density phenomenology.

  4. Comparison of initial perturbation methods for the mesoscale ensemble prediction system of the Meteorological Research Institute for the WWRP Beijing 2008 Olympics Research and Development Project (B08RDP)

    NASA Astrophysics Data System (ADS)

    Saito, Kazuo; Hara, Masahiro; Kunii, Masaru; Seko, Hiromu; Yamaguchi, Munehiko

    2011-05-01

    Different initial perturbation methods for the mesoscale ensemble prediction were compared by the Meteorological Research Institute (MRI) as a part of the intercomparison of mesoscale ensemble prediction systems (EPSs) of the World Weather Research Programme (WWRP) Beijing 2008 Olympics Research and Development Project (B08RDP). Five initial perturbation methods for mesoscale ensemble prediction were developed for B08RDP and compared at MRI: (1) a downscaling method of the Japan Meteorological Agency (JMA)'s operational one-week EPS (WEP), (2) a targeted global model singular vector (GSV) method, (3) a mesoscale model singular vector (MSV) method based on the adjoint model of the JMA non-hydrostatic model (NHM), (4) a mesoscale breeding growing mode (MBD) method based on the NHM forecast and (5) a local ensemble transform (LET) method based on the local ensemble transform Kalman filter (LETKF) using NHM. These perturbation methods were applied to the preliminary experiments of the B08RDP Tier-1 mesoscale ensemble prediction with a horizontal resolution of 15 km. To make the comparison easier, the same horizontal resolution (40 km) was employed for the three mesoscale model-based initial perturbation methods (MSV, MBD and LET). The GSV method completely outperformed the WEP method, confirming the advantage of targeting in mesoscale EPS. The GSV method generally performed well with regard to root mean square errors of the ensemble mean, large growth rates of ensemble spreads throughout the 36-h forecast period, and high detection rates and high Brier skill scores (BSSs) for weak rains. On the other hand, the mesoscale model-based initial perturbation methods showed good detection rates and BSSs for intense rains. The MSV method showed a rapid growth in the ensemble spread of precipitation up to a forecast time of 6 h, which suggests suitability of the mesoscale SV for short-range EPSs, but the initial large growth of the perturbation did not last long. The performance of the MBD method was good for ensemble prediction of intense rain with a relatively small computing cost. The LET method showed similar characteristics to the MBD method, but the spread and growth rate were slightly smaller and the relative operating characteristic area skill score and BSS did not surpass those of MBD. These characteristic features of the five methods were confirmed by checking the evolution of the total energy norms and their growth rates. Characteristics of the initial perturbations obtained by four methods (GSV, MSV, MBD and LET) were examined for the case of a synoptic low-pressure system passing over eastern China. With GSV and MSV, the regions of large spread were near the low-pressure system, but with MSV, the distribution was more concentrated on the mesoscale disturbance. On the other hand, large-spread areas were observed southwest of the disturbance in MBD and LET. The horizontal pattern of LET perturbation was similar to that of MBD, but the amplitude of the LET perturbation reflected the observation density.

  5. Laser induced bubbles inside liquids: Transient optical properties and effects on a beam propagation

    NASA Astrophysics Data System (ADS)

    Lazic, V.; Jovicevic, S.; Carpanese, M.

    2012-07-01

    Light transmission through a laser formed bubble (LFB) following ablation of a metallic target inside water was studied. During the early expansion and late collapsing phases, the refraction index nb of the hot high-pressure vapor bubble is higher than 1.23 and close to that of the surrounding liquid. The cavity growth lowers nb down to 1.00 and causes strong defocusing of the incident laser beam with consequent enlargement of the ablation crater diameter, here overcoming factor two. Inhomogeneous water vapor clustering inside the cool expanded bubble further perturbs the light transmission and induces irregular ablation by the successive laser pulse.

  6. Pulse evolution and mode selection characteristics in a TEA-CO2 laser perturbed by injection of external radiation

    NASA Technical Reports Server (NTRS)

    Flamant, P. H.; Menzies, R. T.; Kavaya, M. J.; Oppenheim, U. P.

    1983-01-01

    A grating-tunable TEA-CO2 laser with an unstable resonator cavity, modified to allow injection of CW CO2 laser radiation at the resonant transition line by means of an intracavity NaCl window, has been used to study the coupling requirements for generation of single frequency pulses. The width and shape of the mode selection region, and the dependence of the gain-switched spike buildup time and the pulse shapes on the intensity and detuning frequency of the injected radiation are reported. Comparisons of the experimental results with previously reported mode selection behavior are discussed.

  7. Stable passive optical clock generation in SOA-based fiber lasers.

    PubMed

    Wang, Jing-Yun; Lin, Kuei-Huei; Chen, Hou-Ren

    2015-02-15

    Stable optical pulse trains are obtained from 1.3-μm and 1.5-μm semiconductor optical amplifier (SOA)-based fiber lasers using passive optical technology. The waveforms depend on SOA currents, and the repetition rates can be tuned by varying the relative length of sub-cavities. The output pulse trains of these SOA-based fiber lasers are stable against intracavity polarization adjustment and environmental perturbation. The optical clock generation is explained in terms of mode competition, self-synchronization, and SOA saturation. Without resorting to any active modulation circuits or devices, the technology used here is simple and may find various applications in the future.

  8. High-temperature earth-storable propellant acoustic cavity technology. [for combustion stability

    NASA Technical Reports Server (NTRS)

    Oberg, C. L.; Hines, W. S.; Falk, A. Y.

    1974-01-01

    Design criteria, methods and data, were developed to permit effective design of acoustic cavities for use in regeneratively cooled OME-type engines. This information was developed experimentally from two series of motor firings with high-temperature fuel during which the engine stability was evaluated under various conditions and with various cavity configurations. Supplementary analyses and acoustic model testing were used to aid cavity design and interpretation of results. Results from this program clearly indicate that dynamic stability in regeneratively cooled OME-type engines can be ensured through the use of acoustic cavities. Moreover, multiple modes of instability were successfully suppressed with the cavity.

  9. Reconstruction of local perturbations in periodic surfaces

    NASA Astrophysics Data System (ADS)

    Lechleiter, Armin; Zhang, Ruming

    2018-03-01

    This paper concerns the inverse scattering problem to reconstruct a local perturbation in a periodic structure. Unlike the periodic problems, the periodicity for the scattered field no longer holds, thus classical methods, which reduce quasi-periodic fields in one periodic cell, are no longer available. Based on the Floquet-Bloch transform, a numerical method has been developed to solve the direct problem, that leads to a possibility to design an algorithm for the inverse problem. The numerical method introduced in this paper contains two steps. The first step is initialization, that is to locate the support of the perturbation by a simple method. This step reduces the inverse problem in an infinite domain into one periodic cell. The second step is to apply the Newton-CG method to solve the associated optimization problem. The perturbation is then approximated by a finite spline basis. Numerical examples are given at the end of this paper, showing the efficiency of the numerical method.

  10. STIC: Photonic Quantum Computation through Cavity Assisted Interaction

    DTIC Science & Technology

    2007-12-28

    PRA ; available as quant-ph/06060791. Report for the grant “Photonic Quantum Computation through Cavity Assisted Interaction” from DTO Luming Duan...cavity •B. Wang, L.-M. Duan, PRA 72 (in press, 2005) Single-photon source Photonic Quantum Computation through Cavity-Assisted Interaction H. Jeff Kimble...interaction [Duan, Wang, Kimble, PRA 05] • “Investigate more efficient methods for combating noise in photonic quantum computation ” • Partial progress

  11. A research program to reduce interior noise in general aviation airplanes: Noise reduction through a cavity-backed flexible plate

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Vandam, C. P. G.

    1978-01-01

    A prediction method is reported for noise reduction through a cavity-backed panel. The analysis takes into account only cavity modes in one direction. The results of this analysis were to find the effect of acoustic stiffness of a backing cavity on the panel behavior. The resulting changes in the noise reduction through the panel are significant.

  12. Advances in Large Grain/Single Crystal SC Resonators at DESY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Singer; A. Brinkmann; A. Ermakov

    The main aim of the DESY large grain R&D program is to check whether this option is reasonable to apply for fabrication of ca. 1'000 XFEL cavities. Two aspects are being pursued. On one hand the basic material investigation, on the other hand the material availability, fabrication and preparation procedure. Several single cell large grain cavities of TESLA shape have been fabricated and tested. The best accelerating gradients of 41 MV/m was measured on electropolished cavity. First large grain nine-cell cavities worldwide have been produced under contract of DESY with ACCEL Instruments Co. All three cavities fulfil the XFEL specificationmore » already in first RF test after only BCP (Buffered Chemical Polishing) treatment and 800 degrees C annealing. Accelerating gradient of 27 - 29 MV/m was reached. A fabrication method of single crystal cavity of ILC like shape was proposed. A single cell single crystal cavity was build at the company ACCEL. Accelerating gradient of 37.5 MV/m reached after only 112 microns BCP and in situ baking 120 degrees C for 6 hrs with the quality factor higher as 2x1010. The developed method can be extended on fabrication of multi cell single crystal cavities.« less

  13. Cavity Resonator Wireless Power Transfer System for Freely Moving Animal Experiments.

    PubMed

    Mei, Henry; Thackston, Kyle A; Bercich, Rebecca A; Jefferys, John G R; Irazoqui, Pedro P

    2017-04-01

    The goal of this paper is to create a large wireless powering arena for powering small devices implanted in freely behaving rodents. We design a cavity resonator based wireless power transfer (WPT) system and utilize our previously developed optimal impedance matching methodology to achieve effective WPT performance for operating sophisticated implantable devices, made with miniature receive coils (<8 mm in diameter), within a large volume (dimensions: 60.96 cm × 60.96 cm × 30 cm). We provide unique cavity design and construction methods which maintains electromagnetic performance of the cavity while promoting its utility as a large animal husbandry environment. In addition, we develop a biaxial receive resonator system to address device orientation insensitivity within the cavity environment. Functionality is demonstrated with chronic experiments involving rats implanted with our custom designed bioelectric recording device. We demonstrate an average powering fidelity of 93.53% over nine recording sessions across nine weeks, indicating nearly continuous device operation for a freely behaving rat within the large cavity resonator space. We have developed and demonstrated a cavity resonator based WPT system for long term experiments involving freely behaving small animals. This cavity resonator based WPT system offers an effective and simple method for wirelessly powering miniaturized devices implanted in freely moving small animals within the largest space.

  14. Resonance frequency control of RF normal conducting cavity using gradient estimator of reflected power

    NASA Astrophysics Data System (ADS)

    Leewe, R.; Shahriari, Z.; Moallem, M.

    2017-10-01

    Control of the natural resonance frequency of an RF cavity is essential for accelerator structures due to their high cavity sensitivity to internal and external vibrations and the dependency of resonant frequency on temperature changes. Due to the relatively high radio frequencies involved (MHz to GHz), direct measurement of the resonant frequency for real-time control is not possible by using conventional microcontroller hardware. So far, all operational cavities are tuned using phase comparison techniques. The temperature dependent phase measurements render this technique labor and time intensive. To eliminate the phase measurement, reduce man hours and speed up cavity start up time, this paper presents a control theme that relies solely on the reflected power measurement. The control algorithm for the nonlinear system is developed through Lyapunov's method. The controller stabilizes the resonance frequency of the cavity using a nonlinear control algorithm in combination with a gradient estimation method. Experimental results of the proposed system on a test cavity show that the resonance frequency can be tuned to its optimum operating point while the start up time of a single cavity and the accompanied man hours are significantly decreased. A test result of the fully commissioned control system on one of TRIUMF's DTL tanks verifies its performance under real environmental conditions.

  15. Hydroforming of elliptical cavities

    DOE PAGES

    Singer, W.; Singer, X.; Jelezov, I.; ...

    2015-02-27

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with resultsmore » of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients E acc up to 35 MV/m after buffered chemical polishing (BCP) and up to 42 MV/m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients E acc of 30–35 MV/m were measured after BCP and E acc up to 40 MV/m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of E acc = 30–35 MV/m. One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have been fabricated. The clad seamless tubes were produced using hot bonding or explosive bonding and subsequent flow forming. The thicknesses of Nb and Cu layers in the tube wall are about 1 and 3 mm respectively. The rf performance of the best NbCu clad cavities is similar to that of bulk Nb cavities. The highest accelerating gradient achieved was 40 MV/m. The advantages and disadvantages of hydroformed cavities are discussed in this paper.« less

  16. Hydroforming of elliptical cavities

    NASA Astrophysics Data System (ADS)

    Singer, W.; Singer, X.; Jelezov, I.; Kneisel, P.

    2015-02-01

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with results of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients Eacc up to 35 MV /m after buffered chemical polishing (BCP) and up to 42 MV /m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients Eacc of 30 - 35 MV /m were measured after BCP and Eacc up to 40 MV /m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of Eacc=30 - 35 MV /m . One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have been fabricated. The clad seamless tubes were produced using hot bonding or explosive bonding and subsequent flow forming. The thicknesses of Nb and Cu layers in the tube wall are about 1 and 3 mm respectively. The rf performance of the best NbCu clad cavities is similar to that of bulk Nb cavities. The highest accelerating gradient achieved was 40 MV /m . The advantages and disadvantages of hydroformed cavities are discussed in this paper.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okihira, K.; Hara, H.; Ikeda, N.

    MHI have supplied several 9-cell cavities for STF (R&D of ILC project at KEK) and have been considering production method for stable quality and cost reduction, seamless dumb-bell cavity was one of them. We had fabricated a 2 cell seamless dumb-bell cavity for cost reduction and measured RF performance in collaboration with JLab, KEK and MHI. Surface treatment recipe for ILC was applied for MHI 2-cell cavity and vertical test was performed at JLab. The cavity reached Eacc=32.4MV/m after BCP and EP. Details of the result are reported.

  18. Cavity design for high-frequency axion dark matter detectors

    DOE PAGES

    Stern, I.; Chisholm, A. A.; Hoskins, J.; ...

    2015-12-30

    In this paper, in an effort to extend the usefulness of microwave cavity detectors to higher axion masses, above ~8 μeV (~2 GHz), a numerical trade study of cavities was conducted to investigate the merit of using variable periodic post arrays and regulating vane designs for higher-frequency searches. The results show that both designs could be used to develop resonant cavities for high-mass axion searches. Finally, multiple configurations of both methods obtained the scanning sensitivity equivalent to approximately 4 coherently coupled cavities with a single tuning rod.

  19. Acoustic trapping in bubble-bounded micro-cavities

    NASA Astrophysics Data System (ADS)

    O'Mahoney, P.; McDougall, C.; Glynne-Jones, P.; MacDonald, M. P.

    2016-12-01

    We present a method for controllably producing longitudinal acoustic trapping sites inside microfluidic channels. Air bubbles are injected into a micro-capillary to create bubble-bounded `micro-cavities'. A cavity mode is formed that shows controlled longitudinal acoustic trapping between the two air/water interfaces along with the levitation to the centre of the channel that one would expect from a lower order lateral mode. 7 μm and 10 μm microspheres are trapped at the discrete acoustic trapping sites in these micro-cavities.We show this for several lengths of micro-cavity.

  20. Coaxial cavity for measuring level of liquid in a container

    DOEpatents

    Booman, Glenn L.; Phelps, Frank R.

    1979-01-01

    A method and means for measuring the level of a liquid in a container. A coaxial cavity having a perforated outer conductor is partially submerged in the liquid in the container wherein the liquid enters and terminates the annular region of the coaxial cavity. The fundamental resonant frequency of the portion of the coaxial cavity which does not contain liquid is determined experimentally and is used to calculate the length of the liquid-free portion of the coaxial cavity and thereby the level of liquid in the container.

  1. Optimal guidance law development for an advanced launch system

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J.; Leung, Martin S. K.

    1995-01-01

    The objective of this research effort was to develop a real-time guidance approach for launch vehicles ascent to orbit injection. Various analytical approaches combined with a variety of model order and model complexity reduction have been investigated. Singular perturbation methods were first attempted and found to be unsatisfactory. The second approach based on regular perturbation analysis was subsequently investigated. It also fails because the aerodynamic effects (ignored in the zero order solution) are too large to be treated as perturbations. Therefore, the study demonstrates that perturbation methods alone (both regular and singular perturbations) are inadequate for use in developing a guidance algorithm for the atmospheric flight phase of a launch vehicle. During a second phase of the research effort, a hybrid analytic/numerical approach was developed and evaluated. The approach combines the numerical methods of collocation and the analytical method of regular perturbations. The concept of choosing intelligent interpolating functions is also introduced. Regular perturbation analysis allows the use of a crude representation for the collocation solution, and intelligent interpolating functions further reduce the number of elements without sacrificing the approximation accuracy. As a result, the combined method forms a powerful tool for solving real-time optimal control problems. Details of the approach are illustrated in a fourth order nonlinear example. The hybrid approach is then applied to the launch vehicle problem. The collocation solution is derived from a bilinear tangent steering law, and results in a guidance solution for the entire flight regime that includes both atmospheric and exoatmospheric flight phases.

  2. Spin–cavity interactions between a quantum dot molecule and a photonic crystal cavity

    PubMed Central

    Vora, Patrick M.; Bracker, Allan S.; Carter, Samuel G.; Sweeney, Timothy M.; Kim, Mijin; Kim, Chul Soo; Yang, Lily; Brereton, Peter G.; Economou, Sophia E.; Gammon, Daniel

    2015-01-01

    The integration of InAs/GaAs quantum dots into nanophotonic cavities has led to impressive demonstrations of cavity quantum electrodynamics. However, these demonstrations are primarily based on two-level excitonic systems. Efforts to couple long-lived quantum dot electron spin states with a cavity are only now succeeding. Here we report a two-spin–cavity system, achieved by embedding an InAs quantum dot molecule within a photonic crystal cavity. With this system we obtain a spin singlet–triplet Λ-system where the ground-state spin splitting exceeds the cavity linewidth by an order of magnitude. This allows us to observe cavity-stimulated Raman emission that is highly spin-selective. Moreover, we demonstrate the first cases of cavity-enhanced optical nonlinearities in a solid-state Λ-system. This provides an all-optical, local method to control the spin exchange splitting. Incorporation of a highly engineerable quantum dot molecule into the photonic crystal architecture advances prospects for a quantum network. PMID:26184654

  3. Intelligent Systems for Stabilizing Mode-Locked Lasers and Frequency Combs: Machine Learning and Equation-Free Control Paradigms for Self-Tuning Optics

    NASA Astrophysics Data System (ADS)

    Kutz, J. Nathan; Brunton, Steven L.

    2015-12-01

    We demonstrate that a software architecture using innovations in machine learning and adaptive control provides an ideal integration platform for self-tuning optics. For mode-locked lasers, commercially available optical telecom components can be integrated with servocontrollers to enact a training and execution software module capable of self-tuning the laser cavity even in the presence of mechanical and/or environmental perturbations, thus potentially stabilizing a frequency comb. The algorithm training stage uses an exhaustive search of parameter space to discover best regions of performance for one or more objective functions of interest. The execution stage first uses a sparse sensing procedure to recognize the parameter space before quickly moving to the near optimal solution and maintaining it using the extremum seeking control protocol. The method is robust and equationfree, thus requiring no detailed or quantitatively accurate model of the physics. It can also be executed on a broad range of problems provided only that suitable objective functions can be found and experimentally measured.

  4. Development of a multiple-parameter nonlinear perturbation procedure for transonic turbomachinery flows: Preliminary application to design/optimization problems

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Elliott, J. P.; Spreiter, J. R.

    1983-01-01

    An investigation was conducted to continue the development of perturbation procedures and associated computational codes for rapidly determining approximations to nonlinear flow solutions, with the purpose of establishing a method for minimizing computational requirements associated with parametric design studies of transonic flows in turbomachines. The results reported here concern the extension of the previously developed successful method for single parameter perturbations to simultaneous multiple-parameter perturbations, and the preliminary application of the multiple-parameter procedure in combination with an optimization method to blade design/optimization problem. In order to provide as severe a test as possible of the method, attention is focused in particular on transonic flows which are highly supercritical. Flows past both isolated blades and compressor cascades, involving simultaneous changes in both flow and geometric parameters, are considered. Comparisons with the corresponding exact nonlinear solutions display remarkable accuracy and range of validity, in direct correspondence with previous results for single-parameter perturbations.

  5. A SCILAB Program for Computing General-Relativistic Models of Rotating Neutron Stars by Implementing Hartle's Perturbation Method

    NASA Astrophysics Data System (ADS)

    Papasotiriou, P. J.; Geroyannis, V. S.

    We implement Hartle's perturbation method to the computation of relativistic rigidly rotating neutron star models. The program has been written in SCILAB (© INRIA ENPC), a matrix-oriented high-level programming language. The numerical method is described in very detail and is applied to many models in slow or fast rotation. We show that, although the method is perturbative, it gives accurate results for all practical purposes and it should prove an efficient tool for computing rapidly rotating pulsars.

  6. Perturbative and Ab-Initio Calculations of Electrical Susceptibilities of Atoms

    NASA Astrophysics Data System (ADS)

    Spott, Andrew

    Perturbative nonlinear optics consists of many powerful predictive theoretical methods, including the perturbative series of observables related to the interaction of light with matter. The light intensity limits of such series have been studied in the past for highly nonlinear processes such as above threshold ionization and high harmonic generation. A more recent debate focuses on the limits of applicability of perturbation theory for the nonlinear electrical susceptibility and the nonlinear index of refraction of atoms, which are important parameters to study, for example, for filamentation of laser pulses in nonlinear media. In this thesis we analyze theoretical predictions for the electrical susceptibility of atoms for the transition from the perturbative to the nonperturbative intensity regime. To this end, we apply a numerical basis state method that allows us to perform respective calculations in the framework of perturbation theory as well as using ab-initio methods. The results let us identify the intensity at which the application of perturbation theory breaks down. Furthermore, we provide an analysis of the nonlinear susceptibility as a function of time during the interaction with the laser pulse and find that theoretical predictions are in good agreement with recent experimental data.

  7. Conference Proceedings on Applied Computational Electromagnetics (3rd) Held in Monterey, California on 24-26 March 1987

    DTIC Science & Technology

    1987-03-01

    the VLSI Implementation of the Electromagnetic Field of an Arbitrary Current Source" B.A. Hoyt, A.J. Terzuoli, A.V. Lair ., Air Force Institute of...method is that cavities of arbitrary three dimensional shapes and nonuniform lossy materials can be analyzed. THEORY OF VECTOR POTENTIAL FINITE...elements used to model the cavity. The method includes the effects of nonuniform lossy materials and can analyze cavities of a wide variety of two- and

  8. Intrinsic Optical Activity and Environmental Perturbations: Solvation Effects in Chiral Building Blocks

    NASA Astrophysics Data System (ADS)

    Lemler, Paul M.; Vaccaro, Patrick

    2016-06-01

    The non-resonant interaction of electromagnetic radiation with an isotropic ensemble of chiral molecules, which causes the incident state of linear polarization to undergo a signed rotation, long has served as a metric for gauging the enantiomeric purity of asymmetric syntheses. While the underlying phenomenon of circular birefringence (CB) typically is probed in the condensed phase, recent advances in ultrasensitive circular-differential detection schemes, as exemplified by the techniques of Cavity Ring-Down Polarimetry (CRDP), have permitted the first quantitative analyses of such processes to be performed in rarefied media. Efforts to extend vapor-phase investigations of CB to new families of chiral substrates will be discussed, with particular emphasis directed towards the elucidation of intrinsic (e.g., solvent-free) properties and their mediation by environmental perturbations (e.g., solvation). Specific species targeted by this work will include the stereoselective building blocks phenylpropylene oxide and α-methylbenzyl amine, both of which exhibit pronounced solvent-dependent changes in measured optical activity. The nature of chiroptical response in different environments will be highlighted, with quantum-chemical calculations serving to unravel the structural and electronic provenance of observed behavior.

  9. "Grinding" cavities in polyurethane foam

    NASA Technical Reports Server (NTRS)

    Brower, J. R.; Davey, R. E.; Dixon, W. F.; Robb, P. H.; Zebus, P. P.

    1980-01-01

    Grinding tool installed on conventional milling machine cuts precise cavities in foam blocks. Method is well suited for prototype or midsize production runs and can be adapted to computer control for mass production. Method saves time and materials compared to bonding or hot wire techniques.

  10. Raman laser with controllable suppression of parasitics

    DOEpatents

    George, E. Victor

    1986-01-01

    Method and apparatus for switching energy out of a Raman laser optical cavity. Coherent radiation at both the pump and first Stokes wave frequencies are introduced into the optical cavity from the same direction, and a second Stokes wave is utilized to switch the energy out of the cavity.

  11. Raman laser with controllable suppression of parasitics

    DOEpatents

    George, E.V.

    Method and apparatus for switching energy out of a Raman laser optical cavity. Coherent radiation at both the pump and first Stokes wave frequencies are introduced into the optical cavity from the same direction, and a second Stokes wave is utilized to switch the energy out of the cavity.

  12. Modelling of the nonlinear soliton dynamics in the ring fibre cavity

    NASA Astrophysics Data System (ADS)

    Razukov, Vadim A.; Melnikov, Leonid A.

    2018-04-01

    Using the cabaret method numerical realization, long-time spatio-temporal dynamics of the electromagnetic field in a nonlinear ring fibre cavity with dispersion is investigated during the hundreds of round trips. Formation of both the temporal cavity solitons and irregular pulse trains is demonstrated and discussed.

  13. Methods for determining optical power, for power-normalizing laser measurements, and for stabilizing power of lasers via compliance voltage sensing

    DOEpatents

    Taubman, Matthew S; Phillips, Mark C

    2015-04-07

    A method is disclosed for power normalization of spectroscopic signatures obtained from laser based chemical sensors that employs the compliance voltage across a quantum cascade laser device within an external cavity laser. The method obviates the need for a dedicated optical detector used specifically for power normalization purposes. A method is also disclosed that employs the compliance voltage developed across the laser device within an external cavity semiconductor laser to power-stabilize the laser mode of the semiconductor laser by adjusting drive current to the laser such that the output optical power from the external cavity semiconductor laser remains constant.

  14. Application of AWE Along with a Combined FEM/MoM Technique to Compute RCS of a Cavity-Backed Aperture in an Infinite Ground Plane Over a Frequency Range

    NASA Technical Reports Server (NTRS)

    Reddy, C.J.; Deshpande, M.D.

    1997-01-01

    A hybrid Finite Element Method (FEM)/Method of Moments (MoM) technique in conjunction with the Asymptotic Waveform Evaluation (AWE) technique is applied to obtain radar cross section (RCS) of a cavity-backed aperture in an infinite ground plane over a frequency range. The hybrid FEM/MoM technique when applied to the cavity-backed aperture results in an integro-differential equation with electric field as the unknown variable, the electric field obtained from the solution of the integro-differential equation is expanded in Taylor series. The coefficients of the Taylor series are obtained using the frequency derivatives of the integro-differential equation formed by the hybrid FEM/MoM technique. The series is then matched via the Pade approximation to a rational polynomial, which can be used to extrapolate the electric field over a frequency range. The RCS of the cavity-backed aperture is calculated using the electric field at different frequencies. Numerical results for a rectangular cavity, a circular cavity, and a material filled cavity are presented over a frequency range. Good agreement between AWE and the exact solution over the frequency range is obtained.

  15. Development of a turbomachinery design optimization procedure using a multiple-parameter nonlinear perturbation method

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.

    1984-01-01

    An investigation was carried out to complete the preliminary development of a combined perturbation/optimization procedure and associated computational code for designing optimized blade-to-blade profiles of turbomachinery blades. The overall purpose of the procedures developed is to provide demonstration of a rapid nonlinear perturbation method for minimizing the computational requirements associated with parametric design studies of turbomachinery flows. The method combines the multiple parameter nonlinear perturbation method, successfully developed in previous phases of this study, with the NASA TSONIC blade-to-blade turbomachinery flow solver, and the COPES-CONMIN optimization procedure into a user's code for designing optimized blade-to-blade surface profiles of turbomachinery blades. Results of several design applications and a documented version of the code together with a user's manual are provided.

  16. Control optimization of a lifting body entry problem by an improved and a modified method of perturbation function. Ph.D. Thesis - Houston Univ.

    NASA Technical Reports Server (NTRS)

    Garcia, F., Jr.

    1974-01-01

    A study of the solution problem of a complex entry optimization was studied. The problem was transformed into a two-point boundary value problem by using classical calculus of variation methods. Two perturbation methods were devised. These methods attempted to desensitize the contingency of the solution of this type of problem on the required initial co-state estimates. Also numerical results are presented for the optimal solution resulting from a number of different initial co-states estimates. The perturbation methods were compared. It is found that they are an improvement over existing methods.

  17. Relationship between non-destructive OCT evaluation of resins composites and bond strength in a cavity

    NASA Astrophysics Data System (ADS)

    Bakhsh, T. A.; Sadr, A.; Shimada, Y.; Khunkar, S.; Tagami, J.; Sumi, Y.

    2012-01-01

    Objectives: Formation of microgaps under the composite restorations due to polymerization stress and other causes compromise the adhesion to the dental substrate and restoration durability. However, the relationship between cavity adaptation and bond strength is not clear. In this paper, we introduce a new testing method to assess cavity adaptation by swept-source optical coherence tomography (SS-OCT) and microtensile bond strength (MTBS) in the same class-I cavity. Methods: Round class-I cavities 3 mm in diameter and 1.5 mm in depth were prepared on 10 human premolars. After application of Tokuyama Bond Force adhesive, the cavities were filled by one of the two techniques; incremental technique using Estelite Sigma Quick universal composite or flowable lining using Palfique Estelite LV with bulk filling using the universal composite. Ten serial B-scan images were obtained throughout each cavity by SS-OCT. Significant peaks in the signal intensity were detected at the bonded interface of the cavity floor and to compare the different filling techniques. The specimens were later cut into beams (0.7x0.7 mm) and tested to measure MTBS at the cavity floor. Results: Flowable lining followed by bulk filling was inferior in terms of cavity adaptation and MTBS compared to the incremental technique (p<0.05, t-test). The adaptation (gap free cavity floor) and MTBS followed similar trends in both groups. Conclusion: Quantitative assessment of dental restorations by OCT can provide additional information on the performance and effectiveness of dental composites and restoration techniques. This study was supported by Global Center of Excellence, Tokyo Medical and Dental University and King Abdulaziz University.

  18. Non-invasive assessment of leaf water status using a dual-mode microwave resonator.

    PubMed

    Dadshani, Said; Kurakin, Andriy; Amanov, Shukhrat; Hein, Benedikt; Rongen, Heinz; Cranstone, Steve; Blievernicht, Ulrich; Menzel, Elmar; Léon, Jens; Klein, Norbert; Ballvora, Agim

    2015-01-01

    The water status in plant leaves is a good indicator for the water status in the whole plant revealing stress if the water supply is reduced. The analysis of dynamic aspects of water availability in plant tissues provides useful information for the understanding of the mechanistic basis of drought stress tolerance, which may lead to improved plant breeding and management practices. The determination of the water content in plant tissues during plant development has been a challenge and is currently feasible based on destructive analysis only. We present here the application of a non-invasive quantitative method to determine the volumetric water content of leaves and the ionic conductivity of the leaf juice from non-invasive microwave measurements at two different frequencies by one sensor device. A semi-open microwave cavity loaded with a ceramic dielectric resonator and a metallic lumped-element capacitor- and inductor structure was employed for non-invasive microwave measurements at 150 MHz and 2.4 Gigahertz on potato, maize, canola and wheat leaves. Three leaves detached from each plant were chosen, representing three developmental stages being representative for tissue of various age. Clear correlations between the leaf- induced resonance frequency shifts and changes of the inverse resonator quality factor at 2.4 GHz to the gravimetrically determined drying status of the leaves were found. Moreover, the ionic conductivity of Maize leaves, as determined from the ratio of the inverse quality factor and frequency shift at 150 MHz by use of cavity perturbation theory, was found to be in good agreement with direct measurements on plant juice. In conjunction with a compact battery- powered circuit board- microwave electronic module and a user-friendly software interface, this method enables rapid in-vivo water amount assessment of plants by a handheld device for potential use in the field.

  19. Local influence for generalized linear models with missing covariates.

    PubMed

    Shi, Xiaoyan; Zhu, Hongtu; Ibrahim, Joseph G

    2009-12-01

    In the analysis of missing data, sensitivity analyses are commonly used to check the sensitivity of the parameters of interest with respect to the missing data mechanism and other distributional and modeling assumptions. In this article, we formally develop a general local influence method to carry out sensitivity analyses of minor perturbations to generalized linear models in the presence of missing covariate data. We examine two types of perturbation schemes (the single-case and global perturbation schemes) for perturbing various assumptions in this setting. We show that the metric tensor of a perturbation manifold provides useful information for selecting an appropriate perturbation. We also develop several local influence measures to identify influential points and test model misspecification. Simulation studies are conducted to evaluate our methods, and real datasets are analyzed to illustrate the use of our local influence measures.

  20. Influence diagnostics in meta-regression model.

    PubMed

    Shi, Lei; Zuo, ShanShan; Yu, Dalei; Zhou, Xiaohua

    2017-09-01

    This paper studies the influence diagnostics in meta-regression model including case deletion diagnostic and local influence analysis. We derive the subset deletion formulae for the estimation of regression coefficient and heterogeneity variance and obtain the corresponding influence measures. The DerSimonian and Laird estimation and maximum likelihood estimation methods in meta-regression are considered, respectively, to derive the results. Internal and external residual and leverage measure are defined. The local influence analysis based on case-weights perturbation scheme, responses perturbation scheme, covariate perturbation scheme, and within-variance perturbation scheme are explored. We introduce a method by simultaneous perturbing responses, covariate, and within-variance to obtain the local influence measure, which has an advantage of capable to compare the influence magnitude of influential studies from different perturbations. An example is used to illustrate the proposed methodology. Copyright © 2017 John Wiley & Sons, Ltd.

  1. High-power 671  nm laser by second-harmonic generation with 93% efficiency in an external ring cavity.

    PubMed

    Cui, Xing-Yang; Shen, Qi; Yan, Mei-Chen; Zeng, Chao; Yuan, Tao; Zhang, Wen-Zhuo; Yao, Xing-Can; Peng, Cheng-Zhi; Jiang, Xiao; Chen, Yu-Ao; Pan, Jian-Wei

    2018-04-15

    Second-harmonic generation (SHG) is useful for obtaining single-frequency continuous-wave laser sources at various wavelengths for applications ranging from biology to fundamental physics. Using an external power-enhancement cavity is an effective approach to improve the frequency conversion efficiency. However, thermal effects limit the efficiency, particularly, in high-power operation. Therefore, reducing thermal effects is important when designing a cavity. This Letter reports the use of an external ring cavity for SHG, yielding a 5.2 W, 671 nm laser light with a conversion efficiency of 93.8±0.8% which, to the best of our knowledge, is a new record of conversion efficiency for an external ring cavity. It is achieved using a 10 mm length periodically poled potassium titanyl phosphate crystal and a 65 μm radius beam waist in the cavity so as to minimize thermal dephasing and thermal lensing. Furthermore, a method is developed to determine a conversion efficiency more accurately based on measuring the pump depletion using a photodiode detector and a maximum pump depletion up to 97% is recorded. In this method, the uncertainty is much less than that achieved in a common method by direct measuring with a power meter.

  2. Precision Atomic Beam Laser Spectroscopy

    DTIC Science & Technology

    1999-02-20

    optical efficiency with a new coupled- cavity scheme. We have locked a MISER Nd:YAG laser to a finesse 50,000 cavity with a...sensitivity of optical heterodyne detection is preserved with ZERO sensitivity to small laser / cavity frequency noises. The new method is called Noise-Immune...1996), P. Dube, L.- S. Ma, J. Ye, and J.L.Hall. 9 . "Free-induction decay in molecular iodine measured with an extended - cavity diode laser ,"

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheinker, Alexander

    A recently developed form of extremum seeking for time-varying systems is implemented in hardware for the resonance control of radio-frequency cavities without phase measurements. Normal conducting RF cavity resonance control is performed via a slug tuner, while superconducting TESLA-type cavity resonance control is performed via piezo actuators. The controller maintains resonance by minimizing reflected power by utilizing model-independent adaptive feedback. Unlike standard phase-measurement-based resonance control, the presented approach is not sensitive to arbitrary phase shifts of the RF signals due to temperature-dependent cable length or phasemeasurement hardware changes. The phase independence of this method removes common slowly varying drifts andmore » required periodic recalibration of phase-based methods. A general overview of the adaptive controller is presented along with the proof of principle experimental results at room temperature. Lastly, this method allows us to both maintain a cavity at a desired resonance frequency and also to dynamically modify its resonance frequency to track the unknown time-varying frequency of an RF source, thereby maintaining maximal cavity field strength, based only on power-level measurements.« less

  4. Analysis of EM penetration into and scattering by electrically large open waveguide cavities using Gaussian beam shooting

    NASA Technical Reports Server (NTRS)

    Burkholder, Robert J.; Pathak, Prabhakar H.

    1991-01-01

    Gaussian beam (GB) representation methods are used to analyze the electromagnetic coupling into and the scattering by a large nonuniform cavity. The aperture field in the cavity is decomposed into beams using the Gabor expansion, and shooting techniques are then employed. The method is illustrated only for the two-dimensional (2-D) case. The GBs are tracked axially using the rules of beam optics which ignore any beam distortion upon reflection at the walls. The effects of beam distortion are not significant for relatively slowly varying waveguide cavities. The field scattered into the exterior by the termination within the cavity is found using a reciprocity integral formulation which requires a knowledge of the beam fields near the termination. Numerical results based on this GB approach are presented and compared with results based on an independent reference solution.

  5. Method for pressure modulation of turbine sidewall cavities

    DOEpatents

    Leone, Sal Albert; Book, Matthew David; Banares, Christopher R.

    2002-01-01

    A method is provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.

  6. A finite element-boundary integral formulation for scattering by three-dimensional cavity-backed apertures

    NASA Technical Reports Server (NTRS)

    Jin, Jian-Ming; Volakis, John L.

    1990-01-01

    A numerical technique is proposed for the electromagnetic characterization of the scattering by a three-dimensional cavity-backed aperture in an infinite ground plane. The technique combines the finite element and boundary integral methods to formulate a system of equations for the solution of the aperture fields and those inside the cavity. Specifically, the finite element method is employed to formulate the fields in the cavity region and the boundary integral approach is used in conjunction with the equivalence principle to represent the fields above the ground plane. Unlike traditional approaches, the proposed technique does not require knowledge of the cavity's Green's function and is, therefore, applicable to arbitrary shape depressions and material fillings. Furthermore, the proposed formulation leads to a system having a partly full and partly sparse as well as symmetric and banded matrix which can be solved efficiently using special algorithms.

  7. Finite analytic numerical solution of heat transfer and flow past a square channel cavity

    NASA Technical Reports Server (NTRS)

    Chen, C.-J.; Obasih, K.

    1982-01-01

    A numerical solution of flow and heat transfer characteristics is obtained by the finite analytic method for a two dimensional laminar channel flow over a two-dimensional square cavity. The finite analytic method utilizes the local analytic solution in a small element of the problem region to form the algebraic equation relating an interior nodal value with its surrounding nodal values. Stable and rapidly converged solutions were obtained for Reynolds numbers ranging to 1000 and Prandtl number to 10. Streamfunction, vorticity and temperature profiles are solved. Local and mean Nusselt number are given. It is found that the separation streamlines between the cavity and channel flow are concave into the cavity at low Reynolds number and convex at high Reynolds number (Re greater than 100) and for square cavity the mean Nusselt number may be approximately correlated with Peclet number as Nu(m) = 0.365 Pe exp 0.2.

  8. Efficiency of different methods of extra-cavity second harmonic generation of continuous wave single-frequency radiation.

    PubMed

    Khripunov, Sergey; Kobtsev, Sergey; Radnatarov, Daba

    2016-01-20

    This work presents for the first time to the best of our knowledge a comparative efficiency analysis among various techniques of extra-cavity second harmonic generation (SHG) of continuous-wave single-frequency radiation in nonperiodically poled nonlinear crystals within a broad range of power levels. Efficiency of nonlinear radiation transformation at powers from 1 W to 10 kW was studied in three different configurations: with an external power-enhancement cavity and without the cavity in the case of single and double radiation pass through a nonlinear crystal. It is demonstrated that at power levels exceeding 1 kW, the efficiencies of methods with and without external power-enhancement cavities become comparable, whereas at even higher powers, SHG by a single or double pass through a nonlinear crystal becomes preferable because of the relatively high efficiency of nonlinear transformation and fairly simple implementation.

  9. A shielding application of perturbation theory to determine changes in neutron and gamma doses due to changes in shield layers

    NASA Technical Reports Server (NTRS)

    Fieno, D.

    1972-01-01

    The perturbation theory for fixed sources was applied to radiation shielding problems to determine changes in neutron and gamma ray doses due to changes in various shield layers. For a given source and detector position the perturbation method enables dose derivatives due to all layer changes to be determined from one forward and one inhomogeneous adjoint calculation. The direct approach requires two forward calculations for the derivative due to a single layer change. Hence, the perturbation method for obtaining dose derivatives permits an appreciable savings in computation for a multilayered shield. For an illustrative problem, a comparison was made of the fractional change in the dose per unit change in the thickness of each shield layer as calculated by perturbation theory and by successive direct calculations; excellent agreement was obtained between the two methods.

  10. Study on tip leakage vortex cavitating flows using a visualization method

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Jiang, Yutong; Cao, Xiaolong; Wang, Guoyu

    2018-01-01

    Experimental investigations of unsteady cavitating flows in a hydrofoil tip leakage region with different gap sizes are conducted to highlight the development of gap cavitation. The experiments were taken in a closed cavitation tunnel, during which high-speed camera had been used to capture the cavitation patterns. A new visualization method based on image processing was developed to capture time-dependent cavitation patterns. The results show that the visualization method can effectively capture the cavitation patterns in the tip region, including both the attached cavity in the gap and the tip leakage vortex (TLV) cavity near the trailing edge. Moreover, with the decrease of cavitation number, the TLV cavity develops from a rapid onset-growth-collapse process to a continuous process, and extends both upstream and downstream. The attached cavity in the gap develops gradually stretching beyond the gap and combines with the vortex cavity to form the triangle cavitating region. Furthermore, the influences of gap size on the cavitation are also discussed. The gap size has a great influence on the loss across the gap, and hence the locations of the inception attached cavity. Besides, inception locations and extending direction of the TLV cavity with different gap sizes also differ. The TLV in the case with τ = 0.061 is more likely to be jet-like compared with that in the case with τ = 0.024, and the gap size has a great influence on the TLV strength.

  11. Asymptotic modal analysis of a rectangular acoustic cavity excited by wall vibration

    NASA Technical Reports Server (NTRS)

    Peretti, Linda F.; Dowell, Earl H.

    1992-01-01

    Asymptotic modal analysis, a method that has recently been developed for structural dynamical systems, has been applied to a rectangular acoustic cavity. The cavity had a flexible vibrating portion on one wall, and the other five walls were rigid. Banded white noise was transmitted through the flexible portion (plate) only. Both the location along the wall and the size of the plate were varied. The mean square pressure levels of the cavity interior were computed as a ratio of the result obtained from classical modal analysis to that obtained from asymptotic modal analysis for the various plate configurations. In general, this ratio converged to 1.0 as the number of responding modes increased. Intensification effects were found due to both the excitation location and the response location. The asymptotic modal analysis method was both efficient and accurate in solving the given problem. The method has advantages over the traditional methods that are used for solving dynamics problems with a large number of responding modes.

  12. Correlation between Resistivity and Ground Penetrating Radar (GPR) Methods in Understanding the Signatures in Detecting Cavities

    NASA Astrophysics Data System (ADS)

    Afiq Saharudin, Muhamad; Maslinda, Umi; Hisham, Hazrul; Taqiuddin, Z. M.; Nur Amalina, M. K. A.; Nawawi, Nordiana Ahmad; Sulaiman, Nabila; Nordiana, M. M.; Azwin, I. N.

    2017-04-01

    The research was conducted using Resistivity and Ground Penetrating Radar (GPR) methods in detecting in-filled cavities and air-filled cavities. The importance of this study is to see the difference in conductivity value of the in-filled and air-filled cavity. The first study location in which the known target is air-cavity located at School of Language, Literacies, and Translation (SoLLAT). The next study location is at Desasiswa Bakti Permai, which the known target is a bunker with both were located at Universiti Sains Malaysia, Penang and the last location is at Gua Musang, Kelantan with suspected in-filled cavity. The result from Gua Musang is compared with both of the results that have been done at Universiti Sains Malaysia. The resistivity value of the first location that indicates the possible tunnel is about 500 Ωm to 800 Ωm and the conductivity value is about 0.0017 S/m. The resistivity value for the second location located at Desasiswa Bakti Permai that indicates the bunker is about 50 Ωm to 250 Ωm and the conductivity value is about 0.1104 S/m. The resistivity value from Gua Musang is about 50 Ωm to 100 Ωm and the conductivity value is about 0.0101 S/m. The velocity of the in-filled cavities is much lower compared with the velocity of the air-filled cavities. Based on the characteristics, Gua Musang area was dominated with in-filled cavities.

  13. Design and characterization of an integrated surface ion trap and micromirror optical cavity.

    PubMed

    Van Rynbach, Andre; Schwartz, George; Spivey, Robert F; Joseph, James; Vrijsen, Geert; Kim, Jungsang

    2017-08-10

    We have fabricated and characterized laser-ablated micromirrors on fused silica substrates for constructing stable Fabry-Perot optical cavities. We highlight several design features which allow these cavities to have lengths in the 250-300 μm range and be integrated directly with surface ion traps. We present a method to calculate the optical mode shape and losses of these micromirror cavities as functions of cavity length and mirror shape, and confirm that our simulation model is in good agreement with experimental measurements of the intracavity optical mode at a test wavelength of 780 nm. We have designed and tested a mechanical setup for dampening vibrations and stabilizing the cavity length, and explore applications for these cavities as efficient single-photon sources when combined with trapped Yb171 + ions.

  14. Subsonic panel method for designing wing surfaces from pressure distribution

    NASA Technical Reports Server (NTRS)

    Bristow, D. R.; Hawk, J. D.

    1983-01-01

    An iterative method has been developed for designing wing section contours corresponding to a prescribed subcritical distribution of pressure. The calculations are initialized by using a surface panel method to analyze a baseline wing or wing-fuselage configuration. A first-order expansion to the baseline panel method equations is then used to calculate a matrix containing the partial derivative of potential at each control point with respect to each unknown geometry parameter. In every iteration cycle, the matrix is used both to calculate the geometry perturbation and to analyze the perturbed geometry. The distribution of potential on the perturbed geometry is established by simple linear extrapolation from the baseline solution. The extrapolated potential is converted to pressure by Bernoulli's equation. Not only is the accuracy of the approach good for very large perturbations, but the computing cost of each complete iteration cycle is substantially less than one analysis solution by a conventional panel method.

  15. Cavity parameters identification for TESLA control system development

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Pozniak, Krysztof T.; Romaniuk, Ryszard S.; Simrock, Stefan

    2005-08-01

    Aim of the control system development for TESLA cavity is a more efficient stabilization of the pulsed, accelerating EM field inside resonator. Cavity parameters identification is an essential task for the comprehensive control algorithm. TESLA cavity simulator has been successfully implemented using high-speed FPGA technology. Electromechanical model of the cavity resonator includes Lorentz force detuning and beam loading. The parameters identification is based on the electrical model of the cavity. The model is represented by state space equation for envelope of the cavity voltage driven by current generator and beam loading. For a given model structure, the over-determined matrix equation is created covering long enough measurement range with the solution according to the least-squares method. A low-degree polynomial approximation is applied to estimate the time-varying cavity detuning during the pulse. The measurement channel distortion is considered, leading to the external cavity model seen by the controller. The comprehensive algorithm of the cavity parameters identification was implemented in the Matlab system with different modes of operation. Some experimental results were presented for different cavity operational conditions. The following considerations have lead to the synthesis of the efficient algorithm for the cavity control system predicted for the potential FPGA technology implementation.

  16. Apparatus and process for passivating an SRF cavity

    DOEpatents

    Myneni, Ganapati Rao; Wallace, John P

    2014-12-02

    An apparatus and process for the production of a niobium cavity exhibiting high quality factors at high gradients is provided. The apparatus comprises a first chamber positioned within a second chamber, an RF generator and vacuum pumping systems. The process comprises placing the niobium cavity in a first chamber of the apparatus; thermally treating the cavity by high temperature in the first chamber while maintaining high vacuum in the first and second chambers; and applying a passivating thin film layer to a surface of the cavity in the presence of a gaseous mixture and an RF field. Further a niobium cavity exhibiting high quality factors at high gradients produced by the method of the invention is provided.

  17. Resonant Frequency Shifts of a Fluid Filled Cavity Caused by a Bubble

    NASA Astrophysics Data System (ADS)

    Zhang, Hailan; Wang, Xiuming; Chen, Dehua; Che, Chengxuan

    2009-03-01

    In the previous studies for estimating acoustic wave velocities and attenuations of a rock specimen in a low frequency range using an acoustic resonance spectroscopy method, it was found that bubbles in a fluid filled cavity reduce the resonant frequency of the cavity significantly, which makes the measurement unstable. In this paper, this phenomenon is explained by using a simple model of a spherical fluid filled cavity with a single air bubble. It is pointed out that air bubble effects are caused by the vibration of the bubble coupled with the vibration of the cavity and, therefore, the measurement must be carefully prepared to prevent any air bubbles from entering the cavity.

  18. Ignitability test method and apparatus

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J. (Inventor); Bailey, James W. (Inventor); Schimmel, Morry L. (Inventor)

    1989-01-01

    An apparatus for testing ignitability of an initiator includes a body with a central cavity, initiator holder for holding the initiator over the central cavity of the body, an ignition material holder disposed in the central cavity of the body and a cavity facing the initiator holder which receives a measured quantity of ignition material to be ignited by the initiator and a chamber in communication with the cavity of the ignition material holder and the central cavity of the body. A measuring system for analyzing pressure characteristics is generated by ignition material by the initiator. The measuring system includes at least one transducer coupled to an oscillograph for recording pressure traces generated by ignition.

  19. Ignitability test method and apparatus

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J. (Inventor); Bailey, James W. (Inventor); Schimmel, Morry L. (Inventor)

    1991-01-01

    An apparatus for testing ignitability of an initiator includes a body having a central cavity, an initiator holder for holding the initiator over the central cavity of the body, an ignition material holder disposed in the central cavity of the body and having a cavity facing the initiator holder which receives a measured quantity of ignition material to be ignited by the initiator. It contains a chamber in communication with the cavity of the ignition material and the central cavity of the body, and a measuring system for analyzing pressure characteristics generated by ignition of the ignition material by the initiator. The measuring system includes at least one transducer coupled with an oscillograph for recording pressure traces generated by ignition.

  20. The two-dimensional hybrid surface plasma micro-cavity

    NASA Astrophysics Data System (ADS)

    Kai, Tong; Mei-yu, Wang; Fu-cheng, Wang; Jia, Guo

    2018-07-01

    A hybrid surface plasma micro-cavity structure with a defect cavity is formed based on the two-dimensional surface plasmon resonance photonic crystal waveguide structure. A cell defect is introduced in the centre of the photonic crystal layer to build the hybrid surface plasma micro-cavity structure. This work is numerical based on the finite-difference time-domain method. The photon energy is confined to the micro-cavity and the photon energy is strongest at the interface between the insulating layer and the metal layer. The micro-cavity structure has a very small mode volume of sub-wavelength scale in the 1550 nm communication band. The value of Q/V is up to 7132.08 λ/n-3.

  1. Large-scale image-based profiling of single-cell phenotypes in arrayed CRISPR-Cas9 gene perturbation screens.

    PubMed

    de Groot, Reinoud; Lüthi, Joel; Lindsay, Helen; Holtackers, René; Pelkmans, Lucas

    2018-01-23

    High-content imaging using automated microscopy and computer vision allows multivariate profiling of single-cell phenotypes. Here, we present methods for the application of the CISPR-Cas9 system in large-scale, image-based, gene perturbation experiments. We show that CRISPR-Cas9-mediated gene perturbation can be achieved in human tissue culture cells in a timeframe that is compatible with image-based phenotyping. We developed a pipeline to construct a large-scale arrayed library of 2,281 sequence-verified CRISPR-Cas9 targeting plasmids and profiled this library for genes affecting cellular morphology and the subcellular localization of components of the nuclear pore complex (NPC). We conceived a machine-learning method that harnesses genetic heterogeneity to score gene perturbations and identify phenotypically perturbed cells for in-depth characterization of gene perturbation effects. This approach enables genome-scale image-based multivariate gene perturbation profiling using CRISPR-Cas9. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  2. High-efficiency neutron detectors and methods of making same

    DOEpatents

    McGregor, Douglas S.; Klann, Raymond

    2007-01-16

    Neutron detectors, advanced detector process techniques and advanced compound film designs have greatly increased neutron-detection efficiency. One embodiment of the detectors utilizes a semiconductor wafer with a matrix of spaced cavities filled with one or more types of neutron reactive material such as 10B or 6LiF. The cavities are etched into both the front and back surfaces of the device such that the cavities from one side surround the cavities from the other side. The cavities may be etched via holes or etched slots or trenches. In another embodiment, the cavities are different-sized and the smaller cavities extend into the wafer from the lower surfaces of the larger cavities. In a third embodiment, multiple layers of different neutron-responsive material are formed on one or more sides of the wafer. The new devices operate at room temperature, are compact, rugged, and reliable in design.

  3. Method for repair of thin glass coatings. [on space shuttle orbiter tiles

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Helman, D. D.; Smiser, L. W.

    1982-01-01

    A method of repairing cracks or damaged areas in glass, in particular, glass coatings provided on tile. The method includes removing the damaged area using a high speed diamond burr drilling out a cavity that extends slightly into the base material of the tile. All loose material is then cleaned from the drilled out cavity and the cavity is filled adjacent the upper surface of the coating with a filler material including chopped silica fibers mixed with a binder. The filler material is packed into the cavity and a repair coating is applied by means of a brush or sprayed thereover. The repair includes borosilicate suspended in solution. Heat is applied at approximately 2100 F. for approximately five minutes for curing the coating, causing boron silicide particles of the coating to oxidize forming a very fluid boron-oxide rich glass which reacts with the other frits to form an impervious, highly refractory layer.

  4. Scalable high-precision tuning of photonic resonators by resonant cavity-enhanced photoelectrochemical etching

    PubMed Central

    Gil-Santos, Eduardo; Baker, Christopher; Lemaître, Aristide; Gomez, Carmen; Leo, Giuseppe; Favero, Ivan

    2017-01-01

    Photonic lattices of mutually interacting indistinguishable cavities represent a cornerstone of collective phenomena in optics and could become important in advanced sensing or communication devices. The disorder induced by fabrication technologies has so far hindered the development of such resonant cavity architectures, while post-fabrication tuning methods have been limited by complexity and poor scalability. Here we present a new simple and scalable tuning method for ensembles of microphotonic and nanophotonic resonators, which enables their permanent collective spectral alignment. The method introduces an approach of cavity-enhanced photoelectrochemical etching in a fluid, a resonant process triggered by sub-bandgap light that allows for high selectivity and precision. The technique is presented on a gallium arsenide nanophotonic platform and illustrated by finely tuning one, two and up to five resonators. It opens the way to applications requiring large networks of identical resonators and their spectral referencing to external etalons. PMID:28117394

  5. Method for maximizing the brightness of the bunches in a particle injector by converting a highly space-charged beam to a relativistic and emittance-dominated beam

    DOEpatents

    Hannon, Fay

    2016-08-02

    A method for maximizing the brightness of the bunches in a particle injector by converting a highly space-charged beam to a relativistic and emittance-dominated beam. The method includes 1) determining the bunch charge and the initial kinetic energy of the highly space-charge dominated input beam; 2) applying the bunch charge and initial kinetic energy properties of the highly space-charge dominated input beam to determine the number of accelerator cavities required to accelerate the bunches to relativistic speed; 3) providing the required number of accelerator cavities; and 4) setting the gradient of the radio frequency (RF) cavities; and 5) operating the phase of the accelerator cavities between -90 and zero degrees of the sinusoid of phase to simultaneously accelerate and bunch the charged particles to maximize brightness, and until the beam is relativistic and emittance-dominated.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, W.; Singer, X.; Jelezov, I.

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with resultsmore » of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients E acc up to 35 MV/m after buffered chemical polishing (BCP) and up to 42 MV/m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients E acc of 30–35 MV/m were measured after BCP and E acc up to 40 MV/m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of E acc = 30–35 MV/m. One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have been fabricated. The clad seamless tubes were produced using hot bonding or explosive bonding and subsequent flow forming. The thicknesses of Nb and Cu layers in the tube wall are about 1 and 3 mm respectively. The rf performance of the best NbCu clad cavities is similar to that of bulk Nb cavities. The highest accelerating gradient achieved was 40 MV/m. The advantages and disadvantages of hydroformed cavities are discussed in this paper.« less

  7. Investigating a hybrid perturbation-Galerkin technique using computer algebra

    NASA Technical Reports Server (NTRS)

    Andersen, Carl M.; Geer, James F.

    1988-01-01

    A two-step hybrid perturbation-Galerkin method is presented for the solution of a variety of differential equations type problems which involve a scalar parameter. The resulting (approximate) solution has the form of a sum where each term consists of the product of two functions. The first function is a function of the independent field variable(s) x, and the second is a function of the parameter lambda. In step one the functions of x are determined by forming a perturbation expansion in lambda. In step two the functions of lambda are determined through the use of the classical Bubnov-Gelerkin method. The resulting hybrid method has the potential of overcoming some of the drawbacks of the perturbation and Bubnov-Galerkin methods applied separately, while combining some of the good features of each. In particular, the results can be useful well beyond the radius of convergence associated with the perturbation expansion. The hybrid method is applied with the aid of computer algebra to a simple two-point boundary value problem where the radius of convergence is finite and to a quantum eigenvalue problem where the radius of convergence is zero. For both problems the hybrid method apparently converges for an infinite range of the parameter lambda. The results obtained from the hybrid method are compared with approximate solutions obtained by other methods, and the applicability of the hybrid method to broader problem areas is discussed.

  8. A field protocol to monitor cavity-nesting birds

    Treesearch

    J. Dudley; V. Saab

    2003-01-01

    We developed a field protocol to monitor populations of cavity-nesting birds in burned and unburned coniferous forests of western North America. Standardized field methods are described for implementing long-term monitoring strategies and for conducting field research to evaluate the effects of habitat change on cavity-nesting birds. Key references (but not...

  9. Toward more accurate loss tangent measurements in reentrant cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, R. D.

    1980-05-01

    Karpova has described an absolute method for measurement of dielectric properties of a solid in a coaxial reentrant cavity. His cavity resonance equation yields very accurate results for dielectric constants. However, he presented only approximate expressions for the loss tangent. This report presents more exact expressions for that quantity and summarizes some experimental results.

  10. Large grain cavities from pure niobium ingot

    DOEpatents

    Myneni, Ganapati Rao [Yorktown, VA; Kneisel, Peter [Williamsburg, VA; Cameiro, Tadeu [McMurray, PA

    2012-03-06

    Niobium cavities are fabricated by the drawing and ironing of as cast niobium ingot slices rather than from cold rolled niobium sheet. This method results in the production of niobium cavities having a minimum of grain boundaries at a significantly reduced cost as compared to the production of such structures from cold rolled sheet.

  11. Frequency Response Calculations of Input Characteristics of Cavity-Backed Aperture Antennas Using AWE with Hybrid FEM/MoM Technique

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, M. D.

    1997-01-01

    Application of Asymptotic Waveform Evaluation (AWE) is presented in conjunction with a hybrid Finite Element Method (FEM)/Method of Moments (MoM) technique to calculate the input characteristics of cavity-backed aperture antennas over a frequency range. The hybrid FEM/MoM technique is used to form an integro-partial-differential equation to compute the electric field distribution of the cavity-backed aperture antenna. The electric field, thus obtained, is expanded in a Taylor series around the frequency of interest. The coefficients of 'Taylor series (called 'moments') are obtained using the frequency derivatives of the integro-partial-differential Equation formed by the hybrid FEM/MoM technique. Using the moments, the electric field in the cavity is obtained over a frequency range. Using the electric field at different frequencies, the input characteristics of the antenna are obtained over a wide frequency band. Numerical results for an open coaxial line, probe fed cavity, and cavity-backed microstrip patch antennas are presented. Good agreement between AWE and the exact solution over the frequency range is observed.

  12. Characterization technique for long optical fiber cavities based on beating spectrum of multi-longitudinal mode fiber laser and beating spectrum in the RF domain

    NASA Astrophysics Data System (ADS)

    Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2016-03-01

    The characterization of long fiber cavities is essential for many systems to predict the system practical performance. The conventional techniques for optical cavity characterization are not suitable for long fiber cavities due to the cavities' small free spectral ranges and due to the length variations caused by the environmental effects. In this work, we present a novel technique to characterize long fiber cavities using multi-longitudinal mode fiber laser source and RF spectrum analyzer. The fiber laser source is formed in a ring configuration, where the fiber laser cavity length is chosen to be 15 km to ensure that the free spectral range is much smaller than the free spectral range of the characterized passive fiber cavities. The method has been applied experimentally to characterize ring cavities with lengths of 6.2 m and 2.4 km. The results are compared to theoretical predictions with very good agreement.

  13. Adaptive numerical algorithms to simulate the dynamical Casimir effect in a closed cavity with different boundary conditions

    NASA Astrophysics Data System (ADS)

    Villar, Paula I.; Soba, Alejandro

    2017-07-01

    We present an alternative numerical approach to compute the number of particles created inside a cavity due to time-dependent boundary conditions. The physical model consists of a rectangular cavity, where a wall always remains still while the other wall of the cavity presents a smooth movement in one direction. The method relies on the setting of the boundary conditions (Dirichlet and Neumann) and the following resolution of the corresponding equations of modes. By a further comparison between the ground state before and after the movement of the cavity wall, we finally compute the number of particles created. To demonstrate the method, we investigate the creation of particle production in vibrating cavities, confirming previously known results in the appropriate limits. Within this approach, the dynamical Casimir effect can be investigated, making it possible to study a variety of scenarios where no analytical results are known. Of special interest is, of course, the realistic case of the electromagnetic field in a three-dimensional cavity, with transverse electric (TE)-mode and transverse magnetic (TM)-mode photon production. Furthermore, with our approach we are able to calculate numerically the particle creation in a tuneable resonant superconducting cavity by the use of the generalized Robin boundary condition. We compare the numerical results with analytical predictions as well as a different numerical approach. Its extension to three dimensions is also straightforward.

  14. Three-dimensional shape analysis of miarolitic cavities and enclaves in the Kakkonda granite by X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Ohtani, Tomoyuki; Nakano, Tsukasa; Nakashima, Yoshito; Muraoka, Hirofumi

    2001-11-01

    Three-dimensional shape analysis of miarolitic cavities and enclaves from the Kakkonda granite, NE Japan, was performed by X-ray computed tomography (CT) and image analysis. The three-dimensional shape of the miarolitic cavities and enclaves was reconstructed by stacked two-dimensional CT slice images with an in-plane resolution of 0.3 mm and an inter-slice spacing of 1 mm. An ellipsoid was fitted to each reconstructed object by the image processing programs. The shortest, intermediate, and longest axes of the ellipsoids fitted to miarolitic cavities had E-W, N-S, and vertical directions, respectively. The shortest axes of the ellipsoids fitted to enclaves were sub-vertical to vertical. Three-dimensional strains calculated from miarolitic cavities and enclaves have E-W and vertical shortening, respectively. The shape characteristics of miarolitic cavities probably reflect regional stress during the late magmatic stage, and those of enclaves reflect shortening by later-intruded magma or body rotation during the early magmatic stage. The miarolitic cavities may not be strained homogeneously with the surrounding granite, because the competence of minerals is different from that of the fluid-filled cavities. Although the strain markers require sufficient contrast between their CT numbers and those of the surrounding minerals, this method has several advantages over conventional methods, including the fact that it is non-destructive, expedient, and allows direct three-dimensional observation of each object.

  15. Analysis of three-dimensional-cavity-backed aperture antennas using a Combined Finite Element Method/Method of Moments/Geometrical Theory of Diffraction technique

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, M. D.; Cockrell, C. R.; Beck, F. B.

    1995-01-01

    A combined finite element method (FEM) and method of moments (MoM) technique is presented to analyze the radiation characteristics of a cavity-fed aperture in three dimensions. Generalized feed modeling has been done using the modal expansion of fields in the feed structure. Numerical results for some feeding structures such as a rectangular waveguide, circular waveguide, and coaxial line are presented. The method also uses the geometrical theory of diffraction (GTD) to predict the effect of a finite ground plane on radiation characteristics. Input admittance calculations for open radiating structures such as a rectangular waveguide, a circular waveguide, and a coaxial line are shown. Numerical data for a coaxial-fed cavity with finite ground plane are verified with experimental data.

  16. Method for constructing a lined underground cavity by underreaming, grouting, and boring through the grouting

    DOEpatents

    Johnson, W.H.

    1971-02-02

    A method is described for constructing a lined underground cavity. The process includes the steps of securing a casing in a borehole by grouting, underreaming the casing, filling the underreamed region with additional grouting, and then drilling through and underreaming the added grouting, thereby forming a room having a lining formed of the grouting. By using a structurally strong grouting that is impervious to water, the resulting room is waterproof and is suitable for on-site storage of an atomic device and its associated equipment prior to an underground atomic event. Such cavities also have other uses; for example, the cavities may be made very deep and used for storage of various fluids such as natural gas storage. (5 claims)

  17. Computing singularities of perturbation series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kvaal, Simen; Jarlebring, Elias; Michiels, Wim

    2011-03-15

    Many properties of current ab initio approaches to the quantum many-body problem, both perturbational and otherwise, are related to the singularity structure of the Rayleigh-Schroedinger perturbation series. A numerical procedure is presented that in principle computes the complete set of singularities, including the dominant singularity which limits the radius of convergence. The method approximates the singularities as eigenvalues of a certain generalized eigenvalue equation which is solved using iterative techniques. It relies on computation of the action of the Hamiltonian matrix on a vector and does not rely on the terms in the perturbation series. The method can be usefulmore » for studying perturbation series of typical systems of moderate size, for fundamental development of resummation schemes, and for understanding the structure of singularities for typical systems. Some illustrative model problems are studied, including a helium-like model with {delta}-function interactions for which Moeller-Plesset perturbation theory is considered and the radius of convergence found.« less

  18. Evanescent-wave and ambient chiral sensing by signal-reversing cavity ringdown polarimetry.

    PubMed

    Sofikitis, Dimitris; Bougas, Lykourgos; Katsoprinakis, Georgios E; Spiliotis, Alexandros K; Loppinet, Benoit; Rakitzis, T Peter

    2014-10-02

    Detecting and quantifying chirality is important in fields ranging from analytical and biological chemistry to pharmacology and fundamental physics: it can aid drug design and synthesis, contribute to protein structure determination, and help detect parity violation of the weak force. Recent developments employ microwaves, femtosecond pulses, superchiral light or photoionization to determine chirality, yet the most widely used methods remain the traditional methods of measuring circular dichroism and optical rotation. However, these signals are typically very weak against larger time-dependent backgrounds. Cavity-enhanced optical methods can be used to amplify weak signals by passing them repeatedly through an optical cavity, and two-mirror cavities achieving up to 10(5) cavity passes have enabled absorption and birefringence measurements with record sensitivities. But chiral signals cancel when passing back and forth through a cavity, while the ubiquitous spurious linear birefringence background is enhanced. Even when intracavity optics overcome these problems, absolute chirality measurements remain difficult and sometimes impossible. Here we use a pulsed-laser bowtie cavity ringdown polarimeter with counter-propagating beams to enhance chiral signals by a factor equal to the number of cavity passes (typically >10(3)); to suppress the effects of linear birefringence by means of a large induced intracavity Faraday rotation; and to effect rapid signal reversals by reversing the Faraday rotation and subtracting signals from the counter-propagating beams. These features allow absolute chiral signal measurements in environments where background subtraction is not feasible: we determine optical rotation from α-pinene vapour in open air, and from maltodextrin and fructose solutions in the evanescent wave produced by total internal reflection at a prism surface. The limits of the present polarimeter, when using a continuous-wave laser locked to a stable, high-finesse cavity, should match the sensitivity of linear birefringence measurements (3 × 10(-13) radians), which is several orders of magnitude more sensitive than current chiral detection limits and is expected to transform chiral sensing in many fields.

  19. Proof-of-principle Experiment of a Ferroelectric Tuner for the 1.3 GHz Cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi,E.M.; Hahn, H.; Shchelkunov, S. V.

    2009-01-01

    A novel tuner has been developed by the Omega-P company to achieve fast control of the accelerator RF cavity frequency. The tuner is based on the ferroelectric property which has a variable dielectric constant as function of applied voltage. Tests using a Brookhaven National Laboratory (BNL) 1.3 GHz electron gun cavity have been carried out for a proof-of-principle experiment of the ferroelectric tuner. Two different methods were used to determine the frequency change achieved with the ferroelectric tuner (FT). The first method is based on a S11 measurement at the tuner port to find the reactive impedance change when themore » voltage is applied. The reactive impedance change then is used to estimate the cavity frequency shift. The second method is a direct S21 measurement of the frequency shift in the cavity with the tuner connected. The estimated frequency change from the reactive impedance measurement due to 5 kV is in the range between 3.2 kHz and 14 kHz, while 9 kHz is the result from the direct measurement. The two methods are in reasonable agreement. The detail description of the experiment and the analysis are discussed in the paper.« less

  20. Broadband complex permeability characterization of magnetic thin films using shorted microstrip transmission-line perturbation

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Chen, Linfeng; Tan, C. Y.; Liu, H. J.; Ong, C. K.

    2005-06-01

    A brief review of the methods used for broadband complex permeability measurement of magnetic thin films up to microwave frequencies is given. In particular, the working principles of the transmission-line perturbation methods for the characterization of magnetic thin films are discussed, with emphasis on short-circuited planar transmission-line perturbation methods. The algorithms for calculating the complex permeability of magnetic thin films for short-circuited planar transmission-line perturbation methods are analyzed. A shorted microstrip line is designed and fabricated as a prototype measurement fixture. The structure of the microstrip fixture and the corresponding measurement procedure are discussed in detail. A piece of 340 nm thick FeTaN thin film deposited on Si substrate using sputtering method is characterized using the microstrip fixture. An improved technique for obtaining permeability by using a saturation magnetization field is demonstrated here, and the results fit well with the Landau-Lifchitz-Gilbert theory. Approaches to extending this method to other aspects in the investigation of magnetic thin film are also discussed.

  1. Perturbational and nonperturbational inversion of Rayleigh-wave velocities

    USGS Publications Warehouse

    Haney, Matt; Tsai, Victor C.

    2017-01-01

    The inversion of Rayleigh-wave dispersion curves is a classic geophysical inverse problem. We have developed a set of MATLAB codes that performs forward modeling and inversion of Rayleigh-wave phase or group velocity measurements. We describe two different methods of inversion: a perturbational method based on finite elements and a nonperturbational method based on the recently developed Dix-type relation for Rayleigh waves. In practice, the nonperturbational method can be used to provide a good starting model that can be iteratively improved with the perturbational method. Although the perturbational method is well-known, we solve the forward problem using an eigenvalue/eigenvector solver instead of the conventional approach of root finding. Features of the codes include the ability to handle any mix of phase or group velocity measurements, combinations of modes of any order, the presence of a surface water layer, computation of partial derivatives due to changes in material properties and layer boundaries, and the implementation of an automatic grid of layers that is optimally suited for the depth sensitivity of Rayleigh waves.

  2. Method for energy recovery of spent ERL beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marhauser, Frank; Hannon, Fay; Rimmer, Robert

    A method for recovering energy from spent energy recovered linac (ERL) beams. The method includes adding a plurality of passive decelerating cavities at the beam dump of the ERL, adding one or more coupling waveguides between the passive decelerating cavities, setting an adequate external Q (Qext) to adjust to the beam loading situation, and extracting the RF energy through the coupling waveguides.

  3. Hydroxyl Tagging Velocimetry in a Mach 2 Flow With a Wall Cavity (Postprint)

    DTIC Science & Technology

    2005-01-01

    tagging velocimetry (HTV) measurements of velocity were made in a Mach 2 flow with a wall cavity. In the HTV method, ArF excimer laser (193 nm) beams...is tracked by planar laser -induced fluorescence. The grid motion over a fixed time delay yields about 50 velocity vectors of the two-dimensional flow...Mach 2 flow with a wall cavity. In the HTV method, ArF excimer laser (193 nm) beams pass through a humid gas and dissociate H2O into H + OH to form

  4. Hydroxyl Tagging Velocimetry in Cavity-Piloted Mach 2 Combustor (Postprint)

    DTIC Science & Technology

    2006-01-01

    combustor with a wall cavity flameholder. In the HTV method, ArF excimer laser (193 nm) beams pass through a humid gas flow and dissociate H2O into H...grid of OH tracked by planar laser -induced fluorescence to yield about 120 velocity vectors of the two-dimensional flow over a fixed time delay...with a wall cavity flameholder. In the HTV method, ArF excimer laser (193 nm) beams pass through a humid gas flow and dissociate H2O into H + OH to

  5. Optical re-injection in cavity-enhanced absorption spectroscopy

    PubMed Central

    Leen, J. Brian; O’Keefe, Anthony

    2014-01-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10−10 cm−1/\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\sqrt {{\\rm Hz;}}$\\end{document} Hz ; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features. PMID:25273701

  6. Cavity-Dumped Communication Laser Design

    NASA Technical Reports Server (NTRS)

    Roberts, W. T.

    2003-01-01

    Cavity-dumped lasers have significant advantages over more conventional Q-switched lasers for high-rate operation with pulse position modulation communications, including the ability to emit laser pulses at 1- to 10-megahertz rates, with pulse widths of 0.5 to 5 nanoseconds. A major advantage of cavity dumping is the potential to vary the cavity output percentage from pulse to pulse, maintaining the remainder of the energy in reserve for the next pulse. This article presents the results of a simplified cavity-dumped laser model, establishing the requirements for cavity efficiency and projecting the ultimate laser efficiency attainable in normal operation. In addition, a method of reducing or eliminating laser dead time is suggested that could significantly enhance communication capacity. The design of a laboratory demonstration laser is presented with estimates of required cavity efficiency and demonstration potential.

  7. Mounting system for optical frequency reference cavities

    NASA Technical Reports Server (NTRS)

    Notcutt, Mark (Inventor); Hall, John L. (Inventor); Ma, Long-Sheng (Inventor)

    2008-01-01

    A technique for reducing the vibration sensitivity of laser-stabilizing optical reference cavities is based upon an improved design and mounting method for the cavity, wherein the cavity is mounted vertically. It is suspended at one plane, around the spacer cylinder, equidistant from the mirror ends of the cavity. The suspension element is a collar of an extremely low thermal expansion coefficient material, which surrounds the spacer cylinder and contacts it uniformly. Once the collar has been properly located, it is cemented in place so that the spacer cylinder is uniformly supported and does not have to be squeezed at all. The collar also includes a number of cavities partially bored into its lower flat surface, around the axial bore. These cavities are support points, into which mounting base pins will be inserted. Hence the collar is supported at a minimum of three points.

  8. Characterization of condenser microphones under different environmental conditions for accurate speed of sound measurements with acoustic resonators.

    PubMed

    Guianvarc'h, Cécile; Gavioso, Roberto M; Benedetto, Giuliana; Pitre, Laurent; Bruneau, Michel

    2009-07-01

    Condenser microphones are more commonly used and have been extensively modeled and characterized in air at ambient temperature and static pressure. However, several applications of interest for metrology and physical acoustics require to use these transducers in significantly different environmental conditions. Particularly, the extremely accurate determination of the speed of sound in monoatomic gases, which is pursued for a determination of the Boltzmann constant k by an acoustic method, entails the use of condenser microphones mounted within a spherical cavity, over a wide range of static pressures, at the temperature of the triple point of water (273.16 K). To further increase the accuracy achievable in this application, the microphone frequency response and its acoustic input impedance need to be precisely determined over the same static pressure and temperature range. Few previous works examined the influence of static pressure, temperature, and gas composition on the microphone's sensitivity. In this work, the results of relative calibrations of 1/4 in. condenser microphones obtained using an electrostatic actuator technique are presented. The calibrations are performed in pure helium and argon gas at temperatures near 273 K and in the pressure range between 10 and 600 kPa. These experimental results are compared with the predictions of a realistic model available in the literature, finding a remarkable good agreement. The model provides an estimate of the acoustic impedance of 1/4 in. condenser microphones as a function of frequency and static pressure and is used to calculate the corresponding frequency perturbations induced on the normal modes of a spherical cavity when this is filled with helium or argon gas.

  9. An Extrinsic Fabry-Perot Interferometric Sensor using Intermodal Phase Shifting and Demultiplexing of the Propagating Modes in a Few-Mode Fiber

    NASA Astrophysics Data System (ADS)

    Chatterjee, Julius

    This dissertation demonstrates a fiber-optic phase shifted Fabry-Perot interferometer (PS-FPI) as a sensor using modal demultiplexing. Single wavelength Fabry-Perot interferometers suffer from fringe ambiguity and loss of sensitivity at fringe extremes. These hindrances cause it to be a secondary choice when being selected for a measurement task at hand, and more often than not, white light based sensors are selected in favor of the single wavelength Fabry-Perot sensors. This work aims to introduce a technique involving the demultiplexing of the propagating linearly polarized (LP) modes in few mode fibers to obtain two fringe systems from the same sensing cavity. This results in a few-mode interferometer that effectively has two to three orders of magnitude higher perturbation sensitivity than a conventional few mode interferometer for the same sensing region. In this work, two different modal demultiplexing techniques (MD) are used to demodulate the propagating modes and to obtain two fringe sets. These output fringe sets are shifted in phase with respect to each other by a phase shift due to the propagation of the modes in the fiber-optic layout. A method of controlling this phase shift by straining a length of a two mode fiber located separate from the PS-FPI cavity is demonstrated and corresponding changes in phase shifts are shown. The results show a controllable phase shift for both the MD techniques, which is useful in sensing by permitting quadrature demodulation of interferometric fringes and also results in a novel few-mode sensing system having more than two orders of magnitude sensitivity than conventional few-mode devices.

  10. Frequency-Agile Differential Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Reed, Zachary; Hodges, Joseph

    2015-06-01

    The ultimate precision of highly sensitive cavity-enhanced spectroscopic measurements is often limited by interferences (etalons) caused by weak coupled-cavity effects. Differential measurements of ring-down decay constants have previously been demonstrated to largely cancel these effects, but the measurement acquisition rates were relatively low [1,2]. We have previously demonstrated the use of frequency agile rapid scanning cavity ring-down spectroscopy (FARS-CRDS) for acquisition of absorption spectra [3]. Here, the method of rapidly scanned, frequency-agile differential cavity ring-down spectroscopy (FADS-CRDS) is presented for reducing the effect of these interferences and other shot-to-shot statistical variations in measured decay times. To this end, an electro-optic phase modulator (EOM) with a bandwidth of 20 GHz is driven by a microwave source, generating pairs of sidebands on the probe laser. The optical resonator acts as a highly selective optical filter to all laser frequencies except for one tunable sideband. This sideband may be stepped arbitrarily from mode-to-mode of the ring-down cavity, at a rate limited only by the cavity buildup/decay time. The ability to probe any cavity mode across the EOM bandwidth enables a variety of methods for generating differential spectra. The differential mode spacing may be changed, and the effect of this method on suppressing the various coupled-cavity interactions present in the system is discussed. Alternatively, each mode may also be differentially referenced to a single point, providing immunity to temporal variations in the base losses of the cavity while allowing for conventional spectral fitting approaches. Differential measurements of absorption are acquired at 3.3 kHz and a minimum detectable absorption coefficient of 5 x10-12 cm-1 in 1 s averaging time is achieved. 1. J. Courtois, K. Bielska, and J.T Hodges J. Opt. Soc. Am. B, 30, 1486-1495, 2013 2. H.F. Huang and K.K. Lehmann App. Optics 49, 1378-1387, 2010 3. G.-W. Truong, K.O. Douglass, S.E. Maxwell, R.D. van Zee, D.F. Plusquellic, J.T. Hodges, and D.A. Long Nature Photonics, 7, 532-534, 2013

  11. Commissioning Cornell OSTs for SRF cavity testing at Jlab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eremeev, Grigory

    2011-07-01

    Understanding the current quench limitations in SRF cavities is a topic essential for any SRF accelerator that requires high fields. This understanding crucially depends on correct and precise quench identification. Second sound quench detection in superfluid liquid helium with oscillating superleak transducers is a technique recently applied at Cornell University as a fast and versatile method for quench identification in SRF cavities. Having adopted Cornell design, we report in this contribution on our experience with OST for quench identification in different cavities at JLab.

  12. A hydrogen maser with cavity auto-tuner for timekeeping

    NASA Technical Reports Server (NTRS)

    Lin, C. F.; He, J. W.; Zhai, Z. C.

    1992-01-01

    A hydrogen maser frequency standard for timekeeping was worked on at the Shanghai Observatory. The maser employs a fast cavity auto-tuner, which can detect and compensate the frequency drift of the high-Q resonant cavity with a short time constant by means of a signal injection method, so that the long term frequency stability of the maser standard is greatly improved. The cavity auto-tuning system and some maser data obtained from the atomic time comparison are described.

  13. Nonperturbative calculations in the framework of variational perturbation theory in QCD

    NASA Astrophysics Data System (ADS)

    Solovtsova, O. P.

    2017-07-01

    We discuss applications of the method based on the variational perturbation theory to perform calculations down to the lowest energy scale. The variational series is different from the conventional perturbative expansion and can be used to go beyond the weak-coupling regime. We apply this method to investigate the Borel representation of the light Adler function constructed from the τ data and to determine the residual condensates. It is shown that within the method suggested the optimal values of these lower dimension condensates are close to zero.

  14. Analysis of a renormalization group method and normal form theory for perturbed ordinary differential equations

    NASA Astrophysics Data System (ADS)

    DeVille, R. E. Lee; Harkin, Anthony; Holzer, Matt; Josić, Krešimir; Kaper, Tasso J.

    2008-06-01

    For singular perturbation problems, the renormalization group (RG) method of Chen, Goldenfeld, and Oono [Phys. Rev. E. 49 (1994) 4502-4511] has been shown to be an effective general approach for deriving reduced or amplitude equations that govern the long time dynamics of the system. It has been applied to a variety of problems traditionally analyzed using disparate methods, including the method of multiple scales, boundary layer theory, the WKBJ method, the Poincaré-Lindstedt method, the method of averaging, and others. In this article, we show how the RG method may be used to generate normal forms for large classes of ordinary differential equations. First, we apply the RG method to systems with autonomous perturbations, and we show that the reduced or amplitude equations generated by the RG method are equivalent to the classical Poincaré-Birkhoff normal forms for these systems up to and including terms of O(ɛ2), where ɛ is the perturbation parameter. This analysis establishes our approach and generalizes to higher order. Second, we apply the RG method to systems with nonautonomous perturbations, and we show that the reduced or amplitude equations so generated constitute time-asymptotic normal forms, which are based on KBM averages. Moreover, for both classes of problems, we show that the main coordinate changes are equivalent, up to translations between the spaces in which they are defined. In this manner, our results show that the RG method offers a new approach for deriving normal forms for nonautonomous systems, and it offers advantages since one can typically more readily identify resonant terms from naive perturbation expansions than from the nonautonomous vector fields themselves. Finally, we establish how well the solution to the RG equations approximates the solution of the original equations on time scales of O(1/ɛ).

  15. Advanced geophysical underground coal gasification monitoring

    DOE PAGES

    Mellors, Robert; Yang, X.; White, J. A.; ...

    2014-07-01

    Underground Coal Gasification (UCG) produces less surface impact, atmospheric pollutants and greenhouse gas than traditional surface mining and combustion. Therefore, it may be useful in mitigating global change caused by anthropogenic activities. Careful monitoring of the UCG process is essential in minimizing environmental impact. Here we first summarize monitoring methods that have been used in previous UCG field trials. We then discuss in more detail a number of promising advanced geophysical techniques. These methods – seismic, electromagnetic, and remote sensing techniques – may provide improved and cost-effective ways to image both the subsurface cavity growth and surface subsidence effects. Activemore » and passive seismic data have the promise to monitor the burn front, cavity growth, and observe cavity collapse events. Electrical resistance tomography (ERT) produces near real time tomographic images autonomously, monitors the burn front and images the cavity using low-cost sensors, typically running within boreholes. Interferometric synthetic aperture radar (InSAR) is a remote sensing technique that has the capability to monitor surface subsidence over the wide area of a commercial-scale UCG operation at a low cost. It may be possible to infer cavity geometry from InSAR (or other surface topography) data using geomechanical modeling. The expected signals from these monitoring methods are described along with interpretive modeling for typical UCG cavities. They are illustrated using field results from UCG trials and other relevant subsurface operations.« less

  16. A finsler perturbation of the Poincaré metric

    NASA Astrophysics Data System (ADS)

    Rutz, Solange F.; McCarthy, Patrick J.

    1993-02-01

    One method of gaining some insight into Finsler geomety is that of studying small Finsler perturbations of Riemannian metrics. We consider here the the standard two-dimensional upper half plane Poincaré metric, for which the geodesics are semi-circles and vertical lines. The effect of a simple Finsler perturbation on these geodesics is given by an explicit computation of the perturbed geodesics.

  17. Coupling-parameter expansion in thermodynamic perturbation theory.

    PubMed

    Ramana, A Sai Venkata; Menon, S V G

    2013-02-01

    An approach to the coupling-parameter expansion in the liquid state theory of simple fluids is presented by combining the ideas of thermodynamic perturbation theory and integral equation theories. This hybrid scheme avoids the problems of the latter in the two phase region. A method to compute the perturbation series to any arbitrary order is developed and applied to square well fluids. Apart from the Helmholtz free energy, the method also gives the radial distribution function and the direct correlation function of the perturbed system. The theory is applied for square well fluids of variable ranges and compared with simulation data. While the convergence of perturbation series and the overall performance of the theory is good, improvements are needed for potentials with shorter ranges. Possible directions for further developments in the coupling-parameter expansion are indicated.

  18. Multipactor experiment on a dielectric surface

    NASA Astrophysics Data System (ADS)

    Anderson, Rex Beach, III

    2001-12-01

    Multipactor is an electron multiplication process, or electron avalanche, that occurs on metallic and dielectric surfaces in the presence of rf microwave fields. Just as a rock avalanche only needs one rock to cause a larger slide of destruction, one electron under multipactor conditions can cause a tremendous amount of damage to electrical components. Multipactor is a nuisance that can cause excessive noise in communication satellites and radar, and damage to vacuum windows in particle accelerators. Single-surface multipactor on dielectrics is responsible for poor transmission properties of vacuum windows and can eventually lead to vacuum window failure. The repercussions of multipactor affect a wide range of people. For example, a civilian placing a call on a cell phone, or a captain dependent on radar for his ship's safety could both be affected by multipactor. In order to combat this expensive annoyance, a unique experiment to investigate single-surface multipactor on a dielectric surface was developed and tested. The motivation of this thesis is to introduce a novel experiment for multipactor that is designed to verify theoretical calculations and explore the physics behind the phenomenon. The compact apparatus consists of a small brass microwave cavity in a high vacuum system. Most single-surface multipactor experiments consist of a large resonant ring wave guide with a MW power supply. This experiment is the first to utilize a high Q resonant cavity and kW-level power supply to create multipactor on a dielectric surface. The small brass resonant cavity has an inner length of 9.154 cm with an inner diameter of 9.045 cm. A pulsed, variable frequency microwave source at ˜2.4 GHz, 2 kW peak excites the TE111 mode with a strong electric field parallel to a dielectric plate (˜0.2 cm thickness) that is inserted at the mid-plane of the cavity. The microwave pulses from the power supply are monitored by calibrated microwave diodes. These calibrated diodes along with a bead pull perturbation method are used to calculate the threshold rf fields at the dielectric surface when multipactor occurs. This experiment is the first to measure electron current from the dielectric using an electron probe. The electron probe provides temporal measurements of the multipactor electron current with respect to the microwave pulses. Another unique electron diagnostic utilized in this multipactor experiment is phosphor. Phosphor on the dielectric surface is used to detect multipactor electrons by photoemission. Phosphors with different excitation energies are used as a crude electron energy analyzer. Experimental results from these diagnostics match well with theoretical calculations.

  19. The Perturbational MO Method for Saturated Systems.

    ERIC Educational Resources Information Center

    Herndon, William C.

    1979-01-01

    Summarizes a theoretical approach using nonbonding MO's and perturbation theory to correlate properties of saturated hydrocarbons. Discussion is limited to correctly predicted using this method. Suggests calculations can be carried out quickly in organic chemistry. (Author/SA)

  20. DBR, Sub-wavelength grating, and Photonic crystal slab Fabry-Perot cavity design using phase analysis by FDTD.

    PubMed

    Kim, Jae Hwan Eric; Chrostowski, Lukas; Bisaillon, Eric; Plant, David V

    2007-08-06

    We demonstrate a Finite-Difference Time-Domain (FDTD) phase methodology to estimate resonant wavelengths in Fabry-Perot (FP) cavity structures. We validate the phase method in a conventional Vertical-Cavity Surface-Emitting Laser (VCSEL) structure using a transfer-matrix method, and compare results with a FDTD reflectance method. We extend this approach to a Sub-Wavelength Grating (SWG) and a Photonic Crystal (Phc) slab, either of which may replace one of the Distributed Bragg Reflectors (DBRs) in the VCSEL, and predict resonant conditions with varying lithographic parameters. Finally, we compare the resonant tunabilities of three different VCSEL structures, taking quality factors into account.

  1. Source Distribution Method for Unsteady One-Dimensional Flows With Small Mass, Momentum, and Heat Addition and Small Area Variation

    NASA Technical Reports Server (NTRS)

    Mirels, Harold

    1959-01-01

    A source distribution method is presented for obtaining flow perturbations due to small unsteady area variations, mass, momentum, and heat additions in a basic uniform (or piecewise uniform) one-dimensional flow. First, the perturbations due to an elemental area variation, mass, momentum, and heat addition are found. The general solution is then represented by a spatial and temporal distribution of these elemental (source) solutions. Emphasis is placed on discussing the physical nature of the flow phenomena. The method is illustrated by several examples. These include the determination of perturbations in basic flows consisting of (1) a shock propagating through a nonuniform tube, (2) a constant-velocity piston driving a shock, (3) ideal shock-tube flows, and (4) deflagrations initiated at a closed end. The method is particularly applicable for finding the perturbations due to relatively thin wall boundary layers.

  2. Electron trajectory evaluation in laser-plasma interaction for effective output beam

    NASA Astrophysics Data System (ADS)

    Zobdeh, P.; Sadighi-Bonabi, R.; Afarideh, H.

    2010-06-01

    Using the ellipsoidal cavity model, the quasi-monoenergetic electron output beam in laser-plasma interaction is described. By the cavity regime the quality of electron beam is improved in comparison with those generated from other methods such as periodic plasma wave field, spheroidal cavity regime and plasma channel guided acceleration. Trajectory of electron motion is described as hyperbolic, parabolic or elliptic paths. We find that the self-generated electron bunch has a smaller energy width and more effective gain in energy spectrum. Initial condition for the ellipsoidal cavity is determined by laser-plasma parameters. The electron trajectory is influenced by its position, energy and cavity electrostatic potential.

  3. SU-E-T-791: Validation of a Determinant Based Photon Transport Solver in Dose Perturbed By Diverse Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, H; Tome, W; Yaparpalvi, R

    Purpose: To validate a determinant based photon transport solver in dose imparted within different transition zone between different medium. Methods: Thickness (.2cm,.5cm, 1cm, 3cm) from various materials (Air - density=0.0012g/cm3, Cork-0.19g/cm3, Lung-0.26g/cm3, Bone-1.85g/cm3, Aluminum (Al)-2.7g/cm3, Titanium (Ti)-4.42g/cm3, Iron (Fe)-8g/cm3) were sandwiched by 10cm solid water. 6MV were used to study the calculation difference between a superposition photon beam model (AAA) and the determinant based Boltzmann photon transport solver (XB) at the upstream (I) and downstream boarder (II) of the medium, within the medium (III), and at far distance downstream away from medium (IV). Calculation was validated with available thickness ofmore » Air, Cork, Lung, Al, Ti and Fe. Results are presented as the ratio of the dose at the point with medium perturbation to the same point dose without perturbation. Results: Zone I showed different backscatter enhancement from high-density materials within the 5mm of the upstream border. AAA showed no backscatter at all, XB showed good agreement beyond 1mm upstream (1.18 vs 1.14, 1.09 vs 1.10, and 1.04 vs 1.05 for Fe, Ti, and Fe, respectively). Zone II showed a re-buildup after exiting high-density medium and Air but no build up for density close to water in both of the measurement and XB. AAA yielded the opposite results in Zone II. XB and AAA showed in Zone III very different absorption in high density medium and the Air. XB and measurement had high concordance regarding photon attenuation in Zone IV. AAA showed less agreement especially when the medium was Air or Fe. Conclusion: XB compared well with measurement in regions 1mm away from the interface. Planning using XB should be beneficial for External Beam Planning in situations with large air cavity, very low lung density, compact bone, and any kind of metal implant.« less

  4. Two dimensional photoacoustic imaging using microfiber interferometric acoustic transducers

    NASA Astrophysics Data System (ADS)

    Wang, Xiu Xin; Li, Zhang Yong; Tian, Yin; Wang, Wei; Pang, Yu; Tam, Kin Yip

    2018-07-01

    Photoacoustic imaging transducer with a pair of wavelength-matched Bragg gratings (forming a Fabry-Perot cavity) inscribed on a short section of microfiber has been developed. A tunable laser with wavelength that matched to one of selected fringe slopes was used to transmit the acoustic induced wavelength. Interferometric fringes with high finesse in transmission significantly enhanced the sensitivity of the transducer even under very small acoustic perturbations. The performance of this novel transducer was evaluated through the imaging studies of human hairs (∼98 μm in diameter). The spatial resolution is 300 μm. We have demonstrated that the novel transducer developed in this study is a versatile tool for photoacoustic imaging study.

  5. The energy-level crossing behavior and quantum Fisher information in a quantum well with spin-orbit coupling

    PubMed Central

    Wang, Z. H.; Zheng, Q.; Wang, Xiaoguang; Li, Yong

    2016-01-01

    We study the energy-level crossing behavior in a two-dimensional quantum well with the Rashba and Dresselhaus spin-orbit couplings (SOCs). By mapping the SOC Hamiltonian onto an anisotropic Rabi model, we obtain the approximate ground state and its quantum Fisher information (QFI) via performing a unitary transformation. We find that the energy-level crossing can occur in the quantum well system within the available parameters rather than in cavity and circuit quantum eletrodynamics systems. Furthermore, the influence of two kinds of SOCs on the QFI is investigated and an intuitive explanation from the viewpoint of the stationary perturbation theory is given. PMID:26931762

  6. The energy-level crossing behavior and quantum Fisher information in a quantum well with spin-orbit coupling.

    PubMed

    Wang, Z H; Zheng, Q; Wang, Xiaoguang; Li, Yong

    2016-03-02

    We study the energy-level crossing behavior in a two-dimensional quantum well with the Rashba and Dresselhaus spin-orbit couplings (SOCs). By mapping the SOC Hamiltonian onto an anisotropic Rabi model, we obtain the approximate ground state and its quantum Fisher information (QFI) via performing a unitary transformation. We find that the energy-level crossing can occur in the quantum well system within the available parameters rather than in cavity and circuit quantum eletrodynamics systems. Furthermore, the influence of two kinds of SOCs on the QFI is investigated and an intuitive explanation from the viewpoint of the stationary perturbation theory is given.

  7. The energy-level crossing behavior and quantum Fisher information in a quantum well with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Wang, Z. H.; Zheng, Q.; Wang, Xiaoguang; Li, Yong

    2016-03-01

    We study the energy-level crossing behavior in a two-dimensional quantum well with the Rashba and Dresselhaus spin-orbit couplings (SOCs). By mapping the SOC Hamiltonian onto an anisotropic Rabi model, we obtain the approximate ground state and its quantum Fisher information (QFI) via performing a unitary transformation. We find that the energy-level crossing can occur in the quantum well system within the available parameters rather than in cavity and circuit quantum eletrodynamics systems. Furthermore, the influence of two kinds of SOCs on the QFI is investigated and an intuitive explanation from the viewpoint of the stationary perturbation theory is given.

  8. Investigation of laser dynamics, modulation and control by means of intra-cavity time varying perturbation

    NASA Technical Reports Server (NTRS)

    Harris, S. E.

    1974-01-01

    Projects aimed at the generation of tunable visible, infrared, and ultraviolet light, and on the control of this light by means of novel mode-locking and modulation techniques are discussed. During this period the following projects have been active: (1) studies of transient mode-locking of the Nd:YAG laser and the application of short optical pulses; (2) experimental investigations of the Na-Xe excimer laser system; (3) further development of techniques for vacuum ultraviolet holography; and (4) theoretical and initial experimental studies of a new device which should prove very useful for both infrared up-conversion and generation of tunable UV radiation - a two-photon resonantly pumped frequency converter.

  9. Microwave dielectric properties of inorganic fullerene-like tungsten disulfide nanoparticles

    NASA Astrophysics Data System (ADS)

    Chang, Hong; Dimitrakis, Georgios; Xu, Fang; Yi, Chenbo; Kingman, Samuel; Zhu, Yanqiu

    2013-01-01

    The dielectric response of inorganic fullerene-like (IF) tungsten disulfide (WS2) nanoparticles prepared by a sulfidization reaction of WO3 nanoparticles has been investigated, against commercial platelet 2H-WS2 particles, using a cavity perturbation technique at microwave frequencies at temperatures ranging from 20 to 750 °C. The IF-WS2 nanoparticles showed both temperature and frequency dependent dielectric properties. The different dielectric behaviour between the IF-WS2 and 2H-WS2 can be attributed to the different conductivity and structure peculiar to the materials. The microstructure and thermal stability of the IF-WS2 and 2H-WS2 were thoroughly examined, to correlate with the resulting dielectric responses.

  10. Whispering gallery resonators for optical sensing

    NASA Astrophysics Data System (ADS)

    Madugani, Ramgopal; Kasumie, Sho; Yang, Yong; Ward, Jonathan; Lei, Fuchuan; Nic Chormaic, Síle

    2017-04-01

    In recent years, whispering gallery mode devices have extended their functionality across a number of research fields from photonics to sensing applications. Here, we will discuss environmental sensing applications, such as pressure, flow, and temperature using ultrahigh Q-factor microspheres fabricated from ultrathin optical fiber and microbubbles fabricated from pretapered glass capillary. We will discuss device fabrication and the different types of sensing that can be pursued using such systems. Finally, we will introduce the concept of using cavity ring-up spectroscopy to perform dispersive transient sensing, whereby a perturbation to the environment leads to a frequency mode shift, and dissipative transient sensing, which can lead to broadening of the mode, in a whispering gallery mode resonator.

  11. Methods of Soft Tissue Emulsification Using a Mechanism of Ultrasonic Atomization Inside Gas or Vapor Cavities and Associated Systems and Devices

    NASA Technical Reports Server (NTRS)

    Bailey, Michael R. (Inventor); Simon, Julianna C. (Inventor); Crum, Lawrence A. (Inventor); Khokhlova, Vera A. (Inventor); Wang, Yak-Nam (Inventor); Sapozhnikov, Oleg A. (Inventor); Khokhlova, Tatiana D. (Inventor)

    2016-01-01

    The present technology is directed to methods of soft tissue emulsification using a mechanism of ultrasonic atomization inside gas or vapor cavities, and associated systems and devices. In several embodiments, for example, a method of non-invasively treating tissue includes pulsing ultrasound energy from the ultrasound source toward the target site in tissue. The ultrasound source is configured to emit high intensity focused ultrasound (HIFU) waves. The target site comprises a pressure-release interface of a gas or vapor cavity located within the tissue. The method continues by generating shock waves in the tissue to induce a lesion in the tissue at the target site. The method additionally includes characterizing the lesion based on a degree of at least one of a mechanical or thermal ablation of the tissue.

  12. Rapid and efficient formation of propagation invariant shaped laser beams.

    PubMed

    Chriki, Ronen; Barach, Gilad; Tradosnky, Chene; Smartsev, Slava; Pal, Vishwa; Friesem, Asher A; Davidson, Nir

    2018-02-19

    A rapid and efficient all-optical method for forming propagation invariant shaped beams by exploiting the optical feedback of a laser cavity is presented. The method is based on the modified degenerate cavity laser (MDCL), which is a highly incoherent cavity laser. The MDCL has a very large number of degrees of freedom (320,000 modes in our system) that can be coupled and controlled, and allows direct access to both the real space and Fourier space of the laser beam. By inserting amplitude masks into the cavity, constraints can be imposed on the laser in order to obtain minimal loss solutions that would optimally lead to a superposition of Bessel-Gauss beams forming a desired shaped beam. The resulting beam maintains its transverse intensity distribution for relatively long propagation distances.

  13. High resolution signal-processing method for extrinsic Fabry-Perot interferometric sensors

    NASA Astrophysics Data System (ADS)

    Xie, Jiehui; Wang, Fuyin; Pan, Yao; Wang, Junjie; Hu, Zhengliang; Hu, Yongming

    2015-03-01

    In this paper, a signal-processing method for optical fiber extrinsic Fabry-Perot interferometric sensors is presented. It achieves both high resolution and absolute measurement of the dynamic change of cavity length with low sampling points in wavelength domain. In order to improve the demodulation accuracy, the reflected interference spectrum is cleared by Discrete Wavelet Transform and adjusted by the Hilbert transform. Then the cavity length is interrogated by the cross correlation algorithm. The continuous tests show the resolution of cavity length is only 36.7 pm. Moreover, the corresponding resolution of cavity length is only 1 pm on the low frequency range below 420 Hz, and the corresponding power spectrum shows the possibility of detecting the ultra-low frequency signals based on spectra detection.

  14. Robust design optimization using the price of robustness, robust least squares and regularization methods

    NASA Astrophysics Data System (ADS)

    Bukhari, Hassan J.

    2017-12-01

    In this paper a framework for robust optimization of mechanical design problems and process systems that have parametric uncertainty is presented using three different approaches. Robust optimization problems are formulated so that the optimal solution is robust which means it is minimally sensitive to any perturbations in parameters. The first method uses the price of robustness approach which assumes the uncertain parameters to be symmetric and bounded. The robustness for the design can be controlled by limiting the parameters that can perturb.The second method uses the robust least squares method to determine the optimal parameters when data itself is subjected to perturbations instead of the parameters. The last method manages uncertainty by restricting the perturbation on parameters to improve sensitivity similar to Tikhonov regularization. The methods are implemented on two sets of problems; one linear and the other non-linear. This methodology will be compared with a prior method using multiple Monte Carlo simulation runs which shows that the approach being presented in this paper results in better performance.

  15. Geometric Detection Algorithms for Cavities on Protein Surfaces in Molecular Graphics: A Survey

    PubMed Central

    Simões, Tiago; Lopes, Daniel; Dias, Sérgio; Fernandes, Francisco; Pereira, João; Jorge, Joaquim; Bajaj, Chandrajit; Gomes, Abel

    2017-01-01

    Detecting and analyzing protein cavities provides significant information about active sites for biological processes (e.g., protein-protein or protein-ligand binding) in molecular graphics and modeling. Using the three-dimensional structure of a given protein (i.e., atom types and their locations in 3D) as retrieved from a PDB (Protein Data Bank) file, it is now computationally viable to determine a description of these cavities. Such cavities correspond to pockets, clefts, invaginations, voids, tunnels, channels, and grooves on the surface of a given protein. In this work, we survey the literature on protein cavity computation and classify algorithmic approaches into three categories: evolution-based, energy-based, and geometry-based. Our survey focuses on geometric algorithms, whose taxonomy is extended to include not only sphere-, grid-, and tessellation-based methods, but also surface-based, hybrid geometric, consensus, and time-varying methods. Finally, we detail those techniques that have been customized for GPU (Graphics Processing Unit) computing. PMID:29520122

  16. Spatial entanglement of nonvacuum Gaussian states

    NASA Astrophysics Data System (ADS)

    Kiałka, Filip; Ahmadi, Mehdi; Dragan, Andrzej

    2016-06-01

    The vacuum state of a relativistic quantum field contains entanglement between regions separated by spacelike intervals. Such spatial entanglement can be revealed using an operational method introduced in [M. Rodriguez-Vazquez, M. del Rey, H. Westman, and J. Leon, Ann. Phys. (N.Y.) 351, 112 (2014), E. G. Brown, M. del Rey, H. Westman, J. Leon, and A. Dragan, Phys. Rev. D 91, 016005 (2015)]. In this approach, a cavity is instantaneously divided into halves by an introduction of an extra perfect mirror. Causal separation of the two regions of the cavity reveals nonlocal spatial correlations present in the field, which can be quantified by measuring particles generated in the process. We use this method to study spatial entanglement properties of nonvacuum Gaussian field states. In particular, we show how to enhance the amount of harvested spatial entanglement by an appropriate choice of the initial state of the field in the cavity. We find a counterintuitive influence of the initial entanglement between cavity modes on the spatial entanglement which is revealed by dividing the cavity in half.

  17. Radiation Characteristics of Cavity Backed Aperture Antennas in Finite Ground Plane Using the Hybrid FEM/MoM Technique and Geometrical Theory of Diffraction

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, M. D.; Cockrell, C. R.; Beck, F. B.

    1996-01-01

    A technique using hybrid Finite Element Method (FEM)/Method of Moments (MoM), and Geometrical Theory of Diffraction (GTD) is presented to analyze the radiation characteristics of cavity fed aperture antennas in a finite ground plane. The cavity which excites the aperture is assumed to be fed by a cylindrical transmission line. The electromagnetic (EM) fields inside the cavity are obtained using FEM. The EM fields and their normal derivatives required for FEM solution are obtained using (1) the modal expansion in the feed region and (2) the MoM for the radiating aperture region(assuming an infinite ground plane). The finiteness of the ground plane is taken into account using GTD. The input admittance of open ended circular, rectangular, and coaxial line radiating into free space through an infinite ground plane are computed and compared with earlier published results. Radiation characteristics of a coaxial cavity fed circular aperture in a finite rectangular ground plane are verified with experimental results.

  18. Hard sphere perturbation theory of dense fluids with singular perturbation

    NASA Astrophysics Data System (ADS)

    Mon, K. K.

    2000-02-01

    Hard sphere perturbation theories (HSPT) played a significant role in the fundamental understanding of fluids and continues to be a popular method in a wide range of applications. The possibility of difficulty with singular perturbation for some classical soft core model fluids appears to have been overlooked or ignored in the literature. We address this issue in this short note and show by analysis that a region of phase space has been neglected in the standard application of HSPT involving singular perturbation.

  19. An energy-based perturbation and a taboo strategy for improving the searching ability of stochastic structural optimization methods

    NASA Astrophysics Data System (ADS)

    Cheng, Longjiu; Cai, Wensheng; Shao, Xueguang

    2005-03-01

    An energy-based perturbation and a new idea of taboo strategy are proposed for structural optimization and applied in a benchmark problem, i.e., the optimization of Lennard-Jones (LJ) clusters. It is proved that the energy-based perturbation is much better than the traditional random perturbation both in convergence speed and searching ability when it is combined with a simple greedy method. By tabooing the most wide-spread funnel instead of the visited solutions, the hit rate of other funnels can be significantly improved. Global minima of (LJ) clusters up to 200 atoms are found with high efficiency.

  20. Material strength measured by flyer-impact perturbation method

    NASA Astrophysics Data System (ADS)

    Ma, Xiaojuan; Asimow, Paul; Fatyanov, Oleg; Liu, Fusheng

    2017-06-01

    Yield strength is one of the most important physical properties of a solid material, especially far from its melting line. The flyer-impact perturbation method measures material yield strength on the basis of correlation between the yield strength under shock compression and the damping of oscillatory perturbations in the shape of a shock front passing through the material. We used flyer-plate impacts experiments on targets with machined grooves on the impact surface to shock aluminum to between 32 and 71 GPa and recorded the evolution of the shock front perturbation amplitude in the sample with electric pins and fibers. Simulations using the elastic-plastic model can be matched to the experiments, explaining well the form of the perturbation decay and constraining the yield strength of aluminum to be 1.3-3.1 GPa. These results are in agreement with values obtained from reshock and release wave profiles as well as the result deduced from the SCG model. We conclude that the flyer-impact perturbation method is indeed a reliable means to measure material strength. This work was supported by the National Natural Science Foundation of China (Grant No. 41674088) and the State Scholarship Fund of China Scholarship Council.

  1. Unified Lambert Tool for Massively Parallel Applications in Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Woollands, Robyn M.; Read, Julie; Hernandez, Kevin; Probe, Austin; Junkins, John L.

    2018-03-01

    This paper introduces a parallel-compiled tool that combines several of our recently developed methods for solving the perturbed Lambert problem using modified Chebyshev-Picard iteration. This tool (unified Lambert tool) consists of four individual algorithms, each of which is unique and better suited for solving a particular type of orbit transfer. The first is a Keplerian Lambert solver, which is used to provide a good initial guess (warm start) for solving the perturbed problem. It is also used to determine the appropriate algorithm to call for solving the perturbed problem. The arc length or true anomaly angle spanned by the transfer trajectory is the parameter that governs the automated selection of the appropriate perturbed algorithm, and is based on the respective algorithm convergence characteristics. The second algorithm solves the perturbed Lambert problem using the modified Chebyshev-Picard iteration two-point boundary value solver. This algorithm does not require a Newton-like shooting method and is the most efficient of the perturbed solvers presented herein, however the domain of convergence is limited to about a third of an orbit and is dependent on eccentricity. The third algorithm extends the domain of convergence of the modified Chebyshev-Picard iteration two-point boundary value solver to about 90% of an orbit, through regularization with the Kustaanheimo-Stiefel transformation. This is the second most efficient of the perturbed set of algorithms. The fourth algorithm uses the method of particular solutions and the modified Chebyshev-Picard iteration initial value solver for solving multiple revolution perturbed transfers. This method does require "shooting" but differs from Newton-like shooting methods in that it does not require propagation of a state transition matrix. The unified Lambert tool makes use of the General Mission Analysis Tool and we use it to compute thousands of perturbed Lambert trajectories in parallel on the Space Situational Awareness computer cluster at the LASR Lab, Texas A&M University. We demonstrate the power of our tool by solving a highly parallel example problem, that is the generation of extremal field maps for optimal spacecraft rendezvous (and eventual orbit debris removal). In addition we demonstrate the need for including perturbative effects in simulations for satellite tracking or data association. The unified Lambert tool is ideal for but not limited to space situational awareness applications.

  2. Evaluation of cavity size, kind, and filling technique of composite shrinkage by finite element

    PubMed Central

    Jafari, Toloo; Alaghehmad, Homayoon; Moodi, Ehsan

    2018-01-01

    Background: Cavity preparation reduces the rigidity of tooth and its resistance to deformation. The purpose of this study was to evaluate the dimensional changes of the repaired teeth using two types of light cure composite and two methods of incremental and bulk filling by the use of finite element method. Materials and Methods: In this computerized in vitro experimental study, an intact maxillary premolar was scanned using cone beam computed tomography instrument (SCANORA, Switzerland), then each section of tooth image was transmitted to Ansys software using AUTOCAD. Then, eight sizes of cavity preparations and two methods of restoration (bulk and incremental) using two different types of composite resin materials (Heliomolar, Brilliant) were proposed on software and analysis was completed with Ansys software. Results: Dimensional change increased by widening and deepening of the cavities. It was also increased using Brilliant composite resin and incremental filling technique. Conclusion: Increase in depth and type of filling technique has the greatest role of dimensional change after curing, but the type of composite resin does not have a significant role. PMID:29497445

  3. Application of the CSCM method to the design of wedge cavities. [Conservative Supra Characteristic Method

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Nystrom, G. A.; Bardina, J.; Lombard, C. K.

    1987-01-01

    This paper describes the application of the conservative supra characteristic method (CSCM) to predict the flow around two-dimensional slot injection cooled cavities in hypersonic flow. Seven different numerical solutions are presented that model three different experimental designs. The calculations manifest outer flow conditions including the effects of nozzle/lip geometry, angle of attack, nozzle inlet conditions, boundary and shear layer growth and turbulance on the surrounding flow. The calculations were performed for analysis prior to wind tunnel testing for sensitivity studies early in the design process. Qualitative and quantitative understanding of the flows for each of the cavity designs and design recommendations are provided. The present paper demonstrates the ability of numerical schemes, such as the CSCM method, to play a significant role in the design process.

  4. Modelling the excitation field of an optical resonator

    NASA Astrophysics Data System (ADS)

    Romanini, Daniele

    2014-06-01

    Assuming the paraxial approximation, we derive efficient recursive expressions for the projection coefficients of a Gaussian beam over the Gauss--Hermite transverse electro-magnetic (TEM) modes of an optical cavity. While previous studies considered cavities with cylindrical symmetry, our derivation accounts for "simple" astigmatism and ellipticity, which allows to deal with more realistic optical systems. The resulting expansion of the Gaussian beam over the cavity TEM modes provides accurate simulation of the excitation field distribution inside the cavity, in transmission, and in reflection. In particular, this requires including counter-propagating TEM modes, usually neglected in textbooks. As an illustrative application to a complex case, we simulate reentrant cavity configurations where Herriott spots are obtained at cavity output. We show that the case of an astigmatic cavity is also easily modelled. To our knowledge, such relevant applications are usually treated under the simplified geometrical optics approximation, or using heavier numerical methods.

  5. RF kicker cavity to increase control in common transport lines

    DOEpatents

    Douglas, David R.; Ament, Lucas J. P.

    2017-04-18

    A method of controlling e-beam transport where electron bunches with different characteristics travel through the same beam pipe. An RF kicker cavity is added at the beginning of the common transport pipe or at various locations along the common transport path to achieve independent control of different bunch types. RF energy is applied by the kicker cavity kicks some portion of the electron bunches, separating the bunches in phase space to allow independent control via optics, or separating bunches into different beam pipes. The RF kicker cavity is operated at a specific frequency to enable kicking of different types of bunches in different directions. The phase of the cavity is set such that the selected type of bunch passes through the cavity when the RF field is at a node, leaving that type of bunch unaffected. Beam optics may be added downstream of the kicker cavity to cause a further separation in phase space.

  6. Cavity mode-width spectroscopy with widely tunable ultra narrow laser.

    PubMed

    Cygan, Agata; Lisak, Daniel; Morzyński, Piotr; Bober, Marcin; Zawada, Michał; Pazderski, Eugeniusz; Ciuryło, Roman

    2013-12-02

    We explore a cavity-enhanced spectroscopic technique based on determination of the absorbtion coefficient from direct measurement of spectral width of the mode of the optical cavity filled with absorbing medium. This technique called here the cavity mode-width spectroscopy (CMWS) is complementary to the cavity ring-down spectroscopy (CRDS). While both these techniques use information on interaction time of the light with the cavity to determine absorption coefficient, the CMWS does not require to measure very fast signals at high absorption conditions. Instead the CMWS method require a very narrow line width laser with precise frequency control. As an example a spectral line shape of P7 Q6 O₂ line from the B-band was measured with use of an ultra narrow laser system based on two phase-locked external cavity diode lasers (ECDL) having tunability of ± 20 GHz at wavelength range of 687 to 693 nm.

  7. Non-destructive splitter of twisted light based on modes splitting in a ring cavity.

    PubMed

    Li, Yan; Zhou, Zhi-Yuan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2016-02-08

    Efficiently discriminating beams carrying different orbital angular momentum (OAM) is of fundamental importance for various applications including high capacity optical communication and quantum information processing. We design and experimentally verify a distinguished method for effectively splitting different OAM-carried beams by introducing Dove prisms in a ring cavity. Because of rotational symmetry broken of two OAM-carried beams with opposite topological charges, their transmission spectra will split. When mode and impedance matches between the cavity and one OAM-carried beam are achieved, this beam will transmit through the cavity and other beam will be reflected, both beams keep their spatial shapes. In this case, the cavity acts like a polarized beam splitter. Besides, the transmitting beam can be selected at your will, the splitting efficiency can reach unity if the cavity is lossless and it completely matches the beam. Furthermore, beams carry multi-OAMs can also be split by cascading ring cavities.

  8. Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities

    PubMed Central

    Liberal, Iñigo; Engheta, Nader

    2016-01-01

    Controlling the emission and interaction properties of quantum emitters (QEs) embedded within an optical cavity is a key technique in engineering light-matter interactions at the nanoscale, as well as in the development of quantum information processing. State-of-the-art optical cavities are based on high quality factor photonic crystals and dielectric resonators. However, wealthier responses might be attainable with cavities carved in more exotic materials. We theoretically investigate the emission and interaction properties of QEs embedded in open epsilon-near-zero (ENZ) cavities. Using analytical methods and numerical simulations, we demonstrate that open ENZ cavities present the unique property of supporting nonradiating modes independently of the geometry of the external boundary of the cavity (shape, size, topology, etc.). Moreover, the possibility of switching between radiating and nonradiating modes enables a dynamic control of the emission by, and the interaction between, QEs. These phenomena provide unprecedented degrees of freedom in controlling and trapping fields within optical cavities, as well as in the design of cavity opto- and acoustomechanical systems. PMID:27819047

  9. Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities.

    PubMed

    Liberal, Iñigo; Engheta, Nader

    2016-10-01

    Controlling the emission and interaction properties of quantum emitters (QEs) embedded within an optical cavity is a key technique in engineering light-matter interactions at the nanoscale, as well as in the development of quantum information processing. State-of-the-art optical cavities are based on high quality factor photonic crystals and dielectric resonators. However, wealthier responses might be attainable with cavities carved in more exotic materials. We theoretically investigate the emission and interaction properties of QEs embedded in open epsilon-near-zero (ENZ) cavities. Using analytical methods and numerical simulations, we demonstrate that open ENZ cavities present the unique property of supporting nonradiating modes independently of the geometry of the external boundary of the cavity (shape, size, topology, etc.). Moreover, the possibility of switching between radiating and nonradiating modes enables a dynamic control of the emission by, and the interaction between, QEs. These phenomena provide unprecedented degrees of freedom in controlling and trapping fields within optical cavities, as well as in the design of cavity opto- and acoustomechanical systems.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kılıç, Emre, E-mail: emre.kilic@tum.de; Eibert, Thomas F.

    An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems.more » Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained.« less

  11. A stochastic perturbation method to generate inflow turbulence in large-eddy simulation models: Application to neutrally stratified atmospheric boundary layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muñoz-Esparza, D.; Kosović, B.; Beeck, J. van

    2015-03-15

    Despite the variety of existing methods, efficient generation of turbulent inflow conditions for large-eddy simulation (LES) models remains a challenging and active research area. Herein, we extend our previous research on the cell perturbation method, which uses a novel stochastic approach based upon finite amplitude perturbations of the potential temperature field applied within a region near the inflow boundaries of the LES domain [Muñoz-Esparza et al., “Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models,” Boundary-Layer Meteorol., 153, 409–440 (2014)]. The objective was twofold: (i) to identify the governing parameters of the method and their optimummore » values and (ii) to generalize the results over a broad range of atmospheric large-scale forcing conditions, U{sub g} = 5 − 25 m s{sup −1}, where U{sub g} is the geostrophic wind. We identified the perturbation Eckert number, Ec=U{sub g}{sup 2}/ρc{sub p}θ{sup ~}{sub pm}, to be the parameter governing the flow transition to turbulence in neutrally stratified boundary layers. Here, θ{sup ~}{sub pm} is the maximum perturbation amplitude applied, c{sub p} is the specific heat capacity at constant pressure, and ρ is the density. The optimal Eckert number was found for nonlinear perturbations allowed by Ec ≈ 0.16, which instigate formation of hairpin-like vortices that most rapidly transition to a developed turbulent state. Larger Ec numbers (linear small-amplitude perturbations) result in streaky structures requiring larger fetches to reach the quasi-equilibrium solution, while smaller Ec numbers lead to buoyancy dominated perturbations exhibiting difficulties for hairpin-like vortices to emerge. Cell perturbations with wavelengths within the inertial range of three-dimensional turbulence achieved identical quasi-equilibrium values of resolved turbulent kinetic energy, q, and Reynolds-shear stress, . In contrast, large-scale perturbations acting at the production range exhibited reduced levels of , due to the formation of coherent streamwise structures, while q was maintained, requiring larger fetches for the turbulent solution to stabilize. Additionally, the cell perturbation method was compared to a synthetic turbulence generator. The proposed stochastic approach provided at least the same efficiency in developing realistic turbulence, while accelerating the formation of large-scales associated with production of turbulent kinetic energy. Also, it is computationally inexpensive and does not require any turbulent information.« less

  12. Microwave thawing apparatus and method

    DOEpatents

    Fathi, Zakaryae; Lauf, Robert J.; McMillan, April D.

    2004-06-01

    An apparatus for thawing a frozen material includes: a microwave energy source; a microwave applicator which defines a cavity for applying microwave energy from the microwave source to a material to be thawed; and a shielded region which is shielded from the microwave source, the shielded region in fluid communication with the cavity so that thawed material may flow from the cavity into the shielded region.

  13. Molten metal injector system and method

    DOEpatents

    Meyer, Thomas N.; Kinosz, Michael J.; Bigler, Nicolas; Arnaud, Guy

    2003-04-01

    Disclosed is a molten metal injector system including a holder furnace, a casting mold supported above the holder furnace, and a molten metal injector supported from a bottom side of the mold. The holder furnace contains a supply of molten metal having a metal oxide film surface. The bottom side of the mold faces the holder furnace. The mold defines a mold cavity for receiving the molten metal from the holder furnace. The injector projects into the holder furnace and is in fluid communication with the mold cavity. The injector includes a piston positioned within a piston cavity defined by a cylinder for pumping the molten metal upward from the holder furnace and injecting the molten metal into the mold cavity under pressure. The piston and cylinder are at least partially submerged in the molten metal when the holder furnace contains the molten metal. The cylinder further includes a molten metal intake for receiving the molten metal into the piston cavity. The molten metal intake is located below the metal oxide film surface of the molten metal when the holder furnace contains the molten metal. A method of injecting molten metal into a mold cavity of a casting mold is also disclosed.

  14. In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.

    PubMed

    Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko

    2015-03-23

    The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.

  15. LINEAR LATTICE AND TRAJECTORY RECONSTRUCTION AND CORRECTION AT FAST LINEAR ACCELERATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, A.; Edstrom, D.; Halavanau, A.

    2017-07-16

    The low energy part of the FAST linear accelerator based on 1.3 GHz superconducting RF cavities was successfully commissioned [1]. During commissioning, beam based model dependent methods were used to correct linear lattice and trajectory. Lattice correction algorithm is based on analysis of beam shape from profile monitors and trajectory responses to dipole correctors. Trajectory responses to field gradient variations in quadrupoles and phase variations in superconducting RF cavities were used to correct bunch offsets in quadrupoles and accelerating cavities relative to their magnetic axes. Details of used methods and experimental results are presented.

  16. Temperature-insensitive vertical-cavity surface-emitting lasers and method for fabrication thereof

    DOEpatents

    Chow, W.W.; Choquette, K.D.; Gourley, P.L.

    1998-01-27

    A temperature-insensitive vertical-cavity surface-emitting laser (VCSEL) and method for fabrication thereof are disclosed. The temperature-insensitive VCSEL comprises a quantum-well active region within a resonant cavity, the active region having a gain spectrum with a high-order subband (n {>=} 2) contribution thereto for broadening and flattening the gain spectrum, thereby substantially reducing any variation in operating characteristics of the VCSEL over a temperature range of interest. The method for forming the temperature-insensitive VCSEL comprises the steps of providing a substrate and forming a plurality of layers thereon for providing first and second distributed Bragg reflector (DBR) mirror stacks with an active region sandwiched therebetween, the active region including at least one quantum-well layer providing a gain spectrum having a high-order subband (n {>=} 2) gain contribution, and the DBR mirror stacks having predetermined layer compositions and thicknesses for providing a cavity resonance within a predetermined wavelength range substantially overlapping the gain spectrum. 12 figs.

  17. Evaluation of cavity size, kind, and filling technique of composite shrinkage by finite element.

    PubMed

    Jafari, Toloo; Alaghehmad, Homayoon; Moodi, Ehsan

    2018-01-01

    Cavity preparation reduces the rigidity of tooth and its resistance to deformation. The purpose of this study was to evaluate the dimensional changes of the repaired teeth using two types of light cure composite and two methods of incremental and bulk filling by the use of finite element method. In this computerized in vitro experimental study, an intact maxillary premolar was scanned using cone beam computed tomography instrument (SCANORA, Switzerland), then each section of tooth image was transmitted to Ansys software using AUTOCAD. Then, eight sizes of cavity preparations and two methods of restoration (bulk and incremental) using two different types of composite resin materials (Heliomolar, Brilliant) were proposed on software and analysis was completed with Ansys software. Dimensional change increased by widening and deepening of the cavities. It was also increased using Brilliant composite resin and incremental filling technique. Increase in depth and type of filling technique has the greatest role of dimensional change after curing, but the type of composite resin does not have a significant role.

  18. Temperature-insensitive vertical-cavity surface-emitting lasers and method for fabrication thereof

    DOEpatents

    Chow, Weng W.; Choquette, Kent D.; Gourley, Paul L.

    1998-01-01

    A temperature-insensitive vertical-cavity surface-emitting laser (VCSEL) and method for fabrication thereof. The temperature-insensitive VCSEL comprises a quantum-well active region within a resonant cavity, the active region having a gain spectrum with a high-order subband (n.gtoreq.2) contribution thereto for broadening and flattening the gain spectrum, thereby substantially reducing any variation in operating characteristics of the VCSEL over a temperature range of interest. The method for forming the temperature-insensitive VCSEL comprises the steps of providing a substrate and forming a plurality of layers thereon for providing first and second distributed Bragg reflector (DBR) mirror stacks with an active region sandwiched therebetween, the active region including at least one quantum-well layer providing a gain spectrum having a high-order subband (n.gtoreq.2) gain contribution, and the DBR mirror stacks having predetermined layer compositions and thicknesses for providing a cavity resonance within a predetermined wavelength range substantially overlapping the gain spectrum.

  19. Detection of hazardous cavities with combined geophysical methods

    NASA Astrophysics Data System (ADS)

    Hegymegi, Cs.; Nyari, Zs.; Pattantyus-Abraham, M.

    2003-04-01

    Unknown near-surface cavities often cause problems for municipal communities all over the world. This is the situation in Hungary in many towns and villages, too. Inhabitants and owners of real estates (houses, cottages, lands) are responsible for the safety and stability of their properties. The safety of public sites belongs to the local municipal community. Both (the owner and the community) are interested in preventing accidents. Near-surface cavities (unknown caves or earlier built and forgotten cellars) usually can be easily detected by surface geophysical methods. Traditional and recently developed measuring techniques in seismics, geoelectrics and georadar are suitable for economical investigation of hazardous, potentially collapsing cavities, prior to excavation and reinforcement. This poster will show some example for detection of cellars and caves being dangerous for civil population because of possible collapse under public sites (road, yard, playground, agricultural territory, etc.). The applied and presented methods are ground penetrating radar, seismic surface tomography and analysis of single traces, geoelectric 2D and 3D resistivity profiling. Technology and processing procedure will be presented.

  20. Magnetic imager and method

    DOEpatents

    Powell, J.; Reich, M.; Danby, G.

    1997-07-22

    A magnetic imager includes a generator for practicing a method of applying a background magnetic field over a concealed object, with the object being effective to locally perturb the background field. The imager also includes a sensor for measuring perturbations of the background field to detect the object. In one embodiment, the background field is applied quasi-statically. And, the magnitude or rate of change of the perturbations may be measured for determining location, size, and/or condition of the object. 25 figs.

  1. Performance comparison of supersonic ejectors with different motive gas injection schemes applicable for flowing medium gas laser

    NASA Astrophysics Data System (ADS)

    Singhal, G.; Subbarao, P. M. V.; Mainuddin; Tyagi, R. K.; Dawar, A. L.

    2017-05-01

    A class of flowing medium gas lasers with low generator pressures employ supersonic flows with low cavity pressure and are primarily categorized as high throughput systems capable of being scaled up to MW class. These include; Chemical Oxygen Iodine Laser (COIL) and Hydrogen (Deuterium) Fluoride (HF/DF). The practicability of such laser systems for various applications is enhanced by exhausting the effluents directly to ambient atmosphere. Consequently, ejector based pressure recovery forms a potent configuration for open cycle operation. Conventionally these gas laser systems require at least two ejector stages with low pressure stage being more critical, since it directly entrains the laser media, and the ensuing perturbation of cavity flow, if any, may affect laser operation. Hence, the choice of plausible motive gas injection schemes viz., peripheral or central is a fluid dynamic issue of interest, and a parametric experimental performance comparison would be beneficial. Thus, the focus is to experimentally characterize the effect of variation in motive gas supply pressure, entrainment ratio, back pressure conditions, nozzle injection position operated together with a COIL device and discern the reasons for the behavior.

  2. Three-dimensionality development inside standard parallelepipedic lid-driven cavities at /Re=1000

    NASA Astrophysics Data System (ADS)

    Migeon, C.; Pineau, G.; Texier, A.

    2003-04-01

    This paper considers the problem of the time-dependent laminar incompressible flow motion within parallelepipedic cavities in which one wall moves with uniform velocity after an impulsive start using a particle-streak and a dye-emission techniques. Of particular concern is the examination of the spanwise structures of the flow in view to point out how three-dimensionality arises and develops with time for a Reynolds number of 1000. For this purpose, attention is focused on the spanwise currents, the end-wall corner vortices and the structures resulting from the centrifugal instability. Among others, the study clearly shows the scenario of propagation of the spanwise currents by giving quantitative information on their velocity and on the time from which a given cross-plane becomes affected by such a 3-D perturbation. Furthermore, the numerous visualizations reveal the existence of only one corner-vortex on each end-wall; this vortex is quasi-toroidal shaped. Finally, concerning flow instability, the present results show that no well-formed counter-rotating vortices emerge for /Re=1000 during the start-up phase contrary to what was asserted so far. However, two successive initial phases of this instability development are revealed for the first time.

  3. A critical evaluation of perturbation theories by Monte Carlo simulation of the first four perturbation terms in a Helmholtz energy expansion for the Lennard-Jones fluid

    NASA Astrophysics Data System (ADS)

    van Westen, Thijs; Gross, Joachim

    2017-07-01

    The Helmholtz energy of a fluid interacting by a Lennard-Jones pair potential is expanded in a perturbation series. Both the methods of Barker-Henderson (BH) and of Weeks-Chandler-Andersen (WCA) are evaluated for the division of the intermolecular potential into reference and perturbation parts. The first four perturbation terms are evaluated for various densities and temperatures (in the ranges ρ*=0 -1.5 and T*=0.5 -12 ) using Monte Carlo simulations in the canonical ensemble. The simulation results are used to test several approximate theoretical methods for describing perturbation terms or for developing an approximate infinite order perturbation series. Additionally, the simulations serve as a basis for developing fully analytical third order BH and WCA perturbation theories. The development of analytical theories allows (1) a careful comparison between the BH and WCA formalisms, and (2) a systematic examination of the effect of higher-order perturbation terms on calculated thermodynamic properties of fluids. Properties included in the comparison are supercritical thermodynamic properties (pressure, internal energy, and chemical potential), vapor-liquid phase equilibria, second virial coefficients, and heat capacities. For all properties studied, we find a systematically improved description upon using a higher-order perturbation theory. A result of particular relevance is that a third order perturbation theory is capable of providing a quantitative description of second virial coefficients to temperatures as low as the triple-point of the Lennard-Jones fluid. We find no reason to prefer the WCA formalism over the BH formalism.

  4. Perturbation theory in light-cone quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langnau, A.

    1992-01-01

    A thorough investigation of light-cone properties which are characteristic for higher dimensions is very important. The easiest way of addressing these issues is by analyzing the perturbative structure of light-cone field theories first. Perturbative studies cannot be substituted for an analysis of problems related to a nonperturbative approach. However, in order to lay down groundwork for upcoming nonperturbative studies, it is indispensable to validate the renormalization methods at the perturbative level, i.e., to gain control over the perturbative treatment first. A clear understanding of divergences in perturbation theory, as well as their numerical treatment, is a necessary first step towardsmore » formulating such a program. The first objective of this dissertation is to clarify this issue, at least in second and fourth-order in perturbation theory. The work in this dissertation can provide guidance for the choice of counterterms in Discrete Light-Cone Quantization or the Tamm-Dancoff approach. A second objective of this work is the study of light-cone perturbation theory as a competitive tool for conducting perturbative Feynman diagram calculations. Feynman perturbation theory has become the most practical tool for computing cross sections in high energy physics and other physical properties of field theory. Although this standard covariant method has been applied to a great range of problems, computations beyond one-loop corrections are very difficult. Because of the algebraic complexity of the Feynman calculations in higher-order perturbation theory, it is desirable to automatize Feynman diagram calculations so that algebraic manipulation programs can carry out almost the entire calculation. This thesis presents a step in this direction. The technique we are elaborating on here is known as light-cone perturbation theory.« less

  5. Resonant frequency calculations using a hybrid perturbation-Galerkin technique

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1991-01-01

    A two-step hybrid perturbation Galerkin technique is applied to the problem of determining the resonant frequencies of one or several degree of freedom nonlinear systems involving a parameter. In one step, the Lindstedt-Poincare method is used to determine perturbation solutions which are formally valid about one or more special values of the parameter (e.g., for large or small values of the parameter). In step two, a subset of the perturbation coordinate functions determined in step one is used in Galerkin type approximation. The technique is illustrated for several one degree of freedom systems, including the Duffing and van der Pol oscillators, as well as for the compound pendulum. For all of the examples considered, it is shown that the frequencies obtained by the hybrid technique using only a few terms from the perturbation solutions are significantly more accurate than the perturbation results on which they are based, and they compare very well with frequencies obtained by purely numerical methods.

  6. The Library of Integrated Network-Based Cellular Signatures NIH Program: System-Level Cataloging of Human Cells Response to Perturbations.

    PubMed

    Keenan, Alexandra B; Jenkins, Sherry L; Jagodnik, Kathleen M; Koplev, Simon; He, Edward; Torre, Denis; Wang, Zichen; Dohlman, Anders B; Silverstein, Moshe C; Lachmann, Alexander; Kuleshov, Maxim V; Ma'ayan, Avi; Stathias, Vasileios; Terryn, Raymond; Cooper, Daniel; Forlin, Michele; Koleti, Amar; Vidovic, Dusica; Chung, Caty; Schürer, Stephan C; Vasiliauskas, Jouzas; Pilarczyk, Marcin; Shamsaei, Behrouz; Fazel, Mehdi; Ren, Yan; Niu, Wen; Clark, Nicholas A; White, Shana; Mahi, Naim; Zhang, Lixia; Kouril, Michal; Reichard, John F; Sivaganesan, Siva; Medvedovic, Mario; Meller, Jaroslaw; Koch, Rick J; Birtwistle, Marc R; Iyengar, Ravi; Sobie, Eric A; Azeloglu, Evren U; Kaye, Julia; Osterloh, Jeannette; Haston, Kelly; Kalra, Jaslin; Finkbiener, Steve; Li, Jonathan; Milani, Pamela; Adam, Miriam; Escalante-Chong, Renan; Sachs, Karen; Lenail, Alex; Ramamoorthy, Divya; Fraenkel, Ernest; Daigle, Gavin; Hussain, Uzma; Coye, Alyssa; Rothstein, Jeffrey; Sareen, Dhruv; Ornelas, Loren; Banuelos, Maria; Mandefro, Berhan; Ho, Ritchie; Svendsen, Clive N; Lim, Ryan G; Stocksdale, Jennifer; Casale, Malcolm S; Thompson, Terri G; Wu, Jie; Thompson, Leslie M; Dardov, Victoria; Venkatraman, Vidya; Matlock, Andrea; Van Eyk, Jennifer E; Jaffe, Jacob D; Papanastasiou, Malvina; Subramanian, Aravind; Golub, Todd R; Erickson, Sean D; Fallahi-Sichani, Mohammad; Hafner, Marc; Gray, Nathanael S; Lin, Jia-Ren; Mills, Caitlin E; Muhlich, Jeremy L; Niepel, Mario; Shamu, Caroline E; Williams, Elizabeth H; Wrobel, David; Sorger, Peter K; Heiser, Laura M; Gray, Joe W; Korkola, James E; Mills, Gordon B; LaBarge, Mark; Feiler, Heidi S; Dane, Mark A; Bucher, Elmar; Nederlof, Michel; Sudar, Damir; Gross, Sean; Kilburn, David F; Smith, Rebecca; Devlin, Kaylyn; Margolis, Ron; Derr, Leslie; Lee, Albert; Pillai, Ajay

    2018-01-24

    The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program that catalogs how human cells globally respond to chemical, genetic, and disease perturbations. Resources generated by LINCS include experimental and computational methods, visualization tools, molecular and imaging data, and signatures. By assembling an integrated picture of the range of responses of human cells exposed to many perturbations, the LINCS program aims to better understand human disease and to advance the development of new therapies. Perturbations under study include drugs, genetic perturbations, tissue micro-environments, antibodies, and disease-causing mutations. Responses to perturbations are measured by transcript profiling, mass spectrometry, cell imaging, and biochemical methods, among other assays. The LINCS program focuses on cellular physiology shared among tissues and cell types relevant to an array of diseases, including cancer, heart disease, and neurodegenerative disorders. This Perspective describes LINCS technologies, datasets, tools, and approaches to data accessibility and reusability. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Automated analysis of whole skeletal muscle for muscular atrophy detection of ALS in whole-body CT images: preliminary study

    NASA Astrophysics Data System (ADS)

    Kamiya, Naoki; Ieda, Kosuke; Zhou, Xiangrong; Yamada, Megumi; Kato, Hiroki; Muramatsu, Chisako; Hara, Takeshi; Miyoshi, Toshiharu; Inuzuka, Takashi; Matsuo, Masayuki; Fujita, Hiroshi

    2017-03-01

    Amyotrophic lateral sclerosis (ALS) causes functional disorders such as difficulty in breathing and swallowing through the atrophy of voluntary muscles. ALS in its early stages is difficult to diagnose because of the difficulty in differentiating it from other muscular diseases. In addition, image inspection methods for aggressive diagnosis for ALS have not yet been established. The purpose of this study is to develop an automatic analysis system of the whole skeletal muscle to support the early differential diagnosis of ALS using whole-body CT images. In this study, the muscular atrophy parts including ALS patients are automatically identified by recognizing and segmenting whole skeletal muscle in the preliminary steps. First, the skeleton is identified by its gray value information. Second, the initial area of the body cavity is recognized by the deformation of the thoracic cavity based on the anatomical segmented skeleton. Third, the abdominal cavity boundary is recognized using ABM for precisely recognizing the body cavity. The body cavity is precisely recognized by non-rigid registration method based on the reference points of the abdominal cavity boundary. Fourth, the whole skeletal muscle is recognized by excluding the skeleton, the body cavity, and the subcutaneous fat. Additionally, the areas of muscular atrophy including ALS patients are automatically identified by comparison of the muscle mass. The experiments were carried out for ten cases with abnormality in the skeletal muscle. Global recognition and segmentation of the whole skeletal muscle were well realized in eight cases. Moreover, the areas of muscular atrophy including ALS patients were well identified in the lower limbs. As a result, this study indicated the basic technology to detect the muscle atrophy including ALS. In the future, it will be necessary to consider methods to differentiate other kinds of muscular atrophy as well as the clinical application of this detection method for early ALS detection and examine a large number of cases with stage and disease type.

  8. Development of an efficient procedure for calculating the aerodynamic effects of planform variation

    NASA Technical Reports Server (NTRS)

    Mercer, J. E.; Geller, E. W.

    1981-01-01

    Numerical procedures to compute gradients in aerodynamic loading due to planform shape changes using panel method codes were studied. Two procedures were investigated: one computed the aerodynamic perturbation directly; the other computed the aerodynamic loading on the perturbed planform and on the base planform and then differenced these values to obtain the perturbation in loading. It is indicated that computing the perturbed values directly can not be done satisfactorily without proper aerodynamic representation of the pressure singularity at the leading edge of a thin wing. For the alternative procedure, a technique was developed which saves most of the time-consuming computations from a panel method calculation for the base planform. Using this procedure the perturbed loading can be calculated in about one-tenth the time of that for the base solution.

  9. Structural-change localization and monitoring through a perturbation-based inverse problem.

    PubMed

    Roux, Philippe; Guéguen, Philippe; Baillet, Laurent; Hamze, Alaa

    2014-11-01

    Structural-change detection and characterization, or structural-health monitoring, is generally based on modal analysis, for detection, localization, and quantification of changes in structure. Classical methods combine both variations in frequencies and mode shapes, which require accurate and spatially distributed measurements. In this study, the detection and localization of a local perturbation are assessed by analysis of frequency changes (in the fundamental mode and overtones) that are combined with a perturbation-based linear inverse method and a deconvolution process. This perturbation method is applied first to a bending beam with the change considered as a local perturbation of the Young's modulus, using a one-dimensional finite-element model for modal analysis. Localization is successful, even for extended and multiple changes. In a second step, the method is numerically tested under ambient-noise vibration from the beam support with local changes that are shifted step by step along the beam. The frequency values are revealed using the random decrement technique that is applied to the time-evolving vibrations recorded by one sensor at the free extremity of the beam. Finally, the inversion method is experimentally demonstrated at the laboratory scale with data recorded at the free end of a Plexiglas beam attached to a metallic support.

  10. Transverse-type laser assembly using induced electrical discharge excitation and method

    DOEpatents

    Ault, Earl R.

    1994-01-01

    A transverse-type laser assembly is disclosed herein. This assembly defines a laser cavity containing a vapor or gaseous substance which lases when subjected to specific electrical discharge excitation between a pair of spaced-apart electrodes located within the cavity in order to produce a source of light. An arrangement located entirely outside the laser cavity is provided for inducing a voltage across the electrodes within the cavity sufficient to provide the necessary electrical discharge excitation to cause a vapor substance between the electrodes to lase.

  11. Transverse-type laser assembly using induced electrical discharge excitation and method

    DOEpatents

    Ault, E.R.

    1994-04-19

    A transverse-type laser assembly is disclosed herein. This assembly defines a laser cavity containing a vapor or gaseous substance which lases when subjected to specific electrical discharge excitation between a pair of spaced-apart electrodes located within the cavity in order to produce a source of light. An arrangement located entirely outside the laser cavity is provided for inducing a voltage across the electrodes within the cavity sufficient to provide the necessary electrical discharge excitation to cause a vapor substance between the electrodes to lase. 3 figures.

  12. Thermal-noise-limited higher-order mode locking of a reference cavity

    NASA Astrophysics Data System (ADS)

    Zeng, X. Y.; Ye, Y. X.; Shi, X. H.; Wang, Z. Y.; Deng, K.; Zhang, J.; Lu, Z. H.

    2018-04-01

    Higher-order mode locking has been proposed to reduce the thermal noise limit of reference cavities. By locking a laser to the HG02 mode of a 10-cm long all ULE cavity, and measure its performance with the three-cornered-hat method among three independently stabilized lasers, we demonstrate a thermal noise limited performance of a fractional frequency instability of 4.9E-16. The results match the theoretical models with higher-order optical modes. The achieved laser instability improves the all ULE short cavity results to a new low level.

  13. Explicit Analytical Solution of a Pendulum with Periodically Varying Length

    ERIC Educational Resources Information Center

    Yang, Tianzhi; Fang, Bo; Li, Song; Huang, Wenhu

    2010-01-01

    A pendulum with periodically varying length is an interesting physical system. It has been studied by some researchers using traditional perturbation methods (for example, the averaging method). But due to the limitation of the conventional perturbation methods, the solutions are not valid for long-term prediction of the pendulum. In this paper,…

  14. Electromagnetic scattering and radiation from microstrip patch antennas and spirals residing in a cavity

    NASA Technical Reports Server (NTRS)

    Volakis, J. L.; Gong, J.; Alexanian, A.; Woo, A.

    1992-01-01

    A new hybrid method is presented for the analysis of the scattering and radiation by conformal antennas and arrays comprised of circular or rectangular elements. In addition, calculations for cavity-backed spiral antennas are given. The method employs a finite element formulation within the cavity and the boundary integral (exact boundary condition) for terminating the mesh. By virtue of the finite element discretization, the method has no restrictions on the geometry and composition of the cavity or its termination. Furthermore, because of the convolutional nature of the boundary integral and the inherent sparseness of the finite element matrix, the storage requirement is kept very low at O(n). These unique features of the method have already been exploited in other scattering applications and have permitted the analysis of large-size structures with remarkable efficiency. In this report, we describe the method's formulation and implementation for circular and rectangular patch antennas in different superstrate and substrate configurations which may also include the presence of lumped loads and resistive sheets/cards. Also, various modelling approaches are investigated and implemented for characterizing a variety of feed structures to permit the computation of the input impedance and radiation pattern. Many computational examples for rectangular and circular patch configurations are presented which demonstrate the method's versatility, modeling capability and accuracy.

  15. Guided endodontics: accuracy of a novel method for guided access cavity preparation and root canal location.

    PubMed

    Zehnder, M S; Connert, T; Weiger, R; Krastl, G; Kühl, S

    2016-10-01

    To present a novel method utilizing 3D printed templates to gain guided access to root canals and to evaluate its accuracy in vitro. Sixty extracted human teeth were placed into six maxillary jaw models. Preoperative CBCT scans were matched with intra-oral scans using the coDiagnostix(™) software. Access cavities, sleeves and templates for guidance were virtually planned. Templates were produced by a 3D printer. After access cavity preparation by two operators, a postoperative CBCT scan was superimposed on the virtual planning. Accuracy was measured by calculating the deviation of planned and prepared cavities in three dimensions and angle. Ninety-five per cent confidence intervals were calculated for both operators. All root canals were accessible after cavity preparation with 'Guided Endodontics'. Deviations of planned and prepared access cavities were low with means ranging from 0.16 to 0.21 mm for different aspects at the base of the bur and 0.17-0.47 mm at the tip of the bur. Mean of angle deviation was 1.81°. Overlapping 95% confidence intervals revealed no significant difference between operators. 'Guided Endodontics' allowed an accurate access cavity preparation up to the apical third of the root utilizing printed templates for guidance. All root canals were accessible after preparation. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  16. Pressure Gradient Effects on Hypersonic Cavity Flow Heating

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Alter, Stephen J.; Merski, N. Ronald; Wood, William A.; Prabhu, Ramadas K.

    2006-01-01

    The effect of a pressure gradient on the local heating disturbance of rectangular cavities tested at hypersonic freestream conditions has been globally assessed using the two-color phosphor thermography method. These experiments were conducted in the Langley 31-Inch Mach 10 Tunnel and were initiated in support of the Space Shuttle Return-To-Flight Program. Two blunted-nose test surface geometries were developed, including an expansion plate test surface with nearly constant negative pressure gradient and a flat plate surface with nearly zero pressure gradient. The test surface designs and flow characterizations were performed using two-dimensional laminar computational methods, while the experimental boundary layer state conditions were inferred using the measured heating distributions. Three-dimensional computational predictions of the entire model geometry were used as a check on the design process. Both open-flow and closed-flow cavities were tested on each test surface. The cavity design parameters and the test condition matrix were established using the computational predictions. Preliminary conclusions based on an analysis of only the cavity centerline data indicate that the presence of the pressure gradient did not alter the open cavity heating for laminar-entry/laminar-exit flows, but did raise the average floor heating for closed cavities. The results of these risk-reduction studies will be used to formulate a heating assessment of potential damage scenarios occurring during future Space Shuttle flights.

  17. Pressure Gradient Effects on Hypersonic Cavity Flow Heating

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Alter, Stephen J.; Merski, N. Ronald; Wood, William A.; Prabhu, Ramdas K.

    2007-01-01

    The effect of a pressure gradient on the local heating disturbance of rectangular cavities tested at hypersonic freestream conditions has been globally assessed using the two-color phosphor thermography method. These experiments were conducted in the Langley 31-Inch Mach 10 Tunnel and were initiated in support of the Space Shuttle Return-To-Flight Program. Two blunted-nose test surface geometries were developed, including an expansion plate test surface with nearly constant negative pressure gradient and a flat plate surface with nearly zero pressure gradient. The test surface designs and flow characterizations were performed using two-dimensional laminar computational methods, while the experimental boundary layer state conditions were inferred using the measured heating distributions. Three-dimensional computational predictions of the entire model geometry were used as a check on the design process. Both open-flow and closed-flow cavities were tested on each test surface. The cavity design parameters and the test condition matrix were established using the computational predictions. Preliminary conclusions based on an analysis of only the cavity centerline data indicate that the presence of the pressure gradient did not alter the open cavity heating for laminar-entry/laminar-exit flows, but did raise the average floor heating for closed cavities. The results of these risk-reduction studies will be used to formulate a heating assessment of potential damage scenarios occurring during future Space Shuttle flights.

  18. A novel method to optimize the mode spectrum of the dynamic resonant magnetic perturbation on the J-TEXT tokamak.

    PubMed

    Yi, B; Rao, B; Ding, Y H; Li, M; Xu, H Y; Zhang, M; Zhuang, G; Pan, Y

    2014-11-01

    The dynamic resonant magnetic perturbation (DRMP) system has been developed for the J-TEXT tokamak to study the interaction between the rotating perturbation magnetic field and the plasma. When the DRMP coils are energized by two phase sinusoidal currents with the same frequency, a 2/1 rotating resonant magnetic perturbation component will be generated. But at the same time, a small perturbation component rotating in the opposite direction is also produced because of the control error of the currents. This small component has bad influence on the experiment investigations. Actually, the mode spectrum of the generated DRMP can be optimized with an accurate control of phase difference between the two currents. In this paper, a new phase control method based on a novel all-digital phase-locked loop (ADPLL) is proposed. The proposed method features accurate phase control and flexible phase adjustment. Modeling and analysis of the proposed ADPLL is presented to guide the design of the parameters of the phase controller in order to obtain a better performance. Testing results verify the effectiveness of the ADPLL and validity of the method applying to the DRMP system.

  19. A novel method to optimize the mode spectrum of the dynamic resonant magnetic perturbation on the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Yi, B.; Rao, B.; Ding, Y. H.; Li, M.; Xu, H. Y.; Zhang, M.; Zhuang, G.; Pan, Y.

    2014-11-01

    The dynamic resonant magnetic perturbation (DRMP) system has been developed for the J-TEXT tokamak to study the interaction between the rotating perturbation magnetic field and the plasma. When the DRMP coils are energized by two phase sinusoidal currents with the same frequency, a 2/1 rotating resonant magnetic perturbation component will be generated. But at the same time, a small perturbation component rotating in the opposite direction is also produced because of the control error of the currents. This small component has bad influence on the experiment investigations. Actually, the mode spectrum of the generated DRMP can be optimized with an accurate control of phase difference between the two currents. In this paper, a new phase control method based on a novel all-digital phase-locked loop (ADPLL) is proposed. The proposed method features accurate phase control and flexible phase adjustment. Modeling and analysis of the proposed ADPLL is presented to guide the design of the parameters of the phase controller in order to obtain a better performance. Testing results verify the effectiveness of the ADPLL and validity of the method applying to the DRMP system.

  20. A vibration-insensitive optical cavity and absolute determination of its ultrahigh stability.

    PubMed

    Zhao, Y N; Zhang, J; Stejskal, A; Liu, T; Elman, V; Lu, Z H; Wang, L J

    2009-05-25

    We use the three-cornered-hat method to evaluate the absolute frequency stabilities of three different ultrastable reference cavities, one of which has a vibration-insensitive design that does not even require vibration isolation. An Nd:YAG laser and a diode laser are implemented as light sources. We observe approximately 1 Hz beat note linewidths between all three cavities. The measurement demonstrates that the vibration-insensitive cavity has a good frequency stability over the entire measurement time from 100 ms to 200 s. An absolute, correlation-removed Allan deviation of 1.4 x 10(-15) at s of this cavity is obtained, giving a frequency uncertainty of only 0.44 Hz.

  1. Apparatus and method for laser velocity interferometry

    DOEpatents

    Stanton, Philip L.; Sweatt, William C.; Crump, Jr., O. B.; Bonzon, Lloyd L.

    1993-09-14

    An apparatus and method for laser velocity interferometry employing a fixed interferometer cavity and delay element. The invention permits rapid construction of interferometers that may be operated by those non-skilled in the art, that have high image quality with no drift or loss of contrast, and that have long-term stability even without shock isolation of the cavity.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzmina, M.G.

    The polarized radiation transfer problems for slabs of weakly anisotropic optically active media are considered as the perturbations of the corresponding problems for isotropic ones. The perturbation method is developed for the integral transport equation and the estimate for the total perturbation of the solution due to the anisotropy of the medium is obtained.

  3. Magnetron magnetic priming for rapid startup and noise reduction

    NASA Astrophysics Data System (ADS)

    Neculaes, Vasile Bogdan

    The magnetron is a vacuum electronics crossed-field device: perpendicular electric and magnetic fields determine the electron dynamics. Compactness, efficiency and reliability make magnetrons suitable for a wide range of military and civilian applications: radar, industrial heating, plasma sources, and medical accelerators. The most ubiquitous use of magnetrons is as the microwave power source in microwave ovens, operating at 2.45 GHz and delivering about 800--1000 W. University of Michigan and several other research programs are actively pursuing the development of GW range relativistic magnetrons. This dissertation presents experimental and computational results concerning innovative techniques to improve magnetron noise, startup and mode stability. The DC-operated oven magnetron studies performed at University of Michigan opened new directions by utilizing azimuthally varying magnetic fields (magnetic priming). Magnetic priming for rapid startup in an N-cavity magnetron operating in the pi-mode is based on implementation of an axial magnetic field with N/2 azimuthal periods, to prebunch the electrons in the desired number of spokes (N/2). Experiments with magnetic priming on DC oven magnetrons using perturbing magnets added on the upper existing magnet of the magnetron showed rapid startup (pi-mode oscillation observed at low currents) and up to 35 dB noise reduction (close to the carrier and in sidebands). A complex 3-dimensional (3D) ICEPIC computational model recovered the oven magnetron magnetic priming experimental results: rapid electron prebunching due to presence of perturbing magnets, fast startup and tendency towards a lower noise state. Simulations in 6-cavity relativistic magnetrons show that ideal magnetic priming causes fast startup, rapid mode growth (with radial electron diffusion) and suppression of mode competition. A highly idealized model (planar, crossed-field, non-resonant, non-relativistic structure) using single particle dynamics showed that magnetic priming causes rapid electron prebunching, specific symmetries in the electron cloud and an orbital parametric instability (radial exponential growth).

  4. Design, synthesis and evaluation of a potent substrate analog inhibitor identified by scanning Ala/Phe mutagenesis, mimicking substrate co-evolution, against multidrug-resistant HIV-1 protease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yedidi, Ravikiran S.; Muhuhi, Joseck M.; Liu, Zhigang

    Highlights: •Inhibitors against MDR HIV-1 protease were designed, synthesized and evaluated. •Lead peptide (6a) showed potent inhibition (IC{sub 50}: 4.4 nM) of MDR HIV-1 protease. •(6a) Showed favorable binding isotherms against NL4-3 and MDR proteases. •(6a) Induced perturbations in the {sup 15}N-HSQC spectrum of MDR HIV-1 protease. •Molecular modeling suggested that (6a) may induce total flap closure inMDR protease. -- Abstract: Multidrug-resistant (MDR) clinical isolate-769, human immunodeficiency virus type-1 (HIV-1) protease (PDB ID: (1TW7)), was shown to exhibit wide-open flaps and an expanded active site cavity, causing loss of contacts with protease inhibitors. In the current study, the expanded activemore » site cavity of MDR769 HIV-1 protease was screened with a series of peptide-inhibitors that were designed to mimic the natural substrate cleavage site, capsid/p2. Scanning Ala/Phe chemical mutagenesis approach was incorporated into the design of the peptide series to mimic the substrate co-evolution. Among the peptides synthesized and evaluated, a lead peptide (6a) with potent activity (IC{sub 50}: 4.4 nM) was identified against the MDR769 HIV-1 protease. Isothermal titration calorimetry data showed favorable binding profile for 6aagainst both wild type and MDR769 HIV-1 protease variants. Nuclear magnetic resonance spectrum of {sup 15}N-labeled MDR769 HIV-1 protease in complex with 6a showed some major perturbations in chemical shift, supporting the peptide induced conformational changes in protease. Modeling analysis revealed multiple contacts between 6a and MDR769 HIV-1 protease. The lead peptide-inhibitor, 6a, with high potency and good binding profile can be used as the basis for developing potent small molecule inhibitors against MDR variants of HIV.« less

  5. ION-STABILIZED ELECTRON INDUCTION ACCELERATOR

    DOEpatents

    Finkelstein, D.

    1960-03-22

    A method and apparatus for establishing an ion-stabilized self-focusing relativistic electron beam from a plasma are reported. A plasma is introduced into a specially designed cavity by plasma guns, and a magnetic field satisfying betatron conditions is produced in the cavity by currents flowing in the highly conductive, non-magnetic surface of the cavity. This field forms the electron beam by induction from the plasma.

  6. Calculation of the radiative heat exchange in a conical cavity of complex configuration with an absorptive medium

    NASA Technical Reports Server (NTRS)

    Surinov, Y. A.; Fedyanin, V. E.

    1975-01-01

    The generalized zonal method is used to calculate the distribution of the temperature factor on the lateral surface of a conical cavity of complex configuration (a Laval nozzle) containing an absorptive medium. The highest values of the radiation density occur on the converging part of the lateral surface of the complex conical cavity (Laval nozzle).

  7. Accuracy of volumetric measurement of simulated root resorption lacunas based on cone beam computed tomography.

    PubMed

    Wang, Y; He, S; Guo, Y; Wang, S; Chen, S

    2013-08-01

    To evaluate the accuracy of volumetric measurement of simulated root resorption cavities based on cone beam computed tomography (CBCT), in comparison with that of Micro-computed tomography (Micro-CT) which served as the reference. The State Key Laboratory of Oral Diseases at Sichuan University. Thirty-two bovine teeth were included for standardized CBCT scanning and Micro-CT scanning before and after the simulation of different degrees of root resorption. The teeth were divided into three groups according to the depths of the root resorption cavity (group 1: 0.15, 0.2, 0.3 mm; group 2: 0.6, 1.0 mm; group 3: 1.5, 2.0, 3.0 mm). Each depth included four specimens. Differences in tooth volume before and after simulated root resorption were then calculated from CBCT and Micro-CT scans, respectively. The overall between-method agreement of the measurements was evaluated using the concordance correlation coefficient (CCC). For the first group, the average volume of resorption cavity was 1.07 mm(3) , and the between-method agreement of measurement for the volume changes was low (CCC = 0.098). For the second and third groups, the average volumes of resorption cavities were 3.47 and 6.73 mm(3) respectively, and the between-method agreements were good (CCC = 0.828 and 0.895, respectively). The accuracy of 3-D quantitative volumetric measurement of simulated root resorption based on CBCT was fairly good in detecting simulated resorption cavities larger than 3.47 mm(3), while it was not sufficient for measuring resorption cavities smaller than 1.07 mm(3) . This method could be applied in future studies of root resorption although further studies are required to improve its accuracy. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. A collision history-based approach to Sensitivity/Perturbation calculations in the continuous energy Monte Carlo code SERPENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giuseppe Palmiotti

    In this work, the implementation of a collision history-based approach to sensitivity/perturbation calculations in the Monte Carlo code SERPENT is discussed. The proposed methods allow the calculation of the eects of nuclear data perturbation on several response functions: the eective multiplication factor, reaction rate ratios and bilinear ratios (e.g., eective kinetics parameters). SERPENT results are compared to ERANOS and TSUNAMI Generalized Perturbation Theory calculations for two fast metallic systems and for a PWR pin-cell benchmark. New methods for the calculation of sensitivities to angular scattering distributions are also presented, which adopts fully continuous (in energy and angle) Monte Carlo estimators.

  9. Magnetic imager and method

    DOEpatents

    Powell, James; Reich, Morris; Danby, Gordon

    1997-07-22

    A magnetic imager 10 includes a generator 18 for practicing a method of applying a background magnetic field over a concealed object, with the object being effective to locally perturb the background field. The imager 10 also includes a sensor 20 for measuring perturbations of the background field to detect the object. In one embodiment, the background field is applied quasi-statically. And, the magnitude or rate of change of the perturbations may be measured for determining location, size, and/or condition of the object.

  10. Cosmological perturbations in the DGP braneworld: Numeric solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardoso, Antonio; Koyama, Kazuya; Silva, Fabio P.

    2008-04-15

    We solve for the behavior of cosmological perturbations in the Dvali-Gabadadze-Porrati (DGP) braneworld model using a new numerical method. Unlike some other approaches in the literature, our method uses no approximations other than linear theory and is valid on large scales. We examine the behavior of late-universe density perturbations for both the self-accelerating and normal branches of DGP cosmology. Our numerical results can form the basis of a detailed comparison between the DGP model and cosmological observations.

  11. Kato expansion in quantum canonical perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolaev, Andrey, E-mail: Andrey.Nikolaev@rdtex.ru

    2016-06-15

    This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson’s ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.

  12. Finite-analytic numerical solution of heat transfer in two-dimensional cavity flow

    NASA Technical Reports Server (NTRS)

    Chen, C.-J.; Naseri-Neshat, H.; Ho, K.-S.

    1981-01-01

    Heat transfer in cavity flow is numerically analyzed by a new numerical method called the finite-analytic method. The basic idea of the finite-analytic method is the incorporation of local analytic solutions in the numerical solutions of linear or nonlinear partial differential equations. In the present investigation, the local analytic solutions for temperature, stream function, and vorticity distributions are derived. When the local analytic solution is evaluated at a given nodal point, it gives an algebraic relationship between a nodal value in a subregion and its neighboring nodal points. A system of algebraic equations is solved to provide the numerical solution of the problem. The finite-analytic method is used to solve heat transfer in the cavity flow at high Reynolds number (1000) for Prandtl numbers of 0.1, 1, and 10.

  13. MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry

    Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign,more » trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R{sub g}, where R{sub g} = 2GM/c{sup 2} is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations.« less

  14. Continuous magnetic flux pump

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A method and means for altering the intensity of a magnetic field by transposing flux from one location to the location desired fro the magnetic field are examined. The device described includes a pair of communicating cavities formed in a block of superconducting material, is dimensioned to be insertable into one of the cavities and to substantially fill the cavity. Magnetic flux is first trapped in the cavities by establishing a magnetic field while the superconducting material is above the critical temperature at which it goes superconducting. Thereafter, the temperature of the material is reduced below the critical value, and then the exciting magnetic field may be removed. By varying the ratios of the areas of the two cavities, it is possible to produce a field having much greater flux density in the second, smaller cavity, into which the flux transposed.

  15. Nucleate boiling performance evaluation of cavities at mesoscale level

    DOE PAGES

    Mu, Yu-Tong; Chen, Li; He, Ya-Ling; ...

    2016-09-29

    Nucleate boiling heat transfer (NBHT) from enhanced structures is an effective way to dissipate high heat flux. Here, a 3D multi-relaxation-time (MRT) phase-change lattice Boltzmann method in conjunction with conjugated heat transfer treatment is proposed and then applied to the study of cavities behaviours for nucleation on roughened surfaces for an entire ebullition cycle without introducing any artificial disturbance. The bubble departure diameter, departure frequency and total boiling heat transfer rate are also explored. We demonstrate that the cavity shapes show significant influence on the features of NBHT. The total heat transfer rate increases with the cavity mouth and cavitymore » base area while decreases with the increase in cavity bottom wall thickness. The cavity with low wetting can enhance the heat transfer and improve the bubble release frequency.« less

  16. QED in a time-dependent double cavity and creation of entanglement between noninteracting atoms via quantum eraser technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cirone, Markus A.; Rzazewski, Kazimierz; Centrum Fizyki Teoretycznej, Polska Akademia Nauk, and College of Science, Al. Lotnikow 32/46, 02-668 Warsaw

    1999-03-11

    We discuss two striking features of quantum mechanics: The concepts of vacuum and of entanglement. We first study the radiation field inside a double cavity (a cavity which contains a reflecting mirror). If the mirror is rapidly removed, peculiar quantum phenomena, such as photon creation from vacuum and squeezing, occur. We discuss then a gedanken experiment which employs the double cavity to create entanglement between two atoms. The atoms cross the double cavity and interact with its two independent radiation fields. After the atoms leave the cavity, the mirror is suddenly removed. Measurement of the radiation field inside the cavitymore » can give rise to entanglement between the atoms. The method can be extended to an arbitrary number of atoms, providing thus an N-particle GHZ state.« less

  17. Design and cold test of S-BAND cavity BPM for HLS

    NASA Astrophysics Data System (ADS)

    Luo, Qing; Sun, BaoGen; Jia, QiKa; He, DuoHui; Fang, Jia

    2011-12-01

    An S-band cavity BPM is designed for a new injector in National Synchrotron Radiation Laboratory. A re-entrant position cavity is tuned to the TM110 mode as position cavity. Cut-through waveguides are used as pickups to suppress the monopole signal. Theoretical resolution of this design is 31 nm. A prototype cavity BPM system is manufactured for off-line cold tests. The wire scanning method is used to calibrate the BPM and estimate the performance of the on-line BPM system. A cross-talk problem has been detected during the cold test. Racetrack cavity BPM design can be used to suppress the cross-talk. With the nonlinear effect being ignored, transform matrix can be used to correct cross-talk. Analysis of cold test results shows that the position resolution of prototype BPM is better than 3 μm.

  18. Modulation of protein function by exogenous ligands in protein cavities: CO binding to a myoglobin cavity mutant containing unnatural proximal ligands.

    PubMed

    Decatur, S M; DePillis, G D; Boxer, S G

    1996-04-02

    A variety of heterocyclic ligands can be exchanged into the proximal cavity of sperm whale myoglobin mutant H93G, providing a simple method for introduction of the equivalent of unnatural amino acid side chains into a functionally critical location in this protein. These modified proteins bind CO on the distal side. 1H NMR data on H93G(Im)CO, where Im is imidazole, demonstrate that the structure of the distal heme pocket in H93G(Im)CO is very similar to that of wild type; thus, the effects of the proximal ligand's properties on CO binding can be studied with minimal perturbation of distal pocket structure. The exogenous proximal ligands used in this study include imidazole (Im), 4-methylimidazole (4-MeIm), 4-bromoimidazole (4-BrIm), N-methylimidazole (N-MeIm), pyridine (Pyr), and 3-fluoropyridine (3-FPyr). Substitution of the proximal ligand is found to produce substantial changes in the CO on and off rates, the equilibrium binding constant, and the vibrational stretch frequency of CO. Many of the changes are as large as those reported for distal pocket mutants prepared by site-directed mutagenesis. The ability to systematically vary the nature of the proximal ligand is exploited to test the effects of particular properties of the proximal ligand on CO binding. For example, 4-MeIm and 4-BrIm are similar in size and shape but differ significantly in pKa. The same relationship is true for Pyr and 3-FPyr. By comparison of the IR spectra and CO recombination kinetics of these complexes, the effects of proximal ligand pKa on the CO binding are assessed. Likewise, N-MeIm and 4-MeIm are similar in size and pKa but differ in their ability to hydrogen bond to amino acid residues in the proximal cavity. Comparisons of IR spectra and CO binding kinetics in these complexes reveal that proximal ligand conformation and hydrogen bonding affect the kinetics of CO binding. The mechanism of proximal ligand exchange between solution and the proximal cavity in CO complexes was investigated by obtaining the 19F NMR spectrum of H93G(3-FPyr)CO, whose 19F signal can be observed without interference from resonances of the protein. The proximal ligand is found to exchange within a few seconds by saturation transfer. This exchange rate is about 2 orders of magniture faster than what is observed for the isoelectronic metcyano complex [Decatur, S. M., & Boxer, S. G. (1995) Biochemistry 34, 2122-2129]; in both the ferrous CO and ferric cyano complexes, the proximal ligand exchange rate is independent of ligand concentration. These results suggest that the rate-limiting step in proximal ligand exchange is breakage of the iron-ligand bond, followed by rapid diffusion of the ligand through the protein to bulk solution.

  19. Microleakage in conservative cavities varying the preparation method and surface treatment

    PubMed Central

    ATOUI, Juliana Abdallah; CHINELATTI, Michelle Alexandra; PALMA-DIBB, Regina Guenka; CORONA, Silmara Aparecida Milori

    2010-01-01

    Objective To assess microleakage in conservative class V cavities prepared with aluminum-oxide air abrasion or turbine and restored with self-etching or etch-and-rinse adhesive systems. Material and Methods Forty premolars were randomly assigned to 4 groups (I and II: air abrasion; III and IV: turbine) and class V cavities were prepared on the buccal surfaces. Conditioning approaches were: groups I/III - 37% phosphoric acid; groups II/IV -self-priming etchant (Tyrian-SPe). Cavities were restored with One Step Plus/Filtek Z250. After finishing, specimens were thermocycled, immersed in 50% silver nitrate, and serially sectioned. Microleakage at the occlusal and cervical interfaces was measured in mm and calculated by a software. Data were subjected to ANOVA and Tukey’s test (α=0.05). Results Forty premolars were randomly assigned to 4 groups (I and II: air abrasion; III and IV: turbine) and class V cavities were prepared on the buccal surfaces. Conditioning approaches were: groups I/III - 37% phosphoric acid; groups II/IV -self-priming etchant (Tyrian-SPe). Cavities were restored with One Step Plus/Filtek Z250. After finishing, specimens were thermocycled, immersed in 50% silver nitrate, and serially sectioned. Microleakage at the occlusal and cervical interfaces was measured in mm and calculated by a software. Data were subjected to ANOVA and Tukey’s test (α=0.05). Conclusion Marginal seal of cavities prepared with aluminum-oxide air abrasion was different from that of conventionally prepared cavities, and the etch-and-rinse system promoted higher marginal seal at both enamel and dentin margins. PMID:20835580

  20. A Unified Approach for Solving Nonlinear Regular Perturbation Problems

    ERIC Educational Resources Information Center

    Khuri, S. A.

    2008-01-01

    This article describes a simple alternative unified method of solving nonlinear regular perturbation problems. The procedure is based upon the manipulation of Taylor's approximation for the expansion of the nonlinear term in the perturbed equation. An essential feature of this technique is the relative simplicity used and the associated unified…

  1. Stark effect on an excited hydrogen atom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barratt, C.

    1983-07-01

    The method of degenerate perturbation theory is used to study the dipolar nature of an excited hydrogen atom in an external electric field. The dependence of the atoms perturbed energy levels on the principal and magnetic quantum numbers, n and m, is investigated, along with the perturbed wave functions.

  2. Microwave heating apparatus and method

    DOEpatents

    Johnson, Andrew J.; Petersen, Robert D.; Swanson, Stephen D.

    1990-01-01

    An apparatus is provided for heating and melting materials using microwave energy, and for permitting them to solidify. The apparatus includes a microwave energy source, a resonant cavity having an opening in its floor, a microwave energy choke encompassing the opening in the floor of the cavity, a metal container to hold the materials to be heated and melted, a turntable, and a lift-table. During operation, the combined action of the turntable and the lift-table position the metal container so that the top of the container is level with the floor of the cavity, is in substantial registration with the floor opening, and is encompassed by the microwave energy choke; thus, during operation, the interior of the container defines part of the resonant cavity. Additionally, a screw feeder, extending into the cavity and sheltered from microwave energy by a conveyor choke, may convey the materials to be heated to the container. Also, preferably, the floor of the resonant cavity may include perforatins, so that the offgases and dust generated in the apparatus may be removed from the resonant cavity by pulling outside air between the container choke and the exterior wall of the container into the resonant cavity and out from the cavity through the perforations.

  3. High reflected cubic cavity as long path absorption cell for infrared gas sensing

    NASA Astrophysics Data System (ADS)

    Yu, Jia; Gao, Qiang; Zhang, Zhiguo

    2014-10-01

    One direct and efficient method to improve the sensitivity of infrared gas sensors is to increase the optical path length of gas cells according to Beer-Lambert Law. In this paper, cubic shaped cavities with high reflected inner coating as novel long path absorption cells for infrared gas sensing were developed. The effective optical path length (EOPL) for a single cubic cavity and tandem cubic cavities were investigated based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) measuring oxygen P11 line at 763 nm. The law of EOPL of a diffuse cubic cavity in relation with the reflectivity of the coating, the port fraction and side length of the cavity was obtained. Experimental results manifested an increase of EOPL for tandem diffuse cubic cavities as the decrease of port fraction of the connecting aperture f', and the EOPL equaled to the sum of that of two single cubic cavities at f'<0.01. The EOPL spectra at infrared wavelength range for different inner coatings including high diffuse coatings and high reflected metallic thin film coatings were deduced.

  4. Experimental studies on thermodynamic effects of developed cavitation

    NASA Technical Reports Server (NTRS)

    Ruggeri, R. S.

    1974-01-01

    A method for predicting thermodynamic effects of cavitation (changes in cavity pressure relative to stream vapor pressure) is presented. The prediction method accounts for changes in liquid, liquid temperature, flow velocity, and body scale. Both theoretical and experimental studies used in formulating the method are discussed. The prediction method provided good agreement between predicted and experimental results for geometrically scaled venturis handling four different liquids of widely diverse physical properties. Use of the method requires geometric similarity of the body and cavitated region and a known reference cavity-pressure depression at one operating condition.

  5. Cylindrical dust acoustic solitary waves with transverse perturbations in quantum dusty plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mushtaq, A.

    2007-11-15

    The nonlinear quantum dust acoustic waves with effects of nonplanar cylindrical geometry, quantum corrections, and transverse perturbations are studied. By using the perturbation method, a cylindrical Kadomtsev-Petviashvili equation for dust acoustic waves is derived by incorporating quantum-mechanical effects. The quantum-mechanical effects via quantum diffraction and quantum statistics, and the role of transverse perturbations in cylindrical geometry on the dynamics of this wave, are studied both analytically and numerically.

  6. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    NASA Astrophysics Data System (ADS)

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2015-02-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. Large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities made from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.

  7. Laser-induced micro-plasmas in air for incoherent broadband cavity-enhanced absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ruth, Albert; Dixneuf, Sophie; Orphal, Johannes

    2016-04-01

    Incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) is an experimentally straightforward absorption method where the intensity of light transmitted by an optically stable (high finesse) cavity is measured. The technique is realized using broadband incoherent sources of radiation and therefore the amount of light transmitted by a cavity consisting of high reflectance mirrors (typically R > 99.9%) can be low. In order to find an alternative to having an incoherent light source outside the cavity, an experiment was devised, where a laser-induced plasma in ambient air was generated inside a quasi-confocal cavity by a high-power femtosecond laser. The emission from the laser-induced plasma was utilized as pulsed broadband light source. The time-dependent spectra of the light leaking from the cavity were compared with those of the laser-induced plasma emission without the cavity. It was found that the light emission was sustained by the cavity despite the initially large optical losses caused by the laser-induced plasma in the cavity. The light sustained by the cavity was used to measure part of the S1 ← S0 absorption spectrum of gaseous azulene at its vapour pressure at room temperature in ambient air, as well as the strongly forbidden γ-band in molecular oxygen (b1Σ(2,0) ← X3Σ(0,0)).

  8. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    DOE PAGES

    Kneisel, P.; Ciovati, G.; Dhakal, P.; ...

    2014-12-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. The large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities mademore » from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of E acc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.« less

  9. Effective emissivities of isothermal blackbody cavities calculated by the Monte Carlo method using the three-component bidirectional reflectance distribution function model.

    PubMed

    Prokhorov, Alexander

    2012-05-01

    This paper proposes a three-component bidirectional reflectance distribution function (3C BRDF) model consisting of diffuse, quasi-specular, and glossy components for calculation of effective emissivities of blackbody cavities and then investigates the properties of the new reflection model. The particle swarm optimization method is applied for fitting a 3C BRDF model to measured BRDFs. The model is incorporated into the Monte Carlo ray-tracing algorithm for isothermal cavities. Finally, the paper compares the results obtained using the 3C model and the conventional specular-diffuse model of reflection.

  10. Additive Manufactured Superconducting Cavities

    NASA Astrophysics Data System (ADS)

    Holland, Eric; Rosen, Yaniv; Woolleet, Nathan; Materise, Nicholas; Voisin, Thomas; Wang, Morris; Mireles, Jorge; Carosi, Gianpaolo; Dubois, Jonathan

    Superconducting radio frequency cavities provide an ultra-low dissipative environment, which has enabled fundamental investigations in quantum mechanics, materials properties, and the search for new particles in and beyond the standard model. However, resonator designs are constrained by limitations in conventional machining techniques. For example, current through a seam is a limiting factor in performance for many waveguide cavities. Development of highly reproducible methods for metallic parts through additive manufacturing, referred to colloquially as 3D printing\\x9D, opens the possibility for novel cavity designs which cannot be implemented through conventional methods. We present preliminary investigations of superconducting cavities made through a selective laser melting process, which compacts a granular powder via a high-power laser according to a digitally defined geometry. Initial work suggests that assuming a loss model and numerically optimizing a geometry to minimize dissipation results in modest improvements in device performance. Furthermore, a subset of titanium alloys, particularly, a titanium, aluminum, vanadium alloy (Ti - 6Al - 4V) exhibits properties indicative of a high kinetic inductance material. This work is supported by LDRD 16-SI-004.

  11. Application of Model Based Parameter Estimation for Fast Frequency Response Calculations of Input Characteristics of Cavity-Backed Aperture Antennas Using Hybrid FEM/MoM Technique

    NASA Technical Reports Server (NTRS)

    Reddy C. J.

    1998-01-01

    Model Based Parameter Estimation (MBPE) is presented in conjunction with the hybrid Finite Element Method (FEM)/Method of Moments (MoM) technique for fast computation of the input characteristics of cavity-backed aperture antennas over a frequency range. The hybrid FENI/MoM technique is used to form an integro-partial- differential equation to compute the electric field distribution of a cavity-backed aperture antenna. In MBPE, the electric field is expanded in a rational function of two polynomials. The coefficients of the rational function are obtained using the frequency derivatives of the integro-partial-differential equation formed by the hybrid FEM/ MoM technique. Using the rational function approximation, the electric field is obtained over a frequency range. Using the electric field at different frequencies, the input characteristics of the antenna are obtained over a wide frequency range. Numerical results for an open coaxial line, probe-fed coaxial cavity and cavity-backed microstrip patch antennas are presented. Good agreement between MBPE and the solutions over individual frequencies is observed.

  12. Characterization of wafer-level bonded hermetic packages using optical leak detection

    NASA Astrophysics Data System (ADS)

    Duan, Ani; Wang, Kaiying; Aasmundtveit, Knut; Hoivik, Nils

    2009-07-01

    For MEMS devices required to be operated in a hermetic environment, one of the main reliability issues is related to the packaging methods applied. In this paper, an optical method for testing low volume hermetic cavities formed by anodic bonding between glass and SOI (silicon on insulator) wafer is presented. Several different cavity-geometry structures have been designed, fabricated and applied to monitor the hermeticity of wafer level anodic bonding. SOI wafer was used as the cap wafer on which the different-geometry structures were fabricated using standard MEMS technology. The test cavities were bonded using SOI wafers to glass wafers at 400C and 1000mbar pressure inside a vacuum bonding chamber. The bonding voltage varies from 200V to 600V. The bonding strength between glass and SOI wafer was mechanically tested using shear tester. The deformation amplitudes of the cavity cap surface were monitored by using an optical interferometer. The hermeticity of the glass-to-SOI wafer level bonding was characterized through observing the surface deformation in a 6 months period in atmospheric environment. We have observed a relatively stable micro vacuum-cavity.

  13. Numerical investigation of the boundary layer separation in chemical oxygen iodine laser

    NASA Astrophysics Data System (ADS)

    Huai, Ying; Jia, Shuqin; Wu, Kenan; Jin, Yuqi; Sang, Fengting

    2017-11-01

    Large eddy simulation is carried out to model the flow process in a supersonic chemical oxygen iodine laser. Unlike the common approaches relying on the tensor representation theory only, the model in the present work is an explicit anisotropy-resolving algebraic Subgrid-scale scalar flux formulation. With an accuracy in capturing the unsteady flow behaviours in the laser. Boundary layer separation initiated by the adverse pressure gradient is identified using Large Eddy Simulation. To quantify the influences of flow boundary layer on the laser performance, the fluid computations coupled with a physical optics loaded cavity model is developed. It has been found that boundary layer separation has a profound effect on the laser outputs due to the introduced shock waves. The F factor of the output beam decreases to 10% of the original one when the boundary transit into turbulence for the setup depicted in the paper. Because the pressure is always greater on the downstream of the boundary layer, there will always be a tendency of boundary separation in the laser. The results inspire designs of the laser to apply positive/passive control methods avoiding the boundary layer perturbation.

  14. Highly accurate pulse-per-second timing distribution over optical fibre network using VCSEL side-mode injection

    NASA Astrophysics Data System (ADS)

    Wassin, Shukree; Isoe, George M.; Gamatham, Romeo R. G.; Leitch, Andrew W. R.; Gibbon, Tim B.

    2017-01-01

    Precise and accurate timing signals distributed between a centralized location and several end-users are widely used in both metro-access and speciality networks for Coordinated Universal Time (UTC), GPS satellite systems, banking, very long baseline interferometry and science projects such as SKA radio telescope. Such systems utilize time and frequency technology to ensure phase coherence among data signals distributed across an optical fibre network. For accurate timing requirements, precise time intervals should be measured between successive pulses. In this paper we describe a novel, all optical method for quantifying one-way propagation times and phase perturbations in the fibre length, using pulse-persecond (PPS) signals. The approach utilizes side mode injection of a 1550nm 10Gbps vertical cavity surface emitting laser (VCSEL) at the remote end. A 125 μs one-way time of flight was accurately measured for 25 km G655 fibre. Since the approach is all-optical, it avoids measurement inaccuracies introduced by electro-optical conversion phase delays. Furthermore, the implementation uses cost effective VCSEL technology and suited to a flexible range of network architectures, supporting a number of end-users conducting measurements at the remote end.

  15. Electron beam detection of a Nanotube Scanning Force Microscope.

    PubMed

    Siria, Alessandro; Niguès, Antoine

    2017-09-14

    Atomic Force Microscopy (AFM) allows to probe matter at atomic scale by measuring the perturbation of a nanomechanical oscillator induced by near-field interaction forces. The quest to improve sensitivity and resolution of AFM forced the introduction of a new class of resonators with dimensions at the nanometer scale. In this context, nanotubes are the ultimate mechanical oscillators because of their one dimensional nature, small mass and almost perfect crystallinity. Coupled to the possibility of functionalisation, these properties make them the perfect candidates as ultra sensitive, on-demand force sensors. However their dimensions make the measurement of the mechanical properties a challenging task in particular when working in cavity free geometry at ambient temperature. By using a focused electron beam, we show that the mechanical response of nanotubes can be quantitatively measured while approaching to a surface sample. By coupling electron beam detection of individual nanotubes with a custom AFM we image the surface topography of a sample by continuously measuring the mechanical properties of the nanoresonators. The combination of very small size and mass together with the high resolution of the electron beam detection method offers unprecedented opportunities for the development of a new class of nanotube-based scanning force microscopy.

  16. Effects of TiO2 addition on microwave dielectric properties of Li2MgSiO4 ceramics

    NASA Astrophysics Data System (ADS)

    Rose, Aleena; Masin, B.; Sreemoolanadhan, H.; Ashok, K.; Vijayakumar, T.

    2018-03-01

    Silicates have been widely studied for substrate applications in microwave integrated circuits owing to their low dielectric constant and low tangent loss values. Li2MgSiO4 (LMS) ceramics are synthesized through solid-state reaction route using TiO2 as an additive to the pure ceramics. Variations in dielectric properties of LMS upon TiO2 addition in different weight percentages (0.5, 1.5, 2) are studied by keeping the sintering parameters constant. Crystalline structure, phase composition, and microstructure of LMS and LMS-TiO2 ceramics were studied using x-ray diffraction spectrometer and High Resolution Scanning electron microscope. Density was measured through Archimedes method and the microwave dielectric properties were examined by Cavity perturbation technique. LMS achieved relative permittivity (ε r) of 5.73 and dielectric loss (tan δ) of 5.897 × 10‑4 at 8 GHz. In LMS-TiO2 ceramics, 0.5 wt% TiO2 added LMS showed comparatively better dielectric properties than other weight percentages where ε r = 5.67, tan δ = 7.737 × 10‑4 at 8 GHz.

  17. Specimen illumination apparatus with optical cavity for dark field illumination

    DOEpatents

    Pinkel, Daniel; Sudar, Damir; Albertson, Donna

    1999-01-01

    An illumination apparatus with a specimen slide holder, an illumination source, an optical cavity producing multiple reflection of illumination light to a specimen comprising a first and a second reflective surface arranged to achieve multiple reflections of light to a specimen is provided. The apparatus can further include additional reflective surfaces to achieve the optical cavity, a slide for mounting the specimen, a coverslip which is a reflective component of the optical cavity, one or more prisms for directing light within the optical cavity, antifading solutions for improving the viewing properties of the specimen, an array of materials for analysis, fluorescent components, curved reflective surfaces as components of the optical cavity, specimen detection apparatus, optical detection equipment, computers for analysis of optical images, a plane polarizer, fiberoptics, light transmission apertures, microscopic components, lenses for viewing the specimen, and upper and lower mirrors above and below the specimen slide as components of the optical cavity. Methods of using the apparatus are also provided.

  18. High-sensitivity and large-dynamic-range refractive index sensors employing weak composite Fabry-Perot cavities.

    PubMed

    Chen, Pengcheng; Shu, Xuewen; Cao, Haoran; Sugden, Kate

    2017-08-15

    Most sensors face a common trade-off between high sensitivity and a large dynamic range. We demonstrate here an all-fiber refractometer based on a dual-cavity Fabry-Perot interferometer (FPI) that possesses the advantage of both high sensitivity and a large dynamic range. Since the two composite cavities have a large cavity length difference, one can observe both fine and coarse fringes, which correspond to the long cavity and the short cavity, respectively. The short-cavity FPI and the use of an intensity demodulation method mean that the individual fine fringe dips correspond to a series of quasi-continuous highly sensitive zones for refractive index measurement. By calculating the parameters of the composite FPI, we find that the range of the ultra-sensitive zones can be considerably adjusted to suit the end requirements. The experimental trends are in good agreement with the theoretical predictions. The co-existence of high sensitivity and a large dynamic range in a composite FPI is of great significance to practical RI measurements.

  19. Population Dynamics of Excited Atoms in Dissipative Cavities

    NASA Astrophysics Data System (ADS)

    Zou, Hong-Mei; Liu, Yu; Fang, Mao-Fa

    2016-10-01

    Population dynamics of excited atoms in dissipative cavities is investigated in this work. We present a method of controlling populations of excited atoms in dissipative cavities. For the initial state | e e> A B |00> a b , the repopulation of excited atoms can be obtained by using atom-cavity couplings and non-Markovian effects after the atomic excited energy decays to zero. For the initial state | g g> A B |11> a b , the two atoms can also be populated to the excited states from the initial ground states by using atom-cavity couplings and non-Markovian effects. And the stronger the atom-cavity coupling or the non-Markovian effect is, the larger the number of repopulation of excited atoms is. Particularly, when the atom-cavity coupling or the non-Markovian effect is very strong, the number of repopulation of excited atoms can be close to one in a short time and will tend to a steady value in a long time.

  20. Techniques of orbital decay and long-term ephemeris prediction for satellites in earth orbit

    NASA Technical Reports Server (NTRS)

    Barry, B. F.; Pimm, R. S.; Rowe, C. K.

    1971-01-01

    In the special perturbation method, Cowell and variation-of-parameters formulations of the motion equations are implemented and numerically integrated. Variations in the orbital elements due to drag are computed using the 1970 Jacchia atmospheric density model, which includes the effects of semiannual variations, diurnal bulge, solar activity, and geomagnetic activity. In the general perturbation method, two-variable asymptotic series and automated manipulation capabilities are used to obtain analytical solutions to the variation-of-parameters equations. Solutions are obtained considering the effect of oblateness only and the combined effects of oblateness and drag. These solutions are then numerically evaluated by means of a FORTRAN program in which an updating scheme is used to maintain accurate epoch values of the elements. The atmospheric density function is approximated by a Fourier series in true anomaly, and the 1970 Jacchia model is used to periodically update the Fourier coefficients. The accuracy of both methods is demonstrated by comparing computed orbital elements to actual elements over time spans of up to 8 days for the special perturbation method and up to 356 days for the general perturbation method.

Top