Chakravarti, Ananya; Camp, Kyle; McNabb, David S.
2017-01-01
Candida albicans is the most frequently encountered fungal pathogen in humans, capable of causing mucocutaneous and systemic infections in immunocompromised individuals. C. albicans virulence is influenced by multiple factors. Importantly, iron acquisition and avoidance of the immune oxidative burst are two critical barriers for survival in the host. Prior studies using whole genome microarray expression data indicated that the CCAAT-binding factor is involved in the regulation of iron uptake/utilization and the oxidative stress response. This study examines directly the role of the CCAAT-binding factor in regulating the expression of oxidative stress genes in response to iron availability. The CCAAT-binding factor is a heterooligomeric transcription factor previously shown to regulate genes involved in respiration and iron uptake/utilization in C. albicans. Since these pathways directly influence the level of free radicals, it seemed plausible the CCAAT-binding factor regulates genes necessary for the oxidative stress response. In this study, we show the CCAAT-binding factor is involved in regulating some oxidative stress genes in response to iron availability, including CAT1, SOD4, GRX5, and TRX1. We also show that CAT1 expression and catalase activity correlate with the survival of C. albicans to oxidative stress, providing a connection between iron obtainability and the oxidative stress response. We further explore the role of the various CCAAT-binding factor subunits in the formation of distinct protein complexes that modulate the transcription of CAT1 in response to iron. We find that Hap31 and Hap32 can compensate for each other in the formation of an active transcriptional complex; however, they play distinct roles in the oxidative stress response during iron limitation. Moreover, Hap43 was found to be solely responsible for the repression observed under iron deprivation. PMID:28122000
Selective Activation of Transcription by a Novel CCAAT Binding Factor
NASA Astrophysics Data System (ADS)
Maity, Sankar N.; Golumbek, Paul T.; Karsenty, Gerard; de Crombrugghe, Benoit
1988-07-01
A novel CCAAT binding factor (CBF) composed of two different subunits has been extensively purified from rat liver. Both subunits are needed for specific binding to DNA. Addition of this purified protein to nuclear extracts of NIH 3T3 fibroblasts stimulates transcription from several promoters including the α 2(I) collagen, the α 1(I) collagen, the Rous sarcoma virus long terminal repeat (RSV-LTR), and the adenovirus major late promoter. Point mutations in the CCAAT motif that show either no binding or a decreased binding of CBF likewise abolish or reduce activation of transcription by CBF. Activation of transcription requires, therefore, the specific binding of CBF to its recognition sites.
Falcone, Emmanuela; Grandoni, Luca; Garibaldi, Francesca; Manni, Isabella; Filligoi, Giancarlo; Piaggio, Giulia; Gurtner, Aymone
2016-01-01
miRNAs are potent regulators of gene expression and modulate multiple cellular processes in physiology and pathology. Deregulation of miRNAs expression has been found in various cancer types, thus, miRNAs may be potential targets for cancer therapy. However, the mechanisms through which miRNAs are regulated in cancer remain unclear. Therefore, the identification of transcriptional factor-miRNA crosstalk is one of the most update aspects of the study of miRNAs regulation. In the present study we describe the development of a fast and user-friendly software, named infinity, able to find the presence of DNA matrices, such as binding sequences for transcriptional factors, on ~65kb (kilobase) of 939 human miRNA genomic sequences, simultaneously. Of note, the power of this software has been validated in vivo by performing chromatin immunoprecipitation assays on a subset of new in silico identified target sequences (CCAAT) for the transcription factor NF-Y on colon cancer deregulated miRNA loci. Moreover, for the first time, we have demonstrated that NF-Y, through its CCAAT binding activity, regulates the expression of miRNA-181a, -181b, -21, -17, -130b, -301b in colon cancer cells. The infinity software that we have developed is a powerful tool to underscore new TF/miRNA regulatory networks. Infinity was implemented in pure Java using Eclipse framework, and runs on Linux and MS Windows machine, with MySQL database. The software is freely available on the web at https://github.com/bio-devel/infinity. The website is implemented in JavaScript, PHP and HTML with all major browsers supported.
NF-Y Binding Site Architecture Defines a C-Fos Targeted Promoter Class
Haubrock, Martin; Hartmann, Fabian; Wingender, Edgar
2016-01-01
ChIP-seq experiments detect the chromatin occupancy of known transcription factors in a genome-wide fashion. The comparisons of several species-specific ChIP-seq libraries done for different transcription factors have revealed a complex combinatorial and context-specific co-localization behavior for the identified binding regions. In this study we have investigated human derived ChIP-seq data to identify common cis-regulatory principles for the human transcription factor c-Fos. We found that in four different cell lines, c-Fos targeted proximal and distal genomic intervals show prevalences for either AP-1 motifs or CCAAT boxes as known binding motifs for the transcription factor NF-Y, and thereby act in a mutually exclusive manner. For proximal regions of co-localized c-Fos and NF-YB binding, we gathered evidence that a characteristic configuration of repeating CCAAT motifs may be responsible for attracting c-Fos, probably provided by a nearby AP-1 bound enhancer. Our results suggest a novel regulatory function of NF-Y in gene-proximal regions. Specific CCAAT dimer repeats bound by the transcription factor NF-Y define this novel cis-regulatory module. Based on this behavior we propose a new enhancer promoter interaction model based on AP-1 motif defined enhancers which interact with CCAAT-box characterized promoter regions. PMID:27517874
Ectoderm gene activation in sea urchin embryos mediated by the CCAAT-binding factor.
Li, Xiaotao; Bhattacharya, Chitralekha; Dayal, Sandeep; Maity, Sankar; Klein, William H
2002-05-01
Transcriptional enhancers are short stretches of DNA that function to achieve highly specific patterns of gene expression. To identify the mechanisms by which enhancers achieve their specificity, we made use of an enhancer from the aboral ectoderm-specific spec2a gene of the sea urchin Strongylocentrotus purpuratus. The spec2a enhancer contains five cis-regulatory elements within 78 base pairs that interact with five distinct DNA-binding proteins to confer aboral ectoderm expression. Here, we present an analysis of the sea urchin CCAAT binding factor (CBF), which binds to a CCAAT motif within the spec2a enhancer. S. purpuratus CBF and SpOtx, a ubiquitously expressed factor, act together at closely placed cis-regulatory elements to mediate spec2a transcription in the ectoderm. SpCBF was the sole factor that bound to the spec2a CCAAT element, and two of the three subunits that make up the CBF holoprotein were cloned and shown to have high sequence conservation with their vertebrate orthologs. Based on its involvement in the regulation of several other sea urchin genes, SpCBF appears to be a major transcription factor in the sea urchin embryo for positive regulation of ectoderm gene expression. In addition to its role in vertebrate cell growth and proliferation, our results indicate that CBF also functions at the early stages of germ layer formation, namely ectoderm differentiation.
Garibaldi, Francesca; Manni, Isabella; Filligoi, Giancarlo; Piaggio, Giulia; Gurtner, Aymone
2016-01-01
Motivation miRNAs are potent regulators of gene expression and modulate multiple cellular processes in physiology and pathology. Deregulation of miRNAs expression has been found in various cancer types, thus, miRNAs may be potential targets for cancer therapy. However, the mechanisms through which miRNAs are regulated in cancer remain unclear. Therefore, the identification of transcriptional factor–miRNA crosstalk is one of the most update aspects of the study of miRNAs regulation. Results In the present study we describe the development of a fast and user-friendly software, named infinity, able to find the presence of DNA matrices, such as binding sequences for transcriptional factors, on ~65kb (kilobase) of 939 human miRNA genomic sequences, simultaneously. Of note, the power of this software has been validated in vivo by performing chromatin immunoprecipitation assays on a subset of new in silico identified target sequences (CCAAT) for the transcription factor NF-Y on colon cancer deregulated miRNA loci. Moreover, for the first time, we have demonstrated that NF-Y, through its CCAAT binding activity, regulates the expression of miRNA-181a, -181b, -21, -17, -130b, -301b in colon cancer cells. Conclusions The infinity software that we have developed is a powerful tool to underscore new TF/miRNA regulatory networks. Availability and Implementation Infinity was implemented in pure Java using Eclipse framework, and runs on Linux and MS Windows machine, with MySQL database. The software is freely available on the web at https://github.com/bio-devel/infinity. The website is implemented in JavaScript, PHP and HTML with all major browsers supported. PMID:27082112
USDA-ARS?s Scientific Manuscript database
CCAAT/enhancer binding protein ' (C/EBP') is a member of the C/EBP family of transcription factors, which is most highly expressed in immature B cells. C/EBP' lacks known activation domains and thus was originally described as an inhibitor of C/EBP transactivation potential. We have previously demon...
Marcus, N; Green, M
1997-09-01
The accumulation of incompletely assembled immunoglobulin mu heavy chain in transfected COS cells stimulates the cellular response to protein traffic that results in the increased transcription and elevated synthesis of several ER chaperones, including ERP72, a member of the protein disulfide isomerase family of molecular chaperones. The ERp72 promoter contains an 82 bp ER protein traffic response element (ERPTRE) that is sufficient to mediate this response. Previously, it had been shown that the alteration of a putative AP-2 site and a CCAAT and inverted CCAAT site within the ERPTRE significantly decreased the response of ERp72 promoter to mu chain accumulation. We have extended these findings by demonstrating a role for NF-Y and a potentially novel DNA-binding protein in the regulation of transcription from the ERp72 promoter. The fact that NF-Y binding to the ERPTRE is observed in extracts from both control cells and cells in which the response to protein traffic has been activated indicates that the binding of NF-Y, while necessary, is not sufficient to account for the response. Each of the two CCAAT sites in the ERPTRE can bind NF-Y independently, but both sites must be intact for full ERPTRE function. A second protein can bind to the ERPTRE independently of NF-Y and at a site overlapping or close to the 3' end of the reverse CCAAT site. It is possible that interactions between NF-Y, this protein and perhaps other factors are responsible for the regulation of the protein traffic response.
NF-Y and the immune response: Dissecting the complex regulation of MHC genes.
Sachini, Nikoleta; Papamatheakis, Joseph
2017-05-01
Nuclear Factor Y (NF-Y) was first described as one of the CCAAT binding factors. Although CCAAT motifs were found to be present in various genes, NF-Y attracted a lot of interest early on, due to its role in Major Histocompatibility Complex (MHC) gene regulation. MHC genes are crucial in immune response and show peculiar expression patterns. Among other conserved elements on MHC promoters, an NF-Y binding CCAAT box was found to contribute to MHC transcriptional regulation. NF-Y along with other DNA binding factors assembles in a stereospecific manner to form a multiprotein scaffold, the MHC enhanceosome, which is necessary but not sufficient to drive transcription. Transcriptional activation is achieved by the recruitment of yet another factor, the class II transcriptional activator (CIITA). In this review, we briefly discuss basic findings on MHCII transcription regulation and we highlight NF-Y different modes of function in MHCII gene activation. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani. Copyright © 2016 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Previously, we showed that levels of different CCAAT/enhancer binding protein (C/EBP) mRNAs in the liver of rainbow trout were modulated by GH and suggested that C/EBPs might be involved in GH induced IGF-II gene expression. As a step toward further investigation, we have developed monospecific poly...
USDA-ARS?s Scientific Manuscript database
CCAAT/enhancer-binding proteins (C/EBPs) are transcription factors consisting of six isoforms and play diverse physiological roles in vertebrates. In rainbow trout (Oncorhynchus mykiss), in addition to the reported C/EBPbeta1,we have isolated cDNA of four other isoforms, C/EBPalpha, C/EBPbeta2, C/E...
Smith, C D; Baglia, L A; Curristin, S M; Ruddell, A
1994-10-01
Two long terminal repeat (LTR) enhancer-binding proteins which may regulate high rates of avian leukosis virus (ALV) LTR-enhanced c-myc transcription during bursal lymphomagenesis have been identified (A. Ruddell, M. Linial, and M. Groudine, Mol. Cell. Biol. 9:5660-5668, 1989). The genes encoding the a1/EBP and a3/EBP binding factors were cloned by expression screening of a lambda gt11 cDNA library from chicken bursal lymphoma cells. The a1/EBP cDNA encodes a novel leucine zipper transcription factor (W. Bowers and A. Ruddell, J. Virol. 66:6578-6586, 1992). The partial a3/EBP cDNA clone encodes amino acids 84 to 313 of vitellogenin gene-binding protein (VBP), a leucine zipper factor that binds the avian vitellogenin II gene promoter (S. Iyer, D. Davis, and J. Burch, Mol. Cell. Biol. 11:4863-4875, 1991). Multiple VBP mRNAs are expressed in B cells in a pattern identical to that previously observed for VBP in other cell types. The LTR-binding activities of VBP, a1/EBP, and B-cell nuclear extract protein were compared and mapped by gel shift, DNase I footprinting, and methylation interference assays. The purified VBP and a1/EBP bacterial fusion proteins bind overlapping but distinct subsets of CCAAT/enhancer elements in the closely related ALV and Rous sarcoma virus (RSV) LTR enhancers. Protein binding to these CCAAT/enhancer elements accounts for most of the labile LTR enhancer-binding activity observed in B-cell nuclear extracts. VBP and a1/EBP could mediate the high rates of ALV and RSV LTR-enhanced transcription in bursal lymphoma cells and many other cell types.
Tominaga, Hiroyuki; Maeda, Shingo; Hayashi, Makoto; Takeda, Shu; Akira, Shizuo; Komiya, Setsuro; Nakamura, Takashi; Akiyama, Haruhiko; Imamura, Takeshi
2008-12-01
Although CCAAT/enhancer-binding protein beta (C/EBPbeta) is involved in osteocalcin gene expression in osteoblast in vitro, the physiological importance of and molecular mechanisms governing C/EBPbeta in bone formation remain to be elucidated. In particular, it remains unclear whether C/EBPbeta acts as a homodimer or a heterodimer with other proteins during osteoblast differentiation. Here, deletion of the C/EBPbeta gene from mice resulted in delayed bone formation with concurrent suppression of chondrocyte maturation and osteoblast differentiation. The expression of type X collagen as well as chondrocyte hypertrophy were suppressed in mutant bone, providing new insight into the possible roles of C/EBPbeta in chondrocyte maturation. In osteoblasts, luciferase reporter, gel shift, DNAP, and ChIP assays demonstrated that C/EBPbeta heterodimerized with activating transcription factor 4 (ATF4), another basic leucine zipper transcription factor crucial for osteoblast maturation. This complex interacted and transactivated osteocalcin-specific element 1 (OSE1) of the osteocalcin promoter. C/EBPbeta also enhanced the synergistic effect of ATF4 and Runx2 on osteocalcin promoter transactivation by enhancing their interaction. Thus, our results provide evidence that C/EBPbeta is a crucial cofactor in the promotion of osteoblast maturation by Runx2 and ATF4.
Identification of neuronal target genes for CCAAT/Enhancer Binding Proteins
Kfoury, N.; Kapatos, G.
2009-01-01
CCAAT/Enhancer Binding Proteins (C/EBPs) play pivotal roles in development and plasticity of the nervous system. Identification of the physiological targets of C/EBPs (C/EBP target genes) should therefore provide insight into the underlying biology of these processes. We used unbiased genome-wide mapping to identify 115 C/EBPβ target genes in PC12 cells that include transcription factors, neurotransmitter receptors, ion channels, protein kinases and synaptic vesicle proteins. C/EBPβ binding sites were located primarily within introns, suggesting novel regulatory functions, and were associated with binding sites for other developmentally important transcription factors. Experiments using dominant negatives showed C/EBPβ to repress transcription of a subset of target genes. Target genes in rat brain were subsequently found to preferentially bind C/EBPα, β and δ. Analysis of the hippocampal transcriptome of C/EBPβ knockout mice revealed dysregulation of a high percentage of transcripts identified as C/EBP target genes. These results support the hypothesis that C/EBPs play non-redundant roles in the brain. PMID:19103292
Myostatin inhibits porcine intramuscular preadipocyte differentiation in vitro.
Sun, W X; Dodson, M V; Jiang, Z H; Yu, S G; Chu, W W; Chen, J
2016-04-01
This study assessed the effect of myostatin on adipogenesis by porcine intramuscular preadipocytes. Intramuscular preadipocytes were isolated from the longissimus dorsi muscle of newborn pigs. Myostatin inhibited intramuscular preadipocyte differentiation in a dose-dependent manner. Myostatin treatment during preadipocyte differentiation significantly (P < 0.05) inhibited the expression of the adipogenic marker genes CCAAT/enhancer-binding protein β, CCAAT/enhancer-binding protein α, peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein-1c, fatty acid-binding protein, and adiponectin. Myostatin also significantly (P < 0.05) reduced the release of glycerol and decreased both adipose triglyceride lipase and hormone-sensitive lipase expression in intramuscular adipocytes. Our study suggests that myostatin acts as an extrinsic regulatory factor in regulating intramuscular adipogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Jiwon; Department of Microbiology, Chungnam National University, Daejeon 305-764; Choi, Jeong-Hae
2011-06-03
Highlights: {yields} Regulation of transcriptional activation of RhoB is still unclear. {yields} We examine the effect of p38 MAPK inhibition, and c-Jun and RhoB depletion on UV-induced RhoB expression and apoptosis. {yields} We identify the regions of RhoB promoter necessary to confer UV responsiveness using pRhoB-luciferase reporter assays. {yields} c-Jun, ATF2 and p300 are dominantly associated with NF-Y on the distal CCAAT box. {yields} The activation of p38 MAPK primarily contribute to UV-induced RhoB expression by recruiting the c-Jun and p300 proteins on distal CCAAT box of RhoB promoter. -- Abstract: The Ras-related small GTP-binding protein RhoB is rapidly inducedmore » in response to genotoxic stresses caused by ionizing radiation. It is known that UV-induced RhoB expression results from the binding of activating transcription factor 2 (ATF2) via NF-Y to the inverted CCAAT box (-23) of the RhoB promoter. Here, we show that the association of c-Jun with the distal CCAAT box (-72) is primarily involved in UV-induced RhoB expression and p38 MAPK regulated RhoB induction through the distal CCAAT box. UV-induced RhoB expression and apoptosis were markedly attenuated by pretreatment with the p38 MAPK inhibitor. siRNA knockdown of RhoB, ATF2 and c-Jun resulted in decreased RhoB expression and eventually restored the growth of UV-irradiated Jurkat cells. In the reporter assay using luciferase under the RhoB promoter, inhibition of RhoB promoter activity by the p38 inhibitor and knockdown of c-Jun using siRNA occurred through the distal CCAAT box. Immunoprecipitation and DNA affinity protein binding assays revealed the association of c-Jun and p300 via NF-YA and the dissociation of histone deacetylase 1 (HDAC1) via c-Jun recruitment to the CCAAT boxes of the RhoB promoter. These results suggest that the activation of p38 MAPK primarily contributes to UV-induced RhoB expression by recruiting the c-Jun and p300 proteins to the distal CCAAT box of the RhoB promoter in Jurkat cells.« less
Guimond, Julie; Devost, Dominic; Brodeur, Helene; Mader, Sylvie; Bhat, Pangala V
2002-12-12
Retinal dehydrogenase type 1 (RALDH1) catalyzes the oxidation of retinal to retinoic acid (RA), a metabolite of vitamin A important for embryogenesis and tissue differentiation. Rat RALDH1 is expressed to high levels in developing kidney, and in stomach, intestine epithelia. To understand the mechanisms of the transcriptional regulation of rat RALDH1, we cloned a 1360-base pair (bp) 5'-flanking region of RALDH1 gene. Using luciferase reporter constructs transfected into HEK 293 and LLCPK (kidney-derived) cells, basal promoter activity was associated with sequences between -80 and +43. In this minimal promoter region, TATA and CCAAT cis-acting elements as well as SP1, AP1 and octamer (Oct)-binding sites were present. The CCAAT box and Oct-binding site, located between positions -72 and -68 and -56 and -49, respectively, were shown by deletion analysis and site-directed mutation to be critical for promoter activity. Nuclear extracts from kidney cells contain proteins specifically binding the Oct and CCAAT sequences, resulting in the formation of six complexes, while different patterns of complexes were observed with non-kidney cell extracts. Gel shift assays using either single or double mutations of the Oct and CCAAT sequences as well as super shift assays demonstrated single and double occupancy of these two sites by Oct-1 and CBF-A. In addition, unidentified proteins also bound the Oct motif specifically in the absence of CBF-A binding. These results demonstrate specific involvement of Oct and CCAAT-binding proteins in the regulation of RALDH1 gene.
Critical role for CCAAT/Enhancer-binding protein beta in immune complex-induced acute lung injury
USDA-ARS?s Scientific Manuscript database
Although inflammation plays a central role in the pathogenesis of acute lung injury (ALI), the molecular mechanisms underlying inflammatory responses in ALI are poorly understood, and therapeutic options remain limited. The CCAAT/enhancer-binding protein (C/EBP) gamma and -gamma have been implicated...
Fleming, Joseph D.; Pavesi, Giulio; Benatti, Paolo; Imbriano, Carol; Mantovani, Roberto; Struhl, Kevin
2013-01-01
NF-Y, a trimeric transcription factor (TF) composed of two histone-like subunits (NF-YB and NF-YC) and a sequence-specific subunit (NF-YA), binds to the CCAAT motif, a common promoter element. Genome-wide mapping reveals 5000–15,000 NF-Y binding sites depending on the cell type, with the NF-YA and NF-YB subunits binding asymmetrically with respect to the CCAAT motif. Despite being characterized as a proximal promoter TF, only 25% of NF-Y sites map to promoters. A comparable number of NF-Y sites are located at enhancers, many of which are tissue specific, and nearly half of the NF-Y sites are in select subclasses of HERV LTR repeats. Unlike most TFs, NF-Y can access its target DNA motif in inactive (nonmodified) or polycomb-repressed chromatin domains. Unexpectedly, NF-Y extensively colocalizes with FOS in all genomic contexts, and this often occurs in the absence of JUN and the AP-1 motif. NF-Y also coassociates with a select cluster of growth-controlling and oncogenic TFs, consistent with the abundance of CCAAT motifs in the promoters of genes overexpressed in cancer. Interestingly, NF-Y and several growth-controlling TFs bind in a stereo-specific manner, suggesting a mechanism for cooperative action at promoters and enhancers. Our results indicate that NF-Y is not merely a commonly used proximal promoter TF, but rather performs a more diverse set of biological functions, many of which are likely to involve coassociation with FOS. PMID:23595228
Matsuo, Noritaka; Yu-Hua, Wang; Sumiyoshi, Hideaki; Sakata-Takatani, Keiko; Nagato, Hitoshi; Sakai, Kumiko; Sakurai, Mami; Yoshioka, Hidekatsu
2003-08-29
We have characterized the proximal promoter region of the human COL11A1 gene. Transient transfection assays indicate that the segment from -199 to +1 is necessary for the activation of basal transcription. Electrophoretic mobility shift assays (EMSAs) demonstrated that the ATTGG sequence, within the -147 to -121 fragment, is critical to bind nuclear proteins in the proximal COL11A1 promoter. We demonstrated that the CCAAT binding factor (CBF/NF-Y) bound to this region using an interference assay with consensus oligonucleotides and a supershift assay with specific antibodies in an EMSA. In a chromatin immunoprecipitation assay and EMSA using DNA-affinity-purified proteins, CBF/NF-Y proteins directly bound this region in vitro and in vivo. We also showed that four tandem copies of the CBF/NF-Y-binding fragment produced higher transcriptional activity than one or two copies, whereas the absence of a CBF/NF-Y-binding fragment suppressed the COL11A1 promoter activity. Furthermore, overexpression of a dominant-negative CBF-B/NF-YA subunit significantly inhibited promoter activity in both transient and stable cells. These results indicate that the CBF/NF-Y proteins regulate the transcription of COL11A1 by directly binding to the ATTGG sequence in the proximal promoter region.
NASA Technical Reports Server (NTRS)
Sharina, Iraida G.; Martin, Emil; Thomas, Anthony; Uray, Karen L.; Murad, Ferid
2003-01-01
Soluble guanylyl cyclase (sGC) is a cytosolic enzyme producing the intracellular messenger cyclic guanosine monophosphate (cGMP) on activation with nitric oxide (NO). sGC is an obligatory heterodimer composed of alpha and beta subunits. We investigated human beta1 sGC transcriptional regulation in BE2 human neuroblastoma cells. The 5' upstream region of the beta1 sGC gene was isolated and analyzed for promoter activity by using luciferase reporter constructs. The transcriptional start site of the beta1 sGC gene in BE2 cells was identified. The functional significance of consensus transcriptional factor binding sites proximal to the transcriptional start site was investigated by site deletions in the 800-bp promoter fragment. The elimination of CCAAT-binding factor (CBF) and growth factor independence 1 (GFI1) binding cores significantly diminished whereas deletion of the NF1 core elevated the transcription. Electrophoretic mobility-shift assay (EMSA) and Western analysis of proteins bound to biotinated EMSA probes confirmed the interaction of GFI1, CBF, and NF1 factors with the beta1 sGC promoter. Treatment of BE2 cells with genistein, known to inhibit the CBF binding to DNA, significantly reduced protein levels of beta1 sGC by inhibiting transcription. In summary, our study represents an analysis of the human beta1 sGC promoter regulation in human neuroblastoma BE2 cells and identifies CBF as a critically important factor in beta1 sGC expression.
Malo, Antje; Krüger, Burkhard; Göke, Burkhard; Kubisch, Constanze H
2013-01-01
Endoplasmic reticulum (ER) stress leads to misfolded proteins inside the ER and initiates unfolded protein response (UPR). Unfolded protein response components are involved in pancreatic function and activated during pancreatitis. However, the exact role of ER stress in the exocrine pancreas is unclear. The present study examined the effects of 4-phenylbutyric acid (4-PBA), an ER chaperone, on acini and UPR components. Rat acini were stimulated with cholecystokinin (10 pmol/L to 10 nmol/L) with or without preincubation of 4-PBA. The UPR components were analyzed, including chaperone-binding protein, protein kinaselike ER kinase, X-box-binding protein 1, c-Jun NH(2)-terminal kinase, CCAAT/enhancer-binding protein homologous protein, caspase 3, and apoptosis. Effects of 4-PBA were measured on secretion, calcium, and trypsin activation. 4-Phenylbutyric acid led to an increase of secretion, whereas trypsin activation with supraphysiological cholecystokinin was significantly reduced. 4-Phenylbutyric acid prevented chaperone-binding protein up-regulation, diminished protein kinaselike ER kinase, and c-Jun NH2-terminal kinase phosphorylation, prohibited X-box-binding protein 1 splicing and CCAAT/enhancer-binding protein homologous protein expression, caspase 3 activation, and apoptosis caused by supraphysiological cholecystokinin. By incubation with 4-PBA, beneficial in urea cycle deficiency, it was possible to enhance enzyme secretion to suppress trypsin activation, UPR activation, and proapoptotic pathways. The data hint new perspectives for the use of chemical chaperones in pancreatic diseases.
Mechanisms of transcriptional repression of cell-cycle G2/M promoters by p63
Testoni, Barbara; Mantovani, Roberto
2006-01-01
p63 is a developmentally regulated transcription factor related to p53, which activates and represses specific genes. The human AEC (Ankyloblepharon–Ectodermal dysplasia-Clefting) and EEC (Ectrodactyly–Ectodermal dysplasia–Cleft lip/palate) syndromes are caused by missense mutations of p63, within the DNA-binding domain (EEC) or in the C-terminal sterile alpha motif domain (AEC). We show here that p63 represses transcription of cell-cycle G2/M genes by binding to multiple CCAAT core promoters in immortalized and primary keratinocytes. The CCAAT-activator NF-Y and ΔNp63α are associated in vivo and a conserved α-helix of the NF-YC histone fold is required. p63 AEC mutants, but not an EEC mutant, are incapable to bind NF-Y. ΔNp63α, but not the AEC mutants repress CCAAT-dependent transcription of G2/M genes. Chromatin immunoprecipitation recruitment assays establish that the AEC mutants are not recruited to G2/M promoters, while normally present on 14-3-3σ, which contains a sequence-specific binding site. Surprisingly, the EEC C306R mutant activates transcription. Upon keratinocytes differentiation, NF-Y and p63 remain bound to G2/M promoters, while HDACs are recruited, histones deacetylated, Pol II displaced and transcription repressed. Our data indicate that NF-Y is a molecular target of p63 and that inhibition of growth activating genes upon differentiation is compromised by AEC missense mutations. PMID:16473849
Transcriptional regulation of cellular ageing by the CCAAT box-binding factor CBF/NF-Y.
Matuoka, Koozi; Chen, Kuang Yu
2002-09-01
Cellular ageing is a systematic process affecting the entirety of cell structure and function. Since changes in gene expression are extensive and global during ageing, involvement of general transcription regulators in the phenomenon is likely. Here, we focus on NF-Y, the major CCAAT box-binding factor, which exerts differential regulation on a wide variety of genes through its interaction with the CCAAT box present in as many as 25% of the eukaryotic genes. When a cell ages, senescing signals arise, typically through DNA damage due to oxidative stress or telomere shortening, and are transduced to proteins such as p53, retinoblastoma protein, and phosphatidylinositol 3-kinase. Among them, activated p53 family proteins suppress the function of NF-Y and thereby downregulate a set of cell cycle-related genes, including E2F1, which further leads to downregulation of E2F-regulated genes and cell cycle arrest. The p53 family also induces other ageing phenotypes such as morphological alterations and senescence-associated beta-galactosidase (SA-gal) presumably by upregulation of some genes through NF-Y suppression. In fact, the activities of NF-Y and E2F decrease during ageing and a dominant negative NF-YA induces SA-gal. Based on these observations, NF-Y appears to play an important role in the process of cellular ageing.
Finkernagel, Florian; Stiewe, Thorsten; Nist, Andrea; Suske, Guntram
2015-01-01
Transcription factors are grouped into families based on sequence similarity within functional domains, particularly DNA-binding domains. The Specificity proteins Sp1, Sp2 and Sp3 are paradigmatic of closely related transcription factors. They share amino-terminal glutamine-rich regions and a conserved carboxy-terminal zinc finger domain that can bind to GC rich motifs in vitro. All three Sp proteins are ubiquitously expressed; yet they carry out unique functions in vivo raising the question of how specificity is achieved. Crucially, it is unknown whether they bind to distinct genomic sites and, if so, how binding site selection is accomplished. In this study, we have examined the genomic binding patterns of Sp1, Sp2 and Sp3 in mouse embryonic fibroblasts by ChIP-seq. Sp1 and Sp3 essentially occupy the same promoters and localize to GC boxes. The genomic binding pattern of Sp2 is different; Sp2 primarily localizes at CCAAT motifs. Consistently, re-expression of Sp2 and Sp3 mutants in corresponding knockout MEFs revealed strikingly different modes of genomic binding site selection. Most significantly, while the zinc fingers dictate genomic binding of Sp3, they are completely dispensable for binding of Sp2. Instead, the glutamine-rich amino-terminal region is sufficient for recruitment of Sp2 to its target promoters in vivo. We have identified the trimeric histone-fold CCAAT box binding transcription factor Nf-y as the major partner for Sp2-chromatin interaction. Nf-y is critical for recruitment of Sp2 to co-occupied regulatory elements. Equally, Sp2 potentiates binding of Nf-y to shared sites indicating the existence of an extensive Sp2-Nf-y interaction network. Our results unveil strikingly different recruitment mechanisms of Sp1/Sp2/Sp3 transcription factor members uncovering an unexpected layer of complexity in their binding to chromatin in vivo. PMID:25793500
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poghosyan, Anna, E-mail: pannagos@yahoo.com; Patel, Jamie K.; Clifford, Rachel L.
Airway epithelial cells in cystic fibrosis (CF) overexpress Interleukin 8 (CXCL8) through poorly defined mechanisms. CXCL8 transcription is dependent on coordinated binding of CCAAT/enhancer binding protein (C/EBP)β, nuclear factor (NF)-κB, and activator protein (AP)-1 to the promoter. Here we show abnormal epigenetic regulation is responsible for CXCL8 overexpression in CF cells. Under basal conditions CF cells had increased bromodomain (Brd)3 and Brd4 recruitment and enhanced NF-κB and C/EBPβ binding to the CXCL8 promoter compared to non-CF cells due to trimethylation of histone H3 at lysine 4 (H3K4me3) and DNA hypomethylation at CpG6. IL-1β increased NF-κB, C/EBPβ and Brd4 binding. Furthermore, inhibitors ofmore » bromodomain and extra-terminal domain family (BET) proteins reduced CXCL8 production in CF cells suggesting a therapeutic target for the BET pathway. -- Highlights: •A regulatory mechanism of CXCL8 transcriptional control in CF airways is proposed. •There was an increased binding of NF-κB and C/EBPβ transcription factors. •There was enhanced recruitment of BET proteins to the CXCL8 promoter. •Epigenetic modifications are responsible for the aberrant CXCL8 transcription.« less
Kim, Bo-Kyung; Kim, Hwan Mook; Chung, Kyung-Sook; Kim, Dong-Myung; Park, Song-Kyu; Song, Alexander; Won, Kyoung-Jae; Lee, Kiho; Oh, Yu-Kyoung; Lee, Kyeong; Song, Kyung-Bin; Simon, Julian A; Han, Gyoonhee; Won, Misun
2011-03-01
RhoB expression is reduced in most invasive tumors, with loss of RhoB expression correlating significantly with tumor stage. Here, we demonstrate that upregulation of RhoB by the potent anticancer agent NSC126188 induces apoptosis of NUGC-3 human gastric carcinoma cells. The crucial role of RhoB in NSC126188-induced apoptosis is indicated by the rescue of NUGC-3 cells from apoptosis by knockdown of RhoB. In the presence of NSC126188, c-Jun N-terminal kinase (JNK) signaling was activated, and the JNK inhibitor SP600125 reduced RhoB expression and suppressed the apoptosis of NUGC-3 cells. Knockdowns of mitogen-activated protein kinase kinase (MKK) 4/7, JNK1/2 and c-Jun downregulated RhoB expression and rescued cells from apoptotic death in the presence of NSC126188. The JNK inhibitor SP600125 suppressed transcriptional activation of RhoB in the presence of NSC126188, as indicated by a reporter assay that used luciferase under the RhoB promoter. The ability of NSC126188 to increase luciferase activity through both the p300-binding site and the inverted CCAAT sequence (iCCAAT box) suggests that JNK signaling to upregulate RhoB expression is mediated through both the p300-binding site and the iCCAAT box. However, the JNK inhibitor SP600125 did not inhibit the upregulation of RhoB by farnesyltransferase inhibitor (FTI)-277. The p300-binding site did not affect activation of the RhoB promoter by FTI-277 in NUGC-3 cells, suggesting that the transcriptional activation of RhoB by NSC126188 occurs by a different mechanism than that reported for FTIs. Our data indicate that NSC126188 increases RhoB expression via JNK-mediated signaling through a p300-binding site and iCCAAT box resulting in apoptosis of NUGC-3 cells.
NASA Technical Reports Server (NTRS)
McCarthy, T. L.; Ji, C.; Chen, Y.; Kim, K.; Centrella, M.
2000-01-01
Glucocorticoid has complex effects on osteoblasts. Several of these changes appear to be related to steroid concentration, duration of exposure, or specific effects on growth factor expression or activity within bone. One important bone growth factor, insulin-like growth factor I (IGF-I), is induced in osteoblasts by hormones such as PGE2 that increase intracellular cAMP levels. In this way, PGE2 activates transcription factor CCAAT/enhancer-binding protein-delta (C/EBPdelta) and enhances its binding to a specific control element found in exon 1 in the IGF-I gene. Our current studies show that preexposure to glucocorticoid enhanced C/EBPdelta and C/EBPbeta expression by osteoblasts and thereby potentiated IGF-I gene promoter activation in response to PGE2. Importantly, this directly contrasts with inhibitory effects on IGF-I expression that result from sustained or pharmacologically high levels of glucocorticoid exposure. Consistent with the stimulatory effect of IGF-I on bone protein synthesis, pretreatment with glucocorticoid sensitized osteoblasts to PGE2, and in this context significantly enhanced new collagen and noncollagen protein synthesis. Therefore, pharmacological levels of glucocorticoid may reduce IGF-I expression by osteoblasts and cause osteopenic disease, whereas physiological transient increases in glucocorticoid may permit or amplify the effectiveness of hormones that regulate skeletal tissue integrity. These events appear to converge on the important role of C/EBPdelta and C/EBPbeta on IGF-I expression by osteoblasts.
Kowenz-Leutz, Elisabeth; Schuetz, Anja; Liu, Qingbin; Knoblich, Maria; Heinemann, Udo; Leutz, Achim
2016-07-01
The transcription factor CCAAT/enhancer-binding protein α (C/EBPα) regulates cell cycle arrest and terminal differentiation of neutrophils and adipocytes. Mutations in the basic leucine zipper domain (bZip) of C/EBPα are associated with acute myeloid leukemia. A widely used murine transforming C/EBPα basic region mutant (BRM2) entails two bZip point mutations (I294A/R297A). BRM2 has been discordantly described as defective for DNA binding or defective for interaction with E2F. We have separated the two BRM2 mutations to shed light on the intertwined reciprocity between C/EBPα-E2F-DNA interactions. Both, C/EBPα I294A and R297A retain transactivation capacity and interaction with E2F-DP. The C/EBPα R297A mutation destabilized DNA binding, whereas the C/EBPα I294A mutation enhanced binding to DNA. The C/EBPα R297A mutant, like BRM2, displayed enhanced interaction with E2F-DP but failed to repress E2F-dependent transactivation although both mutants were readily suppressed by E2F1 for transcription through C/EBP cis-regulatory sites. In contrast, the DNA binding enhanced C/EBPα I294A mutant displayed increased repression of E2F-DP mediated transactivation and resisted E2F-DP mediated repression. Thus, the efficient repression of E2F dependent S-phase genes and the activation of differentiation genes reside in the balanced DNA binding capacity of C/EBPα. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhou, Jingran; Wu, Ruiqiong; High, Anthony A; Slaughter, Clive A; Finkelstein, David; Rehg, Jerold E; Redecke, Vanessa; Häcker, Hans
2011-11-01
Toll-like receptors (TLRs) are expressed on innate immune cells and trigger inflammation upon detection of pathogens and host tissue injury. TLR-mediated proinflammatory-signaling pathways are counteracted by partially characterized anti-inflammatory mechanisms that prevent exaggerated inflammation and host tissue damage as manifested in inflammatory diseases. We biochemically identified a component of TLR-signaling pathways, A20-binding inhibitor of NF-κB (ABIN1), which recently has been linked by genome-wide association studies to the inflammatory diseases systemic lupus erythematosus and psoriasis. We generated ABIN1-deficient mice to study the function of ABIN1 in vivo and during TLR activation. Here we show that ABIN1-deficient mice develop a progressive, lupus-like inflammatory disease characterized by expansion of myeloid cells, leukocyte infiltrations in different parenchymatous organs, activated T and B lymphocytes, elevated serum Ig levels, and the appearance of autoreactive antibodies. Kidneys develop glomerulonephritis and proteinuria, reflecting tissue injury. Surprisingly, ABIN1-deficient macrophages exhibit normal regulation of major proinflammatory signaling pathways and mediators but show selective deregulation of the transcription factor CCAAT/enhancer binding protein β (C/EBPβ) and its target genes, such as colony-stimulating factor 3 (Csf3), nitric oxide synthase, inducible (Nos2), and S100 calcium-binding protein A8 (S100a8). Their gene products, which are intimately linked to innate immune cell expansion (granulocyte colony-stimulating factor), cytotoxicity (inducible nitric oxide synthase), and host factor-derived inflammation (S100A8), may explain, at least in part, the inflammatory phenotype observed. Together, our data reveal ABIN1 as an essential anti-inflammatory component of TLR-signaling pathways that controls C/EBPβ activity.
Su, Ming; Lee, Daniel; Ganss, Bernhard; Sodek, Jaro
2006-04-14
Basal transcription of the bone sialoprotein gene is mediated by highly conserved inverted CCAAT (ICE; ATTGG) and TATA elements (TTTATA) separated by precisely 21 nucleotides. Here we studied the importance of the relative position and orientation of the CCAAT and TATA elements in the proximal promoter by measuring the transcriptional activity of a series of mutated reporter constructs in transient transfection assays. Whereas inverting the TTTATA (wild type) to a TATAAA (consensus TATA) sequence increased transcription slightly, transcription was reduced when the flanking dinucleotides were also inverted. In contrast, reversing the ATTGG (wild type; ICE) to a CCAAT (RICE) sequence caused a marked reduction in transcription, whereas both transcription and NF-Y binding were progressively increased with the simultaneous inversion of flanking nucleotides (f-RICE-f). Reducing the distance between the ICE and TATA elements produced cyclical changes in transcriptional activity that correlated with progressive alterations in the relative positions of the CCAAT and TATA elements on the face of the DNA helix. Minimal transcription was observed after 5 nucleotides were deleted (equivalent to approximately one half turn of the helix), whereas transcription was fully restored after deleting 10 nucleotides (approximately one full turn of the DNA helix), transcriptional activity being progressively lost with deletions beyond 10 nucleotides. In comparison, when deletions were made with the ICE in the reversed (f-RICE-f) orientation transcriptional activity was progressively lost with no recovery. These results show that, although transcription can still occur when the CCAAT box is reversed and/or displaced relative to the TATA box, the activity is dependent upon the flexibility of the intervening DNA helix needed to align the NF-Y complex on the CCAAT box with preinitiation complex proteins that bind to the TATA box. Thus, the precise location and orientation of the CCAAT element is necessary for optimizing basal transcription of the bone sialoprotein gene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, T.; Papaconstantinou, J.
1992-02-25
The synthesis and secretion of several acute-phase proteins increases markedly following physiological stress. {alpha}{sub 1}-Acid glycoprotein (AGP), a major acute-phase reactant made by the liver, is strongly induced by inflammatory agents such as lipopolysaccharide (LPS). Nuclear run-on assay showed a 17-fold increase in the rate of AGP transcription 4 h following LPS injection. DNase I footprinting assays revealed multiple protein binding domains in the mouse AGP-1 promoter region. Region B ({minus}104 to {minus}91) is protected by a liver-enriched transcription factor that is heat labile and in limiting quantity. An adjacent region, C ({minus}125 to {minus}104), is well-protected by nuclear extractsmore » from hepatocytes. Electrophoretic mobility shift assays indicated that only one DNA-protein complex can form with an oligonucleotide corresponding to region B. However, nuclear proteins from untreated mouse liver can form three strong complexes (C1, C2, and C3) and a weak one (C4) with oligonucleotide C. An acute-phase-inducible DNA-binding protein (AP-DBP) forms complex 4. A dramatic increase (over 11-fold) in AP-DBP binding activity is seen with nuclear proteins from LPS-stimulated animals. Interestingly, AP-DBP, a heat-stable factor, can form heterodimers with the transcription factor CCAAT/enhancer binding protein (C/EBP). Furthermore, purified C/EBP also binds avidly to region C. The studies indicate that several liver-enriched nuclear factors can interact with AGP-1 promoter and that AP-DBP binds to the AGP-1 promoter with high affinity only during the acute-phase induction.« less
Dong, Yewei; Wang, Shuqi; Chen, Junliang; Zhang, Qinghao; Liu, Yang; You, Cuihong; Monroig, Óscar; Tocher, Douglas R.; Li, Yuanyou
2016-01-01
Rabbitfish Siganus canaliculatus was the first marine teleost demonstrated to have the capability of biosynthesizing long-chain polyunsaturated fatty acids (LC-PUFA) from C18 precursors, and to possess a Δ4 fatty acyl desaturase (Δ4 Fad) which was the first report in vertebrates, and is a good model for studying the regulatory mechanisms of LC-PUFA biosynthesis in teleosts. In order to understand regulatory mechanisms of transcription of Δ4 Fad, the gene promoter was cloned and characterized in the present study. An upstream sequence of 1859 bp from the initiation codon ATG was cloned as the promoter candidate. On the basis of bioinformatic analysis, several binding sites of transcription factors (TF) including GATA binding protein 2 (GATA-2), CCAAT enhancer binding protein (C/EBP), nuclear factor 1 (NF-1), nuclear factor Y (NF-Y), hepatocyte nuclear factor 4α (HNF4α) and sterol regulatory element (SRE), were identified in the promoter by site-directed mutation and functional assays. HNF4α and NF-1 were confirmed to interact with the core promoter of Δ4 Fad by gel shift assay and mass spectrometry. Moreover, over-expression of HNF4α increased promoter activity in HEK 293T cells and mRNA level of Δ4 Fad in rabbitfish primary hepatocytes, respectively. The results indicated that HNF4α is a TF of rabbitfish Δ4 Fad. To our knowledge, this is the first report on promoter structure of a Δ4 Fad, and also the first demonstration of HNF4α as a TF of vertebrate Fad gene involved in transcription regulation of LC-PUFA biosynthesis. PMID:27472219
Wieczorek, Anna; McHenry, Charles S
2006-05-05
The alpha subunit of the replicase of all bacteria contains a php domain, initially identified by its similarity to histidinol phosphatase but of otherwise unknown function (Aravind, L., and Koonin, E. V. (1998) Nucleic Acids Res. 26, 3746-3752). Deletion of 60 residues from the NH2 terminus of the alpha php domain destroys epsilon binding. The minimal 255-residue php domain, estimated by sequence alignment with homolog YcdX, is insufficient for epsilon binding. However, a 320-residue segment including sequences that immediately precede the polymerase domain binds epsilon with the same affinity as the 1160-residue full-length alpha subunit. A subset of mutations of a conserved acidic residue (Asp43 in Escherichia coli alpha) present in the php domain of all bacterial replicases resulted in defects in epsilon binding. Using sequence alignments, we show that the prototypical gram+ Pol C, which contains the polymerase and proofreading activities within the same polypeptide chain, has an epsilon-like sequence inserted in a surface loop near the center of the homologous YcdX protein. These findings suggest that the php domain serves as a platform to enable coordination of proofreading and polymerase activities during chromosomal replication.
Mizutani, Tetsuya; Ju, Yunfeng; Imamichi, Yoshitaka; Osaki, Tsukasa; Yazawa, Takashi; Kawabe, Shinya; Ishikane, Shin; Matsumura, Takehiro; Kanno, Masafumi; Kamiki, Yasue; Kimura, Kohei; Minamino, Naoto; Miyamoto, Kaoru
2014-06-15
The transcription factor SF-1 (steroidogenic factor-1) is a master regulator of steroidogenesis. Previously, we have found that SF-1 induces the differentiation of mesenchymal stem cells into steroidogenic cells. To elucidate the molecular mechanisms of SF-1-mediated functions, we attempted to identify protein components of the SF-1 nuclear protein complex in differentiated cells. SF-1 immunoaffinity chromatography followed by MS/MS analysis was performed, and 24 proteins were identified. Among these proteins, we focused on C/EBPβ (CCAAT/enhancer-binding protein β), which is an essential transcription factor for ovulation and luteinization, as the transcriptional mechanisms of C/EBPβ working together with SF-1 are poorly understood. C/EBPβ knockdown attenuated cAMP-induced progesterone production in granulosa tumour-derived KGN cells by altering STAR (steroidogenic acute regulatory protein), CYP11A1 (cytochrome P450, family 11, subfamily A, polypeptide 1) and HSD3B2 (hydroxy-δ-5-steroid dehydrogenase, 3β- and steroid δ-isomerase 2) expression. EMSA and ChIP assays revealed novel C/EBPβ-binding sites in the upstream regions of the HSD3B2 and CYP11A1 genes. These interactions were enhanced by cAMP stimulation. Luciferase assays showed that C/EBPβ-responsive regions were found in each promoter and C/EBPβ is involved in the cAMP-induced transcriptional activity of these genes together with SF-1. These results indicate that C/EBPβ is an important mediator of progesterone production by working together with SF-1, especially under tropic hormone-stimulated conditions.
Inflammation and hypoxia in the kidney: friends or foes?
Haase, Volker H
2015-08-01
Hypoxic injury is commonly associated with inflammatory-cell infiltration, and inflammation frequently leads to the activation of cellular hypoxia response pathways. The molecular mechanisms underlying this cross-talk during kidney injury are incompletely understood. Yamaguchi and colleagues identify CCAAT/enhancer-binding protein δ as a cytokine- and hypoxia-regulated transcription factor that fine-tunes hypoxia-inducible factor-1 signaling in renal epithelial cells and thus provide a novel molecular link between hypoxia and inflammation in kidney injury.
Han, ShouWei; Ritzenthaler, Jeffrey D; Wingerd, Byron; Roman, Jesse
2005-09-30
The prostaglandin E2 receptor subtype EP4 has been implicated in the growth and progression of human non-small cell lung carcinoma (NSCLC). However, the factors that control its expression have not been entirely elucidated. Our studies show that NSCLC cells express peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) protein and that treatment with a selective PPARbeta/delta agonist (GW501516) increases EP4 mRNA and protein levels. GW501516 induced NSCLC cell proliferation, and this effect was prevented by PPARbeta/delta antisense or EP4 short interfering RNA (siRNA). GW501516 increased the phosphorylation of Akt and decreased PTEN expression. The selective inhibitor of phosphatidylinositol 3-kinase (PI3-K), wortmannin, and PPARbeta/delta antisense, abrogated the effect of GW501516 on EP4 expression, whereas that of the inhibitor of Erk did not. GW501516 also increased EP4 promoter activity through effects on the region between -1555 and -992 bp in the EP4 promoter, and mutation of the CCAAT/enhancer-binding protein (C/EBP) site in this region abrogated the effect of GW501516. GW501516 increased not only the binding activity of C/EBP to the NF-IL6 site in the EP4 promoter, which was prevented by the inhibitor of PI3-K, but also increased C/EBPbeta protein in a dose- and PPARbeta/delta-dependent manner. The effect of GW501516 on EP4 protein was eliminated in the presence of C/EBPbeta siRNA. Finally, we showed that pretreatment of NSCLC with GW501516 further increased NSCLC cell proliferation in response to exogenous dimethyl-prostaglandin E2 (PGE2) that was diminished in the presence of PPARbeta/delta antisense and EP4 siRNA. Taken together, these findings suggest that activation of PPARbeta/delta induces PGE2 receptor subtype EP4 expression through PI3-K signals and increases human lung carcinoma cell proliferation in response to PGE2. The increase in transcription of the EP4 gene by PPARbeta/delta agonist was associated with increased C/EBP binding activity in the NF-IL6 site of EP4 promoter region and C/EBPbeta protein expression that were mediated through both PI3-K/Akt and PPARbeta/delta signaling pathways.
Jeon, Hui-Jeon; Seo, Min-Jung; Choi, Hyeon-Son; Lee, Ok-Hwan; Lee, Boo-Yong
2014-11-01
Gelidium elegans is an edible red alga native to the intertidal area of northeastern Asia. We investigated the effect of G. elegans extract and its main flavonoids, rutin and hesperidin, on lipid accumulation and the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in 3T3-L1 and RAW264.7 cells. Our data show that G. elegans extract decreased lipid accumulation and ROS/RNS production in a dose-dependent manner. The extract also inhibited the mRNA expression of adipogenic transcription factors, such as peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha, while enhancing the protein expression of the antioxidant enzymes superoxide dismutases 1 and 2, glutathione peroxidase, and glutathione reductase compared with controls. In addition, lipopolysaccharide-induced nitric oxide production was significantly reduced in G. elegans extract-treated RAW264.7 cells. In analysis of the effects of G. elegans flavonoids on lipid accumulation and ROS/RNS production, only hesperidin showed an inhibitory effect on lipid accumulation and ROS production; rutin did not affect adipogenesis and ROS status. The antiadipogenic effect of hesperidin was evidenced by the downregulation of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha, and fatty acid binding protein 4 gene expression. Collectively, our data suggest that G. elegans is a potential food source containing antiobesity and antioxidant constituents. Copyright © 2014 John Wiley & Sons, Ltd.
Ayres, Cynthia; Mahat, Ganga; Atkins, Robert
2013-01-01
To examine variables influencing the positive health practices (PHP) of Filipino college students to gain a better understanding of health practices in this ethnic/racial group. Cross-sectional study tested theoretical relationships postulated among (a) PHP, (b) social support (SS), (c) optimism, and (d) acculturation. A sample of Filipino college students (N = 226) aged 18 to 21 was obtained in June 2009. Participants completed 4 instruments. Statistical analyses were performed using SPSS 16.0. Positive correlations were found between PHP and SS (r = .39, p = .01) and optimism and PHP (r = .36, p = .01). No correlation was found between PHP and acculturation. Optimism and SS predicted performance of PHP (R (2) = .18, F[2, 221] = 24.927, p < .001). A difference was found in acculturation levels between participants who grew up in the United States (t[223] = 4.5, p < .001) and those who did not. Findings help health practitioners and educators to better understand the underlying factors that influence PHP in this population.
Li, Xian; Li, Runsheng; Jia, Yimin; Sun, Zhiyuan; Yang, Xiaojing; Sun, Qinwei; Zhao, Ruqian
2013-11-01
The enzyme 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4)-isomerase (3β-HSD) catalyzes the biosynthesis of all steroid hormones. The molecular mechanisms regulating porcine adrenal 3β-HSD expression in different breeds are still poorly understood. In this study, we aimed to compare the expression of 3β-HSD between preweaning purebred Large White (LW) and Erhualian (EHL) piglets and to explore the potential factors regulating 3β-HSD transcription. EHL had significantly higher serum levels of cortisol (P<0.01) and testosterone (P<0.01), which were associated with significantly higher expression of 3β-HSD mRNA (P<0.01) and protein (P<0.05) in the adrenal gland, compared with LW piglets. The 5' flanking region of the porcine 3β-HSD gene showed significant sequence variations between breeds, and the sequence of EHL demonstrated an elevated promoter activity (P<0.05) in luciferase reporter gene assay. Higher adrenal expression of 3β-HSD in EHL was accompanied with higher CCAAT/enhancer binding protein β (C/EBPβ) expression (P<0.05), enriched histone H3 acetylation (P<0.05) and C/EBPβ binding to 3β-HSD promoter (P<0.05). In addition, higher androgen receptor (AR) (P=0.06) and lower glucocorticoid receptor (GR) (P<0.05) were detected in EHL. Co-immunoprecipitation analysis revealed interactions of C/EBPβ with both AR and GR. These results indicate that the C/EBPβ binding to 3β-HSD promoter is responsible, at least in part, for the breed-dependent 3β-HSD expression in adrenal gland of piglets. The sequence variations of 3β-HSD promoter and the interactions of AR and/or GR with C/EBPβ may also participate in the regulation. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wubben, Thomas J.; Mesecar, Andrew D.; UIC)
Phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in the coenzyme A (CoA) biosynthetic pathway, reversibly transferring an adenylyl group from ATP to 4'-phosphopantetheine (PhP) to form dephosphocoenzyme A. This reaction sits at the branch point between the de novo pathway and the salvage pathway, and has been shown to be a rate-limiting step in the biosynthesis of CoA. Importantly, bacterial and mammalian PPATs share little sequence homology, making the enzyme a potential target for antibiotic development. A series of steady-state kinetic, product inhibition, and direct binding studies with Mycobacterium tuberculosis PPAT (MtPPAT) was conducted and suggests that the enzyme utilizesmore » a nonrapid-equilibrium random bi-bi mechanism. The kinetic response of MtPPAT to the binding of ATP was observed to be sigmoidal under fixed PhP concentrations, but substrate inhibition was observed at high PhP concentrations under subsaturating ATP concentrations, suggesting a preferred pathway to ternary complex formation. Negative cooperativity in the kinetic response of MtPPAT to PhP binding was observed under certain conditions and confirmed thermodynamically by isothermal titration calorimetry, suggesting the formation of an asymmetric quaternary structure during sequential ligation of substrates. Asymmetry in binding was also observed in isothermal titration calorimetry experiments with dephosphocoenzyme A and CoA. X-ray structures of MtPPAT in complex with PhP and the nonhydrolyzable ATP analogue adenosine-5'-[({alpha},{beta})-methyleno]triphosphate were solved to 1.57 {angstrom} and 2.68 {angstrom}, respectively. These crystal structures reveal small conformational changes in enzyme structure upon ligand binding, which may play a role in the nonrapid-equilibrium mechanism. We suggest that the proposed kinetic mechanism and asymmetric character in MtPPAT ligand binding may provide a means of reaction and pathway regulation in addition to that of the previously determined CoA feedback.« less
CCAAT/enhancer-binding protein α is required for hepatic outgrowth via the p53 pathway in zebrafish
Yuan, Hao; Wen, Bin; Liu, Xiaohui; Gao, Ce; Yang, Ruimeng; Wang, Luxiang; Chen, Saijuan; Chen, Zhu; de The, Hugues; Zhou, Jun; Zhu, Jun
2015-01-01
CCAAT/enhancer-binding protein α (C/ebpα) is a transcription factor that plays important roles in the regulation of hepatogenesis, adipogenesis and hematopoiesis. Disruption of the C/EBPα gene in mice leads to disturbed liver architecture and neonatal death due to hypoglycemia. However, the precise stages of liver development affected by C/ebpα loss are poorly studied. Using the zebrafish embryo as a model organism, we show that inactivation of the cebpa gene by TALENs results in a small liver phenotype. Further studies reveal that C/ebpα is distinctively required for hepatic outgrowth but not for hepatoblast specification. Lack of C/ebpα leads to enhanced hepatic cell proliferation and subsequent increased cell apoptosis. Additional loss of p53 can largely rescue the hepatic defect in cebpa mutants, suggesting that C/ebpα plays a role in liver growth regulation via the p53 pathway. Thus, our findings for the first time demonstrate a stage-specific role for C/ebpα during liver organogenesis. PMID:26511037
CCAAT/enhancer-binding protein α is required for hepatic outgrowth via the p53 pathway in zebrafish.
Yuan, Hao; Wen, Bin; Liu, Xiaohui; Gao, Ce; Yang, Ruimeng; Wang, Luxiang; Chen, Saijuan; Chen, Zhu; de The, Hugues; Zhou, Jun; Zhu, Jun
2015-10-29
CCAAT/enhancer-binding protein α (C/ebpα) is a transcription factor that plays important roles in the regulation of hepatogenesis, adipogenesis and hematopoiesis. Disruption of the C/EBPα gene in mice leads to disturbed liver architecture and neonatal death due to hypoglycemia. However, the precise stages of liver development affected by C/ebpα loss are poorly studied. Using the zebrafish embryo as a model organism, we show that inactivation of the cebpa gene by TALENs results in a small liver phenotype. Further studies reveal that C/ebpα is distinctively required for hepatic outgrowth but not for hepatoblast specification. Lack of C/ebpα leads to enhanced hepatic cell proliferation and subsequent increased cell apoptosis. Additional loss of p53 can largely rescue the hepatic defect in cebpa mutants, suggesting that C/ebpα plays a role in liver growth regulation via the p53 pathway. Thus, our findings for the first time demonstrate a stage-specific role for C/ebpα during liver organogenesis.
Browning, Diana L.; Collins, Casey P.; Hocum, Jonah D.; Leap, David J.; Rae, Dustin T.; Trobridge, Grant D.
2016-01-01
Retroviral vector-mediated gene therapy is promising, but genotoxicity has limited its use in the clinic. Genotoxicity is highly dependent on the retroviral vector used, and foamy viral (FV) vectors appear relatively safe. However, internal promoters may still potentially activate nearby genes. We developed insulated FV vectors, using four previously described insulators: a version of the well-studied chicken hypersensitivity site 4 insulator (650cHS4), two synthetic CCCTC-binding factor (CTCF)-based insulators, and an insulator based on the CCAAT box-binding transcription factor/nuclear factor I (7xCTF/NF1). We directly compared these insulators for enhancer-blocking activity, effect on FV vector titer, and fidelity of transfer to both proviral long terminal repeats. The synthetic CTCF-based insulators had the strongest insulating activity, but reduced titers significantly. The 7xCTF/NF1 insulator did not reduce titers but had weak insulating activity. The 650cHS4-insulated FV vector was identified as the overall most promising vector. Uninsulated and 650cHS4-insulated FV vectors were both significantly less genotoxic than gammaretroviral vectors. Integration sites were evaluated in cord blood CD34+ cells and the 650cHS4-insulated FV vector had fewer hotspots compared with an uninsulated FV vector. These data suggest that insulated FV vectors are promising for hematopoietic stem cell gene therapy. PMID:26715244
ENWRIGHT, JOHN F.; KAWECKI-CROOK, MARGARET A.; VOSS, TY C.; SCHAUFELE, FRED; DAY, RICHARD N.
2010-01-01
The pituitary-specific homeodomain protein Pit-1 cooperates with other transcription factors, in cluding CCAAT/enhancer binding protein α (C/ EBPα), in the regulation of pituitary lactotrope gene transcription. Here, we correlate cooperative activation of prolactin (PRL) gene transcription by Pit-1 and C/EBPα with changes in the subnuclear localization of these factors in living pituitary cells. Transiently expressed C/EBPα induced PRL gene transcription in pituitary GHFT1–5 cells, whereas the coexpression of Pit-1 and C/EBPα in HeLa cells demonstrated their cooperativity at the PRL promoter. Individually expressed Pit-1 or C/EBPα, fused to color variants of fluorescent proteins, occupied different subnuclear compartments in living pituitary cells. When coexpressed, Pit-1 recruited C/EBPα from regions of transcriptionally quiescent centromeric heterochromatin to the nuclear regions occupied by Pit-1. The homeodomain region of Pit-1 was necessary for the recruitment of C/EBPα. A point mutation in the Pit-1 homeodomain associated with the syndrome of combined pituitary hormone deficiency in humans also failed to recruit C/EBPα. This Pit-1 mutant functioned as a dominant inhibitor of PRL gene transcription and, instead of recruiting C/EBPα, was itself recruited by C/EBPα to centromeric heterochromatin. Together our results suggest that the intranuclear positioning of these factors determines whether they activate or silence PRL promoter activity. PMID:12554749
A structural role for the PHP domain in E. coli DNA polymerase III.
Barros, Tiago; Guenther, Joel; Kelch, Brian; Anaya, Jordan; Prabhakar, Arjun; O'Donnell, Mike; Kuriyan, John; Lamers, Meindert H
2013-05-14
In addition to the core catalytic machinery, bacterial replicative DNA polymerases contain a Polymerase and Histidinol Phosphatase (PHP) domain whose function is not entirely understood. The PHP domains of some bacterial replicases are active metal-dependent nucleases that may play a role in proofreading. In E. coli DNA polymerase III, however, the PHP domain has lost several metal-coordinating residues and is likely to be catalytically inactive. Genomic searches show that the loss of metal-coordinating residues in polymerase PHP domains is likely to have coevolved with the presence of a separate proofreading exonuclease that works with the polymerase. Although the E. coli Pol III PHP domain has lost metal-coordinating residues, the structure of the domain has been conserved to a remarkable degree when compared to that of metal-binding PHP domains. This is demonstrated by our ability to restore metal binding with only three point mutations, as confirmed by the metal-bound crystal structure of this mutant determined at 2.9 Å resolution. We also show that Pol III, a large multi-domain protein, unfolds cooperatively and that mutations in the degenerate metal-binding site of the PHP domain decrease the overall stability of Pol III and reduce its activity. While the presence of a PHP domain in replicative bacterial polymerases is strictly conserved, its ability to coordinate metals and to perform proofreading exonuclease activity is not, suggesting additional non-enzymatic roles for the domain. Our results show that the PHP domain is a major structural element in Pol III and its integrity modulates both the stability and activity of the polymerase.
USDA-ARS?s Scientific Manuscript database
Suppressors of cytokine signaling 3 (SOCS3) is an important intracellular regulator of TLR4 signaling and has been implicated in several inflammatory diseases. Although SOCS3 seems to contribute to the balance between the pro-inflammatory effects of IL-6 and antiinflammatory signaling of IL-10 by ne...
Inta, Ioana Monica; Choukair, Daniela; Bender, Sebastian; Kneppo, Carolin; Knauer-Fischer, Sabine; Meyenburg, Kahina; Ivandic, Boris; Pfister, Stefan M; Bettendorf, Markus
2014-01-01
GNAS encodes the α subunit of the stimulatory G protein (Gsα). Maternal inherited Gsα mutations cause pseudohypoparathyroidism type Ia (PHP-Ia), associated with shortening of the 4th and 5th metacarpals. Here we investigated the Gsα pathway in short patients with distinct shortening of the 4th and 5th metacarpals. In 571 children with short stature and 4 patients with PHP-Ia metacarpal bone lengths were measured. In identified patients we analysed the Gsα protein function in platelets, performed GNAS sequencing, and epigenetic analysis of four significant differentially methylated regions. In 51 patients (8.9%) shortening of the 4th and 5th metacarpals was more pronounced than their height deficit. No GNAS coding mutations were identified in 20 analysed patients, except in 2 PHP-Ia patients. Gsα activity was reduced in all PHP-Ia patients and in 25% of the analysed patients. No significant methylation changes were identified. Our findings suggest that patients with short stature and distinct metacarpal bone shortening could be part of the wide variety of PHP/PPHP, therefore it was worthwhile analysing the Gsα protein function and GNAS gene in these patients in order to further elucidate the phenotype and genotype of Gsα dysfunction.
Liu, Shing-Hwa; Yang, Ching-Chin; Chan, Ding-Cheng; Wu, Cheng-Tien; Chen, Li-Ping; Huang, Jenq-Wen; Hung, Kuan-Yu; Chiang, Chih-Kang
2016-04-19
Renal tubulointerstitial fibrosis is the common and final pathologic change of kidney in end-stage renal disease. Interesting, endoplasmic reticulum (ER) stress is known to contribute to the pathophysiological mechanisms during the development of renal fibrosis. Here, we investigated the effects of chemical chaperon sodium 4-phenylbutyrate (4-PBA) on renal fibrosis in vivo and in vitro. In a rat unilateral ureteral obstruction (UUO) model, 4-PBA mimicked endogenous ER chaperon in the kidneys and significantly reduced glucose regulated protein 78 (GRP78), CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP), activating transcription factor 4 (ATF4), and phosphorylated JNK protein expressions as well as restored spliced X-box-binding protein 1 (XBP1) expressions in the kidneys of UUO rats. 4-PBA also attenuated the increases of α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF) protein expressions, tubulointerstitial fibrosis, and apoptosis in the kidneys of UUO rats. Moreover, transforming growth factor (TGF)-β markedly increased ER stress-associated molecules, profibrotic factors, and apoptotic markers in the renal tubular cells (NRK-52E), all of which could be significantly counteracted by 4-PBA treatment. 4-PBA also diminished TGF-β-increased CTGF promoter activity and CTGF mRNA expression in NRK-52E cells. Taken together, our results indicated that 4-PBA acts as an ER chaperone to ameliorate ER stress-induced renal tubular cell apoptosis and renal fibrosis.
A structural role for the PHP domain in E. coli DNA polymerase III
2013-01-01
Background In addition to the core catalytic machinery, bacterial replicative DNA polymerases contain a Polymerase and Histidinol Phosphatase (PHP) domain whose function is not entirely understood. The PHP domains of some bacterial replicases are active metal-dependent nucleases that may play a role in proofreading. In E. coli DNA polymerase III, however, the PHP domain has lost several metal-coordinating residues and is likely to be catalytically inactive. Results Genomic searches show that the loss of metal-coordinating residues in polymerase PHP domains is likely to have coevolved with the presence of a separate proofreading exonuclease that works with the polymerase. Although the E. coli Pol III PHP domain has lost metal-coordinating residues, the structure of the domain has been conserved to a remarkable degree when compared to that of metal-binding PHP domains. This is demonstrated by our ability to restore metal binding with only three point mutations, as confirmed by the metal-bound crystal structure of this mutant determined at 2.9 Å resolution. We also show that Pol III, a large multi-domain protein, unfolds cooperatively and that mutations in the degenerate metal-binding site of the PHP domain decrease the overall stability of Pol III and reduce its activity. Conclusions While the presence of a PHP domain in replicative bacterial polymerases is strictly conserved, its ability to coordinate metals and to perform proofreading exonuclease activity is not, suggesting additional non-enzymatic roles for the domain. Our results show that the PHP domain is a major structural element in Pol III and its integrity modulates both the stability and activity of the polymerase. PMID:23672456
Regulation of Bacteria-Induced Intercellular Adhesion Molecule-1 by CCAAT/Enhancer Binding Proteins
Manzel, Lori J.; Chin, Cecilia L.; Behlke, Mark A.; Look, Dwight C.
2009-01-01
Direct interaction between bacteria and epithelial cells may initiate or amplify the airway response through induction of epithelial defense gene expression by nuclear factor-κB (NF-κB). However, multiple signaling pathways modify NF-κB effects to modulate gene expression. In this study, the effects of CCAAT/enhancer binding protein (C/EBP) family members on induction of the leukocyte adhesion glycoprotein intercellular adhesion molecule-1 (ICAM-1) was examined in primary cultures of human tracheobronchial epithelial cells incubated with nontypeable Haemophilus influenzae. Increased ICAM-1 gene transcription in response to H. influenzae required gene sequences located at −200 to −135 in the 5′-flanking region that contain a C/EBP-binding sequence immediately upstream of the NF-κB enhancer site. Constitutive C/EBPβ was found to have an important role in epithelial cell ICAM-1 regulation, while the adjacent NF-κB sequence binds the RelA/p65 and NF-κB1/p50 members of the NF-κB family to induce ICAM-1 expression in response to H. influenzae. The expression of C/EBP proteins is not regulated by p38 mitogen-activated protein kinase activation, but p38 affects gene transcription by increasing the binding of TATA-binding protein to TATA-box–containing gene sequences. Epithelial cell ICAM-1 expression in response to H. influenzae was decreased by expressing dominant-negative protein or RNA interference against C/EBPβ, confirming its role in ICAM-1 regulation. Although airway epithelial cells express multiple constitutive and inducible C/EBP family members that bind C/EBP sequences, the results indicate that C/EBPβ plays a central role in modulation of NF-κB–dependent defense gene expression in human airway epithelial cells after exposure to H. influenzae. PMID:18703796
van Ooij, C; Snyder, R C; Paeper, B W; Duester, G
1992-01-01
The human class I alcohol dehydrogenase (ADH) gene family consists of ADH1, ADH2, and ADH3, which are sequentially activated in early fetal, late fetal, and postnatal liver, respectively. Analysis of ADH promoters revealed differential activation by several factors previously shown to control liver transcription. In cotransfection assays, the ADH1 promoter, but not the ADH2 or ADH3 promoter, was shown to respond to hepatocyte nuclear factor 1 (HNF-1), which has previously been shown to regulate transcription in early liver development. The ADH2 promoter, but not the ADH1 or ADH3 promoter, was shown to respond to CCAAT/enhancer-binding protein alpha (C/EBP alpha), a transcription factor particularly active during late fetal liver and early postnatal liver development. The ADH1, ADH2, and ADH3 promoters all responded to the liver transcription factors liver activator protein (LAP) and D-element-binding protein (DBP), which are most active in postnatal liver. For all three promoters, the activation by LAP or DBP was higher than that seen by HNF-1 or C/EBP alpha, and a significant synergism between C/EBP alpha and LAP was noticed for the ADH2 and ADH3 promoters when both factors were simultaneously cotransfected. A hierarchy of ADH promoter responsiveness to C/EBP alpha and LAP homo- and heterodimers is suggested. In all three ADH genes, LAP bound to the same four sites previously reported for C/EBP alpha (i.e., -160, -120, -40, and -20 bp), but DBP bound strongly only to the site located at -40 bp relative to the transcriptional start. Mutational analysis of ADH2 indicated that the -40 bp element accounts for most of the promoter regulation by the bZIP factors analyzed. These studies suggest that HNF-1 and C/EBP alpha help establish ADH gene family transcription in fetal liver and that LAP and DBP help maintain high-level ADH gene family transcription in postnatal liver. Images PMID:1620113
Fuchs, O; Kostecka, A; Provazníková, D; Krásná, B; Kotlín, R; Stanková, M; Kobylka, P; Dostálová, G; Zeman, M; Chochola, M
2010-01-01
The CCAAT/enhancer-binding protein alpha, encoded by the intronless CEBPA gene, is a transcription factor that induces expression of genes involved in differentiation of granulocytes, monocytes, adipocytes and hepatocytes. Both mono- and bi-allelic CEBPA mutations were detected in acute myeloid leukaemia and myelodysplastic syndrome. In this study we also identified CEBPA mutations in healthy individuals and in patients with peripheral artery disease, ischaemic heart disease and hyperlipidaemia. We found 16 various deletions with the presence of two direct repeats in CEBPA by analysis of 431 individuals. Three most frequent repeats included in these deletions in CEBPA gene are CGCGAG (493- 498_865-870), GG (486-487_885-886), and GCCAAGCAGC (508-517_907-916), all according to GenBank Accession No. NM_004364.2. In one case we identified that a father with ischaemic heart disease and his healthy son had two identical deletions (493_864del and 508_906del, both according to GenBank Accession No. NM_004364.2) in CEBPA. The occurrence of deletions between two repetitive sequences may be caused by recombination events in the repair process. A double-stranded cut in DNA may initiate these recombination events in adjacent DNA sequences. Four types of polymorphisms in the CEBPA gene were also detected in the screened individuals. Polymorphism in CEBPA gene 690 G>T according to GenBank Accession No. NM_004364.2 is the most frequent type in our analysis. Statistical analysis did not find significant differences in the frequency of polymorphisms in CEBPA in patients and in healthy individuals with the exception of P4 polymorphism (580_585dup according to GenBank Accesion No. NM_004364.2). P4 polymorphism was significantly increased in ischaemic heart disease patients.
Li, Yafeng; Song, Delu; Song, Ying; Zhao, Liangliang; Wolkow, Natalie; Tobias, John W; Song, Wenchao; Dunaief, Joshua L
2015-05-08
Dysregulation of iron homeostasis may be a pathogenic factor in age-related macular degeneration (AMD). Meanwhile, the formation of complement-containing deposits under the retinal pigment epithelial (RPE) cell layer is a pathognomonic feature of AMD. In this study, we investigated the molecular mechanisms by which complement component 3 (C3), a central protein in the complement cascade, is up-regulated by iron in RPE cells. Modulation of TGF-β signaling, involving ERK1/2, SMAD3, and CCAAT/enhancer-binding protein-δ, is responsible for iron-induced C3 expression. The differential effects of spatially distinct SMAD3 phosphorylation sites at the linker region and at the C terminus determined the up-regulation of C3. Pharmacologic inhibition of either ERK1/2 or SMAD3 phosphorylation decreased iron-induced C3 expression levels. Knockdown of SMAD3 blocked the iron-induced up-regulation and nuclear accumulation of CCAAT/enhancer-binding protein-δ, a transcription factor that has been shown previously to bind the basic leucine zipper 1 domain in the C3 promoter. We show herein that mutation of this domain reduced iron-induced C3 promoter activity. In vivo studies support our in vitro finding of iron-induced C3 up-regulation. Mice with a mosaic pattern of RPE-specific iron overload demonstrated co-localization of iron-induced ferritin and C3d deposits. Humans with aceruloplasminemia causing RPE iron overload had increased RPE C3d deposition. The molecular events in the iron-C3 pathway represent therapeutic targets for AMD or other diseases exacerbated by iron-induced local complement dysregulation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Li, Yafeng; Song, Delu; Song, Ying; Zhao, Liangliang; Wolkow, Natalie; Tobias, John W.; Song, Wenchao; Dunaief, Joshua L.
2015-01-01
Dysregulation of iron homeostasis may be a pathogenic factor in age-related macular degeneration (AMD). Meanwhile, the formation of complement-containing deposits under the retinal pigment epithelial (RPE) cell layer is a pathognomonic feature of AMD. In this study, we investigated the molecular mechanisms by which complement component 3 (C3), a central protein in the complement cascade, is up-regulated by iron in RPE cells. Modulation of TGF-β signaling, involving ERK1/2, SMAD3, and CCAAT/enhancer-binding protein-δ, is responsible for iron-induced C3 expression. The differential effects of spatially distinct SMAD3 phosphorylation sites at the linker region and at the C terminus determined the up-regulation of C3. Pharmacologic inhibition of either ERK1/2 or SMAD3 phosphorylation decreased iron-induced C3 expression levels. Knockdown of SMAD3 blocked the iron-induced up-regulation and nuclear accumulation of CCAAT/enhancer-binding protein-δ, a transcription factor that has been shown previously to bind the basic leucine zipper 1 domain in the C3 promoter. We show herein that mutation of this domain reduced iron-induced C3 promoter activity. In vivo studies support our in vitro finding of iron-induced C3 up-regulation. Mice with a mosaic pattern of RPE-specific iron overload demonstrated co-localization of iron-induced ferritin and C3d deposits. Humans with aceruloplasminemia causing RPE iron overload had increased RPE C3d deposition. The molecular events in the iron-C3 pathway represent therapeutic targets for AMD or other diseases exacerbated by iron-induced local complement dysregulation. PMID:25802332
Vakili, Hana; Jin, Yan; Menticoglou, Savas; Cattini, Peter A
2013-08-02
Human chorionic somatomammotropin (CS) and placental growth hormone variant (GH-V) act as metabolic adaptors in response to maternal insulin resistance, which occurs in "normal" pregnancy. Maternal obesity can exacerbate this "resistance," suggesting that CS, GH-V, or transcription factors that regulate their production might be targets. The human CS genes, hCS-A and hCS-B, flank the GH-V gene. A significant decrease in pre-term placental CS/GH-V RNA levels was observed in transgenic mice containing the CS/GH-V genes in a model of high fat diet (HFD)-induced maternal obesity. Similarly, a decrease in CS/GH-V RNA levels was detected in term placentas from obese (body mass index (BMI) ≥ 35 kg/m(2)) versus lean (BMI 20-25 kg/m(2)) women. A specific decrease in transcription factor CCAAT-enhancer-binding protein β (C/EBPβ) RNA levels was also seen with obesity; C/EBPβ is required for mouse placenta development and is expressed, like CS and GH-V, in syncytiotrophoblasts. Binding of C/EBPβ to the CS gene downstream enhancer regions, which by virtue of their position distally flank the GH-V gene, was reduced in placenta chromatin from mice on a HFD and in obese women; a corresponding decrease in RNA polymerase II associated with CS/GH-V promoters was also observed. Detection of decreased endogenous CS/GH-V RNA levels in human placental tumor cells treated with C/EBPβ siRNA is consistent with a direct effect. These data provide evidence for CS/GH-V dysregulation in acute HFD-induced obesity in mouse pregnancy and chronic obesity in human pregnancy and implicate C/EBPβ, a factor associated with CS regulation and placental development.
Fragoso-Medina, Jorge; Rodriguez, Gabriela; Zarain-Herzberg, Angel
2018-05-01
The cardiac sarco/endoplasmic reticulum Ca 2+ -ATPase-2a (SERCA2a) is vital for the correct handling of calcium concentration in cardiomyocytes. Recent studies showed that the induction of endoplasmic reticulum (ER) stress (ERS) with the SERCA2 inhibitor Thapsigargin (Tg) increases the mRNA and protein levels of SERCA2a. The SERCA2 gene promoter contains an ERS response element (ERSE) at position -78 bp that is conserved among species and might transcriptionally regulate SERCA2 gene expression. However, its involvement in SERCA2 basal and calcium-mediated transcriptional activation has not been elucidated. In this work, we show that in cellular cultures of neonatal rat ventricular myocytes, the treatment with Tg or the calcium ionophore A23187 increases the SERCA2a mRNA and protein abundance, as well as the transcriptional activity of two chimeric human SERCA2 gene constructs, containing -254 and -2579 bp of 5'-regulatory region cloned in the pGL3-basic vector and transiently transfected in cultured cardiomyocytes. We found that the ERSE present in the SERCA2 proximal promoter contains a CCAAT box that is involved in basal and ERS-mediated hSERCA2 transcriptional activation. The EMSA results showed that the CCAAT box present in the ERSE recruits the NF-Y transcription factor. Additionally, by ChIP assays, we confirmed in vivo binding of NF-Y and C/EBPβ transcription factors to the SERCA2 gene proximal promoter.
Kwon, Hye-Sook; Huang, Boli; Ho Jeoung, Nam; Wu, Pengfei; Steussy, Calvin N; Harris, Robert A
2006-01-01
Induction of pyruvate dehydrogenase kinase 4 (PDK4) conserves glucose and substrates for gluconeogenesis and thereby helps regulate blood glucose levels during starvation. We report here that retinoic acids (RA) as well as Trichostatin A (TSA), an inhibitor of histone deacetylase (HDAC), regulate PDK4 gene expression. Two retinoic acid response elements (RAREs) to which retinoid X receptor alpha (RXRalpha) and retinoic acid receptor alpha (RARalpha) bind and activate transcription are present in the human PDK4 (hPDK4) proximal promoter. Sp1 and CCAAT box binding factor (CBF) bind to the region between two RAREs. Mutation of either the Sp1 or the CBF site significantly decreases basal expression, transactivation by RXRalpha/RARalpha/RA, and the ability of TSA to stimulate hPDK4 gene transcription. By the chromatin immunoprecipitation assay, RA and TSA increase acetylation of histones bound to the proximal promoter as well as occupancy of CBP and Sp1. Interaction of p300/CBP with E1A completely prevented hPDK4 gene activation by RXRalpha/RARalpha/RA and TSA. The p300/CBP may enhance acetylation of histones bound to the hPDK4 promoter and cooperate with Sp1 and CBF to stimulate transcription of the hPDK4 gene in response to RA and TSA.
Legraverend, C; Antonson, P; Flodby, P; Xanthopoulos, K G
1993-01-01
The promoter region of the mouse CCAAT-Enhancer Binding Protein (C/EBP alpha) gene is capable of directing high levels of expression of reporter constructs in various cell lines, albeit even in cells that do not express their endogenous C/EBP alpha gene. To understand the molecular mechanisms underlying this ubiquitous expression, we have characterized the promoter region of the mouse C/EBP alpha gene by a variety of in vitro and in vivo methods. We show that three sites related in sequence to USF, BTE and C/EBP binding sites and present in promoter region -350/+3, are recognized by proteins from rat liver nuclear extracts. The sequence of the C/EBP alpha promoter that includes the USF binding site is also capable of forming stable complexes with purified Myc+Max heterodimers and mutation of this site drastically reduces transcription of C/EBP alpha promoter luciferase constructs both in liver and non liver cell lines. In addition, we identify three novel protein-binding sites two of which display similarity to NF-1 and a NF kappa B binding sites. The region located between nucleotides -197 and -178 forms several heat-stable complexes with liver nuclear proteins in vitro which are recognized mainly by antibodies specific for C/EBP alpha. Furthermore, transient expression of C/EBP alpha and to a lesser extent C/EBP beta expression vectors, results in transactivation of a cotransfected C/EBP alpha promoter-luciferase reporter construct. These experiments support the notion that the C/EBP alpha gene is regulated by C/EBP alpha but other C/EBP-related proteins may also be involved. Images PMID:8493090
The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression
Balda, Maria S.; Matter, Karl
2000-01-01
Epithelial tight junctions regulate paracellular diffusion and restrict the intermixing of apical and basolateral plasma membrane components. We now identify a Y-box transcription factor, ZONAB (ZO-1-associated nucleic acid-binding protein), that binds to the SH3 domain of ZO-1, a submembrane protein of tight junctions. ZONAB localizes to the nucleus and at tight junctions, and binds to sequences of specific promoters containing an inverted CCAAT box. In reporter assays, ZONAB and ZO-1 functionally interact in the regulation of the ErbB-2 promoter in a cell density-dependent manner. In stably transfected overexpressing cells, ZO-1 and ZONAB control expression of endogenous ErbB-2 and function in the regulation of paracellular permeability. These data indicate that tight junctions directly participate in the control of gene expression and suggest that they function in the regulation of epithelial cell differentiation. PMID:10790369
Snykers, Sarah; Vanhaecke, Tamara; De Becker, Ann; Papeleu, Peggy; Vinken, Mathieu; Van Riet, Ivan; Rogiers, Vera
2007-01-01
Background The capability of human mesenchymal stem cells (hMSC) derived of adult bone marrow to undergo in vitro hepatic differentiation was investigated. Results Exposure of hMSC to a cocktail of hepatogenic factors [(fibroblast growth factor-4 (FGF-4), hepatocyte growth factor (HGF), insulin-transferrin-sodium-selenite (ITS) and dexamethasone)] failed to induce hepatic differentiation. Sequential exposure to these factors (FGF-4, followed by HGF, followed by HGF+ITS+dexamethasone), however, resembling the order of secretion during liver embryogenesis, induced both glycogen-storage and cytokeratin (CK)18 expression. Additional exposure of the cells to trichostatin A (TSA) considerably improved endodermal differentiation, as evidenced by acquisition of an epithelial morphology, chronological expression of hepatic proteins, including hepatocyte-nuclear factor (HNF)-3β, alpha-fetoprotein (AFP), CK18, albumin (ALB), HNF1α, multidrug resistance-associated protein (MRP)2 and CCAAT-enhancer binding protein (C/EBP)α, and functional maturation, i.e. upregulated ALB secretion, urea production and inducible cytochrome P450 (CYP)-dependent activity. Conclusion hMSC are able to undergo mesenchymal-to-epithelial transition. TSA is hereby essential to promote differentiation of hMSC towards functional hepatocyte-like cells. PMID:17407549
Dasgupta, Nirmalya; Thakur, Bhupesh Kumar; Ta, Atri; Das, Sayan; Banik, George; Das, Santasabuj
2017-07-01
Human polo-like kinase 1 (PLK1), a highly conserved serine/threonine kinase is a key player in several essential cell-cycle events. PLK1 is considered an oncogene and its overexpression often correlates with poor prognosis of cancers, including colorectal cancer (CRC). However, regulation of PLK1 expression in colorectal cells was never studied earlier and it is currently unknown if PLK1 regulates differentiation and apoptosis of CRC. PLK1 expression was analyzed by real-time PCR and western blotting. Transcriptional regulation was studied by reporter assay, gene knock-down, EMSA and ChIP. PLK1 expression was down-regulated during butyrate-induced differentiation of HT-29 and other CRC cells. Also, PLK1 down-regulation mediated the role of butyrate in CRC differentiation and apoptosis. We report here a novel transcriptional regulation of PLK1 by butyrate. Transcription factors CCAAT/enhancer-binding protein α (C/EBPα) and Oct-1 share an overlapping binding site over the PLK1 promoter. Elevated levels of C/EBPα by butyrate treatment of CRC cells competed out the activator protein Oct-1 from binding to the PLK1 promoter and sequestered it. Binding of C/EBPα was associated with increased deacetylation near the transcription start site (TSS) of the PLK1 promoter, which abrogated transcription through reduced recruitment of RNA polymerase II. We also found a synergistic role between the synthetic PLK1-inhibitor SBE13 and butyrate on the apoptosis of CRC cells. This study offered a novel p53-independent regulation of PLK1 during CRC differentiation and apoptosis. Down-regulation of PLK1 is one of the mechanisms underlying the anti-cancer role of dietary fibre-derived butyrate in CRC. Copyright © 2017 Elsevier B.V. All rights reserved.
Kaisho, Tsuneyasu; Tsutsui, Hiroko; Tanaka, Takashi; Tsujimura, Tohru; Takeda, Kiyoshi; Kawai, Taro; Yoshida, Nobuaki; Nakanishi, Kenji; Akira, Shizuo
1999-01-01
We have investigated in vivo roles of CCAAT/enhancer binding protein γ (C/EBPγ) by gene targeting. C/EBPγ-deficient (C/EBPγ2/−) mice showed a high mortality rate within 48 h after birth. To analyze the roles of C/EBPγ in lymphoid lineage cells, bone marrow chimeras were established. C/EBPγ2/− chimeras showed normal T and B cell development. However, cytolytic functions of their splenic natural killer (NK) cells after stimulation with cytokines such as interleukin (IL)-12, IL-18, and IL-2 were significantly reduced as compared with those of control chimera NK cells. In addition, the ability of C/EBPγ−/− chimera splenocytes to produce interferon (IFN)-γ in response to IL-12 and/or IL-18 was markedly impaired. NK cells could be generated in vitro with normal surface marker expression in the presence of IL-15 from C/EBPγ2/− newborn spleen cells. However, they also showed lower cytotoxic activity and IFN-γ production when stimulated with IL-12 plus IL-18 than control NK cells, as observed in C/EBPγ2/− chimera splenocytes. In conclusion, our study reveals that C/EBPγ is a critical transcription factor involved in the functional maturation of NK cells. PMID:10587348
Park, Myoung-Ryoul; Yun, Kil-Young; Mohanty, Bijayalaxmi; Herath, Venura; Xu, Fuyu; Wijaya, Edward; Bajic, Vladimir B; Yun, Song-Joong; De Los Reyes, Benildo G
2010-12-01
The R2R3-type OsMyb4 transcription factor of rice has been shown to play a role in the regulation of osmotic adjustment in heterologous overexpression studies. However, the exact composition and organization of its underlying transcriptional network has not been established to be a robust tool for stress tolerance enhancement by regulon engineering. OsMyb4 network was dissected based on commonalities between the global chilling stress transcriptome and the transcriptome configured by OsMyb4 overexpression. OsMyb4 controls a hierarchical network comprised of several regulatory sub-clusters associated with cellular defense and rescue, metabolism and development. It regulates target genes either directly or indirectly through intermediary MYB, ERF, bZIP, NAC, ARF and CCAAT-HAP transcription factors. Regulatory sub-clusters have different combinations of MYB-like, GCC-box-like, ERD1-box-like, ABRE-like, G-box-like, as1/ocs/TGA-like, AuxRE-like, gibberellic acid response element (GARE)-like and JAre-like cis-elements. Cold-dependent network activity enhanced cellular antioxidant capacity through radical scavenging mechanisms and increased activities of phenylpropanoid and isoprenoid metabolic processes involving various abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), ethylene and reactive oxygen species (ROS) responsive genes. OsMyb4 network is independent of drought response element binding protein/C-repeat binding factor (DREB/CBF) and its sub-regulons operate with possible co-regulators including nuclear factor-Y. Because of its upstream position in the network hierarchy, OsMyb4 functions quantitatively and pleiotrophically. Supra-optimal expression causes misexpression of alternative targets with costly trade-offs to panicle development. © 2010 Blackwell Publishing Ltd.
Yuan, Hao; Zhang, Tao; Liu, Xiaohui; Deng, Min; Zhang, Wenqing; Wen, Zilong; Chen, Saijuan; Chen, Zhu; de The, Hugues; Zhou, Jun; Zhu, Jun
2015-03-11
The small ubiquitin-related modifier (SUMO) participates in various cellular processes, including maintenance of genome integrity, nuclear transport, transcription and signal transduction. However, the biological function of sumoylation in hematopoiesis has not been fully explored. We show here that definitive hematopoietic stem/progenitor cells (HSPCs) are depleted in SUMO-deficient zebrafish embryos. Impairment of sumoylation attenuates HSPC generation and proliferation. The hyposumoylation triggered HSPC defects are CCAAT/enhancer-binding protein α (C/ebpα) dependent. Critically, a SUMO-C/ebpα fusion rescues the defective hematopoiesis in SUMO-deficient embryos, at least in part through restored runx1 expression. While C/ebpα-dependent transcription is involved in myeloid differentiation, our studies here reveal that C/ebpα sumoylation is essential for HSPC development during definitive hematopoiesis.
Yuan, Hao; Zhang, Tao; Liu, Xiaohui; Deng, Min; Zhang, Wenqing; Wen, Zilong; Chen, Saijuan; Chen, Zhu; de The, Hugues; Zhou, Jun; Zhu, Jun
2015-01-01
The small ubiquitin-related modifier (SUMO) participates in various cellular processes, including maintenance of genome integrity, nuclear transport, transcription and signal transduction. However, the biological function of sumoylation in hematopoiesis has not been fully explored. We show here that definitive hematopoietic stem/progenitor cells (HSPCs) are depleted in SUMO-deficient zebrafish embryos. Impairment of sumoylation attenuates HSPC generation and proliferation. The hyposumoylation triggered HSPC defects are CCAAT/enhancer-binding protein α (C/ebpα) dependent. Critically, a SUMO-C/ebpα fusion rescues the defective hematopoiesis in SUMO-deficient embryos, at least in part through restored runx1 expression. While C/ebpα-dependent transcription is involved in myeloid differentiation, our studies here reveal that C/ebpα sumoylation is essential for HSPC development during definitive hematopoiesis. PMID:25757417
Shan, Jixiu; Örd, Daima; Örd, Tõnis; Kilberg, Michael S.
2009-01-01
Protein limitation in vivo or amino acid deprivation of cells in culture causes a signal transduction cascade consisting of activation of the kinase GCN2 (general control nonderepressible 2), phosphorylation of eukaryotic initiation factor 2, and increased synthesis of activating transcription factor (ATF) 4 by a translational control mechanism. In a self-limiting transcriptional program, ATF4 transiently activates a wide range of downstream target genes involved in transport, cellular metabolism, and other cell functions. Simultaneous activation of other signal transduction pathways by amino acid deprivation led to the question of whether or not the increased abundance of ATF4 alone was sufficient to trigger the transcriptional control mechanisms. Using 293 cells that ectopically express ATF4 in a tetracycline-inducible manner showed that ATF4 target genes were activated in the absence of amino acid deprivation. Ectopic expression of ATF4 alone resulted in effective recruitment of the general transcription machinery, but some reduction in histone modification was observed. These data document that ATF4 alone is sufficient to trigger the amino acid-responsive transcriptional control program. However, the absolute amount of ectopic ATF4 required to achieve the same degree of transcriptional activation observed after amino acid limitation was greater, suggesting that other factors may serve to enhance ATF4 function. PMID:19509279
Identification and characterization of NF-YB family genes in tung tree.
Yang, Susu; Wang, Yangdong; Yin, Hengfu; Guo, Haobo; Gao, Ming; Zhu, Huiping; Chen, Yicun
2015-12-01
The NF-YB transcription factor gene family encodes a subunit of the CCAAT box-binding factor (CBF), a highly conserved trimeric activator that strongly binds to the CCAAT box promoter element. Studies on model plants have shown that NF-YB proteins participate in important developmental and physiological processes, but little is known about NF-YB proteins in trees. Here, we identified seven NF-YB transcription factor-encoding genes in Vernicia fordii, an important oilseed tree in China. A phylogenetic analysis separated the genes into two groups; non-LEC1 type (VfNF-YB1, 5, 7, 9, 11, 13) and LEC1-type (VfNF-YB 14). A gene structure analysis showed that VfNF-YB 5 has three introns and the other genes have no introns. The seven VfNF-YB sequences contain highly conserved domains, a disordered region at the N terminus, and two long helix structures at the C terminus. Phylogenetic analyses showed that VfNF-YB family genes are highly homologous to GmNF-YB genes, and many of them are closely related to functionally characterized NF-YBs. In expression analyses of various tissues (root, stem, leaf, and kernel) and the root during pathogen infection, VfNF-YB1, 5, and 11 were dominantly expressed in kernels, and VfNF-YB7 and 9 were expressed only in the root. Different VfNF-YB family genes showed different responses to pathogen infection, suggesting that they play different roles in the pathogen response. Together, these findings represent the first extensive evaluation of the NF-YB family in tung tree and provide a foundation for dissecting the functions of VfNF-YB genes in seed development, stress adaption, fatty acid synthesis, and pathogen response.
Gao, Peng; Zhang, Yuchao; Liu, Yuantao; Chen, Jicui; Zong, Chen; Yu, Cong; Cui, Shang; Gao, Weina; Qin, Dandan; Sun, Wenchuan; Li, Xia; Wang, Xiangdong
2015-12-01
The role and mechanism of signal transducer and activator of transcription 5B (STAT5B) in adipogenesis remain unclear. In this study, our data showed that Males absent on the first (MOF) protein expression was increased during 3 T3-L1 preadipocytes differentiation accompanied with STAT5B expression increasing. Over-expression STAT5B enhanced MOF promoter trans-activation in HeLa cells. Mutagenesis assay and ChIP analysis exhibited that STAT5B was able to bind MOF promoter. Knocking-down STAT5B in 3 T3-L1 preadipocytes led to decreased expression of MOF, but resulted in increased expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα) and fatty acid-binding protein 4 (Fabp4), which were important factors or enzymes for adipogenesis. We also found that knocking-down MOF in 3 T3-L1 preadipocytes resulted in increased expression of PPARγ, C/EBPα and Fabp4, which was in the same trend as STAT5B knocking-down. Over-expression MOF resulted in reduced promoter trans-activation activity of C/EBPα. These results suggest that STAT5B and MOF work as negative regulators in adipogenesis, and STAT5B modulates preadipocytes differentiation partially by regulating MOF expression. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Qiu, Xiaolei; Aiken, Kimberly J.; Chokas, Ann L.; Beachy, Dawn E.; Nick, Harry S.
2008-01-01
The mitochondrial antioxidant enzyme manganese superoxide dismutase (Mn-SOD) is crucial in maintaining cellular and organismal homeostasis. Mn-SOD expression is tightly regulated in a manner that synchronizes its cytoprotective functions during inflammatory challenges. Induction of Mn-SOD gene expression by the proinflammatory cytokine IL-1β is mediated through a complex intronic enhancer element. To identify and characterize the transcription factors required for Mn-SOD enhancer function, a yeast one-hybrid assay was utilized, and two CCAAT enhancer-binding protein (C/EBP) members, C/EBP β and C/EBP δ, were identified. These two transcription factors responded to IL-1β treatment with distinct expression profiles, different temporal yet inducible interactions with the endogenous Mn-SOD enhancer, and also opposite effects on Mn-SOD transcription. C/EBP β is expressed as three isoforms, LAP* (liver-activating protein), LAP, and LIP (liver-inhibitory protein). Our functional analysis demonstrated that only the full-length C/EBP β/LAP* served as a true activator for Mn-SOD, whereas LAP, LIP, and C/EBP δ functioned as potential repressors. Finally, our systematic mutagenesis of the unique N-terminal 21 amino acids further solidified the importance of LAP* in the induction of Mn-SOD and emphasized the crucial role of this isoform. Our data demonstrating the physiological relevance of the N-terminal peptide also provide a rationale for revisiting the role of LAP* in the regulation of other genes and in pathways such as lipogenesis and development. PMID:18559338
Blockade of lipid accumulation by silibinin in adipocytes and zebrafish.
Suh, Hyung Joo; Cho, So Young; Kim, Eun Young; Choi, Hyeon-Son
2015-02-05
Silibinin is a compound present mainly in milk thistle. In this study, we investigated the mechanism by which silibinin suppresses adipogenesis of 3T3-L1 cells, and evaluated the anti-adipogenic effect of silibinin in zebrafish. Silibinin reduced lipid accumulation by downregulating adipogenic factors, such as, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT-enhancer binding protein α (C/EBPα), and fatty acid-binding protein 4 (FABP4). The reduction of these adipogenic protein levels was associated with the regulation of early adipogenic factors, such as, C/EBPβ and Krüppel-like factor 2 (KLF2), and was reflected in downregulation of lipid synthetic enzymes. Silibinin arrested cells in the G0/G1 phase of the cell cycle, accompanied by downregulation of cyclins and upregulation of p27, a cell cycle inhibitor. These results correlated with the finding of deactivation of extracellular signal-regulated kinase (ERK) and AKT, a serine/threonine-specific kinase. In addition, silibinin activated AMP-activated protein kinase α (AMPKα) to inhibit fatty acid synthesis. As observed in 3T3-L1 cells, silibinin inhibited lipid accumulation in zebrafish with the reduction of adipogenic factors and triglyceride levels. Our data revealed that silibinin inhibited lipid accumulation in 3T3-L1 cells and zebrafish, and this inhibitory effect was associated with abrogation of early adipogenesis via regulation of cell cycle and AMPKα signaling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Hye Gwang; Pokharel, Yuba Raj; Han, Eun Hee
2007-07-20
Panax ginseng is a widely used herbal medicine in East Asia and is reported to have a variety of pharmacological effects against cardiovascular diseases and cancers. Here we show a unique effect of ginsenoside Rd (Rd) on cyclooxygenase-2 (COX-2) expression in RAW264.7 macrophages. Rd (100 {mu}g/ml), but not other ginsenosides induced COX-2 and increased prostaglandin E{sub 2} production. Gel shift and Western blot analyses using nuclear fractions revealed that Rd increased both the DNA binding of and the nuclear levels of CCAAT/enhancer binding protein (C/EBP){alpha}/{beta} and cyclic AMP response element binding protein (CREB), but not of p65, in RAW264.7 cells.more » Moreover, Rd increased the luciferase reporter gene activity in cells transfected with a 574-bp mouse COX-2 promoter construct. Site-specific mutation analyses confirmed that Rd-mediated transcriptional activation of COX-2 gene was regulated by C/EBP and CREB. These results provide evidence that Rd activated C/EBP and CREB, and that the activation of C/EBP and CREB appears to be essential for induction of COX-2 in RAW264.7 cells.« less
Benatti, Paolo; Basile, Valentina; Dolfini, Diletta; Belluti, Silvia; Tomei, Margherita; Imbriano, Carol
2016-07-19
The expression of the high risk HPV18 E6 and E7 oncogenic proteins induces the transformation of epithelial cells, through the disruption of p53 and Rb function. The binding of cellular transcription factors to cis-regulatory elements in the viral Upstream Regulatory Region (URR) stimulates E6/E7 transcription. Here, we demonstrate that the CCAAT-transcription factor NF-Y binds to a non-canonical motif within the URR and activates viral gene expression. In addition, NF-Y indirectly up-regulates HPV18 transcription through the transactivation of multiple cellular transcription factors. NF-YA depletion inhibits the expression of E6 and E7 genes and re-establishes functional p53. The activation of p53 target genes in turn leads to apoptotic cell death. Finally, we show that NF-YA loss sensitizes HPV18-positive cells toward the DNA damaging agent Doxorubicin, via p53-mediated transcriptional response.
Ushijima, Takahiro; Okazaki, Ken; Tsushima, Hidetoshi; Iwamoto, Yukihide
2014-01-31
CCAAT/enhancer-binding protein β (C/EBPβ) is a transcription factor that promotes hypertrophic differentiation by stimulating type X collagen and matrix metalloproteinase 13 during chondrocyte differentiation. However, the effect of C/EBPβ on proliferative chondrocytes is unclear. Here, we investigated whether C/EBPβ represses type II collagen (COL2A1) expression and is involved in the regulation of sex-determining region Y-type high mobility group box 9 (SOX9), a crucial factor for transactivation of Col2a1. Endogenous expression of C/EBPβ in the embryonic growth plate and differentiated ATDC5 cells were opposite to those of COL2A1 and SOX9. Overexpression of C/EBPβ by adenovirus vector in ATDC5 cells caused marked repression of Col2a1. The expression of Sox9 mRNA and nuclear protein was also repressed, resulting in decreased binding of SOX9 to the Col2a1 enhancer as shown by a ChIP assay. Knockdown of C/EBPβ by lentivirus expressing shRNA caused significant stimulation of these genes in ATDC5 cells. Reporter assays demonstrated that C/EBPβ repressed transcriptional activity of Col2a1. Deletion and mutation analysis showed that the C/EBPβ core responsive element was located between +2144 and +2152 bp within the Col2a1 enhancer. EMSA and ChIP assays also revealed that C/EBPβ directly bound to this region. Ex vivo organ cultures of mouse limbs transfected with C/EBPβ showed that the expression of COL2A1 and SOX9 was reduced upon ectopic C/EBPβ expression. Together, these results indicated that C/EBPβ represses the transcriptional activity of Col2a1 both directly and indirectly through modulation of Sox9 expression. This consequently promotes the phenotypic conversion from proliferative to hypertrophic chondrocytes during chondrocyte differentiation.
NASA Technical Reports Server (NTRS)
Ji, C.; Chen, Y.; McCarthy, T. L.; Centrella, M.
1999-01-01
Transforming growth factor-beta binds to three high affinity cell surface molecules that directly or indirectly regulate its biological effects. The type III receptor (TRIII) is a proteoglycan that lacks significant intracellular signaling or enzymatic motifs but may facilitate transforming growth factor-beta binding to other receptors, stabilize multimeric receptor complexes, or segregate growth factor from activating receptors. Because various agents or events that regulate osteoblast function rapidly modulate TRIII expression, we cloned the 5' region of the rat TRIII gene to assess possible control elements. DNA fragments from this region directed high reporter gene expression in osteoblasts. Sequencing showed no consensus TATA or CCAAT boxes, whereas several nuclear factors binding sequences within the 3' region of the promoter co-mapped with multiple transcription initiation sites, DNase I footprints, gel mobility shift analysis, or loss of activity by deletion or mutation. An upstream enhancer was evident 5' proximal to nucleotide -979, and a silencer region occurred between nucleotides -2014 and -2194. Glucocorticoid sensitivity mapped between nucleotides -687 and -253, whereas bone morphogenetic protein 2 sensitivity co-mapped within the silencer region. Thus, the TRIII promoter contains cooperative basal elements and dispersed growth factor- and hormone-sensitive regulatory regions that can control TRIII expression by osteoblasts.
NASA Technical Reports Server (NTRS)
Umayahara, Y.; Ji, C.; Centrella, M.; Rotwein, P.; McCarthy, T. L.
1997-01-01
Insulin-like growth factor-I (IGF-I) plays a key role in skeletal growth by stimulating bone cell replication and differentiation. We previously showed that prostaglandin E2 (PGE2) and other cAMP-activating agents enhanced IGF-I gene transcription in cultured primary rat osteoblasts through promoter 1, the major IGF-I promoter, and identified a short segment of the promoter, termed HS3D, that was essential for hormonal regulation of IGF-I gene expression. We now demonstrate that CCAAT/enhancer-binding protein (C/EBP) delta is a major component of a PGE2-stimulated DNA-protein complex involving HS3D and find that C/EBPdelta transactivates IGF-I promoter 1 through this site. Competition gel shift studies first indicated that a core C/EBP half-site (GCAAT) was required for binding of a labeled HS3D oligomer to osteoblast nuclear proteins. Southwestern blotting and UV-cross-linking studies showed that the HS3D probe recognized a approximately 35-kDa nuclear protein, and antibody supershift assays indicated that C/EBPdelta comprised most of the PGE2-activated gel-shifted complex. C/EBPdelta was detected by Western immunoblotting in osteoblast nuclear extracts after treatment of cells with PGE2. An HS3D oligonucleotide competed effectively with a high affinity C/EBP site from the rat albumin gene for binding to osteoblast nuclear proteins. Co-transfection of osteoblast cell cultures with a C/EBPdelta expression plasmid enhanced basal and PGE2-activated IGF-I promoter 1-luciferase activity but did not stimulate a reporter gene lacking an HS3D site. By contrast, an expression plasmid for the related protein, C/EBPbeta, did not alter basal IGF-I gene activity but did increase the response to PGE2. In osteoblasts and in COS-7 cells, C/EBPdelta, but not C/EBPbeta, transactivated a reporter gene containing four tandem copies of HS3D fused to a minimal promoter; neither transcription factor stimulated a gene with four copies of an HS3D mutant that was unable to bind osteoblast nuclear proteins. These results identify C/EBPdelta as a hormonally activated inducer of IGF-I gene transcription in osteoblasts and show that the HS3D element within IGF-I promoter 1 is a high affinity binding site for this protein.
Burton, Liza J.; Dougan, Jodi; Jones, Jasmine; Smith, Bethany N.; Randle, Diandra; Henderson, Veronica
2016-01-01
ABSTRACT The epithelial mesenchymal transition (EMT) promotes tumor migration and invasion by downregulating epithelial markers such as E-cadherin and upregulating mesenchymal markers such as vimentin. Cathepsin L (Cat L) is a cysteine protease that can proteolytically activate CCAAT displacement protein/cut homeobox transcription factor (CUX1). We hypothesized that nuclear Cat L may promote EMT via CUX1 and that this could be antagonized with the Cat L-specific inhibitor Z-FY-CHO. Mesenchymal prostate (ARCaP-M and ARCaP-E overexpressing Snail) and breast (MDA-MB-468, MDA-MB-231, and MCF-7 overexpressing Snail) cancer cells expressed lower E-cadherin activity, higher Snail, vimentin, and Cat L activity, and a p110/p90 active CUX1 form, compared to epithelial prostate (ARCaP-E and ARCaP-Neo) and breast (MCF-7 and MCF-7 Neo) cancer cells. There was increased binding of CUX1 to Snail and the E-cadherin promoter in mesenchymal cells compared to epithelial prostate and breast cells. Treatment of mesenchymal cells with the Cat L inhibitor Z-FY-CHO led to nuclear-to-cytoplasmic relocalization of Cat L, decreased binding of CUX1 to Snail and the E-cadherin promoter, reversed EMT, and decreased cell migration/invasion. Overall, our novel data suggest that a positive feedback loop between Snail-nuclear Cat L-CUX1 drives EMT, which can be antagonized by Z-FY-CHO. Therefore, Z-FY-CHO may be an important therapeutic tool to antagonize EMT and cancer progression. PMID:27956696
Burton, Liza J; Dougan, Jodi; Jones, Jasmine; Smith, Bethany N; Randle, Diandra; Henderson, Veronica; Odero-Marah, Valerie A
2017-03-01
The epithelial mesenchymal transition (EMT) promotes tumor migration and invasion by downregulating epithelial markers such as E-cadherin and upregulating mesenchymal markers such as vimentin. Cathepsin L (Cat L) is a cysteine protease that can proteolytically activate CCAAT displacement protein/cut homeobox transcription factor (CUX1). We hypothesized that nuclear Cat L may promote EMT via CUX1 and that this could be antagonized with the Cat L-specific inhibitor Z-FY-CHO. Mesenchymal prostate (ARCaP-M and ARCaP-E overexpressing Snail) and breast (MDA-MB-468, MDA-MB-231, and MCF-7 overexpressing Snail) cancer cells expressed lower E-cadherin activity, higher Snail, vimentin, and Cat L activity, and a p110/p90 active CUX1 form, compared to epithelial prostate (ARCaP-E and ARCaP-Neo) and breast (MCF-7 and MCF-7 Neo) cancer cells. There was increased binding of CUX1 to Snail and the E-cadherin promoter in mesenchymal cells compared to epithelial prostate and breast cells. Treatment of mesenchymal cells with the Cat L inhibitor Z-FY-CHO led to nuclear-to-cytoplasmic relocalization of Cat L, decreased binding of CUX1 to Snail and the E-cadherin promoter, reversed EMT, and decreased cell migration/invasion. Overall, our novel data suggest that a positive feedback loop between Snail-nuclear Cat L-CUX1 drives EMT, which can be antagonized by Z-FY-CHO. Therefore, Z-FY-CHO may be an important therapeutic tool to antagonize EMT and cancer progression. Copyright © 2017 American Society for Microbiology.
Sato, Atsuyasu; Xu, Yan; Whitsett, Jeffrey A.
2012-01-01
Many transcription factors that regulate lung morphogenesis during development are reactivated to mediate repairs of the injured adult lung. We hypothesized that CCAAT/enhancer binding protein–α (C/EBPα), a transcription factor critical for perinatal lung maturation, regulates genes required for the normal repair of the bronchiolar epithelium after injury. Transgenic CebpαΔ/Δ mice, in which Cebpa was conditionally deleted from Clara cells and Type II cells after birth, were used in this study. Airway injury was induced in mice by the intraperitoneal administration of naphthalene to ablate bronchiolar epithelial cells. Although the deletion of C/EBPα did not influence lung structure and function under unstressed conditions, C/EBPα was required for the normal repair of terminal bronchiolar epithelium after naphthalene injury. To identify cellular processes that are influenced by C/EBPα during repair, mRNA microarray was performed on terminal bronchiolar epithelial cells isolated by laser-capture microdissection. Normal repair of the terminal bronchiolar epithelium was highly associated with the mRNAs regulating antiprotease activities, and their induction required C/EBPα. The defective deposition of fibronectin in CebpαΔ/Δ mice was associated with increased protease activity and delayed differentiation of FoxJ1-expressing ciliated cells. The fibronectin and ciliated cells were restored by the intratracheal treatment of CebpαΔ/Δ mice with the serine protease inhibitor. In conclusion, C/EBPα regulates the expression of serine protease inhibitors that are required for the normal increase of fibronectin and the restoration of ciliated cells after injury. Treatment with serine protease inhibitor may aid in the recovery of injured bronchiolar epithelial cells, and prevent common chronic lung diseases. PMID:22652201
Kim, Na-Hyung; Moon, Phil-Dong; Kim, Su-Jin; Choi, In-Young; An, Hyo-Jin; Myung, Noh-Yil; Jeong, Hyun-Ja; Um, Jae-Young; Hong, Seung-Heon; Kim, Hyung-Min
2008-01-01
Lactic acid bacteria are known to exert various physiologic functions in humans. In the current study, we investigated the effects of Soypro, a new soymilk fermented with lactic acid bacteria, like Leuconostoc kimchii, Leuconostoc citreum, and Lactobacillus plantarum, isolated from Kimchi, on adipocyte differentiation in preadipocyte 3T3-L1 cell lines and weight gain or the plasma lipid profile in Sprague-Dawley rats. Adipocyte 3T3-L1 cells treated with Soypro (10 microg/ml) significantly reduced the contents of cellular triglyceride and inhibited cell differentiation by Oil red O staining. Treatment with Soypro (10 microg/ml) for an additional two days in adipocytes inhibited the expression of peroxisome proliferator-activated receptor-gamma2 and CCAAT/enhancer binding protein-alpha, transcription factors of adipocyte differentiation. Based on these in vitro studies, we examined the anti-obesity effect of Soypro in rats for six weeks. Soypro had no significant effect on high-fat diet-induced increases in body weight, food intake, or feed gain ratio. However, the administration of Soypro significantly reduced the concentration of the plasma low density lipoprotein cholesterol. Changes in the plasma levels of total cholesterol and glucose were inclined to decrease in Soypro administrated groups compared with saline treated group. Triglyceride and high density lipoprotein cholesterol values in Soypro fed groups were similar compared to those of saline fed groups. Although further research is needed, these findings suggest that Soypro decreased the levels of low density lipoprotein cholesterol in high-fat diet-induced obesity and might partially inhibit the adipocyte differentiation through the suppression of a transcription factors peroxisome proliferator-activated receptor-gamma2 and CCAAT/enhancer binding protein-alpha.
Pseudohypoparathyroidism with diabetes mellitus and hypothyroidism.
Saikia, Bedangshu; Arora, Sunaina; Puliyel, Jacob M
2012-12-01
We report a 12-year-old child with pseudohypoparathyroidism (PHP) whose mother had pseudopseudohypoparathyroidism. The child had low serum calcium, high phosphorous and high parathormone (PTH) levels. PHP occurs due to a defect in the guanine nucleotide binding protein (G protein). She also had hypothyroidism which is known to utilize the G protein pathway. She developed T 1 diabetes mellitus (T1DM) while under follow-up. This is arguably the first time T1DM has been reported associated with PHP.
Kim, Ji Hye; Park, Byoungduck; Gupta, Subash C.; Kannappan, Ramaswamy; Sung, Bokyung
2012-01-01
Abstract Aim: TNF (tumor necrosis factor)-related apoptosis-inducing ligand (TRAIL), is a selective killer of tumor cells, although its potential is limited by the development of resistance. In this article, we investigated whether the polyherbal preparation Zyflamend® can sensitize tumor cells to TRAIL. Results: We found that Zyflamend potentiated TRAIL-induced apoptosis in human cancer cells. Zyflamend manifested its effects through several mechanisms. First, it down-regulated the expression of cell survival proteins known to be linked to resistance to TRAIL. Second, Zyflamend up-regulated the expression of pro-apoptotic protein, Bax. Third, Zyflamend up-regulated the expression of death receptors (DRs) for TRAIL. Up-regulation of DRs was critical as gene-silencing of these receptors significantly reduced the effect of Zyflamend on TRAIL-induced apoptosis. The up-regulation of DRs was dependent on CCAAT/enhancer-binding protein-homologous protein (CHOP), as Zyflamend induced CHOP, its gene-silencing abolished the induction of receptors, and mutation of the CHOP binding site on DR5 promoter abolished Zyflamend-mediated DR5 transactivation. Zyflamend mediated its effects through reactive oxygen species (ROS), as ROS quenching reduced its effect. Further, Zyflamend induced DR5 and CHOP and down-regulated the expression of cell survival proteins in nude mice bearing human pancreatic cancer cells. Innovation: Zyflamend can sensitize tumor cells to TRAIL through modulation of multiple cell signaling mechanisms that are linked to ROS. Conclusion: Zyflamend potentiates TRAIL-induced apoptosis through the ROS-CHOP-mediated up-regulation of DRs, increase in pro-apoptotic protein and down-regulation of cell survival proteins. Antioxid. Redox Signal. 16, 413–427. PMID:22004570
NASA Technical Reports Server (NTRS)
Umayahara, Y.; Billiard, J.; Ji, C.; Centrella, M.; McCarthy, T. L.; Rotwein, P.
1999-01-01
Insulin-like growth factor-I (IGF-I) plays a major role in promoting skeletal growth by stimulating bone cell replication and differentiation. Prostaglandin E2 and other agents that induce cAMP production enhance IGF-I gene transcription in cultured rat osteoblasts through a DNA element termed HS3D, located in the proximal part of the major rat IGF-I promoter. We previously determined that CCAAT/enhancer-binding protein delta (C/EBPdelta) is the key cAMP-stimulated regulator of IGF-I transcription in these cells and showed that it transactivates the rat IGF-I promoter through the HS3D site. We now have defined the physical-chemical properties and functional consequences of the interactions between C/EBPdelta and HS3D. C/EBPdelta, expressed in COS-7 cells or purified as a recombinant protein from Escherichia coli, bound to HS3D with an affinity at least equivalent to that of the albumin D-site, a known high affinity C/EBP binding sequence, and both DNA elements competed equally for C/EBPdelta. C/EBPdelta bound to HS3D as a dimer, with protein-DNA contact points located on guanine residues on both DNA strands within and just adjacent to the core C/EBP half-site, GCAAT, as determined by methylation interference footprinting. C/EBPdelta also formed protein-protein dimers in the absence of interactions with its DNA binding site, as indicated by results of glutaraldehyde cross-linking studies. As established by competition gel-mobility shift experiments, the conserved HS3D sequence from rat, human, and chicken also bound C/EBPdelta with similar affinity. We also found that prostaglandin E2-induced expression of reporter genes containing human IGF-I promoter 1 or four tandem copies of the human HS3D element fused to a minimal promoter and show that these effects were enhanced by a co-transfected C/EBPdelta expression plasmid. Taken together, our results provide evidence that C/EBPdelta is a critical activator of IGF-I gene transcription in osteoblasts and potentially in other cell types and species.
OnTheFly: a database of Drosophila melanogaster transcription factors and their binding sites.
Shazman, Shula; Lee, Hunjoong; Socol, Yakov; Mann, Richard S; Honig, Barry
2014-01-01
We present OnTheFly (http://bhapp.c2b2.columbia.edu/OnTheFly/index.php), a database comprising a systematic collection of transcription factors (TFs) of Drosophila melanogaster and their DNA-binding sites. TFs predicted in the Drosophila melanogaster genome are annotated and classified and their structures, obtained via experiment or homology models, are provided. All known preferred TF DNA-binding sites obtained from the B1H, DNase I and SELEX methodologies are presented. DNA shape parameters predicted for these sites are obtained from a high throughput server or from crystal structures of protein-DNA complexes where available. An important feature of the database is that all DNA-binding domains and their binding sites are fully annotated in a eukaryote using structural criteria and evolutionary homology. OnTheFly thus provides a comprehensive view of TFs and their binding sites that will be a valuable resource for deciphering non-coding regulatory DNA.
Nakane, Shuhei; Nakagawa, Noriko; Kuramitsu, Seiki; Masui, Ryoji
2009-04-01
The X-family DNA polymerases (PolXs) comprise a highly conserved DNA polymerase family found in all kingdoms. Mammalian PolXs are known to be involved in several DNA-processing pathways including repair, but the cellular functions of bacterial PolXs are less known. Many bacterial PolXs have a polymerase and histidinol phosphatase (PHP) domain at their C-termini in addition to a PolX core (POLXc) domain, and possess 3'-5' exonuclease activity. Although both domains are highly conserved in bacteria, their molecular functions, especially for a PHP domain, are unknown. We found Thermus thermophilus HB8 PolX (ttPolX) has Mg(2+)/Mn(2+)-dependent DNA/RNA polymerase, Mn(2+)-dependent 3'-5' exonuclease and DNA-binding activities. We identified the domains of ttPolX by limited proteolysis and characterized their biochemical activities. The POLXc domain was responsible for the polymerase and DNA-binding activities but exonuclease activity was not detected for either domain. However, the POLXc and PHP domains interacted with each other and a mixture of the two domains had Mn(2+)-dependent 3'-5' exonuclease activity. Moreover, site-directed mutagenesis revealed catalytically important residues in the PHP domain for the 3'-5' exonuclease activity. Our findings provide a molecular insight into the functional domain organization of bacterial PolXs, especially the requirement of the PHP domain for 3'-5' exonuclease activity.
Faggiano, Antongiulio; Tavares, Lidice Brandao; Tauchmanova, Libuse; Milone, Francesco; Mansueto, Gelsomina; Ramundo, Valeria; De Caro, Maria Laura Del Basso; Lombardi, Gaetano; De Rosa, Gaetano; Colao, Annamaria
2008-11-01
In patients with multiple endocrine neoplasia type 1 (MEN1), expression of somatostatin receptor (SST) in parathyroid adenomas and effectiveness of therapy with somatostatin analogues on primary hyperparathyroidism (PHP) have been scarcely investigated. To evaluate the effects of depot long acting octreotide (OCT-LAR) in patients with MEN1-related PHP. Eight patients with a genetically confirmed MEN1, presenting both PHP and duodeno-pancreatic neuroendocrine tumours (NET), were enrolled. The initial treatment was OCT-LAR 30 mg every 4 weeks. This therapy was established to stabilize the duodeno-pancreatic NET before to perform parathyroidectomy for PHP. Before OCT-LAR therapy, a SST scintigraphy was performed in all patients. SST subtype 2A immunohistochemistry was performed on parathyroid tumour samples from three patients undergone parathyroidectomy after OCT-LAR therapy. Serum concentrations of PTH, calcium and phosphorus as well as the 24-h urine calcium : creatinine ratio and the renal threshold phosphate concentration were evaluated before and after OCT-LAR. After OCT-LAR therapy, hypercalcaemia and hypercalciuria normalized in 75% and 62.5% of patients, respectively, and serum phosphorus and renal threshold phosphate significantly increased. Serum PTH concentrations significantly decreased in all patients and normalized in two of them. SST subtype 2A immunostaining was found in all parathyroid adenomas investigated, while SST scintigraphy showed a positive parathyroid tumour uptake in three of eight patients (37.5%). Six months of OCT-LAR therapy controlled hypercalcaemia and hypercalciuria in two-thirds of patients with MEN1-related PHP. Direct OCT-LAR effects mediated by binding to SST expression on parathyroid tumour cells are likely the main mechanism to explain the activity of this compound on calcium and phosphorus abnormalities in MEN1 PHP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahdjoudj, S.; Kaabeche, K.; Holy, X.
2005-02-01
The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2more » administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.« less
Subash-Babu, P; Alshatwi, Ali A
2018-03-01
Ononitol monohydrate (OMH), a glycoside was originally isolated from Cassia tora (Linn.). Glycosides regulate lipid metabolism but scientific validation desired. Hence, we aimed to evaluate the effect of OMH on enhancing mitochondrial potential, mitochondrial biogenesis, upregulate the expression of brown adipogenesis specific genes in maturing adipocytes. In addition, we observed the inter-relation between adipocyte and T-lymphocyte; whether, OMH treated adipocyte-condition medium stimulate T-cell chemokine linked with insulin resistance. In a dose dependent manner OMH treated to preadipocyte significantly inhibited maturation and enhanced mitochondrial biogenesis, it was confirmed by Oil red 'O and Nile red stain without inducing cytotoxicity. The mRNA levels of adipocyte browning related genes such as, PR domain containing 16 (PRDM16), peroxisome proliferator activated receptor gamma coactivator 1 alpha (PPARγC1α) and uncoupling protein-1 (UCP-1) have been significantly upregulated. In addition, adipogenic transcription factors [such as proliferator activated receptor γ (PPARγ), CCAAT/enhancer binding protein (C/EBPα) and sterol regulatory element binding protein-1c (SREBP-1c)] and adipogenic genes were significantly down-regulated by treatment with OMH when compared to control cells. Protein expression levels of adiponectin have been increased; leptin, C/EBPα and leukotriene B4 receptor (LTB4R) were down regulated by OMH in mature adipocytes. In addition, adipocyte condition medium and OMH treated T-lymphocyte, significantly increased insulin signaling pathway related mRNAs, such as interlukin-4 (IL-4), signal transducer and activator of transcription 6 (STAT 6 ) and decreased leukotriene B4 (LTB 4 ). The present findings suggest that OMH increased browning factors in differentiating and maturing preadipocyte also decreased adipose tissue inflammation as well as the enhanced insulin signaling. Copyright © 2018. Published by Elsevier Masson SAS.
blend4php: a PHP API for galaxy
Wytko, Connor; Soto, Brian; Ficklin, Stephen P.
2017-01-01
Galaxy is a popular framework for execution of complex analytical pipelines typically for large data sets, and is a commonly used for (but not limited to) genomic, genetic and related biological analysis. It provides a web front-end and integrates with high performance computing resources. Here we report the development of the blend4php library that wraps Galaxy’s RESTful API into a PHP-based library. PHP-based web applications can use blend4php to automate execution, monitoring and management of a remote Galaxy server, including its users, workflows, jobs and more. The blend4php library was specifically developed for the integration of Galaxy with Tripal, the open-source toolkit for the creation of online genomic and genetic web sites. However, it was designed as an independent library for use by any application, and is freely available under version 3 of the GNU Lesser General Public License (LPGL v3.0) at https://github.com/galaxyproject/blend4php. Database URL: https://github.com/galaxyproject/blend4php PMID:28077564
Kang, Seong-Il; Shin, Hye-Sun; Kim, Se-Jae
2015-01-01
Sinensetin is a rare polymethoxylated flavone (PMF) found in certain citrus fruits. In this study, we investigated the effects of sinensetin on lipid metabolism in 3T3-L1 cells. Sinensetin promoted adipogenesis in 3T3-L1 preadipocytes growing in incomplete differentiation medium, which did not contain 3-isobutyl-1-methylxanthine. Sinensetin up-regulated expression of the adipogenic transcription factors peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein (C/EBP) α, and sterol regulatory element-binding protein 1c. It also potentiated expression of C/EBPβ and activation of cAMP-responsive element-binding protein. Sinensetin enhanced activation of protein kinase A and increased intracellular cAMP levels in 3T3-L1 preadipocytes. In mature 3T3-L1 adipocytes, sinensetin stimulated lipolysis via a cAMP pathway. Taken together, these results suggest that sinensetin enhances adipogenesis and lipolysis by increasing cAMP levels in adipocytes.
Gsaller, Fabio; Hortschansky, Peter; Beattie, Sarah R; Klammer, Veronika; Tuppatsch, Katja; Lechner, Beatrix E; Rietzschel, Nicole; Werner, Ernst R; Vogan, Aaron A; Chung, Dawoon; Mühlenhoff, Ulrich; Kato, Masashi; Cramer, Robert A; Brakhage, Axel A; Haas, Hubertus
2014-01-01
Balance of physiological levels of iron is essential for every organism. In Aspergillus fumigatus and other fungal pathogens, the transcription factor HapX mediates adaptation to iron limitation and consequently virulence by repressing iron consumption and activating iron uptake. Here, we demonstrate that HapX is also essential for iron resistance via activating vacuolar iron storage. We identified HapX protein domains that are essential for HapX functions during either iron starvation or high-iron conditions. The evolutionary conservation of these domains indicates their wide-spread role in iron sensing. We further demonstrate that a HapX homodimer and the CCAAT-binding complex (CBC) cooperatively bind an evolutionary conserved DNA motif in a target promoter. The latter reveals the mode of discrimination between general CBC and specific HapX/CBC target genes. Collectively, our study uncovers a novel regulatory mechanism mediating both iron resistance and adaptation to iron starvation by the same transcription factor complex with activating and repressing functions depending on ambient iron availability. PMID:25092765
Different Achilles Tendon Pathologies Show Distinct Histological and Molecular Characteristics
Minkwitz, Susann; Schmock, Aysha; Bormann, Nicole; Kurtoglu, Alper; Tsitsilonis, Serafeim; Manegold, Sebastian
2018-01-01
Reasons for the development of chronic tendon pathologies are still under debate and more basic knowledge is needed about the different diseases. The aim of the present study was therefore to characterize different acute and chronic Achilles tendon disorders. Achilles tendon samples from patients with chronic tendinopathy (n = 7), chronic ruptures (n = 6), acute ruptures (n = 13), and intact tendons (n = 4) were analyzed. The histological score investigating pathological changes was significantly increased in tendinopathy and chronic ruptures compared to acute ruptures. Inflammatory infiltration was detected by immunohistochemistry in all tendon pathology groups, but was significantly lower in tendinopathy compared to chronic ruptures. Quantitative real-time PCR (qRT-PCR) analysis revealed significantly altered expression of genes related to collagens and matrix modeling/remodeling (matrix metalloproteinases, tissue inhibitors of metalloproteinases) in tendinopathy and chronic ruptures compared to intact tendons and/or acute ruptures. In all three tendon pathology groups markers of inflammation (interleukin (IL) 1β, tumor necrosis factor α, IL6, IL10, IL33, soluble ST2, transforming growth factor β1, cyclooxygenase 2), inflammatory cells (cluster of differentaition (CD) 3, CD68, CD80, CD206), fat metabolism (fatty acid binding protein 4, peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α, adiponectin), and innervation (protein gene product 9.5, growth associated protein 43, macrophage migration inhibitory factor) were detectable, but only in acute ruptures significantly regulated compared to intact tendons. The study gives an insight into structural and molecular changes of pathological processes in tendons and might be used to identify targets for future therapy of tendon pathologies. PMID:29385715
A Positive Autoregulatory BDNF Feedback Loop via C/EBPβ Mediates Hippocampal Memory Consolidation
Bambah-Mukku, Dhananjay; Travaglia, Alessio; Chen, Dillon Y.; Pollonini, Gabriella
2014-01-01
Little is known about the temporal progression and regulation of the mechanisms underlying memory consolidation. Brain-derived-neurotrophic-factor (BDNF) has been shown to mediate the maintenance of memory consolidation, but the mechanisms of this regulation remain unclear. Using inhibitory avoidance (IA) in rats, here we show that a hippocampal BDNF-positive autoregulatory feedback loop via CCAAT-enhancer binding protein β (C/EBPβ) is necessary to mediate memory consolidation. At training, a very rapid, learning-induced requirement of BDNF accompanied by rapid de novo translation controls the induction of a persistent activation of cAMP-response element binding-protein (CREB) and C/EBPβ expression. The latter, in turn, controls an increase in expression of bdnf exon IV transcripts and BDNF protein, both of which are necessary and, together with the initial BDNF requirement, mediate memory consolidation. The autoregulatory loop terminates by 48 h after training with decreased C/EBPβ and pCREB and increased methyl-CpG binding protein-2, histone-deacetylase-2, and switch-independent-3a binding at the bdnf exon IV promoter. PMID:25209292
Leyva-González, Marco Antonio; Ibarra-Laclette, Enrique; Cruz-Ramírez, Alfredo; Herrera-Estrella, Luis
2012-01-01
Nuclear Factor Y (NF-Y) is a heterotrimeric complex formed by NF-YA/NF-YB/NF-YC subunits that binds to the CCAAT-box in eukaryotic promoters. In contrast to other organisms, in which a single gene encodes each subunit, in plants gene families of over 10 members encode each of the subunits. Here we report that five members of the Arabidopsis thaliana NF-YA family are strongly induced by several stress conditions via transcriptional and miR169-related post-transcriptional mechanisms. Overexpression of NF-YA2, 7 and 10 resulted in dwarf late-senescent plants with enhanced tolerance to several types of abiotic stress. These phenotypes are related to alterations in sucrose/starch balance and cell elongation observed in NF-YA overexpressing plants. The use of transcriptomic analysis of transgenic plants that express miR169-resistant versions of NF-YA2, 3, 7, and 10 under an estradiol inducible system, as well as a dominant-repressor version of NF-YA2 revealed a set of genes, whose promoters are enriched in NF-Y binding sites (CCAAT-box) and that may be directly regulated by the NF-Y complex. This analysis also suggests that NF-YAs could participate in modulating gene regulation through positive and negative mechanisms. We propose a model in which the increase in NF-YA transcript levels in response to abiotic stress is part of an adaptive response to adverse environmental conditions in which a reduction in plant growth rate plays a key role.
Leyva-González, Marco Antonio; Ibarra-Laclette, Enrique; Cruz-Ramírez, Alfredo; Herrera-Estrella, Luis
2012-01-01
Nuclear Factor Y (NF-Y) is a heterotrimeric complex formed by NF-YA/NF-YB/NF-YC subunits that binds to the CCAAT-box in eukaryotic promoters. In contrast to other organisms, in which a single gene encodes each subunit, in plants gene families of over 10 members encode each of the subunits. Here we report that five members of the Arabidopsis thaliana NF-YA family are strongly induced by several stress conditions via transcriptional and miR169-related post-transcriptional mechanisms. Overexpression of NF-YA2, 7 and 10 resulted in dwarf late-senescent plants with enhanced tolerance to several types of abiotic stress. These phenotypes are related to alterations in sucrose/starch balance and cell elongation observed in NF-YA overexpressing plants. The use of transcriptomic analysis of transgenic plants that express miR169-resistant versions of NF-YA2, 3, 7, and 10 under an estradiol inducible system, as well as a dominant-repressor version of NF-YA2 revealed a set of genes, whose promoters are enriched in NF-Y binding sites (CCAAT-box) and that may be directly regulated by the NF-Y complex. This analysis also suggests that NF-YAs could participate in modulating gene regulation through positive and negative mechanisms. We propose a model in which the increase in NF-YA transcript levels in response to abiotic stress is part of an adaptive response to adverse environmental conditions in which a reduction in plant growth rate plays a key role. PMID:23118940
Luo, LuGuang; Luo, John Z Q; Jackson, Ivor
2013-02-01
A very small tripeptide amide L-pyroglutamyl-L-histidyl-L-prolineamide (L-PHP, Thyrotropin-Releasing Hormone, TRH), was first identified in the brain hypothalamus area. Further studies found that L-PHP was expressed in pancreas. The biological role of pancreatic L-PHP is still not clear. Growing evidence indicates that L-PHP expression in the pancreas may play a pivotal role for pancreatic development in the early prenatal period. However, the role of L-PHP in adult pancreas still needs to be explored. L-PHP activation of pancreatic β cell Ca2+ flow and stimulation of β-cell insulin synthesis and release suggest that L-PHP involved in glucose metabolism may directly act on the β cell separate from any effects via the central nervous system (CNS). Knockout L-PHP animal models have shown that loss of L-PHP expression causes hyperglycemia, which cannot be reversed by administration of thyroid hormone, suggesting that the absence of L-PHP itself is the cause. L-PHP receptor type-1 has been identified in pancreas which provides a possibility for L-PHP autocrine and paracrine regulation in pancreatic function. During pancreatic damage in adult pancreas, L-PHP may protect beta cell from apoptosis and initiate its regeneration through signal pathways of growth hormone in β cells. L-PHP has recently been discovered to affect a broad array of gene expression in the pancreas including growth factor genes. Signal pathways linked between L-PHP and EGF receptor phosphorylation suggest that L-PHP may be an important factor for adult β-cell regeneration, which could involve adult stem cell differentiation. These effects suggest that L-PHP may benefit pancreatic β cells and diabetic therapy in clinic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yonghan; Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223
Highlights: •Radicicol suppressed intracellular fat accumulation in 3T3-L1 adipocytes. •Radicicol inhibited the expression of FAS and FABP4. •Radicicol blocked cell cycle at the G1-S phase during cell differentiation. •Radicicol inhibited the PDK1/Akt pathway in adipocyte differentiation. -- Abstract: Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8 daysmore » of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPAR{sub γ}) and CCAAT element binding protein α (C/EBP{sub α}), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins.« less
Li, Anning; Wu, Lijuan; Wang, Xiaoyu; Xin, Yaping; Zan, Linsen
2016-09-01
Fatty acid binding protein 3 (FABP3) is a member of the FABP family which bind fatty acids and have an important role in fatty acid metabolism. A large number of studies have shown that the genetic polymorphisms of FABP3 are positively correlated with intramuscular fat (IMF) content in domestic animals, however, the function and transcriptional characteristics of FABP3 in cattle remain unclear. Real-time PCR analysis revealed that bovine FABP3 was highly expressed in cardiac tissue. The 5'-regulatory region of bovine FABP3 was cloned and its transcription initiation sites were identified. Sequence analysis showed that many transcriptional factor binding sites including TATA-box and CCAAT-box were present on the 5'-flanking region of bovine FABP3, and four CpG islands were found on nucleotides from -891 to +118. Seven serial deletion constructs of the 5'-regulatory region evaluated in dual-luciferase reporter assay indicated that its core promoter was 384 base pairs upstream from the transcription initiation site. The transcriptional factor binding sites RXRα, KLF15, CREB and Sp1 were conserved in the core promoter of cattle, sheep, pigs and dogs. These results provide further understanding of the function and regulation mechanism of bovine FABP3.
Gumucio, D L; Rood, K L; Gray, T A; Riordan, M F; Sartor, C I; Collins, F S
1988-01-01
The molecular mechanisms responsible for the human fetal-to-adult hemoglobin switch have not yet been elucidated. Point mutations identified in the promoter regions of gamma-globin genes from individuals with nondeletion hereditary persistence of fetal hemoglobin (HPFH) may mark cis-acting sequences important for this switch, and the trans-acting factors which interact with these sequences may be integral parts in the puzzle of gamma-globin gene regulation. We have used gel retardation and footprinting strategies to define nuclear proteins which bind to the normal gamma-globin promoter and to determine the effect of HPFH mutations on the binding of a subset of these proteins. We have identified five proteins in human erythroleukemia cells (K562 and HEL) which bind to the proximal promoter region of the normal gamma-globin gene. One factor, gamma CAAT, binds the duplicated CCAAT box sequences; the -117 HPFH mutation increases the affinity of interaction between gamma CAAT and its cognate site. Two proteins, gamma CAC1 and gamma CAC2, bind the CACCC sequence. These proteins require divalent cations for binding. The -175 HPFH mutation interferes with the binding of a fourth protein, gamma OBP, which binds an octamer sequence (ATGCAAAT) in the normal gamma-globin promoter. The HPFH phenotype of the -175 mutation indicates that the octamer-binding protein may play a negative regulatory role in this setting. A fifth protein, EF gamma a, binds to sequences which overlap the octamer-binding site. The erythroid-specific distribution of EF gamma a and its close approximation to an apparent repressor-binding site suggest that it may be important in gamma-globin regulation. Images PMID:2468996
Ursolic Acid Inhibits Adipogenesis in 3T3-L1 Adipocytes through LKB1/AMPK Pathway
He, Yonghan; Li, Ying; Zhao, Tiantian; Wang, Yanwen; Sun, Changhao
2013-01-01
Background Ursolic acid (UA) is a triterpenoid compound with multiple biological functions. This compound has recently been reported to possess an anti-obesity effect; however, the mechanisms are less understood. Objective As adipogenesis plays a critical role in obesity, the present study was conducted to investigate the effect of UA on adipogenesis and mechanisms of action in 3T3-L1 preadipocytes. Methods and Results The 3T3-L1 preadipocytes were induced to differentiate in the presence or absence of UA for 6 days. The cells were determined for proliferation, differentiation, fat accumulation as well as the protein expressions of molecular targets that regulate or are involved in fatty acid synthesis and oxidation. The results demonstrated that ursolic acid at concentrations ranging from 2.5 µM to 10 µM dose-dependently attenuated adipogenesis, accompanied by reduced protein expression of CCAAT element binding protein β (C/EBPβ), peroxisome proliferator-activated receptor γ (PPARγ), CCAAT element binding protein α (C/EBPα) and sterol regulatory element binding protein 1c (SREBP-1c), respectively. Ursolic acid increased the phosphorylation of acetyl-CoA carboxylase (ACC) and protein expression of carnitine palmitoyltransferase 1 (CPT1), but decreased protein expression of fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Ursolic acid increased the phosphorylation of AMP-activated protein kinase (AMPK) and protein expression of (silent mating type information regulation 2, homolog) 1 (Sirt1). Further studies demonstrated that the anti-adipogenic effect of UA was reversed by the AMPK siRNA, but not by the Sirt1 inhibitor nicotinamide. Liver kinase B1 (LKB1), the upstream kinase of AMPK, was upregulated by UA. When LKB1 was silenced with siRNA or the inhibitor radicicol, the effect of UA on AMPK activation was diminished. Conclusions Ursolic acid inhibited 3T3-L1 preadipocyte differentiation and adipogenesis through the LKB1/AMPK pathway. There is potential to develop UA into a therapeutic agent for the prevention or treatment of obesity. PMID:23922935
blend4php: a PHP API for galaxy.
Wytko, Connor; Soto, Brian; Ficklin, Stephen P
2017-01-01
Galaxy is a popular framework for execution of complex analytical pipelines typically for large data sets, and is a commonly used for (but not limited to) genomic, genetic and related biological analysis. It provides a web front-end and integrates with high performance computing resources. Here we report the development of the blend4php library that wraps Galaxy's RESTful API into a PHP-based library. PHP-based web applications can use blend4php to automate execution, monitoring and management of a remote Galaxy server, including its users, workflows, jobs and more. The blend4php library was specifically developed for the integration of Galaxy with Tripal, the open-source toolkit for the creation of online genomic and genetic web sites. However, it was designed as an independent library for use by any application, and is freely available under version 3 of the GNU Lesser General Public License (LPGL v3.0) at https://github.com/galaxyproject/blend4phpDatabase URL: https://github.com/galaxyproject/blend4php. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishiumi, Shin; Yabushita, Yoshiyuki; Furuyashiki, Takashi
2008-06-15
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has multiple toxic effects causing a wasting syndrome characterized by a loss of body weight accompanied by a decrease in adipose tissue weight. To elucidate the mechanism behind this syndrome, we investigated the changes in lipid metabolism 7 and 21 days after a single intraperitoneal injection of TCDD at 1 {mu}g/kg body weight to male guinea pigs. TCDD caused the symptoms of the syndrome, body weight loss with a decrease in adipose tissue weight, while it increased the levels of triacylglycerols, total cholesterols, and free fatty acids in plasma. On day 7, TCDD decreased the levels of CCAAT/enhancermore » binding protein (C/EBP) {alpha}, peroxisome proliferator activated receptor {gamma}, and glucose transporter 4, adipogenesis-related factors, in adipose tissue, whereas the levels of retinoid X receptor {alpha}, C/EBP{beta}, C/EBP{delta}, and c-Myc remained unchanged. TCDD also reduced the levels of both p125 precursor and p68 active forms of sterol regulatory element binding protein (SREBP)-1 and -2, the lypogenesis-related factors, and downregulated their DNA binding activity in adipose tissue, while it raised the levels of their p68 active forms and increased their DNA binding activity in the liver. TCDD decreased mRNA and protein levels of acetyl-CoA carboxylase and HMG-CoA synthase in the liver and adipose tissue. Similar results were obtained on day 21. These results suggest that TCDD disrupts lipid metabolism through changes in the expression levels of the adipogenesis-related and lipogenesis-related proteins in the liver and adipose tissue, and SREBPs would be involved in the development of the wasting syndrome.« less
Broiler chicken adipose tissue dynamics during the first two weeks post-hatch.
Bai, Shiping; Wang, Guoqing; Zhang, Wei; Zhang, Shuai; Rice, Brittany Breon; Cline, Mark Andrew; Gilbert, Elizabeth Ruth
2015-11-01
Selection of broiler chickens for growth has led to increased adipose tissue accretion. To investigate the post-hatch development of adipose tissue, the abdominal, clavicular, and subcutaneous adipose tissue depots were collected from broiler chicks at 4 and 14 days post-hatch. As a percent of body weight, abdominal fat increased (P<0.001) with age. At day 4, clavicular and subcutaneous fat depots were heavier (P<0.003) than abdominal fat whereas at day 14, abdominal and clavicular weighed more (P<0.003) than subcutaneous fat. Adipocyte area and diameter were greater in clavicular and subcutaneous than abdominal fat at 4 and 14 days post-hatch (P<0.001). Glycerol-3-phosphate dehydrogenase (G3PDH) activity increased (P<0.001) in all depots from day 4 to 14, and at both ages was greatest in subcutaneous, intermediate in clavicular, and lowest in abdominal fat (P<0.05). In clavicular fat, peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer binding protein (CEBP)α, CEBPβ, fatty acid synthase (FASN), fatty acid binding protein 4 (FABP4), lipoprotein lipase (LPL), neuropeptide Y (NPY), and NPY receptor 5 (NPYR5) mRNA increased and NPYR2 mRNA decreased from day 4 to 14 (P<0.001). Thus, there are site-specific differences in broiler chick adipose development, with larger adipocytes and greater G3PDH activity in subcutaneous fat at day 4, more rapid growth of abdominal fat, and clavicular fat intermediate for most traits. Adipose tissue expansion was accompanied by changes in gene expression of adipose-associated factors. Copyright © 2015 Elsevier Inc. All rights reserved.
Effects of quercetin and quercetin 3-glucuronide on the expression of bone sialoprotein gene.
Kim, Dong-Soon; Takai, Hideki; Arai, Masato; Araki, Shouta; Mezawa, Masaru; Kawai, Yoshichika; Murota, Kaeko; Terao, Junji; Ogata, Yorimasa
2007-06-01
Quercetin is a typical flavonol-type flavonoid and is present in a variety of vegetables, and their antioxidant effect implies their possible role in the prevention of oxidative stress related chronic diseases. Bone sialoprotein (BSP) is a noncollagenous protein of the extracellular matrix in the mineralized connective tissues that has been implicated in the nucleation of hydroxyapatite crystals. Previously, we reported that isoflavone (genistein) activated BSP gene transcription is mediated through an inverted CCAAT box in the proximal BSP gene promoter. The present study investigates the regulation of BSP transcription in a rat osteoblast-like cell line, ROS 17/2.8 cells, by quercetin and its conjugated metabolite quercetin 3-glucuronide. Quercetin and quercetin 3-glucuronide (5 microM) increased the BSP mRNA levels at 12 h and quercetin upregulated the Cbfa1/Runx2 mRNA expression at 12 h. From transient transfection assays using various sized BSP promoter-luciferase constructs, quercetin increased the luciferase activity of the construct (pLUC3), including the promoter sequence nucleotides -116 to -43. Transcriptional stimulations by quercetin were almost completely abrogated in the constructs that included 2 bp mutations in the inverted CCAAT and FRE elements whereas the CCAAT-protein complex did not change after stimulation by quercetin according to gel shift assays. Quercetin increased the nuclear protein binding to the FRE and 3'-FRE. These data suggest that quercetin and quercetin 3-glucuronide increased the BSP mRNA expression, and that the inverted CCAAT and FRE elements in the promoter of the BSP gene are required for quercetin induced BSP transcription.
Sodium 4-phenylbutyrate protects against cerebral ischemic injury.
Qi, Xin; Hosoi, Toru; Okuma, Yasunobu; Kaneko, Masayuki; Nomura, Yasuyuki
2004-10-01
Sodium 4-phenylbutyrate (4-PBA) is a low molecular weight fatty acid that has been used for treatment of urea cycle disorders in children, sickle cell disease, and thalassemia. It has been demonstrated recently that 4-PBA can act as a chemical chaperone by reducing the load of mutant or mislocated proteins retained in the endoplasmic reticulum (ER) under conditions associated with cystic fibrosis and liver injury. In the present study, we evaluated the neuroprotective effect of 4-PBA on cerebral ischemic injury. Pre- or post-treatment with 4-PBA at therapeutic doses attenuated infarction volume, hemispheric swelling, and apoptosis and improved neurological status in a mouse model of hypoxia-ischemia. Moreover, 4-PBA suppressed ER-mediated apoptosis by inhibiting eukaryotic initiation factor 2alpha phosphorylation, CCAAT/enhancer-binding protein homologous protein induction, and caspase-12 activation. In neuroblastoma neuro2a cells, 4-PBA reduced caspase-12 activation, DNA fragmentation, and cell death induced by hypoxia/reoxygenation. It protected against ER stress-induced but not mitochondria-mediated cell death. Additionally, 4-PBA inhibited the expression of inducible nitric-oxide synthase and tumor necrosis factor-alpha in primary cultured glial cells under hypoxia/reoxygenation. These results indicate that 4-PBA could protect against cerebral ischemia through inhibition of ER stress-mediated apoptosis and inflammation. Therefore, the multiple actions of 4-PBA may provide a strong effect in treatment of cerebral ischemia, and its use as a chemical chaperone would provide a novel approach for the treatment of stroke.
Datta, Jharna; Majumder, Sarmila; Kutay, Huban; Motiwala, Tasneem; Frankel, Wendy; Costa, Robert; Cha, Hyuk C; MacDougald, Ormond A; Jacob, Samson T; Ghoshal, Kalpana
2007-03-15
Reactive oxygen species (ROS) resulting from chronic inflammation cause liver injury leading to transformation of regenerating hepatocytes. Metallothioneins (MT), induced at high levels by oxidative stress, are potent scavengers of ROS. Here, we report that the levels of MT-1 and MT-2A are drastically reduced in primary human hepatocellular carcinomas (HCCs) and in diethylnitrosamine-induced liver tumors in mice, which is primarily due to transcriptional repression. Expression of the transcription factor, MTF-1, essential for MT expression, and its target gene Zn-T1 that encodes the zinc transporter-1 was not significantly altered in HCCs. Inhibitors of both phosphatidylinositol 3-kinase (PI3K) and its downstream target AKT increased expression of MT genes in HCC cells but not in liver epithelial cells. Suppression of MT-1 and MT-2A by ectopic expression of the constitutively active PI3K or AKT and their up-regulation by dominant-negative PI3K or AKT mutant confirmed negative regulation of MT expression by PI3K/AKT signaling pathway. Further, treatment of cells with a specific inhibitor of glycogen synthase kinase-3 (GSK-3), a downstream effector of PI3K/AKT, inhibited MT expression specifically in HCC cells. Short interfering RNA-mediated depletion of CCAAT/enhancer binding protein alpha (C/EBPalpha), a target of GSK-3, impeded MT expression, which could not be reversed by PI3K inhibitors. DNA binding activity of C/EBPalpha and its phosphorylation at T222 and T226 by GSK-3 are required for MT expression. MTF-1 and C/EBPalpha act in concert to increase MT-2A expression, which probably explains the high level of MT expression in the liver. This study shows the role of PI3K/AKT signaling pathway and C/EBPalpha in regulation of MT expression in hepatocarcinogenesis.
Loomis, Kari D.; Zhu, Songyun; Yoon, Kyungsil; Johnson, Peter F.; Smart, Robert C.
2013-01-01
CCAAT/enhancer binding protein y (C/EBPα) is a basic leucine zipper transcription factor that inhibits cell cycle progression and regulates differentiation in various cell types. C/EBPα is inactivated by mutation in acute myeloid leukemia (AML) and is considered a human tumor suppressor in AML. Although C/EBPα mutations have not been observed in malignancies other than AML, greatly diminished expression of C/EBPα occurs in numerous human epithelial cancers including lung, liver, endometrial, skin, and breast, suggesting a possible tumor suppressor function. However, direct evidence for C/EBPα as an epithelial tumor suppressor is lacking due to the absence of C/EBPα mutations in epithelial tumors and the lethal effect of C/EBPα deletion in mouse model systems. To examine the function of C/EBPα in epithelial tumor development, an epidermal-specific C/EBPα knockout mouse was generated. The epidermal-specific C/EBPα knockout mice survived and displayed no detectable abnormalities in epidermal keratinocyte proliferation, differentiation, or apoptosis, showing that C/EBPα is dispensable for normal epidermal homeostasis. In spite of this, the epidermal-specific C/EBPα knockout mice were highly susceptible to skin tumor development involving oncogenic Ras. These mice displayed decreased tumor latency and striking increases in tumor incidence, multiplicity, growth rate, and the rate of malignant progression. Mice hemizygous for C/EBPα displayed an intermediate-enhanced tumor phenotype. Our results suggest that decreased expression of C/EBPα contributes to deregulation of tumor cell proliferation. C/EBPα had been proposed to block cell cycle progression through inhibition of E2F activity. We observed that C/EBPα blocked Ras-induced and epidermal growth factor-induced E2F activity in keratinocytes and also blocked Ras-induced cell transformation and cell cycle progression. Our study shows that C/EBPα is dispensable for epidermal homeostasis and provides genetic evidence that C/EBPα is a suppressor of epithelial tumorigenesis. PMID:17638888
Li, Kehan; Han, Xuechang
2015-05-01
Lidocaine has been indicated to promote apoptosis and to promote endoplasmic reticulum (ER) stress. However, the mechanism underlining ER stress-mediated apoptosis is unclear. In the present study, we investigated the promotion to ER stress in the lidocaine-induced apoptosis in human neuroblastoma SH-SY5Y cells. Firstly, we confirmed that lidocaine treatment induced apoptosis in SH-SY5Y cells, time-dependently and dose-dependently, via MTT cell viability assay and annexin V/FITC apoptosis detection with a FACScan flow cytometer. And the anti-apoptosis Bcl-2 and Bcl-xL were downregulated, whereas the apoptosis-executive caspase 3 was promoted through Western blot assay and caspase 3 activity assay. Moreover, the ER stress-associated binding immunoglobulin protein (BiP), PKR-like ER kinase (PERK), activating transcription factor 4 (ATF4) and CCAAT/enhancer-binding protein homologous protein (CHOP) were also upregulated at both mRNA and protein levels by lidocaine treatment. On the other hand, downregulation of the ER stress-associated BiP by RNAi method not only blocked the lidocaine-promoted ER stress but also attenuated the lidocaine-induced SH-SY5Y cell apoptosis. In conclusion, the present study confirmed the involvement of ER stress in the lidocaine-induced apoptosis in human neuroblastoma SH-SY5Y cells. Our study provides a better understanding on the mechanism of lidocaine's neurovirulence.
Wang, Qing; Hu, Jinguang; Shen, Fei; Mei, Zili; Yang, Gang; Zhang, Yanzong; Hu, Yaodong; Zhang, Jing; Deng, Shihuai
2016-01-01
Wheat straw was pretreated by PHP (the concentrated H3PO4 plus H2O2) to clarify effects of temperature, time and H3PO4 proportion on hemicellulose removal, delignification, cellulose recovery and enzymatic digestibility. Overall, hemicellulose removal was intensified by PHP comparing to the concentrated H3PO4. Moreover, efficient delignification specially happened in PHP pretreatment. Hemicellulose removal and delignification by PHP positively responded to temperature and time. Increasing H3PO4 proportion in PHP can promote hemicellulose removal, however, decrease the delignification. Maximum hemicellulose removal and delignification were achieved at 100% and 83.7% by PHP. Enzymatic digestibility of PHP-pretreated wheat straw was greatly improved by increasing temperature, time and H3PO4 proportion, and complete hydrolysis can be achieved consequently. As temperature of 30-40°C, time of 2.0 h and H3PO4 proportion of 60% were employed, more than 92% cellulose was retained in the pretreated wheat straw, and 29.1-32.6g glucose can be harvested from 100g wheat straw. Copyright © 2015 Elsevier Ltd. All rights reserved.
Komoike, Yuta; Matsuoka, Masato
2013-10-15
Tributyltin (TBT) is a major marine contaminant and causes endocrine disruption, hepatotoxicity, immunotoxicity, and neurotoxicity. However, the molecular mechanisms underlying the toxicity of TBT have not been fully elucidated. We examined whether exposure to TBT induces the endoplasmic reticulum (ER) stress response in zebrafish, a model organism. Zebrafish-derived BRF41 fibroblast cells were exposed to 0.5 or 1 μM TBT for 0.5-16 h and subsequently lysed and immunoblotted to detect ER stress-related proteins. Zebrafish embryos, grown until 32 h post fertilization (hpf), were exposed to 1 μM TBT for 16 h and used in whole mount in situ hybridization and immunohistochemistry to visualize the expression of ER chaperones and an ER stress-related apoptosis factor. Exposure of the BRF41 cells to TBT caused phosphorylation of the zebrafish homolog of protein kinase RNA-activated-like ER kinase (PERK), eukaryotic translation initiation factor 2 alpha (eIF2α), and inositol-requiring enzyme 1 (IRE1), characteristic splicing of X-box binding protein 1 (XBP1) mRNA, and enhanced expression of activating transcription factor 4 (ATF4) protein. In TBT-exposed zebrafish embryos, ectopic expression of the gene encoding zebrafish homolog of the 78 kDa glucose-regulating protein (GRP78) and gene encoding CCAAT/enhancer-binding protein homologous protein (CHOP) was detected in the precursors of the neuromast, which is a sensory organ for detecting water flow and vibration. Our in vitro and in vivo studies revealed that exposure of zebrafish to TBT induces the ER stress response via activation of both the PERK-eIF2α and IRE1-XBP1 pathways of the unfolded protein response (UPR) in an organ-specific manner. Copyright © 2013 Elsevier B.V. All rights reserved.
Wu, Liang; Tian, You-Yong; Shi, Jing-Ping; Xie, Wei; Shi, Jian-Quan; Lu, Jie; Zhang, Ying-Dong
2013-08-26
Recent studies indicated that angiotensin II (Ang II) receptor blockers could reduce neurotoxins-induced dopaminergic (DA) cell death, but the underlying mechanisms are still unclear. Given that endoplasmic reticulum (ER) stress plays a major role in rotenone-induced neuronal apoptosis, we investigated whether candesartan cilexetil, a selective and high-affinity Ang II receptor antagonist, could protect the DA neuron via reducing ER stress in a chronic rotenone rat model for Parkinson's disease (PD). Our data showed that candesartan cilexetil could ameliorate the descent latency in catalepsy tests, and decrease rotenone-induced DA neuron apoptosis. Moreover, candesartan cilexetil has been found to play a protective role via down-regulating the expression of activating transcription factor 4 (ATF4), the CCAAT-enhancer-binding protein (C/EBP) homologous protein (CHOP), and p53 upregulated modulator of apoptosis (Puma). Thus, our experiments strongly suggest that administration of candesartan cilexetil protects DA neuron involving blocking ER stress, possibly via inhibiting activation of the ATF4-CHOP-Puma pathway, which could provide new insight into clinical therapeutics for PD. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Kaya, Cafer; Tam, Abbas Ali; Dirikoç, Ahmet; Kılıçyazgan, Aylin; Kılıç, Mehmet; Türkölmez, Şeyda; Ersoy, Reyhan; Çakır, Bekir
2016-10-01
Primary hyperparathyroidism (PHP) is a common endocrine disease, and its most effective treatment is surgery. Postoperative hypocalcemia is a morbidity of parathyroid surgeries, and it may extend hospitalization durations. The purpose of this study is to determine the predictive factors related to the development of hypocalcemia and hungry bone syndrome (HBS) in patients who underwent parathyroidectomy for PHP. Laboratory data comprising parathyroid hormone (PTH), calcium, phosphate, 25-OHD, albumin, magnesium, alkaline phosphatase (ALP), blood urea nitrogen (BUN), and thyroid stimulating hormone (TSH) of the patients were recorded preoperatively, on the 1st and 4th days postoperatively, and in the 6th postoperative month, and their neck ultrasound (US) and bone densitometry data were also recorded. Hypocalcemia was seen in 63 patients (38.4%) on the 1st day after parathyroidectomy. Ten patients (6.1%) had permanent hypocalcemia in the 6th month after surgery. Out of the patients who underwent parathyroidectomy for PHP, 22 (13.4%) had HBS. The incidence of postoperative hypocalcemia was higher in patients who underwent parathyroidectomy for PHP, who had parathyroid hyperplasia, and who had osteoporosis. Preoperative PTH, ALP, and BUN values were higher in those patients who developed HBS. Furthermore, HBS was more common in patients who had osteoporosis, who had parathyroid hyperplasia, and who underwent thyroidectomy simultaneously with parathyroidectomy. As a result, patients who have the risk factors for development of hypocalcemia and HBS should be monitored more attentively during the perioperative period.
Myricetin protects against diet-induced obesity and ameliorates oxidative stress in C57BL/6 mice.
Su, Hong-Ming; Feng, Li-Na; Zheng, Xiao-Dong; Chen, Wei
2016-06-01
Myricetin is a naturally occurring antioxidant commonly found in various plants. However, little information is available with respect to its direct anti-obesity effects. This study was undertaken to investigate the effect of myricetin on high-fat diet (HFD)-induced obesity in C57BL/6 mice. Administration of myricetin dramatically reduced the body weight of diet-induced obese mice compared with solely HFD-induced mice. Several parameters related to obesity including serum glucose, triglyceride, and cholesterol were significantly decreased in myricetin-treated mice. Moreover, obesity-associated oxidative stress (glutathione peroxidase (GPX) activity, total antioxidant capacity (T-AOC), and malondialdehyde (MDA)) and inflammation (tumor necrosis factor-α (TNF-α)) were ameliorated in myricetin-treated mice. Further investigation revealed that the protective effect of myricetin against HFD-induced obesity in mice appeared to be partially mediated through the down-regulation of mRNA expression of adipogenic transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), and lipogenic transcription factor sterol regulatory element-binding protein 1c (SREBP-1c). Consumption of myricetin may help to prevent obesity and obesity-related metabolic complications.
Myricetin protects against diet-induced obesity and ameliorates oxidative stress in C57BL/6 mice*
Su, Hong-ming; Feng, Li-na; Zheng, Xiao-dong; Chen, Wei
2016-01-01
Background: Myricetin is a naturally occurring antioxidant commonly found in various plants. However, little information is available with respect to its direct anti-obesity effects. Objective: This study was undertaken to investigate the effect of myricetin on high-fat diet (HFD)-induced obesity in C57BL/6 mice. Results: Administration of myricetin dramatically reduced the body weight of diet-induced obese mice compared with solely HFD-induced mice. Several parameters related to obesity including serum glucose, triglyceride, and cholesterol were significantly decreased in myricetin-treated mice. Moreover, obesity-associated oxidative stress (glutathione peroxidase (GPX) activity, total antioxidant capacity (T-AOC), and malondialdehyde (MDA)) and inflammation (tumor necrosis factor-α (TNF-α)) were ameliorated in myricetin-treated mice. Further investigation revealed that the protective effect of myricetin against HFD-induced obesity in mice appeared to be partially mediated through the down-regulation of mRNA expression of adipogenic transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), and lipogenic transcription factor sterol regulatory element-binding protein 1c (SREBP-1c). Conclusions: Consumption of myricetin may help to prevent obesity and obesity-related metabolic complications. PMID:27256677
USDA-ARS?s Scientific Manuscript database
Chronic hepatitis C virus (HCV) infection greatly increases the risk for type 2 diabetes and nonalcoholic steatohepatitis; however, the pathogenic mechanisms remain incompletely understood. Here we report gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) transcription and associated tra...
Gilbert-Wilson, Ryan; Field, Leslie D; Bhadbhade, Mohan M
2012-03-05
The synthesis and characterization of the extremely hindered phosphine ligands, P(CH(2)CH(2)P(t)Bu(2))(3) (P(2)P(3)(tBu), 1), PhP(CH(2)CH(2)P(t)Bu(2))(2) (PhP(2)P(2)(tBu), 2), and P(CH(2)CH(2)CH(2)P(t)Bu(2))(3) (P(3)P(3)(tBu), 3) are reported, along with the synthesis and characterization of ruthenium chloro complexes RuCl(2)(P(2)P(3)(tBu)) (4), RuCl(2)(PhP(2)P(2)(tBu)) (5), and RuCl(2)(P(3)P(3)(tBu)) (6). The bulky P(2)P(3)(tBu) (1) and P(3)P(3)(tBu) (3) ligands are the most sterically encumbered PP(3)-type ligands so far synthesized, and in all cases, only three phosphorus donors are able to bind to the metal center. Complexes RuCl(2)(PhP(2)P(2)(tBu)) (5) and RuCl(2)(P(3)P(3)(tBu)) (6) were characterized by crystallography. Low temperature solution and solid state (31)P{(1)H} NMR were used to demonstrate that the structure of RuCl(2)(P(2)P(3)(tBu)) (4) is probably analogous to that of RuCl(2)(PhP(2)P(2)(tBu)) (5) which had been structurally characterized.
Kobuke, Kazuhiro; Oki, Kenji; Gomez-Sanchez, Celso E; Ohno, Haruya; Itcho, Kiyotaka; Yoshii, Yoko; Yoneda, Masayasu; Hattori, Noboru
2018-03-01
Aldosterone production is stimulated by activation of calcium signaling in aldosterone-producing adenomas (APAs), and epigenetic factors such as DNA methylation may be associated with the expression of genes involved in aldosterone regulation. Our aim was to investigate the DNA methylation of genes related to calcium signaling cascades in APAs and the association of mutations in genes linked to APAs with DNA methylation levels. Nonfunctioning adrenocortical adenoma (n = 12) and APA (n = 35) samples were analyzed. The KCNJ5 T158A mutation was introduced into human adrenocortical cell lines (HAC15 cells) using lentiviral delivery. DNA methylation array analysis was conducted using adrenal tumor samples and HAC15 cells. The Purkinje cell protein 4 (PCP4) gene was one of the most hypomethylated in APAs. DNA methylation levels in two sites of PCP4 showed a significant inverse correlation with messenger RNA expression in adrenal tumors. Bioinformatics and multiple regression analysis revealed that CCAAT/enhancer binding protein alpha (CEBPA) may bind to the methylation site of the PCP4 promoter. According to chromatin immunoprecipitation assay, CEBPA was bound to the PCP4 hypomethylated region by chromatin immunoprecipitation assay. There were no significant differences in PCP4 methylation levels among APA genotypes. Moreover, KCNJ5 T158A did not influence PCP4 methylation levels in HAC15 cells. We showed that the PCP4 promoter was one of the most hypomethylated in APAs and that PCP4 transcription may be associated with demethylation as well as with CEBPA in APAs. KCNJ5 mutations known to result in aldosterone overproduction were not related to PCP4 methylation in either clinical or in vitro studies.
An In Vitro Model to Probe the Regulation of Adipocyte Differentiation under Hyperglycemia
Shilpa, Kusampudi; Dinesh, Thangaraj
2013-01-01
Background The aim of this study was an in vitro investigation of the effect of high glucose concentration on adipogenesis, as prolonged hyperglycemia alters adipocyte differentiation. Methods 3T3-L1 preadipocytes differentiated in the presence of varying concentrations of glucose (25, 45, 65, 85, and 105 mM) were assessed for adipogenesis using AdipoRed (Lonza) assay. Cell viability and proliferation were measured using MTT reduction and [3H] thymidine incorporation assay. The extent of glucose uptake and glycogen synthesis were measured using radiolabelled 2-deoxy-D-[1-3H] glucose and [14C]-UDP-glucose. The gene level expression was evaluated using reverse transcription-polymerase chain reaction and protein expression was studied using Western blot analysis. Results Glucose at 105 mM concentration was observed to inhibit adipogenesis through inhibition of CCAAT-enhancer-binding proteins, sterol regulatory element-binding protein, peroxisome proliferator-activated receptor and adiponectin. High concentration of glucose induced stress by increasing levels of toll-like receptor 4, nuclear factor κB and tumor necrosis factor α thereby generating activated preadipocytes. These cells entered the state of hyperplasia through inhibition of p27 and proliferation was found to increase through activation of protein kinase B via phosphoinositide 3 kinase dependent pathway. This condition inhibited insulin signaling through decrease in insulin receptor β. Although the glucose transporter 4 (GLUT4) protein remained unaltered with the glycogen synthesis inhibited, the cells were found to exhibit an increase in glucose uptake via GLUT1. Conclusion Adipogenesis in the presence of 105 mM glucose leads to an uncontrolled proliferation of activated preadipocytes providing an insight towards understanding obesity. PMID:23807920
Lee, Anna; Choi, Kyeong-Mi; Jung, Won-Beom; Jeong, Heejin; Kim, Ga-Yeong; Lee, Ju Hyun; Lee, Mi Kyeong; Hong, Jin Tae; Roh, Yoon-Seok; Sung, Sang-Hyun; Yoo, Hwan-Soo
2017-08-28
Type 2 diabetes is characterized by insulin resistance, which leads to increased blood glucose levels. Adipocytes are involved in the development of insulin resistance, resulting from the dysfunction of the insulin signaling pathway. In this study, we investigated whether meso -dihydroguaiaretic acid (MDGA) may modulate glucose uptake in adipocytes, and examined its mechanism of action. MDGA enhanced adipogenesis through up-regulation of peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α in 3T3-L1 adipocytes partially differentiated with sub-optimal concentrations of insulin. MDGA also increased glucose uptake by stimulating expression and translocation of glucose transporter 4 (GLUT4) in adipocytes. These results suggest that MDGA may increase GLUT4 expression and its translocation by promoting insulin sensitivity, leading to enhanced glucose uptake.
Cyclooxygenase-2 is an obligatory factor in methamphetamine-induced neurotoxicity.
Thomas, David M; Kuhn, Donald M
2005-05-01
Methamphetamine causes persistent damage to dopamine nerve endings of the striatum. The mechanisms underlying its neurotoxicity are not fully understood, but considerable evidence points to oxidative stress as a probable mechanism. A recent microarray analysis of gene expression changes caused by methamphetamine revealed that cyclooxygenase-2 (COX-2) was induced along with its transcription factor CCAAT/enhancer-binding protein (Thomas DM, Francescutti-Verbeem DM, Liu X, and Kuhn DM, 2004). We report presently that methamphetamine increases striatal expression of COX-2 protein. Cyclooxygenase-1 (COX-1) expression was not changed. Mice bearing a null mutation of the gene for COX-2 were resistant to methamphetamine-induced neurotoxicity. COX-1 knockouts, like wild-type mice, showed extensive dopamine nerve terminal damage. Selective inhibitors of COX-1 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethyl pyrazole (SC-560)], COX-2 [N-[2-(cyclohexyloxy)-4-nitrophenyl] methanesulfonamide (NS-398), rofecoxib], or COX-3 (antipyrine) or a nonselective inhibitor of the COX-1/2 isoforms (ketoprofen) did not protect mice from neurotoxicity. Finally, methamphetamine did not change striatal prostaglandin E(2) content. Taken together, these data suggest that COX-2 is an obligatory factor in methamphetamine-induced neurotoxicity. The functional aspect of COX-2 that contributes to drug-induced neurotoxicity does not appear to be its prostaglandin synthetic capacity. Instead, the peroxidase activity associated with COX-2, which can lead to the formation of reactive oxygen species and dopamine quinones, can account for its role.
Watanabe, Takayuki; Hata, Keishi; Hiwatashi, Kazuyuki; Hori, Kazuyuki; Suzuki, Nao; Itoh, Hideaki
2010-01-01
We investigated in this study the anti-obesity effect of an extract of Petasites japonicus (a culinary vegetable from Eastern Asia) on a murine adipocyte cell line (3T3-L1) and on diet-induced obesity-prone mice. An ethanol extract of P. japonicus. (PJET) suppressed 3T3-L1 preadipocyte differentiation; however, a hot water extract of P. japonicus (PJHW) exhibited no effect on cell differentiation. PJET significantly attenuated three adipogenetic transcription factors, peroxisome proliferator-activated receptor gamma2, CCAAT/enhancer-binding protein and sterol regulatory element-binding protein 1C, at the mRNA level and suppressed the gene expression of fatty acid synthetase. An experiment with diet-induced obesity-prone C57BL/6J mice showed that PJET lowered the body weight gain and visceral fat tissue accumulation, and ameliorated the plasma cholesterol concentration. These findings suggest that P. japonicus might be an effective food against obesity.
Dietary Green Pea Protects against DSS-Induced Colitis in Mice Challenged with High-Fat Diet.
Bibi, Shima; de Sousa Moraes, Luís Fernando; Lebow, Noelle; Zhu, Mei-Jun
2017-05-18
Obesity is a risk factor for developing inflammatory bowel disease. Pea is unique with its high content of dietary fiber, polyphenolics, and glycoproteins, all of which are known to be health beneficial. We aimed to investigate the impact of green pea (GP) supplementation on the susceptibility of high-fat diet (HFD)-fed mice to dextran sulfate sodium (DSS)-induced colitis. Six-week-old C57BL/6J female mice were fed a 45% HFD or HFD supplemented with 10% GP. After 7-week dietary supplementation, colitis was induced by adding 2.5% DSS in drinking water for 7 days followed by a 7-day recovery period. GP supplementation ameliorated the disease activity index score in HFD-fed mice during the recovery stage, and reduced neutrophil infiltration, mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and inflammatory markers interleukin (IL)-6, cyclooxygenase-2 (COX-2), IL-17, interferon-γ (IFN-γ), and inducible nitric oxide synthase (iNOS) in HFD-fed mice. Further, GP supplementation increased mucin 2 content and mRNA expression of goblet cell differentiation markers including Trefoil factor 3 (Tff3), Krüppel-like factor 4 (Klf4), and SAM pointed domain ETS factor 1 (Spdef1) in HFD-fed mice. In addition, GP ameliorated endoplasmic reticulum (ER) stress as indicated by the reduced expression of Activating transcription factor-6 (ATF-6) protein and its target genes chaperone protein glucose-regulated protein 78 (Grp78), the CCAAT-enhancer-binding protein homologous protein (CHOP), the ER degradation-enhancing α-mannosidase-like 1 protein (Edem1), and the X-box binding protein 1 (Xbp1) in HFD-fed mice. In conclusion, GP supplementation ameliorated the severity of DSS-induced colitis in HFD-fed mice, which was associated with the suppression of inflammation, mucin depletion, and ER stress in the colon.
Cho, S Y; Yoon, Y A; Ki, C-S; Huh, H J; Yoo, H-W; Lee, B H; Kim, G-H; Yoo, J-H; Kim, S-Y; Kim, S J; Sohn, Y B; Park, S W; Huh, R; Chang, M S; Lee, J; Kwun, Y; Maeng, S H; Jin, D-K
2013-10-01
Pseudohypoparathyroidism (PHP) is defined as resistance toward parathyroid hormones. PHP and pseudopseudohypoparathyroidism (PPHP) are rare disorders resulting from genetic and epigenetic aberrations within or upstream of the GNAS locus. This study investigated the clinical characteristics and performed a molecular analysis of PHP and PPHP. A total of 12 patients with (P)PHP from 11 unrelated families (4 with PHP-Ia, 6 with PHP-Ib, and 2 with PPHP) were characterized using both clinical and molecular methods. Clinical features included the presenting symptoms, Albright hereditary osteodystrophy features, and resistance to hormones. Comprehensive analysis of the GNAS and STX16 loci was undertaken to investigate the molecular defects underlying (P)PHP. All PHP-Ib patients displayed hypocalcemic symptoms. All PHP-Ia patients showed resistance toward TSH, in addition to PTH. In most patients with PHP, when the diagnosis of PHP was first established, hypocalcemia and hyperphosphatemia were associated with a significant increase in serum PTH levels. One patient with PHP-Ia was diagnosed with growth hormone deficiency and showed a good response to human recombinant growth hormone therapy. 6 patients with PHP-Ia and PPHP showed 5 different mutations in the GNAS gene. 5 patients with PHP-Ib displayed a loss of differentially methylated region (DMR) imprints of the maternal GNAS. One PHP-Ib patient showed a de novo microdeletion in STX16 and a loss of methylation of exon A/B on the maternal allele. No patients revealed paternal disomy among 4 patients with PHP-Ib. Identification of the molecular causes of PHP and PPHP explains their distinctive clinical features and enables confirmation of the diagnosis and exact genetic counseling. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.
Ko, Seok-Chun; Lee, Myoungsook; Lee, Ji-Hyeok; Lee, Seung-Hong; Lim, Yunsook; Jeon, You-Jin
2013-11-01
In this study, we assessed the potential inhibitory effect of 5 species of brown seaweeds on adipogenesis the differentiation of 3T3-L1 preadipocytes into mature adipocytes by measuring Oil-Red O staining. The Ecklonia cava extract tested herein evidenced profound adipogenesis inhibitory effect, compared to that exhibited by the other four brown seaweed extracts. Thus, E. cava was selected for isolation of active compounds and finally the three polyphenol compounds of phlorotannins were obtained and their inhibitory effect on adipogenesis was observed. Among the phlorotannins, dieckol exhibited greatest potential adipogenesis inhibition and down-regulated the expression of peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer-binding proteins (C/EBPα), sterol regulatory element-binding protein 1 (SREBP1) and fatty acid binding protein 4 (FABP4) in a dose-dependent manner. The specific mechanism mediating the effects of dieckol was confirmed by AMP-activated protein kinase (AMPK) activation. These results demonstrate inhibitory effect of dieckol compound on adipogenesis through the activation of the AMPK signal pathway. Copyright © 2013 Elsevier B.V. All rights reserved.
Eating behaviors in obese children with pseudohypoparathyroidism type 1a: a cross-sectional study.
Wang, Lulu; Shoemaker, Ashley H
2014-01-01
Children with pseudohypoparathyroidism type 1a (PHP-1a) develop early-onset obesity. These children have decreased resting energy expenditure but it is unknown if hyperphagia contributes to their obesity. We conducted a survey assessment of patients 2 to 12 years old with PHP-1a and matched controls using the Hyperphagia Questionnaire (HQ) and Children's Eating Behavior Questionnaire (CEBQ). Results of the PHP-1a group were also compared with an obese control group and normal weight sibling group. We enrolled 10 patients with PHP-1a and 9 matched controls. There was not a significant difference between the PHP-1a group and matched controls for total HQ score (p = 0.72), Behavior (p = 0.91), Drive (p = 0.48) or Severity (p = 0.73) subset scores. There was also no difference between the PHP-1a group and matched controls on the CEBQ. In a secondary analysis, the PHP-1a group was compared with obese controls (n = 30) and normal weight siblings (n = 6). Caregivers reported an increased interest in food before age 2 years in 6 of 10 PHP-1a patients (60%), 9 of 30 obese controls (30%) and none of the siblings (p = 0.04). The sibling group had a significantly lower Positive Eating Behavior score than the PHP-1a group (2.6 [2.4, 2.9] vs. 3.5 [3.1, 4.0], p < 0.01) and obese controls (2.6 [2.4, 2.9] vs. 3.4 [2.6, 3.8], p = 0.04), but there was not a significant difference between the PHP-1a and obese controls (p = 0.35). The sibling group had a lower Desire to Drink score than both the PHP-1a group (1.8 [1.6, 2.7] vs. 4.3 [3.3, 5.0], p < 0.01) and obese controls (1.8 [1.6, 2.7] vs. 3.3 [3.0, 4.0], p < 0.01) but there was not a significant difference between the PHP-1a and obese control Desire to Drink scores (p = 0.11). Patients with PHP-1a demonstrate hyperphagic symptoms similar to matched obese controls.
Eating behaviors in obese children with pseudohypoparathyroidism type 1a: a cross-sectional study
2014-01-01
Background Children with pseudohypoparathyroidism type 1a (PHP-1a) develop early-onset obesity. These children have decreased resting energy expenditure but it is unknown if hyperphagia contributes to their obesity. Methods We conducted a survey assessment of patients 2 to 12 years old with PHP-1a and matched controls using the Hyperphagia Questionnaire (HQ) and Children’s Eating Behavior Questionnaire (CEBQ). Results of the PHP-1a group were also compared with an obese control group and normal weight sibling group. Results We enrolled 10 patients with PHP-1a and 9 matched controls. There was not a significant difference between the PHP-1a group and matched controls for total HQ score (p = 0.72), Behavior (p = 0.91), Drive (p = 0.48) or Severity (p = 0.73) subset scores. There was also no difference between the PHP-1a group and matched controls on the CEBQ. In a secondary analysis, the PHP-1a group was compared with obese controls (n = 30) and normal weight siblings (n = 6). Caregivers reported an increased interest in food before age 2 years in 6 of 10 PHP-1a patients (60%), 9 of 30 obese controls (30%) and none of the siblings (p = 0.04). The sibling group had a significantly lower Positive Eating Behavior score than the PHP-1a group (2.6 [2.4, 2.9] vs. 3.5 [3.1, 4.0], p < 0.01) and obese controls (2.6 [2.4, 2.9] vs. 3.4 [2.6, 3.8], p = 0.04), but there was not a significant difference between the PHP-1a and obese controls (p = 0.35). The sibling group had a lower Desire to Drink score than both the PHP-1a group (1.8 [1.6, 2.7] vs. 4.3 [3.3, 5.0], p < 0.01) and obese controls (1.8 [1.6, 2.7] vs. 3.3 [3.0, 4.0], p < 0.01) but there was not a significant difference between the PHP-1a and obese control Desire to Drink scores (p = 0.11). Conclusions Patients with PHP-1a demonstrate hyperphagic symptoms similar to matched obese controls. PMID:25337124
Hughes, Marybeth S; Zager, Jonathan; Faries, Mark; Alexander, H Richard; Royal, Richard E; Wood, Bradford; Choi, Junsung; McCluskey, Kevin; Whitman, Eric; Agarwala, Sanjiv; Siskin, Gary; Nutting, Charles; Toomey, Mary Ann; Webb, Carole; Beresnev, Tatiana; Pingpank, James F
2016-04-01
There is no consensus for the treatment of melanoma metastatic to the liver. Percutaneous hepatic perfusion with melphalan (PHP-Mel) is a method of delivering regional chemotherapy selectively to the liver. In this study, we report the results of a multicenter, randomized controlled trial comparing PHP-Mel with best alternative care (BAC) for patients with ocular or cutaneous melanoma metastatic to the liver. A total of 93 patients were randomized to PHP-Mel (n = 44) or BAC (n = 49). On the PHP-Mel arm, melphalan was delivered via the hepatic artery, and the hepatic effluent captured and filtered extracorporeally prior to return to the systemic circulation via a venovenous bypass circuit. PHP-Mel was repeatable every 4-8 weeks. The primary endpoint was hepatic progression-free survival (hPFS), and secondary endpoints included overall PFS (oPFS), overall survival (OS), hepatic objective response (hOR), and safety. hPFS was 7.0 months for PHP-Mel and 1.6 months for BAC (p < 0.0001), while oPFS was 5.4 months for PHP-Mel and 1.6 months for BAC (p < 0.0001). Median OS was not significantly different (PHP-Mel 10.6 months vs. BAC 10.0 months), likely due to crossover to PHP-Mel treatment (57.1 %) from the BAC arm, and the hOR was 36.4 % for PHP-Mel and 2.0 % for BAC (p < 0.001). The majority of adverse events were related to bone marrow suppression. Four deaths were attributed to PHP-Mel, three in the primary PHP-Mel group, and one post-crossover to PHP-Mel from BAC. This randomized, phase III study demonstrated the efficacy of the PHP-Mel procedure. hPFS, oPFS, and hOR were significantly improved with PHP-Mel. PHP with melphalan should provide a new treatment option for unresectable metastatic melanoma in the liver.
Tabor, D E; Kim, J B; Spiegelman, B M; Edwards, P A
1999-07-16
We previously identified stearoyl-CoA desaturase 2 (SCD2) as a new member of the family of genes that are transcriptionally regulated in response to changing levels of nuclear sterol regulatory element binding proteins (SREBPs) or adipocyte determination and differentiation factor 1 (ADD1). A novel sterol regulatory element (SRE) (5'-AGCAGATTGTG-3') identified in the proximal promoter of the mouse SCD2 gene is required for induction of SCD2 promoter-reporter genes in response to cellular sterol depletion (Tabor, D. E., Kim, J. B., Spiegelman, B. M., and Edwards, P. A. (1998) J. Biol. Chem. 273, 22052-22058). In this report, we demonstrate that this novel SRE is both present in the promoter of the SCD1 gene and is critical for the sterol-dependent transcription of SCD1 promoter-reporter genes. Two conserved cis elements (5'-CCAAT-3') lie 5 and 48 base pairs 3' of the novel SREs in the promoters of both the SCD1 and SCD2 murine genes. Mutation of either of these putative NF-Y binding sites attenuates the transcriptional activation of SCD1 or SCD2 promoter-reporter genes in response to cellular sterol deprivation. Induction of both reporter genes is also attenuated when cells are cotransfected with dominant-negative forms of either NF-Y or SREBP. In addition, we demonstrate that the induction of SCD1 and SCD2 mRNAs that occurs during the differentiation of 3T3-L1 preadipocytes to adipocytes is paralleled by an increase in the levels of ADD1/SREBP-1c and that the SCD1 and SCD2 mRNAs are induced to even higher levels in response to ectopic expression of ADD1/SREBP-1c. We conclude that transcription of both SCD1 and SCD2 genes is responsive to cellular sterol levels and to the levels of nuclear SREBP/ADD1 and that transcriptional induction requires three spatially conserved cis elements, that bind SREBP and NF-Y. Additional studies demonstrate that maximal transcriptional repression of SCD2 reporter genes in response to an exogenous polyunsaturated fatty acid is dependent upon the SRE and the adjacent CCAAT motif.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miura, Keiji; Kurosawa, Yoshikazu; Hirai, Momoki
1996-06-01
Nucleobindin (Nuc) was first identified as a secreted protein of 55 kDa that promotes production of DNA-specific antibodies in lupus-prone MRL/lpr mice. Analysis of cDNA that encoded Nuc revealed that the protein is composed of a signal peptide, a DNA-binding site, two calcium-binding motifs (EF-hand motifs), and a leucine zipper. In the present study, we analysed the organization of the human gene for Nuc (NUC). It consists of 13 exons that are distributed in a region of 32 kb. The functional motifs listed above are encoded in corresponding exons. NUC was expressed in all organs examined. Comparison of nucleotide sequencesmore » in the promotre regions between human and mouse NCU genes revealed several conserved sequences. Among them, two Sp1-binding sites and a CCAAT box are of particular interest. The promoter is of the TATA-less type, and transcription starts at multiple sites in both the human and the mouse genes. These features suggest that NUC might normally play a role as a housekeeping gene. NUC was located at human chromosome 19q13.2-q13.4. 25 refs., 4 figs., 1 tab.« less
Kaempferol stimulates bone sialoprotein gene transcription and new bone formation.
Yang, Li; Takai, Hideki; Utsunomiya, Tadahiko; Li, Xinyue; Li, Zhengyang; Wang, Zhitao; Wang, Shuang; Sasaki, Yoko; Yamamoto, Hirotsugu; Ogata, Yorimasa
2010-08-15
Kaempferol is a typical flavonol-type flavonoid that is present in a variety of vegetables and fruits, and has a protective effect on postmenopausal bone loss. Bone sialoprotein (BSP) is thought to function in the initial mineralization of bone and could be crucial for osteoblast differentiation, bone matrix mineralization and tumor metastasis. In the present study we investigated the regulation of BSP transcription by kaempferol in rat osteoblast-like UMR106 cells, and the effect of kaempferol on new bone formation. Kaempferol (5 microM) increased BSP and Osterix mRNA levels at 12 h and up-regulated Runx2 mRNA expression at 6 h. Kaempferol increased luciferase activity of the construct pLUC3, which including the promoter sequence between nucleotides -116 to +60. Transcriptional stimulation by kaempferol abrogated in constructs included 2 bp mutations in the inverted CCAAT, CRE, and FRE elements. Gel shift analyses showed that kaempferol increased nuclear protein binding to CRE and FRE elements, whereas the CCAAT-protein complex did not change after kaempferol stimulation. Twelve daily injections of 5 microM kaempferol directly into the periosteum of parietal bones of newborn rats increased new bone formation. These data suggest that kaempferol increased BSP gene transcription mediated through inverted CCAAT, CRE, and FRE elements in the rat BSP gene promoter, and could induce osteoblast activities in the early stage of bone formation. (c) 2010 Wiley-Liss, Inc.
Yucesoy, Berran; Kaufman, Kenneth M.; Lummus, Zana L.; Weirauch, Matthew T.; Zhang, Ge; Cartier, André; Boulet, Louis-Philippe; Sastre, Joaquin; Quirce, Santiago; Tarlo, Susan M.; Cruz, Maria-Jesus; Munoz, Xavier; Harley, John B.; Bernstein, David I.
2015-01-01
Diisocyanates, reactive chemicals used to produce polyurethane products, are the most common causes of occupational asthma. The aim of this study is to identify susceptibility gene variants that could contribute to the pathogenesis of diisocyanate asthma (DA) using a Genome-Wide Association Study (GWAS) approach. Genome-wide single nucleotide polymorphism (SNP) genotyping was performed in 74 diisocyanate-exposed workers with DA and 824 healthy controls using Omni-2.5 and Omni-5 SNP microarrays. We identified 11 SNPs that exceeded genome-wide significance; the strongest association was for the rs12913832 SNP located on chromosome 15, which has been mapped to the HERC2 gene (p = 6.94 × 10−14). Strong associations were also found for SNPs near the ODZ3 and CDH17 genes on chromosomes 4 and 8 (rs908084, p = 8.59 × 10−9 and rs2514805, p = 1.22 × 10−8, respectively). We also prioritized 38 SNPs with suggestive genome-wide significance (p < 1 × 10−6). Among them, 17 SNPs map to the PITPNC1, ACMSD, ZBTB16, ODZ3, and CDH17 gene loci. Functional genomics data indicate that 2 of the suggestive SNPs (rs2446823 and rs2446824) are located within putative binding sites for the CCAAT/Enhancer Binding Protein (CEBP) and Hepatocyte Nuclear Factor 4, Alpha transcription factors (TFs), respectively. This study identified SNPs mapping to the HERC2, CDH17, and ODZ3 genes as potential susceptibility loci for DA. Pathway analysis indicated that these genes are associated with antigen processing and presentation, and other immune pathways. Overlap of 2 suggestive SNPs with likely TF binding sites suggests possible roles in disruption of gene regulation. These results provide new insights into the genetic architecture of DA and serve as a basis for future functional and mechanistic studies. PMID:25918132
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furumiya, Mai; Department of Biopharmaceutics, College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya 463-8521; Inoue, Katsuhisa
2013-02-08
Highlights: ► We examined transcription factors that may regulate PCFT expression in the intestine. ► PCFT promoter activity is basically induced by KLF4. ► KLF4-induced PCFT promoter activity is enhanced by HNF4α synergistically. ► CDX2 and C/EBPα suppress PCFT promoter activity induced by KLF4 and HNF4α. -- Abstract: Proton-coupled folate transporter (PCFT), which is responsible for the intestinal uptake of folates and analogs, is expressed only in the proximal region in the small intestine. The present study was to examine its transcriptional regulation, which may be involved in such a unique expression profile and potentially in its alteration, using dual-luciferasemore » reporter assays in human embryonic kidney (HEK) 293 cells. The luciferase activity derived from the reporter construct containing the 5′-flanking sequence of −1695/+96 of the human PCFT gene was enhanced most extensively by the introduction of Krüppel-like factor 4 (KLF4). The KLF4-induced luciferase activity was further enhanced by hepatocyte nuclear factor 4α (HNF4α) synergistically. To the contrary, caudal-type homeobox transcription factor 2 (CDX2) and CCAAT/enhancer-binding protein α (C/EBPα) extensively suppressed the luciferase activity induced by KLF4 alone and also that induced by KLF4 and HNF4α. Western blot analysis using the rat small intestine indicated uniform expression of KLF4 along the intestinal tract, proximal-oriented expression of HNF4α, distal-oriented expression of CDX2 and C/EBPα. These results suggest that the activity of PCFT promoter is basically induced by KLF4 and the gradiented expression profile of PCFT may be at least in part accounted for by those of HNF4α, CDX2 and C/EBPα.« less
Thevenot, Paul T; Sierra, Rosa A; Raber, Patrick L; Al-Khami, Amir A; Trillo-Tinoco, Jimena; Zarreii, Parisa; Ochoa, Augusto C; Cui, Yan; Del Valle, Luis; Rodriguez, Paulo C
2014-09-18
Adaptation of malignant cells to the hostile milieu present in tumors is an important determinant of their survival and growth. However, the interaction between tumor-linked stress and antitumor immunity remains poorly characterized. Here, we show the critical role of the cellular stress sensor C/EBP-homologous protein (Chop) in the accumulation and immune inhibitory activity of tumor-infiltrating myeloid-derived suppressor cells (MDSCs). MDSCs lacking Chop had decreased immune-regulatory functions and showed the ability to prime T cell function and induce antitumor responses. Chop expression in MDSCs was induced by tumor-linked reactive oxygen and nitrogen species and regulated by the activating-transcription factor-4. Chop-deficient MDSCs displayed reduced signaling through CCAAT/enhancer-binding protein-β, leading to a decreased production of interleukin-6 (IL-6) and low expression of phospho-STAT3. IL-6 overexpression restored immune-suppressive activity of Chop-deficient MDSCs. These findings suggest the role of Chop in tumor-induced tolerance and the therapeutic potential of targeting Chop in MDSCs for cancer immunotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.
Transcriptional regulation of genes related to progesterone production.
Mizutani, Tetsuya; Ishikane, Shin; Kawabe, Shinya; Umezawa, Akihiro; Miyamoto, Kaoru
2015-01-01
Steroid hormones are synthesized from cholesterol in various tissues, mainly in the adrenal glands and gonads. Because these lipid-soluble steroid hormones immediately diffuse through the cells in which they are produced, their secretion directly reflects the activity of the genes related to their production. Progesterone is important not only for luteinization and maintenance of pregnancy, but also as a substrate for most other steroids. Steroidogenic acute regulatory protein (STAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), and 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase (3β-HSD) are well-known proteins essential for progesterone production. In addition to them, glutathione S-transferase A1-1 and A3-3 are shown to exert Δ(5)-Δ(4) isomerization activity to produce progesterone in a cooperative fashion with 3β-HSD. 5-Aminolevulinic acid synthase 1, ferredoxin 1, and ferredoxin reductase also play a role in steroidogenesis as accessory factors. Members of the nuclear receptor 5A (NR5A) family (steroidogenic factor 1 and liver receptor homolog 1) play a crucial role in the transcriptional regulation of these genes. The NR5A family activates these genes by binding to NR5A responsive elements present within their promoter regions, as well as to the elements far from their promoters. In addition, various NR5A-interacting proteins including peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear receptor subfamily 0, group B, member 1 (DAX-1), and CCAAT/enhancer-binding proteins (C/EBP) are involved in the transcription of NR5A target genes and regulate the transcription either positively or negatively under both basal and tropic hormone-stimulated conditions. In this review, we describe the transcriptional regulation of genes related to progesterone production.
Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response
Goldstein, Ido; Baek, Songjoon; Presman, Diego M.; Paakinaho, Ville; Swinstead, Erin E.; Hager, Gordon L.
2017-01-01
Fasting elicits transcriptional programs in hepatocytes leading to glucose and ketone production. This transcriptional program is regulated by many transcription factors (TFs). To understand how this complex network regulates the metabolic response to fasting, we aimed at isolating the enhancers and TFs dictating it. Measuring chromatin accessibility revealed that fasting massively reorganizes liver chromatin, exposing numerous fasting-induced enhancers. By utilizing computational methods in combination with dissecting enhancer features and TF cistromes, we implicated four key TFs regulating the fasting response: glucocorticoid receptor (GR), cAMP responsive element binding protein 1 (CREB1), peroxisome proliferator activated receptor alpha (PPARA), and CCAAT/enhancer binding protein beta (CEBPB). These TFs regulate fuel production by two distinctly operating modules, each controlling a separate metabolic pathway. The gluconeogenic module operates through assisted loading, whereby GR doubles the number of sites occupied by CREB1 as well as enhances CREB1 binding intensity and increases accessibility of CREB1 binding sites. Importantly, this GR-assisted CREB1 binding was enhancer-selective and did not affect all CREB1-bound enhancers. Single-molecule tracking revealed that GR increases the number and DNA residence time of a portion of chromatin-bound CREB1 molecules. These events collectively result in rapid synergistic gene expression and higher hepatic glucose production. Conversely, the ketogenic module operates via a GR-induced TF cascade, whereby PPARA levels are increased following GR activation, facilitating gradual enhancer maturation next to PPARA target genes and delayed ketogenic gene expression. Our findings reveal a complex network of enhancers and TFs that dynamically cooperate to restore homeostasis upon fasting. PMID:28031249
Jackson, Kasey L.; Dayton, Robert D.; Deverman, Benjamin E.; Klein, Ronald L.
2016-01-01
Widespread genetic modification of cells in the central nervous system (CNS) with a viral vector has become possible and increasingly more efficient. We previously applied an AAV9 vector with the cytomegalovirus/chicken beta-actin (CBA) hybrid promoter and achieved wide-scale CNS transduction in neonatal and adult rats. However, this method transduces a variety of tissues in addition to the CNS. Thus we studied intravenous AAV9 gene transfer with a synapsin promoter to better target the neurons. We noted in systematic comparisons that the synapsin promoter drives lower level expression than does the CBA promoter. The engineered adeno-associated virus (AAV)-PHP.B serotype was compared with AAV9, and AAV-PHP.B did enhance the efficiency of expression. Combining the synapsin promoter with AAV-PHP.B could therefore be advantageous in terms of combining two refinements of targeting and efficiency. Wide-scale expression was used to model a disease with widespread pathology. Vectors encoding the amyotrophic lateral sclerosis (ALS)-related protein transactive response DNA-binding protein, 43 kDa (TDP-43) with the synapsin promoter and AAV-PHP.B were used for efficient CNS-targeted TDP-43 expression. Intracerebroventricular injections were also explored to limit TDP-43 expression to the CNS. The neuron-selective promoter and the AAV-PHP.B enhanced gene transfer and ALS disease modeling in adult rats. PMID:27867348
Jackson, Kasey L; Dayton, Robert D; Deverman, Benjamin E; Klein, Ronald L
2016-01-01
Widespread genetic modification of cells in the central nervous system (CNS) with a viral vector has become possible and increasingly more efficient. We previously applied an AAV9 vector with the cytomegalovirus/chicken beta-actin (CBA) hybrid promoter and achieved wide-scale CNS transduction in neonatal and adult rats. However, this method transduces a variety of tissues in addition to the CNS. Thus we studied intravenous AAV9 gene transfer with a synapsin promoter to better target the neurons. We noted in systematic comparisons that the synapsin promoter drives lower level expression than does the CBA promoter. The engineered adeno-associated virus (AAV)-PHP.B serotype was compared with AAV9, and AAV-PHP.B did enhance the efficiency of expression. Combining the synapsin promoter with AAV-PHP.B could therefore be advantageous in terms of combining two refinements of targeting and efficiency. Wide-scale expression was used to model a disease with widespread pathology. Vectors encoding the amyotrophic lateral sclerosis (ALS)-related protein transactive response DNA-binding protein, 43 kDa (TDP-43) with the synapsin promoter and AAV-PHP.B were used for efficient CNS-targeted TDP-43 expression. Intracerebroventricular injections were also explored to limit TDP-43 expression to the CNS. The neuron-selective promoter and the AAV-PHP.B enhanced gene transfer and ALS disease modeling in adult rats.
Neutrophils alleviate fibrosis in the CCl4-induced mouse chronic liver injury model.
Saijou, Eiko; Enomoto, Yutaka; Matsuda, Michitaka; Yuet-Yin Kok, Cindy; Akira, Shizuo; Tanaka, Minoru; Miyajima, Atsushi
2018-06-01
Tribbles pseudokinase 1 ( Trib1 ) is a negative regulator of CCAAT/enhancer binding protein α (C/EBPα) and is known to induce granulopoiesis while suppressing monocyte differentiation. Loss of Trib1 was previously shown to increase the neutrophil population in the spleen but lead to M2-like macrophage reduction. Because M2 macrophages are anti-inflammatory and promote tissue repair by producing fibrogenic factors, we investigated liver fibrosis in Trib1 -deficient mice. Interestingly, loss of Trib1 suppressed fibrosis in the CCl 4 -induced chronic liver injury model. Trib1 knockout increased neutrophils but had a minimal effect on the macrophage population in the liver. Hepatic expressions of neutrophil matrix metalloproteinases ( Mmp ) 8 and Mmp9 were increased, but the production of fibrogenic factors, including transforming growth factor β1, was not affected by loss of Trib1 . These results suggest that neutrophils are responsible for the suppression of fibrosis in Trib1 -deficient liver. Consistently, transplantation of Trib1 -deficient bone marrow cells into wild-type mice alleviated CCl 4 -induced fibrosis. Furthermore, expression of chemokine (C-X-C motif) ligand 1 ( Cxcl1 ) by adeno-associated viral vector in the normal liver recruited neutrophils and suppressed CCl 4 -induced fibrosis; infusion of wild-type neutrophils in CCl 4 -treated mice also ameliorated fibrosis. Using recombinant adeno-associated virus-mediated expression of Mmp8 and Mmp9 alleviated liver fibrosis. Finally, neutrophil depletion by infusion of Ly6G antibody significantly enhanced CCl 4 -induced fibrosis. Conclusion : While neutrophils are well known to exacerbate acute liver injury, our results demonstrate a beneficial role of neutrophils in chronic liver injury by promoting fibrolysis. ( Hepatology Communications 2018;2:703-717).
Neutrophils alleviate fibrosis in the CCl4‐induced mouse chronic liver injury model
Saijou, Eiko; Enomoto, Yutaka; Matsuda, Michitaka; Yuet‐Yin Kok, Cindy; Akira, Shizuo; Tanaka, Minoru
2018-01-01
Tribbles pseudokinase 1 (Trib1) is a negative regulator of CCAAT/enhancer binding protein α (C/EBPα) and is known to induce granulopoiesis while suppressing monocyte differentiation. Loss of Trib1 was previously shown to increase the neutrophil population in the spleen but lead to M2‐like macrophage reduction. Because M2 macrophages are anti‐inflammatory and promote tissue repair by producing fibrogenic factors, we investigated liver fibrosis in Trib1‐deficient mice. Interestingly, loss of Trib1 suppressed fibrosis in the CCl4‐induced chronic liver injury model. Trib1 knockout increased neutrophils but had a minimal effect on the macrophage population in the liver. Hepatic expressions of neutrophil matrix metalloproteinases (Mmp)8 and Mmp9 were increased, but the production of fibrogenic factors, including transforming growth factor β1, was not affected by loss of Trib1. These results suggest that neutrophils are responsible for the suppression of fibrosis in Trib1‐deficient liver. Consistently, transplantation of Trib1‐deficient bone marrow cells into wild‐type mice alleviated CCl4‐induced fibrosis. Furthermore, expression of chemokine (C‐X‐C motif) ligand 1 (Cxcl1) by adeno‐associated viral vector in the normal liver recruited neutrophils and suppressed CCl4‐induced fibrosis; infusion of wild‐type neutrophils in CCl4‐treated mice also ameliorated fibrosis. Using recombinant adeno‐associated virus‐mediated expression of Mmp8 and Mmp9 alleviated liver fibrosis. Finally, neutrophil depletion by infusion of Ly6G antibody significantly enhanced CCl4‐induced fibrosis. Conclusion: While neutrophils are well known to exacerbate acute liver injury, our results demonstrate a beneficial role of neutrophils in chronic liver injury by promoting fibrolysis. (Hepatology Communications 2018;2:703‐717) PMID:29881822
The sheep growth hormone gene polymorphism and its effects on milk traits.
Dettori, Maria Luisa; Pazzola, Michele; Pira, Emanuela; Paschino, Pietro; Vacca, Giuseppe Massimo
2015-05-01
Growth hormone (GH) is encoded by the GH gene, which may be single copy or duplicate in sheep. The two copies of the sheep GH gene (GH1/GH2-N and GH2-Z) were entirely sequenced in one 106 ewes of Sarda breed, in order to highlight sequence polymorphisms and investigate possible association between genetic variants and milk traits. Milk traits included milk yield, fat, protein, casein and lactose percentage. We evidenced 75 nucleotide changes. Transcription factor binding site prediction revealed two sequences potentially recognised by the pituitary-specific transcription factor POU1FI at the GH1/GH2-N gene, which were lost at the promoter of GH2-Z, which might explain the different tissues of expression of GH1/GH2-N (pituitary) and GH2-Z (placenta). Significant differences in milk traits were observed among genotypes at polymorphic loci only for the GH2-Z gene. Sheep with homozygote genotype ss748770547 CC had higher fat percentage (P < 0.01) than TT. SNP ss748770547 was part of a potential transcription factor binding site for C/EBP alpha (CCAAT/Enhancer Binding Protein), which is involved in the regulation of adipogenesis and adipoblast differentiation. SNP ss748770547, located in the GH2-Z gene 5' flanking region, may be a causal mutation affecting milk fat content. These findings might contribute to the knowledge of the sheep GH locus and might be useful in selection processes in sheep.
ERIC Educational Resources Information Center
Ayres, Cynthia; Mahat, Ganga; Atkins, Robert
2013-01-01
Objective: To examine variables influencing the positive health practices (PHP) of Filipino college students to gain a better understanding of health practices in this ethnic/racial group. Cross-sectional study tested theoretical relationships postulated among (a) PHP, (b) social support (SS), (c) optimism, and (d) acculturation. Participants: A…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goupille, Olivier; Penglong, Tipparat; Thalassemia Research Center, Mahidol University
The bromodomain and extraterminal (BET) domain family proteins are epigenetic modulators involved in the reading of acetylated lysine residues. The first BET protein inhibitor to be identified, (+)-JQ1, a thienotriazolo-1, 4-diazapine, binds selectively to the acetyl lysine-binding pocket of BET proteins. We evaluated the impact on adipogenesis of this druggable targeting of chromatin epigenetic readers, by investigating the physiological consequences of epigenetic modifications through targeting proteins binding to chromatin. JQ1 significantly inhibited the differentiation of 3T3-L1 preadipocytes into white and brown adipocytes by down-regulating the expression of genes involved in adipogenesis, particularly those encoding the peroxisome proliferator-activated receptor (PPAR-γ), themore » CCAAT/enhancer-binding protein (C/EBPα) and, STAT5A and B. The expression of a constitutively activated STAT5B mutant did not prevent inhibition by JQ1. Thus, the association of BET/STAT5 is required for adipogenesis but STAT5 transcription activity is not the only target of JQ1. Treatment with JQ1 did not lead to the conversion of white adipose tissue into brown adipose tissue (BAT). BET protein inhibition thus interferes with generation of adipose tissue from progenitors, confirming the importance of the connections between epigenetic mechanisms and specific adipogenic transcription factors. - Highlights: • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into white adipocytes. • JQ1 affected clonal cell expansion and abolished lipid accumulation. • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into brown adipocytes. • JQ1 treatment did not lead to the conversion of white adipose tissue into brown adipose tissue. • JQ1 decreased STAT5 expression, but STAT5B{sup ca} expression did not restore adipogenesis.« less
Delgado-Lista, J; Perez-Martinez, P; Garcia-Rios, A; Phillips, C M; Hall, W; Gjelstad, I M F; Lairon, D; Saris, W; Kieć-Wilk, B; Karlström, B; Drevon, C A; Defoort, C; Blaak, E E; Dembinska-Kieć, A; Risérus, U; Lovegrove, J A; Roche, H M; Lopez-Miranda, J
2013-05-01
CCAAT/enhancer-binding protein alpha (CEBPA) is a transcription factor involved in adipogenesis and energy homeostasis. Caloric restriction reduces CEBPA protein expression in patients with metabolic syndrome (MetS). A previous report linked rs12691 SNP in CEBPA to altered concentration of fasting triglycerides. Our objective was to assess the effects of rs12691 in glucose metabolism in Metabolic Syndrome (MetS) patients. Glucose metabolism was assessed by static (glucose, insulin, adiponectin, leptin and resistin plasma concentrations) and dynamic (disposition index, insulin sensitivity index, HOMA-IR and acute insulin response to glucose) indices, performed at baseline and after 12 weeks of 4 dietary interventions (high saturated fatty acid (SFA), high monounsaturated fatty acid (MUFA), low-fat and low-fat-high-n3 polyunsaturated fatty acid (PUFA)) in 486 subjects with MetS. Carriers of the minor A allele of rs12691 had altered disposition index (p = 0.0003), lower acute insulin response (p = 0.005) and a lower insulin sensitivity index (p = 0.025) indicating a lower insulin sensitivity and a lower insulin secretion, at baseline and at the end of the diets. Furthermore, A allele carriers displayed lower HDL concentration. The presence of the A allele of rs12691 influences glucose metabolism of MetS patients. Copyright © 2011 Elsevier B.V. All rights reserved.
Elli, Francesca M; de Sanctis, Luisa; Bollati, Valentina; Tarantini, Letizia; Filopanti, Marcello; Barbieri, Anna Maria; Peverelli, Erika; Beck-Peccoz, Paolo; Spada, Anna; Mantovani, Giovanna
2014-03-01
Pseudohypoparathyroidism type I (PHP-I) includes two main subtypes, PHP-Ia and -Ib. About 70% of PHP-Ia patients, who show Albright hereditary osteodystrophy (AHO) associated with resistance toward multiple hormones (PTH/TSH/GHRH/gonadotropins), carry heterozygous mutations in the α-subunit of the stimulatory G protein (Gsα) exons 1-13, encoded by the guanine nucleotide binding-protein α-stimulating activity polypeptide 1 (GNAS), whereas the majority of PHP-Ib patients, who classically display hormone resistance limited to PTH and TSH with no AHO sign, have methylation defects in the imprinted GNAS cluster. Recently methylation defects have been detected also in patients with PHP and different degrees of AHO, indicating a molecular overlap between the two forms. The objectives of the study were to collect patients with the following characteristics: clinical PHP-I (with or without AHO), no mutation in Gsα coding sequence, but the presence of GNAS methylation alterations and to investigate the existence of correlations between the degree of the epigenetic defect and the severity of the disease. We quantified GNAS methylation alterations by both PCR-pyrosequencing and methylation specific-multiplex ligation-dependent probe amplification assay in genomic DNA from 63 patients with PHP-I and correlated these findings with clinical parameters (age at diagnosis; calcium, phosphorus, PTH, TSH levels; presence or absence of each AHO sign). By both approaches, the degree of the imprinting defect did not correlate with the onset of the disease, the severity of endocrine resistances, or with the presence/absence of specific AHO signs. Similar molecular alterations may lead to a broad spectrum of diseases, from isolated PTH resistance to complete PHP-Ia, and the degree of methylation alterations does not reflect or anticipate the severity and the type of different PHP/AHO manifestations.
2016-10-01
DISTRIBUTION STATEMENT: Approved for public release; distribution unlimited The views, opinions and/or findings contained in this report are those of...1. Introduction: Central to the survival of prostate cancer (PCa) are the androgen receptor ( AR ) and phosphatidylinositol-3 kinase (PI3K)-AKT...and tensin homolog (PTEN). AR gene amplification is also frequently observed in hormone refractory prostate cancer (HRPC). Combined blockade of PI3K
Malu, Krishnakumar; Garhwal, Rahul; Pelletier, Margery G. H.; Gotur, Deepali; Halene, Stephanie; Zwerger, Monika; Yang, Zhong-Fa; Rosmarin, Alan G.; Gaines, Peter
2016-01-01
Nuclear segmentation is a hallmark feature of mammalian neutrophil differentiation, but the mechanisms that control this process are poorly understood. Gene expression in maturing neutrophils requires combinatorial actions of lineage-restricted and more widely expressed transcriptional regulators. Examples include interactions of the widely expressed ETS transcription factor, GA-binding protein (GABP), with the relatively lineage-restricted ETS factor, PU.1, and with CCAAT enhancer binding proteins, C/EBPα and C/EBPε. Whether such cooperative interactions between these transcription factors also regulate the expression of genes encoding proteins that control nuclear segmentation is unclear. We investigated the roles of ETS and C/EBP family transcription factors in regulating the gene encoding the lamin B receptor (LBR), an inner nuclear membrane protein whose expression is required for neutrophil nuclear segmentation. Although C/EBPε was previously shown to bind the Lbr promoter, surprisingly, we found that neutrophils derived from Cebpe null mice exhibited normal Lbr gene and protein expression. Instead, GABP provided transcriptional activation through the Lbr promoter in the absence of C/EBPε, and activities supported by GABP were greatly enhanced by either C/EBPε or PU.1. Both GABP and PU.1 bound Ets sites in the Lbr promoter in vitro, and in vivo within both early myeloid progenitors and differentiating neutrophils. These findings demonstrate that GABP, PU.1, and C/EBPε cooperate to control transcription of the gene encoding LBR, a nuclear envelope protein that is required for the characteristic lobulated morphology of mature neutrophils. PMID:27342846
Dey, Souvik; Savant, Sudha; Teske, Brian F.; Hatzoglou, Maria; Calkhoven, Cornelis F.; Wek, Ronald C.
2012-01-01
Different environmental stresses induce the phosphorylation of eIF2 (eIF2∼P), repressing global protein synthesis coincident with preferential translation of ATF4. ATF4 is a transcriptional activator of genes involved in metabolism and nutrient uptake, antioxidation, and regulation of apoptosis. Because ATF4 is a common downstream target that integrates signaling from different eIF2 kinases and their respective stress signals, the eIF2∼P/ATF4 pathway is collectively referred to as the integrated stress response. Although eIF2∼P elicits translational control in response to many different stresses, there are selected stresses, such as exposure to UV irradiation, that do not increase ATF4 expression despite robust eIF2∼P. The rationale for this discordant induction of ATF4 expression and eIF2∼P in response to UV irradiation is that transcription of ATF4 is repressed, and therefore ATF4 mRNA is not available for preferential translation. In this study, we show that C/EBPβ is a transcriptional repressor of ATF4 during UV stress. C/EBPβ binds to critical elements in the ATF4 promoter, resulting in its transcriptional repression. Expression of C/EBPβ increases in response to UV stress, and the liver-enriched inhibitory protein (LIP) isoform of C/EBPβ, but not the liver-enriched activating protein (LAP) version, represses ATF4 transcription. Loss of the liver-enriched inhibitory protein isoform results in increased ATF4 mRNA levels in response to UV irradiation and subsequent recovery of ATF4 translation, leading to enhanced expression of its target genes. Together these results illustrate how eIF2∼P and translational control combined with transcription factors regulated by alternative signaling pathways can direct programs of gene expression that are specifically tailored to each environmental stress. PMID:22556424
firestar--advances in the prediction of functionally important residues.
Lopez, Gonzalo; Maietta, Paolo; Rodriguez, Jose Manuel; Valencia, Alfonso; Tress, Michael L
2011-07-01
firestar is a server for predicting catalytic and ligand-binding residues in protein sequences. Here, we present the important developments since the first release of firestar. Previous versions of the server required human interpretation of the results; the server is now fully automatized. firestar has been implemented as a web service and can now be run in high-throughput mode. Prediction coverage has been greatly improved with the extension of the FireDB database and the addition of alignments generated by HHsearch. Ligands in FireDB are now classified for biological relevance. Many of the changes have been motivated by the critical assessment of techniques for protein structure prediction (CASP) ligand-binding prediction experiment, which provided us with a framework to test the performance of firestar. URL: http://firedb.bioinfo.cnio.es/Php/FireStar.php.
firestar—advances in the prediction of functionally important residues
Lopez, Gonzalo; Maietta, Paolo; Rodriguez, Jose Manuel; Valencia, Alfonso; Tress, Michael L.
2011-01-01
firestar is a server for predicting catalytic and ligand-binding residues in protein sequences. Here, we present the important developments since the first release of firestar. Previous versions of the server required human interpretation of the results; the server is now fully automatized. firestar has been implemented as a web service and can now be run in high-throughput mode. Prediction coverage has been greatly improved with the extension of the FireDB database and the addition of alignments generated by HHsearch. Ligands in FireDB are now classified for biological relevance. Many of the changes have been motivated by the critical assessment of techniques for protein structure prediction (CASP) ligand-binding prediction experiment, which provided us with a framework to test the performance of firestar. URL: http://firedb.bioinfo.cnio.es/Php/FireStar.php. PMID:21672959
Endoplasmic reticulum stress as a novel mechanism in amiodarone-induced destructive thyroiditis.
Lombardi, Angela; Inabnet, William Barlow; Owen, Randall; Farenholtz, Kaitlyn Ellen; Tomer, Yaron
2015-01-01
Amiodarone (AMIO) is one of the most effective antiarrhythmic drugs available; however, its use is limited by a serious side effect profile, including thyroiditis. The mechanisms underlying AMIO thyroid toxicity have been elusive; thus, identification of novel approaches in order to prevent thyroiditis is essential in patients treated with AMIO. Our aim was to evaluate whether AMIO treatment could induce endoplasmic reticulum (ER) stress in human thyroid cells and the possible implications of this effect in AMIO-induced destructive thyroiditis. Here we report that AMIO, but not iodine, significantly induced the expression of ER stress markers including Ig heavy chain-binding protein (BiP), phosphoeukaryotic translation initiation factor 2α (eIF2α), CCAAT/enhancer-binding protein homologous protein (CHOP) and spliced X-box binding protein-1 (XBP-1) in human thyroid ML-1 cells and human primary thyrocytes. In both experimental systems AMIO down-regulated thyroglobulin (Tg) protein but had little effect on Tg mRNA levels, suggesting a mechanism involving Tg protein degradation. Indeed, pretreatment with the specific proteasome inhibitor MG132 reversed AMIO-induced down-regulation of Tg protein levels, confirming a proteasome-dependent degradation of Tg protein. Corroborating our findings, pretreatment of ML-1 cells and human primary thyrocytes with the chemical chaperone 4-phenylbutyric acid completely prevented the effect of AMIO on both ER stress induction and Tg down-regulation. We identified ER stress as a novel mechanism contributing to AMIO-induced destructive thyroiditis. Our data establish that AMIO-induced ER stress impairs Tg expression via proteasome activation, providing a valuable therapeutic avenue for the treatment of AMIO-induced destructive thyroiditis.
Turan, Serap
2017-01-01
Disorders related to parathyroid hormone (PTH) resistance and PTH signaling pathway impairment are historically classified under the term of pseudohypoparathyroidism (PHP). The disease was first described and named by Fuller Albright and colleagues in 1942. Albright hereditary osteodystrophy (AHO) is described as an associated clinical entity with PHP, characterized by brachydactyly, subcutaneous ossifications, round face, short stature and a stocky build. The classification of PHP is further divided into PHP-Ia, pseudo-PHP (pPHP), PHP-Ib, PHP-Ic and PHP-II according to the presence or absence of AHO, together with an in vivo response to exogenous PTH and the measurement of Gsα protein activity in peripheral erythrocyte membranes in vitro. However, PHP classification fails to differentiate all patients with different clinical and molecular findings for PHP subtypes and classification become more complicated with more recent molecular characterization and new forms having been identified. So far, new classifications have been established by the EuroPHP network to cover all disorders of the PTH receptor and its signaling pathway. Inactivating PTH/PTH-related protein signaling disorder (iPPSD) is the new name proposed for a group of these disorders and which can be further divided into subtypes - iPPSD1 to iPPSD6. These are termed, starting from PTH receptor inactivation mutation (Eiken and Blomstrand dysplasia) as iPPSD1, inactivating Gsα mutations (PHP-Ia, PHP-Ic and pPHP) as iPPSD2, loss of methylation of GNAS DMRs (PHP-Ib) as iPPSD3, PRKAR1A mutations (acrodysostosis type 1) as iPPSD4, PDE4D mutations (acrodysostosis type 2) as iPPSD5 and PDE3A mutations (autosomal dominant hypertension with brachydactyly) as iPPSD6. iPPSDx is reserved for unknown molecular defects and iPPSDn+1 for new molecular defects which are yet to be described. With these new classifications, the aim is to clarify the borders of each different subtype of disease and make the classification according to molecular pathology. The iPPSD group is designed to be expandable and new classifications will readily fit into it as necessary. PMID:29280743
Turan, Serap
2017-12-30
Disorders related to parathyroid hormone (PTH) resistance and PTH signaling pathway impairment are historically classified under the term of pseudohypoparathyroidism (PHP). The disease was first described and named by Fuller Albright and colleagues in 1942. Albright hereditary osteodystrophy (AHO) is described as an associated clinical entity with PHP, characterized by brachydactyly, subcutaneous ossifications, round face, short stature and a stocky build. The classification of PHP is further divided into PHP-Ia, pseudo-PHP (pPHP), PHP-Ib, PHP-Ic and PHP-II according to the presence or absence of AHO, together with an in vivo response to exogenous PTH and the measurement of Gsα protein activity in peripheral erythrocyte membranes in vitro. However, PHP classification fails to differentiate all patients with different clinical and molecular findings for PHP subtypes and classification become more complicated with more recent molecular characterization and new forms having been identified. So far, new classifications have been established by the EuroPHP network to cover all disorders of the PTH receptor and its signaling pathway. Inactivating PTH/PTH-related protein signaling disorder (iPPSD) is the new name proposed for a group of these disorders and which can be further divided into subtypes - iPPSD1 to iPPSD6. These are termed, starting from PTH receptor inactivation mutation (Eiken and Blomstrand dysplasia) as iPPSD1, inactivating Gsα mutations (PHP-Ia, PHP-Ic and pPHP) as iPPSD2, loss of methylation of GNAS DMRs (PHP-Ib) as iPPSD3, PRKAR1A mutations (acrodysostosis type 1) as iPPSD4, PDE4D mutations (acrodysostosis type 2) as iPPSD5 and PDE3A mutations (autosomal dominant hypertension with brachydactyly) as iPPSD6. iPPSDx is reserved for unknown molecular defects and iPPSDn+1 for new molecular defects which are yet to be described. With these new classifications, the aim is to clarify the borders of each different subtype of disease and make the classification according to molecular pathology. The iPPSD group is designed to be expandable and new classifications will readily fit into it as necessary.
Wu, Man-Ru; Hou, Ming-Hon; Lin, Ya-Lin; Kuo, Chia-Feng
2012-07-25
Obesity is a global health problem. Because of the high costs and side effects of obesity-treatment drugs, the potential of natural products as alternatives for treating obesity is under exploration. 2,4,5-Trimethoxybenzaldehyde (2,4,5-TMBA) present in plant roots, seeds, and leaves was reported to be a significant inhibitor of cyclooxygenase-2 (COX-2) activity at the concentration of 100 μg/mL. Because COX-2 is associated with differentiation of preadipocytes, the murine 3T3-L1 cells were cultured with 100 μg/mL of 2,4,5-TMBA during differentiation and after the cells were fully differentiated to study the effect of 2,4,5-TMBA on adipogenesis and lipolysis. Oil Red O staining and triglyceride assay revealed that 2,4,5-TMBA inhibited the formation of lipid droplets during differentiation; moreover, 2,4,5-TMBA down-regulated the protein levels of adipogenic signaling molecules and transcription factors MAP kinase kinase (MEK), extracellular signal-regulated kinase (ERK), CCAAT/enhancer binding protein (C/EBP)α, β, and δ, peroxisome proliferator-activated receptor (PPAR)γ, adipocyte determination and differentiation-dependent factor 1 (ADD1), and the rate-limiting enzyme for lipid synthesis acetyl-CoA carboxylase (ACC). In fully differentiated adipocytes, treatment with 2,4,5-TMBA for 72 h significantly decreased lipid accumulation by increasing the hydrolysis of triglyceride through suppression of perilipin A (lipid droplet coating protein) and up-regulation of hormone-sensitive lipase (HSL). The results of this in vitro study will pioneer future in vivo studies on antiobesity effects of 2,4,5-TMBA and selective COX-2 inhibitors.
Yamamoto, Hideaki; Tonello, Jane Marie; Sambuichi, Takanori; Kawabe, Yoshinori; Ito, Akira; Kamihira, Masamichi
2018-01-01
New cell sources for the research and therapy of organ failure could significantly alleviate the shortage of donor livers that are available to patients who suffer from liver disease. Liver carcinoma derived cells, or hepatoma cells, are the ideal cells for developing bioartificial liver systems. Such cancerous liver cells are easy to prepare in large quantities and can be maintained over long periods under standard culture conditions, unlike primary hepatocytes. However, hepatoma cells possess only a fraction of the functions of primary hepatocytes. In a previous study, by transducing cells with liver-enriched transcription factors that could be inducibly overexpressed-hepatocyte nuclear factor (HNF)1α, HNF1β, HNF3β [FOXA2], HNF4α, HNF6, CCAAT/enhancer binding protein (C/EBP)α, C/EBPβ and C/EBPγ-we created mouse hepatoma cells with high liver-specific gene expression called the Hepa/8F5 cell line. In the present study, we performed functional and genetic analyses to characterize the Hepa/8F5 cell line. Further, in three-dimensional cultures, the function of these cells improved significantly compared to parental cells. Ultimately, these cells might become a new resource that can be used in basic and applied hepatic research. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Baños, Benito; Lázaro, José M; Villar, Laurentino; Salas, Margarita; de Vega, Miguel
2008-10-01
Bacillus subtilis gene yshC encodes a family X DNA polymerase (PolX(Bs)), whose biochemical features suggest that it plays a role during DNA repair processes. Here, we show that, in addition to the polymerization activity, PolX(Bs) possesses an intrinsic 3'-5' exonuclease activity specialized in resecting unannealed 3'-termini in a gapped DNA substrate. Biochemical analysis of a PolX(Bs) deletion mutant lacking the C-terminal polymerase histidinol phosphatase (PHP) domain, present in most of the bacterial/archaeal PolXs, as well as of this separately expressed protein region, allow us to state that the 3'-5' exonuclease activity of PolX(Bs) resides in its PHP domain. Furthermore, site-directed mutagenesis of PolX(Bs) His339 and His341 residues, evolutionary conserved in the PHP superfamily members, demonstrated that the predicted metal binding site is directly involved in catalysis of the exonucleolytic reaction. The implications of the unannealed 3'-termini resection by the 3'-5' exonuclease activity of PolX(Bs) in the DNA repair context are discussed.
Nobiletin enhances differentiation and lipolysis of 3T3-L1 adipocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, Takeshi; Abe, Daigo; Sekiya, Keizo
2007-06-01
Nobiletin is a polymethoxylated flavone found in certain citrus fruits. Here we demonstrate that nobiletin enhance differentiation of 3T3-L1 preadipocytes. Nobiletin dose-dependently increased accumulation of lipid droplets in adipocytes. Quantitative RT-PCR analyses indicated that nobiletin increased the expression of genes critical for acquisition of the adipocyte phenotype. Some of them were known peroxisome proliferator activated receptor {gamma} (PPAR{gamma}) targets and PPAR{gamma} itself, however, nobiletin did not exhibit PPAR{gamma} ligand activity. We observed the expression of CCAAT/enhancer binding protein {beta} (C/EBP{beta}), a transcription factor for PPAR{gamma}, was increased by nobiletin. The activation of cAMP-responsive element binding protein (CREB) and extracellular signal-regulatedmore » kinase (ERK), which play important roles in C/EBP{beta} expression were also potentiated by nobiletin. Furthermore, nobiletin stimulated lipolysis in differentiated adipocytes, which is known to be stimulated by cAMP pathway. These results suggested that nobiletin enhanced both differentiation and lipolysis of adipocyte through activation of signaling cascades mediated by cAMP/CREB.« less
Aspartame downregulates 3T3-L1 differentiation.
Pandurangan, Muthuraman; Park, Jeongeun; Kim, Eunjung
2014-10-01
Aspartame is an artificial sweetener used as an alternate for sugar in several foods and beverages. Since aspartame is 200 times sweeter than traditional sugar, it can give the same level of sweetness with less substance, which leads to lower-calorie food intake. There are reports that consumption of aspartame-containing products can help obese people lose weight. However, the potential role of aspartame in obesity is not clear. The present study investigated whether aspartame suppresses 3T3-L1 differentiation, by downregulating phosphorylated peroxisome proliferator-activated receptor γ (p-PPARγ), peroxisome proliferator-activated receptor γ (PPARγ), fatty acid-binding protein 4 (FABP4), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1), which are critical for adipogenesis. The 3T3-L1 adipocytes were cultured and differentiated for 6 d in the absence and presence of 10 μg/ml of aspartame. Aspartame reduced lipid accumulation in differentiated adipocytes as evidenced by Oil Red O staining. qRT-PCR analysis showed that the PPARγ, FABP4, and C/EBPα mRNA expression was significantly reduced in the aspartame-treated adipocytes. Western blot analysis showed that the induction of p-PPARγ, PPARγ, SREBP1, and adipsin was markedly reduced in the aspartame-treated adipocytes. Taken together, these data suggest that aspartame may be a potent substance to alter adipocyte differentiation and control obesity.
Jung, Eunsun; Cho, Jae Youl; Park, Deokhoon; Kim, Min Hee; Park, Beomseok; Lee, Sang Yeol; Lee, Jongsung
2015-02-01
Skin aging appears to be principally attributed to a decrease in type I collagen level and the regeneration ability of dermal fibroblasts. We hypothesized that vegetable peptones promote cell proliferation and production of type I collagen in human dermal fibroblasts. Therefore, we investigated the effects of vegetable peptones on cell proliferation and type I collagen production and their possible mechanisms in human dermal fibroblasts. Vegetable peptones significantly promoted cell proliferation in a concentration-dependent manner. In addition, the human luciferase type I collagen α2 promoter and type I procollagen synthesis assays showed that the vegetable peptones induced type I procollagen production by activating the type I collagen α2 promoter. Moreover, the vegetable peptones activated p90 ribosomal s6 kinase, which was mediated by activating the Raf-p44/42 mitogen-activated protein kinase signaling pathway. Furthermore, the vegetable peptone-induced increase in cell proliferation and type I collagen production decreased upon treatment with the ERK inhibitor PD98059. Taken together, these findings suggest that increased proliferation of human dermal fibroblasts and enhanced production of type I collagen by vegetable peptones occur primarily by inducing the p90 ribosomal s6 kinase-CCAAT/enhancer binding protein β phosphorylation pathway, which is mediated by activating Raf-ERK signaling. Copyright © 2015 Elsevier Inc. All rights reserved.
6-gingerol inhibits rosiglitazone-induced adipogenesis in 3T3-L1 adipocytes.
Tzeng, Thing-Fong; Chang, Chia Ju; Liu, I-Min
2014-02-01
We investigated the effects of 6-gingerol ((S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone) on the inhibition of rosiglitazone (RGZ)-induced adipogenesis in 3T3-L1 cells. The morphological changes were photographed based on staining lipid accumulation by Oil-Red O in RGZ (1 µmol/l)-treated 3T3-L1 cells without or with various concentrations of 6-gingerol on differentiation day 8. Quantitation of triglycerides content was performed in cells on day 8 after differentiation induction. Differentiated cells were lysed to detect mRNA and protein levels of adipocyte-specific transcription factors by real-time reverse transcription-polymerase chain reaction and Western blot analysis, respectively. 6-gingerol (50 µmol/l) effectively suppressed oil droplet accumulation and reduced the sizes of the droplets in RGZ-induced adipocyte differentiation in 3T3-L1 cells. The triglyceride accumulation induced by RGZ in differentiated 3T3-L1 cells was also reduced by 6-gingerol (50 µmol/l). Treatment of differentiated 3T3-L1 cells with 6-gingerol (50 µmol/l) antagonized RGZ-induced gene expression of peroxisome proliferator-activated receptor (PPAR)γ and CCAAT/enhancer-binding protein α. Additionally, the increased levels of mRNA and protein in adipocyte-specific fatty acid binding protein 4 and fatty acid synthase induced by RGZ in 3T3-L1 cells were decreased upon treatment with 6-gingerol. Our data suggests that 6-gingerol may be beneficial in obesity, by reducing adipogenesis partly through the down-regulating PPARγ activity. Copyright © 2013 John Wiley & Sons, Ltd.
Zou, Yunzeng; Lin, Li; Ye, Yong; Wei, Jianming; Zhou, Ning; Liang, Yanyan; Gong, Hui; Li, Lei; Wu, Jian; Li, Yunbo; Jia, Zhenhua; Wu, Yiling; Zhou, Jingmin; Ge, Junbo
2012-03-01
Qiliqiangxin (QL), a traditional Chinese medicine, has been used in the treatment of chronic heart failure. However, whether QL can benefit cardiac remodeling in the hypertensive state is unknown. We here examined the effects of QL on the development of cardiac hypertrophy through comparing those of losartan in C57BL/6 mice underlying transverse aorta constriction for 4 weeks. QL and losartan were administrated at 0.6 mg and 13.4 mg·kg·d, respectively. Cardiac hypertrophy, function, and remodeling were evaluated by echocardiography, catheterization, histology, and examination of specific gene expression and ERK phosphorylation. Cardiac apoptosis, autophagy, tumor necrosis factor α/insulin-like growth factor-1, and angiotensin II type 1 receptor expression and especially the proliferation of cardiomyocytes and phosphorylation of ErbB receptors were examined in vivo to elucidate the mechanisms. Transverse aorta constriction for 2 weeks resulted in a significant cardiac hypertrophy, which was significantly suppressed by either QL or losartan treatment. At 4 weeks after transverse aorta constriction, although the development of cardiac dysfunction and remodeling and the increases in apoptosis, autophagy, tumor necrosis factor α/insulin-like growth factor-1, and angiotensin II type 1 receptor expression were abrogated comparably between QL and losartan treatments, QL, but not losartan, enhanced proliferation of cardiomyocytes, which was paralleled with dowregulation of CCAAT/enhancer-binding protein β, upregulation of CBP/p300-interacting transactivator with ED-rich carboxy-terminal domain 4, and increases in ErbB2 and ErbB4 phosphorylation. Furthermore, inhibition of either ErbB2 or CBP/p300-interacting transactivator with ED-rich carboxy-terminal domain 4 abolished the cardiac protective effects of QL. Thus, QL inhibits myocardial inflammation and cardiomyocyte death and promotes cardiomyocyte proliferation, leading to an ameliorated cardiac remodeling and function in a mouse model of pressure overload. The possible mechanisms may involve inhibition of angiotensin II type 1 receptor and activation of ErbB receptors.
Regulation of eIF2α phosphorylation in hindlimb-unloaded and STS-135 space-flown mice
NASA Astrophysics Data System (ADS)
Zhao, Liming; Tanjung, Nancy; Swarnkar, Gaurav; Ledet, Eric; Yokota, Hiroki
2012-09-01
Various environmental stresses elevate the phosphorylation level of eukaryotic translation initiation factor 2 alpha (eIF2α) and induce transcriptional activation of a set of stress responsive genes such as activating transcription factors 3 and 6 (ATF3 and ATF6), CCAAT/enhancer-binding protein homologous protein (CHOP), and Xbp1 (X-box binding protein 1). These stress sources include radiation, oxidation, and stress to the endoplasmic reticulum, and it is recently reported that unloading by hindlimb unloading is such a stress source. No studies, however, have examined the phosphorylation level of eIF2α (eIF2α-p) using skeletal samples that have experienced microgravity in space. In this study we addressed a question: Does a mouse tibia flown in space show altered levels of eIF2α-p? To address this question, we obtained STS-135 flown samples that were harvested 4-7 h after landing. The tibia and femur isolated from hindlimb unloaded mice were employed as non-flight controls. The effects of loading were also investigated in non- flight controls. Results indicate that the level of eIF2α-p of the non-flight controls was elevated during hindlimb unloading and reduced after being released from unloading. Second, the eIF2α-p level of space-flown samples was decreased, and mechanical loading to the tibia caused the reduction of the eIF2α-p level. Third, the mRNA levels of ATF3, ATF6, and CHOP were lowered in space-flown samples as well as in the non-flight samples 4-7 h after being released from unloading. Collectively, the results herein indicated that a release from hindlimb unloading and a return to normal weight environment from space provided a suppressive effect to eIF2α-linked stress responses and that a period of 2-4 h is sufficient to induce this suppressive outcome.
Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response.
Goldstein, Ido; Baek, Songjoon; Presman, Diego M; Paakinaho, Ville; Swinstead, Erin E; Hager, Gordon L
2017-03-01
Fasting elicits transcriptional programs in hepatocytes leading to glucose and ketone production. This transcriptional program is regulated by many transcription factors (TFs). To understand how this complex network regulates the metabolic response to fasting, we aimed at isolating the enhancers and TFs dictating it. Measuring chromatin accessibility revealed that fasting massively reorganizes liver chromatin, exposing numerous fasting-induced enhancers. By utilizing computational methods in combination with dissecting enhancer features and TF cistromes, we implicated four key TFs regulating the fasting response: glucocorticoid receptor (GR), cAMP responsive element binding protein 1 (CREB1), peroxisome proliferator activated receptor alpha (PPARA), and CCAAT/enhancer binding protein beta (CEBPB). These TFs regulate fuel production by two distinctly operating modules, each controlling a separate metabolic pathway. The gluconeogenic module operates through assisted loading, whereby GR doubles the number of sites occupied by CREB1 as well as enhances CREB1 binding intensity and increases accessibility of CREB1 binding sites. Importantly, this GR-assisted CREB1 binding was enhancer-selective and did not affect all CREB1-bound enhancers. Single-molecule tracking revealed that GR increases the number and DNA residence time of a portion of chromatin-bound CREB1 molecules. These events collectively result in rapid synergistic gene expression and higher hepatic glucose production. Conversely, the ketogenic module operates via a GR-induced TF cascade, whereby PPARA levels are increased following GR activation, facilitating gradual enhancer maturation next to PPARA target genes and delayed ketogenic gene expression. Our findings reveal a complex network of enhancers and TFs that dynamically cooperate to restore homeostasis upon fasting. Published by Cold Spring Harbor Laboratory Press.
DefEX: Hands-On Cyber Defense Exercise for Undergraduate Students
2011-07-01
Injection, and 4) File Upload. Next, the students patched the associated flawed Perl and PHP Hypertext Preprocessor ( PHP ) code. Finally, students...underlying script. The Zora XSS vulnerability existed in a PHP file that echoed unfiltered user input back to the screen. To eliminate the...vulnerability, students filtered the input using the PHP htmlentities function and retested the code. The htmlentities function translates certain ambiguous
Wang, Shasha; Zhang, Yang; Xu, Qi; Yuan, Xiaoya; Dai, Wangcheng; Shen, Xiaokun; Wang, Zhixiu; Chang, Guobin; Wang, Zhiquan; Chen, Guohong
2018-01-01
Meat quality is closely related to adipose tissues in ducks, and adipogenesis is controlled by a complex network of transcription factors tightly acting at different stages of differentiation especially in ducks. The aim of this study was to establish the preadipocyte in vitro culture system and understand the biological characteristics of expansion of duck adipocyte tissue at the cellular and molecular level. We isolated pre-adipocytes from the subcutaneous fat of three breeds of duck and differentiated them into mature adipocytes using a mixture of insulin, rosiglitazone, dexamethasone, 3-isobutyl-1-methylxanthine, and oleic acid over 0,2, 4, 6, and 8 days. Successful differentiation was confirmed from the development of lipid droplets and their response to Oil Red O, and increasing numbers of lipid droplets were stained red over time. The expression of key marker genes, including peroxisome proliferator activated receptor γ (PPARγ), CCAAT/enhancer binding protein-α (C/EBPα), adipocyte fatty acid binding protein 4 (FABP4), and fatty acid synthetase (FAS), gradually increased during pre-adipocyte differentiation. Furthermore, it was verified by interference experiments that the knockdown of PPARγ directly reduced lipid production. Meanwhile we analyzed the role of unsaturated fatty acids in the production of poultry fat using different concentrations of oleic acid and found that lipid droplet deposition was highest when the concentration of oleic acid was 300 μM. We also compared the level of differentiated pre-adipocytes that were isolated from Jianchang ducks (fatty-meat duck), Cherry Valley ducks (lean-meat duck) and White-crested ducks (egg-producing duck). The proliferation and differentiation rate of pre-adipocytes derived from Jianchang ducks was higher than that of White-crested ducks. These results provide the foundation for further research into waterfowl adipogenesis.
Wu, Kaikai; Jia, Zhiying; Wang, Qi'ai; Wei, Zhenlin; Zhou, Zunchun; Liu, Xiaolin
2017-10-01
Accumulating evidence indicates that Krüppel-like factors (KLFs) play important roles in fat biology via the regulation of CCAAT/enhancer binding proteins (C/EBPs). However, KLFs and C/EBPs have not been identified from Strongylocentrotus nudus, and their roles in this species are not clear. In this study, the full-length cDNA of S. nudus KLF10 (SnKLF10) and three cDNA fragments of S. nudus C/EBPs (SnC/EBPs) were obtained. Examination of tissue distribution and expression patterns during gonadal development implied that SnKLF10 and SnC/EBPs play important roles in gonadal lipogenesis. The presence of transcription factor-binding sites (TFBSs) for KLFs in SnC/EBPs, and the results of an over-expression assay, revealed that SnKLF10 negatively regulates the transcription of SnC/EBPs. In addition, the core promoter regions of SnC/EBPs were determined, and multiple TFBSs for transcription factor (TFs) were identified, which are potential regulators of SnC/EBP transcription. Taken together, these results suggest that SnC/EBP genes are potential targets of SnKLF10, and that SnKLF10 plays a role in lipogenesis by repressing the transcription of SnC/EBPs. These findings provide information for further studies of KLF10 in invertebrates and provide new insight into the regulatory mechanisms of C/EBP transcription.
Smink, Jeske J; Leutz, Achim
2010-03-01
Lytic bone diseases and in particular osteoporosis are common age-related diseases characterized by enhanced bone fragility due to loss of bone density. Increasingly, osteoporosis poses a major global health-care problem due to the growth of the elderly population. Recently, it was found that the gene regulatory transcription factor CCAAT/enhancer binding protein beta (C/EBPbeta) is involved in bone metabolism. C/EBPbeta occurs as different protein isoforms of variable amino terminal length, and regulation of the C/EBPbeta isoform ratio balance was found to represent an important factor in osteoclast differentiation and bone homeostasis. Interestingly, adjustment of the C/EBPbeta isoform ratio by the process of translational control is downstream of the mammalian target of rapamycin kinase (mTOR), a sensor of the nutritional status and a target of immunosuppressive and anticancer drugs. The findings imply that modulating the process of translational control of C/EBPbeta isoform expression could represent a novel therapeutic approach in osteolytic bone diseases, including cancer and infection-induced bone loss.
Yu, Xiaoli; Kang, Mingjiang; Liu, Li; Guo, Xingqi; Xu, Baohua
2013-01-01
Fatty acid-binding proteins (FABPs) play pivotal roles in cellular signaling, gene transcription, and lipid metabolism in vertebrates and invertebrates. In this study, a putative FABP gene, referred to as AccFABP, was isolated from the Asian honeybee, Apis cerana cerana Fabricius (Hymenoptera: Apidae). The full-length cDNA consisted of 725 bp, and encoded a protein of 204 amino acids. Homology and phylogenetic analysis indicated that AccFABP was a member of the FABP multifamily. The genomic structure of this gene, which was common among FABP multifamily members, spanned 1,900 bp, and included four exons and three introns. Gene expression analysis revealed that AccFABP was highly expressed in the dark-pigmented phase of pupal development, with peak expression observed in the fat bodies of the dark-pigmented phase pupae. The AccFABP transcripts in the fat body were upregulated by exposure to dietary fatty acids such as conjugated linoleic acid, docosahexaenoic acid, and arachidonic acid. Transcription factor binding sites for Caudal-Related Homeobox and functional CCAAT/enhancer binding site, which were respectively associated with tissue expression and lipid metabolism, were detected in the 5' promoter sequence. The evidence provided in the present study suggests that AccFABP may regulate insect growth and development, and lipid metabolism.
2015-08-01
ratio in LNCaP and PC3 cells and suppression of CEBPB sensitized these cells to bortezomib in vitro. PC3 xenografts deficient in CEBPB showed...resistant growth of PCa tumors in a mouse xenograft model. shNTV or shCEBPB LNCaP cells were subcutaneously engrafted into male NSG mice and when tumors...was monitored weekly by caliper measurement for 8-weeks (Fig. 3B). We observed significant suppression of CRPC growth in xenografts expressing shC
Cyclophilin B is involved in p300-mediated degradation of CHOP in tumor cell adaptation to hypoxia.
Jeong, K; Kim, H; Kim, K; Kim, S-J; Hahn, B-S; Jahng, G-H; Yoon, K-S; Kim, S S; Ha, J; Kang, I; Choe, W
2014-03-01
The regulation of CCAAT/enhancer-binding protein-homologous protein (CHOP), an endoplasmic reticulum (ER) stress-response factor, is key to cellular survival. Hypoxia is a physiologically important stress that induces cell death in the context of the ER, especially in solid tumors. Although our previous studies have suggested that Cyclophilin B (CypB), a molecular chaperone, has a role in ER stress, currently, there is no direct information supporting its mechanism under hypoxia. Here, we demonstrate for the first time that CypB is associated with p300 E4 ligase, induces ubiquitination and regulates the proteasomal turnover of CHOP, one of the well-known pro-apoptotic molecules under hypoxia. Our findings show that CypB physically interacts with the N-terminal α-helix domain of CHOP under hypoxia and cooperates with p300 to modulate the ubiquitination of CHOP. We also show that CypB is transcriptionally induced through ATF6 under hypoxia. Collectively, these findings demonstrate that CypB prevents hypoxia-induced cell death through modulation of ubiquitin-mediated CHOP protein degradation, suggesting that CypB may have an important role in the tight regulation of CHOP under hypoxia.
Cyclophilin B is involved in p300-mediated degradation of CHOP in tumor cell adaptation to hypoxia
Jeong, K; Kim, H; Kim, K; Kim, S-J; Hahn, B-S; Jahng, G-H; Yoon, K-S; Kim, S S; Ha, J; Kang, I; Choe, W
2014-01-01
The regulation of CCAAT/enhancer-binding protein-homologous protein (CHOP), an endoplasmic reticulum (ER) stress-response factor, is key to cellular survival. Hypoxia is a physiologically important stress that induces cell death in the context of the ER, especially in solid tumors. Although our previous studies have suggested that Cyclophilin B (CypB), a molecular chaperone, has a role in ER stress, currently, there is no direct information supporting its mechanism under hypoxia. Here, we demonstrate for the first time that CypB is associated with p300 E4 ligase, induces ubiquitination and regulates the proteasomal turnover of CHOP, one of the well-known pro-apoptotic molecules under hypoxia. Our findings show that CypB physically interacts with the N-terminal α-helix domain of CHOP under hypoxia and cooperates with p300 to modulate the ubiquitination of CHOP. We also show that CypB is transcriptionally induced through ATF6 under hypoxia. Collectively, these findings demonstrate that CypB prevents hypoxia-induced cell death through modulation of ubiquitin-mediated CHOP protein degradation, suggesting that CypB may have an important role in the tight regulation of CHOP under hypoxia. PMID:24270407
Liu, Tingting; Duan, Wang; Nizigiyimana, Paul; Gao, Lin; Liao, Zhouning; Xu, Boya; Liu, Lerong; Lei, Minxiang
2018-02-05
Diabetic nephropathy is a common complication of diabetes, but there are currently few treatment options. The aim of this study was to gain insight into the effect of alpha-mangostin on diabetic nephropathy and possible related mechanisms. Goto-Kakizaki rats were used as a diabetic model and received alpha-mangostin or desipramine treatment with normal saline as a control. Ten age-matched Sprague Dawley rats were used as normal controls and treated with normal saline. At week 12, blood glucose, albuminuria, apoptosis and renal pathologic changes were assessed. Protein levels for acid sphingomyelinase, glucose-regulated protein 78, phosphorylated PKR-like ER-resident kinase, activated transcription factor 4, CCAAT/enhancer-binding protein, homologous protein), and cleaved-caspase12 were measured. The level of acid sphingomyelinase was significantly increased, and ER stress was activated in diabetic rat kidneys when compared to the control animals. When acid sphingomyelinase was inhibited by alpha-mangostin, the expression of ER stress-related proteins was down-regulated in association with decreased levels of diabetic kidney injury. Alpha-mangostin, an acid sphingomyelinase inhibitor plays a protective role in diabetic neuropathy by relieving ER stress induced-renal cell apoptosis. Copyright © 2018 Elsevier Inc. All rights reserved.
Li, Cong-Cong; Lu, Xi; Qian, Wei-Sheng; Li, Yu-Juan; Jin, Fa-Guang; Mu, De-Guang
2018-01-01
Seawater (SW) inhalation can induce acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In the present study, SW induced apoptosis of rat alveolar epithelial cells and histopathological alterations to lung tissue. Furthermore, SW administration increased generation of reactive oxygen species (ROS), whereas pretreatment with the ROS scavenger, N-acetyl-L-cysteine (NAC), significantly decreased ROS generation, apoptosis and histopathological alterations. In addition, SW exposure upregulated the expression levels of glucose-regulated protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP), which are critical proteins in the endoplasmic reticulum (ER) stress response, thus indicating that SW may activate ER stress. Conversely, blocking ER stress with 4-phenylbutyric acid (4-PBA) significantly improved SW-induced apoptosis and histopathological alterations, whereas an ER stress inducer, thapsigargin, had the opposite effect. Furthermore, blocking ROS with NAC inhibited SW-induced ER stress, as evidenced by the downregulation of GRP78, phosphorylated (p)-protein kinase R-like ER kinase (PERK), p-inositol-requiring kinase 1α (IRE1α), p-50 activating transcription factor 6α and CHOP. In addition, blocking ER stress with 4-PBA decreased ROS generation. In conclusion, the present study indicated that ROS and ER stress pathways, which are involved in alveolar epithelial cell apoptosis, are important in the pathogenesis of SW-induced ALI. PMID:29436612
Pak, Jhang Ho; Son, Woo Chan; Seo, Sang-Beom; Hong, Sung-Jong; Sohn, Woon-Mok; Na, Byoung-Kuk; Kim, Tong-Soo
2016-10-01
Clonorchis sinensis is a carcinogenic human liver fluke. Its infection promotes persistent oxidative stress and chronic inflammation environments in the bile duct and surrounding liver tissues owing to direct contact with worms and their excretory-secretory products (ESPs), provoking epithelial hyperplasia, periductal fibrosis, and cholangiocarcinogenesis. We examined the reciprocal regulation of two ESP-induced redox-active proteins, NF-κB and peroxiredoxin 6 (Prdx6), during C. sinensis infection. Prdx6 overexpression suppressed intracellular free-radical generation by inhibiting NADPH oxidase2 and inducible nitric oxide synthase activation in the ESP-treated cholangiocarcinoma cells, substantially attenuating NF-κB-mediated inflammation. NF-κB overexpression decreased Prdx6 transcription levels by binding to two κB sites within the promoter. This transcriptional repression was compensated for by other ESP-induced redox-active transcription factors, including erythroid 2-related factor 2 (Nrf2), hypoxia inducible factor 1α (HIF1α), and CCAAT/enhancer-binding protein β (C/EBPβ). Distribution of immunoreactive Prdx6 and NF-κB was distinct in the early stages of infection in mouse livers but shared concomitant localization in the later stages. The intensity and extent of their immunoreactive staining in infected mouse livers are proportional to lesion severity and infection duration. The constitutive elevations of Prdx6 and NF-κB during C. sinensis infection may be associated with more severe persistent hepatobiliary abnormalities mediated by clonorchiasis. Copyright © 2016 Elsevier Inc. All rights reserved.
Cyclotetraphosphinophosphonium ions: synthesis, structures, and pseudorotation.
Dyker, C Adam; Riegel, Susanne D; Burford, Neil; Lumsden, Michael D; Decken, Andreas
2007-06-13
The first derivatives of catenated cyclotetraphosphinophosphonium cations, [(PhP)4PPhMe]+ (8a), [(MeP)4PMe2]+ (8b), [(CyP)4PPh2]+ (8d), [(CyP)4PMe2]+ (8e), [(PhP)4PPh2]+ (8f), [(PhP)4PMe2]+ (8g), are synthesized as trifluoromethanesulfonate (triflate, OSO2CF3-) salts through the reaction of cyclopentaphosphines (PhP)5 (4a) or (MeP)5 (4b) with methyl triflate (MeOTf) or by a net phosphenium ion [PR2+, R = Ph, Me; from R2PCl and trimethylsilyltriflate (Me3SiOTf)] insertion into the P-P bond of either cyclotetraphosphine (CyP)4 (3c) or cyclopentaphosphines (PhP)5 (4a) or (MeP)5 (4b). Although more conveniently prepared from 4a, compound 8a[OTf] can also be formed from (PhP)4 (3a) and MeOTf, and derivatives 8f[OTf] and 8g[OTf] are also accessible through reactions of 3a and R2PCl/Me3SiOTf with R = Ph or Me, respectively. A tetrachlorogallate salt of [(PhP)4PPhtBu]+ (8c) has been synthesized by alkylation of 4a with tBuCl/GaCl3. 31P[1H] NMR parameters for all derivatives of 8 have been determined by iterative simulation of experimental data. Derivatives 8a[OTf], 8b[OTf], 8c[GaCl4], 8e[OTf], 8f[OTf], and 8g[OTf] and have been characterized by X-ray crystallography, showing the most favorable all-trans configuration of substituents for the phosphine centers, thus minimizing steric interactions. Each derivative adopts a unique envelope or twist conformation of C1 symmetry. The effective C2 symmetry observed for 8b, d, e, f, and g in solution, signified by their 31P[1H] NMR AA'BB'X spin systems, implies a rapid conformational exchange for derivatives of 8. The core frameworks of the cations in the solid state are viewed as snapshots of different conformational isomers within the solution-phase pseudorotation process.
Molecular Characterization and Transcriptional Regulation Analysis of the Bovine PDHB Gene.
Li, Anning; Zhang, Yaran; Zhao, Zhidong; Wang, Mingming; Zan, Linsen
2016-01-01
The pyruvate dehydrogenase beta subunit (PDHB) is a subunit of pyruvate dehydrogenase (E1), which catalyzes pyruvate into acetyl-CoA and provides a linkage between the tricarboxylic acid cycle (TCA) and the glycolysis pathway. Previous studies demonstrated PDHB to be positively related to the intramuscular fat (IMF) content. However, the transcriptional regulation of PDHB remains unclear. In our present study, the cDNA of bovine PDHB was cloned and the genomic structure was analyzed. The phylogenetic tree showed bovine PDHB to be closely related to goat and sheep, and least related to chicken. Spatial expression pattern analysis revealed the products of bovine PDHB to be widely expressed with the highest level in the fat of testis. To understand the transcriptional regulation of bovine PDHB, 1899 base pairs (bp) of the 5'-regulatory region was cloned. Sequence analysis neither found consensus TATA-box nor CCAAT-box in the 5'-flanking region of bovine PDHB. However, a CpG island was predicted from nucleotides -284 to +117. Serial deletion constructs of the 5'-flanking region, evaluated in dual-luciferase reporter assay, revealed the core promoter to be located 490bp upstream from the transcription initiation site (+1). Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP) in combination with asite-directed mutation experiment indicated both myogenin (MYOG) and the CCAAT/enhancer-binding protein beta (C/EBPß) to be important transcription factors for bovine PDHB in skeletal muscle cells and adipocytes. Our results provide an important basis for further investigation of the bovine PDHB function and regulation in cattle.
Molecular Characterization and Transcriptional Regulation Analysis of the Bovine PDHB Gene
Li, Anning; Zhang, Yaran; Zhao, Zhidong; Wang, Mingming; Zan, Linsen
2016-01-01
The pyruvate dehydrogenase beta subunit (PDHB) is a subunit of pyruvate dehydrogenase (E1), which catalyzes pyruvate into acetyl-CoA and provides a linkage between the tricarboxylic acid cycle (TCA) and the glycolysis pathway. Previous studies demonstrated PDHB to be positively related to the intramuscular fat (IMF) content. However, the transcriptional regulation of PDHB remains unclear. In our present study, the cDNA of bovine PDHB was cloned and the genomic structure was analyzed. The phylogenetic tree showed bovine PDHB to be closely related to goat and sheep, and least related to chicken. Spatial expression pattern analysis revealed the products of bovine PDHB to be widely expressed with the highest level in the fat of testis. To understand the transcriptional regulation of bovine PDHB, 1899 base pairs (bp) of the 5’-regulatory region was cloned. Sequence analysis neither found consensus TATA-box nor CCAAT-box in the 5’-flanking region of bovine PDHB. However, a CpG island was predicted from nucleotides -284 to +117. Serial deletion constructs of the 5’-flanking region, evaluated in dual-luciferase reporter assay, revealed the core promoter to be located 490bp upstream from the transcription initiation site (+1). Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP) in combination with asite-directed mutation experiment indicated both myogenin (MYOG) and the CCAAT/enhancer-binding protein beta (C/EBPß) to be important transcription factors for bovine PDHB in skeletal muscle cells and adipocytes. Our results provide an important basis for further investigation of the bovine PDHB function and regulation in cattle. PMID:27379520
Yue, Zhen-Shuang; Zeng, Lin-Ru; Quan, Ren-Fu; Tang, Yang-Hua; Zheng, Wen-Jie; Qu, Gang; Xu, Can-Da; Zhu, Fang-Bing; Huang, Zhong-Ming
2016-02-01
4‑phenylbutyrate (4‑PBA) is a low molecular weight fatty acid, which has been demonstrated to regulate endoplasmic reticulum (ER) stress. ER stress‑induced cell apoptosis has an important role in skin flap ischemia; however, a pharmacological approach for treating ischemia‑induced ER dysfunction has yet to be reported. In the present study, the effects of 4‑PBA‑induced ER stress inhibition on ischemia‑reperfusion injury were investigated in the skin flap of rats, and transcriptional regulation was examined. 4‑PBA attenuated ischemia‑reperfusion injury and inhibited cell apoptosis in the skin flap. Furthermore, 4‑PBA reversed the increased expression levels of two ER stress markers: CCAAT/enhancer-binding protein‑homologous protein and glucose‑regulated protein 78. These results suggested that 4‑PBA was able to protect rat skin flaps against ischemia‑reperfusion injury and apoptosis by inhibiting ER stress marker expression and ER stress‑mediated apoptosis. The beneficial effects of 4‑PBA may prove useful in the treatment of skin flap ischemia‑reperfusion injury.
YUE, ZHEN-SHUANG; ZENG, LIN-RU; QUAN, REN-FU; TANG, YANG-HUA; ZHENG, WEN-JIE; QU, GANG; XU, CAN-DA; ZHU, FANG-BING; HUANG, ZHONG-MING
2016-01-01
4-phenylbutyrate (4-PBA) is a low molecular weight fatty acid, which has been demonstrated to regulate endoplasmic reticulum (ER) stress. ER stress-induced cell apoptosis has an important role in skin flap ischemia; however, a pharmacological approach for treating ischemia-induced ER dysfunction has yet to be reported. In the present study, the effects of 4-PBA-induced ER stress inhibition on ischemia-reperfusion injury were investigated in the skin flap of rats, and transcriptional regulation was examined. 4-PBA attenuated ischemia-reperfusion injury and inhibited cell apoptosis in the skin flap. Furthermore, 4-PBA reversed the increased expression levels of two ER stress markers: CCAAT/enhancer-binding protein-homologous protein and glucose-regulated protein 78. These results suggested that 4-PBA was able to protect rat skin flaps against ischemia-reperfusion injury and apoptosis by inhibiting ER stress marker expression and ER stress-mediated apoptosis. The beneficial effects of 4-PBA may prove useful in the treatment of skin flap ischemia-reperfusion injury. PMID:26648447
Baños, Benito; Lázaro, José M.; Villar, Laurentino; de Vega, Miguel
2008-01-01
Bacillus subtilis gene yshC encodes a family X DNA polymerase (PolXBs), whose biochemical features suggest that it plays a role during DNA repair processes. Here, we show that, in addition to the polymerization activity, PolXBs possesses an intrinsic 3′–5′ exonuclease activity specialized in resecting unannealed 3′-termini in a gapped DNA substrate. Biochemical analysis of a PolXBs deletion mutant lacking the C-terminal polymerase histidinol phosphatase (PHP) domain, present in most of the bacterial/archaeal PolXs, as well as of this separately expressed protein region, allow us to state that the 3′–5′ exonuclease activity of PolXBs resides in its PHP domain. Furthermore, site-directed mutagenesis of PolXBs His339 and His341 residues, evolutionary conserved in the PHP superfamily members, demonstrated that the predicted metal binding site is directly involved in catalysis of the exonucleolytic reaction. The implications of the unannealed 3′-termini resection by the 3′–5′ exonuclease activity of PolXBs in the DNA repair context are discussed. PMID:18776221
Characterization of the human UDP-galactose:ceramide galactosyltransferase gene promoter.
Tencomnao, T; Yu, R K; Kapitonov, D
2001-02-16
UDP-galactose:ceramide galactosyltransferase (CGT, EC 2.4.1.45) is a key enzyme in the biosynthesis of galactocerebroside, the most abundant glycosphingolipid in the myelin sheath. An 8 kb fragment upstream from the transcription initiation site of CGT gene was isolated from a human genomic DNA library. Primer extension analysis revealed a single transcription initiation site 329 bp upstream from the ATG start codon. Neither a consensus TATA nor a CCAAT box was identified in the proximity to the transcription start site; however, this region contains a high GC content and multiple putative regulatory elements. To investigate the transcriptional regulation of CGT, a series of 5' deletion constructs of the 5'-flanking region were generated and cloned upstream from the luciferase reporter gene. By comparing promoter activity in the human oligodendroglioma (HOG) and human neuroblastoma (LAN-5) cell lines, we found that the CGT promoter functions in a cell type-specific manner. Three positive cis-acting regulatory regions were identified, including a proximal region at -292/-256 which contains the potential binding sites for known transcription factors (TFs) such as Ets and SP1 (GC box), a distal region at -747/-688 comprising a number of binding sites such as the ERE half-site, NF1-like, TGGCA-BP, and CRE, and a third positive cis-acting region distally localized at -1325/-1083 consisting of binding sites for TFs such as nitrogen regulatory, TCF-1, TGGCA-BP, NF-IL6, CF1, bHLH, NF1-like, GATA, and gamma-IRE. A negative cis-acting domain localized in a far distal region at -1594/-1326 was also identified. Our results suggest the presence of both positive and negative cis-regulatory regions essential for the cell-specific expression in the TATA-less promoter of the human CGT gene.
footprintDB: a database of transcription factors with annotated cis elements and binding interfaces.
Sebastian, Alvaro; Contreras-Moreira, Bruno
2014-01-15
Traditional and high-throughput techniques for determining transcription factor (TF) binding specificities are generating large volumes of data of uneven quality, which are scattered across individual databases. FootprintDB integrates some of the most comprehensive freely available libraries of curated DNA binding sites and systematically annotates the binding interfaces of the corresponding TFs. The first release contains 2422 unique TF sequences, 10 112 DNA binding sites and 3662 DNA motifs. A survey of the included data sources, organisms and TF families was performed together with proprietary database TRANSFAC, finding that footprintDB has a similar coverage of multicellular organisms, while also containing bacterial regulatory data. A search engine has been designed that drives the prediction of DNA motifs for input TFs, or conversely of TF sequences that might recognize input regulatory sequences, by comparison with database entries. Such predictions can also be extended to a single proteome chosen by the user, and results are ranked in terms of interface similarity. Benchmark experiments with bacterial, plant and human data were performed to measure the predictive power of footprintDB searches, which were able to correctly recover 10, 55 and 90% of the tested sequences, respectively. Correctly predicted TFs had a higher interface similarity than the average, confirming its diagnostic value. Web site implemented in PHP,Perl, MySQL and Apache. Freely available from http://floresta.eead.csic.es/footprintdb.
Kheolamai, Pakpoom; Dickson, Alan J
2009-04-23
Induction of stem cell differentiation toward functional hepatocytes is hampered by lack of knowledge of the hepatocyte differentiation processes. The overall objective of this project is to characterize key stages in the hepatocyte differentiation process. We established a mouse embryonic stem (mES) cell culture system which exhibited changes in gene expression profiles similar to those observed in the development of endodermal and hepatocyte-lineage cells previously described in the normal mouse embryo. Transgenic mES cells were established that permitted isolation of enriched hepatocyte-lineage populations. This approach has isolated mES-derived hepatocyte-lineage cells that express several markers of mature hepatocytes including albumin, glucose-6-phosphatase, tyrosine aminotransferase, cytochrome P450-3a, phosphoenolpyruvate carboxykinase and tryptophan 2,3-dioxygenase. In addition, our results show that the up-regulation of the expression levels of hepatocyte nuclear factor-3alpha, -4alpha, -6, and CCAAT-enhancer binding protein-beta might be critical for passage into late-stage differentiation towards functional hepatocytes. These data present important steps for definition of regulatory phenomena that direct specific cell fate determination. The mES cell culture system generated in this study provides a model for studying transition between stages of the hepatocyte development and has significant potential value for studying the molecular basis of hepatocyte differentiation in vitro.
Majchrzak, Milena; Rojkiewicz, Marcin; Celiński, Rafał; Kuś, Piotr; Sajewicz, Mieczysław
In this study, we present identification and physicochemical characterization of new cathinone derivatives, 4-fluoro-PV9 and already known α-PHP in seized materials. Although the disclosure of α-PHP from an illegal product had been reported and characterized to some extent, the data on α-PHP are also presented together with those of 4-fluoro-PV9. The data of characterization for the two compounds were obtained by high-performance liquid chromatography (HPLC)-mass spectrometry and HPLC-diode array detection, electrospray ionization/ion trap mass spectrometry in MS 2 and MS 3 modes, gas chromatography-mass spectrometry, thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, and nuclear magnetic resonance spectroscopy. To our knowledge, this is the first report for identification and detailed characterization of 4-fluoro-PV9 circulated on the illegal drug market.
Sano, Shinichiro; Iwata, Hiromi; Matsubara, Keiko; Fukami, Maki; Kagami, Masayo; Ogata, Tsutomu
2015-01-01
Pseudohypoparathyroidism (PHP) is associated with compromised signal transductions via PTH receptor (PTH-R) and other G-protein-coupled receptors including GHRH-R. To date, while GH deficiency (GHD) has been reported in multiple patients with PHP-Ia caused by mutations on the maternally expressed GNAS coding regions and in two patients with sporadic form of PHP-Ib accompanied by broad methylation defects of maternally derived GNAS differentially methylated regions (DMRs), it has not been identified in a patient with an autosomal dominant form of PHP-Ib (AD-PHP-Ib) accompanied by an STX16 microdeletion and an isolated loss of methylation (LOM) at exon A/B-DMR. We studied 5 4/12-year-old monozygotic twins with short stature (both -3.4 SD) and GHD (peak GH values, <6.0 μg/L after arginine and clonidine stimulations). Molecular studies revealed maternally derived STX16 microdeletions and isolated LOMs at exon A/B-DMR in the twins, confirming the diagnosis of AD-PHP-Ib. GNAS mutation was not identified, and neither mutation nor copy number variation was detected in GH1, POU1F1, PROP1, GHRHR, LHX3, LHX4, and HESX1 in the twins. The results, in conjunction with the previous finding that GNAS shows maternal expression in the pituitary, suggest that GHD of the twins is primarily ascribed to compromised GHRH-R signaling caused by AD-PTH-Ib. Thus, resistance to multiple hormones including GHRH should be considered in AD-PHP-Ib.
Gene regulatory network of unfolded protein response genes in endoplasmic reticulum stress.
Takayanagi, Sayuri; Fukuda, Riga; Takeuchi, Yuuki; Tsukada, Sakiko; Yoshida, Kenichi
2013-01-01
In the endoplasmic reticulum (ER), secretory and membrane proteins are properly folded and modified, and the failure of these processes leads to ER stress. At the same time, unfolded protein response (UPR) genes are activated to maintain homeostasis. Despite the thorough characterization of the individual gene regulation of UPR genes to date, further investigation of the mutual regulation among UPR genes is required to understand the complex mechanism underlying the ER stress response. In this study, we aimed to reveal a gene regulatory network formed by UPR genes, including immunoglobulin heavy chain-binding protein (BiP), X-box binding protein 1 (XBP1), C/EBP [CCAAT/enhancer-binding protein]-homologous protein (CHOP), PKR-like endoplasmic reticulum kinase (PERK), inositol-requiring 1 (IRE1), activating transcription factor 6 (ATF6), and ATF4. For this purpose, we focused on promoter-luciferase reporters for BiP, XBP1, and CHOP genes, which bear an ER stress response element (ERSE), and p5 × ATF6-GL3, which bears an unfolded protein response element (UPRE). We demonstrated that the luciferase activities of the BiP and CHOP promoters were upregulated by all the UPR genes, whereas those of the XBP1 promoter and p5 × ATF6-GL3 were upregulated by all the UPR genes except for BiP, CHOP, and ATF4 in HeLa cells. Therefore, an ERSE- and UPRE-centered gene regulatory network of UPR genes could be responsible for the robustness of the ER stress response. Finally, we revealed that BiP protein was degraded when cells were treated with DNA-damaging reagents, such as etoposide and doxorubicin; this finding suggests that the expression level of BiP is tightly regulated at the post-translational level, rather than at the transcriptional level, in the presence of DNA damage.
Legry, Vanessa; Van Rooyen, Derrick M; Lambert, Barbara; Sempoux, Christine; Poekes, Laurence; Español-Suñer, Regina; Molendi-Coste, Olivier; Horsmans, Yves; Farrell, Geoffrey C; Leclercq, Isabelle A
2014-10-01
Non-alcoholic fatty liver (steatosis) and steatohepatitis [non-alcoholic steatohepatitis (NASH)] are hepatic complications of the metabolic syndrome. Endoplasmic reticulum (ER) stress is proposed as a crucial disease mechanism in obese and insulin-resistant animals (such as ob/ob mice) with simple steatosis, but its role in NASH remains controversial. We therefore evaluated the role of ER stress as a disease mechanism in foz/foz mice, which develop both the metabolic and histological features that mimic human NASH. We explored ER stress markers in the liver of foz/foz mice in response to a high-fat diet (HFD) at several time points. We then evaluated the effect of treatment with an ER stress inducer tunicamycin, or conversely with the ER protectant tauroursodeoxycholic acid (TUDCA), on the metabolic and hepatic features. foz/foz mice are obese, glucose intolerant and develop NASH characterized by steatosis, inflammation, ballooned hepatocytes and apoptosis from 6 weeks of HFD feeding. This was not associated with activation of the upstream unfolded protein response [phospho-eukaryotic initiation factor 2α (eIF2α), inositol-requiring enzyme 1α (IRE1α) activity and spliced X-box-binding protein 1 (Xbp1)]. Activation of c-Jun N-terminal kinase (JNK) and up-regulation of activating transcription factor-4 (Atf4) and CCAAT/enhancer-binding protein-homologous protein (Chop) transcripts were however compatible with a 'pathological' response to ER stress. We tested this by using intervention experiments. Induction of chronic ER stress failed to worsen obesity, glucose intolerance and NASH pathology in HFD-fed foz/foz mice. In addition, the ER protectant TUDCA, although reducing steatosis, failed to improve glucose intolerance, hepatic inflammation and apoptosis in HFD-fed foz/foz mice. These results show that signals driving hepatic inflammation, apoptosis and insulin resistance are independent of ER stress in obese diabetic mice with steatohepatitis.
Zhu, Yao; Huang, Jing Jing; Zhang, Xiao Xiao; Yan, Yu; Yin, Xiao Wei; Ping, Gu; Jiang, Wei Ming
2018-05-30
Qing Gan Zi Shen Tang (QGZST) is a famous traditional Chinese medicine formula in the Jiangsu Province Hospital of Traditional Chinese Medicine for its efficacy in treating hypertension, obesity, hyperlipidemia and insulin resistance. The current study further evaluated the effects and possible mechanisms of QGZST on epididymal white adipose tissue (eWAT) dysfunction in a high-fat-diet (HFD)-fed-spontaneously hypertensive rat (SHR) model. Results showed that QGZST significantly decreased the systolic blood pressure (SBP), mean arterial blood pressure (MAP), body weights and adipocyte size of HFD-fed SHRs. Moreover, QGZST remarkably reduced the serum levels of cholesterol, triglyceride, low-density lipoprotein cholesterol, fasting glucose, fasting insulin and HOMA-IR index, increased serum high-density lipoprotein cholesterol levels and improved glucose intolerance in HFD-fed SHRs. Furthermore, QGZST dramatically attenuated HFD-fed-induced hypersecretion of proinflammatory cytokines and hypoproduction of adiponectin in SHRs. Mechanistically, QGZST stimulated the activity of Sirtuin 1 (SIRT1) and Forkhead box protein O1 (FOXO1) and suppress the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT-enhancer-binding proteins-α(C/EBP-α), fatty acid binding protein 4 (FABP4), acetylated nuclear factor-kappa-B-p65 (acetyl-NF-кB-p65) and protein-tyrosine phosphatase 1B (PTP1B). More than that, QGZST also prevented acetyl-NF-кB-p65 nuclear accumulation. Collectively, our research demonstrated for the first time that QGZST is able to alleviate eWAT dysfunction with up-regulation of SIRT1 in HFD-fed SHRs, which might supply further insight into QGZST-mediated anti-hypertension and anti-obesity effects. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
6-gingerol prevents adipogenesis and the accumulation of cytoplasmic lipid droplets in 3T3-L1 cells.
Tzeng, Thing-Fong; Liu, I-Min
2013-04-15
6-Gingerol ((S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone) is one of the pungent constituents of Zingiber zerumbet (L) Smith (Zingiberaceae family). In this study, we investigated the effects of 6-gingerol on the inhibition of adipogenesis in 3T3-L1 cells. After treatment with 6-gingerol in differentiation medium for 4 or 8 days, the 3T3-L1 cells were lysed for experimental analysis. Cells were stained with Oil-Red-O to detect oil droplets in adipocytes. The 3T3-L1 cells were lysed and measured for triglyceride contents. The protein expression of adipogenesis-related transcription factor was evaluated by Western blot analysis. 6-Gingerol suppressed oil droplet accumulation and reduced the droplet size in a concentration (5-15 μg/ml)- and time-dependent manner. Treatment of 3T3-L1 cells with 6-gingerol reduced the protein levels of peroxisome proliferator-activated receptor (PPAR)γ and CCAAT/enhancer-binding protein (C/EBP)α. Additionally, the protein levels of fatty acid synthase (FAS) and adipocyte-specific fatty acid binding protein (aP2) decreased upon treatment with 6-gingerol. Meanwhile, 6-gingerol diminished the insulin-stimulated serine phosphorylation of Akt (Ser473) and GSK3β (Ser9). These results suggest that 6-gingerol effectively suppresses adipogenesis and that it exerts its role mainly through the significant down-regulation of PPARγ and C/EBPα and subsequently inhibits FAS and aP2 expression. 6-Gingerol also inhibited differentiation in 3T3-L1 cells by attenuating the Akt/GSK3β pathway. Our findings provide important insights into the mechanisms underlying the anti-adipogenic activity of 6-gingerol. Copyright © 2013 Elsevier GmbH. All rights reserved.
Repression of transcriptional activity of C/EBPalpha by E2F-dimerization partner complexes.
Zaragoza, Katrin; Bégay, Valérie; Schuetz, Anja; Heinemann, Udo; Leutz, Achim
2010-05-01
The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPalpha) coordinates proliferation arrest and the differentiation of myeloid progenitors, adipocytes, hepatocytes, keratinocytes, and cells of the lung and placenta. C/EBPalpha transactivates lineage-specific differentiation genes and inhibits proliferation by repressing E2F-regulated genes. The myeloproliferative C/EBPalpha BRM2 mutant serves as a paradigm for recurrent human C-terminal bZIP C/EBPalpha mutations that are involved in acute myeloid leukemogenesis. BRM2 fails to repress E2F and to induce adipogenesis and granulopoiesis. The data presented here show that, independently of pocket proteins, C/EBPalpha interacts with the dimerization partner (DP) of E2F and that C/EBPalpha-E2F/DP interaction prevents both binding of C/EBPalpha to its cognate sites on DNA and transactivation of C/EBP target genes. The BRM2 mutant, in addition, exhibits enhanced interaction with E2F-DP and reduced affinity toward DNA and yet retains transactivation potential and differentiation competence that becomes exposed when E2F/DP levels are low. Our data suggest a tripartite balance between C/EBPalpha, E2F/DP, and pocket proteins in the control of proliferation, differentiation, and tumorigenesis.
Takatori, Osamu; Usui, Soichiro; Okajima, Masaki; Kaneko, Shuichi; Ootsuji, Hiroshi; Takashima, Shin-Ichiro; Kobayashi, Daisuke; Murai, Hisayoshi; Furusho, Hiroshi; Takamura, Masayuki
2017-05-01
The unfolded protein response (UPR) plays a pivotal role in ischemia-reperfusion (I/R) injury in various organs such as heart, brain, and liver. Sodium 4-phenylbutyrate (PBA) reportedly acts as a chemical chaperone that reduces UPR. In the present study, we evaluated the effect of PBA on reducing the UPR and protecting against myocardial I/R injury in mice. Male C57BL/6 mice were subjected to 30-minute myocardial I/R, and were treated with phosphate-buffered saline (as a vehicle) or PBA. At 4 hours after reperfusion, mice treated with PBA had reduced serum cardiac troponin I levels and numbers of apoptotic cells in left ventricles (LVs) in myocardial I/R. Infarct size had also reduced in mice treated with PBA at 48 hours after reperfusion. At 2 hours after reperfusion, UPR markers, including eukaryotic initiation of the factor 2α-subunit, activating transcription factor-6, inositol-requiring enzyme-1, glucose-regulated protein 78, CCAAT/enhancer-binding protein (C/EBP) homologous protein, and caspase-12, were significantly increased in mice treated with vehicle compared to sham-operated mice. Administration of PBA significantly reduced the I/R-induced increases of these markers. Cardiac function and dimensions were assessed at 21 days after I/R. Sodium 4-phenylbutyrate dedicated to the improvement of cardiac parameters deterioration including LV end-diastolic diameter and LV fractional shortening. Consistently, PBA reduced messenger RNA expression levels of cardiac remodeling markers such as collagen type 1α1, brain natriuretic peptide, and α skeletal muscle actin in LV at 21 days after I/R. Unfolded protein response mediates myocardial I/R injury. Administration of PBA reduces the UPR, apoptosis, infarct size, and preserved cardiac function. Hence, PBA may be a therapeutic option to attenuate myocardial I/R injury in clinical practice.
Forster, Meghan R.; Rashid, Omar M.; Perez, Matthew; Choi, Junsung; Chaudhry, Tariq; Zager, Jonathan S.
2015-01-01
Background Patients with unresectable melanoma or sarcoma hepatic metastasis have a poor prognosis with few therapeutic options. Percutaneous hepatic perfusion (PHP), isolating and perfusing the liver with chemotherapy, provides a promising minimally invasive management option. We reviewed our institutional experience with PHP. Methods We retrospectively reviewed patients with unresectable melanoma or sarcoma hepatic metastasis treated with PHP from 2008 to 2013 and evaluated therapeutic response, morbidity, hepatic progression free survival (hPFS), and overall survival (OS). Results Ten patients were treated with 27 PHPs (median 3). Diagnoses were ocular melanoma (n=5), cutaneous melanoma (n=3), unknown primary melanoma (n=1), and sarcoma (n=1). Median hPFS was 240 days, 9 of 10 patients (90%) demonstrated stable disease or partial response to treatment. At a median follow up of 11.5 months, 4 of 10 (40%) remain alive. There were no perioperative mortalities. Myelosuppresion was the most common morbidity, managed on an outpatient basis with growth factors. The median hospital stay was 3 days. Conclusions Patients with metastatic melanoma and sarcoma to the liver have limited treatment options. Our experience with PHP demonstrates promising results with minimal morbidity and should be considered (pending FDA approval) as a management option for unresectable melanoma or sarcoma hepatic metastasis. PMID:24249545
Regulation of IL-8 promoter activity by verrucarin A in human monocytic THP-1 cells.
Liu, Jun; Simmons, Steve O; Pei, Ruoting
2014-01-01
Macrocyclic trichothecenes have been frequently detected in fungi in water-damaged buildings and exhibited higher toxicity than the well-studied trichothecenes; however, the mechanism underlying their toxicity has been poorly understood. In this study, transcriptional regulation of the cytokine interleukin (IL)-8 by a macrocyclic trichothecene, verrucarin A (VA), in human monocytic THP-1 cells is reported. Consistent with previous findings, VA was 100-fold more cytotoxic than deoxynivalenol (DON), while ochratoxin A (OA) was not cytotoxic. In cells transduced with the wild-type IL-8 promoter luciferase construct, VA induced a biphasic dose response composed of an upregulation of luciferase expression at low concentrations of 0.01-1 ng/ml and a downregulation at high levels of 10 ng/ml and higher. In contrast, DON induced a sigmoid-shaped dose response with the EC50 of 11.6 ng/ml, while OA did not markedly affect the IL-8 expression. When cells were transduced with IL-8 promoter with a mutation of transcription factor nuclear factor-κB (NF-κB)-binding site, VA (1 ng/ml), DON (1000 ng/ml), and tumor necrosis factor (TNF) α (20 ng/ml)-induced luciferase expression were impaired. In addition, the NF-κB inhibitor caffeic acid phenethyl ester inhibited VA-, DON-, and TNFα-induced luciferase expression. Mutation of the CCAAT/enhancer-binding protein (CEBP) β binding site of the IL-8 promoter affected only DON-, but not VA- and TNFα-induced luciferase expression. Taken together, these results suggested that VA activated IL-8 promoter via an NF-κB-dependent, but not CEBPβ-dependent, pathway in human monocytes.
Lee, Yeon-Joo; Choi, Hyeon-Son; Seo, Min-Jung; Jeon, Hui-Jeon; Kim, Kui-Jin; Lee, Boo-Yong
2015-08-01
Kaempferol is a flavonoid present in Kaempferia galanga and Opuntia ficus indica var. saboten. Recent studies have suggested that it has anti-oxidant, anti-inflammatory, anti-cancer, and anti-obesity effects. In this study, we focused on the anti-adipogenic effects of kaempferol during adipocyte differentiation. The results showed that kaempferol inhibits lipid accumulation in adipocytes and zebrafish. Oil Red O and Nile Red staining showed that the number of intracellular lipid droplets decreased in adipocytes and zebrafish treated with kaempferol. LPAATθ (lysophosphatidic acid acyltransferase), lipin1, and DGAT1 (triglyceride synthetic enzymes) and FASN and SREBP-1C (fatty acid synthetic proteins) showed decreased expression levels in the presence of kaempferol. In addition, treatment of kaempferol showed an inhibitory activity on cell cycle progression. Kaempferol delayed cell cycle progression from the S to G2/M phase through the regulation of cyclins in a dose-dependent manner. Kaempferol blocked the phosphorylation of AKT (protein kinase B) and mammalian target of rapamycin (mTOR) signaling pathway during the early stages of adipogenesis. In addition, kaempferol down-regulated pro-early adipogenic factors such as CCAAT-enhancer binding proteins β (C/EBPβ), and Krüppel-like factors (KLFs) 4 and 5, while anti-early adipogenic factors, such as KLF2 and pref-1(preadipocyte factor-1), were upregulated. These kaempferol-mediated regulations of early adipogenic factors resulted in the attenuation of late adipogenic factors such as C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ). These results were supported in zebrafish based on the decrease in lipid accumulation and expression of adipogenic factors. Our results indicated that kaempferol might have an anti-obesity effect by regulating lipid metabolism.
Watanabe, Marina; Hisatake, Mitsuhiro; Fujimori, Ko
2015-05-27
3,7,3',4'-Tetrahydroxyflavone (fisetin) is a flavonoid found in vegetables and fruits having broad biological activities. Here the effects of fisetin on adipogenesis and its regulatory mechanism in mouse adipocytic 3T3-L1 cells are studied. Fisetin inhibited the accumulation of intracellular lipids and lowered the expression of adipogenic genes such as peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein (C/EBP) α and fatty acid-binding protein 4 (aP2) during adipogenesis. Moreover, the mRNA levels of genes such as acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase involved in the fatty acid biosynthesis (lipogenesis) were reduced by the treatment with fisetin. The expression level of the glucose transporter 4 (GLUT4) gene was also decreased by fisetin, resulting in down-regulation of glucose uptake. Furthermore, fisetin inhibited the phosphorylation of the mammalian target of rapamycin (mTOR) and that of p70 ribosomal S6 kinase, a target of the mTOR complex, the inhibition of which was followed by a decreased mRNA level of the C/EBPα gene. The results obtained from a chromatin immunoprecipitation assay demonstrated that the ability of C/EBPα to bind to the GLUT4 gene promoter was reduced by the treatment with fisetin, which agreed well with those obtained when 3T3-L1 cells were allowed to differentiate into adipocytes in medium in the presence of rapamycin, an inhibitor for mTOR. These results indicate that fisetin suppressed the accumulation of intracellular lipids by inhibiting GLUT4-mediated glucose uptake through inhibition of the mTOR-C/EBPα signaling in 3T3-L1 cells.
NASA Astrophysics Data System (ADS)
Wang, Pingping; Chen, Chuanfang; Zeng, Kun; Pan, Weidong; Song, Tao
2014-11-01
Magnetic nanoparticles (MNPs) have been increasingly applied in various areas, such as the biomedical and electronic industries. The unique properties of MNPs are beneficial to their applications, but concerns about their safety to human health along with the growing applications and production also arise. In this study, the cytotoxicity of superparamagnetic MNPs, with an average diameter of 10 nm and typical diameter range between 5 and 30 nm, was investigated using neuro-2a cells. The MNPs internalized into the cytoplasm of neuro-2a cells and inhibited the cell viability in a dose-dependent manner at concentrations ranging from 100 to 500 μg/mL. The cell growth inhibition would be partly attributed to the MNP-induced cell cycle arrest in the G0/G1 phase. MNPs triggered the endoplasmic reticulum (ER) stress response, as indicated by the up-regulated expression of the classical ER stress genes, binding immunoglobulin protein, activating transcription factor 6, and CCAAT-enhancer-binding protein homologous protein (CHOP). The induced production of cellular reactive oxygen species (ROS) and increased expression of heme oxygenase 1 and nuclear factor erythroid two-related factor two genes demonstrated that oxidative stress was also induced. Furthermore, the clearance of ROS by free radical scavenger N-acetylcysteine reduced the up-regulation of MNP-induced CHOP mRNA expressions, thereby suggesting that ROS was involved in the process of ER stress response induced by MNPs.
C/EBPα deregulation as a paradigm for leukemogenesis.
Pulikkan, J A; Tenen, D G; Behre, G
2017-11-01
Myeloid master regulator CCAAT enhancer-binding protein alpha (C/EBPα) is deregulated by multiple mechanisms in leukemia. Inhibition of C/EBPα function plays pivotal roles in leukemogenesis. While much is known about how C/EBPα orchestrates granulopoiesis, our understanding of molecular transformation events, the role(s) of cooperating mutations and clonal evolution during C/EBPα deregulation in leukemia remains elusive. In this review, we will summarize the latest research addressing these topics with special emphasis on CEBPA mutations. We conclude by describing emerging therapeutic strategies to restore C/EBPα function.
Arisawa, Mieko; Sawahata, Kyosuke; Yamada, Tomoki; Sarkar, Debayan; Yamaguchi, Masahiko
2018-02-16
Organophosphorus compounds with a phosphorus atom attached to a phenyl group and two organothio/organoseleno groups were synthesized using the rhodium-catalyzed insertion reaction of the PhP group of pentaphenylcyclopentaphosphine (PhP) 5 with acyclic disulfides and diselenides. The method was applied to the synthesis of heterocyclic compounds containing the S-P-S group by the reaction of (PhP) 5 and cyclic disulfides such as 1,2-dithietes, 1,2-dithiocane, 1,4,5-dithiopane, and 1,2-dithiolanes.
Han, Yo-Han; Kee, Ji-Ye; Park, Jinbong; Kim, Hye-Lin; Jeong, Mi-Young; Kim, Dae-Seung; Jeon, Yong-Deok; Jung, Yunu; Youn, Dong-Hyun; Kang, JongWook; So, Hong-Seob; Park, Raekil; Lee, Jong-Hyun; Shin, Soyoung; Kim, Su-Jin; Um, Jae-Young; Hong, Seung-Heon
2016-09-01
Although arctigenin (ARC) has been reported to have some pharmacological effects such as anti-inflammation, anti-cancer, and antioxidant, there have been no reports on the anti-obesity effect of ARC. The aim of this study is to investigate whether ARC has an anti-obesity effect and mediates the AMP-activated protein kinase (AMPK) pathway. We investigated the anti-adipogenic effect of ARC using 3T3-L1 pre-adipocytes and human adipose tissue-derived mesenchymal stem cells (hAMSCs). In high-fat diet (HFD)-induced obese mice, whether ARC can inhibit weight gain was investigated. We found that ARC reduced weight gain, fat pad weight, and triglycerides in HFD-induced obese mice. ARC also inhibited the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) in in vitro and in vivo. Furthermore, ARC induced the AMPK activation resulting in down-modulation of adipogenesis-related factors including PPARγ, C/EBPα, fatty acid synthase, adipocyte fatty acid-binding protein, and lipoprotein lipase. This study demonstrates that ARC can reduce key adipogenic factors by activating the AMPK in vitro and in vivo and suggests a therapeutic implication of ARC for obesity treatment. J. Cell. Biochem. 117: 2067-2077, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Peng, Ping-An; Wang, Le; Ma, Qian; Xin, Yi; Zhang, Ou; Han, Hong-Ya; Liu, Xiao-Li; Ji, Qing-Wei; Zhou, Yu-Jie; Zhao, Ying-Xin
2015-12-01
Contrast-induced acute kidney injury (CI-AKI) is associated with increasing in-hospital and long-term adverse clinical outcomes in high-risk patients undergoing percutaneous coronary intervention (PCI). Contrast media (CM)-induced renal tubular cell apoptosis is reported to participate in this process by activating endoplasmic reticulum (ER) stress. An angiotensin II type 1 receptor (AT1R) antagonist can alleviate ER stress-induced renal apoptosis in streptozotocin (STZ)-induced diabetic mice and can reduce CM-induced renal apoptosis by reducing oxidative stress and reversing the enhancement of bax mRNA and the reduction of bcl-2 mRNA, but the effect of the AT1R blocker on ER stress in the pathogenesis of CI-AKI is still unknown. In this study, we explored the effect of valsartan on meglumine diatrizoate-induced human renal tubular cell apoptosis by measuring changes in ER stress-related biomarkers. The results showed that meglumine diatrizoate caused significant cell apoptosis by up-regulating the expression of ER stress markers, including glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), CCAAT/enhancer-binding protein-homologous protein (CHOP) and caspase 12, in a time- and dose-dependent manner, which could be alleviated by preincubation with valsartan. In conclusion, valsartan had a potential nephroprotective effect on meglumine diatrizoate-induced renal cell apoptosis by inhibiting ER stress. © 2015 International Federation for Cell Biology.
Clinical and genetic characteristics of Pseudohypoparathyroidism in the Chinese population.
Chu, Xueying; Zhu, Yan; Wang, Ou; Nie, Min; Quan, Tingting; Xue, Yu; Wang, Wenbo; Jiang, Yan; Li, Mei; Xia, Weibo; Xing, Xiaoping
2018-02-01
Pseudohypoparathyroidism (PHP) is caused by mutations and epimutations in the GNAS locus, and characterized by the possibility of resistance to multiple hormones and Albright's hereditary osteodystrophy. PHP can be classified into the forms 1A/C, sporadic 1B and familial 1B. To obtain an overall view of the clinical and genetic characteristics of the Chinese PHP patient population. From 2000 to 2016, 120 patients were recruited and studied using Sanger sequencing, methylation-specific multiple ligation-dependent probe amplification (MS-MLPA) and combined bisulfite restriction analysis (COBRA). Of these patients, 104 had positive molecular alterations indicative of certain forms of PHP and were included in data analysis. Clinical and laboratory features were compared between PHP1A/C and PHP1B patients. Ten PHP1A/C, 21 familial PHP1B and 73 sporadic PHP1B patients were identified. Four novel GNAS mutations were discovered in these patients, including c.1038+1G>T, c.530+2T>C, c.880_883delCAAG and c.311_312delAAG, insT. The most common symptoms in this series were recurrent tetany (89.4%) and epilepsy (47.1%). The prevalence of weight excess increased with age for PHP1B (10%-35%) and PHP1A/C (50%-75%). Intracranial calcification had a prevalence of 94.6% and correlated with seizures (r = .227, P = .029). Cataracts occurred in 56.2% PHP patients, and there was a trend towards longer disease duration in patients with cataracts (P = .051). Statistically significant differences (P < .05) were observed when comparing certain clinical characteristics between PHP1B and PHP1A/C patients, including age of onset (10 vs 7 year), short stature (21.3% vs 70%), rounded face (60.6% vs 100%), brachydactyly (25.5% vs 100%), ectopic ossification (1.1% vs 40%) and TSH resistance (44.6% vs 90%), respectively. This study is the largest single-centre series of PHP patients and summarizes the clinical and genetic features of the Chinese PHP population. While there was substantial clinical overlap between PHP1A/C and PHP1B, differences in disease progression were observed. © 2017 John Wiley & Sons Ltd.
Gutsch, Romina; Kandemir, Judith D; Pietsch, Daniel; Cappello, Christian; Meyer, Johann; Simanowski, Kathrin; Huber, René; Brand, Korbinian
2011-07-01
Monocytic differentiation is orchestrated by complex networks that are not fully understood. This study further elucidates the involvement of transcription factor CCAAT/enhancer-binding protein β (C/EBPβ). Initially, we demonstrated a marked increase in nuclear C/EBPβ-liver-enriched activating protein* (LAP*)/liver-enriched activating protein (LAP) levels and LAP/liver-enriched inhibiting protein (LIP) ratios in phorbol 12-myristate 13-acetate (PMA)-treated differentiating THP-1 premonocytic cells accompanied by reduced proliferation. To directly study C/EBPβ effects on monocytic cells, we generated novel THP-1-derived (low endogenous C/EBPβ) cell lines stably overexpressing C/EBPβ isoforms. Most importantly, cells predominantly overexpressing LAP* (C/EBPβ-long), but not those overexpressing LIP (C/EBPβ-short), exhibited a reduced proliferation, with no effect on morphology. PMA-induced inhibition of proliferation was attenuated in C/EBPβ-short cells. In C/EBPβ(WT) macrophage-like cells (high endogenous C/EBPβ), we measured a reduced proliferation/cycling index compared with C/EBPβ(KO). The typical macrophage morphology was only observed in C/EBPβ(WT), whereas C/EBPβ(KO) stayed round. C/EBPα did not compensate for C/EBPβ effects on proliferation/morphology. Serum reduction, an independent approach known to inhibit proliferation, induced macrophage morphology in C/EBPβ(KO) macrophage-like cells but not THP-1. In PMA-treated THP-1 and C/EBPβ-long cells, a reduced phosphorylation of cell cycle repressor retinoblastoma was found. In addition, C/EBPβ-long cells showed reduced c-Myc expression accompanied by increased CDK inhibitor p27 and reduced cyclin D1 levels. Finally, C/EBPβ-long and C/EBPβ(WT) cells exhibited low E2F1 and cyclin E levels, and C/EBPβ overexpression was found to inhibit cyclin E1 promoter-dependent transcription. Our results suggest that C/EBPβ reduces monocytic proliferation by affecting the retinoblastoma/E2F/cyclin E pathway and that it may contribute to, but is not directly required for, macrophage morphology. Inhibition of proliferation by C/EBPβ may be important for coordinated monocytic differentiation.
Genome-wide interaction study of dust mite allergen on lung function in children with asthma.
Forno, Erick; Sordillo, Joanne; Brehm, John; Chen, Wei; Benos, Takis; Yan, Qi; Avila, Lydiana; Soto-Quirós, Manuel; Cloutier, Michelle M; Colón-Semidey, Angel; Alvarez, Maria; Acosta-Pérez, Edna; Weiss, Scott T; Litonjua, Augusto A; Canino, Glorisa; Celedón, Juan C
2017-10-01
Childhood asthma is likely the result of gene-by-environment (G × E) interactions. Dust mite is a known risk factor for asthma morbidity. Yet, there have been no genome-wide G × E studies of dust mite allergen on asthma-related phenotypes. We sought to identify genetic variants whose effects on lung function in children with asthma are modified by the level of dust mite allergen exposure. A genome-wide interaction analysis of dust mite allergen level and lung function was performed in a cohort of Puerto Rican children with asthma (Puerto Rico Genetics of Asthma and Lifestyle [PRGOAL]). Replication was attempted in 2 independent cohorts, the Childhood Asthma Management Program (CAMP) and the Genetics of Asthma in Costa Rica Study. Single nucleotide polymorphism (SNP) rs117902240 showed a significant interaction effect on FEV 1 with dust mite allergen level in PRGOAL (interaction P = 3.1 × 10 -8 ), and replicated in the same direction in CAMP white children and CAMP Hispanic children (combined interaction P = .0065 for replication cohorts and 7.4 × 10 -9 for all cohorts). Rs117902240 was positively associated with FEV 1 in children exposed to low dust mite allergen levels, but negatively associated with FEV 1 in children exposed to high levels. This SNP is on chromosome 8q24, adjacent to a binding site for CCAAT/enhancer-binding protein beta, a transcription factor that forms part of the IL-17 signaling pathway. None of the SNPs identified for FEV 1 /forced vital capacity replicated in the independent cohorts. Dust mite allergen exposure modifies the estimated effect of rs117902240 on FEV 1 in children with asthma. Analysis of existing data suggests that this SNP may have transcription factor regulatory functions. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Guo, Dongqing; Lu, Ming; Hu, Xihan; Xu, Jiajia; Hu, Guangjing; Zhu, Ming; Zhang, Xiaowei; Li, Qin; Chang, Catherine C. Y.; Chang, Tayuan; Song, Baoliang; Xiong, Ying; Li, Boliang
2016-01-01
Acyl-coenzyme A:cholesterol acyltransferases (ACATs) are the exclusive intracellular enzymes that catalyze the formation of cholesteryl/steryl esters (CE/SE). In our previous work, we found that the high-level expression of human ACAT2 gene with the CpG hypomethylation of its whole promoter was synergistically regulated by two transcription factors Cdx2 and HNF1α in the intestine and fetal liver. Here, we first observed that the specific CpG-hypomethylated promoter was correlated with the low expression of human ACAT2 gene in monocytic cell line THP-1. Then, two CCAAT/enhancer binding protein (C/EBP) elements within the activation domain in the specific CpG-hypomethylation promoter region were identified, and the expression of ACAT2 in THP-1 cells was evidently decreased when the C/EBP transcription factors were knock-downed using RNAi technology. Furthermore, ChIP assay confirmed that C/EBPs directly bind to their elements for low-level expression of human ACAT2 gene in THP-1 cells. Significantly, the increased expressions of ACAT2 and C/EBPs were also found in macrophages differentiated from both ATRA-treated THP-1 cells and cultured human blood monocytes. These results demonstrate that the low-level expression of human ACAT2 gene with specific CpG-hypomethylated promoter is regulated by the C/EBP transcription factors in monocytic cells, and imply that the lowly expressed ACAT2 catalyzes the synthesis of certain CE/SE that are assembled into lipoproteins for the secretion. PMID:27688151
Regulation of the angiopoietin-2 gene by hCG in ovarian cancer cell line OVCAR-3.
Pietrowski, D; Wiehle, P; Sator, M; Just, A; Keck, C
2010-05-01
Angiogenesis is a crucial step in growing tissues including many tumors. It is regulated by pro- and antiangiogenic factors including the family of angiopoietins and their corresponding receptors. In previous work we have shown that in human ovarian cells the expression of angiopoietin 2 (ANG2) is regulated by human chorionic gonadotropin (hCG). To better understand the mechanisms of hCG-dependent regulation of the ANG2-gene we have now investigated upstream regulatory active elements of the ANG2-promoter in the ovarian carcinoma cell line OVCAR-3. We cloned several ANG2-promoter-fragments of different lengths into a luciferase reporter-gene-vector and analyzed the corresponding ANG2 expression before and after hCG stimulation. We identified regions of the ANG2-promoter between 1 048 bp and 613 bp upstream of the transcriptional start site where hCG-dependent pathways promote a significant downregulation of gene expression. By sequence analysis of this area we found several potential binding sites for transcription factors that are involved in regulation of ANG2-expression, vascular development and ovarian function. These encompass the forkhead family transcription factors FOXC2 and FOXO1 as well as the CCAAT/enhancer binding protein family (C/EBP). In conclusion, we have demonstrated that the regulation of ANG2-expression in ovarian cancer cells is hCG-dependent and we suggest that forkhead transcription factor and C/EBP-dependent pathways are involved in the regulation of ANG2-expression in ovarian cancer cells. Georg Thieme Verlag KG Stuttgart-New York.
Li, Peng-Cheng; Wang, Bo-Rong; Li, Cong-Cong; Lu, Xi; Qian, Wei-Sheng; Li, Yu-Juan; Jin, Fa-Guang; Mu, De-Guang
2018-05-01
Seawater (SW) inhalation can induce acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In the present study, SW induced apoptosis of rat alveolar epithelial cells and histopathological alterations to lung tissue. Furthermore, SW administration increased generation of reactive oxygen species (ROS), whereas pretreatment with the ROS scavenger, N‑acetyl‑L‑cysteine (NAC), significantly decreased ROS generation, apoptosis and histopathological alterations. In addition, SW exposure upregulated the expression levels of glucose‑regulated protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP), which are critical proteins in the endoplasmic reticulum (ER) stress response, thus indicating that SW may activate ER stress. Conversely, blocking ER stress with 4‑phenylbutyric acid (4‑PBA) significantly improved SW‑induced apoptosis and histopathological alterations, whereas an ER stress inducer, thapsigargin, had the opposite effect. Furthermore, blocking ROS with NAC inhibited SW‑induced ER stress, as evidenced by the downregulation of GRP78, phosphorylated (p)‑protein kinase R‑like ER kinase (PERK), p‑inositol‑requiring kinase 1α (IRE1α), p‑50 activating transcription factor 6α and CHOP. In addition, blocking ER stress with 4‑PBA decreased ROS generation. In conclusion, the present study indicated that ROS and ER stress pathways, which are involved in alveolar epithelial cell apoptosis, are important in the pathogenesis of SW‑induced ALI.
Heat transfer performance of a pulsating heat pipe charged with acetone-based mixtures
NASA Astrophysics Data System (ADS)
Wang, Wenqing; Cui, Xiaoyu; Zhu, Yue
2017-06-01
Pulsating heat pipes (PHPs) are used as high efficiency heat exchangers, and the selection of working fluids in PHPs has a great impact on the heat transfer performance. This study investigates the thermal resistance characteristics of the PHP charged with acetone-based binary mixtures, where deionized water, methanol and ethanol were added to and mixed with acetone, respectively. The volume mixing ratios were 2:1, 4:1 and 7:1, and the heating power ranged from 10 to 100 W with filling ratios of 45, 55, 62 and 70%. At a low filling ratio (45%), the zeotropic characteristics of the binary mixtures have an influence on the heat transfer performance of the PHP. Adding water, which has a substantially different boiling point compared with that of acetone, can significantly improve the anti-dry-out ability inside the PHP. At a medium filling ratio (55%), the heat transfer performance of the PHP is affected by both phase transition characteristics and physical properties of working fluids. At high heating power, the thermal resistance of the PHP with acetone-water mixture is between that with pure acetone and pure water, whereas the thermal resistance of the PHP with acetone-methanol and acetone-ethanol mixtures at mixing ratios of 2:1 and 4:1 is less than that with the corresponding pure fluids. At high filling ratios (62 and 70%), the heat transfer performance of the PHP is mainly determined by the properties of working fluids that affects the flow resistance. Thus, the PHP with acetone-methanol and acetone-ethanol mixtures that have a lower flow resistance shows better heat transfer performance than that with acetone-water mixture.
Deficiency in mTORC1-controlled C/EBPβ-mRNA translation improves metabolic health in mice
Zidek, Laura M; Ackermann, Tobias; Hartleben, Götz; Eichwald, Sabrina; Kortman, Gertrud; Kiehntopf, Michael; Leutz, Achim; Sonenberg, Nahum; Wang, Zhao-Qi; von Maltzahn, Julia; Müller, Christine; Calkhoven, Cornelis F
2015-01-01
The mammalian target of rapamycin complex 1 (mTORC1) is a central regulator of physiological adaptations in response to changes in nutrient supply. Major downstream targets of mTORC1 signalling are the mRNA translation regulators p70 ribosomal protein S6 kinase 1 (S6K1p70) and the 4E-binding proteins (4E-BPs). However, little is known about vertebrate mRNAs that are specifically controlled by mTORC1 signalling and are engaged in regulating mTORC1-associated physiology. Here, we show that translation of the CCAAT/enhancer binding protein beta (C/EBPβ) mRNA into the C/EBPβ-LIP isoform is suppressed in response to mTORC1 inhibition either through pharmacological treatment or through calorie restriction. Our data indicate that the function of 4E-BPs is required for suppression of LIP. Intriguingly, mice lacking the cis-regulatory upstream open reading frame (uORF) in the C/EBPβ-mRNA, which is required for mTORC1-stimulated translation into C/EBPβ-LIP, display an improved metabolic phenotype with features also found under calorie restriction. Thus, our data suggest that translational adjustment of C/EBPβ-isoform expression is one of the key processes that direct metabolic adaptation in response to changes in mTORC1 activity. PMID:26113365
Allostatic Load: Single Parents, Stress-Related Health Issues, and Social Care
ERIC Educational Resources Information Center
Johner, Randy L.
2007-01-01
This article explores the possible relationships between allostatic load (AL) and stress-related health issues in the low-income single-parent population, using both a population health perspective (PHP) and a biological framework. A PHP identifies associations among such factors as gender, income, employment, and social support and their…
Antioxidant Activity of γ-Oryzanol: A Complex Network of Interactions
Minatel, Igor Otavio; Francisqueti, Fabiane Valentini; Corrêa, Camila Renata; Lima, Giuseppina Pace Pereira
2016-01-01
γ-oryzanol (Orz), a steryl ferulate extracted from rice bran layer, exerts a wide spectrum of biological activities. In addition to its antioxidant activity, Orz is often associated with cholesterol-lowering, anti-inflammatory, anti-cancer and anti-diabetic effects. In recent years, the usefulness of Orz has been studied for the treatment of metabolic diseases, as it acts to ameliorate insulin activity, cholesterol metabolism, and associated chronic inflammation. Previous studies have shown the direct action of Orz when downregulating the expression of genes that encode proteins related to adiposity (CCAAT/enhancer binding proteins (C/EBPs)), inflammatory responses (nuclear factor kappa-B (NF-κB)), and metabolic syndrome (peroxisome proliferator-activated receptors (PPARs)). It is likely that this wide range of beneficial activities results from a complex network of interactions and signals triggered, and/or inhibited by its antioxidant properties. This review focuses on the significance of Orz in metabolic disorders, which feature remarkable oxidative imbalance, such as impaired glucose metabolism, obesity, and inflammation. PMID:27517904
Antioxidant Activity of γ-Oryzanol: A Complex Network of Interactions.
Minatel, Igor Otavio; Francisqueti, Fabiane Valentini; Corrêa, Camila Renata; Lima, Giuseppina Pace Pereira
2016-08-09
γ-oryzanol (Orz), a steryl ferulate extracted from rice bran layer, exerts a wide spectrum of biological activities. In addition to its antioxidant activity, Orz is often associated with cholesterol-lowering, anti-inflammatory, anti-cancer and anti-diabetic effects. In recent years, the usefulness of Orz has been studied for the treatment of metabolic diseases, as it acts to ameliorate insulin activity, cholesterol metabolism, and associated chronic inflammation. Previous studies have shown the direct action of Orz when downregulating the expression of genes that encode proteins related to adiposity (CCAAT/enhancer binding proteins (C/EBPs)), inflammatory responses (nuclear factor kappa-B (NF-κB)), and metabolic syndrome (peroxisome proliferator-activated receptors (PPARs)). It is likely that this wide range of beneficial activities results from a complex network of interactions and signals triggered, and/or inhibited by its antioxidant properties. This review focuses on the significance of Orz in metabolic disorders, which feature remarkable oxidative imbalance, such as impaired glucose metabolism, obesity, and inflammation.
Risk of overweight and obesity in preschoolers attending private and philanthropic schools.
Nascimento, Viviane Gabriela; Schoeps, Denise de Oliveira; Souza, Sônia Buongermino de; Souza, José Maria Pacheco de; Leone, Claudio
2011-01-01
To assess the risk prevalence of overweight and obesity in children enrolled in private and philanthropic preschools in the State of São Paulo. Comparison of two cross sectional studies with children enrolled in private preschools (PPS) or philanthropic (PHP) of the São Paulo Metropolitan Region. Both surveys evaluated the children's environment. To determine the risk of overweight, excess weight and obesity, body mass index (BMI) values were transformed into z scores (according to the World Health Organization - 2006 and 2007). The risk prevalence of overweight (≥ 1 BMIz < 2) in PPS was 21.9% and 24.6% in PHP, with PR = 1.12 (95% CI: 0.96-1.32), without statistical difference. Considering the children with overweight or obesity, (BMIz ≥ 2) the prevalence in PPS was 14.3% and in PHP was 9.0%, with PR = 1.54 (95% CI: 1.23-1.93), p = 0.0002. Overweight and obesity prevalence in males in PPS was 16.4% (n = 409) and in PHP, 11.1% (n = 829), PR = 1.48 (95% CI: 1.10-1.98) and in females it was 12.5% (n = 400) in the PPS and 6.6% (n = 698) in PHP, corresponding to PR = 1.90 (95% CI: 1.30-2.78), both significant differences. Both groups showed a similar and very high prevalence of weight excess. However, overweight and obesity showed a higher prevalence in children from private preschools. This indicates that even though a better socioeconomic level is still a risk factor for overweight and obesity in preschoolers, the same does not seem to occur when analyzing the risk of overweight.
Teruel, T; Valverde, A M; Alvarez, A; Benito, M; Lorenzo, M
1995-01-01
Rat brown adipocytes at day 22 of foetal development showed greater size, higher mitochondria content and larger amounts of lipids, as determined by flow cytometry, than 20-day foetal cells. Simultaneously, an inhibition on the percentage of brown adipocytes into S+G2/M phases of the cell cycle was observed between days 20 and 22 of foetal development. The expression of several adipogenesis-related genes, such as fatty acid synthase, malic enzyme, glucose-6-phosphate dehydrogenase and insulin-regulated glucose transporter, increased at the end of foetal life in brown adipose tissue. In addition, the lipogenic enzyme activities and the lipogenic flux increased during late foetal development, resulting in mature brown adipocytes showing a multilocular fat droplet phenotype. Concurrently, brown adipocytes induced the expression of the uncoupling protein (UP) mRNA and UP protein, as visualized by immunofluorescence. The three isoforms of CCAAT enhancer-binding proteins (C/EBPs) were expressed at the mRNA level in brown adipose tissue at day 20. C/EBP alpha decreased and C/EBP beta and delta increased their expression between days 20 and 22 of foetal development, respectively. Brown adipose tissue constitutively expressed insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR) mRNAs. Moreover, IGF-IR mRNA content increased between days 20 and 22 in parallel with the occurrence of tissue differentiation. Images Figure 2 Figure 3 Figure 4 PMID:7575409
Pahan, Kalipada; Jana, Malabendu; Liu, Xiaojuan; Taylor, Bradley S.; Wood, Charles; Fischer, Susan M.
2007-01-01
Gemfibrozil, a lipid-lowering drug, inhibited cytokine-induced production of NO and the expression of inducible nitric-oxide synthase (iNOS) in human U373MG astroglial cells and primary astrocytes. Similar to gemfibrozil, clofibrate, another fibrate drug, also inhibited the expression of iNOS. Inhibition of human iNOS promoter-driven luciferase activity by gemfibrozil in cytokine-stimulated U373MG astroglial cells suggests that this compound inhibits the transcription of iNOS. Since gemfibrozil is known to activate peroxisome proliferator-activated receptor-α (PPAR-α), we investigated the role of PPAR-α in gemfibrozil-mediated inhibition of iNOS. Gemfibrozil induced peroxisome proliferator-responsive element (PPRE)-dependent luciferase activity, which was inhibited by the expression of ΔhPPAR-α, the dominant-negative mutant of human PPAR-α. However, ΔhPPAR-α was unable to abrogate gemfibrozil-mediated inhibition of iNOS suggesting that gemfibrozil inhibits iNOS independent of PPAR-α. The human iNOS promoter contains consensus sequences for the binding of transcription factors, including interferon-γ (IFN-γ) regulatory factor-1 (IRF-1) binding to interferon-stimulated responsive element (ISRE), signal transducer and activator of transcription (STAT) binding to γ-activation site (GAS), nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and CCAAT/enhancer-binding protein β (C/EBPβ); therefore, we investigated the effect of gemfibrozil on the activation of these transcription factors. The combination of interleukin (IL)-1β and IFN-γ induced the activation of NF-κB, AP-1, C/EBPβ, and GAS but not that of ISRE, suggesting that IRF-1 may not be involved in cytokine-induced expression of iNOS in human astrocytes. Interestingly, gemfibrozil strongly inhibited the activation of NF-κB, AP-1, and C/EBPβ but not that of GAS in cytokine-stimulated astroglial cells. These results suggest that gemfibrozil inhibits the induction of iNOS probably by inhibiting the activation of NF-κB, AP-1, and C/EBPβ and that gemfibrozil, a prescribed drug for humans, may further find its therapeutic use in neuroinflammatory diseases. PMID:12244038
Allostatic load: single parents, stress-related health issues, and social care.
Johner, Randy L
2007-05-01
This article explores the possible relationships between allostatic load (AL) and stress-related health issues in the low-income single-parent population, using both a population health perspective (PHP) and a biological framework. A PHP identifies associations among such factors as gender, income, employment, and social support and their potential effect on health outcomes. A PHP also recognizes physiological and pathological manifestations of the body such as stress (mental or somatic) and individual biological parameters (for example, glucose levels) as health determinants. AL uses an aggregate score of individual biological parameters as a health measure that is exacerbated through repetitive movement of physiologic systems under stress. The social work profession should incorporate knowledge of both PHP and AL into its theory and practice domains for effective care of vulnerable populations such as single-parent families.
Keilwagen, Jens; Grau, Jan; Paponov, Ivan A; Posch, Stefan; Strickert, Marc; Grosse, Ivo
2011-02-10
Transcription factors are a main component of gene regulation as they activate or repress gene expression by binding to specific binding sites in promoters. The de-novo discovery of transcription factor binding sites in target regions obtained by wet-lab experiments is a challenging problem in computational biology, which has not been fully solved yet. Here, we present a de-novo motif discovery tool called Dispom for finding differentially abundant transcription factor binding sites that models existing positional preferences of binding sites and adjusts the length of the motif in the learning process. Evaluating Dispom, we find that its prediction performance is superior to existing tools for de-novo motif discovery for 18 benchmark data sets with planted binding sites, and for a metazoan compendium based on experimental data from micro-array, ChIP-chip, ChIP-DSL, and DamID as well as Gene Ontology data. Finally, we apply Dispom to find binding sites differentially abundant in promoters of auxin-responsive genes extracted from Arabidopsis thaliana microarray data, and we find a motif that can be interpreted as a refined auxin responsive element predominately positioned in the 250-bp region upstream of the transcription start site. Using an independent data set of auxin-responsive genes, we find in genome-wide predictions that the refined motif is more specific for auxin-responsive genes than the canonical auxin-responsive element. In general, Dispom can be used to find differentially abundant motifs in sequences of any origin. However, the positional distribution learned by Dispom is especially beneficial if all sequences are aligned to some anchor point like the transcription start site in case of promoter sequences. We demonstrate that the combination of searching for differentially abundant motifs and inferring a position distribution from the data is beneficial for de-novo motif discovery. Hence, we make the tool freely available as a component of the open-source Java framework Jstacs and as a stand-alone application at http://www.jstacs.de/index.php/Dispom.
Dynamic interactions between Pit-1 and C/EBPalpha in the pituitary cell nucleus.
Demarco, Ignacio A; Voss, Ty C; Booker, Cynthia F; Day, Richard N
2006-11-01
The homeodomain (HD) transcription factors are a structurally conserved family of proteins that, through networks of interactions with other nuclear proteins, control patterns of gene expression during development. For example, the network interactions of the pituitary-specific HD protein Pit-1 control the development of anterior pituitary cells and regulate the expression of the hormone products in the adult cells. Inactivating mutations in Pit-1 disrupt these processes, giving rise to the syndrome of combined pituitary hormone deficiency. Pit-1 interacts with CCAAT/enhancer-binding protein alpha (C/EBPalpha) to regulate prolactin transcription. Here, we used the combination of biochemical analysis and live-cell microscopy to show that two different point mutations in Pit-1, which disrupted distinct activities, affected the dynamic interactions between Pit-1 and C/EBPalpha in different ways. The results showed that the first alpha-helix of the POU-S domain is critical for the assembly of Pit-1 with C/EBPalpha, and they showed that DNA-binding activity conferred by the HD is critical for the final intranuclear positioning of the metastable complex. This likely reflects more general mechanisms that govern cell-type-specific transcriptional control, and the results from the analysis of the point mutations could indicate an important link between the mislocalization of transcriptional complexes and disease processes.
Sidorova, Yulia A; Perepechaeva, Maria L; Pivovarova, Elena N; Markel, Arkady L; Lyakhovich, Vyacheslav V; Grishanova, Alevtina Y
2016-01-01
Oxidative reactions that are catalyzed by cytochromes P450 1A (CYP1A) lead to formation of carcinogenic derivatives of arylamines and polycyclic aromatic hydrocarbons (PAHs), such as the widespread environmental pollutant benzo(α)pyrene (BP). These compounds upregulate CYP1A at the transcriptional level via an arylhydrocarbon receptor (AhR)-dependent signaling pathway. Because of the involvement of AhR-dependent genes in chemically induced carcinogenesis, suppression of this signaling pathway could prevent tumor formation and/or progression. Here we show that menadione (a water-soluble analog of vitamin K3) inhibits BP-induced expression and enzymatic activity of both CYP1A1 and CYP1A2 in vivo (in the rat liver) and BP-induced activity of CYP1A1 in vitro. Coadministration of BP and menadione reduced DNA-binding activity of AhR and increased DNA-binding activity of transcription factors Oct-1 and CCAAT/enhancer binding protein (C/EBP), which are known to be involved in negative regulation of AhR-dependent genes, in vivo. Expression of another factor involved in downregulation of CYP1A-pAhR repressor (AhRR)-was lower in the liver of the rats treated with BP and menadione, indicating that the inhibitory effect of menadione on CYP1A is not mediated by this protein. Furthermore, menadione was well tolerated by the animals: no signs of acute toxicity were detected by visual examination or by assessment of weight gain dynamics or liver function. Taken together, our results suggest that menadione can be used in further studies on animal models of chemically induced carcinogenesis because menadione may suppress tumor formation and possibly progression.
Pivovarova, Elena N.; Markel, Arkady L.; Lyakhovich, Vyacheslav V.; Grishanova, Alevtina Y.
2016-01-01
Oxidative reactions that are catalyzed by cytochromes P450 1A (CYP1A) lead to formation of carcinogenic derivatives of arylamines and polycyclic aromatic hydrocarbons (PAHs), such as the widespread environmental pollutant benzo(α)pyrene (BP). These compounds upregulate CYP1A at the transcriptional level via an arylhydrocarbon receptor (AhR)-dependent signaling pathway. Because of the involvement of AhR-dependent genes in chemically induced carcinogenesis, suppression of this signaling pathway could prevent tumor formation and/or progression. Here we show that menadione (a water-soluble analog of vitamin K3) inhibits BP-induced expression and enzymatic activity of both CYP1A1 and CYP1A2 in vivo (in the rat liver) and BP-induced activity of CYP1A1 in vitro. Coadministration of BP and menadione reduced DNA-binding activity of AhR and increased DNA-binding activity of transcription factors Oct-1 and CCAAT/enhancer binding protein (C/EBP), which are known to be involved in negative regulation of AhR-dependent genes, in vivo. Expression of another factor involved in downregulation of CYP1A—pAhR repressor (AhRR)—was lower in the liver of the rats treated with BP and menadione, indicating that the inhibitory effect of menadione on CYP1A is not mediated by this protein. Furthermore, menadione was well tolerated by the animals: no signs of acute toxicity were detected by visual examination or by assessment of weight gain dynamics or liver function. Taken together, our results suggest that menadione can be used in further studies on animal models of chemically induced carcinogenesis because menadione may suppress tumor formation and possibly progression. PMID:27167070
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deneve, Jeremiah L., E-mail: Jeremiah.Deneve@Moffitt.org; Choi, Junsung; Gonzalez, Ricardo J.
Purpose: Treatment of patients with unresectable liver metastases is challenging. Regional therapies to the liver have been developed that maximize treatment of the localized disease process without systemic toxic adverse effects. We discuss the procedural aspects of liver chemosaturation with percutaneous hepatic perfusion (CS-PHP). Methods: We present as an illustration of this technique a case report of the treatment of unresectable metastatic leiomyosarcoma of the liver. Results: A randomized phase III trial for unresectable liver metastases from melanoma was recently completed comparing CS-PHP with melphalan vs. best alternative care (BAC). When compared with BAC, CS-PHP was associated with a significantmore » improvement in hepatic progression-free survival (8.0 months CS-PHP vs. 1.6 months BAC, p < 0.0001) and overall progression-free survival (6.7 months CS-PHP vs. 1.6 months BAC, p < 0.0001), respectively. On the basis of these results, and given our experience as one of the treating institutions for this phase III trial, we appealed for compassionate use of CS-PHP in a patient with isolated bilobar unresectable hepatic metastases from leiomyosarcoma. Four target lesions were identified and monitored to assess treatment response. A total of 4 CS-PHP procedures were performed, with a 25 % reduction in size of the largest lesion observed and 16 month hepatic progression-free survival. Toxicity was mild (neutropenia) and manageable on an outpatient basis. Conclusion: CS-PHP offers several advantages for unresectable hepatic sarcoma metastases. CS-PHP is minimally invasive and repeatable, and it has a predictable and manageable systemic toxicity profile. For appropriately selected patients, CS-PHP can delay tumor progression and could potentially improve survival.« less
Li, Xian; Cong, Rihua; Yao, Wen; Jia, Yimin; Li, Runsheng; Sun, Zhiyuan; Li, Xi; Zhao, Ruqian
2018-01-01
The enzyme 3β-hydroxysteroid dehydrogenase (3β-HSD) plays an important role in androstenone metabolism in pig liver, and its defective expression is related to the development of boar taint. Early age castration is a common practice in many countries to avoid boar taint, yet whether and how castration affects porcine hepatic 3β-HSD expression are still poorly understood. In this study, we aimed to compare the expression of 3β-HSD between intact (boars) and castrated (barrows) male pigs, and to explore the potential factors regulating 3β-HSD transcription. Compared to barrows, boars showed worse carcass quality. Boars had significantly higher levels of serum androstenone (P < 0.01), testosterone (P < 0.01) and hepatic cortisol (P < 0.05), which were contrary to significantly lower expression of 3β-HSD messenger RNA (P < 0.01) and protein (P < 0.01) in the liver. Significant differences were detected for the hepatic expression of androgen receptor (AR) and CCAAT/enhancer binding protein β (C/EBPβ). Chromatin immunoprecipitation (ChIP) assay demonstrated reduced histone H3 acetylation (P < 0.05) but increased glucocorticoid receptor (GR) binding to 3β-HSD gene promoter in boars (P < 0.05). These results indicate that GR binding to 3β-HSD promoter is involved in the differential hepatic 3β-HSD expression between boars and barrows. © 2017 Japanese Society of Animal Science.
Shimizu, Emi; Nakayama, Youhei; Nakajima, Yu; Kato, Naoko; Takai, Hideki; Kim, Dong-Soon; Arai, Masato; Saito, Ryoichiro; Sodek, Jaro; Ogata, Yorimasa
2006-07-01
Bone sialoprotein (BSP) is a noncollagenous protein of the mineralized bone extracellular matrix. We here report that FGF2 and cAMP act synergistically to stimulate BSP gene expression. Treatment of ROS 17/2.8 cells with either 10 ng/ml FGF2 or 1 microM FSK for 6 h resulted in 5.4- and 8.2-fold increases, respectively, in the levels of BSP mRNA. However, in the presence of both FGF2 and forskolin (FGF/FSK), BSP mRNA levels were increased synergistically by 20.4-fold. Using a luciferase reporter construct, encompassing BSP promoter nucleotides -116 to +60, transcription was also increased synergistically by 15.0-fold with FGF/FSK, compared to stimulations of 2.6- and 5.3-fold, respectively, for FGF2 and FSK alone. Transcriptional stimulation by FGF/FSK abrogated in constructs included 2 bp mutations in the inverted CCAAT, CRE, FRE and Pit-1 elements. Whereas the FRE-protein complex was increased by FGF2 and FGF/FSK, the Pit-1-protein complex was decreased by FSK and FGF/FSK. Notably, transcriptional activity induced by FGF/FSK was blocked by protein kinase A, tyrosine kinase and MEK inhibitors. These studies indicate that the combinatorial effects of FGF and FSK act through PKA, tyrosine kinase and MAP-kinase-dependent pathways, which target the inverted CCAAT, CRE, FRE and Pit-1 elements in the BSP gene to synergistically increase BSP expression.
Flamm, Robert K; Nichols, Wright W; Sader, Helio S; Farrell, David J; Jones, Ronald N
2016-03-01
The activities of the novel β-lactam/non-β-lactam β-lactamase inhibitor combination ceftazidime/avibactam and comparators were evaluated against isolates from pneumonia in hospitalised patients including ventilated patients (PHP, pneumonia not designated as VABP; VABP, pneumonia in ventilated patients). Isolates were from the European-Mediterranean region (EuM), China and the USA collected in the SENTRY Antimicrobial Surveillance Program between 2009 and 2011 inclusive. A total of 2393 organisms from PHP were from the EuM, 888 from China and 3213 from the USA; from VABP patients there were 918, 97 and 692 organisms collected, respectively. Among Enterobacteriaceae from PHP, ceftazidime/avibactam MIC90 values against Escherichia coli ranged from 0.25-0.5mg/L and Klebsiella spp. MIC90 values were 0.5mg/L in each region. Among VABP isolates, MIC90 values for ceftazidime/avibactam against E. coli were 0.25mg/L; for Klebsiella spp. from VABP patients, MIC90 values were similar to those obtained against PHP isolates. The MIC of ceftazidime/avibactam was ≤8mg/L against 92-96% of Pseudomonas aeruginosa isolated from PHP patients. Isolates of P. aeruginosa from VABP patients were of lower susceptibility to all antibacterial agents (e.g. depending on region, meropenem susceptibilities were 51.2-69.4% in contrast to 68.3-76.7% among PHP patients). However, ceftazidime/avibactam inhibited 79.2-95.4% of VABP isolates at an MIC of ≤8mg/L. Acinetobacter spp. were resistant to many agents and only rates of susceptibility to colistin were >90% across all regions both for PHP and VABP isolates. Ceftazidime/avibactam was generally active against a high proportion of isolates resistant to ceftazidime from PHP and VAPB patients. Copyright © 2016 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Fuster, Oscar; Barragán, Eva; Bolufer, Pascual; Such, Esperanza; Valencia, Ana; Ibáñez, Mariam; Dolz, Sandra; de Juan, Inmaculada; Jiménez, Antonio; Gómez, Maria Teresa; Buño, Ismael; Martínez, Joaquín; Cervera, José; Montesinos, Pau; Moscardó, Federico; Sanz, Miguel Ángel
2012-01-01
During last years, molecular markers have been increased as prognostic factors routinely screened in acute myeloid leukemia (AML). Recently, an increasing interest has been reported in introducing to clinical practice screening for mutations in the CCAAT/enhancer-binding protein α (CEBPA) gene in AML, as it seems to be a good prognostic factor. However, there is no reliable established method for assessing CEBPA mutations during the diagnostic work-up of AMLs. We describe here a straightforward and reliable fragment analysis method based in PCR capillary electrophoresis (PCR-CE) for screening of CEBPA mutations; moreover, we present the results obtained in 151 intermediate-risk karyotype AML patients (aged 16-80 years). The method gave a specificity of 100% and sensitivity of 93% with a lower detection limit of 1-5% for CEBPA mutations. The series found 19 mutations and four polymorphisms in 12 patients, seven of whom (58%) presented two mutations. The overall frequency of CEBPA mutations in AML was 8% (n = 12). CEBPA mutations showed no coincidence with FLT3-ITD or NPM1 mutations. CEBPA mutation predicted better disease-free survival in the group of patients without FLT3-ITD, NPM, or both genes mutated (HR 3.6, IC 95%; 1.0-13.2, p = 0.05) and better overall survival in patients younger than 65 of this group without molecular markers (HR 4.0, IC 95%; 1.0-17.4, p = 0.05). In conclusion, the fragment analysis method based in PCR-CE is a rapid, specific, and sensitive method for CEBPA mutation screening and our results confirm that CEBPA mutations can identify a subgroup of patients with favorable prognosis in AML with intermediate-risk karyotype.
The mechanistic basis of pH-dependent 5-flucytosine resistance in Aspergillus fumigatus.
Gsaller, Fabio; Furukawa, Takanori; Carr, Paul D; Rash, Bharat; Jöchl, Christoph; Bertuzzi, Margherita; Bignell, Elaine M; Bromley, Michael J
2018-04-02
The antifungal drug 5-flucytosine (5FC), a derivative of the nucleobase cytosine, is licenced for treatment of fungal diseases however it is rarely used as a monotherapeutic to treat Aspergillus infection. Despite being potent against other fungal pathogens, 5FC has limited activity against A. fumigatus when standard in vitro assays are used to determine susceptibility. However, in modified in vitro assays where the pH is set to pH 5 the activity of 5FC increases significantly.Here we provide evidence that fcyB , a gene that encodes a purine-cytosine permease orthologous to known 5FC importers is downregulated at pH 7 and is the primary factor responsible for the low efficacy of 5FC at pH 7. We also uncover two transcriptional regulators that are responsible for repression of fcyB and consequently mediators of 5FC resistance, the CCAAT binding complex (CBC) and the pH regulatory protein PacC. We propose that the activity of 5FC might be enhanced by perturbation of factors that repress fcyB expression such as PacC or other components of the pH sensing machinery. Copyright © 2018 American Society for Microbiology.
Ghrelin Ameliorates Asthma by Inhibiting Endoplasmic Reticulum Stress.
Fu, Tian; Wang, Lei; Zeng, Qingdi; Zhang, Yan; Sheng, Baowei; Han, Liping
2017-12-01
This study aimed to confirm the ameliorative effect of ghrelin on asthma and investigate its mechanism. The murine model of asthma was induced by ovalbumin (OVA) treatment and assessed by histological pathology and airway responsiveness to methacholine. The total and differential leukocytes were counted. Tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 levels in bronchoalveolar lavage fluid were quantified by commercial kits. The protein levels in pulmonary tissues were measured by Western blot analysis. Ghrelin ameliorated the histological pathology and airway hyperresponsiveness in the OVA-induced asthmatic mouse model. Consistently, OVA-increased total and differential leukocytes and levels of tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 in bronchoalveolar lavage fluid were significantly attenuated by ghrelin. Ghrelin prevented the increased protein levels of the endoplasmic reticulum stress markers glucose regulated protein 78 and CCAAT/enhancer binding protein homologous protein and reversed the reduced levels of p-Akt in asthmatic mice. Ghrelin might prevent endoplasmic reticulum stress activation by stimulating the Akt signaling pathway, which attenuated inflammation and ameliorated asthma in mice. Ghrelin might be a new target for asthma therapy. Copyright © 2017. Published by Elsevier Inc.
Henkel, Anne S; Dewey, Amanda M; Anderson, Kristy A; Olivares, Shantel; Green, Richard M
2012-07-01
Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of nonalcoholic steatohepatitis. The ER stress response is activated in the livers of mice fed a methionine- and choline-deficient (MCD) diet, yet the role of ER stress in the pathogenesis of MCD diet-induced steatohepatitis is unknown. Using chemical chaperones on hepatic steatosis and markers of inflammation and fibrosis in mice fed a MCD diet, we aim to determine the effects of reducing ER stress. C57BL/6J mice were fed a MCD diet with or without the ER chemical chaperones 4-phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) for 2 wk. TUDCA and PBA effectively attenuated the ER stress response in MCD diet-fed mice, as evidenced by reduced protein levels of phosphorylated eukaryotic initiation factor 2α and phosphorylated JNK and suppression of mRNA levels of CCAAT/enhancer binding protein homologous protein, glucose-regulated protein 78 kDa, and X-box binding protein 1. However, PBA and TUDCA did not decrease MCD diet-induced hepatic steatosis. MCD diet-induced hepatic inflammation, as evidenced by increased plasma alanine aminotransferase and induction of hepatic TNFα expression, was also not reduced by PBA or TUDCA. PBA and TUDCA did not attenuate MCD diet-induced upregulation of the fibrosis-associated genes tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-9. ER chemical chaperones reduce MCD diet-induced ER stress, yet they do not improve MCD diet-induced hepatic steatosis, inflammation, or activation of genes associated with fibrosis. These data suggest that although the ER stress response is activated by the MCD diet, it does not have a primary role in the pathogenesis of MCD diet-induced steatohepatitis.
Lee, Jihye; Imm, Jee-Young; Lee, Seong-Ho
2017-03-29
Arctigenin is a lignan abundant in Asteraceae plants and has anti-inflammatory, antiobesity, and anticancer activities. Obesity is one of the leading causes of several types of cancers including breast cancer. The current study was performed to investigate if arctigenin suppresses differentiation of preadipocytes and proliferation of breast cancer cells and to explore potential molecular mechanisms. Treatment of arctigenin reduced lipid accumulation in differentiated 3T3-L1 adipocytes in a dose- and time-dependent manner without toxicity. Arctigenin suppressed the expression of peroxisome proliferator-activated receptor-gamma (PPARγ), CCAAT/enhancer-binding protein-alpha (C/EBPα), perilipin, and fatty acid binding protein 4 (FABP4) in a dose-dependent manner in differentiated 3T3-L1 cells. Both total and unphosphorylated (active) β-catenin were increased in whole cell lysates and the nuclear fraction of differentiated 3T3-L1 cells treated with 25 μM arctigenin. On the other hand, arctigenin decreased proliferation of two human breast cancer cells (MCF-7 and MDA-MB-231). Arctigenin induced apoptosis and decreased expression of total and unphosphorylated (active) β-catenin and cyclin D1 in MCF-7, but not in MDA-MB-231. These data indicate that arctigenin suppressed adipogenesis in preadipocytes and activated apoptosis in estrogen receptor (ER) positive breast cancer cells through modulating expression of β-catenin.
Hivin, P; Gaudray, G; Devaux, C; Mesnard, J-M
2004-01-20
The human T-cell leukemia virus type I (HTLV-I) Tax protein trans-activates viral transcription through three imperfect tandem repeats of a 21-bp sequence called Tax-responsive element (TxRE). Tax regulates transcription via direct interaction with some members of the activating transcription factor/CRE-binding protein (ATF/CREB) family including CREM, CREB, and CREB-2. By interacting with their ZIP domain, Tax stimulates the binding of these cellular factors to the CRE-like sequence present in the TxREs. Recent observations have shown that CCAAT/enhancer binding protein beta (C/EBPbeta) forms stable complexes on the CRE site in the presence of CREB-2. Given that C/EBPbeta has also been found to interact with Tax, we analyzed the effects of C/EBPbeta on viral Tax-dependent transcription. We show here that C/EBPbeta represses viral transcription and that Tax is no more able to form a stable complex with CREB-2 on the TxRE site in the presence of C/EBPbeta. We also analyzed the physical interactions between Tax and C/EBPbeta and found that the central region of C/EBPbeta, excluding its ZIP domain, is required for direct interaction with Tax. It is the first time that Tax is described to interact with a basic leucine-zipper (bZIP) factor without recognizing its ZIP domain. Although unexpected, this result explains why C/EBPbeta would be unable to form a stable complex with Tax on the TxRE site and could then down-regulate viral transcription. Lastly, we found that C/EBPbeta was able to inhibit Tax expression in vivo from an infectious HTLV-I molecular clone. In conclusion, we propose that during cell activation events, which stimulate the Tax synthesis, C/EBPbeta may down-regulate the level of HTLV-I expression to escape the cytotoxic-T-lymphocyte response.
Comparative genomics on Norrie disease gene.
Katoh, Masuko; Katoh, Masaru
2005-05-01
DAND1 (NBL1), DAND2 (CKTSF1B1 or GREM1 or GREMLIN), DAND3 (CKTSF1B2 or GREM2 or PRDC), DAND4 (CER1), DAND5 (CKTSF1B3 or GREM3 or DANTE), MUC2, MUC5AC, MUC5B, MUC6, MUC19, WISP1, WISP2, WISP3, VWF, NOV and Norrie disease (NDP or NORRIN) genes encode proteins with cysteine knot domain. Cysteine-knot superfamily proteins regulate ligand-receptor interactions for a variety of signaling pathways implicated in embryogenesis, homeostasis, and carcinogenesis. Although Ndp is unrelated to Wnt family members, Ndp is claimed to function as a ligand for Fzd4. Here, we identified and characterized rat Ndp, cow Ndp, chicken ndp and zebrafish ndp genes by using bioinformatics. Rat Ndp gene, consisting of three exons, was located within AC105563.4 genome sequence. Cow Ndp and chicken ndp complete CDS were derived from CB467544.1 EST and BX932859.2 cDNA, respectively. Zebrafish ndp gene was located within BX572627.5 genome sequence. Rat Ndp (131 aa) was a secreted protein with C-terminal cysteine knot-like (CTCK) domain. Rat Ndp showed 100, 96.9, 95.4, 87.8 and 66.4 total-amino-acid identity with mouse Ndp, cow Ndp, human NDP, chicken ndp and zebrafish ndp, respectively. Exon-intron structure of mammalian Ndp orthologs was well conserved. FOXA2, CUTL1 (CCAAT displacement protein), LMO2, CEBPA (C/EBPalpha)-binding sites and triple POU2F1 (OCT1)-binding sites were conserved among promoters of mammalian Ndp orthologs.
Chronology of UPR activation in skeletal muscle adaptations to chronic contractile activity
Memme, Jonathan M.; Oliveira, Ashley N.
2016-01-01
The mitochondrial and endoplasmic reticulum unfolded protein responses (UPRmt and UPRER) are important for cellular homeostasis during stimulus-induced increases in protein synthesis. Exercise triggers the synthesis of mitochondrial proteins, regulated in part by peroxisome proliferator activator receptor-γ coactivator 1α (PGC-1α). To investigate the role of the UPR in exercise-induced adaptations, we subjected rats to 3 h of chronic contractile activity (CCA) for 1, 2, 3, 5, or 7 days followed by 3 h of recovery. Mitochondrial biogenesis signaling, through PGC-1α mRNA, increased 14-fold after 1 day of CCA. This resulted in 10–32% increases in cytochrome c oxidase activity, indicative of mitochondrial content, between days 3 and 7, as well as increases in the autophagic degradation of p62 and microtubule-associated proteins 1A/1B light chain 3A (LC3)-II protein. Before these adaptations, the UPRER transcripts activating transcription factor-4, spliced X-box-binding protein 1, and binding immunoglobulin protein were elevated (1.3- to 3.8-fold) at days 1–3, while CCAAT/enhancer-binding protein homologous protein (CHOP) and chaperones binding immunoglobulin protein and heat shock protein (HSP) 70 were elevated at mRNA and protein levels (1.5- to 3.9-fold) at days 1–7 of CCA. The mitochondrial chaperones 10-kDa chaperonin, HSP60, and 75-kDa mitochondrial HSP, the protease ATP-dependent Clp protease proteolytic subunit, and the regulatory protein sirtuin-3 of the UPRmt were concurrently induced 10–80% between days 1 and 7. To test the role of the UPR in CCA-induced remodeling, we treated animals with the endoplasmic reticulum stress suppressor tauroursodeoxycholic acid and subjected them to 2 or 7 days of CCA. Tauroursodeoxycholic acid attenuated CHOP and HSP70 protein induction; however, this failed to impact mitochondrial remodeling. Our data indicate that signaling to the UPR is rapidly activated following acute contractile activity, that this is attenuated with repeated bouts, and that the UPR is involved in chronic adaptations to CCA; however, this appears to be independent of CHOP signaling. PMID:27122157
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jialin; Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881; Shimpi, Prajakta
PFOS is a chemical of nearly ubiquitous exposure in humans. Recent studies have associated PFOS exposure to adipose tissue-related effects. The present study was to determine whether PFOS alters the process of adipogenesis and regulates insulin-stimulated glucose uptake in mouse and human preadipocytes. In murine-derived 3T3-L1 preadipocytes, PFOS enhanced hormone-induced differentiation to adipocytes and adipogenic gene expression, increased insulin-stimulated glucose uptake at concentrations ranging from 10 to 100 μM, and enhanced Glucose transporter type 4 and Insulin receptor substrate-1 expression. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), NAD(P)H dehydrogenase, quinone 1 and Glutamate-cysteine ligase, catalytic subunit were significantly induced in 3T3-L1more » cells treated with PFOS, along with a robust induction of Antioxidant Response Element (ARE) reporter in mouse embryonic fibroblasts isolated from ARE-hPAP transgenic mice by PFOS treatment. Chromatin immunoprecipitation assays further illustrated that PFOS increased Nrf2 binding to ARE sites in mouse Nqo1 promoter, suggesting that PFOS activated Nrf2 signaling in murine-derived preadipocytes. Additionally, PFOS administration in mice (100 μg/kg/day) induced adipogenic gene expression and activated Nrf2 signaling in epididymal white adipose tissue. Moreover, the treatment on human visceral preadipocytes illustrated that PFOS (5 and 50 μM) promoted adipogenesis and increased cellular lipid accumulation. It was observed that PFOS increased Nrf2 binding to ARE sites in association with Nrf2 signaling activation, induction of Peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α expression, and increased adipogenesis. This study points to a potential role of PFOS in dysregulation of adipose tissue expandability, and warrants further investigations on the adverse effects of persistent pollutants on human health. - Highlights: • PFOS induces adipogenesis in association with increased Pparγ and Cebpα mRNA expression. • PFOS increases ARE binding activity and activates Nrf2 signaling. • PFOS increases insulin-stimulated glucose uptake.« less
Haasis, Manuel Alexander; Ceria, Joyce Anne; Kulpeng, Wantanee; Teerawattananon, Yot; Alejandria, Marissa
2015-01-01
The objective of this study is to assess the value for money of introducing pneumococcal conjugate vaccines as part of the immunization program in a lower-middle income country, the Philippines, which is not eligible for GAVI support and lower vaccine prices. It also includes the newest clinical evidence evaluating the efficacy of PCV10, which is lacking in other previous studies. A cost-utility analysis was conducted. A Markov simulation model was constructed to examine the costs and consequences of PCV10 and PCV13 against the current scenario of no PCV vaccination for a lifetime horizon. A health system perspective was employed to explore different funding schemes, which include universal or partial vaccination coverage subsidized by the government. Results were presented as incremental cost-effectiveness ratios (ICERs) in Philippine peso (Php) per QALY gained (1 USD = 44.20 Php). Probabilistic sensitivity analysis was performed to determine the impact of parameter uncertainty. With universal vaccination at a cost per dose of Php 624 for PCV10 and Php 700 for PCV13, both PCVs are cost-effective compared to no vaccination given the ceiling threshold of Php 120,000 per QALY gained, yielding ICERs of Php 68,182 and Php 54,510 for PCV10 and PCV13, respectively. Partial vaccination of 25% of the birth cohort resulted in significantly higher ICER values (Php 112,640 for PCV10 and Php 84,654 for PCV13) due to loss of herd protection. The budget impact analysis reveals that universal vaccination would cost Php 3.87 billion to 4.34 billion per annual, or 1.6 to 1.8 times the budget of the current national vaccination program. The inclusion of PCV in the national immunization program is recommended. PCV13 achieved better value for money compared to PCV10. However, the affordability and sustainability of PCV implementation over the long-term should be considered by decision makers.
Developmental Control of NRAMP1 (SLC11A1) Expression in Professional Phagocytes.
Cellier, Mathieu F M
2017-05-03
NRAMP1 (SLC11A1) is a professional phagocyte membrane importer of divalent metals that contributes to iron recycling at homeostasis and to nutritional immunity against infection. Analyses of data generated by several consortia and additional studies were integrated to hypothesize mechanisms restricting NRAMP1 expression to mature phagocytes. Results from various epigenetic and transcriptomic approaches were collected for mesodermal and hematopoietic cell types and compiled for combined analysis with results of genetic studies associating single nucleotide polymorphisms (SNPs) with variations in NRAMP1 expression (eQTLs). Analyses establish that NRAMP1 is part of an autonomous topologically associated domain delimited by ubiquitous CCCTC-binding factor (CTCF) sites. NRAMP1 locus contains five regulatory regions: a predicted super-enhancer (S-E) key to phagocyte-specific expression; the proximal promoter; two intronic areas, including 3' inhibitory elements that restrict expression during development; and a block of upstream sites possibly extending the S-E domain. Also the downstream region adjacent to the 3' CTCF locus boundary may regulate expression during hematopoiesis. Mobilization of the locus 14 predicted transcriptional regulatory elements occurs in three steps, beginning with hematopoiesis; at the onset of myelopoiesis and through myelo-monocytic differentiation. Basal expression level in mature phagocytes is further influenced by genetic variation, tissue environment, and in response to infections that induce various epigenetic memories depending on microorganism nature. Constitutively associated transcription factors (TFs) include CCAAT enhancer binding protein beta (C/EBPb), purine rich DNA binding protein (PU.1), early growth response 2 (EGR2) and signal transducer and activator of transcription 1 (STAT1) while hypoxia-inducible factors (HIFs) and interferon regulatory factor 1 (IRF1) may stimulate iron acquisition in pro-inflammatory conditions. Mouse orthologous locus is generally conserved; chromatin patterns typify a de novo myelo-monocytic gene whose expression is tightly controlled by TFs Pu.1, C/ebps and Irf8; Irf3 and nuclear factor NF-kappa-B p 65 subunit (RelA) regulate expression in inflammatory conditions. Functional differences in the determinants identified at these orthologous loci imply that species-specific mechanisms control gene expression.
Adipose Deficiency of Nrf2 in ob/ob Mice Results in Severe Metabolic Syndrome
Xue, Peng; Hou, Yongyong; Chen, Yanyan; Yang, Bei; Fu, Jingqi; Zheng, Hongzhi; Yarborough, Kathy; Woods, Courtney G.; Liu, Dianxin; Yamamoto, Masayuki; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo
2013-01-01
Nuclear factor E2–related factor 2 (Nrf2) is a transcription factor that functions as a master regulator of the cellular adaptive response to oxidative stress. Our previous studies showed that Nrf2 plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β and peroxisome proliferator–activated receptor γ. To determine the role of Nrf2 in the development of obesity and associated metabolic disorders, the incidence of metabolic syndrome was assessed in whole-body or adipocyte-specific Nrf2-knockout mice on a leptin-deficient ob/ob background, a model with an extremely positive energy balance. On the ob/ob background, ablation of Nrf2, globally or specifically in adipocytes, led to reduced white adipose tissue (WAT) mass, but resulted in an even more severe metabolic syndrome with aggravated insulin resistance, hyperglycemia, and hypertriglyceridemia. Compared with wild-type mice, WAT of ob/ob mice expressed substantially higher levels of many genes related to antioxidant response, inflammation, adipogenesis, lipogenesis, glucose uptake, and lipid transport. Absence of Nrf2 in WAT resulted in reduced expression of most of these factors at mRNA or protein levels. Our findings support a novel role for Nrf2 in regulating adipose development and function, by which Nrf2 controls the capacity of WAT expansion and insulin sensitivity and maintains glucose and lipid homeostasis. PMID:23238296
Boonhong, Jariya; Suntornpiyapan, Phitsanu; Piriyajarukul, Apatchanee
2018-02-02
Ultrasound combined with transcutaneous electrical nerve stimulation (UltraTENS) and phonophoresis of piroxicam (PhP) are combined modality therapy that frequently used in musculoskeletal pain including knee osteoarthritis (OA). But it is lack of a good clinical trial to prove and compare their effects. To compare the effects of UltraTENS with PhP on mild to moderate degree of symptomatic knee OA. Sixty-one patients (55 women), mean age of 63.4 ± 8.1 y, 50-90 mm VAS of knee pain and Kellgren-Lawrence score of grade I-III were randomly allocated into UltraTENS and PhP (N = 31 and 30, respectively). The UltraTENS group received a combined ultrasound with TENS program and a non-drug gel, whereas the PhP group got an ultrasound program with piroxicam gel and sham TENS. All patients were treated for a total of 10 sessions, consisting of five times per week and 10 min per session. Before and after treatment, patients were evaluated knee pain by using the 100-mm VAS and functional performance by Western Ontario and McMaster Universities Osteoarthritis (WOMAC) index. The UltraTENS and PhP groups experienced considerable improvement in both VAS and total WOMAC scores post-treatment (P< 0.001). The PhP had better VAS of pain and WOMAC scores but no statistical significance. Results show that UltraTENS and PhP were effective for relieving pain and improve functionality knee OA without significant differences between their effects.
RNA-Seq Analysis Reveals a Positive Role of HTR2A in Adipogenesis in Yan Yellow Cattle.
Yun, Jinyan; Jin, Haiguo; Cao, Yang; Zhang, Lichun; Zhao, Yumin; Jin, Xin; Yu, Yongsheng
2018-06-13
In this study, we performed high throughput RNA sequencing at the primary bovine preadipocyte (Day-0), mid-differentiation (Day-4), and differentiated adipocyte (Day-9) stages in order to characterize the transcriptional events regulating differentiation and function. The preadipocytes were isolated from subcutaneous fetal bovine adipose tissues and were differentiated into mature adipocytes. The adipogenic characteristics of the adipocytes were detected during various stages of adipogenesis (Day-0, Day-4, and Day-9). We used RNA sequencing (RNA-seq) to investigate a comprehensive transcriptome information of adipocytic differentiation. Compared to the pre-differentiation stage (Day-0), 2510 genes were identified as differentially expressed genes (DEGs) at the mid-differentiation stage (Day-4). We found 2446 DEGs in the mature adipocytic stage relative to the mid-differentiation stage. Some adipogenesis-related transcription factors, CCAAT-enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) were differentially expressed at Day-0, Day-4, and Day-9. We further investigated the adipogenic function of 5-hydroxytryptamine receptor 2A (HTR2A) in adipogenesis. Overexpression of HTR2A stimulated the differentiation of preadipocytes, and knockdown of HTR2A had opposite effects. Furthermore, functional enrichment analysis of DEGs revealed that the PI3K-Akt signaling pathway was the significantly enriched pathway, and HTR2A regulated adipogenesis by activating or inhibiting phosphorylation of phospho-AKT (Ser473). In summary, the present study provides the first comparative transcription of various periods of adipocytes in cattle, which presents a solid foundation for further study into the molecular mechanism of fat deposition and the improvement of beef quality in cattle.
Kim, Jaekwang; Yun, Miyong; Kim, Eun-Ok; Jung, Deok-Beom; Won, Gunho; Kim, Bonglee; Jung, Ji Hoon; Kim, Sung-Hoon
2016-03-01
The TNF-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent due to its remarkable ability to selectively kill tumour cells. However, because most tumours exhibit resistance to TRAIL-induced apoptosis, the development of combination therapies to overcome resistance to TRAIL is required for effective cancer therapy. Cell viability and possible synergy between the plant pyranocoumarin decursin and TRAIL was measured by MTT assay and calcusyn software. Reactive oxygen species (ROS) and apoptosis were measured using dichlorodihydrofluorescein and annexin/propidium iodide in cell flow cytometry. Changes in protein levels were assessed with Western blotting. Combining decursin and TRAIL markedly decreased cell viability and increased apoptosis in TRAIL-resistant non-small-cell lung cancer (NSCLC) cell lines. Decursin induced expression of the death receptor 5 (DR5). Inhibition of DR5 attenuated apoptotic cell death in decursin + TRAIL treated NSCLC cell lines. Interestingly, induction of DR5 and CCAAT/enhancer-binding protein homologues protein by decursin was mediated through selective induction of the pancreatic endoplasmic reticulum kinase (PERK)/activating transcription factor 4 (ATF4) branch of the endoplasmic reticulum stress response pathway. Furthermore, enhancement of PERK/ATF4 signalling by decursin was mediated by ROS generation in NSCLC cell lines, but not in normal human lung cells. Decursin also markedly down-regulated expression of survivin and Bcl-xL in TRAIL-resistant NSCLC cells. ROS generation by decursin selectively activated the PERK/ATF4 axis of the endoplasmic reticulum stress signalling pathway, leading to enhanced TRAIL sensitivity in TRAIL-resistant NSCLC cell lines, partly via up-regulation of DR5. © 2015 The British Pharmacological Society.
Kim, Jaekwang; Yun, Miyong; Kim, Eun‐Ok; Jung, Deok‐Beom; Won, Gunho; Kim, Bonglee; Jung, Ji Hoon
2016-01-01
Background and Purpose The TNF‐related apoptosis‐inducing ligand (TRAIL) is a promising anticancer agent due to its remarkable ability to selectively kill tumour cells. However, because most tumours exhibit resistance to TRAIL‐induced apoptosis, the development of combination therapies to overcome resistance to TRAIL is required for effective cancer therapy. Experimental Approach Cell viability and possible synergy between the plant pyranocoumarin decursin and TRAIL was measured by MTT assay and calcusyn software. Reactive oxygen species (ROS) and apoptosis were measured using dichlorodihydrofluorescein and annexin/propidium iodide in cell flow cytometry. Changes in protein levels were assessed with Western blotting. Key Results Combining decursin and TRAIL markedly decreased cell viability and increased apoptosis in TRAIL‐resistant non‐small‐cell lung cancer (NSCLC) cell lines. Decursin induced expression of the death receptor 5 (DR5). Inhibition of DR5 attenuated apoptotic cell death in decursin + TRAIL treated NSCLC cell lines. Interestingly, induction of DR5 and CCAAT/enhancer‐binding protein homologues protein by decursin was mediated through selective induction of the pancreatic endoplasmic reticulum kinase (PERK)/activating transcription factor 4 (ATF4) branch of the endoplasmic reticulum stress response pathway. Furthermore, enhancement of PERK/ATF4 signalling by decursin was mediated by ROS generation in NSCLC cell lines, but not in normal human lung cells. Decursin also markedly down‐regulated expression of survivin and Bcl‐xL in TRAIL‐resistant NSCLC cells. Conclusions and Implications ROS generation by decursin selectively activated the PERK/ATF4 axis of the endoplasmic reticulum stress signalling pathway, leading to enhanced TRAIL sensitivity in TRAIL‐resistant NSCLC cell lines, partly via up‐regulation of DR5. PMID:26661339
HMGA2 promotes adipogenesis by activating C/EBPβ-mediated expression of PPARγ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Yang; Shen, Wanjing; Ma, Lili
Adipogenesis is orchestrated by a highly ordered network of transcription factors including peroxisome-proliferator activated receptor-gamma (PPARγ) and CCAAT-enhancer binding protein (C/EBP) family proteins. High mobility group protein AT-hook 2 (HMGA2), an architectural transcription factor, has been reported to play an essential role in preadipocyte proliferation, and its overexpression has been implicated in obesity in mice and humans. However, the direct role of HMGA2 in regulating the gene expression program during adipogenesis is not known. Here, we demonstrate that HMGA2 is required for C/EBPβ-mediated expression of PPARγ, and thus promotes adipogenic differentiation. We observed a transient but marked increase of Hmga2more » transcript at an early phase of differentiation of mouse 3T3-L1 preadipocytes. Importantly, Hmga2 knockdown greatly impaired adipocyte formation, while its overexpression promoted the formation of mature adipocytes. We found that HMGA2 colocalized with C/EBPβ in the nucleus and was required for the recruitment of C/EBPβ to its binding element at the Pparγ2 promoter. Accordingly, HMGA2 and C/EBPβ cooperatively enhanced the Pparγ2 promoter activity. Our results indicate that HMGA2 is an essential constituent of the adipogenic transcription factor network, and thus its function may be affected during the course of obesity. - Highlights: • Overexpression of HMGA2 has been implicated in obesity in mice and humans. • HMGA2 is required for adipocyte formation. • HMGA2 colocalizes with C/EBPβ and is required for C/EBPβ recruitment to Pparγ2 promoter. • HMGA2 and C/EBPβ cooperatively enhance the Pparγ2 promoter activity.« less
Rochtus, Anne; Martin-Trujillo, Alejandro; Izzi, Benedetta; Elli, Francesca; Garin, Intza; Linglart, Agnes; Mantovani, Giovanna; Perez de Nanclares, Guiomar; Thiele, Suzanne; Decallonne, Brigitte; Van Geet, Chris; Monk, David; Freson, Kathleen
2016-01-01
Pseudohypoparathyroidism (PHP) is caused by (epi)genetic defects in the imprinted GNAS cluster. Current classification of PHP patients is hampered by clinical and molecular diagnostic overlaps. The European Consortium for the study of PHP designed a genome-wide methylation study to improve molecular diagnosis. The HumanMethylation 450K BeadChip was used to analyze genome-wide methylation in 24 PHP patients with parathyroid hormone resistance and 20 age- and gender-matched controls. Patients were previously diagnosed with GNAS-specific differentially methylated regions (DMRs) and include 6 patients with known STX16 deletion (PHP(Δstx16)) and 18 without deletion (PHP(neg)). The array demonstrated that PHP patients do not show DNA methylation differences at the whole-genome level. Unsupervised clustering of GNAS-specific DMRs divides PHP(Δstx16) versus PHP(neg) patients. Interestingly, in contrast to the notion that all PHP patients share methylation defects in the A/B DMR while only PHP(Δstx16) patients have normal NESP, GNAS-AS1 and XL methylation, we found a novel DMR (named GNAS-AS2) in the GNAS-AS1 region that is significantly different in both PHP(Δstx16) and PHP(neg), as validated by Sequenom EpiTYPER in a larger PHP cohort. The analysis of 58 DMRs revealed that 8/18 PHP(neg) and 1/6 PHP(Δstx16) patients have multi-locus methylation defects. Validation was performed for FANCC and SVOPL DMRs. This is the first genome-wide methylation study for PHP patients that confirmed that GNAS is the most significant DMR, and the presence of STX16 deletion divides PHP patients in two groups. Moreover, a novel GNAS-AS2 DMR affects all PHP patients, and PHP patients seem sensitive to multi-locus methylation defects.
Novel insights of dietary polyphenols and obesity
Wang, Shu; Moustaid-Moussa, Naima; Chen, Lixia; Mo, Huanbiao; Shastri, Anuradha; Su, Rui; Bapat, Priyanka; Kwun, InSook; Shen, Chwan-Li
2013-01-01
Prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here we evaluated the impact of commonly consumed polyphenols, including green tea catechins and epigallocatechin gallates, resveratrol, and curcumin, on obesity and obesity-related-inflammation. Cellular studies demonstrated that these dietary polyphenols reduce viability of adipocytes and proliferation of preadipocytes, suppress adipocyte differentiation and triglyceride accumulation, stimulate lipolysis and fatty acid β-oxidation, and reduce inflammation. Concomitantly, the polyphenols modulate signaling pathways including the AMP-activated protein kinase, peroxisome proliferator activated receptor γ, CCAAT/enhancer binding protein α, PPAR gamma activator 1-alpha, sirtuin 1, sterol regulatory element binding protein-1c, uncoupling proteins 1 and 2, and nuclear factor kappa B that regulate adipogenesis, antioxidant and anti-inflammatory responses. Animal studies strongly suggest that commonly consumed polyphenols described in this review have a pronounced effect on obesity as shown by lower body weight, fat mass, and triglycerides through enhancing energy expenditure and fat utilization, and modulating glucose hemostasis. Limited human studies have been conducted in this area, and are inconsistent about the anti-obesity impact of dietary polyphenols, probably due to the various study designs and lengths, variation among subjects (age, gender, ethnicity), chemical forms of the dietary polyphenols used and confounding factors such as other weight reducing agents. Future randomized controlled trials are warranted to reconcile the discrepancies between preclinical efficacies and inconclusive clinic outcomes of these polyphenols. PMID:24314860
Chen, Hsi-Hsien; Lan, Yi-Fan; Li, Hsiao-Fen; Cheng, Ching-Feng; Lai, Pei-Fang; Li, Wei-Hua; Lin, Heng
2016-01-01
Ischemia-reperfusion (I/R) induced acute kidney injury (AKI) is regulated by transcriptional factors and microRNAs (miRs). However, modulation of miRs by transcriptional factors has not been characterized in AKI. Here, we found that urinary miR-16 was 100-fold higher in AKI patients. MiR-16 was detected earlier than creatinine in mouse after I/R. Using TargetScan, the 3′UTR of B-cell lymphoma 2 (BCL-2) was found complementary to miR-16 to decrease the fluorescent reporter activity. Overexpression of miR-16 in mice significantly attenuated renal function and increased TUNEL activity in epithelium tubule cells. The CCAAT enhancer binding protein beta (C/EBP-β) increased the expression of miR-16 after I/R injury. The ChIP and luciferase promoter assay indicated that about −1.0 kb to −0.5 kb upstream of miR-16 genome promoter region containing C/EBP-β binding motif transcriptionally regulated miR-16 expression. Meanwhile, the level of pri-miR-16 was higher in mice infected with lentivirus containing C/EBP-β compared with wild-type (WT) mice and overexpression of C/EBP-β in the kidney of WT mice reduced kidney function, increased kidney apoptosis, and elevated urinary miR-16 level. Our results indicated that miR-16 was transactivated by C/EBP-β resulting in aggravated I/R induced AKI and that urinary miR-16 may serve as a potential biomarker for AKI. PMID:27297958
Berberine Suppresses Adipocyte Differentiation via Decreasing CREB Transcriptional Activity
Deng, Ruyuan; Wang, Ning; Zhang, Yuqing; Wang, Yao; Liu, Yun; Li, Fengying; Wang, Xiao; Zhou, Libin
2015-01-01
Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been demonstrated to lower blood glucose, blood lipid, and body weight in patients with type 2 diabetes mellitus. The anti-obesity effect of berberine has been attributed to its anti-adipogenic activity. However, the underlying molecular mechanism remains largely unknown. In the present study, we found that berberine significantly suppressed the expressions of CCAAT/enhancer-binding protein (C/EBP)α, peroxisome proliferators-activated receptor γ2 (PPARγ2), and other adipogenic genes in the process of adipogenesis. Berberine decreased cAMP-response element-binding protein (CREB) phosphorylation and C/EBPβ expression at the early stage of 3T3-L1 preadipocyte differentiation. In addition, CREB phosphorylation and C/EBPβ expression induced by 3-isobutyl-1-methylxanthine (IBMX) and forskolin were also attenuated by berberine. The binding activities of cAMP responsive element (CRE) stimulated by IBMX and forskolin were inhibited by berberine. The binding of phosphorylated CREB to the promoter of C/EBPβ was abrogated by berberine after the induction of preadipocyte differentiation. These results suggest that berberine blocks adipogenesis mainly via suppressing CREB activity, which leads to a decrease in C/EBPβ-triggered transcriptional cascades. PMID:25928058
Wang, Yun; Jiang, Qing
2012-01-01
Cytokines generated from macrophages contributes to pathogenesis of inflammation-associated diseases. Here we show that gamma-tocotrienol (γ-TE), a natural vitamin E form, inhibits lipopolysaccharide (LPS)-induced interleukin-6 (IL-6) production without affecting TNFα, IL-10 or cyclooxygenase-2 (COX-2) up-regulation in murine RAW267.4 macrophages. Mechanistic studies indicate that nuclear factor (NF)-κB, but not JNK, p38 or ERK MAP kinases, is important to IL-6 production and γ-TE treatment blocks NF-κB activation. In contrast, COX-2 appears to be regulated by p38 MAPK in RAW cells, but γ-TE has no effect on LPS-stimulated p38 phosphorylation. Despite necessary for IL-6, NF-κB activation by TNFα or other cytokines is not sufficient for IL-6 induction with exception of LPS. CCAAT-enhancer binding protein β (C/EBPβ) appears to be involved in IL-6 formation, because LPS induces C/EBPβ up-regulation, which parallels IL-6 production, and knockdown of C/EBPβ with siRNA results in diminished IL-6. LPS but not individual cytokines is capable of stimulating C/EBPβ and IL-6 in macrophages. Consistent with its dampening effect on IL-6, γ-TE blunts LPS-induced up-regulation of C/EBPβ without affecting C/EBPδ. γ-TE also decreases LPS-stimulated granulocyte-colony stimulating factor (G-CSF), a C/EBPβ target gene. Compared with RAW267.4 cells, γ-TE shows similar or stronger inhibitory effects on LPS-triggered activation of NF-κB, C/EPBβ and C/EBPδ, and more potently suppresses IL-6 and G-CSF in bone marrow-derived macrophages. Our study demonstrates that γ-TE has anti-inflammatory activities by inhibition of NF-κB and C/EBPs activation in macrophages. PMID:23246159
Pogribny, Igor P; Kutanzi, Kristy; Melnyk, Stepan; de Conti, Aline; Tryndyak, Volodymyr; Montgomery, Beverly; Pogribna, Marta; Muskhelishvili, Levan; Latendresse, John R; James, S Jill; Beland, Frederick A; Rusyn, Ivan
2013-06-01
Dysregulation of one-carbon metabolism-related metabolic processes is a major contributor to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). It is well established that genetic and gender-specific variations in one-carbon metabolism contribute to the vulnerability to NAFLD in humans. To examine the role of one-carbon metabolism dysregulation in the pathogenesis and individual susceptibility to NAFLD, we used a "population-based" mouse model where male mice from 7 inbred were fed a choline- and folate-deficient (CFD) diet for 12 wk. Strain-dependent down-regulation of several key one-carbon metabolism genes, including methionine adenosyltransferase 1α (Mat1a), cystathionine-β-synthase (Cbs), methylenetetrahydrofolate reductase (Mthfr), adenosyl-homocysteinase (Ahcy), and methylenetetrahydrofolate dehydrogenase 1 (Mthfd1), was observed. These changes were strongly associated with interstrain variability in liver injury (steatosis, necrosis, inflammation, and activation of fibrogenesis) and hyperhomocysteinemia. Mechanistically, the decreased expression of Mat1a, Ahcy, and Mthfd1 was linked to a reduced level and promoter binding of transcription factor CCAAT/enhancer binding protein β (CEBPβ), which directly regulates their transcription. The strain specificity of diet-induced dysregulation of one-carbon metabolism suggests that interstrain variation in the regulation of one-carbon metabolism may contribute to the differential vulnerability to NFLD and that correcting the imbalance may be considered as preventive and treatment strategies for NAFLD.
Wang, Zhi-Hao; Gong, Ke; Liu, Xia; Zhang, Zhentao; Sun, Xiaoou; Wei, Zheng Zachory; Yu, Shan Ping; Manfredsson, Fredric P; Sandoval, Ivette M; Johnson, Peter F; Jia, Jianping; Wang, Jian-Zhi; Ye, Keqiang
2018-05-03
Delta-secretase cleaves both APP and Tau to mediate the formation of amyloid plaques and neurofibrillary tangle in Alzheimer's disease (AD). However, how aging contributes to an increase in delta-secretase expression and AD pathologies remains unclear. Here we show that a CCAAT-enhancer-binding protein (C/EBPβ), an inflammation-regulated transcription factor, acts as a key age-dependent effector elevating both delta-secretase (AEP) and inflammatory cytokines expression in mediating pathogenesis in AD mouse models. We find that C/EBPβ regulates delta-secretase transcription and protein levels in an age-dependent manner. Overexpression of C/EBPβ in young 3xTg mice increases delta-secretase and accelerates the pathological features including cognitive dysfunctions, which is abolished by inactive AEP C189S. Conversely, depletion of C/EBPβ from old 3xTg or 5XFAD mice diminishes delta-secretase and reduces AD pathologies, leading to amelioration of cognitive impairment in these AD mouse models. Thus, our findings support that C/EBPβ plays a pivotal role in AD pathogenesis via increasing delta-secretase expression.
C/EBPβ LIP and c-Jun synergize to regulate expression of the murine progesterone receptor.
Wang, Weizhong; Do, Han Ngoc; Aupperlee, Mark D; Durairaj, Srinivasan; Flynn, Emily E; Miksicek, Richard J; Haslam, Sandra Z; Schwartz, Richard C
2018-06-02
CCAAT/enhancer binding protein β (C/EBPβ) is required for murine mammary ductal morphogenesis and alveologenesis. Progesterone is critical for proliferation and alveologenesis in adult mammary glands, and there is a similar requirement for progesterone receptor isoform B (PRB) in alveologenesis. We examined C/EBPβ regulation of PR expression. All three C/EBPβ isoforms, including typically inhibitory LIP, transactivated the PR promoter. LIP, particularly, strongly synergized with c-Jun to drive PR transcription. Endogenous C/EBPβ and c-Jun stimulated a PR promoter-reporter and these two factors showed promoter occupancy on the endogenous PR gene. Additionally, LIP overexpression elevated endogenous PR protein expression. In pregnancy, both PRB and the relative abundance of LIP among C/EBPβ isoforms increase. Consistent with a role in PRB expression, in vivo C/EBPβ and PR isoform A expression showed mutually exclusive localization in mammary epithelium, while C/EBPβ and PRB largely co-localized. We suggest a critical role for C/EBPβ, particularly LIP, in PRB expression. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Tang, K Q; Wang, Y N; Zan, L S; Yang, W C
2017-05-01
Growing evidence has revealed that microRNA are central elements in milk fat synthesis in mammary epithelial cells. A negative regulator of adipocyte fat synthesis, miR-27a has been reported to be involved in the regulation of milk fat synthesis in goat mammary epithelial cells; however, the regulatory role of miR-27a in bovine milk fat synthesis remains unclear. In the present study, primary bovine mammary epithelial cells (BMEC) were harvested from mid-lactation cows and cultured in Dulbecco's modified Eagle's medium/F-12 medium with 10% fetal bovine serum, 5 μg/mL of insulin, 1 μg/mL of hydrocortisone, 2 μg/mL of prolactin, 1 μg/mL of progesterone, 100 U/mL of penicillin, and 100 μg/mL of streptomycin. We found that the overexpression of miR-27a significantly suppressed lipid droplet formation and decreased the cellular triacylglycerol (TAG) levels, whereas inhibition of miR-27a resulted in a greater lipid droplet formation and TAG accumulation in BMEC. Meanwhile, overexpression of miR-27a inhibited mRNA expression of peroxisome proliferator-activated receptor gamma (PPARG), CCAAT/enhancer-binding protein beta (C/EBPβ), perilipin 2 (PLIN2), and fatty acid binding protein 3 (FABP3), whereas miR-27a downregulation increased PPARG, C/EBPβ, FABP3, and CCAAT enhancer binding protein alpha (C/EBPα) mRNA expression. Furthermore, Western blot analysis revealed the protein level of PPARG in miR-27a mimic and inhibitor transfection groups to be consistent with the mRNA expression response. Moreover, luciferase reporter assays verified that PPARG was the direct target of miR-27a. In summary, these results indicate that miR-27a has the ability to control TAG synthesis in BMEC via targeting PPARG, suggesting that miR-27a could potentially be used to improve beneficial milk components in dairy cows. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Experimental study on heat transfer performance of pulsating heat pipe with refrigerants
NASA Astrophysics Data System (ADS)
Wang, Xingyu; Jia, Li
2016-10-01
The effects of different refrigerants on heat transfer performance of pulsating heat pipe (PHP) are investigated experimentally. The working temperature of pulsating heat pipe is kept in the range of 20°C-50°C. The startup time of the pulsating heat pipe with refrigerants can be shorter than 4 min, when heating power is in the range of 10W?100W. The startup time decreases with heating power. Thermal resistances of PHP with filling ratio 20.55% were obviously larger than those with other filling ratios. Thermal resistance of the PHP with R134a is much smaller than that with R404A and R600a. It indicates that the heat transfer ability of R134a is better. In addition, a correlation to predict thermal resistance of PHP with refrigerants was suggested.
Energy Expenditure in Obese Children with Pseudohypoparathyroidism Type 1a
Shoemaker, Ashley H.; Lomenick, Jefferson P.; Saville, Benjamin R.; Wang, Wenli; Buchowski, Maciej S.; Cone, Roger D.
2012-01-01
Context Patients with pseudohypoparathyroidism type 1a (PHP-1a) develop early-onset obesity. The abnormality in energy expenditure and/or energy intake responsible for this weight gain is unknown. Objective The aim of this study was to evaluate energy expenditure in children with PHP-1a compared with obese controls. Patients We studied 6 obese females with PHP-1a and 17 obese female controls. Patients were recruited from a single academic center. Measurements Resting energy expenditure and thermogenic effect of a high fat meal were measured using whole room indirect calorimetry. Body composition was assessed using whole body dual energy x-ray absorptiometry. Fasting glucose, insulin and hemoglobin A1C were measured. Results Children with PHP-1a had decreased resting energy expenditure compared with obese controls (P <0.01). After adjustment for fat free mass, the PHP-1a group’s resting energy expenditure was 346.4 kcals/day less than obese controls (95% CI [−585.5 to −106.9], P <0.01). The thermogenic effect of food, expressed as percent increase in postprandial energy expenditure over resting energy expenditure, was lower in PHP-1a patients than obese controls but did not reach statistical significance (absolute reduction of 5.9%, 95% CI [−12.2% to 0.3%], P = 0.06). Conclusions Our data indicate that children with PHP-1a have decreased resting energy expenditure compared with obese controls and that may contribute to the development of obesity in these children. These patients may also have abnormal diet-induced thermogenesis in response to a high fat meal. Understanding the causes of obesity in PHP-1a may allow for targeted nutritional or pharmacologic treatments in the future. PMID:23229731
Salton, S R; Fischberg, D J; Dong, K W
1991-05-01
Nerve growth factor (NGF) plays a critical role in the development and survival of neurons in the peripheral nervous system. Following treatment with NGF but not epidermal growth factor, rat pheochromocytoma (PC12) cells undergo neural differentiation. We have cloned a nervous system-specific mRNA, NGF33.1, that is rapidly and relatively selectively induced by treatment of PC12 cells with NGF and basic fibroblast growth factor in comparison with epidermal growth factor. Analysis of the nucleic acid and predicted amino acid sequences of the NGF33.1 cDNA clone suggested that this clone corresponded to the NGF-inducible mRNA called VGF (A. Levi, J. D. Eldridge, and B. M. Paterson, Science 229:393-395, 1985; R. Possenti, J. D. Eldridge, B. M. Paterson, A. Grasso, and A. Levi, EMBO J. 8:2217-2223, 1989). We have used the NGF33.1 cDNA clone to isolate and characterize the VGF gene, and in this paper we report the complete sequence of the VGF gene, including 853 bases of 5' flank revealed TATAA and CCAAT elements, several GC boxes, and a consensus cyclic AMP response element-binding protein binding site. The VGF promoter contains sequences homologous to other NGF-inducible, neuronal promoters. We further show that VGF mRNA is induced in PC12 cells to a greater extent by depolarization and by phorbol-12-myristate-13-acetate treatment than by 8-bromo-cyclic AMP treatment. By Northern (RNA) and RNase protection analysis, VGF mRNA is detectable in embryonic and postnatal central and peripheral nervous tissues but not in a number of nonneural tissues. In the cascade of events which ultimately leads to the neural differentiation of NGF-treated PC12 cells, the VGF gene encodes the most rapidly and selectively regulated, nervous-system specific mRNA yet identified.
Haasis, Manuel Alexander; Ceria, Joyce Anne; Kulpeng, Wantanee; Teerawattananon, Yot; Alejandria, Marissa
2015-01-01
Objectives The objective of this study is to assess the value for money of introducing pneumococcal conjugate vaccines as part of the immunization program in a lower-middle income country, the Philippines, which is not eligible for GAVI support and lower vaccine prices. It also includes the newest clinical evidence evaluating the efficacy of PCV10, which is lacking in other previous studies. Methods A cost-utility analysis was conducted. A Markov simulation model was constructed to examine the costs and consequences of PCV10 and PCV13 against the current scenario of no PCV vaccination for a lifetime horizon. A health system perspective was employed to explore different funding schemes, which include universal or partial vaccination coverage subsidized by the government. Results were presented as incremental cost-effectiveness ratios (ICERs) in Philippine peso (Php) per QALY gained (1 USD = 44.20 Php). Probabilistic sensitivity analysis was performed to determine the impact of parameter uncertainty. Results With universal vaccination at a cost per dose of Php 624 for PCV10 and Php 700 for PCV13, both PCVs are cost-effective compared to no vaccination given the ceiling threshold of Php 120,000 per QALY gained, yielding ICERs of Php 68,182 and Php 54,510 for PCV10 and PCV13, respectively. Partial vaccination of 25% of the birth cohort resulted in significantly higher ICER values (Php 112,640 for PCV10 and Php 84,654 for PCV13) due to loss of herd protection. The budget impact analysis reveals that universal vaccination would cost Php 3.87 billion to 4.34 billion per annual, or 1.6 to 1.8 times the budget of the current national vaccination program. Conclusion The inclusion of PCV in the national immunization program is recommended. PCV13 achieved better value for money compared to PCV10. However, the affordability and sustainability of PCV implementation over the long-term should be considered by decision makers. PMID:26131961
Ying, Shibo; Dünnebier, Thomas; Si, Jing; Hamann, Ute
2013-01-01
UBC9 encodes a protein that conjugates small ubiquitin-related modifier (SUMO) to target proteins thereby changing their functions. Recently, it was noted that UBC9 expression and activity play a role in breast tumorigenesis and response to anticancer drugs. However, the underlying mechanism is poorly understood. To investigate the transcriptional regulation of the UBC9 gene, we identified and characterized its promoter and cis-elements. Promoter activity was tested using luciferase reporter assays. The binding of transcription factors to the promoter was detected by chromatin immunoprecipitation (ChIP), and their functional role was confirmed by siRNA knockdown. UBC9 mRNA and protein levels were measured by quantitative reverse transcription PCR and Western blot analysis, respectively. An increased expression of UBC9 mRNA and protein was found in MCF-7 breast cancer cells treated with 17β-estradiol (E2). Analysis of various deletion mutants revealed a 137 bp fragment upstream of the transcription initiation site to be sufficient for reporter gene transcription. Mutations of putative estrogen receptor α (ER-α) (one imperfect estrogen response element, ERE) and/or nuclear factor Y (NF-Y) binding sites (two CCAAT boxes) markedly reduced promoter activity. Similar results were obtained in ER-negative MDA-MB-231 cells except that the ERE mutation did not affect promoter activity. Additionally, promoter activity was stimulated upon E2 treatment and overexpression of ER-α or NF-YA in MCF-7 cells. ChIP confirmed direct binding of both transcription factors to the UBC9 promoter in vivo. Furthermore, UBC9 expression was diminished by ER-α and NF-Y siRNAs on the mRNA and protein levels. In conclusion, we identified the proximal UBC9 promoter and provided evidence that ER-α and NF-Y regulate UBC9 expression on the transcriptional level in response to E2 in MCF-7 cells. These findings may contribute to a better understanding of the regulation of UBC9 in ER-positive breast cancer and be useful for the development of cancer therapies targeting UBC9.
Lindow, Janet C; Dohrmann, Paul R; McHenry, Charles S
2015-07-03
Biophysical and structural studies have defined many of the interactions that occur between individual components or subassemblies of the bacterial replicase, DNA polymerase III holoenzyme (Pol III HE). Here, we extended our knowledge of residues and interactions that are important for the first step of the replicase reaction: the ATP-dependent formation of an initiation complex between the Pol III HE and primed DNA. We exploited a genetic selection using a dominant negative variant of the polymerase catalytic subunit that can effectively compete with wild-type Pol III α and form initiation complexes, but cannot elongate. Suppression of the dominant negative phenotype was achieved by secondary mutations that were ineffective in initiation complex formation. The corresponding proteins were purified and characterized. One class of mutant mapped to the PHP domain of Pol III α, ablating interaction with the ϵ proofreading subunit and distorting the polymerase active site in the adjacent polymerase domain. Another class of mutation, found near the C terminus, interfered with τ binding. A third class mapped within the known β-binding domain, decreasing interaction with the β2 processivity factor. Surprisingly, mutations within the β binding domain also ablated interaction with τ, suggesting a larger τ binding site than previously recognized. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Lee, Ok-Hwan; Seo, Min-Jung; Choi, Hyeon-Son; Lee, Boo-Yong
2012-03-01
Pycnogenol® is a group of flavonoids with antioxidant effects. Adipogenesis is the process of adipocyte differentiation. It causes the increase of lipids as well as ROS (reactive oxygen species). Lipid accumulation and ROS production were determined in 3 T3-L1 adipocyte, and the effect of Pycnogenol® was evaluated. Lipid accumulation was elevated in adipocyte treated with hydrogen peroxide, one of the ROS. Pycnogenol® showed an inhibitory effect on the lipid accumulation and ROS production during the adipogenesis. We also investigated the molecular events associated with ROS production and lipid accumulation. Our results showed that Pycnogenol® inhibited the mRNA expression of pro-oxidant enzymes, such as NOX4 (NADPH (nicotinamide adenine dinucleotide phosphate hydrogen) oxidase 4), and the NADPH-producing G6PDH (glucose-6-phosphate dehydrogenase) enzyme. In addition, Pycnogenol® suppressed the mRNA abundance of adipogenic transcription factors, PPAR-γ (peroxisome proliferator-activated receptor γ) and C/EBP-α (CCAAT/enhancer binding protein α), and their target gene, aP2 (adipocyte protein 2) responsible for fatty acid transportation. On the other hand, Pycnogenol® increased the abundance of antioxidant proteins such as Cu/Zn-SOD (copper-zinc superoxide dismutase), Mn-SOD (manganese superoxide dismutase), GPx (glutathione peroxidase) and GR (glutathione reductase). Our results suggest that Pycnogenol® inhibits lipid accumulation and ROS production by regulating adipogenic gene expression and pro-/antioxidant enzyme responses in adipocytes. Copyright © 2011 John Wiley & Sons, Ltd.
C/EBPδ deficiency sensitizes mice to ionizing radiation-induced hematopoietic and intestinal injury.
Pawar, Snehalata A; Shao, Lijian; Chang, Jianhui; Wang, Wenze; Pathak, Rupak; Zhu, Xiaoyan; Wang, Junru; Hendrickson, Howard; Boerma, Marjan; Sterneck, Esta; Zhou, Daohong; Hauer-Jensen, Martin
2014-01-01
Knowledge of the mechanisms involved in the radiation response is critical for developing interventions to mitigate radiation-induced injury to normal tissues. Exposure to radiation leads to increased oxidative stress, DNA-damage, genomic instability and inflammation. The transcription factor CCAAT/enhancer binding protein delta (Cebpd; C/EBPδ is implicated in regulation of these same processes, but its role in radiation response is not known. We investigated the role of C/EBPδ in radiation-induced hematopoietic and intestinal injury using a Cebpd knockout mouse model. Cebpd-/- mice showed increased lethality at 7.4 and 8.5 Gy total-body irradiation (TBI), compared to Cebpd+/+ mice. Two weeks after a 6 Gy dose of TBI, Cebpd-/- mice showed decreased recovery of white blood cells, neutrophils, platelets, myeloid cells and bone marrow mononuclear cells, decreased colony-forming ability of bone marrow progenitor cells, and increased apoptosis of hematopoietic progenitor and stem cells compared to Cebpd+/+ controls. Cebpd-/- mice exhibited a significant dose-dependent decrease in intestinal crypt survival and in plasma citrulline levels compared to Cebpd+/+ mice after exposure to radiation. This was accompanied by significantly decreased expression of γ-H2AX in Cebpd-/- intestinal crypts and villi at 1 h post-TBI, increased mitotic index at 24 h post-TBI, and increase in apoptosis in intestinal crypts and stromal cells of Cebpd-/- compared to Cebpd+/+ mice at 4 h post-irradiation. This study uncovers a novel biological function for C/EBPδ in promoting the response to radiation-induced DNA-damage and in protecting hematopoietic and intestinal tissues from radiation-induced injury.
Rebello, George; Ramesar, Rajkumar; Vorster, Alvera; Roberts, Lisa; Ehrenreich, Liezle; Oppon, Ekow; Gama, Dumisani; Bardien, Soraya; Greenberg, Jacquie; Bonapace, Giuseppe; Waheed, Abdul; Shah, Gul N.; Sly, William S.
2004-01-01
Genetic and physical mapping of the RP17 locus on 17q identified a 3.6-megabase candidate region that includes the gene encoding carbonic anhydrase IV (CA4), a glycosylphosphatidylinositol-anchored protein that is highly expressed in the choriocapillaris of the human eye. By sequencing candidate genes in this region, we identified a mutation that causes replacement of an arginine with a tryptophan (R14W) in the signal sequence of the CA4 gene at position -5 relative to the signal sequence cleavage site. This mutation was found to cosegregate with the disease phenotype in two large families and was not found in 36 unaffected family members or 100 controls. Expression of the mutant cDNA in COS-7 cells produced several findings, suggesting a mechanism by which the mutation can explain the autosomal dominant disease. In transfected COS-7 cells, the R14W mutation (i) reduced the steady-state level of carbonic anhydrase IV activity expressed by 28% due to a combination of decreased synthesis and accelerated turnover; (ii) led to up-regulation of immunoglobulin-binding protein, double-stranded RNA-regulated protein kinase-like ER kinase, and CCAAT/enhancer-binding protein homologous protein, markers of the unfolded protein response and endoplasmic reticulum stress; and (iii) induced apoptosis, as evidenced by annexin V binding and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling staining, in most cells expressing the mutant, but not the WT, protein. We suggest that a high level of expression of the mutant allele in the endothelial cells of the choriocapillaris leads to apoptosis, leading in turn to ischemia in the overlying retina and producing autosomal dominant retinitis pigmentosa. PMID:15090652
Raciti, Gregory Alexander; Fiory, Francesca; Campitelli, Michele; Desiderio, Antonella; Spinelli, Rosa; Longo, Michele; Nigro, Cecilia; Pepe, Giacomo; Sommella, Eduardo; Campiglia, Pietro; Formisano, Pietro; Beguinot, Francesco; Miele, Claudia
2018-01-01
Metabolic and/or endocrine dysfunction of the white adipose tissue (WAT) contribute to the development of metabolic disorders, such as Type 2 Diabetes (T2D). Therefore, the identification of products able to improve adipose tissue function represents a valuable strategy for the prevention and/or treatment of T2D. In the current study, we investigated the potential effects of dry extracts obtained from Citrus aurantium L. fruit juice (CAde) on the regulation of 3T3-L1 cells adipocyte differentiation and function in vitro. We found that CAde enhances terminal adipocyte differentiation of 3T3-L1 cells raising the expression of CCAAT/enhancer binding protein beta (C/Ebpβ), peroxisome proliferator activated receptor gamma (Pparγ), glucose transporter type 4 (Glut4) and fatty acid binding protein 4 (Fabp4). CAde improves insulin-induced glucose uptake of 3T3-L1 adipocytes, as well. A focused analysis of the phases occurring in the pre-adipocytes differentiation to mature adipocytes furthermore revealed that CAde promotes the early differentiation stage by up-regulating C/ebpβ expression at 2, 4 and 8 h post the adipogenic induction and anticipating the 3T3-L1 cell cycle entry and progression during mitotic clonal expansion (MCE). These findings provide evidence that the exposure to CAde enhances in vitro fat cell differentiation of pre-adipocytes and functional capacity of mature adipocytes, and pave the way to the development of products derived from Citrus aurantium L. fruit juice, which may improve WAT functional capacity and may be effective for the prevention and/or treatment of T2D.
Koc, I; Vatansever, R; Ozyigit, I I; Filiz, E
2015-10-01
Cold stress, as chilling (<20 °C) or freezing (<0 °C), is one of the frequently exposed stresses in cultivated plants like potato. Under cold stress, plants differentially modulate their gene expression to develop a cold tolerance/acclimation. In the present study, we aimed to identify the overall gene expression profile of chilling-stressed (+4 °C) potato at four time points (4, 8, 12, and 48 h), with a particular emphasis on the genes related with transcription factors (TFs), phytohormones, lipid metabolism, signaling pathway, and photosynthesis. A total of 3504 differentially expressed genes (DEGs) were identified at four time points of chilling-induced potato, of which 1397 were found to be up-regulated while 2107 were down-regulated. Heatmap showed that genes were mainly up-regulated at 4-, 8-, and 12-h time points; however, at 48-h time point, they inclined to down-regulate. Seventy five up-regulated TF genes were identified from 37 different families/groups, including mainly from bHLH, WRKY, CCAAT-binding, HAP3, and bZIP families. Protein kinases and calcium were major signaling molecules in cold-induced signaling pathway. A collaborated regulation of phytohormones was observed in chilling-stressed potato. Lipid metabolisms were regulated in a way, highly probably, to change membrane composition to avoid cold damage and render in signaling. A down-regulated gene expression profile was observed in photosynthesis pathway, probably resulting from chilling-induced reduced enzyme activity or light-triggered ROSs damage. The findings of this study will be a valuable theoretical knowledge in terms of understanding the chilling-induced tolerance mechanisms in cultivated potato plants as well as in other Solanum species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Biaoyang; Nasir, J.; Kalchman, M.A.
1995-02-10
We have previously cloned and characterized the murine homologue of the Huntington disease (HD) gene and shown that it maps to mouse chromosome 5 within a region of conserved synteny with human chromosome 4p16.3. Here we present a detailed comparison of the sequence of the putative promoter and the organization of the 5{prime} genomic region of the murine (Hdh) and human HD genes encompassing the first five exons. We show that in this region these two genes share identical exon boundaries, but have different-size introns. Two dinucleotide (CT) and one trinucleotide intronic polymorphism in Hdh and an intronic CA polymorphismmore » in the HD gene were identified. Comparison of 940-bp sequence 5{prime} to the putative translation start site reveals a highly conserved region (78.8% nucleotide identity) between Hdh and the HD gene from nucleotide -56 to -206 (of Hdh). Neither Hdh nor the HD gene have typical TATA or CCAAT elements, but both show one putative AP2 binding site and numerous potential Sp1 binding sites. The high sequence identity between Hdh and the HD gene for approximately 200 bp 5{prime} to the putative translation start site indicates that these sequences may play a role in regulating expression of the Huntington disease gene. 30 refs., 4 figs., 2 tabs.« less
Dexras1 links glucocorticoids to insulin-like growth factor-1 signaling in adipogenesis
Kim, Hyo Jung; Cha, Jiyoung Y.; Seok, Jo Woon; Choi, Yoonjeong; Yoon, Bo Kyung; Choi, Hyeonjin; Yu, Jung Hwan; Song, Su Jin; Kim, Ara; Lee, Hyemin; Kim, Daeun; Han, Ji Yoon; Kim, Jae-woo
2016-01-01
Glucocorticoids are associated with obesity, but the underlying mechanism by which they function remains poorly understood. Previously, we showed that small G protein Dexras1 is expressed by glucocorticoids and leads to adipocyte differentiation. In this study, we explored the mechanism by which Dexras1 mediates adipogenesis and show a link to the insulin-like growth factor-1 (IGF-1) signaling pathway. Without Dexras1, the activation of MAPK and subsequent phosphorylation of CCAAT/enhancer binding protein β (C/EBPβ) is abolished, thereby inhibiting mitotic clonal expansion and further adipocyte differentiation. Dexras1 translocates to the plasma membrane upon insulin or IGF-1 treatment, for which the unique C-terminal domain (amino acids 223–276) is essential. Dexras1-dependent MAPK activation is selectively involved in the IGF-1 signaling, because another Ras protein, H-ras localized to the plasma membrane independently of insulin treatment. Moreover, neither epidermal growth factor nor other cell types shows Dexras1-dependent MAPK activation, indicating the importance of Dexras1 in IGF-1 signaling in adipogenesis. Dexras1 interacts with Shc and Raf, indicating that Dexras1-induced activation of MAPK is largely dependent on the Shc-Grb2-Raf complex. These results suggest that Dexras1 is a critical mediator of the IGF-1 signal to activate MAPK, linking glucocorticoid signaling to IGF-1 signaling in adipogenesis. PMID:27345868
Bouraoui, L; Gutiérrez, J; Navarro, I
2008-09-01
Here, we describe optimal conditions for the culture of rainbow trout (Oncorhynchus mykiss) pre-adipocytes obtained from adipose tissue and their differentiation into mature adipocytes, in order to study the endocrine control of adipogenesis. Pre-adipocytes were isolated by collagenase digestion and cultured on laminin or 1% gelatin substrate. The expression of proliferating cell nuclear antigen was used as a marker of cell proliferation on various days of culture. Insulin growth factor-I stimulated cell proliferation especially on days 5 and 7 of culture. Tumor necrosis factor alpha (TNFalpha) slightly enhanced cell proliferation only at a low dose. We verified the differentiation of cells grown in specific medium into mature adipocytes by oil red O (ORO) staining. Quantification of ORO showed an increase in triglycerides throughout culture. Immunofluorescence staining of cells at day 11 revealed the expression of CCAAT/enhancer-binding protein and peroxisome proliferator-activator receptor gamma, suggesting that these transcriptional factors are involved in adipocyte differentiation in trout. We also examined the effect of TNFalpha on the differentiation of these adipocytes in primary culture. TNFalpha inhibited the differentiation of these cells, as indicated by a decrease in glycerol-3-phosphate dehydrogenase activity, an established marker of adipocyte differentiation. In conclusion, the culture system described here for trout pre-adipocytes is a powerful tool to study the endocrine regulation of adipogenesis in this species.
NASA Astrophysics Data System (ADS)
Siegel, Amanda P.; Hays, Nicole M.; Day, Richard N.
2012-03-01
The discovery and engineering of novel fluorescent proteins (FPs) from diverse organisms is yielding fluorophores with exceptional characteristics for live-cell imaging. In particular, the development of FPs for Förster resonance energy transfer (FRET) microscopy and fluorescence fluctuation spectroscopy (FFS) provide important tools for monitoring dynamic protein interactions inside living cells. Fluorescence lifetime imaging microscopy (FLIM) quantitatively maps changes in the spatial distribution of donor FP lifetimes that result from FRET with acceptor FPs. FFS probes dynamic protein associations through its capacity to monitor localized protein diffusion. Here, we use FRET-FLIM combined with FFS in living cells to investigate changes in protein mobility due to protein-protein interactions involving transcription factors and chromatin modifying proteins that function in anterior pituitary gene regulation. The heterochromatin protein 1 alpha (HP1α) plays a key role in the establishment and maintenance of heterochromatin through its interactions with histone methyltransferases. Recent studies, however, also highlight the importance of HP1α as a positive regulator of active transcription in euchromatin. Intriguingly, we observed that the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) interacts with HP1α in regions of pericentromeric heterochromatin in mouse pituitary cells. These observations prompted us to investigate the relationship between HP1α dynamic interactions in pituitary specific gene regulation.
Oikawa, Naoki; Nobushi, Yasuhito; Wada, Taira; Sonoda, Kumiko; Okazaki, Yuzo; Tsutsumi, Shigetoshi; Park, Yong Kun; Kurokawa, Masahiko; Shimba, Shigeki; Yasukawa, Ken
2016-07-01
As obesity is a global health concern the demand for anti-obesity drugs is high. In this study, we investigated the anti-obesity effect of the dried branches and leaves of murta (Myrceugenia euosma Legrand, Myrtaceae). A methanol extract of the dried branches and leaves of murta inhibited adipogenesis in 3T3-L1 cells. Three known flavanones-cryptostrobin (1), pinocembrin (4), and 5,7-dihydroxy-6,8-dimethylflavanone (6), and three chalcones-2',6'-dihydroxy-3'-methyl-4'-methoxychalcone (2), pinostrobin chalcone (3), and 2',6'-dihydroxy-4'-methoxy-3',5'-dimethylchalcone (5) were isolated from the active fraction. Structures of these compounds were identified using various spectral data. Each of these compounds also inhibited adipogenesis in 3T3-L1 cells. In particular, compound 3 was a more potent inhibitor of triglyceride accumulation than the positive control berberine. Gene expression studies revealed that treatment of 3T3-L1 cells with 3 lowers the expression levels of CCAAT/enhancer-binding protein α and peroxisome proliferator activator γ2 during adipogenesis without affecting cell viability. Treatment of 3T3-L1 cells with 3 reduced the expression levels of mRNAs encoding sterol regulatory element-binding protein 1c and several lipogenic enzymes, including fatty acid synthase and stearoyl CoA desaturase-1. These results indicate that the methanol extract and compounds isolated from the dried branches and leaves of murta exert their anti-obesity effects through the inhibition of adipogenesis.
Liu, Liangming; Wu, Huiling; Zang, JiaTao; Yang, Guangming; Zhu, Yu; Wu, Yue; Chen, Xiangyun; Lan, Dan; Li, Tao
2016-08-01
Sepsis and septic shock are the common complications in ICUs. Vital organ function disorder contributes a critical role in high mortality after severe sepsis or septic shock, in which endoplasmic reticulum stress plays an important role. Whether anti-endoplasmic reticulum stress with 4-phenylbutyric acid is beneficial to sepsis and the underlying mechanisms are not known. Laboratory investigation. State Key Laboratory of Trauma, Burns and Combined Injury. Sprague-Dawley rats. Using cecal ligation and puncture-induced septic shock rats, lipopolysaccharide-treated vascular smooth muscle cells, and cardiomyocytes, effects of 4-phenylbutyric acid on vital organ function and the relationship with endoplasmic reticulum stress and endoplasmic reticulum stress-mediated inflammation, apoptosis, and oxidative stress were observed. Conventional treatment, including fluid resuscitation, vasopressin, and antibiotic, only slightly improved the hemodynamic variable, such as mean arterial blood pressure and cardiac output, and slightly improved the vital organ function and the animal survival of septic shock rats. Supplementation of 4-phenylbutyric acid (5 mg/kg; anti-endoplasmic reticulum stress), especially administered at early stage, significantly improved the hemodynamic variables, vital organ function, such as liver, renal, and intestinal barrier function, and animal survival in septic shock rats. 4-Phenylbutyric acid application inhibited the endoplasmic reticulum stress and endoplasmic reticulum stress-related proteins, such as CCAAT/enhancer-binding protein homologous protein in vital organs, such as heart and superior mesenteric artery after severe sepsis. Further studies showed that 4-phenylbutyric acid inhibited endoplasmic reticulum stress-mediated cytokine release, apoptosis, and oxidative stress via inhibition of nuclear factor-κB, caspase-3 and caspase-9, and increasing glutathione peroxidase and superoxide dismutase expression, respectively. Anti-endoplasmic reticulum stress with 4-phenylbutyric acid is beneficial to septic shock. This beneficial effect of 4-phenylbutyric acid is closely related to the inhibition of endoplasmic reticulum stress-mediated oxidative stress, apoptosis, and cytokine release. This finding provides a potential therapeutic measure for clinical critical conditions, such as severe sepsis.
Kim, Jonggun; Sun, Quancai; Yue, Yiren; Yoon, Kyong Sup; Whang, Kwang-Youn; Marshall Clark, J; Park, Yeonhwa
2016-07-01
4,4'-Dichlorodiphenyltrichloroethane (DDT), a chlorinated hydrocarbon insecticide, was extensively used in the 1940s and 1950s. DDT is mainly metabolically converted into 4,4'-dichlorodiphenyldichloroethylene (DDE). Even though most countries banned DDT in the 1970s, due to the highly lipophilic nature and very stable characteristics, DDT and its metabolites are present ubiquitously in the environment, including food. Recently, there are publications on relationships between exposure to insecticides, including DDT and DDE, and weight gain and altered glucose homeostasis. However, there are limited reports regarding DDT or DDE and adipogenesis, thus we investigated effects of DDT and DDE on adipogenesis using 3T3-L1 adipocytes. Treatment of DDT or DDE resulted in increased lipid accumulation accompanied by increased expression of CCAAT/enhancer-binding protein α (C/EBPα), peroxisome-proliferator activated receptor-γ (PPARγ), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), adipose triglyceride lipase, and leptin. Moreover, treatment of DDT or DDE increased protein levels of C/EBPα, PPARγ, AMP-activated protein kinase-α (AMPKα), and ACC, while significant decrease of phosphorylated forms of AMPKα and ACC were observed. These finding suggest that increased lipid accumulation caused by DDT and DDE may mediate AMPKα pathway in 3T3-L1 adipocytes. Copyright © 2016 Elsevier B.V. All rights reserved.
The effect of total blood exchange with PHP solution on cardiac xenotransplantation.
Liu, H; Agishi, T; Suga, H; Hayasaka, Y; Teraoka, S; Ota, K
1995-04-01
Prevention of hyperacute rejection is a difficult and unsolved problem in xenotransplantation. Natural antibodies and complement activation have been known to play an important role in the xenotransplantation between discordant species pairs. In the present study, total blood exchange (TBE) was performed with pyridoxalated-hemoglobin-polyoxyethylene conjugate (PHP) solution (Ajinomoto Co., Inc., Kawasaki, Japan) before cardiac xenotransplantation in order to remove the immunoglobulins and prolong xenograft survival time. Guinea pigs and rats were used as the discordant species combination for donor and recipient. Two groups were established: Group 1, untreated control (n = 8) and Group 2, TBT with PHP solution (n = 8). The exchange blood transfusion was carried out at the rate of 15-20 ml/h utilizing PHP solution using a blood pump. After the blood exchange was processed, hematocrit (Ht) levels dropped to 4 or 5%, and a cardiac xenotransplantation was performed within 24 h. The levels of serum IgA, IgM, and IgG were decreased to less than 25, 25, and 10% of the base line, respectively, after blood exchange. A mean xenograft survival time in Group 2 was prolonged to 472 +/- 74 min and to 10.4 +/- 1.8 min in Group 1 (p < 0.01). A titer of the anti-guinea pig lymphocytotoxic antibody in rat serum was decreased to almost nil. The data from this study suggest that total blood exchange with PHP solution may be useful in preoperative removal of xenograft antibodies in xenotransplantation.
Zheng, Ruifang; Wang, Xuening; Studzinski, George P.
2015-01-01
Myogenic enhancer factor2 (Mef2) consists of a family of transcription factors involved in morphogenesis of skeletal, cardiac and smooth muscle cells. Among the four isoforms (Mef2A, 2B, 2C, and 2D), Mef2C was also found to play important roles in hematopoiesis. At myeloid progenitor level, Mef2C expression favors monocytic differentiation. Previous studies from our laboratory demonstrated that ERK5 was activated in 1,25-dihydroxyvitamin D3 (1,25D)-induced monocytic differentiation in AML cells and ERK5 activation was accompanied by increased Mef2C phosphorylation. We therefore examined the role of Mef2C in 1,25D-induced monocytic differentiation in AML cell lines (HL60, U937 and THP1) and found that knockdown of Mef2C with small interfering RNA (siRNA) significantly decreases the expression of the monocytic marker, CD14, without affecting the expression of the general myeloid marker, CD11b. CCAAT/Enhancer-binding protein (C/EBP) β, which can bind to CD14 promoter and increase its transcription, has been shown to be the downstream effector of 1,25D-induced monocytic differentiation in AML cells. When Mef2C was knocked down, expression of C/EBPβ was reduced at both mRNA and protein levels. The protein expression levels of cell cycle regulators, p27Kip1 and cyclin D1, were not affected by Mef2C knockdown, nor the monopoiesis related transcription factor, ATF2 (Activating Transcription Factor 2). Thus, we conclude that 1,25D-induced monocytic differentiation, and CD14 expression in particular, is mediated through activation of ERK5-Mef2C-C/EBPβ signaling pathway, and that Mef2C does not seem to modulate cell cycle progression. PMID:25448741
Lippai, Dora; Kodys, Karen; Catalano, Donna; Iracheta-Vellve, Arvin; Szabo, Gyongyi
2015-01-01
Background & Aim MicroRNAs (miRs) regulate hepatic steatosis, inflammation and fibrosis. Fibrosis is the consequence of chronic tissue damage and inflammation. We hypothesized that deficiency of miR-155, a master regulator of inflammation, attenuates steatohepatitis and fibrosis. Methods Wild type (WT) and miR-155-deficient (KO) mice were fed methionine-choline-deficient (MCD) or -supplemented (MCS) control diet for 5 weeks. Liver injury, inflammation, steatosis and fibrosis were assessed. Results MCD diet resulted in steatohepatitis and increased miR-155 expression in total liver, hepatocytes and Kupffer cells. Steatosis and expression of genes involved in fatty acid metabolism were attenuated in miR-155 KO mice after MCD feeding. In contrast, miR-155 deficiency failed to attenuate inflammatory cell infiltration, nuclear factor κ beta (NF-κB) activation and enhanced the expression of the pro-inflammatory cytokines tumor necrosis factor alpha (TNFα) and monocyte chemoattractant protein-1 (MCP1) in MCD diet-fed mice. We found a significant attenuation of apoptosis (cleaved caspase-3) and reduction in collagen and α smooth muscle actin (αSMA) levels in miR-155 KO mice compared to WTs on MCD diet. In addition, we found attenuation of platelet derived growth factor (PDGF), a pro-fibrotic cytokine; SMAD family member 3 (Smad3), a protein involved in transforming growth factor-β (TGFβ) signal transduction and vimentin, a mesenchymal marker and indirect indicator of epithelial-to-mesenchymal transition (EMT) in miR-155 KO mice. Nuclear binding of CCAAT enhancer binding protein β (C/EBPβ) a miR-155 target involved in EMT was significantly increased in miR-155 KO compared to WT mice. Conclusions Our novel data demonstrate that miR-155 deficiency can reduce steatosis and fibrosis without decreasing inflammation in steatohepatitis. PMID:26042593
Liu, Cuimei; Jia, Wei; Li, Tao; Hua, Zhendong; Qian, Zhenhua
2017-08-01
Clinical and forensic toxicology laboratories are continuously confronted by analytical challenges when dealing with the new psychoactive substances (NPS) phenomenon. In this study, the analytical characterization of nine synthetic cathinones is described: 2-(ethylamino)-1-phenylhexan-1-one (N-ethylhexedrone 1), 1-(4-chlorophenyl)-2-(methylamino)pentan-1-one (4-Cl-pentedrone 2), 1-(4-chlorophenyl)-2-(ethylamino)pentan-1-one (4-Cl-α-EAPP 3), 1-(3,4-methylenedioxyphenyl)-2-propylaminopropan-1-one (propylone 4), 1-(3,4-methylenedioxyphenyl)-2-ethylaminopentan-1-one (N-ethylnorpentylone 5), 1-(6-methoxy-3,4-methylenedioxyphenyl)-2-methylaminopropan-1-one (6-MeO-bk-MDMA 6), 4-methyl-1-phenyl-2-(pyrrolidin-1-yl)pentan-1-one (α-PiHP 7), 1-(4-chlorophenyl)-2-(pyrrolidin-1-yl)hexan-1-one (4-Cl-α-PHP 8), and 1-(4-fluorophenyl)-2-(pyrrolidin-1-yl)hexan-1-one (4-F-α-PHP 9). The identification was based on ultra-high-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UHPLC-QTOF-MS), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) spectroscopy. The mass-spectral fragmentations of these compounds following collision-induced dissociation (CID) and electron ionization (EI) were studied to assist forensic laboratories in identifying these compounds or other substances with similar structure in their case work. To our knowledge, no analytical data about the compounds 1-4, 7, and 8 have appeared until now, making this the first report on these compounds. The GC-MS data of 5, 6 and 9 has been reported, but this study added the LC-MS, Fourier Transform Infrared (FTIR) and NMR data for additional characterization. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Hennig, D; Müller, S; Wichmann, C; Drube, S; Pietschmann, K; Pelzl, L; Grez, M; Bug, G; Heinzel, T; Krämer, O H
2015-01-20
Transcriptional repression is a key mechanism driving leukaemogenesis. In acute promyelocytic leukaemia (APL), the fusion protein promyelocytic leukaemia-retinoic acid receptor-α fusion (PML-RARα) recruits transcriptional repressors to myeloid differentiation genes. All-trans-retinoic acid (ATRA) induces the proteasomal degradation of PML-RARα and granulocytic differentiation. Histone deacetylases (HDACs) fall into four classes (I-IV) and contribute to the transcription block caused by PML-RARα. Immunoblot, flow cytometry, and May-Grünwald-Giemsa staining were used to analyze differentiation and induction of apoptosis. A PML-RARα- and ATRA-dependent differentiation programme induces granulocytic maturation associated with an accumulation of the myeloid transcription factor CCAAT/enhancer binding protein (C/EBP)ɛ and of the surface protein CD11b. While this process protects APL cells from inhibitors of class I HDAC activity, inhibition of all Zinc-dependent HDACs (classes I, II, and IV) with the pan-HDACi (histone deacetylase inhibitor(s)) LBH589 induces apoptosis of immature and differentiated APL cells. LBH589 can eliminate C/EBPɛ and the mitochondrial apoptosis regulator B-cell lymphoma (BCL)-xL in immature and differentiated NB4 cells. Thus, BCL-xL and C/EBPɛ are newly identified molecular markers for the efficacy of HDACi against APL cells. Our results could explain the therapeutic limitations occurring with ATRA and class I HDACi combinations. Pro-apoptotic effects caused by pan-HDAC inhibition are not blunted by ATRA-induced differentiation and may provide a clinically interesting alternative.
Choi, Hee Young; Lee, Ji Eun; Lee, Ji Woong; Park, Hyun Jun; Lee, Ji Eun; Jung, Jae Ho
2012-04-01
To investigate the effect of prostaglandin F2α (PGF2α), latanoprost, travoprost, bimatoprost, and tafluprost on human orbital preadipocyte differentiation and intracellular lipid storage, and to reveal the potential mechanisms by which topical prostaglandin analogs induce orbital fat volume reduction and cause deep superior sulcus syndrome. Human orbital adipose precursors were treated in vitro for 24 h (day 1) with PGF2α, latanoprost, travoprost, bimatoprost, and tafluprost in their commercial formulations (1:100 dilution). Expressions of adipogenic transcription factor, peroxisome proliferator-activated receptor-gamma (PPARγ), and CCAAT-enhancer-binding protein α (C/EBPα) were determined by real-time reverse transcription-polymerase chain reaction (RT-PCR) at day 7. At 14 days, cells were stained with oil red O, intracellular lipid accumulation was evaluated by lipid absorbance, and adipocyte expression marker [Lipoprotein lipase (LPL)] was determined by real-time RT-PCR. Our results showed that PGF2α and topical prostaglandin analogs down-regulated the expression of PPARγ and C/EBPα, and inhibited accumulation of intra-cytoplasmic lipid droplets and expression of LPL compared with the untreated control. Comparison between the 4 drugs showed that latanoprost had the weakest antiadipogenic effect, and bimatoprost induced the most significant reduction of adipogenesis. Latanoprost, travoprost, bimatoprost, and tafluprost inhibited human preadipocyte differentiation and intracellular lipid accumulation. Morphologic and metabolic changes in orbital adipocytes caused by PGF2α analogs are a possible pathophysiologic explanation of superior eyelid deepening in patients with glaucoma.
Abbott, Andrea M; Doepker, Matthew P; Kim, Youngchul; Perez, Matthew C; Gandle, Cassandra; Thomas, Kerry L; Choi, Junsung; Shridhar, Ravi; Zager, Jonathan S
2017-01-04
Regional therapy for metastatic melanoma to the liver represents an alternative to systemic therapy. Hepatic progression-free survival (HPFS), progression-free survival (PFS), and overall survival (OS) were evaluated. A retrospective review of patients with liver metastases from cutaneous or uveal melanoma treated with yttrium-90 (Y90), chemoembolization (CE), or percutaneous hepatic perfusion (PHP) was conducted. Thirty patients (6 Y90, 10 PHP, 12 CE, 1 PHP then Y90, 1 CE then PHP) were included. Multivariate analysis showed improved HPFS for PHP versus Y90 (P=0.004), PHP versus CE (P=0.02) but not for CE versus Y90. PFS was also significantly different: Y90 (54 d), CE (52 d), PHP (245 d), P=0.03. PHP treatment and lower tumor burden were significant predictors of prolonged PFS on multivariate analysis. Median OS from time of treatment was longest, but not significant, for PHP at 608 days versus Y90 (295 d) and CE (265 d), P=0.24. Only PHP treatment versus Y90 and lower tumor burden had improved OS on multivariate analysis (P=0.03, 0.03, respectively). HPFS and PFS were significantly prolonged in patients treated with PHP versus CE or Y90. Median OS in PHP patients was over double that seen in Y90 or CE patients but was significant only between PHP and Y90.
Zhang, Lili; Zhang, Huiying; Lv, Minli; Jia, Jiantao; Fan, Yimin; Tian, Xiaoxia; Li, Xujiong; Li, Baohong; Ji, Jingquan; Wang, Limin; Zhao, Zhongfu; Han, Dewu; Ji, Cheng
2015-01-01
Aims: This study was to investigate the role and underlying mechanism of 78 kD glucose-regulated protein (GRP78) in cardiomyocyte apoptosis in a rat model of liver cirrhosis. Methods: A rat model of liver cirrhosis was established with multiple pathogenic factors. A total of 42 male SD rats were randomly divided into the liver cirrhosis group and control group. Cardiac structure analysis was performed to assess alterations in cardiac structure. Cardiomyocytes apoptosis was detected by TdT-mediated dUTP nick end labeling method. Expression of GRP78, CCAAT/enhancer-binding protein homologous protein (CHOP), caspase-12, nuclear factor kappa-light-chain-enhancer of activated B cells p65 subunit (NF-κB p65) and B cell lymphoma-2 (Bcl-2) was detected by immunohistochemical staining. Results: The ratios of left ventricular wall thickness to heart weight and heart weight to body weight were significantly increased with the progression of liver cirrhosis (P < 0.05). Apoptosis index of cardiomyocytes was significantly increased with the progression of liver cirrhosis (P < 0.05). The expression levels of GRP78, CHOP and caspase-12 were significantly increased in the progression of liver cirrhosis (P < 0.05). The expression levels of NF-κB p65 and Bcl-2 were highest in the 4-wk liver cirrhosis, and they were decreased in the 6-wk and 8-wk in the progression of liver cirrhosis. GRP78 expression levels were positively correlated with apoptosis index, CHOP and caspase-12 expression levels (P < 0.05). CHOP expression levels were negatively correlated with NF-κB p65 and Bcl-2 expression levels (P < 0.05). Conclusion: Increased expression of GRP78 promotes cardiomyocyte apoptosis in rats with cirrhotic cardiomyopathy. PMID:26464674
Xue, Peng; Li, Bei; Tan, Jun; An, Ying; Jin, Yan; Wang, Qintao
2015-09-01
To determine the activity of endoplasmic reticulum stress (ERS) and its effect on osteogenic differentiation of periodontal ligament stem cells (PDLSC) in inflammatory microenvironment. PDLSC were obtained from the primary culture of the human tooth and cloned with limited diluted method. Real-time reverse transcription (RT)-PCR was used to examine the different expression of thapsigargin (TG) treated PDLSC and lipopolysaccharide (LPS) treated PDLSC. Real-time RT-PCR, alizarin red staining and cetyl pyridine chloride quantitative analyze were used to examine the osteogenic differentiation of PDLSC, TG + PDLSC, LPS + PDLSC and LPS + PDLSC + 4-PBA. Protein kinase receptor like endoplasmic reticulum kinase (PERK), glucose regulated protein 78 (GRP78), transcription activation factor 4(ATF4), CCAAT/enhancer-binding protein-homologous protein (CHOP) mRNA expression in group PDLSC + TG in 6 h were respectively 1.49 ± 0.24, 2.77 ± 0.60, 1.75 ± 0.16, 2.16 ± 0.32, which were all greater than that in group PDLSC (P < 0.05). PERK, CHOP mRNA expression reached the peak at 6 h (1.76 ± 0.08, 2.31 ± 0.17) and were greater than group PDLSC (P < 0.05). ERS could suppress osteogenic differentiation of TG + PDLSC and LPS + PDLSC. The runt-related transcription factor-2 (RUNX2), alkaline phosphatase (ALP), osteocalcin (OCN) mRNA expression of group TG + PDLSC was respectively 0.73 ± 0.06, 0.01 ± 0.00, 0.20 ± 0.06 (P < 0.05). The RUNX2, ALP, OCN mRNA expression of group LPS + PDLSC was respectively 0.80 ± 0.06, 0.48 ± 0.05, 0.29 ± 0.04 (P < 0.05). The RUNX2, ALP, OCN mRNA expression of group PDLSC + TG + 4-PBA was respectively 1.10 ± 0.09, 0.74 ± 0.05, 0.67 ± 0.13, which were greater higher than that of group LPS + PDLSC (P < 0.05). ERS was activated in PDLSC and suppressed osteogenic differentiation of PDLSC, which can simulate inflammatory microenvironment in vitro. This effect can be recovered by using ERS inhibitor 4-PBA.
Lee, Ji-Hye; Go, Younghoon; Lee, Bonggi; Hwang, Youn-Hwan; Park, Kwang Il; Cho, Won-Kyung; Ma, Jin Yeul
2018-08-10
Gleditsia sinensis Lam. (G. sinensis) has been used in Oriental medicine for tumor, thrombosis, inflammation-related disease, and obesity. The pharmacological inhibitory effects of fruits of G. sinensis (GFE) on hyperlipidemia have been reported, but its inhibitory effects on adipogenesis and underlying mechanisms have not been elucidated. Herein we evaluated the anti-adipogenic effects of GFE and described the underlying mechanisms. The effects of ethanol extracts of GFE on adipocyte differentiation were examined in 3T3-L1 cells using biochemical and molecular analyses. During the differentiation of 3T3-L1 cells, GFE significantly reduced lipid accumulation and downregulated master adipogenic transcription factors, including CCAAT/enhancer-binding protein-α and peroxisome proliferator-activated receptor-γ, at mRNA and protein levels. These changes led to the suppression of several adipogenic-specific genes and proteins, including fatty acid synthase, sterol regulatory element-binding protein 1, stearoyl-CoA desaturase-1, and acetyl CoA carboxylase. However, the inhibitory effects of GFE on lipogenesis were only shown when GFE is treated in the early stage of adipogenesis within the first two days of differentiation. As a potential mechanism, during the early stages of differentiation, GFE inhibited cell proliferation by a decrease in the expression of DNA synthesis-related proteins and increased p27 expression and suppressed signal transducer and activator of transcription 3 (STAT3) activation induced in a differentiation medium. GFE inhibits lipogenesis by negative regulation of adipogenic transcription factors, which is associated with GFE-mediated cell cycle arrest and STAT3 inhibition. Copyright © 2018 Elsevier B.V. All rights reserved.
The multifaceted functions of C/EBPα in normal and malignant haematopoiesis.
Ohlsson, E; Schuster, M B; Hasemann, M; Porse, B T
2016-04-01
The process of blood formation, haematopoiesis, depends upon a small number of haematopoietic stem cells (HSCs) that reside in the bone marrow. Differentiation of HSCs is characterised by decreased expression of genes associated with self-renewal accompanied by a stepwise activation of genes promoting differentiation. Lineage branching is further directed by groups of cooperating and counteracting genes forming complex networks of lineage-specific transcription factors. Imbalances in such networks can result in blockage of differentiation, lineage reprogramming and malignant transformation. CCAAT/enhancer-binding protein-α (C/EBPα) was originally identified 30 years ago as a transcription factor that binds both promoter and enhancer regions. Most of the early work focused on the role of C/EBPα in regulating transcriptional processes as well as on its functions in key differentiation processes during liver, adipogenic and haematopoietic development. Specifically, C/EBPα was shown to control differentiation by its ability to coordinate transcriptional output with cell cycle progression. Later, its role as an important tumour suppressor, mainly in acute myeloid leukaemia (AML), was recognised and has been the focus of intense studies by a number of investigators. More recent work has revisited the role of C/EBPα in normal haematopoiesis, especially its function in HSCs, and also started to provide more mechanistic insights into its role in normal and malignant haematopoiesis. In particular, the differential actions of C/EBPα isoforms, as well as its importance in chromatin remodelling and cellular reprogramming, are beginning to be elucidated. Finally, recent work has also shed light on the dichotomous function of C/EBPα in AML by demonstrating its ability to act as both a tumour suppressor and promoter. In the present review, we will summarise the current knowledge on the functions of C/EBPα during normal and malignant haematopoiesis with special emphasis on the recent work.
Vanoni, Simone; Tsai, Yi Ting; Waddell, Amanda; Waggoner, Lisa; Klarquist, Jared; Divanovic, Senad; Hoebe, Kasper; Steinbrecher, Kris A.; Hogan, Simon P.
2017-01-01
Sepsis is a life-threatening event predominantly caused by gram-negative bacteria. Bacterial infection causes a pronounced macrophage (MΦ) and dendritic cell (DC) activation that leads to excessive pro-inflammatory cytokine interleukin (IL)-1β, IL-6, and Tumor necrosis factor (TNF)-α production (cytokine storm), resulting in endotoxic shock. Previous experimental studies have revealed that inhibiting Nuclear Factor kappa Beta (NF-κB) signaling ameliorates disease symptoms; however, the contribution of myeloid p65 in endotoxic shock remains elusive. In this study, we demonstrate increased mortality in mice lacking p65 in the myeloid lineage (p65Δmye) compared to wild type (WT) mice upon ultra-pure LPS (U-LPS) challenge. We show that increased susceptibility to Lipopolysaccharide (LPS)-induced shock was associated with elevated serum level of IL-1β and IL-6. Mechanistic analyses revealed that LPS-induced pro-inflammatory cytokine production was ameliorated in p65-deficient bone marrow–derived macrophages (BMDMs); however, p65-deficient “activated” peritoneal macrophages (MΦs) exhibited elevated IL-1β and IL-6. We show that the elevated pro-inflammatory cytokine secretion was due in part to increased accumulation of IL-1β mRNA and protein in activated inflammatory MΦs. The increased IL-1β was linked with heightened binding of PU.1 and CCAAT/Enhancer Binding Protein Beta (cEBPβ to Il1b and Il6 promoters in activated inflammatory MΦs. Our data provides insight into a role for NF-κB in the negative regulation of pro-inflammatory cytokines in myeloid cells. PMID:27932520
Johnson, Charles S.; Eisenback, Jon D.
2009-01-01
Effects of the systemic acquired resistance (SAR)-inducing compound acibenzolar-S-methyl (ASM) and the plant-growth promoting rhizobacterial mixture Bacillus subtilis A13 and B. amyloliquefaciens IN937a (GB99+GB122) were assessed on the reproduction of a tobacco cyst nematode (TCN- Globodera tabacum solanacearum) under greenhouse conditions. Two sets of two independent experiments were conducted, each involving soil or root sampling. Soil sample experiments included flue-cured tobacco cultivars with (Php+: NC71 and NC102) and without (Php-: K326 and K346) a gene (Php) suppressing TCN parasitism. Root sample experiments examined TCN root parasitism of NC71 and K326. Cultivars possessing the Php gene (Php+) were compared with Php- cultivars to assess the effects of resistance mediated via Php gene vs. induced resistance to TCN. GB99+GB122 consistently reduced nematode reproductive ratio on both Php+ and Php- cultivars, but similar effects of ASM across Php- cultivars were less consistent. In addition, ASM application resulted in leaf yellowing and reduced root weight. GB99+GB122 consistently reduced nematode development in roots of both Php+ and Php- cultivars, while similar effects of ASM were frequently less consistent. The results of this study indicate that GB99+GB122 consistently reduced TCN reproduction in all flue-cured tobacco cultivars tested, while the effects of ASM were only consistent in Php+ cultivars. Under most circumstances, GB99+GB122 suppressed nematode reproduction more consistently than ASM compared to the untreated control. PMID:22736824
Volpi-Lagreca, Gabriela; Duckett, Susan K
2016-02-01
Thirty-six Angus-cross steers (667 ± 34.4 kg initial BW, 24.5 mo) were used to assess the impact of short-term glycerin or high-fructose corn syrup administration via drinking water on meat quality and marbling deposition. Steers blocked by BW (3 blocks) were assigned randomly to 1 of 3 drinking water treatments: 1) control (CON), 2) 4.3% crude glycerin (GLYC), or 3) 4.3% high-fructose corn syrup (HFCS) for the final 25 d before slaughter. Average daily gain was lower ( = 0.01) and final live weight was lower ( < 0.01) with HFCS administration compared with CON. Dry matter intake and water intake did not differ among treatments. Fat thickness, muscle depth, and intramuscular fat measured by ultrasound did not differ among treatments. Crude glycerin or HFCS via water supplementation did not alter HCW, dressing percentage, rib eye area, fat thickness, KPH, skeletal maturity, or marbling score. Longissimus muscle and subcutaneous fat color (L*, a*, and b*) were not affected by drinking water treatment. Total lipid content, total fatty acid content, and fatty acid composition of the LM did not differ among drinking water treatments. Supplementation of drinking water with GLYC or HFCS did not alter Warner-Bratzler shear force values or water-holding capacity (drip loss, cook shrink). Intramuscular mean adipocyte diameter was greater ( = 0.02) for steers offered HFCS compared with steers offered GLYC, with CON steers being intermediate. These differences in mean adipocyte size were related to changes in the adipocyte size distribution. There were greater proportions of small (20 to 30 μm) adipocytes in GLYC compared with HFCS and CON. In contrast, HFCS and CON had greater proportions of medium (40 to 50 μm) adipocytes than GLYC. The relative mRNA expression of lipogenic genes (acetyl Co-A carboxylase [ACC], fatty acid binding protein 4 [FABP4], fatty acid synthase [FASN], glycerol-3-phosphate acyltransferase [GPAT], retinol-binding protein 4 [RBP4], and stearoyl-CoA desaturase [SCD]), adipocyte differentiation genes (delta-like 1 homolog [DLK1]), and transcription factors (CCAAT/enhancer-binding protein α [C/EBPα], and PPARγ) was similar for GLYC and HFCS compared with CON. Longissimus glycogen and lactate concentrations and glycolytic potential were not affected by drinking water treatments. Overall, HFCS or GLYC supplementation via drinking water did not alter carcass or meat quality variables but did alter the size and distribution of intramuscular adipocytes. These results indicate that a longer supplementation time or a higher substrate level may be needed to obtain differences in meat quality.
Kim, Eunju; Lim, Soo-Min; Kim, Min-Soo; Yoo, Sang-Ho; Kim, Yuri
2017-09-21
Phyllodulcin is a natural sweetener found in Hydrangea macrophylla var. thunbergii . This study investigated whether phyllodulcin could improve metabolic abnormalities in high-fat diet (HFD)-induced obese mice. Animals were fed a 60% HFD for 6 weeks to induce obesity, followed by 7 weeks of supplementation with phyllodulcin (20 or 40 mg/kg body weight (b.w.)/day). Stevioside (40 mg/kg b.w./day) was used as a positive control. Phyllodulcin supplementation reduced subcutaneous fat mass, levels of plasma lipids, triglycerides, total cholesterol, and low-density lipoprotein cholesterol and improved the levels of leptin, adiponectin, and fasting blood glucose. In subcutaneous fat tissues, supplementation with stevioside or phyllodulcin significantly decreased mRNA expression of lipogenesis-related genes, including CCAAT/enhancer-binding protein α ( C/EBPα ), peroxisome proliferator activated receptor γ ( PPARγ ), and sterol regulatory element-binding protein-1C ( SREBP-1c ) compared to the high-fat group. Phyllodulcin supplementation significantly increased the expression of fat browning-related genes, including PR domain containing 16 ( Prdm16 ), uncoupling protein 1 ( UCP1 ), and peroxisome proliferator-activated receptor γ coactivator 1-α ( PGC-1α ), compared to the high-fat group. Hypothalamic brain-derived neurotrophic factor-tropomyosin receptor kinase B (BDNF-TrkB) signaling was upregulated by phyllodulcin supplementation. In conclusion, phyllodulcin is a potential sweetener that could be used to combat obesity by regulating levels of leptin, fat browning-related genes, and hypothalamic BDNF-TrkB signaling.
Ramos-Morcillo, Antonio Jesús; Ruzafa-Martínez, María; Fernández-Salazar, Serafín; del-Pino-Casado, Rafael; Armero Barranco, David
2014-11-01
To determine the attitudes of physicians and registered nurses in the Andalusian Public Health System towards preventive and health promotion (PHP) interventions in the context of Primary Health Care and the relationship with occupational variables and self-reported competence in PHP. Multicenter, observational, descriptive study. Primary Health Care (PHC), Andalusia, Spain. A total of 282 professionals (physicians and nurses) from 22 Healthcare centers of the Andalusian public health system and who participated in the validation of CAPPAP were included. The attitude of physicians and registered nurses towards PHP activities consisted of five dimensions: improvements necessary, perception of peers attitude, importance, obstacles, and improvement opportunities. The validated CAPPAP questionnaire was used. Occupational variables and questions about self-reported competence in PHP were also included. All dimensions of CAPPAP exceeded the midpoint of the scale (2.5), with their values varying between 3.06 (SD: 0.76) in "improvement necessary", and 4.39 (SD: 0.49) in "importance". The self-declared social, occupational, and competences variables have a statistically significant relationship with the dimensions of the attitude of the professionals except: job experience in PHC, training and implementation of scheduled PHP activities. The attitudes of physicians and registered nurses towards PHP activities are acceptable, and work must be done to sustain it. Healthcare organizations should implement interventions adapted to different professional profiles. They should also increase activities to improve professional skills in order to provide the appropriate care. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.
Manga, Prashiela; Bis, Sabina; Knoll, Kristen; Perez, Beremis; Orlow, Seth J
2010-10-01
Accumulation of proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR), comprising three signaling pathways initiated by Ire1, Perk and Atf6 respectively. Unfolded protein response activation was compared in chemically stressed murine wildtype melanocytes and mutant melanocytes that retain tyrosinase in the ER. Thapsigargin, an ER stressor, activated all pathways in wildtype melanocytes, triggering Caspase 12-mediated apoptosis at toxic doses. Albino melanocytes expressing mutant tyrosinase showed evidence of ER stress with increased Ire1 expression, but the downstream effector, Xbp1, was not activated even following thapsigargin treatment. Attenuation of Ire1 signaling was recapitulated in wildtype melanocytes treated with thapsigargin for 8 days, with diminished Xbp1 activation observed after 4 days. Atf6 was also activated in albino melanocytes, with no response to thapsigargin, while the Perk pathway was not activated and thapsigargin treatment elicited robust expression of the downstream effector CCAAT-enhancer-binding protein homologous protein. Thus, melanocytes adapt to ER stress by attenuating two UPR pathways.
Automated conversation system before pediatric primary care visits: a randomized trial.
Adams, William G; Phillips, Barrett D; Bacic, Janine D; Walsh, Kathleen E; Shanahan, Christopher W; Paasche-Orlow, Michael K
2014-09-01
Interactive voice response systems integrated with electronic health records have the potential to improve primary care by engaging parents outside clinical settings via spoken language. The objective of this study was to determine whether use of an interactive voice response system, the Personal Health Partner (PHP), before routine health care maintenance visits could improve the quality of primary care visits and be well accepted by parents and clinicians. English-speaking parents of children aged 4 months to 11 years called PHP before routine visits and were randomly assigned to groups by the system at the time of the call. Parents' spoken responses were used to provide tailored counseling and support goal setting for the upcoming visit. Data were transferred to the electronic health records for review during visits. The study occurred in an urban hospital-based pediatric primary care center. Participants were called after the visit to assess (1) comprehensiveness of screening and counseling, (2) assessment of medications and their management, and (3) parent and clinician satisfaction. PHP was able to identify and counsel in multiple areas. A total of 9.7% of parents responded to the mailed invitation. Intervention parents were more likely to report discussing important issues such as depression (42.6% vs 25.4%; P < .01) and prescription medication use (85.7% vs 72.6%; P = .04) and to report being better prepared for visits. One hundred percent of clinicians reported that PHP improved the quality of their care. Systems like PHP have the potential to improve clinical screening, counseling, and medication management. Copyright © 2014 by the American Academy of Pediatrics.
Zhang, Zhongbao; Li, Xianglong; Zhang, Chun; Zou, Huawen; Wu, Zhongyi
2016-09-16
NUCLEAR FACTOR-Y (NF-Y) has been shown to play an important role in growth, development, and response to environmental stress. A NF-Y complex, which consists of three subunits, NF-YA, NF-YB, and, NF-YC, binds to CCAAT sequences in a promoter to control the expression of target genes. Although NF-Y proteins have been reported in Arabidopsis and rice, a comprehensive and systematic analysis of ZmNF-Y genes has not yet been performed. To examine the functions of ZmNF-Y genes in this family, we isolated and characterized 50 ZmNF-Y (14 ZmNF-YA, 18 ZmNF-YB, and 18 ZmNF-YC) genes in an analysis of the maize genome. The 50 ZmNF-Y genes were distributed on all 10 maize chromosomes, and 12 paralogs were identified. Multiple alignments showed that maize ZmNF-Y family proteins had conserved regions and relatively variable N-terminal or C-terminal domains. The comparative syntenic map illustrated 40 paralogous NF-Y gene pairs among the 10 maize chromosomes. Microarray data showed that the ZmNF-Y genes had tissue-specific expression patterns in various maize developmental stages and in response to biotic and abiotic stresses. The results suggested that ZmNF-YB2, 4, 8, 10, 13, and 16 and ZmNF-YC6, 8, and 15 were induced, while ZmNF-YA1, 3, 4, 6, 7, 10, 12, and 13, ZmNF-YB15, and ZmNF-YC3 and 9 were suppressed by drought stress. ZmNF-YA3, ZmNF-YA8 and ZmNF-YA12 were upregulated after infection by the three pathogens, while ZmNF-YA1 and ZmNF-YB2 were suppressed. These results indicate that the ZmNF-Ys may have significant roles in the response to abiotic and biotic stresses. Copyright © 2016 Elsevier Inc. All rights reserved.
Speed up of XML parsers with PHP language implementation
NASA Astrophysics Data System (ADS)
Georgiev, Bozhidar; Georgieva, Adriana
2012-11-01
In this paper, authors introduce PHP5's XML implementation and show how to read, parse, and write a short and uncomplicated XML file using Simple XML in a PHP environment. The possibilities for mutual work of PHP5 language and XML standard are described. The details of parsing process with Simple XML are also cleared. A practical project PHP-XML-MySQL presents the advantages of XML implementation in PHP modules. This approach allows comparatively simple search of XML hierarchical data by means of PHP software tools. The proposed project includes database, which can be extended with new data and new XML parsing functions.
An update on the clinical and molecular characteristics of pseudohypoparathyroidism
Levine, Michael A.
2013-01-01
Purpose of review To provide the reader with a review of contemporary literature describing the evolving understanding of the molecular pathobiology of pseudohypoparathyroidism (PHP). Recent findings The features of PHP type 1 reflect imprinting of the GNAS gene, which encodes the α subunit of the heterotrimeric G protein (Gαs) that couples heptahelical receptors to activation of adenylyl cyclase. Transcription of Gαs is biallelic in most cells, but is primarily from the maternal allele in some tissues (e.g. proximal renal tubules, thyroid, pituitary somatotropes, gonads). Patients with PHP 1a have heterozygous mutations within the exons of the maternal GNAS allele that encode Gαs, whereas patients with PHP 1b have methylation defects in the GNAS locus that reduce transcription of Gαs from the maternal allele. In both PHP 1a and PHP 1b, paternal imprinting of Gαs leads to resistance to parathyroid hormone and TSH. Although brachydactyly is characteristic of PHP 1a, it is sometimes present in patients with PHP 1b. Summary Molecular studies enable a distinction between PHP 1a and PHP 1b, with different mechanisms accounting for Gαs deficiency. Clinical overlap between these two forms of PHP type 1 is likely due to the variable levels of Gαs activity expressed in specific cell types. PMID:23076042
Xu, Anjian; Li, Yanmeng; Zhao, Wenshan; Hou, Fei; Li, Xiaojin; Sun, Lan; Chen, Wei; Yang, Aiting; Wu, Shanna; Zhang, Bei; Yao, Jingyi; Wang, Huan; Huang, Jian
2018-02-01
Hepatic fibrosis is characterized by the activation of hepatic stellate cells (HSCs). Migration of the activated HSCs to the site of injury is one of the key characteristics during the wound healing process. We have previously demonstrated that 14 kDa phosphohistidine phosphatase (PHP14) is involved in migration and lamellipodia formation of HSCs. However, the role of PHP14 in liver fibrosis remains unknown. In this study, we first assessed PHP14 expression and distribution in liver fibrotic tissues using western blot, immunohistochemistry, and double immunofluorescence staining. Next, we investigated the role of PHP14 in liver fibrosis and, more specifically, the migration of HSCs by Transwell assay and 3D collagen matrices assay. Finally, we explored the possible molecular mechanisms of the effects of PHP14 on these processes. Our results show that the PHP14 expression is up-regulated in fibrotic liver and mainly in HSCs. Importantly, TGF-β1 can induce PHP14 expression in HSCs accompanied with the activation of HSCs. Consistent with the previous study, PHP14 promotes HSCs migration, especially, promotes 3D floating collagen matrices contraction but inhibits stressed-released matrices contraction. Mechanistically, the PI3Kγ/AKT/Rac1 pathway is involved in migration regulated by PHP14. Moreover, PHP14 specifically mediates the TGF-β1 signaling to PI3Kγ/AKT pathway and regulates HSC migration, and thus participates in liver fibrosis. Our study identified the role of PHP14 in liver fibrosis, particularly HSC migration, and suggested a novel mediator of transducting TGF-β1 signaling to PI3Kγ/AKT/Rac1 pathway. PHP14 is up-regulated in fibrotic liver and activated hepatic stellate cells. The expression of PHP14 is induced by TGF-β1. The migration of hepatic stellate cells is regulated by PHP14. PHP14 is a mediator of TGF-β1 signaling to PI3Kγ/AKT/Rac1 pathway in hepatic stellate cells.
Dong, Huansheng; Huang, Hu; Yun, Xinxu; Kim, Do-sung; Yue, Yinan; Wu, Hongju; Sutter, Alton; Chavin, Kenneth D.; Otterbein, Leo E.; Adams, David B.; Kim, Young-Bum
2014-01-01
Obesity-induced endoplasmic reticulum (ER) stress causes chronic inflammation in adipose tissue and steatosis in the liver, and eventually leads to insulin resistance and type 2 diabetes (T2D). The goal of this study was to understand the mechanisms by which administration of bilirubin, a powerful antioxidant, reduces hyperglycemia and ameliorates obesity in leptin-receptor-deficient (db/db) and diet-induced obese (DIO) mouse models. db/db or DIO mice were injected with bilirubin or vehicle ip. Blood glucose and body weight were measured. Activation of insulin-signaling pathways, expression of inflammatory cytokines, and ER stress markers were measured in skeletal muscle, adipose tissue, and liver of mice. Bilirubin administration significantly reduced hyperglycemia and increased insulin sensitivity in db/db mice. Bilirubin treatment increased protein kinase B (PKB/Akt) phosphorylation in skeletal muscle and suppressed expression of ER stress markers, including the 78-kDa glucose-regulated protein (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein, X box binding protein (XBP-1), and activating transcription factor 4 in db/db mice. In DIO mice, bilirubin treatment significantly reduced body weight and increased insulin sensitivity. Moreover, bilirubin suppressed macrophage infiltration and proinflammatory cytokine expression, including TNF-α, IL-1β, and monocyte chemoattractant protein-1, in adipose tissue. In liver and adipose tissue of DIO mice, bilirubin ameliorated hepatic steatosis and reduced expression of GRP78 and C/EBP homologous protein. These results demonstrate that bilirubin administration improves hyperglycemia and obesity by increasing insulin sensitivity in both genetically engineered and DIO mice models. Bilirubin or bilirubin-increasing drugs might be useful as an insulin sensitizer for the treatment of obesity-induced insulin resistance and type 2 diabetes based on its profound anti-ER stress and antiinflammatory properties. PMID:24424052
Davis, Angela L.; Qiao, Shuxi; Lesson, Jessica L.; Rojo de la Vega, Montserrat; Park, Sophia L.; Seanez, Carol M.; Gokhale, Vijay; Cabello, Christopher M.; Wondrak, Georg T.
2015-01-01
Pharmacological induction of proteotoxic stress is rapidly emerging as a promising strategy for cancer cell-directed chemotherapeutic intervention. Here, we describe the identification of a novel drug-like heat shock response inducer for the therapeutic induction of proteotoxic stress targeting malignant human melanoma cells. Screening a focused library of compounds containing redox-directed electrophilic pharmacophores employing the Stress & Toxicity PathwayFinderTM PCR Array technology as a discovery tool, a drug-like triphenylmethane-derivative (aurin; 4-[bis(p-hydroxyphenyl)methylene]-2,5-cyclohexadien-1-one) was identified as an experimental cell stress modulator that causes (i) heat shock factor transcriptional activation, (ii) up-regulation of heat shock response gene expression (HSPA6, HSPA1A, DNAJB4, HMOX1), (iii) early unfolded protein response signaling (phospho-PERK, phospho-eIF2α, CHOP (CCAAT/enhancer-binding protein homologous protein)), (iv) proteasome impairment with increased protein-ubiquitination, and (v) oxidative stress with glutathione depletion. Fluorescence polarization-based experiments revealed that aurin displays activity as a geldanamycin-competitive Hsp90α-antagonist, a finding further substantiated by molecular docking and ATPase inhibition analysis. Aurin exposure caused caspase-dependent cell death in a panel of human malignant melanoma cells (A375, G361, LOX-IMVI) but not in non-malignant human skin cells (Hs27 fibroblasts, HaCaT keratinocytes, primary melanocytes) undergoing the aurin-induced heat shock response without impairment of viability. Aurin-induced melanoma cell apoptosis depends on Noxa up-regulation as confirmed by siRNA rescue experiments demonstrating that siPMAIP1-based target down-regulation suppresses aurin-induced cell death. Taken together, our data suggest feasibility of apoptotic elimination of malignant melanoma cells using the quinone methide-derived heat shock response inducer aurin. PMID:25477506
Sun, Yan; Peng, Ping-An; Ma, Yue; Liu, Xiao-Li; Yu, Yi; Jia, Shuo; Xu, Xiao-Han; Wu, Si-Jing; Zhou, Yu-Jie
2017-01-01
Contrast-induced acute kidney injury (CI-AKI) is a serious complication of the administration of iodinated contrast media (CM) for diagnostic and interventional cardiovascular procedures and is associated with substantial morbidity and mortality. While the preventative measures can mitigate the risk of CI-AKI, there remains a need for novel and effective therapeutic approaches. The pathogenesis of CI-AKI is complex and not completely understood. CM-induced renal tubular cell apoptosis caused by the activation of endoplasmic reticulum (ER) stress is involved in CIAKI. We previously demonstrated that valsartan alleviated CM-induced human renal tubular cell apoptosis by inhibiting ER stress in vitro. However, the nephroprotective effect of valsartan on CI-AKI in vivo has not been investigated. Therefore, the aim of this study was to explore the protective effect of valsartan in a rat model of CI-AKI by measuring the amelioration of renal damage and the changes in ER stressrelated biomarkers. Our results showed that the radiocontrast agent meglumine diatrizoate caused significant renal insufficiency, renin-angiotensin system (RAS) activation, and renal tubular apoptosis by triggering ER stress through activation of glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), caspase 12, CCAAT/enhancer-binding protein-homologous protein (CHOP) and c-Jun N-terminal protein kinase (JNK) (P<0.05; n=6 in each group). Pre-treatment with valsartan significantly alleviated renal dysfunction, pathological injury, and apoptosis along with the inhibition of ER stressrelated biomarkers (P<0.05; n=8 in each group). Valsartan could protect against meglumine diatrizoate-induced kidney injury in rats by inhibiting the ER stress-induced apoptosis, making it a promising strategy for preventing CI-AKI. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Nature of frequent deletions in CEBPA.
Fuchs, Ota; Kostecka, Arnost; Provaznikova, Dana; Krasna, Blazena; Brezinova, Jana; Filkukova, Jitka; Kotlin, Roman; Kouba, Michal; Kobylka, Petr; Neuwirtova, Radana; Jonasova, Anna; Caniga, Miroslav; Schwarz, Jiri; Markova, Jana; Maaloufova, Jacqueline; Sponerova, Dana; Novakova, Ludmila; Cermak, Jaroslav
2009-01-01
C/EBPalpha (CCAAT/enhancer binding protein alpha) belongs to the family of leucine zipper transcription factors and is necessary for transcriptional control of granulocyte, adipocyte and hepatocyte differentiation, glucose metabolism and lung development. C/EBPalpha is encoded by an intronless gene. CEBPA mutations cause a myeloid differentiation block and were detected in acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), multiple myeloma and non-Hodgkin's lymphoma (NHL) patients. In this study we identified in 41 individuals from 824 screened individuals (290 AML patients, 382 MDS patients, 56 NHL patients and 96 healthy individuals) a single class of 23 deletions in CEBPA gene which involved a direct repeat of at least 2 bp. These mutations are characterised by the loss of one of two same repeats at the ends of deleted sequence. Three most frequent repeats included in these deletions in CEBPA gene are CGCGAG (493-498_865-870), GCCAAGCAGC (508-517_907-916) and GG (486-487_885-886), all according to GenBank accession no. NM_004364.2. A mechanism for deletion formation between two repetitive sequences can be recombination events in the repair process. Double-stranded cut in DNA can initiate these recombination events of adjacent DNA sequences.
2012-01-01
Background The first mammalian protein histidine phosphatase (PHP) was discovered in the late 90s of the last century. One of the known substrates of PHP is ATP-citrate lyase (ACL), which is responsible - amongst other functions - for providing acetyl-CoA for acetylcholine synthesis in neuronal tissues. It has been shown in previous studies that PHP downregulates the activity of ACL by dephosphorylation. According to this our present work focused on the influence of PHP activity on the acetylcholine level in cholinergic neurons. Results The amount of PHP in SN56 cholinergic neuroblastoma cells was increased after overexpression of PHP by using pIRES2-AcGFP1-PHP as a vector. We demonstrated that PHP overexpression reduced the acetylcholine level and induced cell death. The acetylcholine content of SN56 cells was measured by fast liquid chromatography-tandem mass spectrometry method. Overexpression of the inactive H53A-PHP mutant also induced cell damage, but in a significantly reduced manner. However, this overexpression of the inactive PHP mutant did not change the acetylcholine content of SN56 cells significantly. In contrast, PHP downregulation, performed by RNAi-technique, did not induce cell death, but significantly increased the acetylcholine content in SN56 cells. Conclusions We could show for the first time that PHP downregulation increased the acetylcholine level in SN56 cells. This might be a potential therapeutic strategy for diseases involving cholinergic deficits like Alzheimer's disease. PMID:22436051
Food Safety Impacts from Post-Harvest Processing Procedures of Molluscan Shellfish.
Baker, George L
2016-04-18
Post-harvest Processing (PHP) methods are viable food processing methods employed to reduce human pathogens in molluscan shellfish that would normally be consumed raw, such as raw oysters on the half-shell. Efficacy of human pathogen reduction associated with PHP varies with respect to time, temperature, salinity, pressure, and process exposure. Regulatory requirements and PHP molluscan shellfish quality implications are major considerations for PHP usage. Food safety impacts associated with PHP of molluscan shellfish vary in their efficacy and may have synergistic outcomes when combined. Further research for many PHP methods are necessary and emerging PHP methods that result in minimal quality loss and effective human pathogen reduction should be explored.
Ryu, Sun-Hwa; Kim, Yun-Hee; Kim, Cha Young; Park, Soo-Young; Kwon, Suk-Yoon; Lee, Haeng-Soon; Kwak, Sang-Soo
2009-04-01
Previously, the swpa4 peroxidase gene has been shown to be inducible by a variety of abiotic stresses and pathogenic infections in sweet potato (Ipomoea batatas). To elucidate its regulatory mechanism at the transcriptional level under various stress conditions, we isolated and characterized the promoter region (2374 bp) of swpa4 (referred to as SWPA4). We performed a transient expression assay in tobacco protoplasts with deletions from the 5'-end of SWPA4 promoter fused to the beta-glucuronidase (GUS) reporter gene. The -1408 and -374 bp deletions relative to the transcription start site (+1) showed 8 and 4.5 times higher GUS expression than the cauliflower mosaic virus 35S promoter, respectively. In addition, transgenic tobacco plants expressing GUS under the control of -2374, -1408 or -374 bp region of SWPA4 promoter were generated and studied in various tissues under abiotic stresses and pathogen infection. Gel mobility shift assays revealed that nuclear proteins from sweet potato cultured cells specifically interacted with 60-bp fragment (-178/-118) in -374 bp promoter region. In silico analysis indicated that four kinds of cis-acting regulatory sequences, reactive oxygen species-related element activator protein 1 (AP1), CCAAT/enhancer-binding protein alpha element, ethylene-responsive element (ERE) and heat-shock element, are present in the -60 bp region (-178/-118), suggesting that the -60 bp region might be associated with stress inducibility of the SWPA4 promoter.
Qu, Baoyuan; He, Xue; Wang, Jing; Zhao, Yanyan; Teng, Wan; Shao, An; Zhao, Xueqiang; Ma, Wenying; Wang, Junyi; Li, Bin; Li, Zhensheng; Tong, Yiping
2015-02-01
Increasing fertilizer consumption has led to low fertilizer use efficiency and environmental problems. Identifying nutrient-efficient genes will facilitate the breeding of crops with improved fertilizer use efficiency. This research performed a genome-wide sequence analysis of the A (NFYA), B (NFYB), and C (NFYC) subunits of Nuclear Factor Y (NF-Y) in wheat (Triticum aestivum) and further investigated their responses to nitrogen and phosphorus availability in wheat seedlings. Sequence mining together with gene cloning identified 18 NFYAs, 34 NFYBs, and 28 NFYCs. The expression of most NFYAs positively responded to low nitrogen and phosphorus availability. In contrast, microRNA169 negatively responded to low nitrogen and phosphorus availability and degraded NFYAs. Overexpressing TaNFYA-B1, a low-nitrogen- and low-phosphorus-inducible NFYA transcript factor on chromosome 6B, significantly increased both nitrogen and phosphorus uptake and grain yield under differing nitrogen and phosphorus supply levels in a field experiment. The increased nitrogen and phosphorus uptake may have resulted from the fact that that overexpressing TaNFYA-B1 stimulated root development and up-regulated the expression of both nitrate and phosphate transporters in roots. Our results suggest that TaNFYA-B1 plays essential roles in root development and in nitrogen and phosphorus usage in wheat. Furthermore, our results provide new knowledge and valuable gene resources that should be useful in efforts to breed crops targeting high yield with less fertilizer input. © 2015 American Society of Plant Biologists. All Rights Reserved.
Qu, Baoyuan; He, Xue; Wang, Jing; Zhao, Yanyan; Teng, Wan; Shao, An; Zhao, Xueqiang; Ma, Wenying; Wang, Junyi; Li, Bin; Li, Zhensheng; Tong, Yiping
2015-01-01
Increasing fertilizer consumption has led to low fertilizer use efficiency and environmental problems. Identifying nutrient-efficient genes will facilitate the breeding of crops with improved fertilizer use efficiency. This research performed a genome-wide sequence analysis of the A (NFYA), B (NFYB), and C (NFYC) subunits of Nuclear Factor Y (NF-Y) in wheat (Triticum aestivum) and further investigated their responses to nitrogen and phosphorus availability in wheat seedlings. Sequence mining together with gene cloning identified 18 NFYAs, 34 NFYBs, and 28 NFYCs. The expression of most NFYAs positively responded to low nitrogen and phosphorus availability. In contrast, microRNA169 negatively responded to low nitrogen and phosphorus availability and degraded NFYAs. Overexpressing TaNFYA-B1, a low-nitrogen- and low-phosphorus-inducible NFYA transcript factor on chromosome 6B, significantly increased both nitrogen and phosphorus uptake and grain yield under differing nitrogen and phosphorus supply levels in a field experiment. The increased nitrogen and phosphorus uptake may have resulted from the fact that that overexpressing TaNFYA-B1 stimulated root development and up-regulated the expression of both nitrate and phosphate transporters in roots. Our results suggest that TaNFYA-B1 plays essential roles in root development and in nitrogen and phosphorus usage in wheat. Furthermore, our results provide new knowledge and valuable gene resources that should be useful in efforts to breed crops targeting high yield with less fertilizer input. PMID:25489021
The effect of myostatin silencing by lentiviral-mediated RNA interference on goat fetal fibroblasts.
Lu, Jian; Wei, Caihong; Zhang, Xiaoning; Xu, Lingyang; Zhang, Shifang; Liu, Jiasen; Cao, Jiaxue; Zhao, Fuping; Zhang, Li; Li, Bichun; Du, Lixin
2013-06-01
Myostatin is a transforming growth factor-β family member that acts as a negative regulator of skeletal muscle mass. To identify possible myostatin inhibitors that may promote muscle growth, we used RNA interference mediated by a lentiviral vector to knockdown myostatin in goat fetal fibroblast cells. We also investigated the expression changes in relevant myogenic regulatory factors (MRFs) and adipogenic regulatory factors in the absence of myostatin in goat fetal fibroblasts. Quantitative RT-PCR revealed that myostatin transcripts were significantly reduced by 75 % (P < 0.01). Western blot showed that myostatin protein expression was reduced by 95 % (P < 0.01). We also found that the mRNA expression of activin receptor IIB (ACVR2B) significantly increased by 350 % (P < 0.01), and p21 increased 172 % (P < 0.01). Furthermore, myostatin inhibition decreased Myf5 and increased MEF2C mRNA expression in goat fetal fibroblasts, suggesting that myostatin regulates MRFs differently in fibroblasts compared to muscle. In addition, the expression of adipocyte marker genes peroxisome proliferator-activated receptor (PPAR) γ and leptin, but not CCAAT/enhance-binding protein (C/EBP) α and C/EBPβ, were upregulated at the transcript level after myostatin silencing. These results suggest that we have generated a novel way to block myostatin in vitro, which could be used to improve livestock meat production and gene therapy of musculoskeletal diseases. This also suggests that myostatin plays a negative role in regulating the expression of adipogenesis related genes in goat fetal fibroblasts.
Recent improvements to Binding MOAD: a resource for protein–ligand binding affinities and structures
Ahmed, Aqeel; Smith, Richard D.; Clark, Jordan J.; Dunbar, James B.; Carlson, Heather A.
2015-01-01
For over 10 years, Binding MOAD (Mother of All Databases; http://www.BindingMOAD.org) has been one of the largest resources for high-quality protein–ligand complexes and associated binding affinity data. Binding MOAD has grown at the rate of 1994 complexes per year, on average. Currently, it contains 23 269 complexes and 8156 binding affinities. Our annual updates curate the data using a semi-automated literature search of the references cited within the PDB file, and we have recently upgraded our website and added new features and functionalities to better serve Binding MOAD users. In order to eliminate the legacy application server of the old platform and to accommodate new changes, the website has been completely rewritten in the LAMP (Linux, Apache, MySQL and PHP) environment. The improved user interface incorporates current third-party plugins for better visualization of protein and ligand molecules, and it provides features like sorting, filtering and filtered downloads. In addition to the field-based searching, Binding MOAD now can be searched by structural queries based on the ligand. In order to remove redundancy, Binding MOAD records are clustered in different families based on 90% sequence identity. The new Binding MOAD, with the upgraded platform, features and functionalities, is now equipped to better serve its users. PMID:25378330
Waki, Michinori; Ohno, Motonori; Kuwano, Michihiko; Sakata, Toshiie
1993-01-01
Platelet factor 4 (PF‐4) blocks the binding of basic fibroblast growth factor (bFGF) to its receptor. In the present study, we constructed carboxyl‐terminal fragments, which represent the heparin‐binding region of the PF‐4 molecule, and examined whether these synthetic peptides retain the blocking effects on the receptor binding of bFGF. Synthetic peptides inhibited the receptor binding of bFGF. Furthermore, they inhibited the migration and tube formation of bovine capillary endothelial cells in culture (these phenomena are dependent on endogenous bFGF). PMID:8320164
Graw, J; Liebstein, A; Pietrowski, D; Schmitt-John, T; Werner, T
1993-12-22
The murine genes, gamma B-cry and gamma C-cry, encoding the gamma B- and gamma C-crystallins, were isolated from a genomic DNA library. The complete nucleotide (nt) sequences of both genes were determined from 661 and 711 bp, respectively, upstream from the first exon to the corresponding polyadenylation sites, comprising more than 2650 and 2890 bp, respectively. The new sequences were compared to the partial cDNA sequences available for the murine gamma B-cry and gamma C-cry, as well as to the corresponding genomic sequences from rat and man, at both the nt and predicted amino acid (aa) sequence levels. In the gamma B-cry promoter region, a canonical CCAAT-box, a TATA-box, putative NF-I and C/EBP sites were detected. An R-repeat is inserted 366 bp upstream from the transcription start point. In contrast, the gamma C-cry promoter does not contain a CCAAT-box, but some other putative binding sites for transcription factors (AP-2, UBP-1, LBP-1) were located by computer analysis. The promoter regions of all six gamma-cry from mouse, rat and human, except human psi gamma F-cry, were analyzed for common sequence elements. A complex sequence element of about 70-80 bp was found in the proximal promoter, which contains a gamma-cry-specific and almost invariant sequence (crygpel) of 14 nt, and ends with the also invariant TATA-box. Within the complex sequence element, a minimum of three further features specific for the gamma A-, gamma B- and gamma D/E/F-cry genes can be defined, at least two of which were recently shown to be functional. In addition to these four sequence elements, a subtype-specific structure of inverted repeats with different-sized spacers can be deduced from the multiple sequence alignment. A phylogenetic analysis based on the promoter region, as well as the complete exon 3 of all gamma-cry from mouse, rat and man, suggests separation of only five gamma-cry subtypes (gamma A-, gamma B-, gamma C-, gamma D- and gamma E/F-cry) prior to species separation.
Development of MTL-CEBPA: Small Activating RNA Drug for Hepatocellular Carcinoma.
Setten, Ryan L; Lightfoot, Helen L; Habib, Nagy A; Rossi, John J
2018-06-10
Oligonucleotide drug development has revolutionised the drug discovery field allowing the notoriously "undruggable" genome to potentially become "druggable". Within this field, 'small' or 'short' activating RNAs (saRNA) are a more recently discovered category of short double stranded RNA with clinical potential. SaRNAs promote endogenous transcription from target loci, a phenomenon widely observed in mammals known as RNA activation (RNAa). The ability to target a particular gene is dependent on the sequence of the saRNA. Hence, the potential clinical application of saRNA is to increase target gene expression in a sequence specific manner. SaRNA based oligonucleotide therapeutics present great promise in expanding the "druggable" genome with particular areas of interest including transcription factor activation and haploinsufficency. Review and Conclusion: In this mini-review, we describe the pre-clinical development of the first saRNA drug to enter the clinic. This saRNA, referred to as MTL-CEBPA, induces transcription of the transcription factor CCAAT/enhancer-binding protein alpha (CEBPα), a tumour suppressor and critical regulator of hepatocyte function. MTL-CEBPA is presently in Phase I clinical trials for hepatocellular carcinoma (HCC). The clinical development of MTL-CEBPA will demonstrate "proof of concept", showing that saRNAs can provide the basis for drugs which enhance targeted gene expression and consequently improve disease outcome in patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Li, Zhisong; Mao, Yuanyuan; Liang, Lingli; Wu, Shaogen; Yuan, Jingjing; Mo, Kai; Cai, Weihua; Mao, Qingxiang; Cao, Jing; Bekker, Alex; Zhang, Wei; Tao, Yuan-Xiang
2017-01-01
Changes in gene transcription in the dorsal root ganglion (DRG) after nerve trauma contribute to the genesis of neuropathic pain. We report that peripheral nerve trauma caused by chronic constriction injury (CCI) increased the abundance of the transcription factor C/EBPβ (CCAAT/enhancer binding protein β) in the DRG. Blocking this increase mitigated the development and maintenance of CCI-induced mechanical, thermal, and cold pain hypersensitivities without affecting basal responses to acute pain and locomotor activity. Conversely, mimicking this increase produced hypersensitivity to mechanical, thermal, or cold pain. In the ipsilateral DRG, C/EBPβ promoted a decrease in the abundance of the voltage-gated potassium channel subunit Kv1.2 and µ opioid receptor (MOR) at the mRNA and protein levels, which would be predicted to increase excitability in the ipsilateral DRG neurons and reduce the efficacy of morphine analgesia. These effects required C/EPBβ-mediated transcriptional activation of Ehmt2 (euchromatic histonelysine N-methyltransferase 2), which encodes G9a, an epigenetic silencer of the genes encoding Kv1.2 and MOR. Blocking the increase in C/EBPβ in the DRG improved morphine analgesia after CCI. These results suggest that C/EBPβ is an endogenous initiator of neuropathic pain and could be a potential target for the prevention and treatment of this disorder. PMID:28698219
Pulmonary haptoglobin (pHp) is part of the surfactant system in the human lung.
Abdullah, Mahdi; Goldmann, Torsten
2012-11-20
Since the existence of pHp was demonstrated, it has been shown that this molecule and its receptor CD163 are regulated by different stimuli. Furthermore, a comparably fast secretion of pHp was described as well as the immuno-stimulatory effects. The intention of this study was to elucidate the role of pHp in the human lungs further. Here we show, by means of confocal microscopy and immune-electron-microscopy, a clear co-localization of pHp with surfactant protein-B in lamellar bodies of alveolar epithelial cells type II. These results are underlined by immunohistochemical stainings in differently fixed human lung tissues, which show pHp in vesicular and released form. The images of the released form resemble the intended position of surfactant in the human alveolus. pHp is secreted by Alveolar epithelial cells type II as previously shown. Moreover, pHp is co-localized with Surfactant protein-B. We conclude that the presented data shows that pHp is a native part of the surfactant system in the human lung. http://www.diagnosticpathology.diagnomx.eu/vs/2563584738239912.
Gumina, S; Baudi, P; Candela, V; Campochiaro, G
2016-10-01
To compare clinical outcomes and complication rates in the medium-to-long-term follow-up of Hertel 7 humeral head fractures treated with two different locking plates. A total of 52 patients with type 7 humeral head fracture (in accordance with Hertel classification) were enrolled retrospectively: 24 patients [4 male, 20 female; mean age (standard deviation [SD]): 68.9 (5.8) years] were treated with Diphos H plate (Group A) and 28 patients [6 male, 22 female; mean age (SD): 61.0 (7.5) years] with Proximal Humeral Plate (PHP; Group B). The mean follow-up periods were 25.6 and 18.9 months, respectively. Functional outcomes were assessed using the Constant score and Disabilities of the Arm, Shoulder and Hand (DASH) score; X-ray evaluation was also performed and complications were recorded. The mean Constant score in the Diphos and PHP groups at follow-up were 75.6 (SD 13.4) and 78.9 (SD 12.8), respectively (p>0.05). The DASH score was similar in both groups (Diphos: 18.6, range 0-51.5; PHP: 16.8, range 0-47.8) (p>0.05). In our series, 9.6% of patients had complications; these included a case of aseptic non-union and a case of avascular necrosis of the humeral head in each group, and a secondary screw perforation in a patient treated with Diphos. In patients with Hertel 7 proximal humeral fractures, Diphos and PHP lead to similar satisfactory functional outcomes and are associated with low complication rates; this confirms that both are useful implants for the treatment of this pattern of fracture. Copyright © 2016. Published by Elsevier Ltd.
WE-AB-204-05: Harmonizing PET/CT Quantification in Multicenter Studies: A Case Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marques da Silva, A; Fischer, A
2015-06-15
Purpose: To present the implementation of a strategy to harmonize FDG PET/CT quantification (SUV), performed with different scanner models and manufacturers. Methods: The strategy was based on Boellaard (2011) and EARL FDG-PET/CT accreditation program, that propose quality control measurements for harmonizing scanner performance. A NEMA IEC Body phantom study was performed using four different devices: PHP-1 (Gemini TF Base, Philips); PHP-2 (Gemini GXL, Philips); GEH (Discovery 600, General Electric); SMS (Biograph Hi-Rez 16, Siemens). The SUV Recovery Coefficient (RC) was calculated using the clinical protocol and other clinically relevant reconstruction parameters. The most appropriate reconstruction parameters (MARP) for SUV harmonization,more » in each scanner, are those which achieve EARL harmonizing standards. They were identified using the lowest root mean square errors (RMSE). To evaluate the strategy’s effectiveness, the Maximum Differences (MD) between the clinical and MARP RC values were calculated. Results: The reconstructions parameters that obtained the lowest RMSE are: FBP 5mm (PHP-1); LOR-RAMLA 2i0.008l (PHP-2); VuePointHD 2i32s10mm (GEH); and FORE+OSEM 4i8s6mm (SMS). Thus, to ensure that quantitative PET image measurements are interchangeable between these sites, images must be reconstructed with the above-mentioned parameters. Although, a decoupling between the best image for PET/CT qualitative analysis and the best image for quantification studies was observed. The MD showed that the strategy was effective in reducing the variability of SUV quantification for small structures (<17mm). Conclusion: The harmonization strategy of the SUV quantification implemented with these devices was effective in reducing the variability of small structures quantification, minimizing the inter-scanner and inter-institution differences in quantification. However, it is essential that, in addition to the harmonization of quantification, the standardization of the methodology of patient preparation must be maintained, in order to minimize the SUV variability due to biological factors. Financial support by CAPES.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Seong-Il; Ko, Hee-Chul; Shin, Hye-Sun
2011-06-17
Highlights: {yields} Fucoxanthin enhances 3T3-L1 adipocyte differentiation at an early stage. {yields} Fucoxanthin inhibits 3T3-L1 adipocyte differentiation at intermediate and late stages. {yields} Fucoxanthin attenuates glucose uptake by inhibiting the phosphorylation of IRS in mature 3T3-L1 adipocytes. {yields} Fucoxanthin exerts its anti-obesity effect by inhibiting the differentiation of adipocytes at both intermediate and late stages, as well as glucose uptake in mature adipocytes. -- Abstract: Progression of 3T3-L1 preadipocyte differentiation is divided into early (days 0-2, D0-D2), intermediate (days 2-4, D2-D4), and late stages (day 4 onwards, D4-). In this study, we investigated the effects of fucoxanthin, isolated from themore » edible brown seaweed Petalonia binghamiae, on adipogenesis during the three differentiation stages of 3T3-L1 preadipocytes. When fucoxanthin was applied during the early stage of differentiation (D0-D2), it promoted 3T3-L1 adipocyte differentiation, as evidenced by increased triglyceride accumulation. At the molecular level, fucoxanthin increased protein expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), CCAAT/enhancer-binding protein {alpha} (C/EBP{alpha}), sterol regulatory element-binding protein 1c (SREBP1c), and aP2, and adiponectin mRNA expression, in a dose-dependent manner. However, it reduced the expression of PPAR{gamma}, C/EBP{alpha}, and SREBP1c during the intermediate (D2-D4) and late stages (D4-D7) of differentiation. It also inhibited the uptake of glucose in mature 3T3-L1 adipocytes by reducing the phosphorylation of insulin receptor substrate 1 (IRS-1). These results suggest that fucoxanthin exerts differing effects on 3T3-L1 cells of different differentiation stages and inhibits glucose uptake in mature adipocytes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee Jialing; Klase, Zachary; Gao Xiaoqi
An AT-rich region of the human cytomegalovirus (CMV) genome between the UL127 open reading frame and the major immediate-early (MIE) enhancer is referred to as the unique region (UR). It has been shown that the UR represses activation of transcription from the UL127 promoter and functions as a boundary between the divergent UL127 and MIE genes during human CMV infection [Angulo, A., Kerry, D., Huang, H., Borst, E.M., Razinsky, A., Wu, J., Hobom, U., Messerle, M., Ghazal, P., 2000. Identification of a boundary domain adjacent to the potent human cytomegalovirus enhancer that represses transcription of the divergent UL127 promoter. J.more » Virol. 74 (6), 2826-2839; Lundquist, C.A., Meier, J.L., Stinski, M.F., 1999. A strong negative transcriptional regulatory region between the human cytomegalovirus UL127 gene and the major immediate-early enhancer. J. Virol. 73 (11), 9039-9052]. A putative forkhead box-like (FOX-like) site, AAATCAATATT, was identified in the UR and found to play a key role in repression of the UL127 promoter in recombinant virus-infected cells [Lashmit, P.E., Lundquist, C.A., Meier, J.L., Stinski, M.F., 2004. Cellular repressor inhibits human cytomegalovirus transcription from the UL127 promoter. J. Virol. 78 (10), 5113-5123]. However, the cellular factors which associate with the UR and FOX-like region remain to be determined. We reported previously that pancreatic-duodenal homeobox factor-1 (PDX1) bound to a 45-bp element located within the UR [Chao, S.H., Harada, J.N., Hyndman, F., Gao, X., Nelson, C.G., Chanda, S.K., Caldwell, J.S., 2004. PDX1, a Cellular Homeoprotein, Binds to and Regulates the Activity of Human Cytomegalovirus Immediate Early Promoter. J. Biol. Chem. 279 (16), 16111-16120]. Here we demonstrate that two additional cellular homeoproteins, special AT-rich sequence binding protein 1 (SATB1) and CCAAT displacement protein (CDP), bind to the human CMV UR in vitro and in vivo. Furthermore, CDP is identified as a FOX-like binding protein and a repressor of the UL127 promoter, while SATB1 has no effect on UL127 expression. Since CDP is known as a transcription repressor and a nuclear matrix-associated region binding protein, CDP may have a role in the regulation of human CMV transcription.« less
High-resolution Imaging of the Philippine Sea Plate subducting beneath Central Japan
NASA Astrophysics Data System (ADS)
Padhy, S.; Furumura, T.
2016-12-01
Thermal models predict that the oceanic crust of the young (<20 Ma) and warmer Philippine-sea plate (PHP) is more prone to melting. Deriving a high-resolution image of the PHP, including slab melting and other features of the subduction zone, is a key to understand the basics of earthquake occurrence and origin of magma in complex subduction zone like central Japan, where both the PHP and Pacific (PAC) Plates subduct. To this purpose, we analyzed high-resolution waveforms of moderate sized (M 4-6), intermediate-to-deep (>150 km) PAC earthquakes occurring in central Japan and conducted numerical simulation to derive a fine-scale PHP model, which is not constrained in earlier studies. Observations show spindle-shaped seismograms with strong converted phases and extended coda with very slow decay from a group of PAC events occurring in northern part of central Japan and recorded by high-sensitivity seismograph network (Hi-net) stations in the region. We investigate the mechanism of propagation of these anomalous waveforms using the finite difference method (FDM) simulation of wave propagation through the subduction zone. We examine the effects on waveform changes of major subduction zone features, such as the melting of oceanic crust in PHP, serpentinized mantle wedge, hydrated layer on the PAC due to slab dehydration, and anomaly in upper mantle between the PAC and PHP. Simulation results show that the waveform anomaly is primarily explained by strong scattering and absorption of high-frequency energy by the low-velocity anomalous mantle structure, with a strong coda excitation yielding spindle-shaped waveforms. The data are secondarily explained by melting of PHP in the basaltic crust. The location of the mantle anomaly is tightly constrained by the observation and evidence of PAC thinning in the region; these localized low-velocity structures aid in ascending the slab-derived fluids around the slab thinning. We expect that the results of this study will enhance our present understanding on the mechanism of intermediate to deep earthquakes in the region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Bin; Li, Wei; Zheng, Qichang
Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negativemore » effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation.« less
Underbjerg, Line; Malmstroem, Sofie; Sikjaer, Tanja; Rejnmark, Lars
2018-03-01
Nonsurgical hypoparathyroidism (Ns-HypoPT) and pseudohypoparathyroidism (PHP) are both rare diseases, characterized by hypocalcemia. In Ns-HypoPT, PTH levels are low, whereas patients with PHP often have very high levels due to receptor-insensitivity to PTH (PTH-resistance). Accordingly, we hypothesized that indices of bone turnover and bone mineralization/architecture are similar in Ns-HypoPT and PHP despite marked differences in PTH levels. We studied 62 patients with Ns-HypoPT and 31 with PHP as well as a group of age- and sex-matched healthy controls. We found a significantly higher areal BMD (aBMD) by DXA among patients with Ns-HypoPT, both compared with PHP and the background population. Compared with Ns-HypoPT, PHP patients had significantly lower total and trabecular volumetric BMD (vBMD) assessed by quantitative computed tomography (QCT) scans at the spine and hip. High-resolution peripheral quantitative computed tomography (HRpQCT) scans showed a lower trabecular area and vBMD as well as a lower trabecular number at the tibia in PHP compared to Ns-HypoPT and matched controls. In PHP, PTH levels correlated with levels of markers of bone formation (osteocalcin, bone-specific alkaline phosphatase, P1NP), and bone resorption (CTx). In adult males, levels of bone markers were significantly higher in PHP compared with Ns-HypoPT. Levels of procalcitonin and calcitonin were significantly higher in PHP compared with Ns-HypoPT. In conclusion, indices of bone turnover, density, and microarchitecture differ between patients with Ns-HypoPT and PHP. Our data suggest that patients with PHP do not have a complete skeletal resistance to PTH and that the effects of chronically high PTH levels in PHP are mostly confined to the trabecular tissue. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.
Houk, Amanda L; Givens, Richard S; Elles, Christopher G
2016-03-31
Two-photon activation of the p-hydroxyphenacyl (pHP) photoactivated protecting group is demonstrated for the first time using visible light at 550 nm from a pulsed laser. Broadband two-photon absorption measurements reveal a strong two-photon transition (>10 GM) near 4.5 eV that closely resembles the lowest-energy band at the same total excitation energy in the one-photon absorption spectrum of the pHP chromophore. The polarization dependence of the two-photon absorption band is consistent with excitation to the same S3 ((1)ππ*) excited state for both one- and two-photon activation. Monitoring the progress of the uncaging reaction under nonresonant excitation at 550 nm confirms a quadratic intensity dependence and that two-photon activation of the uncaging reaction is possible using visible light in the range 500-620 nm. Deprotonation of the pHP chromophore under mildly basic conditions shifts the absorption band to lower energy (3.8 eV) in both the one- and two-photon absorption spectra, suggesting that two-photon activation of the pHP chromophore may be possible using light in the range 550-720 nm. The results of these measurements open the possibility of spatially and temporally selective release of biologically active compounds from the pHP protecting group using visible light from a pulsed laser.
Pulmonary haptoglobin (pHp) is part of the surfactant system in the human lung
2012-01-01
Abstract Since the existence of pHp was demonstrated, it has been shown that this molecule and its receptor CD163 are regulated by different stimuli. Furthermore, a comparably fast secretion of pHp was described as well as the immuno-stimulatory effects. The intention of this study was to elucidate the role of pHp in the human lungs further. Here we show, by means of confocal microscopy and immune-electron-microscopy, a clear co-localization of pHp with Surfactant protein-B in lamellar bodies of Alveolar Epithelial Cells Type II. These results are underlined by immunohistochemical stainings in differently fixed human lung tissues, which show pHp in vesicular and released form. The images of the released form resemble the intended position of surfactant in the human alveolus. pHp is secreted by Alveolar epithelial cells type II as previously shown. Moreover, pHp is co-localized with Surfactant protein-B. We conclude that the presented data shows that pHp is a native part of the surfactant system in the human lung. Virtual slides http://www.diagnosticpathology.diagnomx.eu/vs/2563584738239912. PMID:23164167
Low back pain and disability in individuals with plantar heel pain.
McClinton, Shane; Weber, Carolyn F; Heiderscheit, Bryan
2018-03-01
Lack of response to plantar heel pain (PHP) treatment may be related to unmanaged low back pain (LBP) and low back dysfunction, but a relationship between LBP and PHP has not been established. The purpose of this investigation was to compare the prevalence of LBP among individuals with and without PHP and to assess the association between low back disability and foot/ankle function. A cross-sectional study compared the prevalence and likelihood of LBP in individuals with (n=27) and without (n=27) PHP matched to age, sex, BMI, foot posture, and foot mobility. In individuals with PHP, correlations were examined between foot/ankle function using the foot and ankle ability measure (FAAM), low back disability using the Oswestry low back disability questionnaire (OSW), duration of PHP symptoms, body mass index (BMI), and age. A greater percentage of individuals with PHP had LBP (74% versus 37% of controls, odds ratio=5.2, P=0.009) and higher levels of low back disability (17% higher OSW score than controls, P<0.001). In individuals with PHP, FAAM scores were correlated with OSW scores (ρ=-0.463, P=0.015), but not with duration of PHP symptoms, BMI, or age (P>0.150). Individuals with PHP had a greater prevalence of LBP and higher low back disability that was correlated to reduced foot and ankle function. Treatment to address both local and proximal impairments, including impairments related to LBP, may be warranted to improve the management of PHP. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tung, Emily W.Y.; Peshdary, Vian; Gagné, Remi; Rowan-Carroll, Andrea; Yauk, Carole L.; Boudreau, Adéle
2017-01-01
Background: Exposure to flame retardants has been associated with negative health outcomes including metabolic effects. As polybrominated diphenyl ether flame retardants were pulled from commerce, human exposure to new flame retardants such as Firemaster® 550 (FM550) has increased. Although previous studies in murine systems have shown that FM550 and its main components increase adipogenesis, the effects of FM550 in human models have not been elucidated. Objectives: The objectives of this study were to determine if FM550 and its components are active in human preadipocytes, and to further investigate their mode of action. Methods: Human primary preadipocytes were differentiated in the presence of FM550 and its components. Differentiation was assessed by lipid accumulation and expression of peroxisome proliferator-activated receptor γ (PPARG), fatty acid binding protein (FABP) 4 and lipoprotein lipase (LPL). mRNA was collected for Poly (A) RNA sequencing and was used to identify differentially expressed genes (DEGs). Functional analysis of DEGs was undertaken in Ingenuity Pathway Analysis. Results: FM550 triphenyl phosphate (TPP) and isopropylated triphenyl phosphates (IPTP), increased adipogenesis in human primary preadipocytes as assessed by lipid accumulation and mRNA expression of regulators of adipogenesis such as PPARγ, CCAAT enhancer binding protein (C/EBP) α and sterol regulatory element binding protein (SREBP) 1 as well as the adipogenic markers FABP4 LPL and perilipin. Poly (A) RNA sequencing analysis revealed potential modes of action including liver X receptor/retinoid X receptor (LXR/RXR) activation, thyroid receptor (TR)/RXR, protein kinase A, and nuclear receptor subfamily 1 group H members activation. Conclusions: We found that FM550, and two of its components, induced adipogenesis in human primary preadipocytes. Further, using global gene expression analysis we showed that both TPP and IPTP likely exert their effects through PPARG to induce adipogenesis. In addition, IPTP perturbed signaling pathways that were not affected by TPP. https://doi.org/10.1289/EHP1318 PMID:28934090
(Epi)genotype-Phenotype Analysis in 69 Japanese Patients With Pseudohypoparathyroidism Type I
Sano, Shinichiro; Nakamura, Akie; Matsubara, Keiko; Nagasaki, Keisuke; Fukami, Maki; Kagami, Masayo
2018-01-01
Context: Pseudohypoparathyroidism type I (PHP-I) is divided into PHP-Ia with Albright hereditary osteodystrophy and PHP-Ib, which usually shows no Albright hereditary osteodystrophy features. Although PHP-Ia and PHP-Ib are typically caused by genetic defects involving α subunit of the stimulatory G protein (Gsα)–coding GNAS exons and methylation defects of the GNAS differentially methylated regions (DMRs) on the maternal allele, respectively, detailed phenotypic characteristics still remains to be examined. Objective: To clarify phenotypic characteristics according to underlying (epi)genetic causes. Patients and Methods: We performed (epi)genotype-phenotype analysis in 69 Japanese patients with PHP-I; that is, 28 patients with genetic defects involving Gsα-coding GNAS exons (group 1) consisting of 12 patients with missense variants (subgroup A) and 16 patients with null variants (subgroup B), as well as 41 patients with methylation defects (group 2) consisting of 21 patients with broad methylation defects of the GNAS-DMRs (subgroup C) and 20 patients with an isolated A/B-DMR methylation defect accompanied by the common STX16 microdeletion (subgroup D). Results: Although (epi)genotype-phenotype findings were grossly similar to those reported previously, several important findings were identified, including younger age at hypocalcemic symptoms and higher frequencies of hyperphosphatemia in subgroup C than in subgroup D, development of brachydactyly in four patients of subgroup C, predominant manifestation of subcutaneous ossification in subgroup B, higher frequency of thyrotropin resistance in group 1 than in group 2, and relatively low thyrotropin values in four patients with low T4 values and relatively low luteinizing hormone/follicle-stimulating hormone values in five adult females with ovarian dysfunction. Conclusion: The results imply the presence of clinical findings characteristic of each underlying cause and provide useful information on the imprinting status of Gsα. PMID:29379892
Bunker, Suresh Kumar; Dandapat, Jagneshwar; Sahoo, Sunil Kumar; Roy, Anita; Chainy, Gagan B N
2016-02-01
Persistent exposure of rats to 6-propyl-2-thiouracil (PTU) from birth resulted in decreases in plasma thyroid hormone (TH) levels and hepatic expression of catalase and CCAAT enhancer binding protein β (C/EBP-β). Catalase promoter region (-185 to +52) that contains binding sites for C/EBP-β showed an augmentation in the methylation level along with a change in methylation pattern of CpG islands in response to PTU treatment. PTU withdrawal on 30 days of birth restored TH levels and C/EBP-β to control rats in adulthood. Although catalase expression was restored to some extent in adult rats in response to PTU withdrawal, a permanent change in its promoter CpG methylation pattern was recorded. The results suggest that downregulation of adult hepatic catalase gene in response to persistent neonatal PTU exposure may not solely be attributed to thyroid-disrupting properties of PTU. It is possible that besides thyroid-disrupting behavior, PTU may impair expression of hepatic catalase by altering methylation pattern of its promoter. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Sarah; Jung, Jaesung; Kim, Taeyeung
In this study, HepG2-hepatitis B virus (HBV)-stable cells that did not overexpress HBx and HBx-deficient mutant-transfected cells were analyzed for their expression of HBV-induced, upregulated adipogenic and lipogenic genes. The mRNAs of CCAAT enhancer binding protein {alpha} (C/EBP{alpha}), peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), adiponectin, liver X receptor {alpha} (LXR{alpha}), sterol regulatory element binding protein 1c (SREBP1c), and fatty acid synthase (FAS) were expressed at higher levels in HepG2-HBV and lamivudine-treated stable cells and HBx-deficient mutant-transfected cells than in the HepG2 cells. Lamivudine treatment reduced the mRNA levels of PPAR{gamma} and C/EBP{alpha}. Conversely, HBV replication was upregulated by adiponectin and PPAR{gamma}more » agonist rosiglitazone treatments and was downregulated by adiponectin siRNAs. Collectively, our results demonstrate that HBV replication and/or protein expression, even in the absence of HBx, upregulated adipogenic or lipogenic genes, and that the control of adiponectin might prove useful as a therapeutic modality for the treatment of chronic hepatitis B.« less
Klein-Hessling, Stefan; Schneider, Günter; Heinfling, Annette; Chuvpilo, Sergei; Serfling, Edgar
1996-01-01
HMG I(Y) proteins bind to double-stranded A+T oligonucleotides longer than three base pairs. Such motifs form part of numerous NF-AT-binding sites of lymphokine promoters, including the interleukin 4 (IL-4) promoter. NF-AT factors share short homologous peptide sequences in their DNA-binding domain with NF-κB factors and bind to certain NF-κB sites. It has been shown that HMG I(Y) proteins enhance NF-κB binding to the interferon β promoter and virus-mediated interferon β promoter induction. We show that HMG I(Y) proteins exert an opposite effect on the DNA binding of NF-AT factors and the induction of the IL-4 promoter in T lymphocytes. Introduction of mutations into a high-affinity HMG I(Y)-binding site of the IL-4 promoter, which decreased HMG I(Y)-binding to a NF-AT-binding sequence, the Pu-bB (or P) site, distinctly increased the induction of the IL-4 promoter in Jurkat T leukemia cells. High concentrations of HMG I(Y) proteins are able to displace NF-ATp from its binding to the Pu-bB site. High HMG I(Y) concentrations are typical for Jurkat cells and peripheral blood T lymphocytes, whereas El4 T lymphoma cells and certain T helper type 2 cell clones contain relatively low HMG I(Y) concentrations. Our results indicate that HMG I(Y) proteins do not cooperate, but instead compete with NF-AT factors for the binding to DNA even though NF-AT factors share some DNA-binding properties with NF-kB factors. This competition between HMG I(Y) and NF-AT proteins for DNA binding might be due to common contacts with minor groove nucleotides of DNA and may be one mechanism contributing to the selective IL-4 expression in certain T lymphocyte populations, such as T helper type 2 cells. PMID:8986808
Lutfi, Esmail; Riera-Heredia, Natàlia; Córdoba, Marlon; Porte, Cinta; Gutiérrez, Joaquim; Capilla, Encarnación; Navarro, Isabel
2017-07-01
Numerous environmental pollutants have been identified as potential obesogenic compounds affecting endocrine signaling and lipid homeostasis. Among them, well-known organotins such as tributyltin (TBT) and triphenyltin (TPT), can be found in significant concentrations in aquatic environments. The aim of the present study was to investigate in vitro the effects of TBT and TPT on the development and lipid metabolism of rainbow trout (Onchorynchus mykiss) primary cultured adipocytes. Results showed that TBT and TPT induced lipid accumulation and slightly enhanced peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT enhancer binding protein alpha (C/EBPα) protein expression when compared to a control, both in the presence or absence of lipid mixture. However, the effects were higher when combined with lipid, and in the absence of it, the organotins did not cause complete mature adipocyte morphology. Regarding gene expression analyses, exposure to TBT and TPT caused an increase in fatty acid synthase (fasn) mRNA levels confirming the pro-adipogenic properties of these compounds. In addition, when added together with lipid, TBT and TPT significantly increased cebpa, tumor necrosis factor alpha (tnfa) and ATP-binding cassette transporter 1 (abca1) mRNA levels suggesting a synergistic effect. Overall, our data highlighted that TBT and TPT activate adipocyte differentiation in rainbow trout supporting an obesogenic role for these compounds, although by themselves they are not able to induce complete adipocyte development and maturation suggesting that these adipocytes might not be properly functional. Copyright © 2017 Elsevier B.V. All rights reserved.
Ajimsha, M S; Binsu, D; Chithra, S
2014-06-01
Previous studies have reported that stretching of the calf musculature and the plantar fascia are effective management strategies for plantar heel pain (PHP). However, it is unclear whether myofascial release (MFR) can improve the outcomes in this population. To investigate whether myofascial release (MFR) reduces the pain and functional disability associated with plantar heel pain (PHP) in comparison with a control group receiving sham ultrasound therapy (SUST). Randomized, controlled, double blinded trial. Nonprofit research foundation clinic in India. Sixty-six patients, 17 men and 49 women with a clinical diagnosis of PHP were randomly assigned into MFR or a control group and given 12 sessions of treatment per client over 4 weeks. The Foot Function Index (FFI) scale was used to assess pain severity and functional disability. The primary outcome measure was the difference in FFI scale scores between week 1 (pretest score), week 4 (posttest score), and follow-up at week 12 after randomization. Additionally, pressure pain thresholds (PPT) were assessed over the affected gastrocnemii and soleus muscles, and over the calcaneus, by an assessor blinded to the treatment allocation. The simple main effects analysis showed that the MFR group performed better than the control group in weeks 4 and 12 (P<0.001). Patients in the MFR and control groups reported a 72.4% and 7.4% reduction, respectively, in their pain and functional disability in week 4 compared with that in week 1, which persisted as 60.6% in the follow-up at week 12 in the MFR group compared to the baseline. The mixed ANOVA also revealed significant group-by-time interactions for changes in PPT over the gastrocnemii and soleus muscles, and the calcaneus (P<0.05). This study provides evidence that MFR is more effective than a control intervention for PHP. Copyright © 2014 Elsevier Ltd. All rights reserved.
Inferring Diffusion Dynamics from FCS in Heterogeneous Nuclear Environments
Tsekouras, Konstantinos; Siegel, Amanda P.; Day, Richard N.; Pressé, Steve
2015-01-01
Fluorescence correlation spectroscopy (FCS) is a noninvasive technique that probes the diffusion dynamics of proteins down to single-molecule sensitivity in living cells. Critical mechanistic insight is often drawn from FCS experiments by fitting the resulting time-intensity correlation function, G(t), to known diffusion models. When simple models fail, the complex diffusion dynamics of proteins within heterogeneous cellular environments can be fit to anomalous diffusion models with adjustable anomalous exponents. Here, we take a different approach. We use the maximum entropy method to show—first using synthetic data—that a model for proteins diffusing while stochastically binding/unbinding to various affinity sites in living cells gives rise to a G(t) that could otherwise be equally well fit using anomalous diffusion models. We explain the mechanistic insight derived from our method. In particular, using real FCS data, we describe how the effects of cell crowding and binding to affinity sites manifest themselves in the behavior of G(t). Our focus is on the diffusive behavior of an engineered protein in 1) the heterochromatin region of the cell’s nucleus as well as 2) in the cell’s cytoplasm and 3) in solution. The protein consists of the basic region-leucine zipper (BZip) domain of the CCAAT/enhancer-binding protein (C/EBP) fused to fluorescent proteins. PMID:26153697
Ahmed, Aqeel; Smith, Richard D; Clark, Jordan J; Dunbar, James B; Carlson, Heather A
2015-01-01
For over 10 years, Binding MOAD (Mother of All Databases; http://www.BindingMOAD.org) has been one of the largest resources for high-quality protein-ligand complexes and associated binding affinity data. Binding MOAD has grown at the rate of 1994 complexes per year, on average. Currently, it contains 23,269 complexes and 8156 binding affinities. Our annual updates curate the data using a semi-automated literature search of the references cited within the PDB file, and we have recently upgraded our website and added new features and functionalities to better serve Binding MOAD users. In order to eliminate the legacy application server of the old platform and to accommodate new changes, the website has been completely rewritten in the LAMP (Linux, Apache, MySQL and PHP) environment. The improved user interface incorporates current third-party plugins for better visualization of protein and ligand molecules, and it provides features like sorting, filtering and filtered downloads. In addition to the field-based searching, Binding MOAD now can be searched by structural queries based on the ligand. In order to remove redundancy, Binding MOAD records are clustered in different families based on 90% sequence identity. The new Binding MOAD, with the upgraded platform, features and functionalities, is now equipped to better serve its users. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
ATF3 represses PPARγ expression and inhibits adipocyte differentiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Min-Kyung; Jung, Myeong Ho, E-mail: jung0603@pusan.ac.kr
Highlights: • ATF3 decrease the expression of PPARγ and its target gene in 3T3-L1 adipocytes. • ATF3 represses the promoter activity of PPARγ2 gene. • ATF/CRE (−1537/−1530) is critical for ATF3-mediated downregulation of PPARγ. • ATF3 binds to the promoter region containing the ATF/CRE. • ER stress inhibits adipocyte differentiation through downregulation of PPARγ by ATF3. - Abstract: Activating transcription factor 3 (ATF3) is a stress-adaptive transcription factor that mediates cellular stress response signaling. We previously reported that ATF3 represses CCAAT/enhancer binding protein α (C/EBPα) expression and inhibits 3T3-L1 adipocyte differentiation. In this study, we explored potential role of ATF3more » in negatively regulating peroxisome proliferator activated receptor-γ (PPARγ). ATF3 decreased the expression of PPARγ and its target gene in 3T3-L1 adipocytes. ATF3 also repressed the activity of −2.6 Kb promoter of mouse PPARγ2. Overexpression of PPARγ significantly prevented the ATF3-mediated inhibition of 3T3-L1 differentiation. Transfection studies with 5′ deleted-reporters showed that ATF3 repressed the activity of −2037 bp promoter, whereas it did not affect the activity of −1458 bp promoter, suggesting that ATF3 responsive element is located between the −2037 and −1458. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds to ATF/CRE site (5′-TGACGTTT-3′) between −1537 and −1530. Mutation of the ATF/CRE site abrogated ATF3-mediated transrepression of the PPARγ2 promoter. Treatment with thapsigargin, endoplasmic reticulum (ER) stress inducer, increased ATF3 expression, whereas it decreased PPARγ expression. ATF3 knockdown significantly blocked the thapsigargin-mediated downregulation of PPARγ expression. Furthermore, overexpression of PPARγ prevented inhibition of 3T3-L1 differentiation by thapsigargin. Collectively, these results suggest that ATF3-mediated inhibition of PPARγ expression may contribute to inhibition of adipocyte differentiation during cellular stress including ER stress.« less
Analysing Student Programs in the PHP Intelligent Tutoring System
ERIC Educational Resources Information Center
Weragama, Dinesha; Reye, Jim
2014-01-01
Programming is a subject that many beginning students find difficult. The PHP Intelligent Tutoring System (PHP ITS) has been designed with the aim of making it easier for novices to learn the PHP language in order to develop dynamic web pages. Programming requires practice. This makes it necessary to include practical exercises in any ITS that…
Responses to peripheral neuropeptide Y in avian adipose tissue are diet, depot, and time specific.
Wang, Guoqing; Cline, Mark A; Gilbert, Elizabeth R
2018-06-01
The goal of this research was to determine the effect of dietary macronutrient composition on peripheral neuropeptide Y (NPY)-induced changes in adipose tissue dynamics in chicks. Chicks were fed one of three isocaloric diets from the day of hatch: high carbohydrate (HC), high fat (HF), or high protein (HP). On day 4 post-hatch, 0 (vehicle), 60, or 120 µg/kg BW of NPY was injected intraperitoneally, and subcutaneous, clavicular and abdominal adipose tissue samples were collected at 1 and 3 h post-injection. The effect of NPY was most pronounced in chicks fed the HF or HP diet. In the subcutaneous fat at 1 h post-injection, 60 µg/kg BW of NPY was associated with an increase in NPY receptor 2 (NPYR2) mRNA in chicks fed the HP diet and a decrease in 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2) mRNA in chicks fed the HC diet. In response to 120 µg/kg BW of NPY, there was greater AGPAT2 mRNA in the clavicular fat of chicks that consumed the HP diet and less CCAAT/enhancer-binding protein alpha in the abdominal fat of chicks that were provided the HF diet. There were no gene expression changes in the abdominal fat at 3 h post-injection, whereas there were decreases in AGPAT2, adipose triglyceride lipase, fatty acid binding protein 4 and NPY mRNA in the clavicular fat of chicks fed the HP diet. Results demonstrate that diet affects exogenous NPY-dependent physiological effects in a time- and depot-dependent manner in chick adipose tissue. Copyright © 2018 Elsevier Inc. All rights reserved.
Qiu, Jingwen; Ma, Lunjie; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Hu, Yaodong
2017-08-01
Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis and ethanol fermentation at high solid loadings. Results indicated solid loading could reach 20% with 77.4% cellulose-glucose conversion and glucose concentration of 164.9g/L in hydrolysate, it even was promoted to 25% with only 3.4% decrease on cellulose-glucose conversion as the pretreated-wheat straw was dewatered by air-drying. 72.9% cellulose-glucose conversion still was achieved as the minimized enzyme input of 20mg protein/g cellulose was employed for hydrolysis at 20% solid loading. In the corresponding conditions, 100g wheat straw can yield 11.2g ethanol with concentration of 71.2g/L by simultaneous saccharification and fermentation. Thus, PHP-pretreatment benefitted the glucose or ethanol yield at high solid loadings with lower enzyme input. Additionally, decreases on the maximal cellulase adsorption and the direct-orange/direct-blue indicated drying the PHP-pretreated substrates negatively affected the hydrolysis due to the shrinkage of cellulase-size-accommodable pores. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Xueqing; Huang Guangcun; Mei Shuang
2009-03-06
Hepatic stellate cells (HSCs) play a key role in the pathogenesis of hepatic fibrosis. In our previous studies, CCAAT enhancer binding protein-{alpha} (C/EBP-{alpha}) has been shown to be involved in the activation of HSCs and to have a repression effect on hepatic fibrosis in vivo. However, the mechanisms are largely unknown. In this study, we show that the infection of adenovirus vector expressing C/EBP-{alpha} gene (Ad-C/EBP-{alpha}) could induce HSCs apoptosis in a dose- and time-dependent manner by Annexin V/PI staining, caspase-3 activation assay, and flow cytometry. Also, over-expression of C/EBP-{alpha} resulted in the up-regulation of peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) andmore » P53, while P53 expression was regulated by PPAR-{gamma}. In addition, Fas, FasL, DR4, DR5, and TRAIL were studied. The results indicated that the death receptor pathway was mainly involved and regulated by PPAR-{gamma} and p53 in the process of apoptosis triggered by C/EBP-{alpha} in HSCs.« less
Hotta, Takayuki; Nishiguchi, Shu; Fukutani, Naoto; Tashiro, Yuto; Adachi, Daiki; Morino, Saori; Aoyama, Tomoki
2016-09-01
Plantar heel pain (PHP) is a common complaint, and is most often caused by plantar fasciitis. Plantar fasciitis is reported to be associated with running surfaces, however the association between PHP and running surfaces has not previously been revealed in an epidemiological investigation. Therefore, the purpose of the current study was to examine the association between PHP and running surfaces. This is a cross-sectional study. A total of 347 competitive long-distance male runners participated in this study. The participants completed an original questionnaire, which included items assessing demographic characteristics, training characteristics focusing on running surfaces (soft surface, hard surface and tartan), and the prevalence of PHP during the previous 12 months. A logistic regression analysis was used to identify the effect of running surfaces on PHP. We found that 21.9% of participants had experienced PHP during the previous 12 months. The multivariate logistic regression analysis, after adjusting for demographic and training characteristics, revealed that running on tartan was associated with PHP (odds ratio 2.82, 95% confidence interval 1.42 to 5.61; P<0.01). Our findings suggest that running more than 25% on tartan is associated with PHP in competitive long-distance male runners.
High-fidelity DNA replication in Mycobacterium tuberculosis relies on a trinuclear zinc center.
Baños-Mateos, Soledad; van Roon, Anne-Marie M; Lang, Ulla F; Maslen, Sarah L; Skehel, J Mark; Lamers, Meindert H
2017-10-11
High-fidelity DNA replication depends on a proofreading 3'-5' exonuclease that is associated with the replicative DNA polymerase. The replicative DNA polymerase DnaE1 from the major pathogen Mycobacterium tuberculosis (Mtb) uses its intrinsic PHP-exonuclease that is distinct from the canonical DEDD exonucleases found in the Escherichia coli and eukaryotic replisomes. The mechanism of the PHP-exonuclease is not known. Here, we present the crystal structure of the Mtb DnaE1 polymerase. The PHP-exonuclease has a trinuclear zinc center, coordinated by nine conserved residues. Cryo-EM analysis reveals the entry path of the primer strand in the PHP-exonuclease active site. Furthermore, the PHP-exonuclease shows a striking similarity to E. coli endonuclease IV, which provides clues regarding the mechanism of action. Altogether, this work provides important insights into the PHP-exonuclease and reveals unique properties that make it an attractive target for novel anti-mycobacterial drugs.The polymerase and histidinol phosphatase (PHP) domain in the DNA polymerase DnaE1 is essential for mycobacterial high-fidelity DNA replication. Here, the authors determine the DnaE1 crystal structure, which reveals the PHP-exonuclease mechanism that can be exploited for antibiotic development.
Carbonic anhydrase III regulates peroxisome proliferator-activated receptor-{gamma}2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitterberger, Maria C.; Kim, Geumsoo; Rostek, Ursula
2012-05-01
Carbonic anhydrase III (CAIII) is an isoenzyme of the CA family. Because of its low specific anhydrase activity, physiological functions in addition to hydrating CO{sub 2} have been proposed. CAIII expression is highly induced in adipogenesis and CAIII is the most abundant protein in adipose tissues. The function of CAIII in both preadipocytes and adipocytes is however unknown. In the present study we demonstrate that adipogenesis is greatly increased in mouse embryonic fibroblasts (MEFs) from CAIII knockout (KO) mice, as demonstrated by a greater than 10-fold increase in the induction of fatty acid-binding protein-4 (FABP4) and increased triglyceride formation inmore » CAIII{sup -/-} MEFs compared with CAIII{sup +/+} cells. To address the underlying mechanism, we investigated the expression of the two adipogenic key regulators, peroxisome proliferator-activated receptor-{gamma}2 (PPAR{gamma}2) and CCAAT/enhancer binding protein-{alpha}. We found a considerable (approximately 1000-fold) increase in the PPAR{gamma}2 expression in the CAIII{sup -/-} MEFs. Furthermore, RNAi-mediated knockdown of endogenous CAIII in NIH 3T3-L1 preadipocytes resulted in a significant increase in the induction of PPAR{gamma}2 and FABP4. When both CAIII and PPAR{gamma}2 were knocked down, FABP4 was not induced. We conclude that down-regulation of CAIII in preadipocytes enhances adipogenesis and that CAIII is a regulator of adipogenic differentiation which acts at the level of PPAR{gamma}2 gene expression. -- Highlights: Black-Right-Pointing-Pointer We discover a novel function of Carbonic anhydrase III (CAIII). Black-Right-Pointing-Pointer We show that CAIII is a regulator of adipogenesis. Black-Right-Pointing-Pointer We demonstrate that CAIII acts at the level of PPAR{gamma}2 gene expression. Black-Right-Pointing-Pointer Our data contribute to a better understanding of the role of CAIII in fat tissue.« less
Yang, Guang; Hinson, Maurice D.; Bordner, Jessica E.; Lin, Qing S.; Fernando, Amal P.; La, Ping; Wright, Clyde J.
2011-01-01
Postnatal lung development requires proliferation and differentiation of specific cell types at precise times to promote proper alveolar formation. Hyperoxic exposure can disrupt alveolarization by inhibiting cell growth; however, it is not fully understood how this is mediated. The transcription factor CCAAT/enhancer binding protein-α (C/EBPα) is highly expressed in the lung and plays a role in cell proliferation and differentiation in many tissues. After 72 h of hyperoxia, C/EBPα expression was significantly enhanced in the lungs of newborn mice. The increased C/EBPα protein was predominantly located in alveolar type II cells. Silencing of C/EBPα with a transpulmonary injection of C/EBPα small interfering RNA (siRNA) prior to hyperoxic exposure reduced expression of markers of type I cell and differentiation typically observed after hyperoxia but did not rescue the altered lung morphology at 72 h. Nevertheless, when C/EBPα hyperoxia-exposed siRNA-injected mice were allowed to recover for 2 wk in room air, lung epithelial cell proliferation was increased and lung morphology was restored compared with hyperoxia-exposed control siRNA-injected mice. These data suggest that C/EBPα is an important regulator of postnatal alveolar epithelial cell proliferation and differentiation during injury and repair. PMID:21571903
Underbjerg, L; Sikjaer, T; Rejnmark, L
2018-03-09
Nonsurgical hypoparathyroidism (NS-HypoPT) and pseudohypoparathyroidism (PHP) are rare diseases, with a prevalence of 2/100.000 and 1/100.000, respectively. Only few studies on Quality of Life (QoL) among patients with Ns-HypoPT and PHP are available. We aimed to investigate the QoL among patients with Ns-HypoPT and PHP including information about education. A cohort study with patients identified from a previously epidemiological study. Fifty seven patients with Ns-HypoPT and 30 patients with PHP. The well-validated questionnaires SF-36v2 and WHO-5 Well Being Index. Results compared to norm-based material, disease-specific norm-based material and patients with postsurgical HypoPT RESULTS: SF36v2 showed a significantly reduced score in all eight subdomains in patients with NS-HypoPT compared with a norm-based population. PHP patients scored lower in five subdomains. Females were more affected than males. Compared with postsurgical HypoPT, Ns-HypoPT and PHP are compatible at most domains. At the domains Physical Function, Social Function and Mental Health, Ns-HypoPT and PHP patients scored significantly lower (P all < .05). At the Mental Component Score, patients with Ns-HypoPT had a lower score compared with postsurgical HypoPT (P < .01). The overall WHO-5 Well Being Index score was comparable between groups (P = .45). No differences were seen comparing patients with postsurgical HypoPT and Ns-HypoPT (P = .68) or postsurgical HypoPT and PHP (P = .67). A WHO-5 score below 28 indicates depression (NS-HypoPT=7; PHP=3, P = .71), whereas a score between 28-50 suggesting poor emotional well-being (NS-HypoPT=19; PHP=5, P = .13). The remaining patients scored above 50 suggesting well-being. QoL is impaired equally among patients with Ns-HypoPT and PHP. © 2018 John Wiley & Sons Ltd.
LHD1, an allele of DTH8/Ghd8, controls late heading date in common wild rice (Oryza rufipogon).
Dai, Xiaodong; Ding, Younian; Tan, Lubin; Fu, Yongcai; Liu, Fengxia; Zhu, Zuofeng; Sun, Xianyou; Sun, Xuewen; Gu, Ping; Cai, Hongwei; Sun, Chuanqing
2012-10-01
Flowering at suitable time is very important for plants to adapt to complicated environments and produce their seeds successfully for reproduction. In rice (Oryza rufipogon Griff.) photoperiod regulation is one of the important factors for controlling heading date. Common wild rice, the ancestor of cultivated rice, exhibits a late heading date and a more sensitive photoperiodic response than cultivated rice. Here, through map-based cloning, we identified a major quantitative trait loci (QTL) LHD1 (Late Heading Date 1), an allele of DTH8/Ghd8, which controls the late heading date of wild rice and encodes a putative HAP3/NF-YB/CBF-A subunit of the CCAAT-box-binding transcription factor. Sequence analysis revealed that several variants in the coding region of LHD1 were correlated with a late heading date, and a further complementary study successfully rescued the phenotype. These results suggest that a functional site for LHD1 could be among those variants present in the coding region. We also found that LHD1 could down-regulate the expression of several floral transition activators such as Ehd1, Hd3a and RFT1 under long-day conditions, but not under short-day conditions. This indicates that LHD1 may delay flowering by repressing the expression of Ehd1, Hd3a and RFT1 under long-day conditions. © 2012 Institute of Botany, Chinese Academy of Sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Mi-Bo; Song, Youngwoo; Kim, Changhee
Highlights: • Kirenol inhibits the adipogenic transcription factors and lipogenic enzymes. • Kirenol stimulates the Wnt/β-catenin signaling pathway components. • Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway. - Abstract: Kirenol, a natural diterpenoid compound, has been reported to possess anti-oxidant, anti-inflammatory, anti-allergic, and anti-arthritic activities; however, its anti-adipogenic effect remains to be studied. The present study evaluated the effect of kirenol on anti-adipogenesis through the activation of the Wnt/β-catenin signaling pathway. Kirenol prevented intracellular lipid accumulation by down-regulating key adipogenesis transcription factors [peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding proteins α (C/EBPα), and sterol regulatory element bindingmore » protein-1c (SREBP-1c)] and lipid biosynthesis-related enzymes [fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC)], as well as adipocytokines (adiponectin and leptin). Kirenol effectively activated the Wnt/β-catenin signaling pathway, in which kirenol up-regulated the expression of low density lipoprotein receptor related protein 6 (LRP6), disheveled 2 (DVL2), β-catenin, and cyclin D1 (CCND1), while it inactivated glycogen synthase kinase 3β (GSK3β) by increasing its phosphorylation. Kirenol down-regulated the expression levels of PPARγ and C/EBPα, which were up-regulated by siRNA knockdown of β-catenin. Overall, kirenol is capable of inhibiting the differentiation and lipogenesis of 3T3-L1 adipocytes through the activation of the Wnt/β-catenin signaling pathway, suggesting its potential as natural anti-obesity agent.« less
Ye, Yang; Miao, Shuhan; Wang, Yan; Zhou, Jianwei; Lu, Rongzhu
2015-05-01
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) specifically kills cancer cells without destroying the majority of healthy cells. However, numerous types of cancer cell, including gastric cancer cells, tend to be resistant to TRAIL. The bioactive product 3,3'-diindolylmethane (DIM), which is derived from cruciferous vegetables, is also currently recognized as a candidate anticancer agent. In the present study, a Cell Counting Kit 8 cell growth assay and an Annexin V-fluorescein isothiocyanate apoptosis assay were performed to investigate the potentiating effect of DIM on TRAIL-induced apoptosis in gastric cancer cells, and the possible mechanisms of this potentiation. The results obtained demonstrated that, compared with TRAIL or DIM treatment alone, co-treatment with TRAIL (25 or 50 ng/ml) and DIM (10 µmol/l) induced cytotoxic and apoptotic effects in BGC-823 and SGC-7901 gastric cancer cells. Furthermore, western blot analysis revealed that the protein expression levels of death receptor 5 (DR5), CCAAT/enhancer binding protein homologous protein (CHOP) and glucose-regulated protein 78 (GRP78) were upregulated in the co-treated gastric cancer cells. To the best of our knowledge, the present study is the first to provide evidence that DIM sensitizes TRAIL-induced inhibition of proliferation and apoptosis in gastric cancer cells, accompanied by the upregulated expression of DR5, CHOP and GRP78 proteins, which may be involved in endoplasmic reticulum stress mechanisms.
Yu, Aiping; Wang, Ying; Yin, Jianhai; Zhang, Jing; Cao, Shengkui; Cao, Jianping; Shen, Yujuan
2018-05-30
Cystic echinococcosis is a worldwide chronic zoonotic disease caused by infection with the larval stage of Echinococcus granulosus. Previously, we found significant accumulation of myeloid-derived suppressor cells (MDSCs) in E. granulosus infection mouse models and that they play a key role in immunosuppressing T lymphocytes. Here, we compared the long non-coding RNA (lncRNA) and mRNA expression patterns between the splenic monocytic MDSCs (M-MDSCs) of E. granulosus protoscoleces-infected mice and normal mice using microarray analysis. LncRNA functions were predicted using Gene Ontology enrichment and the Kyoto Encyclopedia of Genes and Genomes pathway analysis. Cis- and trans-regulation analyses revealed potential relationships between the lncRNAs and their target genes or related transcription factors. We found that 649 lncRNAs were differentially expressed (fold change ≥ 2, P < 0.05): 582 lncRNAs were upregulated and 67 lncRNAs were downregulated; respectively, 28 upregulated mRNAs and 1043 downregulated mRNAs were differentially expressed. The microarray data was validated by quantitative reverse transcription-PCR. The results indicated that mRNAs co-expressed with the lncRNAs are mainly involved in regulating the actin cytoskeleton, Salmonella infection, leishmaniasis, and the vascular endothelial growth factor (VEGF) signaling pathway. The lncRNA NONMMUT021591 was predicted to cis-regulate the retinoblastoma gene (Rb1), whose expression is associated with abnormal M-MDSCs differentiation. We found that 372 lncRNAs were predicted to interact with 60 transcription factors; among these, C/EBPβ (CCAAT/enhancer binding protein beta) was previously demonstrated to be a transcription factor of MDSCs. Our study identified dysregulated lncRNAs in the M-MDSCs of E. granulosus infection mouse models; they might be involved in M-MDSC-derived immunosuppression in related diseases.
Adzic, Miroslav; Djordjevic, Jelena; Mitic, Milos; Brkic, Zeljka; Lukic, Iva; Radojcic, Marija
2015-09-15
Peripheral inflammation induced by lipopolysaccharide (LPS) causes behavioural changes indicative for depression. The possible mechanisms involve the interference with neuroinflammatory, neuroendocrine, and neurotrophic processes. Apart from heterogeneity in the molecular background, sexual context may be another factor relevant to the manifestation of mood disturbances upon an immune challenge. We investigated sex-dependent effects of a 7-day LPS treatment of adult Wistar rats on depressive-like behaviour and their relation with hypothalamic neuroendocrine factor, corticotrophin-releasing hormone (CRH), proplastic brain-derived neurotropic factor (BDNF), pro-inflammatory cyclooxygenase-2 (COX-2) and nuclear factor kappa beta (NFkB). Also, their regulators, the glucocorticoid receptor (GR) and CCAAT enhancer-binding protein (C/EBP) β were followed. LPS induced depressive-like behaviour in females was associated with the increased hypothalamic CRH and decreased BDNF, but not with COX-2. These changes were paralleled by an increase in nuclear GR, NFkB and 20 kDa C/EBPβ. LPS also altered behaviour in males and increased CRH expression, but in contrast to females, this was accompanied with the elevated COX-2, accumulation of cytosolic GR and elevated nuclear 38 kDa C/EBPβ and NFkB. In conclusion, depressive-like phenotype induced by LPS in both sexes emerges from similar HPA axis activation and sex-specific alterations of hypothalamic molecular signalling: in males it is related to compromised control of neuroinflamation connected with cytoplasmic GR retention, while in females it is related to diminished proplastic capacity of BDNF. Sex-dependent mechanisms by which inflammation alters hypothalamic processes and cause pathological behaviour in animals, could be operative in the treatment of depression-related brain inflammation. Copyright © 2015 Elsevier B.V. All rights reserved.
Pseudohypoparathyroidism type Ib associated with novel duplications in the GNAS locus.
Perez-Nanclares, Gustavo; Velayos, Teresa; Vela, Amaya; Muñoz-Torres, Manuel; Castaño, Luis
2015-01-01
Pseudohypoparathyroidism type 1b (PHP-Ib) is characterized by renal resistance to PTH (and, sometimes, a mild resistance to TSH) and absence of any features of Albright's hereditary osteodystrophy. Patients with PHP-Ib suffer of defects in the methylation pattern of the complex GNAS locus. PHP-Ib can be either sporadic or inherited in an autosomal dominant pattern. Whereas familial PHP-Ib is well characterized at the molecular level, the genetic cause of sporadic PHP-Ib cases remains elusive, although some molecular mechanisms have been associated with this subtype. The aim of the study was to investigate the molecular and imprinting defects in the GNAS locus in two unrelated patients with PHP-Ib. We have analyzed the GNAS locus by direct sequencing, Methylation-Specific Multiplex Ligation-dependent Probe Amplification, microsatellites, Quantitative Multiplex PCR of Short Fluorescent fragments and array-Comparative Genomic Hybridization studies in order to characterize two unrelated families with clinical features of PHP-Ib. We identified two duplications in the GNAS region in two patients with PHP-Ib: one of them, comprising ∼ 320 kb, occurred 'de novo' in the patient, whereas the other one, of ∼ 179 kb in length, was inherited from the maternal allele. In both cases, no other known genetic cause was observed. In this article, we describe the to-our-knowledge biggest duplications reported so far in the GNAS region. Both are associated to PHP-Ib, one of them occurring 'de novo' and the other one being maternally inherited.
Kang, Ji-Hye; Lee, Hyun-Ah; Kim, Hak-Ju; Han, Ji-Sook
2017-02-01
In this study, we investigated whether Gelidium amansii extract (GAE) ameliorates obesity in diet-induced obese (DIO) mice. The mice were maintained on a high-fat diet (HD) for 5 weeks to generate the DIO mouse model. And then mice fed HD plus 0.5% (GAE1), 1% (GAE2) or 2% (GAE3) for 8 weeks. After the experimental period, GAE-supplemented groups were significantly lower than the HD group in body weight gain and liver weight. GAE supplemented groups were significantly lower than the HD group in both epididymal and mesenteric adipose tissue mass. The plasma leptin level was significantly higher in the HD group than in GAE-supplemented groups. The leptin level of HD+GAE3 group was significantly lower than that of the HD+conjugated linoleic acid (CLA) group. In contrast, plasma adiponectin level of the HD group was significantly lower than those of HD+GAE2 and HD+GAE3 groups. The expression levels of adipogenic proteins such as fatty acid synthase, sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor γ, and CCAAT/enhancer binding protein α in the GAE supplemented groups were significantly decreased than those in HD group, respectively. In addition, the expression levels of HD+GAE2 and HD+GAE3 groups are significantly decreased compared to those of HD+CLA group. On the contrary, the expression levels of hormone-sensitive lipase and phospho-AMP-activated protein kinase, proteins associated with lipolysis, were significantly increased in the GAE supplemented groups compared to those in the HD group. HD+GAE3 group showed the highest level among the GAE supplemented groups. These results suggested that GAE supplementation stimulated the expressions of lipid metabolic factors and reduced weight gain in HD-fed C57BL/6J obese mice.
Kang, Ji-Hye; Lee, Hyun-Ah; Kim, Hak-Ju
2017-01-01
BACKGROUND/OBJECTIVES In this study, we investigated whether Gelidium amansii extract (GAE) ameliorates obesity in diet-induced obese (DIO) mice. MATERIALS/METHODS The mice were maintained on a high-fat diet (HD) for 5 weeks to generate the DIO mouse model. And then mice fed HD plus 0.5% (GAE1), 1% (GAE2) or 2% (GAE3) for 8 weeks. RESULTS After the experimental period, GAE-supplemented groups were significantly lower than the HD group in body weight gain and liver weight. GAE supplemented groups were significantly lower than the HD group in both epididymal and mesenteric adipose tissue mass. The plasma leptin level was significantly higher in the HD group than in GAE-supplemented groups. The leptin level of HD+GAE3 group was significantly lower than that of the HD+conjugated linoleic acid (CLA) group. In contrast, plasma adiponectin level of the HD group was significantly lower than those of HD+GAE2 and HD+GAE3 groups. The expression levels of adipogenic proteins such as fatty acid synthase, sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor γ, and CCAAT/enhancer binding protein α in the GAE supplemented groups were significantly decreased than those in HD group, respectively. In addition, the expression levels of HD+GAE2 and HD+GAE3 groups are significantly decreased compared to those of HD+CLA group. On the contrary, the expression levels of hormone-sensitive lipase and phospho-AMP-activated protein kinase, proteins associated with lipolysis, were significantly increased in the GAE supplemented groups compared to those in the HD group. HD+GAE3 group showed the highest level among the GAE supplemented groups. CONCLUSIONS These results suggested that GAE supplementation stimulated the expressions of lipid metabolic factors and reduced weight gain in HD-fed C57BL/6J obese mice. PMID:28194261
Huang, Wei-Ching; Lin, Yee-Shin; Wang, Chi-Yun; Tsai, Cheng-Chieh; Tseng, Hsiang-Chi; Chen, Chia-Ling; Lu, Pei-Jung; Chen, Po-See; Qian, Li; Hong, Jau-Shyong; Lin, Chiou-Feng
2009-01-01
The inflammatory effects of glycogen synthase kinase-3 (GSK-3) have been identified; however, the potential mechanism is still controversial. In this study, we investigated the effects of GSK-3-mediated interleukin-10 (IL-10) inhibition on lipopolysaccharide (LPS)-induced inflammation. Treatment with GSK-3 inhibitor significantly blocked LPS-induced nitric oxide (NO) production as well as inducible NO synthase (iNOS) expression in BV2 murine microglial cells and primary rat microglia-enriched cultures. Using an antibody array and enzyme-linked immunosorbent assay, we found that GSK-3-inhibitor treatment blocked LPS-induced upregulation of regulated on activation normal T-cell expressed and secreted (RANTES) and increased IL-10 expression. The time kinetics and dose–response relations were confirmed. Reverse transcription–polymerase chain reaction showed changes on the messenger RNA level as well. Inhibiting GSK-3 using short-interference RNA, and transfecting cells with dominant-negative GSK-3β, blocked LPS-elicited NO and RANTES expression but increased IL-10 expression. In contrast, GSK-3β overexpression upregulated NO and RANTES but downregulated IL-10 in LPS-stimulated cells. Treating cells with anti-IL-10 neutralizing antibodies to prevent GSK-3 from downregulating NO and RANTES showed that the anti-inflammatory effects are, at least in part, IL-10-dependent. The involvement of Akt, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase and nuclear factor-κB that positively regulated IL-10 was demonstrated. Furthermore, inhibiting GSK-3 increased the nuclear translocation of transcription factors, that all important for IL-10 expression, including CCAAT/enhancer-binding protein beat (C/EBPβ), C/EBPδ, cAMP response binding element protein and NF-κB. Taken together, these findings reveal that LPS induces iNOS/NO biosynthesis and RANTES production through a mechanism involving GSK-3-mediated IL-10 downregulation. PMID:19175796
Huang, Wei-Ching; Lin, Yee-Shin; Wang, Chi-Yun; Tsai, Cheng-Chieh; Tseng, Hsiang-Chi; Chen, Chia-Ling; Lu, Pei-Jung; Chen, Po-See; Qian, Li; Hong, Jau-Shyong; Lin, Chiou-Feng
2009-09-01
The inflammatory effects of glycogen synthase kinase-3 (GSK-3) have been identified; however, the potential mechanism is still controversial. In this study, we investigated the effects of GSK-3-mediated interleukin-10 (IL-10) inhibition on lipopolysaccharide (LPS)-induced inflammation. Treatment with GSK-3 inhibitor significantly blocked LPS-induced nitric oxide (NO) production as well as inducible NO synthase (iNOS) expression in BV2 murine microglial cells and primary rat microglia-enriched cultures. Using an antibody array and enzyme-linked immunosorbent assay, we found that GSK-3-inhibitor treatment blocked LPS-induced upregulation of regulated on activation normal T-cell expressed and secreted (RANTES) and increased IL-10 expression. The time kinetics and dose-response relations were confirmed. Reverse transcription-polymerase chain reaction showed changes on the messenger RNA level as well. Inhibiting GSK-3 using short-interference RNA, and transfecting cells with dominant-negative GSK-3beta, blocked LPS-elicited NO and RANTES expression but increased IL-10 expression. In contrast, GSK-3beta overexpression upregulated NO and RANTES but downregulated IL-10 in LPS-stimulated cells. Treating cells with anti-IL-10 neutralizing antibodies to prevent GSK-3 from downregulating NO and RANTES showed that the anti-inflammatory effects are, at least in part, IL-10-dependent. The involvement of Akt, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase and nuclear factor-kappaB that positively regulated IL-10 was demonstrated. Furthermore, inhibiting GSK-3 increased the nuclear translocation of transcription factors, that all important for IL-10 expression, including CCAAT/enhancer-binding protein beat (C/EBPbeta), C/EBPdelta, cAMP response binding element protein and NF-kappaB. Taken together, these findings reveal that LPS induces iNOS/NO biosynthesis and RANTES production through a mechanism involving GSK-3-mediated IL-10 downregulation.
Takahashi, T; Iwasaki, K; Malchesky, P S; Harasaki, H; Matsushita, M; Nosé, Y; Rolin, H; Hall, P M
1993-03-01
Pyridoxalated-hemoglobin-polyoxyethylene conjugate (PHP), which is made from out-dated human red blood cells by two major chemical modifications, namely pyridoxalation and conjugation with polyoxyethylene (POE), is currently under development as a physiological oxygen carrier. This study assessed the effects of PHP-88 solution, which contains 8% (wt/vol) each of hemoglobin (Hb) and maltose, on renal function when it was infused 3 times every other day into the intact circulation of 8 dogs (5 dogs for the PHP group and 3 for the control group; 20 ml/kg for the first infusion, and 10 ml/kg each for the second and third infusions, at the rate of 2.5 ml/h/kg). Serial determinations of glomerular filtration rate (GFR) and renal plasma flow (RPF) were carried out pre- and postinfusion for up to 3 months along with measurements of blood and urine analyses, urine output rate, fractional excretion of sodium (FES), and free water clearance (CH2O). The results showed that plasma colloid osmotic pressure (COP) elevated an average of 3.3 mm Hg (p = 0.0085), and GFR and RPF tended to increase by 13% (NS) and 38% (NS), respectively, immediately after the third infusion with PHP solution. Urine output rate increased during and after the infusion, and FES and CH2O also increased for 24 h after the infusion in both groups. Blood urea nitrogen, serum creatinine, and serum Na+ concentrations were not affected greatly by the infusions, but hematocrit was decreased by 8% in the PHP group, indicating approximately a 42% expansion of plasma volume. These changes were observed to return to their preinfusion levels by 1 week postinfusion. Renal histology of the PHP group obtained at 2 weeks postinfusion revealed vacuole formation in the proximal tubules which was not associated with any pathologic changes indicative of cell death or regeneration. In 4 out of 5 dogs at 3 months postinfusion (necropsy), the vacuoles were not present. Though urinary N-acetyl-beta-glucosaminidase (NAG) activity had significantly increased after infusion, it returned to the preinfusion level by 1 month postinfusion. No detrimental effect of vacuoles on the assessed renal tubular functions was confirmed in the present study. The results demonstrated that multiple infusions of PHP solutions were well tolerated in normal dogs, and the observed effects were conceived predominantly attributable to the physiological response of the kidneys to an oncotic load into the circulation, which produced plasma volume expansion.
SGDB: a database of synthetic genes re-designed for optimizing protein over-expression.
Wu, Gang; Zheng, Yuanpu; Qureshi, Imran; Zin, Htar Thant; Beck, Tyler; Bulka, Blazej; Freeland, Stephen J
2007-01-01
Here we present the Synthetic Gene Database (SGDB): a relational database that houses sequences and associated experimental information on synthetic (artificially engineered) genes from all peer-reviewed studies published to date. At present, the database comprises information from more than 200 published experiments. This resource not only provides reference material to guide experimentalists in designing new genes that improve protein expression, but also offers a dataset for analysis by bioinformaticians who seek to test ideas regarding the underlying factors that influence gene expression. The SGDB was built under MySQL database management system. We also offer an XML schema for standardized data description of synthetic genes. Users can access the database at http://www.evolvingcode.net/codon/sgdb/index.php, or batch downloads all information through XML files. Moreover, users may visually compare the coding sequences of a synthetic gene and its natural counterpart with an integrated web tool at http://www.evolvingcode.net/codon/sgdb/aligner.php, and discuss questions, findings and related information on an associated e-forum at http://www.evolvingcode.net/forum/viewforum.php?f=27.
The NF-YC–RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis
Liu, Xu; Hu, Pengwei; Huang, Mingkun; Tang, Yang; Li, Yuge; Li, Ling; Hou, Xingliang
2016-01-01
The antagonistic crosstalk between gibberellic acid (GA) and abscisic acid (ABA) plays a pivotal role in the modulation of seed germination. However, the molecular mechanism of such phytohormone interaction remains largely elusive. Here we show that three Arabidopsis NUCLEAR FACTOR-Y C (NF-YC) homologues NF-YC3, NF-YC4 and NF-YC9 redundantly modulate GA- and ABA-mediated seed germination. These NF-YCs interact with the DELLA protein RGL2, a key repressor of GA signalling. The NF-YC–RGL2 module targets ABI5, a gene encoding a core component of ABA signalling, via specific CCAAT elements and collectively regulates a set of GA- and ABA-responsive genes, thus controlling germination. These results suggest that the NF-YC–RGL2–ABI5 module integrates GA and ABA signalling pathways during seed germination. PMID:27624486
Reduced prokaryotic heterotrophic production at in situ pressure conditions in the dark ocean
NASA Astrophysics Data System (ADS)
Amano-Sato, Chie; Sintes, Eva; Reinthaler, Thomas; Utsumi, Motoo; Herndl, Gerhard J.
2017-04-01
Prokaryotic heterotrophic production (PHP) is a key process in the ocean's biological carbon cycle. About 50% of the oceanic PHP takes place in the dark ocean characterized by low temperature and high hydrostatic pressure, which increases by 1 MPa (10 atm) every 100 m depth. However, rate measurements of PHP are usually performed under atmospheric pressure conditions. Yet, the difference in pressure conditions and the handling of the samples on board may introduce biases in the PHP measurements. To determine PHP at in situ conditions, we developed an in situ microbial incubator (ISMI) designed to autonomously sample and incubate seawater down to a depth of 4000 m. Natural prokaryotic communities from the North Atlantic and Pacific Oceans were incubated in the ISMI with 5 nM 3H-leucine at different depths ranging between 10 and 3200 m. For comparison, atmospheric pressure incubations at in situ temperature were also conducted. PHP and single cell activity assessed by microautoradiography combined with catalyzed reporter deposition fluorescence in situ hybridization (MICRO-CARD-FISH) were determined. PHP obtained under in situ pressure conditions was generally lower than under atmospheric pressure conditions, suggesting that incubation under atmospheric pressure on board stimulates activity of dark ocean prokaryotes. The ratio between the bulk PHP obtained under in situ and under atmospheric pressure conditions decreased with depth. Moreover, MICRO-CARD-FISH revealed that some specific prokaryotic groups are apparently more affected by the hydrostatic pressure condition than others. Our results suggest that PHP in the dark ocean might be lower than assumed based on measurements under surface pressure conditions.
Park, Jun Chul; Kim, Yeong Jin; Kim, Eun Hye; Lee, Jinae; Yang, Hyun Su; Kim, Eun Hwa; Hahn, Kyu Yeon; Shin, Sung Kwan; Lee, Sang Kil; Lee, Yong Chan
2018-02-07
Recently, the application of hemostatic powder to the bleeding site has been used to treat active upper gastrointestinal bleeding (UGIB). We aimed to assess the effectiveness of the polysaccharide hemostatic powder (PHP) in patients with non-variceal UGIB. We reviewed prospectively collected 40 patients with UGIB treated with PHP therapy between April 2016 and January 2017 (PHP group) and 303 patients with UGIB treated with conventional therapy between April 2012 and October 2014 (conventional therapy group). We compared the rate of successful hemostasis and the rebleeding between the two groups after as well as before propensity score matching using the Glasgow-Blatchford score and Forrest classification. Thirty patients treated with the PHP and 60 patients treated with conventional therapy were included in the matched groups. Baseline patient characteristics including comorbidities, vital signs, and bleeding scores were similar in the matched groups. The rate of immediate hemostasis and 7-day and 30-day rebleeding were also similar in the two groups before and after matching. In the subgroup analysis, no significant differences in immediate hemostasis or rebleeding rate were noted between PHP in monotherapy and PHP combined with a conventional hemostatic method. At 30 days after the therapy, there were no significant PHP-related complications or mortality. Given its safety, the PHP proved feasible for endoscopic treatment of UGIB, having similar effectiveness as that of conventional therapy. The PHP may become a promising hemostatic method for non-variceal UGIB. © 2018 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
Is the risk of primary hyperparathyroidism increased in patients with untreated breast cancer?
Belardi, V; Fiore, E; Giustarini, E; Muller, I; Sabatini, S; Rosellini, V; Seregni, E; Agresti, R; Marcocci, C; Vitti, P; Giani, C
2013-05-01
An increased frequency of primary hyperparathyroidism (PHP) has been reported in patients with treated breast cancer (BC). PHP has been found in about 7% of BC patients after surgery and radio-, chemio- or hormonal therapy. To evaluate the frequency of PHP in untreated BC patients. We evaluated 186 women with BC and 233 women with thyroid cancer (TC, no.=122) or benign thyroid diseases (BTD, no.=111). In all patients, serum calcium, albumin, PTH, and 25-hydroxyvitamin D (25-OH vitD) were measured before any treatment. Serum calcium concentrations were significantly higher in BC than in TC and BTD groups (median values 9.5 mg/dl, 9.3 mg/dl and 9.3 mg/dl, respectively) but, according to a logistic regression model, calcium was not significantly different between the 3 groups when age was taken into account. In all patients, serum calcium was in the normal range, indicating that no case of overt PHP was present. Five patients (1 in BC, 2 in TC, and 2 in BDT groups) had serum calcium close to the upper limit of normal range, high PTH and low 25-OH vitD, indicating a possible PHP with hypercalcemia masked by concomitant 25-OH vitD deficiency. In untreated BC group, no patient had overt PHP and 1/186 (0.5%) presented a possible PHP masked by 25-OH vitD deficiency, a PHP frequency much lower than that observed in treated BC patients. These data suggest that the treatments of BC may be responsible for the increased frequency of PHP reported in previous studies.
Fernández-Rebollo, Eduardo; de Nanclares, Guiomar Pérez; Lecumberri, Beatriz; Turan, Serap; Anda, Emma; Pérez-Nanclares, Gustavo; Feig, Denice; Nik-Zainal, Serena; Bastepe, Murat; Jüppner, Harald
2013-01-01
Most patients with autosomal dominant pseudohypoparathyroidism type Ib (AD-PHP-Ib) carry maternally inherited microdeletions upstream of GNAS that are associated with loss of methylation restricted to GNAS exon A/B. Only few AD-PHP-Ib patients carry microdeletions within GNAS that are associated with loss of all maternal methylation imprints. These epigenetic changes are often indistinguishable from those observed in patients affected by an apparently sporadic PHP-Ib form that has not yet been defined genetically. We have now investigated six female patients affected by PHP-Ib (four unrelated and two sisters) with complete or almost complete loss of GNAS methylation, whose healthy children (11 in total) showed no epigenetic changes at this locus. Analysis of several microsatellite markers throughout the 20q13 region made it unlikely that PHP-Ib is caused in these patients by large deletions involving GNAS or by paternal uniparental isodisomy or heterodisomy of chromosome 20 (patUPD20). Microsatellite and single-nucleotide variation (SNV) data revealed that the two affected sisters share their maternally inherited GNAS alleles with unaffected relatives that lack evidence for abnormal GNAS methylation, thus excluding linkage to this locus. Consistent with these findings, healthy children of two unrelated sporadic PHP-Ib patients had inherited different maternal GNAS alleles, also arguing against linkage to this locus. Based on our data, it appears plausible that some forms of PHP-Ib are caused by homozygous or compound heterozygous mutation(s) in an unknown gene involved in establishing or maintaining GNAS methylation. PMID:21523828
Kampmeier, J; Zorn, M M; Lang, G K; Botros, Y T; Lang, G E
2006-09-01
Age-related macular degeneration (ARMD) is the leading cause of blindness in people over 65 years of age. A rapid loss of vision occurs especially in cases with choroidal neovascularisation. Early detection of ARMD and timely treatment are mandatory. We have prospectively studied the results of two diagnostic self tests for the early detection of metamorphopsia and scotoma, the PHP test and the Amsler grid test, in different stages of ARMD. Patients with ARMD and best corrected visual acuity of 6/30 or better (Snellen charts) were examined with a standardised protocol, including supervised Amsler grid examination and PHP, a new device for metamorphopsia or scotoma measurement, based on the hyperacuity phenomenon in the central 14 degrees of the visual field. The stages of ARMD were independently graded in a masked fashion by stereoscopic ophthalmoscopy, stereoscopic fundus colour photographs, fluorescein angiography, and OCT. The patients were subdivided into 3 non-neovascular groups [early, late (RPE atrophy > 175 microm) and geographic atrophy], a neovascular group (classic and occult CNV) and an age-matched control group (healthy volunteers). 140 patients, with ages ranging from 50 to 90 years (median 68 years), were included in the study. Best corrected visual acuity ranged from 6/30 to 6/6 with a median of 6/12. 95 patients were diagnosed as non-neovascular ARMD. Thirty eyes had early ARMD (9 were tested positive by the PHP test and 9 by the Amsler grid test), and 50 late ARMD (positive: PHP test 23, Amsler grid test 26). The group with geographic atrophy consisted of 15 eyes (positive: PHP test 13, Amsler grid test 10). Forty-five patients presented with neovascular ARMD (positive: PHP test 38, Amsler grid test 36), 34 volunteers served as control group (positive: PHP test 1, Amsler grid test 5). The PHP and Amsler grid tests revealed comparable results detecting metamorphopsia and scotoma in early ARMD (30 vs. 30 %) and late ARMD (46 vs. 52 %). However, the PHP test more often revealed disease-related functional changes in the groups of geographic atrophy (87 vs. 67 %) and neovascular ARMD (84 vs. 80 %). This implies that the PHP and Amsler grid self tests are useful tools for detection of ARMD and that the PHP test has a greater sensitivity in the groups of geographic atrophy and neovascular AMD.
Experimental Characterization of Cryogenic Helium Pulsating Heat Pipes
NASA Astrophysics Data System (ADS)
Fonseca Flores, Luis Diego
This study was inspired to investigate an alternative cooling system using a helium-based pulsating heat pipes (PHP), for low temperature superconducting magnets in MRI systems. In addition, the same approach can be used for exploring other low temperature applications such as cooling space instrumentation. The advantages of PHP for transferring heat and smoothing temperature profiles in various room temperature applications have been explored for the past 20 years. An experimental apparatus has been designed, fabricated and operated and is primarily composed of an evaporator and a condenser; in which both are thermally connected by a closed loop capillary tubing. The main goal is to measure the heat transfer properties of this device using helium as the working fluid. The evaporator end of the PHP is comprised of a copper winding in which heat loads up to 10 watts are generated, while the condenser is isothermal and can reach 4.2 K at 1 W via a two stage Sumitomo RDK408A2 GM cryocooler. Various experimental design features are highlighted. Additionally, the thermal performance for the presented design remained unchanged when increasing the adiabatic length from 300 mm to 1000 mm. Finally a spring mass damper model has been developed and proven to predict well the experimental data, such models should be used as tool to design and manufacturer PHP prototypes.
A helium based pulsating heat pipe for superconducting magnets
NASA Astrophysics Data System (ADS)
Fonseca, Luis Diego; Miller, Franklin; Pfotenhauer, John
2014-01-01
This study was inspired to investigate an alternative cooling system using a helium-based pulsating heat pipes (PHP), for low temperature superconducting magnets. In addition, the same approach can be used for exploring other low temperature applications. The advantages of PHP for transferring heat and smoothing temperature profiles in various room temperature applications have been explored for the past 20 years. An experimental apparatus has been designed, fabricated and operated and is primarily composed of an evaporator and a condenser; in which both are thermally connected by a closed loop capillary tubing. The main goal is to measure the heat transfer properties of this device using helium as the working fluid. The evaporator end of the PHP is comprised of a copper winding in which heat loads up to 10 watts are generated, while the condenser is isothermal and can reach 4.2 K via a two stage Sumitomo RDK408A2 GM cryocooler. Various experimental design features are highlighted. Additionally, performance results in the form of heat transfer and temperature characteristics are provided as a function of average condenser temperature, PHP fill ratio, and evaporator heat load. Results are summarized in the form of a dimensionless correlation and compared to room temperature systems. Implications for superconducting magnet stability are highlighted.
Panda, Dibyendu K; Bai, Xiuying; Sabbagh, Yves; Zhang, Yan; Zaun, Hans-Christian; Karellis, Angeliki; Koromilas, Antonis E; Lipman, Mark L; Karaplis, Andrew C
2018-06-01
Vascular calcification increases the risk of cardiovascular disease and death in patients with chronic kidney disease (CKD). Increased activity of mammalian target of rapamycin complex 1 (mTORC1) and endoplasmic reticulum (ER) stress-unfolded protein response (UPR) are independently reported to partake in the pathogenesis of vascular calcification in CKD. However, the association between mTORC1 activity and ER stress-UPR remains unknown. We report here that components of the uremic state [activation of the receptor for advanced glycation end products (RAGE) and hyperphosphatemia] potentiate vascular smooth muscle cell (VSMC) calcification by inducing persistent and exaggerated activity of mTORC1. This gives rise to prolonged and excessive ER stress-UPR as well as attenuated levels of sestrin 1 ( Sesn1) and Sesn3 feeding back to inhibit mTORC1 activity. Activating transcription factor 4 arising from the UPR mediates cell death via expression of CCAAT/enhancer-binding protein (c/EBP) homologous protein (CHOP), impairs the generation of pyrophosphate, a potent inhibitor of mineralization, and potentiates VSMC transdifferentiation to the osteochondrocytic phenotype. Short-term treatment of CKD mice with rapamycin, an inhibitor of mTORC1, or tauroursodeoxycholic acid, a bile acid that restores ER homeostasis, normalized mTORC1 activity, molecular markers of UPR, and calcium content of aortas. Collectively, these data highlight that increased and/or protracted mTORC1 activity arising from the uremic state leads to dysregulated ER stress-UPR and VSMC calcification. Manipulation of the mTORC1-ER stress-UPR pathway opens up new therapeutic strategies for the prevention and treatment of vascular calcification in CKD.
Srinivasan, Krishnamoorthy; Sharma, Shyam S
2011-11-20
Endoplasmic reticulum (ER) stress has been postulated to play a crucial role in the pathophysiology of cerebral ischemic/reperfusion (I/R) injury and diabetes. Diabetes is a major risk factor and also common amongst the people who suffer from stroke. In this study, we have investigated the neuroprotective potential of sodium 4-phenylbutyrate (SPB; 30-300mg/kg), a chemical chaperone by targeting ER stress in a rat model of transient focal cerebral ischemia associated with comorbid type 2 diabetes. Intraperitoneal treatment with SPB (100 and 300mg/kg) significantly ameliorated brain I/R damage as evidenced by reduction in cerebral infarct and edema volume. It also significantly improved the functional recovery of various neurobehavioral impairments (neurological deficit score, grip strength and rota rod) evoked by I/R compared with vehicle-treatment. Further, SPB (100mg/kg) significantly reduced the DNA fragmentation as shown by prominent reduction in terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells. This effect was observed concomitantly with significant attenuation in upregulation of 78kDa glucose regulated protein (GRP78), CCAAT/enhancer binding protein homologous protein or growth arrest DNA damage-inducible gene 153 (CHOP/GADD153) and activation of caspase-12, specific markers of ER stress/apoptosis. The neuroprotection observed with SPB was independent of its effect on cerebral blood flow and blood glucose. In conclusion, this study demonstrates the neuroprotective effect of SPB owing to amelioration of ER stress and DNA fragmentation. It also suggest that targeting ER stress might offer a promising therapeutic approach and benefits against ischemic stroke associated with comorbid type 2 diabetes. Copyright © 2011 Elsevier B.V. All rights reserved.
Kim, Na-Hyung; Choi, Sun-Kyung; Kim, Su-Jin; Moon, Phil-Dong; Lim, Hun-Sun; Choi, In-Young; Na, Ho-Jeong; An, Hyo-Jin; Myung, Noh-Yil; Jeong, Hyun-Ja; Um, Jae-Young; Hong, Seung-Heon; Kim, Hyung-Min
2008-11-01
Given that tea contains a number of chemical constituents possessing medicinal and pharmacological properties, green tea seed is also believed to contain many biologically active compounds such as saponin, flavonoids, vitamins, and oil materials. However, little is known about the physiologic functions of green tea seed oil. The aim of this study is to investigate the anti-obesity effects of green tea seed oil in C57BL/6J mice and in preadipocyte 3T3L-1 cell lines. In vivo, three groups of mice were fed with a standard diet, a high-fat diet containing 30% shortening, or 30% of green tea seed oil based on a standard diet for 85 days. The levels of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglyceride, glucose, and alanine aminotransferase in blood were analyzed at the end of the study. The mice given green tea seed oil gained less weight compared to mice given the shortening diet (p < 0.01). The plasma level of total cholesterol was decreased by a significant level of 32.4% in mice given the green tea seed oil compared to the mice given the shortening diet (p < 0.01). In addition, 3T3-L1 cells were treated for 2 days to evaluate effects of green tea seed oil on adipocyte differentiation. Green tea seed oil inhibited expression of peroxisome proliferator-activated receptor-gamma(2) and CCAAT/enhancer binding protein-alpha in adipocytes and adipose tissue from the experimental animals. These results indicate that the anti-obesity effects of green tea seed oil might be, in part, through suppression of transcription factors related to adipocyte differentiation.
Characterization of the human gene (TBXAS1) encoding thromboxane synthase.
Miyata, A; Yokoyama, C; Ihara, H; Bandoh, S; Takeda, O; Takahashi, E; Tanabe, T
1994-09-01
The gene encoding human thromboxane synthase (TBXAS1) was isolated from a human EMBL3 genomic library using human platelet thromboxane synthase cDNA as a probe. Nucleotide sequencing revealed that the human thromboxane synthase gene spans more than 75 kb and consists of 13 exons and 12 introns, of which the splice donor and acceptor sites conform to the GT/AG rule. The exon-intron boundaries of the thromboxane synthase gene were similar to those of the human cytochrome P450 nifedipine oxidase gene (CYP3A4) except for introns 9 and 10, although the primary sequences of these enzymes exhibited 35.8% identity each other. The 1.2-kb of the 5'-flanking region sequence contained potential binding sites for several transcription factors (AP-1, AP-2, GATA-1, CCAAT box, xenobiotic-response element, PEA-3, LF-A1, myb, basic transcription element and cAMP-response element). Primer-extension analysis indicated the multiple transcription-start sites, and the major start site was identified as an adenine residue located 142 bases upstream of the translation-initiation site. However, neither a typical TATA box nor a typical CAAT box is found within the 100-b upstream of the translation-initiation site. Southern-blot analysis revealed the presence of one copy of the thromboxane synthase gene per haploid genome. Furthermore, a fluorescence in situ hybridization study revealed that the human gene for thromboxane synthase is localized to band q33-q34 of the long arm of chromosome 7. A tissue-distribution study demonstrated that thromboxane synthase mRNA is widely expressed in human tissues and is particularly abundant in peripheral blood leukocyte, spleen, lung and liver. The low but significant levels of mRNA were observed in kidney, placenta and thymus.
Pistachio hull water-soluble polysaccharides as a novel prebiotic agent.
Akbari-Alavijeh, Safoura; Soleimanian-Zad, Sabihe; Sheikh-Zeinoddin, Mahmoud; Hashmi, Sarwar
2018-02-01
We isolated and characterized pistachio hull polysaccharides (PHP). The PHP was a heteropolysaccharide mainly contained 75.50% (w/w) total sugar and 9.51% (w/w) uronic acid. As determined by GPC analysis, the polysaccharide with a molecular weight of 3.71×10 6 D (83.2%) was the most dominant fraction. Moreover, HPLC analysis indicated that PHP was predominantly composed of xylose, glucose, arabinose, and fructose with a molar ratio of 1.00:2.50:19.67:28.81. FT-IR and NMR analysis also confirmed the results obtained by HPLC and characterized preliminary structure features of the PHP. Functional properties of the PHP including water holding capacity (WHC: 2.44±0.05g water/g DM), and oil holding capacity (OHC: 11.53±0.04g oil/g DM) were significant compared to inulin used as reference prebiotic (p<0.01). Furthermore, the PHP remained 94.37% undigested in the simulated digestion process and stimulated the growth of L. plantarum PTCC 1896 and L. rhamnosus GG and increased the acetate, propionate and butyrate production over inulin in vitro. Totally, the PHP showed a considerable prebiotic capability and high WHC, OHC suggesting that the PHP is a potent pharmaceutical with good technological properties which can be used in food and drug industries. Copyright © 2017 Elsevier B.V. All rights reserved.
Spinal cord compression in pseudohypoparathyroidism.
Roberts, Timothy T; Khasnavis, Siddharth; Papaliodis, Dean N; Citone, Isabella; Carl, Allen L
2013-12-01
Spinal cord compression associated with pseudohypoparathyroidism (PHP) is an increasingly reported sequelae of the underlying metabolic syndrome. The association of neurologic dysfunction with PHP is not well appreciated. We believe this to be secondary to a combination of underlying congenital stenosis, manifest by short pedicles secondary to premature physeal closure, and hypertrophic ossification of the vertebral bony and ligamentous complexes. The purpose of this case report is to review the case of spinal stenosis in a child with PHP Type Ia. We are aware of only eight published reports of patients with PHP Type Ia and spinal stenosis-there are only two previously known cases of pediatric spinal stenosis secondary to PHP. This is a case report detailing the symptoms, diagnosis, interventions, complications, and ultimate outcomes of a pediatric patient undergoing spinal decompression and fusion for symptomatic stenosis secondary to PHP Type Ia. Literature search was reviewed regarding the reports of spinal stenosis and PHP, and the results are culminated and discussed. We report on a 14-year-old obese male with PHP and progressive lower extremity weakness secondary to congenital spinal stenosis. Examination revealed functional upper extremities with spastic paraplegia of bilateral lower extremities. The patient's neurologic function was cautiously monitored, but he deteriorated to a bed-bound state, preoperatively. The patient's chart was reviewed, summarized, and presented. Literature was searched using cross-reference of PHP and the terms "spinal stenosis," "myelopathy", "myelopathic," and "spinal cord compression." All relevant case reports were reviewed, and the results are discussed herein. The patient underwent decompression and instrumented fusion of T2-T11. He improved significantly with regard to lower extremity function, achieving unassisted ambulation function after extensive rehabilitation. Results from surgical decompression in previously reported cases are mixed, ranging from full recovery to iatrogenic paraplegia. The association of neurologic dysfunction with PHP is not well appreciated. It is important to highlight this rare association. Surgical decompression in patients with PHP yields mixed results but may be of greatest efficacy in younger patients who receive early intervention. Copyright © 2013 Elsevier Inc. All rights reserved.
γ-Oryzanol Enhances Adipocyte Differentiation and Glucose Uptake
Jung, Chang Hwa; Lee, Da-Hye; Ahn, Jiyun; Lee, Hyunjung; Choi, Won Hee; Jang, Young Jin; Ha, Tae-Youl
2015-01-01
Recent studies show that brown rice improves glucose intolerance and potentially the risk of diabetes, although the underlying molecular mechanisms remain unclear. One of the phytochemicals found in high concentration in brown rice is γ-oryzanol (Orz), a group of ferulic acid esters of phytosterols and triterpene alcohols. Here, we found that Orz stimulated differentiation of 3T3-L1 preadipocytes and increased the protein expression of adipogenic marker genes such as peroxisome proliferator-activated receptor gamma (PPAR-γ) and CCAAT/enhanced binding protein alpha (C/EBPα). Moreover, Orz significantly increased the glucose uptake in insulin-resistant cells and translocation of glucose transporter type 4 (GLUT4) from the cytosol to the cell surface. To investigate the mechanism by which Orz stimulated cell differentiation, we examined its effects on cellular signaling of the mammalian target of rapamycin complex 1 (mTORC1), a central mediator of cellular growth and proliferation. The Orz treatment increased mTORC1 kinase activity based on phosphorylation of 70-kDa ribosomal S6 kinase 1 (S6K1). The effect of Orz on adipocyte differentiation was dependent on mTORC1 activity because rapamycin blocks cell differentiation in Orz-treated cells. Collectively, our results indicate that Orz stimulates adipocyte differentiation, enhances glucose uptake, and may be associated with cellular signaling mediated by PPAR-γ and mTORC1. PMID:26083118
γ-Oryzanol Enhances Adipocyte Differentiation and Glucose Uptake.
Jung, Chang Hwa; Lee, Da-Hye; Ahn, Jiyun; Lee, Hyunjung; Choi, Won Hee; Jang, Young Jin; Ha, Tae-Youl
2015-06-15
Recent studies show that brown rice improves glucose intolerance and potentially the risk of diabetes, although the underlying molecular mechanisms remain unclear. One of the phytochemicals found in high concentration in brown rice is γ-oryzanol (Orz), a group of ferulic acid esters of phytosterols and triterpene alcohols. Here, we found that Orz stimulated differentiation of 3T3-L1 preadipocytes and increased the protein expression of adipogenic marker genes such as peroxisome proliferator-activated receptor gamma (PPAR-γ) and CCAAT/enhanced binding protein alpha (C/EBPα). Moreover, Orz significantly increased the glucose uptake in insulin-resistant cells and translocation of glucose transporter type 4 (GLUT4) from the cytosol to the cell surface. To investigate the mechanism by which Orz stimulated cell differentiation, we examined its effects on cellular signaling of the mammalian target of rapamycin complex 1 (mTORC1), a central mediator of cellular growth and proliferation. The Orz treatment increased mTORC1 kinase activity based on phosphorylation of 70-kDa ribosomal S6 kinase 1 (S6K1). The effect of Orz on adipocyte differentiation was dependent on mTORC1 activity because rapamycin blocks cell differentiation in Orz-treated cells. Collectively, our results indicate that Orz stimulates adipocyte differentiation, enhances glucose uptake, and may be associated with cellular signaling mediated by PPAR-γ and mTORC1.
Barone, Sharon; Destefano-Shields, Christina; Brooks, Marybeth; Murray-Stewart, Tracy; Dunworth, Matthew; Li, Weimin; Doherty, Joanne R.; Hall, Mark A.; Smith, Roger D.; Cleveland, John L.; Casero, Robert A.; Soleimani, Manoocher
2017-01-01
Cisplatin-induced nephrotoxicity limits its use in many cancer patients. The expression of enzymes involved in polyamine catabolism, spermidine/spermine N1-acetyltransferase (SSAT) and spermine oxidase (SMOX) increase in the kidneys of mice treated with cisplatin. We hypothesized that enhanced polyamine catabolism contributes to tissue damage in cisplatin acute kidney injury (AKI). Using gene knockout and chemical inhibitors, the role of polyamine catabolism in cisplatin AKI was examined. Deficiency of SSAT, SMOX or neutralization of the toxic products of polyamine degradation, H2O2 and aminopropanal, significantly diminished the severity of cisplatin AKI. In vitro studies demonstrated that the induction of SSAT and elevated polyamine catabolism in cells increases the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) and enhances the expression of binding immunoglobulin protein BiP/GRP78) and CCAAT-enhancer-binding protein homologous protein (CHOP/GADD153). The increased expression of these endoplasmic reticulum stress response (ERSR) markers was accompanied by the activation of caspase-3. These results suggest that enhanced polyamine degradation in cisplatin AKI may lead to tubular damage through the induction of ERSR and the consequent onset of apoptosis. In support of the above, we show that the ablation of the SSAT or SMOX gene, as well as the neutralization of polyamine catabolism products modulate the onset of ERSR (e.g. lower BiP and CHOP) and apoptosis (e.g. reduced activated caspase-3). These studies indicate that enhanced polyamine catabolism and its toxic products are important mediators of ERSR and critical to the pathogenesis of cisplatin AKI. PMID:28886181
Zahedi, Kamyar; Barone, Sharon; Destefano-Shields, Christina; Brooks, Marybeth; Murray-Stewart, Tracy; Dunworth, Matthew; Li, Weimin; Doherty, Joanne R; Hall, Mark A; Smith, Roger D; Cleveland, John L; Casero, Robert A; Soleimani, Manoocher
2017-01-01
Cisplatin-induced nephrotoxicity limits its use in many cancer patients. The expression of enzymes involved in polyamine catabolism, spermidine/spermine N1-acetyltransferase (SSAT) and spermine oxidase (SMOX) increase in the kidneys of mice treated with cisplatin. We hypothesized that enhanced polyamine catabolism contributes to tissue damage in cisplatin acute kidney injury (AKI). Using gene knockout and chemical inhibitors, the role of polyamine catabolism in cisplatin AKI was examined. Deficiency of SSAT, SMOX or neutralization of the toxic products of polyamine degradation, H2O2 and aminopropanal, significantly diminished the severity of cisplatin AKI. In vitro studies demonstrated that the induction of SSAT and elevated polyamine catabolism in cells increases the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) and enhances the expression of binding immunoglobulin protein BiP/GRP78) and CCAAT-enhancer-binding protein homologous protein (CHOP/GADD153). The increased expression of these endoplasmic reticulum stress response (ERSR) markers was accompanied by the activation of caspase-3. These results suggest that enhanced polyamine degradation in cisplatin AKI may lead to tubular damage through the induction of ERSR and the consequent onset of apoptosis. In support of the above, we show that the ablation of the SSAT or SMOX gene, as well as the neutralization of polyamine catabolism products modulate the onset of ERSR (e.g. lower BiP and CHOP) and apoptosis (e.g. reduced activated caspase-3). These studies indicate that enhanced polyamine catabolism and its toxic products are important mediators of ERSR and critical to the pathogenesis of cisplatin AKI.
Ulbrich, Lisa; Favaloro, Flores Lietta; Trobiani, Laura; Marchetti, Valentina; Patel, Vruti; Pascucci, Tiziana; Comoletti, Davide; Marciniak, Stefan J.; De Jaco, Antonella
2015-01-01
Several forms of monogenic heritable autism spectrum disorders are associated with mutations in the neuroligin genes. The autism-linked substitution R451C in neuroligin3 induces local misfolding of its extracellular domain, causing partial retention in the ER (endoplasmic reticulum) of expressing cells. We have generated a PC12 Tet-On cell model system with inducible expression of wild-type or R451C neuroligin3 to investigate whether there is activation of the UPR (unfolded protein response) as a result of misfolded protein retention. As a positive control for protein misfolding, we also expressed the mutant G221R neuroligin3, which is known to be completely retained within the ER. Our data show that overexpression of either R451C or G221R mutant proteins leads to the activation of all three signalling branches of the UPR downstream of the stress sensors ATF6 (activating transcription factor 6), IRE1 (inositol-requiring enzyme 1) and PERK [PKR (dsRNA-dependent protein kinase)-like endoplasmic reticulum kinase]. Each branch displayed different activation profiles that partially correlated with the degree of misfolding caused by each mutation. We also show that up-regulation of BiP (immunoglobulin heavy-chain-binding protein) and CHOP [C/EBP (CCAAT/enhancer-binding protein)-homologous protein] was induced by both mutant proteins but not by wild-type neuroligin3, both in proliferative cells and cells differentiated to a neuron-like phenotype. Collectively, our data show that mutant R451C neuroligin3 activates the UPR in a novel cell model system, suggesting that this cellular response may have a role in monogenic forms of autism characterized by misfolding mutations. PMID:26621873
Quercetin Represses Apolipoprotein B Expression by Inhibiting the Transcriptional Activity of C/EBPβ
Inoue, Jun; Sato, Ryuichiro
2015-01-01
Quercetin is one of the most abundant polyphenolic flavonoids found in fruits and vegetables and has anti-oxidative and anti-obesity effects. Because the small intestine is a major absorptive organ of dietary nutrients, it is likely that highly concentrated food constituents, including polyphenols, are present in the small intestinal epithelial cells, suggesting that food factors may have a profound effect in this tissue. To identify novel targets of quercetin in the intestinal enterocytes, mRNA profiling using human intestinal epithelial Caco-2 cells was performed. We found that mRNA levels of some apolipoproteins, particularly apolipoprotein B (apoB), are downregulated in the presence of quercetin. On the exposure of Caco-2 cells to quercetin, both mRNA and protein levels of apoB were decreased. Promoter analysis of the human apoB revealed that quercetin response element is localized at the 5′-proximal promoter region, which contains a conserved CCAAT enhancer-binding protein (C/EBP)-response element. We found that quercetin reduces the promoter activity of apoB, driven by the enforced expression of C/EBPβ. Quercetin had no effect on either mRNA or protein levels of C/EBPβ. In contrast, we found that quercetin inhibits the transcriptional activity of C/EBPβ but not its recruitment to the apoB promoter. On the exposure of Caco-2 cells to quercetin 3-O-glucuronide, which is in a cell-impermeable form, no notable change in apoB mRNA was observed, suggesting an intracellular action of quercetin. In vitro interaction experiments using quercetin-conjugated beads revealed that quercetin binds to C/EBPβ. Our results describe a novel regulatory mechanism of transcription of apolipoprotein genes by quercetin in the intestinal enterocytes. PMID:25875015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, Shaikh M., E-mail: rmizanoor@hotmail.com; Choudhury, Mahua; Janssen, Rachel C.
Highlights: Black-Right-Pointing-Pointer LXR agonist activation increases liver TG accumulation by increasing lipogenesis. Black-Right-Pointing-Pointer C/EBP{beta}{sup -/-} mouse prevents LXR activation-mediated induction of hepatic lipogenesis. Black-Right-Pointing-Pointer C/EBP{beta} deletion increases mitochondrial transport chain function. Black-Right-Pointing-Pointer Beneficial effects of LXR activation on liver cholesterol metabolism did not change. Black-Right-Pointing-Pointer C/EBP{beta} inhibition might have important therapeutic potential. -- Abstract: Drugs designed specifically to activate liver X receptors (LXRs) have beneficial effects on lowering cholesterol metabolism and inflammation but unfortunately lead to severe hepatic steatosis. The transcription factor CCAAT/enhancer binding protein beta (C/EBP{beta}) is an important regulator of liver gene expression but little is known aboutmore » its involvement in LXR-based steatosis and cholesterol metabolism. The present study investigated the role of C/EBP{beta} expression in LXR agonist (T0901317)-mediated alteration of hepatic triglyceride (TG) and lipogenesis in mice. C/EBP{beta} deletion in mice prevented LXR agonist-mediated induction of lipogenic gene expression in liver in conjunction with significant reduction of liver TG accumulation. Surprisingly, C/EBP{beta}{sup -/-} mice showed a major increase in liver mitochondrial electron chain function compared to WT mice. Furthermore, LXR activation in C/EBP{beta}{sup -/-} mice increased the expression of liver ATP-binding cassette transporter ABCG1, a gene implicated in cholesterol efflux and reducing blood levels of total and LDL-cholesterol. Together, these findings establish a central role for C/EBP{beta} in the LXR-mediated steatosis and mitochondrial function, without impairing the influence of LXR activation on lowering LDL and increasing HDL-cholesterol. Inactivation of C/EBP{beta} might therefore be an important therapeutic strategy to prevent LXR activation-mediated adverse effects on liver TG metabolism without disrupting its beneficial effects on cholesterol metabolism.« less
Varshney, Salil; Shankar, Kripa; Beg, Muheeb; Balaramnavar, Vishal M; Mishra, Sunil Kumar; Jagdale, Pankaj; Srivastava, Shishir; Chhonker, Yashpal S; Lakshmi, Vijai; Chaudhari, Bhushan P; Bhatta, Rabi Shankar; Saxena, Anil Kumar; Gaikwad, Anil Nilkanth
2014-06-01
We developed a common feature pharmacophore model using known antiadipogenic compounds (CFPMA). We identified rohitukine, a reported chromone anticancer alkaloid as a potential hit through in silico mapping of the in-house natural product library on CFPMA. Studies were designed to assess the antiadipogenic potential of rohitukine. Rohitukine was isolated from Dysoxylum binacteriferum Hook. to ⬧95% purity. As predicted by CFPMA, rohitukine was indeed found to be an antiadipogenic molecule. Rohitukine inhibited lipid accumulation and adipogenic differentiation in a concentration- and exposure-time-dependent manner in 3T3-L1 and C3H10T1/2 cells. Rohitukine downregulated expression of PPARγ, CCAAT/enhancer binding protein α, adipocyte protein 2 (aP2), FAS, and glucose transporter 4. It also suppressed mRNA expression of LPL, sterol-regulatory element binding protein (SREBP) 1c, FAS, and aP2, the downstream targets of PPARγ. Rohitukine arrests cells in S phase during mitotic clonal expansion. Rohitukine was bioavailable, and 25.7% of orally administered compound reached systemic circulation. We evaluated the effect of rohitukine on dyslipidemia induced by high-fat diet in the hamster model. Rohitukine increased hepatic expression of liver X receptor α and decreased expression of SREBP-2 and associated targets. Rohitukine decreased hepatic and gonadal lipid accumulation and ameliorated dyslipidemia significantly. In summary, our strategy to identify a novel antiadipogenic molecule using CFPMA successfully resulted in identification of rohitukine, which confirmed antiadipogenic activity and also exhibited in vivo antidyslipidemic activity. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.
Chen, Linjie; Wolff, Dennis W; Xie, Yan; Lin, Ming-Fong; Tu, Yaping
2017-03-07
Virtually all prostate cancer deaths occur due to obtaining the castration-resistant phenotype after prostate cancer cells escaped from apoptosis and/or growth suppression initially induced by androgen receptor blockade. TNF-related apoptosis-inducing ligand (TRAIL) was an attractive cancer therapeutic agent due to its minimal toxicity to normal cells and remarkable apoptotic activity in tumor cells. However, most localized cancers including prostate cancer are resistant to TRAIL-induced apoptosis, thereby creating a therapeutic challenge of inducing TRAIL sensitivity in cancer cells. Herein the effects of cyproterone acetate, an antiandrogen steroid, on the TRAIL-induced apoptosis of androgen receptor-negative prostate cancer cells are reported. Cell apoptosis was assessed by both annexin V/propidium iodide labeling and poly (ADP-ribose) polymerase cleavage assays. Gene and protein expression changes were determined by quantitative real-time PCR and western blot assays. The effect of cyproterone acetate on gene promoter activity was determined by luciferase reporter assay. Cyproterone acetate but not AR antagonist bicalutamide dramatically increased the susceptibility of androgen receptor-negative human prostate cancer PC-3 and DU145 cells to TRAIL-induced apoptosis but no effects on immortalized human prostate stromal PS30 cells and human embryonic kidney HEK293 cells. Further investigation of the TRAIL-induced apoptosis pathway revealed that cyproterone acetate exerted its effect by selectively increasing death receptor 5 (DR5) mRNA and protein expression. Cyproterone acetate treatment also increased DR5 gene promoter activity, which could be abolished by mutation of a consensus binding domain of transcription factor CCAAT-enhancer-binding protein homologous protein (CHOP) in the DR5 gene promoter. Cyproterone acetate increases CHOP expression in a concentration and time-dependent manner and endoplasmic reticulum stress reducer 4-phenylbutyrate could block cyproterone acetate-induced CHOP and DR5 up-regulation. More importantly, siRNA silencing of CHOP significantly reduced cyproterone acetate-induced DR5 up-regulation and TRAIL sensitivity in prostate cancer cells. Our study shows a novel effect of cyproterone acetate on apoptosis pathways in prostate cancer cells and raises the possibility that a combination of TRAIL with cyproterone acetate could be a promising strategy for treating castration-resistant prostate cancer.
Ayres, Cynthia G; Mahat, Ganga
2012-07-01
This study developed and tested a theory to better understand positive health practices (PHP) among Asian Americans aged 18 to 21 years. It tested theoretical relationships postulated between PHP and (a) social support (SS), (b) optimism, and (c) acculturation, and between SS and optimism and acculturation. Optimism and acculturation were also tested as possible mediators in the relationship between SS and PHP. A correlational study design was used. A convenience sample of 163 Asian college students in an urban setting completed four questionnaires assessing SS, PHP, optimism, and acculturation and one demographic questionnaire. There were statistically significant positive relationships between SS and optimism with PHP, between acculturation and PHP, and between optimism and SS. Optimism mediated the relationship between SS and PHP, whereas acculturation did not. Findings extend knowledge regarding these relationships to a defined population of Asian Americans aged 18 to 21 years. Findings contribute to a more comprehensive knowledge base regarding health practices among Asian Americans. The theoretical and empirical findings of this study provide the direction for future research as well. Further studies need to be conducted to identify and test other mediators in order to better understand the relationship between these two variables.
Kim, Jung-Ae; Karadeniz, Fatih; Ahn, Byul-Nim; Kwon, Myeong Sook; Mun, Ok-Ju; Bae, Min Joo; Seo, Youngwan; Kim, Mihyang; Lee, Sang-Hyeon; Kim, Yuck Yong; Mi-Soon, Jang; Kong, Chang-Suk
2016-02-01
Health problems related to the lack of bone formation are a major problem for ageing populations in the modern world. As a part of the ongoing trend to develop natural substances that attenuate bone loss in osteoporosis, the effects of the edible brown alga Sargassum thunbergii and its active contents on adipogenic differentiation in 3T3-L1 fibroblasts and osteoblast differentiation in MC3T3-E1 pre-osteoblasts were evaluated. Treatment with S. thunbergii significantly reduced lipid accumulation and expression of adipogenic differentiation markers such as peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α and sterol regulatory element binding protein 1c. In addition, S. thunbergii successfully enhanced osteoblast differentiation as indicated by increased alkaline phosphatase activity along raised levels of osteoblastogenesis indicators, namely bone morphogenetic protein-2, osteocalcin and collagen type I. Two compounds, sargaquinoic and sargahydroquinoic acid, were isolated from active extract and shown to be active by means of osteogenesis inducement. S. thunbergii could be a source for functional food ingredients for improved treatment of osteoporosis and obesity. © 2015 Society of Chemical Industry.
Inferring diffusion dynamics from FCS in heterogeneous nuclear environments.
Tsekouras, Konstantinos; Siegel, Amanda P; Day, Richard N; Pressé, Steve
2015-07-07
Fluorescence correlation spectroscopy (FCS) is a noninvasive technique that probes the diffusion dynamics of proteins down to single-molecule sensitivity in living cells. Critical mechanistic insight is often drawn from FCS experiments by fitting the resulting time-intensity correlation function, G(t), to known diffusion models. When simple models fail, the complex diffusion dynamics of proteins within heterogeneous cellular environments can be fit to anomalous diffusion models with adjustable anomalous exponents. Here, we take a different approach. We use the maximum entropy method to show-first using synthetic data-that a model for proteins diffusing while stochastically binding/unbinding to various affinity sites in living cells gives rise to a G(t) that could otherwise be equally well fit using anomalous diffusion models. We explain the mechanistic insight derived from our method. In particular, using real FCS data, we describe how the effects of cell crowding and binding to affinity sites manifest themselves in the behavior of G(t). Our focus is on the diffusive behavior of an engineered protein in 1) the heterochromatin region of the cell's nucleus as well as 2) in the cell's cytoplasm and 3) in solution. The protein consists of the basic region-leucine zipper (BZip) domain of the CCAAT/enhancer-binding protein (C/EBP) fused to fluorescent proteins. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Diaz-Rodriguez, Esther; Garcia-Rendueles, Angela R; Ibáñez-Costa, Alejandro; Gutierrez-Pascual, Ester; Garcia-Lavandeira, Montserrat; Leal, Alfonso; Japon, Miguel A; Soto, Alfonso; Venegas, Eva; Tinahones, Francisco J; Garcia-Arnes, Juan A; Benito, Pedro; Angeles Galvez, Maria; Jimenez-Reina, Luis; Bernabeu, Ignacio; Dieguez, Carlos; Luque, Raul M; Castaño, Justo P; Alvarez, Clara V
2014-11-01
Acromegaly is caused by somatotroph cell adenomas (somatotropinomas [ACROs]), which secrete GH. Human and rodent somatotroph cells express the RET receptor. In rodents, when normal somatotrophs are deprived of the RET ligand, GDNF (Glial Cell Derived Neurotrophic Factor), RET is processed intracellularly to induce overexpression of Pit1 [Transcription factor (gene : POUF1) essential for transcription of Pituitary hormones GH, PRL and TSHb], which in turn leads to p19Arf/p53-dependent apoptosis. Our purpose was to ascertain whether human ACROs maintain the RET/Pit1/p14ARF/p53/apoptosis pathway, relative to nonfunctioning pituitary adenomas (NFPAs). Apoptosis in the absence and presence of GDNF was studied in primary cultures of 8 ACROs and 3 NFPAs. Parallel protein extracts were analyzed for expression of RET, Pit1, p19Arf, p53, and phospho-Akt. When GDNF deprived, ACRO cells, but not NFPAs, presented marked level of apoptosis that was prevented in the presence of GDNF. Apoptosis was accompanied by RET processing, Pit1 accumulation, and p14ARF and p53 induction. GDNF prevented all these effects via activation of phospho-AKT. Overexpression of human Pit1 (hPit1) directly induced p19Arf/p53 and apoptosis in a pituitary cell line. Using in silico studies, 2 CCAAT/enhancer binding protein alpha (cEBPα) consensus-binding sites were found to be 100% conserved in mouse, rat, and hPit1 promoters. Deletion of 1 cEBPα site prevented the RET-induced increase in hPit1 promoter expression. TaqMan qRT-PCR (real time RT-PCR) for RET, Pit1, Arf, TP53, GDNF, steroidogenic factor 1, and GH was performed in RNA from whole ACRO and NFPA tumors. ACRO but not NFPA adenomas express RET and Pit1. GDNF expression in the tumors was positively correlated with RET and negatively correlated with p53. In conclusion, ACROs maintain an active RET/Pit1/p14Arf/p53/apoptosis pathway that is inhibited by GDNF. Disruption of GDNF's survival function might constitute a new therapeutic route in acromegaly.
Xu, Xiang; Huang, Enping; Luo, Baoying; Cai, Dunpeng; Zhao, Xu; Luo, Qin; Jin, Yili; Chen, Ling; Wang, Qi; Liu, Chao; Lin, Zhoumeng; Xie, Wei-Bing; Wang, Huijun
2018-06-25
Methamphetamine (Meth) is a widely abused psychoactive drug that primarily damages the nervous system, notably causing dopaminergic neuronal apoptosis. CCAAT-enhancer binding protein (C/EBPβ) is a transcription factor and an important regulator of cell apoptosis and autophagy. Insulin-like growth factor binding protein (IGFBP5) is a proapoptotic factor that mediates Meth-induced neuronal apoptosis, and Trib3 (tribbles pseudokinase 3) is an endoplasmic reticulum (ER) stress-inducible gene involved in autophagic cell death through the mammalian target of rapamycin (mTOR) signaling pathway. To test the hypothesis that C/EBPβ is involved in Meth-induced IGFBP5-mediated neuronal apoptosis and Trib3-mediated neuronal autophagy, we measured the protein expression of C/EBPβ after Meth exposure and evaluated the effects of silencing C/EBPβ, IGFBP5, or Trib3 on Meth-induced apoptosis and autophagy in neuronal cells and in the rat striatum after intrastriatal Meth injection. We found that, at relatively high doses, Meth exposure increased C/EBPβ protein expression, which was accompanied by increased neuronal apoptosis and autophagy; triggered the IGFBP5-mediated, p53-up-regulated modulator of apoptosis (PUMA)-related mitochondrial apoptotic signaling pathway; and stimulated the Trib3-mediated ER stress signaling pathway through the Akt-mTOR signaling axis. We also found that autophagy is an early response to Meth-induced stress upstream of apoptosis and plays a detrimental role in Meth-induced neuronal cell death. These results suggest that Meth exposure induces C/EBPβ expression, which plays an essential role in the neuronal apoptosis and autophagy induced by relatively high doses of Meth; however, relatively low concentrations of Meth did not change the expression of C/EBPβ in vitro. Further studies are needed to elucidate the role of C/EBPβ in low-dose Meth-induced neurotoxicity.-Xu, X., Huang, E., Luo, B., Cai, D., Zhao, X., Luo, Q., Jin, Y., Chen, L., Wang, Q., Liu, C., Lin, Z., Xie, W.-B., Wang, H. Methamphetamine exposure triggers apoptosis and autophagy in neuronal cells by activating the C/EBPβ-related signaling pathway.
Fernández-Rebollo, Eduardo; Pérez de Nanclares, Guiomar; Lecumberri, Beatriz; Turan, Serap; Anda, Emma; Pérez-Nanclares, Gustavo; Feig, Denice; Nik-Zainal, Serena; Bastepe, Murat; Jüppner, Harald
2011-08-01
Most patients with autosomal dominant pseudohypoparathyroidism type Ib (AD-PHP-Ib) carry maternally inherited microdeletions upstream of GNAS that are associated with loss of methylation restricted to GNAS exon A/B. Only few AD-PHP-Ib patients carry microdeletions within GNAS that are associated with loss of all maternal methylation imprints. These epigenetic changes are often indistinguishable from those observed in patients affected by an apparently sporadic PHP-Ib form that has not yet been defined genetically. We have now investigated six female patients affected by PHP-Ib (four unrelated and two sisters) with complete or almost complete loss of GNAS methylation, whose healthy children (11 in total) showed no epigenetic changes at this locus. Analysis of several microsatellite markers throughout the 20q13 region made it unlikely that PHP-Ib is caused in these patients by large deletions involving GNAS or by paternal uniparental isodisomy or heterodisomy of chromosome 20 (patUPD20). Microsatellite and single-nucleotide variation (SNV) data revealed that the two affected sisters share their maternally inherited GNAS alleles with unaffected relatives that lack evidence for abnormal GNAS methylation, thus excluding linkage to this locus. Consistent with these findings, healthy children of two unrelated sporadic PHP-Ib patients had inherited different maternal GNAS alleles, also arguing against linkage to this locus. Based on our data, it appears plausible that some forms of PHP-Ib are caused by homozygous or compound heterozygous mutation(s) in an unknown gene involved in establishing or maintaining GNAS methylation. Copyright © 2011 American Society for Bone and Mineral Research.
Edelman, Emily A; Lin, Bruce K; Doksum, Teresa; Drohan, Brian; Edelson, Vaughn; Dolan, Siobhan M; Hughes, Kevin; O'Leary, James; Vasquez, Lisa; Copeland, Sara; Galvin, Shelley L; DeGroat, Nicole; Pardanani, Setul; Gregory Feero, W; Adams, Claire; Jones, Renee; Scott, Joan
2014-07-01
"The Pregnancy and Health Profile" (PHP) is a free prenatal genetic screening and clinical decision support (CDS) software tool for prenatal providers. PHP collects family health history (FHH) during intake and provides point-of-care risk assessment for providers and education for patients. This pilot study evaluated patient and provider responses to PHP and effects of using PHP in practice. PHP was implemented in four clinics. Surveys assessed provider confidence and knowledge and patient and provider satisfaction with PHP. Data on the implementation process were obtained through semi-structured interviews with administrators. Quantitative survey data were analyzed using Chi square test, Fisher's exact test, paired t tests, and multivariate logistic regression. Open-ended survey questions and interviews were analyzed using qualitative thematic analysis. Of the 83% (513/618) of patients that provided feedback, 97% felt PHP was easy to use and 98% easy to understand. Thirty percent (21/71) of participating physicians completed both pre- and post-implementation feedback surveys [13 obstetricians (OBs) and 8 family medicine physicians (FPs)]. Confidence in managing genetic risks significantly improved for OBs on 2/6 measures (p values ≤0.001) but not for FPs. Physician knowledge did not significantly change. Providers reported value in added patient engagement and reported mixed feedback about the CDS report. We identified key steps, resources, and staff support required to implement PHP in a clinical setting. To our knowledge, this study is the first to report on the integration of patient-completed, electronically captured and CDS-enabled FHH software into primary prenatal practice. PHP is acceptable to patients and providers. Key to successful implementation in the future will be customization options and interoperability with electronic health records.
Wahba, Alexander S.; Esmaeili, Abbasali; Damha, Masad J.; Hudson, Robert H. E.
2010-01-01
6-Phenylpyrrolocytidine (PhpC), a structurally conservative and highly fluorescent cytidine analog, was incorporated into oligoribonucleotides. The PhpC-containing RNA formed native-like duplex structures with complementary DNA or RNA. The PhpC-modification was found to act as a sensitive reporter group being non-disruptive to structure and the enzymatic activity of RNase H. A RNA/DNA hybrid possessing a single PhpC insert was an excellent substrate for HIV-1 RT Ribonuclease H and rapidly reported cleavage of the RNA strand with a 14-fold increase in fluorescence intensity. The PhpC-based assay for RNase H was superior to the traditional molecular beacon approach in terms of responsiveness, rapidity and ease (single label versus dual). Furthermore, the PhpC-based assay is amenable to high-throughput microplate assay format and may form the basis for a new screen for inhibitors of HIV-RT RNase H. PMID:19933258
Theoretical research of helium pulsating heat pipe under steady state conditions
NASA Astrophysics Data System (ADS)
Xu, D.; Liu, H. M.; Li, L. F.; Huang, R. J.; Wang, W.
2015-12-01
As a new-type heat pipe, pulsating heat pipe (PHP) has several outstanding features, such as great heat transport ability, strong adjustability, small size and simple construction. PHP is a complex two-phase flow system associated with many physical subjects and parameters, which utilizes the pressure and temperature changes in volume expansion and contraction during phase changes to excite the pulsation motion of liquid plugs and vapor bubbles in the capillary tube between the evaporator and the condenser. At present time, some experimental investigation of helium PHP have been done. However, theoretical research of helium PHP is rare. In this paper, the physical and mathematical models of operating mechanism for helium PHP under steady state are established based on the conservation of mass, momentum, and energy. Several important parameters are correlated and solved, including the liquid filling ratio, flow velocity, heat power, temperature, etc. Based on the results, the operational driving force and flow resistances of helium PHP are analysed, and the flow and heat transfer is further studied.
Davis, Angela L; Qiao, Shuxi; Lesson, Jessica L; Rojo de la Vega, Montserrat; Park, Sophia L; Seanez, Carol M; Gokhale, Vijay; Cabello, Christopher M; Wondrak, Georg T
2015-01-16
Pharmacological induction of proteotoxic stress is rapidly emerging as a promising strategy for cancer cell-directed chemotherapeutic intervention. Here, we describe the identification of a novel drug-like heat shock response inducer for the therapeutic induction of proteotoxic stress targeting malignant human melanoma cells. Screening a focused library of compounds containing redox-directed electrophilic pharmacophores employing the Stress & Toxicity PathwayFinder(TM) PCR Array technology as a discovery tool, a drug-like triphenylmethane-derivative (aurin; 4-[bis(p-hydroxyphenyl)methylene]-2,5-cyclohexadien-1-one) was identified as an experimental cell stress modulator that causes (i) heat shock factor transcriptional activation, (ii) up-regulation of heat shock response gene expression (HSPA6, HSPA1A, DNAJB4, HMOX1), (iii) early unfolded protein response signaling (phospho-PERK, phospho-eIF2α, CHOP (CCAAT/enhancer-binding protein homologous protein)), (iv) proteasome impairment with increased protein-ubiquitination, and (v) oxidative stress with glutathione depletion. Fluorescence polarization-based experiments revealed that aurin displays activity as a geldanamycin-competitive Hsp90α-antagonist, a finding further substantiated by molecular docking and ATPase inhibition analysis. Aurin exposure caused caspase-dependent cell death in a panel of human malignant melanoma cells (A375, G361, LOX-IMVI) but not in non-malignant human skin cells (Hs27 fibroblasts, HaCaT keratinocytes, primary melanocytes) undergoing the aurin-induced heat shock response without impairment of viability. Aurin-induced melanoma cell apoptosis depends on Noxa up-regulation as confirmed by siRNA rescue experiments demonstrating that siPMAIP1-based target down-regulation suppresses aurin-induced cell death. Taken together, our data suggest feasibility of apoptotic elimination of malignant melanoma cells using the quinone methide-derived heat shock response inducer aurin. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Yeates, Catherine J; Zwiefelhofer, Danielle J; Frank, C Andrew
2017-01-01
Homeostasis is a vital mode of biological self-regulation. The hallmarks of homeostasis for any biological system are a baseline set point of physiological activity, detection of unacceptable deviations from the set point, and effective corrective measures to counteract deviations. Homeostatic synaptic plasticity (HSP) is a form of neuroplasticity in which neurons and circuits resist environmental perturbations and stabilize levels of activity. One assumption is that if a perturbation triggers homeostatic corrective changes in neuronal properties, those corrective measures should be reversed upon removal of the perturbation. We test the reversibility and limits of HSP at the well-studied Drosophila melanogaster neuromuscular junction (NMJ). At the Drosophila NMJ, impairment of glutamate receptors causes a decrease in quantal size, which is offset by a corrective, homeostatic increase in the number of vesicles released per evoked presynaptic stimulus, or quantal content. This process has been termed presynaptic homeostatic potentiation (PHP). Taking advantage of the GAL4/GAL80 TS /UAS expression system, we triggered PHP by expressing a dominant-negative glutamate receptor subunit at the NMJ. We then reversed PHP by halting expression of the dominant-negative receptor. Our data show that PHP is fully reversible over a time course of 48-72 h after the dominant-negative glutamate receptor stops being genetically expressed. As an extension of these experiments, we find that when glutamate receptors are impaired, neither PHP nor NMJ growth is reliably sustained at high culturing temperatures (30-32°C). These data suggest that a limitation of homeostatic signaling at high temperatures could stem from the synapse facing a combination of challenges simultaneously.
Zwiefelhofer, Danielle J.
2017-01-01
Abstract Homeostasis is a vital mode of biological self-regulation. The hallmarks of homeostasis for any biological system are a baseline set point of physiological activity, detection of unacceptable deviations from the set point, and effective corrective measures to counteract deviations. Homeostatic synaptic plasticity (HSP) is a form of neuroplasticity in which neurons and circuits resist environmental perturbations and stabilize levels of activity. One assumption is that if a perturbation triggers homeostatic corrective changes in neuronal properties, those corrective measures should be reversed upon removal of the perturbation. We test the reversibility and limits of HSP at the well-studied Drosophila melanogaster neuromuscular junction (NMJ). At the Drosophila NMJ, impairment of glutamate receptors causes a decrease in quantal size, which is offset by a corrective, homeostatic increase in the number of vesicles released per evoked presynaptic stimulus, or quantal content. This process has been termed presynaptic homeostatic potentiation (PHP). Taking advantage of the GAL4/GAL80TS/UAS expression system, we triggered PHP by expressing a dominant-negative glutamate receptor subunit at the NMJ. We then reversed PHP by halting expression of the dominant-negative receptor. Our data show that PHP is fully reversible over a time course of 48–72 h after the dominant-negative glutamate receptor stops being genetically expressed. As an extension of these experiments, we find that when glutamate receptors are impaired, neither PHP nor NMJ growth is reliably sustained at high culturing temperatures (30–32°C). These data suggest that a limitation of homeostatic signaling at high temperatures could stem from the synapse facing a combination of challenges simultaneously. PMID:29255795
Audemard, Corinne; Kator, Howard I; Reece, Kimberly S
2018-08-20
High salinity relay of Eastern oysters (Crassostrea virginica) was evaluated as a post-harvest processing (PHP) method for reducing Vibrio vulnificus. This approach relies on the exposure of oysters to natural high salinity waters and preserves a live product compared to previously approved PHPs. Although results of prior studies evaluating high salinity relay as a means to decrease V. vulnificus levels were promising, validation of this method as a PHP following approved guidelines is required. This study was designed to provide data for validation of this method following Food and Drug Administration (FDA) PHP validation guidelines. During each of 3 relay experiments, oysters cultured from 3 different Chesapeake Bay sites of contrasting salinities (10-21 psu) were relayed without acclimation to high salinity waters (31-33 psu) for up to 28 days. Densities of V. vulnificus and densities of total and pathogenic Vibrio parahaemolyticus (as tdh positive strains) were measured using an MPN-quantitative PCR approach. Overall, 9 lots of oysters were relayed with 6 exhibiting initial V. vulnificus >10,000/g. As recommended by the FDA PHP validation guidelines, these lots reached both the 3.52 log reduction and the <30 MPN/g densities requirements for V. vulnificus after 14 to 28 days of relay. Densities of total and pathogenic V. parahaemolyticus in relayed oysters were significantly lower than densities at the sites of origin suggesting an additional benefit associated with high salinity relay. While relay did not have a detrimental effect on oyster condition, oyster mortality levels ranged from 2 to 61% after 28 days of relay. Although the identification of the factors implicated in oyster mortality will require further examination, this study strongly supports the validation of high salinity relay as an effective PHP method to reduce levels of V. vulnificus in oysters to endpoint levels approved for human consumption. Copyright © 2018 Elsevier B.V. All rights reserved.
77 FR 21103 - Changes in Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-09
... Maricopa County, index.php/arizona/ Buckeye, 530 East 2801 West Durango maricopa-county/. Monroe Avenue...-09- Chairman, Maricopa Maricopa County, index.php/arizona/ 3299P). County Board of 2801 West Durango... Maricopa County, index.php/arizona/ 3216P). County, Board of 2801 West Durango maricopa-county...
Kobylewski, Sarah E; Henderson, Kimberly A; Yamada, Kristin E; Eckhert, Curtis D
2017-04-01
Fruits, nuts, legumes, and vegetables are rich sources of boron (B), an essential plant nutrient with chemopreventive properties. Blood boric acid (BA) levels reflect recent B intake, and men at the US mean intake have a reported non-fasting level of 10 μM. Treatment of DU-145 prostate cancer cells with physiological concentrations of BA inhibits cell proliferation without causing apoptosis and activates eukaryotic initiation factor 2 (eIF2α). EIF2α induces cell differentiation and protects cells by redirecting gene expression to manage endoplasmic reticulum stress. Our objective was to determine the temporal expression of endoplasmic reticulum (ER) stress-activated genes in DU-145 prostate cells treated with 10 μM BA. Immunoblots showed post-treatment increases in eIF2α protein at 30 min and ATF4 and ATF6 proteins at 1 h and 30 min, respectively. The increase in ATF4 was accompanied by an increase in the expression of its downstream genes growth arrest and DNA damage-induced protein 34 (GADD34) and homocysteine-induced ER protein (Herp), but a decrease in GADD153/CCAAT/enhancer-binding protein homologous protein (CHOP), a pro-apoptotic gene. The increase in ATF6 was accompanied by an increase in expression of its downstream genes GRP78/BiP, calreticulin, Grp94, and EDEM. BA did not activate IRE1 or induce cleavage of XBP1 mRNA, a target of IRE1. Low boron status has been associated with increased cancer risk, low bone mineralization, and retinal degeneration. ATF4 and BiP/GRP78 function in osteogenesis and bone remodeling, calreticulin is required for tumor suppressor p53 function and mineralization of teeth, and BiP/GRP78 and EDEM prevent the aggregation of misfolded opsins which leads to retinal degeneration. The identification of BA-activated genes that regulate its phenotypic effects provides a molecular underpinning for boron nutrition and biology.
Chan, She-Hung; Liang, Pi-Hui; Guh, Jih-Hwa
2018-06-01
Although the therapeutics have improved the rates of remission and cure of acute myelogenous leukemia (AML) in recent decades, there is still an unmet medical need for AML therapies because disease relapses are a major obstacle in patients who become refractory to salvage therapy. The development of therapeutic agents promoting both cytotoxicity and cell differentiation may provide opportunities to improve the clinical outcome. Dioscin-induced apoptosis in leukemic cells was identified through death receptor-mediated extrinsic apoptosis pathway. The formation of Bak and tBid, and loss of mitochondrial membrane potential were induced by dioscin suggesting the activation of intrinsic apoptotsis pathway. A functional analysis of transcription factors using transcription factor-DNA interaction array and IPA analysis demonstrated that dioscin induced a profound increase of protein expression of CCAAT/enhancer-binding protein α (C/EBPα), a critical factor for myeloid differentiation. Two-dimensional gel electrophoresis assay confirmed the increase of C/EBPα expression. Dioscin-induced differentiation was substantiated by an increase of CD11b protein expression and the induction of differentiation toward myelomonocytic/granulocytic lineages using hematoxylin and eosin staining. Moreover, both glycolysis and gluconeogenesis pathways after two-dimensional gel electrophoresis assay and IPA network enrichment analysis were proposed to dioscin action. In conclusion, the data suggest that dioscin exerts its antileukemic effect through the upregulation of both death ligands and death receptors and a crosstalk activation of mitochondrial apoptosis pathway with the collaboration of tBid and Bak formation. In addition, proteomics approach reveals an altered metabolic signature of dioscin-treated cells and the induction of differentiation of promyelocytes to granulocytes and monocytes in which the C/EBPα plays a key role.
Prospective signs of cleidocranial dysplasia in Cebpb deficiency
2014-01-01
Background Although runt-related transcription factor 2 (RUNX2) has been considered a determinant of cleidocranial dysplasia (CCD), some CCD patients were free of RUNX2 mutations. CCAAT/enhancer-binding protein beta (Cebpb) is a key factor of Runx2 expression and our previous study has reported two CCD signs including hyperdontia and elongated coronoid process of the mandible in Cebpb deficient mice. Following that, this work aimed to conduct a case-control study of thoracic, zygomatic and masticatory muscular morphology to propose an association between musculoskeletal phenotypes and deficiency of Cebpb, using a sample of Cebpb-/-, Cebpb+/- and Cebpb+/+ adult mice. Somatic skeletons and skulls of mice were inspected with soft x-rays and micro-computed tomography (μCT), respectively. Zygomatic inclination was assessed using methods of coordinate geometry and trigonometric function on anatomic landmarks identified with μCT. Masseter and temporal muscles were collected and weighed. Expression of Cebpb was examined with a reverse transcriptase polymerase chain reaction (RT-PCR) technique. Results Cebpb-/- mice displayed hypoplastic clavicles, a narrow thoracic cage, and a downward tilted zygomatic arch (p < 0.001). Although Cebpb+/- mice did not show the phenotypes above (p = 0.357), a larger mass percentage of temporal muscles over masseter muscles was seen in Cebpb+/- littermates (p = 0.012). The mRNA expression of Cebpb was detected in the clavicle, the zygoma, the temporal muscle and the masseter muscle, respectively. Conclusions Prospective signs of CCD were identified in mice with Cebpb deficiency. These could provide an additional aetiological factor of CCD. Succeeding investigation into interactions among Cebpb, Runx2 and musculoskeletal development is indicated. PMID:24885110
2-Diazo-1-(4-hydroxyphenyl)ethanone: A Versatile Photochemical and Synthetic Reagenta
Senadheera, Sanjeewa N.; Evans, Anthony S.; Toscano, John P.; Givens, Richard S.
2014-01-01
α-Diazo arylketones are well-known substrates for Wolff rearrangement to phenylacetic acids through a ketene intermediate by either thermal or photochemical activation. Likewise, α-substituted p-hydroxyphenacyl (pHP) esters are substrates for photo-Favorskii rerrangements to phenylacetic acids by a different pathway that purportedly involves a cyclopropanone intermediate. In this paper, we show that the photolysis of a series of α-diazo-p-hydroxyacetophenones and p-hydroxyphenacyl (pHP) α-esters both generate the identical rearranged phenylacetates as major products. Since α-diazo-p-hydroxyacetophenone (1a, pHP N2) contains all the necessary functionalities for either Wolff or Favorskii rearrangement, we were prompted to probe this intriguing mechanistic dichotomy under conditions favorable to the photo-Favorskii reangement, i.e., photolysis in hydroxylic media. An investigation of the mechanism for conversion of 1a to p-hydroxyphenyl acetic acid (4a) using time-resolved infrared (TRIR) spectroscopy clearly demonstrates the formation of a ketene intermediate that is subsequently trapped by solvent or nucleophiles. The photoreaction of 1a is quenched by oxygen and sensitized by triplet sensitizers and the quantum yields for 1a–c range from 0.19 to a robust 0.25. The lifetime of the triplet, determined by Stern-Volmer quenching, is 15 ns with a rate for appearance of 4a of k = 7,1 × 106 s−1 in aq. acetonitrile (1:1 v:v). These studies establish that the primary rearrangement pathway for 1a involves ketene formation in accordance with the photo-Wolff rearrangement. Furthermore we have also demonstrated the synthetic utility of 1a as an esterification and etherification reagent with a variety of substituted α-diazo-p-hydroxyacetophenones, using them as synthons for efficiently coupling it to acids and phenols to produce pHP protect substrates. PMID:24305682
2-Diazo-1-(4-hydroxyphenyl)ethanone: a versatile photochemical and synthetic reagent.
Senadheera, Sanjeewa N; Evans, Anthony S; Toscano, John P; Givens, Richard S
2014-02-01
α-Diazo arylketones are well-known substrates for Wolff rearrangement to phenylacetic acids through a ketene intermediate by either thermal or photochemical activation. Likewise, α-substituted p-hydroxyphenacyl (pHP) esters are substrates for photo-Favorskii rearrangements to phenylacetic acids by a different pathway that purportedly involves a cyclopropanone intermediate. In this paper, we show that the photolysis of a series of α-diazo-p-hydroxyacetophenones and p-hydroxyphenacyl (pHP) α-esters both generate the identical rearranged phenylacetates as major products. Since α-diazo-p-hydroxyacetophenone (1a, pHP N2) contains all the necessary functionalities for either Wolff or Favorskii rearrangement, we were prompted to probe this intriguing mechanistic dichotomy under conditions favorable to the photo-Favorskii rearrangement, i.e., photolysis in hydroxylic media. An investigation of the mechanism for conversion of 1a to p-hydroxyphenyl acetic acid (4a) using time-resolved infrared (TRIR) spectroscopy clearly demonstrates the formation of a ketene intermediate that is subsequently trapped by solvent or nucleophiles. The photoreaction of 1a is quenched by oxygen and sensitized by triplet sensitizers and the quantum yields for 1a-c range from 0.19 to a robust 0.25. The lifetime of the triplet, determined by Stern-Volmer quenching, is 31 ns with a rate for appearance of 4a of k = 7.1 × 10(6) s(-1) in aq. acetonitrile (1 : 1 v : v). These studies establish that the primary rearrangement pathway for 1a involves ketene formation in accordance with the photo-Wolff rearrangement. Furthermore we have also demonstrated the synthetic utility of 1a as an esterification and etherification reagent with a variety of substituted α-diazo-p-hydroxyacetophenones, using them as synthons for efficiently coupling it to acids and phenols to produce pHP protect substrates.
Tsujii, Akira; Miyamoto, Yoichi; Moriyama, Tetsuji; Tsuchiya, Yuko; Obuse, Chikashi; Mizuguchi, Kenji; Oka, Masahiro; Yoneda, Yoshihiro
2015-01-01
Nucleocytoplasmic trafficking is a fundamental cellular process in eukaryotic cells. Here, we demonstrated that retinoblastoma-binding protein 4 (RBBP4) functions as a novel regulatory factor to increase the efficiency of importin α/β-mediated nuclear import. RBBP4 accelerates the release of importin β1 from importin α via competitive binding to the importin β-binding domain of importin α in the presence of RanGTP. Therefore, it facilitates importin α/β-mediated nuclear import. We showed that the importin α/β pathway is down-regulated in replicative senescent cells, concomitant with a decrease in RBBP4 level. Knockdown of RBBP4 caused both suppression of nuclear transport and induction of cellular senescence. This is the first report to identify a factor that competes with importin β1 to bind to importin α, and it demonstrates that the loss of this factor can trigger cellular senescence. PMID:26491019
Patikoglou, Georgia A; Westblade, Lars F; Campbell, Elizabeth A; Lamour, Valérie; Lane, William J; Darst, Seth A
2007-09-21
The Escherichia coli Rsd protein binds tightly and specifically to the RNA polymerase (RNAP) sigma(70) factor. Rsd plays a role in alternative sigma factor-dependent transcription by biasing the competition between sigma(70) and alternative sigma factors for the available core RNAP. Here, we determined the 2.6 A-resolution X-ray crystal structure of Rsd bound to sigma(70) domain 4 (sigma(70)(4)), the primary determinant for Rsd binding within sigma(70). The structure reveals that Rsd binding interferes with the two primary functions of sigma(70)(4), core RNAP binding and promoter -35 element binding. Interestingly, the most highly conserved Rsd residues form a network of interactions through the middle of the Rsd structure that connect the sigma(70)(4)-binding surface with three cavities exposed on distant surfaces of Rsd, suggesting functional coupling between sigma(70)(4) binding and other binding surfaces of Rsd, either for other proteins or for as yet unknown small molecule effectors. These results provide a structural basis for understanding the role of Rsd, as well as its ortholog, AlgQ, a positive regulator of Pseudomonas aeruginosa virulence, in transcription regulation.
When Will It Be... USNO Seasons and Apsides Calculator
NASA Astrophysics Data System (ADS)
Chizek Frouard, Malynda; Bartlett, Jennifer Lynn
2018-01-01
The turning of the Earth’s seasons (solstices and equinoxes) and apsides (perihelions and aphelions) are times often used in observational astronomy and also of interest to the public. To avoid tedious calculations, the U.S. Naval Observatory (USNO) has developed an on-line interactive calculator, Earth’s Seasons and Apsides to provide information about events between 1600 and 2200. The new data service uses an Application Programming Interface (API), which returns values in JavaScript Object Notation (JSON) that can be incorporated into third-party websites or applications. For a requested year, the Earth’s Seasons and Apsides API provides the Gregorian calendar date and time of the Vernal Equinox, Summer Solstice, Autumnal Equinox, Winter Solstice, Aphelion, and Perihelion. The user may specify the time zone for their results, including the optional addition of U.S. daylight saving time for years after 1966.On-line documentation for using the API-enabled Earth’s Seasons and Apsides is available, including sample calls (http://aa.usno.navy.mil/data/docs/api.php). A traditional forms-based interface is available as well (http://aa.usno.navy.mil/data/docs/EarthSeasons.php). This data service replaces the popular Earth's Seasons: Equinoxes, Solstices, Perihelion, and Aphelion page that provided a static list of events for 2000–2025. The USNO also provides API-enabled data services for Complete Sun and Moon Data for One Day (http://aa.usno.navy.mil/data/docs/RS_OneDay.php), Dates of the Primary Phases of the Moon (http://aa.usno.navy.mil/data/docs/MoonPhase.php), Selected Christian Observances (http://aa.usno.navy.mil/data/docs/easter.php), Selected Islamic Observances (http://aa.usno.navy.mil/data/docs/islamic.php), Selected Jewish Observances (http://aa.usno.navy.mil/data/docs/passover.php), Julian Date Conversion (http://aa.usno.navy.mil/data/docs/JulianDate.php), and Sidereal Time (http://aa.usno.navy.mil/data/docs/siderealtime.php) as well as its Solar Eclipse Computer (http://aa.usno.navy.mil/data/docs/SolarEclipses.php).
Patrick, B A; Jaiswal, A K
2012-10-04
Previously, we have shown a role of cytosolic NAD(P)H:quinone oxidoreductase 1 (NQO1) in the stabilization of p63 against 20S proteasomal degradation resulting in thinning of the epithelium and chemical-induced skin cancer (Oncogene (2011) 30, 1098-1107). Current studies have demonstrated that NQO1 control of CCAAT-enhancer binding protein (C/EBPα) against 20S proteasomal degradation also contributes to the upregulation of p63 expression and protection. Western and immunohistochemistry analysis revealed that disruption of the NQO1 gene in mice and mouse keratinocytes led to degradation of C/EBPα and loss of p63 gene expression. p63 promoter mutagenesis, transfection and chromatin immunoprecipitation assays identified a C/EBPα-binding site between nucleotide position -185 and -174 that bound to C/EBPα and upregulated p63 gene expression. Co-immunoprecipitation and immunoblot analysis demonstrated that 20S proteasomes directly interacted and degraded C/EBPα. NQO1 direct interaction with C/EBPα led to stabilization of C/EBPα against 20S proteasomal degradation. NQO1 protection of C/EBPα required binding of NADH with NQO1. Exposure of skin and keratinocytes to the chemical stress agent benzo(a)pyrene led to induction of NQO1 and stabilization of C/EBPα protein, resulting in an increase in p63 RNA and protein in wild-type but not in NQO1-/- mice. Collectively, the current data combined with previous data suggest that stress induction of NQO1 through both stabilization of C/EBPα and increase in p63 and direct stabilization of p63 controls keratinocyte differentiation, leading to protection against chemical-induced skin carcinogenesis. The studies are significant as 2-4% human individuals are homozygous and 23% are heterozygous for the NQO1P187S mutation and might be susceptible to stress-induced skin diseases.
Cardiovascular health promotion in aging women: validating a population health approach.
Sawatzky, Jo-Ann V; Naimark, Barbara J
2005-01-01
Although cardiovascular disease is the leading cause of death in North American women, most cardiovascular research has focused on men. In addition, while there has been a recent trend toward population health promotion (PHP) and a consequent focus on the broad determinants of health, there is still a dearth of research evidence related to the promotion of cardiovascular health within this context. The purpose of this study was to explore and describe the interrelationships between the determinants of health and individual cardiovascular health/risk behaviors in healthy women, within the context of a framework for PHP. A comprehensive inventory of factors affecting the cardiovascular health of women was operationalized in a survey questionnaire, the Cardiovascular Health Promotion Profile. Physical measures were also taken on each participant (n = 206). The multivariate analyses support significant interrelationships between the population health determinants and multiple individual cardiovascular health/risk behaviors in this cohort (p < 0.05). The evidence from this study provides foundational validation for a population health approach and population-based strategies for cardiovascular health promotion in women. Further research, within the context of a PHP framework, is central to building on the body of knowledge in this area.
The Benefits of Parenting Self-Help Groups for Rural Latino Parents.
ERIC Educational Resources Information Center
Wituk, Scott; Commer, Amy; Lindstrom, Julie; Meisen, Greg
2001-01-01
A survey of 118 rural, mostly female, Latino participants in Parents Helping Parents (PHP)--a Kansas network of parenting self-help groups--found high satisfaction with PHP. PHP provided support and information concerning child rearing and child development, improved family communication, and increased the use of alternative means of discipline.…
On-line Eclipse Resources from the U.S. Naval Observatory: Planning Ahead for April 2024
NASA Astrophysics Data System (ADS)
Fredericks, Amy C.; Bartlett, J. L.; Bell, S.; Stapleton, J. C.
2014-01-01
On 8 April 2024, “…night from mid-day…” (Archilochus, 648 BCE) will appear to fortunate observers along a narrow band, approximately 115 mi (185 km) wide, that crosses fifteen states from Texas to Maine. In response to growing interest in the two total solar eclipses that will sweep the continental United States in the next 11 years, the U.S. Naval Observatory has developed an on-line resource center with direct links to 2024-specific services: the 2024 April 8 Total Solar Eclipse page (http://aa.usno.navy.mil/data/docs/Eclipse2024.php). The Solar Eclipse Computer (http://aa.usno.navy.mil/data/docs/SolarEclipses.php) calculates tables of local circumstances for events visible throughout the world. A similar service is available for lunar eclipses, Lunar Eclipse Computer (http://aa.usno.navy.mil/data/docs/LunarEclipse.php). The USNO Eclipse Portal (http://astro.ukho.gov.uk/eclbin/query_usno.cgi) provides diagrams and animations showing the global circumstances for events visible throughout the world and local circumstances for events visible at selected locations. The Web site, which includes both solar and lunar eclipses, is a joint effort with Her Majesty’s Nautical Almanac Office. The Eclipses of the Sun and Moon page (http://aa.usno.navy.mil/data/docs/UpcomingEclipses.php) links to electronic copies of the visibility maps from The Astronomical Almanac. The Eclipse Reference List (http://aa.usno.navy.mil/faq/docs/eclipse_ref.php) is a representative survey of the available literature for those interested in delving into these phenomena, either technically or historically. As exciting as the 2024 total solar eclipse, another spectacular event will precede it; a total solar eclipse will cross a different swath of the continent on August 21, 2017. The U.S. Naval Observatory has a resource center for that event as well (http://aa.usno.navy.mil/data/docs/Eclipse2017.php) . If your plans for 2024 are not yet made, visit the 2024 April 8 Total Solar Eclipse page to prepare for up to 4 minutes 31 seconds of “unexampled beauty, grandeur, and impressiveness” (Newcomb 1890) and of darkness.
Baldwin, A; Wiley, E
2001-04-01
VitaResc (formerly Apex) is developing PHP-HT, pyridoxalated hemoglobin polyoxyethylene conjugate, for the potential treatment of nitric oxide-induced shock (characterized by hypotension), associated with various etiologies, initially in septic shock. A phase I safety study and an initial phase I/II patient trial for NO-induced shock have been completed, and VitaResc has enrolled patients in three of five planned cohorts in a continuation of these trials to include a protocol of continuous infusion and dose escalation [330680,349187,390918]. The results from the dose escalation trials are expected to provide the basis for a randomized, controlled phase II/III pivotal trial of PHP-HT [390918]. VitaResc has licensed PHP-HT exclusively from Ajinomoto for all indications, worldwide, except Japan [275263]. Ajinomoto originally developed the human derived and chemically modified hemoglobin preparation as a blood substitute, but no development has been reported by the company since 1997 [275277,303577]. The other potential indications of PHP-HT include shock associated with burns, pancreatitis, hemodialysis and cytokine therapies [275277]. VitaResc expects the annual market potential of PHP-HT to exceed 1 billion dollars [330680].
Wang, Qing; Wang, Zhanghong; Shen, Fei; Hu, Jinguang; Sun, Fubao; Lin, Lili; Yang, Gang; Zhang, Yanzong; Deng, Shihuai
2014-08-01
In order to seek a high-efficient pretreatment path for converting lignocellulosic feedstocks to fermentable sugars by enzymatic hydrolysis, the concentrated H₃PO₄ plus H₂O₂ (PHP) was attempted to pretreat different lignocellulosic biomass for evaluating the pretreatment flexibility on feedstocks. Meanwhile, the responses of pretreatment to particle sizes were also evaluated. When the PHP-pretreatment was employed (final H₂O₂ and H₃PO₄ concentration of 1.77% and 80.0%), 71-96% lignin and more than 95% hemicellulose in various feedstocks (agricultural residues, hardwood, softwood, bamboo, and their mixture, and garden wastes mixture) can be removed. Consequently, more than 90% glucose conversion was uniformly achieved indicating PHP greatly improved the pretreatment flexibility to different feedstocks. Moreover, when wheat straw and oak chips were PHP-pretreated with different sizes, the average glucose conversion reached 94.9% and 100% with lower coefficient of variation (7.9% and 0.0%), which implied PHP-pretreatment can significantly weaken the negative effects of feedstock sizes on subsequent conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mihailidou, Chrysovalantou; Papavassiliou, Athanasios G; Kiaris, Hippokratis
2014-04-01
Type 2 diabetes (T2D) is a disease that is characterized by raised levels of glucose in the blood combined with insulin resistance and relative insulin deficiency. The pathogenesis of type 2 diabetes is associated with the induction of the unfolded protein response (UPR). While UPR aims to restore tissue homeostasis following stress of the endoplasmic reticulum (ER), prolonged ER stress triggers apoptosis at least in part through the unfolded protein response (UPR)-activated transcription factor C/EBP (CCAAT/enhancer binding protein) homologous protein (CHOP). CHOP has elevated as a critical mediator connecting accumulation and aggregation of unfolded proteins in the ER and oxidative stress and also contributes to the induction of apoptosis in β-cell (beta-cell) - cells under conditions of increased insulin demand. p21 is a cell cycle regulator that is implicated in the regulation of the UPR by various mechanisms involving inhibition of apoptosis and facilitation of the regeneration capacity of the β cells. In this review we summarize the role of ER stress in the pathogenesis of type 2 diabetes which is associated with the induction of the unfolded protein response (UPR). We also review recent evidence associating p21 activity with β cell health and regenerative capacity by mechanisms that may interfere with the effects of p21 in the UPR or operate independently of ER stress. Most likely understanding the molecular details of the pathogenesis of type 2 diabetes will be beneficial for the management of the disease. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Sulforaphane inhibits mitotic clonal expansion during adipogenesis through cell cycle arrest.
Choi, Kyeong-Mi; Lee, Youn-Sun; Sin, Dong-Mi; Lee, Seunghyun; Lee, Mi Kyeong; Lee, Yong-Moon; Hong, Jin-Tae; Yun, Yeo-Pyo; Yoo, Hwan-Soo
2012-07-01
Obesity is a risk factor for numerous metabolic disorders such as type 2 diabetes, hypertension, and coronary heart disease. Adipocyte differentiation is triggered by adipocyte hyperplasia, which leads to obesity. In this study, the inhibitory effect of sulforaphane, an isothiocyanate, on adipogenesis in 3T3-L1 cells was investigated. Sulforaphane decreased the accumulation of lipid droplets stained with Oil Red O and inhibited the elevation of triglycerides in the adipocytes (half-maximal inhibitory concentration = 7.3 µmol/l). The expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), major transcription factors for adipocyte differentiation, was significantly reduced by sulforaphane. The major effects of sulforaphane on the inhibition of adipocyte differentiation occurred during the early stage of adipogenesis. Thus, the expression of C/EBPβ, an early-stage biomarker of adipogenesis, decreased in a concentration-dependent manner when the adipocytes were exposed to sulforaphane (0, 5, 10, and 20 µmol/l). The proliferation of adipocytes treated with 20 µmol/l sulforaphane for 24 and 48 h was also suppressed. These results indicate that sulforaphane may specifically affect mitotic clonal expansion to inhibit adipocyte differentiation. Sulforaphane arrested the cell cycle at the G(0)/G(1) phase, increased p27 expression, and decreased retinoblastoma (Rb) phosphorylation. Additionally, sulforaphane modestly decreased the phosphorylation of ERK1/2 and Akt. Our results indicate that the inhibition of early-stage adipocyte differentiation by sulforaphane may be associated with cell cycle arrest at the G(0)/G(1) phase through upregulation of p27 expression.
Calcitriol enhances fat synthesis factors and calpain activity in co-cultured cells.
Choi, Hyuck; Myung, Kyuho
2014-08-01
We have conducted an in vitro experiment to determine whether calcitriol can act as a fat synthesizer and/or meat tenderizer when skeletal muscle cells, adipose tissue, and macrophages are co-cultured. When co-cultured, pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) expression increased, whereas decreased anti-inflammatory cytokine (IL-10 and IL-15) expression decreased in both C2C12 and 3T3-L1 cells. Calcitriol increased reactive oxygen species (ROS) production in the media. While adiponectin gene expression decreased, leptin, resistin, CCAAT-enhancer-binding protein-beta (C/EBP-β), and peroxisome proliferator-activated receptor gamma (PPAR-γ) gene expression was significantly (P < 0.047) increased with calcitriol in 3T3-L1 cells co-cultured with two different cell types. Inducible nitric oxide synthase (iNOS) protein levels were also stimulated in the C2C12 and 3T3-L1 cells, but arginase l was attenuated by calcitriol. Cacitriol highly amplified (P = 0.008) µ-calpain gene expression in co-cultured C2C12 cells. The results showed an overall increase in pro-inflammatory cytokines and a decrease in anti-inflammatory cytokines of C2C12 and 3T3-L1 cells with calcitriol in co-culture systems. µ-Calpain protein was also augmented in differentiated C2C12 cells with calcitriol. These findings suggest that calcitriol can be used as not only fat synthesizer, but meat tenderizer, in meat-producing animals. © 2014 International Federation for Cell Biology.
Pham, Tho X; Lee, Ji-Young
2016-06-01
We previously showed that the organic extract of a blue-green alga, Spirulina platensis (SPE), had potent anti-inflammatory effects in macrophages. As the interplay between macrophages and adipocytes is critical for adipocyte functions, we investigated the contribution of the anti-inflammatory effects of SPE in macrophages to adipogenesis/lipogenesis in 3T3-L1 adipocytes. 3T3-L1 preadipocytes were treated with 10% conditioned medium from lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages (CMC) or LPS-stimulated, but SPE-pretreated, macrophages (CMS) at different stages of adipocyte differentiation. The expression of adipocyte differentiation markers, such as CCAAT/enhancer-binding protein α, peroxisome proliferator-activated receptor γ, and perilipin, was significantly repressed by CMC when added on day 3, while the repression was attenuated by CMS. Oil Red O staining confirmed that adipocyte maturation in CMS-treated cells, but not in CMC-treated cells, was equivalent to that of control cells. Nuclear translocation of nuclear factor κB (NF-κB) p65 was decreased by CMS compared to CMC. In lipid-laden adipocytes, CMC promoted the loss of lipid droplets, while CMS had minimal effects. Histone deacetylase 9 mRNA and protein levels were increased during adipocyte maturation, which were decreased by CMC. In conclusion, by cross-talking with adipocytes, the anti-inflammatory effects of SPE in macrophages promoted adipocyte differentiation/maturation, at least in part, by repressing the activation of NF-κB inflammatory pathways, which otherwise can be compromised in inflammatory conditions.
Yang, Shumin; Zhang, Wenlong; Zhen, Qianna; Gao, Rufei; Du, Tingting; Xiao, Xiaoqiu; Wang, Zhihong; Ge, Qian; Hu, Jinbo; Ye, Peng; Zhu, Qibo; Li, Qifu
2015-09-15
Chronic inflammation might be associated with hepatic lipid deposition independent of overnutrition. However, the mechanism is not fully understood. In this study, we investigate if impaired adipogenesis in adipose tissue is associated with hepatic lipid deposition induced by chronic inflammation in mice with chew diet. Casein injection in C57BL/6J mice was given every other day to induce chronic inflammation. All mice were sacrificed after 18weeks of injections. The serum, liver and adipose tissue were collected for analysis. Real-time polymerase chain reaction and western blotting were used to examine the gene and protein expressions of molecules involved in hepatic lipid metabolism and adipose adipogenesis. Casein injection elevated serum levels of insulin, free fatty acid (FFA) and proinflammatory factors. The gene expression of proinflammatory factors of adipose tissue and the liver also increased in the casein group as compared with the control group. Chronic inflammation up-regulated the hepatic expression of fatty acid translocase (CD36) and down-regulated microsomal triacylglycerol transfer protein (MTP), carnitine palmitoyltransferase 1a (CPT1a) and acyl-coenzyme a oxidase 1 (ACOX1). Meanwhile, chronic inflammation not only diminished the size of adipocytes, but also down-regulated the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding proteinα (C/EBPα), both indicating an impaired adipogenesis. Besides disturbed lipid metabolism in the liver per se, impaired adipogenesis in the adipose tissue might also be associated with hepatic lipid deposition induced by chronic inflammation in mice with chew diet. Copyright © 2015 Elsevier Inc. All rights reserved.
Deregulation of the endogenous C/EBPβ LIP isoform predisposes to tumorigenesis.
Bégay, Valérie; Smink, Jeske J; Loddenkemper, Christoph; Zimmermann, Karin; Rudolph, Cornelia; Scheller, Marina; Steinemann, Doris; Leser, Ulf; Schlegelberger, Brigitte; Stein, Harald; Leutz, Achim
2015-01-01
Two long and one truncated isoforms (termed LAP*, LAP, and LIP, respectively) of the transcription factor CCAAT enhancer binding protein beta (C/EBPβ) are expressed from a single intronless Cebpb gene by alternative translation initiation. Isoform expression is sensitive to mammalian target of rapamycin (mTOR)-mediated activation of the translation initiation machinery and relayed through an upstream open reading frame (uORF) on the C/EBPβ mRNA. The truncated C/EBPβ LIP, initiated by high mTOR activity, has been implied in neoplasia, but it was never shown whether endogenous C/EBPβ LIP may function as an oncogene. In this study, we examined spontaneous tumor formation in C/EBPβ knockin mice that constitutively express only the C/EBPβ LIP isoform from its own locus. Our data show that deregulated C/EBPβ LIP predisposes to oncogenesis in many tissues. Gene expression profiling suggests that C/EBPβ LIP supports a pro-tumorigenic microenvironment, resistance to apoptosis, and alteration of cytokine/chemokine expression. The results imply that enhanced translation reinitiation of C/EBPβ LIP promotes tumorigenesis. Accordingly, pharmacological restriction of mTOR function might be a therapeutic option in tumorigenesis that involves enhanced expression of the truncated C/EBPβ LIP isoform. Elevated C/EBPβ LIP promotes cancer in mice. C/EBPβ LIP is upregulated in B-NHL. Deregulated C/EBPβ LIP alters apoptosis and cytokine/chemokine networks. Deregulated C/EBPβ LIP may support a pro-tumorigenic microenvironment.
Panax ginseng Leaf Extracts Exert Anti-Obesity Effects in High-Fat Diet-Induced Obese Rats.
Lee, Seul-Gi; Lee, Yoon-Jeong; Jang, Myeong-Hwan; Kwon, Tae-Ryong; Nam, Ju-Ock
2017-09-10
Recent studies have reported that the aerial parts of ginseng contain various saponins, which have anti-oxidative, anti-inflammatory, and anti-obesity properties similar to those of ginseng root. However, the leaf extracts of Korean ginseng have not yet been investigated. In this study, we demonstrate the anti-obesity effects of green leaf and dried leaf extracts (GL and DL, respectively) of ginseng in high-fat diet (HFD)-induced obese rats. The administration of GL and DL to HFD-induced obese rats significantly decreased body weight (by 96.5% and 96.7%, respectively), and epididymal and abdominal adipose tissue mass. Furthermore, DL inhibited the adipogenesis of 3T3-L1 adipocytes through regulation of the expression of key adipogenic regulators, such as peroxisome proliferator-activated receptor (PPAR)-γ and CCAAT/enhancer-binding protein (C/EBP)-α. In contrast, GL had little effect on the adipogenesis of 3T3-L1 adipocytes but greatly increased the protein expression of PPARγ compared with that in untreated cells. These results were not consistent with an anti-obesity effect in the animal model, which suggested that the anti-obesity effect of GL in vivo resulted from specific factors released by other organs, or from increased energy expenditure. To our knowledge, these findings are the first evidence for the anti-obesity effects of the leaf extracts of Korean ginseng in vivo.
Gao, Die; Zhang, Yong-Lan; Yang, Feng-Qing; Li, Fan; Zhang, Qi-Hui; Xia, Zhi-Ning
2016-09-15
The flower of Edgeworthia gardneri (Wall.) Meisn., locally named "Lvluohua, ", has been widely used as Tibetan folk medicine for the treatment of metabolic diseases for a long time. To evaluate the anti-adipogenesis effect of ethyl acetate extract of the flower of E. gardneri (EEG extract) in 3T3-L1 adipocytes. Obesity-related parameters such as lipid accumulation and TG content were determined by Oil red O staining and enzymatic kit, respectively. Western blotting was used to determine the expressions of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein-α (C/EBPα), phosphorylated adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC). Moreover, main constituents of EEG extract were analyzed by high performance liquid chromatography (HPLC). EEG extract decreased the lipid and triglyceride (TG) accumulations during the differentiation process and down-regulated the adipogenesis-related transcriptional factors PPARγ and C/EBPα. EEG extract treatment increased AMPK and ACC phosphorylation. In addition, pretreatment with AMPK inhibitor, weakened the inhibitory effects of EEG extract on the expressions of PPARγand C/EBPα. HPLC analysis indicated that tiliroside was the main constituent in EEG extract. These results suggest that EEG extract may exert anti-adipogenic effects through modulation of the AMPK signaling pathway. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Lee, J S; Kim, J M; Hong, E K; Kim, S-O; Yoo, Y-J; Cha, J-H
2009-02-01
A growing amount of attention has been placed on periodontal regeneration and wound healing for periodontal therapy. This study was conducted in an effort to determine the effects of heparin-binding epidermal growth factor-like growth factor on cell repopulation and signal transduction in periodontal ligament cells after scratch wounding in vitro. Human periodontal ligament cells were acquired from explant tissue of human healthy periodontal ligament. After the wounding of periodontal ligament cells, the change in expression of heparin-binding epidermal growth factor-like growth factor and epidermal growth factor receptors 1-4 mRNA was assessed. The effects of heparin-binding epidermal growth factor-like growth factor on periodontal ligament cell proliferation and repopulation were assessed in vitro via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and by photographing the injuries, respectively. Extracellular signal-regulated kinase (Erk)1/2, p38 and Akt phosphorylation was characterized via western blotting. Scratch wounding resulted in a significant up-regulation of heparin-binding epidermal growth factor-like growth factor mRNA expression, whereas wounding had no effect on the expression levels of epidermal growth factor receptors 1-4. Interestingly, no expression of epidermal growth factor receptors 2 and 4 was detectable prior to or after wounding. Heparin-binding epidermal growth factor-like growth factor treatment promoted the proliferation and repopulation of periodontal ligament cells. The scratch wounding also stimulated the phosphorylation of Erk1/2 and p38, but not of Akt, in periodontal ligament cells, and heparin-binding epidermal growth factor-like growth factor treatment applied after wounding amplified and extended the activations of Erk1/2 and p38, but not of Akt. Furthermore, Erk1/2 inhibition blocked the process of cell repopulation induced by heparin-binding epidermal growth factor-like growth factor, whereas the inhibition of p38 delayed the process. These results indicate that heparin-binding epidermal growth factor-like growth factor may constitute a critical factor in the wound healing of human periodontal ligament cells by a mechanism that requires the activation of Erk1/2 via specific interaction with epidermal growth factor receptor 1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patikoglou,G.; Westblade, L.; Campbell, E.
The Escherichia coli Rsd protein binds tightly and specifically to the RNA polymerase (RNAP) {sigma}{sup 70} factor. Rsd plays a role in alternative {sigma} factor-dependent transcription by biasing the competition between {sigma}{sup 70} and alternative {sigma} factors for the available core RNAP. Here, we determined the 2.6 {angstrom}-resolution X-ray crystal structure of Rsd bound to {sigma}{sup 70} domain 4 ({sigma}{sup 70}{sub 4}), the primary determinant for Rsd binding within {sigma}{sup 70}. The structure reveals that Rsd binding interferes with the two primary functions of {sigma}{sup 70}{sub 4}, core RNAP binding and promoter -35 element binding. Interestingly, the most highly conservedmore » Rsd residues form a network of interactions through the middle of the Rsd structure that connect the {sigma}{sup 70}{sub 4}-binding surface with three cavities exposed on distant surfaces of Rsd, suggesting functional coupling between {sigma}{sup 70}{sub 4} binding and other binding surfaces of Rsd, either for other proteins or for as yet unknown small molecule effectors. These results provide a structural basis for understanding the role of Rsd, as well as its ortholog, AlgQ, a positive regulator of Pseudomonas aeruginosa virulence, in transcription regulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Neal X., E-mail: xuechen@iupui.edu; O’Neill, Kalisha; Akl, Nader Kassis
Highlights: • High phosphorus can induce calcification of adipocytes, even when fully differentiated. • Adipocytes can induce vascular calcification in an autocrine manner. • Sodium thiosulfate inhibits adipocyte calcification. - Abstract: Background: Calcification can occur in fat in multiple clinical conditions including in the dermis, breasts and in the abdomen in calciphylaxis. All of these are more common in patients with advanced kidney disease. Clinically, hyperphosphatemia and obesity are risk factors. Thus we tested the hypothesis that adipocytes can calcify in the presence of elevated phosphorus and/or that adipocytes exposed to phosphorus can induce vascular smooth muscle cell (VSMC) calcification.more » Methods: 3T3-L1 preadipocytes were induced into mature adipocytes and then treated with media containing high phosphorus. Calcification was assessed biochemically and PCR performed to determine the expression of genes for osteoblast and adipocyte differentiation. Adipocytes were also co-cultured with bovine VSMC to determine paracrine effects, and the efficacy of sodium thiosulfate was determined. Results: The results demonstrated that high phosphorus induced the calcification of differentiated adipocytes with increased expression of osteopontin, the osteoblast transcription factor Runx2 and decreased expression of adipocyte transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (CEBPα), indicating that high phosphorus led to a phenotypic switch of adipocytes to an osteoblast like phenotype. Sodium thiosulfate, dose dependently decreased adipocyte calcification and inhibited adipocyte induced increase of VSMC calcification. Co-culture studies demonstrated that adipocytes facilitated VSMC calcification partially mediated by changes of secretion of leptin and vascular endothelial growth factor (VEGF) from adipocytes. Conclusion: High phosphorus induced calcification of mature adipocytes, and adipocytes exposed to elevated phosphorus can induce calcification of VSMC in a paracrine manner. Sodium thiosulfate inhibited this calcification and decreased the secretin of leptin and VEGF from adipocytes. These results suggest that adipocyte exposure to elevated phosphorus may be a pathogenic factor in calcification observed in the skin in calciphylaxis and other diseases.« less
Interaction of AIM with insulin-like growth factor-binding protein-4
YOU, QIANG; WU, YAN; YAO, NANNAN; SHEN, GUANNAN; ZHANG, YING; XU, LIANGGUO; LI, GUIYING; JU, CYNTHIA
2015-01-01
Apoptosis inhibitor of macrophages (AIM/cluster of differentiation 5 antigen-like/soluble protein α) has been shown to inhibit cellular apoptosis; however, the underlying molecular mechanism has not been elucidated. Using yeast two-hybrid screening, the present study uncovered that AIM binds to insulin-like growth factor binding protein-4 (IGFBP-4). AIM interaction with IGFBP-4, as well as IGFBP-2 and -3, but not with IGFBP-1, -5 and -6, was further confirmed by co-immunoprecipitation (co-IP) using 293 cells. The binding activity and affinity between AIM and IGFBP-4 in vitro were analyzed by co-IP and biolayer interferometry. Serum depletion-induced cellular apoptosis was attenuated by insulin-like growth factor-I (IGF-I), and this effect was abrogated by IGFBP-4. Of note, in the presence of AIM, the inhibitory effect of IGFBP-4 on the anti-apoptosis function of IGF-I was attenuated, possibly through binding of AIM with IGFBP-4. In conclusion, to the best of our knowledge, the present study provides the first evidence that AIM binds to IGFBP-2, -3 and -4. The data suggest that this interaction may contribute to the mechanism of AIM-mediated anti-apoptosis function. PMID:26135353
Matsuzaki, Yasunori; Konno, Ayumu; Mochizuki, Ryuta; Shinohara, Yoichiro; Nitta, Keisuke; Okada, Yukihiro; Hirai, Hirokazu
2018-02-05
Intravenous administration of adeno-associated virus (AAV)-PHP.B, a capsid variant of AAV9 containing seven amino acid insertions, results in a greater permeability of the blood brain barrier (BBB) than standard AAV9 in mice, leading to highly efficient and global transduction of the central nervous system (CNS). The present study aimed to examine whether the enhanced BBB penetrance of AAV-PHP.B observed in mice also occurs in non-human primates. Thus, a young adult (age, 1.6 years) and an old adult (age, 7.2 years) marmoset received an intravenous injection of AAV-PHP.B expressing enhanced green fluorescent protein (EGFP) under the control of the constitutive CBh promoter (a hybrid of cytomegalovirus early enhancer and chicken β-actin promoter). Age-matched control marmosets were treated with standard AAV9-capsid vectors. The animals were sacrificed 6 weeks after the viral injection. Based on the results, only limited transduction of neurons (0-2%) and astrocytes (0.1-2.5%) was observed in both AAV-PHP.B- and AAV9-treated marmosets. One noticeable difference between AAV-PHP.B and AAV9 was the marked transduction of the peripheral dorsal root ganglia neurons. Indeed, the soma and axons in the projection from the spinal cord to the nucleus cuneatus in the medulla oblongata were strongly labeled with EGFP by AAV-PHP.B. Thus, except for the peripheral dorsal root ganglia neurons, the AAV-PHP.B transduction efficiency in the CNS of marmosets was comparable to that of AAV9 vectors. Copyright © 2017 Elsevier B.V. All rights reserved.
Using PHP/MySQL to Manage Potential Mass Impacts
NASA Technical Reports Server (NTRS)
Hager, Benjamin I.
2010-01-01
This paper presents a new application using commercially available software to manage mass properties for spaceflight vehicles. PHP/MySQL(PHP: Hypertext Preprocessor and My Structured Query Language) are a web scripting language and a database language commonly used in concert with each other. They open up new opportunities to develop cutting edge mass properties tools, and in particular, tools for the management of potential mass impacts (threats and opportunities). The paper begins by providing an overview of the functions and capabilities of PHP/MySQL. The focus of this paper is on how PHP/MySQL are being used to develop an advanced "web accessible" database system for identifying and managing mass impacts on NASA's Ares I Upper Stage program, managed by the Marshall Space Flight Center. To fully describe this application, examples of the data, search functions, and views are provided to promote, not only the function, but the security, ease of use, simplicity, and eye-appeal of this new application. This paper concludes with an overview of the other potential mass properties applications and tools that could be developed using PHP/MySQL. The premise behind this paper is that PHP/MySQL are software tools that are easy to use and readily available for the development of cutting edge mass properties applications. These tools are capable of providing "real-time" searching and status of an active database, automated report generation, and other capabilities to streamline and enhance mass properties management application. By using PHP/MySQL, proven existing methods for managing mass properties can be adapted to present-day information technology to accelerate mass properties data gathering, analysis, and reporting, allowing mass property management to keep pace with today's fast-pace design and development processes.
USDA-ARS?s Scientific Manuscript database
Type I interferons (IFN) are key mediators of the innate antiviral response in mammalian cells. Elongation initiation factor 4E binding proteins (4E-BPs) are translational controllers of interferon regulatory factor 7 (IRF7), the master regulator of IFN transcription. The role of 4EBPs in the negat...
Apirakkan, Orapan; Frinculescu, Anca; Shine, Trevor; Parkin, Mark C; Cilibrizzi, Agostino; Frascione, Nunzianda; Abbate, Vincenzo
2018-02-01
Novel emerging drugs of abuse, also referred as new psychoactive substances, constitute an ever-changing mixture of chemical compounds designed to circumvent legislative controls by means of chemical modifications of previously banned recreational drugs. One such class, synthetic cathinones, namely β-keto derivatives of amphetamines, has been largely abused over the past decade. A number of new synthetic cathinones are detected each year, either in bulk powders/crystals or in biological matrices. It is therefore important to continuously monitor the supply of new synthetic derivatives and promptly report them. By using complementary analytical techniques (i.e. one- and two-dimensional NMR, FT-IR, GC-MS, HRMS and HPLC-UV), this study investigates the detection, identification and full characterization of 1-(4-methylphenyl)-2-(methylamino)pentanone (4-methylpentedrone, 4-MPD), 1-(4-fluorophenyl)-2-(pyrrolidin-1-yl)hexanone (4F-PHP) and 1-(1,3-benzodioxol-5-yl)-2-(ethylamino)-1-pentanone (bk-EPDP), three emerging cathinone derivatives. Copyright © 2017 John Wiley & Sons, Ltd.
Heat transfer mechanisms in pulsating heat-pipes with nanofluid
NASA Astrophysics Data System (ADS)
Gonzalez, Miguel; Kelly, Brian; Hayashi, Yoshikazu; Kim, Yoon Jo
2015-01-01
In this study, the effect of silver nanofluid on a pulsating heat-pipe (PHP) thermal performance was experimentally investigated to figure out how nanofluid works with PHP. A closed loop PHP was built with 3 mm diameter tubes. Thermocouples and pressure transducers were installed for fluid and surface temperature and pressure measurements. The operating temperature of the PHP varied from 30-100 °C, with power rates of 61 W and 119 W. The fill ratio of 30%, 50%, and 70% were tested. The results showed that the evaporator heat transfer performance was degraded by the addition of nanoparticles due to increased viscosity at high power rate, while the positive effects of high thermal conductivity and enhanced nucleate boiling worked better at low power rate. In the condenser section, owing to the relatively high liquid content, nanofluid more effectively improved the heat transfer performance. However, since the PHP performance was dominantly affected by evaporator heat transfer performance, the overall benefit of enhanced condenser section performance was greatly limited. It was also observed that the poor heat transfer performance with nanofluid at the evaporator section led to lower operating pressure of PHP.
Presnell, Steven R.; Zhang, Lei; Chlebowy, Corrin N.; Al-Attar, Ahmad; Lutz, Charles T.
2012-01-01
KIR2DL4 is unique among human KIR genes in expression, cellular localization, structure, and function, yet the transcription factors required for its expression have not been identified. Using mutagenesis, electrophoretic mobility shift assay, and co-transfection assays, we identified two redundant Runx binding sites in the 2DL4 promoter as essential for constitutive 2DL4 transcription, with contributions by a CRE site and initiator elements. IL-2-and IL-15-stimulated human NK cell lines increased 2DL4 promoter activity, which required functional Runx, CRE, and Ets sites. Chromatin immunoprecipitation experiments show that Runx3 and Ets1 bind the 2DL4 promoter in situ. 2DL4 promoter activity had similar transcription factor requirements in T cells. Runx, CRE, and Ets binding motifs are present in 2DL4 promoters from across primate species, but other postulated transcription factor binding sites are not preserved. Differences between 2DL4 and clonally-restricted KIR promoters suggest a model that explains the unique 2DL4 expression pattern in human NK cells. PMID:22467658
Moeslein, Fred M; McAndrew, Elizabeth G; Appling, William M; Hryniewich, Nicole E; Jarvis, Kevin D; Markos, Steven M; Sheets, Timothy P; Uzgare, Rajneesh P; Johnston, Daniel S
2014-06-01
A new melphalan hemoperfusion filter (GEN 2) was evaluated in a simulated-use porcine model of percutaneous hepatic perfusion (PHP). The current study evaluated melphalan filtration efficiency, the transfilter pressure gradient, and the removal of specific blood products. A porcine PHP procedure using the GEN 2 filter was performed under Good Laboratory Practice conditions to model the 60-min clinical PHP procedure. The mean filter efficiency for removing melphalan in six filters was 99.0 ± 0.4 %. The transfilter pressure gradient across the filter averaged 20.9 mmHg for the 60-min procedure. Many blood components, including albumin and platelets, decreased on average from 3.55 to 2.02 g/dL and from 342 to 177 × 10.e3/μL, respectively, during the procedure. The increased melphalan extraction efficiency of the new filter is expected to decrease systemic melphalan exposure. In addition, the low transfilter pressure gradient resulted in low resistance to blood flow in the GEN 2 filter, and the changes to blood components are expected to be clinically manageable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
KoraMagazi, Arouna; Wang, Dandan; Yousef, Bashir
Rhein is an active component of rhubarb; a traditional Chinese medicine reported to induce apoptosis and cause liver toxicity. However, rhein's apoptotic-inducing effects, as well as its molecular mechanisms of action on hepatic cells need to be further explored. In the present study, rhein was found to trigger apoptosis in primary human hepatic HL-7702 cells as showed by annexin V/PI double staining assay and nuclear morphological changes demonstrated by Hoechst 33258 staining. Moreover, it was observed that the mechanism implicated in rhein-induced apoptosis was caspase-dependent, presumably via ER-stress associated pathways, as illustrated by up-regulation of glucose-regulated protein 78 (GRP 78), PKR-likemore » ER kinase (PERK), C-Jun N-terminal kinase (JNK) and CCAAT/enhancer-binding protein homologous protein (CHOP). Meanwhile, caspase-4 as a hallmark of ER-stress, was also showed to be activated following by caspase-3 activation. Furthermore, rhein also promoted intracellular elevation of calcium that contributed in apoptosis induction. Interestingly, pre-treatment with calpain inhibitor I reduced the effects of rhein on apoptosis induction and JNK activation. These data suggested that rhein-induced apoptosis through ER-stress and elevated intracellular calcium level in HL-7702 cells. - Highlights: • Rhein triggers apoptotic cell death on primary human hepatic HL-7702 cells. • Rhein leads to caspase-4 activation in HL-7702 cells. • Rhein induces endoplasmic reticulum stress pathways in HL-7702 cells. • Rhein causes elevation of intracellular calcium concentrations in HL-7702 cells.« less
Guo, Junjie; Zhu, Jianbing; Ma, Leilei; Shi, Hongtao; Hu, Jiachang; Zhang, Shuning; Hou, Lei; Xu, Fengqiang; An, Yi; Yu, Haichu; Ge, Junbo
2018-06-01
Chronic kidney disease (CKD) is known to exacerbate myocardial ischemia reperfusion (IR) injury. However, the underlying mechanisms are still not well understood. Despite various strategies for cardioprotection, limited studies have been focused on the prevention of CKD-induced myocardial susceptibility to IR injury. Here, we hypothesized that excessive endoplasmic reticulum (ER) stress-mediated apoptosis involved in myocardial IR injury in CKD mice and pretreatment with chemical ER chaperone rendered the heart resistant to myocardial IR injury in the setting of CKD. CKD was induced by 5/6 subtotal nephrectomy (SN) in mice, whereas sham-operated mice served as control (Sham). CKD significantly aggravated the cardiac injury after IR in SN group than Sham group as reflected by more severe cardiac dysfunction, increased myocardial infarct size and the ratio of myocardial apoptosis. The expression of ER stress-mediated apoptotic proteins (Bcl-2 associated X protein (Bax), glucose-regulated protein 78 (GRP78), CCAAT/enhancer-binding protein homologous protein (CHOP), caspase-12) was markedly upregulated after IR injury in SN group than Sham group, whereas the expression of anti-apoptotic protein, Bcl-2, was obviously downregulated. In addition, the chemical ER chaperone sodium 4-phenylbutyrate (4PBA) pretreatment ameliorated cardiac dysfunction and lessened the infarct size and myocardial apoptosis after IR injury in mice with CKD. Taken together, these findings demonstrated that excessive activation of ER stress-mediated apoptosis pathway involved in the CKD-induced myocardial susceptibility to IR injury, and chemical ER chaperone 4PBA alleviated myocardial IR injury in mice with CKD.
Tauroursodeoxycholic acid attenuates gentamicin-induced cochlear hair cell death in vitro.
Jia, Zhanwei; He, Qiang; Shan, Chunguang; Li, Fengyi
2018-09-15
Gentamycin is one of the most clinically used aminoglycoside antibiotics which induce intrinsic apoptosis of hair cells. Tauroursodeoxycholic acid (TUDCA) is known as safe cell-protective agent in disorders associated with apoptosis. We aimed to investigate the protective effects of TUDCA against gentamicin-induced ototoxicity. House Ear Institute-Organ of Corti 1(HEI-OC1) cells and explanted cochlear tissue were treated with gentamicin and TUDCA, followed by serial analyses including cell viability assay, hair cell staining, qPCR, ELISA and western blotting to determine the cell damage by the parameters relevant to cell apoptosis and endoplasmic reticulum stress. TUDCA significantly attenuated gentamicin-induced cell damage in cultured HEI-OC1 cells and explanted cochlear hair cells. TUDCA alleviated gentamicin-induced cell apoptosis, supported by the decreased Bax/Bcl2 ratio compared with that of gentamicin treated alone. TUDCA decreased gentamicin-induced nitric oxide production and protein nitration in both models. In addition, TUDCA suppressed gentamicin-induced endoplasmic reticulum stress as reflected by inversing the expression levels of Binding immunoglobulin protein (Bip), CCAAT/-enhancer-binding protein homologous protein (CHOP) and Caspase 3. TUDCA attenuated gentamicin-induced hair cell death by inhibiting protein nitration activation and ER stress, providing new insights into the new potential therapies for sensorineural deafness. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Jinhan; Wang, Liwen; Ho, Chi-Tang; Zhang, Kunsheng; Liu, Qiang; Zhao, Hui
2017-05-10
Nonsmall cell lung cancer (NSCLC) is the predominant type of lung cancer. Patients with NSCLC show high mortality rates because of failure to clean up cancer stem cells (CSCs). The anticancer activity of phytochemical garcinol has been identified in various cancer cell models. However, the effect of garcinol on NSCLC cell lines is still lacking. Of the NSCLC cell lines we tested, A549 cells were the most sensitive to garcinol. Interestingly, Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) was preferentially expressed in A549 cells and downregulated by the addition of garcinol. We also found that garcinol enriched DNA damage-inducible transcript 3 (DDIT3) and then altered DDIT3-CCAAT-enhancer-binding proteins beta (C/EBPβ) interaction resulting in a decreased binding of C/EBPβ to the endogenous ALDH1A1 promoter. Furthermore, garcinol's inhibition of ALDH1A1 was identified in a xenograft mice model. Garcinol repressed ALDH1A1 transcription in A549 cells through alterations in the interaction between DDIT3 and C/EBPβ. Garcinol could be a potential dietary phytochemical candidate for NSCLCs patients whose tumors harbored high ALDH1A1 expression.
Huang, Yan-Feng; Zhu, Da-Jian; Chen, Xiao-Wu; Chen, Qi-Kang; Luo, Zhen-Tao; Liu, Chang-Chun; Wang, Guo-Xin; Zhang, Wei-Jie; Liao, Nv-Zhu
2017-06-20
Although initially effective against metastatic colorectal cancer (CRC), irinotecan-based chemotherapy leads to resistance and adverse toxicity. Curcumin is well known for its anti-cancer effects in many cancers, including CRC. Here, we describe reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress as important mechanisms by which curcumin enhances irinotecan's effects on CRC cells. CRC cell lines were treated with curcumin and/or irinotecan for 24 h, and then evaluated using cell proliferation assays, cell apoptosis assays, cell cycle analysis, intracellular Ca2+ measurements, ROS measurements and immunoblotting for key ER stress-related proteins. We found that cell viability was inhibited and apoptosis was increased, accompanied by ROS generation and ER stress activation in CRC cells treated with curcumin alone or in combination with irinotecan. Blocking ROS production attenuated the expression of two markers of ER stress: binding of immunoglobulin protein (BIP) and CCAAT/enhancer-binding protein homologous protein (CHOP). Blocking CHOP expression using RNA interference also inhibited ROS generation. These results demonstrated that curcumin could enhance the effects of irinotecan on CRC cells by inhibiting cell viability and inducing cell cycle arrest and apoptosis, and that these effects may be mediated, in part, by ROS generation and activation of the ER stress pathway.
Clark, Maria T; Clark, Richard J; Toohey, Shane; Bradbury-Jones, Caroline
2017-03-01
Acupuncture shows promise as a treatment for plantar heel pain (PHP) or plantar fasciitis (PF), but data heterogeneity has undermined demonstration of efficacy. Recognising that acupuncture is a diverse field of practice, the aim of this study was to gain a broader, global perspective on the different approaches and rationales used in the application of acupuncture in PHP. We built upon an earlier systematic review (which was limited by the necessity of a methodological focus on efficacy) using the critical interpretive synthesis (CIS) method to draw upon a wider international sample of 25 clinical sources, including case reports and case series. Multiple tracks of analysis led to an emergent synthesis. Findings are presented at three levels: primary (summarised data); secondary (patterns observed); and tertiary (emergent synthesis). Multiple treatments and rationales were documented but no single approach dominated. Notable contradictions emerged such as the application of moxibustion by some authors and ice by others. Synthesis of findings revealed a 'patchwork' of factors influencing the approaches taken. The complexity of the field of acupuncture was illustrated through the 'lens' of PHP. The 'patchwork' metaphor provides a unifying framework for a previously divergent community of practice and research. Several directions for future research were identified, such as: importance of prior duration; existence of diagnostic subgroups; and how practitioners make clinical decisions and report their findings. CIS was found to provide visibility for multiple viewpoints in developing theory and modelling the processes of 'real world' practice by acupuncturists addressing the problem of PHP. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Rahman, Mokhlasur; Huys, Geert; Rahman, Motiur; Albert, M. John; Kühn, Inger; Möllby, Roland
2007-01-01
The persistence and transmission of Aeromonas in a duckweed aquaculture-based hospital sewage water treatment plant in Bangladesh was studied. A total of 670 samples from different sites of the hospital sewage water treatment plant, from feces of hospitalized children suffering from diarrhea, from environmental control ponds, and from feces of healthy humans were collected over a period of three years. In total, 1,315 presumptive Aeromonas isolates were biochemically typed by the PhenePlate rapid screening system (PhP-AE). A selection of 90 representative isolates was further analyzed with PhenePlate (PhP) extended typing (PhP-48), fatty acid methyl ester analysis, and amplified fragment length polymorphism (AFLP) fingerprinting. In addition, the prevalence of the putative virulence factors hemolysin and cytotoxin and the presence of the cytolytic enterotoxin gene (AHCYTOEN) were analyzed. Aeromonas was found at all sites of the treatment plant, in 40% of the samples from environmental control ponds, in 8.5% of the samples from hospitalized children suffering from diarrhea, and in 3.5% of samples from healthy humans. A significantly high number of Aeromonas bacteria was found in duckweed, which indicates that duckweed may serve as a reservoir for these bacteria. PhP-AE typing allowed identification of more than 192 distinct PhP types, of which 18 major PhP types (MTs) were found in multiple sites and during several occasions. AFLP fingerprinting revealed the prevalence of genotypically indistinguishable Aeromonas isolates among certain PhP MTs recovered from different sampling occasions and/or at multiple sites. Hemolytic and cytotoxic activities were observed in 43% of the tested strains, whereas 29% possessed the cytolytic enterotoxin gene AHCYTOEN. Collectively, two specific MTs associated with diarrhea were shown to exhibit high cytotoxicity. Furthermore, all tested isolates of these major types were positive for the cytolytic enterotoxin gene. In conclusion, our data indicate that certain phenotypically and genotypically stable clonal lineages of Aeromonas have persisted in the treatment system for a prolonged period and might spread from the hospitalized children suffering from diarrhea to fish produced for human consumption through the sewage water treatment system. PMID:17194839
Carbone, Eric G.; Lynch, Molly; Wang, Z. Joan; Jones, Terrance; Rose, Dale A.
2017-01-01
Objectives. To assess how health department contextual factors influence perceptions of the 15 Public Health Preparedness Capabilities, developed by the Centers for Disease Control and Prevention (CDC) to provide guidance on organizing preparedness activities. Methods. We conducted an online survey and focus group between September 2015 and May 2016 with directors of preparedness programs in state, metropolitan, and territorial jurisdictions funded by CDC’s Public Health Emergency Preparedness (PHEP) cooperative agreement. The survey collected demographic information and data on contextual factors including leadership, partnerships, organizational structure, resources and structural capacity, and data and evaluation. Results. Seventy-seven percent (48 of 62) of PHEP directors completed the survey and 8 participated in the focus group. Respondents were experienced directors (mean = 10.6 years), and 58% led 7 or more emergency responses. Leadership, partnerships, and access to fiscal and human resources were associated with perception and use of the capabilities. Conclusions. Despite some deficiencies, PHEP awardees believe the capabilities provide useful guidance and a flexible framework for organizing their work. Contextual factors affect perceptions of the capabilities and possibly the effectiveness of their use. Public Health Implications. The capabilities can be used to address challenges in preparedness, including identifying evidence-based practices, developing performance measures, and improving responses. PMID:28892447
Horney, Jennifer A; Carbone, Eric G; Lynch, Molly; Wang, Z Joan; Jones, Terrance; Rose, Dale A
2017-09-01
To assess how health department contextual factors influence perceptions of the 15 Public Health Preparedness Capabilities, developed by the Centers for Disease Control and Prevention (CDC) to provide guidance on organizing preparedness activities. We conducted an online survey and focus group between September 2015 and May 2016 with directors of preparedness programs in state, metropolitan, and territorial jurisdictions funded by CDC's Public Health Emergency Preparedness (PHEP) cooperative agreement. The survey collected demographic information and data on contextual factors including leadership, partnerships, organizational structure, resources and structural capacity, and data and evaluation. Seventy-seven percent (48 of 62) of PHEP directors completed the survey and 8 participated in the focus group. Respondents were experienced directors (mean = 10.6 years), and 58% led 7 or more emergency responses. Leadership, partnerships, and access to fiscal and human resources were associated with perception and use of the capabilities. Despite some deficiencies, PHEP awardees believe the capabilities provide useful guidance and a flexible framework for organizing their work. Contextual factors affect perceptions of the capabilities and possibly the effectiveness of their use. Public Health Implications. The capabilities can be used to address challenges in preparedness, including identifying evidence-based practices, developing performance measures, and improving responses.
Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development and Tumorigenesis
2009-10-01
AD_________________ Award Number: W81XWH-06-1-0763 TITLE: Role of Fibroblast Growth Factor ...2009 4. TITLE AND SUBTITLE Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development 5a. CONTRACT NUMBER and Tumorigenesis...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS Fibroblast Growth Factor Binding Protein-1
Zhong, Mei; Niu, Wei; Lu, Zhi John; Sarov, Mihail; Murray, John I.; Janette, Judith; Raha, Debasish; Sheaffer, Karyn L.; Lam, Hugo Y. K.; Preston, Elicia; Slightham, Cindie; Hillier, LaDeana W.; Brock, Trisha; Agarwal, Ashish; Auerbach, Raymond; Hyman, Anthony A.; Gerstein, Mark; Mango, Susan E.; Kim, Stuart K.; Waterston, Robert H.; Reinke, Valerie; Snyder, Michael
2010-01-01
Transcription factors are key components of regulatory networks that control development, as well as the response to environmental stimuli. We have established an experimental pipeline in Caenorhabditis elegans that permits global identification of the binding sites for transcription factors using chromatin immunoprecipitation and deep sequencing. We describe and validate this strategy, and apply it to the transcription factor PHA-4, which plays critical roles in organ development and other cellular processes. We identified thousands of binding sites for PHA-4 during formation of the embryonic pharynx, and also found a role for this factor during the starvation response. Many binding sites were found to shift dramatically between embryos and starved larvae, from developmentally regulated genes to genes involved in metabolism. These results indicate distinct roles for this regulator in two different biological processes and demonstrate the versatility of transcription factors in mediating diverse biological roles. PMID:20174564
Bastepe, Murat; Altug-Teber, Ozge; Agarwal, Chhavi; Oberfield, Sharon E; Bonin, Michael; Jüppner, Harald
2011-03-01
Pseudohypoparathyoridism type Ib (PHP-Ib) typically defines the presence of end-organ resistance to parathyroid hormone in the absence of Albright's hereditary osteodystrophy. Patients affected by this disorder present with imprinting defects in the complex GNAS locus. Microdeletions within STX16 or GNAS have been identified in familial cases with PHP-Ib, but the molecular cause of the GNAS imprinting defects in sporadic PHP-Ib cases remains poorly defined. We now report a case with sporadic PHP-Ib for whom a SNPlex analysis revealed loss of the maternal GNAS allele. Further analysis of the entire genome with a 100K SNP chip identified a paternal uniparental isodisomy affecting the entire chromosome 20 without evidence for another chromosomal abnormality. Our findings explain the observed GNAS methylation changes and the patient's hormone resistance, and furthermore suggest that chromosome 20 harbors, besides GNAS, no additional imprinted region that contributes to the clinical and laboratory phenotype. Copyright © 2010 Elsevier Inc. All rights reserved.
Barnes, Charles A; Rasmussen, Sharon L; Petrich, Jacob W; Rasmussen, Mark A
2012-10-24
Efflux pumps are vital bacterial components, and research has demonstrated that some plant compounds such as pheophorbide a (php) possess efflux pump inhibitor (EPI) activity. This study determined the quantity of php present in feces as an indicator of EPI activity. Feces were collected from different species of animals fed a variety of feeds. The chlorophyll metabolites php and pyropheophorbide a (pyp) were determined using fluorescense spectroscopy. The average concentrations [μg/g dry matter (DM) feces] of pyp/php in feces were as follows: guinea pig, 180; goat, 150; rabbit, 150; dairy cow, 120; feedlot cattle, 60; rat, <1; pig, <1; chicken, <1. These data indicate that animals consuming "green" diets will excrete feces with concentrations of php/pyp that exceed levels demonstrated to be inhibitory to bacterial efflux pumps (0.5 μg/mL). The natural presence EPIs in the gastrointestinal tract may modulate the activity of microbial efflux pumps and exert selection pressure upon resident microbial populations.
Genç, Özgür; Dickman, Dion K; Ma, Wenpei; Tong, Amy; Fetter, Richard D; Davis, Graeme W
2017-01-01
Presynaptic homeostatic plasticity (PHP) controls synaptic transmission in organisms from Drosophila to human and is hypothesized to be relevant to the cause of human disease. However, the underlying molecular mechanisms of PHP are just emerging and direct disease associations remain obscure. In a forward genetic screen for mutations that block PHP we identified mctp (Multiple C2 Domain Proteins with Two Transmembrane Regions). Here we show that MCTP localizes to the membranes of the endoplasmic reticulum (ER) that elaborate throughout the soma, dendrites, axon and presynaptic terminal. Then, we demonstrate that MCTP functions downstream of presynaptic calcium influx with separable activities to stabilize baseline transmission, short-term release dynamics and PHP. Notably, PHP specifically requires the calcium coordinating residues in each of the three C2 domains of MCTP. Thus, we propose MCTP as a novel, ER-localized calcium sensor and a source of calcium-dependent feedback for the homeostatic stabilization of neurotransmission. DOI: http://dx.doi.org/10.7554/eLife.22904.001 PMID:28485711
Wang, Wei-Jan; Li, Chien-Feng; Chu, Yu-Yi; Wang, Yu-Hui; Hour, Tzyh-Chyuan; Yen, Chia-Jui; Chang, Wen-Chang; Wang, Ju-Ming
2017-01-15
Cisplatin (CDDP) is frequently used in combination chemotherapy with paclitaxel for treating urothelial carcinoma of the urinary bladder (UCUB). CDDP cross-resistance has been suggested to develop with paclitaxel, thus hindering successful UCUB treatment. Therefore, elucidating the mechanisms underlying CDDP-induced anticancer drug resistance is imperative and may provide an insight in developing novel therapeutic strategy. Loss-of-function assays were performed to elucidate the role of the EGFR and STAT3 in CDDP-induced CCAAT/enhancer-binding protein delta (CEBPD) expression in UCUB cells. Reporter and in vivo DNA-binding assays were employed to determine whether CEBPD directly regulates ATP binding cassette subfamily B member 1 (ABCB1) and ATP binding cassette subfamily C member 2 (ABCC2) activation. Finally, a xenograft animal assay was used to examine the abilities of gefitinib and S3I-201 (a STAT3 inhibitor) to reverse CDDP and paclitaxel sensitivity. CEBPD expression was maintained in postoperative chemotherapy patients, and this expression was induced by CDDP even in CDDP-resistant UCUB cells. Upon CDDP treatment, CEBPD activated ABCB1 and ABCC2. Furthermore, the EGFR/STAT3 pathway contributed to CDDP-induced CEBPD expression in UCUB cells. Gefitinib and S3I-201 treatment significantly reduced the expression of CEBPD and enhanced the sensitivity of CDDP-resistant UCUB cells to CDDP and paclitaxel. Our results revealed the risk of CEBPD activation in CDDP-resistant UCUB cells and suggested a therapeutic strategy for patients with UCUB or UCUB resisted to CDDP and paclitaxel by combination with either gefitinib or S3I-201. Clin Cancer Res; 23(2); 503-13. ©2016 AACR. ©2016 American Association for Cancer Research.
U-PHOS Project: Development of a Large Diameter Pulsating Heat Pipe Experiment on board REXUS 22
NASA Astrophysics Data System (ADS)
Nannipieri, P.; Anichini, M.; Barsocchi, L.; Becatti, G.; Buoni, L.; Celi, F.; Catarsi, A.; Di Giorgio, P.; Fattibene, P.; Ferrato, E.; Guardati, P.; Mancini, E.; Meoni, G.; Nesti, F.; Piacquadio, S.; Pratelli, E.; Quadrelli, L.; Viglione, A. S.; Zanaboni, F.; Mameli, M.; Baronti, F.; Fanucci, L.; Marcuccio, S.; Bartoli, C.; Di Marco, P.; Bianco, N.; Marengo, M.; Filippeschi, S.
2017-01-01
U-PHOS Project aims at analysing and characterising the behaviour of a large diameter Pulsating Heat Pipe (PHP) on board REXUS 22 sounding rocket. A PHP is a passive thermal control device where the heat is efficiently transported by means of the self-sustained oscillatory fluid motion driven by the phase change phenomena. Since, in milli-gravity conditions, buoyancy forces become less intense, the PHP diameter may be increased still maintaining the slug/plug typical flow pattern. Consequently, the PHP heat power capability may be increased too. U-PHOS aims at proving that a large diameter PHP effectively works in milli-g conditions by characterizing its thermal response during a sounding rocket flight. The actual PHP tube is made of aluminum (3 mm inner diameter, filled with FC-72), heated at the evaporator by a compact electrical resistance, cooled at the condenser by a Phase Change Material (PCM) embedded in a metallic foam. The tube wall temperatures are recorded by means of Fibre Bragg Grating (FBG) sensors; the local fluid pressure is acquired by means of a pressure transducer. The present work intends to report the actual status of the project, focusing in particular on the experiment improvements with respect to the previous campaign.
Sharma, Kushal; Kang, Siwon; Gong, Dalseong; Oh, Sung-Hwa; Park, Eun-Young; Oak, Min-Ho; Yi, Eunyoung
2018-01-01
Inhibition of adipogenesis has been a therapeutic target for reducing obesity and obesity-related disorders such as diabetes, hypertension, atherosclerosis, and cancer. For decades, anti-adipogenic potential of many herbal extracts has been investigated. One example is Garcinia cambogia extract (GE) containing (-)-hydroxycitric acid as an active ingredient. GE is currently marketed as a weight loss supplement, used alone or with other ingredients. Pear pomace extract (PE), another natural product, has been also shown to have anti-adipogenic activity in a recent report. It was tested if the mixture of PE and GE (MIX) would produce more effective anti-adipogenic activity than PE or GE alone. Differentiation of 3T3-L1 preadipocyte was induced by adding insulin, dexamethasone, and isobutylmethylxanthine and lipid accumulation was measured by Oil Red O staining. Cellular markers for adipogenesis and lipolysis such as CCAAT/enhancer binding protein (C/EBP-α), peroxisome proliferator-activated receptor gamma (PPAR-γ), fatty acid synthase (FAS), and hormone-sensitive lipase (HSL) was measured using immunocytochemistry. MIX, compared to PE or GE alone, showed greater inhibition of lipid accumulation. Furthermore, MIX reduced the expression of adipogenesis-related factors C/EBP-α, PPAR-γ, and FAS more than PE or GE alone did. In contrast, the expression of HSL the enzyme required for lipolysis was further enhanced in MIX-treated adipocytes compared to the PE or GE alone treated groups. Anti-adipogenic effect of PE and GE appears synergistic, and the MIX may be a useful therapeutic combination for the treatment of obesity and obesity-related diseases. PE and GE efficiently inhibited adipocyte differentiation by suppressing the expression of adipogenic transcription factor CEBP-α and PPAR-γ.PE and GE significantly decreased the expression of adipogenic enzyme FAS.PE and GE increased the expression of lipid degrading enzyme HSL.Mixture of PE and GE exhibited additive or moderately synergistic effect on adipocyte differentiation and lipid accumulation. Abbreviations used: CEBP-a: CCAT/enhancer binding protein alpha, CI: Combination Index, FAS: Fatty acid synthase, GE: Garcinia cambogia extract, HSL: Hormone sensitive lipase, PE: Pear pomace extract, PPAR-γ: Peroxisome proliferator-activated receptor gamma.
Fernández-Rebollo, Eduardo; Lecumberri, Beatriz; Gaztambide, Sonia; Martinez-Indart, Lorea; Perez de Nanclares, Guiomar; Castaño, Luis
2013-05-01
Recent advances in genetics and epigenetics have revealed an overlap between molecular and clinical features of pseudohypoparathyroidism (PHP) subtypes, broadening the previous spectrum of PHP genotype-phenotype correlations and indicating limitations of the current classification of the disease. The aim of the study was to screen patients with clinical diagnoses of PHP type I or pseudo-PHP for underlying molecular defects and explore possible correlations between molecular findings and clinical features. We investigated the GNAS locus at the molecular level in 72 affected patients (46 women and 26 men) from 56 nonrelated families. Clinical data were obtained for 63 of these patients (38 women and 25 men). The molecular analysis showed that 35 patients carried structural mutations, 32 had loss of methylation, and 2 had a 2q37 deletion but did not reveal any (epi)mutation for 3 patients. Comparing these results and the clinical data, we observed that a younger age at diagnosis was associated with structural defects at the GNAS gene and epigenetic defects with a diagnosis later in life (9.19 ± 1.64 vs 24.57 ± 2.28 years, P < .0001). This first global review of PHP in Spain highlights the importance of a detailed clinical and genetic study of each patient and the integrated analysis of the findings from the two approaches. It may also help geneticists and clinicians to raise the suspicion of PHP earlier, reach more accurate diagnoses, and provide patients with PHP and their families with useful genetic information and counseling, thereby improving outcomes and quality of life.
Arimura, Eiko; Matsumoto, Chota; Nomoto, Hiroki; Hashimoto, Shigeki; Takada, Sonoko; Okuyama, Sachiko; Shimomura, Yoshikazu
2011-01-05
To assess the correlations between a patient's subjective perception of metamorphopsia and the clinical measurements of metamorphopsia by M-CHARTS and PreView PHP (PHP). The authors designed a 10-item questionnaire focusing on the symptoms of metamorphopsia and verified its validity with a Rasch analysis. M-CHARTS measured the minimum visual angle of a dotted line needed to detect metamorphopsia, and PHP used the hyperacuity function for detection. Subjects were 39 patients with idiopathic epiretinal membrane (ERM), 22 patients with idiopathic macular hole (M-hole), 19 patients with age-related macular degeneration (AMD), and 51 healthy controls. Rasch analysis suggested the elimination of one question. The nine-item questionnaire score significantly correlated to the M-CHARTS score in ERM (r = 0.59; P = 0.0004) but not in M-hole and to the PHP result in AMD (r = -0.29; P = 0.04) but not in ERM. Eighty percent of ERM patients with greater horizontal M-CHARTS score subjectively perceived horizontal metamorphopsia more often. M-CHARTS showed better sensitivities than PHP in both ERM (89% vs. 42%) and AMD (74% vs. 68%) and better specificity (100% vs. 71%) in healthy controls. Rasch analysis indicated that the present form of the questionnaire is better suited for moderate to severe cases of metamorphopsia than for mild cases. The questionnaire appears to be a valid assessment of patient subjective perception of metamorphopsia and can be used to supplement the clinical measurements of metamorphopsia by M-CHARTS and PHP in patients with macular diseases.
Epidemiology of biopsy-proven glomerulonephritis in Queensland adults.
Jegatheesan, Dev; Nath, Karthik; Reyaldeen, Reza; Sivasuthan, Goutham; John, George T; Francis, Leo; Rajmokan, Mohana; Ranganathan, Dwarakanathan
2016-01-01
There is a paucity of data pertaining to the incidence of biopsy-proven glomerulonephritis (GN) in Australia. This retrospective study aims to review the data from all adult native renal biopsies performed in the state of Queensland from 2002 to 2011--comparing results with centres from across the world. Pathology reports of 3697 adult native kidney biopsies were reviewed, of which 2048 had GN diagnoses. Age, gender, clinical indication and histopathology findings were compared. The average age at biopsy was 48 ± 17 years. Male preponderance was noted overall (∼60%), with lupus nephritis being the only individual GN with female predilection. The average rate of biopsy was 12.04 per hundred thousand people per year (php/yr). Nephrotic and nephritic syndromes comprised approximately 75% of all clinical indications that lead to GN diagnoses. IgA nephropathy (1.41 php/yr) was the most common primary GN followed by focal segmental glomerulosclerosis (1.02 php/yr) and crescentic GN (0.73 php/yr). Diabetic nephropathy (0.84 php/yr), lupus nephritis (0.69 php/yr) and amyloidosis (0.19 php/yr) were the most commonly identified secondary GN. IgA nephropathy is the predominant primary GN in Queensland, and nephrotic syndrome the most common indication for a renal biopsy. While crescentic GN incidence has significantly increased with time, focal segmental glomerulosclerosis incidence has not shown any trend. Incidence of GN overall appears to increase with age. The annual rate of biopsy in this study appears lower than previously published in an Australian population. © 2015 Asian Pacific Society of Nephrology.
Preferential Hyperacuity Perimeter (PreView PHP) for detecting choroidal neovascularization study.
Alster, Yair; Bressler, Neil M; Bressler, Susan B; Brimacombe, Judith A; Crompton, R Michael; Duh, Yi-Jing; Gabel, Veit-Peter; Heier, Jeffrey S; Ip, Michael S; Loewenstein, Anat; Packo, Kirk H; Stur, Michael; Toaff, Techiya
2005-10-01
To assess the ability of the Preferential Hyperacuity Perimeter (PreView PHP; Carl Zeiss Meditec, Dublin, CA) to detect recent-onset choroidal neovascularization (CNV) resulting from age-related macular degeneration (AMD) and to differentiate it from an intermediate stage of AMD. Prospective, comparative, concurrent, nonrandomized, multicenter study. Eligible participants' study eyes had a corrected visual acuity of 20/160 or better and either untreated CNV from AMD diagnosed within the last 60 days or an intermediate stage of AMD. After obtaining consent, visual acuity with habitual correction, masked PHP testing, stereoscopic color fundus photography, and fluorescein angiography were performed. Photographs and angiograms were evaluated by graders masked to diagnosis and PHP results. The reading center's diagnosis determined if the patient was categorized as having intermediate AMD or neovascular AMD. A successful study outcome was defined a priori as a sensitivity of at least 80% and a specificity of at least 80%. Of 185 patients who gave consent to be enrolled, 11 (6%) had PHP results judged to be unreliable. An additional 52 were not included because they did not meet all eligibility criteria. Of the remaining 122 patients, 57 had an intermediate stage of AMD and 65 had neovascular AMD. The sensitivity to detect newly diagnosed CNV using PHP testing was 82% (95% confidence interval [CI], 70%-90%). The specificity to differentiate newly diagnosed CNV from the intermediate stage of AMD using PHP testing was 88% (95% CI, 76%-95%). Preferential Hyperacuity Perimeter testing can detect recent-onset CNV resulting from AMD and can differentiate it from an intermediate stage of AMD with high sensitivity and specificity. These data suggest that monitoring with PHP should detect most cases of CNV of recent onset with few false-positive results at a stage when treatment usually would be beneficial. Thus, this monitoring should be considered in the management of the intermediate stage of AMD.
Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M.
2012-01-01
Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with 125I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases. PMID:22514678
Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M
2012-01-01
Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125)I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.
Wang, Xueliang; Wang, Xin; Jiang, Hao; Cai, Chao; Li, Guoyun; Hao, Jiejie; Yu, Guangli
2018-09-01
Marine polysaccharides (MPs), including plant, animal, and microbial-derived polysaccharides, can alleviate metabolic syndrome (MetS) by different regulation mechanisms. MPs and their derivatives can attenuate MetS by vary cellular signal pathways, such as peroxisome proliferator-activated receptor, 5' adenosine monophosphate-activated protein kinase, and CCAAT/enhancer binding protein-α. Also, most of MPs cannot be degraded by human innate enzymes, but they can be degraded and fermented by human gut microbiota. The final metabolic products of these polysaccharides are usually short-chain fatty acids (SCFAs), which can change the gut microbiota ecology by altering the existing percentage of special microorganisms. In addition, the SCFAs and changed gut microbiota can regulate enteroendocrine hormone secretion, blood glucose, lipid metabolism levels, and other MetS symptoms. Here, we summarize the up-to-date findings on the effects of MPs, particularly marine microbial-derived polysaccharides, and their metabolites on attenuating MetS. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujii, Masakazu, E-mail: masakazu731079@yahoo.co.jp; Inoguchi, Toyoshi, E-mail: toyoshi@intmed3.med.kyushu-u.ac.jp; Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582
Highlights: •CTLA-4Ig completely alleviates HFD-induced insulin resistance. •CTLA-4Ig reduces epididymal and subcutaneous fat tissue weight and adipocyte size. •CTLA-4Ig alters ATM polarization from inflammatory M1 to anti-inflammatory M2. •CTLA-4Ig may lead to a novel anti-obesity/inflammation/insulin resistance agent. •We identified the mechanism of the novel favorable effects of CTLA-4lg. -- Abstract: It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophagemore » polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent.« less
Faes, L; Bodmer, N S; Bachmann, L M; Thiel, M A; Schmid, M K
2014-07-01
To clarify the screening potential of the Amsler grid and preferential hyperacuity perimetry (PHP) in detecting or ruling out wet age-related macular degeneration (AMD). Medline, Scopus and Web of Science (by citation of reference) were searched. Checking of reference lists of review articles and of included articles complemented electronic searches. Papers were selected, assessed, and extracted in duplicate. Systematic review and meta-analysis. Twelve included studies enrolled 903 patients and allowed constructing 27 two-by-two tables. Twelve tables reported on the Amsler grid and its modifications, twelve tables reported on the PHP, one table assessed the MCPT and two tables assessed the M-charts. All but two studies had a case-control design. The pooled sensitivity of studies assessing the Amsler grid was 0.78 (95% confidence intervals; 0.64-0.87), and the pooled specificity was 0.97 (95% confidence intervals; 0.91-0.99). The corresponding positive and negative likelihood ratios were 23.1 (95% confidence intervals; 8.4-64.0) and 0.23 (95% confidence intervals; 0.14-0.39), respectively. The pooled sensitivity of studies assessing the PHP was 0.85 (95% confidence intervals; 0.80-0.89), and specificity was 0.87 (95% confidence intervals; 0.82-0.91). The corresponding positive and negative likelihood ratios were 6.7 (95% confidence intervals; 4.6-9.8) and 0.17 (95% confidence intervals; 0.13-0.23). No pooling was possible for MCPT and M-charts. Results from small preliminary studies show promising test performance characteristics both for the Amsler grid and PHP to rule out wet AMD in the screening setting. To what extent these findings can be transferred to a real clinic practice still needs to be established.
NASA Astrophysics Data System (ADS)
Kuipers, J.; Ueda, T.; Vermaseren, J. A. M.; Vollinga, J.
2013-05-01
We present version 4.0 of the symbolic manipulation system FORM. The most important new features are manipulation of rational polynomials and the factorization of expressions. Many other new functions and commands are also added; some of them are very general, while others are designed for building specific high level packages, such as one for Gröbner bases. New is also the checkpoint facility, that allows for periodic backups during long calculations. Finally, FORM 4.0 has become available as open source under the GNU General Public License version 3. Program summaryProgram title: FORM. Catalogue identifier: AEOT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 151599 No. of bytes in distributed program, including test data, etc.: 1 078 748 Distribution format: tar.gz Programming language: The FORM language. FORM itself is programmed in a mixture of C and C++. Computer: All. Operating system: UNIX, LINUX, Mac OS, Windows. Classification: 5. Nature of problem: FORM defines a symbolic manipulation language in which the emphasis lies on fast processing of very large formulas. It has been used successfully for many calculations in Quantum Field Theory and mathematics. In speed and size of formulas that can be handled it outperforms other systems typically by an order of magnitude. Special in this version: The version 4.0 contains many new features. Most important are factorization and rational arithmetic. The program has also become open source under the GPL. The code in CPC is for reference. You are encouraged to upload the most recent sources from www.nikhef.nl/form/formcvs.php because of frequent bug fixes. Solution method: See "Nature of Problem", above. Additional comments: NOTE: The code in CPC is for reference. You are encouraged to upload the most recent sources from www.nikhef.nl/form/formcvs.php because of frequent bug fixes.
Standard Port-Visit Cost Forecasting Model for U.S. Navy Husbanding Contracts
2009-12-01
Protocol (HTTP) server.35 2. MySQL . An open-source database.36 3. PHP . A common scripting language used for Web development.37 E. IMPLEMENTATION OF...Inc. (2009). MySQL Community Server (Version 5.1) [Software]. Available from http://dev.mysql.com/downloads/ 37 The PHP Group (2009). PHP (Version...Logistics Services MySQL My Structured Query Language NAVSUP Navy Supply Systems Command NC Non-Contract Items NPS Naval Postgraduate
AMMOS2: a web server for protein-ligand-water complexes refinement via molecular mechanics.
Labbé, Céline M; Pencheva, Tania; Jereva, Dessislava; Desvillechabrol, Dimitri; Becot, Jérôme; Villoutreix, Bruno O; Pajeva, Ilza; Miteva, Maria A
2017-07-03
AMMOS2 is an interactive web server for efficient computational refinement of protein-small organic molecule complexes. The AMMOS2 protocol employs atomic-level energy minimization of a large number of experimental or modeled protein-ligand complexes. The web server is based on the previously developed standalone software AMMOS (Automatic Molecular Mechanics Optimization for in silico Screening). AMMOS utilizes the physics-based force field AMMP sp4 and performs optimization of protein-ligand interactions at five levels of flexibility of the protein receptor. The new version 2 of AMMOS implemented in the AMMOS2 web server allows the users to include explicit water molecules and individual metal ions in the protein-ligand complexes during minimization. The web server provides comprehensive analysis of computed energies and interactive visualization of refined protein-ligand complexes. The ligands are ranked by the minimized binding energies allowing the users to perform additional analysis for drug discovery or chemical biology projects. The web server has been extensively tested on 21 diverse protein-ligand complexes. AMMOS2 minimization shows consistent improvement over the initial complex structures in terms of minimized protein-ligand binding energies and water positions optimization. The AMMOS2 web server is freely available without any registration requirement at the URL: http://drugmod.rpbs.univ-paris-diderot.fr/ammosHome.php. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
AMMOS2: a web server for protein–ligand–water complexes refinement via molecular mechanics
Labbé, Céline M.; Pencheva, Tania; Jereva, Dessislava; Desvillechabrol, Dimitri; Becot, Jérôme; Villoutreix, Bruno O.; Pajeva, Ilza
2017-01-01
Abstract AMMOS2 is an interactive web server for efficient computational refinement of protein–small organic molecule complexes. The AMMOS2 protocol employs atomic-level energy minimization of a large number of experimental or modeled protein–ligand complexes. The web server is based on the previously developed standalone software AMMOS (Automatic Molecular Mechanics Optimization for in silico Screening). AMMOS utilizes the physics-based force field AMMP sp4 and performs optimization of protein–ligand interactions at five levels of flexibility of the protein receptor. The new version 2 of AMMOS implemented in the AMMOS2 web server allows the users to include explicit water molecules and individual metal ions in the protein–ligand complexes during minimization. The web server provides comprehensive analysis of computed energies and interactive visualization of refined protein–ligand complexes. The ligands are ranked by the minimized binding energies allowing the users to perform additional analysis for drug discovery or chemical biology projects. The web server has been extensively tested on 21 diverse protein–ligand complexes. AMMOS2 minimization shows consistent improvement over the initial complex structures in terms of minimized protein–ligand binding energies and water positions optimization. The AMMOS2 web server is freely available without any registration requirement at the URL: http://drugmod.rpbs.univ-paris-diderot.fr/ammosHome.php. PMID:28486703
DIBS: a repository of disordered binding sites mediating interactions with ordered proteins.
Schad, Eva; Fichó, Erzsébet; Pancsa, Rita; Simon, István; Dosztányi, Zsuzsanna; Mészáros, Bálint
2018-02-01
Intrinsically Disordered Proteins (IDPs) mediate crucial protein-protein interactions, most notably in signaling and regulation. As their importance is increasingly recognized, the detailed analyses of specific IDP interactions opened up new opportunities for therapeutic targeting. Yet, large scale information about IDP-mediated interactions in structural and functional details are lacking, hindering the understanding of the mechanisms underlying this distinct binding mode. Here, we present DIBS, the first comprehensive, curated collection of complexes between IDPs and ordered proteins. DIBS not only describes by far the highest number of cases, it also provides the dissociation constants of their interactions, as well as the description of potential post-translational modifications modulating the binding strength and linear motifs involved in the binding. Together with the wide range of structural and functional annotations, DIBS will provide the cornerstone for structural and functional studies of IDP complexes. DIBS is freely accessible at http://dibs.enzim.ttk.mta.hu/. The DIBS application is hosted by Apache web server and was implemented in PHP. To enrich querying features and to enhance backend performance a MySQL database was also created. dosztanyi@caesar.elte.hu or bmeszaros@caesar.elte.hu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhongbao; Li, Xianglong; Zhang, Chun
NUCLEAR FACTOR-Y (NF-Y) has been shown to play an important role in growth, development, and response to environmental stress. A NF-Y complex, which consists of three subunits, NF-YA, NF-YB, and, NF-YC, binds to CCAAT sequences in a promoter to control the expression of target genes. Although NF-Y proteins have been reported in Arabidopsis and rice, a comprehensive and systematic analysis of ZmNF-Y genes has not yet been performed. To examine the functions of ZmNF-Y genes in this family, we isolated and characterized 50 ZmNF-Y (14 ZmNF-YA, 18 ZmNF-YB, and 18 ZmNF-YC) genes in an analysis of the maize genome. Themore » 50 ZmNF-Y genes were distributed on all 10 maize chromosomes, and 12 paralogs were identified. Multiple alignments showed that maize ZmNF-Y family proteins had conserved regions and relatively variable N-terminal or C-terminal domains. The comparative syntenic map illustrated 40 paralogous NF-Y gene pairs among the 10 maize chromosomes. Microarray data showed that the ZmNF-Y genes had tissue-specific expression patterns in various maize developmental stages and in response to biotic and abiotic stresses. The results suggested that ZmNF-YB2, 4, 8, 10, 13, and 16 and ZmNF-YC6, 8, and 15 were induced, while ZmNF-YA1, 3, 4, 6, 7, 10, 12, and 13, ZmNF-YB15, and ZmNF-YC3 and 9 were suppressed by drought stress. ZmNF-YA3, ZmNF-YA8 and ZmNF-YA12 were upregulated after infection by the three pathogens, while ZmNF-YA1 and ZmNF-YB2 were suppressed. These results indicate that the ZmNF-Ys may have significant roles in the response to abiotic and biotic stresses. - Highlights: • We indicated a total of 50 members of ZmNF-Y gene family in maize genome. • We analyzed gene structure, protein architecture of ZmNF-Y genes. • Evolution pattern and phylogenic relationships were analyzed among 50 ZmNF-Y genes. • Expression pattern of ZmNF-Ys were detected in various maize tissues. • Transcript levels of ZmNF-Ys were measured under various abiotic and biotic stresses.« less
Technical development of PubMed interact: an improved interface for MEDLINE/PubMed searches.
Muin, Michael; Fontelo, Paul
2006-11-03
The project aims to create an alternative search interface for MEDLINE/PubMed that may provide assistance to the novice user and added convenience to the advanced user. An earlier version of the project was the 'Slider Interface for MEDLINE/PubMed searches' (SLIM) which provided JavaScript slider bars to control search parameters. In this new version, recent developments in Web-based technologies were implemented. These changes may prove to be even more valuable in enhancing user interactivity through client-side manipulation and management of results. PubMed Interact is a Web-based MEDLINE/PubMed search application built with HTML, JavaScript and PHP. It is implemented on a Windows Server 2003 with Apache 2.0.52, PHP 4.4.1 and MySQL 4.1.18. PHP scripts provide the backend engine that connects with E-Utilities and parses XML files. JavaScript manages client-side functionalities and converts Web pages into interactive platforms using dynamic HTML (DHTML), Document Object Model (DOM) tree manipulation and Ajax methods. With PubMed Interact, users can limit searches with JavaScript slider bars, preview result counts, delete citations from the list, display and add related articles and create relevance lists. Many interactive features occur at client-side, which allow instant feedback without reloading or refreshing the page resulting in a more efficient user experience. PubMed Interact is a highly interactive Web-based search application for MEDLINE/PubMed that explores recent trends in Web technologies like DOM tree manipulation and Ajax. It may become a valuable technical development for online medical search applications.
Interaction of PF4 (CXCL4) with the vasculature: a role in atherosclerosis and angiogenesis.
Aidoudi, Sallouha; Bikfalvi, Andreas
2010-11-01
Platelet factor-4 (PF4), a platelet-derived chemokine, has two important functions in the vasculature. It has a pro-atherogenic role while also having anti-angiogenic effects. The activity of platelet factor-4 (PF4), unlike other chemokines that bind to specific receptors, depends on its unusually high affinity for proteoglycans and other negatively charged molecules. High affinity for heparan sulfates was thought to be central to all of PF4's biological functions. However, other mechanisms have been described such as direct growth factor binding, activation of the CXCR3B chemokine receptor isoform that is present in some vascular cells or binding to lipoprotein-related protein-1 (LRP1). Furthermore, PF4 also binds to integrins with affinities similar to matrix molecules. These interactions may explain the effects of PF4 in healthy and pathological tissues. However, the mechanisms involved in PF4's activity are complex and may depend on a given tissue or localisation. Overall, while much is already known about PF4, its specific role in atherosclerosis and angiogenesis remains still to be clarified.
Park, Ga Bin; Jeong, Jee-Yeong; Kim, Daejin
2017-01-01
Ampelopsin (Amp) is bioactive natural product and exerts anti-cancer effects against several cancer types. The present study investigated the anti-colon cancer activity of Amp and explored its mechanism of action. The treatment of colon cancer cells with Amp resulted in the dose- and time-dependent induction of apoptosis via the activation of endoplasmic reticulum (ER) stress, 5′ adenosine monophosphate-activated protein kinase (AMPK), and c-Jun N-terminal protein kinase (JNK)/p38 mitogen-activated protein kinases (MAPKs). Salubrinal, an ER stress inhibitor, prevented the upregulation of ER stress-associated proteins, including phosphorylated protein kinase RNA-like ER kinase, phosphorylated eukaryotic translation initiation factor 2α, glucose-regulated protein 78, and CCAAT/enhancer-binding protein homologous protein, as well as suppressing AMPK activation and the MAPK signaling pathway. Knockdown of AMPK by RNA interference failed to block ER stress. Additionally, SP600125 (a JNK inhibitor) and SB203580 (a p38-MAPK inhibitor) effectively inhibited apoptosis and attenuated the expression of X-linked IAP-associated factor 1 (XAF1) and apoptotic Bcl-2 family proteins (BCL2 antagonist/killer 1 and BCL2-associated X protein) in Amp-treated colon cancer cells. Furthermore, reactive oxygen species (ROS)-mediated ER stress/AMPK apoptotic signaling pathway in Amp-treated colon cancer cells were markedly inhibited by treatment with N-acetyl-L-cysteine, a ROS scavenger. These results demonstrate that treatment with Amp induces the apoptotic death of colon cancer cells through ER stress-initiated AMPK/MAPK/XAF1 signaling. These results also provide experimental information for developing Amp as therapeutic drug against colon cancer. PMID:29250183
Regulation of LH/FSH expression by secretoglobin 3A2 in the mouse pituitary gland.
Miyano, Yuki; Tahara, Shigeyuki; Sakata, Ichiro; Sakai, Takafumi; Abe, Hiroyuki; Kimura, Shioko; Kurotani, Reiko
2014-04-01
Secretoglobin (SCGB) 3A2 was originally identified as a downstream target for the homeodomain transcription factor NKX2-1 in the lung. NKX2-1 plays a role in the genesis and expression of genes in the thyroid, lung and ventral forebrain; Nkx2-1-null mice have no thyroid and pituitary and severely hypoplastic lungs and hypothalamus. To demonstrate whether SCGB3A2 plays any role in pituitary hormone production, NKX2-1 and SCGB3A2 expression in the mouse pituitary gland was examined by immunohistochemical analysis and RT-PCR. NKX2-1 was localized in the posterior pituitary lobe, whereas SCGB3A2 was observed in both anterior and posterior lobes as shown by immunohistochemistry and RT-PCR. Expression of CCAAT-enhancer binding proteins (C/EBPs), which regulate mouse Scgb3a2 transcription, was also examined by RT-PCR. C/EBPβ, γ, δ and ζ were expressed in the adult mouse pituitary gland. SCGB3A2 was expressed in the anterior and posterior lobes from postnatal days 1 and 5, respectively and the areas where SCGB3A2 expression was found coincided with the area where FSH-secreting cells were found. Double-staining for SCGB3A2 and pituitary hormones revealed that SCGB3A2 was mainly localized in gonadotrophs in 49 % of FSH-secreting cells and 47 % of LH-secreting cells. In addition, SCGB3A2 dramatically inhibited LH and FSH mRNA expression in rat pituitary primary cell cultures. These results suggest that SCGB3A2 regulates FSH/LH production in the anterior pituitary lobe and that transcription factors other than NKX2-1 may regulate SCGB3A2 expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yanyan; The First Affiliated Hospital, China Medical University, Shenyang 110001; Xue, Peng
2013-12-15
Transcriptional signaling through the antioxidant response element (ARE), orchestrated by the Nuclear factor E2-related factor 2 (Nrf2), is a major cellular defense mechanism against oxidative or electrophilic stress. Here, we reported that isoniazid (INH), a widely used antitubercular drug, displays a substantial inhibitory property against ARE activities in diverse mouse and human cells. In 3T3-L1 preadipocytes, INH concentration-dependently suppressed the ARE-luciferase reporter activity and mRNA expression of various ARE-dependent antioxidant genes under basal and oxidative stressed conditions. In keeping with our previous findings that Nrf2-ARE plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β (C/EBPβ) andmore » peroxisome proliferator-activated receptor γ (PPARγ), suppression of ARE signaling by INH hampered adipogenic differentiation of 3T3-L1 cells and human adipose-derived stem cells (ADSCs). Following adipogenesis induced by hormonal cocktails, INH-treated 3T3-L1 cells and ADSCs displayed significantly reduced levels of lipid accumulation and attenuated expression of C/EBPα and PPARγ. Time-course studies in 3T3-L1 cells revealed that inhibition of adipogenesis by INH occurred in the early stage of terminal adipogenic differentiation, where reduced expression of C/EBPβ and C/EBPδ was observed. To our knowledge, the present study is the first to demonstrate that INH suppresses ARE signaling and interrupts with the transcriptional network of adipogenesis, leading to impaired adipogenic differentiation. The inhibition of ARE signaling may be a potential underlying mechanism by which INH attenuates cellular antioxidant response contributing to various complications. - Highlights: • Isoniazid suppresses ARE-mediated transcriptional activity. • Isoniazid inhibits adipogenesis in preadipocytes. • Isoniazid suppresses adipogenic gene expression during adipogenesis.« less
Schaarschmidt, Sara; Gresshoff, Peter M; Hause, Bettina
2013-06-18
Similarly to the legume-rhizobia symbiosis, the arbuscular mycorrhiza interaction is controlled by autoregulation representing a feedback inhibition involving the CLAVATA1-like receptor kinase NARK in shoots. However, little is known about signals and targets down-stream of NARK. To find NARK-related transcriptional changes in mycorrhizal soybean (Glycine max) plants, we analyzed wild-type and two nark mutant lines interacting with the arbuscular mycorrhiza fungus Rhizophagus irregularis. Affymetrix GeneChip analysis of non-inoculated and partially inoculated plants in a split-root system identified genes with potential regulation by arbuscular mycorrhiza or NARK. Most transcriptional changes occur locally during arbuscular mycorrhiza symbiosis and independently of NARK. RT-qPCR analysis verified nine genes as NARK-dependently regulated. Most of them have lower expression in roots or shoots of wild type compared to nark mutants, including genes encoding the receptor kinase GmSIK1, proteins with putative function as ornithine acetyl transferase, and a DEAD box RNA helicase. A predicted annexin named GmAnnx1a is differentially regulated by NARK and arbuscular mycorrhiza in distinct plant organs. Two putative CCAAT-binding transcription factor genes named GmNF-YA1a and GmNF-YA1b are down-regulated NARK-dependently in non-infected roots of mycorrhizal wild-type plants and functional gene analysis confirmed a positive role for these genes in the development of an arbuscular mycorrhiza symbiosis. Our results indicate GmNF-YA1a/b as positive regulators in arbuscular mycorrhiza establishment, whose expression is down-regulated by NARK in the autoregulated root tissue thereby diminishing subsequent infections. Genes regulated independently of arbuscular mycorrhization by NARK support an additional function of NARK in symbioses-independent mechanisms.
Dietary overload lithium decreases the adipogenesis in abdominal adipose tissue of broiler chickens.
Bai, Shiping; Pan, Shuqin; Zhang, Keying; Ding, Xuemei; Wang, Jianping; Zeng, Qiufeng; Xuan, Yue; Su, Zuowei
2017-01-01
To investigate the toxic effects of dietary overload lithium on the adipogenesis in adipose tissue of chicken and the role of hypothalamic neuropeptide Y (NPY) in this process, one-day-old male chicks were fed with the basal diet added with 0 (control) or 100mg lithium/kg diet from lithium chloride (overload lithium) for 35days. Abdominal adipose tissue and hypothalamus were collected at day 6, 14, and 35. As a percentage of body weight, abdominal fat decreased (p<0.001) at day 6, 14, and 35, and feed intake and body weight gain decreased during day 7-14, and day 15-35 in overload lithium treated broilers as compared to control. Adipocyte diameter and DNA content in abdominal adipose tissue were significantly lower in overload-lithium treatment than control at day 35, although no significant differences were observed at day 6 and 14. Dietary overload lithium decreased (p<0.01) transcriptional expression of preadipocyte proliferation makers ki-67 (KI67), microtubule-associated protein homolog (TPX2), and topoisomerase 2-alpha (TOP2A), and preadipocyte differentiation transcriptional factors peroxisome proliferator-activated receptor-γ (PPARγ), and CCAAT/enhancer binding protein (C/EBP) α mRNA abundance in abdominal adipose tissue. In hypothalamus, dietary overload lithium influenced (p<0.001) NPY, and NPY receptor (NPYR) 6 mRNA abundance at day 6 and 14, but not at day 35. In conclusion, dietary overload lithium decreased the adipogenesis in abdominal adipose tissue of chicken, which was accompanied by depressing transcriptional expression of adipogenesis-associated factors. Hypothalamic NPY had a potential role in the adipogenesis in abdominal adipose tissue of broilers with a short-term overload lithium treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
Lee, Kam-Fai; Chen, Jiann-Hwa; Teng, Chih-Chuan; Shen, Chien-Heng; Hsieh, Meng-Chiao; Lu, Chien-Chang; Lee, Ko-Chao; Lee, Li-Ya; Chen, Wan-Ping; Chen, Chin-Chu; Huang, Wen-Shih; Kuo, Hsing-Chun
2014-01-01
Hericium erinaceus, an edible mushroom, has been demonstrated to potentiate the effects of numerous biological activities. The aim of this study was to investigate whether H. erinaceus mycelium could act as an anti-inflammatory agent to bring about neuroprotection using a model of global ischemic stroke and the mechanisms involved. Rats were treated with H. erinaceus mycelium and its isolated diterpenoid derivative, erinacine A, after ischemia reperfusion brain injuries caused by the occlusion of the two common carotid arteries. The production of inflammatory cytokines in serum and the infracted volume of the brain were measured. The proteins from the stroke animal model (SAM) were evaluated to determine the effect of H. erinaceus mycelium. H. erinaceus mycelium reduced the total infarcted volumes by 22% and 44% at a concentration of 50 and 300 mg/kg, respectively, compared to the SAM group. The levels of acute inflammatory cytokines, including interleukin-1β, interleukin-6 and tumor necrosis factor á, were all reduced by erinacine A. Levels of nitrotyrosine-containing proteins, phosphorylation of p38 MAPK and CCAAT enhancer-binding protein (C/EBP) and homologous protein (CHOP) expression were attenuated by erinacine A. Moreover, the modulation of ischemia injury factors present in the SAM model by erinacine A seemed to result in the suppression of reactive nitrogen species and the downregulation of inducible NO synthase (iNOS), p38 MAPK and CHOP. These findings confirm the nerve-growth properties of Hericium erinaceus mycelium, which include the prevention of ischemic injury to neurons; this protective effect seems to be involved in the in vivo activity of iNOS, p38 MAPK and CHOP. PMID:25167134
Lee, Kam-Fai; Chen, Jiann-Hwa; Teng, Chih-Chuan; Shen, Chien-Heng; Hsieh, Meng-Chiao; Lu, Chien-Chang; Lee, Ko-Chao; Lee, Li-Ya; Chen, Wan-Ping; Chen, Chin-Chu; Huang, Wen-Shih; Kuo, Hsing-Chun
2014-08-27
Hericium erinaceus, an edible mushroom, has been demonstrated to potentiate the effects of numerous biological activities. The aim of this study was to investigate whether H. erinaceus mycelium could act as an anti-inflammatory agent to bring about neuroprotection using a model of global ischemic stroke and the mechanisms involved. Rats were treated with H. erinaceus mycelium and its isolated diterpenoid derivative, erinacine A, after ischemia reperfusion brain injuries caused by the occlusion of the two common carotid arteries. The production of inflammatory cytokines in serum and the infracted volume of the brain were measured. The proteins from the stroke animal model (SAM) were evaluated to determine the effect of H. erinaceus mycelium. H. erinaceus mycelium reduced the total infarcted volumes by 22% and 44% at a concentration of 50 and 300 mg/kg, respectively, compared to the SAM group. The levels of acute inflammatory cytokines, including interleukin-1β, interleukin-6 and tumor necrosis factor á, were all reduced by erinacine A. Levels of nitrotyrosine-containing proteins, phosphorylation of p38 MAPK and CCAAT enhancer-binding protein (C/EBP) and homologous protein (CHOP) expression were attenuated by erinacine A. Moreover, the modulation of ischemia injury factors present in the SAM model by erinacine A seemed to result in the suppression of reactive nitrogen species and the downregulation of inducible NO synthase (iNOS), p38 MAPK and CHOP. These findings confirm the nerve-growth properties of Hericium erinaceus mycelium, which include the prevention of ischemic injury to neurons; this protective effect seems to be involved in the in vivo activity of iNOS, p38 MAPK and CHOP.
Hegde, Venkatesh L.; Tomar, Sunil; Jackson, Austin; Rao, Roshni; Yang, Xiaoming; Singh, Udai P.; Singh, Narendra P.; Nagarkatti, Prakash S.; Nagarkatti, Mitzi
2013-01-01
Δ9-Tetrahydrocannabinol (THC), the major bioactive component of marijuana, has been shown to induce functional myeloid-derived suppressor cells (MDSCs) in vivo. Here, we studied the involvement of microRNA (miRNA) in this process. CD11b+Gr-1+ MDSCs were purified from peritoneal exudates of mice administered with THC and used for genome-wide miRNA profiling. Expression of CD31 and Ki-67 confirmed that the THC-MDSCs were immature and proliferating. THC-induced MDSCs exhibited distinct miRNA expression signature relative to various myeloid cells and BM precursors. We identified 13 differentially expressed (>2-fold) miRNA in THC-MDSCs relative to control BM precursors. In silico target prediction for these miRNA and pathway analysis using multiple bioinformatics tools revealed significant overrepresentation of Gene Ontology clusters within hematopoiesis, myeloid cell differentiation, and regulation categories. Insulin-like growth factor 1 signaling involved in cell growth and proliferation, and myeloid differentiation pathways were among the most significantly enriched canonical pathways. Among the differentially expressed, miRNA-690 was highly overexpressed in THC-MDSCs (∼16-fold). Transcription factor CCAAT/enhancer-binding protein α (C/EBPα) was identified as a potential functional target of miR-690. Supporting this, C/EBPα expression was attenuated in THC-MDSCs as compared with BM precursors and exhibited an inverse relation with miR-690. miR-690 knockdown using peptide nucleic acid-antagomiR was able to unblock and significantly increase C/EBPα expression establishing the functional link. Further, CD11b+Ly6G+Ly6C+ and CD11b+Ly6G−Ly6C+ purified subtypes showed high levels of miR-690 with attenuated C/EBPα expression. Moreover, EL-4 tumor-elicited MDSCs showed increased miR-690 expression. In conclusion, miRNA are significantly altered during the generation of functional MDSC from BM. Select miRNA such as miR-690 targeting genes involved in myeloid expansion and differentiation likely play crucial roles in this process and therefore in cannabinoid-induced immunosuppression. PMID:24202177
Different origin of adipogenic stem cells influences the response to antiretroviral drugs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibellini, Lara; De Biasi, Sara; Nasi, Milena
Lipodystrophy (LD) is a main side effect of antiretroviral therapy for HIV infection, and can be provoked by nucleoside reverse transcriptase inhibitors (NRTIs) and protease inhibitors (PIs). LD exists in different forms, characterized by fat loss, accumulation, or both, but its pathogenesis is still unclear. In particular, few data exist concerning the effects of antiretroviral drugs on adipocyte differentiation. Adipose tissue can arise either from mesenchymal stem cells (MSCs), that include bone marrow-derived MSCs (hBM-MSCs), or from ectodermal stem cells, that include dental pulp stem cells (hDPSCs). To analyze whether the embryonal origin of adipocytes might impact the occurrence ofmore » different phenotypes in LD, we quantified the effects of several antiretroviral drugs on the adipogenic differentiation of hBM-MSCs and hDPSCs. hBM-MSCs and hDPSCs were isolated from healthy donors. Cells were treated with 10 and 50 μM stavudine (d4T), efavirenz (EFV), atazanavir (ATV), ritonavir (RTV), and ATV-boosted RTV. Viability and adipogenesis were evaluated by staining with propidium iodide, oil red, and adipoRed; mRNA levels of genes involved in adipocyte differentiation, i.e. CCAAT/enhancer-binding protein alpha (CEBPα) and peroxisome proliferator-activated receptor gamma (PPARγ), and in adipocyte functions, i.e. fatty acid synthase (FASN), fatty acid binding protein-4 (FABP4), perilipin-1 (PLIN1) and 1-acylglycerol-3-phosphate O-acyltransferase-2 (AGPAT2), were quantified by real time PCR. We found that ATV, RTV, EFV, and ATV-boosted RTV, but not d4T, caused massive cell death in both cell types. EFV and d4T affected the accumulation of lipid droplets and induced changes in mRNA levels of genes involved in adipocyte functions in hBM-MSCs, while RTV and ATV had little effects. All drugs stimulated the accumulation of lipid droplets in hDPSCs. Thus, the adipogenic differentiation of human stem cells can be influenced by antiretroviral drugs, and depends, at least in part, on their embryonal origin. - Highlights: • ATV, RTV, EFV and ATV-boosted RTV induce massive cell death in hBM-MSCs and hDPSCs. • EFV and d4T strongly affect the accumulation of lipid droplets in hBM-MSCs. • All drugs stimulate the accumulation of lipid droplets in hDPSCs.« less
Saeedi, B; Tärnberg, M; Gill, H; Hällgren, A; Jonasson, J; Nilsson, L E; Isaksson, B; Kühn, I; Hanberger, H
2005-09-01
Pulsed-field gel electrophoresis (PFGE) is currently considered the gold standard for genotyping of enterococci. However, PFGE is both expensive and time-consuming. The purpose of this study was to investigate whether the PhP system can be used as a reliable clinical screening method for detection of genetically related isolates of enterococci. If so, it should be possible to minimize the number of isolates subjected to PFGE typing, which would save time and money. Ninety-nine clinical enterococcal isolates were analysed by PhP (similarity levels 0.90-0.975) and PFGE (similarity levels < or =3 and < or =6 bands) and all possible pairs of isolates were cross-classified as matched or mismatched. We found that the probability that a pair of isolates (A and B) belonging to the same type according to PhP also belong to the same cluster according to PFGE, i.e. p(A(PFGE)=B(PFGE) * A(PhP)=B(PhP)), and the probability that a pair of isolates of different types according to PhP also belong to different clusters according to PFGE, i.e. p(A(PFGE) not equalB(PFGE) * A(PhP) not equalB(PhP)), was relatively high for E. faecalis (0.86 and 0.96, respectively), but was lower for E. faecium (0.51 and 0.77, respectively). The concordance which shows the probability that PhP and PFGE agree on match or mismatch was 86%-93% for E. faecalis and 54%-66% for E. faecium, which indicates that the PhP method may be useful for epidemiological typing of E. faecalis in the current settings but not for E. faecium.
Granoff, Dan M.; Costa, Isabella; Konar, Monica; Giuntini, Serena; Van Rompay, Koen K. A.; Beernink, Peter T.
2015-01-01
Background. The meningococcal vaccine antigen, factor H (FH)–binding protein (FHbp), binds human complement FH. In human FH transgenic mice, binding decreased protective antibody responses. Methods. To investigate the effect of primate FH binding, we immunized rhesus macaques with a 4-component serogroup B vaccine (4CMenB). Serum FH in 6 animals bound strongly to FHbp (FHbp-FHhigh) and, in 6 animals, bound weakly to FHbp (FHbp-FHlow). Results. There were no significant differences between the respective serum bactericidal responses of the 2 groups against meningococcal strains susceptible to antibody to the NadA or PorA vaccine antigens. In contrast, anti-FHbp bactericidal titers were 2-fold lower in FHbp-FHhigh macaques against a strain with an exact FHbp match to the vaccine (P = .08) and were ≥4-fold lower against 4 mutants with other FHbp sequence variants (P ≤ .005, compared with FHbp-FHlow macaques). Unexpectedly, postimmunization sera from all 12 macaques enhanced FH binding to meningococci. In contrast, serum anti-FHbp antibodies elicited by 4CMenB in mice whose mouse FH did not bind to the vaccine antigen inhibited FH binding. Conclusions. Binding of FH to FHbp decreases protective anti-FHbp antibody responses of macaques to 4CMenB. Even low levels of FH binding skew the antibody repertoire to FHbp epitopes outside of the FH-binding site, which enhance FH binding. PMID:25676468
Liu, H; Agishi, T; Kawai, T; Hayashi, T; Fujita, S; Fuchinoue, S; Takahashi, K; Teraoka, S; Ota, K
1992-01-01
A new type of artificial blood, pyridoxylated hemoglobin-polyoxyethylene conjugate (PHP) solution, (developed by PHP research group of the department of health and welfare of Japan, and produced by Ajinomoto Co., Inc. Tokyo) as an oxygen-carrying component, has been recently devised using hemoglobin obtained from hemolyzed human erythrocytes. Recently, the studies using this solution as a preservation solution were performed in some instances. To examine the mechanism of improved viability using this solution as a preservation solution, we developed a model of orthotopic small intestine transplantation (OIT) in the rat. As a baseline study, we compared parameters of viability of the grafts preserved in Collins and UW solution to those preserved in PHP solution including a survival rate, a serum level total protein and albumin, and a change in body weight after transplantation. In our study, the simple hypothermia storage together with intestinal perfusion preservation with PHP solution was performed. Animals were divided into 6, 12, and 24 hr preservation groups. All of the rats survived after 6 hr preservation following transplantation. However, in 12 hr storage, five of six rats in PHP solution preservation survived and recovery in body weight after grafting was better than those with Collins and UW solution. We conclude that the PHP solution is, therefore, considered to possibly be a more suitable perfusate for small intestine preservation than Collins and UW solution.
Şahin, Sezgin; Hiort, Olaf; Thiele, Susanne; Evliyaoğlu, Olcay; Tüysüz, Beyhan
2017-03-01
Pseudohypoparathyroidism type Ia (PHP-Ia) is characterized by multihormone resistance and an Albright hereditary osteodystrophy (AHO) phenotype. It is caused by heterozygous mutations in GNAS gene. Clinical and biochemical findings of a female PHP-Ia patient were evaluated from age of diagnosis (6.5 years) to 14.5 years of age. The patient had short stature, brachydactyly, and subcutaneous heterotopic ossifications. Serum calcium and phosphorus levels were normal, but parathyroid hormone levels were high. Based on the typical clinical findings of AHO phenotype and biochemical findings, she was diagnosed as having PHP-Ia. A novel heterozygous mutation (c.128T>C) was found in the GNAS gene. Follow-up examinations revealed resistance to thyroid-stimulating hormone and a bioinactive growth hormone. Clinicians should take into consideration PHP-Ia in patients referred with short stature, and patients with an AHO phenotype must be further evaluated for hormone resistance, GNAS gene mutation, Gsα activity. To our knowledge, this is the first case report describing bioinactive growth hormone in PHP-Ia.
Structural basis for genome wide recognition of 5-bp GC motifs by SMAD transcription factors.
Martin-Malpartida, Pau; Batet, Marta; Kaczmarska, Zuzanna; Freier, Regina; Gomes, Tiago; Aragón, Eric; Zou, Yilong; Wang, Qiong; Xi, Qiaoran; Ruiz, Lidia; Vea, Angela; Márquez, José A; Massagué, Joan; Macias, Maria J
2017-12-12
Smad transcription factors activated by TGF-β or by BMP receptors form trimeric complexes with Smad4 to target specific genes for cell fate regulation. The CAGAC motif has been considered as the main binding element for Smad2/3/4, whereas Smad1/5/8 have been thought to preferentially bind GC-rich elements. However, chromatin immunoprecipitation analysis in embryonic stem cells showed extensive binding of Smad2/3/4 to GC-rich cis-regulatory elements. Here, we present the structural basis for specific binding of Smad3 and Smad4 to GC-rich motifs in the goosecoid promoter, a nodal-regulated differentiation gene. The structures revealed a 5-bp consensus sequence GGC(GC)|(CG) as the binding site for both TGF-β and BMP-activated Smads and for Smad4. These 5GC motifs are highly represented as clusters in Smad-bound regions genome-wide. Our results provide a basis for understanding the functional adaptability of Smads in different cellular contexts, and their dependence on lineage-determining transcription factors to target specific genes in TGF-β and BMP pathways.
NF45/ILF2 tissue expression, promoter analysis, and interleukin-2 transactivating function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Guohua; Shi Lingfang; Qiu Daoming
2005-05-01
NF45/ILF2 associates with NF90/ILF3 in the nucleus and regulates IL-2 gene transcription at the antigen receptor response element (ARRE)/NF-AT DNA target sequence (P.N. Kao, L. Chen, G. Brock, J. Ng, A.J. Smith, B. Corthesy, J. Biol. Chem. 269 (1994) 20691-20699). NF45 is widely expressed in normal tissues, especially testis, brain, and kidney, with a predominantly nuclear distribution. NF45 mRNA expression is increased in lymphoma and leukemia cell lines. The human and murine NF45 proteins differ only by substitution of valine by isoleucine at amino acid 142. Fluorescence in situ hybridization localized the human NF45 gene to chromosome 1q21.3, and mousemore » NF45 gene to chromosome 3F1. Promoter analysis of 2.5 kB of the murine NF45 gene reveals that significant activation is conferred by factors, possible including NF-Y, that bind to the CCAAT-box sequence. The function of human NF45 in regulating IL-2 gene expression was characterized in Jurkat T-cells stably transfected with plasmids directing expression of NF45 cDNA in sense or antisense orientations. NF45 sense expression increased IL-2 luciferase reporter gene activity 120-fold, and IL-2 protein expression 2-fold compared to control cells. NF45 is a highly conserved, regulated transcriptional activator, and one target gene is IL-2.« less
Lin, Guanlin; Wang, Huan; Dai, Jun; Li, Xiao; Guan, Ming; Gao, Shutao; Ding, Qing; Wang, Huaixi; Fang, Huang
2017-08-26
Osteoporosis (OP) can increase the risk of bone fracture and other complications, which is a major clinical problem. Previous researches have revealed that conjugated linoleic acid (CLA) can promote the bone formation. But the mechanisms are not clear. Thus, we tested the hypothesis that CLA acts on bone formation might be via mTOR Complex1 (mTORC 1) pathway by in vitro and vivo assays. We studied the effect of CLA mix on MC3T3-E1 pre-osteoblasts differentiation into osteoblasts, and bone formation under osteoporotic conditions. At the same time, 3T3-L1 pre-adipocyte with the same CLA mix concentration gradient for 8 days with adipogenic differentiation medium. We found that Alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) expressions of pre-osteoblasts were up-regulated. Moreover in presence of CLA, peroxisome proliferators-activated receptor γ(PPARγ) and CCAAT/enhancer-binding protein (C/EBPα) were down-regulated. Osteoporosis mice bone parameters in the distal femoral meraphysis were significantly increased compared with placebo mice. Furthermore, the phosphor-S6 (P-S6) was suppressed and phosphor-AKT (P-AKT) was up-regulated. Consistently, CLA can stimulate differentiation of osteoblasts and inhibited pre-adipocytes differentiated into adipocytes via AKT/mTORC1 signal pathway. Overall CLA thus be a suitable candidate for the treatment of patients with postmenopausal osteoporosis and obesity. Copyright © 2017 Elsevier Inc. All rights reserved.
Lee, Hyo Jung; Choi, Joo Sun; Lee, Hye Ja; Kim, Won-Ho; Park, Sang Ick; Song, Jihyun
2015-12-01
Excessive tissue iron levels are a risk factor for insulin resistance and type 2 diabetes, which are associated with alterations in iron metabolism. However, the mechanisms underlying this association are not well understood. This study used human liver SK-HEP-1 cells to examine how excess iron induces mitochondrial dysfunction and how hepcidin controls gluconeogenesis. Excess levels of reactive oxygen species (ROS) and accumulated iron due to iron overload induced mitochondrial dysfunction, leading to a decrease in cellular adenosine triphosphate content and cytochrome c oxidase III expression, with an associated increase in gluconeogenesis. Disturbances in mitochondrial function caused excess iron deposition and unbalanced expression of iron metabolism-related proteins such as hepcidin, ferritin H and ferroportin during the activation of p38 mitogen-activated protein kinase (MAPK) and CCAAT/enhancer-binding protein alpha (C/EBPα), which are responsible for increased phosphoenolpyruvate carboxykinase expression. Desferoxamine and n-acetylcysteine ameliorated these deteriorations by inhibiting p38 MAPK and C/EBPα activity through iron chelation and ROS scavenging activity. Based on experiments using hepcidin shRNA and hepcidin overexpression, the activation of hepcidin affects ROS generation and iron deposition, which disturbs mitochondrial function and causes an imbalance in iron metabolism and increased gluconeogenesis. Repression of hepcidin activity can reverse these changes. Our results demonstrate that iron overload is associated with mitochondrial dysfunction and that together they can cause abnormal hepatic gluconeogenesis. Hepcidin expression may modulate this disorder by regulating ROS generation and iron deposition. Copyright © 2015 Elsevier Inc. All rights reserved.
Zjablovskaja, Polina; Kardosova, Miroslava; Danek, Petr; Angelisova, Pavla; Benoukraf, Touati; Wurm, Alexander A; Kalina, Tomas; Sian, Stephanie; Balastik, Martin; Delwel, Ruud; Brdicka, Tomas; Tenen, Daniel G; Behre, Gerhard; Fiore, Fréderic; Malissen, Bernard; Horejsi, Vaclav; Alberich-Jorda, Meritxell
2017-04-01
Development of hematopoietic populations through the process of differentiation is critical for proper hematopoiesis. The transcription factor CCAAT/enhancer binding protein alpha (C/EBPα) is a master regulator of myeloid differentiation, and the identification of C/EBPα target genes is key to understand this process. Here we identified the Ecotropic Viral Integration Site 2B (EVI2B) gene as a direct target of C/EBPα. We showed that the product of the gene, the transmembrane glycoprotein EVI2B (CD361), is abundantly expressed on the surface of primary hematopoietic cells, the highest levels of expression being reached in mature granulocytes. Using shRNA-mediated downregulation of EVI2B in human and murine cell lines and in primary hematopoietic stem and progenitor cells, we demonstrated impaired myeloid lineage development and altered progenitor functions in EVI2B-silenced cells. We showed that the compromised progenitor functionality in Evi2b-depleted cells can be in part explained by deregulation of cell proliferation and apoptosis. In addition, we generated an Evi2b knockout murine model and demonstrated altered properties of hematopoietic progenitors, as well as impaired G-CSF dependent myeloid colony formation in the knockout cells. Remarkably, we found that EVI2B is significantly downregulated in human acute myeloid leukemia samples characterized by defects in CEBPA. Altogether, our data demonstrate that EVI2B is a downstream target of C/EBPα, which regulates myeloid differentiation and functionality of hematopoietic progenitors.
Zhang, Liang; Chen, Ruyi; Dong, Zhe; Li, Xin
2013-01-01
Organophosphates (OPs) are extremely toxic compounds that are used as insecticides or even as chemical warfare agents. Phosphotriesterases (PHPs) are responsible for the detoxification of OPs by catalysing their degradation. Almost 100 PHP structures have been solved to date, yet the crystal structure of the phosphotriesterase from Mycobacterium tuberculosis (mPHP) remains unavailable. This study reports the first crystallization of mPHP. The crystal belonged to space group C222(1), with unit-cell parameters a = 68.03, b = 149.60, c = 74.23 Å, α = β = γ = 90°. An analytical ultracentrifugation experiment suggested that mPHP exists as a dimer in solution, even though one molecule is calculated to be present in the asymmetric unit according to the structural data.
Zhang, Liang; Chen, Ruyi; Dong, Zhe; Li, Xin
2013-01-01
Organophosphates (OPs) are extremely toxic compounds that are used as insecticides or even as chemical warfare agents. Phosphotriesterases (PHPs) are responsible for the detoxification of OPs by catalysing their degradation. Almost 100 PHP structures have been solved to date, yet the crystal structure of the phosphotriesterase from Mycobacterium tuberculosis (mPHP) remains unavailable. This study reports the first crystallization of mPHP. The crystal belonged to space group C2221, with unit-cell parameters a = 68.03, b = 149.60, c = 74.23 Å, α = β = γ = 90°. An analytical ultracentrifugation experiment suggested that mPHP exists as a dimer in solution, even though one molecule is calculated to be present in the asymmetric unit according to the structural data. PMID:23295488
Qiu, Jingwen; Wang, Qing; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Song, Chun
2017-03-01
Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP), in which temperature, time, and H 3 PO 4 proportion for pretreatment were investigated by using response surface method. Results indicated that hemicellulose and lignin removal positively responded to the increase of pretreatment temperature, H 3 PO 4 proportion, and time. H 3 PO 4 proportion was the most important variable to control cellulose recovery, followed by pretreatment temperature and time. Moreover, these three variables all negatively related to cellulose recovery. Increasing H 3 PO 4 proportion can improve enzymatic hydrolysis; however, reduction on cellulose recovery results in decrease of glucose yield. Extra high temperature or long time for pretreatment was not beneficial to enzymatic hydrolysis and glucose yield. Based on the criterion for minimizing H 3 PO 4 usage and maximizing glucose yield, the optimized pretreatment conditions was 40 °C, 2.0 h, and H 3 PO 4 proportion of 70.2 % (H 2 O 2 proportion of 5.2 %), by which glucose yielded 299 mg/g wheat straw (946.2 mg/g cellulose) after 72-h enzymatic hydrolysis.
Accurate Prediction of Inducible Transcription Factor Binding Intensities In Vivo
Siepel, Adam; Lis, John T.
2012-01-01
DNA sequence and local chromatin landscape act jointly to determine transcription factor (TF) binding intensity profiles. To disentangle these influences, we developed an experimental approach, called protein/DNA binding followed by high-throughput sequencing (PB–seq), that allows the binding energy landscape to be characterized genome-wide in the absence of chromatin. We applied our methods to the Drosophila Heat Shock Factor (HSF), which inducibly binds a target DNA sequence element (HSE) following heat shock stress. PB–seq involves incubating sheared naked genomic DNA with recombinant HSF, partitioning the HSF–bound and HSF–free DNA, and then detecting HSF–bound DNA by high-throughput sequencing. We compared PB–seq binding profiles with ones observed in vivo by ChIP–seq and developed statistical models to predict the observed departures from idealized binding patterns based on covariates describing the local chromatin environment. We found that DNase I hypersensitivity and tetra-acetylation of H4 were the most influential covariates in predicting changes in HSF binding affinity. We also investigated the extent to which DNA accessibility, as measured by digital DNase I footprinting data, could be predicted from MNase–seq data and the ChIP–chip profiles for many histone modifications and TFs, and found GAGA element associated factor (GAF), tetra-acetylation of H4, and H4K16 acetylation to be the most predictive covariates. Lastly, we generated an unbiased model of HSF binding sequences, which revealed distinct biophysical properties of the HSF/HSE interaction and a previously unrecognized substructure within the HSE. These findings provide new insights into the interplay between the genomic sequence and the chromatin landscape in determining transcription factor binding intensity. PMID:22479205
Lu, Xinyue; Song, Kaimei
2015-01-01
Belonging to the PLIN family, PLIN2 associates with lipid storage droplets (LSDs), but other functions of PLIN2 remain unclear. Here, we suggest that PLIN2 mediates Wnt signaling because PLIN2 small interfering RNA (siRNA) suppresses activation of Wnt/coreceptor pathways. The mediation in the Wnt/Frizzled pathway seems to occur from Dishevelleds to axin/glycogen synthase kinase 3(GSK3)/β-catenin complexes (AGβC) as Wnt decreases Dishevelled/PLIN2 but increases AGβC/PLIN2 associations. Augmenting cellular LSDs that affect PLIN2 associations with these proteins, oleic acid (OA) treatment inhibits Wnt-increased AGβC/PLIN2 associations and β-catenin T-cell factor signaling (β-CTS). Revealing that PLIN2 is a GSK3-associated protein, the study explored PLIN2-mediated effects on GSK3/GSK3 substrates. PLIN2 siRNA reduces inhibitory GSK3 levels and lithium chloride (LiCl)-upregulated β-catenin or CCAAT/enhancer binding protein α (c/EBPα) expression. OA treatment decreases LiCl-increased c/EBPα via PLIN2-c/EBPα dissociation. In addition to PLIN2 overexpression increasing β-CTS, PLIN2 depletion or overexpression drops or adds expression of GSK3 substrates, such as β-catenin, c/EBPα,c-Myc, cyclin D1, and insulin receptor substrate 1, and cell growth/survival. PLIN2 N or C terminus overexpression that is associated with higher levels of the substrates suggests that those substrates bind to specific regions of PLIN2. Mimicking the possible high lipid concentrations in cells in the human body under conditions of hyperlipidemia/obesity, OA-treated cells gain or reduce GSK3 substrate expression in parallel with a decrease (a Wnt-like effect) or increase in GSK3 activity, likely regulated by GSK3/PLIN2/GSK3 substrate associations. PMID:26598603
Han, Joon-Seung; Sung, Jong Hwan; Lee, Seung Kwon
2017-11-01
GINST, a hydrolyzed ginseng extract, has been reported to have antidiabetic effects and to reduce hyperglycemia and hyperlipidemia. Hypercholesterolemia is caused by diet or genetic factors and can lead to atherosclerosis and coronary heart disease. Thus, the purpose of this study is to determine whether GINST and the ginsenoside metabolite, IH-901 (compound K), reduce cholesterol synthesis in HepG2 cells and the signal transduction pathways involved. Concentrations of cholesterol were measured by using an enzymatic method. Expression levels of sterol regulatory element-binding protein 2 (SREBP2), HMG-CoA reductase (HMGCR), peroxisome proliferators-activated receptor γ (PPARγ), CCAAT/enhancer-binding proteins α (C/EBPα), GAPDH, and phosphorylation of AMP-activated protein kinase α (AMPKα), protein kinase B (PKB, also known as Akt), and mechanistic target of rapamycin complex 1 (mTORC1) were measured using western blot. Total cholesterol concentration decreased after GINST treatment for 24 and 48 h. Expression of HMGCR decreased more with GINST than with the inhibitors, U18666A and atorvastatin, after 48 h in a dose-dependent manner. Phosphorylation of AMPKα increased 2.5x by GINST after 360 min of treatment, and phosphorylation of Akt decreased after 120 and 360 min. We separated compound K from GINST extracts flash chromatography. Compound K decreased cholesterol synthesis in HepG2 cells at 24 and 48 h. Therefore, we conclude that GINST inhibits cholesterol synthesis in HepG2 cells by decreasing HMGCR expression via AMPKα activation. GINST, a hydrolyzed ginseng extract, can inhibit cholesterol synthesis in liver cells via activation of AMPKα. IH-901 (compound K), which is the main component with bioactivity in GINST, also has anticholesterol effects. Thus, we suggest that GINST can be used to reduce hypercholesterolemia. © 2017 Institute of Food Technologists®.
Aggarwal, Pooja; Das Gupta, Mainak; Joseph, Agnel Praveen; Chatterjee, Nirmalya; Srinivasan, N.; Nath, Utpal
2010-01-01
The TCP transcription factors control multiple developmental traits in diverse plant species. Members of this family share an ∼60-residue-long TCP domain that binds to DNA. The TCP domain is predicted to form a basic helix-loop-helix (bHLH) structure but shares little sequence similarity with canonical bHLH domain. This classifies the TCP domain as a novel class of DNA binding domain specific to the plant kingdom. Little is known about how the TCP domain interacts with its target DNA. We report biochemical characterization and DNA binding properties of a TCP member in Arabidopsis thaliana, TCP4. We have shown that the 58-residue domain of TCP4 is essential and sufficient for binding to DNA and possesses DNA binding parameters comparable to canonical bHLH proteins. Using a yeast-based random mutagenesis screen and site-directed mutants, we identified the residues important for DNA binding and dimer formation. Mutants defective in binding and dimerization failed to rescue the phenotype of an Arabidopsis line lacking the endogenous TCP4 activity. By combining structure prediction, functional characterization of the mutants, and molecular modeling, we suggest a possible DNA binding mechanism for this class of transcription factors. PMID:20363772
The yeast transcription elongation factor Spt4/5 is a sequence‐specific RNA binding protein
Blythe, Amanda J.; Yazar‐Klosinski, Berra; Webster, Michael W.; Chen, Eefei; Vandevenne, Marylène; Bendak, Katerina; Mackay, Joel P.; Hartzog, Grant A.
2016-01-01
Abstract The heterodimeric transcription elongation factor Spt4/Spt5 (Spt4/5) tightly associates with RNAPII to regulate both transcriptional elongation and co‐transcriptional pre‐mRNA processing; however, the mechanisms by which Spt4/5 acts are poorly understood. Recent studies of the human and Drosophila Spt4/5 complexes indicate that they can bind nucleic acids in vitro. We demonstrate here that yeast Spt4/5 can bind in a sequence‐specific manner to single stranded RNA containing AAN repeats. Furthermore, we show that the major protein determinants for RNA‐binding are Spt4 together with the NGN domain of Spt5 and that the KOW domains are not required for RNA recognition. These findings attribute a new function to a domain of Spt4/5 that associates directly with RNAPII, making significant steps towards elucidating the mechanism behind transcriptional control by Spt4/5. PMID:27376968
TSA increases C/EBP‑α expression by increasing its lysine acetylation in hepatic stellate cells.
Tao, Li-Li; Ding, Di; Yin, Wei-Hua; Peng, Ji-Ying; Hou, Chen-Jian; Liu, Xiu-Ping; Chen, Yao-Li
2017-11-01
CCAAT enhancer binding protein‑α (C/EBP‑α) is a transcription factor expressed only in certain tissues, including the liver. It has been previously demonstrated that C/EBP‑α may induce apoptosis in hepatic stellate cells (HSCs), raising the question of whether acetylation of C/EBP‑α is associated with HSCs, and the potential associated mechanism. A total of three histone deacetylase inhibitors (HDACIs), including trichostatin A (TSA), suberoylanilide hydroxamic acid and nicotinamide, were selected to determine whether acetylation affects C/EBP‑α expression. A Cell Counting Kit‑8 assay was used to determine the rate of proliferation inhibition following treatment with varying doses of the three HDACIs in HSC‑T6 and BRL‑3A cells. Western blot analysis was used to examine Caspase‑3, ‑8, ‑9, and ‑12 levels in HSC‑T6 cells treated with adenoviral‑C/EBP‑α and/or TSA. Following treatment with TSA, a combination of reverse transcription‑quantitative polymerase chain reaction and western blot analyses was used to determine the inherent C/EBP‑α mRNA and protein levels in HSC‑T6 cells at 0, 1, 2, 4, 8, 12, 24, 36 and 48 h. Nuclear and cytoplasmic proteins were extracted to examine C/EBP‑α distribution. Co‑immunoprecipitation analysis was used to examine the lysine acetylation of C/EBP‑α. It was observed that TSA inhibited the proliferation of HSC‑T6 cells to a greater extent compared with BRL‑3A cells, following treatment with the three HDACIs. TSA induced apoptosis in HSC‑T6 cells and enhanced the expression of C/EBP‑α. Following treatment of HSC‑T6 cells with TSA, inherent C/EBP‑α expression increased in a time‑dependent manner, and its lysine acetylation simultaneously increased. Therefore, the results of the present study suggested that TSA may increase C/EBP‑α expression by increasing its lysine acetylation in HSCs.
Boj, Sylvia F.; Servitja, Joan Marc; Martin, David; Rios, Martin; Talianidis, Iannis; Guigo, Roderic; Ferrer, Jorge
2009-01-01
OBJECTIVE The evolutionary conservation of transcriptional mechanisms has been widely exploited to understand human biology and disease. Recent findings, however, unexpectedly showed that the transcriptional regulators hepatocyte nuclear factor (HNF)-1α and -4α rarely bind to the same genes in mice and humans, leading to the proposal that tissue-specific transcriptional regulation has undergone extensive divergence in the two species. Such observations have major implications for the use of mouse models to understand HNF-1α– and HNF-4α–deficient diabetes. However, the significance of studies that assess binding without considering regulatory function is poorly understood. RESEARCH DESIGN AND METHODS We compared previously reported mouse and human HNF-1α and HNF-4α binding studies with independent binding experiments. We also integrated binding studies with mouse and human loss-of-function gene expression datasets. RESULTS First, we confirmed the existence of species-specific HNF-1α and -4α binding, yet observed incomplete detection of binding in the different datasets, causing an underestimation of binding conservation. Second, only a minor fraction of HNF-1α– and HNF-4α–bound genes were downregulated in the absence of these regulators. This subset of functional targets did not show evidence for evolutionary divergence of binding or binding sequence motifs. Finally, we observed differences between conserved and species-specific binding properties. For example, conserved binding was more frequently located near transcriptional start sites and was more likely to involve multiple binding events in the same gene. CONCLUSIONS Despite evolutionary changes in binding, essential direct transcriptional functions of HNF-1α and -4α are largely conserved between mice and humans. PMID:19188435
Interaction of AIM with insulin-like growth factor-binding protein-4.
You, Qiang; Wu, Yan; Yao, Nannan; Shen, Guannan; Zhang, Ying; Xu, Liangguo; Li, Guiying; Ju, Cynthia
2015-09-01
Apoptosis inhibitor of macrophages (AIM/cluster of differentiation 5 antigen-like/soluble protein α) has been shown to inhibit cellular apoptosis; however, the underlying molecular mechanism has not been elucidated. Using yeast two‑hybrid screening, the present study uncovered that AIM binds to insulin‑like growth factor binding protein‑4 (IGFBP‑4). AIM interaction with IGFBP‑4, as well as IGFBP‑2 and ‑3, but not with IGFBP‑1, ‑5 and ‑6, was further confirmed by co‑immunoprecipitation (co‑IP) using 293 cells. The binding activity and affinity between AIM and IGFBP‑4 in vitro were analyzed by co‑IP and biolayer interferometry. Serum depletion‑induced cellular apoptosis was attenuated by insulin‑like growth factor‑I (IGF‑I), and this effect was abrogated by IGFBP‑4. Of note, in the presence of AIM, the inhibitory effect of IGFBP‑4 on the anti‑apoptosis function of IGF‑I was attenuated, possibly through binding of AIM with IGFBP‑4. In conclusion, to the best of our knowledge, the present study provides the first evidence that AIM binds to IGFBP‑2, ‑3 and ‑4. The data suggest that this interaction may contribute to the mechanism of AIM-mediated anti-apoptosis function.
Assessing the Efficacy of Adjustable Moving Averages Using ASEAN-5 Currencies.
Chan Phooi M'ng, Jacinta; Zainudin, Rozaimah
2016-01-01
The objective of this research is to examine the trends in the exchange rate markets of the ASEAN-5 countries (Indonesia (IDR), Malaysia (MYR), the Philippines (PHP), Singapore (SGD), and Thailand (THB)) through the application of dynamic moving average trading systems. This research offers evidence of the usefulness of the time-varying volatility technical analysis indicator, Adjustable Moving Average (AMA') in deciphering trends in these ASEAN-5 exchange rate markets. This time-varying volatility factor, referred to as the Efficacy Ratio in this paper, is embedded in AMA'. The Efficacy Ratio adjusts the AMA' to the prevailing market conditions by avoiding whipsaws (losses due, in part, to acting on wrong trading signals, which generally occur when there is no general direction in the market) in range trading and by entering early into new trends in trend trading. The efficacy of AMA' is assessed against other popular moving-average rules. Based on the January 2005 to December 2014 dataset, our findings show that the moving averages and AMA' are superior to the passive buy-and-hold strategy. Specifically, AMA' outperforms the other models for the United States Dollar against PHP (USD/PHP) and USD/THB currency pairs. The results show that different length moving averages perform better in different periods for the five currencies. This is consistent with our hypothesis that a dynamic adjustable technical indicator is needed to cater for different periods in different markets.
Jennings, T D; Gonda, M G; Underwood, K R; Wertz-Lutz, A E; Blair, A D
2016-10-01
The objective of this study was to determine whether altered maternal energy supply during mid-gestation results in differences in muscle histology or genes regulating fetal adipose and muscle development. In total, 22 Angus cross-bred heifers (BW=527.73±8.3 kg) were assigned randomly to the three dietary treatments providing 146% (HIGH; n=7), 87% (INT; n=7) or 72% (LOW; n=8) of the energy requirements for heifers from day 85 to day 180 of gestation. Fetuses were removed via cesarean section at day 180 of gestation and longissimus muscle (LM) and subcutaneous fat were collected and prepared for analysis of gene expression. Samples from the LM and semitendinosus (ST) were evaluated for muscle fiber diameter, area and number. The right hind limb was dissected and analyzed to determine compositional analysis. Fetal growth and muscle histology characteristics of the LM and ST were similar among treatments. Preadipocyte factor-1 expression was up-regulated in fetal LM (P<0.05) of HIGH fetuses as compared with INT, whereas LOW fetuses showed increased CCAAT/enhancer-binding protein-β (C/EBP-β) expression in LM as compared with INT (P<0.05). Peroxisome proliferator-activated receptor γand C/EBP-α did not differ as a result of dietary treatment in LM or subcutaneous fat samples. There was a tendency for increased expression of fatty acid synthase in LM of LOW fetuses as compared with INT (P<0.10). Myogenin was more highly expressed (P<0.05) in LM of the LOW fetuses, whereas μ-calpain expression was increased in the HIGH treatment compared with INT. A tendency for increased expression of IGF-II was observed for both LOW and HIGH fetuses compared with INT (P<0.10). Expression of stearoyl-CoA desaturase, myoblast determination protein 1, myogenic factor 5, myogenic regulatory factor-4, m-calpain, calpastatin, IGF-I and myostatin was similar between treatments. Collectively, these results suggest that fetal growth characteristics are not affected by the level of maternal nutritional manipulation imposed in this study during mid-gestation. However, differences in expression of fetal genes regulating adipose and muscle tissue growth and development could lead to differences in postnatal composition and warrants further investigation.
Lyabin, D N; Ovchinnikov, L P
2016-03-02
The Y-box binding protein 1 (YB-1) is a key regulator of gene expression at the level of both translation and transcription. The mode of its action on cellular events depends on its subcellular distribution and the amount in the cell. So far, the regulatory mechanisms of YB-1 synthesis have not been adequately studied. Our previous finding was that selective inhibition of YB-1 mRNA translation was caused by suppression of activity of the mTOR signaling pathway. It was suggested that this event may be mediated by phosphorylation of the 4E-binding protein (4E-BP). Here, we report that 4E-BP alone can only slightly inhibit YB-1 synthesis both in the cell and in vitro, although it essentially decreases binding of the 4F-group translation initiation factors to mRNA. With inhibited mTOR kinase, the level of mRNA binding to the eIF4F-group factors was decreased, while that to 4E-BP1 was increased, as was observed for both mTOR kinase-sensitive mRNAs and those showing low sensitivity. This suggests that selective inhibition of translation of YB-1 mRNA, and probably some other mRNAs as well, by mTOR kinase inhibitors is not mediated by the action of the 4E-binding protein upon functions of the 4F-group translation initiation factors.
Göritz, Anja S; Birnbaum, Michael H
2005-11-01
The customizable PHP script Generic HTML Form Processor is intended to assist researchers and students in quickly setting up surveys and experiments that can be administered via the Web. This script relieves researchers from the burdens of writing new CGI scripts and building databases for each Web study. Generic HTML Form Processor processes any syntactically correct HTML forminput and saves it into a dynamically created open-source database. We describe five modes for usage of the script that allow increasing functionality but require increasing levels of knowledge of PHP and Web servers: The first two modes require no previous knowledge, and the fifth requires PHP programming expertise. Use of Generic HTML Form Processor is free for academic purposes, and its Web address is www.goeritz.net/brmic.
Martins, Mónica; Mourato, Cláudia; Sanches, Sandra; Noronha, João Paulo; Crespo, M T Barreto; Pereira, Inês A C
2017-01-01
Pharmaceutical products (PhP) are one of the most alarming emergent pollutants in the environment. Therefore, it is of extreme importance to investigate efficient PhP removal processes. Biologic synthesis of platinum nanoparticles (Bio-Pt) has been reported, but their catalytic activity was never investigated. In this work, we explored the potential of cell-supported platinum (Bio-Pt) and palladium (Bio-Pd) nanoparticles synthesized with Desulfovibrio vulgaris as biocatalysts for removal of four PhP: ciprofloxacin, sulfamethoxazole, ibuprofen and 17β-estradiol. The catalytic activity of the biological nanoparticles was compared with the PhP removal efficiency of D. vulgaris whole-cells. In contrast with Bio-Pd, Bio-Pt has a high catalytic activity in PhP removal, with 94, 85 and 70% removal of 17β-estradiol, sulfamethoxazole and ciprofloxacin, respectively. In addition, the estrogenic activity of 17β-estradiol was strongly reduced after the reaction with Bio-Pt, showing that this biocatalyst produces less toxic effluents. Bio-Pt or Bio-Pd did not act on ibuprofen, but this could be completely removed by D. vulgaris whole-cells, demonstrating that sulfate-reducing bacteria are among the microorganisms capable of biotransformation of ibuprofen in anaerobic environments. This study demonstrates for the first time that Bio-Pt has a high catalytic activity, and is a promising catalyst to be used in water treatment processes for the removal of antibiotics and endocrine disrupting compounds, the most problematic PhP. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rincon, Melvin Y; de Vin, Filip; Duqué, Sandra I; Fripont, Shelly; Castaldo, Stephanie A; Bouhuijzen-Wenger, Jessica; Holt, Matthew G
2018-04-01
Until recently, adeno-associated virus 9 (AAV9) was considered the AAV serotype most effective in crossing the blood-brain barrier (BBB) and transducing cells of the central nervous system (CNS), following systemic injection. However, a newly engineered capsid, AAV-PHP.B, is reported to cross the BBB at even higher efficiency. We investigated how much we could boost CNS transgene expression by using AAV-PHP.B carrying a self-complementary (sc) genome. To allow comparison, 6 weeks old C57BL/6 mice received intravenous injections of scAAV2/9-GFP or scAAV2/PHP.B-GFP at equivalent doses. Three weeks postinjection, transgene expression was assessed in brain and spinal cord. We consistently observed more widespread CNS transduction and higher levels of transgene expression when using the scAAV2/PHP.B-GFP vector. In particular, we observed an unprecedented level of astrocyte transduction in the cortex, when using a ubiquitous CBA promoter. In comparison, neuronal transduction was much lower than previously reported. However, strong neuronal expression (including spinal motor neurons) was observed when the human synapsin promoter was used. These findings constitute the first reported use of an AAV-PHP.B capsid, encapsulating a scAAV genome, for gene transfer in adult mice. Our results underscore the potential of this AAV construct as a platform for safer and more efficacious gene therapy vectors for the CNS.
Secoisolariciresinol diglucoside inhibits adipogenesis through the AMPK pathway.
Kang, JongWook; Park, Jinbong; Kim, Hye-Lin; Jung, Yunu; Youn, Dong-Hyun; Lim, Seona; Song, Gahee; Park, Hyewon; Jin, Jong Sik; Kwak, Hyun Jeong; Um, Jae-Young
2018-02-05
Flaxseeds are used to treat metabolic diseases such as type 2 diabetes, fatty liver, hyperlipidemia and obesity. Secoisolariciresinol diglucoside (SDG) is a main substance of lignan which belongs to the phytoestrogen family and exists abundantly in flaxseeds. In this study, SDG reduced the body weight and size of adipose tissue, and decreased protein expressions of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (C/EBPα) in the high fat diet-fed-induced obese mice model. In the vitro study, we examined the anti-adipogenic effect of SDG during differentiation of 3T3-L1 cells into adipocytes. 3T3-L1 preadipocytes were differentiated and treated with various concentrations of SDG. Oil Red O staining was done to measure the quantity of lipid contents. As a result, SDG reduced lipid accumulation and decreased the expressions of adipogenic-related genes such as adipocyte fatty-acid-binding protein 2, adiponectin, and resistin. SDG also decreased the mRNA and protein levels of PPARγ and C/EBPα. Furthermore, phosphorylation levels of AMP-activated protein kinase α (AMPK α) and its upstream activator, liver kinase B1, were significantly increased by SDG in 3T3-L1 cells. These results suggest that SDG inhibits adipogenesis by activating AMPKα, suggesting it could be an attractive therapeutic candidate for the treatment of obesity. Copyright © 2017 Elsevier B.V. All rights reserved.
Selim, Erin; Frkanec, Julie T; Cunard, Robyn
2007-02-01
Fibrates, which function by binding and activating peroxisome proliferator-activated receptor alpha (PPARalpha), have been used successfully to treat hyperlipidemia and atherosclerosis. Increasing evidence suggests that in addition to their lipid lowering activities these medications also function as immunosuppressive agents. Tribbles is a Drosophila protein that slows cell cycle progression, and its mammalian homolog, TRB3 interferes with insulin-induced activation of AKT. In these studies we demonstrate that fibrates upregulate TRB3 expression in mitogen-activated lymphocytes. Interestingly, in lymphocytes fibrates augment TRB3 expression in both PPARalpha wildtype and knockout mice, suggesting that upregulation of this protein occurs in a PPARalpha-independent manner. Fibrates activate a proximal TRB3 promoter construct and mutation or partial deletion of a potential PPAR response element does not alter the ability of fibrates to drive TRB3 expression. Subsequent studies reveal that fibrates upregulate C/EBPbeta and CHOP in lymphocytes and mutation of potential C/EBPbeta and CHOP consensus sequences abrogates the ability of fibrates to upregulate TRB3 promoter activity. Accordingly, fibrates enhance the recruitment of C/EBPbeta and CHOP to the proximal TRB3 promoter. Finally, TRB3 expression in lymphocytes induces G2 cell cycle delay and cellular depletion. These studies outline a novel PPARalpha-independent mechanism of action of fibrates and document for the first time the expression of TRB3 in activated lymphocytes.
Ververis, J; Ku, L; Delafontaine, P
1994-02-01
Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.
phpMs: A PHP-Based Mass Spectrometry Utilities Library.
Collins, Andrew; Jones, Andrew R
2018-03-02
The recent establishment of cloud computing, high-throughput networking, and more versatile web standards and browsers has led to a renewed interest in web-based applications. While traditionally big data has been the domain of optimized desktop and server applications, it is now possible to store vast amounts of data and perform the necessary calculations offsite in cloud storage and computing providers, with the results visualized in a high-quality cross-platform interface via a web browser. There are number of emerging platforms for cloud-based mass spectrometry data analysis; however, there is limited pre-existing code accessible to web developers, especially for those that are constrained to a shared hosting environment where Java and C applications are often forbidden from use by the hosting provider. To remedy this, we provide an open-source mass spectrometry library for one of the most commonly used web development languages, PHP. Our new library, phpMs, provides objects for storing and manipulating spectra and identification data as well as utilities for file reading, file writing, calculations, peptide fragmentation, and protein digestion as well as a software interface for controlling search engines. We provide a working demonstration of some of the capabilities at http://pgb.liv.ac.uk/phpMs .
Increasing X-Ray Brightness of HBL Source 1ES 1727+650
NASA Astrophysics Data System (ADS)
Kapanadze, Bidzina
2017-02-01
The nearby TeV-detected HBL object 1ES 1727+502 (1Zw 187, z=0.055) has been targeted 111 times by X-ray Telescope (XRT) onboard Swift since 2010 April 2. During this monitoring, the 0.3-10 keV count rate varied by a factor of 17.4 (see http://www.swift.psu.edu/monitoring/source.php?source=QSOB1727+502) and showed a prolonged X-ray flaring activity during 2015 March - 2016 February, revealed mainly via the Target of Opportunity observations performed in the framework of our request of different urgencies (Request Number 6571, 6606, 6717, 6809, 6927, 7322, 7355, 7379, 7390, 7404, 7430, 7441, 7516, 7565; see Kapanadze et al. 2015, Atel #8224, #7342).
Fang, Lei; Wolmarans, Bernhard; Kang, Minyoung; Jeong, Kwang C; Wright, Anita C
2015-01-01
Human Vibrio infections associated with consumption of raw shellfish greatly impact the seafood industry. Vibrio cholerae-related disease is occasionally attributed to seafood, but V. vulnificus and V. parahaemolyticus are the primary targets of postharvest processing (PHP) efforts in the United States, as they pose the greatest threat to the industry. Most successful PHP treatments for Vibrio reduction also kill the molluscs and are not suitable for the lucrative half-shell market, while nonlethal practices are generally less effective. Therefore, novel intervention strategies for Vibrio reduction are needed for live oyster products. Chitosan is a bioactive derivative of chitin that is generally recognized as safe as a food additive by the FDA, and chitosan microparticles (CMs) were investigated in the present study as a potential PHP treatment for live oyster applications. Treatment of broth cultures with 0.5% (wt/vol) CMs resulted in growth cessation of V. cholerae, V. vulnificus, and V. parahaemolyticus, reducing culturable levels to nondetectable amounts after 3 h in three independent experiments. Furthermore, a similar treatment in artificial seawater at 4, 25, and 37°C reduced V. vulnificus levels by ca. 7 log CFU/ml after 24 h of exposure, but 48 h of exposure and elevated temperature were required to achieve similar results for V. parahaemolyticus and V. cholerae. Live oysters that either were artificially inoculated or contained natural populations of V. vulnificus and V. parahaemolyticus showed significant and consistent reductions following CM treatment (5%) compared to the amounts in the untreated controls. Thus, the results strongly support the promising potential for the application of CMs as a PHP treatment to reduce Vibrio spp. in intact live oysters. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Technical development of PubMed Interact: an improved interface for MEDLINE/PubMed searches
Muin, Michael; Fontelo, Paul
2006-01-01
Background The project aims to create an alternative search interface for MEDLINE/PubMed that may provide assistance to the novice user and added convenience to the advanced user. An earlier version of the project was the 'Slider Interface for MEDLINE/PubMed searches' (SLIM) which provided JavaScript slider bars to control search parameters. In this new version, recent developments in Web-based technologies were implemented. These changes may prove to be even more valuable in enhancing user interactivity through client-side manipulation and management of results. Results PubMed Interact is a Web-based MEDLINE/PubMed search application built with HTML, JavaScript and PHP. It is implemented on a Windows Server 2003 with Apache 2.0.52, PHP 4.4.1 and MySQL 4.1.18. PHP scripts provide the backend engine that connects with E-Utilities and parses XML files. JavaScript manages client-side functionalities and converts Web pages into interactive platforms using dynamic HTML (DHTML), Document Object Model (DOM) tree manipulation and Ajax methods. With PubMed Interact, users can limit searches with JavaScript slider bars, preview result counts, delete citations from the list, display and add related articles and create relevance lists. Many interactive features occur at client-side, which allow instant feedback without reloading or refreshing the page resulting in a more efficient user experience. Conclusion PubMed Interact is a highly interactive Web-based search application for MEDLINE/PubMed that explores recent trends in Web technologies like DOM tree manipulation and Ajax. It may become a valuable technical development for online medical search applications. PMID:17083729
Sharma, Umender K; Chatterji, Dipankar
2008-05-01
Anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA bind to the essential housekeeping sigma factor, sigma(70), of E. coli. Though both factors are known to interact with the C-terminal region of sigma(70), the physiological consequences of these interactions are very different. This study was undertaken for the purpose of deciphering the mechanisms by which E. coli Rsd and bacteriophage T4 AsiA inhibit or modulate the activity of E. coli RNA polymerase, which leads to the inhibition of E. coli cell growth to different amounts. It was found that AsiA is the more potent inhibitor of in vivo transcription and thus causes higher inhibition of E. coli cell growth. Measurements of affinity constants by surface plasmon resonance experiments showed that Rsd and AsiA bind to sigma(70) with similar affinity. Data obtained from in vivo and in vitro binding experiments clearly demonstrated that the major difference between AsiA and Rsd is the ability of AsiA to form a stable ternary complex with RNA polymerase. The binding patterns of AsiA and Rsd with sigma(70) studied by using the yeast two-hybrid system revealed that region 4 of sigma(70) is involved in binding to both of these anti-sigma factors; however, Rsd interacts with other regions of sigma(70) as well. Taken together, these results suggest that the higher inhibition of E. coli growth by AsiA expression is probably due to the ability of the AsiA protein to trap the holoenzyme RNA polymerase rather than its higher binding affinity to sigma(70).
Sharma, Umender K.; Chatterji, Dipankar
2008-01-01
Anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA bind to the essential housekeeping sigma factor, σ70, of E. coli. Though both factors are known to interact with the C-terminal region of σ70, the physiological consequences of these interactions are very different. This study was undertaken for the purpose of deciphering the mechanisms by which E. coli Rsd and bacteriophage T4 AsiA inhibit or modulate the activity of E. coli RNA polymerase, which leads to the inhibition of E. coli cell growth to different amounts. It was found that AsiA is the more potent inhibitor of in vivo transcription and thus causes higher inhibition of E. coli cell growth. Measurements of affinity constants by surface plasmon resonance experiments showed that Rsd and AsiA bind to σ70 with similar affinity. Data obtained from in vivo and in vitro binding experiments clearly demonstrated that the major difference between AsiA and Rsd is the ability of AsiA to form a stable ternary complex with RNA polymerase. The binding patterns of AsiA and Rsd with σ70 studied by using the yeast two-hybrid system revealed that region 4 of σ70 is involved in binding to both of these anti-sigma factors; however, Rsd interacts with other regions of σ70 as well. Taken together, these results suggest that the higher inhibition of E. coli growth by AsiA expression is probably due to the ability of the AsiA protein to trap the holoenzyme RNA polymerase rather than its higher binding affinity to σ70. PMID:18359804
Grigelioniene, Giedre; Nevalainen, Pasi I; Reyes, Monica; Thiele, Susanne; Tafaj, Olta; Molinaro, Angelo; Takatani, Rieko; Ala-Houhala, Marja; Nilsson, Daniel; Eisfeldt, Jesper; Lindstrand, Anna; Kottler, Marie-Laure; Mäkitie, Outi; Jüppner, Harald
2017-04-01
Pseudohypoparathyroidism type Ib (PHP1B) is characterized primarily by resistance to parathyroid hormone (PTH) and thus hypocalcemia and hyperphosphatemia, in most cases without evidence for Albright hereditary osteodystrophy (AHO). PHP1B is associated with epigenetic changes at one or several differentially-methylated regions (DMRs) within GNAS, which encodes the α-subunit of the stimulatory G protein (Gsα) and splice variants thereof. Heterozygous, maternally inherited STX16 or GNAS deletions leading to isolated loss-of-methylation (LOM) at exon A/B alone or at all maternal DMRs are the cause of autosomal dominant PHP1B (AD-PHP1B). In this study, we analyzed three affected individuals, the female proband and her two sons. All three revealed isolated LOM at GNAS exon A/B, whereas the proband's healthy maternal grandmother and uncle showed normal methylation at this locus. Haplotype analysis was consistent with linkage to the STX16/GNAS region, yet no deletion could be identified. Whole-genome sequencing of one of the patients revealed a large heterozygous inversion (1,882,433 bp). The centromeric breakpoint of the inversion is located 7,225 bp downstream of GNAS exon XL, but its DMR showed no methylation abnormality, raising the possibility that the inversion disrupts a regulatory element required only for establishing or maintaining exon A/B methylation. Because our three patients presented phenotypes consistent with PHP1B, and not with PHP1A, the Gsα promoter is probably unaffected by the inversion. Our findings expand the spectrum of genetic mutations that lead to LOM at exon A/B alone and thus biallelic expression of the transcript derived from this alternative first GNAS exon. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.
Méthot, N; Song, M S; Sonenberg, N
1996-01-01
The binding of mRNA to the ribosome is mediated by eukaryotic initiation factors eukaryotic initiation factor 4F (eIF4F), eIF4B, eIF4A, and eIF3, eIF4F binds to the mRNA cap structure and, in combination with eIF4B, is believed to unwind the secondary structure in the 5' untranslated region to facilitate ribosome binding. eIF3 associates with the 40S ribosomal subunit prior to mRNA binding. eIF4B copurifies with eIF3 and eIF4F through several purification steps, suggesting the involvement of a multisubunit complex during translation initiation. To understand the mechanism by which eIF4B promotes 40S ribosome binding to the mRNA, we studied its interactions with partner proteins by using a filter overlay (protein-protein [far Western]) assay and the two-hybrid system. In this report, we show that eIF4B self-associates and also interacts directly with the p170 subunit of eIF3. A region rich in aspartic acid, arginine, tyrosine, and glycine, termed the DRYG domain, is sufficient for self-association of eIF4B, both in vitro and in vivo, and for interaction with the p170 subunit of eIF3. These experiments suggest that eIF4B participates in mRNA-ribosome binding by acting as an intermediary between the mRNA and eIF3, via a direct interaction with the p170 subunit of eIF3. PMID:8816444
Synapse-specific and compartmentalized expression of presynaptic homeostatic potentiation
Li, Xiling; Goel, Pragya; Chen, Catherine; Angajala, Varun; Chen, Xun
2018-01-01
Postsynaptic compartments can be specifically modulated during various forms of synaptic plasticity, but it is unclear whether this precision is shared at presynaptic terminals. Presynaptic homeostatic plasticity (PHP) stabilizes neurotransmission at the Drosophila neuromuscular junction, where a retrograde enhancement of presynaptic neurotransmitter release compensates for diminished postsynaptic receptor functionality. To test the specificity of PHP induction and expression, we have developed a genetic manipulation to reduce postsynaptic receptor expression at one of the two muscles innervated by a single motor neuron. We find that PHP can be induced and expressed at a subset of synapses, over both acute and chronic time scales, without influencing transmission at adjacent release sites. Further, homeostatic modulations to CaMKII, vesicle pools, and functional release sites are compartmentalized and do not spread to neighboring pre- or post-synaptic structures. Thus, both PHP induction and expression mechanisms are locally transmitted and restricted to specific synaptic compartments. PMID:29620520
Wang, Guohua; Wang, Fang; Huang, Qian; Li, Yu; Liu, Yunlong; Wang, Yadong
2015-01-01
Transcription factors are proteins that bind to DNA sequences to regulate gene transcription. The transcription factor binding sites are short DNA sequences (5-20 bp long) specifically bound by one or more transcription factors. The identification of transcription factor binding sites and prediction of their function continue to be challenging problems in computational biology. In this study, by integrating the DNase I hypersensitive sites with known position weight matrices in the TRANSFAC database, the transcription factor binding sites in gene regulatory region are identified. Based on the global gene expression patterns in cervical cancer HeLaS3 cell and HelaS3-ifnα4h cell (interferon treatment on HeLaS3 cell for 4 hours), we present a model-based computational approach to predict a set of transcription factors that potentially cause such differential gene expression. Significantly, 6 out 10 predicted functional factors, including IRF, IRF-2, IRF-9, IRF-1 and IRF-3, ICSBP, belong to interferon regulatory factor family and upregulate the gene expression levels responding to the interferon treatment. Another factor, ISGF-3, is also a transcriptional activator induced by interferon alpha. Using the different transcription factor binding sites selected criteria, the prediction result of our model is consistent. Our model demonstrated the potential to computationally identify the functional transcription factors in gene regulation.
Modeling of pulsating heat pipes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Givler, Richard C.; Martinez, Mario J.
This report summarizes the results of a computer model that describes the behavior of pulsating heat pipes (PHP). The purpose of the project was to develop a highly efficient (as compared to the heat transfer capability of solid copper) thermal groundplane (TGP) using silicon carbide (SiC) as the substrate material and water as the working fluid. The objective of this project is to develop a multi-physics model for this complex phenomenon to assist with an understanding of how PHPs operate and to be able to understand how various parameters (geometry, fill ratio, materials, working fluid, etc.) affect its performance. Themore » physical processes describing a PHP are highly coupled. Understanding its operation is further complicated by the non-equilibrium nature of the interplay between evaporation/condensation, bubble growth and collapse or coalescence, and the coupled response of the multiphase fluid dynamics among the different channels. A comprehensive theory of operation and design tools for PHPs is still an unrealized task. In the following we first analyze, in some detail, a simple model that has been proposed to describe PHP behavior. Although it includes fundamental features of a PHP, it also makes some assumptions to keep the model tractable. In an effort to improve on current modeling practice, we constructed a model for a PHP using some unique features available in FLOW-3D, version 9.2-3 (Flow Science, 2007). We believe that this flow modeling software retains more of the salient features of a PHP and thus, provides a closer representation of its behavior.« less
Diagnosis and management of primary hepatic pregnancy: literature review of 31 cases.
Wang, Jicai; Su, Zhilei; Lu, Shounan; Fu, Wen; Liu, Zhifa; Jiang, Xingming; Tai, Sheng
2018-05-21
To summarize the appropriate diagnostic methods and therapeutic options for primary hepatic pregnancy (PHP). Literature searches were performed in Pubmed, Web of Science, Cochrane Library and Embase databases (1956-2017), using the following search terms: primary hepatic pregnancy, hepatic pregnancy, liver pregnancy, hepatic ectopic pregnancy and intrahepatic pregnancy. Further literature was confirmed through cross-referencing. Thirty-one cases were reviewed and collected. The site mostly described in literatures is the right lobe of liver (93.5%). Main symptoms of PHP included abdominal pain (77.4%), amenorrhea (45.2%), acuteperitonism (32.3%), shock (25.8%) and vomit (16.1%). Majority of patients (83.9%) were treated by laparotomy. Less-invasive approaches (16.1%) such as laparoscopy or combination of postoperative injection of methotrexate were used less frequently. The outcome was acceptable at the end of the follow-up period in ten cases (1-72 months) and the recovery rate was 96.7%. One patient died and other complications were noted in three patients during the postoperative period. The clinical diagnosis of PHP can be settled up by comprehensive analysis of serum HCG levels, ultrasound and imaging. The analysis should be assessed carefully before therapeutic procedure. Invasive methods should be preferential. Less-invasive approaches can be selected when the patients have stable hemodynamics and non-acute abdomen.
77 FR 15933 - Importation of Wooden Handicrafts From China
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-19
..., in the third column, in footnote 2, in the third line `` https://www.ippc.int/index.php?id=13399&tx...://www.ippc.int/index.php?id=13399&tx_publication_pi1 [showUid]=133703&frompage=13399&type=publication...