Sample records for ccd photometric study

  1. Test of CCD Precision Limits for Differential Photometry

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Dunham, E. W.; Wei, M. Z.; Robinson, L. B.; Ford, C. H.; Granados, A. F.

    1995-01-01

    Results of tests to demonstrate the very high differential-photometric stability of CCD light sensors are presented. The measurements reported here demonstrate that in a controlled laboratory environment, a front-illuminated CCD can provide differential-photometric measurements with reproducible precision approaching one part in 105. Practical limitations to the precision of differential-photometric measurements with CCDs and implications for spaceborne applications are discussed.

  2. Test of CCD Precision Limits for Differential Photometry

    NASA Technical Reports Server (NTRS)

    Robinson, L. B.; Wei, M. Z.; Borucki, W. J.; Dunham, E. W.; Ford, C. H.; Granados, A. F.

    1995-01-01

    Results of tests to demonstrate the very high differential-photometric stability of CCD light sensors are presented. The measurements reported here demonstrate that in a controlled laboratory environment, a front-illuminated CCD can provide differential-photometric measurements with reproducible precision approaching one part in 10(exp 5). Practical limitations to the precision of differential-photometric measurements with CCDs and implications for spaceborne applications are discussed.

  3. Realization of Vilnius UPXYZVS photometric system for AltaU42 CCD camera at the MAO NAS of Ukraine

    NASA Astrophysics Data System (ADS)

    Vid'Machenko, A. P.; Andruk, V. M.; Samoylov, V. S.; Delets, O. S.; Nevodovsky, P. V.; Ivashchenko, Yu. M.; Kovalchuk, G. U.

    2005-06-01

    The description of two-inch glass filters of the Vilnius UPXYZVS photometric system, which are made at the Main Astronomical Observatory of NAS of Ukraine for AltaU42 CCD camera with format of 2048×2048 pixels, is presented in the paper. Reaction curves of instrumental system are shown. Estimations of minimal star's magnitudes for each filter's band in comparison with the visual V one are obtained. New software for automation of CCD frames processing is developed in program shell of LINUX/MIDAS/ROMAFOT. It is planned to carry out observations with the purpose to create the catalogue of primary UPXYZVS CCD standards in selected field of the sky for some radio-sources, globular and open clusters, etc. Numerical estimations of astrometric and photometric accuracy are obtained.

  4. Photometric correction for an optical CCD-based system based on the sparsity of an eight-neighborhood gray gradient.

    PubMed

    Zhang, Yuzhong; Zhang, Yan

    2016-07-01

    In an optical measurement and analysis system based on a CCD, due to the existence of optical vignetting and natural vignetting, photometric distortion, in which the intensity falls off away from the image center, affects the subsequent processing and measuring precision severely. To deal with this problem, an easy and straightforward method used for photometric distortion correction is presented in this paper. This method introduces a simple polynomial fitting model of the photometric distortion function and employs a particle swarm optimization algorithm to get these model parameters by means of a minimizing eight-neighborhood gray gradient. Compared with conventional calibration methods, this method can obtain the profile information of photometric distortion from only a single common image captured by the optical CCD-based system, with no need for a uniform luminance area source used as a standard reference source and relevant optical and geometric parameters in advance. To illustrate the applicability of this method, numerical simulations and photometric distortions with different lens parameters are evaluated using this method in this paper. Moreover, the application example of temperature field correction for casting billets also demonstrates the effectiveness of this method. The experimental results show that the proposed method is able to achieve the maximum absolute error for vignetting estimation of 0.0765 and the relative error for vignetting estimation from different background images of 3.86%.

  5. The CCD Photometric Calibration Cookbook

    NASA Astrophysics Data System (ADS)

    Palmer, J.; Davenhall, A. C.

    This cookbook presents simple recipes for the photometric calibration of CCD frames. Using these recipes you can calibrate the brightness of objects measured in CCD frames into magnitudes in standard photometric systems, such as the Johnson-Morgan UBV, system. The recipes use standard software available at all Starlink sites. The topics covered include: selecting standard stars, measuring instrumental magnitudes and calibrating instrumental magnitudes into a standard system. The recipes are appropriate for use with data acquired with optical CCDs and filters, operated in standard ways, and describe the usual calibration technique of observing standard stars. The software is robust and reliable, but the techniques are usually not suitable where very high accuracy is required. In addition to the recipes and scripts, sufficient background material is presented to explain the procedures and techniques used. The treatment is deliberately practical rather than theoretical, in keeping with the aim of providing advice on the actual calibration of observations. This cookbook is aimed firmly at people who are new to astronomical photometry. Typical readers might have a set of photometric observations to reduce (perhaps observed by a colleague) or be planning a programme of photometric observations, perhaps for the first time. No prior knowledge of astronomical photometry is assumed. The cookbook is not aimed at experts in astronomical photometry. Many finer points are omitted for clarity and brevity. Also, in order to make the most accurate possible calibration of high-precision photometry, it is usually necessary to use bespoke software tailored to the observing programme and photometric system you are using.

  6. Transformation of Pan-STARRS1 gri to Stetson BVRI magnitudes. Photometry of small bodies observations.

    NASA Astrophysics Data System (ADS)

    Kostov, A.; Bonev, T.

    2018-02-01

    The UBVRI broad band photometric system is widely used in CCD astronomy. There are a lot of sets of standard stars for this photometric system, the Landolt's and Stetson's catalogues being the most precise and reliable. Another photometric system, recently considerably spread in CCD observations is ugriz, which originates from the Sloan Digital Sky Survey (SDSS) and has now many variations based on its 5 broad-band filters. One of the photometric systems based on it is The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS). In this paper we compare the BVRI magnitudes in the Stetson catalogue of standard stars with the magnitudes of the corresponding stars in the Pan-STARRS1 (PS1) grizyw catalogue. Transformations between these two systems are presented and discussed. An algorithm for data reduction and calibration is developed and its functionality is demonstrated in the magnitude determination of an asteroid.

  7. Photometric Observations of 1969 Alain

    NASA Astrophysics Data System (ADS)

    Hayes-Gehrke, Melissa N.; Leffler, Taylor; Hampton, Karley; Chavis, Jacob; Fong, Josef; Wang, Yu; Hung, Andrew; Mahoney, James; Rizal, Muhammad Haziq Aiman Saiful Rizal

    2018-01-01

    CCD photometric observations of minor planet 1969 Alain by the T17 Telescope in Siding Spring, Australia in March and April 2017 were combined for lightcurve analysis. The combined data set led to a rotation period of P = 32.4 ± 0.4 h.

  8. Photometric followup investigations on LAMOST survey target Ly And

    NASA Astrophysics Data System (ADS)

    Lu, Hong-peng; Zhang, Li-yun; Han, Xianming L.; Pi, Qing-feng; Wang, Dai-mei

    2017-02-01

    We present a low-dispersion spectrum and two sets of CCD photometric light curves of the eclipsing binary LY And for the first time. The spectrum of LY And was classified as G2. We derived an updated ephemeris based on all previously available and our newly acquired minimum light times. Our analyses of LY And light curve minimum times reveals that the differences between calculated and observed minimum times for LY And can be represented by an upward parabolic curve, which means its orbital period is increasing with a rate of 1.88 (± 0.13) × 10-7 days/year. This increase in orbital period may be interpreted as mass transfer from the primary component to the secondary component, with a rate of dM1/dt = -4.54 × 10-8M⊙/year. By analyzing our CCD photometric light curves obtained in 2015, we obtained its photometric solution with the Wilson-Devinney program. This photometric solution also fits very well our light curves obtained in 2014. Our photometric solution shows that LY And is a contact eclipsing binary and its contact factor is f = (17.8 ± 1.9)%. Furthermore, both our spectroscopic and photometric data show no obvious chromospheric activity of LY And.

  9. First CCD UBVI photometric analysis of six open cluster candidates

    NASA Astrophysics Data System (ADS)

    Piatti, A. E.; Clariá, J. J.; Ahumada, A. V.

    2011-04-01

    We have obtained CCD UBVIKC photometry down to V ˜ 22 for the open cluster candidates Haffner 3, Haffner 5, NGC 2368, Haffner 25, Hogg 3 and Hogg 4 and their surrounding fields. None of these objects have been photometrically studied so far. Our analysis shows that these stellar groups are not genuine open clusters since no clear main sequences or other meaningful features can be seen in their colour-magnitude and colour-colour diagrams. We checked for possible differential reddening across the studied fields that could be hiding the characteristics of real open clusters. However, the dust in the directions to these objects appears to be uniformly distributed. Moreover, star counts carried out within and outside the open cluster candidate fields do not support the hypothesis that these objects are real open clusters or even open cluster remnants.

  10. Multicolor CCD photometry of the open cluster NGC 752

    NASA Astrophysics Data System (ADS)

    Bartašiūtė, Stanislava; Janusz, Robert; Boyle, Richard P.; Philip, A. G. Davis; Deveikis, Viktoras

    2010-01-01

    We obtained CCD observations of the open cluster NGC 752 with the 1.8m Vatican Advanced Technology Telescope (Mt. Graham, Arizona) with a 4K CCD camera and eight intermediate-band filters of the Stromvil (Strömgren + Vilnius) system. Four 12‧ × 12‧ fields were observed, covering the central part of the cluster. The good-quality multicolor data made it possible to obtain precise estimates of distance moduli, metallicity and foreground reddening for individual stars down to the limiting magnitude, V = 17.5, enabling photometric identification of faint cluster members. The new observations provide an extension of the lower main sequence to three magnitudes beyond the previous (photographic) limit. A relatively small number of photometric members identified at fainter magnitudes seems to be indicative of actual dissolution of the cluster from the low-mass end.

  11. VizieR Online Data Catalog: LY And photometric followup (Lu+, 2017)

    NASA Astrophysics Data System (ADS)

    Lu, H.-P.; Zhang, L.-Y.; Han, X. L.; Pi, Q.-F.; Wang, D.-M.

    2017-04-01

    We obtained our first photometric data set in R and I bands for LY And on November 24, 2014 using the 1-m RCC reflecting telescope at Yunnan Observatory, which was equipped with an Andor DW436 2048x2048 CCD camera with a field of view of 7.3'x7.3'. The exposure times were 300s for both R and I bands. We obtained our second photometric data set in B, V, R and I bands using the SARA 914-mm telescope at Kitt Peak National Observatory on October 23, 2015. This telescope was equipped with a 2048x2048 pixels CCD and each pixel after 2x2 binning is about 0.86". The exposure times were 120s in B band and 60 s in V, R and I bands, respectively. (3 data files).

  12. A Photometric Observing Program at the VATT: Setting Up a Calibration Field

    NASA Astrophysics Data System (ADS)

    Davis Philip, A. G.; Boyle, R. P.; Janusz, R.

    2009-05-01

    Philip and Boyle have been making Strömgren and then Strömvil photometric observations of open and globular clusters at the Vatican Advanced Technology Telescope located on Mt. Graham in Arizona. Our aim is to obtain CCD photometric indices good to 0.01 magnitude. Indices of this quality can later be analyzed to yield estimates of temperature, luminosity and metallicity. But we have found that the CCD chip does not yield photometry of this quality without further corrections. Our most observed cluster is the open cluster, M 67. This cluster is also very well observed in the literature. We took the best published values and created a set of "standard" stars for our field. Taking our CCD results we could calculate deltas, as a function of position on the chip, which we then applied to all the CCD frames that we obtained. With this procedure we were able to obtain the precision of 0.01 magnitudes in all the fields that we observed. When we started we were able to use the "A" two-inch square Strömgren four-color set from KPNO. Later the Vatican Observatory bought a set of 3.48 inch square Strömgren filters, The Vatican Observatory had a set of circular Vilnius filters There was also an X filter. These eight filters made our Strömvil set.

  13. NICOLAU: compact unit for photometric characterization of automotive lighting from near-field measurements

    NASA Astrophysics Data System (ADS)

    Royo, Santiago; Arranz, Maria J.; Arasa, Josep; Cattoen, Michel; Bosch, Thierry

    2005-02-01

    The present works depicts a measurement technique intended to enhance the characterization procedures of the photometric emissions of automotive headlamps, with potential applications to any light source emission, either automotive or non-automotive. A CCD array with a precisely characterized optical system is used for sampling the luminance field of the headlamp just a few centimetres in front of it, by combining deflectometric techniques (yielding the direction of the light beams) and photometric techniques (yielding the energy travelling in each direction). The CCD array scans the measurement plane using a self-developed mechanical unit and electronics, and then image-processing techniques are used for obtaining the photometric behaviour of the headlamp in any given plane, in particular in the plane and positions required by current normative, but also on the road, on traffic signs, etc. An overview of the construction of the system, of the considered principle of measurement, and of the main calibrations performed on the unit is presented. First results concerning relative measurements are presented compared both to reference data from a photometric tunnel and from a plane placed 5m away from the source. Preliminary results for the absolute photometric calibration of the system are also presented for different illumination beams of different headlamps (driving and passing beam).

  14. VizieR Online Data Catalog: BEST-II catalog of variables. I. Southern fields (Fruth+, 2013)

    NASA Astrophysics Data System (ADS)

    Fruth, T.; Cabrera, J.; Chini, R.; Csizmadia, Sz.; Dreyer, C.; Eigmuller, P.; Erikson, A.; Kabath, P.; Kirste, S.; Lemke, R.; Murphy, M.; Pasternacki, T.; Rauer, H.; Titz-Weider, R.

    2014-07-01

    BEST II (Berlin Exoplanet Search Telescope II) is located at the Observatorio Cerro Armazones, Chile. Since 2007, it has been operated continuously by the Institute of Planetary Research of the German Aerospace Center (DLR) in robotic mode from Berlin. The system consists of a 25cm Baker-Ritchey-Chretien telescope. The photometric data presented here were obtained with a 4k*4k Finger Lakes Instrumentation CCD (IMG-16801E1) in white light, i.e., without any photometric filter. The CCD is most sensitive at λ~650nm, and the photometric system is roughly comparable to the Johnson R-band. Three target fields, named F17, F18, and F19, were monitored intensively with BEST II in 2009 Apr 20-2009 Jul 22, 2009 Aug 19-2009 Oct 27, and 2010 Mar 24-2010 Sep 21 respectively. (2 data files).

  15. CCD time-resolved photometry of faint cataclysmic variables. I

    NASA Technical Reports Server (NTRS)

    Howell, Steve; Szkody, Paula

    1988-01-01

    CCD time-resolved V and B differential light curves are presented for the dwarf novae AR And, FS Aur, TT Boo, UZ Boo, AF Cam, AL Com, AW Gem, X Leo, RZ Leo, CW Mon, SW UMa, and TW Vir. The time-series observations ranged from 2 to 6 hours and have accuracies of 0.025 mag or better for the majority of the runs. Except for AR And, X Leo, CW Mon, and TW Vir, the periods are below the cataclysmic-variable period gap (about 2 hours), and the systems are potential SU UMa stars. Photometric periods for five of the stars are the first such determinations, while those for the other seven generally confirm previous spectroscopic or photometric observations. In several cases, the photometric modulations are large amplitude (up to 0.5 mag). The results on AL Com and SW UMa indicate they may be magnetic variables.

  16. Performance characteristics of a low-cost, field-deployable miniature CCD spectrometer

    PubMed Central

    Coles, Simon; Nimmo, Malcolm; Worsfold, Paul J.

    2000-01-01

    Miniature spectrometers incorporating array detectors are becoming a viable, low-cost option for field and process deployments. The performance characteristics of one such instrument are reported and compared with those of a conventional benchtop instrument. The parameters investigated were wavelength repeatability, photometric linearity, instrumental noise (photometric precision) and instrumental drift. PMID:18924863

  17. The Farid & Moussa Raphael Observatory

    NASA Astrophysics Data System (ADS)

    Hajjar, R.

    2017-06-01

    The Farid & Moussa Raphael Observatory (FMRO) at Notre Dame University Louaize (NDU) is a teaching, research, and outreach facility located at the main campus of the university. It located very close to the Lebanese coast, in an urbanized area. It features a 60-cm Planewave CDK telescope, and instruments that allow for photometric and spetroscopic studies. The observatory currently has one thinned, back-illuminated CCD camera, used as the main imager along with Johnson-Cousin and Sloan photometric filters. It also features two spectrographs, one of which is a fiber fed echelle spectrograph. These are used with a dedicated CCD. The observatory has served for student projects, and summer schools for advanced undergraduate and graduate students. It is also made available for use by the regional and international community. The control system is currently being configured for remote observations. A number of long-term research projects are also being launched at the observatory.

  18. Photometric study of the eclipsing binary GR Bootis

    NASA Astrophysics Data System (ADS)

    Zhang, Z. L.; Zhang, Y. P.; Fu, J. N.; Xue, H. F.

    2016-07-01

    We present CCD photometry and low-resolution spectra of the eclipsing binary GR Boo. A new ephemeris is determined based on all the available times of the minimum light. The period analysis reveals that the orbital period is decreasing with a rate of dP / dt = - 2.05 ×10-10 d yr-1 . A photometric analysis for the obtained light curves is performed with the Wilson-Devinney Differential Correction program for the first time. The photometric solutions confirm the W UMa-type nature of the binary system. The mass ratio turns out to be q = 0.985 ± 0.001 . The evolutionary status and physical nature of the binary system are briefly discussed.

  19. CCD and photon-counting photometric observations of peculiar asteroids

    NASA Astrophysics Data System (ADS)

    Fulvio, D.; Blanco, C.; Cigna, M.; Gandolfi, D.

    The photometric observational programme of main-belt asteroids undertaken, since 1980, at the Physics and Astronomy Department of Catania University, mainly by using photoelectric acquisition, has been extended to the Near-Earth Objects, because of the importance of their study to improve the knowledge of the mechanics and the physics of the inner Solar System. The wideness of the observational programme was pursued by using an expressly built CCD camera having a Kodak 4200 detector 2048x2048 pixel class 1, front-illuminated chip with 9 mu m pixel-size, equipped with BVRI Johnson filters. New observations of 4 Vesta, 27 Euterpe, 173 Ino, 182 Elsa, 849 Ara (carried out at M.G. Fracastoro Station of Catania Astrophysical Observatory), 984 Gretia, 3199 Nefertiti and 2004 UE (carried out at Asiago Station of Padova Astronomical Observatory) are presented. The improvement of the rotational period value (for 182 Elsa and 2004 UE it is the first determination), of the lightcurve amplitude and of the B-V colour index was obtained. For 4 Vesta indications on surface mineralogic morphology are deduced from the UBV photometric behaviour while for 182 Elsa, the H-G magnitude relation was carried out.

  20. BV RI CCD photometry of 361,281 objects in the field of M 31

    NASA Technical Reports Server (NTRS)

    Magnier, E. A.; Lewin, W. H. G.; Van Paradijs, J.; Hasinger, G.; Jain, A.; Pietsch, W.; Truemper, J.

    1992-01-01

    Deep BV RI CCD photometry was performed on a 1 sq deg region of M 31. A catalog of photometry and astrometry of a total of 361,281 stars is presented, with typical completion limits of BV RI = (22.3, 22.2, 22.2, 20.9). Photometric accuracy is about 2 percent at V = 19. This catalog allows detailed studies of stellar populations and reddening. The data are currently being used to assist in finding the optical counterparts of Einstein and ROSAT X-ray sources.

  1. Vilnius Multicolor CCD Photometry of the Open Cluster NGC 752

    NASA Astrophysics Data System (ADS)

    Bartašiūtė, S.; Janusz, R.; Boyle, R. P.; Philip, A. G. Davis

    We have performed multicolor CCD observations of the central area of NGC 752 to search for faint, low-mass members of this open cluster. Four 12'x12' fields were taken on the 1.8 m Vatican Advanced Technology Telescope (Mt. Graham, Arizona) using a 4K CCD camera and eight intermediate-band filters of the Strömvil system. In this paper we present a catalog of photometry for 405 stars down to the limiting magnitude V=18.5, which contains V magnitudes and color indices of the Vilnius system, together with photometric determinations of spectral types, absolute magnitudes MV, interstellar reddening values EY-V and metallicity parameters [Fe/H]. The good quality multicolor data made it possible to identify the locus of the lower main sequence to four magnitudes beyond the previous (photographic) limit. A relatively small number of photometric members identified at faint magnitudes seems to be indicative of actual dissolution of the cluster from the low-mass end.

  2. VizieR Online Data Catalog: Field RR Lyrae stars (Liska+, 2016)

    NASA Astrophysics Data System (ADS)

    Liska, J.; Skarka, M.; Zejda, M.; Mikulasek, Z.; de Villiers, S. N.

    2016-05-01

    Differential photometry for VX Her in 'table1.dat' file. New photometric measurements for VX Her were performed at Masaryk University Observatory, Brno, Czech Republic during 13 nights (April-August 2014) with 0.6-m (24-inch) Newtonian telescope, CCD G2-0402, in BVRI bands. CCD images were calibrated in a standard way (dark frame and flat field corrections). The C-Munipack software (Motl 2009) was used for this processing as well as for differential photometry. TYC 1510-269-1 and TYC 1510-149-1 were used as comparison and check stars, respectively. Differential photometry for AT Ser and SS Leo is in 'table2.dat' file. New photometric measurements for these two stars were obtained using 1-inch refractor (a photographic lens Sonnar 4/135mm, lens focal ratio/focal length) and ATIK 16IC CCD camera with green photometric filter with similar throughput as the Johnson V filter. Exposures were 30s and each five frames were combined to a single image to achieve a better signal-to-noise ratio. The time resolution of a such combined frame is about 170s. The comparison stars were HD 142799 for AT Ser and HD 100763 for SS Leo. List with candidates for binaries with RR Lyrae component - RRLyrBinCan database (version 2016 May 5) is in 'table3.dat' file. 'table4.dat' file contains false-positives binary candidates among RR Lyrae stars. 'table5.dat' and 'table6.dat' files contain used maxima timings given in GEOS RR Lyr database, or newly determined in this study. (7 data files).

  3. First photometric analysis of six open cluster candidates

    NASA Astrophysics Data System (ADS)

    Piatti, A. E.; Clariá, J. J.; Ahumada, A. V.

    2011-10-01

    In this study we try to clarify the nature of six catalogued open cluster (OC) candidates using CCD UBVI_{KC} photometry down to V = 22. The objects are Haffner 3, Haffner 5, NGC 2368, Haffner 25, Hogg 3 and Hogg 4. None of them was found to be a real OC.

  4. Photometric Study of Fourteen Low-mass Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korda, D.; Zasche, P.; Wolf, M.

    2017-07-01

    New CCD photometric observations of fourteen short-period low-mass eclipsing binaries (LMBs) in the photometric filters I, R, and V were used for a light curve analysis. A discrepancy remains between observed radii and those derived from the theoretical modeling for LMBs, in general. Mass calibration of all observed LMBs was performed using only the photometric indices. The light curve modeling of these selected systems was completed, yielding the new derived masses and radii for both components. We compared these systems with the compilation of other known double-lined LMB systems with uncertainties of masses and radii less then 5%, which includesmore » 66 components of binaries where both spectroscopy and photometry were combined together. All of our systems are circular short-period binaries, and for some of them, the photospheric spots were also used. A purely photometric study of the light curves without spectroscopy seems unable to achieve high enough precision and accuracy in the masses and radii to act as meaningful test of the M–R relation for low-mass stars.« less

  5. Photoelectric and CCD observations of 10 asteroids

    NASA Astrophysics Data System (ADS)

    de Sanctis, M. C.; Barucci, M. A.; Angeli, C. A.; Fulchignoni, M.; Burchi, R.; Angelini, P.

    1994-10-01

    A program of physical studies of asteroids has been carried out using two types of detectors: photoelectric photometer and CCD camera. In this paper we report the results of photometric observations of 10 asteroids. We have obtained a total of 35 single night lightcurves and we have determined rotational periods for the asteroids 1520 Imatra (P = 5.23 h), 1534 Nasi (P = 9.75 h), 2078 Nanking (P = 6.473 h), 2241 Alcathous (P = 9.41 h), 3103 1982 BB (P = 5.709 h), 3139 Shantou (P = 8.33 h), 3259 Brownlee (P = 9.24 h), 4455 Ruriko (P = 4.23 h).

  6. Variazioni di luminosità del pianeta Urano

    NASA Astrophysics Data System (ADS)

    Bianciardi, Giorgio

    2005-04-01

    This report describes R-CCD differential photometric studies of Uranus from 21 July 2004 through 18 September 2004. Results do not confirm the report by A. J. Hollis (2000) describing variations of magnitude of 0.3-0.5 over a 2 month period, and support the existence of brightness variations of some hundredths of a magnitude, in small (hours) and long (month) time scales. Uranus' appearance continues to change as it approaches its 2007 equinox, and even amateurs should dedicate particular attention to photometric evaluation of the planet. The same is true for Pluto, as it approaches its perihelion.

  7. A CCD survey of galaxies. IV. Observations with the 2.1 M telescope at San Pedro Martir.

    NASA Astrophysics Data System (ADS)

    Gavazzi, G.; Boselli, A.; Carrasco, L.

    1995-09-01

    Continuing a CCD survey of galaxies belonging or projected onto the Coma and Hercules Superclusters, to the A262 and Cancer clusters, we present isophote maps and photometric profiles in the Johnson system of 111 galaxies (67 in the V and B bands, 42 only in V, 2 only in B) obtained with the 2.1 m telescope at San Pedro Martir (Baja California, Mexico).

  8. VizieR Online Data Catalog: CCD Survey of Galaxies IV (Gavazzi+, 1995)

    NASA Astrophysics Data System (ADS)

    Gavazzi, G.; Boselli, A.; Carrasco, L.

    1995-03-01

    Continuing a CCD survey of galaxies belonging or projected onto the Coma and Hercules Superclusters, to the A262 and Cancer clusters, we present isophote maps and photometric profiles in the Johnson system of 111 galaxies (67 in the V and B bands, 42 only in V, 2 only in B) obtained with the 2.1m telescope at San Pedro Martir (Baja California, Mexico). (2 data files).

  9. Kottamia 74-inch telescope discovery of the new eclipsing binary 2MASS J20004638 + 0547475.: First CCD photometry and light curve analysis

    NASA Astrophysics Data System (ADS)

    Darwish, M. S.; Shokry, A.; Saad, S. M.; El-Sadek, M. A.; Essam, A.; Ismail, M.

    2017-05-01

    A CCD photometric study is presented for the eclipsing binary system 2MASS J20004638 + 0547475. Observations of the system were obtained in the V, R and I colours with the 2Kx2K CCD attached to 1.88 m Kottamia Optical Telescope. New times of light minimum and new ephemeris were obtained. The V, R and I light curves were analyzed using the PHOEBE 0.31 program to determine geometrical and physical parameters of the system. The results show that 2MASS J20004638 + 0547475, is A-Type WUMa and is an overcontact binary with high fill-out factor = 69%. The current evolutionary status of the system indicates that the primary component lies very close to the main sequence while the secondary is evolved. The asymmetric maxima were studied and a modeling of the hot spot parameters is given.

  10. Galaxy luminosity profiles of SARS clusters

    NASA Astrophysics Data System (ADS)

    Coenda, V.; Donzelli, C.; Muriel, H.; Quintana, H.; Infante, L.

    We have analyzed CCD images in the R filter of 14 Abell clusters of the SARS survey, with cz<40000 km/s. We have obtained the luminosity profiles of 507 galaxies and we have studied several relations between the photometric and structural parameters. In the present contributed paper we analyze the following relations: the Kormendy relation and the correlations among the Sérsic parameters.

  11. VizieR Online Data Catalog: BVRI photometry of S5 0716+714 (Liao+, 2014)

    NASA Astrophysics Data System (ADS)

    Liao, N. H.; Bai, J. M.; Liu, H. T.; Weng, S. S.; Chen, L.; Li, F.

    2016-04-01

    The variability of S5 0716+714 was photometrically monitored in the optical bands at Yunnan Observatories, making use of the 2.4m telescope (http://www.gmg.org.cn/) and the 1.02m telescope (http://www1.ynao.ac.cn/~omt/). The 2.4m telescope, which began working in 2008 May, is located at the Lijiang Observatory of Yunnan Observatories, where the longitude is 100°01'51''E and the latitude is 26°42'32''N, with an altitude of 3193m. There are two photometric terminals. The PI VersArry 1300B CCD camera with 1340*1300 pixels covers a field of view 4'48''*4'40'' at the Cassegrain focus. The readout noise and gain are 6.05 electrons and 1.1 electrons ADU-1, respectively. The Yunnan Faint Object Spectrograph and Camera (YFOSC) has a field of view of about 10'*10' and 2000*2000 pixels for photometric observation. Each pixel corresponds to 0.283'' of the sky. The readout noise and gain of the YFOSC CCD are 7.5 electrons and 0.33 electrons ADU-1, respectively. The 1.02m telescope is located at the headquarters of Yunnan Observatories and is mainly used for photometry with standard Johnson UBV and Cousins RI filters. An Andor CCD camera with 2048*2048 pixels has been installed at its Cassegrain focus since 2008 May. The readout noise and gain are 7.8 electrons and 1.1 electrons ADU-1, respectively. (1 data file).

  12. Photometry and spectroscopy of a newly discovered polar - Nova Cygni 1975 (V1500 CYG)

    NASA Technical Reports Server (NTRS)

    Kaluzny, Janusz; Chlebowski, Tomasz

    1988-01-01

    The paper reports photometric and spectroscopic observations which led to the conclusion that Nova Cygni 1975 (V1500 Cyg) is a polar (of AM Her-type).The CCD photometry confirms the constancy of the photometric period which is again interpreted as an orbital cycle. The time-resolved MMT spectra make it possible to reconstruct, under several assumptions, the basic system parameters: M1=0.9M solar mass and M2=0.31M solar mass.

  13. VizieR Online Data Catalog: V873 Per BVR light curves (Kriwattanawong+, 2015)

    NASA Astrophysics Data System (ADS)

    Kriwattanawong, W.; Poojon, P.

    2015-07-01

    BVR photometric observations of V873 Per were carried out on the 0.5-m telescope at Sirindhorn Observatory, Chiang Mai University. The photometric data were taken during four nights (November 27-30, 2011), by using SBIG CCD (Model of ST10-XME), with exposure time of 90s. A total of 855 individual observations were obtained in three filter bands (285 observations per filter band). The IRAF package was used for data reduction and the BVR magnitude measurements. (1 data file).

  14. Attività fotometrica di Plutone nel 2005

    NASA Astrophysics Data System (ADS)

    Bianciardi, Giorgio

    2006-06-01

    This report describes unfiltered CCD differential photometry of Pluto performed between 1 August and 10 September 2005. Results show that in the present year Pluto is maintaining a high photometric activity, higher than expected (maximum brightness variations of 0.29±0.02 magnitudes) in relation to the rotational period. Pluto's appearance is now drastically changing owing to viewing geometry and the next collapse of its atmosphere onto the surface. Amateurs too should dedicate particular attention to the photometric evolution of the planet.

  15. Improved Photometric Characteristics of the Newly Discovered EW-Type System GSC 04370-00206

    NASA Astrophysics Data System (ADS)

    Breus, V. V.; Andronov, I. L.; Dubovsky, P. A.; Hegedus, T.; Kudzej, I.; Petrik, K.

    2010-12-01

    We present results of two-color photometric study of the newly discovered EW-type eclipsing binary star GSC 04370-00206 in the field of the intermediate polar MU Cam. CCD V,R observations were obtained in the Astronomical Observatories in Hlohovec, Baja and Kolonica in 2007-2009. Improved photometric elements for the primary minimum were determined: Min.BJD=2454805.75635+0.44264511(27)E. The range of the brightness variations is 13.79-14.13 (V) and 13.07-13.44 (R). The accuracy of the period determination is by a factor of ˜ 7, 000 times better than the one published by the discoverers based on only one night of observations. We report on the night-to-night variability of the shape of the light curve which is interpreted by a presence of spots in the atmosphere of one or both components (O'Connel effect).

  16. [Analysis of H2S/PH3/NH3/AsH3/Cl2 by Full-Spectral Flame Photometric Detector].

    PubMed

    Ding, Zhi-jun; Wang, Pu-hong; Li, Zhi-jun; Du, Bin; Guo, Lei; Yu, Jian-hua

    2015-07-01

    Flame photometric analysis technology has been proven to be a rapid and sensitive method for sulfur and phosphorus detection. It has been widely used in environmental inspections, pesticide detection, industrial and agricultural production. By improving the design of the traditional flame photometric detector, using grating and CCD sensor array as a photoelectric conversion device, the types of compounds that can be detected were expanded. Instead of a single point of characteristic spectral lines, full spectral information has been used for qualitative and quantitative analysis of H2S, PH3, NH3, AsH3 and Cl2. Combined with chemometric method, flame photometric analysis technology is expected to become an alternative fast, real-time on-site detection technology to simultaneously detect multiple toxic and harmful gases.

  17. Lightcurve and Rotation Period for Minor Planet 2504 Gaviola

    NASA Astrophysics Data System (ADS)

    Hayes-Gehrke, Melissa; Linko, David; Bhasin, Raghav; Johnson, James; Bermudez, Brian; Fedorenko, Iryna; Tillis, Katie; Vilar, Nicole

    2017-10-01

    CCD photometric observations using iTelescope T21 of asteroid 2504 Gaviola were made in April 2017. A rotation period of 8.751 ± 0.003 h and lightcurve amplitude of 0.31 mag was determined from two nights of observations.

  18. The Preflight Photometric Calibration of the Extreme-Ultraviolet Imaging Telescope EIT

    NASA Technical Reports Server (NTRS)

    Dere, K. P.; Moses, J. D.; Delaboudiniere, J. -P.; Brunaud, J.; Carabetian, C.; Hochedez, J. -F.; Song, X. Y.; Catura, R. C.; Clette, F.; Defise, J. -M.

    2000-01-01

    This paper presents the preflight photometric calibration of the Extreme-ultraviolet Imaging Telescope (EIT) aboard the Solar and Heliospheric Observatory (SOHO). The EIT consists of a Ritchey-Chretien telescope with multilayer coatings applied to four quadrants of the primary and secondary mirrors, several filters and a backside-thinned CCD detector. The quadrants of the EIT optics were used to observe the Sun in 4 wavelength bands that peak near 171, 195, 284, and 304 . Before the launch of SOHO, the EIT mirror reflectivities, the filter transmissivities and the CCD quantum efficiency were measured and these values are described here. The instrumental throughput in terms of an effective area is presented for each of the various mirror quadrant and filter wheel combinations. The response to a coronal plasma as a function of temperature is also determined and the expected count rates are compared to the count rates observed in a coronal hole, the quiet Sun and an active region.

  19. The superiority of L3-CCDs in the high-flux and wide dynamic range regimes

    NASA Astrophysics Data System (ADS)

    Butler, Raymond F.; Sheehan, Brendan J.

    2008-02-01

    Low Light Level CCD (L3-CCD) cameras have received much attention for high cadence astronomical imaging applications. Efforts to date have concentrated on exploiting them for two scenarios: post-exposure image sharpening and ``lucky imaging'', and rapid variability in astrophysically interesting sources. We demonstrate their marked superiority in a third distinct scenario: observing in the high-flux and wide dynamic range regimes. We realized that the unique features of L3-CCDs would make them ideal for maximizing signal-to-noise in observations of bright objects (whether variable or not), and for high dynamic range scenarios such as faint targets embedded in a crowded field of bright objects. Conventional CCDs have drawbacks in such regimes, due to a poor duty cycle-the combination of short exposure times (for time-series sampling or to avoid saturation) and extended readout times (for minimizing readout noise). For different telescope sizes, we use detailed models to show that a range of conventional imaging systems are photometrically out-performed across a wide range of object brightness, once the operational parameters of the L3-CCD are carefully set. The cross-over fluxes, above which the L3-CCD is operationally superior, are surprisingly faint-even for modest telescope apertures. We also show that the use of L3-CCDs is the optimum strategy for minimizing atmospheric scintillation noise in photometric observations employing a given telescope aperture. This is particularly significant, since scintillation can be the largest source of error in timeseries photometry. These results should prompt a new direction in developing imaging instrumentation solutions for observatories.

  20. CCD photometric analysis of the W UMa-type binary V376 Andromeda

    NASA Astrophysics Data System (ADS)

    Çiçek, C.

    2011-01-01

    This study presents the absolute parameters of the contact binary system V376 And. CCD photometric observations were made at the Çanakkale Onsekiz Mart University Observatory in 2004. The instrumental magnitudes of all observed stars were converted into standard magnitudes. New BV light curves of the system were analysed using the Wilson-Devinney method supplemented with a Monte Carlo type algorithm. Since there are large asymmetries between maxima (i.e., O'Connell effect) in these light curves, two different models (one with a cool spot and one with a hot spot) were applied to the photometric data. The best fit, which was obtained with a large hot spot on the secondary component, gives V376 And as an A sub-type contact binary in poor thermal contact and a small value of the filling factor ( f ≈ 0.07). Combining the solutions of our light curves and Rucinski et al. (2001)'s radial velocity curves, the following absolute parameters of the components were determined: M1 = 2.44 ± 0.04 M ⊙, M2 = 0.74 ± 0.03 M ⊙, R1 = 2.60 ± 0.03 R ⊙, R2 = 1.51 ± 0.02 R ⊙, L1 = 40 ± 4 L ⊙ and L2 = 5 ± 1 L ⊙. We also discuss the evolution of the system, which appears to have an age of 1.6 Gyr. The distance to V376 And was calculated as 230 ± 20 pc from this analysis, taking into account interstellar extinction.

  1. A Photometric Study of the Eclipsing Binary Star PY Boötis

    NASA Astrophysics Data System (ADS)

    Michaels, E. J.

    2016-12-01

    Presented here are the first precision multi-band CCD photometry of the eclipsing binary star PY Boötis. Best-fit stellar models were determined by analyzing the light curves with the Wilson-Devinney program. Asymmetries in the light curves were interpreted as resulting from magnetic activity which required spots to be included in the model. The resulting model is consistent with a W-type contact eclipsing binary having total eclipses.

  2. A new open cluster binary system in the Milky Way

    NASA Astrophysics Data System (ADS)

    Piatti, A. E.; Clariá, J. J.; Ahumada, A. V.

    2011-10-01

    We have obtained CCD UBVI_{KC} photometry for the open clusters (OCs) Hogg 12 and NGC 3590. Based on photometric and morphological criteria, as well as on the stellar density in the region, our evidence is sufficient to consider them a new open cluster binary system candidate.

  3. Características básicas del REOSC-DS + CCD Tek1024 en el telescopio JS y extinción atmosférica en CASLEO

    NASA Astrophysics Data System (ADS)

    Baume, G.; Coronel, C.; De Bórtoli, B.; Ennis, A. I.; Fernández Lajús, E.; Filócomo, A.; Gamen, R.; Higa, R.; Pessi, P. J.; Putkuri, C.; Rodriguez, C.; Unamuno, A.

    2017-10-01

    In the framework of the activities of the subject ``Astronomia Observacional'' of FCAG (UNLP), several photometric and spectroscopic observations have been made using the Jorge Sahade telescope at the Complejo Astronomico El Leoncito. These data have allowed the estimation of the extinction coefficients in bands. They were compared with previous values, verifying a secular increase in the last years. In addition, some parameters and characteristics of the REOSC spectrograph working at simple dispersion (DS) mode and for its CCD detector Tek1024 were estimated.

  4. Optical and near-infrared photometric study of NGC 6724

    NASA Astrophysics Data System (ADS)

    Bendary, Reda; Tadross, Ashraf; Hasan, Priya; Osman, Anas; Essam, Ahmed

    2018-02-01

    BVRI CCD photometry of the poorly studied open cluster NGC 6724 has been carried out down to a limiting magnitude of V∼20 mag. The stars of the cluster have been observed using the Newtonian focus (f/4.84) of the 74-inch telescope at Kottamia Astronomical Observatory in Egypt. Also, the 2MASS - JHK system is used to confirm the results we obtained. The main photometric parameters have been estimated for the present object; the diameter is found to be 6 arcmin, the distance is 1530±60 pc from the Sun and the age is 900±50 Myr. The optical reddening E(B-V)=0.65 {mag}, while the infrared reddening is E(J-H)=0.20 {mag}. The slope of the mass function distribution and the relaxation time estimations indicate that cluster NGC 6724 is dynamically relaxed.

  5. Quantum efficiency measurement of the Transiting Exoplanet Survey Satellite (TESS) CCD detectors

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, A.; Villasenor, J.; Thayer, C.; Kissel, S.; Ricker, G.; Seager, S.; Lyle, R.; Deline, A.; Morgan, E.; Sauerwein, T.; Vanderspek, R.

    2016-07-01

    Very precise on-ground characterization and calibration of TESS CCD detectors will significantly assist in the analysis of the science data from the mission. An accurate optical test bench with very high photometric stability has been developed to perform precise measurements of the absolute quantum efficiency. The setup consists of a vacuum dewar with a single MIT Lincoln Lab CCID-80 device mounted on a cold plate with the calibrated reference photodiode mounted next to the CCD. A very stable laser-driven light source is integrated with a closed-loop intensity stabilization unit to control variations of the light source down to a few parts-per-million when averaged over 60 s. Light from the stabilization unit enters a 20 inch integrating sphere. The output light from the sphere produces near-uniform illumination on the cold CCD and on the calibrated reference photodiode inside the dewar. The ratio of the CCD and photodiode signals provides the absolute quantum efficiency measurement. The design, key features, error analysis, and results from the test campaign are presented.

  6. 1SWASP J200503.05-343726.5: A high mass ratio eclipsing binary near the period limit

    NASA Astrophysics Data System (ADS)

    Bin, Zhang; Shengbang, Qian; Zejda, Miloslav; Liying, Zhu; Nianping, Liu

    2017-07-01

    First CCD photometric light curves of the eclipsing binary system 1SWASP J200503.05-343726.5 are presented. Our complete light curves in V, R and I bands using the Bessell filter show an out-of-eclipsing distortion, which means that the components of the system may be active. The preliminary photometric solutions with a cool star-spot are derived by using the 2013 version of the Wilson-Devinney (W-D) code. The photometric solutions suggest that 1SWASP J200503.05-343726.5 is a shallow-contact eclipsing binary(f = 9.0 %) with a mass ratio of q = 1.0705 , which is very high for late-type binary systems near the period limit. The primary component is about 230 K hotter than the secondary component. Based on our new CCD eclipse times, the orbital period change was analyzed. According to O - C diagram, the orbital period of the 1SWASP J200503.05-343726.5 shows an increase at a rate of P˙ = + 5.43 ×10-8 days year-1. The period increase may be caused by mass transfer from the less massive component to the more massive one. This shallow-contact system may be formed from a detached short-period binary via orbital shrinkage because of dynamical interactions with a third component or by magnetic braking.

  7. A photometric survey of outer belt asteroids

    NASA Technical Reports Server (NTRS)

    Dimartino, M.; Gonano-Beurer, M.; Mottola, Stefano; Neukum, G.

    1992-01-01

    Since 1989, we have been conducting a research program devoted to the study of the Trojans and outer belt asteroids (Hilda and Cybele groups), in order to characterize their rotational properties and shapes. As an outcome of several observational campaigns, we determined rotational periods and lightcurve amplitudes for 23 distant asteroids, using both CCD and photoelectric photometry. In this paper, we compare the rotational properties of main belt asteroids and Trojans, based on the preliminary results of this survey.

  8. SkyProbe, monitoring the absolute atmospheric transmission in the optical

    NASA Astrophysics Data System (ADS)

    Cuillandre, Jean-charles; Magnier, Eugene; Mahoney, William

    2011-03-01

    Mauna Kea is known for its pristine seeing conditions, but sky transparency can be an issue for science operations since 25% of the night are not photometric, mostly due to high-altitude cirrus. Since 2001, the original single-channel SkyProbe has gathered one exposure every minute during each observing night using a small CCD camera with a very wide field of view (35 sq. deg.) encompassing the region pointed by the telescope for science operations, and exposures long enough (40 seconds) to capture at least 100 stars of Hipparcos' Tychos catalog at high galactic latitudes (and up to 600 stars at low galactic latitudes). A key advantage of SkyProbe over direct thermal infrared imaging detection of clouds, is that it allows an accurate absolute measurement, within 5%, of the true atmospheric absorption by clouds affecting the data being gathered by the telescope's main science instrument. This system has proven crucial for decision making in the CFHT queued service observing (QSO), representing today 80% of the telescope time: science exposures taken in non-photometric conditions are automatically registered for being re-observed later on (at 1/10th of the original exposure time per pointing in the observed filters) to ensure a proper final absolute photometric calibration. The new dual color system (simultaneous B&V bands) will allow a better characterization of the sky properties atop Mauna Kea and will enable a better detection of the thinner cirrus (absorption down to 0.02 mag., i.e. 2%). SkyProbe is operated within the Elixir pipeline, a collection of tools used for handling the CFHT CCD mosaics (CFH12K and MegaCam), from data pre-processing to astrometric and photometric calibration.

  9. High frame rate imaging based photometry. Photometric reduction of data from electron-multiplying charge coupled devices (EMCCDs)

    NASA Astrophysics Data System (ADS)

    Harpsøe, K. B. W.; Jørgensen, U. G.; Andersen, M. I.; Grundahl, F.

    2012-06-01

    Context. The EMCCD is a type of CCD that delivers fast readout times and negligible readout noise, making it an ideal detector for high frame rate applications which improve resolution, like lucky imaging or shift-and-add. This improvement in resolution can potentially improve the photometry of faint stars in extremely crowded fields significantly by alleviating crowding. Alleviating crowding is a prerequisite for observing gravitational microlensing in main sequence stars towards the galactic bulge. However, the photometric stability of this device has not been assessed. The EMCCD has sources of noise not found in conventional CCDs, and new methods for handling these must be developed. Aims: We aim to investigate how the normal photometric reduction steps from conventional CCDs should be adjusted to be applicable to EMCCD data. One complication is that a bias frame cannot be obtained conventionally, as the output from an EMCCD is not normally distributed. Also, the readout process generates spurious charges in any CCD, but in EMCCD data, these charges are visible as opposed to the conventional CCD. Furthermore we aim to eliminate the photon waste associated with lucky imaging by combining this method with shift-and-add. Methods: A simple probabilistic model for the dark output of an EMCCD is developed. Fitting this model with the expectation-maximization algorithm allows us to estimate the bias, readout noise, amplification, and spurious charge rate per pixel and thus correct for these phenomena. To investigate the stability of the photometry, corrected frames of a crowded field are reduced with a point spread function (PSF) fitting photometry package, where a lucky image is used as a reference. Results: We find that it is possible to develop an algorithm that elegantly reduces EMCCD data and produces stable photometry at the 1% level in an extremely crowded field. Based on observation with the Danish 1.54 m telescope at ESO La Silla Observatory.

  10. Detailed studies om three open clusters from Gaia ESO Survey (GES)

    NASA Astrophysics Data System (ADS)

    Balaguer-Núnez, L.; Casamiquela, L.; Jordana, N.; Massana, P.; Jordi, C.; Masana, E.

    2017-03-01

    We present results for the intermediate-age and old open clusters NGC 6633, NGC 6705 (M 11) and NGC 2682 (M 67). We have used new Str ̈omgren-Crawford photometry, proper motions from ROA observations and spectral information from Gaia-ESO Survey (GES), to study the physical parameters of the stars in the three cluster's areas. The astrometric studies cover an area of about 1°x2° and down to r' ˜ 17 while our INT-WFC CCD intermediate-band photometry covers an area of about 40'x40' down to V ˜ 19. The stars of those areas selected as cluster members from their proper motions, are classified into photometric regions and their physical parameters determined, using uvbyHβ photometry and standard relations among colour indices for each of the photometric regions of the HR diagram. That allows us to determine reddening, distances, absolute magnitudes, spectral types, effective temperatures, gravities and metallicities, thus providing an astrophysical characterization of the clusters. These results are compared with the physical parameters obtained from GES spectral data as well as radial velocities to confirm membership. All these data lead us to a comparison of photometric and spectroscopic physical parameters.

  11. High-resolution continuum observations of the Sun

    NASA Technical Reports Server (NTRS)

    Zirin, Harold

    1987-01-01

    The aim of the PFI or photometric filtergraph instrument is to observe the Sun in the continuum with as high resolution as possible and utilizing the widest range of wavelengths. Because of financial and political problems the CCD was eliminated so that the highest photometric accuracy is only obtainable by comparison with the CFS images. Presently there is a limitation to wavelengths above 2200 A due to the lack of sensitivity of untreated film below 2200 A. Therefore the experiment at present consists of a film camera with 1000 feet of film and 12 filters. The PFI experiments are outlined using only two cameras. Some further problems of the experiment are addressed.

  12. VizieR Online Data Catalog: UV and optical photometric data for SN 2013by (Valenti+, 2015)

    NASA Astrophysics Data System (ADS)

    Valenti, S.; Sand, D.; Stritzinger, M.; Howell, D. A.; Arcavi, I.; McCully, C.; Childress, M. J.; Hsiao, E. Y.; Contreras, C.; Morrell, N.; Phillips, M. M.; Gromadzki, M.; Kirshner, R. P.; Marion, G. H.

    2017-11-01

    Photometric monitoring in BVgri of SN 2013by with the LCOGT 1 m telescope network began on 2013 April 24 (UT), and continued every two to three nights (52 epochs of data were collected) for more than 150 d, well after the light curve settled on to the 56Co decay tail. Additional imaging was obtained from Swift and the CSP. The CSP obtained 17 epochs of science images using the SITe3 CCD camera along with a set of ugriBV filters attached to the Swope 1 m telescope located at Las Campanas Observatory (LCO). (1 data file).

  13. Photometric calibration of T40 telescope system at Ankara University Kreiken Observatory (AUKR)

    NASA Astrophysics Data System (ADS)

    Karakuş, O.; Ekmekçi, F.

    2017-07-01

    We aim to present the photometric calibration of T40 telescope system at Ankara University Kreiken Observatory(AUKR) in the Johnson BVRI bands system through CCD observations of selected Landolt stars on the clearest 11 nights. Ten more stars with a magnitude of V< 11 were also observed in order to check up on standard transformation coefficients. Using these coefficients, we present standard brightness and color magnitudes for these 10 selected stars. These standard brightness values of these 10 stars are also compared with the previously published ones. It is clearly seen that the calibration results are sufficiently reliable.

  14. Photometry of Standard Stars and Open Star Clusters

    NASA Astrophysics Data System (ADS)

    Jefferies, Amanda; Frinchaboy, Peter

    2010-10-01

    Photometric CCD observations of open star clusters and standard stars were carried out at the McDonald Observatory in Fort Davis, Texas. This data was analyzed using aperture photometry algorithms (DAOPHOT II and ALLSTAR) and the IRAF software package. Color-magnitude diagrams of these clusters were produced, showing the evolution of each cluster along the main sequence.

  15. Photometric study and absolute parameters of the short-period eclipsing binary HH Bootis

    NASA Astrophysics Data System (ADS)

    Gürol, B.; Bradstreet, D. H.; Demircan, Y.; Gürsoytrak, S. H.

    2015-11-01

    We present the results of our investigation on the geometrical and physical parameters of the W UMa type binary system HH Bootis from new CCD (BVRI) light curves and published radial velocity data. The photometric data were obtained in 2011 and 2012 at Ankara University Observatory (AUO). Light and radial velocity observations were analyzed simultaneously using the Wilson-Devinney (2013 revision) code to obtain absolute and geometrical parameters. The system was determined to be a W-type W UMa system of a type different from that suggested by Dal and Sipahi (2013). An interesting cyclic period variation in the time intervals between primary and secondary eclipses ("half-period variation") was discovered and analyzed and its possible cause is discussed. Combining our photometric solution with the spectroscopic data we derived masses and radii of the eclipsing system to be M1 = 0.627M⊙ , M2 = 1.068M⊙ , R1 = 0.782R⊙ and R2 = 0.997R⊙ . New light elements were derived and finally the evolutionary status of the system is discussed.

  16. Analysis and interpretation of CCD data on P/Halley and physical parameters and activity status of cometary nuclei at large heliocentric distance

    NASA Technical Reports Server (NTRS)

    Belton, Michael J. S.; Mueller, Beatrice

    1991-01-01

    The scientific objectives were as follows: (1) to construct a well sampled photometric time series of comet Halley extending to large heliocentric distances both post and pre-perihelion passage and derive a precise ephemeris for the nuclear spin so that the physical and chemical characteristics of individual regions of activity on the nucleus can be determined; and (2) to extend the techniques in the study of Comet Halley to the study of other cometary nuclei and to obtain new observational data.

  17. Determination of lunar ilmenite abundances from remotely sensed data

    NASA Technical Reports Server (NTRS)

    Larson, Stephen M.; Johnson, Jeffrey R.; Singer, Robert B.

    1991-01-01

    The mineral ilmenite (FeTiO3) was found in abundance in lunar mare soils returned during the Apollo project. Lunar ilmenite often contains greater than 50 weight-percent titanium dioxide (TiO2), and is a primary potential resource for oxygen and other raw materials to supply future lunar bases. Chemical and spectroscopic analysis of the returned lunar soils produced an empirical function that relates the spectral reflectance ratio at 400 and 560 nm to the weight percent abundance of TiO2. This allowed mapping of the lunar TiO2 distribution using telescopic vidicon multispectral imaging from the ground; however, the time variant photometric response of the vidicon detectors produced abundance uncertainties of at least 2 to 5 percent. Since that time, solid-state charge-coupled device (CCD) detector technology capable of much improved photometric response has become available. An investigation of the lunar TiO2 distribution was carried out utilizing groundbased telescopic CCD multispectral imagery and spectroscopy. The work was approached in phases to develop optimum technique based upon initial results. The goal is to achieve the best possible TiO2 abundance maps from the ground as a precursor to lunar orbiter and robotic sample return missions, and to produce a better idea of the peak abundances of TiO2 for benefaction studies. These phases and the results are summarized.

  18. Analysis of Dark Current in BRITE Nanostellite CCD Sensors †

    PubMed Central

    Popowicz, Adam

    2018-01-01

    The BRightest Target Explorer (BRITE) is the pioneering nanosatellite mission dedicated for photometric observations of the brightest stars in the sky. The BRITE charge coupled device (CCD) sensors are poorly shielded against extensive flux of energetic particles which constantly induce defects in the silicon lattice. In this paper we investigate the temporal evolution of the generation of the dark current in the BRITE CCDs over almost four years after launch. Utilizing several steps of image processing and employing normalization of the results, it was possible to obtain useful information about the progress of thermal activity in the sensors. The outcomes show a clear and consistent linear increase of induced damage despite the fact that only about 0.14% of CCD pixels were probed. By performing the analysis of temperature dependencies of the dark current, we identified the observed defects as phosphorus-vacancy (PV) pairs, which are common in proton irradiated CCD matrices. Moreover, the Meyer-Neldel empirical rule was confirmed in our dark current data, yielding EMN=24.8 meV for proton-induced PV defects. PMID:29415471

  19. Development and use of an L3CCD high-cadence imaging system for Optical Astronomy

    NASA Astrophysics Data System (ADS)

    Sheehan, Brendan J.; Butler, Raymond F.

    2008-02-01

    A high cadence imaging system, based on a Low Light Level CCD (L3CCD) camera, has been developed for photometric and polarimetric applications. The camera system is an iXon DV-887 from Andor Technology, which uses a CCD97 L3CCD detector from E2V technologies. This is a back illuminated device, giving it an extended blue response, and has an active area of 512×512 pixels. The camera system allows frame-rates ranging from 30 fps (full frame) to 425 fps (windowed & binned frame). We outline the system design, concentrating on the calibration and control of the L3CCD camera. The L3CCD detector can be either triggered directly by a GPS timeserver/frequency generator or be internally triggered. A central PC remotely controls the camera computer system and timeserver. The data is saved as standard `FITS' files. The large data loads associated with high frame rates, leads to issues with gathering and storing the data effectively. To overcome such problems, a specific data management approach is used, and a Python/PYRAF data reduction pipeline was written for the Linux environment. This uses calibration data collected either on-site, or from lab based measurements, and enables a fast and reliable method for reducing images. To date, the system has been used twice on the 1.5 m Cassini Telescope in Loiano (Italy) we present the reduction methods and observations made.

  20. Kepler Ground-Based Photometry Proof-of-Concept

    NASA Technical Reports Server (NTRS)

    Brown, Timothy M.; Latham, D.; Howell, S.; Everett, M.

    2004-01-01

    We report on our efforts to evaluate the feasibility of using the 4-Shooter CCD camera on the 48-inch reflector at the Whipple Observatory to carry out a multi-band photometric survey of the Kepler target region. We also include recommendations for future work. We were assigned 36 nights with the &hooter during 2003 for this feasibility study. Most of the time during the first two dozen nights was dedicated to the development of procedures, test exposures, and a reconnaissance across the Kepler field. The final 12 nights in September and October 2003 were used for "production" observing in the middle of the Kepler field using the full complement of seven filters (SDSS u, g, r, i, z, plus our special Gred and D51 intermediate-band filters). Nine of these 12 nights were clear and photometric, and production observations were obtained at 109 pointings, corresponding to 14.6 square degrees.

  1. New CCD photometric investigation of the early-type overcontact binary BH Cen in the young star-forming Galactic cluster IC 2944

    NASA Astrophysics Data System (ADS)

    Zhao, Er-Gang; Qian, Sheng-Bang; Zejda, Miloslav; Zhang, Bin; Zhang, Jia

    2018-05-01

    BH Cen is a short-period early-type binary with a period of 0.792d in the extremely young star-forming cluster IC 2944. New multi-color CCD photometric light curves in U, B, V, R and I bands are presented and are analyzed by using the Wilson-Devinney code. It is detected that BH Cen is a high-mass-ratio overcontact binary with a fill-out factor of 46.4% and a mass ratio of 0.89. The derived orbital inclination i is 88.9 degrees, indicating that it is a totally eclipsing binary and the photometric parameters can be determined reliably. By adding new eclipse times, the orbital period changes in the binary are analyzed. It is confirmed that the period of BH Cen shows a long-term increase while it undergoes a cyclic oscillation with an amplitude of A 3 = 0.024 d and a period of P 3 = 50.3 yr. The high mass ratio, overcontact configuration and long-term continuous increase in the orbital period all suggest that BH Cen is in the evolutionary state after the shortest-period stage of Case A mass transfer. The continuous increase in period can be explained by mass transfer from the secondary component to the primary one at a rate of Ṁ 2 = 2.8 × 10‑6 M ⊙ per year. The cyclic change can be plausibly explained by the presence of a third body because both components in the BH Cen system are early-type stars. Its mass is determined to be no less than 2.2 M ⊙ at an orbital separation of about 32.5 AU. Since no third light was found during the photometric solution, it is possible that the third body may be a candidate for a compact object.

  2. The orbital period of the dwarf nova AF Camelopardalis

    NASA Astrophysics Data System (ADS)

    Szkody, Paula; Howell, Steve B.

    1989-04-01

    Time-resolved optical spectroscopy of the dwarf nova AF Cam for 4.5 hr during a decline from outburst reveals that the orbital period is relatively long (5-6 hr). CCD photometry at quiescence also supports this finding. This rules out the previously observed 67-76 min modulations (evident in IR photometric measurements at quiescence and optical photometry at outburst) as orbital in nature.

  3. Photometry and Blazhko Effect in RR Lyr Type Star DM Cyg

    NASA Astrophysics Data System (ADS)

    Udovichenko, S. N.; Dubovsky, P. A.; Kudzej, I.

    2010-12-01

    The photometric CCD observations for RR Lyr type star DM Cyg in Astronomical stations near Odessa(Ukraine) and Kolonica(Slovakia) in 2008 and near Odessa in 2009 have been carried out. The light curves in V system were obtained and the frequency Fourier analyse was performed. From Fourier spectra of the light curves 18 frequencies were identified. The weak Blazhko effect was detected.

  4. Near Real-Time Photometric Data Processing for the Solar Mass Ejection Imager (SMEI)

    NASA Astrophysics Data System (ADS)

    Hick, P. P.; Buffington, A.; Jackson, B. V.

    2004-12-01

    The Solar Mass Ejection Imager (SMEI) records a photometric white-light response of the interplanetary medium from Earth over most of the sky in near real time. In the first two years of operation the instrument has recorded the inner heliospheric response to several hundred CMEs, including the May 28, 2003 and the October 28, 2003 halo CMEs. In this preliminary work we present the techniques required to process the SMEI data from the time the raw CCD images become available to their final assembly in photometrically accurate maps of the sky brightness relative to a long-term time base. Processing of the SMEI data includes integration of new data into the SMEI data base; a conditioning program that removes from the raw CCD images an electronic offset ("pedestal") and a temperature-dependent dark current pattern; an "indexing" program that places these CCD images onto a high-resolution sidereal grid using known spacecraft pointing information. At this "indexing" stage further conditioning removes the bulk of the the effects of high-energy-particle hits ("cosmic rays"), space debris inside the field of view, and pixels with a sudden state change ("flipper pixels"). Once the high-resolution grid is produced, it is reformatted to a lower-resolution set of sidereal maps of sky brightness. From these sidereal maps we remove bright stars, background stars, and a zodiacal cloud model (their brightnesses are retained as additional data products). The final maps can be represented in any convenient sky coordinate system. Common formats are Sun-centered Hammer-Aitoff or "fisheye" maps. Time series at selected locations on these maps are extracted and processed further to remove aurorae, variable stars and other unwanted signals. These time series (with a long-term base removed) are used in 3D tomographic reconstructions. The data processing is distributed over multiple PCs running Linux, and, runs as much as possible automatically using recurring batch jobs ('cronjobs'). The batch scrips are controlled by Python scripts. The core data processing routines are written in several computer languages: Fortran, C++ and IDL.

  5. Photometry of occultation candidate stars. I - Uranus 1985 and Saturn 1985-1991

    NASA Technical Reports Server (NTRS)

    French, L. M.; Morales, G.; Dalton, A. S.; Klavetter, J. J.; Conner, S. R.

    1985-01-01

    Photometric observations of five stars to be occulted by the rings around Uranus are presented. The four stars to be occulted by Saturn or its rings during the period 1985-1991 were also observed. The observations were carried out with a CCD detector attached to the Kitt Peak McGraw-Hill 1.30-m telescope. Landolt standards of widely ranging V-I color indices were used to determine the extinction coefficients, transformation coefficients, and zero points of the stars. Mean extinction coefficients are given for each night of observation. K magnitudes for each star were estimated on the basis of the results of Johnson (1967). The complete photometric data set is given in a series of tables.

  6. A Multi-year Multi-passband CCD Photometric Study of the W UMa Binary EQ Tauri

    NASA Astrophysics Data System (ADS)

    Alton, K. B.

    2009-12-01

    A revised ephemeris and updated orbital period for EQ Tau have been determined from newly acquired (2007-2009) CCD-derived photometric data. A Roche-type model based on the Wilson-Devinney code produced simultaneous theoretical fits of light curve data in three passbands by invoking cold spots on the primary component. These new model fits, along with similar light curve data for EQ Tau collected during the previous six seasons (2000-2006), provided a rare opportunity to follow the seasonal appearance of star spots on a W UMa binary system over nine consecutive years. Fixed values for q, ?1,2, T1, T2, and i based upon the mean of eleven separately determined model fits produced for this system are hereafter proposed for future light curve modeling of EQ Tau. With the exception of the 2001 season all other light curves produced since then required a spotted solution to address the flux asymmetry exhibited by this binary system at Max I and Max II. At least one cold spot on the primary appears in seven out of twelve light curves for EQ Tau produced over the last nine years, whereas in six instances two cold spots on the primary star were invoked to improve the model fit. Solutions using a hot spot were less common and involved positioning a single spot on the primary constituent during the 2001-2002, 2002-2003, and 2005-2006 seasons.

  7. Southern Clusters for Standardizing CCD Photometry

    NASA Astrophysics Data System (ADS)

    Moon, T. T.

    2017-06-01

    Standardizing photometric measurements typically involves undertaking all-sky photometry. This can be laborious and time-consuming and, for CCD photometry, particularly challenging. Transforming photometry to a standard system is, however, a crucial step when routinely measuring variable stars, as it allows photoelectric measurements from different observers to be combined. For observers in the northern hemisphere, standardized UBVRI values of stars in open clusters such as M67 and NGC 7790 have been established, greatly facilitating quick and accurate transformation of CCD measurements. Recently the AAVSO added the cluster NGC 3532 for southern hemisphere observers to similarly standardize their photometry. The availability of NGC 3532 standards was announced on the AAVSO Variable Star Observing, Photometry forum on 27 October 2016. Published photometry, along with some new measurements by the author, provide a means of checking these NGC 3532 standards which were determined through the AAVSO's Bright Star Monitor (BSM) program (see: https://www.aavso.org/aavsonet-epoch-photometry-database). New measurements of selected stars in the open clusters M25 and NGC 6067 are also included.

  8. VizieR Online Data Catalog: Redshifts of galaxies in Abell 1351 field (Barrena+, 2014)

    NASA Astrophysics Data System (ADS)

    Barrena, R.; Girardi, M.; Boschin, W.; de Grandi, S.; Rossetti, M.

    2015-03-01

    Multi-object spectroscopic (MOS) observations of A1351 were carried out at the TNG on 2010 March 10. We used DOLORES/MOS with the LR-B Grism 1, yielding a dispersion of 187Å/mm. We used the 2048x2048 pixel E2V CCD, with a pixel size of 13.5um. In total, we observed four MOS masks including 143 slits. For each mask, the exposure time was 3x1800s. We had already observed A1351 field with the Wide Field Camera (WFC), mounted at the prime focus of the 2.5m INT telescope. We took exposures of 9x600s and 9x300s in B and R Harris filters in photometric conditions and 1.2-arcsec seeing. However, we used SDSS-DR7 data because a greater number of photometric bands are available, which allows an accurate colour analysis. INT and SDSS-DR7 photometric data are very similar. The completeness magnitude is r'=20.8. (1 data file).

  9. VizieR Online Data Catalog: UBVI CCD photometry of Carina region stars (Molina-Lera+, 2016)

    NASA Astrophysics Data System (ADS)

    Molina-Lera, J. A.; Baume, G.; Gamen, R.; Costa, E.; Carraro, G.

    2016-08-01

    Photometric parameters for 62730 stars in the carina region covering 6 stellar clusters (NGC 3752, Trumpler 18, NGC 3590, Hogg 10, 11 and 12) and the surrounding field. The photometry was secured in March 2006 and March 2009 with the Y4KCAM camera attached to the Cerro Tololo Inter American Observatory (CTIO, Chile) 1.0-m telescope. (1 data file).

  10. VizieR Online Data Catalog: BV light curves of WX Eridani (Arentoft+, 2004)

    NASA Astrophysics Data System (ADS)

    Arentoft, T.; Lampens, P.; van Cauteren, P.; Duerbeck, H. W.; Garcia-Melendo, E.; Sterken, C.

    2004-04-01

    Photometric V and B CCD time-series observations of WX Eri, obtained at the South African Astronomical Observatory (SAAO), Beersel Hills Observatory (BH), Las Campanas Observatory (LCO), European Southern Observatory (ESO), Sternwarte Hoher List (HOLI/HOLIr) and at Esteve Duran Observatory (EDO) during 2001 and early 2002. The measurements from the different observatories was merged and shifted to standard values. (1 data file).

  11. System for photometric calibration of optoelectronic imaging devices especially streak cameras

    DOEpatents

    Boni, Robert; Jaanimagi, Paul

    2003-11-04

    A system for the photometric calibration of streak cameras and similar imaging devices provides a precise knowledge of the camera's flat-field response as well as a mapping of the geometric distortions. The system provides the flat-field response, representing the spatial variations in the sensitivity of the recorded output, with a signal-to-noise ratio (SNR) greater than can be achieved in a single submicrosecond streak record. The measurement of the flat-field response is carried out by illuminating the input slit of the streak camera with a signal that is uniform in space and constant in time. This signal is generated by passing a continuous wave source through an optical homogenizer made up of a light pipe or pipes in which the illumination typically makes several bounces before exiting as a spatially uniform source field. The rectangular cross-section of the homogenizer is matched to the usable photocathode area of the streak tube. The flat-field data set is obtained by using a slow streak ramp that may have a period from one millisecond (ms) to ten seconds (s), but may be nominally one second in duration. The system also provides a mapping of the geometric distortions, by spatially and temporarily modulating the output of the homogenizer and obtaining a data set using the slow streak ramps. All data sets are acquired using a CCD camera and stored on a computer, which is used to calculate all relevant corrections to the signal data sets. The signal and flat-field data sets are both corrected for geometric distortions prior to applying the flat-field correction. Absolute photometric calibration is obtained by measuring the output fluence of the homogenizer with a "standard-traceable" meter and relating that to the CCD pixel values for a self-corrected flat-field data set.

  12. A Photometric Study of the Contact Binary System FU Dra

    NASA Astrophysics Data System (ADS)

    Kaitchuck, R. H.; Hill, R. L.; Corn, A. P.; Gevirtz, J.; Levell, K. L.; Valenti, T. L.

    2006-12-01

    This paper reports new four-filter CCD observations of the contact binary FU Dra. The Wilson and Devinney model was used to simultaneously fit these light curves and published radial velocity data. The stellar masses, sizes, and densities were calculated. Five additional models involving dark spots, hot spots, and accretion heating were considered as explanations for the light curve asymmetry known as the "O'Connell effect" in FU Dra. No conclusive spot model choice could be made but the Liu and Yang model for accretion heating is an unlikely explanation for the O'Connell effect in FU Dra.

  13. A Search for Planetary Transits of the Star HD 187123 by Spot Filter CCD Differential Photometry

    NASA Technical Reports Server (NTRS)

    Castellano, T.; DeVincenzi, D. (Technical Monitor)

    2000-01-01

    A novel method for performing high precision, time series CCD differential photometry of bright stars using a spot filter, is demonstrated. Results for several nights of observing of the 51 Pegasi b-type planet bearing star HD 187123 are presented. Photometric precision of 0.0015 - 0.0023 magnitudes is achieved. No transits are observed at the epochs predicted from the radial velocity observation. If the planet orbiting HD 187123 at 0.0415 AU is an inflated Jupiter similar in radius to HD 209458b it would have been detected at the greater than 6(sigma), level if the orbital inclination is near 90 degrees and at the greater than 3(sigma), level if the orbital inclination is as small as 82.7 degrees.

  14. Cometary activity in 2060 Chiron

    NASA Technical Reports Server (NTRS)

    Luu, Jane X.; Jewitt, David C.

    1990-01-01

    Results of a 2-yr (1988-90) investigation of cometary activity in 2060 Chiron based on CCD photometry and spectroscopy are reported. The photometry observations include a new rotational light curve of Chiron, a newly refined rotation period, recent developments of its long-term photometric behavior and surface brightness profiles, a deep image of the coma of Chiron, and narrowband images at wavelengths ranging from 3200 to 6840 A. The spectroscopic data include moderate resolution CCD spectra (10-20 A FWHM). Major results include the detection of impulsive brightening on a time scale of hours, evidence for a secular change in the blue portion of the reflectivity spectrum of the nucleus, no evidence for Rayleigh scattering in the near ultraviolet, and an upper limit of the column density of CO(+) ions in the coma.

  15. The 2060 Chiron: CCD photometry

    NASA Technical Reports Server (NTRS)

    Bus, Schelte J.; Bowell, Edward; Harris, Alan W.

    1987-01-01

    R-band CCD photometry of 2060 was carried out on nine nights in Nov. and Dec. 1986. The rotation period is 5.9181 + or - 0.0003 hr and the peak to peak lightcurve amplitude is 0.088 + or - 0.0003 mag. Photometric parameters are H sub R = 6.24 + or - 0.02 mag and G sub R = + or - 0.15, though formal errors may not be realistic. The lightcurve has two pairs of extrema, but its asymmetry, as evidenced by the presence of significant odd Fourier harmonics, suggests macroscopic surface irregularities and/or the presence of some large scale albedo variegation. The observational rms residual is + or - 0.015 mag. On time scales from minutes to days there is no evidence for nonperiodic (cometary) brightness changes at the level of a few millimagnitudes.

  16. Combined system for high-time-resolution dual-excitation fluorescence photometry and fluorescence imaging of calcium transients in single normal and diseased skeletal muscle fibers

    NASA Astrophysics Data System (ADS)

    Uttenweiler, Dietmar; Wojciechowski, Reinhold; Makabe, Makoto; Veigel, Claudia; Fink, Rainer H.

    1994-12-01

    Fast photometric measurements and video-imaging of fluorescent indicators both are powerful tools in measuring the intracellular free calcium concentration of muscle and many other cells. as photometric systems yield a high temporal resolution, calcium imaging systems have high spatial but significantly reduced temporal resolution. Therefore we have developed an integrated system combining both methods and based mostly on standard components. As a common, sensitive Ca2+- indicator we used the fluorescent probe Fura-2, which is alternatingly excited for ratio measurements at 340/380 nm. We used a commercially available dual excitation photometric system (OSP-3; Olympus) for attaching a CCD-camera and a frame grabber board. To achieve the synchronization we had to design circuitries for external triggering, synchronization and accurate control of the filter changer, which we added to the system. Additionally, the software for a triggered image acquisition was developed. With this integrated setup one can easily switch between the fast photometric mode (ratio frequency 100 Hz) and the imaging mode (ratio frequency 4.17 Hz). The calcium images are correlated with the 25 times faster spot measurements and are analyzed by means of image processing. With this combined system we study release and uptake of calcium ions of normal and diseased skeletal muscle from mdx mice. Such a system will also be important for other cellular studies in which fluorescence indicators are used to monitor similar time dependent alterations as well as changes in cellular distributions of calcium.

  17. Photometric and Spectroscopic Analysis of CP Stars Under Indo-Russian Collaboration

    NASA Astrophysics Data System (ADS)

    Joshi, S.; Semenko, E.; Moiseeva, A.; Joshi, G. C.; Joshi, Y. C.; Sachkov, M.

    2015-04-01

    The Indo-Russian collaboration is a joint venture between the astronomers of India (ARIES) and Russia (SAO and INASAN) to develop scientific and technical interactions by making use of observational facilities. Here we present the results obtained after the “Magnetic Conference” that was held in the Special Astrophysical Observatory, Russia in 2010. The analysis of time-series photometric CCD observations of HD 98851 shows a pulsation period of 1fh55, which is consistent with the period reported previously. We have also found a signature of short-term periodic variability in HD 207561. The analysis of high-resolution spectroscopic and spectropolarimetric observations of the sample stars revealed characteristics similar to Am stars, hence the excitation of the low-overtone pulsations are expected in these stars.

  18. RX GEMINORUM: PHOTOMETRIC SOLUTIONS, (NEARLY UNIFORM) GAINER ROTATION, DONOR RADIAL VELOCITY SOLUTION, NON-LTE ACCRETION DISK MODELS OF Hα EMISSION PROFILES, AND SECULAR LIGHT CURVE CHANGES IN THE 20TH CENTURY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Edward C.; Etzel, Paul B., E-mail: olsoneco@aol.com, E-mail: pbetzel@mail.sdsu.edu

    We obtained full-orbit Iybvu intermediate-band photometry and CCD spectroscopy of the long-period Algol eclipsing binary RX Geminorum. Photometric solutions using the Wilson–Devinney code give a gainer rotation (hotter, mass-accreting component) about 15 times the synchronous rate. We describe a simple technique to detect departures from uniform rotation of the hotter component. These binaries radiate double-peaked Hα emission from a low-mass accretion disk around the gainer. We used an approximate non-LTE disk code to predict models in fair agreement with observations, except in the far wings of the emission profile, where the star–inner disk boundary layer emits extra radiation. Variations inmore » Hα emission derive from modulations in the transfer rate. A study of times of minima during the 20th century suggests that a perturbing third body is present near RX Gem.« less

  19. Sseven-color Photometry and Classification of Stars in the Vicinity of the Emission Nebula Sh2-205

    NASA Astrophysics Data System (ADS)

    Čepas, V.; Zdanavičius, J.; Zdanavičius, K.; Straižys, V.; Laugalys, V.

    We present the results of CCD photometry in the seven-color Vilnius system for 922 stars down to V = 17 mag in a 1.5 square degree field at the northern edge of the H II region Sh2-205, at the Perseus and Camelopardalis border. Using the intrinsic color indices and photometric reddening-free Q-parameters, two-dimensional spectral types for most stars are determined.

  20. An Astronomical Test of CCD Photometric Precision

    NASA Technical Reports Server (NTRS)

    Koch, David; Dunham, Edward; Borucki, William; Jenkins, Jon; DeVingenzi, D. (Technical Monitor)

    1998-01-01

    This article considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques. we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. Weighted residual approximations of the exact error representation formula are then proposed and numerically evaluated for Ringleb flow, an exact solution of the 2-D Euler equations.

  1. Optical and dark characterization of the PLATO CCD at ESA

    NASA Astrophysics Data System (ADS)

    Verhoeve, Peter; Prod'homme, Thibaut; Oosterbroek, Tim; Duvet, Ludovic; Beaufort, Thierry; Blommaert, Sander; Butler, Bart; Heijnen, Jerko; Lemmel, Frederic; van der Luijt, Cornelis; Smit, Hans; Visser, Ivo

    2016-07-01

    PLATO - PLAnetary Transits and Oscillations of stars - is the third medium-class mission (M3) to be selected in the European Space Agency (ESA) Science and Robotic Exploration Cosmic Vision programme. It is due for launch in 2025 with the main objective to find and study terrestrial planets in the habitable zone around solar-like stars. The payload consists of >20 cameras; with each camera comprising 4 Charge-Coupled Devices (CCDs), a large number of flight model devices procured by ESA shall ultimately be integrated on the spacecraft. The CCD270 - specially designed and manufactured by e2v for the PLATO mission - is a large format (8 cm x 8 cm) back-illuminated device operating at 4 MHz pixel rate and coming in two variants: full frame and frame transfer. In order to de-risk the PLATO CCD procurement and aid the mission definition process, ESA's Payload Technology Validation section is currently validating the PLATO CCD270. This validation consists in demonstrating that the device achieves its specified electrooptical performance in the relevant environment: operated at 4 MHz, at cold and before and after proton irradiation. As part of this validation, CCD270 devices have been characterized in the dark as well as optically with respect to performance parameters directly relevant for the photometric application of the CCDs. Dark tests comprise the measurement of gain sensitivity to bias voltages, charge injection tests, and measurement of hot and variable pixels after irradiation. In addition, the results of measurements of Quantum Efficiency for a range of angles of incidence, intra- pixel response (non-)uniformity, and response to spot illumination, before and after proton irradiation. In particular, the effect of radiation induced degradation of the charge transfer efficiency on the measured charge in a star-like spot has been studied as a function of signal level and of position on the pixel grid, Also, the effect of various levels of background light on the amount of charge lost from a star image are described. These results can serve as a direct input to the PLATO consortium to study the mission performance and as a basis for further optimization of the CCD operation.

  2. Stromvil Photometry of Clusters II. The Open Cluster M67

    NASA Astrophysics Data System (ADS)

    Boyle, R. P.; Philip, A. G. D.; Straižys, V.

    1998-12-01

    Use of the Stromgren four-color photometric system with the addition of three filters (P, Z, S) of the Vilnius system allows classifying all the types of stars, even in the presence of significant reddening by interstellar dust (Strai\\v{z}ys et al, 1996). With this Stromvil system we have begun a long-term observational program on the Vatican Advanced Technology Telescope (VATT) on Mt. Graham, Arizona, (see Philip et al,1996). The Loral 2K by 2K CCD, prepared by M. Lesser of the University of Arizona CCD Lab, gives as high as 90% quantum efficiency in most of the filters and notably 65% at the u filter. To demonstrate the degree of success so far attained in this CCD Stromvil System, we present preliminary results on the open cluster M67. We will compare some of our photometry with the CCD results of B. A. Twarog (1987) and the photoelectric photometry of Nissen et al. (1987). REFERENCES Nissen, P.E., Twarog, B.A., and Crawford, D.L. 1987, A.J. 93,634 Philip, A.G. Davis, Boyle, R.P., Strai\\v{z}ys, V. 1996, Baltic Astronomy,5,445 Strai\\v{z}ys, V., Crawford, D.L., Philip, A.G.Davis 1996, Baltic Astronomy, 5,83 Twarog, B.A. 1987, A.J. 93,647

  3. SkyProbeBV: dual-color absolute sky transparency monitor to optimize science operations

    NASA Astrophysics Data System (ADS)

    Cuillandre, Jean-Charles; Magnier, Eugene; Sabin, Dan; Mahoney, Billy

    2008-07-01

    Mauna Kea (4200 m elevation, Hawaii) is known for its pristine seeing conditions, but sky transparency can be an issue for science operations: 25% of the nights are not photometric, a cloud coverage mostly due to high-altitude thin cirrus. The Canada-France-Hawaii Telescope (CFHT) is upgrading its real-time sky transparency monitor in the optical domain (V-band) into a dual-color system by adding a B-band channel and redesigning the entire optical and mechanical assembly. Since 2000, the original single-channel SkyProbe has gathered one exposure every minute during each observing night using a small CCD camera with a very wide field of view (35 sq. deg.) encompassing the region pointed by the telescope for science operations, and exposures long enough (30 seconds) to capture at least 100 stars of Hipparcos' Tychos catalog at high galactic latitudes (and up to 600 stars at low galactic latitudes). A key advantage of SkyProbe over direct thermal infrared imaging detection of clouds, is that it allows an accurate absolute measurement, within 5%, of the true atmospheric absorption by clouds affecting the data being gathered by the telescope's main science instrument. This system has proven crucial for decision making in the CFHT queued service observing (QSO), representing today 95% of the telescope time: science exposures taken in non-photometric conditions are automatically registered for being re-observed later on (at 1/10th of the original exposure time per pointing in the observed filters) to ensure a proper final absolute photometric calibration. If the absorption is too high, exposures can be repeated, or the observing can be done for a lower ranked science program. The new dual color system (simultaneous B & V bands) will allow a better characterization of the sky properties above Mauna Kea and should enable a better detection of the thinner cirrus (absorption down to 0.02 mag., i.e. 2%). SkyProbe is operated within the Elixir pipeline, a collection of tools used for handling the CFHT CCD mosaics (CFH12K and MegaCam), from data pre-processing to astrometric and photometric calibration.

  4. The "Cool Algol" BD+05 706 : Photometric observations of a new eclipsing double-lined spectroscopic binary

    NASA Astrophysics Data System (ADS)

    Marschall, L. A.; Torres, G.; Neuhauser, R.

    1998-05-01

    BVRI Observations of the star BD+05 706, carried out between January, 1997, and April 1998 using the 0.4m reflector and Photometrics CCD camera at the Gettysburg College Observatory, show that the star is an eclipsing binary system with a light curve characteristic of a class of semi-detached binaries known as the "cool Algols". These results are in good agreement with the previous report of BD+05 706 as a cool Algol by Torres, Neuhauser, and Wichmann,(Astron. J., 115, May 1998) who based their classification on the strong X-ray emission detected by Rosat and on a series of spectroscopic observations of the radial velocities of both components of the system obtained at the Oak Ridge Observatory, the Fred L. Whipple Observatory, and the Multiple Mirror Telescope. Only 10 other examples of cool Algols are known, and the current photometric light curve, together with the radial velocity curves obtained previously, allows us to derive a complete solution for the physical parameters of each component, providing important constraints on models for these interesting systems.

  5. Global and Spatially Resolved Photometric Properties of the Nucleus of Comet 67P/C-G from OSIRIS Images

    NASA Astrophysics Data System (ADS)

    Lamy, P.

    2014-04-01

    Following the successful wake-up of the ROSETTA spacecraft on 20 January 2014, the OSIRIS imaging system was fully re-commissioned at the end of March 2014 confirming its initial excellent performances. The OSIRIS instrument includes two cameras: the Narrow Angle Camera (NAC) and the Wide Angle Camera (WAC) with respective fieldsofview of 2.2° and 12°, both equipped with 2K by 2K CCD detectors and dual filter wheels. The NAC filters allow a spectral coverage of 270 to 990 nm tailored to the investigation of the mineralogical composition of the nucleus of comet P/Churyumov- Gerasimenko whereas those of the WAC (245-632 nm) aim at characterizing its coma [1]. The NAC has already secured a set of four complete light curves of the nucleus of 67P/C-G between 3 March and 24 April 2014 with a primary purpose of characterizing its rotational state. A preliminary spin period of 12.4 hours has been obtained, similar to its very first determination from a light curve obtained in 2003 with the Hubble space telescope [2]. The NAC and WAC will be recalibrated in the forthcoming weeks using the same stellar calibrators VEGA and the solar analog 16 Cyg B as for past inflight calibration campaigns in support of the flybys of asteroids Steins and Lutetia. This will allow comparing the pre- and post-hibernation performances of the cameras and correct the quantum efficiency response of the two CCD and the throughput for all channels (i.e., filters) if required. The accurate photometric analysis of the images requires utmost care due to several instrumental problems, the most severe and complex to handle being the presence of optical ghosts which result from multiple reflections on the two filters inserted in the optical beam and on the thick window which protects the CCD detector from cosmic ray impacts. These ghosts prominently appear as either slightly defocused images offset from the primary images or large round or elliptical halos. We will first present results on the global photometric properties of the nucleus of comet 67P/C-G, albedo, phase function and spectral reflectivity and compare with previous results obtained with the Hubble and Spitzer space telescopes [2, 3, 4]. Then observations during the approach and first bound orbits in July-August 2014 will allow mapping the surface of the nucleus with OSIRIS at a scale of up to 1 meter per pixel. The images will be used to reconstruct the 3D surface of the nucleus at highresolution allowing separating true photometric variations from topographic effects. We will present results on the spatially resolved photometric properties of the nucleus based on a novel method developed in the space of the facets representing the three-dimensional shape of the body. This method successfully implemented in the cases of the nucleus of comet 9P/Tempel 2 and of asteroid (2867) Steins [5] has the advantage of automatically tracking the same local surface element on a series of images. The analysis will then proceed with the determination of the global Hapke and other standard photometric parameters as well as their two-dimensional variations across the surface. This allows defining, in the body-fixed reference frame, ``high residual regions'' (HRRs) which correspond to significant relative differences between the observed and modeled photometric parameters such as the singlescattering albedo (SSA), the mean roughness slope angle, and the reflectivity gradient. Of particular interest will be the search for ice patches and possible mineralogical differences resulting from the past activity of the comet.

  6. About DR UMa or the CRTS transient CSS110402:135906+554432

    NASA Astrophysics Data System (ADS)

    Lampens, Patricia,; Van Cauteren, Paul

    2017-03-01

    We report differential photometric measurements, both unfiltered (filter clear, C) and filtered (filter V), obtained at the Humain station of the Royal Observatory of Belgium (longitude = 5.254, latitude = +50.192, elevation = 280 m) of the CRTS transient CSS110402:135906+554432 (Drake et al. 2009, ApJ 696, 870), which is also identified as DR UMa. The instrumentation is a 16-inch Schmidt-Cassegrain telescope equipped with a Moravian G2-3200 CCD camera.

  7. Recent photometry of selected symbiotic stars

    NASA Astrophysics Data System (ADS)

    Vrašťák, M.

    2018-04-01

    A new multicolour (BVRcIc) photometric observations of symbiotic stars UV Aur, YY Her, V443 Her, V1016 Cyg, PU Vul, V407 Cyg, V471 Per and suspected symbiotic stars ZZ CMi, NQ Gem, V934 Her, V335 Vul, V627 Cas is presented. The data were obtained from 2016 October to 2018 January by the metod of classical CCD photometry. The monitoring program is still running, so on this paper partial light curves are presented.

  8. CCD Strömvil Photometry of M 37

    NASA Astrophysics Data System (ADS)

    Boyle, R. P.; Janusz, R.; Kazlauskas, A.; Philip, A. G. Davis

    2001-12-01

    We have been working on a program of setting up standards in the Strömvil photometric system and have been doing CCD photometry of globular and open clusters. A previous paper (Boyle et al. BAAS, AAS Meeting #193, #68.08) described the results of observations made in the open cluster M 67, which we are setting up as one of the prime standard fields for Strömvil photometry. Now we discuss our observations of M 37, made on the Vatican Advanced Technology Telescope on Mt. Graham, Arizona. One of us (R.J.) has automated the data processing by a novel method. The Strömvil group is multinational. By use of this innovative automated, yet interactive processing method, one systematically applies the same processing steps to run in IRAF by capturing them as presented in html files and submitting them to the IRAF command language. Use of the mouse avoids errors and accelerates the processing from raw data frames to calibrated photometry. From several G2 V stars in M 67 we have calculated their mean color indices and compare them to stars in M 37 to identify candidate G2 V stars there. Identifying such stars relates to the search for terrestrial exoplanets. Ultimately we will use the calibrated Strömvil indices to make photometric determinations of log g and Teff.

  9. CCD UBVRI photometry of NGC 6811

    NASA Astrophysics Data System (ADS)

    Yontan, T.; Bilir, S.; Bostancı, Z. F.; Ak, T.; Karaali, S.; Güver, T.; Ak, S.; Duran, Ş.; Paunzen, E.

    2015-02-01

    We present the results of CCD UBVRI observations of the open cluster NGC 6811 obtained on 18th July 2012 with the 1 m telescope at the TÜBİTAK National Observatory (TUG). Using these photometric results, we determine the structural and astrophysical parameters of the cluster. The mean photometric uncertainties are better than 0.02 mag in the V magnitude and B- V, V- R, and V- I colour indices to about 0.03 mag for U- B among stars brighter than magnitude V=18. Cluster member stars were separated from the field stars using the Galaxia model of Sharma et al. (2011) together with other techniques. The core radius of the cluster is found to be r c =3.60 arcmin. The astrophysical parameters were determined simultaneously via Bayesian statistics using the colour-magnitude diagrams V versus B- V, V versus V- I, V versus V- R, and V versus R- I of the cluster. The resulting most likely parameters were further confirmed using independent methods, removing any possible degeneracies. The colour excess, distance modulus, metallicity and the age of the cluster are determined simultaneously as E( B- V)=0.05±0.01 mag, μ=10.06±0.08 mag, [ M/ H]=-0.10±0.01 dex and t=1.00±0.05 Gyr, respectively. Distances of five red clump stars which were found to be members of the cluster further confirm our distance estimation.

  10. VizieR Online Data Catalog: CCD photometry of Pal 1 (Borissova+ 1995)

    NASA Astrophysics Data System (ADS)

    Borissova, J.; Spassova, N.

    1997-06-01

    A CCD photometry of the halo cluster Palomar 1 is presented in the Thuan-Gunn photometric system. The principal sequences of the color-magnitude diagrams are delineated in different spectral bands. The color- magnitude diagrams of the cluster show a well defined red horizontal branch, a subgiant branch and a main-sequence down to about two magnitudes below the main sequence turnoff. The giant branch is absent and the brightest stars are the horizontal branch stars. The age of the cluster determined by comparison with the isochrones of Bell & VandenBerg (1987ApJS...63..335B) is consistent with an age in the interval 12-14Gyr. A distance modulus of (m-M)g0=15.38+/-0.15 magnitude and E(g-r)=0.16 has been derived. An estimate of the cluster structural parameters such as core radius and concentration parameter gives rc=1.5pc and c=1.46. A mass estimate of 1.1x103M⊙ and a mass-to-light ratio of 1.79 have been obtained using King's (1966AJ.....71...64K) method. The morphology of color-magnitude diagrams allows Pal 1 to be interpreted as probably a globular cluster rather than an old open one. For a description of the uvgr photometric system, see e.g. (1 data file).

  11. Integrated infrared detector arrays for low-background astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.

    1979-01-01

    Existing integrated infrared detector array technology is being evaluated under low-background conditions to determine its applicability in orbiting astronomical applications where extended integration times and photometric accuracy are of interest. Preliminary performance results of a 1 x 20 elements InSb CCD array under simulated astronomical conditions are presented. Using the findings of these tests, improved linear- and area-array technology will be developed for use in NASA programs such as the Shuttle Infrared Telescope Facility. For wavelengths less than 30 microns, extrinsic silicon and intrinsic arrays with CCD readout will be evaluated and improved as required, while multiplexed arrays of Ge:Ga for wavelengths in the range 30 to 120 microns will be developed as fundamental understanding of this material improves. Future efforts will include development of improved drive and readout circuitry, and consideration of alternate multiplexing schemes.

  12. CCD photometry of NGC 6101 - Another globular cluster with blue straggler stars

    NASA Technical Reports Server (NTRS)

    Sarajedini, Ata; Da Costa, G. S.

    1991-01-01

    Results are presented on CCD photometric observations of a large sample of stars in the southern globular cluster NGC 6101, and the procedures used to derive the color-magnitude (C-M) diagram of the cluster are described. No indication was found of any difference in age, at the less than 2 Gyr level, between NGC 6101 cluster and other clusters of similar abundance, such as M92. The C-M diagram revealed a significant blue straggler population. It was found that, in NGC 6101, these stars are more centrally concentrated than the cluster subgiants of similar magnitude, indicating that the blue stragglers have larger masses. Results on the magnitude and luminosity function of the sample are consistent with the bianry mass transfer or merger hypotheses for the origin of blue straggler stars.

  13. Cometary activity in 2060 Chiron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luu, J.X.; Jewitt, D.C.

    Results of a 2-yr (1988-90) investigation of cometary activity in 2060 Chiron based on CCD photometry and spectroscopy are reported. The photometry observations include a new rotational light curve of Chiron, a newly refined rotation period, recent developments of its long-term photometric behavior and surface brightness profiles, a deep image of the coma of Chiron, and narrowband images at wavelengths ranging from 3200 to 6840 A. The spectroscopic data include moderate resolution CCD spectra (10-20 A FWHM). Major results include the detection of impulsive brightening on a time scale of hours, evidence for a secular change in the blue portionmore » of the reflectivity spectrum of the nucleus, no evidence for Rayleigh scattering in the near ultraviolet, and an upper limit of the column density of CO(+) ions in the coma. 46 refs.« less

  14. Studying the Variability of Bright Stars with the CONCAM Sky Monitoring Network

    NASA Astrophysics Data System (ADS)

    Pereira, W. E.; Nemiroff, R. J.; Rafert, J. B.; Perez-Ramirez, D.

    2001-12-01

    CONCAMs have now been deployed at some of the world's major observatories including KPNO in Arizona, Mauna Kea in Hawaii, and Wise Observatory in Israel. Data from these mobile, inexpensive and continuous sky cameras, consisting of a fish-eye lens mated to a CCD camera and run by a laptop, has been ever-increasing. Initial efforts to carry out photometric analysis of CONCAM fits images have now been fortified by a more automated technique of analyzing this data. Results of such analyses - variability of several bright stars, in particular, are presented, as well as the use of these cameras as cloud monitors to remote observers.

  15. Photometric and Spectroscopic Analysis for the Determination of Physical Parameters of an Eclipsing Binary Star System

    NASA Astrophysics Data System (ADS)

    Reid, Piper

    2013-01-01

    A binary star system is a pair of stars that are bound together by gravity. Most of the stars that we see in the night sky are members of multiple star systems. A system of stars where one star passes in front of the other (as observed from Earth) on a periodic basis is called an eclipsing binary. Eclipsing binaries can have very short rotational periods and in all cases these pairs of stars are so far away that they can only be resolved from Earth as a single point of light. The interaction of the two stars serves to produce physical phenomena that can be observed and used to study stellar properties. By careful data collection and analysis is it possible for an amateur astronomer using commercial, low cost equipment (including a home built spectroscope) to gather photometric (brightness versus time) and spectroscopic (brightness versus wavelength) data, analyze the data, and calculate the physical properties of a binary star system? Using a CCD camera, tracking mount and telescope photometric data of BB Pegasi was collected and a light curve produced. 57 Cygni was also studied using a spectroscope, tracking mount and telescope to prove that Doppler shift of Hydrogen Balmer absorption lines can be used to determine radial velocity. The orbital period, orbital velocity, radius of each star, separation of the two stars and mass of each star was calculated for the eclipsing binary BB Pegasi using photometric and spectroscopic data and Kepler’s 3rd Law. These data were then compared to published data. By careful use of consumer grade astronomical equipment it is possible for an amateur astronomer to determine an array of physical parameters of a distant binary star system from a suburban setting.

  16. Photometric Studies of GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Cowardin, Heather M.; Barker, Edwin; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the SMARTS (Small and Medium Aperture Research Telescope System) 0.9-m at CTIO for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? In this paper we report on the photometric results. For a sample of 50 objects, more than 90 calibrated sequences of R-B-V-I-R magnitudes have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus the B-R color is a true measure of the surface of the debris piece facing the telescopes for that observation. Any change in color reflects a real change in the debris surface.

  17. The Solar Neighborhood. 23. CCD Photometric Distance Estimates of SCR Targets-77 M Dwarf Systems Within 25 pc

    DTIC Science & Technology

    2011-01-01

    These distances are estimated using a combination of new VRI photometry acquired at CTIO and JHK magnitudes extracted from 2MASS . The estimates are...Survey ( 2MASS ) to reveal new nearby red objects in the southern sky (Deacon et al. 2005; Deacon & Hambly 2007). This paper focuses specifically on new...more complete discussions). As we entered the 21st century, large sky surveys such as 2MASS (Skrutskie et al. 2006), DENIS (The Denis Consortium 2005

  18. Lightcurve and Rotation Period Determinations for 1599 Giomus and 1888 Zu Chong-Zhi

    NASA Astrophysics Data System (ADS)

    Foylan, Mike; Rowe, Basil; Smith, Kevin Stephen

    2018-04-01

    Collaborative CCD photometric observations of mainbelt asteroids 1599 Giomus (1950 WA) and 1888 Zu Chong-Zhi (1964 VO1) were acquired during 2017 November and December. A rotation period of 9.53 ± 0.03 h and amplitude of A = 0.06 ± 0.05 mag were determined for 1599 Giomus and 11.053 ± 0.003 h and amplitude of A = 0.56 ± 0.05 mag were determined for 1888 Zu Chong-Zhi.

  19. Accurate photometric light curves of the lensed components of Q2237+0305 derived with an optimal image subtraction technique: Evidence for microlensing in image A

    NASA Astrophysics Data System (ADS)

    Moreau, O.; Libbrecht, C.; Lee, D.-W.; Surdej, J.

    2005-06-01

    Using an optimal image subtraction technique, we have derived the V and R light curves of the four lensed QSO components of Q2237+0305 from the monitoring CCD frames obtained by the GLITP collaboration with the 2.6 m NOT telescope in 1999/2000 (Alcalde et al. 2002). We give here a detailed account of the data reduction and analysis and of the error estimates. In agreement with Woźniak et al. (2000a,b), the good derived photometric accuracy of the GLITP data allows to discuss the possible interpretation of the light curve of component A as due to a microlensing event taking place in the deflecting galaxy. This interpretation is strengthened by the colour dependence of the early rise of the light curve of component A, as it probably corresponds to a caustics crossing by the QSO source.

  20. CCD and photon-counting photometric observations of asteroids carried out at Padova and Catania observatories

    NASA Astrophysics Data System (ADS)

    Gandolfi, D.; Cigna, M.; Fulvio, D.; Blanco, C.

    2009-01-01

    We present the results of observational campaigns of asteroids performed at Asiago Station of Padova Astronomical Observatory and at M.G. Fracastoro Station of Catania Astrophysical Observatory, as part of the large research programme on Solar System minor bodies undertaken since 1979 at the Physics and Astronomy Department of Catania University. Photometric observations of six Main-Belt asteroids (27 Euterpe, 173 Ino, 182 Elsa, 539 Pamina, 849 Ara, and 984 Gretia), one Hungaria (1727 Mette), and two Near-Earth Objects (3199 Nefertiti and 2004 UE) are reported. The first determination of the synodic rotational period of 2004 UE was obtained. For 182 Elsa and 1727 Mette the derived synodic period of 80.23±0.08 and 2.981±0.001h, respectively, represents a significant improvement on the previously published values. For 182 Elsa the first determination of the H-G magnitude relation is also presented.

  1. Absolute and geometric parameters of contact binary BO Arietis

    NASA Astrophysics Data System (ADS)

    Gürol, B.; Gürsoytrak, S. H.; Bradstreet, D. H.

    2015-08-01

    We present the results of our investigation on the geometrical and physical parameters of the W UMa type binary system BO Ari from analyzed CCD (BVRI) light curves and radial velocity data. The photometric data were obtained in 2009 and 2010 at Ankara University Observatory (AUO) and the spectroscopic observations were made in 2007 and 2010 at TUBITAK National Observatory (TUG). These light and radial velocity observations were analyzed simultaneously by using the Wilson-Devinney (2013 revision) code to obtain absolute and geometrical parameters. The system was determined to be an A-type W UMa system. Combining our photometric solution with the spectroscopic data we derived masses and radii of the eclipsing system to be M1 = 0.995M⊙,M2 = 0.189M⊙,R1 = 1.090R⊙ and R2 = 0.515R⊙ . Finally, we discuss the evolutionary status of the system.

  2. Absolute and geometric parameters of contact binary V1918 Cyg

    NASA Astrophysics Data System (ADS)

    Gürol, B.

    2016-08-01

    We present the results of our investigation on the geometrical and physical parameters of the W UMa type binary system V1918 Cyg from analyzed CCD (BVR) light curves and radial velocity data. We used the photometric data published by Yang et al. (2013) and spectroscopic data obtained in 2012 at TUBITAK National Observatory (TUG). The light and radial velocity observations were analyzed simultaneously by using the Wilson-Devinney (2015 revision) code to obtain absolute and geometrical parameters of the system. It is confirmed that the system is an A-type W UMa as indicated by Yang et al. (2013). Combining our spectroscopic data with the photometric solution we derived masses and radii of the eclipsing system as M1 = 1.302M⊙ , M2 = 0.362M⊙ , R1 = 1.362R⊙ and R2 = 0.762R⊙ . Finally, we discuss the evolutionary status of the system.

  3. ESO & NOT photometric monitoring of the Cloverleaf quasar

    NASA Astrophysics Data System (ADS)

    Ostensen, R.; Remy, M.; Lindblad, P. O.; Refsdal, S.; Stabell, R.; Surdej, J.; Barthel, P. D.; Emanuelsen, P. I.; Festin, L.; Gosset, E.; Hainaut, O.; Hakala, P.; Hjelm, M.; Hjorth, J.; Hutsemekers, D.; Jablonski, M.; Kaas, A. A.; Kristen, H.; Larsson, S.; Magain, P.; Pettersson, B.; Pospieszalska-Surdej, A.; Smette, A.; Teuber, J.; Thomsen, B.; van Drom, E.

    1997-12-01

    The Cloverleaf quasar, H1413+117, has been photometrically monitored at ESO (La Silla, Chile) and with the NOT (La Palma, Spain) during the period 1987--1994. All good quality CCD frames have been successfully analysed using two independent methods (i.e. an automatic image decomposition technique and an interactive CLEAN algorithm). The photometric results from the two methods are found to be very similar, and they show that the four lensed QSO images vary significantly in brightness (by up to 0.45 mag), nearly in parallel. The lightcurve of the $D$ component presents some slight departures from the general trend which are very likely caused by micro-lensing effects. Upper limits, at the 99% confidence level, of 150 days on the absolute value for the time delays between the photometric lightcurves of this quadruply imaged variable QSO, are derived. This is unfortunately too large to constrain the lens model but there is little doubt that a better sampling of the lightcurves should allow to accurately derive these time delays. Pending a direct detection of the lensing galaxy (position and redshift), this system thus constitutes another good candidate for a direct and independent determination of the Hubble parameter. Based on observations collected at the European Southern Observatory (La Silla, Chile) and with the Nordic Optical Telescope (La Palma, Spain). Table 1. Logbook for the ESO and NOT observations together with photometric results for the Cloverleaf quasar. This long table can be accessed on the WWW at the URL address: http://vela.astro.ulg.ac.be/grav_lens/glp_homepage.html}

  4. First photometric study of ultrashort-period contact binary 1SWASP J140533.33+114639.1

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Qian, Sheng-Bang; Michel, Ri; Soonthornthum, Boonrucksar; Zhu, Li-Ying

    2018-03-01

    In this paper, CCD photometric light curves for the short-period eclipsing binary 1SWASP J140533.33+114639.1 (hereafter J1405) in the BV R bands are presented and analyzed using the 2013 version of the Wilson-Devinney (W-D) code. It is discovered that J1405 is a W-subtype shallow contact binary with a contact degree of f = 7.9 ± 0.5% and a mass ratio of q = 1.55 ± 0.02. In order to explain the asymmetric light curves of the system, a cool starspot on the more massive component is employed. This shallow contact eclipsing binary may have been formed from a short-period detached system through orbital shrinkage due to angular momentum loss. Based on the (O – C) method, the variation of orbital period is studied using all the available times of minimum light. The (O – C) diagram reveals that the period is increasing continuously at a rate of dP/dt = +2.09 × 10‑7, d yr‑1, which can be explained by mass transfer from the less massive component to the more massive one.

  5. Deep UBVRI photometric calibration of high-latitude fields: SA 57 (1307+30) and Hercules (1720+50)

    NASA Technical Reports Server (NTRS)

    Majewski, S. R.; Kron, R. G.; Koo, D. C.; Bershady, M. A.

    1994-01-01

    We present CCD photometric calibration sequences in the magnitude range V = 17-22 for two fields at high Galactic latitude: SA 57 (at the North Galactic Pole) and Hercules (l = 77, b = 35). Photometry to a precision of about 0.02 mag at V = 20 and, in general, better than 0.10 mag at V = 22 was obtained in the Johnson UBV as well as the Kron-Cousins R and I bands. These data are suitable for setting magnitude zero-points in catalogues of faint stars, galaxies, and QSOs, and we apply them to our own photographic catalogs in these two fields. We also note a significant deviation in the (V-R, R-I) color-color diagram for the locus of faint (V is greater than 20) M dwarfs compared to the locus provided by much brighter M dwarfs. This deviation may indicate differences in spectral properties between Population I and older populations of late dwarfs; however we do not discount the possibility that this locus for the faint stars, which appears as a saturation in V-R color with increasing R-I color, is the result of systematic photometric error.

  6. Multi-band optical variability studies of Blazars

    NASA Astrophysics Data System (ADS)

    Agarwal, Aditi

    2018-04-01

    To search for optical variability on a wide range of timescales, we have carried out photometric monitoring of a dozen blazars. CCD magnitudes in B, V, R and I pass-bands were determined for > 10,000f new optical observations from 300 nights made during 2011 – 2016, with an average length of 4 h each, using seven optical telescopes: four in Bulgaria, one in Greece, and two in India. We measured multiband optical flux and colour variations on diverse timescales. Blazar variability studies helped us in understanding their nature and extreme conditions within the emission region. To explain possible physical causes of the observed spectral variability, we also investigated spectral energy distributions using B, V, R, I, J and K pass-band data.

  7. Enhancing Our Knowledge of Northern Cepheids through Photometric Monitoring

    NASA Astrophysics Data System (ADS)

    Turner, D. G.; Majaess, D. J.; Lane, D. J.; Szabados, L.; Kovtyukh, V. V.; Usenko, I. A.; Berdnikov, L. N.

    2009-09-01

    A selection of known and newly-discovered northern hemisphere Cepheids and related objects are being monitored regularly through CCD observations at the automated Abbey Ridge Observatory, near Halifax, and photoelectric photometry from the Saint Mary's University Burke-Gaffney Observatory. Included is Polaris, which is displaying unusual fluctuations in its growing light amplitude, and a short-period, double-mode Cepheid, HDE 344787, with an amplitude smaller than that of Polaris, along with a selection of other classical Cepheids in need of additional observations. The observations are being used to establish basic parameters for the Cepheids, for application to the Galactic calibration of the Cepheid period-luminosity relation as well as studies of Galactic structure.

  8. A photometric study of Enceladus

    NASA Technical Reports Server (NTRS)

    Verbiscer, Anne J.; Veverka, Joseph

    1994-01-01

    We have supplemented Voyager imaging data from Enceladus (limited to phase angles of 13 deg-43 deg) with recent Earth-based CCD observations to obtain an improved determination of the Bond albedo, to construct an albedo map of the satellite, and to constrain parameters in Hapke's (1986) photometric equation. A major result is evidence of regional variations in the physical properties of Enceladus' surface. The average global photometric properties are described by single scattering albedo omega(sub 0) average = 0.998 +/- 0.001, macroscopic roughness parameter theta average = 6 +/- 1 deg, and Henyey-Greenstein asymmetry parameter g = -0.399 +/- 0.005. The value of theta average is smaller than the 14 deg found by fitting whole-disk data, which include all terrains on Enceladus. The opposition surge amplitude B(sub 0) = 0.21 +/- 0.07 and regolith compaction parameter h = 0.014 +/- 0.02 are loosely constrained by the scarcity of and uncertainty in near-opposition observations. From the solar phase curve we determine the geometric albedo of Enceladus p(sub v) = 0.99 +/- 0.06 and phase integral q = 0.92 +/- 0.05, which corresponds to a spherical albedo A = p(sub v)q = 0.91 +/- 0.1. Since the spectrum of Enceladus is fairly flat, we can approximate the Bond albedo A(sub B) with the spherical albedo. Our photometric analysis is summarized in terms of an albedo map which generally reproduces the satellite's observed lightcurve and indicates that normal reflectances range from 0.9 on the leading hemisphere to 1.4 on the trailing one. The albedo map also revels an albedo variation of 15% from longitudes 170 deg to 200 deg, corresponding to the boundary between the leading and trailing hemispheres.

  9. Photometric Observations and Analysis of 1082 Pirola

    NASA Astrophysics Data System (ADS)

    Baker, Ronald E.; Pilcher, Frederick; Benishek, Vladimir

    2011-04-01

    CCD observations of the main-belt asteroid 1082 Pirola were recorded during the period 2010 October to 2011 January. Analysis of the lightcurve found a synodic period of P = 15.8525 ± 0.0005 h and amplitude A = 0.53 ± 0.01 mag. The phase curve referenced to mean magnitude suggests the absolute magnitude and phase slope parameter: H = 10.507 ± 0.014 mag; G = 0.080 ± 0.016. The phase curve referenced to maximum light suggests: H = 10.320 ± 0.013 mag; G = 0.107 ± 0.016.

  10. New aspects relating to the behaviour of composites and adhesives in space

    NASA Technical Reports Server (NTRS)

    Carpenter, A.

    1991-01-01

    Some of the specialized testing procedures performed at the JPL Molecular Contamination Investigation Facility for the WideField Planetary Camera II (WFPC II) program for the screening of polymeric materials for outgassing properties are described. For WFPC II, a science performance goal of 1-percent photometric accuracy at 1470 A over an extended time (at least 30 days) has been established. Utilization of the newest technology using CCD detectors poses even more stringent requirements. Test results are presented, and data reduction and modeling techniques are discussed.

  11. Calibrating Images from the MINERVA Cameras

    NASA Astrophysics Data System (ADS)

    Mercedes Colón, Ana

    2016-01-01

    The MINiature Exoplanet Radial Velocity Array (MINERVA) consists of an array of robotic telescopes located on Mount Hopkins, Arizona with the purpose of performing transit photometry and spectroscopy to find Earth-like planets around Sun-like stars. In order to make photometric observations, it is necessary to perform calibrations on the CCD cameras of the telescopes to take into account possible instrument error on the data. In this project, we developed a pipeline that takes optical images, calibrates them using sky flats, darks, and biases to generate a transit light curve.

  12. SkyProbe: Real-Time Precision Monitoring in the Optical of the Absolute Atmospheric Absorption on the Telescope Science and Calibration Fields

    NASA Astrophysics Data System (ADS)

    Cuillandre, J.-C.; Magnier, E.; Sabin, D.; Mahoney, B.

    2016-05-01

    Mauna Kea is known for its pristine seeing conditions but sky transparency can be an issue for science operations since at least 25% of the observable (i.e. open dome) nights are not photometric, an effect mostly due to high-altitude cirrus. Since 2001, the original single channel SkyProbe mounted in parallel on the Canada-France-Hawaii Telescope (CFHT) has gathered one V-band exposure every minute during each observing night using a small CCD camera offering a very wide field of view (35 sq. deg.) encompassing the region pointed by the telescope for science operations, and exposures long enough (40 seconds) to capture at least 100 stars of Hipparcos' Tycho catalog at high galactic latitudes (and up to 600 stars at low galactic latitudes). The measurement of the true atmospheric absorption is achieved within 2%, a key advantage over all-sky direct thermal infrared imaging detection of clouds. The absolute measurement of the true atmospheric absorption by clouds and particulates affecting the data being gathered by the telescope's main science instrument has proven crucial for decision making in the CFHT queued service observing (QSO) representing today all of the telescope time. Also, science exposures taken in non-photometric conditions are automatically registered for a new observation at a later date at 1/10th of the original exposure time in photometric conditions to ensure a proper final absolute photometric calibration. Photometric standards are observed only when conditions are reported as being perfectly stable by SkyProbe. The more recent dual color system (simultaneous B & V bands) will offer a better characterization of the sky properties above Mauna Kea and should enable a better detection of the thinnest cirrus (absorption down to 0.01 mag., or 1%).

  13. VizieR Online Data Catalog: Photometric study of fourteen low-mass binaries (Korda+, 2017)

    NASA Astrophysics Data System (ADS)

    Korda, D.; Zasche, P.; Wolf, M.; Kucakova, H.; Honkova, K.; Vrastil, J.

    2018-05-01

    All new photometric observations of 14 binaries were carried out in the Ondrejov Observatory in the Czech Republic with the 0.65 m reflecting-type telescope and the G2-3200 CCD camera. Observations were collected from 2015 February to 2016 November in the I, R, and V filters (Bessell 1990PASP..102.1181B). Some of the older observations obtained only in the R filter were used for refining the individual orbital periods. The stars were primarily chosen from the catalog of Hoffman et al. (2008, J/AJ/136/1067). For the selection of suitable stars, we used several criteria. Each binary's classification as a low-mass binary was performed using the photometric indices J-H and H-K, which are known from the 2MASS survey (Cutri et al. 2003, Cat. II/246; J-H>0.25 and H-K>0.07 Pecaut & Mamajek (2013, J/ApJS/208/9; www.pas.rochester.edu/~emamajek/EEMdwarfUBVIJHKcolorsTeff.txt)). Furthermore, we selected binary systems that have short orbital periods (P<1.5 days) and we chose the declination to be higher than +30°. The last criterion was that these systems cannot have been analyzed in detail before. We chose 11 systems in Hoffman's catalog (2008, J/AJ/136/1067), 2 more were found in the measured field (one of them is on the edge of criteria), and 1 star was added later. (6 data files).

  14. Photometric study of the Moon with SMART-1/AMIE

    NASA Astrophysics Data System (ADS)

    Naranen, Jyri; Parviainen, Hannu; Muinonen, Karri; Josset, Jean-Luc; Beauvivre, Stephane; Koschny, Detlef; Foing, Bernard H.; Krieger, Bjoern; Amie Team

    The Advanced Moon micro-Imager Experiment (AMIE) onboard the ESA SMART-1 lunar mission performed imaging of the Moon between November 2004 and September 2006, when the mission was ended by crashing the spacecraft into the lunar surface. AMIE was a 1024X1024 pixel miniaturized CCD camera with three colour filters and a panchromatic channel (clear filter). The images are of medium-to-high resolution, e.g. at 300 km pericenter altitude the resolution was 27 m/pix. We selected four different regions on the lunar surface imaged by AMIE for the photometric investigation reported here. These regions were selected so that as large phase angle coverage as possible was available, including the opposition geometry. Each of the regions cover a few hundred square kilometers of the lunar surface and were imaged by AMIE several tens of times. The regions examined include, e.g., Reiner gamma and Oceanus Procellarum near the crater Mairan. We utilized the latest in-flight calibration data available and we also georetrified the images to account for the aspect distortions. For the study reported here, the panchromatic filter was chosen since it is the best calibrated channel at the moment. The data was analyzed by implementing a numerical light scattering model with which we have inverted the regolith porosity and macroscopic surface roughness properties for the target areas. The model computes the bidirectional reflectance function using the geometric-optics approximation from a particulate medium constrained by a self-affine fractal random fields mimicking the regolith-covered lunar surface. Fractal description of the surface roughness is used, since it gives a more realistic way to model the true macroscopic surface roughness than the often used Gaussian correlation-model. Unlike in the previous studies, the azimuthal shadowing effects are taken into account, allowing for a more reliable inversion of surface statistics from images with large phase angles. In addition, we have fitted an empirical photometric function to the data which can be used to perform photometric correction to the images in, e.g., image mosaicking. A comparison with the results from the relevant previous photometric studies of the Moon is given. We end by presenting plans for future studies, especially the possible multi-colour photometry.

  15. VizieR Online Data Catalog: TU UMa light curves and maxima, CL Aur minima (Liska+, 2016)

    NASA Astrophysics Data System (ADS)

    Liska, J.; Skarka, M.; Mikulasek, Z.; Zejda, M.; Chrastina, M.

    2016-02-01

    Differential photometry for RR Lyrae star TU UMa in the 1st and 2nd file. The measurements were obtained using 24-inch and 1-inch telescopes, respectively. The observations were performed at the Masaryk University Observatory in Brno (3 nights, 24-inch), and at the private observatory in Brno (16 nights, 1-inch) in the Czech Republic from December 2013 to June 2014. Observing equipments consisted of 24-inch Newtonian telescope (600/2780mm, diameter/focal length) and a Moravian Instruments CCD camera G2-4000 with Stromgren photometric filters vby, and of 1-inch refractor (a photographic lens Sonnar 4/135mm, lens focal ratio/focal length) and ATIK 16IC CCD camera with green photometric filter with similar throughput as the Johnson V filter. Exposures were v - 60s, b - 30s, y - 30s, green - 30s. For the small aperture telescope, five frames were combined to a single image to achieve a better signal-to-noise ratio. The time resolution of a such combined frame is about 170s. CCD images were calibrated in a standard way (dark frame and flat field corrections). The C-Munipack software (Motl 2009) was used for this processing as well as for differential photometry. The comparison star BD+30 2165 was the same for both instruments, but the control stars were BD+30 2164 (for the 24-inch telescope) and HD 99593 (for the 1-inch telescope). The 3rd file contains maxima timings of TU UMa adopted from the GEOS RR Lyr database, from the latest publications, together with maxima timings determined in our study. Times of maxima were calculated from our observations, sky-surveys data (Hipparcos, NSVS, Pi of the Sky, SuperWASP), photographic measurements (project DASCH), and from several published datasets, in which the maxima were omitted or badly determined - Boenigk (1958AcA.....8...13B), Liakos, Niarchos (2011IBVS.6099....1L, 2011IBVS.5990....1L), Liu, Janes (1989ApJS...69..593L), Preston et al. (1961ApJ...133..484P). The 4th file contains minima timings of eclipsing binary CL Aur adopted from O-C Gateway database. (5 data files).

  16. Observations of the Natural Planetary Satellites for Dynamical and Physical Purpose

    NASA Astrophysics Data System (ADS)

    Arlot, J. E.; Thuillot, W.; Fienga, A.; Bec-Borsenberger, A.; Baron, N.; Berthier, J.; Colas, F.; Descamps, P.

    1999-12-01

    At the Institut de mecanique celeste-Bureau des longitudes, we started several programs of observation of the natural planetary satellites. First, we took the opportunity of the transit of the Earth and the Sun in the equatorial plane of Jupiter to observe the mutual phenomena of the Galilean satellites. These observations provide astrometric data of high accuracy useful for dynamical studies of the motions of the satellites and photometric data allowing to characterize the surfaces of the satellites. A campaign was organized leading to 400 light curves made throughout the world in about 40 countries. Second, we started astrometric CCD observations of the faint satellites of Jupiter JVI to JXIII and of the satellite of Saturn Phoebe (SIX) for dynamical purpose at Observatoire de Haute Provence using the 120cm-telescope. PPM, Hipparcos and USNO A.2 catalogue were used for calibration in order to get absolute J2000 R.A. and declination of these objects. In August and December, 1998, CCD observations provided 43 absolute positions of JVI, 23 of JVII, 53 of JVIII, 35 of JIX, 29 of JX, 27 of JXI, 18 of JXII, 16 of JXIII and 135 of SIX (Phoebe). A campaign will also take place in 1999.

  17. Flagging and Correction of Pattern Noise in the Kepler Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, Jeffery J.; Caldwell, Douglas A.; VanCleve, Jeffrey E.; Clarke, Bruce D.; Jenkins, Jon M.; Cote, Miles T.; Klaus, Todd C.; Argabright, Vic S.

    2010-01-01

    In order for Kepler to achieve its required less than 20 PPM photometric precision for magnitude 12 and brighter stars, instrument-induced variations in the CCD readout bias pattern (our "2D black image"), which are either fixed or slowly varying in time, must be identified and the corresponding pixels either corrected or removed from further data processing. The two principle sources of these readout bias variations are crosstalk between the 84 science CCDs and the 4 fine guidance sensor (FGS) CCDs and a high frequency amplifier oscillation on less than 40% of the CCD readout channels. The crosstalk produces a synchronous pattern in the 2D black image with time-variation observed in less than 10% of individual pixel bias histories. We will describe a method of removing the crosstalk signal using continuously-collected data from masked and over-clocked image regions (our "collateral data"), and occasionally-collected full-frame images and reverse-clocked readout signals. We use this same set to detect regions affected by the oscillating amplifiers. The oscillations manifest as time-varying moir pattern and rolling bands in the affected channels. Because this effect reduces the performance in only a small fraction of the array at any given time, we have developed an approach for flagging suspect data. The flags will provide the necessary means to resolve any potential ambiguity between instrument-induced variations and real photometric variations in a target time series. We will also evaluate the effectiveness of these techniques using flight data from background and selected target pixels.

  18. High resolution in galaxy photometry and imaging

    NASA Astrophysics Data System (ADS)

    Nieto, J.-L.; Lelievre, G.

    Techniques for increasing the resolution of ground-based photometric observations of galaxies are discussed. The theoretical limitations on resolution and their implications for choosing telescope size at a given site considered, with an emphasis on the importance of the Fried (1966) parameter r0. The techniques recommended are shortening exposure time, selection of the highest-resolution images, and a posteriori digital image processing (as opposed to active-mirror image stabilization or the cine-CCD system of Fort et al., 1984). The value of the increased resolution (by a factor of 2) achieved at Pic du Midi observatory for studies of detailed structure in extragalactic objects, for determining the distance to galaxies, and for probing the central cores of galaxies is indicated.

  19. Kepler Mission: End-to-End System Demonstration

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, D.; Dunham, E.; Jenkins, J.; Witteborn, F.; Updike, T.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    A test facility has been constructed to demonstrate the capability of differential ensemble photometry to detect transits of Earth-size planets orbiting solar-like stars. The main objective is to determine the effects of various noise sources on the capability of a CCD photometer to maintain a system relative precision of 1 x $10^(-5)$ for mv = 12 stars in the presence of system-induced noise sources. The facility includes a simulated star field, fast optics to simulate the telescope, a thinned back-illuminated CCD similar to those to be used on the spacecraft and computers to perform the onboard control, data processing and extraction. The test structure is thermally and mechanically isolated so that each source of noise can be introduced in a controlled fashion and evaluated for its contribution to the total noise budget. The effects of pointing errors or a changing thermal environment are imposed by piezo-electric devices. Transits are injected by heating small wires crossing apertures in the star plate. Signals as small as those from terrestrial-size transits of solar-like stars are introduced to demonstrate that such planets can be detected under realistic noise conditions. Examples of imposing several noise sources and the resulting detectabilities are presented. These show that a differential ensemble photometric approach CCD photometer can readily detect signals associated with Earth-size transits.

  20. Photometric Modeling of a Cometary Nucleus: Taking Hapke Modeling to the Limit

    NASA Technical Reports Server (NTRS)

    Buratti, B. J.; Hicks, M. D.; Soderblom, L.; Hillier, J.; Britt, D.

    2002-01-01

    In the past two decades, photometric models developed by Bruce Hapke have been fit to a wide range of bodies in the Solar System: The Moon, Mercury, several asteroids, and many icy and rocky satellites. These models have enabled comparative descriptions of the physical attributes of planetary surfaces, including macroscopic roughness, particle size and size-distribution, the single scattering albedo, and the compaction state of the optically active portion of the regolith. One challenging type of body to observe and model, a cometary nucleus, awaited the first space based mission to obtain images unobscured by coma. The NASA-JPL Deep Space 1 Mission (DS1) encountered the short-period Jupiter-family comet 19/P Borrelly on September 22, 2001, about 8 days after perihelion. Prior to its closest approach of 2171 km, the remote-sensing package on the spacecraft obtained 25 CCD images of the comet, representing the first closeup, unobscured view of a comet's nucleus. At closest approach, corresponding to a resolution of 47 meters per pixel, the intensity of the coma was less than 1% of that of the nucleus. An unprecedented range of high solar phase angles (52-89 degrees), viewing geometries that are in general attainable only when a comet is active, enabled the first quantitative and disk-resolved modeling of surface photometric physical parameters.

  1. The Dust Cloud TGU H1192 (LDN 1525) in Auriga. II

    NASA Astrophysics Data System (ADS)

    Boyle, Richard P.; Janusz, Robert; Straizys, Vytautas; Zdanavicius, Kazimieras; Maskoliunas, Marius; Kazlauskas, Algirdas

    2016-01-01

    The results of a new investigation of interstellar extinction in the direction of the emission nebulae Sh2-231 and Sh2-235 are presented. The investigation is based on CCD photometry and photometric MK classification in seven areas of 12' by 12' size in the Vilnius seven-color photometric system down to V = 19 mag. Additionally, for the same task we applied 519 red clump giants identified in the surrounding 1.5 deg. by 1.5 deg. area using the results of photometry in the 2MASS and WISE surveys. The dependence of the extinction run with distance allows determining distances to dust clouds and their extinctions. We comparethese new more detailed results with the preliminary results described in our previous paper (V. Straizys et al. 2010, Baltic Astronomy, 19, 169) and the AAS communication at the AAS Meeting No. 219 (Austin), 349.12. The relation of the TGU H1192 dust cloud with the Auriga OB1 association is discussed.

  2. The first photometric investigation and orbital period variation analysis of the W UMa type binary IK Bootis

    NASA Astrophysics Data System (ADS)

    Kriwattanawong, Wichean; Sanguansak, Nuanwan; Maungkorn, Sakdawoot

    2017-08-01

    With new CCD observations of the W UMa type binary IK Boo, we present the first investigation of photometric parameters and orbital period change. The BVRc light curve fit shows that IK Boo is a W-type contact system with a mass ratio of q = 1.146 and a shallow contact with a fill-out factor of f = 2.22%. The orbital period decrease was found to be a rate of -3.28 × 10-7 d yr-1, corresponding to a mass transfer from the more massive to the less massive component with a rate of -2.83 × 10-6 M⊙ yr-1. The inner and outer critical Roche lobes will contract and cause the contact degree to increase. Therefore, IK Boo may evolve into a deeper contact system. Furthermore, a possible cyclic variation was found with a period of 9.74 yr, which could be explained by the light-travel time effect due to the existence of a third companion in the system.

  3. Optical variability of extragalactic objects used to tie the HIPPARCOS reference frame to an extragalactic system using Hubble space telescope observations

    NASA Technical Reports Server (NTRS)

    Bozyan, Elizabeth P.; Hemenway, Paul D.; Argue, A. Noel

    1990-01-01

    Observations of a set of 89 extragalactic objects (EGOs) will be made with the Hubble Space Telescope Fine Guidance Sensors and Planetary Camera in order to link the HIPPARCOS Instrumental System to an extragalactic coordinate system. Most of the sources chosen for observation contain compact radio sources and stellarlike nuclei; 65 percent are optical variables beyond a 0.2 mag limit. To ensure proper exposure times, accurate mean magnitudes are necessary. In many cases, the average magnitudes listed in the literature were not adequate. The literature was searched for all relevant photometric information for the EGOs, and photometric parameters were derived, including mean magnitude, maximum range, and timescale of variability. This paper presents the results of that search and the parameters derived. The results will allow exposure times to be estimated such that an observed magnitude different from the tabular magnitude by 0.5 mag in either direction will not degrade the astrometric centering ability on a Planetary Camera CCD frame.

  4. Fundamental parameters of the highly reddened young open clusters Westerlund 1 and 2

    NASA Astrophysics Data System (ADS)

    Piatti, A. E.; Bica, E.; Claria, J. J.

    1998-02-01

    We study the compact open clusters Westerlund1 (BH197) and Westerlund2. We present CCD integrated spectroscopy for both clusters, and CCD imaging in the V and I bands for the former one. So far, Westerlund1 is possibly the most reddened open cluster studied in detail (Av ~ 13.0). It has an age of 8 +/- 3 Myr and a distance from the Sun of d_sun ~ 1.0 +/- 0.4 kpc. For Westerlund2 we derive a visual absorption AV~ 5.0 mag, an age of 2-3 Myr, and d_sun=5.7+/- 0.3 kpc. From luminosity and structural arguments we conclude that Westerlund1, although young and compact, it is a massive cluster, in contrast to Westerlund2. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Cientificas y Tecnicas de la Republica Argentina and the Universities of La Plata, Cordoba and San Juan, Argentina, and at the University of Toronto (David Dunlap Observatory) 24-inch telescope, Las Campanas, Chile. The photometric observations are available at CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  5. The Sagittarius Dwarf Galaxy Survey (SDGS): Constraints on the Star Formation History of the Sgr dSph

    NASA Astrophysics Data System (ADS)

    Bellazzini, M.; Ferraro, F. R.; Buonanno, R.

    1999-01-01

    We present the first results of a large photometric survey devoted to the study of the star formation history in the Sagittarius dwarf spheroidal galaxy (Sgr dSph). Three large (size: 9 x 35 arcmin2) and widely spaced fields located nearly along the Sgr dSph major axis [(l,b) = (6.5 -16);(6-14);(5-12)] have been observed in the V and I passbands with the ESO-NTT 3.5-m telescope (La Silla - Chile). Well-calibrated photometry has been obtained for ˜90000 stars toward Sgr dSph and for ˜9000 stars in a (9 x 24 arcmin2) control field down to a limiting magnitude of V 22. At present this is the largest photometric (CCD) sample of Sgr dSph stars and the wide spacing between field provides the first opportunity of studying the stellar content of different regions of the galaxy (over a range of ˜2 Kpc across). Age and metallicity estimates are obtained for the detected stellar populations and the very first evidences are presented for (a) spatial differences in the stellar content and (b) the detection of a very metal poor population in the field of the Sgr galaxy.

  6. Advanced imaging system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.

  7. Photometric Studies of Orbital Debris at GEO

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Cowardin, Heather M.; Barker, Ed; Abercromby, Kira J.; Foreman, Gary; Hortsman, Matt

    2009-01-01

    Orbital debris represents a significant and increasing risk to operational spacecraft. Here we report on photometric observations made in standard BVRI filters at the Cerro Tololo Inter-American Observatory (CTIO) in an effort to determine the physical characteristics of optically faint debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan s 0.6-m Curtis-Schmidt telescope (known as MODEST, for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. For a sample of 50 objects, calibrated sequences in RB- V-I-R filters have been obtained with the CTIO/SMARTS 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could imply that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For irregularly shaped objects tumbling at unknown orientations and rates, such sequential filter measurements using one telescope are subject to large errors for interpretation. If all observations in all filters in a particular sequence are of the same surface at the same solar and viewing angles, then the colors are meaningful. Where this is not the case, interpretation of the observed colors is impossible. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO/SMARTS 0.9-m observes in B, and the Schmidt in R. The CCD cameras are electronically linked together so that the start time and duration of observations are both the same to better than 50 milliseconds. Now the observed B-R color is a true measure of the scattered illuminated area of the debris piece for that observation.

  8. The Next Generation Transit Survey (NGTS)

    NASA Astrophysics Data System (ADS)

    Wheatley, Peter J.; West, Richard G.; Goad, Michael R.; Jenkins, James S.; Pollacco, Don L.; Queloz, Didier; Rauer, Heike; Udry, Stéphane; Watson, Christopher A.; Chazelas, Bruno; Eigmüller, Philipp; Lambert, Gregory; Genolet, Ludovic; McCormac, James; Walker, Simon; Armstrong, David J.; Bayliss, Daniel; Bento, Joao; Bouchy, François; Burleigh, Matthew R.; Cabrera, Juan; Casewell, Sarah L.; Chaushev, Alexander; Chote, Paul; Csizmadia, Szilárd; Erikson, Anders; Faedi, Francesca; Foxell, Emma; Gänsicke, Boris T.; Gillen, Edward; Grange, Andrew; Günther, Maximilian N.; Hodgkin, Simon T.; Jackman, James; Jordán, Andrés; Louden, Tom; Metrailler, Lionel; Moyano, Maximiliano; Nielsen, Louise D.; Osborn, Hugh P.; Poppenhaeger, Katja; Raddi, Roberto; Raynard, Liam; Smith, Alexis M. S.; Soto, Maritza; Titz-Weider, Ruth

    2018-04-01

    We describe the Next Generation Transit Survey (NGTS), which is a ground-based project searching for transiting exoplanets orbiting bright stars. NGTS builds on the legacy of previous surveys, most notably WASP, and is designed to achieve higher photometric precision and hence find smaller planets than have previously been detected from the ground. It also operates in red light, maximizing sensitivity to late K and early M dwarf stars. The survey specifications call for photometric precision of 0.1 per cent in red light over an instantaneous field of view of 100 deg2, enabling the detection of Neptune-sized exoplanets around Sun-like stars and super-Earths around M dwarfs. The survey is carried out with a purpose-built facility at Cerro Paranal, Chile, which is the premier site of the European Southern Observatory (ESO). An array of twelve 20 cm f/2.8 telescopes fitted with back-illuminated deep-depletion CCD cameras is used to survey fields intensively at intermediate Galactic latitudes. The instrument is also ideally suited to ground-based photometric follow-up of exoplanet candidates from space telescopes such as TESS, Gaia and PLATO. We present observations that combine precise autoguiding and the superb observing conditions at Paranal to provide routine photometric precision of 0.1 per cent in 1 h for stars with I-band magnitudes brighter than 13. We describe the instrument and data analysis methods as well as the status of the survey, which achieved first light in 2015 and began full-survey operations in 2016. NGTS data will be made publicly available through the ESO archive.

  9. Non-radial pulsations in Be stars. Preparation of the COROT space mission.

    NASA Astrophysics Data System (ADS)

    Gutierrez-Soto, J.

    2006-12-01

    The space mission COROT scheduled to be launched in December 2006, will provide ultra high precision, relative stellar photometry for very long continuous observing runs. Up to ten stars will be observed in the seismology fields with a photometric accuracy of 1 ppm, and several thousands in the exoplanet fields with an accuracy of a few 10-4 and colour information. The observations of Be stars with COROT will provide photometric time series with unprecedented quality. Their analysis will allow us to qualitatively improve our knowledge and understanding of the pulsational characteristics of Be stars. In consequence, we have started a research project aimed at observing Be stars both in the seismology and exoplanet fields of COROT. In this thesis we present the first step of this project, which is the preparation and study of the sample of Be stars that will be observed by COROT. We have performed photometric analysis of all Be stars located in the seismology fields. Special emphasis has been given to two Be stars (NW Ser and V1446 Aql) in which we have detected multiperiodic variability and which we have modelled in terms of stellar pulsations. We have also performed an in-depth spectroscopic study of NW Ser and modelled the non-radial pulsations taking into account the rotational effects. A technique to search for faint Be stars based on CCD photometry has also been developed. We present here a list of faint Be stars located in the exoplanet fields of COROT detected with this technique and which we propose as targets for COROT. In addition, we have proven that our period-analysis techniques are suitable to detect multiperiodicity in large temporal baseline data. In particular, we have detected non-radial pulsations in some Be stars in the low-metallicity galaxy SMC.

  10. Eclipse Mapping Experiments in Dwarf Novae Outbursts

    NASA Astrophysics Data System (ADS)

    Borges, B. W.; Baptista, R.

    2006-06-01

    In this work, we report the eclipse mapping analysis of CCD photometric data of two short period dwarf novae - V4140 Sgr (Borges & Baptista 2005) and HT Cas (Borges, Baptista & Catalán, in preparation) - during observed outburst events. The analysis of the observations of V4140 Sgr, done between 1991 and 2001, reveals that the object was in the decline from an outburst in 1992 and again in outburst in 2001. A distance of d = 170+/-30 pc is obtained from a method similar to that used to constrain the distance to open clusters. From this distance, disc radial brightness temperature distributions are determined, and the disc temperatures remain below the critical effective temperature T_{crit} at all disc radii during the outburst. The distributions in quiescence and in outburst are significantly different from those of other dwarf novae of similar orbital period. These results cannot be explained within the framework of the disc instability model and the small amplitude outbursts of V4140 Sgr can be due bursts of enhanced mass transfer rate from the secondary star. Our HT Cas data consist of V and R CCD photometric observations done in 2005 November with the 0.95-m James Gregory Telescope (JGT) and cover a outburst cycle. We used the entropy associated to the eclipse maps to obtain the semi-opening disc angle α evolution throught the outburst. The obtained angles are systematically lower than those obtained by Ioannou et al. (1999) and we can conclude that the outburst radial profiles must be flatter than the the T ∝ r^{-3/4} law of steady state dics, against the expectations of the disc instability model. Our intensity radial distributions presents the same ``outside-in'' outburst behavior as obtained by the referred author.

  11. An empirical comparison of primary baffle and vanes for optical astronomical telescope

    NASA Astrophysics Data System (ADS)

    Li, Taoran; Chen, Yingwei

    2017-09-01

    In optical astronomical telescopes, the primary baffle is a tube-like structure centering in the hole of the primary mirror and the vanes usually locate inside the baffle, improving the suppression of stray light. They are the most common methods of stray light control. To characterize the performance of primary baffle and vanes, an empirical comparison based on astronomical observations has been made with Xinglong 50cm telescope. Considering the convenience of switching, an independent vanes structure is designed, which can also improve the process of the primary mirror cooling and the air circulation. The comparison of two cases: (1) primary baffle plus vanes and (2) vanes alone involves in-dome and on-sky observations. Both the single star and the various off-axis angles of the stray light source observations are presented. The photometrical images are recorded by CCD to analyze the magnitude and the photometric error. The stray light uniformity of the image background derives from the reduction image which utilizes the MATLAB software to remove the stars. The in-dome experiments results reveal the effectiveness of primary baffle and the independent vanes structure. Meanwhile, the on-sky photometric data indicate there are little differences between them. The stray light uniformity has no difference when the angle between the star and the moon is greater than 20 degrees.

  12. First photometric analysis of magnetic activity and orbital period variations for the semi-detached binary BU Vulpeculae

    NASA Astrophysics Data System (ADS)

    Wang, Jingjing; Zhang, Bin; Yu, Jing; Liu, Liang; Tian, Xiaoman

    2018-06-01

    Four sets of multi-color CCD photometric observations of the close binary BU Vul were carried out for four successive months in 2010. From our observations, there are obvious variations and asymmetry of light curves on the timescale of a month, indicating high-level stellar spot activity on the surface of at least one component. The Wilson-Devinney (2010) program was used to determine the photometric solutions, which suggest that BU Vul is a semi-detached binary with the cool, less massive component filling with the critical Roche lobe. The solutions also reveal that the spots on the primary and the secondary have changed and drifted in 2010 July, August, and September. Based on analysis of the O - C curves of BU Vul, its orbital period shows a cyclic oscillation (T3 = 22.4 yr, A3 = 0.0029 d) superimposed on a secular increase. The continuous increase is possibly a result of mass transfer from the less massive component to the more massive one at a rate of dM/dt = -2.95 × 10-9 M⊙ yr-1. The cyclic variation maybe be caused by the presence of a tertiary companion with extremely low luminosity. Combined with the distortions of the light curve on 2009 November 4, we infer that BU Vul has two additional companions in a quadruple system.

  13. The evolution of eccentricity in the eclipsing binary system AS Camelopardalis

    NASA Astrophysics Data System (ADS)

    Kozyreva, Valentina; Kusakin, Anatoly; Bogomazov, Alexey

    2018-01-01

    In 2002, 2004 and 2017 we conducted high precision CCD photometry observations of the eclipsing binary system AS Cam. By analysis of the light curves from1967 to 2017 (our data + data from the literature) we obtained photometric elements of the system and found a change in the system’s orbital eccentricity of Δe = 0.03±0.01. This change can indicate that there is a third companion in the system in a highly inclined orbit with respect to the orbital plane of the central binary, and its gravitational influence may cause the discrepancy between observed and theoretical apsidal motion rates of AS Cam.

  14. Observations of candidate oscillating eclipsing binaries and two newly discovered pulsating variables

    NASA Astrophysics Data System (ADS)

    Liakos, A.; Niarchos, P.

    2009-03-01

    CCD observations of 24 eclipsing binary systems with spectral types ranging between A0-F0, candidate for containing pulsating components, were obtained. Appropriate exposure times in one or more photometric filters were used so that short-periodic pulsations could be detected. Their light curves were analyzed using the Period04 software in order to search for pulsational behaviour. Two new variable stars, namely GSC 2673-1583 and GSC 3641-0359, were discov- ered as by-product during the observations of eclipsing variables. The Fourier analysis of the observations of each star, the dominant pulsation frequencies and the derived frequency spectra are also presented.

  15. Surface brightness profiles of 10 comets

    NASA Astrophysics Data System (ADS)

    Jewitt, D. C.; Meech, K. J.

    1987-06-01

    CCD photometric observations of the comae of 10 comets, obtained at the 4-m and 2.1-m telescopes at KPNO during 1985-1986 using filters centered at 700.5, 650.0, or 546.0 nm, are reported. The data are presented in extensive tables and graphs and characterized in detail. The radial surface brightness profiles are shown to be steeper than predicted by an idealized spherically symmetric steady-state comet model, the steepness increasing with the projected distance from the nucleus. These profiles are attributed, on the basis of Monte Carlo simulations, to imperfect coupling between the sublimated gas and the optically dominant grains of the coma.

  16. Lightcurve Analysis of Minor Planets Observed at the Oakley Southern Sky Observatory: 2016 October - 2017 March

    NASA Astrophysics Data System (ADS)

    Ditteon, Richard; Adam, Andre; Doyel, Michael; Gibson, Jared; Lee, Stephanie; Linville, Dylan; Michalik, Danielle; Turner, Rhiannon; Washburn, Kyle

    2018-01-01

    From 2016 October 28 to 2017 March 9, CCD images were taken with the goal of analyzing the photometric data on 34 minor planets: 393 Lampetia, 395 Delia, 838 Seraphina, 874 Rotraut, 1114 Lorraine, 1128 Astrid, 1465 Autonoma, 1529 Oterma, 1722 Goffin, 1773 Rumpelstilz, 1903 Adzhimushkaj, 2685 Masursky, 2916 Voronveliya, 2928 Epstein, 2973 Paola, 3032 Evans, 3104 Durer, 3224 Irkutsk, 3532 Tracie, 3569 Kumon, 4112 Hrabal, 4512 Sinuhe, 4695 Mediolanum, 4945 Ikenozenni, 5240 Kwasan, 5625 Jamesferguson, 6199 Yoshiokayayoi, 7001 Noether, 11127 Hagi, 11441 Anadiego, 15267 Kolyma, (18429) 1994 AO1, (24814) 1994 VW1, and (326683) 2002 WP.

  17. Developing an Undergraduate Astronomical Research Program

    NASA Astrophysics Data System (ADS)

    Genet, R. M.

    2007-05-01

    Time-series astronomical photometry is an area of scientific research well suited to amateurs and undergraduates, and their backyard and campus observatories. I describe two past one-semester community college research programs, one six year ago and one last fall (2006), as well as a program planned for this coming fall (2007). The 2001 program, a course at Central Arizona College, utilized a robotic telescope at the Fairborn Observatory. Results were presented at the 200th meeting of the American Astronomical Society. This past fall, three students, in a 17-week, one-semester course at Cuesta College, were able to plan a research program, make several thousand CCD photometric observations, reduce and analyze their data, write up their results and, on the last day of class, send their paper off to a refereed journal, the JAAVSO. A course is being offered this coming fall (2007) that will involve about a dozen students (including high school students), several local amateur astronomers, and at least three CCD- equipped semi-automatic telescopes. Potential solutions to "scaling up" challenges created by increased class size are discussed.

  18. AIRA T40 - First Ligh

    NASA Astrophysics Data System (ADS)

    Gherase, Radu Mihai; Popescu, Marcel; Sonka, Adrian Bruno; Paraschiv, Petre

    2017-11-01

    We report the installation of the Ritchey-Chretien -0.36m robotic telescope in the Astrolabe "roll-off roof" building belonging to the Astronomical Institute of the Romanian Academy. The calibration procedure performed in order to set up the telescope is shown. The test observations show a limiting magnitude of ≈ 18.6 (mostly due to the sky light pollution of Bucharest) and a seeing in the order of 2.0-3.5 arc seconds. The available instruments are a CCD camera SBIG STL 11000 M with a field of view of 44 x 30 arc minutes and an Alpy 600 spectrograph. The CCD camera has a standard UBVRI filter wheel. The astrometric observations allowed to confirm the discovery of 2017 RV1 (M.P.E.C. 2017-R57). The telescope was used to obtain photometric data for the near-Earth asteroids (326683) 2002 WP and 2016 LX48. These were reported to Minor Planet Bulletin (Sonka et al., 2017). Preliminary observations of (3122) Florence were performed with the Alpy 600 spectrograph. It allows covering the spectral interval 0.4-0.80 microns with a resolution of R≈600.

  19. First Photometric Investigation of the Neglected EW-type Binary System V502 Her

    NASA Astrophysics Data System (ADS)

    Zhao, Ergang; Qian, Shengbang; Liao, Wenping; He, Jiajia; Shi, Xiangdong; Zhang, Jia

    2018-04-01

    V502 Her is a neglected EW-type binary, which has been known for more than 60 years. The first multi-color CCD photometric light curve and spectroscopic observations of contact binary V502 Her was obtained. Based on the LAMOST data, its spectrum can be found to be F5. Together with solutions of light curves by using the Wilson-Devinney code, it infers that V502 Her is an A-type W UMa contact binary system with the mass ratio of q = 0.313 and the filling factor of f = 38.1%. According to all minimum times from the literature and our observations, the orbital period was analyzed and a long-term increase with a periodic change (P 3 = 26.8 years) was computed. The orbital period increase may be caused by the mass transfer from a less-massive component to the more massive one, which indicates that V502 Her is in the thermal relaxation oscillation (TRO) controller stage, while the light-travel time effect (LTTE) through the presence of a cool third body may lead to the periodic variation.

  20. VizieR Online Data Catalog: 47 Tuc sub-giant branch chemical abundances (Marino+, 2016)

    NASA Astrophysics Data System (ADS)

    Marino, A. F.; Milone, A. P.; Casagrande, L.; Collet, R.; Dotter, A.; Johnson, C. I.; Lind, K.; Bedin, L. R.; Jerjen, H.; Aparicio, A.; Sbordone, L.

    2017-06-01

    The photometric data set used in our study of 47 Tuc consists of HST photometry for the innermost ~3x3arcmin and ground-based photometry for the outer cluster region. Specifically, we have used the catalogues published by Milone et al. (2012ApJ...744...58M) that include photometry in the F336W (30s+1160s images from GO 11729, PI. Holtzmann), F395N bands (90s+2x1120s images from GO 11729, PI. Holtzmann) from the Ultraviolet and Visual Channel of the Advanced Camera for Surveys 3 (UVIS/WFC3) and in the F435W (9x105 s images from GO 9281, PI. Grindlay), F606W (3s+4x50s images from GO 10775, PI. Sarajedini), and F814W (3s+4x50s images from GO 10775, PI. Sarajedini) band from the Wide Field Channel of the Advanced Camera for Surveys (WFC/ACS) on board of HST. Moreover, we have used ground-based photometry in the U, B, V, and I filters from the archive maintained by Peter Stetson. The photometric catalogue has been obtained by Stetson (2000PASP..112..925S) from 856 CCD images, including 480 images taken with the Wide-Field Imager of the ESO/MPI 2.2 m telescope, and 200 with the 1.5 m telescope at Cerro Tololo Inter-American Observatory. The remaining 176 images come from various other telescopes. All the images were reduced using the method described by Stetson (2005PASP..117..563S) and are calibrated on the Landolt (1992AJ....104..340L, Cat. II/183) photometric system. (2 data files).

  1. A Survey of Geosynchronous Satellite Glints

    NASA Astrophysics Data System (ADS)

    Vrba, F.; Hutter, D.; Shankland, P.; Armstrong, J.; Schmitt, H.; Hindsley, R.; Divittorio, M.; Benson, J.

    Artificial satellites have characteristic diffuse reflected-light signatures as they are illuminated at varying phase angles by the Sun and are viewed at differing orientations by an observer. At times of favorable alignment between the satellite, observer and Sun, specular reflection off of relatively flat surfaces, such as solar panels, can cause brief increases in reflected light of several hundred times that of the nominal diffuse signature. Such events are commonly referred to as "glints". In the case of geosynchronous satellites, favorable glint alignments are due to changes in the Sun-Vehicle-Observer angle which are primarily due to the apparent motion of the Sun as the observer-satellite vector remains nearly stationary. These occur near in time to the vernal and autumnal equinoxes. While the most favorable geosynchronous satellite glint alignments are precluded by the fact that the satellites are at that time most likely to be in Earth shadow, observations of several glints have been reported in the literature. While such studies note the peak brightnesses, durations, and phase angles of individual glints, to our knowledge, no extended study of geosynchronous glint characteristics exists. Beginning with the autumnal equinox glint season of 2007 we have built on our earlier studies using the U.S. Naval Observatory, Flagstaff Station 40-inch Ritchey telescope to provide near-real-time astrometric and photometric information for use by the Navy Prototype Optical Interferometer (NPOI) team in its efforts to obtain interferometric fringes of geosynchronous satellites during a glint episode. The combined observations culminated in successful fringe measurements of DirecTV-9S during the vernal equinox 2008 and 2009 seasons (see Armstrong, et al. 2009, this conference). For our 40-inch telescope observations we used an LN2-cooled 2048x2048 CCD with standard R-band and H-alpha photometric filters, covering an area of the sky of approximately 22x22 arcmin with each integration. Observations typically were initiated well before a predicted potential glint and continued through the glint occurrence (if any) for our secondary goal of estimating peak glint brightnesses. As we were using photometric equipment, took care to obtain photometric calibrations, and were fortunate to have observed on several photometric nights, we have calibrated, time-resolved observations of numerous glint episodes, dominated by the GE2/GE4/DTV4S/DTV9S constellation. In particular, we will discuss systematic differences between glints from different satellites, comparison of glints from the same satellite during different epochs, and the time evolution of glints from DirecTV-9S during the 2009 vernal equinox observing season.

  2. One-Meter Telescope in Kolonica Saddle - 4 Years of Operation

    NASA Astrophysics Data System (ADS)

    Kudzej, I.; Dubovsky, P. A.

    2010-12-01

    The actual technical status of 1 meter Vihorlat National Telescope (VNT) at Astronomical Observatory at Kolonica Saddle is presented. Cassegrain and Nasmyth focus, autoguiding system, computer controlled focusing and fine movements and other improvements achieved recently. For two channel photoelectric photometer the system of channels calibration based on artificial light source is described. For CCD camera FLI PL1001E actually installed in Cassegrain focus we presents transformation coefficients from our instrumental to international photometric BVRI system. The measurements were done during regular observations when good photometry of the constant field stars was available. Before FLI camera acquisition we used SBIG ST9 camera. Transformation coefficients for this instrument are presented as well. In the second part of the paper we presents results of variable stars observations with 1 meter telescope in recent four years. The first experimental electronic measurements were done in 2006. Both with CCD cameras and with two channel photoelectric photometer. Starting in 2007 the regular observing program is in operation. There are only few stars suitable for two channel photoelectric photometer observation. Generally the photometer is better when fast brightness changes (time scale of seconds) must be recorded. Thus the majority of observations is done with CCD detectors. We presents an brief overview of most important observing programs: long term monitoring of selected intermediate polars, eclipse observations of SW Sex stars. Occasional observing campaigns were performed on several interesting objects: OT J071126.0+440405, V603 Aql, V471 Tau eclipse timings, Z And in outburst.

  3. Beyond the Kepler/K2 bright limit: variability in the seven brightest members of the Pleiades

    NASA Astrophysics Data System (ADS)

    White, T. R.; Pope, B. J. S.; Antoci, V.; Pápics, P. I.; Aerts, C.; Gies, D. R.; Gordon, K.; Huber, D.; Schaefer, G. H.; Aigrain, S.; Albrecht, S.; Barclay, T.; Barentsen, G.; Beck, P. G.; Bedding, T. R.; Fredslund Andersen, M.; Grundahl, F.; Howell, S. B.; Ireland, M. J.; Murphy, S. J.; Nielsen, M. B.; Silva Aguirre, V.; Tuthill, P. G.

    2017-11-01

    The most powerful tests of stellar models come from the brightest stars in the sky, for which complementary techniques, such as astrometry, asteroseismology, spectroscopy and interferometry, can be combined. The K2 mission is providing a unique opportunity to obtain high-precision photometric time series for bright stars along the ecliptic. However, bright targets require a large number of pixels to capture the entirety of the stellar flux, and CCD saturation, as well as restrictions on data storage and bandwidth, limit the number and brightness of stars that can be observed. To overcome this, we have developed a new photometric technique, which we call halo photometry, to observe very bright stars using a limited number of pixels. Halo photometry is simple, fast and does not require extensive pixel allocation, and will allow us to use K2 and other photometric missions, such as TESS, to observe very bright stars for asteroseismology and to search for transiting exoplanets. We apply this method to the seven brightest stars in the Pleiades open cluster. Each star exhibits variability; six of the stars show what are most likely slowly pulsating B-star pulsations, with amplitudes ranging from 20 to 2000 ppm. For the star Maia, we demonstrate the utility of combining K2 photometry with spectroscopy and interferometry to show that it is not a `Maia variable', and to establish that its variability is caused by rotational modulation of a large chemical spot on a 10 d time-scale.

  4. SX Phoenecis Stars in the Extremely Metal-Poor Globular Clusters NGC 5053

    NASA Astrophysics Data System (ADS)

    Nemec, James M.; Mateo, Mario; Burke, Morgan; Olszewski, Edward W.

    1995-09-01

    The results of a major search for photometrically variable blue straggler stars (BSs) in the extremely metal-poor globular cluster NGC 5053 are presented. The survey is based on photometry of over 200 CCD frames (BVI passbands) taken on 18 nights between 1985 and 1994. Five of the 16 BSs monitored for variability are identified as SX Phe stars and their photometric characteristics derived. These five stars are among the shortest-period (49

  5. The Drizzling Cookbook

    NASA Astrophysics Data System (ADS)

    Gonzaga, S.; Biretta, J.; Wiggs, M. S.; Hsu, J. C.; Smith, T. E.; Bergeron, L.

    1998-12-01

    The drizzle software combines dithered images while preserving photometric accuracy, enhancing resolution, and removing geometric distortion. A recent upgrade also allows removal of cosmic rays from single images at each dither pointing. This document gives detailed examples illustrating drizzling procedures for six cases: WFPC2 observations of a deep field, a crowded field, a large galaxy, a planetary nebula, STIS/CCD observations of a HDF-North field, and NICMOS/NIC2 observations of the Egg Nebula. Command scripts and input images for each example are available on the WFPC2 WWW website. Users are encouraged to retrieve the data for the case that most closely resembles their own data and then practice and experiment drizzling the example.

  6. Spectrophotometry of Very Bright Stars in the Southern Sky

    NASA Astrophysics Data System (ADS)

    Krisciunas, Kevin; Suntzeff, Nicholas B.; Kelarek, Bethany; Bonar, Kyle; Stenzel, Joshua

    2017-05-01

    We obtained spectra of 20 bright stars in the southern sky, including Sirius, Canopus, Betelgeuse, Rigel, Bellatrix, and Procyon, using the 1.5-m telescope at Cerro Tololo Inter-American Observatory and its grating spectrograph RCSPEC. A 7.5 magnitude neutral density filter was used to keep from saturating the CCD. Our spectra are tied to a Kurucz model of Sirius with T = 9850 K, log g = 4.30, and [Fe/H] = +0.4. Because Sirius is much less problematic than using Vega as a fundamental calibrator, the synthetic photometry of our stars constitutes a Sirius-based system that could be used as a new anchor for stellar and extragalactic photometric measurements.

  7. MIDAS: Software for the detection and analysis of lunar impact flashes

    NASA Astrophysics Data System (ADS)

    Madiedo, José M.; Ortiz, José L.; Morales, Nicolás; Cabrera-Caño, Jesús

    2015-06-01

    Since 2009 we are running a project to identify flashes produced by the impact of meteoroids on the surface of the Moon. For this purpose we are employing small telescopes and high-sensitivity CCD video cameras. To automatically identify these events a software package called MIDAS was developed and tested. This package can also perform the photometric analysis of these flashes and estimate the value of the luminous efficiency. Besides, we have implemented in MIDAS a new method to establish which is the likely source of the meteoroids (known meteoroid stream or sporadic background). The main features of this computer program are analyzed here, and some examples of lunar impact events are presented.

  8. Photometric Studies of GEO Orbital Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Ed; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the Cerro Tololo Inter- American Observatory (CTIO) 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R=15th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? More than 90 calibrated sequences of R-B-V-I-R magnitudes for a sample of 50 objects have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus the B-R color is a true measure of the surface of the debris piece facing the telescopes for that observation. Any change in color reflects a real change in the debris surface. We will compare our observations with models and laboratory measurements of selected surfaces.

  9. BVRI Photometric Study of the High Mass Ratio, Detached, Pre-contact W UMa Binary GQ Cancri

    NASA Astrophysics Data System (ADS)

    Samec, R. G.; Olson, A.; Caton, D.; Faulkner, D. R.

    2017-12-01

    CCD BVRcIc light curves of GQ Cancri were observed in April 2013 using the SARA North 0.9-meter Telescope at Kitt Peak National Observatory in Arizona in remote mode. It is a high-amplitude (V 0.9 magnitude) K0±V type eclipsing binary (T1 5250 K) with a photometrically-determined mass ratio of M2 / M1 = 0.80. Its spectral color type classifies it as a pre-contact W UMa Binary (PCWB). The Wilson-Devinney Mode 2 solutions show that the system has a detached binary configuration with fill-outs of 94% and 98% for the primary and secondary component, respectively. As expected, the light curve is asymmetric due to spot activity. Three times of minimum light were calculated, for two primary eclipses and one secondary eclipse, from our present observations. In total, some 26 times of minimum light covering nearly 20 years of observation were used to determine linear and quadratic ephemerides. It is noted that the light curve solution remained in a detached state for every iteration of the computer runs. The components are very similar with a computed temperature difference of only 4 K, and the flux of the primary component accounts for 53±55% of the system's light in B, V, Rc, and Ic. A 12-degree radius high latitude white spot (faculae) was iterated on the primary component.

  10. WW Geminorum: An Early B-type Eclipsing Binary Evolving into the Contact Phase

    NASA Astrophysics Data System (ADS)

    Yang, Y.-G.; Yang, Y.; Dai, H.-F.; Yin, X.-G.

    2014-11-01

    WW Gem is a B-type eclipsing binary with a period of 1.2378 days. The CCD photometry of this binary was performed in 2013 December using the 85 cm telescope at the Xinglong Stations of the National Astronomical Observatories of China. Using the updated W-D program, the photometric model was deduced from the VRI light curves. The results imply that WW Gem is a near-contact eclipsing binary whose primary component almost fills its Roche lobe. The photometric mass ratio is q ph = 0.48(± 0.05). All collected times of minimum light, including two new ones, were used for the period studies. The orbital period changes of WW Gem could be described by an upward parabola, possibly overlaid by a light-time orbit with a period of P mod = 7.41(± 0.04) yr and a semi-amplitude of A = 0.0079 days(± 0.0005 days), respectively. This kind of cyclic oscillation may be attributed to the light-travel time effect via the third body. The long-term period increases at a rate of dP/dt = +3.47(±0.04) × 10-8 day yr-1, which may be explained by the conserved mass transfer from the less massive component to the more massive one. With mass transfer, the massive binary WW Gem may be evolving into a contact binary.

  11. Optical Properties of Multi-Layered Insulation

    NASA Technical Reports Server (NTRS)

    Rodriguez, Heather M.; Abercromby, Kira J.; Barker, Edwin

    2007-01-01

    Multi-layer insulation, MLI, is a material used on rocket bodies and satellites mainly for thermal insulation. MLI can be comprised of a variety of materials, layer numbers, and dimensions based on its purpose. A common composition of MLI consists of outer facing copper-colored Kapton with an aluminized backing for the top and bottom layers and the middle consisting of alternating layers of DARCON or Nomex netting with aluminized Mylar. If this material became separated from the spacecraft or rocket body its orbit would vary greatly in eccentricity due to its high area to mass (A/m) and susceptibility to solar radiation pressure perturbations. Recently a debris population was found with high A/m, which could be MLI. Laboratory photometric measurements of one intact piece and three different layers of MLI is presented in an effort to predict the characteristics of a MLI light curve and aid in identifying the source of the new population. For this paper, the layers used will be consistent with the common MLI mentioned in the above paragraph. Using a robotic arm, the piece was rotated from 0-360 degrees in one degree increments along the object s longest axis. Laboratory photometric data was recorded with a CCD camera using various filters (Johnson B, Johnson V and Bessell R). The measurements were taken at an 18 degree (light-object-camera) phase angle. As expected, the MLI pieces showed characteristics similar to a bimodal magnitude plot of a flat plate, but with more photometric features, dependant upon the layer of MLI. Time exposures varied from piece to piece such that the amount of pixels saturated would be minimal. In addition to photometric laboratory measurements, laboratory spectral measurements are shown for the same MLI samples. Spectral data will be combined to match the wavelength region of photometric data so a measure of truth can be established for the photometric measurements. Spectral data shows a strong absorption feature near 4800 angstroms, which is due to the copper color of Kapton. If the debris is MLI and the outer layer of copper coloring of Kapton is present, evidence would be seen spectrally by the specific absorption feature as well as using R-B (red-blue) light curves. Using laboratory photometric measurements and the results from spectral laboratory measurements, an optical property database is provided for an object with a high A/m. The benefits of this database for remote optical measurements of orbital debris are shown by illustrating the optical properties expected for a high A/m object, specifically common satellite and rocket body MLI.

  12. Wide-Field CCD Photometry around Nine Open Clusters

    NASA Astrophysics Data System (ADS)

    Sharma, Saurabh; Pandey, A. K.; Ogura, K.; Mito, H.; Tarusawa, K.; Sagar, R.

    2006-10-01

    In this paper we study the evolution of the core and corona of nine open clusters using the projected radial density profiles derived from homogeneous CCD photometric data obtained with the 105 cm Kiso Schmidt telescope. The age and galactocentric distance of the target clusters vary from 16 to 2000 Myr and 9 to 10.8 kpc, respectively. Barring Be 62, which is a young open cluster, other clusters show a uniform reddening across the cluster region. The reddening in Be 62 varies from E(B-V)min=0.70 mag to E(B-V)max=1.00 mag. The coronae of six of the clusters in the present sample are found to be elongated; however, on the basis of the present sample it is not possible to establish any correlation between the age and shape of the core. The elongated core in the case of the young cluster Be 62 may reflect the initial conditions in the parental molecular cloud. The other results of the present study are as follows: (1) Core radius rc and corona size rcn/cluster radius rcl are linearly correlated. (2) The rc, rcn, and rcl are linearly correlated with the number of stars in that region. (3) In the age range 10-1000 Myr, the core and corona shrink with age. (4) We find that in the galactocentric distance range 9-10 kpc, the core and corona/cluster extent of the clusters increase with the galactocentric distance.

  13. Triton stellar occultation candidates - 1992-1994

    NASA Technical Reports Server (NTRS)

    Mcdonald, S. W.; Elliot, J. T.

    1992-01-01

    A search for Triton stellar occultation candidates for the period 1992-1994 has been completed with CCD strip-scanning observations. The search reached an R magnitude of about 17.4 and found 129 candidates within 1.5 arcsec of Triton's ephemeris during this period. Of these events, around 30 occultations are expected to be visible from the earth, indicating that a number of Triton occultation events should be visible from major observatories. Even the faintest of the present candidate events could produce useful occultation data if observed with a large enough telescope. The present astrometric accuracy is inadequate to identify which of these appulse events will produce occultations on the earth; further astrometry is needed to refine the predictions for positive occultation identification. To aid in selecting candidates for additional astrometric and photometric studies, finder charts and earth-based visibility charts for each event are included.

  14. Transiting Exoplanet Observations at Grinnell College

    NASA Astrophysics Data System (ADS)

    Sauerhaft, Julia; Slough, P.; Cale, B.; Kempton, E.

    2014-01-01

    Grinnell College, a small liberal arts college in Grinnell, Iowa with 1600 undergraduate students, is home to the Grant O. Gale Observatory. Over the past year, we have successfully detected extrasolar planets using the transit method with our 24-inch Cassegrain reflecting telescope equipped with a CCD camera. With little light pollution and an easily accessible observatory, Grinnell College is an optimal location for transiting exoplanet observations. With the current telescope set-up and CCD camera, we have taken time series data and created image calibration and post-processing programs that detect exoplanet transits at high photometric precision. In the future, we will continue to use these observation and data reduction procedures to conduct transiting exoplanet research. Goals for our research program include performing follow-up observations of transiting exoplanet candidates to confirm their planetary nature, searching for additional exoplanets in known planetary systems using the transit timing detection method, tracking long period transiting planets, and refining properties of exoplanets and their host stars. Ground-based transiting planet science is especially important in the post-Kepler era, and our dedicated mid-sized telescope with plenty of access to dark clear nights provides an ideal resource for a variety of follow up and exoplanet detection efforts.

  15. CCD scanning for asteroids and comets

    NASA Technical Reports Server (NTRS)

    Gehrels, T.; Mcmillan, R. S.

    1986-01-01

    A change coupled device (CCD) is used in a scanning mode to find new asteroids and recover known asteroids and comet nuclei. Current scientific programs include recovery of asteroids and comet nuclei requested by the Minor Planet Center (MPC), discovery of new asteroids in the main belt and of unusual orbital types, and follow-up astrometry of selected new asteroids discovered. The routine six sigma limiting visual magnitude is 19.6 and slightly more than a square degree is scanned three times every 90 minutes of observing time during the fortnight centered on New Moon. Semiautomatic software for detection of moving objects is in routine use; angular speeds as low as 11.0 arcseconds per hour were distinguished from the effects of the Earth's atmosphere on the field of view. A typical set of three 29-minute scans near the opposition point along the ecliptic typically nets at least 5 new main-belt asteroids down to magnitude 19.6. In 18 observing runs (months) 43 asteroids were recovered, astrometric and photometric data on 59 new asteroids were reported, 10 new asteroids with orbital elements were consolidated, and photometry and positions of 22 comets were reported.

  16. VizieR Online Data Catalog: New minima timings and RVs for 3 eclipsing binaries (Zasche+, 2017)

    NASA Astrophysics Data System (ADS)

    Zasche, P.; Jurysek, J.; Nemravova, J.; Uhlar, R.; Svoboda, P.; Wolf, M.; Honkova, K.; Masek, M.; Prouza, M.; Cechura, J.; Korcakova, D.; Slechta, M.

    2018-04-01

    Spectroscopy was obtained in two observatories. Most of the data points for these systems came from the Ondrejov observatory and its 2 m telescope (resolution R~12500). Additionally, data on BR Ind and some data on QS Aql were obtained with the FEROS instrument mounted on the 2.2 m MPG telescope located in La Silla Observatory in Chile (R~48000). Photometry for these three systems was collected over the time span of 2008 to 2016. Owing to the relatively high brightness of the targets, only rather small telescopes were used for these photometric observations. The system V773 Cas was observed (by one of the authors, PS) with a 34 mm refractor at a private observatory in Brno, Czech Republic, using an SBIG ST-7XME CCD camera. The star QS Aql was monitored (by one of the authors, RU) with a similar instrument at a private observatory in Jilove u Prahy, Czech Republic, using a G2-0402 CCD camera. The only southern star, BR Ind, was observed with the FRAM telescope (Prouza et al. 2010AdAst2010E..31P), installed and operated at the Pierre Auger Observatory at Malargue, Argentina. (2 data files).

  17. The CCD photometry of the globular cluster Palomar 1.

    NASA Astrophysics Data System (ADS)

    Borissova, J.; Spassova, N.

    1995-04-01

    A CCD photometry of the halo cluster Palomar 1 is presented in the Thuan-Gunn photometric system. The principal sequences of the color-magnitude diagrams are delineated in different spectral bands. The color-magnitude diagrams of the cluster show a well defined red horizontal branch, a subgiant branch and a main-sequence down to about two magnitudes below the main sequence turnoff. The giant branch is absent and the brightest stars are the horizontal branch stars. The age of the cluster determined by comparison with the isochrones of Bell & Vanden Berg (1987) is consistent with an age in the interval 12-14Gyr. A distance modulus of (m-M)_g0_=15.38+/-0.15 magnitude and E(g-r)=0.16 has been derived. An estimate of the cluster structural parameters such as core radius and concentration parameter gives r_c_=1.5pc and c=1.46. A mass estimate of 1.1 10^3^Msun_ and a mass-to-light ratio of 1.79 have been obtained using King's (1966) method. The morphology of color-magnitude diagrams allows Pal 1 to be interpreted as probably a globular cluster rather than an old open one.

  18. Winter sky brightness and cloud cover at Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Moore, Anna M.; Yang, Yi; Fu, Jianning; Ashley, Michael C. B.; Cui, Xiangqun; Feng, Long Long; Gong, Xuefei; Hu, Zhongwen; Lawrence, Jon S.; Luong-Van, Daniel M.; Riddle, Reed; Shang, Zhaohui; Sims, Geoff; Storey, John W. V.; Tothill, Nicholas F. H.; Travouillon, Tony; Wang, Lifan; Yang, Huigen; Yang, Ji; Zhou, Xu; Zhu, Zhenxi

    2013-01-01

    At the summit of the Antarctic plateau, Dome A offers an intriguing location for future large scale optical astronomical observatories. The Gattini Dome A project was created to measure the optical sky brightness and large area cloud cover of the winter-time sky above this high altitude Antarctic site. The wide field camera and multi-filter system was installed on the PLATO instrument module as part of the Chinese-led traverse to Dome A in January 2008. This automated wide field camera consists of an Apogee U4000 interline CCD coupled to a Nikon fisheye lens enclosed in a heated container with glass window. The system contains a filter mechanism providing a suite of standard astronomical photometric filters (Bessell B, V, R) and a long-pass red filter for the detection and monitoring of airglow emission. The system operated continuously throughout the 2009, and 2011 winter seasons and part-way through the 2010 season, recording long exposure images sequentially for each filter. We have in hand one complete winter-time dataset (2009) returned via a manned traverse. We present here the first measurements of sky brightness in the photometric V band, cloud cover statistics measured so far and an estimate of the extinction.

  19. Vulcan Identification of Eclipsing Binaries in the Kepler Field of View

    NASA Astrophysics Data System (ADS)

    Mjaseth, Kimberly; Batalha, N.; Borucki, W.; Caldwell, D.; Latham, D.; Martin, K. R.; Rabbette, M.; Witteborn, F.

    2007-05-01

    We report the discovery of 236 new eclipsing binary stars located in and around the field of view of the Kepler Mission. The binaries were identified from photometric light curves from the Vulcan exoplanet transit survey. The Vulcan camera is comprised of a modest aperture (10cm) f/2.8 Canon lens focusing a 7° x 7° field of view onto a 4096 x 4096 Kodak CCD. The system yields an hour-to-hour relative precision of 0.003 on 12th magnitude stars and saturates at 9th magnitude. The binaries have magnitudes in the range of 9.5 < V < 13.5 and periods ranging from 0.5 to 13 days. The milli-magnitude photometric precision allows detection of transits as shallow as 1%. The catalog contains a total of 273 eclipsing binary stars, including detached systems (high and low mass ratio), contact binaries, and triple systems. We present the derived orbital/transit properties, light curves, and stellar properties for selected targets. In addition, we summarize the results of radial velocity follow-up work. Support for this work came from NASA's Discovery Program and NASA's Origins of the Solar System Program.

  20. Optical Measurement Center Status

    NASA Technical Reports Server (NTRS)

    Rodriguez, H.; Abercromby, K.; Mulrooney, M.; Barker, E.

    2007-01-01

    Beginning in 2005, an optical measurement center (OMC) was created to measure the photometric signatures of debris pieces. Initially, the OMC was equipped with a 300 W xenon arc lamp, a SBIG 512 x 512 ST8X MEI CCD camera with standard Johnson filters, and a Lynx 6 robotic arm with five degrees of freedom. As research progressed, modifications were made to the equipment. A customized rotary table was built to overcome the robot s limitation of 180 degree wrist rotation and provide complete 360 degree rotation with little human interaction. This change allowed an initial phase angle (source-object-camera angle) of roughly 5 degrees to be adjusted to 7, 10, 15, 18, 20, 25, or 28 degrees. Additionally, the Johnson R and I CCD filters were replaced with the standard astronomical filters suite (Bessell R,I). In an effort to reduce object saturation, the two generic aperture stops were replaced with neutral density filters. Initially data were taken with aluminum debris pieces from the European Space Operations Centre ESOC2 ground test and more recently with samples from a thermal multi-layered insulation (MLI) commonly used on rocket bodies and satellites. The ESOC2 data provided light curve analysis for one type of material but many different shapes, including flat, bent, curled, folded, and torn. The MLI samples are roughly the same size and shape, but have different surfaces that give rise to interesting photometric light curves. In addition, filter photometry was conducted on the MLI pieces, a process that also will be used on the ESOC2 samples. While obtaining light curve data an anomalous drop in intensity was observed when the table revolved through the second 180 degree rotation. Investigation revealed that the robot s wrist rotation is not reliable past 80 degrees, thus the object may be at slightly different angles at the 180 degree transition. To limit this effect, the initial rotation position begins with the object s minimal surface area facing the camera.

  1. VizieR Online Data Catalog: Solar neighborhood XXXVIII. Nearby M dwarf systems (Winters+, 2017)

    NASA Astrophysics Data System (ADS)

    Winters, J. G.; Sevrinsky, R. A.; Jao, W.-C.; Henry, T. J.; Riedel, A. R.; Subasavage, J. P.; Lurie, J. C.; Ianna, P. A.; Finch, C. T.

    2017-07-01

    Stars reported here were targeted during the astrometry program because they were likely to be red dwarfs within 25pc with no previous published πtrig. Of the 151 systems, 93 are from previous compendia of proper motion stars, primarily based on work by Luyten (Luyten 1979nlcs.book.....L, 1980nltt.bookQ....L), and 58 are from our SuperCOSMOS-RECONS (SCR) search (Hambly et al. 2004AJ....128..437H; Henry et al. 2004AJ....128.2460H). The systems have μ=118-828mas/yr, with 143 having μ>180mas/yr, the canonical cutoff for Luyten's Two-Tenths (LTT) Catalog. For all but two objects (only one epoch of photometry was available for WT 1637 and LHS 2024 at the time of the paper), at least two epochs of absolute VJRKCIKC photometry on the Johnson-Kron-Cousins system were measured for each parallax field. Two V filters that are photometrically indistinguishable to 7 millimagnitudes (mmag) (Jao et al. 2011AJ....141..117J), one R filter, and one I filter were used for series of observations spanning 2-16years, depending on the star (the central wavelengths for the two VJ filters, the RKC filter, and the IKC filter are 5438Å, 5475Å, 6425Å, and 8075Å, respectively). The 2048*2046 Tektronix CCD camera on the CTIO/SMARTS 0.9m with a pixel (px) scale of 0.401''/px was used for both astrometric and photometric observations. In order to mitigate the effects of image distortion at the edges of the CCD, only the central quarter of the chip was used, resulting in a 6.8*6.8 square field of view. Photometry in the near-infrared JHKs filters has been extracted from the Two Micron All Sky Survey (2MASS; Cutri et al. 2003, Cat. II/246) and is rounded to the nearest hundredth magnitude in Table1. (5 data files).

  2. Automation of the Lowell Observatory 0.8-m Telescope

    NASA Astrophysics Data System (ADS)

    Buie, M. W.

    2001-11-01

    In the past year I have converted the Lowell Observatory 0.8-m telescope from a classically scheduled and operated telescope to an automated facility. The new setup uses an existing CCD camera and the existing telescope control system. The key steps in the conversion were writing a new CCD control and data acquisition module plus writing communication and queue control software. The previous CCD control program was written for DOS and much of the code was reused for this project. The entire control system runs under Linux and consists of four daemons: MOVE, PCCD, CMDR, and PCTL. The MOVE daemon is a process that communciates with the telescope control system via an RS232 port, keeping track of its state and forwarding commands from other processes to the telescope. The PCCD daemon controls the CCD camera and collects data. The CMDR daemon maintains a FIFO queue of commands to be executed during the night. The PCTL daemon receives notification from any other deamon of execution failures and sends an error code to the on-duty observer via a numeric pager. This system runs through the night much as you would traditionally operate a telescope. However, this system permits queuing up all the commands for a night and they execute one after another in sequence. Additional commands are needed to replace the normal human interaction during observing (ie., target acquisition, field registration, focusing). Also, numerous temporal synchronization commands are required so that observations happen at the right time. The system was used for this year's photometric monitoring of Pluto and Triton and is in general use for 2/3 of time on the telescope. Pluto observations were collected on 30 nights out of a potential pool of 90 nights. Detailed system design and capabilites plus sample observations will be presented. Also, a live demonstration will be provided if the weather is good. This work was supported by NASA Grant NAG5-4210 and the NSF REU Program grant to NAU.

  3. Multispectral Light Curves of Vesta

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Nathues, A.; Mottola, S.; Hoffmann, H.

    1996-01-01

    In order to characterize its compositional heterogeneity we have carried out time-resolved CCD spectrophotometry of 4 Vesta during its last apparition in 1996. The observations have been performed from the European Southern Observatory (La Silla, Chile), with the DLR CCD camera attached at the Bochum 24" telescope using a set of five interference filters covering the spectral range 0.45-0.95 pm. In order to obtain the high photometric accuracy necessary to reveal subtle color variations, we have performed on-chip differential photometry against a field star, which allows effective correction for short-term atmospheric extinction fluctuations. The observations were therefore carefully planned and scheduled for one night when 4 Vesta was passing close to a bright star (SAO 140637). Measurements in each filter were automatically cycled over about 5 hr, in order to fully cover an asteroid's rotational period. Only the small portion of the CCD actually containing 4 Vesta and the comparison star was read out, which allowed us to have a very fast duty cycle of about 90 s. A GO-type star (BS 5779) located less than 2 degrees from the Vesta field was acquired during its passage at meridian, in order to provide reflectance calibration. The resulting dataset of approximately 1000 frames was preprocessed using bias frames and twilight sky flat fields, while photometry was computed by using ASTPHOT, a synthetic aperture program developed at DLR. Extinction correction was derived directly by dividing the flux of the asteroid by the on-field comparison star, while higher-order, differential extinction coefficients were neglected due to the comparatively narrow bandwidth of the filters used.

  4. The fast transient sky with Gaia

    NASA Astrophysics Data System (ADS)

    Wevers, Thomas; Jonker, Peter G.; Hodgkin, Simon T.; Kostrzewa-Rutkowska, Zuzanna; Harrison, Diana L.; Rixon, Guy; Nelemans, Gijs; Roelens, Maroussia; Eyer, Laurent; van Leeuwen, Floor; Yoldas, Abdullah

    2018-01-01

    The ESA Gaia satellite scans the whole sky with a temporal sampling ranging from seconds and hours to months. Each time a source passes within the Gaia field of view, it moves over 10 charge coupled devices (CCDs) in 45 s and a light curve with 4.5 s sampling (the crossing time per CCD) is registered. Given that the 4.5 s sampling represents a virtually unexplored parameter space in optical time domain astronomy, this data set potentially provides a unique opportunity to open up the fast transient sky. We present a method to start mining the wealth of information in the per CCD Gaia data. We perform extensive data filtering to eliminate known onboard and data processing artefacts, and present a statistical method to identify sources that show transient brightness variations on ≲2 h time-scales. We illustrate that by using the Gaia photometric CCD measurements, we can detect transient brightness variations down to an amplitude of 0.3 mag on time-scales ranging from 15 s to several hours. We search an area of ∼23.5 deg2 on the sky and find four strong candidate fast transients. Two candidates are tentatively classified as flares on M-dwarf stars, while one is probably a flare on a giant star and one potentially a flare on a solar-type star. These classifications are based on archival data and the time-scales involved. We argue that the method presented here can be added to the existing Gaia Science Alerts infrastructure for the near real-time public dissemination of fast transient events.

  5. VizieR Online Data Catalog: Solar neighborhood. XXXVI. VRI variability of M dwarfs (Hosey+, 2015)

    NASA Astrophysics Data System (ADS)

    Hosey, A. D.; Henry, T. J.; Jao, W.-C.; Dieterich, S. B.; Winters, J. G.; Lurie, J. C.; Riedel, A. R.; Subasavage, J. P.

    2015-07-01

    We present an analysis of long-term photometric variability for nearby red dwarf stars at optical wavelengths (Table1). The sample consists of 264 M dwarfs south of decl.=+30 with V-K=3.96-9.16 and MV~~10-20, corresponding to spectral types M2V-M8V, most of which are within 25pc. Our 264 dwarf stars have been observed in the VRI filters over the past 14yr (with a median duration in the coverage of 7.9yr). The REsearch Consortium On Nearby Stars (RECONS; www.recons.org) has been using the Cerro Tololo Inter-American Observatory/Small & Moderate Aperture Research Telescope System (CTIO/SMARTS) 0.9m telescope for astrometric and photometric observations since 1999, first as an National Optical Astronomy Observatory (NOAO) Surveys Program, and since 2003 under the auspices of the SMARTS Consortium. The telescope is equipped with a 2048*2048 Tektronix CCD camera. Images taken during the program are used here to investigate the photometric variability of the nearby M dwarfs that have been targeted for parallax and proper motion measurements. Observations are made using the central quarter of the chip, which provides a 6.8' square field of view and pixels 401mas in size. Parallax frames are taken in the VJ, RKC, and IKC filters with magnitudes ranging from 9 to 20. The central wavelengths for the VJ, RKC, and IKC filters used in this study are 5438/5475, 6425, and 8075Å, respectively. The subscript "J" indicates Johnson, "KC" indicates Kron-Cousins (usually known as Cousins). VRI photometry from our program is given for the sample stars in Table1. Details of the photometry observations and reductions can be found in Jao et al. (2005AJ....129.1954J) and Winters et al. 2011 (cat. J/AJ/141/21). For astrometry, five images of each star are typically taken per night, usually within 30 minutes of transit. The target star is positioned in the field so that 5-10 reference stars, normally fainter by 1-4mag, surround the target. These stars constitute a reference grid for the astrometric reductions, and are also used for the photometric variability study described here. Additional details of the observations can be found in Jao et al. (2005AJ....129.1954J). (2 data files).

  6. Types of Information Expected from a Photometric Search for Extra-Solar Planets

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Bell, James, III; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    The current theory postulates that planets are a consequence of the formation of stars from viscous accretion disks. Condensation from the hotter, inner portion of the accretion disk favors the formation of small rocky planets in the inner portion and the formation of gas giants in the cuter, cooler part. Consequently, terrestrial-type planets in inner orbits must be commonplace (Wetheril 1991). From the geometry of the situation (Borucki and Summers 1984), it can be shown that 1% of those planetary systems that resemble our solar system should show transits for Earth-sized (or larger) planets. Thus a photometric satellite that uses a wide field of view telescope and a large CCD array to simultaneously monitor 5000 target stars should detect 50 planetary systems. To verify that regularly recurring transits are occurring rather than statistical fluctuations of the stellar flux, demands observations that extend over several orbital periods so that the constancy of the orbital period, signal amplitude, and duration can be measured. Therefore, to examine the region from Mercury's orbit to that of the Earth requires a duration of three years whereas a search out to the orbit of mars requires about six years. The results of the observations should provide estimates of the distributions of planetary size and orbital radius, and the frequency of planetary systems that have Earth-sized planets in inner orbits. Because approximately one half of the star systems observed will be binary systems, the frequency of planetary systems orbit ' ing either one or both of the stars can also be determined. Furthermore, the complexity of the photometric signature of a planet transiting a pair of stars provides enough information to estimate the eccentricities of the planetary orbits. In summary, the statistical evidence from a photometric search of solar-like stars should be able to either confirm or deny the applicability of the current theory of planet formation and provide new information about the stability of planetary orbits in binary star systems.

  7. Winter sky brightness & cloud cover over Dome A

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Moore, A. M.; Fu, J.; Ashley, M.; Cui, X.; Feng, L.; Gong, X.; Hu, Z.; Laurence, J.; LuongVan, D.; Riddle, R. L.; Shang, Z.; Sims, G.; Storey, J.; Tothill, N.; Travouillon, T.; Wang, L.; Yang, H.; Yang, J.; Zhou, X.; Zhu, Z.; Burton, M. G.

    2014-01-01

    At the summit of the Antarctic plateau, Dome A offers an intriguing location for future large scale optical astronomical Observatories. The Gattini DomeA project was created to measure the optical sky brightness and large area cloud cover of the winter-time sky above this high altitude Antarctic site. The wide field camera and multi-filter system was installed on the PLATO instrument module as part of the Chinese-led traverse to Dome A in January 2008. This automated wide field camera consists of an Apogee U4000 interline CCD coupled to a Nikon fish-eye lens enclosed in a heated container with glass window. The system contains a filter mechanism providing a suite of standard astronomical photometric filters (Bessell B, V, R), however, the absence of tracking systems, together with the ultra large field of view 85 degrees) and strong distortion have driven us to seek a unique way to build our data reduction pipeline. We present here the first measurements of sky brightness in the photometric B, V, and R band, cloud cover statistics measured during the 2009 winter season and an estimate of the transparency. In addition, we present example light curves for bright targets to emphasize the unprecedented observational window function available from this ground-based location. A ~0.2 magnitude agreement of our simultaneous test at Palomar Observatory with NSBM(National Sky Brightness Monitor), as well as an 0.04 magnitude photometric accuracy for typical 6th magnitude stars limited by the instrument design, indicating we obtained reasonable results based on our ~7mm effective aperture fish-eye lens.

  8. Relative Age Difference Between the Metal-Poor Globular Clusters M53 and M92

    NASA Astrophysics Data System (ADS)

    Cho, Dong-Hwan; Sung, Hyun-Il; Lee, Sang-Gak; Yoon, Tae Seog

    2016-10-01

    CCD photometric observations of the globular cluster (GC), M53 (NGC 5024), are performed using the 1.8 m telescope at the Bohyunsan Optical Astronomy Observatory in Korea on the same nights (2002 April and 2003 May) as the observations of the GC M92 (NGC 6341) reported by Cho and Lee using the same instrumental setup. The data for M53 is reduced using the same method as used for M92 by Cho and Lee, including preprocessing, point-spread function fitting photometry, and standardization etc. Therefore, M53 and M92 are on the same photometric system defined by Landolt, and the photometry of M53 and M92 is tied together as closely as possible. After complete photometric reduction, the V versus B-V, V versus V-I, and V versus B-I color-magnitude diagrams (CMDs) of M53 are produced to derive the relative ages of M53 and M92 and derive the various characteristics of its CMDs in future analysis. From the present analysis, the relative ages of M53 and M92 are derived using the Δ(B-V) method reported by VandenBerg et al. The relative age of M53 is found to be 1.6 ± 0.85 Gyr younger than that of M92 if the absolute age of M92 is taken to be 14 Gyr. This relative age difference between M53 and M92 causes slight differences in the horizontal-branch morphology of these two GCs.

  9. Photometry and spectroscopy in the open cluster Alpha Persei, 2

    NASA Technical Reports Server (NTRS)

    Prosser, Charles F.

    1993-01-01

    Results from a combination of new spectroscopic and photometric observations in the lower main-sequence and pre-main sequence of the open cluster alpha Persei are presented. New echelle spectroscopy has provided radial and rotational velocity information for thirteen candidate members, three of which are nonmembers based on radial velocity, absence of a Li 6707A feature, and absence of H-alpha emission. A set of revised rotational velocity estimates for several slowly rotating candidates identified earlier is given, yielding rotational velocities as low as 7 km/s for two apparent cluster members. VRI photometry for several pre-main sequence members is given; the new (V,V-I(sub K)) photometry yields a more clearly defined pre-main sequence. A list of approximately 43 new faint candidate members based on the (V,V-I(sub K)) CCD photometry is presented in an effort to identify additional cluster members at very low masses. Low-dispersion spectra obtained for several of these candidates provide in some cases supporting evidence for cluster membership. The single brown dwarf candidate in this cluster is for the first time placed in a color-magnitude diagram with other cluster members, providing a better means for establishing its true status. Stars from among the list of new photometric candidates may provide the means for establishing a sequence of cluster members down to very faint magnitudes (V approximately 21) and consequently very low masses. New coordinate determinations for previous candidate members and finding charts for the new photometric candidates are provided in appendices.

  10. LX Leo: A High Mass-Ratio Totally Eclipsing W-type W UMa System

    NASA Astrophysics Data System (ADS)

    Gürol, B.; Michel, R.; Gonzalez, C.

    2017-10-01

    We present the results of our investigation of the geometrical and physical parameters of the binary system LX Leo. Based on CCD BVRc light curves, and their analyses with the Wilson-Devinney code, new times of minima and light elements have been determined. According to our solution, the system is a high mass-ratio, totally eclipsing, W-type W UMa system. Combining our photometric solution with the empirical relation for W UMa type systems by Dimitrow & Kjurkchieva (2015), we derived the masses and radii of the components to be M1=0.43 M⊙, M2=0.81 M⊙, R1=0.58 R⊙ and R2=0.77 R⊙. In addition, the evolutionary condition of the system is discussed.

  11. Intermediate-Band Photometric Luminosity Descrimination for M Stars

    NASA Astrophysics Data System (ADS)

    Robertson, T. H.; Furiak, N. M.

    1995-12-01

    Synthetic photometry has been used to design an intermediate-band filter to be used with CCD cameras to facilitate the luminosity classification of M stars. Spectrophotometric data published by Gunn & Stryker (1983) were used to test various bandwidths and centers. Based on these calculations an intermediate-band filter has been purchased. This filter is being used in conjunction with standard BVRI filters to test its effectiveness in luminosity classification of M stars having a wide range of temperatures and different chemical compositions. The results of the theoretical calculations, filter design specifications and preliminary results of the testing program are presented. This research is supported in part by funds provided by Ball State University, The Fund for Astrophysical Research and the Indiana Academy of Science.

  12. Mars Exploration Rover Navigation Camera in-flight calibration

    NASA Astrophysics Data System (ADS)

    Soderblom, Jason M.; Bell, James F.; Johnson, Jeffrey R.; Joseph, Jonathan; Wolff, Michael J.

    2008-06-01

    The Navigation Camera (Navcam) instruments on the Mars Exploration Rover (MER) spacecraft provide support for both tactical operations as well as scientific observations where color information is not necessary: large-scale morphology, atmospheric monitoring including cloud observations and dust devil movies, and context imaging for both the thermal emission spectrometer and the in situ instruments on the Instrument Deployment Device. The Navcams are a panchromatic stereoscopic imaging system built using identical charge-coupled device (CCD) detectors and nearly identical electronics boards as the other cameras on the MER spacecraft. Previous calibration efforts were primarily focused on providing a detailed geometric calibration in line with the principal function of the Navcams, to provide data for the MER navigation team. This paper provides a detailed description of a new Navcam calibration pipeline developed to provide an absolute radiometric calibration that we estimate to have an absolute accuracy of 10% and a relative precision of 2.5%. Our calibration pipeline includes steps to model and remove the bias offset, the dark current charge that accumulates in both the active and readout regions of the CCD, and the shutter smear. It also corrects pixel-to-pixel responsivity variations using flat-field images, and converts from raw instrument-corrected digital number values per second to units of radiance (W m-2 nm-1 sr-1), or to radiance factor (I/F). We also describe here the initial results of two applications where radiance-calibrated Navcam data provide unique information for surface photometric and atmospheric aerosol studies.

  13. Fabry-Perot observations of comet Austin

    NASA Technical Reports Server (NTRS)

    Schultz, David; Scherb, F.; Roesler, F. L.; Li, G.; Harlander, J.; Roberts, T. P. P.; Vandenberk, D.; Nossal, S.; Coakley, M.; Oliversen, Ronald J.

    1990-01-01

    Preliminary results of a program to observe Comet Austin (1990c1) from 16 April to 4 May and from 11 May to 27 May 1990 using the West Auxiliary of the McMath Solar Telescope on Kitt Peak, Arizona were presetned. The observations were made with a 15 cm duel-etalon Fabry-Perot scanning and imaging spectrometer with two modes of operation: a high resolution mode with a velocity resolution of 1.2 km/s and a medium resolution mode with a velocity resolution 10 km/s. Scanning data was obtained with an RCA C31034A photomultiplier tube and imaging data was obtained with a Photometrics LN2 cooled CCD camera with a 516 by 516 Ford chip. The results include: (1) information on the coma outflow velocity from high resolution spectral profiles of (OI)6300 and NH2 emissions, (2) gaseous water production rates from medium resolution observation of (OI)6300, (3) spectra of H2O(+) emissions in order to study the ionized component of the coma, (4) spatial distribution of H2O(+) emission features from sequences of velocity resolved images (data cubes), and (5) spatial distribution of (OI)6300 and NH2 emissions from medium resolution images. The field of view on the sky was 10.5 arcminutes in diameter. In the imaging mode the CCD was binned 4 by 4 resulting in 7.6 sec power pixel and a subarray readout for a field of view of 10.5 min.

  14. Identification of an interstellar oxide grain from the Murchison meteorite by ion imaging

    NASA Technical Reports Server (NTRS)

    Nittler, L. R.; Walker, R. M.; Zinner, E.; Hoppe, P.; Lewis, R. S.

    1993-01-01

    We report here the first use of a new ion-imaging system to locate a rare interstellar aluminum oxide grain in a Murchison acid residue. While several types of carbon-rich interstellar grains, including graphite, diamond, SiC, and TiC, have previously been found, isotopically anomalous interstellar oxide grains have proven more elusive. We have developed an ion imaging system which allows us to map the isotopic composition of large numbers of grains relatively quickly and is, thus, ideally suited to search for isotopically exotic subsets of grains. The system consists of a PHOTOMETRICS CCD camera coupled to the microchannel plate/fluorescent screen of the WU modified CAMECA IMS-3F ion microprobe. Isotopic images of the sample surface are focused on the CCD and digitized. Subsequent image processing identifies individual grains in the images and determines isotopic ratios for each. For the present work, we have imaged in O-16 and O-18; negligible contributions of (17)OH(-) and (16)OH2(-) signals to the O-18 signal allow the use of low mass resolution, simplifying the measurements. Repeated imaging runs on terrestrial corundum particles showed that the system measures isotopic ratios reproducibly to about +/- 40%. Each imaging run took about six minutes to complete, and for this study there were on average 5-15 grains in each image. We have conducted imaging searches in 2-4 micron size separates of both Orgueil and Murchison.

  15. Characterization of Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, H.; Abercromby, K.; Barker, E.; Seitzer, P.; Schildknecht, T.

    2010-01-01

    To better characterize and model optical data acquired from ground-based telescopes, the Optical Measurements Center (OMC) at NASA/JSC attempts to emulate illumination conditions seen in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC uses a 75 Watt Xenon arc lamp as a solar simulator, an SBIG CCD camera with standard Johnson/Bessel filters, and a robotic arm to simulate an object's position and rotation. The laboratory uses known shapes, materials suspected to be consistent with the orbital debris population, and three phase angles to best match the lighting conditions of the telescope based data. The fourteen objects studied in the laboratory are fragments or materials acquired through ground-tests of scaled-model satellites/rocket bodies as well as material samples in more/less "flight-ready" condition. All fragments were measured at 10 increments in a full 360 rotation at 6 , 36 , and 60 phase angles. This paper will investigate published color photometric data for a series of orbital debris targets and compare it to the empirical photometric measurements generated in the OMC. Using the data acquired over specific rotational angles through different filters (B, V, R, I), a color index is acquired (B-R, R-I). Using these values and their associated lightcurves, this laboratory data is compared to observational data obtained on the 1 m telescope of the Astronomical Institute of the University of Bern (AUIB), the 0.9 m operated by the Small- and Medium-Aperture Research Telescope System (SMARTS) Consortium and the Curtis-Schmidt 0.6 m Michigan Orbital Debris Space Debris Telescope both located at Cerro Tololo Inter-American Observatory (CTIO). An empirical based optical characterization model will be presented to provide preliminary correlations between laboratory based and telescope-based data in the context of classification of GEO debris objects.

  16. The detached eclipsing binary TX Her revisited

    NASA Astrophysics Data System (ADS)

    Erdem, A.; Aliçavuş, F.; Soydugan, F.; Doğru, S. S.; Soydugan, E.; Çiçek, C.; Demircan, O.

    2011-12-01

    This paper presents new CCD Bessell BVRI light curves and photometric analysis of the Algol-type binary star TX Her. The CCD observations were carried out at Çanakkale Onsekiz Mart University Observatory in 2010. New BVRI light curves from this study and radial velocity curves from Popper (1970) were solved simultaneously using modern light and radial velocity curves synthesis methods. The general results show that TX Her is a well-detached eclipsing binary, however, both component stars fill at least half of their Roche lobes. A significant third light contribution to the total light of the system could not be determined. Using O- C residuals formed by the updated minima times, an orbital period study of the system was performed. It was confirmed that the tilted sinusoidal O- C variation corresponds to an apparent period variation caused by the light travel time effect due to an unseen third body. The following absolute parameters of the components were derived: M1 = 1.62 ± 0.04 M ⊙, M2 = 1.45 ± 0.03 M ⊙, R1 = 1.69 ± 0.03 R ⊙, R2 = 1.43 ± 0.03 R ⊙, L1 = 8.21 ± 0.90 L ⊙ and L2 = 3.64 ± 0.60 L ⊙. The distance to TX Her was calculated as 155 ± 10 pc, taking into account interstellar extinction. The position of the components of TX Her in the HR diagram are also discussed. The components are young stars with an age of ˜500 Myr.

  17. WW Geminorum: An early B-type eclipsing binary evolving into the contact phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y.-G.; Dai, H.-F.; Yin, X.-G.

    2014-11-01

    WW Gem is a B-type eclipsing binary with a period of 1.2378 days. The CCD photometry of this binary was performed in 2013 December using the 85 cm telescope at the Xinglong Stations of the National Astronomical Observatories of China. Using the updated W-D program, the photometric model was deduced from the VRI light curves. The results imply that WW Gem is a near-contact eclipsing binary whose primary component almost fills its Roche lobe. The photometric mass ratio is q {sub ph} = 0.48(± 0.05). All collected times of minimum light, including two new ones, were used for the periodmore » studies. The orbital period changes of WW Gem could be described by an upward parabola, possibly overlaid by a light-time orbit with a period of P {sub mod} = 7.41(± 0.04) yr and a semi-amplitude of A = 0.0079 days(± 0.0005 days), respectively. This kind of cyclic oscillation may be attributed to the light-travel time effect via the third body. The long-term period increases at a rate of dP/dt = +3.47(±0.04) × 10{sup –8} day yr{sup –1}, which may be explained by the conserved mass transfer from the less massive component to the more massive one. With mass transfer, the massive binary WW Gem may be evolving into a contact binary.« less

  18. A new photometric study of the triple star system EF Draconis

    NASA Astrophysics Data System (ADS)

    Yang, Yuan-Gui

    2012-04-01

    We present new charge-coupled device (CCD) photometry for the triple star EF Draconis, obtained in 2009 and 2011. Using the updated Wilson-Devinney program, the photometric solutions were deduced from two sets of light curves. The results indicate that EF Dra is an A-type W UMa binary with a contact degree of f = 46.7%(±0.6%) and a third light of l3 ≃ 1.5%. Through analyzing the O — C curve, it is found that the orbital period shows a long-time increase with a light-time orbit. The period, semi-amplitude and eccentricity of the third body are Pmod = 17.20(±0.18) yr, A = 0.0039d(±0.0002d) and e = 0.49(±0.02) respectively. This kind of tertiary companion may extract angular momentum from the central system. The orbital period of EF Dra secularly increases at a rate of dP/dt = +3.72(±0.07) × 10-7 d yr-1, which may be interpreted by mass transfer from the less massive to the more massive component. As period increases, the separation between components may increase, which will cause the contact degree to decrease. With mass transferring, the spin angular momentum will increase, while the orbital angular momentum will decrease. Only if the contact configuration would merge at could this kind of deep-contact binary with period increasing, such as EF Dra, evolve into a rapidly-rotating single star.

  19. CCD Photometry and Roche Modeling of the Eclipsing Deep Low Mass, Overcontact Binary Star System TYC 2058-753-1

    NASA Astrophysics Data System (ADS)

    Alton, K. B.

    2018-06-01

    Abstract TYC 2058-753-1 (NSVS 7903497; ASAS 165139+2255.7) is a W UMa binary system (P = 0.353205 d) which has not been rigorously studied since first being detected nearly 15 years ago by the ROTSE-I telescope. Other than the unfiltered ROTSE-I and monochromatic All Sky Automated Survey (ASAS) survey data, no multi-colored light curves (LC) have been published. Photometric data collected in three bandpasses (B, V, and Ic) at Desert Bloom Observatory in June 2017 produced six times-of-minimum for TYC 2058-753-1 which were used to establish a linear ephemeris from the first directly measured Min I epoch (HJD0). No published radial velocity data are available for this system, however, since this W UMa binary undergoes a very obvious total eclipse, Roche modeling produced a well-constrained photometric value for the mass ratio (qph = 0.103 ± 0.001). This low-mass ratio binary star system also exhibits a high degree of contact (f > 56%). There is a suggestion from the ROTSE-I and ASAS survey data as well as from the new LCs reported herein that maximum light during quadrature (Max I and Max II) is often not equal. As a result, Roche modeling of the TYC 2058-753-1 LCs was investigated with and without surface spots to address this asymmetry as well as a diagonally-aligned flat bottom during Min I that was observed in 2017.

  20. Photometric Investigation and Possible Light-Time Effect in the Orbital Period of a Marginal Contact System, CW Cassiopeiae

    NASA Astrophysics Data System (ADS)

    Jiang, Tian-Yu; Li, Li-Fang; Han, Zhan-Wen; Jiang, Deng-Kai

    2010-04-01

    The first complete charge-coupled device (CCD) light curves in B and V passbands of a neglected contact binary system, CW Cassiopeiae (CW Cas), are presented. They were analyzed simultaneously by using the Wilson and Devinney (WD) code (1971, ApJ, 166, 605). The photometric solution indicates that CW Cas is a W-type W UMa system with a mass ratio of m2/m1 2.234, and that it is in a marginal contact state with a contact degree of ˜6.5% and a relatively large temperature difference of ˜327K between its two components. Based on the minimum times collected from the literature, together with the new ones obtained in this study, the orbital period changes of CW Cas were investigated in detail. It was found that a periodical variation overlaps with a secular period decrease in its orbital period. The long-term period decrease with a rate of dP/dt = -3.44 × 10-8d yr-1 can be interpreted either by mass transfer from the more-massive component to the less-massive with a rate of dm2/dt = -3.6 × 10-8M⊙ yr-1, or by mass and angular-momentum losses through magnetic braking due to a magnetic stellar wind. A low-amplitude cyclic variation with a period of T = 63.7 yr might be caused by the light-time effect due to the presence of a third body.

  1. NSVS 7051868: A system in a key evolutionary stage. First multi-color photometric study

    NASA Astrophysics Data System (ADS)

    Barani, C.; Martignoni, M.; Acerbi, F.

    2017-01-01

    The first CCD photometric complete light curves of the eclipsing binary NSVS 7051868 were obtained during six nights in January 2016 in the B, V and Ic bands using the 0.25 m telescope of the Stazione Astronomica Betelgeuse in Magnago, Italy. These observations confirm the short period (P = 0.517 days) variation found by Shaw and collaborators in their online list (http://www.physast.uga.edu/ jss/nsvs/) of periodic variable stars found in the Northern Sky Variability Survey. The light curves were modelled using the Wilson-Devinney code and the elements obtained from this analysis are used to compute the physical parameters of the system in order to study its evolutionary status. A grid of solutions for several fixed values of mass ratio was calculated. A reasonable fit of the synthetic light curves of the data indicate that NSVS 7051868 is an A-subtype W Ursae Majoris contact binary system, with a low mass ratio of q = 0.22, a degree of contact factor f = 35.5% and inclination i = 85°. Our light curves shows a time of constant light in the secondary eclipse of approximately 0.1 in phase. The light curve solution reveals a component temperature difference of about 700 K. Both the value of the fill-out factor and the temperature difference suggests that NSVS 7051868 is a system in a key evolutionary stage of the Thermal Relaxation Oscillation theory. The distance to NSVS 7051868 was calculated as 180 pc from this analysis, taking into account interstellar extinction.

  2. Chromospheric activity of periodic variable stars (including eclipsing binaries) observed in DR2 LAMOST stellar spectral survey

    NASA Astrophysics Data System (ADS)

    Zhang, Liyun; Lu, Hongpeng; Han, Xianming L.; Jiang, Linyan; Li, Zhongmu; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Cao, Zihuang

    2018-05-01

    The LAMOST spectral survey provides a rich databases for studying stellar spectroscopic properties and chromospheric activity. We cross-matched a total of 105,287 periodic variable stars from several photometric surveys and databases (CSS, LINEAR, Kepler, a recently updated eclipsing star catalogue, ASAS, NSVS, some part of SuperWASP survey, variable stars from the Tsinghua University-NAOC Transient Survey, and other objects from some new references) with four million stellar spectra published in the LAMOST data release 2 (DR2). We found 15,955 spectra for 11,469 stars (including 5398 eclipsing binaries). We calculated their equivalent widths (EWs) of their Hα, Hβ, Hγ, Hδ and Caii H lines. Using the Hα line EW, we found 447 spectra with emission above continuum for a total of 316 stars (178 eclipsing binaries). We identified 86 active stars (including 44 eclipsing binaries) with repeated LAMOST spectra. A total of 68 stars (including 34 eclipsing binaries) show chromospheric activity variability. We also found LAMOST spectra of 12 cataclysmic variables, five of which show chromospheric activity variability. We also made photometric follow-up studies of three short period targets (DY CVn, HAT-192-0001481, and LAMOST J164933.24+141255.0) using the Xinglong 60-cm telescope and the SARA 90-cm and 1-m telescopes, and obtained new BVRI CCD light curves. We analyzed these light curves and obtained orbital and starspot parameters. We detected the first flare event with a huge brightness increase of more than about 1.5 magnitudes in R filter in LAMOST J164933.24+141255.0.

  3. Significantly reducing the processing times of high-speed photometry data sets using a distributed computing model

    NASA Astrophysics Data System (ADS)

    Doyle, Paul; Mtenzi, Fred; Smith, Niall; Collins, Adrian; O'Shea, Brendan

    2012-09-01

    The scientific community is in the midst of a data analysis crisis. The increasing capacity of scientific CCD instrumentation and their falling costs is contributing to an explosive generation of raw photometric data. This data must go through a process of cleaning and reduction before it can be used for high precision photometric analysis. Many existing data processing pipelines either assume a relatively small dataset or are batch processed by a High Performance Computing centre. A radical overhaul of these processing pipelines is required to allow reduction and cleaning rates to process terabyte sized datasets at near capture rates using an elastic processing architecture. The ability to access computing resources and to allow them to grow and shrink as demand fluctuates is essential, as is exploiting the parallel nature of the datasets. A distributed data processing pipeline is required. It should incorporate lossless data compression, allow for data segmentation and support processing of data segments in parallel. Academic institutes can collaborate and provide an elastic computing model without the requirement for large centralized high performance computing data centers. This paper demonstrates how a base 10 order of magnitude improvement in overall processing time has been achieved using the "ACN pipeline", a distributed pipeline spanning multiple academic institutes.

  4. Standardized Photometric Calibrations for Panchromatic SSA Sensors

    NASA Astrophysics Data System (ADS)

    Castro, P.; Payne, T.; Battle, A.; Cole, Z.; Moody, J.; Gregory, S.; Dao, P.

    2016-09-01

    Panchromatic sensors used for Space Situational Awareness (SSA) have no standardized method for transforming the net flux detected by a CCD without a spectral filter into an exo-atmospheric magnitude in a standard magnitude system. Each SSA data provider appears to have their own method for computing the visual magnitude based on panchromatic brightness making cross-comparisons impossible. We provide a procedure in order to standardize the calibration of panchromatic sensors for the purposes of SSA. A technique based on theoretical modeling is presented that derives standard panchromatic magnitudes from the Johnson-Cousins photometric system defined by Arlo Landolt. We verify this technique using observations of Landolt standard stars and a Vega-like star to determine empirical panchromatic magnitudes and compare these to synthetically derived panchromatic magnitudes. We also investigate color terms caused by differences in the quantum efficiency (QE) between the Landolt standard system and panchromatic systems. We evaluate calibrated panchromatic satellite photometry by observing several GEO satellites and standard stars using three different sensors. We explore the effect of satellite color terms by comparing the satellite signatures. In order to remove other variables affecting the satellite photometry, two of the sensors are at the same site using different CCDs. The third sensor is geographically separate from the first two allowing for a definitive test of calibrated panchromatic satellite photometry.

  5. Lightning charge moment changes estimated by high speed photometric observations from ISS

    NASA Astrophysics Data System (ADS)

    Hobara, Y.; Kono, S.; Suzuki, K.; Sato, M.; Takahashi, Y.; Adachi, T.; Ushio, T.; Suzuki, M.

    2017-12-01

    Optical observations by the CCD camera using the orbiting satellite is generally used to derive the spatio-temporal global distributions of the CGs and ICs. However electrical properties of the lightning such as peak current and lightning charge are difficult to obtain from the space. In particular, CGs with considerably large lightning charge moment changes (CMC) and peak currents are crucial parameters to generate red sprites and elves, respectively, and so it must be useful to obtain these parameters from space. In this paper, we obtained the lightning optical signatures by using high speed photometric observations from the International Space Station GLIMS (Global Lightning and Sprit MeasurementS JEM-EF) mission. These optical signatures were compared quantitatively with radio signatures recognized as truth values derived from ELF electromagnetic wave observations on the ground to verify the accuracy of the optically derived values. High correlation (R > 0.9) was obtained between lightning optical irradiance and current moment, and quantitative relational expression between these two parameters was derived. Rather high correlation (R > 0.7) was also obtained between the integrated irradiance and the lightning CMC. Our results indicate the possibility to derive lightning electrical properties (current moment and CMC) from optical measurement from space. Moreover, we hope that these results will also contribute to forthcoming French microsatellite mission TARANIS.

  6. A Probable Taurid Impact on the Moon

    NASA Technical Reports Server (NTRS)

    Cooke, William J.; Suggs, R. M.; Swift, Wesley R.

    2006-01-01

    On November 7, 2005, at 23:41:52 UT, observers located at the Marshall Space Flight Center captured the flash produced by a kilogram-size meteoroid striking the lunar surface. Photometric analysis of the event video, combined with the plausible assumptions of a luminous efficiency of 2x10" and that the meteoroid was a member of the Taurid meteoroid stream, yield a striking power of approximately 640 lbs of TNT and a mass of approximately 3.8 kg. Even though no confirming independent observations are known to exist, there is high confidence in the impact origin of the flash; reasonable attempts have been made to eliminate other possibilities, such as cosmic ray hits on the CCD and glints from satellites that may have crossed the lunar disk near the impact time.

  7. A-Track: A New Approach for Detection of Moving Objects in FITS Images

    NASA Astrophysics Data System (ADS)

    Kılıç, Yücel; Karapınar, Nurdan; Atay, Tolga; Kaplan, Murat

    2016-07-01

    Small planet and asteroid observations are important for understanding the origin and evolution of the Solar System. In this work, we have developed a fast and robust pipeline, called A-Track, for detecting asteroids and comets in sequential telescope images. The moving objects are detected using a modified line detection algorithm, called ILDA. We have coded the pipeline in Python 3, where we have made use of various scientific modules in Python to process the FITS images. We tested the code on photometrical data taken by an SI-1100 CCD with a 1-meter telescope at TUBITAK National Observatory, Antalya. The pipeline can be used to analyze large data archives or daily sequential data. The code is hosted on GitHub under the GNU GPL v3 license.

  8. The Prediction and Observation of the 1997 July 18 Stellar Occultation by Triton: More Evidence for Distortion and Increasing Pressure in Triton's Atmosphere

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Person, M. J.; McDonald, S. W.; Buie, M. W.; Dunham, E. W.; Millis, R. L.; Nye, R. A.; Olkin, C. B.; Wasserman, L. H.; Young, L. A.

    2000-01-01

    We used CCD (charge coupled device) astrometric data to predict where the occultation path of the star Tr 176 was located, on July 18, 1997. It could be seen from northern Australia and the southern section of North America. We set up an array of portable and mixed telescopes which had high-speed photometric equipment to observe the occultation. Goals included the following: (1) mapping the central flash; (2) obtaining light curves for the signal-to-noise ratio; (3) acquiring light curves from Triton's disk. We combined these with data from others to find the radius and geometry of the half-light surface of the atmosphere, as well as the equivalent-isothermal temperature latitudes below the occultation on Triton.

  9. Optical Photometric Observations of GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Edwin S.; Abercromby, Kira J.; Kelecy, Thomas M.; Horstman, Matt

    2010-01-01

    We report on a continuing program of optical photometric measurements of faint orbital debris at geosynchronous Earth orbit (GEO). These observations can be compared with laboratory studies of actual spacecraft materials in an effort to determine what the faint debris at GEO may be. We have optical observations from Cerro Tololo Inter-American Observatory (CTIO) in Chile of two samples of debris: 1. GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Curtis-Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 t11 magnitude that are discovered in the MODEST survey. 2. A smaller sample of high area to mass ratio (AMR) objects discovered independently, and acquired using predictions from orbits derived from independent tracking data collected days prior to the observations. Our optical observations in standard astronomical BVRI filters are done with either telescope, and with the telescope tracking the debris object at the object's angular rate. Observations in different filters are obtained sequentially. We have obtained 71 calibrated sequences of R-B-V-I-R magnitudes. A total of 66 of these sequences have 3 or more good measurements in all filters (not contaminated by star streaks or in Earth's shadow). Most of these sequences show brightness variations, but a small subset has observed brightness variations consistent with that expected from observational errors alone. The majority of these stable objects are redder than a solar color in both B-R and R-I. There is no dependence on color with brightness. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus, the B-R color is a true measure of the surface of the debris piece facing the telescopes for that observation. Any change in color reflects a real change in the debris surface. We will compare our observations with models and laboratory measurements of selected surfaces.

  10. Precision of Times-of-Minima and the Detection of Low-Mass Third Bodies Orbiting Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Genet, R. M.; Smith, T. C.

    2004-12-01

    Low-mass third bodies orbiting eclipsing binaries are difficult to detect by way of periodic shifts in photometric times-of-minima because the observational precision of these timings are of the same order as the expected effects of any low-mass companions. We are implementing three approaches to increasing the precision of our times-of-minima. First, we are obtaining many times-of-minima by utilizing relatively low-cost, dedicated telescopes and CCD cameras (10- and 14-inch Meade LX-200 telescopes and SBIG ST7-XE cameras). Operating in a semiautomatic mode, we select an eclipsing binary system, based on its placement in the sky, and observe it all night long - usually many nights in a row. We choose binaries with short enough periods to assure us of obtaining a complete light curve (and hence an eclipse) every night we observe. Second, we are striving to increase the photometric precision of each observation through the use of multiple comparison stars (ensemble photometry). We are also, in conjunction with California Polytechnic State University, investigating other ways of increasing the photometric precision of these low-cost systems (see E. Sturm this conference). Finally, we are utilizing complete, as opposed to partial, light curves in our analysis. Information outside primary eclipses is gathered as a matter of course, and its use can improve precision. A total of 186 complete light curves were obtained at the Dark Ridge and Orion Observatories during the 2004 observing season on six eclipsing binaries (TZ Boo, V523 Cas, RW Com, V1191 Cyg, GM Dra, and V400 Lyr). Please see T. Smith and R. Genet (this conference) for preliminary results on V523 Cas (30+ complete light curves).

  11. Determining the Ages and Distances of 4 Open Clusters

    NASA Astrophysics Data System (ADS)

    Sawczynec, Erica A.; James D. Armstrong, Joe M. Ritter, Jeff Kuhn

    2018-01-01

    The study of nearby young open clusters can give insight into star formation and potentially the local rate of metal enrichment. Presented is a BVRI photometric analysis of 4 open clusters; NGC 2509, NGC 2483, NGC 2482, and NGC 6705, in order to reevaluate previously published ages and distances using modern CCD photometry, and newer stellar models. Observations were obtained from the Cerro Tololo node of the Las Cumbres Observatory 1.0 meter network. Color magnitude diagrams were compared to modeled isochrones and the updated ages and distances determined. An interesting stellar association was found in the color magnitude diagram of NGC 6705. The structure is suggestive of two epochs of stellar formation. Members of this structure were evaluated using the Gaia Archive in order to explore the possibility of a heterogeneous population. The status of NGC 2483 as an open cluster has been debated; however, it has been noted that there is a high concentration of Be stars found in the region. It is concluded that NGC 2483 is an open cluster.

  12. Automated Quantitative Spectral Classification of Stars in Areas of the main Meridional Section of the Galaxy

    NASA Astrophysics Data System (ADS)

    Shvelidze, T. D.; Malyuto, V. D.

    Quantitative spectral classification of F, G and K stars with the 70-cm telescope of the Ambastumani Astrophysical Observatory in areas of the main meridional section of the Galaxy, and for which proper motion data are available, has been performed. Fundamental parameters have been obtained for 333 stars in four areas. Space densities of stars of different spectral types, the stellar luminosity function and the relationships between the kinematics and metallicity of stars have been studied. The results have confirmed and completed the conclusions made on the basis of some previous spectroscopic and photometric surveys. Many plates have been obtained for other important directions in the sky: the Kapteyn areas, the Galactic anticentre and the main meridional section of the Galaxy. The data can be treated with the same quantitative method applied here. This method may also be applied to other available and future spectroscopic data of similar resolution, notably that obtained with large format CCD detectors on Schmidt-type telescopes.

  13. Towards photometry pipeline of the Indonesian space surveillance system

    NASA Astrophysics Data System (ADS)

    Priyatikanto, Rhorom; Religia, Bahar; Rachman, Abdul; Dani, Tiar

    2015-09-01

    Optical observation through sub-meter telescope equipped with CCD camera becomes alternative method for increasing orbital debris detection and surveillance. This observational mode is expected to eye medium-sized objects in higher orbits (e.g. MEO, GTO, GSO & GEO), beyond the reach of usual radar system. However, such observation of fast moving objects demands special treatment and analysis technique. In this study, we performed photometric analysis of the satellite track images photographed using rehabilitated Schmidt Bima Sakti telescope in Bosscha Observatory. The Hough transformation was implemented to automatically detect linear streak from the images. From this analysis and comparison to USSPACECOM catalog, two satellites were identified and associated with inactive Thuraya-3 satellite and Satcom-3 debris which are located at geostationary orbit. Further aperture photometry analysis revealed the periodicity of tumbling Satcom-3 debris. In the near future, it is not impossible to apply similar scheme to establish an analysis pipeline for optical space surveillance system hosted in Indonesia.

  14. AMIE SMART-1: review of results and legacy 10 years after launch

    NASA Astrophysics Data System (ADS)

    Josset, Jean-Luc; Souchon, Audrey; Josset, Marie; Foing, Bernard

    2014-05-01

    The Advanced Moon micro-Imager Experiment (AMIE) camera was launched in September 2003 onboard the ESA SMART-1 spacecraft. We review the technical characteristics, scientific objectives and results of the instrument, 10 years after its launch. The AMIE camera is an ultra-compact imaging system that includes a tele-objective with a 5.3° x 5.3° field of view and an imaging sensor of 1024 x 1024 pixels. It is dedicated to spectral imaging with three spectral filters (750, 915 and 960 nm filters), photometric measurements (filter free CCD area), and Laser-link experiment (laser filter at 847 nm). The AMIE camera was designed to acquire high-resolution images of the lunar surface, in white light and for specific spectral bands, under a number of different viewing conditions and geometries. Specifically, its main scientific objectives included: (i) imaging of high latitude regions in the southern hemisphere, in particular the South Pole Aitken basin and the permanently shadowed regions close to the South Pole; (ii) determination of the photometric properties of the lunar surface from observations at different phase angles (physical properties of the regolith); (iii) multi-band imaging for constraining the chemical and mineral composition of the surface; (iv) detection and characterisation of lunar non-mare volcanic units; (v) study of lithological variations from impact craters and implications for crustal heterogeneity. The study of AMIE images enhanced the knowledge of the lunar surface, in particular regarding photometric modelling and surface physical properties of localized lunar areas and geological units. References: http://scholar.google.nl/scholar?q=smart-1+amie We acknowledge ESA, member states, industry and institutes for their contribution, and the members of the AMIE Team: J.-L. Josset, P. Plancke, Y. Langevin, P. Cerroni, M. C. De Sanctis, P. Pinet, S. Chevrel, S. Beauvivre, B.A. Hofmann, M. Josset, D. Koschny, M. Almeida, K. Muinonen, J. Piironen, M. A. Barucci, P. Ehrenfreund, Yu. Shkuratov, V. Shevchenko, Z. Sodnik, S. Mancuso, F. Ankersen, B.H. Foing, and other associated scientists, collaborators, students and colleagues.

  15. THE YOUNG SOLAR ANALOGS PROJECT. I. SPECTROSCOPIC AND PHOTOMETRIC METHODS AND MULTI-YEAR TIMESCALE SPECTROSCOPIC RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, R. O.; Briley, M. M.; Lambert, R. A.

    2015-12-15

    This is the first in a series of papers presenting methods and results from the Young Solar Analogs Project, which began in 2007. This project monitors both spectroscopically and photometrically a set of 31 young (300–1500 Myr) solar-type stars with the goal of gaining insight into the space environment of the Earth during the period when life first appeared. From our spectroscopic observations we derive the Mount Wilson S chromospheric activity index (S{sub MW}), and describe the method we use to transform our instrumental indices to S{sub MW} without the need for a color term. We introduce three photospheric indicesmore » based on strong absorption features in the blue-violet spectrum—the G-band, the Ca i resonance line, and the Hydrogen-γ line—with the expectation that these indices might prove to be useful in detecting variations in the surface temperatures of active solar-type stars. We also describe our photometric program, and in particular our “Superstar technique” for differential photometry which, instead of relying on a handful of comparison stars, uses the photon flux in the entire star field in the CCD image to derive the program star magnitude. This enables photometric errors on the order of 0.005–0.007 magnitude. We present time series plots of our spectroscopic data for all four indices, and carry out extensive statistical tests on those time series demonstrating the reality of variations on timescales of years in all four indices. We also statistically test for and discover correlations and anti-correlations between the four indices. We discuss the physical basis of those correlations. As it turns out, the “photospheric” indices appear to be most strongly affected by emission in the Paschen continuum. We thus anticipate that these indices may prove to be useful proxies for monitoring emission in the ultraviolet Balmer continuum. Future papers in this series will discuss variability of the program stars on medium (days–months) and short (minutes to hours) timescales.« less

  16. Mars Exploration Rover Navigation Camera in-flight calibration

    USGS Publications Warehouse

    Soderblom, J.M.; Bell, J.F.; Johnson, J. R.; Joseph, J.; Wolff, M.J.

    2008-01-01

    The Navigation Camera (Navcam) instruments on the Mars Exploration Rover (MER) spacecraft provide support for both tactical operations as well as scientific observations where color information is not necessary: large-scale morphology, atmospheric monitoring including cloud observations and dust devil movies, and context imaging for both the thermal emission spectrometer and the in situ instruments on the Instrument Deployment Device. The Navcams are a panchromatic stereoscopic imaging system built using identical charge-coupled device (CCD) detectors and nearly identical electronics boards as the other cameras on the MER spacecraft. Previous calibration efforts were primarily focused on providing a detailed geometric calibration in line with the principal function of the Navcams, to provide data for the MER navigation team. This paper provides a detailed description of a new Navcam calibration pipeline developed to provide an absolute radiometric calibration that we estimate to have an absolute accuracy of 10% and a relative precision of 2.5%. Our calibration pipeline includes steps to model and remove the bias offset, the dark current charge that accumulates in both the active and readout regions of the CCD, and the shutter smear. It also corrects pixel-to-pixel responsivity variations using flat-field images, and converts from raw instrument-corrected digital number values per second to units of radiance (W m-2 nm-1 sr-1), or to radiance factor (I/F). We also describe here the initial results of two applications where radiance-calibrated Navcam data provide unique information for surface photometric and atmospheric aerosol studies. Copyright 2008 by the American Geophysical Union.

  17. The first multi-color photometric study of the short-period contact Eclipsing Binary DE Lyn

    NASA Astrophysics Data System (ADS)

    Hashimoto, Amanda; Zhang, Liyun; Han, Xianming L.; Hongpeng, Lu; Wang, Daimei

    2016-01-01

    We observed the contact eclipsing binary of DE Lyn using SARA 0.9 meter telescope at Kitt Peak National Observatory on February 9, 11, and 27, 2015. In this study, we obtained the first full phase coverage BVRI CCD light curves, analyzed the orbital period variation, and extracted the orbital parameters. We calculated the linear and quadratic ephemeris, and thereby found that DE Lyn has a decreasing orbital period rate of -5.1(±0.4)×10-7 days/year. We believe this decreasing trend is the result of the more massive component (secondary) transferring mass to the less massive component (primary), and we obtained a mass transfer rate of dm/dt = 7.06×10-7M⊙/year. By using the updated Wilson & Devinney program, we found the orbital parameters of DE Lyn, which, in turn, enabled us to calculate the low degree of contact factor as f = 9.02(± 0.01)%. Its degree of contact will continue to increase and will evolve into an over-contact system.

  18. The first multi-color photometric study of the short-period contact eclipsing binary DE Lyn

    NASA Astrophysics Data System (ADS)

    Hashimoto, Amanda; Zhang, Liyun; Han, Xianming L.; Lu, Hongpeng; Wang, Daimei

    2016-05-01

    We observed the contact eclipsing binary of DE Lyn using SARA 0.9 m telescope at Kitt Peak National Observatory on February 9, 11, and 27, 2015. In this study, we obtained the first full phase coverage BVRI CCD light curves, analyzed the orbital period variation, and extracted the orbital parameters. We calculated the linear and quadratic ephemeris, and thereby found that DE Lyn has a decreasing orbital period rate of - 5.1(± 0.4) × 10-7 days/year. We assume this decreasing trend is the result of the more massive component (secondary) transferring mass to the less massive component (primary), and we obtained a mass transfer rate of dm / dt = 7.06 ×10-7M⊙ /year . By using the updated Wilson & Devinney program, we found the orbital parameters of DE Lyn, which, in turn, enabled us to calculate the low degree of contact factor as f = 9.02(± 0.01)%. In the future, its degree of contact will continue to increase and will evolve into an over-contact system.

  19. Photometric and integrated spectral study of the young open clusters Pismis 22, NGC 6178, NGC 6216 and Ruprecht 130

    NASA Astrophysics Data System (ADS)

    Piatti, A. E.; Clariá, J. J.; Bica, E.

    2000-08-01

    We present CCD observations in the B, V , and I passbands obtained for stars in the fields of the open clusters Pismis 22, NGC 6178, NGC 6216, and Ruprecht 130, projected not far from the Galactic centre (|l| < 30̂, |b| < 2̂). The sample consists of about 790 stars reaching down to V ~ 18-19 mag. From the analysis of the colour magnitude diagrams, we confirmed the physical reality of the clusters and derived their reddening, distance and age. In addition, we obtained flux-calibrated integrated spectra in the range 3500-9200 Å for the cluster sample. The equivalent widths of the Balmer lines provided us with age estimates, while the comparison with template spectra allowed us to derive both foreground reddening and age. The photometric and spectroscopic results reveal that the four studied objects are young open clusters with ages ranging between 35 and 50 Myr. The clusters, located between 1.0 kpc and 4.3 kpc from the Sun, are affected by different amounts of interstellar visual absorption (0.6 ≃ Av ≃ 6.0). Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la Repúbica Argentina and the National Universities of La Plata, Córdoba, and San Juan, Argentina, and at the University of Toronto (David Dunlap Observatory) 24-inch telescope, Las Campanas, Chile. Tables 3-6 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  20. REFINED SYSTEM PARAMETERS AND TTV STUDY OF TRANSITING EXOPLANETARY SYSTEM HAT-P-20

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Leilei; Gu, Shenghong; Wang, Xiaobin

    2017-01-01

    We report new photometric observations of the transiting exoplanetary system HAT-P-20, obtained using CCD cameras at Yunnan Observatories and Ho Koon Nature Education cum Astronomical Centre, China, from 2010 to 2013, and Observatori Ca l’Ou, Sant Marti Sesgueioles, Spain, from 2013 to 2015. The observed data are corrected for systematic errors according to the coarse de-correlation and SYSREM algorithms, so as to enhance the signal of the transit events. In order to consistently model the star spots and transits of this exoplanetary system, we develop a highly efficient tool STMT based on the analytic models of Mandel and Agol andmore » Montalto et al. The physical parameters of HAT-P-20 are refined by homogeneously analyzing our new data, the radial velocity data, and the earlier photometric data in the literature with the Markov chain Monte Carlo technique. New radii and masses of both host star and planet are larger than those in the discovery paper due to the discrepancy of the radius among K-dwarfs between predicted values by standard stellar models and empirical calibration from observations. Through the analysis of all available mid-transit times calculated with the normal model and spotted model, we conclude that the periodic transit timing variations in these transit events revealed by employing the normal model are probably induced by spot crossing events. From the analysis of the distribution of occulted spots by HAT-P-20b, we constrain the misaligned architecture between the planetary orbit and the spin of the host star.« less

  1. Las Cumbres Observatory 1-Meter Global Science Telescope Network

    NASA Astrophysics Data System (ADS)

    Pickles, Andrew; Dubberley, M.; Haldeman, B.; Haynes, R.; Posner, V.; Rosing, W.; staff, LCOGT

    2009-05-01

    We present the optical, mechanical and electronic design of the LCOGT 1-m telescope. These telescopes are planned to go in pairs to each of 6 sites worldwide, complementing 0.4m telescopes and 2-m telescopes at two existing sites. This science network is designed to provide continuously available photometric monitoring and spectroscopy of variable sources. The 1-m optical design is an f/8 quasi-RC system, with a doublet corrector and field flattener to provide good image quality out to 0.8 degrees. The field of view of the Fairchild 4K science CCD is 27 arcmin, with 0.39 arcsec pixels. The mechanical design includes a stiff C-ring equatorial mount and friction drive rollers, mounted on a triangular base that can be adjusted for latitude. Another friction drive is coupled at the Declination axis to the M1 mirror cell, that forms the main Optical Tube Assembly (OTA) structural element. The OTA design includes a stiff carbon fiber truss assembly, with offset vanes to an M2 drive that provides remote focus, tilt and collimation. The tube assembly weighs about 600 Kg, including Hextek mirrors, 4K science CCD, filter wheel, autoguiders and medium resolution spectrograph pick-off fiber. The telescopes will be housed in domes at existing observatory sites. They are designed to operate remotely and reliably under centralized control for automatic, optimized scheduling of observations with available hardware.

  2. Measuring the color and brightness of artificial sky glow from cities using an all-sky imaging system calibrated with astronomical methods in the Johnson-Cousins B and V photometric systems

    NASA Astrophysics Data System (ADS)

    Pipkin, Ashley; Duriscoe, Dan M.; Lughinbuhl, Christian

    2017-01-01

    Artificial light at night, when observed at some distance from a city, results in a dome of sky glow, brightest at the horizon. The spectral power distribution of electric light utilized will determine its color of the light dome and the amount of light will determine its brightness. Recent outdoor lighting technologies have included blue-rich light emitting diode (LED) sources that may increase the relative amount of blue to green light in sky glow compared to typical high pressure sodium (HPS) sources with warmer spectra. Measuring and monitoring this effect is important to the preservation of night sky visual quality as seen from undeveloped areas outside the city, such as parks or other protected areas, since the dark-adapted human eye is more sensitive to blue and green. We present a method using a wide field CCD camera which images the entire sky in both Johnson V and B photometric bands. Standard stars within the images are used for calibration. The resulting all-sky brightness maps, and a derived B-V color index map, provide a means to assess and track the impact of specific outdoor lighting practices. We also present example data from several cities, including Las Vegas, Nevada, Flagstaff, Arizona, and Cheyenne, Wyoming.

  3. Redshift--Independent Distances of Spiral Galaxies: II. Internal Extinction at I Band

    NASA Astrophysics Data System (ADS)

    Giovanelli, R.; Haynes, M. P.; Salzer, J. J.; Wegner, G.; Dacosta, L. N.; Freudling, W.; Chamaraux, P.

    1993-12-01

    We analyze the photometric properties of a sample of 1450 Sbc--Sc galaxies with known redshifts, single--dish HI profiles and CCD I band images to derive laws that relate the measured isophotal radius at mu_I =23.5, magnitude, scale length and HI flux to the face--on aspect. Our results show that the central regions of spiral galaxies are substantially less transparent than most previous determinations suggest, but not as opaque as claimed by Valentijn (1990). Regions in the disk farther than two or three scale lengths from the center are close to completely transparent. In addition to statistically derived relations for the inclination dependence of photometric parameters, we present the results of a modelling exercise that utilizes the ``triplex'' model of Disney et al. (1989). Within the framework of that model, late spiral disks at I band have central optical depths on the order of tau_I ~ 5 and dust absorbing layers with scale heights on the order of half that of the stellar component. We discuss our results in light of previous determinations of internal extinction relations and point out the substantial impact of internal extinction on the scatter of the Tully--Fisher relation. We also find that the visual diameters by which large catalogs are constructed (UGC, ESO--Uppsala) are nearly proportional to face--on isophotal diameters.

  4. VizieR Online Data Catalog: Northern Sky Variability Survey (Wozniak+, 2004)

    NASA Astrophysics Data System (ADS)

    Wozniak, P. R.; Vestrand, W. T.; Akerlof, C. W.; Balsano, R.; Bloch, J.; Casperson, D.; Fletcher, S.; Gisler, G.; Kehoe, R.; Kinemuchi, K.; Lee, B. C.; Marshall, S.; McGowan, K. E.; McKay, T. A.; Rykoff, E. S.; Smith, D. A.; Szymanski, J.; Wren, J.

    2004-11-01

    The Northern Sky Variability Survey (NSVS) is a temporal record of the sky over the optical magnitude range from 8 to 15.5. It was conducted in the course of the first-generation Robotic Optical Transient Search Experiment (ROTSE-I) using a robotic system of four comounted unfiltered telephoto lenses equipped with CCD cameras. The survey was conducted from Los Alamos, New Mexico, and primarily covers the entire northern sky. Some data in southern fields between declinations 0{deg} and -38{deg} are also available, although with fewer epochs and noticeably lesser quality. The NSVS contains light curves for approximately 14 million objects. With a 1-yr baseline and typically 100-500 measurements per object, the NSVS is the most extensive record of stellar variability across the bright sky available today. In a median field, bright unsaturated stars attain a point-to-point photometric scatter of ~0.02mag and position errors within 2. At Galactic latitudes |b|<20{deg}, the data quality is limited by severe blending due to the ~14" pixel size. We present basic characteristics of the data set and describe data collection, analysis, and distribution. All NSVS photometric measurements are available for on-line public access from the Sky Database for Objects in Time-Domain (SkyDOT) at Los Alamos National Laboratory. Copies of the full survey photometry may also be requested on tape. (7 data files).

  5. The Gaia spectrophotometric standard stars survey: II. Instrumental effects of six ground-based observing campaigns

    NASA Astrophysics Data System (ADS)

    Altavilla, G.; Marinoni, S.; Pancino, E.; Galleti, S.; Ragaini, S.; Bellazzini, M.; Cocozza, G.; Bragaglia, A.; Carrasco, J. M.; Castro, A.; Di Fabrizio, L.; Federici, L.; Figueras, F.; Gebran, M.; Jordi, C.; Masana, E.; Schuster, W.; Valentini, G.; Voss, H.

    2015-08-01

    The Gaia SpectroPhotometric Standard Stars (SPSS) survey started in 2006, was awarded almost 450 observing nights and accumulated almost 100 000 raw data frames with both photometric and spectroscopic observations. Such large observational effort requires careful, homogeneous, and automatic data reduction and quality control procedures. In this paper, we quantitatively evaluate instrumental effects that might have a significant (i.e., ≥ 1 %) impact on the Gaia SPSS flux calibration. The measurements involve six different instruments, monitored over the eight years of observations dedicated to the Gaia flux standards campaigns: DOLORES@TNG in La Palma, EFOSC2@NTT and ROSS@REM in La Silla, CAFOS@2.2 m in Calar Alto, BFOSC@Cassini in Loiano, and LaRuca@1.5 m in San Pedro Mártir. We examine and quantitatively evaluate the following effects: CCD linearity and shutter times, calibration frames stability, lamp flexures, second order contamination, light polarization, and fringing. We present methods to correct for the relevant effects which can be applied to a wide range of observational projects at similar instruments. Based on data obtained with BFOSC@Cassini in Loiano, Italy; EFOSC2@NTT in La Silla, Chile; DOLORES@TNG in La Palma, Spain; CAFOS@2.2 m in Calar Alto, Spain; LaRuca@1.5 m in San Pedro Mártir, Mexico (see acknowledgements for more details).

  6. Follow-up study of children with cerebral coordination disturbance (CCD, Vojta).

    PubMed

    Imamura, S; Sakuma, K; Takahashi, T

    1983-01-01

    713 children (from newborn to 12-month-old) with delayed motor development were carefully examined and classified into normal, very light cerebral coordination disturbance (CCD, Vojta), light CCD, moderate CCD, severe CCD, suspected cerebral palsy (CP) and other diseases at their first visit, and were followed up carefully. Finally, 89.0% of very light CCD, 71.4% of light CCD, 56.0% of moderate CCD and 30.0% of severe CCD developed into normal. 59.5% of moderate CCD and 45.5% of severe CCD among children who were given Vojta's physiotherapy developed into normal. The classification of cases with delayed motor development into very light, light, moderate and severe CCD based on the extent of abnormality in their postural reflexes is useful and well correlated with their prognosis. Treatment by Vojta's method seems to be efficient and helpful for young children with delayed motor development.

  7. VizieR Online Data Catalog: Solar neighborhood. XXXIX. Nearby white dwarfs (Subasavage+, 2017)

    NASA Astrophysics Data System (ADS)

    Subasavage, J. P.; Jao, W.-C.; Henry, T. J.; Harris, H. C.; Dahn, C. C.; Bergeron, P.; Dufour, P.; Dunlap, B. H.; Barlow, B. N.; Ianna, P. A.; Lepine, S.; Margheim, S. J.

    2017-10-01

    Standardized photometric observations were carried out at three separate telescopes. The Small & Moderate Aperture Research Telescope System (SMARTS) 0.9m telescope at Cerro Tololo Inter-American Observatory (CTIO) was used during Cerro Tololo Inter-American Observatory Parallax Investigation (CTIOPI) observing runs when conditions were photometric. A Tektronics 2K*2K detector was used in region-of-interest mode centered on the central quarter of the full CCD producing a Field Of View (FOV) of 6.8'*6.8'. The SMARTS 1.0m telescope at CTIO was used with the Y4KCam 4K*4K imager, producing a 19.7'*19.7' FOV. Finally, the Ritchey 40-in telescope at USNO Flagstaff Station (NOFS) was used with a Tektronics 2K*2K detector with a 20.0'*20.0' FOV. Near-infrared JHKs photometry was collected for WD0851-246, at the CTIO 4.0 m Blanco telescope using the NEWFIRM during an engineering night on 2011.27 UT. National Optical Astronomy Observatory (NOAO) Extremely Wide-field Infrared Image (NEWFIRM) is a 4K*4K InSb mosaic that provides a 28'*28' FOV on the Blanco telescope. Additional photometry values were extracted from the Sloan Digital Sky Survey (SDSS) DR12 (Alam et al. 2015, Cat. V/147), 2MASS, and the United Kingdom Infra-Red Telescope (UKIRT) Infrared Sky Survey (UKIDSS) DR9 Large Area Survey (LAS; see Lawrence et al. 2012, Cat. II/319), when available. Two White Dwarfs (WDs) presented here (WD1743-545 and WD2057-493) are newly discovered nearby WDs identified during a spectroscopic survey of WD candidates in the southern hemisphere (J. Subasavage et al. 2017, in preparation) taken from the SUPERBLINK catalog (Lepine & Shara 2015ASPC..493..455S). A third WD included here (WD2307-691) was previously unclassified, yet is a common proper-motion companion to a Hipparcos star within 25pc (HIP114416). A fourth WD (WD2028-171) was suspected to be a WD by the authors based on a trawl of the New Luyten Two Tenths (NLTT) catalog (Luyten 1979, Cat. I/98). Finally, a fifth WD (WD1241-798) was first spectroscopically identified as a WD by Subasavage et al. (2008AJ....136..899S; Paper XX) but with an ambiguous spectral type of DC/DQ. The SOuthern Astrophysical Research (SOAR) 4m telescope with the Goodman spectrograph was used for spectroscopic follow up as part of a larger spectroscopic campaign to identify nearby WDs to be released in a future publication. Observations were taken with a 600 lines-per-mm VPH grating with a 1.0'' slit width to provide 2.1Å resolution in wavelength range of 3600Å-6200Å. Trigonometric parallax data acquisition and reduction techniques for the CTIOPI program are discussed fully in Jao et al. (2005AJ....129.1954J). In brief, the instrument setup and basic data calibrations are identical to those used for photometric observations (i.e., the SMARTS 0.9m telescope coupled with the central quarter of a Tektronics 2K*2K detector). A parallax target's reference field is determined upon first observation. We use one of the Johnson-Kron-Cousins VRI filters, selected to optimize the signal on the PI star and reference stars (the parallax filter), as well as to keep exposure times greater than ~30s and less than ~600s, when possible. Because of a damaged Tek 2 V filter (referred to as oV) that occurred in early 2005, the CTIOPI program used a comparable V filter (referred to as nV) from 2005 to mid-2009. The astrometry is affected by this change because the passbands were slightly different. It was determined empirically that trigonometric parallax determinations are sound if at least ~1-2 years of data are available both before and after the filter switch. However, subtle signals from a perturbing companion would not be reliable. In 2009, it was determined that the crack near the corner of the filter did not impact the FOV of the CTIOPI data, as only the central quarter of the CCD is used. Thus, a switch back to the original V (oV) was completed in mid-2009. U. S. Naval Observatory Flagstaff Station (NOFS) astrometric data have been collected with the Kaj Strand 61-in Astrometric Reflector using three separate CCDs over the multiple decades that NOFS has measured stellar parallaxes. Initially, a Texas Instruments (TI) 800*800 (TI800) CCD, followed by a Tektronics 2048*2048 (Tek2K) CCD, and most recently an EEV (English Electric Valve, now e2v) 2048*4096 (EEV24) CCD were used. The latter two cameras are still in operation at NOFS for astrometric work and were used for all but two of the NOFS parallaxes presented here. The TI800 CCD was used to measure the parallaxes for WD0213+396 and WD1313-198. A total of four filters were used for astrometric work. ST-R (also known as STWIDER) is centered near 700nm with a FWHM of 250nm. A2-1 is an optically flat interference filter centered near 698nm with a FWHM of 172nm. I-2 is an optically flat interference filter centered near 810nm with a FWHM of 191nm. Z-2 is an optically flat 3mm thick piece of Schott RG830 glass that produces a relatively sharp blue-edge cutoff near 830nm and for which the red edge is defined by the CCD sensitivity. More details on the filters can be found in C. Dahn et al. (2017, in preparation). (8 data files).

  8. Photometric and spectrophotometric activity of P/Halley during 1984-85

    NASA Technical Reports Server (NTRS)

    Barker, E. S.; Opal, C. B.

    1986-01-01

    Imaging and spectroscopic observations of P/Halley were performed during 1984 and 1985 using a CCD camera and an Image Dissector Scanner Spectrograph, and the results are reported. P/Halley activity appears to begin around 6.23 AU and varies as r exp -5.3 for heliocentric distances between 5.8 and 4.2 AU. The observed radial brightness distribution falls off much faster than the inverse of the projected distance from the nucleus, indicating that the particles are disappearing or evaporating within about 20,000 km of the nucleus. Weak CN emission was detected in spectra obtained during February 1985, corresponding to a column density of 3 x 10 to the 8th molecules/sq cm. The spectroscopic results indicate that the excess of the observed emission over that from the bare nucleus is dominated by scattered solar continuum from grains, rather than by molecular coma emissions.

  9. CHARACTERIZATION OF CoRoT TARGET FIELDS WITH BERLIN EXOPLANET SEARCH TELESCOPE. II. IDENTIFICATION OF PERIODIC VARIABLE STARS IN THE LRc2 FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabath, P.; Fruth, T.; Rauer, H.

    2009-04-15

    We report on photometric observations of the CoRoT LRc2 field with the new robotic Berlin Exoplanet Search Telescope II (BEST II). The telescope system was installed and commissioned at the Observatorio Cerro Armazones, Chile, in 2007. BEST II is a small aperture telescope with a wide field of view dedicated to the characterization of the stellar variability primarily in CoRoT target fields with high stellar densities. The CoRoT stellar field LRc2 was observed with BEST II up to 20 nights in 2007 July and August. From the acquired data containing about 100,000 stars, 426 new periodic variable stars were identifiedmore » and 90% of them are located within the CoRoT exoplanetary CCD segments and may be of further interest for CoRoT additional science programs.« less

  10. VizieR Online Data Catalog: Differential BV photometry of 5 variables in M79 (Bond+, 2016)

    NASA Astrophysics Data System (ADS)

    Bond, H. E.; Ciardullo, R.; Siegel, M. H.

    2016-07-01

    We have carried out a program of photometric monitoring of M79. The observations, made by Chilean service personnel, used the 1.3m Small & Moderate Aperture Research Telescope System (SMARTS) Consortium telescope at Cerro Tololo Interamerican Observatory (CTIO) and its ANDICAM CCD camera. Data were obtained on the M79 Post-Asymptotic-Giant-Branch (PAGB; RA=5:24:10.36, Dec=-24:29:20.6; the PAGB star is also cataloged as TYC 6479-422-1 and 2MASS J05241036-2429206) star and surrounding field on 224 nights between 2007 February 20 and 2011 May 8. On each night, two exposures of 30s each were obtained in B and in V. The usable field of view of these images is about 5.6'*5.6'. The data for the five variable stars are included in Table5. (3 data files).

  11. The eclipsing AM Herculis variable H1907 + 690

    NASA Technical Reports Server (NTRS)

    Remillard, R. A.; Silber, A.; Stroozas, B. A.; Tapia, S.

    1991-01-01

    The discovery is reported of an eclipsing cataclysmic variable that exhibits up to 10 percent circular polarization at optical wavelengths, securing its classification as an AM Herculis type binary. The object, H1907 + 609, was located with the guidance of X-ray positions from the HEAO 1 survey. Optical CCD photometry exhibits deep eclipses, from which is derived a precise orbital period of 1.743750 hr. The eclipse duration suggests an inclination angle about 80 deg for a main-sequence secondary star. The optical flux has been persistently faint during observations spanning 1987-1990, while the X-ray measurements suggest long-term X-ray variability. The polarization and photometric light curves can be interpreted with a geometric model in which most of the accretion is directed toward a single magnetic pole, with an accretion spot displaced about 17 deg in longitude from the projection of the secondary star on the white dwarf surface.

  12. The University of Hawaii NEO Follow-Up Program

    NASA Astrophysics Data System (ADS)

    Fohring, Dora; Tholen, David J.; Claytor, Zach; Ramanjooloo, Yudish; Hung, Denise; Aspin, Colin

    2017-10-01

    At the University of Hawaii, we carry out NEO follow-up observations for orbital refinement. We regularly observe eight nights a month using the University of Hawaii 88-inch (UH88) telescope and utilise Canada-France-Hawaii Telescope queue time for recovery of targets with large ephemeris uncertainties. Our focus is follow-up of Virtual Impactors and faint asteroids with magnitudes V>21. The combination of excellent atmospheric conditions on Mauna Kea and long integration times allow us to observe asteroids as faint as V=25. Recent extensive improvements to our workhorse UH88 telescope have included renovations to the telescope exterior, software upgrades, and the commissioning of the new monolithic STA-1600 10K CCD. Recent observational highlights include astrometry of 2017 JB2 during its diurnal retrograde loop and photometric observations 2016 HO3 which was measured to have a synodic period of 27.90 minutes.

  13. End-to-End System Test of the Relative Precision and Stability of the Photometric Method for Detecting Earth-Size Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Dunham, Edward W.

    2000-01-01

    We developed the CCD camera system for the laboratory test demonstration and designed the optical system for this test. The camera system was delivered to Ames in April, 1999 with continuing support mostly in the software area as the test progressed. The camera system has been operating successfully since delivery. The optical system performed well during the test. The laboratory demonstration activity is now nearly complete and is considered to be successful by the Technical Advisory Group, which met on 8 February, 2000 at the SETI Institute. A final report for the Technical Advisory Group and NASA Headquarters will be produced in the next few months. This report will be a comprehensive report on all facets of the test including those covered under this grant. A copy will be forwarded, if desired, when it is complete.

  14. An Astronomical Test of CCD Photometric Precision

    NASA Technical Reports Server (NTRS)

    Koch, David G.; Dunham, Edward W.; Borucki, William J.; Jenkins, Jon M.

    2001-01-01

    Ground-based differential photometry is limited to a precision of order 10(exp -3) because of atmospheric effects. A space-based photometer should be limited only by the inherent instrument precision and shot noise. Laboratory tests have shown that a precision of order 10-5 is achievable with commercially available charged coupled devices (CCDs). We have proposed to take this one step further by performing measurements at a telescope using a Wollaston prism as a beam splitter First-order atmospheric effects (e.g., extinction) will appear to be identical in the two images of each star formed by the prism and will be removed in the data analysis. This arrangement can determine the precision that is achievable under the influence of second-order atmospheric effects (e.g., variable point-spread function (PSF) from seeing). These telescopic observations will thus provide a lower limit to the precision that can be realized by a space-based differential photometer.

  15. Imaging spectrophotometry of ionized gas in NGC 1068. I - Kinematics of the narrow-line region

    NASA Technical Reports Server (NTRS)

    Cecil, Gerald; Bland, Jonathan; Tully, R. Brent

    1990-01-01

    The kinematics of collisionally excited forbidden N II 6548, 6583 across the inner 1 arcmin diameter of the nearby Seyfert galaxy NGC 1068 is mapped using an imaging Fabry-Perot interferometer and low-noise CCD. The stack of monochromatic images, which spatially resolved the high-velocity gas, was analyzed for kinematic and photometric content. Profiles agree well with previous long-slit work, and their complete spatial coverage makes it possible to constrain the gas volume distribution. It is found that the narrow-line region is distributed in a thick center-darkened, line-emitting cylinder that envelopes the collimated radio jet. Three distinct kinematic subsystems, of which the cylinder is composed, are discussed in detail. Detailed behavior of the emission-line profiles, at the few points in the NE quadrant with simple kinematics, argues that the ionized gas develops a significant component of motion perpendicular to the jet axis.

  16. The Search for Pre-Main Sequence Eclipsing Binary Stars in the Lagoon Nebula

    NASA Astrophysics Data System (ADS)

    Henderson, Calen B.; Stassun, K. G.

    2009-01-01

    We report time-series CCD I-band photometry for the pre-main-sequence cluster NGC 6530, located within the Lagoon Nebula. The data were obtained with the 4Kx4K imager on the SMARTS 1.0m telescope at CTIO on 36 nights over the summers of 2005 and 2006. In total we have light curves for 50,000 stars in an area 1 deg2, with a sampling cadence of 1 hour. The stars in our sample have masses in the range 0.25-4.0 Msun, assuming a distance of 1.25 kpc to the cluster. Our goals are to look for stars with rotation periods and to identify eclipsing binary candidates. Here we present light curves of photometrically variable stars and potential eclipsing binary star systems. This work has been supported by the National Science Foundation under Career grant AST-0349075.

  17. On-ground and in-orbit characterisation plan for the PLATO CCD normal cameras

    NASA Astrophysics Data System (ADS)

    Gow, J. P. D.; Walton, D.; Smith, A.; Hailey, M.; Curry, P.; Kennedy, T.

    2017-11-01

    PLAnetary Transits and Ocillations (PLATO) is the third European Space Agency (ESA) medium class mission in ESA's cosmic vision programme due for launch in 2026. PLATO will carry out high precision un-interrupted photometric monitoring in the visible band of large samples of bright solar-type stars. The primary mission goal is to detect and characterise terrestrial exoplanets and their systems with emphasis on planets orbiting in the habitable zone, this will be achieved using light curves to detect planetary transits. PLATO uses a novel multi- instrument concept consisting of 26 small wide field cameras The 26 cameras are made up of a telescope optical unit, four Teledyne e2v CCD270s mounted on a focal plane array and connected to a set of Front End Electronics (FEE) which provide CCD control and readout. There are 2 fast cameras with high read-out cadence (2.5 s) for magnitude ~ 4-8 stars, being developed by the German Aerospace Centre and 24 normal (N) cameras with a cadence of 25 s to monitor stars with a magnitude greater than 8. The N-FEEs are being developed at University College London's Mullard Space Science Laboratory (MSSL) and will be characterised along with the associated CCDs. The CCDs and N-FEEs will undergo rigorous on-ground characterisation and the performance of the CCDs will continue to be monitored in-orbit. This paper discusses the initial development of the experimental arrangement, test procedures and current status of the N-FEE. The parameters explored will include gain, quantum efficiency, pixel response non-uniformity, dark current and Charge Transfer Inefficiency (CTI). The current in-orbit characterisation plan is also discussed which will enable the performance of the CCDs and their associated N-FEE to be monitored during the mission, this will include measurements of CTI giving an indication of the impact of radiation damage in the CCDs.

  18. Photometric study of open star clusters in II quadrant: Teutsch 1 and Riddle 4

    NASA Astrophysics Data System (ADS)

    Bisht, D.; Yadav, R. K. S.; Durgapal, A. K.

    2016-01-01

    We present the broad band UBVI CCD photometry in the region of two open star clusters Teutsch 1 and Riddle 4 located in the second Galactic quadrant. The optical CCD data for these clusters are obtained for the first time. Radii of the clusters are estimated as 3‧.5 for both the clusters. Using two color (U - B) versus (B - V) diagram we determined the reddening as E(B - V) = 0.40 ± 0.05 mag for Teutsch 1 and 1.10 ± 0.05 mag for Riddle 4. Using 2MASS JHK and optical data, we estimated E(J - K) = 0.24 ± 0.05 mag and E(V - K) = 1.40 ± 0.05 mag for Teutsch 1 and E(J - K) = 0.47 ± 0.06 mag and E(V - K) = 2.80 ± 0.06 mag for Riddle 4. Color-excess ratio indicates normal interstellar extinction law in the direction of both the clusters. We estimated distance as 4.3 ± 0.5 Kpc for Teutsch 1 and 2.8 ± 0.2 Kpc for Riddle 4 by comparing the color-magnitude diagram of the clusters with theoretical isochrones. The age of the clusters has been estimated as 200 ± 20 Myr for Teutsch 1 and 40 ± 10 Myr for Riddle 4 using the stellar isochrones of metallicity Z = 0.02 . The Mass function slope has been derived 1.89 ± 0.43 and 1.41 ± 0.70 for Teutsch 1 and Riddle 4 respectively. Our analysis indicates that both the clusters are dynamically relaxed. A slight bend of Galactic disc towards the southern latitude is found in the longitude range l = 130-180°.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jun; Wang, Song; Wu, Zhenyu

    This paper presents CCD multicolor photometry for 304 old star clusters in the nearby spiral galaxy M31, from which the photometry of 55 star clusters is first obtained. The observations were carried out as a part of the Beijing–Arizona–Taiwan–Connecticut Multicolor Sky Survey from 1995 February to 2008 March, using 15 intermediate-band filters covering 3000–10000 Å. Detailed comparisons show that our photometry is in agreement with previous measurements. Based on the ages and metallicities from Caldwell et al. and the photometric measurements here, we estimated the clusters’ masses by comparing their multicolor photometry with stellar population synthesis models. The results showmore » that the sample clusters have masses between ∼3×10{sup 4}M{sub ⊙} and ∼10{sup 7}M{sub ⊙} with a peak of ∼4×10{sup 5}M{sub ⊙}. The masses here are in good agreement with those in previous studies. Combined with the masses of young star clusters of M31 from Wang et al., we find that the peak mass of the old clusters is 10 times that of young clusters.« less

  20. The Light and Period Variations of the Eclipsing Binary BX Draconis

    NASA Astrophysics Data System (ADS)

    Park, Jang-Ho; Lee, Jae Woo; Kim, Seung-Lee; Lee, Chung-Uk; Jeon, Young-Beom

    2013-02-01

    New CCD photometric observations of BX Dra were carried out on 26 nights during the period from 2009 April to 2010 June. The long-term photometric behaviors of the system are obtained from detailed studies of the period and light variations, based on historical data and our new observations. All available light curves display total eclipses at secondary minima and inverse O'Connell effects with Max I fainter than Max II, which were satisfactorily modeled by adding a slightly time-varying hot spot on the primary star. A total of 87 times of minimum lights spanning over ˜74 yr, including our 22 timing measurements, were used for ephemeris computations. A detailed analysis of the O - C diagram disclosed that the orbital period shows an upward parabola in combination with a sinusoidal variation. The continuous increase of period at a rate of +5.65 × 10-7 d yr-1 is consistent with that calculated from the Wilson-Devinney synthesis code. It can be interpreted as a mass transfer from the secondary star to the primary at a rate of 2.74 × 10-7 M⊙ yr-1, which is one of the largest rates between components of the contact system. The most likely explanation of the sinusoidal variation having a period of 30.2 yr and a semiamplitude of 0.0062 d is a light-travel-time effect due to the existence of a circumbinary object. We suggest that BX Dra is probably a triple system, consisting of a primary star with a spectral type of F0, its secondary component of spectral type F1-2, and an unseen circumbinary object with a minimum mass of M3 = 0.23 M⊙.

  1. Sun and Sky Radiance Measurements and Data Analysis Protocols. Chapter 5

    NASA Technical Reports Server (NTRS)

    Frouin, Robert; Holben, Brent; Miller, Mark; Pietras, Christophe; Porter, John; Voss, Ken

    2001-01-01

    This chapter is concerned with two types of radiometric measurements essential to verify atmospheric correction algorithms and to calibrate vicariously satellite ocean color sensors. The first type is a photometric measurement of the direct solar beam to determine the optical thickness of the atmosphere. The intensity of the solar beam can be measured directly, or obtained indirectly from measurements of diffuse global upper hemispheric irradiance. The second type is a measurement of the solar aureole and sky radiance distribution using a CCD camera, or a scanning radiometer viewing in and perpendicular to the solar principal plane. From the two types of measurements, the optical properties of aerosols, highly variable in space and time, can be derived. Because of the high variability, the aerosol properties should be known at the time of satellite overpass. Atmospheric optics measurements, however, are not easy to perform at sea, from a ship or any platform. This complicates the measurement protocols and data analysis. Some instrumentation cannot be deployed at sea, and is limited to island and coastal sites. In the following, measurement protocols are described for radiometers commonly used to measure direct atmospheric transmittance and sky radiance, namely standard sun photometers, fast-rotating shadow-band radiometers, automated sky scanning systems, and CCD cameras. Methods and procedures to analyze and quality control the data are discussed, as well as proper measurement strategies for evaluation of atmospheric correction algorithms and satellite-derived ocean color.

  2. CCD Camera Observations

    NASA Astrophysics Data System (ADS)

    Buchheim, Bob; Argyle, R. W.

    One night late in 1918, astronomer William Milburn, observing the region of Cassiopeia from Reverend T.H.E.C. Espin's observatory in Tow Law (England), discovered a hitherto unrecorded double star (Wright 1993). He reported it to Rev. Espin, who measured the pair using his 24-in. reflector: the fainter star was 6.0 arcsec from the primary, at position angle 162.4 ^{circ } (i.e. the fainter star was south-by-southeast from the primary) (Espin 1919). Some time later, it was recognized that the astrograph of the Vatican Observatory had taken an image of the same star-field a dozen years earlier, in late 1906. At that earlier epoch, the fainter star had been separated from the brighter one by only 4.8 arcsec, at position angle 186.2 ^{circ } (i.e. almost due south). Were these stars a binary pair, or were they just two unrelated stars sailing past each other? Some additional measurements might have begun to answer this question. If the secondary star was following a curved path, that would be a clue of orbital motion; if it followed a straight-line path, that would be a clue that these are just two stars passing in the night. Unfortunately, nobody took the trouble to re-examine this pair for almost a century, until the 2MASS astrometric/photometric survey recorded it in late 1998. After almost another decade, this amateur astronomer took some CCD images of the field in 2007, and added another data point on the star's trajectory, as shown in Fig. 15.1.

  3. CHEOPS: status summary of the instrument development

    NASA Astrophysics Data System (ADS)

    Beck, T.; Broeg, C.; Fortier, A.; Cessa, V.; Malvasio, L.; Piazza, D.; Benz, W.; Thomas, N.; Magrin, D.; Viotto, V.; Bergomi, M.; Ragazzoni, R.; Pagano, I.; Peter, G.; Buder, M.; Plesseria, J. Y.; Steller, M.; Ottensamer, R.; Ehrenreich, D.; Van Damme, C.; Isaak, K.; Ratti, F.; Rando, N.; Ngan, I.

    2016-07-01

    CHEOPS (CHaracterizing ExOPlanets Satellite) is the first ESA Small Mission as part of the ESA Cosmic Vision program 2015-2025. The mission was formally adopted in early February 2014 with a planned launch readiness end of 2017. The mission lead is performed in a partnership between Switzerland, led by the University of Bern, and the European Space Agency with important contributions from Austria, Belgium, France, Germany, Hungary, Italy, Portugal, Spain, Sweden, and the United Kingdom. The mission is dedicated to searching for exoplanetary transits by performing ultrahigh precision photometry on bright starts already known to host planets whose mass has been already estimated through ground based observations. The instrument is an optical Ritchey-Chretien telescope of 30 cm clear aperture using a single CCD detector. The optical system is designed to image a de-focused PSF onto the focal plane with very stringent stability and straylight rejection requirements providing a FoV of 0.32 degrees full cone. The system design is adapted to meet the top-level science requirements, which ask for a photometric precision of 20ppm, in 6 hours integration time, on transit measurements of G5 dwarf stars with V-band magnitudes in the range 6≤V≤9 mag. Additionally they ask for a photometric precision of 85 ppm in 3 hours integration time of Neptune-size planets transiting K-type dwarf stars with V-band magnitudes as faint as V=12 mag. Given the demanding schedule and cost constrains, the mission relies mostly on components with flight heritage for the platform as well as for the payload components. Nevertheless, several new developments are integrated into the design as for example the telescope structure and the very low noise, high stability CCD front end electronics. The instrument and mission have gone through critical design review in fall 2015 / spring 2016. This paper describes the current instrument and mission design with a focus on the instrument. It outlines the technical challenges and selected design implementation. Based on the current status, the instrument noise budget is presented including the current best estimate for instrument performance. The current instrument design meets the science requirements and mass and power margins are adequate for the current development status.

  4. Absolute Parameters and Physical Nature of the Low-amplitude Contact Binary HI Draconis

    NASA Astrophysics Data System (ADS)

    Papageorgiou, A.; Christopoulou, P.-E.

    2015-05-01

    We present a detailed investigation of the low-amplitude contact binary HI Dra based on the new VRcIc CCD photometric light curves (LCs) combined with published radial velocity (RV) curves. Our completely covered LCs were analyzed using PHOEBE and revealed that HI Dra is an overcontact binary with low fill-out factor f = 24 ± 4(%) and temperature difference between the components of 330 K. Two spotted models are proposed to explain the LC asymmetry, between which the A subtype of W UMa type eclipsing systems, with a cool spot on the less massive and cooler component, proves to be more plausible on evolutionary grounds. The results and stability of the solutions were explored by heuristic scan and parameter perturbation to provide a consistent and reliable set of parameters and their errors. Our photometric modeling and RV curve solution give the following absolute parameters of the hot and cool components, respectively: Mh = 1.72 ± 0.08 {{M}⊙ } and Mc = 0.43 ± 0.02 {{M}⊙ }, Rh = 1.98 ± 0.03 {{R}⊙ } and Rc = 1.08 ± 0.02 {{R}⊙ }, and Lh = 9.6 ± 0.1 {{L}⊙ } and Lc = 2.4 ± 0.1 {{L}⊙ }. Based on these results the initial masses of the progenitors (1.11 ± 0.03 {{M}⊙ } and 2.25 ± 0.07 {{M}⊙ }, respectively) and a rough estimate of the age of the system of 2.4 Gyr are discussed.

  5. Extinction in SC galaxies

    NASA Astrophysics Data System (ADS)

    Giovanelli, Riccardo; Haynes, Martha P.; Salzer, John J.; Wegner, Gary; da Costa, Luiz N.; Freudling, Wolfram

    1994-06-01

    We analyze the photometric properties of a sample of Sbc-Sc galaxies with known redshifts, single-dish H I profiles, and Charge Coupled Device (CCD) I band images. We derive laws that relate the measured isophotal radius at muI = 23.5, magnitude, scale length, and H I flux to the face-on aspect. We find spiral galaxies to be substantially less transparent than suggested in most previous determinations, but not as opaque as claimed by Valentijn (1990). Regions in the disk farther than two or three scale lengths from the center are close to completely transparent. In addition to statistically derived relations for the inclination dependence of photometric parameters, we present the results of a modeling exercise that utilizes the 'triplex' model of Disney et al. (1989) to obtain upper limits of the disk opacity. Within the framework of that model, and with qualitative consideration of the effects of scattering on extinction, we estimate late spiral disks at I band to have central optical depths tauI(0) less than 5 and dust absorbing layers with scale heights on the order of half that of the stellar component or less. We discuss our results in light of previous determinations of internal extinction relations and point out the substantial impact of internal extinction on the scatter of the Tully-Fisher relation. We also find that the visual diameters by which large catalogs are constructed (UGC, ESO-Uppsala) are nearly proportional to face-on isophotal diameters.

  6. Northern Sky Variability Survey: Public Data Release

    NASA Astrophysics Data System (ADS)

    Woźniak, P. R.; Vestrand, W. T.; Akerlof, C. W.; Balsano, R.; Bloch, J.; Casperson, D.; Fletcher, S.; Gisler, G.; Kehoe, R.; Kinemuchi, K.; Lee, B. C.; Marshall, S.; McGowan, K. E.; McKay, T. A.; Rykoff, E. S.; Smith, D. A.; Szymanski, J.; Wren, J.

    2004-04-01

    The Northern Sky Variability Survey (NSVS) is a temporal record of the sky over the optical magnitude range from 8 to 15.5. It was conducted in the course of the first-generation Robotic Optical Transient Search Experiment (ROTSE-I) using a robotic system of four comounted unfiltered telephoto lenses equipped with CCD cameras. The survey was conducted from Los Alamos, New Mexico, and primarily covers the entire northern sky. Some data in southern fields between declinations 0° and -38° are also available, although with fewer epochs and noticeably lesser quality. The NSVS contains light curves for approximately 14 million objects. With a 1 yr baseline and typically 100-500 measurements per object, the NSVS is the most extensive record of stellar variability across the bright sky available today. In a median field, bright unsaturated stars attain a point-to-point photometric scatter of ~0.02 mag and position errors within 2". At Galactic latitudes |b|<20deg, the data quality is limited by severe blending due to the ~14" pixel size. We present basic characteristics of the data set and describe data collection, analysis, and distribution. All NSVS photometric measurements are available for on-line public access from the Sky Database for Objects in Time-Domain (SkyDOT) at Los Alamos National Laboratory. Copies of the full survey photometry may also be requested on tape. Based on observations obtained with the ROTSE-I robotic telescope, which was operated at Los Alamos National Laboratory.

  7. Systems engingeering for the Kepler Mission : a search for terrestrial planets

    NASA Technical Reports Server (NTRS)

    Duren, Riley M.; Dragon, Karen; Gunter, Steve Z.; Gautier, Nick; Koch, Dave; Harvey, Adam; Enos, Alan; Borucki, Bill; Sobeck, Charlie; Mayer, Dave; hide

    2004-01-01

    The Kepler mission will launch in 2007 and determine the distribution of earth-size planets (0.5 to 10 earth masses) in the habitable zones (HZs) of solar-like stars. The mission will monitor > 100,000 dwarf stars simultaneously for at least 4 years. Precision differential photometry will be used to detect the periodic signals of transiting planets. Kepler will also support asteroseismology by measuring the pressure-mode (p-mode) oscillations of selected stars. Key mission elements include a spacecraft bus and 0.95 meter, wide-field, CCD-based photometer injected into an earth-trailing heliocentric orbit by a 3-stage Delta II launch vehicle as well as a distributed Ground Segment and Follow-up Observing Program. The project is currently preparing for Preliminary Design Review (October 2004) and is proceeding with detailed design and procurement of long-lead components. In order to meet the unprecedented photometric precision requirement and to ensure a statistically significant result, the Kepler mission involves technical challenges in the areas of photometric noise and systematic error reduction, stability, and false-positive rejection. Programmatic and logistical challenges include the collaborative design, modeling, integration, test, and operation of a geographically and functionally distributed project. A very rigorous systems engineering program has evolved to address these challenges. This paper provides an overview of the Kepler systems engineering program, including some examples of our processes and techniques in areas such as requirements synthesis, validation & verification, system robustness design, and end-to-end performance modeling.

  8. PHOTOMETRIC PROPERTIES OF SELECTED ALGOL-TYPE BINARIES. III. AL GEMINORUM AND BM MONOCEROTIS WITH POSSIBLE LIGHT-TIME ORBITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y.-G.; Dai, H.-F.; Li, H.-L., E-mail: yygcn@163.com

    We present the CCD photometry of two Algol-type binaries, AL Gem and BM Mon, observed from 2008 November to 2011 January. With the updated Wilson-Devinney program, photometric solutions were deduced from their EA-type light curves. The mass ratios and fill-out factors of the primaries are found to be q{sub ph} = 0.090({+-} 0.005) and f{sub 1} = 47.3%({+-} 0.3%) for AL Gem, and q{sub ph} = 0.275({+-} 0.007) and f{sub 1} = 55.4%({+-} 0.5%) for BM Mon, respectively. By analyzing the O-C curves, we discovered that the periods of AL Gem and BM Mon change in a quasi-sinusoidal mode, whichmore » may possibly result from the light-time effect via the presence of a third body. Periods, amplitudes, and eccentricities of light-time orbits are 78.83({+-} 1.17) yr, 0fd0204({+-}0fd0007), and 0.28({+-} 0.02) for AL Gem and 97.78({+-} 2.67) yr, 0fd0175({+-}0fd0006), and 0.29({+-} 0.02) for BM Mon, respectively. Assumed to be in a coplanar orbit with the binary, the masses of the third bodies would be 0.29 M{sub Sun} for AL Gem and 0.26 M{sub Sun} for BM Mon. This kind of additional companion can extract angular momentum from the close binary orbit, and such processes may play an important role in multiple star evolution.« less

  9. Optical photometric variable stars towards the Galactic H II region NGC 2282

    NASA Astrophysics Data System (ADS)

    Dutta, Somnath; Mondal, Soumen; Joshi, Santosh; Jose, Jessy; Das, Ramkrishna; Ghosh, Supriyo

    2018-05-01

    We report here CCD I-band time series photometry of a young (2-5 Myr) cluster NGC 2282, in order to identify and understand the variability of pre-main-sequence (PMS) stars. The I-band photometry, down to ˜20.5 mag, enables us to probe the variability towards the lower mass end (˜0.1 M⊙) of PMS stars. From the light curves of 1627 stars, we identified 62 new photometric variable candidates. Their association with the region was established from H α emission and infrared (IR) excess. Among 62 variables, 30 young variables exhibit H α emission, near-IR (NIR)/mid-IR (MIR) excess or both and are candidate members of the cluster. Out of 62 variables, 41 are periodic variables, with a rotation rate ranging from 0.2-7 d. The period distribution exhibits a median period at ˜1 d, as in many young clusters (e.g. NGC 2264, ONC, etc.), but it follows a unimodal distribution, unlike others that have bimodality, with slow rotators peaking at ˜6-8 d. To investigate the rotation-disc and variability-disc connection, we derived the NIR excess from Δ(I - K) and the MIR excess from Spitzer [3.6]-[4.5] μm data. No conclusive evidence of slow rotation with the presence of discs around stars and fast rotation for discless stars is obtained from our periodic variables. A clear increasing trend of the variability amplitude with IR excess is found for all variables.

  10. An analysis of the BVRI colors of 22 active comets

    NASA Astrophysics Data System (ADS)

    Betzler, A. S.; Almeida, R. S.; Cerqueira, W. J.; Araujo, L. A.; Prazeres, C. J. M.; Jesus, J. N.; Bispo, P. A. S.; Andrade, V. B.; Freitas, Y. A. S.; Betzler, L. B. S.

    2017-08-01

    Our aim was to analyze the variation of Johnson-Kron-Cousins BVRI color indexes of a sample with 22 active comets of various dynamic groups with the time, geometrical, observational and dynamical parameters. We performed photometric observations of 16 comets between 2010 and 2014, using robotic telescopes in three continents. In addition to the sample, we used data of six comets available in the literature. A statistical comparison between the distributions of color indexes was performed using the Kruskal-Wallis H-test. The color indexes of active comets can vary a few tenths up to a magnitude on time scales that range from hours to weeks. Using the B-V colors of the observed comets, we generated a relationship that correlates the cometary visual and CCD magnitudes. We did not identify any relationship between B-V and V-R colors with heliocentric distance and phase angle. The color B-V is correlated with the photometric aperture that can be described by a logarithmic function. We did not identify any differences in the distribution of B-V color among the comets analyzed at a confidence level equal to or greater than 95%. The mean color of active comets are B-R = 1.20 ± 0.24 , B-V = 0.76 ± 0.16 and V-R = 0.42 ± 0.16 . Active comets with V-R colors outside the three standard deviation interval can be considered objects with unusual physical characteristics.

  11. Rethinking Controls on the Long-Term Cenozoic Carbonate Compensation Depth: Case Studies across Late Paleocene - Early Eocene Warming and Late Eocene - Early Oligocene Cooling

    NASA Astrophysics Data System (ADS)

    Greene, S. E.; Ridgwell, A. J.; Schmidt, D. N.; Kirtland Turner, S.; Paelike, H.; Thomas, E.

    2014-12-01

    The carbonate compensation depth (CCD) is the depth below which negligible calcium carbonate is preserved in marine sediments. The long-term position of the CCD is often considered to be a powerful constraint on palaeoclimate and atmospheric CO2 concentration due to the requirement that carbonate burial balance riverine weathering over long timescales. The requirement that weathering and burial be in balance is clear, but it is less certain that burial compensates for changes in weathering via shoaling or deepening of the CCD. Because most carbonate burial occurs well above the CCD , changes in weathering fluxes may be primarily accommodated by increasing or decreasing carbonate burial at shallower depths, i.e., at or near the lysocline, the depth range over which carbonate dissolution markedly increases. Indeed, recent earth system modelling studies have suggested that the position of the CCD is relatively insensitive to changes in atmospheric pCO2. Additionally, studies have questioned the nature and strength of the relationship between the CCD, carbonate saturation state in the water column, and lysocline. To test the relationship between palaeoclimate and the location of the CCD, we reconstructed the global, long-term CCD behaviour across major Cenozoic climate transitions: the late Paleocene - early Eocene long-term warming trend (study interval ~58 to 49 Ma) and the late Eocene - early Oligocene cooling and glaciation (study interval ~38 to 27 Ma). We use Earth system modelling (GENIE) to explore the links between atmospheric pCO2 and the CCD, isolating and teasing apart the roles of total dissolved inorganic carbon, temperature, circulation, and productivity in determining the CCD.

  12. Membership, binarity, and rotation of F-G-K stars in the open cluster Blanco 1

    NASA Astrophysics Data System (ADS)

    Mermilliod, J.-C.; Platais, I.; James, D. J.; Grenon, M.; Cargile, P. A.

    2008-07-01

    Context: The nearby open cluster Blanco 1 is of considerable astrophysical interest for formation and evolution studies of open clusters because it is the third highest Galactic latitude cluster known. It has been observed often, but so far no definitive and comprehensive membership determination is readily available. Aims: An observing programme was carried out to study the stellar population of Blanco 1, and especially the membership and binary frequency of the F5-K0 dwarfs. Methods: We obtained radial-velocities with the CORAVEL spectrograph in the field of Blanco 1 for a sample of 148 F-G-K candidate stars in the magnitude range 10 < V < 14. New proper motions and UBVI CCD photometric data from two extensive surveys were obtained independently and are used to establish reliable cluster membership assignments in concert with radial-velocity data. Results: The membership of 68 stars is confirmed on the basis of proper motion, radial velocity, and photometric criteria. Fourteen spectroscopic- and suspected binaries (2 SB2s, 9 SB1s, 3 SB?) have been discovered among the confirmed members. Thirteen additional stars are located above the main sequence or close to the binary ridge, with radial velocities and proper motions supporting their membership. These are probable binaries with wide separations. Nine binaries (7 SB1 and 2 SB2) were detected among the field stars. The spectroscopic binary frequency among members is 20% (14/68); however, the overall binary rate reaches 40% (27/68) if one includes the photometric binaries. The cluster mean heliocentric radial velocity is +5.53 ± 0.11 km s-1 based on the most reliable 49 members. The V sin i distribution is similar to that of the Pleiades, confirming the age similarities between the two clusters. Conclusions: This study clearly demonstrates that, in spite of the cluster's high Galactic latitude, three membership criteria - radial velocity, proper motion, and photometry - are necessary for performing a reliable membership selection. Furthermore, even with accurate and extensive data, ambiguous cases still remain. Based on observations collected with the Danish 1.54-m and the Swiss telescopes at the European Southern Observatory, La Silla, Chile, and with the old YALO 1-m telescope at the Cerro Tololo InterAmerican Observatory, Chile. Table [see full textsee full textsee full textsee full textsee full textsee full text] is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/485/95

  13. Reduction of Cross-Reactive Carbohydrate Determinants in Plant Foodstuff: Elucidation of Clinical Relevance and Implications for Allergy Diagnosis

    PubMed Central

    Brehler, Randolf; von Schaewen, Antje

    2011-01-01

    Background A longstanding debate in allergy is whether or not specific immunoglobulin-E antibodies (sIgE), recognizing cross-reactive carbohydrate determinants (CCD), are able to elicit clinical symptoms. In pollen and food allergy, ≥20% of patients display in-vitro CCD reactivity based on presence of α1,3-fucose and/or β1,2-xylose residues on N-glycans of plant (xylose/fucose) and insect (fucose) glycoproteins. Because the allergenicity of tomato glycoallergen Lyc e 2 was ascribed to N-glycan chains alone, this study aimed at evaluating clinical relevance of CCD-reduced foodstuff in patients with carbohydrate-specific IgE (CCD-sIgE). Methodology/Principal Findings Tomato and/or potato plants with stable reduction of Lyc e 2 (tomato) or CCD formation in general were obtained via RNA interference, and gene-silencing was confirmed by immunoblot analyses. Two different CCD-positive patient groups were compared: one with tomato and/or potato food allergy and another with hymenoptera-venom allergy (the latter to distinguish between CCD- and peptide-specific reactions in the food-allergic group). Non-allergic and CCD-negative food-allergic patients served as controls for immunoblot, basophil activation, and ImmunoCAP analyses. Basophil activation tests (BAT) revealed that Lyc e 2 is no key player among other tomato (glyco)allergens. CCD-positive patients showed decreased (re)activity with CCD-reduced foodstuff, most obvious in the hymenoptera venom-allergic but less in the food-allergic group, suggesting that in-vivo reactivity is primarily based on peptide- and not CCD-sIgE. Peptide epitopes remained unaffected in CCD-reduced plants, because CCD-negative patient sera showed reactivity similar to wild-type. In-house-made ImmunoCAPs, applied to investigate feasibility in routine diagnosis, confirmed BAT results at the sIgE level. Conclusions/Significance CCD-positive hymenoptera venom-allergic patients (control group) showed basophil activation despite no allergic symptoms towards tomato and potato. Therefore, this proof-of-principle study demonstrates feasibility of CCD-reduced foodstuff to minimize ‘false-positive results’ in routine serum tests. Despite confirming low clinical relevance of CCD antibodies, we identified one patient with ambiguous in-vitro results, indicating need for further component-resolved diagnosis. PMID:21423762

  14. Spectral analysis using the CCD Chirp Z-transform

    NASA Technical Reports Server (NTRS)

    Eversole, W. L.; Mayer, D. J.; Bosshart, P. W.; Dewit, M.; Howes, C. R.; Buss, D. D.

    1978-01-01

    The charge coupled device (CCD) Chirp Z transformation (CZT) spectral analysis techniques were reviewed and results on state-of-the-art CCD CZT technology are presented. The CZT algorithm was examined and the advantages of CCD implementation are discussed. The sliding CZT which is useful in many spectral analysis applications is described, and the performance limitations of the CZT are studied.

  15. Reaching the Diffraction Limit - Differential Speckle and Wide-Field Imaging for the WIYN Telescope

    NASA Technical Reports Server (NTRS)

    Scott, Nic J.; Howell, Steve; Horch, Elliott

    2016-01-01

    Speckle imaging allows telescopes to achieve diffraction limited imaging performance. The technique requires cameras capable of reading out frames at a very fast rate, effectively 'freezing out' atmospheric seeing. The resulting speckles can be correlated and images reconstructed that are at the diffraction limit of the telescope. These new instruments are based on the successful performance and design of the Differential Speckle Survey Instrument (DSSI).The instruments are being built for the Gemini-N and WIYN telescopes and will be made available to the community via the peer review proposal process. We envision their primary use to be validation and characterization of exoplanet targets from the NASA, K2 and TESS missions and RV discovered exoplanets. Such targets will provide excellent follow-up candidates for both the WIYN and Gemini telescopes. We expect similar data quality in speckle imaging mode with the new instruments. Additionally, both cameras will have a wide-field mode and standard SDSS filters. They will be highly versatile instruments and it is that likely many other science programs will request time on the cameras. The limiting magnitude for speckle observations will remain around 13-14th at WIYN and 16-17th at Gemini, while wide-field, normal CCD imaging operation should be able to go to much fainter, providing usual CCD imaging and photometric capabilities. The instruments will also have high utility as scoring cameras for telescope engineering purposes, or other applications where high time resolution is needed. Instrument support will be provided, including a software pipeline that takes raw speckle data to fully reconstructed images.

  16. JOVE/NASA Funded Search for Aqueously Altered Minor Planets Provides Undergraduates with Valuable Research Experience

    NASA Astrophysics Data System (ADS)

    Watkins, L.; Leake, M.; Kilgard, R.; Semmes, K.; Alpert, A.

    1997-12-01

    A Joint Venture in Research Grant from NASA has enabled a team of undergraduates from Valdosta State University, lead by Dr. Martha Leake, to spectroscopically and photometrically search for aqueously altered minor planets. To carry out the necessary preparations, calculations, and measurements, students are using CCD and Spectroscopy equipment provided by VSU, a .4-m telescope in Valdosta, in addition to a .9-m telescope at Kitt Peak, belonging to the SARA consortium (Southeastern Association for Research in Astronomy). Focusing on primitive C-class asteroids, the team is looking for water of hydration, in the form of absorption bands occurring at specific, previously researched wavelengths. The evidence occurring at these wavelengths suggests the extent of alteration in small solar-system bodies. Equipment being utilized includes an ST-6 and Axiom CCD Cameras, and an Optomechanics 10C spectrograph, and several "intermediate-band" filters to target the specified wavelengths essential to detection o f aqueously altered minerals. Test runs on Valdosta's .4-m are currently being conducted to inspect new equipment and develop analogs for more efficient observation runs on SARA's .9-m telescope. Students were originally chosen on a competitive basis, having to submit formal applications. Three were selected for JOVE research: Roy Kilgard, senior astronomy major; Katherine Semmes, junior physics major; and myself, Lisa Watkins, sophomore astronomy major. Roy Kilgard graduated in the Spring of 1997 with his Astronomy degree, and the position was filled by Brent Collier, a junior Geosciences major at VSU. Students' research is monitored and directed by the project mentor and grant recipient, Dr. Martha Leake.

  17. VizieR Online Data Catalog: Photometric survey of IC 2391, {eta} Cha, and USco (Oelkers+, 2016)

    NASA Astrophysics Data System (ADS)

    Oelkers, R. J.; Macri, L. M.; Marshall, J. L.; Depoy, D. L.; Lambas, D. G.; Colazo, C.; Stringer, K.

    2016-09-01

    Our survey instrument, nicknamed AggieCam, consists of an Apogee Alta F16M camera with a 4096*4096pixel Kodak KAD-16083 CCD that is thermoelectrically cooled down to δT=-45°C relative to ambient. Testing of the CCD showed a dark current of 0.2e-/pix/s at temperatures of -25°C relative to ambient. The optics include a Mamiya photographic 300mm lens with a Hoya UV and IR cut filter to restrict the wavelength range to 0.4-0.7μm. The effective aperture size of the telescope is 53.6mm and the total throughput of the system is near 45%. The pixel scale of the detector is 6.2''/pix, leading to a total field of view (hereafter FOV) of ~50deg2. The telescope was installed at the Estacion Astrofisica de Bosque Alegre (hereafter EABA) as part of an ongoing collaboration with the Universidad Nacional de Cordoba, which owns and operates the site. EABA is a research and outreach observatory located at 31.412°S, 64.489°W at an altitude of 1350m, ~50km from the city of Cordoba, province of Cordoba, Argentina. Nearly all observations were carried out remotely from the Mitchell Institute of Fundamental Physics and Astronomy at Texas A&M University in College Station, Texas. Logistical support for the instrument was provided by staff members of the Instituto de Astronomia Teorica y Experimental, Observatorio de Cordoba, and EABA. We targeted three young stellar associations to maximize the science return from our study: IC 2391 (α=8h40m,δ=-53°), the {eta} Chamaeleontis cluster ({eta}Cha,α=8h45m,δ=-79°), and the Upper Scorpius association (USco,α=16h,δ=-24.5°). Any transiting Hot Jupiter (HJ) or pre-main-sequence eclipsing binary (PMB) candidate passing all of the significance tests described in Sections 4.1 and 4.2 was then subject to a series of follow up photometric observations. The 1.54m telescope at EABA provided 300+hr of BVRI photometry to date, with further observations planned. The 0.8m telescope at the McDonald Observatory provided 14hr of BVRI photometry. The Las Cumbres Global Observatory Telescope Network (LCOGT) provided 30hr of gri photometry from their 1m facilities. The Texas A&M University campus observatory 0.5m telescope provided 30hr of gri photometry. Additionally, the 2.1m telescope at the McDonald Observatory, coupled with the Sandiford Echelle Spectrograph provided 14hr of initial spectroscopic follow up during the Spring of 2015. (3 data files).

  18. A New Light Curve and Analysis of the Long Period Eclipsing Binary BF Draconis

    NASA Astrophysics Data System (ADS)

    Wolf, G. W.; Craig, L. E.; Caffey, J. F.

    1999-01-01

    The star BF Draconis was found to be an eclipsing binary by Strohmeier, Knigge and Ott (1962) and originally thought to be an Algol-type system with a period of 5.6 days. A spectrographic study by Imbert (1985) showed that the period was actually double this value and that the system consisted of two well-separated, almost-equal F-type stars in elliptical orbit. Diethelm, Wolf and Agerer (1993) later published a preliminary light curve of this system showing minima of unequal depth and width with a displaced secondary, confirming the elliptical orbit but disagreeing with Imbert on the specific orbital parameters. As a part of our long-term program of obtaining improved light curves of double-lined spectroscopic and eclipsing binaries, we have observed BF Draconis for the past four years using the 0.4 meter telescope at the Baker Observatory of Southwest Missouri State University. Complete light curves in the Cousins BVRI passbands have been obtained with our Photometrics CCD system, and a new model and orbital parameters for the binary have been determined using the Wilson-Devinney program. This research has been supported by NSF Grants AST-9315061 and AST-9605822 and NASA Grant NGT5-40060.

  19. Photometric Analysis and Modeling of Five Mass-Transferring Binary Systems

    NASA Astrophysics Data System (ADS)

    Geist, Emily; Beaky, Matthew; Jamison, Kate

    2018-01-01

    In overcontact eclipsing binary systems, both stellar components have overfilled their Roche lobes, resulting in a dumbbell-shaped shared envelope. Mass transfer is common in overcontact binaries, which can be observed as a slow change on the rotation period of the system.We studied five overcontact eclipsing binary systems with evidence of period change, and thus likely mass transfer between the components, identified by Nelson (2014): V0579 Lyr, KN Vul, V0406 Lyr, V2240 Cyg, and MS Her. We used the 31-inch NURO telescope at Lowell Observatory in Flagstaff, Arizona to obtain images in B,V,R, and I filters for V0579 Lyr, and the 16-inch Meade LX200GPS telescope with attached SBIG ST-8XME CCD camera at Juniata College in Huntingdon, Pennsylvania to image KN Vul, V0406 Lyr, V2240 Cyg, and MS Her, also in B,V,R, and I.After data reduction, we created light curves for each of the systems and modeled the eclipsing binaries using the BinaryMaker3 and PHOEBE programs to determine their fundamental physical parameters for the first time. Complete light curves and preliminary models for each of these neglected eclipsing binary systems will be presented.

  20. Photometry of the SW Sextantis-type nova-like BH Lyncis in high state

    NASA Astrophysics Data System (ADS)

    Stanishev, V.; Kraicheva, Z.; Genkov, V.

    2006-08-01

    Aims.We present a photometric study of the deeply eclipsing SW Sex-type nova-like cataclysmic variable star BH Lyn. Methods: .Time-resolved V-band CCD photometry was obtained for seven nights between 1999 and 2004. Results: .We determined 11 new eclipse timings of BH Lyn and derived a refined orbital ephemeris with an orbital period of 0.155875577(14) °. During the observations, BH Lyn was in high-state with V≃15.5 mag. The star presents ~1.5 mag deep eclipses with mean full-width at half-flux of 0.0683(±0.0054)P_orb. The eclipse shape is highly variable, even changing form cycle to cycle. This is most likely due to accretion disc surface brightness distribution variations, most probably caused by strong flickering. Time-dependent accretion disc self-occultation or variations of the hot spot(s) intensity are also possible explanations. Negative superhumps with period of ˜0.145 ° are detected in two long runs in 2000. A possible connection between SW Sex and negative superhump phenomena through the presence of tilted accretion disc is discussed, and a way to observationally test this is suggested.

  1. The Discovery of Extrasolar Planets by Backyard Astronomers

    NASA Technical Reports Server (NTRS)

    Castellano, Tim; Laughlin, Greg; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The discovery since 1995 of more than 80 planets around nearby solar-like stars and the photometric measurement of a transit of the jovian mass planet orbiting the solar-like star HD 209458 (producing a more than 1% drop in brightness that lasts 3 hours) has heralded a new era in astronomy. It has now been demonstrated that small telescopes equipped with sensitive and stable electronic detectors can produce fundamental scientific discoveries regarding the frequency and nature of planets outside the solar system. The modest equipment requirements for the discovery of extrasolar planetary transits of jovian mass planets in short period orbits around solar-like stars are fulfilled by commercial small aperture telescopes and CCD (charge coupled device) imagers common among amateur astronomers. With equipment already in hand and armed with target lists, observing techniques and software procedures developed by scientists at NASA's Ames Research Center and the University of California at Santa Cruz, non-professional astronomers can contribute significantly to the discovery and study of planets around others stars. In this way, we may resume (after a two century interruption!) the tradition of planet discoveries by amateur astronomers begun with William Herschel's 1787 discovery of the 'solar' planet Uranus.

  2. Boosting productivity: a framework for professional/amateur collaborative teamwork

    NASA Astrophysics Data System (ADS)

    Al-Shedhani, Saleh S.

    2002-11-01

    As technology advances, remote operation of telescopes has paved the way for joint observational projects between Astronomy clubs. Equipped with a small telescope, a standard CCD, and a networked computer, the observatory can be set up to carry out several photometric studies. However, most club members lack the basic training and background required for such tasks. A collaborative network between professionals and amateurs is proposed to utilize professional know-how and amateurs' readiness for continuous observations. Working as a team, various long-term observational projects can be carried out using small telescopes. Professionals can play an important role in raising the standards of astronomy clubs via specialized training programs for members on how to use the available technology to search/observe certain events (e.g. supernovae, comets, etc.). Professionals in return can accumulate a research-relevant database and can set up an early notification scheme based on comparative analyses of the recently-added images in an online archive. Here we present a framework for the above collaborative teamwork that uses web-based communication tools to establish remote/robotic operation of the telescope, and an online archive and discussion forum, to maximize the interactions between professionals and amateurs and to boost the productivity of small telescope observatories.

  3. KMTNET: A Network of 1.6 m Wide-Field Optical Telescopes Installed at Three Southern Observatories

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Lee; Lee, Chung-Uk; Park, Byeong-Gon; Kim, Dong-Jin; Cha, Sang-Mok; Lee, Yongseok; Han, Cheongho; Chun, Moo-Young; Yuk, Insoo

    2016-02-01

    The Korea Microlensing Telescope Network (KMTNet) is a wide-field photometric system installed by the Korea Astronomy and Space Science Institute (KASI). Here, we present the overall technical specifications of the KMTNet observation system, test observation results, data transfer and image processing procedure, and finally, the KMTNet science programs. The system consists of three 1.6 m wide-field optical telescopes equipped with mosaic CCD cameras of 18k by 18k pixels. Each telescope provides a 2.0 by 2.0 square degree field of view. We have finished installing all three telescopes and cameras sequentially at the Cerro-Tololo Inter-American Observatory (CTIO) in Chile, the South African Astronomical Observatory (SAAO) in South Africa, and the Siding Spring Observatory (SSO) in Australia. This network of telescopes, which is spread over three different continents at a similar latitude of about -30 degrees, enables 24-hour continuous monitoring of targets observable in the Southern Hemisphere. The test observations showed good image quality that meets the seeing requirement of less than 1.0 arcsec in I-band. All of the observation data are transferred to the KMTNet data center at KASI via the international network communication and are processed with the KMTNet data pipeline. The primary scientific goal of the KMTNet is to discover numerous extrasolar planets toward the Galactic bulge by using the gravitational microlensing technique, especially earth-mass planets in the habitable zone. During the non-bulge season, the system is used for wide-field photometric survey science on supernovae, asteroids, and external galaxies.

  4. Photometric properties of galaxies in the SDSS

    NASA Astrophysics Data System (ADS)

    Hogg, D. W.; Blanton, M.; SDSS Collaboration

    2001-12-01

    We analyze the number density distribution of galaxy properties in a sample of 8x 104 galaxies from the Sloan Digital Sky Survey, in the redshift range 0.02

  5. The First Release of the AST3-1 Point Source Catalogue from Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Ma, Bin; Shang, Zhaohui; Hu, Yi; Hu, Keliang; Liu, Qiang; Ashley, Michael C. B.; Cui, Xiangqun; Du, Fujia; Fan, Dongwei; Feng, Longlong; Huang, Fang; Gu, Bozhong; He, Boliang; Ji, Tuo; Li, Xiaoyan; Li, Zhengyang; Liu, Huigen; Tian, Qiguo; Tao, Charling; Wang, Daxing; Wang, Lifan; Wang, Songhu; Wang, Xiaofeng; Wei, Peng; Wu, Jianghua; Xu, Lingzhe; Yang, Shihai; Yang, Ming; Yang, Yi; Yu, Ce; Yuan, Xiangyan; Zhou, Hongyan; Zhang, Hui; Zhang, Xueguang; Zhang, Yi; Zhao, Cheng; Zhou, Jilin; Zhu, Zong-Hong

    2018-05-01

    The three Antarctic Survey Telescopes (AST3) aim to carry out time domain imaging survey at Dome A, Antarctica. The first of the three telescopes (AST3-1) was successfully deployed on January 2012. AST3-1 is a 500 mm aperture modified Schmidt telescope with a 680 mm diameter primary mirror. AST3-1 is equipped with a SDSS i filter and a 10k × 10k frame transfer CCD camera, reduced to 5k × 10k by electronic shuttering, resulting in a 4.3 deg2 field-of-view. To verify the capability of AST3-1 for a variety of science goals, extensive commissioning was carried out between March and May 2012. The commissioning included a survey covering 2000 deg2 as well as the entire Large and Small Magellanic Clouds. Frequent repeated images were made of the center of the Large Magellanic Cloud, a selected exoplanet transit field, and fields including some Wolf-Rayet stars. Here we present the data reduction and photometric measurements of the point sources observed by AST3-1. We have achieved a survey depth of 19.3 mag in 60 s exposures with 5 mmag precision in the light curves of bright stars. The facility achieves sub-mmag photometric precision under stable survey conditions, approaching its photon noise limit. These results demonstrate that AST3-1 at Dome A is extraordinarily competitive in time-domain astronomy, including both quick searches for faint transients and the detection of tiny transit signals.

  6. ARGon{sup 3}: ''3D appearance robot-based gonioreflectometer'' at PTB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoepe, A.; Atamas, T.; Huenerhoff, D.

    At the Physikalisch-Technische Bundesanstalt, the National Metrology Institute of Germany, a new facility for measuring visual appearance-related quantities has been built up. The acronym ARGon{sup 3} stands for ''3D appearance robot-based gonioreflectometer''. Compared to standard gonioreflectometers, there are two main new features within this setup. First, a photometric luminance camera with a spatial resolution of 28 {mu}m on the device under test (DUT) enables spatially high-resolved measurements of luminance and color coordinates. Second, a line-scan CCD-camera mounted to a spectrometer provides measurements of the radiance factor, respectively the bidirectional reflectance distribution function, in full V({lambda})-range (360 nm-830 nm) with arbitrarymore » angles of irradiation and detection relative to the surface normal, on a time scale of about 2 min. First goniometric measurements of diffuse reflection within 3D-space above the DUT with subsequent colorimetric representation of the obtained data of special effect pigments based on the interference effect are presented.« less

  7. Optical photometric monitoring of gamma -ray loud blazars. II. Observations from November 1995 to June 1996

    NASA Astrophysics Data System (ADS)

    Raiteri, C. M.; Ghisellini, G.; Villata, M.; de Francesco, G.; Lanteri, L.; Chiaberge, M.; Peila, A.; Antico, G.

    1998-02-01

    New data from the optical monitoring of gamma -ray loud blazars at the Torino Astronomical Observatory are presented. Observations have been taken in the Johnson's B, V, and Cousins' R bands with the 1.05m REOSC telescope equipped with a 1242x1152 pixel CCD camera. Many of the 22 monitored sources presented here show noticeable magnitude variations. Periods corresponding to pointings of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) satellite are indicated on the light curves. The comparison of our data with those taken by CGRO in the gamma -ray band will contribute to better understand the mechanism of the gamma -ray emission. We finally show intranight light curves of 3C 66A and OJ 287, where microvariability was detected. Tables 2--21 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  8. The Results of Observations of Mutual Phenomena of the Galilean Satellites of Jupiter in 2009 and 2015 IN Nikolaev Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Pomazan, A.; Maigurova, N.; Kryuchkovskiy, V.

    The Earth and Jupiter once in 6 years have simultaneous passage of the ecliptic plane due to their orbital movement around the Sun. This makes it possible to observe the mutual occultations and eclipses in the Galilean satellites of Jupiter. We took part in the observational campaigns of the mutual phenomena in 2009 and 2014-15. The observations were made with a B/W CCD camera WAT-902H at the telescope MCT (D = 0.115 m, F = 2.0 m) of the Nikolaev Astronomical Observatory. The light curves of mutual phenomena in the satellites of Jupiter were obtained as a result of processing photometric observations. The exact moments of maximum phases and the amplitudes of the light variation have been determined from the analysis of the light curves. The data sets for the light curves have been sent in the IMCCE (Institute de Mecanique et de calcul des ephemerides, France) that coordinates the PHEMU campaigns.

  9. Astrometry with A-Track Using Gaia DR1 Catalogue

    NASA Astrophysics Data System (ADS)

    Kılıç, Yücel; Erece, Orhan; Kaplan, Murat

    2018-04-01

    In this work, we built all sky index files from Gaia DR1 catalogue for the high-precision astrometric field solution and the precise WCS coordinates of the moving objects. For this, we used build-astrometry-index program as a part of astrometry.net code suit. Additionally, we added astrometry.net's WCS solution tool to our previously developed software which is a fast and robust pipeline for detecting moving objects such as asteroids and comets in sequential FITS images, called A-Track. Moreover, MPC module was added to A-Track. This module is linked to an asteroid database to name the found objects and prepare the MPC file to report the results. After these innovations, we tested a new version of the A-Track code on photometrical data taken by the SI-1100 CCD with 1-meter telescope at TÜBİTAK National Observatory, Antalya. The pipeline can be used to analyse large data archives or daily sequential data. The code is hosted on GitHub under the GNU GPL v3 license.

  10. VizieR Online Data Catalog: First analysis of the binary IK Boo (Kriwattanawong+, 2017)

    NASA Astrophysics Data System (ADS)

    Kriwattanawong, W.; Sanguansak, N.; Maungkorn, S.

    2017-03-01

    With new CCD observations of the W UMa type binary IK Boo, we present the first investigation of photometric parameters and orbital period change. The BVRc light curve fit shows that IK Boo is a W-type contact system with a mass ratio of q=1.146 and a shallow contact with a fill-out factor of f=2.22%. The orbital period decrease is found at a rate of -3.28x10-7d/yr, corresponding to a mass transfer from the more massive to the less massive component with a rate of -2.83x10-6M_ȯ/yr. The inner and outer critical Roche lobes will contract and cause the contact degree to increase. Therefore, IK Boo may evolve into a deeper contact system. Furthermore, a possible cyclic variation is found to have a period of 9.74yr, that could be explained by the light-travel time effect, due to the existence of a third companion in the system. (2 data files).

  11. VizieR Online Data Catalog: BVR photometry of EPIC 211957146 (Sriram+, 2017)

    NASA Astrophysics Data System (ADS)

    Sriram, K.; Malu, S.; Choi, C. S.; Vivekananda Rao, P.

    2017-08-01

    Photometric observations of the variable EPIC 211957146 in the R band were taken using the IUCAA-Girawali Observatory (IGO) 2m telescope from 2015 February 5-22, for 5 nights (specifications of IGO 2m telescope CCD are as discussed in Sriram et al. 2016AJ....151...69S). An exposure time of 20-30s was given for imaging. B and V band observations were taken from the JCBT 1.3m telescope at Vainu Bappu Observatory (VBO) during 2016 February 3-8 and 2016 March 25-April 3 for a total of 7 nights. The JCBT 1.3m DFM telescope at VBO uses a 2K*4K UKATC CCD having a gain of 0.745e-/ADU and a read out noise of 4.2e-. The plate scale is 0.3arcsec/pixel resulting in an image of 10'*20' and images of the source in the B and V bands were taken with an integration time of 120s. Differential photometry was performed on the variable, with the comparison and check stars (of similar brightness) lying close to the variable. This source was also observed by the Kepler K2 mission Campaign 5, and the data were acquired from the MAST portal and the NASA Exoplanet Archive. K2 campaign 5 monitored the sky for a duration of ~74days and was fixed upon a single boresight position of 08h40m38s, +16°49'47'' starting from 2015 April 27 to July 10. Spectroscopic observation of the variable was performed during the nights of 2016 January 29-30 using the 2m Himalaya Chandra Telescope (HCT, IAO) equipped with the Himalaya Faint Object Spectrograph Camera (HFOSC) having a 2K*4K CCD. Spectra were obtained with an exposure time of 1800-2700s for both variable and spectrophotometric standard stars (BD+08 2015). A few spectra were also taken on 2016 February 1 using the Optomechanics Research spectrograph mounted on the 2.3m Vainu Bappu Telescope using a 1K*1K CCD. A 600lines/mm grating spanning a wavelength range of 2000-8000Å with a dispersion of 2.6Å/pixel and a resolution of ~5.3Å was used. The same spectrophotometric standard as before was used for observation, and an exposure time of 2700s was given to both the variable and the standard. (2 data files).

  12. A prototype for the PASS Permanent All Sky Survey

    NASA Astrophysics Data System (ADS)

    Deeg, H. J.; Alonso, R.; Belmonte, J. A.; Horne, K.; Alsubai, K.; Collier Cameron, A.; Doyle, L. R.

    2004-10-01

    A prototype system for the Permanent All Sky Survey (PASS) project is presented. PASS is a continuous photometric survey of the entire celestial sphere with a high temporal resolution. Its major objectives are the detection of all giant-planet transits (with periods up to some weeks) across stars up to mag 10.5, and to deliver continuously photometry that is useful for the study of any variable stars. The prototype is based on CCD cameras with short focal length optics on a fixed mount. A small dome to house it at Teide Observatory, Tenerife, is currently being constructed. A placement at the antarctic Dome C is also being considered. The prototype will be used for a feasibility study of PASS, to define the best observing strategies, and to perform a detailed characterization of the capabilities and scope of the survey. Afterwards, a first partial sky surveying will be started with it. That first survey may be able to detect transiting planets during its first few hundred hours of operation. It will also deliver a data set around which software modules dealing with the various scientific objectives of PASS will be developed. The PASS project is still in its early phase and teams interested in specific scientific objectives, in providing technical expertise, or in participating with own observations are invited to collaborate.

  13. A Comparison of the OSHA Modified NIOSH Physical and Chemical Analytical Method (P and CAM) 304 and the Dust Trak Photometric Aerosol Sampler for 0-Chlorobenzylidine Malonitrile

    DTIC Science & Technology

    2013-04-02

    photometric particle counting instrument, DustTrak, to the established OSHA modified NIOSH P&CAM 304 method to determine correlation between the two...study compared the non-specific, rapid photometric particle counting instrument, DustTrak, to the established OSHA modified NIOSH P&CAM 304 method...mask confidence training (27) . This study will compare a direct reading, non-specific photometric particle count instrument (DustTrak TSI Model

  14. Comparative analysis of data quality and applications in vegetation of HJ-1A CCD images

    NASA Astrophysics Data System (ADS)

    Wei, Hongwei; Tian, Qingjiu; Huang, Yan; Wang, Yan

    2014-05-01

    To study the data quality and to find the differences in vegetation monitoring applications, the same region at Chuzhou Lai 'an, the data of HJ-1A CCD1 on the April 1st, 2012 and the data of HJ-1A CCD2 on the March 31, 2012 have being comparative analysis by the method of objective quality (image)assessment which selecting over five spectral image evaluation parameters: radiation precision (mean, variance, inclination, steepness), information entropy, signal-to-noise ratio, sharpness, contrast, and normalized differential vegetation index. The results show that there is little differences between the HJ-1A CCD1 and CCD2 by objective evaluation of data quality except radiation precision conform to their design theory, so the conclusion is that the difference of them without considering on the usual unless continuation;and Combination of field observation data Lai'an spectral data and GPS data (each point),selecting the normalized difference vegetation index as CCD1, CCD2 in vegetation monitoring application on the evaluation of the differences, and the specific process is based on GPS data is divided into nine small plots of spectral data ,and image data of nine one-to-one correspondence plots, and their normalized difference vegetation index values were calculated ,and measured spectra data resampling HJ-1A CCD1, CCD2 spectral response function calculated NDVI, and the results show that there is little differences between the HJ-1A CCD1 and CCD2 by objective evaluation of data quality, and, the differences of wheat `s reflection and normalized vegetation index is mainly due to calibration coefficients of CCD1 and CCD2, the differences of the solar elevation angle when obtaining the image and atmospheric conditions, so it has to consider the performance indicators as well as access conditions of CCD1 and CCD2, and to be take the normalization techniques for processing for the comparison analysis in the use of HJ-1A CCD Data to surface dynamic changes; Finally, in order to study the response of the spectral response function proposed spectral response function of impact factor, and in view of the spectral response function measured spectral data resampling only HJ-1A CCD spectral response function, calculated according to the formula of the equivalent reflectivity quantitative spectral response function, and spectral normalization of proposed theoretical Technical Support. The Objective evaluation of its application of HJ-1A CCD1, and CCD2 data quality differences research has important implications for broader application to further promote China-made remote sensing satellite data, future research also needs calibration coefficient, the solar elevation angle atmospheric conditions and its image scanning angle be taken into account, and to make the corresponding normalized its impact quantitative research has important significance for the timing changes in the application of the ecological environment in China.

  15. A Web-Remote/Robotic/Scheduled Astronomical Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Denny, Robert

    2011-03-01

    Traditionally, remote/robotic observatory operating systems have been custom made for each observatory. While data reduction pipelines need to be tailored for each investigation, the data acquisition process (especially for stare-mode optical images) is often quite similar across investigations. Since 1999, DC-3 Dreams has focused on providing and supporting a remote/robotic observatory operating system which can be adapted to a wide variety of physical hardware and optics while achieving the highest practical observing efficiency and safe/secure web browser user controls. ACP Expert consists of three main subsystems: (1) a robotic list-driven data acquisition engine which controls all aspects of the observatory, (2) a constraint-driven dispatch scheduler with a long-term database of requests, and (3) a built-in "zero admin" web server and dynamic web pages which provide a remote capability for immediate execution and monitoring as well as entry and monitoring of dispatch-scheduled observing requests. No remote desktop login is necessary for observing, thus keeping the system safe and consistent. All routine operation is via the web browser. A wide variety of telescope mounts, CCD imagers, guiding sensors, filter selectors, focusers, instrument-package rotators, weather sensors, and dome control systems are supported via the ASCOM standardized device driver architecture. The system is most commonly employed on commercial 1-meter and smaller observatories used by universities and advanced amateurs for both science and art. One current project, the AAVSO Photometric All-Sky Survey (APASS), uses ACP Expert to acquire large volumes of data in dispatch-scheduled mode. In its first 18 months of operation (North then South), 40,307 sky images were acquired in 117 photometric nights, resulting in 12,107,135 stars detected two or more times. These stars had measures in 5 filters. The northern station covered 754 fields (6446 square degrees) at least twice, the southern station covered 951 fields (8500 square degrees) at least twice. The database of photometric calibrations is available from AAVSO. The paper will cover the ACP web interface, including the use of AJAX and JSON within a micro-content framework, as well as dispatch scheduler and acquisition engine operation.

  16. A survey for low-mass stellar and substellar members of the Hyades open cluster

    NASA Astrophysics Data System (ADS)

    Melnikov, Stanislav; Eislöffel, Jochen

    2018-03-01

    Context. Unlike young open clusters (with ages < 250 Myr), the Hyades cluster (age 600 Myr) has a clear deficit of very low-mass stars (VLM) and brown dwarfs (BD). Since this open cluster has a low stellar density and covers several tens of square degrees on the sky, extended surveys are required to improve the statistics of the VLM/BD objects in the cluster. Aim. We search for new VLM stars and BD candidates in the Hyades cluster to improve the present-day cluster mass function down to substellar masses. Methods: An imaging survey of the Hyades with a completeness limit of 21.m5 in the R band and 20.m5 in the I band was carried out with the 2k × 2k CCD Schmidt camera at the 2 m Alfred Jensch Telescope in Tautenburg. We performed a photometric selection of the cluster member candidates by combining results of our survey with 2MASS JHKs photometry Results: We present a photometric and proper motion survey covering 23.4 deg2 in the Hyades cluster core region. Using optical/IR colour-magnitude diagrams, we identify 66 photometric cluster member candidates in the magnitude range 14.m7 < I < 20.m5. The proper motion measurements are based on several all-sky surveys with an epoch difference of 60-70 yr for the bright objects. The proper motions allowed us to discriminate the cluster members from field objects and resulted in 14 proper motion members of the Hyades. We rediscover Hy 6 as a proper motion member and classify it as a substellar object candidate (BD) based on the comparison of the observed colour-magnitude diagram with theoretical model isochrones. Conclusions: With our results, the mass function of the Hyades continues to be shallow below 0.15 M⊙ indicating that the Hyades have probably lost their lowest mass members by means of dynamical evolution. We conclude that the Hyades core represents the "VLM/BD desert" and that most of the substeller objects may have already left the volume of the cluster.

  17. Spectral and Photometric Data of Be Star, EM Cep

    NASA Astrophysics Data System (ADS)

    Kochiashvili, Nino; Natsvilishvili, Rezo; Kochiashvili, Ia; Vardosanidze, Manana; Beradze, Sopia; Pannicke, Anna

    The subject of investigation in this project is a Be spectral type giant variable star EM Cep. It was established that the star has a double nature: 1. when emission lines are seen in its spectrum and 2. when only absorption lines are observable and emission lines are not seen. This means that the star is not always in Be state. Be state continues existing during a few months. EM Cep shows flare activity too. The causes of photometric and spectral variability are to be established. The existence of different mechanisms, which provokes Be phenomenon, is possible. The character of light curves' variability gives us possibility to propose that it is not excluded that the star could be a short-period Cepheid of λ Eri type. However, we do not have sufficient data to exclude its binarity. On the basis of the observations carried out at Abastumani observatory, the light curve with two minima and two maxima were revealed, but these data, too accord with the half-period - we can also consider a light curve with one minimum and one maximum. Both cases suggest a good agreement with the characters of variability. For the case of binarity in Abastumani observatory, a set of orbital elements by using the Wilson-Devinney code is already obtained. The elements correspond to the model of acceptable, real close binary star. However, notwithstanding this situation, the true nature of the star is not established for the moment. To solve this problem, we need to get high-resolution spectral data, when by using radial velocity curves, it would be possible to answer the question of binarity of the star. It is not excluded to reveal spectral lines of the second component in case of binarity of the star. Since 2014, we have renewed UBVRI photometric observations of EM Cep in Abastumani using a 48-cm telescope with CCD device. Spectral observations are made in Azerbaijan, Shamakhy Observatory. Our German Colleagues have been observing the star since March of 2017 at the Observatory of the Jena University. We plan to carry out a joint analysis of the observations of the three observatories to explain the observational peculiarities of the star.

  18. The ASTRA Spectrophotometer: A Progress Report

    NASA Astrophysics Data System (ADS)

    Adelman, S. J.; Gulliver, A. F.; Smalley, B.; Pazder, J. S.; Younger, P. F.; Boyd, L.; Epand, D.

    2003-12-01

    A spectrophotometer with a CCD detector and its automated 0.5-m telescope at the Fairborn Observatory, Washington Camp, AZ are currently under construction. They were designed for efficient operations. By the end of 2004, scientific observations should be in progress. The Citadel ASTRA (Automated Spectrophotometric Telescope Research Associates) Telescope will be able to observe Vega the primary standard, make rapid measurements of the naked-eye stars, use 10 min./hour to obtain photometric measurements of the nightly extinction, and obtain high quality observations of V= 10.5 mag. stars in an hour. This cross-dispersed instrument will have an approximate wavelength range of λ λ 3300-9000 with a resolution of 14 Å in first and 7 Å in second order and except for regions badly affected by telluric lines. At the end of the photometric calibration process, filter photometric magnitudes and indices will be calibrated. Some will serve as quality checks. During the first year of observing a grid of secondary standards will be calibrated differentially with respect to Vega. These stars will also be used to find the nightly extinction. The candidates for this process have been selected from the most stable of the bright secondary stars of the grating scanner era supplemented by the least variable main sequence B0-F0 band stars in Hipparcos photometry and some metal poor stars. Over the lifetime of the instrument, measurements of secondary stars will be used to improve the quality of the secondary standard fluxes. Science observations for major projects such as comparisons with model atmospheres codes and for exploratory investigations should also begin in the first year. The ASTRA team in planning to deal with this potential data flood realize that they will need help to make the best scientific uses of the data. Thus they are interested in discussing possible collaborations. In less than a year of normal observing, all isolated stars in the Bright Star Catalog which can be observed can have their fluxes well measured. ASTRA Contribution 2. This work is supported by NSF grant AST-0115612 to The Citadel.

  19. Cytosolic and Plastoglobule-targeted Carotenoid Dioxygenases from Crocus sativus Are Both Involved in β-Ionone Release*

    PubMed Central

    Rubio, Angela; Rambla, José Luís; Santaella, Marcella; Gómez, M. Dolores; Orzaez, Diego; Granell, Antonio; Gómez-Gómez, Lourdes

    2008-01-01

    Saffron, the processed stigma of Crocus sativus, is characterized by the presence of several apocarotenoids that contribute to the color, flavor, and aroma of the spice. However, little is known about the synthesis of aroma compounds during the development of the C. sativus stigma. The developing stigma is nearly odorless, but before and at anthesis, the aromatic compound β-ionone becomes the principal norisoprenoid volatile in the stigma. In this study, four carotenoid cleavage dioxygenase (CCD) genes, CsCCD1a, CsCCD1b, CsCCD4a, and CsCCD4b, were isolated from C. sativus. Expression analysis showed that CsCCD1a was constitutively expressed, CsCCD1b was unique to the stigma tissue, but only CsCCD4a and -b had expression patterns consistent with the highest levels of β-carotene and emission of β-ionone derived during the stigma development. The CsCCD4 enzymes were localized in plastids and more specifically were present in the plastoglobules. The enzymatic activities of CsCCD1a, CsCCD1b, and CsCCD4 enzymes were determined by Escherichia coli expression, and subsequent analysis of the volatile products was generated by GC/MS. The four CCDs fell in two phylogenetically divergent dioxygenase classes, but all could cleave β-carotene at the 9,10(9′,10′) positions to yield β-ionone. The data obtained suggest that all four C. sativus CCD enzymes may contribute in different ways to the production of β-ionone. In addition, the location and precise timing of β-ionone synthesis, together with its known activity as a fragrance and insect attractant, suggest that this volatile may have a role in Crocus pollination. PMID:18611853

  20. Study of physical and sound absorbing property of epoxy blended coir dust biocomposite

    NASA Astrophysics Data System (ADS)

    Nath, G.; Mishra, S. P.

    2016-09-01

    Reinforcement biocomposite has gained more attention recently due to its low cost, abundantly availability, low density, specific properties, easy method of separation, enhanced energy recovery, CO2 neutrality, biodegradability and recyclable in nature. As a waste product of coconut fruit, the coconut coir dust (CCD) obtained from the coconut husk. The biocomposite material prepared from the CCD modified with the proper blended solution with the help of ultrasonic technique. The study of adiabatic compressibility of acetone / water (70/30) worth its blending property for bleaching of CCD. The biocomposite material of CCD was prepared with epoxy resin. The different physical properties such as sound absorption coefficient, thermal conductivity and electrical conductivity were measured. The morphological study of biocomposite and measurement of sound absorption coefficient shows good evidence of sound absorbing characteristics of biocomposite of CCD. The sound absorption property of composite material shows a significant result where as the thermal conductivity and electrical conductivity executes a weak result. Thus biocomposite of CCD can acts as a good sound absorber and band conductor of heat and electric current.

  1. The photometric functions of Phobos and Deimos. II - Surface photometry of Deimos

    NASA Technical Reports Server (NTRS)

    Noland, M.; Veverka, J.

    1977-01-01

    Mariner 9 television pictures of Deimos are used to study the uniformity of a certain photometric scattering parameter over the surface of the satellite. It is shown that the photometric data considered satisfy the reciprocity principle and that the Hapke-Irvine scattering law is adequate for describing the surface. Phase functions for Deimos are obtained from scans along the photometric equator, and the photometric behavior of the brightest and darkest areas on the satellite's disk is examined. The results indicate that the surface of Deimos is covered uniformly by a dark and texturally complex material whose photometric behavior is well-represented by the Hapke-Irvine law, that the intrinsic phase coefficient of this material is about 0.017 mag/deg over the phase-angle range from 20 to 80 deg, and that slightly brighter material is present near some craters. Since enhanced brightening was not observed at the specular point of the photometric equator in any of the pictures studied, it is concluded that large exposures of solid rock are absent from the Mars-facing side of Deimos.

  2. Cultural concepts of distress and psychiatric disorders: literature review and research recommendations for global mental health epidemiology

    PubMed Central

    Kohrt, Brandon A; Rasmussen, Andrew; Kaiser, Bonnie N; Haroz, Emily E; Maharjan, Sujen M; Mutamba, Byamah B; de Jong, Joop TVM; Hinton, Devon E

    2014-01-01

    Background Burgeoning global mental health endeavors have renewed debates about cultural applicability of psychiatric categories. This study’s goal is to review strengths and limitations of literature comparing psychiatric categories with cultural concepts of distress (CCD) such as cultural syndromes, culture-bound syndromes, and idioms of distress. Methods The Systematic Assessment of Quality in Observational Research (SAQOR) was adapted based on cultural psychiatry principles to develop a Cultural Psychiatry Epidemiology version (SAQOR-CPE), which was used to rate quality of quantitative studies comparing CCD and psychiatric categories. A meta-analysis was performed for each psychiatric category. Results Forty-five studies met inclusion criteria, with 18 782 unique participants. Primary objectives of the studies included comparing CCD and psychiatric disorders (51%), assessing risk factors for CCD (18%) and instrument validation (16%). Only 27% of studies met SAQOR-CPE criteria for medium quality, with the remainder low or very low quality. Only 29% of studies employed representative samples, 53% used validated outcome measures, 44% included function assessments and 44% controlled for confounding. Meta-analyses for anxiety, depression, PTSD and somatization revealed high heterogeneity (I2 > 75%). Only general psychological distress had low heterogeneity (I2 = 8%) with a summary effect odds ratio of 5.39 (95% CI 4.71-6.17). Associations between CCD and psychiatric disorders were influenced by methodological issues, such as validation designs (β = 16.27, 95%CI 12.75-19.79) and use of CCD multi-item checklists (β = 6.10, 95%CI 1.89-10.31). Higher quality studies demonstrated weaker associations of CCD and psychiatric disorders. Conclusions Cultural concepts of distress are not inherently unamenable to epidemiological study. However, poor study quality impedes conceptual advancement and service application. With improved study design and reporting using guidelines such as the SAQOR-CPE, CCD research can enhance detection of mental health problems, reduce cultural biases in diagnostic criteria and increase cultural salience of intervention trial outcomes. PMID:24366490

  3. VizieR Online Data Catalog: SFiNCs: X-ray, IR and membership catalogs (Getman+, 2017)

    NASA Astrophysics Data System (ADS)

    Getman, K. V.; Broos, P. S.; Kuhn, M. A.; Feigelson, E. D.; Richert, A. J. W.; Ota, Y.; Bate, M. R.; Garmire, G. P.

    2017-06-01

    Sixty five X-ray observations for the 22 Star Formation in Nearby Clouds (SFiNCs) star-forming regions (SFRs) (see tables 1 and 2), made with the imaging array on the Advanced CCD Imaging Spectrometer (ACIS), were pulled from the Chandra archive (spanning 2000 Jan to 2015 Apr; see table 2). Our final Chandra-ACIS catalog for the 22 SFiNCs SFRs comprises 15364 X-ray sources (Tables 3 and 4 and section 3.2). To obtain MIR photometry for X-ray objects and to identify and measure MIR photometry for additional non-Chandra disky stars that were missed in previous studies of the SFiNCs regions (typically faint YSOs), we have reduced the archived Spitzer-IRAC data by homogeneously applying the MYStIX-based Spitzer-IRAC data reduction methods of Kuhn+ (2013, J/ApJS/209/29) to the 423 Astronomical Object Request (AORs) data sets for the 22 SFiNCs SFRs (Table 5). As in MYStIX, here the SFiNCs IRAC source catalog retains all point sources with the photometric signal-to-noise ratio >5 in both [3.6] and [4.5] channels. This catalog covers the 22 SFiNCs SFRs and their vicinities on the sky and comprises 1638654 IRAC sources with available photometric measurements for 100%, 100%, 29%, and 23% of these sources in the 3.6, 4.5, 5.8, and 8.0um bands, respectively (see table 6 and section 3.4). Source position cross correlations between the SFiNCs Chandra X-ray source catalog and an IR catalog, either the "cut-out" IRAC or 2MASS, were made using the steps described in section 3.5. Tables 7 and 8 provide the list of 8492 SFiNCs probable cluster members (SPCMs) and their main IR and X-ray properties (see section 4). (9 data files).

  4. Colony Collapse Disorder: A Descriptive Study

    PubMed Central

    vanEngelsdorp, Dennis; Evans, Jay D.; Saegerman, Claude; Mullin, Chris; Haubruge, Eric; Nguyen, Bach Kim; Frazier, Maryann; Frazier, Jim; Cox-Foster, Diana; Chen, Yanping; Underwood, Robyn; Tarpy, David R.; Pettis, Jeffery S.

    2009-01-01

    Background Over the last two winters, there have been large-scale, unexplained losses of managed honey bee (Apis mellifera L.) colonies in the United States. In the absence of a known cause, this syndrome was named Colony Collapse Disorder (CCD) because the main trait was a rapid loss of adult worker bees. We initiated a descriptive epizootiological study in order to better characterize CCD and compare risk factor exposure between populations afflicted by and not afflicted by CCD. Methods and Principal Findings Of 61 quantified variables (including adult bee physiology, pathogen loads, and pesticide levels), no single measure emerged as a most-likely cause of CCD. Bees in CCD colonies had higher pathogen loads and were co-infected with a greater number of pathogens than control populations, suggesting either an increased exposure to pathogens or a reduced resistance of bees toward pathogens. Levels of the synthetic acaricide coumaphos (used by beekeepers to control the parasitic mite Varroa destructor) were higher in control colonies than CCD-affected colonies. Conclusions/Significance This is the first comprehensive survey of CCD-affected bee populations that suggests CCD involves an interaction between pathogens and other stress factors. We present evidence that this condition is contagious or the result of exposure to a common risk factor. Potentially important areas for future hypothesis-driven research, including the possible legacy effect of mite parasitism and the role of honey bee resistance to pesticides, are highlighted. PMID:19649264

  5. Colony collapse disorder: a descriptive study.

    PubMed

    Vanengelsdorp, Dennis; Evans, Jay D; Saegerman, Claude; Mullin, Chris; Haubruge, Eric; Nguyen, Bach Kim; Frazier, Maryann; Frazier, Jim; Cox-Foster, Diana; Chen, Yanping; Underwood, Robyn; Tarpy, David R; Pettis, Jeffery S

    2009-08-03

    Over the last two winters, there have been large-scale, unexplained losses of managed honey bee (Apis mellifera L.) colonies in the United States. In the absence of a known cause, this syndrome was named Colony Collapse Disorder (CCD) because the main trait was a rapid loss of adult worker bees. We initiated a descriptive epizootiological study in order to better characterize CCD and compare risk factor exposure between populations afflicted by and not afflicted by CCD. Of 61 quantified variables (including adult bee physiology, pathogen loads, and pesticide levels), no single measure emerged as a most-likely cause of CCD. Bees in CCD colonies had higher pathogen loads and were co-infected with a greater number of pathogens than control populations, suggesting either an increased exposure to pathogens or a reduced resistance of bees toward pathogens. Levels of the synthetic acaricide coumaphos (used by beekeepers to control the parasitic mite Varroa destructor) were higher in control colonies than CCD-affected colonies. This is the first comprehensive survey of CCD-affected bee populations that suggests CCD involves an interaction between pathogens and other stress factors. We present evidence that this condition is contagious or the result of exposure to a common risk factor. Potentially important areas for future hypothesis-driven research, including the possible legacy effect of mite parasitism and the role of honey bee resistance to pesticides, are highlighted.

  6. CCD filter and transform techniques for interference excision

    NASA Technical Reports Server (NTRS)

    Borsuk, G. M.; Dewitt, R. N.

    1976-01-01

    The theoretical and some experimental results of a study aimed at applying CCD filter and transform techniques to the problem of interference excision within communications channels were presented. Adaptive noise (interference) suppression was achieved by the modification of received signals such that they were orthogonal to the recently measured noise field. CCD techniques were examined to develop real-time noise excision processing. They were recursive filters, circulating filter banks, transversal filter banks, an optical implementation of the chirp Z transform, and a CCD analog FFT.

  7. Results of near-Earth-asteroid photometry in the frame of the ASPIN programme

    NASA Astrophysics Data System (ADS)

    Krugly, Y.; Molotov, I.; Inasaridze, R.; Kvaratskhelia, O.; Aivazyan, V.; Rumyantsev, V.; Belskaya, I.; Golubaev, A.; Sergeev, A.; Shevchenko, V.; Slyusarev, I.; Burkhonov, O.; Ehgamberdiev, S.; Elenin, L.; Voropaev, V.; Koupianov, V.; Gaftonyuk, N.; Baransky, A.; Irsmambetova, T.; Litvinenko, E.; Aliev, A.; Namkhai, T.

    2014-07-01

    Regular photometric observations aimed for obtaining physical properties of near-Earth asteroids (NEA) are carried out within the Asteroid Search and Photometry Initiative (ASPIN) of the International Scientific Optical Network (ISON). At present, ISON project joins 35 observation facilities in 15 countries with 80 telescopes of different class. Photometric observations of NEAs are carried out at the telescopes with apertures from 20 cm up to 2.6 m equipped with CCD cameras. The obtained lightcurves in the Johnson-Cousins photometric system or in exceptional cases in the integral light (unfiltered photometry) have typical photometric accuracy of 0.01-0.03 mag. The main targets of these observations are near-Earth asteroids as hazardous objects pose a threat for the Earth civilization. The main purpose of the observations is to study characteristics of asteroids such as rotation period, size, and shape of the body, and surface composition. The observations are aimed toward searching binary asteroids, supporting the asteroid radar observations and investigation of the YORP effect. In 2013, we have observed 40 near-Earth asteroids in more than 200 nights. The rotation periods have been determined for 14 NEAs for the first time and, for 6 NEAs, rotation periods were defined more precisely. New rotation periods have been obtained for objects from Aten group: (137805) 1999 YK_5, (329437) 2002 OA_{22}, (367943) Duende (2012 DA_{14}); Apollo: (17188) 1999 WC_2, (137126) 1999 CF_9, (163249) 2002 GT, (251346) 2007 SJ, 2013 TV_{135}; Amor: (9950) ESA, (24445) 2000 PM_8, (137199) 1999 KX_4, (285263) 1998 QE_2, (361071) 2006 AO_4, 2010 XZ_{67}, and refined for (1943) Anteros, (3361) Orpheus, (3752) Camillo, (7888) 1993 UC, (53435) 1999 VM_{40}, (68216) 2001 CV_{26}. NEAs (7888) 1993 UC and (68216) 2001 CV_{26} were found to show signs of a binary nature. To detect possible binary asteroids, we observe the object during several consecutive nights and at several observatories located at different longitudes. In particular, to cover a long time interval and not to miss the eclipse/occultation minima, the binary NEA (285263) 1998 QE_2 has been observed in close dates in Ukraine, Georgia, Tajikistan, Mongolia, the Far East of Russia, and Mexico. To test an influence of the YORP effect on the spin rates, the lightcurves of NEAs (2100) Ra-Shalom, 88710 2001 SL_9, and (138852) 2000 WN_{10} have been obtained. The observations of small NEAs (with diameters smaller 200 m) have revealed very fast rotating NEAs with rotation periods smaller than 2.2 hours for (363305) 2002 NV_{16}, 2000 KA, and 2013 QR_1. Many of our targets were also the targets of the radar observations in the Arecibo and the Goldstone. The obtained results will be presented and the perspectives of the ASPIN programme will be discussed.

  8. Reaching the Diffraction Limit - Differential Speckle and Wide-Field Imaging for the Gemini-N Telescope

    NASA Technical Reports Server (NTRS)

    Scott, Nic J.; Howell, Steve; Horch, Elliott

    2016-01-01

    Speckle imaging allows telescopes to achieve di raction limited imaging performance. The technique requires cameras capable of reading out frames at a very fast rate, e ectively `freezing out' atmospheric seeing. The resulting speckles can be correlated and images reconstructed that are at the di raction limit of the telescope. These new instruments are based on the successful performance and design of the Di erential Speckle Survey Instrument (DSSI) [2, 1]. The instruments are being built for the Gemini-N and WIYN telescopes and will be made available to the community via the peer review proposal process. We envision their primary use to be validation and characterization of exoplanet targets from the NASA K2 and TESS missions and RV discovered exoplanets. Such targets will provide excellent follow-up candidates for both the WIYN and Gemini telescopes [3]. Examples of DSSI data are shown in the gures below. We expect similar data quality in speckle imaging mode with the new instruments. Additionally, both cameras will have a wide- eld mode and standard SDSS lters. They will be highly versatile instruments and it is that likely many other science programs will request time on the cameras. The limiting magnitude for speckle observations, will remain around 13-14th at WIYN and 16-17th at Gemini, while wide- eld, normal CCD imaging operation should be able to go to much fainter, providing usual CCD imaging and photometric capabilities. The instruments will also have high utility as scoring cameras for telescope engineering purposes, or other applications where high time resolution is needed. Instrument support will be provided, including a software pipeline that takes raw speckle data to fully reconstructed images.

  9. HST/WFC3: Understanding and Mitigating Radiation Damage Effects in the CCD Detectors

    NASA Astrophysics Data System (ADS)

    Baggett, S.; Anderson, J.; Sosey, M.; MacKenty, J.; Gosmeyer, C.; Noeske, K.; Gunning, H.; Bourque, M.

    2015-09-01

    At the heart of the Hubble Space Telescope Wide Field Camera 3 (HST/WFC3) UVIS channel resides a 4096x4096 pixel e2v CCD array. While these detectors are performing extremely well after more than 5 years in low-earth orbit, the cumulative effects of radiation damage cause a continual growth in the hot pixel population and a progressive loss in charge transfer efficiency (CTE) over time. The decline in CTE has two effects: (1) it reduces the detected source flux as the defects trap charge during readout and (2) it systematically shifts source centroids as the trapped charge is later released. The flux losses can be significant, particularly for faint sources in low background images. Several mitigation options exist, including target placement within the field of view, empirical stellar photometric corrections, post-flash mode and an empirical pixel-based CTE correction. The application of a post-flash has been remarkably effective in WFC3 at reducing CTE losses in low background images for a relatively small noise penalty. Currently all WFC3 observers are encouraged to post-flash images with low backgrounds. Another powerful option in mitigating CTE losses is the pixel-based CTE correction. Analagous to the CTE correction software currently in use in the HST Advanced Camera for Surveys (ACS) pipeline, the algorithm employs an empirical observationally-constrained model of how much charge is captured and released in order to reconstruct the image. Applied to images (with or without post-flash) after they are acquired, the software is currently available as a standalone routine. The correction will be incorporated into the standard WFC3 calibration pipeline.

  10. Preliminary elements of the low mass ratio and moderate fill-out factor VSX J045718.3+405643 (GSC 02898-02901)

    NASA Astrophysics Data System (ADS)

    Acerbi, F.; Martignoni, M.; Barani, C.

    2018-05-01

    We present the results of our investigation of the geometrical parameters of the W UMa-type binary system VSX J045718.3+405643 (short name VSX J0457) based on new CCD B, V and Ic light curves. Our observations were carried out during six nights in November and December 2016 using the 0.25 m telescope of the Stazione Astronomica Betelgeuse in Magnago, Northern Italy. Six new times of minima and light elements have been determined and the observed light curves were analysed using the Wilson-Devinney code. The output model reveals that the system is a contact binary of A-Subtype of the W Ursae Majoris systems with a mass ratio of q ∼ 0.26 and a degree of contact factor f ∼ 32%. The primary component is hotter than the secondary by 95 K, this suggests us that the system is under thermal contact. The high orbital inclination (i = 82°.2) implies that VSX J0457 is a total eclipsing binary system and the photometric parameters here obtained are quite reliable. The absolute physical parameters of the two components in VSX J0457 are estimated. Based on these estimated parameters the evolutionary state of the system components is investigated and discussed. Combining our photometric solution with the 3-D correlation obtained for contact binaries by Gazeas (2009) we derive the masses and radii of the components of this eclipsing system as M1 = 1.44M⊙, M2 = 0.38M⊙, R1 = 1.55R⊙ and R2 = 0.87R⊙. The distance to VSX J0457 was calculated as 147 pc from this analysis, taking into account interstellar extinction.

  11. Photometric observations and orbital period variations of HS 0705 + 6700 and NY Vir

    NASA Astrophysics Data System (ADS)

    Çamurdan, C. M.; Zengin Çamurdan, D.; İbanoǧlu, C.

    2012-04-01

    We present photometric observations of two post-common-envelope stars, NY Vir (=PG 1336-018) and HS 0705 + 6700. The V band CCD observation of NY Vir was performed by a 40 cm telescope at Ege University Observatory and the R band observations of HS 0705 + 6700 were performed by 100 cm telescope at TÜBİTAK National Observatory. The new light curves were analyzed by the WD code and the physical parameters of stars were determined. We obtained new mid-eclipse timings for HS 0705 + 6700 and combined them with those previously published data. The analysis of the O-C residuals yields a period of about 8.06 ± 0.28 yr and an amplitude of 98.5 s for the system HS 0705 + 6700, which is attributed to the third star physically bounded to the evolved eclipsing pair. A mass function of 1.2 × 10 -4 M⊙ for the third star is obtained. The existence of a third star is also confirmed by the light curve analysis, indicating light contribution of about 0.043 at phase 0.25 in R-bandpass of the eclipsing pair. Using mass-luminosity relationship of the low mass stars we estimate a mass of 0.12 M⊙ with an orbital inclination of about 20°. The O-C residuals obtained for the system NY Vir were represented by a downward parabola which indicates orbital period decrease in the system. Using the coefficient of quadratic term we calculate a rate of orbital period decrease of about dP/ dt = -4.09 × 10 -8days yr -1. The period decrease we have measured in NY Vir may be explained by angular momentum loss from the binary system.

  12. Color-magnitude Diagrams for the Stellar Open Cluster M 67 in theVilnius Photometric System

    NASA Astrophysics Data System (ADS)

    Boyle, Richard P.; Janusz, Robert

    2015-01-01

    Stellar photometry in the Vilnius Photometric System requires one percent quality for deriving luminosity class and spectral type subclass. We use such existing photometry of the open cluster M 67 to calibrate new CCD observations at the Vatican Advanced Technology Telescope (VATT) for correcting the flat-fielding zero-point and deriving the color-transformation in this intermediate-band, seven filter system (Boyle et al., BAAS 37 #4, 2005).Recently we have developed a "tie-in" observational practice to apply the zero-point and color transformation of the M 67 observations to neighboring starfields of interest that have no existing photometry. Sky transparency must remain constant to better than one percent during a round of short exposures in a filter between the field having calibrated photometry and the new field having no photometry as if the new field was exposed simultaneously with the master field.Proof of success for this "tie-in" method is shown with the master field being M 67 and the "tie-in" field being the nearby extended "corona" area. The distinctive color-magnitude diagrams of the old open clusterM 67 reveal the sensitivity to having constant sky transparency during the round of short exposures on M 67 and its extended area. For the extended area has the same form in its color-magnitude diagram as M 67. So variation in sky transparency shows displacement on the color-magnitude diagrams at the one percent quality.We will attempt new analysis concerning evolution of this very old open cluster (2.56 Gyr, WEBDA, http://www.univie.ac.at/webda/) and the surrounding "coronal" extent with reference to previous work by Chupina and Vereshchagin (Astron. Astrophys, 334, 552, 1998).

  13. Extinction in the Star Cluster SAI 113 and Galactic Structure in Carina

    NASA Astrophysics Data System (ADS)

    Carraro, Giovanni; Turner, David G.; Majaess, Daniel J.; Baume, Gustavo L.; Gamen, Roberto; Molina Lera, José A.

    2017-04-01

    Photometric CCD UB VI C photometry obtained for 4860 stars surrounding the embedded southern cluster SAI 113 (Skiff 8) is used to examine the reddening in the field and derive the distance to the cluster and nearby van Genderen 1. Spectroscopic color excesses for bright cluster stars, photometric reddenings for A3 dwarfs, and dereddening of cluster stars imply that the reddening and extinction laws match results derived for other young clusters in Carina: {E}U-B/{E}B-V≃ 0.64 and {R}V≃ 4. SAI 113 displays features that may be linked to a history of dynamical interactions among member stars: possible circumstellar reddening and rapid rotation of late B-type members, ringlike features in star density, and a compact core, with most stars distributed randomly across the field. The group van Genderen 1 resembles a stellar asterism, with potential members distributed randomly across the field. Distances of 3.90 ± 0.19 kpc and 2.49 ± 0.09 kpc are derived for SAI 113 and van Genderen 1, respectively, with variable reddenings {E}B-V ranging from 0.84 to 1.29 and 0.23 to 1.28. The SRC variables CK Car and EV Car may be outlying members of van Genderen 1, thereby of use for calibrating the period-luminosity relation for pulsating M supergiants. More importantly, the anomalous reddening and extinction evident in Carina and nearby regions of the Galactic plane in the fourth quadrant impact the mapping of spiral structure from young open clusters. The distribution of spiral arms in the fourth quadrant may be significantly different from how it is often portrayed.

  14. An all-sky catalogue of solar-type dwarfs for exoplanetary transit surveys

    NASA Astrophysics Data System (ADS)

    Nascimbeni, V.; Piotto, G.; Ortolani, S.; Giuffrida, G.; Marrese, P. M.; Magrin, D.; Ragazzoni, R.; Pagano, I.; Rauer, H.; Cabrera, J.; Pollacco, D.; Heras, A. M.; Deleuil, M.; Gizon, L.; Granata, V.

    2016-12-01

    Most future surveys designed to discover transiting exoplanets, including TESS and PLATO, will target bright (V ≲ 13) and nearby solar-type stars having a spectral type later than F5. In order to enhance the probability of identifying transits, these surveys must cover a very large area on the sky, because of the intrinsically low areal density of bright targets. Unfortunately, no existing catalogue of stellar parameters is both deep and wide enough to provide a homogeneous input list. As the first Gaia data release exploitable for this purpose is expected to be released not earlier than late 2017, we have devised an improved reduced-proper-motion (RPM) method to discriminate late field dwarfs and giants by combining the fourth U.S. Naval Observatory CCD Astrograph Catalog (UCAC4) proper motions with AAVSO Photometric All-Sky Survey DR6 photometry, and relying on Radial Velocity Experiment DR4 as an external calibrator. The output, named UCAC4-RPM, is a publicly available, complete all-sky catalogue of solar-type dwarfs down to V ≃ 13.5, plus an extension to log g > 3.0 subgiants. The relatively low amount of contamination (defined as the fraction of false positives; <30 per cent) also makes UCAC4-RPM a useful tool for the past and ongoing ground-based transit surveys, which need to discard candidate signals originating from early-type or giant stars. As an application, we show how UCAC4-RPM may support the preparation of the TESS (that will map almost the entire sky) input catalogue and the input catalogue of PLATO, planned to survey more than half of the whole sky with exquisite photometric precision.

  15. Multicolour CCD surface photometry for E and S0 galaxies in 10 clusters

    NASA Astrophysics Data System (ADS)

    Jorgensen, Inger; Franx, Marijn; Kjaergaard, Per

    1995-04-01

    CCD surface photometry for 232 E and S0 galaxies is presented. The galaxies are observed in Gunn r and Johnson B, or Gunn r and g. For 48 of the galaxies surface photometry in Johnson U is also presented. Aperture magnitudes in Gunn nu are derived for half of the galaxies. Galaxies in the following clusters have been observed: Abell 194, Abell 539, Abell 3381, Abell 3574, Abell S639, Abell S753, HydraI (Abell 1060), DC2345-28, Doradus and Grm15. The data are part of our ongoing study of the large-scale motions in the Universe and the physical background for the fundamental plane. We use a full model fitting technique for analysing the CCD images. This gives radial profiles of local surface brightness, colour, ellipticity and position angle. The residuals relative to the elliptical isophotes are described quantitatively by Fourier expansions. Effective radius, mean surface brightness and total magnitude are derived by fitting a de Vaucouleurs r^¼ growth curve. We have derived a characteristic radius r_n similar to the diameter D_n introduced by Dressler et al. The derivation of the effective parameters and of r_n takes the seeing into account. We confirm the results by Saglia et al. that the effects of the seeing can be substantial. Seeing-corrected values of the effective parameters and r_n are also presented for 147 E and S0 galaxies in the Coma cluster. Colours, colour gradients and geometrical parameters are derived. The photometry is internally consistent within 0.016 mag. Comparison with the photoelectric aperture photometry from Burstein et al. shows a mean offset of 0.010 mag with an rms scatter of 0.034 mag. The global photometric parameters are compared with data from Faber et al., Lucey et al. and Lucey & Carter. These comparisons imply that the typical rms errors are as follows - log r_n:+/-0.015 log r_e:+/-0.045 m_T:+/-0.09 mag; _e:+/-0.16 mag. The rms error on the combination log r_e-0.35_e which enters the fundamental plane is +/-0.020. Also, comparisons with data from Saglia et al. are presented. The accuracy of the absolute photometry, as well as the derived parameters, makes the data suitable for our investigations of the fundamental plane and of the large-scale motions in the Universe.

  16. Lack of evidence for an association between Iridovirus and colony collapse disorder.

    PubMed

    Tokarz, Rafal; Firth, Cadhla; Street, Craig; Cox-Foster, Diana L; Lipkin, W Ian

    2011-01-01

    Colony collapse disorder (CCD) is characterized by the unexplained losses of large numbers of adult worker bees (Apis mellifera) from apparently healthy colonies. Although infections, toxins, and other stressors have been associated with the onset of CCD, the pathogenesis of this disorder remains obscure. Recently, a proteomics study implicated a double-stranded DNA virus, invertebrate iridescent virus (Family Iridoviridae) along with a microsporidium (Nosema sp.) as the cause of CCD. We tested the validity of this relationship using two independent methods: (i) we surveyed healthy and CCD colonies from the United States and Israel for the presence of members of the Iridovirus genus and (ii) we reanalyzed metagenomics data previously generated from RNA pools of CCD colonies for the presence of Iridovirus-like sequences. Neither analysis revealed any evidence to suggest the presence of an Iridovirus in healthy or CCD colonies.

  17. Lack of Evidence for an Association between Iridovirus and Colony Collapse Disorder

    PubMed Central

    Street, Craig; Cox-Foster, Diana L.; Lipkin, W. Ian

    2011-01-01

    Colony collapse disorder (CCD) is characterized by the unexplained losses of large numbers of adult worker bees (Apis mellifera) from apparently healthy colonies. Although infections, toxins, and other stressors have been associated with the onset of CCD, the pathogenesis of this disorder remains obscure. Recently, a proteomics study implicated a double-stranded DNA virus, invertebrate iridescent virus (Family Iridoviridae) along with a microsporidium (Nosema sp.) as the cause of CCD. We tested the validity of this relationship using two independent methods: (i) we surveyed healthy and CCD colonies from the United States and Israel for the presence of members of the Iridovirus genus and (ii) we reanalyzed metagenomics data previously generated from RNA pools of CCD colonies for the presence of Iridovirus-like sequences. Neither analysis revealed any evidence to suggest the presence of an Iridovirus in healthy or CCD colonies. PMID:21738798

  18. Targeting excited states in all-trans polyenes with electron-pair states.

    PubMed

    Boguslawski, Katharina

    2016-12-21

    Wavefunctions restricted to electron pair states are promising models for strongly correlated systems. Specifically, the pair Coupled Cluster Doubles (pCCD) ansatz allows us to accurately describe bond dissociation processes and heavy-element containing compounds with multiple quasi-degenerate single-particle states. Here, we extend the pCCD method to model excited states using the equation of motion (EOM) formalism. As the cluster operator of pCCD is restricted to electron-pair excitations, EOM-pCCD allows us to target excited electron-pair states only. To model singly excited states within EOM-pCCD, we modify the configuration interaction ansatz of EOM-pCCD to contain also single excitations. Our proposed model represents a simple and cost-effective alternative to conventional EOM-CC methods to study singly excited electronic states. The performance of the excited state models is assessed against the lowest-lying excited states of the uranyl cation and the two lowest-lying excited states of all-trans polyenes. Our numerical results suggest that EOM-pCCD including single excitations is a good starting point to target singly excited states.

  19. Vacuum compatible miniature CCD camera head

    DOEpatents

    Conder, Alan D.

    2000-01-01

    A charge-coupled device (CCD) camera head which can replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating x-rays, such as within a target chamber where laser produced plasmas are studied. The camera head is small, capable of operating both in and out of a vacuum environment, and is versatile. The CCD camera head uses PC boards with an internal heat sink connected to the chassis for heat dissipation, which allows for close(0.04" for example) stacking of the PC boards. Integration of this CCD camera head into existing instrumentation provides a substantial enhancement of diagnostic capabilities for studying high energy density plasmas, for a variety of military industrial, and medical imaging applications.

  20. Actinide chemistry using singlet-paired coupled cluster and its combinations with density functionals

    NASA Astrophysics Data System (ADS)

    Garza, Alejandro J.; Sousa Alencar, Ana G.; Scuseria, Gustavo E.

    2015-12-01

    Singlet-paired coupled cluster doubles (CCD0) is a simplification of CCD that relinquishes a fraction of dynamic correlation in order to be able to describe static correlation. Combinations of CCD0 with density functionals that recover specifically the dynamic correlation missing in the former have also been developed recently. Here, we assess the accuracy of CCD0 and CCD0+DFT (and variants of these using Brueckner orbitals) as compared to well-established quantum chemical methods for describing ground-state properties of singlet actinide molecules. The f0 actinyl series (UO22+, NpO23+, PuO24+), the isoelectronic NUN, and thorium (ThO, ThO2+) and nobelium (NoO, NoO2) oxides are studied.

  1. A new catalogue of Strömgren-Crawford uvbyβ photometry

    NASA Astrophysics Data System (ADS)

    Paunzen, E.

    2015-08-01

    Context. The uvbyβ photometric system is widely used for the study of various Galactic and extragalactic objects. It measures the colour due to temperature differences, the Balmer discontinuity, and blanketing absorption due to metals. Aims: A new all-sky catalogue of all available uvbyβ measurements from the literature was generated. Methods: The data for the individual stars were cross-checked on the basis of the Tycho-2 catalogue. This catalogue includes very precise celestial coordinates, but is magnitude and spatial resolution limited. However, the loss of objects is only marginal and is compensated for by the gain of homogeneity. Results: In total, 298 639 measurements of 60 668 stars were used to derive unweighted mean indices and their errors. Photoelectric and CCD observations were treated in the same way. Conclusions: The presented data set can be used for various applications such as new calibrations of astrophysical parameters, the standardization of new observations, and as additional information for ongoing and forthcoming all-sky surveys. The catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/580/A23 http://vizier.u-strasbg.fr/viz-bin/VizieR

  2. The refined physical properties of transiting exoplanetary system WASP-11/HAT-P-10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiao-bin; Gu, Sheng-hong; Wang, Yi-bo

    2014-04-01

    The transiting exoplanetary system WASP-11/HAT-P-10 was observed using the CCD camera at Yunnan Observatories, China from 2008 to 2011, and four new transit light curves were obtained. Combined with published radial velocity measurements, the new transit light curves are analyzed along with available photometric data from the literature using the Markov Chain Monte Carlo technique, and the refined physical parameters of the system are derived, which are compatible with the results of two discovery groups, respectively. The planet mass is M{sub p} = 0.526 ± 0.019 M{sub J} , which is the same as West et al.'s value, and moremore » accurately, the planet radius R{sub p} = 0.999{sub −0.018}{sup +0.029} R{sub J} is identical to the value of Bakos et al. The new result confirms that the planet orbit is circular. By collecting 19 available mid-transit epochs with higher precision, we make an orbital period analysis for WASP-11b/HAT-P-10b, and derive a new value for its orbital period, P = 3.72247669 days. Through an (O – C) study based on these mid-transit epochs, no obvious transit timing variation signal can be found for this system during 2008-2012.« less

  3. Resolved stars in nearby galaxies: Ground-based photometry of M81

    NASA Technical Reports Server (NTRS)

    Madore, Barry F.; Freedman, Wendy L.; Lee, Myung G.

    1993-01-01

    Using the Canada-France-Hawaii Telescope (CFHT) we have obtained three closely spaced epochs of calibrated Blue Violet Red Infrared (BVRI) CCD imaging of two fields in M81, each known to contain a thirty-day Cepheid. Calibrated BVRI photometry of the brightest stars in these fields is presented. The slope of the luminosity function from the brightest 3-4 mag of the main-sequence blue plume is consistent with similar determinations of the apparent luminosity function in other resolved galaxies, thereby removing the one potential deviation from universality noted by Freedman in a photographic study of luminosity functions in nearby resolved galaxies. Under the assumption that the two Cepheids are representative, a reddening-law fit to the multiwavelength BVRI period-luminosity moduli give a true distance modulus of (m-M)sub 0 = 27.79 mag for M81, corresponding to a linear distance of 3.6 Mpc. An error analysis shows that the derived true distance modulus has a random error of +/- 0.28 mag (due to the photometric uncertainties in the BVRI data), with a systematic uncertainty of +/- 0.10 mag (accounting for the combined effects of unknown phasing of the data points, and the unknown positioning of these particular stars within the Cepheid instabiliy strip).

  4. Astronomical Research Institute Photometric Results

    NASA Astrophysics Data System (ADS)

    Linder, Tyler R.; Sampson, Ryan; Holmes, Robert

    2013-01-01

    The Astronomical Research Institute (ARI) conducts astrometric and photometric studies of asteroids with a concentration on near-Earth objects (NEOs). A 0.76-m autoscope was used for photometric studies of seven asteroids of which two were main-belt targets and five were NEOs, including one potentially hazardous asteroid (PHA). These objects are: 3122 Florence, 3960 Chaliubieju, 5143 Heracles, (6455) 1992 HE, (36284) 2000 DM8, (62128) 2000 SO1, and 2010 LF86.

  5. Mosaic CCD method: A new technique for observing dynamics of cometary magnetospheres

    NASA Technical Reports Server (NTRS)

    Saito, T.; Takeuchi, H.; Kozuba, Y.; Okamura, S.; Konno, I.; Hamabe, M.; Aoki, T.; Minami, S.; Isobe, S.

    1992-01-01

    On April 29, 1990, the plasma tail of Comet Austin was observed with a CCD camera on the 105-cm Schmidt telescope at the Kiso Observatory of the University of Tokyo. The area of the CCD used in this observation is only about 1 sq cm. When this CCD is used on the 105-cm Schmidt telescope at the Kiso Observatory, the area corresponds to a narrow square view of 12 ft x 12 ft. By comparison with the photograph of Comet Austin taken by Numazawa (personal communication) on the same night, we see that only a small part of the plasma tail can be photographed at one time with the CCD. However, by shifting the view on the CCD after each exposure, we succeeded in imaging the entire length of the cometary magnetosphere of 1.6 x 10(exp 6) km. This new technique is called 'the mosaic CCD method'. In order to study the dynamics of cometary plasma tails, seven frames of the comet from the head to the tail region were twice imaged with the mosaic CCD method and two sets of images were obtained. Six microstructures, including arcade structures, were identified in both the images. Sketches of the plasma tail including microstructures are included.

  6. Genetic mapping of the cleidocranial dysplasia (CCD) locus on chromosome band 6p21 to include a microdeletion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelb, B.D.; Desnick, R.J.; Shevell, M.

    1995-08-28

    Cleidocranial dysplasia (CCD) is a generalized skeletal dysplasia with autosomal dominant inheritance. Recently, the CCD disease locus was localized to 23 and 17 cM regions of chromosome band 6p21 by linkage studies of seven affected families. Of note, the 23 cM region contained a microdeletion detected in one family at D6S459, an interval that was excluded in the 17 cM overlapping region. Here, linkage of CCD to 6p21 was independently confirmed with a maximal two-point LOD score of Z=5.12 with marker D6S452 at {theta}=0.00. Recombinant events in two affected individuals defined a CCD region of 7 cM from D6S465 tomore » D6S282, which overlapped with the CCD region containing the microdeletion but did not overlap with the 17 cM critical region from D6S282 to D6S291. These results suggest the refined localization of the CCD region to 6 cM spanning markers D6S438 to D6S282, thereby reviving the possibility that the CCD gene lies within the microdeletion at D6S459. 13 refs., 2 figs., 1 tab.« less

  7. Synergistic effect of dicarbollide anions in liquid-liquid extraction: a molecular dynamics study at the octanol-water interface.

    PubMed

    Chevrot, G; Schurhammer, R; Wipff, G

    2007-04-28

    We report a molecular dynamics study of chlorinated cobalt bis(dicarbollide) anions [(B(9)C(2)H(8)Cl(3))(2)Co](-)"CCD(-)" in octanol and at the octanol-water interface, with the main aim to understand why these hydrophobic species act as strong synergists in assisted liquid-liquid cation extraction. Neat octanol is quite heterogeneous and is found to display dual solvation properties, allowing to well solubilize CCD(-), Cs(+) salts in the form of diluted pairs or oligomers, without displaying aggregation. At the aqueous interface, octanol behaves as an amphiphile, forming either monolayers or bilayers, depending on the initial state and confinement conditions. In biphasic octanol-water systems, CCD(-) anions are found to mainly partition to the organic phase, thus attracting Cs(+) or even more hydrophilic counterions like Eu(3+) into that phase. The remaining CCD(-) anions adsorb at the interface, but are less surface active than at the chloroform interface. Finally, we compare the interfacial behavior of the Eu(BTP)(3)(3+) complex in the absence and in the presence of CCD(-) anions and extractant molecules. It is found that when the CCD(-)'s are concentrated enough, the complex is extracted to the octanol phase. Otherwise, it is trapped at the interface, attracted by water. These results are compared to those obtained with chloroform as organic phase and discussed in the context of synergistic effect of CCD(-) in liquid-liquid extraction, pointing to the importance of dual solvation properties of octanol and of the hydrophobic character of CCD(-) for synergistic extraction of cations.

  8. Microvariability of the blazar OJ 287

    NASA Astrophysics Data System (ADS)

    Jia, G. B.; Cen, X. F.; Ma, H. Y.; Wang, J. C.

    1998-05-01

    Results of BVRI CCD photometric monitoring and fast photometry in the I band for the blazar OJ 287 in 1994-1995 are presented. The predicted outburst of the blazar had been observed, the maximum appeared in 1994 November, after that, the luminosity decreased by 1.6 mag for about three months and dropped to near the level in 1994 April. Rapid variations with timescales of minutes, hours and one day were observed in our observations, with small amplitude. The amplitude of the most rapid variations (minutes) is in the range of 0fm043 -0fm12 . The results of the statistical analysis of the fast photometry data are as follows. In five nights out of six rapid variability appeared in the sampling interval, which ranged from 3.4 minutes to 6.5 minutes, with a rms amplitude of flux variations of 1.70%-2.3%. The rapid variability can be explained by the model of shocks within turbulent jet or of vortices and magnetic flux tubes on accretion disk. Table 5 is only available at the CDS via anonymous ftp 130.79.128.5 or http://cdsweb.u-strasbg.fr/Abstract.html

  9. The darkest EMCCD ever

    NASA Astrophysics Data System (ADS)

    Daigle, Olivier; Quirion, Pierre-Olivier; Lessard, Simon

    2010-07-01

    EMCCDs are devices capable of sub-electron read-out noise at high pixel rate, together with a high quantum efficiency (QE). However, they are plagued by an excess noise factor (ENF) which has the same effect on photometric measurement as if the QE would be halved. In order to get rid of the ENF, the photon counting (PC) operation is mandatory, with the drawback of counting only one photon per pixel per frame. The high frame rate capability of the EMCCDs comes to the rescue, at the price of increased clock induced charges (CIC), which dominates the noise budget of the EMCCD. The CIC can be greatly reduced with an appropriate clocking, which renders the PC operation of the EMCCD very efficient for faint flux photometry or spectroscopy, adaptive optics, ultrafast imaging and Lucky Imaging. This clocking is achievable with a new EMCCD controller: CCCP, the CCD Controller for Counting Photons. This new controller, which is now commercialized by Nüvü cameras inc., was integrated into an EMCCD camera and tested at the observatoire du mont-M'egantic. The results are presented in this paper.

  10. Refined investigation of the low-amplitude contact binary V1003 Her

    NASA Astrophysics Data System (ADS)

    Papageorgiou, A.; Christopoulou, P.-E.; Pribulla, T.; Vaňko, M.

    2015-05-01

    We present an extensive analysis of the low amplitude, contact binary V1003 Her, based on the new , CCD photometric light curves in combination with published radial velocity (RV) curves. We investigate the stable configurations for the system with two independent methods and modeling tools: PHOEBE, ROCHE, via heuristic scanning and genetic algorithms, although the very low inclination of the system can place limitations. All methods indicate that V1003 Her is most likely in overcontact state with unequal components with temperature difference of 550 K, a mass ratio of q=0.373 and a contact degree of 36±10 %. As it is viewed at the very low inclination of i˜38∘±1∘, if its configuration is confirmed, it will be among the most massive W-subtype of W UMa systems. This conclusion is also supported by other published models. However, in order to conclude reliable physical properties of the system, the high-precise based-ground photometry (or satellite photometry) and spectroscopic follow-up of V1003 Her is required.

  11. VizieR Online Data Catalog: BVIc light curves of SZ Cam (Tamajo+, 2012)

    NASA Astrophysics Data System (ADS)

    Tamajo, E.; Munari, U.; Siviero, A.; Tomasella, L.; Dallaporta, S.

    2012-01-01

    We present a spectroscopic and photometric analysis of the multiple system and early-type eclipsing binary SZ Cam (O9 IV + B0.5 V), which consists of an eclipsing SB2 pair of orbital period P=2.7-days in a long orbit (~55yrs) around a non-eclipsing SB1 pair of orbital period P=2.8-days. We have reconstructed the spectra of the individual components of SZ Cam from the observed composite spectra using the technique of spectral disentangling. We used them together with extensive and accurate BV IC CCD photometry to obtain an orbital solution. Our photometry revealed the presence of a beta Cep variable in the SZ Cam hierarchical system, probably located within the non-eclipsing SB1 pair. The pulsation period is 0.33265+/-0.00005-days and the observed total amplitude in the B band is 0.0105+/-0.0005mag. NLTE analysis of the disentangled spectra provided atmospheric parameters for all three components, consistent with those derived from orbital solution. (1 data file).

  12. TX Cnc AS A MEMBER OF THE PRAESEPE OPEN CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X. B.; Deng, L.; Lu, P.

    2009-08-15

    We present B-, V-, and I-band CCD photometry of the W UMa-type binary system TX Cnc, which is a member star of the Praesepe open cluster. Based on the observations, new ephemeris and a revised photometric solution of the binary system were derived. Combined with the results of the radial velocity solution contributed by Pribulla et al., the absolute parameters of the system were determined. The mass, radius, and luminosity of the primary component are derived to be 1.35 {+-} 0.02 M {sub sun}, 1.27 {+-} 0.04 R {sub sun}, and 2.13 {+-} 0.11 L {sub sun}. Those for themore » secondary star are computed as 0.61 {+-} 0.01 M {sub sun}, 0.89 {+-} 0.03 R {sub sun}, and 1.26 {+-} 0.07 L {sub sun}, respectively. Based on these results, a distance modulus of (m - M) {sub V} = 6.34 {+-} 0.05 is determined for the star. It confirms the membership of TX Cnc to the Praesepe open cluster. The evolutionary status and the physical nature of the binary system are discussed compared with the theoretical model.« less

  13. The first orbital parameters and period variation of the short-period eclipsing binary AQ Boo

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Zhang, Liyun; Pi, Qingfeng; Han, Xianming L.; Zhang, Xiliang; Lu, Hongpeng; Wang, Daimei; Li, TongAn

    2016-10-01

    We obtained the first VRI CCD light curves of the short-period contact eclipsing binary AQ Boo, which was observed on March 22 and April 19 in 2014 at Xinglong station of National Astronomical Observatories, and on January 20, 21 and February 28 in 2015 at Kunming station of Yunnan Observatories of Chinese Academy of Sciences, China. Using our six newly obtained minima and the minima that other authors obtained previously, we revised the ephemeris of AQ Boo. By fitting the O-C (observed minus calculated) values of the minima, the orbital period of AQ Boo shows a decreasing tendency P˙ = - 1.47(0.17) ×10-7 days/year. We interpret the phenomenon by mass transfer from the secondary (more massive) component to the primary (less massive) one. By using the updated Wilson & Devinney program, we also derived the photometric orbital parameters of AQ Boo for the first time. We conclude that AQ Boo is a near contact binary with a low contact factor of 14.43%, and will become an over-contact system as the mass transfer continues.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jatmiko, A. T. P.; Puannandra, G. P.; Hapsari, R. D.

    Lunar Occultation (LO) is an event where limb of the Moon passing over a particular heavenly bodies such as stars, asteroids, or planets. In other words, during the event, stars, asteroids and planets are occulted by the Moon. When occulted objects contact the lunar limb, there will be a diffraction fringe(s) which can be measured photometrically, until the signal vanishes into noise. This event will give us a valuable information about binarities (of stars) and/or angular diameters estimation (of stars, planets, asteroids) in milliarcsecond resolution, by fitting with theoretical LO pattern. CCDs are common for LO observation because of itsmore » fast read out, and recently are developed for sub-meter class telescope. In this paper, our LO observation attempt of μ Sgr and its progress report are presented. The observation was conducted on July 30{sup th}, 2012 at Bosscha Observatory, Indonesia, using 45cm f/12 GOTO telescope combined with ST-9 XE CCD camera and Bessel B filter. We used drift-scan method to obtain light curve of the star as it was disappearing behind Moon's dark limb. Our goal is to detect binarity (or multiplicity) of this particular object.« less

  15. Study of the Effects of Photometric Geometry on Spectral Reflectance Measurements

    NASA Technical Reports Server (NTRS)

    Helfenstein, Paul

    1998-01-01

    The objective of this research is to investigate how the spectrophotometric properties of planetary surface materials depend on photometric geometry by refining and applying radiative transfer theory to data obtained from spacecraft and telescope observations of planetary surfaces, studies of laboratory analogs, and computer simulations. The goal is to perfect the physical interpretation of photometric parameters in the context of planetary surface geological properties and processes. The purpose of this report is to document the research achievements associated with this study.

  16. Printed circuit board for a CCD camera head

    DOEpatents

    Conder, Alan D.

    2002-01-01

    A charge-coupled device (CCD) camera head which can replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating x-rays, such as within a target chamber where laser produced plasmas are studied. The camera head is small, capable of operating both in and out of a vacuum environment, and is versatile. The CCD camera head uses PC boards with an internal heat sink connected to the chassis for heat dissipation, which allows for close (0.04" for example) stacking of the PC boards. Integration of this CCD camera head into existing instrumentation provides a substantial enhancement of diagnostic capabilities for studying high energy density plasmas, for a variety of military industrial, and medical imaging applications.

  17. The reliability of cytoplasmic CD3 and CD22 antigen expression in the immunodiagnosis of acute leukemia: a study of 500 cases.

    PubMed

    Janossy, G; Coustan-Smith, E; Campana, D

    1989-03-01

    Current views about the origin of acute lymphoid leukemia (ALL) emphasize the importance of maturation arrest at a precursor cell level. Recently, the CD22 antigen has been identified in the cytoplasm of normal bone marrow-borne immature B lineage cells, while the CD3 antigen (epsilon chain) has been detected within normal immature thymic blasts. In the first part our study performed on 100 cases of known acute leukemias, the expression of such cytoplasmic molecules, referred to as cCD22 and cCD3, was analyzed together with their appearance in the leukemic cells' membrane (mCD22 and mCD3). The presence of cCD22 in B-lineage ALL and that of cCD3 in T-ALL has indeed fully confirmed the diagnosis reached by other markers, and mCD22 and mCD3 were expressed on only a few cases of B- and T-lineage ALL, also revealing a degree of developmental asynchrony within leukemic blasts. In the subsequent analysis both cCD22 and cCD3 have been included in a standard panel of diagnostic reagents applied on 500 consecutive cases of acute leukemia. Here the aim was to analyze both the diagnostic precision of individual markers and the heterogeneity of various leukemic types in terms of the expression of membrane and intracellular antigens and their cytochemical features (Sudan Black B and esterases). It has been found that cCD22 and cCD3 are exquisitely specific for B-precursor ALL (TdT+, CD19+) and T-ALL (TdT+, CD7+), respectively, while both markers are absent in acute myeloblastic leukemia (AML) and acute myelomonocytic and monocytic leukemia (AMML/AMoL). These observations contrast the findings which demonstrate that 31% of cases among nonlymphoid acute leukemia (including AML and AMML) express CD7 and/or TdT. The study of myeloid antigens detected by CD13, CD33, and CD14 is also informative and complementary, both in diagnosing and subdividing the AML and AMML/AMoL groups. The peculiar main observation of this study is that only with the combined use of these markers in a microplate assay for membrane antigens, followed by double staining for intracellular antigens such as terminal deoxynucleotidyl transferase, cCD3, cCD22, c mu heavy chain, and T cell receptor beta, it is possible to safely establish the lineage affiliation and subgrouping of virtually all acute leukemias. Among these cases are those with aberrant combinations of markers, including 14% of B-lineage ALL (cCD22+,CD19+,TdT+) and a single case T-ALL (cCD3+,CD7+,TdT+), which exhibit CD13 and/or CD33 antigens, cases with mixtures of ALL and AML blasts, and 1.2% of acute leukemias which lack lineage affiliation and can be regarded as acute undifferentiated leukemia.

  18. The ASTRA Spectrophotometer: Design and Overview

    NASA Astrophysics Data System (ADS)

    Adelman, S. J.; Gulliver, A. F.; Smalley, B.; Pazder, J. S.; Younger, P. F.; Boyd, L. J.; Epand, D.; Younger, T.

    2007-04-01

    The ASTRA Cassegrain Spectrophotometer and its automated 0.5-m f/16 telescope will soon be working together at the Fairborn Observatory near Nogales, Arizona. Scientific observations are expected to begin in 2007. We provide an overview of this project and review the design of the system. A separate paper in these Proceedings presents details of the data reduction and flux calibrations. The Nogales site averages 150 photometric nights per year. ASTRA should observe stars whose declinations are in the range +80° to -35°. In an hour the system should obtain S/N = 200 observations of stars as faint as 9.5 mag after correction for instrumental errors. Vega will require about 25 seconds for observation and CCD readout. Usually the telescope will find its next target in less than a minute. A small CCD camera finds and centers the target and a second then guides on the zeroth order spectrum. The spectrophotometer uses both a grating and a cross-dispersing prism to produce spectra from both the first and the second orders simultaneously. The square 30 arc second sky fields for each order do not overlap. The resolution is 7 Å in second and 14 Å in first order. The wavelength range is approximately λλ3300-9000. We are initially using about 10 minutes/hour to observe Vega and secondary standard candidates. Our scientific CCD is electronically cooled to -50° C with a water recirculation system heat sink. The same 4° C recycling water system provides thermal stabilization of the instrument. Our flat fielding system uses a second 0.5-m telescope to produce a collimated beam from a 100 μm pinhole illuminated by a quartz halogen lamp. When the two telescopes point at one another this ``artificial star" is focused by the ASTRA telescope which is then rocked to expose the image from the top to the bottom of the entrance aperture. A LINUX HP server at The Citadel will have databases of ASTRA observations. Each observing request has its own priority and observing window, ASTRA can observe standard stars at a regular rate throughout the night, any accessible target at a given time, and variable stars. ASTRA will produce considerable high quality data.

  19. Care for Child Development: an intervention in support of responsive caregiving and early child development.

    PubMed

    Lucas, J E; Richter, L M; Daelmans, B

    2018-01-01

    An estimated 43% of children younger than 5 years of age are at elevated risk of failing to achieve their human potential. In response, the World Health Organization and UNICEF developed Care for Child Development (CCD), based on the science of child development, to improve sensitive and responsive caregiving and promote the psychosocial development of young children. In 2015, the World Health Organization and UNICEF identified sites where CCD has been implemented and sustained. The sites were surveyed, and responses were followed up by phone interviews. Project reports provided information on additional sites, and a review of published studies was undertaken to document the effectiveness of CCD for improving child and family outcomes, as well as its feasibility for implementation in resource-constrained communities. The inventory found that CCD had been integrated into existing services in diverse sectors in 19 countries and 23 sites, including child survival, health, nutrition, infant day care, early education, family and child protection and services for children with disabilities. Published and unpublished evaluations have found that CCD interventions can improve child development, growth and health, as well as responsive caregiving. It has also been reported to reduce maternal depression, a known risk factor for poor pregnancy outcomes and poor child health, growth and development. Although CCD has expanded beyond initial implementation sites, only three countries reported having national policy support for integrating CCD into health or other services. Strong interest exists in many countries to move beyond child survival to protect and support optimal child development. The United Nations Sustainable Development Goals depend on children realizing their potential to build healthy and emotionally, cognitively and socially competent future generations. More studies are needed to guide the integration of the CCD approach under different conditions. Nevertheless, the time is right to provide for the scale-up of CCD as part of services for families and children. © 2017 The Authors. Child: Care, Health and Development Published by John Wiley & Sons Ltd.

  20. High-Reflectivity Multi-Layer Coatings for the CLASP Sounding Rocket Project

    NASA Technical Reports Server (NTRS)

    Narukage, Noriyuki; Kano, Ryohei; Bando, Takamasa; Ishikawa, Ryoko; Kubo, Masahito; Katsukawa, Yukio; Ishikawa, Shin-nosuke; Kobiki, Toshihiko; Giono, Gabriel; Auchere, Frederic; hide

    2015-01-01

    We are planning an international rocket experiment Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is (2015 planned) that Lyman alpha line (Ly alpha line) polarization spectroscopic observations from the sun. The purpose of this experiment, detected with high accuracy of the linear polarization of the Ly alpha lines to 0.1% by using a Hanle effect is to measure the magnetic field of the chromosphere-transition layer directly. For polarization photometric accuracy achieved that approximately 0.1% required for CLASP, it is necessary to realize the monitoring device with a high throughput. On the other hand, Ly alpha line (vacuum ultraviolet rays) have a sensitive characteristics that is absorbed by the material. We therefore set the optical system of the reflection system (transmission only the wavelength plate), each of the mirrors, subjected to high efficiency of the multilayer coating in accordance with the role. Primary mirror diameter of CLASP is about 30 cm, the amount of heat about 30,000 J is about 5 minutes of observation time is coming mainly in the visible light to the telescope. In addition, total flux of the sun visible light overwhelmingly large and about 200 000 times the Ly alpha line wavelength region. Therefore, in terms of thermal management and 0.1% of the photometric measurement accuracy achieved telescope, elimination of the visible light is essential. We therefore, has a high reflectivity (greater than 50%) in Ly alpha line, visible light is a multilayer coating be kept to a low reflectance (less than 5%) (cold mirror coating) was applied to the primary mirror. On the other hand, the efficiency of the polarization analyzer required chromospheric magnetic field measurement (the amount of light) Conventional (magnesium fluoride has long been known as a material for vacuum ultraviolet (MgF2) manufactured ellipsometer; Rs = 22%) about increased to 2.5 times were high efficiency reflective polarizing element analysis. This device, Bridou et al. (2011) is proposed "that is coated with a thin film of the substrate MgF2 and SiO2 fused silica." As a result of the measurement, Rs = 54.5%, to achieve a Rp = 0.3%, high efficiency, of course, capable of taking out only about spolarized light. Other reflective optical elements (the secondary mirror, the diffraction grating-collector mirror), subjected to high-reflection coating of Al + MgF2 (reflectance of about 80%), less than 5% in the entire optical system by these (CCD Science was achieved a high throughput as a device for a vacuum ultraviolet ray of the entire system less than 5% (CCD of QE is not included).

  1. Solar Lyman-Alpha Polarization Observation of the Chromosphere and Transition Region by the Sounding Rocket Experiment CLASP

    NASA Technical Reports Server (NTRS)

    Narukage, Noriyuki; Kano, Ryohei; Bando, Takamasa; Ishikawa, Ryoko; Kubo, Masahito; Katsukawa, Yukio; Ishikawa, Shinnosuke; Hara, Hiroshi; Suematsu, Yoshinori; Giono, Gabriel; hide

    2015-01-01

    We are planning an international rocket experiment Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is (2015 planned) that Lyman a line (Ly(alpha) line) polarization spectroscopic observations from the sun. The purpose of this experiment, detected with high accuracy of the linear polarization of the Ly(alpha) lines to 0.1% by using a Hanle effect is to measure the magnetic field of the chromosphere-transition layer directly. For polarization photometric accuracy achieved that approx. 0.1% required for CLASP, it is necessary to realize the monitoring device with a high throughput. On the other hand, Ly(alpha) line (vacuum ultraviolet rays) have a sensitive characteristics that is absorbed by the material. We therefore set the optical system of the reflection system (transmission only the wavelength plate), each of the mirrors, subjected to high efficiency of the multilayer coating in accordance with the role. Primary mirror diameter of CLASP is about 30 cm, the amount of heat about 30,000 J is about 5 minutes of observation time is coming mainly in the visible light to the telescope. In addition, total flux of the sun visible light overwhelmingly large and about 200 000 times the Ly(alpha) line wavelength region. Therefore, in terms of thermal management and 0.1% of the photometric measurement accuracy achieved telescope, elimination of the visible light is essential. We therefore, has a high reflectivity (> 50%) in Lya line, visible light is a multilayer coating be kept to a low reflectance (<5%) (cold mirror coating) was applied to the primary mirror. On the other hand, the efficiency of the polarization analyzer required chromospheric magnetic field measurement (the amount of light) Conventional (magnesium fluoride has long been known as a material for vacuum ultraviolet (MgF2) manufactured ellipsometer; Rs = 22%) about increased to 2.5 times were high efficiency reflective polarizing element analysis. This device, Bridou et al. (2011) is proposed "that is coated with a thin film of the substrate MgF2 and SiO2 fused silica." As a result of the measurement, Rs = 54.5%, to achieve a Rp = 0.3%, high efficiency, of course, capable of taking out only about s-polarized light. Other reflective optical elements (the secondary mirror, the diffraction gratingcollector mirror), subjected to high-reflection coating of Al + MgF2 (reflectance of about 80%), less than 5% in the entire optical system by these (CCD Science was achieved a high throughput as a device for a vacuum ultraviolet ray of the entire system less than 5% (CCD of QE is not included).

  2. The prevalence and geographic distribution of complex co-occurring disorders: a population study.

    PubMed

    Somers, J M; Moniruzzaman, A; Rezansoff, S N; Brink, J; Russolillo, A

    2016-06-01

    A subset of people with co-occurring substance use and mental disorders require coordinated support from health, social welfare and justice agencies to achieve diversion from homelessness, criminal recidivism and further health and social harms. Integrated models of care are typically concentrated in large urban centres. The present study aimed to empirically measure the prevalence and distribution of complex co-occurring disorders (CCD) in a large geographic region that includes urban as well as rural and remote settings. Linked data were examined in a population of roughly 3.7 million adults. Inclusion criteria for the CCD subpopulation were: physician diagnosed substance use and mental disorders; psychiatric hospitalisation; shelter assistance; and criminal convictions. Prevalence per 100 000 was calculated in 91 small areas representing urban, rural and remote settings. 2202 individuals met our inclusion criteria for CCD. Participants had high rates of hospitalisation (8.2 admissions), criminal convictions (8.6 sentences) and social assistance payments (over $36 000 CDN) in the past 5 years. There was wide variability in the geographic distribution of people with CCD, with high prevalence rates in rural and remote settings. People with CCD are not restricted to areas with large populations or to urban settings. The highest per capita rates of CCD were observed in relatively remote locations, where mental health and substance use services are typically in limited supply. Empirically supported interventions must be adapted to meet the needs of people living outside of urban settings with high rates of CCD.

  3. Solid state, CCD-buried channel, television camera study and design

    NASA Technical Reports Server (NTRS)

    Hoagland, K. A.; Balopole, H.

    1976-01-01

    An investigation of an all solid state television camera design, which uses a buried channel charge-coupled device (CCD) as the image sensor, was undertaken. A 380 x 488 element CCD array was utilized to ensure compatibility with 525 line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (a) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (b) techniques for the elimination or suppression of CCD blemish effects, and (c) automatic light control and video gain control techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a design which addresses the program requirements for a deliverable solid state TV camera.

  4. Bioinformatic and expression analyses on carotenoid dioxygenase genes in fruit development and abiotic stress responses in Fragaria vesca.

    PubMed

    Wang, Yong; Ding, Guanqun; Gu, Tingting; Ding, Jing; Li, Yi

    2017-08-01

    Carotenoid dioxygenases, including 9-cis-epoxycarotenoid dioxygenases (NCEDs) and carotenoid cleavage dioxygenases (CCDs), can selectively cleave carotenoids into various apocarotenoid products that play important roles in fleshy fruit development and abiotic stress response. In this study, we identified 12 carotenoid dioxygenase genes in diploid strawberry Fragaria vesca, and explored their evolution with orthologous genes from nine other species. Phylogenetic analyses suggested that the NCED and CCDL groups moderately expanded during their evolution, whereas gene numbers of the CCD1, CCD4, CCD7, and CCD8 groups maintained conserved. We characterized the expression profiles of FveNCED and FveCCD genes during flower and fruit development, and in response to several abiotic stresses. FveNCED1 expression positively responded to osmotic, cold, and heat stresses, whereas FveNCED2 was only induced under cold stress. In contrast, FveNCED2 was the unique gene highly and continuously increasing in receptacle during fruit ripening, which co-occurred with the increase in endogenous abscisic acid (ABA) content previously reported in octoploid strawberry. The differential expression patterns suggested that FveNCED1 and FveNCED2 were key genes for ABA biosynthesis in abiotic stress responses and fruit ripening, respectively. FveCCD1 exhibited the highest expression in most stages of flower and fruit development, while the other FveCCDs were expressed in a subset of stages and tissues. Our study suggests distinct functions of FveNCED and FveCCD genes in fruit development and stress responses and lays a foundation for future study to understand the roles of these genes and their metabolites, including ABA and other apocarotenoid products, in the growth and development of strawberry.

  5. SU-E-T-161: SOBP Beam Analysis Using Light Output of Scintillation Plate Acquired by CCD Camera.

    PubMed

    Cho, S; Lee, S; Shin, J; Min, B; Chung, K; Shin, D; Lim, Y; Park, S

    2012-06-01

    To analyze Bragg-peak beams in SOBP (spread-out Bragg-peak) beam using CCD (charge-coupled device) camera - scintillation screen system. We separated each Bragg-peak beam using light output of high sensitivity scintillation material acquired by CCD camera and compared with Bragg-peak beams calculated by Monte Carlo simulation. In this study, CCD camera - scintillation screen system was constructed with a high sensitivity scintillation plate (Gd2O2S:Tb) and a right-angled prismatic PMMA phantom, and a Marlin F-201B, EEE-1394 CCD camera. SOBP beam irradiated by the double scattering mode of a PROTEUS 235 proton therapy machine in NCC is 8 cm width, 13 g/cm 2 range. The gain, dose rate and current of this beam is 50, 2 Gy/min and 70 nA, respectively. Also, we simulated the light output of scintillation plate for SOBP beam using Geant4 toolkit. We evaluated the light output of high sensitivity scintillation plate according to intergration time (0.1 - 1.0 sec). The images of CCD camera during the shortest intergration time (0.1 sec) were acquired automatically and randomly, respectively. Bragg-peak beams in SOBP beam were analyzed by the acquired images. Then, the SOBP beam used in this study was calculated by Geant4 toolkit and Bragg-peak beams in SOBP beam were obtained by ROOT program. The SOBP beam consists of 13 Bragg-peak beams. The results of experiment were compared with that of simulation. We analyzed Bragg-peak beams in SOBP beam using light output of scintillation plate acquired by CCD camera and compared with that of Geant4 simulation. We are going to study SOBP beam analysis using more effective the image acquisition technique. © 2012 American Association of Physicists in Medicine.

  6. CSI 2264: Probing the inner disks of AA Tauri-like systems in NGC 2264

    NASA Astrophysics Data System (ADS)

    McGinnis, P. T.; Alencar, S. H. P.; Guimarães, M. M.; Sousa, A. P.; Stauffer, J.; Bouvier, J.; Rebull, L.; Fonseca, N. N. J.; Venuti, L.; Hillenbrand, L.; Cody, A. M.; Teixeira, P. S.; Aigrain, S.; Favata, F.; Fűrész, G.; Vrba, F. J.; Flaccomio, E.; Turner, N. J.; Gameiro, J. F.; Dougados, C.; Herbst, W.; Morales-Calderón, M.; Micela, G.

    2015-05-01

    Context. The classical T Tauri star (CTTS) AA Tau has presented photometric variability that was attributed to an inner disk warp, caused by the interaction between the inner disk and an inclined magnetosphere. Previous studies of the young cluster NGC 2264 have shown that similar photometric behavior is common among CTTS. Aims: The goal of this work is to investigate the main causes of the observed photometric variability of CTTS in NGC 2264 that present AA Tau-like light curves, and verify if an inner disk warp could be responsible for their observed variability. Methods: In order to understand the mechanism causing these stars' photometric behavior, we investigate veiling variability in their spectra and u - r color variations and estimate parameters of the inner disk warp using an occultation model proposed for AA Tau. We also compare infrared Spitzer IRAC and optical CoRoT light curves to analyze the dust responsible for the occultations. Results: AA Tau-like variability proved to be transient on a timescale of a few years. We ascribe this variability to stable accretion regimes and aperiodic variability to unstable accretion regimes and show that a transition, and even coexistence, between the two is common. We find evidence of hot spots associated with occultations, indicating that the occulting structures could be located at the base of accretion columns. We find average values of warp maximum height of 0.23 times its radial location, consistent with AA Tau, with variations of on average 11% between rotation cycles. We also show that extinction laws in the inner disk indicate the presence of grains larger than interstellar grains. Conclusions: The inner disk warp scenario is consistent with observations for all but one star with AA Tau-like variability in our sample. AA Tau-like systems are fairly common, comprising 14% of CTTS observed in NGC 2264, though this number increases to 35% among systems of mass 0.7 M⊙ ≲ M ≲ 2.0 M⊙. Assuming random inclinations, we estimate that nearly all systems in this mass range likely possess an inner disk warp. We attribute this to a possible change in magnetic field configurations among stars of lower mass. Based on data from the Spitzer and CoRoT missions, as well as the Canada France Hawaii Telescope (CFHT) MegaCam CCD, the European Southern Observatory (ESO) Very Large Telescope, and the US Naval Observatory. The CoRoT space mission was developed and operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. MegaCam is a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. Figures 21-24 are available in electronic form at http://www.aanda.org

  7. Considerations for the Use of STEREO -HI Data for Astronomical Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tappin, S. J., E-mail: james.tappin@stfc.ac.uk

    Recent refinements to the photometric calibrations of the Heliospheric Imagers (HI) on board the Solar TErrestrial RElations Observatory ( STEREO ) have revealed a number of subtle effects in the measurement of stellar signals with those instruments. These effects need to be considered in the interpretation of STEREO -HI data for astronomy. In this paper we present an analysis of these effects and how to compensate for them when using STEREO -HI data for astronomical studies. We determine how saturation of the HI CCD detectors affects the apparent count rates of stars after the on-board summing of pixels and exposures.more » Single-exposure calibration images are analyzed and compared with binned and summed science images to determine the influence of saturation on the science images. We also analyze how the on-board cosmic-ray scrubbing algorithm affects stellar images. We determine how this interacts with the variations of instrument pointing to affect measurements of stars. We find that saturation is a significant effect only for the brightest stars, and that its onset is gradual. We also find that degraded pointing stability, whether of the entire spacecraft or of the imagers, leads to reduced stellar count rates and also increased variation thereof through interaction with the on-board cosmic-ray scrubbing algorithm. We suggest ways in which these effects can be mitigated for astronomical studies and also suggest how the situation can be improved for future imagers.« less

  8. Regulation of transport in the connecting tubule and cortical collecting duct

    PubMed Central

    Staruschenko, Alexander

    2012-01-01

    The central goal of this overview article is to summarize recent findings in renal epithelial transport, focusing chiefly on the connecting tubule (CNT) and the cortical collecting duct (CCD). Mammalian CCD and CNT are involved in fine tuning of electrolyte and fluid balance through reabsorption and secretion. Specific transporters and channels mediate vectorial movements of water and solutes in these segments. Although only a small percent of the glomerular filtrate reaches the CNT and CCD, these segments are critical for water and electrolyte homeostasis since several hormones, e.g. aldosterone and arginine vasopressin, exert their main effects in these nephron sites. Importantly, hormones regulate the function of the entire nephron and kidney by affecting channels and transporters in the CNT and CCD. Knowledge about the physiological and pathophysiological regulation of transport in the CNT and CCD and particular roles of specific channels/transporters has increased tremendously over the last two decades. Recent studies shed new light on several key questions concerning the regulation of renal transport. Precise distribution patterns of transport proteins in the CCD and CNT will be reviewed, and their physiological roles and mechanisms mediating ion transport in these segments will be also covered. Special emphasis will be given to pathophysiological conditions appearing as a result of abnormalities in renal transport in the CNT and CCD. PMID:23227301

  9. Overexpression of the rice carotenoid cleavage dioxygenase 1 gene in Golden Rice endosperm suggests apocarotenoids as substrates in planta.

    PubMed

    Ilg, Andrea; Yu, Qiuju; Schaub, Patrick; Beyer, Peter; Al-Babili, Salim

    2010-08-01

    Carotenoids are converted by carotenoid cleavage dioxygenases that catalyze oxidative cleavage reactions leading to apocarotenoids. However, apocarotenoids can also be further truncated by some members of this enzyme family. The plant carotenoid cleavage dioxygenase 1 (CCD1) subfamily is known to degrade both carotenoids and apocarotenoids in vitro, leading to different volatile compounds. In this study, we investigated the impact of the rice CCD1 (OsCCD1) on the pigmentation of Golden Rice 2 (GR2), a genetically modified rice variety accumulating carotenoids in the endosperm. For this purpose, the corresponding cDNA was introduced into the rice genome under the control of an endosperm-specific promoter in sense and anti-sense orientations. Despite high expression levels of OsCCD1 in sense plants, pigment analysis revealed carotenoid levels and patterns comparable to those of GR2, pleading against carotenoids as substrates in rice endosperm. In support, similar carotenoid contents were determined in anti-sense plants. To check whether OsCCD1 overexpressed in GR2 endosperm is active, in vitro assays were performed with apocarotenoid substrates. HPLC analysis confirmed the cleavage activity of introduced OsCCD1. Our data indicate that apocarotenoids rather than carotenoids are the substrates of OsCCD1 in planta.

  10. [Techniques for pixel response nonuniformity correction of CCD in interferential imaging spectrometer].

    PubMed

    Yao, Tao; Yin, Shi-Min; Xiangli, Bin; Lü, Qun-Bo

    2010-06-01

    Based on in-depth analysis of the relative radiation scaling theorem and acquired scaling data of pixel response nonuniformity correction of CCD (charge-coupled device) in spaceborne visible interferential imaging spectrometer, a pixel response nonuniformity correction method of CCD adapted to visible and infrared interferential imaging spectrometer system was studied out, and it availably resolved the engineering technical problem of nonuniformity correction in detector arrays for interferential imaging spectrometer system. The quantitative impact of CCD nonuniformity on interferogram correction and recovery spectrum accuracy was given simultaneously. Furthermore, an improved method with calibration and nonuniformity correction done after the instrument is successfully assembled was proposed. The method can save time and manpower. It can correct nonuniformity caused by other reasons in spectrometer system besides CCD itself's nonuniformity, can acquire recalibration data when working environment is changed, and can also more effectively improve the nonuniformity calibration accuracy of interferential imaging

  11. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology

    PubMed Central

    Traynor, Kirsten S.; Andree, Michael; Lichtenberg, Elinor M.; Chen, Yanping; Saegerman, Claude; Cox-Foster, Diana L.

    2017-01-01

    Honey bee (Apis mellifera) colonies continue to experience high annual losses that remain poorly explained. Numerous interacting factors have been linked to colony declines. Understanding the pathways linking pathophysiology with symptoms is an important step in understanding the mechanisms of disease. In this study we examined the specific pathologies associated with honey bees collected from colonies suffering from Colony Collapse Disorder (CCD) and compared these with bees collected from apparently healthy colonies. We identified a set of pathological physical characteristics that occurred at different rates in CCD diagnosed colonies prior to their collapse: rectum distension, Malpighian tubule iridescence, fecal matter consistency, rectal enteroliths (hard concretions), and venom sac color. The multiple differences in rectum symptomology in bees from CCD apiaries and colonies suggest effected bees had trouble regulating water. To ensure that pathologies we found associated with CCD were indeed pathologies and not due to normal changes in physical appearances that occur as an adult bee ages (CCD colonies are assumed to be composed mostly of young bees), we documented the changes in bees of different ages taken from healthy colonies. We found that young bees had much greater incidences of white nodules than older cohorts. Prevalent in newly-emerged bees, these white nodules or cellular encapsulations indicate an active immune response. Comparing the two sets of characteristics, we determined a subset of pathologies that reliably predict CCD status rather than bee age (fecal matter consistency, rectal distension size, rectal enteroliths and Malpighian tubule iridescence) and that may serve as biomarkers for colony health. In addition, these pathologies suggest that CCD bees are experiencing disrupted excretory physiology. Our identification of these symptoms is an important first step in understanding the physiological pathways that underlie CCD and factors impacting bee health. PMID:28715431

  12. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology.

    PubMed

    vanEngelsdorp, Dennis; Traynor, Kirsten S; Andree, Michael; Lichtenberg, Elinor M; Chen, Yanping; Saegerman, Claude; Cox-Foster, Diana L

    2017-01-01

    Honey bee (Apis mellifera) colonies continue to experience high annual losses that remain poorly explained. Numerous interacting factors have been linked to colony declines. Understanding the pathways linking pathophysiology with symptoms is an important step in understanding the mechanisms of disease. In this study we examined the specific pathologies associated with honey bees collected from colonies suffering from Colony Collapse Disorder (CCD) and compared these with bees collected from apparently healthy colonies. We identified a set of pathological physical characteristics that occurred at different rates in CCD diagnosed colonies prior to their collapse: rectum distension, Malpighian tubule iridescence, fecal matter consistency, rectal enteroliths (hard concretions), and venom sac color. The multiple differences in rectum symptomology in bees from CCD apiaries and colonies suggest effected bees had trouble regulating water. To ensure that pathologies we found associated with CCD were indeed pathologies and not due to normal changes in physical appearances that occur as an adult bee ages (CCD colonies are assumed to be composed mostly of young bees), we documented the changes in bees of different ages taken from healthy colonies. We found that young bees had much greater incidences of white nodules than older cohorts. Prevalent in newly-emerged bees, these white nodules or cellular encapsulations indicate an active immune response. Comparing the two sets of characteristics, we determined a subset of pathologies that reliably predict CCD status rather than bee age (fecal matter consistency, rectal distension size, rectal enteroliths and Malpighian tubule iridescence) and that may serve as biomarkers for colony health. In addition, these pathologies suggest that CCD bees are experiencing disrupted excretory physiology. Our identification of these symptoms is an important first step in understanding the physiological pathways that underlie CCD and factors impacting bee health.

  13. Spectrum of Celiac disease in Paediatric population: Experience of Tertiary Care Center from Pakistan.

    PubMed

    Aziz, Danish Abdul; Kahlid, Misha; Memon, Fozia; Sadiq, Kamran

    2017-01-01

    To determine clinical features and relevant laboratory investigations of patient with celiac disease (CD) and comparing classical celiac disease (CCD) with Non-diarrheal celiac disease (NDCD). This is a five years retrospective study conducted at The Aga Khan University Hospital Karachi, Pakistan from January 2010 to December 2015, enrolling children from one year to 15 years of either gender diagnosed as celiac disease in accordance with revised ESPGHAN criteria. Biopsy samples with grade 2 or more on Modified Marsh Classification were considered as consistent with celiac disease. Celiac patients were categorized into Classical celiac disease (with Chronic Diarrhea) and non-diarrheal celiac disease (Atypical celiac) and their clinical features and relevant laboratory investigations were documented. Total 66 patients were selected with celiac disease according to inclusion criteria, 39 (59.09%) patients were labeled as CCD and 27 (40.91%) patients were labeled as NDCD. Marsh grading 3a and above were more marked in CCD as compared to NDCD. Mean titer for Tissue transglutaminase antibodies (TTG) were higher in CCD group in comparison to NDCD group. In CCD, the most common clinical presentations were abdominal distension whereas in NDCD, the most remarkable features were recurrent abdominal pain (62.9%). Frequency of failure to thrive is significantly high in CCD (82.05%) but patients merely with short stature were more common in NDCD (33.3%). Refractory anemia was present in 66.6% patients in NDCD group and 41.1% patients in CCD group. 74.3% patients in CCD group were vitamin D deficient whereas 85% patient had vitamin D deficiency in NDCD group (p= 0.03). NDCD is not uncommon in our population. Recurrent abdominal pain, failure to thrive or patients only with short stature and refractory anemia are prominent features in NCDC group whereas abdominal distension, failure to thrive and recurrent abdominal pain were noticeable features in CCD. High grade histopathology and raised antibodies titer is hallmark of CCD. Vitamin D deficiency is almost equally present in both groups.

  14. Crystallization of the C-terminal domain of the addiction antidote CcdA in complex with its toxin CcdB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buts, Lieven; De Jonge, Natalie; Loris, Remy, E-mail: reloris@vub.ac.be

    2005-10-01

    The CcdA C-terminal domain was crystallized in complex with CcdB in two crystal forms that diffract to beyond 2.0 Å resolution. CcdA and CcdB are the antidote and toxin of the ccd addiction module of Escherichia coli plasmid F. The CcdA C-terminal domain (CcdA{sub C36}; 36 amino acids) was crystallized in complex with CcdB (dimer of 2 × 101 amino acids) in three different crystal forms, two of which diffract to high resolution. Form II belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 37.6, b = 60.5, c = 83.8 Å and diffracts to 1.8more » Å resolution. Form III belongs to space group P2{sub 1}, with unit-cell parameters a = 41.0, b = 37.9, c = 69.6 Å, β = 96.9°, and diffracts to 1.9 Å resolution.« less

  15. Soft x-ray imager (SXI) onboard the NeXT satellite

    NASA Astrophysics Data System (ADS)

    Tsuru, Takeshi Go; Takagi, Shin-Ichiro; Matsumoto, Hironori; Inui, Tatsuya; Ozawa, Midori; Koyama, Katsuji; Tsunemi, Hiroshi; Hayashida, Kiyoshi; Miyata, Emi; Ozawa, Hideki; Touhiguchi, Masakuni; Matsuura, Daisuke; Dotani, Tadayasu; Ozaki, Masanobu; Murakami, Hiroshi; Kohmura, Takayoshi; Kitamoto, Shunji; Awaki, Hisamitsu

    2006-06-01

    We give overview and the current status of the development of the Soft X-ray Imager (SXI) onboard the NeXT satellite. SXI is an X-ray CCD camera placed at the focal plane detector of the Soft X-ray Telescopes for Imaging (SXT-I) onboard NeXT. The pixel size and the format of the CCD is 24 x 24μm (IA) and 2048 x 2048 x 2 (IA+FS). Currently, we have been developing two types of CCD as candidates for SXI, in parallel. The one is front illumination type CCD with moderate thickness of the depletion layer (70 ~ 100μm) as a baseline plan. The other one is the goal plan, in which we develop back illumination type CCD with a thick depletion layer (200 ~ 300μm). For the baseline plan, we successfully developed the proto model 'CCD-NeXT1' with the pixel size of 12μm x 12μm and the CCD size of 24mm x 48mm. The depletion layer of the CCD has reached 75 ~ 85μm. The goal plan is realized by introduction of a new type of CCD 'P-channel CCD', which collects holes in stead of electrons in the common 'N-channel CCD'. By processing a test model of P-channel CCD we have confirmed high quantum efficiency above 10 keV with an equivalent depletion layer of 300μm. A back illumination type of P-channel CCD with a depletion layer of 200μm with aluminum coating for optical blocking has been also successfully developed. We have been also developing a thermo-electric cooler (TEC) with the function of the mechanically support of the CCD wafer without standoff insulators, for the purpose of the reduction of thermal input to the CCD through the standoff insulators. We have been considering the sensor housing and the onboard electronics for the CCD clocking, readout and digital processing of the frame date.

  16. Linear CCD attitude measurement system based on the identification of the auxiliary array CCD

    NASA Astrophysics Data System (ADS)

    Hu, Yinghui; Yuan, Feng; Li, Kai; Wang, Yan

    2015-10-01

    Object to the high precision flying target attitude measurement issues of a large space and large field of view, comparing existing measurement methods, the idea is proposed of using two array CCD to assist in identifying the three linear CCD with multi-cooperative target attitude measurement system, and to address the existing nonlinear system errors and calibration parameters and more problems with nine linear CCD spectroscopic test system of too complicated constraints among camera position caused by excessive. The mathematical model of binocular vision and three linear CCD test system are established, co-spot composition triangle utilize three red LED position light, three points' coordinates are given in advance by Cooperate Measuring Machine, the red LED in the composition of the three sides of a triangle adds three blue LED light points as an auxiliary, so that array CCD is easier to identify three red LED light points, and linear CCD camera is installed of a red filter to filter out the blue LED light points while reducing stray light. Using array CCD to measure the spot, identifying and calculating the spatial coordinates solutions of red LED light points, while utilizing linear CCD to measure three red LED spot for solving linear CCD test system, which can be drawn from 27 solution. Measured with array CCD coordinates auxiliary linear CCD has achieved spot identification, and has solved the difficult problems of multi-objective linear CCD identification. Unique combination of linear CCD imaging features, linear CCD special cylindrical lens system is developed using telecentric optical design, the energy center of the spot position in the depth range of convergence in the direction is perpendicular to the optical axis of the small changes ensuring highprecision image quality, and the entire test system improves spatial object attitude measurement speed and precision.

  17. As Big and As Good As It Gets: The Large Monolithic Imager for Lowell Observatory's 4.3-m Discovery Channel Telescope

    NASA Astrophysics Data System (ADS)

    Massey, Philip; Dunham, E. W.; Bida, T. A.; Collins, P.; Hall, J. C.; Hunter, D. A.; Lauman, S.; Levine, S.; Neugent, K.; Nye, R.; Oliver, R.; Schleicher, D.; Zoonematkermani, S.

    2013-01-01

    The Large Monolithic Imager (LMI), a camera built at Lowell Observatory, is currently undergoing commissioning on Lowell's new 4.3-m Discovery Channel Telescope (DCT). At the heart of the LMI is the largest charge-coupled device (CCD) that can be built using current fabrication techniques, and the first of its kind to be made by e2v. The active area of the chip is 92.2mmx92.4mm, and has 6144 by 6160 15-micron pixels. Our choice of a single chip over a mosaic of smaller ones was inspired by the success of USNO in deploying a similarly ginormous device made by Semiconductor Technology Associates, Inc. There are some significant advantages that a (very!) large single CCD has over a mosaic of smaller ones. With a mosaic, one has to dither to fill in the gaps between the chips for complete areal coverage. This is not only costly in overhead, but it also poses a limitation in faint surface brightness studies, as the sky brightness is constantly changing during the dithering process. In addition, differences in the wavelength dependence of the DQE can lead to differences in the color terms from chip to chip in mosaics, requiring one to deal with each chip as a separate instrument (see the Local Group Galaxy photometry of Massey et al. 2006, AJ, 131, 2478). The LMI avoids these problems. The Discovery Channel Telescope is being built by Lowell Observatory in partnership with Discovery Communications. First light took place in May 2012. Institutional DCT partners include Boston University (in perpetuity), the University of Maryland, and the University of Toledo. More about the DCT can be found in the adjacent poster by Hall et al. The LMI has been made possible thanks to a National Science Foundation grant (AST-1005313). We are currently doing on-sky evaluation of the camera, as commissioning of the DCT progresses, determining color terms, photometric zero-points, astrometric characteristics, etc. We will present these results, along with technical details and many pretty pictures (!), in our poster.

  18. Photometric Flux in EXONEST

    NASA Astrophysics Data System (ADS)

    Young, Steven K.

    As a planet orbits its parent star, the amount of light that reaches Earth from that system is dependent on the dynamics of that star system. Known as photometric variations, these slight changes in light flux are detectable by the Kepler Space Telescope and must be fully understood in order to properly model the system. There are four main factors that contribute to the photometric flux: reflected light from the planet, thermal emissions from the planet, doppler boosting in the light being emitted by the star, and ellipsoidal variations in the star. The total observed flux from each contribution then determines how much light will be seen from the star system to be used for analysis. Previous studies have normalized the photometric variation fluxes by the observed flux emitted from the star. However, normalizing data inherently and unphysically skews the result which must then be taken into account. Additionally, when the stellar flux is an unknown it is impossible to normalize the photometric variation fluxes with respect to it. This paper will preliminarily attempt to improve upon the existing studies by removing the source of the deviation for the flux results, i.e. the stellar flux. The fluxes found from each photometric variation factor will then be incorporated into EXONEST, an algorithm using Bayesian inference, that will be implemented for characterizing extrasolar systems.

  19. Relative 2-color Photometry Of Neo's

    NASA Astrophysics Data System (ADS)

    Shelus, P.; Gyorgyey-Ries, J.; Ricklefs, R.; Barker, E.

    We have been making Solar System small body positional observations at McDon- ald Observatory since the early 1970's. In 1994 we moved to a CCD-based, almost totally automated, astrometry system (Whipple et al, 1996, Astron. J., Vol. 112, p. 316). Our present observational effort is focussed upon Near Earth Objects (NEOs) as part of NASA's mission to discover and catalogue 90 percent of NEOs with diameters larger than 1 km by 2008. Observing 4 nights per lunation, we conduct observations to confirm newly discovered NEOs, filling in the night on a target-of-opportunnity basis, with observations of under-observed NEOs. Our major intent is to understand the overall hazard that these objects pose to Earth and their dynamical and physical characterization. We recently adopted the USNO-A2.0 catalogue to improve astromet- ric results and a number of up-grades to the end-to-end system have been developed (Barker et al, 2001, Bull. AAS, Vol. 33, p. 1116). The USNO catalog also provides stellar magnitudes in the standard Johnson R and B photometric bands. We have thus taken the opportunity to expand our observational efforts to regularly provide R mag- nitudes, in addition to astrometric positions. Our limiting magnitude in R is near 22. We are now furthering our photometric efforts by including B exposures as part of our standard observation triplet. We have already confirmed that switching filters between exposures on standard fields does not compromise the astrometric accurary. Thus, we plan to provide two color, sequential, relative photometry, (B-R), of newly discov- ered or under observed asteroids, as part of our routine observation process. The time interval between exposures is always less than 20 minutes, short compared to most asteroid rotation times. Consequently, a meaningful color index can be obtained in parallel with the astrometric positions. Although (B-R) is not the usual color index used in asteroid classification studies, we are testing whether we can use it as a quick diagnostic tool to roughly classify newly discovered NEOs. The results so far obtained are presented here. This research is funded by NASA's NEO Observation Program grants NAG5-6863 and NAG5-10183.

  20. UBV Photometry of Selected Eclipsing Binaries in the Magellanic Clouds.

    NASA Astrophysics Data System (ADS)

    Davidge, Timothy John

    1987-12-01

    UBV photoelectric observations of five eclipsing binaries in the Magellanic Clouds are presented and discussed in detail. The systems studied are HV162O and HV1669 in the Small Magellanic Cloud and HV2241, HV2765, and HV5943 in the Large Magellanic Cloud. Classification spectra indicate that the components of these systems are of spectral type late O or early B. The systems are located in moderately crowded areas. Therefore, CCD observations were used to construct models of the star fields around the variables. These were used to correct the photoelectric measurements for contamination. Light curve solutions were found with the Wilson -Devinney program. A two dimensional search of parameter space involving the mass ratio and the surface potential of the secondary component was employed. This procedure was tested by numerical simulation and was found to predict the light curve elements, including the mass ratios, within their estimated uncertainties. It appears likely that none of the systems are in contact, a surprising result considering the high frequency of early type contact binaries in the solar neighborhood. The light curve solutions were then used to compute the absolute dimensions of the components. Only one system, HV2241, has a radial velocity curve, allowing its absolute dimensions to be well established. Less accurate absolute dimensions were calculated for the remaining systems using photometric information. The components were then placed on H-R diagrams and compared with theoretical models of stellar evolution. The positions of the components on these diagrams appear to support the existence of convective core overshooting. The evolutionary status of the systems was also discussed. The system with the most accurately determined absolute dimensions, HV2241, appears to have undergone, or is nearing the end of, Case A mass transfer. Two other systems, HV1620 and HV1669, may also be involved in mass transfer. Finally, the use of eclipsing binaries as distance indicators was investigated. The distance modulus of the LMC was computed in two ways. One approach used the absolute dimensions found with the radial velocity data while the other employed the method of photometric parallaxes. The latter technique was also used to calculate the distance modulus of the SMC.

  1. A comparison study on flesh quality of large yellow croaker ( Larimichthys croceus) cultured with three different modes

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqin; Li, Baian; Chen, Naisong; Huang, Xuxiong; Hua, Xuemin; Leng, Xiangjun

    2017-12-01

    To compare the flesh quality of large yellow croaker cultured with three different modes, enclosure culture (EC), cage culture with feeding trash fish (CCF) and cage culture with feeding formula diet (CCD), thirty six fish individuals of EC (484.6 ± 79.8 g), CCF (432.7 ± 87.9 g) and CCD (416.9 ± 49.5 g) were sampled to measure body color, flesh water holding capacity, flesh proximate composition, amino acids and fatty acids composition, and collagen and inosinic acid contents. The analysis showed that there was no significant difference in the yellowness of skin and the contents of crude protein and inosinic acid between CCD and EC (P >0.05), and the two modes showed higher values than CCF ( P < 0.05). Most of the amino acids (AA) in flesh were higher in EC than in CCF ( P < 0.05), but CCD showed no difference in AA composition from the other two modes ( P > 0.05). EC and CCD had higher contents of collagen, free AA and lower drip loss than CC ( P < 0.05). In polyunsaturated fatty acids, EC showed significantly higher levels of C20:5n-3 and C22:6n-3 than CCF and CCD ( P < 0.05), but CCD had significantly higher C18:2n-6 than CCF and EC ( P < 0.05). In conclusion, the flesh quality of CCD fish is similar to EC fish, and these two modes have better flesh quality than CCF.

  2. Functional characterisation of three members of the Vitis vinifera L. carotenoid cleavage dioxygenase gene family

    PubMed Central

    2013-01-01

    Background In plants, carotenoids serve as the precursors to C13-norisoprenoids, a group of apocarotenoid compounds with diverse biological functions. Enzymatic cleavage of carotenoids catalysed by members of the carotenoid cleavage dioxygenase (CCD) family has been shown to produce a number of industrially important volatile flavour and aroma apocarotenoids including β-ionone, geranylacetone, pseudoionone, α-ionone and 3-hydroxy-β-ionone in a range of plant species. Apocarotenoids contribute to the floral and fruity attributes of many wine cultivars and are thereby, at least partly, responsible for the “varietal character”. Despite their importance in grapes and wine; carotenoid cleavage activity has only been described for VvCCD1 and the mechanism(s) and regulation of carotenoid catabolism remains largely unknown. Results Three grapevine-derived CCD-encoding genes have been isolated and shown to be functional with unique substrate cleavage capacities. Our results demonstrate that the VvCCD4a and VvCCD4b catalyse the cleavage of both linear and cyclic carotenoid substrates. The expression of VvCCD1, VvCCD4a and VvCCD4b was detected in leaf, flower and throughout berry development. VvCCD1 expression was constitutive, whereas VvCCD4a expression was predominant in leaves and VvCCD4b in berries. A transgenic population with a 12-fold range of VvCCD1 expression exhibited a lack of correlation between VvCCD1 expression and carotenoid substrates and/or apocarotenoid products in leaves, providing proof that the in planta function(s) of VvCCD1 in photosynthetically active tissue is distinct from the in vitro activities demonstrated. The isolation and functional characterisation of VvCCD4a and VvCCD4b identify two additional CCDs that are functional in grapevine. Conclusions Taken together, our results indicate that the three CCDs are under various levels of control that include gene expression (spatial and temporal), substrate specificity and compartmentalisation that act individually and/or co-ordinately to maintain carotenoid and volatile apocarotenoid levels in plants. Altering the expression of VvCCD1 in a transgenic grapevine population illustrated the divergence between the in vitro enzyme activity and the in planta activity of this enzyme, thereby contributing to the efforts to understand how enzymatic degradation of carotenoids involved in photosynthesis occurs. The identification and functional characterisation of VvCCD4a and VvCCD4b suggest that these enzymes are primarily responsible for catalysing the cleavage of plastidial carotenoids. PMID:24106789

  3. Regulation of transport in the connecting tubule and cortical collecting duct.

    PubMed

    Staruschenko, Alexander

    2012-04-01

    The central goal of this overview article is to summarize recent findings in renal epithelial transport,focusing chiefly on the connecting tubule (CNT) and the cortical collecting duct (CCD).Mammalian CCD and CNT are involved in fine-tuning of electrolyte and fluid balance through reabsorption and secretion. Specific transporters and channels mediate vectorial movements of water and solutes in these segments. Although only a small percent of the glomerular filtrate reaches the CNT and CCD, these segments are critical for water and electrolyte homeostasis since several hormones, for example, aldosterone and arginine vasopressin, exert their main effects in these nephron sites. Importantly, hormones regulate the function of the entire nephron and kidney by affecting channels and transporters in the CNT and CCD. Knowledge about the physiological and pathophysiological regulation of transport in the CNT and CCD and particular roles of specific channels/transporters has increased tremendously over the last two decades.Recent studies shed new light on several key questions concerning the regulation of renal transport.Precise distribution patterns of transport proteins in the CCD and CNT will be reviewed, and their physiological roles and mechanisms mediating ion transport in these segments will also be covered. Special emphasis will be given to pathophysiological conditions appearing as a result of abnormalities in renal transport in the CNT and CCD. © 2012 American Physiological Society. Compr Physiol 2:1491-1539, 2012.

  4. Cervical spine dysfunction signs and symptoms in individuals with temporomandibular disorder.

    PubMed

    Weber, Priscila; Corrêa, Eliane Castilhos Rodrigues; Ferreira, Fabiana dos Santos; Soares, Juliana Corrêa; Bolzan, Geovana de Paula; Silva, Ana Maria Toniolo da

    2012-01-01

    To study the frequency of cervical spine dysfunction (CCD) signs and symptoms in subjects with and without temporomandibular disorder (TMD) and to assess the craniocervical posture influence on TMD and CCD coexistence. Participants were 71 women (19 to 35 years), assessed about TMD presence; 34 constituted the TMD group (G1) and 37 comprised the group without TMD (G2). The CCD was evaluated through the Craniocervical Dysfunction Index and the Cervical Mobility Index. Subjects were also questioned about cervical pain. Craniocervical posture was assessed by cephalometric analysis. There was no difference in the craniocervical posture between groups. G2 presented more mild CCD frequency and less moderate and severe CCD frequency (p=0.01). G1 presented higher percentage of pain during movements (p=0.03) and pain during cervical muscles palpation (p=0.01) compared to G2. Most of the TMD patients (88.24%) related cervical pain with significant difference when compared to G2 (p=0.00). Craniocervical posture assessment showed no difference between groups, suggesting that postural alterations could be more related to the CCD. Presence of TMD resulted in higher frequency of cervical pain symptom. Thus the coexistence of CCD and TMD signs and symptoms appear to be more related to the common innervations of the trigeminocervical complex and hyperalgesia of the TMD patients than to craniocervical posture deviations.

  5. Leveraging 3D-HST Grism Redshifts to Quantify Photometric Redshift Performance

    NASA Astrophysics Data System (ADS)

    Bezanson, Rachel; Wake, David A.; Brammer, Gabriel B.; van Dokkum, Pieter G.; Franx, Marijn; Labbé, Ivo; Leja, Joel; Momcheva, Ivelina G.; Nelson, Erica J.; Quadri, Ryan F.; Skelton, Rosalind E.; Weiner, Benjamin J.; Whitaker, Katherine E.

    2016-05-01

    We present a study of photometric redshift accuracy in the 3D-HST photometric catalogs, using 3D-HST grism redshifts to quantify and dissect trends in redshift accuracy for galaxies brighter than JH IR > 24 with an unprecedented and representative high-redshift galaxy sample. We find an average scatter of 0.0197 ± 0.0003(1 + z) in the Skelton et al. photometric redshifts. Photometric redshift accuracy decreases with magnitude and redshift, but does not vary monotonically with color or stellar mass. The 1σ scatter lies between 0.01 and 0.03 (1 + z) for galaxies of all masses and colors below z < 2.5 (for JH IR < 24), with the exception of a population of very red (U - V > 2), dusty star-forming galaxies for which the scatter increases to ˜0.1 (1 + z). We find that photometric redshifts depend significantly on galaxy size; the largest galaxies at fixed magnitude have photo-zs with up to ˜30% more scatter and ˜5 times the outlier rate. Although the overall photometric redshift accuracy for quiescent galaxies is better than that for star-forming galaxies, scatter depends more strongly on magnitude and redshift than on galaxy type. We verify these trends using the redshift distributions of close pairs and extend the analysis to fainter objects, where photometric redshift errors further increase to ˜0.046 (1 + z) at {H}F160W=26. We demonstrate that photometric redshift accuracy is strongly filter dependent and quantify the contribution of multiple filter combinations. We evaluate the widths of redshift probability distribution functions and find that error estimates are underestimated by a factor of ˜1.1-1.6, but that uniformly broadening the distribution does not adequately account for fitting outliers. Finally, we suggest possible applications of these data in planning for current and future surveys and simulate photometric redshift performance in the Large Synoptic Survey Telescope, Dark Energy Survey (DES), and combined DES and Vista Hemisphere surveys.

  6. Adolescent-onset alcohol abuse exacerbates the influence of childhood conduct disorder on late adolescent and early adult antisocial behaviour.

    PubMed

    Howard, Richard; Finn, Peter; Jose, Paul; Gallagher, Jennifer

    2011-12-16

    This study tested the hypothesis that adolescent-onset alcohol abuse (AOAA) would both mediate and moderate the effect of childhood conduct disorder on antisocial behaviour in late adolescence and early adulthood. A sample comprising 504 young men and women strategically recruited from the community were grouped using the criteria of the Diagnostic and Statistical Manual (DSM-IV, American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: APA), as follows: neither childhood conduct disorder (CCD) nor alcohol abuse/dependence; CCD but no alcohol abuse or dependence; alcohol abuse/dependence but no CCD; both CCD and alcohol abuse/dependence. The outcome measure was the sum of positive responses to 55 interview items capturing a variety of antisocial behaviours engaged in since age 15. Severity of lifetime alcohol-related and CCD problems served as predictor variables in regression analysis. Antisocial behaviour problems were greatest in individuals with a history of co-occurring conduct disorder (CD) and alcohol abuse/dependence. While CCD was strongly predictive of adult antisocial behaviour, this effect was both mediated and moderated (exacerbated) by AOAA.

  7. Adolescent-onset alcohol abuse exacerbates the influence of childhood conduct disorder on late adolescent and early adult antisocial behaviour

    PubMed Central

    Howard, Richard; Finn, Peter; Jose, Paul; Gallagher, Jennifer

    2012-01-01

    This study tested the hypothesis that adolescent-onset alcohol abuse (AOAA) would both mediate and moderate the effect of childhood conduct disorder on antisocial behaviour in late adolescence and early adulthood. A sample comprising 504 young men and women strategically recruited from the community were grouped using the criteria of the Diagnostic and Statistical Manual (DSM-IV, American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: APA), as follows: neither childhood conduct disorder (CCD) nor alcohol abuse/dependence; CCD but no alcohol abuse or dependence; alcohol abuse/dependence but no CCD; both CCD and alcohol abuse/dependence. The outcome measure was the sum of positive responses to 55 interview items capturing a variety of antisocial behaviours engaged in since age 15. Severity of lifetime alcohol-related and CCD problems served as predictor variables in regression analysis. Antisocial behaviour problems were greatest in individuals with a history of co-occurring conduct disorder (CD) and alcohol abuse/dependence. While CCD was strongly predictive of adult antisocial behaviour, this effect was both mediated and moderated (exacerbated) by AOAA. PMID:23459369

  8. First Precision Photometric Observations and Analyses of the Totally Eclipsing, Solar Type Binary V573 Pegasi

    NASA Astrophysics Data System (ADS)

    Samec, R. G.; Caton, D. B.; Faulkner, D. R.

    2018-06-01

    CCD VRcIc light curves of V573 Peg were taken 26 and 27 September and 2, 4, and 6 October, 2017, at the Dark Sky Observatory in North Carolina with the 0.81-m reflector of Appalachian State University. Five times of minimum light were calculated, two primary and three secondary eclipses, from our present observations. The following quadratic ephemeris was determined from all available times of minimum light: JD Hel MinI = 2456876.4958 (2) d + 0.41744860 (8) × E -2.74 (12) × 10^-10 × E2, where the parentheses hold the ± error in the last two digits of the preceding value. A 14-year period study (covered by 24 times of minimum light) reveals a decreasing orbital period with high confidence, possibly due to magnetic braking. The mass ratio is found to be somewhat extreme, M2 / M1 = 0.2629 ± 0.0006 (M1 / M2 = 3.8). Its Roche Lobe fill-out is ˜25%. The solution had no need of spots. The component temperature difference is about 130 K, with the less massive component as the hotter one, so it is a W-type W UMa Binary. The inclination is 80.4 ± 0.1°. Our secondary eclipse shows a time of constant light with an eclipse duration of 24 minutes. More information is given in the following report.

  9. Target Characterization and Follow-Up Observations in Support of the Kepler Mission

    NASA Technical Reports Server (NTRS)

    Latham, David W.

    2003-01-01

    A variety of experiments were carried out to investigate the number and characteristics of the stars to be included in the Kepler Input Catalog. One result of this work was the proposal that the 2MASS Catalog of astrometry and photometry in the infrared be used as the primary source for the initial selection of candidate target stars, because this would naturally decrease the number of unsuitable hot blue stars and would also increase the number of desirable solar-type dwarf stars. Another advantage of the 2MASS catalogue is that the stellar positions have more than adequate astrometric accuracy for the Kepler target selection. The original plan reported in the Concept Study Report was to use the parallaxes and multi-band photometry from the FAME mission to provide the information needed for reliable separation of giants and dwarfs. As a result of NASA's withdrawal of support for FAME an alternate approach was needed. In November 2002 we proposed to the Kepler Science Team that a ground-based multi-band photometric survey could help alleviate the loss of the FAME data. The Science Team supported this proposal strongly, and we undertook a survey of possible facilities for such a survey. We concluded that the SAO's 4Shooter CCD camera on the 1.2-m telescope at the Whipple Observatory on Mount Hopkins, Arizona, showed promise for this work.

  10. Simultaneous CCD Photometry of Two Eclipsing Binary Stars in Pegasus - Part2: BX Peg

    NASA Astrophysics Data System (ADS)

    Alton, K. B.

    2013-05-01

    BX Peg is an overcontact W UMa binary system (P = 0.280416 d) which has been rather well studied, but not fully understood due to complex changes in eclipse timings and light curve variations attributed to star spots. Photometric data collected in three bandpasses (B, V, and Ic) produced nineteen new times of minimum for BX Peg. These were used to update the linear ephemeris and further analyze potential changes in orbital periodicity by examining long-term changes in eclipse timings. In addition, synthetic fitting of light curves by Roche modeling was accomplished with the assistance of three different programs, two of which employ the Wilson-Devinney code. Different spotted solutions were necessary to achieve the best Roche model fits for BX Peg light curves collected in 2008 and 2011. Overall, the long-;term decrease (9.66 × 10-3 sec y-1) in orbital period defined by the parabolic fit of eclipse timing data could arise from mass transfer or angular momentum loss. The remaining residuals from observed minus predicted eclipse timings for BX Peg exhibit complex but non-random behavior. These may be related to magnetic activity cycles and/or the presence of an unseen mass influencing the times of minimum, however, additional minima need to be collected over a much longer timescale to resolve the nature of these complex changes.

  11. How Accurately Can We Measure Galaxy Environment at High Redshift Using Only Photometric Redshifts?

    NASA Astrophysics Data System (ADS)

    Florez, Jonathan; Jogee, Shardha; Sherman, Sydney; Papovich, Casey J.; Finkelstein, Steven L.; Stevans, Matthew L.; Kawinwanichakij, Lalitwadee; Ciardullo, Robin; Gronwall, Caryl; SHELA/HETDEX

    2017-06-01

    We use a powerful synergy of six deep photometric surveys (Herschel SPIRE, Spitzer IRAC, NEWFIRM K-band, DECam ugriz, and XMM X-ray) and a future optical spectroscopic survey (HETDEX) in the Stripe 82 field to study galaxy evolution during the 1.9 < z < 3.5 epoch when cosmic star formation and black hole activity peaked, and protoclusters began to collapse. With an area of 24 sq. degrees, a sample size of ~ 0.8 million galaxies complete in stellar mass above M* ~ 10^10 solar masses, and a comoving volume of ~ 0.45 Gpc^3, our study will allow us to make significant advancements in understanding the connection between galaxies and their respective dark matter components. In this poster, we characterize how robustly we can measure environment using only our photometric redshifts. We compare both local and large-scale measures of environment (e.g., projected two-point correlation function, projected nearest neighbor densities, and galaxy counts within some projected aperture) at different photometric redshifts to cosmological simulations in order to quantify the uncertainty in our estimates of environment. We also explore how robustly one can recover the variation of galaxy properties with environment, when using only photometric redshifts. In the era of large photometric surveys, this work has broad implications for studies addressing the impact of environment on galaxy evolution at early cosmic epochs. We acknowledge support from NSF grants AST-1614798, AST-1413652 and NSF GRFP grant DGE-1610403.

  12. A Search for Photometric Variability in the Young T3.5 Planetary-mass Companion GU Psc b

    NASA Astrophysics Data System (ADS)

    Naud, Marie-Eve; Artigau, Étienne; Rowe, Jason F.; Doyon, René; Malo, Lison; Albert, Loïc; Gagné, Jonathan; Bouchard, Sandie

    2017-10-01

    We present a photometric J-band variability study of GU Psc b, a T3.5 co-moving planetary-mass companion (9-13 {M}{Jup}) to a young (˜150 Myr) M3 member of the AB Doradus Moving Group. The large separation between GU Psc b and its host star (42″) provides a rare opportunity to study the photometric variability of a planetary-mass companion. The study presented here is based on observations obtained from 2013 to 2014 over three nights with durations of 5-6 hr each with the WIRCam imager at Canada-France-Hawaii Telescope. Photometric variability with a peak-to-peak amplitude of 4 ± 1% at a timescale of ˜6 hr was marginally detected on 2014 October 11. No high-significance variability was detected on 2013 December 22 and 2014 October 10. The amplitude and timescale of the variability seen here, as well as its evolving nature, is comparable to what was observed for a variety of field T dwarfs and suggests that mechanisms invoked to explain brown dwarf variability may be applicable to low-gravity objects such as GU Psc b. Rotation-induced photometric variability due to the formation and dissipation of atmospheric features such as clouds is a plausible hypothesis for the tentative variation detected here. Additional photometric measurements, particularly on longer timescales, will be required to confirm and characterize the variability of GU Psc b, determine its periodicity and to potentially measure its rotation period.

  13. Strigolactone regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum)

    PubMed Central

    Liang, Jianli; Zhao, Liangjun; Challis, Richard; Leyser, Ottoline

    2010-01-01

    Previous studies of highly branched mutants in pea (rms1–rms5), Arabidopsis thaliana (max1–max4), petunia (dad1–dad3), and rice (d3, d10, htd1/d17, d14, d27) identified strigolactones or their derivates (SLs), as shoot branching inhibitors. This recent discovery offers the possibility of using SLs to regulate branching commercially, for example, in chrysanthemum, an important cut flower crop. To investigate this option, SL physiology and molecular biology were studied in chrysanthemum (Dendranthema grandiflorum), focusing on the CCD8/MAX4/DAD1/RMS1/D10 gene. Our results suggest that, as has been proposed for Arabidopsis, the ability of SLs to inhibit bud activity depends on the presence of a competing auxin source. The chrysanthemum SL biosynthesis gene, CCD8 was cloned, and found to be regulated in a similar, but not identical way to known CCD8s. Expression analyses revealed that DgCCD8 is predominantly expressed in roots and stems, and is up-regulated by exogenous auxin. Exogenous SL can down-regulate DgCCD8 expression, but this effect can be overridden by apical auxin application. This study provides evidence that SLs are promising candidates to alter the shoot branching habit of chrysanthemum. PMID:20478970

  14. Physical Properties and Evolution of the Eclipsing Binary System XZ Canis Minoris

    NASA Astrophysics Data System (ADS)

    Poochaum, R.; Komonjinda, S.; Soonthornthum, B.; Rattanasoon, S.

    2010-07-01

    This research aims to study the eclipse binary system so that its physical properties and evolution can be determined and used as an example to teach high school astronomy. The study of an eclipsing binary system XZ Canis Minoris (XZ CMi) was done at Sirindhorn Observatory, Chiang Mai University using a 0.5-meter reflecting telescope with CCD photometric system (2184×1417 pixel) in B V and R bands of UVB System. The data obtained were used to construct the light curve for each wavelength band and to compute the times of its light minima. New elements were derived using observations with linear to all available minima. As a result, linear ephemeris is HDJmin I = .578 808 948+/-0.000 000 121+2450 515.321 26+/-0.001 07 E, and the new orbital period of XZ CMi is 0.578 808 948+/-0.000 000 121 day. The values obtained were used with the previously published times of minima to get O-C curve of XZ CMi. The result revealed that the orbital period of XZ CMi is continuously decreased at a rate of 0.007 31+/-0.000 57 sec/year. This result indicates that the binary stars are moving closer continuously. From the O-C residuals, there is significant change to indicate the existence of the third body or magnetic activity cycle on the star. However, further analysis of the physical properties of XZ CMi is required.

  15. Development of a Portable 3CCD Camera System for Multispectral Imaging of Biological Samples

    PubMed Central

    Lee, Hoyoung; Park, Soo Hyun; Noh, Sang Ha; Lim, Jongguk; Kim, Moon S.

    2014-01-01

    Recent studies have suggested the need for imaging devices capable of multispectral imaging beyond the visible region, to allow for quality and safety evaluations of agricultural commodities. Conventional multispectral imaging devices lack flexibility in spectral waveband selectivity for such applications. In this paper, a recently developed portable 3CCD camera with significant improvements over existing imaging devices is presented. A beam-splitter prism assembly for 3CCD was designed to accommodate three interference filters that can be easily changed for application-specific multispectral waveband selection in the 400 to 1000 nm region. We also designed and integrated electronic components on printed circuit boards with firmware programming, enabling parallel processing, synchronization, and independent control of the three CCD sensors, to ensure the transfer of data without significant delay or data loss due to buffering. The system can stream 30 frames (3-waveband images in each frame) per second. The potential utility of the 3CCD camera system was demonstrated in the laboratory for detecting defect spots on apples. PMID:25350510

  16. Perceptions of predisposing, enabling, and reinforcing factors influencing the use of a continuity of care document in special needs PLWH.

    PubMed

    Odlum, Michelle; Gordon, Peter; Camhi, Eli; Schnall, Rebecca; Teixeira, Paul; Bakken, Suzanne

    2012-11-01

    The provision of personal health information through electronic personal health management tools (EPHMT) has the potential to improve health outcomes. However, little is known about factors that affect EPHMT use in special needs people living with HIV/AIDS (PLWH). The purpose of this study was to describe PLWH perceptions of predisposing, enabling, and reinforcing factors affecting use of one type of EPHMT, a continuity of care document (CCD). Data were collected through focus groups and qualitative interviews with PLWH (n=35), health care providers (N=19) and care site managers (N=5). All participant types identified predisposing barriers to CCD use including literacy, privacy, and technology access and enabling factors to promote CCD use including user support and password simplicity. People living with HIV/AIDS also identified reinforcing factors for recurring CCD use including emergent situations and reducing test redundancy. Results inform methods to promote use of the CCD and other EPHMT by special needs PLWH.

  17. Calibrating photometric redshifts of luminous red galaxies

    DOE PAGES

    Padmanabhan, Nikhil; Budavari, Tamas; Schlegel, David J.; ...

    2005-05-01

    We discuss the construction of a photometric redshift catalogue of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS), emphasizing the principal steps necessary for constructing such a catalogue: (i) photometrically selecting the sample, (ii) measuring photometric redshifts and their error distributions, and (iii) estimating the true redshift distribution. We compare two photometric redshift algorithms for these data and find that they give comparable results. Calibrating against the SDSS and SDSS–2dF (Two Degree Field) spectroscopic surveys, we find that the photometric redshift accuracy is σ~ 0.03 for redshifts less than 0.55 and worsens at higher redshift (~ 0.06more » for z < 0.7). These errors are caused by photometric scatter, as well as systematic errors in the templates, filter curves and photometric zero-points. We also parametrize the photometric redshift error distribution with a sum of Gaussians and use this model to deconvolve the errors from the measured photometric redshift distribution to estimate the true redshift distribution. We pay special attention to the stability of this deconvolution, regularizing the method with a prior on the smoothness of the true redshift distribution. The methods that we develop are applicable to general photometric redshift surveys.« less

  18. Jig Aligns Shadow Mask On CCD

    NASA Technical Reports Server (NTRS)

    Matus, Carlos V.

    1989-01-01

    Alignment viewed through microscope. Alignment jig positions shadow mask on charge-coupled device (CCD) so metal film deposited on it precisely. Allows CCD package to be inserted and removed without disturbing alignment of mask. Holds CCD packages securely and isolates it electrostatically while providing electrical contact to each of its pins. When alignment jig assembled with CCD, used to move mask under micrometer control.

  19. HST/WFC3: understanding and mitigating radiation damage effects in the CCD detectors

    NASA Astrophysics Data System (ADS)

    Baggett, S. M.; Anderson, J.; Sosey, M.; Gosmeyer, C.; Bourque, M.; Bajaj, V.; Khandrika, H.; Martlin, C.

    2016-07-01

    At the heart of the Hubble Space Telescope Wide Field Camera 3 (HST/WFC3) UVIS channel is a 4096x4096 pixel e2v CCD array. While these detectors continue to perform extremely well after more than 7 years in low-earth orbit, the cumulative effects of radiation damage are becoming increasingly evident. The result is a continual increase of the hotpixel population and the progressive loss in charge-transfer efficiency (CTE) over time. The decline in CTE has two effects: (1) it reduces the detected source flux as the defects trap charge during readout and (2) it systematically shifts source centroids as the trapped charge is later released. The flux losses can be significant, particularly for faint sources in low background images. In this report, we summarize the radiation damage effects seen in WFC3/UVIS and the evolution of the CTE losses as a function of time, source brightness, and image-background level. In addition, we discuss the available mitigation options, including target placement within the field of view, empirical stellar photometric corrections, post-flash mode and an empirical pixel-based CTE correction. The application of a post-flash has been remarkably effective in WFC3 at reducing CTE losses in low-background images for a relatively small noise penalty. Currently, all WFC3 observers are encouraged to consider post-flash for images with low backgrounds. Finally, a pixel-based CTE correction is available for use after the images have been acquired. Similar to the software in use in the HST Advanced Camera for Surveys (ACS) pipeline, the algorithm employs an observationally-defined model of how much charge is captured and released in order to reconstruct the image. As of Feb 2016, the pixel-based CTE correction is part of the automated WFC3 calibration pipeline. Observers with pre-existing data may request their images from MAST (Mikulski Archive for Space Telescopes) to obtain the improved products.

  20. Dense grid of narrow bandpass filters for the JST/T250 telescope: summary of results

    NASA Astrophysics Data System (ADS)

    Brauneck, Ulf; Sprengard, Ruediger; Bourquin, Sebastien; Marín-Franch, Antonio

    2018-01-01

    On the Javalambre mountain in Spain, the Centro de Estudios de Fisica del Cosmos de Aragon has setup two telescopes, the JST/T250 and the JAST/T80. The JAST/T80 telescope integrates T80Cam, a large format, single CCD camera while the JST/T250 will mount the JPCam instrument, a 1.2Gpix camera equipped with a 14-CCD mosaic using the new large format e2v 9.2k×9.2k 10-μm pixel detectors. Both T80Cam and JPCam integrate a large number of filters in dimensions of 106.8×106.8 mm2 and 101.7×95.5 mm2, respectively. For this instrument, SCHOTT manufactured 56 specially designed steep edged bandpass interference filters, which were recently completed. The filter set consists of bandpass filters in the range between 348.5 and 910 nm and a longpass filter at 915 nm. Most of the filters have full-width at half-maximum (FWHM) of 14.5 nm and a blocking between 250 and 1050 nm with optical density of OD5. Absorptive color glass substrates in combination with interference filters were used to minimize residual reflection in order to avoid ghost images. In spite of containing absorptive elements, the filters show the maximum possible transmission. This was achieved by using magnetron sputtering for the filter coating process. The most important requirement for the continuous photometric survey is the tight tolerancing of the central wavelengths and FWHM of the filters. This insures each bandpass has a defined overlap with its neighbors. A high image quality required a low transmitted wavefront error (<λ/4 locally and <λ/2 on the whole aperture), which was achieved even by combining two or three substrates. We report on the spectral and interferometric results measured on the whole set of filters.

  1. Using a delta-doped CCD to determine the energy of a low-energy particle

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh (Inventor); Croley, Donald R. (Inventor); Murphy, Gerald B. (Inventor)

    2001-01-01

    The back surface of a thinned charged-coupled device (CCD) is treated to eliminate the backside potential well that appears in a conventional thinned CCD during backside illumination. The backside of the CCD includes a delta layer of high-concentration dopant confined to less than one monolayer of the crystal semiconductor. The thinned, delta-doped CCD is used to determine the energy of a very low-energy particle that penetrates less than 1.0 nm into the CCD, such as a proton having energy less than 10 keV.

  2. Delta-doped CCD's as low-energy particle detectors and imagers

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh (Inventor); Hoenk, Michael E. (Inventor); Hecht, Michael H. (Inventor)

    2002-01-01

    The back surface of a thinned charged-coupled device (CCD) is treated to eliminate the backside potential well that appears in a conventional thinned CCD during backside illumination. The backside of the CCD includes a delta layer of high-concentration dopant confined to less than one monolayer of the crystal semiconductor. The thinned, delta-doped CCD is used to detect very low-energy particles that penetrate less than 1.0 nm into the CCD, including electrons having energies less than 1000 eV and protons having energies less than 10 keV.

  3. Hogg 12 and NGC 3590: A New Open Cluster Binary System Candidate

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.; Clariá, Juan J.; Ahumada, Andrea V.

    2010-05-01

    We have obtained CCD UBVIKC photometry down to V ˜ 22.0 for the open clusters Hogg 12 and NGC 3590 and the fields surrounding them. Based on photometric and morphological criteria, as well as on the stellar density in the region, our evidence is sufficient to confirm that Hogg 12 is a genuine open cluster. NGC 3590 was used as a control cluster. The color-magnitude diagrams of Hogg 12, cleaned from field star contamination, reveal that this is a solar metal content cluster, affected by E(B - V) = 0.40 ± 0.05, located at a heliocentric distance d = 2.0 ± 0.5 kpc, and of an age similar to that of NGC 3590 (t = 30 Myr). Both clusters are surprisingly small objects whose radii are barely ˜1 pc, andthey are separated in the sky by scarcely 3.6 pc. These facts, added to their similar ages, reddenings, and metallicities, allow us to consider them a new open cluster binary system candidate. Of the ˜180 open cluster binary systems estimated to exist in the Galaxy, of which 27 are actually well known, Hogg 12 and NGC 3590 appear to be one of the two closest pairs.

  4. VizieR Online Data Catalog: OGLE Magellanic Clouds anomalous Cepheids (Soszynski+, 2015)

    NASA Astrophysics Data System (ADS)

    Soszynski, I.; Udalski, A.; Szymanski, M. K.; Pietrzynski, G.; Wyrzykowski, L.; Ulaczyk, K.; Poleski, R.; Pietrukowicz, P.; Kozlowski, S.; Skowron, J.; Mroz, P.; Pawlak, M.

    2016-06-01

    Time-series I and V-band photometry of the Magellanic Clouds was obtained in the years 2010-2015 using the 32-chip mosaic CCD camera mounted at the focus of the 1.3-m Warsaw Telescope located at Las Campanas Observatory in Chile. The observatory is operated by the Carnegie Institution for Science. The OGLE- IV camera has a total field of view of 1.4 square degrees and pixel scale of 0.26". The OGLE-IV fields cover approximately 650 square degrees in both Clouds and a region between both galaxies, the so-called Magellanic Bridge. For each field we obtained from 90 (in sparse regions far from the centers of the Magellanic Clouds) to over 750 observing points (in the densest fields) in the Cousins I-band and from several to over 260 points in the Johnson V-band. Data reduction of the OGLE images was performed using the Difference Image Analysis technique (Alard and Lupton 1998ApJ...503..325A, Wozniak 2000). Detailed descriptions of the instrumentation, photometric reductions and astrometric calibrations of the OGLE-IV data are provided by Udalski et al. (2015, Cat. J/AcA/50/421). (8 data files).

  5. Deblending Microlensing Events Using Astrometric Shifts

    NASA Astrophysics Data System (ADS)

    Goldberg, D. M.; Wozniak, P.; Paczynski, B.

    1997-12-01

    In this poster, we present the prospect that astrometric shifts can be used to identify blended microlensing events in crowded fields. Moreover, by measuring an astrometric shift, one can determine the position of the true lensed star with respect to the local field with very high precision. We first perform several simulations of microlensing searches in crowded fields and find that if we assume a dark lens, and that the lensed star obeys a power law luminosity function, n(L)~ L(-beta ) , over half the simulated events show a measurable astrometric shift. For simulations of 20000 stars on a 256x 256 Nyquist sampled CCD frame, we found that with beta =2, 58% of the events were significantly blended (F_{*}/Ftot <= 0.9), and of those, 73% had a large astrometric shift (>= 0.5 pixels). For beta =3, we found that 85% were significantly blended, and that 85% of those had a significant shift. Since we expect most blended events to show a significant shift, we look in the OGLE I database (Wozniak & Szymanski 1997), and find measurable and systematic shifts in over half the candidate microlensing events, including OGLE # 5, which was considered to be blended from photometric data.

  6. Evolution of Starspots on LO Pegasi

    NASA Astrophysics Data System (ADS)

    Harmon, Robert; Bloodgood, Felise; Martin, Alec; Pellegrin, Kyle

    2018-01-01

    LO Pegasi is a young solar analog, a K main-sequence star that rotates with a period of 10.1538 hr. The rapid rotation yields a strong stellar dynamo associated with large starspots on the surface, which are regions where the magnetic field inhibits the convective transport of energy from below, so that the spots are cooler and thus darker than the surrounding photosphere. The star thus exhibits rotational modulation of its light curve as the starspots are carried into and out of view of Earth. CCD images of LO Peg were acquired at Perkins Observatory in Delaware, OH through standard B, V, R, and I photometric filters from 2017 June 1 to July 20. After subtracting dark frames and flat fielding the images, differential aperture photometry was performed to yield light curves through each of the four filters. The resulting light curves that were then analyzed via the Light-curve Inversion program created by one of us (Harmon) to produce surface maps. Our observations indicated that LO Pegasi’s light curve changed in both amplitude and shape between 2017 June and July, while its maximum brightness did not change. We present maps corresponding to these two distinct light curves, along with maps for data acquired from 2006-2016.

  7. Advances in photographic X-ray imaging for solar astronomy

    NASA Technical Reports Server (NTRS)

    Moses, J. Daniel; Schueller, R.; Waljeski, K.; Davis, John M.

    1989-01-01

    The technique of obtaining quantitative data from high resolution soft X-ray photographic images produced by grazing incidence optics was successfully developed to a high degree during the Solar Research Sounding Rocket Program and the S-054 X-Ray Spectrographic Telescope Experiment Program on Skylab. Continued use of soft X-ray photographic imaging in sounding rocket flights of the High Resolution Solar Soft X-Ray Imaging Payload has provided opportunities to further develop these techniques. The developments discussed include: (1) The calibration and use of an inexpensive, commercially available microprocessor controlled drum type film processor for photometric film development; (2) The use of Kodak Technical Pan 2415 film and Kodak SO-253 High Speed Holographic film for improved resolution; and (3) The application of a technique described by Cook, Ewing, and Sutton for determining the film characteristics curves from density histograms of the flight film. Although the superior sensitivity, noise level, and linearity of microchannel plate and CCD detectors attracts the development efforts of many groups working in soft X-ray imaging, the high spatial resolution and dynamic range as well as the reliability and ease of application of photographic media assures the continued use of these techniques in solar X-ray astronomy observations.

  8. Different Characteristics of the Bright Branches of the Globular Clusters M15 and M92

    NASA Astrophysics Data System (ADS)

    Cho, Dong-Hwan; Lee, Sang-Gak

    2007-05-01

    We carried out relatively wide-field BVI CCD photometric observations of the globular clusters M15 (NGC 7078) and M92 (NGC 6341) using the 1.8 m telescope of the Bohyun Optical Astronomy Observatory. We present color-magnitude diagrams (V vs. B-V, V vs. V-I, and V vs. B-I) of M15 and M92. We found asymptotic giant branch (AGB) bumps at VbumpAGB=15.20+/-0.05 mag and VbumpAGB=14.50+/-0.05 mag for M15 and M92, respectively. We identified the red giant branch (RGB) bumps of the two clusters. We have estimated the population ratios R and R2 for M15 and M92 in two cases: when only normal horizontal-branch (HB) stars are used and when all the HB stars are used. We have compared the observed RGB luminosity functions of M15 and M92 with the theoretical RGB luminosity functions of Bergbusch & VandenBerg and found no significant ``extra stars'' in the comparisons. This implies that the HB morphology difference between M15 and M92 is not certain due to the results of deep mixing in the RGB sequence.

  9. Rapid-cadence optical monitoring for short-period variability of ɛ Aurigae

    NASA Astrophysics Data System (ADS)

    Billings, Gary

    2013-07-01

    ɛ Aurigae was observed with CCD cameras and 35 mm SLR camera lenses, at rapid cadence (>1/minute), for long runs (up to 11 hours), on multiple occasions during 2009 - 2011, to monitor for variability of the system at scales of minutes to hours. The lens and camera were changed during the period to improve results, finalizing on a 135 mm focal length Canon f/2 lens (at f/2.8), an ND8 neutral density filter, a Johnson V filter, and an SBIG ST-8XME camera (Kodak KAF-1603ME microlensed chip). Differential photometry was attempted, but because of the large separation between the variable and comparison star (η Aur), noise caused by transient extinction variations was not consistently eliminated. The lowest-noise time series for searching for short-period variability proved to be the extinction-corrected instrumental magnitude of ɛ Aur obtained on "photometric nights", with η Aur used to determine and monitor the extinction coefficient for the night. No flares or short-period variations of ɛ Aur were detected by visual inspection of the light curves from observing runs with noise levels as low as 0.008 magnitudes rms.

  10. CAPELLA: Software for stellar photometry in dense fields with an irregular background

    NASA Astrophysics Data System (ADS)

    Debray, B.; Llebaria, A.; Dubout-Crillon, R.; Petit, M.

    1994-01-01

    We describe CAPELLA, a photometric reduction package developed top automatically process images of very crowded stellar fields with an irregular background. Detection is performed by the use of a derivative filter (the laplacian of a gaussian), the measuring of position and flux of the stars uses a profile fitting technique. The Point Spread Function (PSF) is empirical. The traditional multiparmetric non-linear fit is replaced by a set of individual linear fits. The determination of the background, the detection, the definition of the PSF and the basics of the methods are successively addressed in details. The iterative procedure as well as some aspects of the sampling problem are also discussed. Precision tests, performances in uncrowded and crowded fields are given CAPELLA has been used to process crowded stellar fields obtained with different detectors such as electronographic cameras, CCD's photographic films coupled to image intensifiers. It has been applied successfully in the extreme cases of close associations of the galaxy M33, of the composite Wolf-Rayet Brey 73 in the Large Magellanic Cloud (LMC) and of the central parts of globular clusters as 47 TUC and M15.

  11. VizieR Online Data Catalog: Solar neighborhood. XXXII. L and M dwarfs (Dieterich+, 2014)

    NASA Astrophysics Data System (ADS)

    Dieterich, S. B.; Henry, T. J.; Jao, W.-C.; Winters, J. G.; Hosey, A. D.; Riedel, A. R.; Subasavage, J. P.

    2015-01-01

    We obtained VRI photometry for all targets in our sample using the Cerro Tololo Inter-American Observatory (CTIO) 0.9m telescope for the brighter targets and the SOuthern Astrophysical Research (SOAR) Optical Imager camera on the SOAR 4.1m telescope for fainter targets. SOAR observations were conducted between 2009 September and 2010 December during six observing runs comprising NOAO programs 2009B-0425, 2010A-0185, and 2010B-0176. A total of 17 nights on SOAR were used for optical photometry. Table 1 shows the photometry in the photometric system used by the telescope with which the measurements were taken (Johnson-Kron-Cousins for the CTIO 0.9m telescope and Bessell for SOAR). Astrometric observations are based in part on observations obtained via the Cerro Tololo Inter-American Observatory Parallax Investigation (CTIOPI), at the Cerro Tololo 0.9m telescope. CTIOPI is a large and versatile astrometric monitoring program targeting diverse types of stellar and substellar objects in the solar neighborhood. Observations are taken using the CTIO 0.9m telescope and its sole instrument, a 2048*2048 Tektronix imaging CCD detector with a plate scale of 0.401''/pixel. (4 data files).

  12. Optimal Compression of Floating-Point Astronomical Images Without Significant Loss of Information

    NASA Technical Reports Server (NTRS)

    Pence, William D.; White, R. L.; Seaman, R.

    2010-01-01

    We describe a compression method for floating-point astronomical images that gives compression ratios of 6 - 10 while still preserving the scientifically important information in the image. The pixel values are first preprocessed by quantizing them into scaled integer intensity levels, which removes some of the uncompressible noise in the image. The integers are then losslessly compressed using the fast and efficient Rice algorithm and stored in a portable FITS format file. Quantizing an image more coarsely gives greater image compression, but it also increases the noise and degrades the precision of the photometric and astrometric measurements in the quantized image. Dithering the pixel values during the quantization process greatly improves the precision of measurements in the more coarsely quantized images. We perform a series of experiments on both synthetic and real astronomical CCD images to quantitatively demonstrate that the magnitudes and positions of stars in the quantized images can be measured with the predicted amount of precision. In order to encourage wider use of these image compression methods, we have made available a pair of general-purpose image compression programs, called fpack and funpack, which can be used to compress any FITS format image.

  13. CCD astrometric observations of Amalthea and Thebe in the Gaia era

    NASA Astrophysics Data System (ADS)

    Robert, V.; Saquet, E.; Colas, F.; Arlot, J.-E.

    2017-05-01

    In the framework of the 2014-2015 campaign of mutual events, we observed Jupiter's inner satellites Amalthea (JV) and Thebe (JXIV). We focused on estimating whether the positioning accuracy determined from direct astrometry could compete with that derived from photometric observations of eclipses, for dynamical purposes. We present the analysis of 35 observations of Amalthea and 19 observations of Thebe realized with the 1-m telescope at the Pic du Midi observatory during three nights in 2015, January and April. The images were reduced through an optimal process that includes image and spherical corrections using the Gaia-DR1 catalogue to provide the most accurate equatorial (RA, Dec.) positions. We compared the observed positions of both satellites with the theoretical positions from JPL JUP310 satellite ephemerides and from the IMCCE INPOP13c planetary ephemeris. The values of rms (O-C) in equatorial positions are ±112 mas for the Amalthea observations, or 330 km at Jupiter, and ±90 mas for the Thebe observations, or 270 km at Jupiter. Using the Gaia-DR1 catalogue allowed us to eliminate systematic errors due to the star references up to 120 mas, or 350 km at Jupiter, by comparison with the UCAC4 catalogue.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chadid, M.; Vernin, J.; Zalian, C.

    We present the first detection of multi-shocks propagating through the atmosphere of the Blazhko star S Arae using uninterrupted, accurate optical photometric data collected during one polar night, 150 days from Antarctica at Dome C, with the Photometer AntarctIca eXtinction (PAIX). We acquired 89,736 CCD frames during 323 pulsation cycles and 3 Blazhko cycles. We detected two new light curve properties in the PAIX light curve, jump and rump, which we associated with two new post-maximum shock waves Sh{sub PM1} and Sh{sub PM2}. jump, lump, rump, bump, and hump are induced by five shock waves, with different amplitudes and origins,more » Sh{sub PM1}, Sh{sub PM}, Sh{sub PM2}, Sh{sub PM3}, and the main shock Sh{sub H+He}. Correlations between the length of rise time and light amplitude and Sh{sub PM3} are monotonous during three Blazhko cycles, but the pulsation curve is double peaked. We discuss the physical mechanisms driving the modulation of these quantities. Finally, we hypothesize that the origin of the Blazhko effect is a dynamical interaction between a multi-shock structure and an outflowing wind in a coronal structure.« less

  15. Preface

    NASA Astrophysics Data System (ADS)

    Karetnikov, Valentin G.

    The publication of the 'Izvestiya' (Publications) of the Astronomical Observatory of the Odessa State University is continued now, after a 30-year time interval. The publishing activity of the University was stopped in 1963, with the Volume 5 of the 'Proceedings'. It consisted of two issues, and contained the results on the meteor investigation during the Programme of the International Geophysical Year (1957- 1958). Since the beginning in 1947, ten issues of the 'Publications' were edited by Professor V.P.Tsessevich (1907-1983), the Corresponding Member of the Ukrainian Academy of Sciences. They consisted of 74 scientific papers written by the Observatory's research workers, and of the monography 'Investigation of the eclipsing variable stars' (vol.4) written by V.P.Tsessevich on the base of the observations of 252 objects. During the recent three decades, the scientific image, the research facilities and the staff have markedly changed. Nearly 130 staff members work now at the Observatory, in the close collaboration with the staff of the Astronomical Chair of the Odessa State University. Among them there are 4 doctors of sciences and 23 candidates of sciences, several doctorants and research students. During 10 recent years, more than 500 scientific papers were published, 60 of them - in the prestige translated journals, 70 - directly in the foreign journals. More than 30 astronomical telescopes are designed and created at the Observatory, of which two are 80-cm ones are working successfully at our observational stations. Some telescopes manufactured in Odessa are working in different astronomical institutions of our country, three are located in Baya (Hungary), Svidnik (Czecho-Slovakia) and at the observational station of the Moscow Institute of Astronomy (Equador). All the telescopes are equipped with the modern instrumentation for the photometric and spectral observations, including TV technique and computers. The oldest scientific directions are the following: -astrometry based on the meridian circle observations; -photometric comet and meteor investigation; -visual and photometric observations of the light curves of eclipsing and physically variable stars, determination of the elements of orbits. In the recent decades, new methods and scientific directions were developed, such as the precise electrophotometry, middle-dispersion stellar electrospectroscopy. The high-dispersion and CCD spectroscopy and multicolor polarimetry are being obtained in other observatories of our country and are being reduced in Odessa. The investigation of the physics of the cold stars, of the structure and evolution of the eclipsing and cataclysmic binary stars, of the spectral classification and and magnetic field of the pulsating variables, of the chromospheric activity and multiperiodicity, of the emission of the artificial satellites, of the density fluctuations and the atmospheric extinction, are being developed during the recent decades. The catalogue work was carried out on the photometric properties of the stars, interstellar extinction and spacial distribution of the stars, photometric and cinematic properties of the asteroids. The study of the meteor matter enabled us to discover the transplanetary meteor radiants, to compile the catalogues of the orbital elements and light curves of more than 500 meteors. Twenty one astrometric catalogues of the precise positions were published during 30 years, as well as the catalogues of the spectral energy distribution for 500 stars in the range 320-900 nm. The collection of the patrol photographic and photovisual plates consists of more than 80 000 negatives, and is third in the World. There is a Depository of the unpublished photoelectric observations of the variable stars. The library receives the main astronomical editions and has more than 50 000 entries. Thus, the Observatory possesses a necessary scientific and engineering potential for its advanced work. In the nearest future, a new 1-m telescope (built in Odessa) will be put into operation, the 1.5m telescope is being constructed, as well as other modern equipment. One may expect the further increase of the efficiency of the investigations, the main results of which will be published in the present 'Publications'.

  16. A strand-passage conformation of DNA gyrase is required to allow the bacterial toxin, CcdB, to access its binding site

    PubMed Central

    Smith, Andrew B.; Maxwell, Anthony

    2006-01-01

    DNA gyrase is the only topoisomerase able to introduce negative supercoils into DNA. Absent in humans, gyrase is a successful target for antibacterial drugs. However, increasing drug resistance is a serious problem and new agents are urgently needed. The naturally-produced Escherichia coli toxin CcdB has been shown to target gyrase by what is predicted to be a novel mechanism. CcdB has been previously shown to stabilize the gyrase ‘cleavage complex’, but it has not been shown to inhibit the catalytic reactions of gyrase. We present data showing that CcdB does indeed inhibit the catalytic reactions of gyrase by stabilization of the cleavage complex and that the GyrA C-terminal DNA-wrapping domain and the GyrB N-terminal ATPase domain are dispensable for CcdB's action. We further investigate the role of specific GyrA residues in the action of CcdB by site-directed mutagenesis; these data corroborate a model for CcdB action based on a recent crystal structure of a CcdB–GyrA fragment complex. From this work, we are now able to present a model for CcdB action that explains all previous observations relating to CcdB–gyrase interaction. CcdB action requires a conformation of gyrase that is only revealed when DNA strand passage is taking place. PMID:16963775

  17. A strand-passage conformation of DNA gyrase is required to allow the bacterial toxin, CcdB, to access its binding site.

    PubMed

    Smith, Andrew B; Maxwell, Anthony

    2006-01-01

    DNA gyrase is the only topoisomerase able to introduce negative supercoils into DNA. Absent in humans, gyrase is a successful target for antibacterial drugs. However, increasing drug resistance is a serious problem and new agents are urgently needed. The naturally-produced Escherichia coli toxin CcdB has been shown to target gyrase by what is predicted to be a novel mechanism. CcdB has been previously shown to stabilize the gyrase 'cleavage complex', but it has not been shown to inhibit the catalytic reactions of gyrase. We present data showing that CcdB does indeed inhibit the catalytic reactions of gyrase by stabilization of the cleavage complex and that the GyrA C-terminal DNA-wrapping domain and the GyrB N-terminal ATPase domain are dispensable for CcdB's action. We further investigate the role of specific GyrA residues in the action of CcdB by site-directed mutagenesis; these data corroborate a model for CcdB action based on a recent crystal structure of a CcdB-GyrA fragment complex. From this work, we are now able to present a model for CcdB action that explains all previous observations relating to CcdB-gyrase interaction. CcdB action requires a conformation of gyrase that is only revealed when DNA strand passage is taking place.

  18. Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE7 is involved in the production of negative and positive branching signals in petunia.

    PubMed

    Drummond, Revel S M; Martínez-Sánchez, N Marcela; Janssen, Bart J; Templeton, Kerry R; Simons, Joanne L; Quinn, Brian D; Karunairetnam, Sakuntala; Snowden, Kimberley C

    2009-12-01

    One of the key factors that defines plant form is the regulation of when and where branches develop. The diversity of form observed in nature results, in part, from variation in the regulation of branching between species. Two CAROTENOID CLEAVAGE DIOXYGENASE (CCD) genes, CCD7 and CCD8, are required for the production of a branch-suppressing plant hormone. Here, we report that the decreased apical dominance3 (dad3) mutant of petunia (Petunia hybrida) results from the mutation of the PhCCD7 gene and has a less severe branching phenotype than mutation of PhCCD8 (dad1). An analysis of the expression of this gene in wild-type, mutant, and grafted petunia suggests that in petunia, CCD7 and CCD8 are coordinately regulated. In contrast to observations in Arabidopsis (Arabidopsis thaliana), ccd7ccd8 double mutants in petunia show an additive phenotype. An analysis using dad3 or dad1 mutant scions grafted to wild-type rootstocks showed that when these plants produce adventitious mutant roots, branching is increased above that seen in plants where the mutant roots are removed. The results presented here indicate that mutation of either CCD7 or CCD8 in petunia results in both the loss of an inhibitor of branching and an increase in a promoter of branching.

  19. Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE7 Is Involved in the Production of Negative and Positive Branching Signals in Petunia1[W][OA

    PubMed Central

    Drummond, Revel S.M.; Martínez-Sánchez, N. Marcela; Janssen, Bart J.; Templeton, Kerry R.; Simons, Joanne L.; Quinn, Brian D.; Karunairetnam, Sakuntala; Snowden, Kimberley C.

    2009-01-01

    One of the key factors that defines plant form is the regulation of when and where branches develop. The diversity of form observed in nature results, in part, from variation in the regulation of branching between species. Two CAROTENOID CLEAVAGE DIOXYGENASE (CCD) genes, CCD7 and CCD8, are required for the production of a branch-suppressing plant hormone. Here, we report that the decreased apical dominance3 (dad3) mutant of petunia (Petunia hybrida) results from the mutation of the PhCCD7 gene and has a less severe branching phenotype than mutation of PhCCD8 (dad1). An analysis of the expression of this gene in wild-type, mutant, and grafted petunia suggests that in petunia, CCD7 and CCD8 are coordinately regulated. In contrast to observations in Arabidopsis (Arabidopsis thaliana), ccd7ccd8 double mutants in petunia show an additive phenotype. An analysis using dad3 or dad1 mutant scions grafted to wild-type rootstocks showed that when these plants produce adventitious mutant roots, branching is increased above that seen in plants where the mutant roots are removed. The results presented here indicate that mutation of either CCD7 or CCD8 in petunia results in both the loss of an inhibitor of branching and an increase in a promoter of branching. PMID:19846541

  20. Cross-correlation redshift calibration without spectroscopic calibration samples in DES Science Verification Data

    NASA Astrophysics Data System (ADS)

    Davis, C.; Rozo, E.; Roodman, A.; Alarcon, A.; Cawthon, R.; Gatti, M.; Lin, H.; Miquel, R.; Rykoff, E. S.; Troxel, M. A.; Vielzeuf, P.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Doel, P.; Drlica-Wagner, A.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; Walker, A. R.; Wechsler, R. H.

    2018-06-01

    Galaxy cross-correlations with high-fidelity redshift samples hold the potential to precisely calibrate systematic photometric redshift uncertainties arising from the unavailability of complete and representative training and validation samples of galaxies. However, application of this technique in the Dark Energy Survey (DES) is hampered by the relatively low number density, small area, and modest redshift overlap between photometric and spectroscopic samples. We propose instead using photometric catalogues with reliable photometric redshifts for photo-z calibration via cross-correlations. We verify the viability of our proposal using redMaPPer clusters from the Sloan Digital Sky Survey (SDSS) to successfully recover the redshift distribution of SDSS spectroscopic galaxies. We demonstrate how to combine photo-z with cross-correlation data to calibrate photometric redshift biases while marginalizing over possible clustering bias evolution in either the calibration or unknown photometric samples. We apply our method to DES Science Verification (DES SV) data in order to constrain the photometric redshift distribution of a galaxy sample selected for weak lensing studies, constraining the mean of the tomographic redshift distributions to a statistical uncertainty of Δz ˜ ±0.01. We forecast that our proposal can, in principle, control photometric redshift uncertainties in DES weak lensing experiments at a level near the intrinsic statistical noise of the experiment over the range of redshifts where redMaPPer clusters are available. Our results provide strong motivation to launch a programme to fully characterize the systematic errors from bias evolution and photo-z shapes in our calibration procedure.

  1. Cross-correlation redshift calibration without spectroscopic calibration samples in DES Science Verification Data

    DOE PAGES

    Davis, C.; Rozo, E.; Roodman, A.; ...

    2018-03-26

    Galaxy cross-correlations with high-fidelity redshift samples hold the potential to precisely calibrate systematic photometric redshift uncertainties arising from the unavailability of complete and representative training and validation samples of galaxies. However, application of this technique in the Dark Energy Survey (DES) is hampered by the relatively low number density, small area, and modest redshift overlap between photometric and spectroscopic samples. We propose instead using photometric catalogs with reliable photometric redshifts for photo-z calibration via cross-correlations. We verify the viability of our proposal using redMaPPer clusters from the Sloan Digital Sky Survey (SDSS) to successfully recover the redshift distribution of SDSS spectroscopic galaxies. We demonstrate how to combine photo-z with cross-correlation data to calibrate photometric redshift biases while marginalizing over possible clustering bias evolution in either the calibration or unknown photometric samples. We apply our method to DES Science Verification (DES SV) data in order to constrain the photometric redshift distribution of a galaxy sample selected for weak lensing studies, constraining the mean of the tomographic redshift distributions to a statistical uncertainty ofmore » $$\\Delta z \\sim \\pm 0.01$$. We forecast that our proposal can in principle control photometric redshift uncertainties in DES weak lensing experiments at a level near the intrinsic statistical noise of the experiment over the range of redshifts where redMaPPer clusters are available. Here, our results provide strong motivation to launch a program to fully characterize the systematic errors from bias evolution and photo-z shapes in our calibration procedure.« less

  2. Cross-correlation redshift calibration without spectroscopic calibration samples in DES Science Verification Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, C.; Rozo, E.; Roodman, A.

    Galaxy cross-correlations with high-fidelity redshift samples hold the potential to precisely calibrate systematic photometric redshift uncertainties arising from the unavailability of complete and representative training and validation samples of galaxies. However, application of this technique in the Dark Energy Survey (DES) is hampered by the relatively low number density, small area, and modest redshift overlap between photometric and spectroscopic samples. We propose instead using photometric catalogs with reliable photometric redshifts for photo-z calibration via cross-correlations. We verify the viability of our proposal using redMaPPer clusters from the Sloan Digital Sky Survey (SDSS) to successfully recover the redshift distribution of SDSS spectroscopic galaxies. We demonstrate how to combine photo-z with cross-correlation data to calibrate photometric redshift biases while marginalizing over possible clustering bias evolution in either the calibration or unknown photometric samples. We apply our method to DES Science Verification (DES SV) data in order to constrain the photometric redshift distribution of a galaxy sample selected for weak lensing studies, constraining the mean of the tomographic redshift distributions to a statistical uncertainty ofmore » $$\\Delta z \\sim \\pm 0.01$$. We forecast that our proposal can in principle control photometric redshift uncertainties in DES weak lensing experiments at a level near the intrinsic statistical noise of the experiment over the range of redshifts where redMaPPer clusters are available. Here, our results provide strong motivation to launch a program to fully characterize the systematic errors from bias evolution and photo-z shapes in our calibration procedure.« less

  3. Photometric Study of The Solar Type, Total Eclipsing Binary, TYC 2853-18-1

    NASA Astrophysics Data System (ADS)

    Samec, Ronald G.; Figg, E. R.; Faulkner, D.; Van Hamme, W.

    2009-12-01

    We present an analysis of the Solar-Type eclipsing binary, TYC 2853-18-1 (Persei), based on observations taken at the National Undergraduate Research Observatory (NURO) and the Southeastern Association for Research in Astronomy (SARA) in the Fall, 2007 and Spring, 2008. Light curves, a period study and a synthetic light curve solution are presented for this variable which was recently discovered by TYCHO as an eclipsing binary (2006, IBVS 5700). Our CCD observations of TYC 2853-18-1 [GSC 2853 0018, RA(2000) = 02h 47m 07.996s, DEC(2000) = +41° 22’ 32.80"] were taken on 20,27 December, 2007 at Lowell Observatory with the 0.81-m reflector with NURO time and 25 November, 3 December, 2007 and 19 February, 2008 via remote observing from Kitt Peak with SARA. NURO observations were take with the thermoelectrically cooled (<-100C) 2KX2K CCD NASACAM. Standard BVRcIc Johnson-Cousins filters were used. Our light curve solution was calculated with the 2004 Wilson code. Mean times of eclipse include, HJDMinI = 2454516.6131(±0.0005), 2454440.52974(±0.00008), 2454438.7605 (±0.0001), 2454462.6464 (±0.0003), HJDMinII = 2454455.71985 (±0.00060), 255462.7943 (±0.0002). These, including the epoch by ROTSE (2006, IBVS 5699) and the epoch calculated by the Wilson code, yielded the following ephemeris: HJD Hel Min I =2451370.8753(±.0.0010)d + 0.2949039 (±0.0000001)E Our unspotted Wilson code solution reveals TYC 2853-18-1 to be a W-type W UMa contact binary with unequal eclipse depths (amplitudes are 0.72 and 0.61 mags in V). It has shallow contact (8% fill-out) and a brief, but total eclipse. Its curves dictate a mass ratio of 2.62±0.01, a component temperature difference of only 73±5 ° K and an inclination of 82.0±0.2°. Spot activity is indicated by night to night variations. We wish to thank the NURO and SARA for their allocation of observing time, as well as NASA and the AAS for their support in paying for travel and publication expenses.

  4. Timing generator of scientific grade CCD camera and its implementation based on FPGA technology

    NASA Astrophysics Data System (ADS)

    Si, Guoliang; Li, Yunfei; Guo, Yongfei

    2010-10-01

    The Timing Generator's functions of Scientific Grade CCD Camera is briefly presented: it generates various kinds of impulse sequence for the TDI-CCD, video processor and imaging data output, acting as the synchronous coordinator for time in the CCD imaging unit. The IL-E2TDI-CCD sensor produced by DALSA Co.Ltd. use in the Scientific Grade CCD Camera. Driving schedules of IL-E2 TDI-CCD sensor has been examined in detail, the timing generator has been designed for Scientific Grade CCD Camera. FPGA is chosen as the hardware design platform, schedule generator is described with VHDL. The designed generator has been successfully fulfilled function simulation with EDA software and fitted into XC2VP20-FF1152 (a kind of FPGA products made by XILINX). The experiments indicate that the new method improves the integrated level of the system. The Scientific Grade CCD camera system's high reliability, stability and low power supply are achieved. At the same time, the period of design and experiment is sharply shorted.

  5. Solid state television camera (CCD-buried channel)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The development of an all solid state television camera, which uses a buried channel charge coupled device (CCD) as the image sensor, was undertaken. A 380 x 488 element CCD array is utilized to ensure compatibility with 525 line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (a) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (b) techniques for the elimination or suppression of CCD blemish effects, and (c) automatic light control and video gain control (i.e., ALC and AGC) techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a deliverable solid state TV camera which addressed the program requirements for a prototype qualifiable to space environment conditions.

  6. Solid state television camera (CCD-buried channel), revision 1

    NASA Technical Reports Server (NTRS)

    1977-01-01

    An all solid state television camera was designed which uses a buried channel charge coupled device (CCD) as the image sensor. A 380 x 488 element CCD array is utilized to ensure compatibility with 525-line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (1) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (2) techniques for the elimination or suppression of CCD blemish effects, and (3) automatic light control and video gain control techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a deliverable solid state TV camera which addressed the program requirements for a prototype qualifiable to space environment conditions.

  7. Robust photometric invariant features from the color tensor.

    PubMed

    van de Weijer, Joost; Gevers, Theo; Smeulders, Arnold W M

    2006-01-01

    Luminance-based features are widely used as low-level input for computer vision applications, even when color data is available. The extension of feature detection to the color domain prevents information loss due to isoluminance and allows us to exploit the photometric information. To fully exploit the extra information in the color data, the vector nature of color data has to be taken into account and a sound framework is needed to combine feature and photometric invariance theory. In this paper, we focus on the structure tensor, or color tensor, which adequately handles the vector nature of color images. Further, we combine the features based on the color tensor with photometric invariant derivatives to arrive at photometric invariant features. We circumvent the drawback of unstable photometric invariants by deriving an uncertainty measure to accompany the photometric invariant derivatives. The uncertainty is incorporated in the color tensor, hereby allowing the computation of robust photometric invariant features. The combination of the photometric invariance theory and tensor-based features allows for detection of a variety of features such as photometric invariant edges, corners, optical flow, and curvature. The proposed features are tested for noise characteristics and robustness to photometric changes. Experiments show that the proposed features are robust to scene incidental events and that the proposed uncertainty measure improves the applicability of full invariants.

  8. CCD Photometer Installed on the Telescope - 600 OF the Shamakhy Astrophysical Observatory II. The Technique of Observation and Data Processing of CCD Photometry

    NASA Astrophysics Data System (ADS)

    Abdullayev, B. I.; Gulmaliyev, N. I.; Majidova, S. O.; Mikayilov, Kh. M.; Rustamov, B. N.

    2009-12-01

    Basic technical characteristics of CCD matrix U-47 made by the Apogee Alta Instruments Inc. are provided. Short description and features of various noises introduced by optical system and CCD camera are presented. The technique of getting calibration frames: bias, dark, flat field and main stages of processing of results CCD photometry are described.

  9. A design of driving circuit for star sensor imaging camera

    NASA Astrophysics Data System (ADS)

    Li, Da-wei; Yang, Xiao-xu; Han, Jun-feng; Liu, Zhao-hui

    2016-01-01

    The star sensor is a high-precision attitude sensitive measuring instruments, which determine spacecraft attitude by detecting different positions on the celestial sphere. Imaging camera is an important portion of star sensor. The purpose of this study is to design a driving circuit based on Kodak CCD sensor. The design of driving circuit based on Kodak KAI-04022 is discussed, and the timing of this CCD sensor is analyzed. By the driving circuit testing laboratory and imaging experiments, it is found that the driving circuits can meet the requirements of Kodak CCD sensor.

  10. Construction of a photochemical reactor combining a CCD spectrophotometer and a LED radiation source.

    PubMed

    Gombár, Melinda; Józsa, Éva; Braun, Mihály; Ősz, Katalin

    2012-10-01

    An inexpensive photoreactor using LED light sources and a fibre-optic CCD spectrophotometer as a detector was built by designing a special cell holder for standard 1.000 cm cuvettes. The use of this device was demonstrated by studying the aqueous photochemical reaction of 2,5-dichloro-1,4-benzoquinone. The developed method combines the highly quantitative data collection of CCD spectrophotometers with the possibility of illuminating the sample independently of the detecting light beam, which is a substantial improvement of the method using diode array spectrophotometers as photoreactors.

  11. Cooperative photometric redshift estimation

    NASA Astrophysics Data System (ADS)

    Cavuoti, S.; Tortora, C.; Brescia, M.; Longo, G.; Radovich, M.; Napolitano, N. R.; Amaro, V.; Vellucci, C.

    2017-06-01

    In the modern galaxy surveys photometric redshifts play a central role in a broad range of studies, from gravitational lensing and dark matter distribution to galaxy evolution. Using a dataset of ~ 25,000 galaxies from the second data release of the Kilo Degree Survey (KiDS) we obtain photometric redshifts with five different methods: (i) Random forest, (ii) Multi Layer Perceptron with Quasi Newton Algorithm, (iii) Multi Layer Perceptron with an optimization network based on the Levenberg-Marquardt learning rule, (iv) the Bayesian Photometric Redshift model (or BPZ) and (v) a classical SED template fitting procedure (Le Phare). We show how SED fitting techniques could provide useful information on the galaxy spectral type which can be used to improve the capability of machine learning methods constraining systematic errors and reduce the occurrence of catastrophic outliers. We use such classification to train specialized regression estimators, by demonstrating that such hybrid approach, involving SED fitting and machine learning in a single collaborative framework, is capable to improve the overall prediction accuracy of photometric redshifts.

  12. Clustering redshift distributions for the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Helsby, Jennifer

    Accurate determination of photometric redshifts and their errors is critical for large scale structure and weak lensing studies for constraining cosmology from deep, wide imaging surveys. Current photometric redshift methods suffer from bias and scatter due to incomplete training sets. Exploiting the clustering between a sample of galaxies for which we have spectroscopic redshifts and a sample of galaxies for which the redshifts are unknown can allow us to reconstruct the true redshift distribution of the unknown sample. Here we use this method in both simulations and early data from the Dark Energy Survey (DES) to determine the true redshift distributions of galaxies in photometric redshift bins. We find that cross-correlating with the spectroscopic samples currently used for training provides a useful test of photometric redshifts and provides reliable estimates of the true redshift distribution in a photometric redshift bin. We discuss the use of the cross-correlation method in validating template- or learning-based approaches to redshift estimation and its future use in Stage IV surveys.

  13. Photometric Modeling of Simulated Surace-Resolved Bennu Images

    NASA Astrophysics Data System (ADS)

    Golish, D.; DellaGiustina, D. N.; Clark, B.; Li, J. Y.; Zou, X. D.; Bennett, C. A.; Lauretta, D. S.

    2017-12-01

    The Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) is a NASA mission to study and return a sample of asteroid (101955) Bennu. Imaging data from the mission will be used to develop empirical surface-resolved photometric models of Bennu at a series of wavelengths. These models will be used to photometrically correct panchromatic and color base maps of Bennu, compensating for variations due to shadows and photometric angle differences, thereby minimizing seams in mosaicked images. Well-corrected mosaics are critical to the generation of a global hazard map and a global 1064-nm reflectance map which predicts LIDAR response. These data products directly feed into the selection of a site from which to safely acquire a sample. We also require photometric correction for the creation of color ratio maps of Bennu. Color ratios maps provide insight into the composition and geological history of the surface and allow for comparison to other Solar System small bodies. In advance of OSIRIS-REx's arrival at Bennu, we use simulated images to judge the efficacy of both the photometric modeling software and the mission observation plan. Our simulation software is based on USGS's Integrated Software for Imagers and Spectrometers (ISIS) and uses a synthetic shape model, a camera model, and an empirical photometric model to generate simulated images. This approach gives us the flexibility to create simulated images of Bennu based on analog surfaces from other small Solar System bodies and to test our modeling software under those conditions. Our photometric modeling software fits image data to several conventional empirical photometric models and produces the best fit model parameters. The process is largely automated, which is crucial to the efficient production of data products during proximity operations. The software also produces several metrics on the quality of the observations themselves, such as surface coverage and the completeness of the data set for evaluating the phase and disk functions of the surface. Application of this software to simulated mission data has revealed limitations in the initial mission design, which has fed back into the planning process. The entire photometric pipeline further serves as an exercise of planned activities for proximity operations.

  14. Study of Cryogenic Complex Plasma

    DTIC Science & Technology

    2007-04-26

    enabled us to detect the formation of the Coulomb crystals as shown in Fig. 2. Liq. He Ring electrode Particles Green Laser RF Plasma ... Ring electrode CCD camera Prism mirror Liq. He Glass Tube Liq. N2 Glass Dewar Acrylic particles Gas Helium Green Laser CCD camera Pressure

  15. CCD TV focal plane guider development and comparison to SIRTF applications

    NASA Technical Reports Server (NTRS)

    Rank, David M.

    1989-01-01

    It is expected that the SIRTF payload will use a CCD TV focal plane fine guidance sensor to provide acquisition of sources and tracking stability of the telescope. Work has been done to develop CCD TV cameras and guiders at Lick Observatory for several years and have produced state of the art CCD TV systems for internal use. NASA decided to provide additional support so that the limits of this technology could be established and a comparison between SIRTF requirements and practical systems could be put on a more quantitative basis. The results of work carried out at Lick Observatory which was designed to characterize present CCD autoguiding technology and relate it to SIRTF applications is presented. Two different design types of CCD cameras were constructed using virtual phase and burred channel CCD sensors. A simple autoguider was built and used on the KAO, Mt. Lemon and Mt. Hamilton telescopes. A video image processing system was also constructed in order to characterize the performance of the auto guider and CCD cameras.

  16. Colostomy, management and quality of life for the patient.

    PubMed

    Swan, Elaine

    The aim of this article is to describe the development and use of a new and unique continence control device (CCD). The Vitala TM CCD is a pouchless ostomy device that seals against the stoma and prevents the passage of stool, while allowing the release and deodorization of flatus. This will enable many end-colostomates to control their effluent. It is the first non-invasive product to temporarily meet the colostomate's need of faecal continence. The reasons why people receive stomas and the different products available for their management will be explored in this article. Issues with regard to quality of life and the patient experience are discussed in the context of results from a VitalaTM CCD phase III 12-hour study. Two short case studies are also presented to illustrate how VitalaTM CCD can be used by ostomates experiencing functional and/or psychological problems to improve quality of life by allowing them to regain continence for up to 12 hours.

  17. A metagenomic survey of microbes in honey bee colony collapse disorder.

    PubMed

    Cox-Foster, Diana L; Conlan, Sean; Holmes, Edward C; Palacios, Gustavo; Evans, Jay D; Moran, Nancy A; Quan, Phenix-Lan; Briese, Thomas; Hornig, Mady; Geiser, David M; Martinson, Vince; vanEngelsdorp, Dennis; Kalkstein, Abby L; Drysdale, Andrew; Hui, Jeffrey; Zhai, Junhui; Cui, Liwang; Hutchison, Stephen K; Simons, Jan Fredrik; Egholm, Michael; Pettis, Jeffery S; Lipkin, W Ian

    2007-10-12

    In colony collapse disorder (CCD), honey bee colonies inexplicably lose their workers. CCD has resulted in a loss of 50 to 90% of colonies in beekeeping operations across the United States. The observation that irradiated combs from affected colonies can be repopulated with naive bees suggests that infection may contribute to CCD. We used an unbiased metagenomic approach to survey microflora in CCD hives, normal hives, and imported royal jelly. Candidate pathogens were screened for significance of association with CCD by the examination of samples collected from several sites over a period of 3 years. One organism, Israeli acute paralysis virus of bees, was strongly correlated with CCD.

  18. The wavelength dependence and an interpretation of the photometric parameters of Mars

    NASA Technical Reports Server (NTRS)

    Weaver, W. R.; Meador, W. E.

    1976-01-01

    The photometric function developed by Meador and Weaver has been used with photometric data from the bright desert areas of Mars to determine the wavelength dependence of the three photometric parameters of that function and to provide some predictions about the physical properties of the surface. Knowledge of the parameters permits the brightness of these areas of Mars to be determined for scattering geometry over the wavelength range of 0.45 to 0.70 micrometer. The changes in the photometric parameters with wavelength are shown to be consistent with qualitative theoretical predictions, and the predictions of surface properties are shown to be consistent with conditions that might exist in these regions of Mars. The photometric function is shown to have good potential as a diagnostic tool for the determination of surface properties, and the consistency of the behavior of the photometric parameters is shown to be good support for the validity of the photometric function.

  19. On the Photometric Calibration of FORS2 and the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Bramich, D.; Moehler, S.; Coccato, L.; Freudling, W.; Garcia-Dabó, C. E.; Müller, P.; Saviane, I.

    2012-09-01

    An accurate absolute calibration of photometric data to place them on a standard magnitude scale is very important for many science goals. Absolute calibration requires the observation of photometric standard stars and analysis of the observations with an appropriate photometric model including all relevant effects. In the FORS Absolute Photometry (FAP) project, we have developed a standard star observing strategy and modelling procedure that enables calibration of science target photometry to better than 3% accuracy on photometrically stable nights given sufficient signal-to-noise. In the application of this photometric modelling to large photometric databases, we have investigated the Sloan Digital Sky Survey (SDSS) and found systematic trends in the published photometric data. The amplitudes of these trends are similar to the reported typical precision (˜1% and ˜2%) of the SDSS photometry in the griz- and u-bands, respectively.

  20. Silicide Schottky Barrier For Back-Surface-Illuminated CCD

    NASA Technical Reports Server (NTRS)

    Hecht, Michael H.

    1990-01-01

    Quantum efficiency of back-surface-illuminated charge-coupled device (CCD) increased by coating back surface with thin layer of PtSi or IrSi on thin layer of SiO2. In its interaction with positively-doped bulk Si of CCD, silicide/oxide layer forms Schottky barrier that repels electrons, promoting accumulation of photogenerated charge carriers in front-side CCD potential wells. Physical principle responsible for improvement explained in "Metal Film Increases CCD Output" (NPO-16815).

  1. Modeling colony collapse disorder in honeybees as a contagion.

    PubMed

    Kribs-Zaleta, Christopher M; Mitchell, Christopher

    2014-12-01

    Honeybee pollination accounts annually for over $14 billion in United States agriculture alone. Within the past decade there has been a mysterious mass die-off of honeybees, an estimated 10 million beehives and sometimes as much as 90% of an apiary. There is still no consensus on what causes this phenomenon, called Colony Collapse Disorder, or CCD. Several mathematical models have studied CCD by only focusing on infection dynamics. We created a model to account for both healthy hive dynamics and hive extinction due to CCD, modeling CCD via a transmissible infection brought to the hive by foragers. The system of three ordinary differential equations accounts for multiple hive population behaviors including Allee effects and colony collapse. Numerical analysis leads to critical hive sizes for multiple scenarios and highlights the role of accelerated forager recruitment in emptying hives during colony collapse.

  2. LSI arrays for space stations

    NASA Technical Reports Server (NTRS)

    Gassaway, J. D.

    1976-01-01

    Two approaches have been taken to study CCD's and some of their fundamental limitations. First a numerical analysis approach has been developed to solve the coupled transport and Poisson's equation for a thorough analysis of charge transfer in a CCD structure. The approach is formulated by treating the minority carriers as a surface distribution at the Si-SiO2 interface and setting up coupled difference equations for the charge and the potential. The SOR method is proposed for solving the two dimensional Poisson's equation for the potential. Methods are suggested for handling the discontinuities to improve convergence. Second, CCD shift registers were fabricated with parameters which should allow complete charge transfer independent of the transfer electrode gap width. A test instrument was designed and constructed which can be used to test this, or any similar, three phase CCD shift register.

  3. Supernova Cosmology Inference with Probabilistic Photometric Redshifts (SCIPPR)

    NASA Astrophysics Data System (ADS)

    Peters, Christina; Malz, Alex; Hlozek, Renée

    2018-01-01

    The Bayesian Estimation Applied to Multiple Species (BEAMS) framework employs probabilistic supernova type classifications to do photometric SN cosmology. This work extends BEAMS to replace high-confidence spectroscopic redshifts with photometric redshift probability density functions, a capability that will be essential in the era the Large Synoptic Survey Telescope and other next-generation photometric surveys where it will not be possible to perform spectroscopic follow up on every SN. We present the Supernova Cosmology Inference with Probabilistic Photometric Redshifts (SCIPPR) Bayesian hierarchical model for constraining the cosmological parameters from photometric lightcurves and host galaxy photometry, which includes selection effects and is extensible to uncertainty in the redshift-dependent supernova type proportions. We create a pair of realistic mock catalogs of joint posteriors over supernova type, redshift, and distance modulus informed by photometric supernova lightcurves and over redshift from simulated host galaxy photometry. We perform inference under our model to obtain a joint posterior probability distribution over the cosmological parameters and compare our results with other methods, namely: a spectroscopic subset, a subset of high probability photometrically classified supernovae, and reducing the photometric redshift probability to a single measurement and error bar.

  4. Performance characteristics of CCDs for the ACIS experiment. [Advanced X-ray Astrophysics Facility CCD Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Garmire, Gordon P.; Nousek, John; Burrows, David; Ricker, George; Bautz, Mark; Doty, John; Collins, Stewart; Janesick, James

    1988-01-01

    The search for the optimum CCD to be used at the focal surface of the Advanced X-ray Astrophysics Facility (AXAF) is described. The physics of the interaction of X-rays in silicon through the photoelectric effect is reviewed. CCD technology at the beginning of the AXAF definition phase is summarized, and the results of the CCD enhancement program are discussed. Other sources of optimum CCDs are examined, and CCD enhancements made at MIT Lincoln Laboratory are addressed.

  5. CCD research. [design, fabrication, and applications

    NASA Technical Reports Server (NTRS)

    Gassaway, J. D.

    1976-01-01

    The fundamental problems encountered in designing, fabricating, and applying CCD's are reviewed. Investigations are described and results and conclusions are given for the following: (1) the development of design analyses employing computer aided techniques and their application to the design of a grapped structure; (2) the role of CCD's in applications to electronic functions, in particular, signal processing; (3) extending the CCD to silicon films on sapphire (SOS); and (4) all aluminum transfer structure with low noise input-output circuits. Related work on CCD imaging devices is summarized.

  6. Photometric geodesy of main-belt asteroids. II - Analysis of lightcurves for poles, periods, and shapes

    NASA Technical Reports Server (NTRS)

    Drummond, J. D.; Weidenschilling, S. J.; Chapman, C. R.; Davis, D. R.

    1988-01-01

    The assumption that asteroids can be modeled as smooth, featureless, triaxial ellipsoids that rotate about their shortest axes is presently used to study all but one of the 26 asteroids treated in the Weidenschilling et al. (1987) 'photometric geodesy' program. Rotational poles derived from three independent methods are used to determine each asteroid's sidereal period and triaxial ellipsoid axial ratios, together with their associated photometric parameters. The asteroids appear to have rotational poles that do not lie along their orbital planes.

  7. Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Hardware

    NASA Astrophysics Data System (ADS)

    Kang, Y.-W.; Byun, Y. I.; Rhee, J. H.; Oh, S. H.; Kim, D. K.

    2007-12-01

    We designed and developed a multi-purpose CCD camera system for three kinds of CCDs; KAF-0401E(768×512), KAF-1602E(1536×1024), KAF-3200E(2184×1472) made by KODAK Co.. The system supports fast USB port as well as parallel port for data I/O and control signal. The packing is based on two stage circuit boards for size reduction and contains built-in filter wheel. Basic hardware components include clock pattern circuit, A/D conversion circuit, CCD data flow control circuit, and CCD temperature control unit. The CCD temperature can be controlled with accuracy of approximately 0.4° C in the max. range of temperature, Δ 33° C. This CCD camera system has with readout noise 6 e^{-}, and system gain 5 e^{-}/ADU. A total of 10 CCD camera systems were produced and our tests show that all of them show passable performance.

  8. Total ionizing dose effect and damage mechanism on saturation output voltage of charge coupled device

    NASA Astrophysics Data System (ADS)

    Wen, Lin; Li, Yu-dong; Guo, Qi; Wang, Chao-min

    2018-02-01

    Total ionizing dose effect is a major threat to space applications of CCD, which leads to the decrease of CCD saturation output voltage and the increase of dark signal. This paper investigated CCD and its readout circuit for experimental samples of different channel width to length ratio of MOSFET, and readout circuit amplifier, and CCD. The irradiation source was 60Co- gamma ray. through testing the parameters degradation of MOSFET and amplifier degradation, the generation and annealing law of irradiation induced defects in MOS single tube are analyzed. Combined with the radiation effect of amplifier and CCD, The correlation of radiation damage of the MOSFET and the readout circuit amplifier and CCD parameter degradation is established. Finally, this paper reveals the physical mechanism of ionizing radiation damage of the readout circuit. The research results provide a scientific basis for the selection of anti-radiation technology and structure optimization of domestic CCD.

  9. Study of digital charge coupled devices

    NASA Technical Reports Server (NTRS)

    Wilson, D. D.; Young, V. F.

    1980-01-01

    Charge coupled devices represent unique usage of the metal oxide semiconductor concept. These devices can sample an AC signal at the input, transfer charge proportional to this signal through the CCD shift register and then provide an output of the same frequency and shape as the input. The delay time between input and output is controlled by the CCD operating frequency and the number of stages in the shift resistor. This work is a reliability evaluation of the buried channel and surface channel CCD technologies. The constructions are analyzed, failure modes are described, and test results are reported.

  10. The study of surface acoustic wave charge transfer device

    NASA Technical Reports Server (NTRS)

    Papanicolaou, N.; Lin, H. C.

    1978-01-01

    A surface acoustic wave-charge transfer device, consisting of an n-type silicon substrate, a thermally grown silicon dioxide layer, and a sputtered film of piezoelectric zinc oxide is proposed as a means of circumventing problems associated with charge-coupled device (CCD) applications in memory, signal processing, and imaging. The proposed device creates traveling longitudinal electric fields in the silicon and replaces the multiphase clocks in CCD's. The traveling electric fields create potential wells which carry along charges stored there. These charges may be injected into the wells by light or by using a p-n junction as in conventional CCD's.

  11. The effect of photometric and geometric context on photometric and geometric lightness effects

    PubMed Central

    Lee, Thomas Y.; Brainard, David H.

    2014-01-01

    We measured the lightness of probe tabs embedded at different orientations in various contextual images presented on a computer-controlled stereo display. Two background context planes met along a horizontal roof-like ridge. Each plane was a graphic rendering of a set of achromatic surfaces with the simulated illumination for each plane controlled independently. Photometric context was varied by changing the difference in simulated illumination intensity between the two background planes. Geometric context was varied by changing the angle between them. We parsed the data into separate photometric effects and geometric effects. For fixed geometry, varying photometric context led to linear changes in both the photometric and geometric effects. Varying geometric context did not produce a statistically reliable change in either the photometric or geometric effects. PMID:24464163

  12. The effect of photometric and geometric context on photometric and geometric lightness effects.

    PubMed

    Lee, Thomas Y; Brainard, David H

    2014-01-24

    We measured the lightness of probe tabs embedded at different orientations in various contextual images presented on a computer-controlled stereo display. Two background context planes met along a horizontal roof-like ridge. Each plane was a graphic rendering of a set of achromatic surfaces with the simulated illumination for each plane controlled independently. Photometric context was varied by changing the difference in simulated illumination intensity between the two background planes. Geometric context was varied by changing the angle between them. We parsed the data into separate photometric effects and geometric effects. For fixed geometry, varying photometric context led to linear changes in both the photometric and geometric effects. Varying geometric context did not produce a statistically reliable change in either the photometric or geometric effects.

  13. LED characterization for development of on-board calibration unit of CCD-based advanced wide-field sensor camera of Resourcesat-2A

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhijit; Verma, Anurag

    2016-05-01

    The Advanced Wide Field Sensor (AWiFS) camera caters to high temporal resolution requirement of Resourcesat-2A mission with repeativity of 5 days. The AWiFS camera consists of four spectral bands, three in the visible and near IR and one in the short wave infrared. The imaging concept in VNIR bands is based on push broom scanning that uses linear array silicon charge coupled device (CCD) based Focal Plane Array (FPA). On-Board Calibration unit for these CCD based FPAs is used to monitor any degradation in FPA during entire mission life. Four LEDs are operated in constant current mode and 16 different light intensity levels are generated by electronically changing exposure of CCD throughout the calibration cycle. This paper describes experimental setup and characterization results of various flight model visible LEDs (λP=650nm) for development of On-Board Calibration unit of Advanced Wide Field Sensor (AWiFS) camera of RESOURCESAT-2A. Various LED configurations have been studied to meet dynamic range coverage of 6000 pixels silicon CCD based focal plane array from 20% to 60% of saturation during night pass of the satellite to identify degradation of detector elements. The paper also explains comparison of simulation and experimental results of CCD output profile at different LED combinations in constant current mode.

  14. Differential spatio-temporal expression of carotenoid cleavage dioxygenases regulates apocarotenoid fluxes during AM symbiosis.

    PubMed

    López-Ráez, Juan A; Fernández, Iván; García, Juan M; Berrio, Estefanía; Bonfante, Paola; Walter, Michael H; Pozo, María J

    2015-01-01

    Apocarotenoids are a class of compounds that play important roles in nature. In recent years, a prominent role for these compounds in arbuscular mycorrhizal (AM) symbiosis has been shown. They are derived from carotenoids by the action of the carotenoid cleavage dioxygenase (CCD) enzyme family. In the present study, using tomato as a model, the spatio-temporal expression pattern of the CCD genes during AM symbiosis establishment and functioning was investigated. In addition, the levels of the apocarotenoids strigolactones (SLs), C13 α-ionol and C14 mycorradicin (C13/C14) derivatives were analyzed. The results suggest an increase in SLs promoted by the presence of the AM fungus at the early stages of the interaction, which correlated with an induction of the SL biosynthesis gene SlCCD7. At later stages, induction of SlCCD7 and SlCCD1 expression in arbusculated cells promoted the production of C13/C14 apocarotenoid derivatives. We show here that the biosynthesis of apocarotenoids during AM symbiosis is finely regulated throughout the entire process at the gene expression level, and that CCD7 constitutes a key player in this regulation. Once the symbiosis is established, apocarotenoid flux would be turned towards the production of C13/C14 derivatives, thus reducing SL biosynthesis and maintaining a functional symbiosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Apical dominance in saffron and the involvement of the branching enzymes CCD7 and CCD8 in the control of bud sprouting

    PubMed Central

    2014-01-01

    Background In saffron (Crocus sativus), new corms develop at the base of every shoot developed from the maternal corm, a globular underground storage stem. Since the degree of bud sprouts influences the number and size of new corms, and strigolactones (SLs) suppress growth of pre-formed axillary bud, it was considered appropriate to investigate SL involvement in physiology and molecular biology in saffron. We focused on two of the genes within the SL pathway, CCD7 and CCD8, encoding carotenoid cleavage enzymes required for the production of SLs. Results The CsCCD7 and CsCCD8 genes are the first ones isolated and characterized from a non-grass monocotyledonous plant. CsCCD7 and CsCCD8 expression showed some overlapping, although they were not identical. CsCCD8 was highly expressed in quiescent axillary buds and decapitation dramatically reduced its expression levels, suggesting its involvement in the suppression of axillary bud outgrowth. Furthermore, in vitro experiments showed also the involvement of auxin, cytokinin and jasmonic acid on the sprouting of axillary buds from corms in which the apical bud was removed. In addition, CsCCD8 expression, but not CsCCD7, was higher in the newly developed vascular tissue of axillary buds compared to the vascular tissue of the apical bud. Conclusions We showed that production and transport of auxin in saffron corms could act synergistically with SLs to arrest the outgrowth of the axillary buds, similar to the control of above-ground shoot branching. In addition, jasmonic acid seems to play a prominent role in bud dormancy in saffron. While cytokinins from roots promote bud outgrowth. In addition the expression results of CsCCD8 suggest that SLs could positively regulate procambial activity and the development of new vascular tissues connecting leaves with the mother corm. PMID:24947472

  16. Automatized Photometric Monitoring of Active Galactic Nuclei with the 46cm Telescope of the Wise Observatory

    NASA Astrophysics Data System (ADS)

    Pozo Nuñez, Francisco; Chelouche, Doron; Kaspi, Shai; Niv, Saar

    2017-09-01

    We present the first results of an ongoing variability monitoring program of active galactic nuclei (AGNs) using the 46 cm telescope of the Wise Observatory in Israel. The telescope has a field of view of 1.25^\\circ × 0.84^\\circ and is specially equipped with five narrowband filters at 4300, 5200, 5700, 6200, and 7000 Å to perform photometric reverberation mapping studies of the central engine of AGNs. The program aims to observe a sample of 27 AGNs (V < 17 mag) selected according to tentative continuum and line time delay measurements obtained in previous works. We describe the autonomous operation of the telescope together with the fully automatic pipeline used to achieve high-performance unassisted observations, data reduction, and light curves extraction using different photometric methods. The science verification data presented here demonstrates the performance of the monitoring program in particular for efficiently photometric reverberation mapping of AGNs with additional capabilities to carry out complementary studies of other transient and variable phenomena such as variable stars studies.

  17. An interpretation of photometric parameters of bright desert regions of Mars and their dependence on wave length

    NASA Technical Reports Server (NTRS)

    Weaver, W. R.; Meador, W. E.

    1977-01-01

    Photometric data from the bright desert areas of Mars were used to determine the dependence of the three photometric parameters of the photometric function on wavelength and to provide qualitative predictions about the physical properties of the surface. Knowledge of the parameters allowed the brightness of these areas of Mars to be determined for any scattering geometry in the wavelength range of 0.45 to 0.70 micron. The changes that occur in the photometric parameters due to changes in wavelength were shown to be consistent with their physical interpretations, and the predictions of surface properties were shown to be consistent with conditions expected to exist in these regions of Mars. The photometric function was shown to have potential as a diagnostic tool for the qualitative determination of surface properties, and the consistency of the behavior of the photometric parameters was considered to be support for the validity of the photometric function.

  18. Cochlear implantation outcomes in children with common cavity deformity; a retrospective study.

    PubMed

    Zhang, Li; Qiu, Jianxin; Qin, Feifei; Zhong, Mei; Shah, Gyanendra

    2017-09-01

    A common cavity deformity (CCD) is a deformed inner ear in which the cochlea and vestibule are confluent forming a common rudimentary cystic cavity that results in profound hearing loss. There are few studies paying attention to common cavity. Our group is engrossed in observing the improvement of auditory and verbal abilities in children who have received cochlear implantation (CI), and comparing these targets between children with common cavity and normal inner ear structure. A retrospective study was conducted in 12 patients with profound hearing loss that were divided into a common cavity group and a control group, six in each group matched in sex, age and time of implantation, based on inner ear structure. Categories of Auditory Performance (CAP) and speech intelligibility rating (SIR) scores and aided hearing thresholds were collected and compared between the two groups. All patients wore CI for more than 1 year at the Cochlear Center of Anhui Medical University from 2011 to 2015. Postoperative CAP and SIR scores were higher than before operation in both groups (p < 0.05), although the scores were lower in the CCD group than in the control group (p < 0.05). The aided threshold was also lower in the control group than in the CCD group (p < 0.05). Even though audiological improvement in children with CCD was not as good as in those without CCD, CI provides benefits in auditory perception and communication skills in these children.

  19. Photometric Properties of Network and Faculae Derived from HMI Data Compensated for Scattered Light

    NASA Astrophysics Data System (ADS)

    Criscuoli, Serena; Norton, Aimee; Whitney, Taylor

    2017-10-01

    We report on the photometric properties of faculae and network, as observed in full-disk, scattered-light-corrected images from the Helioseismic Magnetic Imager. We use a Lucy-Richardson deconvolution routine that corrects an image in less than one second. Faculae are distinguished from network through proximity to active regions. This is the first report that full-disk observations, including center-to-limb variations, reproduce the photometric properties of faculae and network observed previously only in sub-arcsecond-resolution; small field-of-view studies, I.e. that network, as defined by distance from active regions, exhibit higher photometric contrasts. Specifically, for magnetic flux values larger than approximately 300 G, the network is brighter than faculae and the contrast differences increase toward the limb, where the network contrast is about twice the facular one. For lower magnetic flux values, network appear darker than faculae. Contrary to reports from previous full-disk observations, we also found that network exhibits a higher center-to-limb variation. Our results are in agreement with reports from simulations that indicate magnetic flux alone is a poor proxy of the photometric properties of magnetic features. We estimate that the contribution of faculae and network to Total Solar Irradiance variability of the current Cycle 24 is overestimated by at least 11%, due to the photometric properties of network and faculae not being recognized as different. This estimate is specific to the method employed in this study to reconstruct irradiance variations, so caution should be paid when extending it to other techniques.

  20. Photometric Variability of the Be Star Population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labadie-Bartz, Jonathan; Pepper, Joshua; McSwain, M. Virginia

    2017-06-01

    Be stars have generally been characterized by the emission lines in their spectra, and especially the time variability of those spectroscopic features. They are known to also exhibit photometric variability at multiple timescales, but have not been broadly compared and analyzed by that behavior. We have taken advantage of the advent of wide-field, long-baseline, and high-cadence photometric surveys that search for transiting exoplanets to perform a comprehensive analysis of brightness variations among a large number of known Be stars. The photometric data comes from the KELT transit survey, with a typical cadence of 30 minutes, a baseline of up to 10more » years, photometric precision of about 1%, and coverage of about 60% of the sky. We analyze KELT light curves of 610 known Be stars in both the northern and southern hemispheres in an effort to study their variability. Consistent with other studies of Be star variability, we find most of the stars to be photometrically variable. We derive lower limits on the fraction of stars in our sample that exhibit features consistent with non-radial pulsations (25%), outbursts (36%), and long-term trends in the circumstellar disk (37%), and show how these are correlated with spectral sub-types. Other types of variability, such as those owing to binarity, are also explored. Simultaneous spectroscopy for some of these systems from the Be Star Spectra database allow us to better understand the physical causes for the observed variability, especially in cases of outbursts and changes in the disk.« less

  1. Photometric Properties of Network and Faculae Derived from HMI Data Compensated for Scattered Light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Criscuoli, Serena; Whitney, Taylor; Norton, Aimee

    We report on the photometric properties of faculae and network, as observed in full-disk, scattered-light-corrected images from the Helioseismic Magnetic Imager. We use a Lucy–Richardson deconvolution routine that corrects an image in less than one second. Faculae are distinguished from network through proximity to active regions. This is the first report that full-disk observations, including center-to-limb variations, reproduce the photometric properties of faculae and network observed previously only in sub-arcsecond-resolution; small field-of-view studies, i.e. that network, as defined by distance from active regions, exhibit higher photometric contrasts. Specifically, for magnetic flux values larger than approximately 300 G, the network ismore » brighter than faculae and the contrast differences increase toward the limb, where the network contrast is about twice the facular one. For lower magnetic flux values, network appear darker than faculae. Contrary to reports from previous full-disk observations, we also found that network exhibits a higher center-to-limb variation. Our results are in agreement with reports from simulations that indicate magnetic flux alone is a poor proxy of the photometric properties of magnetic features. We estimate that the contribution of faculae and network to Total Solar Irradiance variability of the current Cycle 24 is overestimated by at least 11%, due to the photometric properties of network and faculae not being recognized as different. This estimate is specific to the method employed in this study to reconstruct irradiance variations, so caution should be paid when extending it to other techniques.« less

  2. Measurement of phase function of aerosol at different altitudes by CCD Lidar

    NASA Astrophysics Data System (ADS)

    Sun, Peiyu; Yuan, Ke'e.; Yang, Jie; Hu, Shunxing

    2018-02-01

    The aerosols near the ground are closely related to human health and climate change, the study on which has important significance. As we all know, the aerosol is inhomogeneous at different altitudes, of which the phase function is also different. In order to simplify the retrieval algorithm, it is usually assumed that the aerosol is uniform at different altitudes, which will bring measurement error. In this work, an experimental approach is demonstrated to measure the scattering phase function of atmospheric aerosol particles at different heights by CCD lidar system, which could solve the problem of the traditional CCD lidar system in assumption of phase function. The phase functions obtained by the new experimental approach are used to retrieve the aerosol extinction coefficient profiles. By comparison of the aerosol extinction coefficient retrieved by Mie-scattering aerosol lidar and CCD lidar at night, the reliability of new experimental approach is verified.

  3. Yonsei Evolutionary Population Synthesis (YEPS). II. Spectro-photometric Evolution of Helium-enhanced Stellar Populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Chul; Yoon, Suk-Jin; Lee, Young-Wook, E-mail: chulchung@yonsei.ac.kr, E-mail: sjyoon0691@yonsei.ac.kr

    The discovery of multiple stellar populations in Milky Way globular clusters (GCs) has stimulated various follow-up studies on helium-enhanced stellar populations. Here we present the evolutionary population synthesis models for the spectro-photometric evolution of simple stellar populations (SSPs) with varying initial helium abundance ( Y {sub ini}). We show that Y {sub ini} brings about dramatic changes in spectro-photometric properties of SSPs. Like the normal-helium SSPs, the integrated spectro-photometric evolution of helium-enhanced SSPs is also dependent on metallicity and age for a given Y {sub ini}. We discuss the implications and prospects for the helium-enhanced populations in relation to themore » second-generation populations found in the Milky Way GCs. All of the models are available at http://web.yonsei.ac.kr/cosmic/data/YEPS.htm.« less

  4. Spectral reflectance and photometric properties of selected rocks

    USGS Publications Warehouse

    Watson, Robert D.

    1971-01-01

    Studies of the spectral reflectance and photometric properties of selected rocks at the USGS Mill Creek, Oklahoma, remote sensing test site demonstrate that discrimination of rock types is possible through reflection measurements, but that the discrimination is complicated by surface conditions, such as weathering and lichen growth. Comparisons between fresh-broken, weathered, and lichen-covered granite show that whereas both degree of weathering and amount of lichen cover change the reflectance quality of the granite, lichen cover also considerably changes the photometric properties of the granite. Measurements of the spectral reflectance normal to the surface of both limestone and dolomite show limestone to be more reflective than dolomite in the wavelength range from 380 to 1550 nanometers. The reflectance difference decreases at view angles greater than 40° owing to the difference in the photometric properties of dolomite and limestone.

  5. Investigation of solar active regions at high resolution by balloon flights of the solar optical universal polarimeter, extended definition phase

    NASA Technical Reports Server (NTRS)

    Tarbell, Theodore D.

    1993-01-01

    Technical studies of the feasibility of balloon flights of the former Spacelab instrument, the Solar Optical Universal Polarimeter, with a modern charge-coupled device (CCD) camera, to study the structure and evolution of solar active regions at high resolution, are reviewed. In particular, different CCD cameras were used at ground-based solar observatories with the SOUP filter, to evaluate their performance and collect high resolution images. High resolution movies of the photosphere and chromosphere were successfully obtained using four different CCD cameras. Some of this data was collected in coordinated observations with the Yohkoh satellite during May-July, 1992, and they are being analyzed scientifically along with simultaneous X-ray observations.

  6. Weather on Other Worlds. IV. Hα Emission and Photometric Variability Are Not Correlated in L0–T8 Dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles-Páez, Paulo A.; Metchev, Stanimir A.; Heinze, Aren

    Recent photometric studies have revealed that surface spots that produce flux variations are present on virtually all L and T dwarfs. Their likely magnetic or dusty nature has been a much-debated problem, the resolution to which has been hindered by paucity of diagnostic multi-wavelength observations. To test for a correlation between magnetic activity and photometric variability, we searched for H α emission among eight L3–T2 ultra-cool dwarfs with extensive previous photometric monitoring, some of which are known to be variable at 3.6 μ m or 4.5 μ m. We detected H α only in the non-variable T2 dwarf 2MASS J12545393−0122474.more » The remaining seven objects do not show H α emission, even though six of them are known to vary photometrically. Combining our results with those for 86 other L and T dwarfs from the literature show that the detection rate of H α emission is very high (94%) for spectral types between L0 and L3.5 and much smaller (20%) for spectral types ≥L4, while the detection rate of photometric variability is approximately constant (30%–55%) from L0 to T8 dwarfs. We conclude that chromospheric activity, as evidenced by H α emission, and large-amplitude photometric variability are not correlated. Consequently, dust clouds are the dominant driver of the observed variability of ultra-cool dwarfs at spectral types, at least as early as L0.« less

  7. [Effect of spontaneous firing of injured dorsal root ganglion neuron on excitability of wide dynamic range neuron in rat spinal dorsal horn].

    PubMed

    Song, Ying; Zhang, Yong-Mei; Xu, Jie; Wu, Jing-Ru; Qin, Xia; Hua, Rong

    2013-10-25

    The aim of the paper is to study the effect of spontaneous firing of injured dorsal root ganglion (DRG) neuron in chronic compression of DRG (CCD) model on excitability of wide dynamic range (WDR) neuron in rat spinal dorsal horn. In vivo intracellular recording was done in DRG neurons and in vivo extracellular recording was done in spinal WDR neurons. After CCD, incidence of spontaneous discharge and firing frequency enhanced to 59.46% and (4.30 ± 0.69) Hz respectively from 22.81% and (0.60 ± 0.08) Hz in normal control group (P < 0.05). Local administration of 50 nmol/L tetrodotoxin (TTX) on DRG neuron in CCD rats decreased the spontaneous activities of WDR neurons from (191.97 ± 45.20)/min to (92.50 ± 30.32)/min (P < 0.05). On the other side, local administration of 100 mmol/L KCl on DRG neuron evoked spontaneous firing in a reversible way (n = 5) in silent WDR neurons of normal rats. There was 36.36% (12/33) WDR neuron showing after-discharge in response to innocuous mechanical stimuli on cutaneous receptive field in CCD rats, while after-discharge was not seen in control rats. Local administration of TTX on DRG with a concentration of 50 nmol/L attenuated innocuous electric stimuli-evoked after-discharge of WDR neurons in CCD rats in a reversible manner, and the frequency was decreased from (263 ± 56.5) Hz to (117 ± 30) Hz (P < 0.05). The study suggests that the excitability of WDR neurons is influenced by spontaneous firings of DRG neurons after CCD.

  8. Combining HJ CCD, GF-1 WFV and MODIS Data to Generate Daily High Spatial Resolution Synthetic Data for Environmental Process Monitoring.

    PubMed

    Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-08-20

    The limitations of satellite data acquisition mean that there is a lack of satellite data with high spatial and temporal resolutions for environmental process monitoring. In this study, we address this problem by applying the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and the Spatial and Temporal Data Fusion Approach (STDFA) to combine Huanjing satellite charge coupled device (HJ CCD), Gaofen satellite no. 1 wide field of view camera (GF-1 WFV) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to generate daily high spatial resolution synthetic data for land surface process monitoring. Actual HJ CCD and GF-1 WFV data were used to evaluate the precision of the synthetic images using the correlation analysis method. Our method was tested and validated for two study areas in Xinjiang Province, China. The results show that both the ESTARFM and STDFA can be applied to combine HJ CCD and MODIS reflectance data, and GF-1 WFV and MODIS reflectance data, to generate synthetic HJ CCD data and synthetic GF-1 WFV data that closely match actual data with correlation coefficients (r) greater than 0.8989 and 0.8643, respectively. Synthetic red- and near infrared (NIR)-band data generated by ESTARFM are more suitable for the calculation of Normalized Different Vegetation Index (NDVI) than the data generated by STDFA.

  9. Combining HJ CCD, GF-1 WFV and MODIS Data to Generate Daily High Spatial Resolution Synthetic Data for Environmental Process Monitoring

    PubMed Central

    Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-01-01

    The limitations of satellite data acquisition mean that there is a lack of satellite data with high spatial and temporal resolutions for environmental process monitoring. In this study, we address this problem by applying the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and the Spatial and Temporal Data Fusion Approach (STDFA) to combine Huanjing satellite charge coupled device (HJ CCD), Gaofen satellite no. 1 wide field of view camera (GF-1 WFV) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to generate daily high spatial resolution synthetic data for land surface process monitoring. Actual HJ CCD and GF-1 WFV data were used to evaluate the precision of the synthetic images using the correlation analysis method. Our method was tested and validated for two study areas in Xinjiang Province, China. The results show that both the ESTARFM and STDFA can be applied to combine HJ CCD and MODIS reflectance data, and GF-1 WFV and MODIS reflectance data, to generate synthetic HJ CCD data and synthetic GF-1 WFV data that closely match actual data with correlation coefficients (r) greater than 0.8989 and 0.8643, respectively. Synthetic red- and near infrared (NIR)-band data generated by ESTARFM are more suitable for the calculation of Normalized Different Vegetation Index (NDVI) than the data generated by STDFA. PMID:26308017

  10. Cosmological baryonic and matter densities from 600000 SDSS luminous red galaxies with photometric redshifts

    NASA Astrophysics Data System (ADS)

    Blake, Chris; Collister, Adrian; Bridle, Sarah; Lahav, Ofer

    2007-02-01

    We analyse MegaZ-LRG, a photometric-redshift catalogue of luminous red galaxies (LRGs) based on the imaging data of the Sloan Digital Sky Survey (SDSS) 4th Data Release. MegaZ-LRG, presented in a companion paper, contains >106 photometric redshifts derived with ANNZ, an artificial neural network method, constrained by a spectroscopic subsample of ~13000 galaxies obtained by the 2dF-SDSS LRG and Quasar (2SLAQ) survey. The catalogue spans the redshift range 0.4 < z < 0.7 with an rms redshift error σz ~ 0.03(1 + z), covering 5914 deg2 to map out a total cosmic volume 2.5h-3Gpc3. In this study we use the most reliable 600000 photometric redshifts to measure the large-scale structure using two methods: (1) a spherical harmonic analysis in redshift slices, and (2) a direct re-construction of the spatial clustering pattern using Fourier techniques. We present the first cosmological parameter fits to galaxy angular power spectra from a photometric-redshift survey. Combining the redshift slices with appropriate covariances, we determine best-fitting values for the matter density Ωm and baryon density Ωb of Ωmh = 0.195 +/- 0.023 and Ωb/Ωm = 0.16 +/- 0.036 (with the Hubble parameter h = 0.75 and scalar index of primordial fluctuations nscalar = 1 held fixed). These results are in agreement with and independent of the latest studies of the cosmic microwave background radiation, and their precision is comparable to analyses of contemporary spectroscopic-redshift surveys. We perform an extensive series of tests which conclude that our power spectrum measurements are robust against potential systematic photometric errors in the catalogue. We conclude that photometric-redshift surveys are competitive with spectroscopic surveys for measuring cosmological parameters in the simplest `vanilla' models. Future deep imaging surveys have great potential for further improvement, provided that systematic errors can be controlled.

  11. Nanoparticle filtration performance of NIOSH-certified particulate air-purifying filtering facepiece respirators: evaluation by light scattering photometric and particle number-based test methods.

    PubMed

    Rengasamy, Samy; Eimer, Benjamin C

    2012-01-01

    National Institute for Occupational Safety and Health (NIOSH) certification test methods employ charge neutralized NaCl or dioctyl phthalate (DOP) aerosols to measure filter penetration levels of air-purifying particulate respirators photometrically using a TSI 8130 automated filter tester at 85 L/min. A previous study in our laboratory found that widely different filter penetration levels were measured for nanoparticles depending on whether a particle number (count)-based detector or a photometric detector was used. The purpose of this study was to better understand the influence of key test parameters, including filter media type, challenge aerosol size range, and detector system. Initial penetration levels for 17 models of NIOSH-approved N-, R-, and P-series filtering facepiece respirators were measured using the TSI 8130 photometric method and compared with the particle number-based penetration (obtained using two ultrafine condensation particle counters) for the same challenge aerosols generated by the TSI 8130. In general, the penetration obtained by the photometric method was less than the penetration obtained with the number-based method. Filter penetration was also measured for ambient room aerosols. Penetration measured by the TSI 8130 photometric method was lower than the number-based ambient aerosol penetration values. Number-based monodisperse NaCl aerosol penetration measurements showed that the most penetrating particle size was in the 50 nm range for all respirator models tested, with the exception of one model at ~200 nm size. Respirator models containing electrostatic filter media also showed lower penetration values with the TSI 8130 photometric method than the number-based penetration obtained for the most penetrating monodisperse particles. Results suggest that to provide a more challenging respirator filter test method than what is currently used for respirators containing electrostatic media, the test method should utilize a sufficient number of particles <100 nm and a count (particle number)-based detector.

  12. 21 CFR 862.2160 - Discrete photometric chemistry analyzer for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Discrete photometric chemistry analyzer for... Clinical Laboratory Instruments § 862.2160 Discrete photometric chemistry analyzer for clinical use. (a) Identification. A discrete photometric chemistry analyzer for clinical use is a device intended to duplicate...

  13. An Assessment of GEO Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements

    NASA Astrophysics Data System (ADS)

    Cowardin, H.; Abercromby, K.; Barker, E.; Seitzer, P.; Mulrooney, M.; Schildknecht, T.

    Optical observations of orbital debris offer insights that differ from radar measurements (specifically the size parameter and wavelength regime). For example, time-dependent photometric data yield lightcurves in multiple bandpasses that aid in material identification and possible periodic orientations. This data can also be used to help identify shapes and optical properties at multiple phase angles. Capitalizing on optical data products and applying them to generate a more complete understanding of orbital space objects, is a key objective of NASA's Optical Measurement Program, and a primary driver for creation of the Optical Measurements Center (OMC). The OMC attempts to emulate space-based illumination conditions using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC uses a 300 Watt Xenon arc lamp as a solar simulator, a CCD camera with Johnson/Bessel colored filters, and a robotic arm to orientate/rotate objects to simulate an objects orbit/rotational period. A high-resolution, high bandwidth (350nm-2500nm) Analytical Spectral Devices (ASD) spectrometer is also employed to baseline various material types. Since observation of GEO targets are generally restricted to the optical regime (due to radar range limitations), analysis of their properties is tailored to those revealed by optical data products. In this connection, much attention has been directed towards understanding the lightcurves of orbital debris with high area-to-mass (A/m) ratios (> 0.9 m2/kg). A small population of GEO debris was recently identified, which exhibits the properties of high A/m objects, such as variable eccentricities and inclinations -- a dynamical characteristic generally resulting from varying solar radiation pressure on high A/m objects. Materials such as multi-layered insulation (MLI) and solar panels are two examples of materials with high area-to mass ratios. Lightcurves for such objects can vary greatly (even for the same object under different illumination conditions). For example, specular reflections from multiple facets of the target surface (e.g. Mylar or Aluminized Kapton) can lead to erratic, orientation-dependent lightcurves. This paper will investigate published color photometric data for a series of orbital debris targets and compare it to the empirical photometric measurements generated in the OMC. The specific materials investigated (known to exist in GEO) are: an intact piece of MLI, separated layers of MLI, and multiple solar cells materials. Using the data acquired over specific rotational angles through different filters (B, V, R, I), a color index is acquired (B-R, R-I). As a secondary check, the spectrometer is used to define color indexes for the same material. Using these values and their associated lightcurves, this laboratory data is compared to observational data obtained on the 1m telescope of the Astronomical Institute of the University of Bern (AUIB) and the 0.9 m Small and Moderate Aperture Research Telescope System (SMARTS) telescope at Cerro Tololo Inter-American Observatory (CTIO). We will present laboratory generated lightcurves with color indexes of the high A/m materials alongside telescopic data of targets with high A/m values. We will discuss the relationship of laboratory to telescope data in the context of classification of GEO debris objects.

  14. COLOR OF THE STARS: Oh Be A Fine Girl, Kiss Me!

    NASA Astrophysics Data System (ADS)

    Zambrano, L. F.; Boyle, R. P.; Janusz, R.; University-School "Ignatianum" Kracow, Poland Collaboration; A. G. Davis-InstituteSpace Observations Collaboration

    2005-12-01

    Classification of stars by color is important in stellar studies because from it we are able to attain essential information about stars like: temperature, composition, age and mass; from these we can also derive its history, and future evolution!. This classification can be done by photometry or spectroscopy. Photometry provides information from more stars in a given field of view, magnitude and approximate size. The Strömvil photometric system, developed by V. Straizys (Vilnius Observatory, Lithuania), allows more precise photometry using 7 filters, ranging from 330-700 nm. Since the color of a star is associated with the wavelength of the electromagnetic radiation of light emitted by it, each filter allows only certain wavelengths to go through into the CCD camera; then, each neighboring wavelength band can be compared against the others and the color relationship can be converted to magnitude. Our Milky Way galaxy has billions of stars, of which we only have information from a small set. We obtained images of the NGC6811 and NGC6819 Open clusters, and the M56 Globular cluster at the Vatican Advanced Technology Telescope in Mt Graham AZ. During an 8 night observing run, images were taken in each filter with 3 different pointings overlapping by 2 arc-min. Calibration by known standards from A. Kazlauskas (e.i. Baltic Astronomy Vol II) that fall in the observed regions will be done. From this photometry other star information; such as luminosity, distance, metallicity, surface gravity, and spectral class will be determined.

  15. Using Light Curves to Characterize Size and Shape of Pseudo-Debris

    NASA Technical Reports Server (NTRS)

    Rodriquez, Heather M.; Abercromby, Kira J.; Jarvis, Kandy S.; Barker, Edwin

    2006-01-01

    Photometric measurements were collected for a new study aimed at estimating orbital debris sizes based on object brightness. To obtain a size from optical measurements the current practice is to assume an albedo and use a normalized magnitude to calculate optical size. However, assuming a single albedo value may not be valid for all objects or orbit types; material type and orientation can mask an object s true optical cross section. This experiment used a CCD camera to record data, a 300 W Xenon, Ozone Free collimated light source to simulate solar illumination, and a robotic arm with five degrees of freedom to move the piece of simulated debris through various orientations. The pseudo-debris pieces used in this experiment originate from the European Space Operations Centre s ESOC2 ground test explosion of a mock satellite. A uniformly illuminated white ping-pong ball was used as a zero-magnitude reference. Each debris piece was then moved through specific orientations and rotations to generate a light curve. This paper discusses the results of five different object-based light curves as measured through an x-rotation. Intensity measurements, from which each light curve was generated, were recorded in five degree increments from zero to 180 degrees. Comparing light curves of different shaped and sized pieces against their characteristic length establishes the start of a database from which an optical size estimation model will be derived in the future.

  16. VizieR Online Data Catalog: UBVRIz light curves of 51 Type II supernovae (Galbany+, 2016)

    NASA Astrophysics Data System (ADS)

    Galbany, L.; Hamuy, M.; Phillips, M. M.; Suntzeff, N. B.; Maza, J.; de Jaeger, T.; Moraga, T.; Gonzalez-Gaitan, S.; Krisciunas, K.; Morrell, N. I.; Thomas-Osip, J.; Krzeminski, W.; Gonzalez, L.; Antezana, R.; Wishnjewski, M.; McCarthy, P.; Anderson, J. P.; Gutierrez, C. P.; Stritzinger, M.; Folatelli, G.; Anguita, C.; Galaz, G.; Green, E. M.; Impey, C.; Kim, Y.-C.; Kirhakos, S.; Malkan, M. A.; Mulchaey, J. S.; Phillips, A. C.; Pizzella, A.; Prosser, C. F.; Schmidt, B. P.; Schommer, R. A.; Sherry, W.; Strolger, L.-G.; Wells, L. A.; Williger, G. M.

    2016-08-01

    This paper presents a sample of multi-band, visual-wavelength light curves of 51 type II supernovae (SNe II) observed from 1986 to 2003 in the course of four different surveys: the Cerro Tololo Supernova Survey, the Calan Tololo Supernova Program (C&T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernovae Survey (CATS). Near-infrared photometry and optical spectroscopy of this set of SNe II will be published in two companion papers. A list of the SNe II used in this study is presented in Table1. The first object in our list is SN 1986L and it is the only SN observed with photoelectric techniques (by M.M.P and S.K., using the Cerro Tololo Inter-American Observatory (CTIO) 0.9m equipped with a photometer and B and V filters). The remaining SNe were observed using a variety of telescopes equipped with CCD detectors and UBV(RI)KCz filters (see Table5). The magnitudes for the photometric sequences of the 51 SNe II are listed in Table4. In every case, these sequences were derived from observations of Landolt standards (see Appendix D in Hamuy et al. 2001ApJ...558..615H for the definition of the z band and Stritzinger et al. 2002AJ....124.2100S for the description of the z-band standards). Table5 lists the resulting UBVRIz magnitudes for the 51 SNe. (3 data files).

  17. A Survey of Distant Clusters of Galaxies Selected by X-Rays

    NASA Technical Reports Server (NTRS)

    McNamara, Brian

    1997-01-01

    I will discuss the results of a new survey of X-ray selected, distant clusters of galaxies that has been undertaken by our group at.CfA (Vikhlinin, McNamara, Forman, Jones). We have analyzed the inner 17.5 arcminute region of roughly 650 ROSAT PSPC images of high latitude fields to compile a complete, flux-limited sample of clusters with a mean flux limit roughly 20 times more sensitive than the Einstein Medium Sensitivity Survey. The goal of our survey, which presently contains 233 extended X-ray sources, is to study cluster evolution over cosmological timescales. We have obtained optical images for nearly all of the faintest sources using the 1.2 m telescope of the Fred L. Whipple Observatory, and when including POSS images of the brighter sources, we have nearly completed the identification of all of the extended sources. Roughly 80% of the sources were identified as clusters of galaxies. We have measured redshifts for 42 clusters using the MMT, and including additional measurements from the literature, roughly 70 clusters in our catalog have spectroscopic redshifts. Using CCD photometry and spectroscopic redshifts, we have determined a magnitude-redshift relation which will allow redshifts of the remaining clusters in our sample to be determined photometrically to within a delta z over z of roughly ten percent. I will discuss the Log(N)-Log(S) relation for our sample and compare it to other determinations. In addition, I will discuss the evolution of core radii of clusters.

  18. Automated Quantitative Spectral Classification of Stars in Areas of the main Meridional Section of the Galaxy

    NASA Astrophysics Data System (ADS)

    Shvelidze, Teimuraz; Malyuto, Valeri

    2015-08-01

    Quantitative spectral classification of F, G and K stars with the 70-cm telescope of the Ambastumani Astrophysical Observatory in areas of the main meridional section of the Galaxy, and for which proper motion data are available, has been performed. Fundamental parameters have been obtained for several hundred stars. Space densities of stars of different spectral types, the stellar luminosity function and the relationships between the kinematics and metallicity of stars have been studied. The results have confirmed and completed the conclusions made on the basis of some previous spectroscopic and photometric surveys. Many plates have been obtained for other important directions in the sky: the Kapteyn areas, the Galactic anticentre, the main meridional section of the Galaxy and etc. Very rich collection of photographic objective spectral plates (30,000 were accumulated during last 60 years) is available at Abastumani Observatory-wavelength range 3900-4900 A, about 2A resolution. Availability of new devices for automatic registration of spectra from photographic plates as well as some recently developed classification techniques may allow now to create a modern system of automatic spectral classification and with expension of classification techniques to additional types (B-A, M spectral classes). The data can be treated with the same quantitative method applied here. This method may also be applied to other available and future spectroscopic data of similar resolution, notably that obtained with large format CCD detectors on Schmidt-type telescopes.

  19. Characterization of OfWRKY3, a transcription factor that positively regulates the carotenoid cleavage dioxygenase gene OfCCD4 in Osmanthus fragrans.

    PubMed

    Han, Yuanji; Wu, Miao; Cao, Liya; Yuan, Wangjun; Dong, Meifang; Wang, Xiaohui; Chen, Weicai; Shang, Fude

    2016-07-01

    The sweet osmanthus carotenoid cleavage dioxygenase 4 (OfCCD4) cleaves carotenoids such as β-carotene and zeaxanthin to yield β-ionone. OfCCD4 is a member of the CCD gene family, and its promoter contains a W-box palindrome with two reversely oriented TGAC repeats, which are the proposed binding sites of WRKY transcription factors. We isolated three WRKY cDNAs from the petal of Osmanthus fragrans. One of them, OfWRKY3, encodes a protein containing two WRKY domains and two zinc finger motifs. OfWRKY3 and OfCCD4 had nearly identical expression profile in petals of 'Dangui' and 'Yingui' at different flowering stages and showed similar expression patterns in petals treated by salicylic acid, jasmonic acid and abscisic acid. Activation of OfCCD4pro:GUS by OfWRKY3 was detected in coinfiltrated tobacco leaves and very weak GUS activity was detected in control tissues, indicating that OfWRKY3 can interact with the OfCCD4 promoter. Yeast one-hybrid and electrophoretic mobility shift assay showed that OfWRKY3 was able to bind to the W-box palindrome motif present in the OfCCD4 promoter. These results suggest that OfWRKY3 is a positive regulator of the OfCCD4 gene, and might partly account for the biosynthesis of β-ionone in sweet osmanthus.

  20. High-resolution CCD imaging alternatives

    NASA Astrophysics Data System (ADS)

    Brown, D. L.; Acker, D. E.

    1992-08-01

    High resolution CCD color cameras have recently stimulated the interest of a large number of potential end-users for a wide range of practical applications. Real-time High Definition Television (HDTV) systems are now being used or considered for use in applications ranging from entertainment program origination through digital image storage to medical and scientific research. HDTV generation of electronic images offers significant cost and time-saving advantages over the use of film in such applications. Further in still image systems electronic image capture is faster and more efficient than conventional image scanners. The CCD still camera can capture 3-dimensional objects into the computing environment directly without having to shoot a picture on film develop it and then scan the image into a computer. 2. EXTENDING CCD TECHNOLOGY BEYOND BROADCAST Most standard production CCD sensor chips are made for broadcast-compatible systems. One popular CCD and the basis for this discussion offers arrays of roughly 750 x 580 picture elements (pixels) or a total array of approximately 435 pixels (see Fig. 1). FOR. A has developed a technique to increase the number of available pixels for a given image compared to that produced by the standard CCD itself. Using an inter-lined CCD with an overall spatial structure several times larger than the photo-sensitive sensor areas each of the CCD sensors is shifted in two dimensions in order to fill in spatial gaps between adjacent sensors.

  1. Documentation to the 2015-16 Common Core of Data (CCD) Universe Files. NCES 2017-074

    ERIC Educational Resources Information Center

    Glander, Mark

    2017-01-01

    The Common Core of Data (CCD) is a national statistical program that collects and compiles administrative data from SEAs covering the universe of all public elementary and secondary schools and school districts in the United States. The first CCD collection was for SY 1986-87. The predecessor to CCD was the Elementary and Secondary General…

  2. Proton radiation damage experiment on P-Channel CCD for an X-ray CCD camera onboard the ASTRO-H satellite

    NASA Astrophysics Data System (ADS)

    Mori, Koji; Nishioka, Yusuke; Ohura, Satoshi; Koura, Yoshiaki; Yamauchi, Makoto; Nakajima, Hiroshi; Ueda, Shutaro; Kan, Hiroaki; Anabuki, Naohisa; Nagino, Ryo; Hayashida, Kiyoshi; Tsunemi, Hiroshi; Kohmura, Takayoshi; Ikeda, Shoma; Murakami, Hiroshi; Ozaki, Masanobu; Dotani, Tadayasu; Maeda, Yukie; Sagara, Kenshi

    2013-12-01

    We report on a proton radiation damage experiment on P-channel CCD newly developed for an X-ray CCD camera onboard the ASTRO-H satellite. The device was exposed up to 109 protons cm-2 at 6.7 MeV. The charge transfer inefficiency (CTI) was measured as a function of radiation dose. In comparison with the CTI currently measured in the CCD camera onboard the Suzaku satellite for 6 years, we confirmed that the new type of P-channel CCD is radiation tolerant enough for space use. We also confirmed that a charge-injection technique and lowering the operating temperature efficiently work to reduce the CTI for our device. A comparison with other P-channel CCD experiments is also discussed. We performed a proton radiation damage experiment on a new P-channel CCD. The device was exposed up to 109 protons cm-2 at 6.7 MeV. We confirmed that it is radiation tolerant enough for space use. We confirmed that a charge-injection technique reduces the CTI. We confirmed that lowering the operating temperature also reduces the CTI.

  3. Early-type galaxies in the Antlia cluster: catalogue and isophotal analysis

    NASA Astrophysics Data System (ADS)

    Calderón, Juan P.; Bassino, Lilia P.; Cellone, Sergio A.; Gómez, Matías

    2018-06-01

    We present a statistical isophotal analysis of 138 early-type galaxies in the Antlia cluster, located at a distance of ˜ 35 Mpc. The observational material consists of CCD images of four 36 × 36 arcmin2 fields obtained with the MOSAIC II camera at the Blanco 4-m telescope at Cerro Tololo Interamerican Observatory. Our present work supersedes previous Antlia studies in the sense that the covered area is four times larger, the limiting magnitude is MB ˜ -9.6 mag, and the surface photometry parameters of each galaxy are derived from Sérsic model fits extrapolated to infinity. In a companion previous study we focused on the scaling relations obtained by means of surface photometry, and now we present the data, on which the previous paper is based, the parameters of the isophotal fits as well as an isophotal analysis. For each galaxy, we derive isophotal shape parameters along the semimajor axis and search for correlations within different radial bins. Through extensive statistical tests, we also analyse the behaviour of these values against photometric and global parameters of the galaxies themselves. While some galaxies do display radial gradients in their ellipticity (ɛ) and/or their Fourier coefficients, differences in mean values between adjacent regions are not statistically significant. Regarding Fourier coefficients, dwarf galaxies usually display gradients between all adjacent regions, while non-dwarfs tend to show this behaviour just between the two outermost regions. Globally, there is no obvious correlation between Fourier coefficients and luminosity for the whole magnitude range (-12 ≳ MV ≳ -22); however, dwarfs display much higher dispersions at all radii.

  4. LIADA's Double Star Section: Studies Of Visual Double Star By Amateurs

    NASA Astrophysics Data System (ADS)

    Rica, F. M.; Benavides, R.; Masa, E.; Ling, J.

    2007-08-01

    LIADA's Double Star Section has as main goal to perform measures of relative astrometry of neglected and unconfirmed wide pairs, as well as to determine the astrophysical properties for their components and classify them, according to their nature, as phyisical, common origin, common proper motion or optical pairs. BVIJHK photometry, relative astrometry and kinematical data in addition to other astrophysical parameters, were obtained from literature to characterize the components and the stellar systems. VizieR, Simbad. Aladin and the "services abstract" tools were used from the website of Centre De Données Stellaires de Strasbourg (CDS). USNO catalogs (USNO-B1.0 and UCAC-2) in addition to ESA catalogs (Tycho-2 and HIPPARCOS) were often used. Spectral types, luminosity classes, absolute magnitudes, photometric distances were determined by using several tables, two colours and reduced proper motion diagrams. Astrophysical properties were corrected by reddening by using several maps. CCD cameras, micrometric eyepieces, photographic plates from Digitalized Sky Survey (DSS) and other surveys were used to perform our astrometric measures. According to their nature double stars are classified by using several professional criteria. Since 2001 LIADA has studied about 500 visual double stars, has discovered about 150 true binaries and several candidates to be white dwarfs, subdwarfs and nearby stars. Several orbits have been calculated. Our results were published in national and international journals such as Journal of Double Star Observations (JDSO), in Information Circulars edited by Commision 26 of IAU and our measures were included in WDS catalog. LIADA publish a circular twice a year with our results.

  5. Fiber-MZI-based FBG sensor interrogation: comparative study with a CCD spectrometer.

    PubMed

    Das, Bhargab; Chandra, Vikash

    2016-10-10

    We present an experimental comparative study of the two most commonly used fiber Bragg grating (FBG) sensor interrogation techniques: a charge-coupled device (CCD) spectrometer and a fiber Mach-Zehnder interferometer (F-MZI). Although the interferometric interrogation technique is historically known to offer the highest sensitivity measurements, very little information exists regarding how it compares with the current commercially available spectral-characteristics-based interrogation systems. It is experimentally established here that the performance of a modern-day CCD spectrometer interrogator is very close to a F-MZI interrogator with the capability of measuring Bragg wavelength shifts with sub-picometer-level accuracy. The results presented in this research study can further be used as a guideline for choosing between the two FBG sensor interrogator types for small-amplitude dynamic perturbation measurements down to nano-level strain.

  6. CCD correlation techniques

    NASA Technical Reports Server (NTRS)

    Hewes, C. R.; Bosshart, P. W.; Eversole, W. L.; Dewit, M.; Buss, D. D.

    1976-01-01

    Two CCD techniques were discussed for performing an N-point sampled data correlation between an input signal and an electronically programmable reference function. The design and experimental performance of an implementation of the direct time correlator utilizing two analog CCDs and MOS multipliers on a single IC were evaluated. The performance of a CCD implementation of the chirp z transform was described, and the design of a new CCD integrated circuit for performing correlation by multiplication in the frequency domain was presented. This chip provides a discrete Fourier transform (DFT) or inverse DFT, multipliers, and complete support circuitry for the CCD CZT. The two correlation techniques are compared.

  7. Spectroscopy and CCD-photography of extended red emission in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Witt, A. N.; Schild, R. E.

    1986-01-01

    Recent spectrographic studies of extended red emission (ERE) seen in the 0.6 to 0.9 micron spectral region in many reflection nebulae have shown fluorescence by amorphous hydrogenated carbon to be the most probable cause of the ERE. Spectrographic observations were performed on the nebulae NGC 2023 and NGC 7023, using the intensified Reticon scanner (IRS) of Kitt Peak National Observatory on the N0-2 0.9 mm telescope. Charge coupled device (CCD) images of NGC2023 and NGC 7023 were obtained with the CfA CCD detector on the 0.6 mm telescope of the Whipple Observatory. Results are discussed.

  8. New low noise CCD cameras for Pi-of-the-Sky project

    NASA Astrophysics Data System (ADS)

    Kasprowicz, G.; Czyrkowski, H.; Dabrowski, R.; Dominik, W.; Mankiewicz, L.; Pozniak, K.; Romaniuk, R.; Sitek, P.; Sokolowski, M.; Sulej, R.; Uzycki, J.; Wrochna, G.

    2006-10-01

    Modern research trends require observation of fainter and fainter astronomical objects on large areas of the sky. This implies usage of systems with high temporal and optical resolution with computer based data acquisition and processing. Therefore Charge Coupled Devices (CCD) became so popular. They offer quick picture conversion with much better quality than film based technologies. This work is theoretical and practical study of the CCD based picture acquisition system. The system was optimized for "Pi of The Sky" project. But it can be adapted to another professional astronomical researches. The work includes issue of picture conversion, signal acquisition, data transfer and mechanical construction of the device.

  9. Combination of Wavefunction and Density Functional Approximations for Describing Electronic Correlation

    NASA Astrophysics Data System (ADS)

    Garza, Alejandro J.

    Perhaps the most important approximations to the electronic structure problem in quantum chemistry are those based on coupled cluster and density functional theories. Coupled cluster theory has been called the ``gold standard'' of quantum chemistry due to the high accuracy that it achieves for weakly correlated systems. Kohn-Sham density functionals based on semilocal approximations are, without a doubt, the most widely used methods in chemistry and material science because of their high accuracy/cost ratio. The root of the success of coupled cluster and density functionals is their ability to efficiently describe the dynamic part of the electron correlation. However, both traditional coupled cluster and density functional approximations may fail catastrophically when substantial static correlation is present. This severely limits the applicability of these methods to a plethora of important chemical and physical problems such as, e.g., the description of bond breaking, transition states, transition metal-, lanthanide- and actinide-containing compounds, and superconductivity. In an attempt to tackle this problem, nonstandard (single-reference) coupled cluster-based techniques that aim to describe static correlation have been recently developed: pair coupled cluster doubles (pCCD) and singlet-paired coupled cluster doubles (CCD0). The ability to describe static correlation in pCCD and CCD0 comes, however, at the expense of important amounts of dynamic correlation so that the high accuracy of standard coupled cluster becomes unattainable. Thus, the reliable and efficient description of static and dynamic correlation in a simultaneous manner remains an open problem for quantum chemistry and many-body theory in general. In this thesis, different ways to combine pCCD and CCD0 with density functionals in order to describe static and dynamic correlation simultaneously (and efficiently) are explored. The combination of wavefunction and density functional methods has a long history in quantum chemistry (practical implementations have appeared in the literature since the 1970s). However, this kind of techniques have not achieved widespread use due to problems such as double counting of correlation and the symmetry dilemma--the fact that wavefunction methods respect the symmetries of Hamiltonian, while modern functionals are designed to work with broken symmetry densities. Here, particular mathematical features of pCCD and CCD0 are exploited to avoid these problems in an efficient manner. The two resulting families of approximations, denoted as pCCD+DFT and CCD0+DFT, are shown to be able to describe static and dynamic correlation in standard benchmark calculations. Furthermore, it is also shown that CCD0+DFT lends itself to combination with correlation from the direct random phase approximation (dRPA). Inclusion of dRPA in the long-range via the technique of range-separation allows for the description of dispersion correlation, the remaining part of the correlation. Thus, when combined with the dRPA, CCD0+DFT can account for all three-types of electron correlation that are necessary to accurately describe molecular systems. Lastly, applications of CCD0+DFT to actinide chemistry are considered in this work. The accuracy of CCD0+DFT for predicting equilibrium geometries and vibrational frequencies of actinide molecules and ions is assessed and compared to that of well-established quantum chemical methods. For this purpose, the f0 actinyl series (UO2 2+, NpO 23+, PuO24+, the isoelectronic NUN, and Thorium (ThO, ThO2+) and Nobelium (NoO, NoO2) oxides are studied. It is shown that the CCD0+DFT description of these species agrees with available experimental data and is comparable with the results given by the highest-level calculations that are possible for such heavy compounds while being, at least, an order of magnitude lower in computational cost.

  10. Stabilization of the Virulence Plasmid pSLT of Salmonella Typhimurium by Three Maintenance Systems and Its Evaluation by Using a New Stability Test.

    PubMed

    Lobato-Márquez, Damián; Molina-García, Laura; Moreno-Córdoba, Inma; García-Del Portillo, Francisco; Díaz-Orejas, Ramón

    2016-01-01

    Certain Salmonella enterica serovars belonging to subspecies I carry low-copy-number virulence plasmids of variable size (50-90 kb). All of these plasmids share the spv operon, which is important for systemic infection. Virulence plasmids are present at low copy numbers. Few copies reduce metabolic burden but suppose a risk of plasmid loss during bacterial division. This drawback is counterbalanced by maintenance modules that ensure plasmid stability, including partition systems and toxin-antitoxin (TA) loci. The low-copy number virulence pSLT plasmid of Salmonella enterica serovar Typhimurium encodes three auxiliary maintenance systems: one partition system ( parAB ) and two TA systems ( ccdAB ST and vapBC2 ST ). The TA module ccdAB ST has previously been shown to contribute to pSLT plasmid stability and vapBC2 ST to bacterial virulence. Here we describe a novel assay to measure plasmid stability based on the selection of plasmid-free cells following elimination of plasmid-containing cells by ParE toxin, a DNA gyrase inhibitor. Using this new maintenance assay we confirmed a crucial role of parAB in pSLT maintenance. We also showed that vapBC2 ST , in addition to contribute to bacterial virulence, is important for plasmid stability. We have previously shown that ccdAB ST encodes an inactive CcdB ST toxin. Using our new stability assay we monitored the contribution to plasmid stability of a ccdAB ST variant containing a single mutation (R99W) that restores the toxicity of CcdB ST . The "activation" of CcdB ST (R99W) did not increase pSLT stability by ccdAB ST . In contrast, ccdAB ST behaves as a canonical type II TA system in terms of transcriptional regulation. Of interest, ccdAB ST was shown to control the expression of a polycistronic operon in the pSLT plasmid. Collectively, these results show that the contribution of the CcdB ST toxin to pSLT plasmid stability may depend on its role as a co-repressor in coordination with CcdA ST antitoxin more than on its toxic activity.

  11. Rotational properties of the binary and non-binary populations in the trans-Neptunian belt

    NASA Astrophysics Data System (ADS)

    Thirouin, A.; Noll, K. S.; Ortiz, J. L.; Morales, N.

    2014-09-01

    We present results for the short-term variability of binary trans-Neptunian objects (BTNOs). We performed CCD photometric observations using the 3.58 m Telescopio Nazionale Galileo (TNG), the 1.5 m Sierra Nevada Observatory (OSN) telescope, and the 1.23 m Centro Astronómico Hispano Alemán (CAHA) telescope at Calar Alto Observatory. We present results based on five years of observations and report the short-term variability of six BTNOs. Our sample contains three classical objects: (174567) 2003 MW12, or Varda, (120347) 2004 SB60, or Salacia, and 2002 VT130; one detached disk object: (229762) 2007 UK126; and two resonant objects: (341520) 2007 TY430 and (38628) 2000 EB173, or Huya. For each target, possible rotational periods and/or photometric amplitudes are reported. We also derived some physical properties from their light curves, such as density, primary and secondary sizes, and albedo. We compiled and analyzed a vast light curve database for TNOs including centaurs to determine the light-curve amplitude and spin frequency distributions for the binary and non-binary populations. The mean rotational periods, from the Maxwellian fits to the frequency distributions, are 8.63 ± 0.52 h for the entire sample, 8.37 ± 0.58 h for the sample without the binary population, and 10.11 ± 1.19 h for the binary population alone. Because the centaurs are collisionally more evolved, their rotational periods might not be so primordial. We computed a mean rotational period, from the Maxwellian fit, of 8.86 ± 0.58 h for the sample without the centaur population, and of 8.64 ± 0.67 h considering a sample without the binary and the centaur populations. According to this analysis, regular TNOs spin faster than binaries, which is compatible with the tidal interaction of the binaries. Finally, we examined possible formation models for several systems studied in this work and by our team in previous papers. Appendix A is available in electronic form at http://www.aanda.orgFull Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/569/A3

  12. Does topical wound oxygen (TWO2) offer an improved outcome over conventional compression dressings (CCD) in the management of refractory venous ulcers (RVU)? A parallel observational comparative study.

    PubMed

    Tawfick, W; Sultan, S

    2009-07-01

    Topical wound oxygen (TWO(2)) may help wound healing in the management of refractory venous ulcers (RVU). The aim of this study was to measure the effect of TWO(2) on wound healing using the primary end-point of the proportion of ulcers healed at 12 weeks. Secondary end-points were time to full healing, percentage of reduction in ulcer size, pain reduction, recurrence rates and Quality-Adjusted Time Spent Without Symptoms of disease and Toxicity of Treatment (Q-TWiST). A parallel observational comparative study. Patients with CEAP C(6,s) RVU, assessed by duplex ultrasonography, were managed with either TWO(2) (n=46) or conventional compression dressings (CCD) (n=37) for 12 weeks or till full healing. Patients were followed up at 3 monthly intervals. At 12 weeks, 80% of TWO(2) managed ulcers were completely healed, compared to 35% of CCD ulcers (p<0.0001). Median time to full healing was 45 days in TWO(2) patients and 182 days in CCD patients (p<0.0001). The pain score threshold in TWO(2) managed patients improved from 8 to 3 by 13 days. After 12-month follow-up, 5 of the 13 healed CCD ulcers showed signs of recurrence compared to none of the 37 TWO(2) healed ulcers. TWO(2) patients experienced a significantly improved Q-TWiST. TWO(2) reduces recurrence rates, alleviates pain and improves the Q-TWiST. We believe it is a valuable tool in the armamentarium of management of RVU.

  13. Stellar variability and its implications for photometric planet detection with Kepler

    NASA Astrophysics Data System (ADS)

    Batalha, N. M.; Jenkins, J.; Basri, G. S.; Borucki, W. J.; Koch, D. G.

    2002-01-01

    Kepler is one of three candidates for the next NASA Discovery Mission and will survey the extended solar neighborhood to detect and characterize hundreds of terrestrial (and larger) planets in or near the habitable zone. Its strength lies in its ability to detect large numbers of Earth-sized planets - planets which produced a 10-4 change in relative stellar brightness during a transit across the disk of a sun-like parent star. Such a detection requires high instrumental relative precision and is facilitated by observing stars which are photometrically quiet on hourly timescales. Probing stellar variability across the HR diagram, one finds that many of the photometrically quietest stars are the F and G dwarfs. The Hipparcos photometric database shows the lowest photometric variances among stars of this spectral class. Our own Sun is a prime example with RMS variations over a few rotational cycles of typically (3 - 4)×10-4 (computed from VIRGO/DIARAD data taken Jan-Mar 2001). And variability on the hourly time scales crucial for planet detection is significantly smaller: just (2 - 5)×10-5. This bodes well for planet detection programs such as Kepler and Eddington. With significant numbers of photometrically quiet solar-type stars, Earth-sized planets should be readily identified provided they are abundant in the solar neighborhood. In support of the Kepler science objectives, we have initiated a study of stellar variability and its implications for planet detection. Herein, we summarize existing observational and theoretrical work with the objective of determining the percentage of stars in the Kepler field of view expected to be photometrically stable at a level which allows for Earth-sized planet detection.

  14. Effects of illumination differences on photometric stereo shape-and-albedo-from-shading for precision lunar surface reconstruction

    NASA Astrophysics Data System (ADS)

    Chung Liu, Wai; Wu, Bo; Wöhler, Christian

    2018-02-01

    Photoclinometric surface reconstruction techniques such as Shape-from-Shading (SfS) and Shape-and-Albedo-from-Shading (SAfS) retrieve topographic information of a surface on the basis of the reflectance information embedded in the image intensity of each pixel. SfS or SAfS techniques have been utilized to generate pixel-resolution digital elevation models (DEMs) of the Moon and other planetary bodies. Photometric stereo SAfS analyzes images under multiple illumination conditions to improve the robustness of reconstruction. In this case, the directional difference in illumination between the images is likely to affect the quality of the reconstruction result. In this study, we quantitatively investigate the effects of illumination differences on photometric stereo SAfS. Firstly, an algorithm for photometric stereo SAfS is developed, and then, an error model is derived to analyze the relationships between the azimuthal and zenith angles of illumination of the images and the reconstruction qualities. The developed algorithm and error model were verified with high-resolution images collected by the Narrow Angle Camera (NAC) of the Lunar Reconnaissance Orbiter Camera (LROC). Experimental analyses reveal that (1) the resulting error in photometric stereo SAfS depends on both the azimuthal and the zenith angles of illumination as well as the general intensity of the images and (2) the predictions from the proposed error model are consistent with the actual slope errors obtained by photometric stereo SAfS using the LROC NAC images. The proposed error model enriches the theory of photometric stereo SAfS and is of significance for optimized lunar surface reconstruction based on SAfS techniques.

  15. CCD detector development projects by the Beamline Technical Support Group at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Lee, John H.; Fernandez, Patricia; Madden, Tim; Molitsky, Michael; Weizeorick, John

    2007-11-01

    This paper will describe two ongoing detector projects being developed by the Beamline Technical Support Group at the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The first project is the design and construction of two detectors: a single-CCD system and a two-by-two Mosaic CCD camera for Small-Angle X-ray Scattering (SAXS). Both of these systems utilize the Kodak KAF-4320E CCD coupled to fiber optic tapers, custom mechanical hardware, electronics, and software developed at ANL. The second project is a Fast-CCD (FCCD) detector being developed in a collaboration between ANL and Lawrence Berkeley National Laboratory (LBNL). This detector will use ANL-designed readout electronics and a custom LBNL-designed CCD, with 480×480 pixels and 96 outputs, giving very fast readout.

  16. The In-flight Spectroscopic Performance of the Swift XRT CCD Camera During 2006-2007

    NASA Technical Reports Server (NTRS)

    Godet, O.; Beardmore, A.P.; Abbey, A.F.; Osborne, J.P.; Page, K.L.; Evans, P.; Starling, R.; Wells, A.A.; Angelini, L.; Burrows, D.N.; hide

    2007-01-01

    The Swift X-ray Telescope focal plane camera is a front-illuminated MOS CCD, providing a spectral response kernel of 135 eV FWHM at 5.9 keV as measured before launch. We describe the CCD calibration program based on celestial and on-board calibration sources, relevant in-flight experiences, and developments in the CCD response model. We illustrate how the revised response model describes the calibration sources well. Comparison of observed spectra with models folded through the instrument response produces negative residuals around and below the Oxygen edge. We discuss several possible causes for such residuals. Traps created by proton damage on the CCD increase the charge transfer inefficiency (CTI) over time. We describe the evolution of the CTI since the launch and its effect on the CCD spectral resolution and the gain.

  17. Pathogen webs in collapsing honey bee colonies.

    PubMed

    Cornman, R Scott; Tarpy, David R; Chen, Yanping; Jeffreys, Lacey; Lopez, Dawn; Pettis, Jeffery S; vanEngelsdorp, Dennis; Evans, Jay D

    2012-01-01

    Recent losses in honey bee colonies are unusual in their severity, geographical distribution, and, in some cases, failure to present recognized characteristics of known disease. Domesticated honey bees face numerous pests and pathogens, tempting hypotheses that colony collapses arise from exposure to new or resurgent pathogens. Here we explore the incidence and abundance of currently known honey bee pathogens in colonies suffering from Colony Collapse Disorder (CCD), otherwise weak colonies, and strong colonies from across the United States. Although pathogen identities differed between the eastern and western United States, there was a greater incidence and abundance of pathogens in CCD colonies. Pathogen loads were highly covariant in CCD but not control hives, suggesting that CCD colonies rapidly become susceptible to a diverse set of pathogens, or that co-infections can act synergistically to produce the rapid depletion of workers that characterizes the disorder. We also tested workers from a CCD-free apiary to confirm that significant positive correlations among pathogen loads can develop at the level of individual bees and not merely as a secondary effect of CCD. This observation and other recent data highlight pathogen interactions as important components of bee disease. Finally, we used deep RNA sequencing to further characterize microbial diversity in CCD and non-CCD hives. We identified novel strains of the recently described Lake Sinai viruses (LSV) and found evidence of a shift in gut bacterial composition that may be a biomarker of CCD. The results are discussed with respect to host-parasite interactions and other environmental stressors of honey bees.

  18. Modeling the impact of preflushing on CTE in proton irradiated CCD-based detectors

    NASA Astrophysics Data System (ADS)

    Philbrick, R. H.

    2002-04-01

    A software model is described that performs a "real world" simulation of the operation of several types of charge-coupled device (CCD)-based detectors in order to accurately predict the impact that high-energy proton radiation has on image distortion and modulation transfer function (MTF). The model was written primarily to predict the effectiveness of vertical preflushing on the custom full frame CCD-based detectors intended for use on the proposed Kepler Discovery mission, but it is capable of simulating many other types of CCD detectors and operating modes as well. The model keeps track of the occupancy of all phosphorous-silicon (P-V), divacancy (V-V) and oxygen-silicon (O-V) defect centers under every CCD electrode over the entire detector area. The integrated image is read out by simulating every electrode-to-electrode charge transfer in both the vertical and horizontal CCD registers. A signal level dependency on the capture and emission of signal is included and the current state of each electrode (e.g., barrier or storage) is considered when distributing integrated and emitted signal. Options for performing preflushing, preflashing, and including mini-channels are available on both the vertical and horizontal CCD registers. In addition, dark signal generation and image transfer smear can be selectively enabled or disabled. A comparison of the charge transfer efficiency (CTE) data measured on the Hubble space telescope imaging spectrometer (STIS) CCD with the CTE extracted from model simulations of the STIS CCD show good agreement.

  19. Monitoring of CH Cyg requested for Chandra and HST observations

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2012-03-01

    Dr. Margarita Karovska, Harvard-Smithsonian Center for Astrophysics, has requested visual and photometric observations of the symbiotic variable CH Cyg in preparation for and support of Chandra and HST observations scheduled for later in March 2012. Dr. Karovska's observations will be a followup investigation of the central region of CH Cyg and its jet that was discovered a couple of years ago. AAVSO observations are requested in order to monitor the state of the system and correlate with the satellite observations. Visual observations and CCD/PEP observations in all bands - U through J and H - are requested. Daily observations now through April 2012 and high-speed photometry through March would be appreciated. CH Cyg is currently at visual magnitude 7.7. Halpha, OIII region, and optical spectroscopy are also requested. More details on the exact dates and times of the satellite observations will be announced when they become available, but daily monitoring should begin now. [HST observations scheduled for 2012 March 18; Chandra delayed some days due to X-class solar flare of 2012 March 7.] Coordinates: RA 19 24 33.07 Dec. +50 14 29.1 (J2000.0). Finder charts may be created and data from the AAVSO International Database may be viewed, plotted, or downloaded (www.aavso.org).

  20. Digital Copy of the Pulkovo Plate Collection

    NASA Astrophysics Data System (ADS)

    Kanaev, I.; Kanaeva, N.; Poliakow, E.; Pugatch, T.

    Report is devoted to a problem of saving of the Pulkovo plate collection. In total more than 50 thousand astronegatives are stored in the observatory. First of them are dated back to 1893. A risk of emulsion corrupting raises with current of time. Since 1996 the operation on digitization and record of the images of plates on electronic media (HDD, CD) are carried out in the observatory. The database ECSIP - Electronic Collection of the Star Images of the Pulkovo is created. There are recorded in it both complete, and extracted (separate areas) images of astronegatives. The plates as a whole are scanned on the photoscanner with rather rough optical resolution 600-2400 dpi. The matrixes with the separate images are digitized on the precision measuring machine "Fantasy" with high (6000-25400 dpi) resolution. The DB ECSIP allows to accept and to store different types of data of a matrix structure, including, CCD-frames. Structure of the ECSIP's software includes systems of visualization, processing and manipulation by the images, and also programs for position and photometric measurements. To the present time more than 40% completed and 10% extracted images from its total amount are digitized and recorded in DB ECSIP. The project is fulfilled at financial support by the Ministry of Science of Russian Federation, grant 01-54 "The coordinate -measuring astrographic machine "Fantasy".

  1. Asiago eclipsing binaries program IV. SZ Camelopardalis, a β Cephei pulsator in a quadruple, eclipsing system

    NASA Astrophysics Data System (ADS)

    Tamajo, E.; Munari, U.; Siviero, A.; Tomasella, L.; Dallaporta, S.

    2012-03-01

    We present a spectroscopic and photometric analysis of the multiple system and early-type eclipsing binary SZ Cam (O9 IV + B0.5 V), which consists of an eclipsing SB2 pair of orbital period P = 2.7 days in a long orbit (~55 yrs) around a non-eclipsing SB1 pair of orbital period P = 2.8 days. We have reconstructed the spectra of the individual components of SZ Cam from the observed composite spectra using the technique of spectral disentangling. We used them together with extensive and accurate BVIC CCD photometry to obtain an orbital solution. Our photometry revealed the presence of a β Cep variable in the SZ Cam hierarchical system, probably located within the non-eclipsing SB1 pair. The pulsation period is (0.33265 ± 0.00005) days and the observed total amplitude in the B band is (0.0105 ± 0.0005) mag. NLTE analysis of the disentangled spectra provided atmospheric parameters for all three components, consistent with those derived from orbital solution. Full Table 3 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/539/A139

  2. Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): Instrument Design and Calibration

    NASA Astrophysics Data System (ADS)

    Englert, Christoph R.; Harlander, John M.; Brown, Charles M.; Marr, Kenneth D.; Miller, Ian J.; Stump, J. Eloise; Hancock, Jed; Peterson, James Q.; Kumler, Jay; Morrow, William H.; Mooney, Thomas A.; Ellis, Scott; Mende, Stephen B.; Harris, Stewart E.; Stevens, Michael H.; Makela, Jonathan J.; Harding, Brian J.; Immel, Thomas J.

    2017-10-01

    The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument was built for launch and operation on the NASA Ionospheric Connection Explorer (ICON) mission. The instrument was designed to measure thermospheric horizontal wind velocity profiles and thermospheric temperature in altitude regions between 90 km and 300 km, during day and night. For the wind measurements it uses two perpendicular fields of view pointed at the Earth's limb, observing the Doppler shift of the atomic oxygen red and green lines at 630.0 nm and 557.7 nm wavelength. The wavelength shift is measured using field-widened, temperature compensated Doppler Asymmetric Spatial Heterodyne (DASH) spectrometers, employing low order échelle gratings operating at two different orders for the different atmospheric lines. The temperature measurement is accomplished by a multichannel photometric measurement of the spectral shape of the molecular oxygen A-band around 762 nm wavelength. For each field of view, the signals of the two oxygen lines and the A-band are detected on different regions of a single, cooled, frame transfer charge coupled device (CCD) detector. On-board calibration sources are used to periodically quantify thermal drifts, simultaneously with observing the atmosphere. The MIGHTI requirements, the resulting instrument design and the calibration are described.

  3. Improving precision of Pi of the Sky photometric measurements

    NASA Astrophysics Data System (ADS)

    Siudek, M.; Małek, K.; Mankiewicz, L.; Opiela, R.; Sokołowski, M.; Źarnecki, A. F.

    Pi of the Sky is a system of robotic telescopes designed for observations of short timescale astrophysical phenomena, like prompt optical GRB emission. The apparatus is designed to monitor a large fraction of the sky with 12^{m} - 13^{m} range and time resolution of the order of 1, 10 seconds. All measurements taken by the Pi of the Sky detector located in Las Campanas Observatory (LCO) in Chile are available on the Pi of the Sky website through a dedicated interface which also allows to download the selected data. Pi of the Sky database from period 2006 - 2009 contains more than 2 billions measurements of almost 17 millions of objects. In order to facilitate analysis of variable stars we have developed a system of dedicated filters to remove bad measurements or frames. They are needed to remove measurements affected by detector imperfections (hot pixels, measurement close to CCD edge, background due to opened shutter) or observation conditions (planet or planetoid passage, moon halo). With approximate color calibration algorithm taking into account appropriate corrections based on the spectral type of reference stars the photometry algorithm can be improved further. This process is illustrated by the analysis of the BG Ind system where we have been able to reduce the total systematic uncertainty to about 0.05 magnitudes.

  4. Multi-color light curves and orbital period research of eclipsing binary V1073 Cyg

    NASA Astrophysics Data System (ADS)

    Tian, Xiao-Man; Zhu, Li-Ying; Qian, Sheng-Bang; Li, Lin-Jia; Jiang, Lin-Qiao

    2018-02-01

    New multi-color BV RcIc photometric observations are presented for the W UMa type eclipsing binary V1073 Cyg. The multi-color light curve analysis with the Wilson-Devinney procedure yielded the absolute parameters of this system, showing that V1073 Cyg is a shallow contact binary system with a fill-out factor f = 0.124(±0.011). We collected all available times of light minima spanning 119 yr, including CCD data to construct the O ‑ C curve, and performed detailed O ‑ C analysis. The O ‑ C diagram shows that the period change is complex. A long-term continuous decrease and a cyclic variation exist. The period is decreasing at a rate of Ṗ = ‑1.04(±0.18) × 10‑10 d cycle‑1 and, with the period decrease, V1073 Cyg will evolve to the deep contact stage. The cyclic variation with a period of P 3 = 82.7(±3.6) yr and an amplitude of A = 0.028(±0.002)d may be explained by magnetic activity of one or both components or the light travel time effect caused by a distant third companion with M 3(i‧ = 90°) = 0.511 M⊙.

  5. Updates on the Performance and Calibration of HST/STIS

    NASA Astrophysics Data System (ADS)

    Lockwood, Sean A.; Monroe, TalaWanda R.; Ogaz, Sara; Branton, Doug; Carlberg, Joleen K.; Debes, John H.; Jedrzejewski, Robert I.; Proffitt, Charles R.; Riley, Allyssa; Sohn, Sangmo Tony; Sonnentrucker, Paule; Walborn, Nolan R.; Welty, Daniel

    2018-06-01

    The Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST) has been in orbit for 21 years and continues to produce high quality scientific results using a diverse complement of operating modes. These include spatially resolved spectroscopy in the UV and optical, high spatial resolution echelle spectroscopy in the UV, and solar-blind imaging in the UV. In addition, STIS possesses unique visible-light coronagraphic modes that keep the instrument at the forefront of exoplanet and debris-disk research. As the instrument's characteristics evolve over its lifetime, the instrument team at the Space Telescope Science Institute monitors its performance and works towards improving the quality of its data products. Here we present updates on the status of the STIS CCD and FUV & NUV MAMA detectors, as well as changes to the CalSTIS reduction pipeline. We also discuss progress toward the recalibration of the E140M/1425 echelle mode. The E140M grating blaze function shapes have changed since flux calibration was carried out following SM4, which limits the relative photometric flux accuracy of some spectral orders up to 5-10% at the edges. In Cycle 25 a special calibration program was executed to obtain updated sensitivity curves for the E140M/1425 setting.

  6. Astrometry of Single-Chord Occultations: Application to the 1993 Triton Event

    NASA Technical Reports Server (NTRS)

    Olkin, Catherine B.; Elliot, J. L.; Bus, Schelte J.; McDonald, Stephen W.; Dahn, Conrad C.

    1996-01-01

    This paper outlines a method for reducing astrometric data to derive the closest approach time and distance to the center of an occultation shadow for a single observer. The method applies to CCD frames, strip scans or photographic plates and uses a set of field stars of unknown positions to define a common coordinate system for all frames. The motion of the occulting body is used to establish the transformation between this common coordinate system and the celestial coordinate system of the body's ephemeris. This method is demonstrated by application to the Tr6O occultation by Triton on 1993 July 10 UT. Over an interval of four nights that included the occultation time, 80 frames of Triton and Tr6O were taken near the meridian with the U.S. Naval Observatory (USNO) 61-inch astrometric reflector. Application of the method presented here to these data yields a closest approach distance of 359 +/- 133 km (corresponding to 0.017 +/- 0.006 arcsec) for the occultation chord obtained with the Kuiper Airborne Observatory (KAO). Comparison of the astrometric closest approach time with the KAO light-curve midtime shows a difference of 2.2 +/- 4.1 s. Relative photometry of Triton and Tr6O, needed for photometric calibration of the occultation light curve, is also presented.

  7. Asteroid Lightcurve Analysis at Isaac Aznar Observatory Aras De Los Olmos, Valencia, Spain

    NASA Astrophysics Data System (ADS)

    Macias, Amadeo Aznar

    2015-01-01

    The Isaac Aznar Observatory conducts astrometric and photometric studies of asteroids. This paper contains the photometric results of four asteroids obtained from 2014 April to August. These asteroids were selected from the Collaborative Asteroid Lightcurve Link (CALL) web site: 1088 Mitaka, 2956 Yeomans, 3894 Williamcooke, and (4555) 1974QL.

  8. Characterization of Electrically Active Defects in Si Using CCD Image Sensors

    DTIC Science & Technology

    1978-02-01

    63 35 Dislocation Segments in CCD Imager . . . . . . . . . . . . . 64 36 422 Reflection Topograph of Dislocation Loop ir... Loops . . . . . 3 39 422 Reflection Topograph of Scratch on CCD Imager, . . . 69 40 Dark Current Display of a CCD Imager with 32 ms integration Time...made of each slice using the elon -asoorbio aold developer described in Appendix D. The inagers were then thinned using the procedure at Appendix taor

  9. Photometric Repeatability of Scanned Imagery: UVIS

    NASA Astrophysics Data System (ADS)

    Shanahan, Clare E.; McCullough, Peter; Baggett, Sylvia

    2017-08-01

    We provide the preliminary results of a study on the photometric repeatability of spatial scans of bright, isolated white dwarf stars with the UVIS channel of the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). We analyze straight-line scans from the first pair of identical orbits of HST program 14878 to assess if sub 0.1% repeatability can be attained with WFC3/UVIS. This study is motivated by the desire to achieve better signal-to-noise in the UVIS contamination and stability monitor, in which observations of standard stars in staring mode have been taken from the installation of WFC3 in 2009 to the present to assess temporal photometric stability. Higher signal to noise in this program would greatly benefit the sensitivity to detect contamination, and to better characterize the observed small throughput drifts over time. We find excellent repeatability between identical visits of program 14878, with sub 0.1% repeatability achieved in most filters. These! results support the initiative to transition the staring mode UVIS contamination and photometric stability monitor from staring mode images to spatial scans.

  10. CCD radiation damage in ESA Cosmic Visions missions: assessment and mitigation

    NASA Astrophysics Data System (ADS)

    Lumb, David H.

    2009-08-01

    Charge Coupled Device (CCD) imagers have been widely used in space-borne astronomical instruments. A frequent concern has been the radiation damage effects on the CCD charge transfer properties. We review some methods for assessing the Charge Transfer Inefficiency (CTI) in CCDs. Techniques to minimise degradation using background charge injection and p-channel CCD architectures are discussed. A critical review of the claims for p-channel architectures is presented. The performance advantage for p-channel CCD performance is shown to be lower than claimed previously. Finally we present some projections for the performance in the context of some future ESA missions.

  11. Data-driven, Interpretable Photometric Redshifts Trained on Heterogeneous and Unrepresentative Data

    NASA Astrophysics Data System (ADS)

    Leistedt, Boris; Hogg, David W.

    2017-03-01

    We present a new method for inferring photometric redshifts in deep galaxy and quasar surveys, based on a data-driven model of latent spectral energy distributions (SEDs) and a physical model of photometric fluxes as a function of redshift. This conceptually novel approach combines the advantages of both machine learning methods and template fitting methods by building template SEDs directly from the spectroscopic training data. This is made computationally tractable with Gaussian processes operating in flux-redshift space, encoding the physics of redshifts and the projection of galaxy SEDs onto photometric bandpasses. This method alleviates the need to acquire representative training data or to construct detailed galaxy SED models; it requires only that the photometric bandpasses and calibrations be known or have parameterized unknowns. The training data can consist of a combination of spectroscopic and deep many-band photometric data with reliable redshifts, which do not need to entirely spatially overlap with the target survey of interest or even involve the same photometric bands. We showcase the method on the I-magnitude-selected, spectroscopically confirmed galaxies in the COSMOS field. The model is trained on the deepest bands (from SUBARU and HST) and photometric redshifts are derived using the shallower SDSS optical bands only. We demonstrate that we obtain accurate redshift point estimates and probability distributions despite the training and target sets having very different redshift distributions, noise properties, and even photometric bands. Our model can also be used to predict missing photometric fluxes or to simulate populations of galaxies with realistic fluxes and redshifts, for example.

  12. A Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Software

    NASA Astrophysics Data System (ADS)

    Oh, S. H.; Kang, Y. W.; Byun, Y. I.

    2007-12-01

    We present a software which we developed for the multi-purpose CCD camera. This software can be used on the all 3 types of CCD - KAF-0401E (768×512), KAF-1602E (15367times;1024), KAF-3200E (2184×1472) made in KODAK Co.. For the efficient CCD camera control, the software is operated with two independent processes of the CCD control program and the temperature/shutter operation program. This software is designed to fully automatic operation as well as manually operation under LINUX system, and is controled by LINUX user signal procedure. We plan to use this software for all sky survey system and also night sky monitoring and sky observation. As our results, the read-out time of each CCD are about 15sec, 64sec, 134sec for KAF-0401E, KAF-1602E, KAF-3200E., because these time are limited by the data transmission speed of parallel port. For larger format CCD, the data transmission is required more high speed. we are considering this control software to one using USB port for high speed data transmission.

  13. Differential expression of cyclin D1 in keratin-producing odontogenic cysts.

    PubMed

    Vera-Sirera, Beatriz; Forner-Navarro, Leopoldo; Vera-Sempere, Francisco

    2015-01-01

    The aim of the present study was to analyze the expression levels of Cyclin D1 (CCD1), a nuclear protein that plays a crucial role in cell cycle progression, in a series of keratin-producing odontogenic cysts. A total of 58 keratin-producing odontogenic cysts, diagnosed over ten years and classified according to the WHO 2005 criteria, were immunohistochemically analyzed in terms of CCD1 expression, which was quantified in the basal, suprabasal and intermediate/superficial epithelial compartments. The extent of immunostaining was measured as a proportion of total epithelial thickness. Quantified immunohistochemical data were correlated with clinicopathological features and clinical recurrence. Keratin-producing odontogenic cysts were classified as 6 syndromic keratocystic odontogenic tumors (S-KCOT), 40 sporadic or non-syndromic KCOT (NS-KCOT) and 12 orthokeratinized odontogenic cysts (OOC). Immunohistochemically, CCD1 staining was evident predominantly in the parabasal region of all cystic lesions, but among-lesion differences were apparent, showing a clear expansion of parabasal compartment especially in the S-KCOT, followed to a lesser extent in the NS-KCOT, and being much more reduced in the OOC, which had the greatest average epithelial thickness. The differential expression of CCD1 noted in the present study suggests that dysregulation of cell cycle progression from G1 to the S phase contributes to the different aggressiveness of these lesions. However, CCD1 expression levels did not predict NS-KCOT recurrence, which is likely influenced by factors unrelated to lesion biology.

  14. Study the performance of star sensor influenced by space radiation damage of image sensor

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Li, Yudong; Wen, Lin; Guo, Qi; Zhang, Xingyao

    2018-03-01

    Star sensor is an essential component of spacecraft attitude control system. Spatial radiation can cause star sensor performance degradation, abnormal work, attitude measurement accuracy and reliability reduction. Many studies have already been dedicated to the radiation effect on Charge-Coupled Device(CCD) image sensor, but fewer studies focus on the radiation effect of star sensor. The innovation of this paper is to study the radiation effects from the device level to the system level. The influence of the degradation of CCD image sensor radiation sensitive parameters on the performance parameters of star sensor is studied in this paper. The correlation among the radiation effect of proton, the non-uniformity noise of CCD image sensor and the performance parameter of star sensor is analyzed. This paper establishes a foundation for the study of error prediction and correction technology of star sensor on-orbit attitude measurement, and provides some theoretical basis for the design of high performance star sensor.

  15. New insights on the accuracy of photometric redshift measurements

    NASA Astrophysics Data System (ADS)

    Massarotti, M.; Iovino, A.; Buzzoni, A.; Valls-Gabaud, D.

    2001-12-01

    We use the deepest and most complete redshift catalog currently available (the Hubble Deep Field (HDF) North supplemented by new HDF South redshift data) to minimize residuals between photometric and spectroscopic redshift estimates. The good agreement at zspec < 1.5 shows that model libraries provide a good description of the galaxy population. At zspec >= 2.0, the systematic shift between photometric and spectroscopic redshifts decreases when the modeling of the absorption by the interstellar and intergalactic media is refined. As a result, in the entire redshift range z in [0, 6], residuals between photometric and spectroscopic redshifts are roughly halved. For objects fainter than the spectroscopic limit, the main source of uncertainty in photometric redshifts is related to photometric errors, and can be assessed with Monte Carlo simulations.

  16. Kinematics and age of 15 stars-photometric solar analogs

    NASA Astrophysics Data System (ADS)

    Galeev, A. I.; Shimansky, V. V.

    2008-03-01

    The radial and space velocities are inferred for 15 stars that are photometric analogs of the Sun. The space velocity components (U, V, W) of most of these stars lie within the 10-60 km/s interval. The star HD 225239, which in our previous papers we classified as a subgiant, has a space velocity exceeding 100 km/s, and belongs to the thick disk. The inferred fundamental parameters of the atmospheres of solar analogs are combined with published evolutionary tracks to estimate the masses and ages of the stars studied. The kinematics of photometric analogs is compared to the data for a large group of solar-type stars.

  17. Effects of space-radiation damage and temperature on CCD noise for the Lyman FUSE mission

    NASA Astrophysics Data System (ADS)

    Murowinski, Richard G.; Gao, Linzhuang; Deen, Mohamed J.

    1993-09-01

    Charge coupled device (CCD) imaging arrays are becoming more frequently used in space vehicles and equipment, especially space-based astronomical telescopes. It is important to understand the effects of radiation on a CCD so that its performance degradation during mission lifetime can be predicted, and so that methods to prevent unacceptable performance degradation can be found. Much recent work by various groups has focused on the problems surrounding the loss of charge transfer efficiency and the increase in dark current and dark current spikes in CCDs. The use of a CCD as the fine error sensor in the Lyman Far Ultraviolet Spectroscopic Explorer (FUSE) is limited by its noise performance. In this work we attempt to understand some of the factors surrounding the noise degradation due to radiation in a space environment. Later, we demonstrate how low frequency noise can be used as a characterization tool for studying proton radiation damage in CCDs.

  18. CFCCD Manual | CTIO

    Science.gov Websites

    DECam SAM 0.9-m CCD Goodman SOI Optical Spectrographs CHIRON COSMOS Goodman Filters Telescopes Blanco 4 4.4.4 Gain 4.5: CCD scales at various foci APPENDIX I: Filters for CCD Imaging II: Gain and Readout

  19. High-frame rate multiport CCD imager and camera

    NASA Astrophysics Data System (ADS)

    Levine, Peter A.; Patterson, David R.; Esposito, Benjamin J.; Tower, John R.; Lawler, William B.

    1993-01-01

    A high frame rate visible CCD camera capable of operation up to 200 frames per second is described. The camera produces a 256 X 256 pixel image by using one quadrant of a 512 X 512 16-port, back illuminated CCD imager. Four contiguous outputs are digitally reformatted into a correct, 256 X 256 image. This paper details the architecture and timing used for the CCD drive circuits, analog processing, and the digital reformatter.

  20. Transmission electron microscope CCD camera

    DOEpatents

    Downing, Kenneth H.

    1999-01-01

    In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

  1. Fully depleted back illuminated CCD

    DOEpatents

    Holland, Stephen Edward

    2001-01-01

    A backside illuminated charge coupled device (CCD) is formed of a relatively thick high resistivity photon sensitive silicon substrate, with frontside electronic circuitry, and an optically transparent backside ohmic contact for applying a backside voltage which is at least sufficient to substantially fully deplete the substrate. A greater bias voltage which overdepletes the substrate may also be applied. One way of applying the bias voltage to the substrate is by physically connecting the voltage source to the ohmic contact. An alternate way of applying the bias voltage to the substrate is to physically connect the voltage source to the frontside of the substrate, at a point outside the depletion region. Thus both frontside and backside contacts can be used for backside biasing to fully deplete the substrate. Also, high resistivity gaps around the CCD channels and electrically floating channel stop regions can be provided in the CCD array around the CCD channels. The CCD array forms an imaging sensor useful in astronomy.

  2. High-Voltage Clock Driver for Photon-Counting CCD Characterization

    NASA Technical Reports Server (NTRS)

    Baker, Robert

    2013-01-01

    A document discusses the CCD97 from e2v technologies as it is being evaluated at Goddard Space Flight Center's Detector Characterization Laboratory (DCL) for possible use in ultra-low background noise space astronomy applications, such as Terrestrial Planet Finder Coronagraph (TPF-C). The CCD97 includes a photoncounting mode where the equivalent output noise is less than one electron. Use of this mode requires a clock signal at a voltage level greater than the level achievable by the existing CCD (charge-coupled-device) electronics. A high-voltage waveform generator has been developed in code 660/601 to support the CCD97 evaluation. The unit generates required clock waveforms at voltage levels from -20 to +50 V. It deals with standard and arbitrary waveforms and supports pixel rates from 50 to 500 kHz. The system is designed to interface with existing Leach CCD electronics.

  3. Signal processing applications of massively parallel charge domain computing devices

    NASA Technical Reports Server (NTRS)

    Fijany, Amir (Inventor); Barhen, Jacob (Inventor); Toomarian, Nikzad (Inventor)

    1999-01-01

    The present invention is embodied in a charge coupled device (CCD)/charge injection device (CID) architecture capable of performing a Fourier transform by simultaneous matrix vector multiplication (MVM) operations in respective plural CCD/CID arrays in parallel in O(1) steps. For example, in one embodiment, a first CCD/CID array stores charge packets representing a first matrix operator based upon permutations of a Hartley transform and computes the Fourier transform of an incoming vector. A second CCD/CID array stores charge packets representing a second matrix operator based upon different permutations of a Hartley transform and computes the Fourier transform of an incoming vector. The incoming vector is applied to the inputs of the two CCD/CID arrays simultaneously, and the real and imaginary parts of the Fourier transform are produced simultaneously in the time required to perform a single MVM operation in a CCD/CID array.

  4. Photometric Properties of Network and faculae derived by HMI data compensated for scattered-light

    NASA Astrophysics Data System (ADS)

    Criscuoli, Serena; Norton, Aimee Ann; Whitney, Taylor

    2017-08-01

    We report on the photometric properties of faculae and network as observed in full-disk,scattered-light corrected images from the Helioseismic Magnetic Imager (HMI). We usea Lucy-Richardson deconvolution routine that corrects a full-disk intensity image in lessthan one second. Faculae are distinguished from network through proximity to activeregions in addition to continuum intensity and magnetogram thresholds. This is the firstreport that full-disk image data, including center-to-limb variations, reproduce the photometric properties of faculae and network observed previously only in sub-arcsecond resolution, small field-of-view studies, i.e. that network exhibit in general higher photometric contrasts. More specifically, for magnetic flux values larger than approximately 300 G, the network is always brighter than faculae and the contrast differences increases toward the limb, where the network contrast is about twice the facular one. For lower magnetic flux values, pixels in network regions appear always darker than facular ones. Contrary to reports from previous full-disk observations, we also found that network exhibits a higher center-to-limb variation. Our results are in agreement with reports from simulations that indicate magnetic flux alone is a poor proxy of the photometric properties of magnetic features. We estimate that the facular and network contribution to irradiance variability of the current Cycle 24 is overestimated by at least 11% due to the photometric properties of network and faculae not being recognized as distinctly different.

  5. Influence of speckle image reconstruction on photometric precision for large solar telescopes

    NASA Astrophysics Data System (ADS)

    Peck, C. L.; Wöger, F.; Marino, J.

    2017-11-01

    Context. High-resolution observations from large solar telescopes require adaptive optics (AO) systems to overcome image degradation caused by Earth's turbulent atmosphere. AO corrections are, however, only partial. Achieving near-diffraction limited resolution over a large field of view typically requires post-facto image reconstruction techniques to reconstruct the source image. Aims: This study aims to examine the expected photometric precision of amplitude reconstructed solar images calibrated using models for the on-axis speckle transfer functions and input parameters derived from AO control data. We perform a sensitivity analysis of the photometric precision under variations in the model input parameters for high-resolution solar images consistent with four-meter class solar telescopes. Methods: Using simulations of both atmospheric turbulence and partial compensation by an AO system, we computed the speckle transfer function under variations in the input parameters. We then convolved high-resolution numerical simulations of the solar photosphere with the simulated atmospheric transfer function, and subsequently deconvolved them with the model speckle transfer function to obtain a reconstructed image. To compute the resulting photometric precision, we compared the intensity of the original image with the reconstructed image. Results: The analysis demonstrates that high photometric precision can be obtained for speckle amplitude reconstruction using speckle transfer function models combined with AO-derived input parameters. Additionally, it shows that the reconstruction is most sensitive to the input parameter that characterizes the atmospheric distortion, and sub-2% photometric precision is readily obtained when it is well estimated.

  6. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    PubMed Central

    Ilg, Andrea; Bruno, Mark; Beyer, Peter; Al-Babili, Salim

    2014-01-01

    The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum) carotenoid cleavage dioxygenase (SlCCD1B), which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents. PMID:25057464

  7. Pathogen Webs in Collapsing Honey Bee Colonies

    PubMed Central

    Cornman, R. Scott; Tarpy, David R.; Chen, Yanping; Jeffreys, Lacey; Lopez, Dawn; Pettis, Jeffery S.; vanEngelsdorp, Dennis; Evans, Jay D.

    2012-01-01

    Recent losses in honey bee colonies are unusual in their severity, geographical distribution, and, in some cases, failure to present recognized characteristics of known disease. Domesticated honey bees face numerous pests and pathogens, tempting hypotheses that colony collapses arise from exposure to new or resurgent pathogens. Here we explore the incidence and abundance of currently known honey bee pathogens in colonies suffering from Colony Collapse Disorder (CCD), otherwise weak colonies, and strong colonies from across the United States. Although pathogen identities differed between the eastern and western United States, there was a greater incidence and abundance of pathogens in CCD colonies. Pathogen loads were highly covariant in CCD but not control hives, suggesting that CCD colonies rapidly become susceptible to a diverse set of pathogens, or that co-infections can act synergistically to produce the rapid depletion of workers that characterizes the disorder. We also tested workers from a CCD-free apiary to confirm that significant positive correlations among pathogen loads can develop at the level of individual bees and not merely as a secondary effect of CCD. This observation and other recent data highlight pathogen interactions as important components of bee disease. Finally, we used deep RNA sequencing to further characterize microbial diversity in CCD and non-CCD hives. We identified novel strains of the recently described Lake Sinai viruses (LSV) and found evidence of a shift in gut bacterial composition that may be a biomarker of CCD. The results are discussed with respect to host-parasite interactions and other environmental stressors of honey bees. PMID:22927991

  8. A configurable distributed high-performance computing framework for satellite's TDI-CCD imaging simulation

    NASA Astrophysics Data System (ADS)

    Xue, Bo; Mao, Bingjing; Chen, Xiaomei; Ni, Guoqiang

    2010-11-01

    This paper renders a configurable distributed high performance computing(HPC) framework for TDI-CCD imaging simulation. It uses strategy pattern to adapt multi-algorithms. Thus, this framework help to decrease the simulation time with low expense. Imaging simulation for TDI-CCD mounted on satellite contains four processes: 1) atmosphere leads degradation, 2) optical system leads degradation, 3) electronic system of TDI-CCD leads degradation and re-sampling process, 4) data integration. Process 1) to 3) utilize diversity data-intensity algorithms such as FFT, convolution and LaGrange Interpol etc., which requires powerful CPU. Even uses Intel Xeon X5550 processor, regular series process method takes more than 30 hours for a simulation whose result image size is 1500 * 1462. With literature study, there isn't any mature distributing HPC framework in this field. Here we developed a distribute computing framework for TDI-CCD imaging simulation, which is based on WCF[1], uses Client/Server (C/S) layer and invokes the free CPU resources in LAN. The server pushes the process 1) to 3) tasks to those free computing capacity. Ultimately we rendered the HPC in low cost. In the computing experiment with 4 symmetric nodes and 1 server , this framework reduced about 74% simulation time. Adding more asymmetric nodes to the computing network, the time decreased namely. In conclusion, this framework could provide unlimited computation capacity in condition that the network and task management server are affordable. And this is the brand new HPC solution for TDI-CCD imaging simulation and similar applications.

  9. Ion profiling in an ambient drift tube-ion mobility spectrometer using a high pixel density linear array detector IonCCD.

    PubMed

    Davila, Stephen J; Hadjar, Omar; Eiceman, Gary A

    2013-07-16

    A linear pixel-based detector array, the IonCCD, is characterized for use under ambient conditions with thermal (<1 eV) positive ions derived from purified air and a 10 mCi (63)Ni foil. The IonCCD combined with a drift tube-ion mobility spectrometer permitted the direct detection of gas phase ions at atmospheric pressure and confirmed a limit of detection of 3000 ions/pixel/frame established previously in both the keV (1-2 keV) and the hyper-thermal (10-40 eV) regimes. Results demonstrate the "broad-band" application of the IonCCD over 10(5) orders in ion energy and over 10(10) in operating pressure. The Faraday detector of a drift tube for an ion mobility spectrometer was replaced with the IonCCD providing images of ion profiles over the cross-section of the drift tube. Patterns in the ion profiles were developed in the drift tube cross-section by control of electric fields between wires of Bradbury Nielson and Tyndall Powell shutter designs at distances of 1-8 cm from the detector. Results showed that ion beams formed in wire sets, retained their shape with limited mixing by diffusion and Coulombic repulsion. Beam broadening determined as 95 μm/cm for hydrated protons in air with moisture of ~10 ppmv. These findings suggest a value of the IonCCD in further studies of ion motion and diffusion of thermalized ions, enhancing computational results from simulation programs, and in the design or operation of ion mobility spectrometers.

  10. Photometric requirements for portable changeable message signs.

    DOT National Transportation Integrated Search

    2001-09-01

    This project reviewed the performance of pchangeable message signs (PCMSs) and developed photometric standards to establish performance requirements. In addition, researchers developed photometric test methods and recommended them for use in evaluati...

  11. Photometric diversity of terrains on Triton

    NASA Technical Reports Server (NTRS)

    Hillier, J.; Veverka, J.; Helfenstein, P.; Lee, P.

    1994-01-01

    Voyager disk-resolved images of Triton in the violet (0.41 micrometers) and green (0.56 micrometer wavelengths have been analyzed to derive the photometric characteristics of terrains on Triton. Similar conclusions are found using two distinct but related definitions of photometric units, one based on color ratio and albedo properties (A. S. McEwen, 1990), the other on albedo and brightness ratios at different phase angles (P. Lee et al., 1992). A significant diversity of photometric behavior, much broader than that discovered so far on any other icy satellite, occurs among Triton's terrains. Remarkably, differences in photometric behavior do not correlate well with geologic terrain boundaries defined on the basis of surface morphology. This suggests that in most cases photometric properties on Triton are controlled by thin deposits superposed on underlying geologic units. Single scattering albedos are 0.98 or higher and asymmetry factors range from -0.35 to -0.45 for most units. The most distinct scattering behavior is exhibited by the reddish northern units already identified as the Anomalously Scattering Region (ASR), which scatters light almost isotropically with g = -0.04. In part due to the effects of Triton's clouds and haze, it is difficult to constrain the value of bar-theta, Hapke's macroscopic roughness parameter, precisely for Triton or to map differences in bar-theta among the different photometric terrains. However, our study shows that Triton must be relatively smooth, with bar-theta less than 15-20 degs and suggests that a value of 14 degs is appropriate. The differences in photometric characteristics lead to significantly different phase angle behavior for the various terrains. For example, a terrain (e.g., the ASR) that appears dark relative to another at low phase angles will reverse its contrast (become relatively brighter) at larger phase angles. The photometric parameters have been used to calculate hemispherical albedos for the units and to infer likely surface temperatures. Based on these results, we determine that all but the most southerly regions (i.e., mostly south of the equator) of the reddish northern terrains are likely to have been covered with deposits of nitrogen frost at the time of the Voyager flyby, in agreement with the suggestion from the photometry that these units are overlain by a thin veneer of material.

  12. The future scientific CCD

    NASA Technical Reports Server (NTRS)

    Janesick, J. R.; Elliott, T.; Collins, S.; Marsh, H.; Blouke, M. M.

    1984-01-01

    Since the first introduction of charge-coupled devices (CCDs) in 1970, CCDs have been considered for applications related to memories, logic circuits, and the detection of visible radiation. It is pointed out, however, that the mass market orientation of CCD development has left largely untapped the enormous potential of these devices for advanced scientific instrumentation. The present paper has, therefore, the objective to introduce the CCD characteristics to the scientific community, taking into account prospects for further improvement. Attention is given to evaluation criteria, a summary of current CCDs, CCD performance characteristics, absolute calibration tools, quantum efficiency, aspects of charge collection, charge transfer efficiency, read noise, and predictions regarding the characteristics of the next generation of silicon scientific CCD imagers.

  13. Enhanced performance CCD output amplifier

    DOEpatents

    Dunham, Mark E.; Morley, David W.

    1996-01-01

    A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

  14. Advances in CCD detector technology for x-ray diffraction applications

    NASA Astrophysics Data System (ADS)

    Thorson, Timothy A.; Durst, Roger D.; Frankel, Dan; Bordwell, Rex L.; Camara, Jose R.; Leon-Guerrero, Edward; Onishi, Steven K.; Pang, Francis; Vu, Paul; Westbrook, Edwin M.

    2004-01-01

    Phosphor-coupled CCDs are established as one of the most successful technologies for x-ray diffraction. This application demands that the CCD simultaneously achieve both the highest possible sensitivity and high readout speeds. Recently, wafer-scale, back illuminated devices have become available which offer significantly higher quantum efficiency than conventional devices (the Fairchild Imaging CCD 486 BI). However, since back thinning significantly changes the electrical properties of the CCD the high speed operation of wafer-scale, back-illuminated devices is not well understood. Here we describe the operating characteristics (including noise, linearity, full well capacity and CTE) of the back-illuminated CCD 486 at readout speeds up to 4 MHz.

  15. Scientific CCD technology at JPL

    NASA Technical Reports Server (NTRS)

    Janesick, J.; Collins, S. A.; Fossum, E. R.

    1991-01-01

    Charge-coupled devices (CCD's) were recognized for their potential as an imaging technology almost immediately following their conception in 1970. Twenty years later, they are firmly established as the technology of choice for visible imaging. While consumer applications of CCD's, especially the emerging home video camera market, dominated manufacturing activity, the scientific market for CCD imagers has become significant. Activity of the Jet Propulsion Laboratory and its industrial partners in the area of CCD imagers for space scientific instruments is described. Requirements for scientific imagers are significantly different from those needed for home video cameras, and are described. An imager for an instrument on the CRAF/Cassini mission is described in detail to highlight achieved levels of performance.

  16. CALiPER Report 23: Photometric Testing of White Tunable LED Luminaires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2016-01-01

    This report documents an initial investigation of photometric testing procedures for white-tunable LED luminaires and summarizes the key features of those products. Goals of the study include understanding the amount of testing required to characterize a white-tunable product, and documenting the performance of available color-tunable luminaires that are intended for architectural lighting.

  17. Cryostat and CCD for MEGARA at GTC

    NASA Astrophysics Data System (ADS)

    Castillo-Domínguez, E.; Ferrusca, D.; Tulloch, S.; Velázquez, M.; Carrasco, E.; Gallego, J.; Gil de Paz, A.; Sánchez, F. M.; Vílchez Medina, J. M.

    2012-09-01

    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is the new integral field unit (IFU) and multi-object spectrograph (MOS) instrument for the GTC. The spectrograph subsystems include the pseudo-slit, the shutter, the collimator with a focusing mechanism, pupil elements on a volume phase holographic grating (VPH) wheel and the camera joined to the cryostat through the last lens, with a CCD detector inside. In this paper we describe the full preliminary design of the cryostat which will harbor the CCD detector for the spectrograph. The selected cryogenic device is an LN2 open-cycle cryostat which has been designed by the "Astronomical Instrumentation Lab for Millimeter Wavelengths" at INAOE. A complete description of the cryostat main body and CCD head is presented as well as all the vacuum and temperature sub-systems to operate it. The CCD is surrounded by a radiation shield to improve its performance and is placed in a custom made mechanical mounting which will allow physical adjustments for alignment with the spectrograph camera. The 4k x 4k pixel CCD231 is our selection for the cryogenically cooled detector of MEGARA. The characteristics of this CCD, the internal cryostat cabling and CCD controller hardware are discussed. Finally, static structural finite element modeling and thermal analysis results are shown to validate the cryostat model.

  18. Using the CIFIST grid of CO5BOLD 3D model atmospheres to study the effects of stellar granulation on photometric colours. II. The role of convection across the H-R diagram

    NASA Astrophysics Data System (ADS)

    Kučinskas, A.; Klevas, J.; Ludwig, H.-G.; Bonifacio, P.; Steffen, M.; Caffau, E.

    2018-05-01

    Aims: We studied the influence of convection on the spectral energy distributions (SEDs), photometric magnitudes, and colour indices of different types of stars across the H-R diagram. Methods: The 3D hydrodynamical CO5BOLD, averaged ⟨3D⟩, and 1D hydrostatic LHD model atmospheres were used to compute SEDs of stars on the main sequence (MS), main sequence turn-off (TO), subgiant branch (SGB), and red giant branch (RGB), in each case at two different effective temperatures and two metallicities, [M/H] = 0.0 and - 2.0. Using the obtained SEDs, we calculated photometric magnitudes and colour indices in the broad-band Johnson-Cousins UBVRI and 2MASS JHKs, and the medium-band Strömgren uvby photometric systems. Results: The 3D-1D differences in photometric magnitudes and colour indices are small in both photometric systems and typically do not exceed ± 0.03 mag. Only in the case of the coolest giants located on the upper RGB are the differences in the U and u bands able reach ≈-0.2 mag at [M/H] = 0.0 and ≈-0.1 mag at [M/H] = -2.0. Generally, the 3D-1D differences are largest in the blue-UV part of the spectrum and decrease towards longer wavelengths. They are also sensitive to the effective temperature and are significantly smaller in hotter stars. Metallicity also plays a role and leads to slightly larger 3D-1D differences at [M/H] = 0.0. All these patterns are caused by a complex interplay between the radiation field, opacities, and horizontal temperature fluctuations that occur due to convective motions in stellar atmospheres. Although small, the 3D-1D differences in the magnitudes and colour indices are nevertheless comparable to or larger than typical photometric uncertainties and may therefore cause non-negligible systematic differences in the estimated effective temperatures.

  19. Simulation analysis of photometric data for attitude estimation of unresolved space objects

    NASA Astrophysics Data System (ADS)

    Du, Xiaoping; Gou, Ruixin; Liu, Hao; Hu, Heng; Wang, Yang

    2017-10-01

    The attitude information acquisition of unresolved space objects, such as micro-nano satellites and GEO objects under the way of ground-based optical observations, is a challenge to space surveillance. In this paper, a useful method is proposed to estimate the SO attitude state according to the simulation analysis of photometric data in different attitude states. The object shape model was established and the parameters of the BRDF model were determined, then the space object photometric model was established. Furthermore, the photometric data of space objects in different states are analyzed by simulation and the regular characteristics of the photometric curves are summarized. The simulation results show that the photometric characteristics are useful for attitude inversion in a unique way. Thus, a new idea is provided for space object identification in this paper.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leistedt, Boris; Hogg, David W., E-mail: boris.leistedt@nyu.edu, E-mail: david.hogg@nyu.edu

    We present a new method for inferring photometric redshifts in deep galaxy and quasar surveys, based on a data-driven model of latent spectral energy distributions (SEDs) and a physical model of photometric fluxes as a function of redshift. This conceptually novel approach combines the advantages of both machine learning methods and template fitting methods by building template SEDs directly from the spectroscopic training data. This is made computationally tractable with Gaussian processes operating in flux–redshift space, encoding the physics of redshifts and the projection of galaxy SEDs onto photometric bandpasses. This method alleviates the need to acquire representative training datamore » or to construct detailed galaxy SED models; it requires only that the photometric bandpasses and calibrations be known or have parameterized unknowns. The training data can consist of a combination of spectroscopic and deep many-band photometric data with reliable redshifts, which do not need to entirely spatially overlap with the target survey of interest or even involve the same photometric bands. We showcase the method on the i -magnitude-selected, spectroscopically confirmed galaxies in the COSMOS field. The model is trained on the deepest bands (from SUBARU and HST ) and photometric redshifts are derived using the shallower SDSS optical bands only. We demonstrate that we obtain accurate redshift point estimates and probability distributions despite the training and target sets having very different redshift distributions, noise properties, and even photometric bands. Our model can also be used to predict missing photometric fluxes or to simulate populations of galaxies with realistic fluxes and redshifts, for example.« less

  1. Robotic CCD microscope for enhanced crystal recognition

    DOEpatents

    Segelke, Brent W.; Toppani, Dominique

    2007-11-06

    A robotic CCD microscope and procedures to automate crystal recognition. The robotic CCD microscope and procedures enables more accurate crystal recognition, leading to fewer false negative and fewer false positives, and enable detection of smaller crystals compared to other methods available today.

  2. Optical CT scanning of PRESAGETM polyurethane samples with a CCD-based readout system

    NASA Astrophysics Data System (ADS)

    Doran, S. J.; Krstajic, N.; Adamovics, J.; Jenneson, P. M.

    2004-01-01

    This article demonstrates the resolution capabilities of the CCD scanner under ideal circumstances and describes the first CCD-based optical CT experiments on a new class of dosimeter, known as PRESAGETM (Heuris Pharma, Skillman, NJ).

  3. Dust in emission nebulae of the LMC derived from photometric reddening of stars

    NASA Astrophysics Data System (ADS)

    Greve, A.; van Genderen, A. M.; Laval, A.

    1990-10-01

    VBLUW photometric observations of stars in emission nebulae of the LMC are reported. The luminosities and extinctions of the stars are derived. Agreement is found between the average photometric extinctions of the nebulae and the extinctions derived from the Balmer line decrement measured by Caplan and Deharveng (1985 and 1986). The photometric extinctions are shown in the CO map of the LMC (Cohen et al., 1988).

  4. A Photometric redshift galaxy catalog from the Red-Sequence Cluster Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Bau-Ching; /Taiwan, Natl. Central U. /Taipei, Inst. Astron. Astrophys.; Yee, H.K.C.

    2005-02-01

    The Red-Sequence Cluster Survey (RCS) provides a large and deep photometric catalog of galaxies in the z' and R{sub c} bands for 90 square degrees of sky, and supplemental V and B data have been obtained for 33.6 deg{sup 2}. They compile a photometric redshift catalog from these 4-band data by utilizing the empirical quadratic polynomial photometric redshift fitting technique in combination with CNOC2 and GOODS/HDF-N redshift data. The training set includes 4924 spectral redshifts. The resulting catalog contains more than one million galaxies with photometric redshifts < 1.5 and R{sub c} < 24, giving an rms scatter {delta}({Delta}z)

  5. Differential expression of Cyclin D1 in keratin-producing odontogenic cysts

    PubMed Central

    Vera-Sirera, Beatriz; Forner-Navarro, Leopoldo

    2015-01-01

    Objetives: The aim of the present study was to analyze the expression levels of Cyclin D1 (CCD1), a nuclear protein that plays a crucial role in cell cycle progression, in a series of keratin-producing odontogenic cysts. Study Design: A total of 58 keratin-producing odontogenic cysts, diagnosed over ten years and classified according to the WHO 2005 criteria, were immunohistochemically analyzed in terms of CCD1 expression, which was quantified in the basal, suprabasal and intermediate/superficial epithelial compartments. The extent of immunostaining was measured as a proportion of total epithelial thickness. Quantified immunohistochemical data were correlated with clinicopathological features and clinical recurrence. Results: Keratin-producing odontogenic cysts were classified as 6 syndromic keratocystic odontogenic tumors (S-KCOT), 40 sporadic or non-syndromic KCOT (NS-KCOT) and 12 orthokeratinized odontogenic cysts (OOC). Immunohistochemically, CCD1 staining was evident predominantly in the parabasal region of all cystic lesions, but among-lesion differences were apparent, showing a clear expansion of parabasal compartment especially in the S-KCOT, followed to a lesser extent in the NS-KCOT, and being much more reduced in the OOC, which had the greatest average epithelial thickness. Conclusions: The differential expression of CCD1 noted in the present study suggests that dysregulation of cell cycle progression from G1 to the S phase contributes to the different aggressiveness of these lesions. However, CCD1 expression levels did not predict NS-KCOT recurrence, which is likely influenced by factors unrelated to lesion biology. Key words:Keratin-producing odontogenic cyst, keratocyst, keratocystic odontogenic tumor, nevoid basal cell carcinoma syndrome, orthokeratinized odontogenic cyst, cyclin D1, immunohistochemistry. PMID:25475773

  6. A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments

    PubMed Central

    Rodrigo, María J.; Alquézar, Berta; Al-Babili, Salim

    2013-01-01

    Citrus is the first tree crop in terms of fruit production. The colour of Citrus fruit is one of the main quality attributes, caused by the accumulation of carotenoids and their derivative C30 apocarotenoids, mainly β-citraurin (3-hydroxy-β-apo-8′-carotenal), which provide an attractive orange-reddish tint to the peel of oranges and mandarins. Though carotenoid biosynthesis and its regulation have been extensively studied in Citrus fruits, little is known about the formation of C30 apocarotenoids. The aim of this study was to the identify carotenoid cleavage enzyme(s) [CCD(s)] involved in the peel-specific C30 apocarotenoids. In silico data mining revealed a new family of five CCD4-type genes in Citrus. One gene of this family, CCD4b1, was expressed in reproductive and vegetative tissues of different Citrus species in a pattern correlating with the accumulation of C30 apocarotenoids. Moreover, developmental processes and treatments which alter Citrus fruit peel pigmentation led to changes of β-citraurin content and CCD4b1 transcript levels. These results point to the involvement of CCD4b1 in β-citraurin formation and indicate that the accumulation of this compound is determined by the availability of the presumed precursors zeaxanthin and β-cryptoxanthin. Functional analysis of CCD4b1 by in vitro assays unequivocally demonstrated the asymmetric cleavage activity at the 7′,8′ double bond in zeaxanthin and β-cryptoxanthin, confirming its role in C30 apocarotenoid biosynthesis. Thus, a novel plant carotenoid cleavage activity targeting the 7′,8′ double bond of cyclic C40 carotenoids has been identified. These results suggest that the presented enzyme is responsible for the biosynthesis of C30 apocarotenoids in Citrus which are key pigments in fruit coloration. PMID:24006419

  7. CCD Photometric Observations and Light Curve Synthesis of the Near-Contact Binary XZ Canis Minoris

    NASA Astrophysics Data System (ADS)

    Kim, Chun-Hwey; Park, Jang-Ho; Lee, Jae Woo; Jeong, Jang-Hae

    2009-06-01

    Through the photometric observations of the near-contact binary, XZ CMi, new BV light curves were secured and seven times of minimum light were determined. An intensive period study with all published timings, including ours, confirms that the period of XZ CMi has varied in a cyclic period variation superposed on a secular period decrease over last 70 years. Assuming the cyclic change of period to occur by a light-time effect due to a third-body, the light-time orbit with a semi-amplitude of 0.0056d, a period of 29y and an eccentricity of 0.71 was calculated. The observed secular period decrease of -5.26× 10^{-11} d/P was interpreted as a result of simultaneous occurrence of both a period decrease of -8.20 × 10^{-11} d/P by angular momentum loss (AML) due to a magnetic braking stellar wind and a period increase of 2.94 × 10^{-11} d/P by a mass transfer from the less massive secondary to the primary components in the system. In this line the decreasi! ng rate of period due to AML is about 3 times larger than the increasing one by a mass transfer in their absolute values. The latter implies a mass transfer of dot M_{s}= 3.21 × 10^{-8} M_⊙ y^{-1} from the less massive secondary to the primary. The BV light curves with the latest Wilson-Devinney binary code were analyzed for two separate models of 8200K and 7000K as the photospheric temperature of the primary component. Both models confirm that XZ CMi is truly a near-contact binary with a less massive secondary completely filling Roche lobe and a primary inside the inner Roche lobe and there is a third-light corresponding to about 15-17% of the total system light. However, the third-light source can not be the same as the third-body suggested from the period study. At the present, however, we can not determine which one between two models is better fitted to the observations because of a negligible difference of sum (O-C)^2 between them. The diversity of mass ratios, with which previous investigators were in disagreement, still remains to be one of unsolved problems in XZ CMi system. Spectroscopic observations for a radial velocity curve and high-resolution spectra as well as a high-precision photometry are needed to resolve some of remaining problems.

  8. Philosophy and updating of the asteroid photometric catalogue

    NASA Technical Reports Server (NTRS)

    Magnusson, Per; Barucci, M. Antonietta; Capria, M. T.; Dahlgren, Mats; Fulchignoni, Marcello; Lagerkvist, C. I.

    1992-01-01

    The Asteroid Photometric Catalogue now contains photometric lightcurves for 584 asteroids. We discuss some of the guiding principles behind it. This concerns both observers who offer input to it and users of the product.

  9. Galileo photometry of Apollo landing sites

    NASA Technical Reports Server (NTRS)

    Helfenstein, P.; Veverka, J.; Head, James W.; Pieters, C.; Pratt, S.; Mustard, J.; Klaasen, K.; Neukum, G.; Hoffmann, H.; Jaumann, R.

    1993-01-01

    As of December 1992, the Galileo spacecraft performed its second and final flyby (EM2), of the Earth-Moon system, during which it acquired Solid State Imaging (SSI) camera images of the lunar surface suitable for photometric analysis using Hapke's, photometric model. These images, together with those from the first flyby (EM1) in December 1989, provide observations of all of the Apollo landing sites over a wide range of photometric geometries and at eight broadband filter wavelengths ranging from 0.41 micron to 0.99 micron. We have completed a preliminary photometric analysis of Apollo landing sites visible in EM1 images and developed a new strategy for a more complete analysis of the combined EM1 and EM2 data sets in conjunction with telescopic observations and spectrogoniometric measurements of returned lunar samples. No existing single data set, whether from spacecraft flyby, telescopic observation, or laboratory analysis of returned samples, describes completely the light scattering behavior of a particular location on the Moon at all angles of incidence (i), emission (e), and phase angles (a). Earthbased telescopic observations of particular lunar sites provide good coverage of incidence nad phase angles, but their range in emission angle is limited to only a few degrees because of the Moon's synchronous rotation. Spacecraft flyby observations from Galileo are now available for specific lunar features at many photometric geometries unobtainable from Earth; however, this data set lacks coverage at very small phase angles (a less than 13 deg) important for distinguishing the well-known 'opposition effect'. Spectrogoniometric measurements from returned lunar samples can provide photometric coverage at almost any geometry; however, mechanical properties of prepared particulate laboratory samples, such as particle compaction and macroscopic roughness, likely differ from those on the lunar surface. In this study, we have developed methods for the simultaneous analysis of all three types of data: we combine Galileo and telescopic observations to obtain the most complete coverage with photometric geometry, and use spectrogoniometric observations of lunar soils to help distinguish the photometric effects of macroscopic roughness from those caused by particle phase function behavior (i.e., the directional scattering properties of regolith particles).

  10. BVR photometric investigation of galaxy pair KPG 562

    NASA Astrophysics Data System (ADS)

    Hendy, Y. H. M.

    2018-06-01

    This work presents BVR photometric observations and analyses for galaxy pair KPG 562 selected from the Karachentsev Catalog of Isolated Pairs of Galaxies. The observations were obtained using the 1.88-m Telescope of the Kottamia Astronomical Observatory (KAO), Egypt. There is no interaction signs assigned for this pair as reported by Karachentsev Catalog. We used the surface photometry technique to obtain photometric parameters for each galaxy of the pair. The isophotal contours, the luminosity profiles, color profiles (B-V, V-R), ellipticity profiles, position angle (PA) profiles and isophotal center-shift (xc, yc) profiles have been presented. The total and absolute magnitude, ellipticity and position angle (PA) were also obtained from the studied galaxy pair. The studied galaxy pair is clearly showing signs of interaction opposed to that found by Karachentsev. We found that the galaxy KPG 562b contains one tidal tail. The length and thickness of tidal tail were obtained and presented in this study.

  11. Imaging Asteroid 4 Vesta Using the Framing Camera

    NASA Technical Reports Server (NTRS)

    Keller, H. Uwe; Nathues, Andreas; Coradini, Angioletta; Jaumann, Ralf; Jorda, Laurent; Li, Jian-Yang; Mittlefehldt, David W.; Mottola, Stefano; Raymond, C. A.; Schroeder, Stefan E.

    2011-01-01

    The Framing Camera (FC) onboard the Dawn spacecraft serves a dual purpose. Next to its central role as a prime science instrument it is also used for the complex navigation of the ion drive spacecraft. The CCD detector with 1024 by 1024 pixels provides the stability for a multiyear mission and its high requirements of photometric accuracy over the wavelength band from 400 to 1000 nm covered by 7 band-pass filters. Vesta will be observed from 3 orbit stages with image scales of 227, 63, and 17 m/px, respectively. The mapping of Vesta s surface with medium resolution will be only completed during the exit phase when the north pole will be illuminated. A detailed pointing strategy will cover the surface at least twice at similar phase angles to provide stereo views for reconstruction of the topography. During approach the phase function of Vesta was determined over a range of angles not accessible from earth. This is the first step in deriving the photometric function of the surface. Combining the topography based on stereo tie points with the photometry in an iterative procedure will disclose details of the surface morphology at considerably smaller scales than the pixel scale. The 7 color filters are well positioned to provide information on the spectral slope in the visible, the depth of the strong pyroxene absorption band, and their variability over the surface. Cross calibration with the VIR spectrometer that extends into the near IR will provide detailed maps of Vesta s surface mineralogy and physical properties. Georeferencing all these observation will result in a coherent and unique data set. During Dawn s approach and capture FC has already demonstrated its performance. The strong variation observed by the Hubble Space Telescope can now be correlated with surface units and features. We will report on results obtained from images taken during survey mode covering the whole illuminated surface. Vesta is a planet-like differentiated body, but its surface gravity and escape velocity are comparable to those of other asteroids and hence much smaller than those of the inner planets or

  12. The Flux of Large Meteoroids Observed with Lunar Impact Monitoring

    NASA Technical Reports Server (NTRS)

    Cooke, W. J.; Suggs, R. M.; Moser, D. E.; Suggs, R. J.

    2014-01-01

    The flux of large meteoroids is not well determined due to relatively low number statistics, due mainly to the lack of collecting area available to meteor camera systems (10(2)-10(5) km2). Larger collecting areas are needed to provide reasonable statistics for flux calculations. The Moon, with millions of square kilometers of lunar surface, can be used as a detector for observing the population of large meteoroids in the tens of grams to kilogram mass range. This is accomplished by observing the flash of light produced when a meteoroid impacts the lunar surface, converting a portion of its kinetic energy to visible light detectable from Earth. A routine monitoring program at NASA's Marshall Space Flight Center has recorded over 300 impact flashes since early 2006. The program utilizes multiple 0.35 m (14 inch) Schmidt-Cassegrain telescopes, outfitted with video cameras using the 1/2 inch Sony EXview HAD CCDTM chip, to perform simultaneous observations of the earthshine hemisphere of the Moon when the lunar phase is between 0.1 and 0.5. This optical arrangement permits monitoring of approximately 3.8x10(6) km2 of lunar surface. A selection of 126 flashes recorded in 266.88 hours of photometric skies was analyzed, creating the largest and most homogeneous dataset of lunar impact flashes to date. Standard CCD photometric techniques outlined in [1] were applied to the video to determine the luminous energy, kinetic energy, and mass for each impactor, considering a range of luminous efficiencies. The flux to a limiting energy of 2.5x10(-6) kT TNT or 1.05×10(7) J is 1.03×10(-7) km(-2) hr(-1) and the flux to a limiting mass of 30 g is 6.14×10(-10) m(-2) yr(-1). Comparisons made with measurements and models of the meteoroid population indicate that the flux of objects in this size range is slightly lower (but within the error bars) than the power law distribution determined for the near Earth object population by [2].

  13. VizieR Online Data Catalog: BVR light curves of UZ Leo (Lee+, 2018)

    NASA Astrophysics Data System (ADS)

    Lee, J. W.; Park, J.-H.

    2018-04-01

    We performed new CCD photometry of UZ Leo during two observing seasons between 2012 February and 2013 April, using a PIXIS: 2048B CCD and a BVR filter set attached to the 61 cm reflector at Sobaeksan Optical Astronomy Observatory (SOAO) in Korea. The CCD chip has 2048x2048pixels and a pixel size of 13.5um, so the field of view of a CCD frame is 17.6'x17.6'. (1 data file).

  14. Turbidimetric and photometric determination of total tannins in tea using a micro-flow-batch analyzer.

    PubMed

    Lima, Marcelo B; Andrade, Stéfani I E; Harding, David P; Pistonesi, Marcelo F; Band, Beatriz S F; Araújo, Mário C U

    2012-01-15

    Both turbidimetric and photometric determinations of total tannins in samples of green and black tea, using a micro-flow-batch analyzer (μFBA) were studied. The miniaturized system was formed using photocurable urethane-acrylate resin and ultraviolet lithography technique. The turbidimetric method was based on the precipitation reaction of Cu (II) with tannins in acetate medium at a pH of 4.5. The photometric method was based on the complexation reaction of tannins with ferrous tartrate. The turbidimetric μFBA was able to test 200 samples per hour. The photometric μFBA allowed 300 analyses per hour, generating 136μL of residue per analysis. The paired t test, at a 95% confidence level, showed no statistically significant differences between results obtained by both methods and the reference method. The urethane-acrylate μFBA maintained satisfactory physical and chemical properties, and represents an improvement over conventional flow-batch analyzer. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Photometric and polarimetric mapping of water turbidity and water depth

    NASA Technical Reports Server (NTRS)

    Halajian, J.; Hallock, H.

    1973-01-01

    A Digital Photometric Mapper (DPM) was used in the Fall of 1971 in an airborne survey of New York and Boston area waters to acquire photometric, spectral and polarimetric data. The object of this study is to analyze these data with quantitative computer processing techniques to assess the potential of the DPM in the measurement and regional mapping of water turbidity and depth. These techniques have been developed and an operational potential has been demonstrated. More emphasis is placed at this time on the methodology of data acquisition, analysis and display than on the quantity of data. The results illustrate the type, quantity and format of information that could be generated operationally with the DPM-type sensor characterized by high photometric stability and fast, accurate digital output. The prototype, single-channel DPM is suggested as a unique research tool for a number of new applications. For the operational mapping of water turbidity and depth, the merits of a multichannel DPM coupled with a laser system are stressed.

  16. Photometric redshifts for the next generation of deep radio continuum surveys - I. Template fitting

    NASA Astrophysics Data System (ADS)

    Duncan, Kenneth J.; Brown, Michael J. I.; Williams, Wendy L.; Best, Philip N.; Buat, Veronique; Burgarella, Denis; Jarvis, Matt J.; Małek, Katarzyna; Oliver, S. J.; Röttgering, Huub J. A.; Smith, Daniel J. B.

    2018-01-01

    We present a study of photometric redshift performance for galaxies and active galactic nuclei detected in deep radio continuum surveys. Using two multiwavelength data sets, over the NOAO Deep Wide Field Survey Boötes and COSMOS fields, we assess photometric redshift (photo-z) performance for a sample of ∼4500 radio continuum sources with spectroscopic redshifts relative to those of ∼63 000 non-radio-detected sources in the same fields. We investigate the performance of three photometric redshift template sets as a function of redshift, radio luminosity and infrared/X-ray properties. We find that no single template library is able to provide the best performance across all subsets of the radio-detected population, with variation in the optimum template set both between subsets and between fields. Through a hierarchical Bayesian combination of the photo-z estimates from all three template sets, we are able to produce a consensus photo-z estimate that equals or improves upon the performance of any individual template set.

  17. An effective temperature calibration for main-sequence B- to F-type stars using VJHK_{s} colors

    NASA Astrophysics Data System (ADS)

    Paunzen, Ernst; Netopil, Martin; Herdin, Andreas

    2017-01-01

    The effective temperature is an important parameter that is needed for numerous astrophysical studies, in particular to place stars in the Hertzsprung-Russell diagram, for example. Although the availability of large spectroscopic surveys increased significantly in the last decade, photometric data are still much more frequent. Homogeneous photometric (all-sky) surveys provide the basis to derive the effective temperature with reasonable accuracy also for objects that are not covered by spectroscopic surveys, or are out of range for the current spectroscopic instrumentations because of too faint magnitudes. We use data of the Two Micron All Sky Survey (2MASS) and broadband visual photometric measurements to derive effective temperature calibrations for the intrinsic colors (V-J), (V-H), (V-K_{s}), and (J-K_{s}), valid for B2 to F9 stars. The effective temperature calibrations are tied to the Strömgren-Crawford uvbyβ photometric system and do not depend on metallicity or rotational velocity.

  18. Predicting the Quasar Photometric Reshift with the Sloan Digital Sky Survey Filter System

    NASA Astrophysics Data System (ADS)

    Laubacher, Emily M.; York, Donald G.

    1999-10-01

    Photometric data were obtained for a set of known quasars (QSOs) in five bands with the Sloan Digital Sky Survey (SDSS) filter system for the purpose of testing the ability of the SDSS system to accurately predict the photometric redshift of QSOs. The initial plot of the SDSS photometric redshift versus the measured redshift shows a good relationship, but a lot of scatter. A literature search was conducted on a selected sampling of 49 QSOs, 26 with redshift z <= 0.5 and 23 with 0.5 < z < 2.6, to confirm their accurate identifications as QSOs with their advertised redshifts. This search revealed 10 rejected QSOs which were not QSOs but rather Seyfert galaxies or Narrow Line Objects. Additionally, 11 QSOs were either Broad Absorption Line Systems or had spectra that were in some way incomplete, and therefore, their QSO identification could not be confirmed. The revised plot, with the rejected and unconfirmed QSOs removed, gives an excellent straight line with very little scatter. Although these results are preliminary and for only a small sampling of QSOs, they show that further study of the relationship is warranted and that eventually the SDSS method may be used to accurately predict the photometric redshift of QSOs.

  19. The Young Solar Analogs Project: Initial Photometric Results

    NASA Astrophysics Data System (ADS)

    Saken, Jon M.; Gray, R. O.; Corbally, C. J.

    2013-06-01

    Since 2007 we have been conducting spectroscopic monitoring of the Ca II H & K lines and G-band for a sample of 31 YSAs in order to better understand their activity cycles and variations, as well as the effects of young stars on their solar systems. The targets cover the spectral range of stars most likely to contain Earth analogs, F8-K2, and a broad enough range of ages, 0.3 Gyr - 1.5 Gyr, to investigate how activity level changes with stellar age. These studies are already showing possible evidence for activity cycles, large variations in starspot activity, and flaring events. In order to obtain a more complete picture of the nature of the stars' activity and examine the correlations between stellar brightness and chromospheric activity, we have started a complimentary campaign of photometric monitoring of these targets in Johnson B, V, and R, Stromgren v and H-alpha, with the use of a small robotic telescope dedicated to this project. This poster will present some results from the first year of photometric monitoring, focusing on the correlations between the photometric bands, and between the photometric and spectroscopic data, as well as an investigation of short-term (1-2 minutes) spectroscopic variations using data obtained earlier this year on the 1.8 m Vatican Advanced Technology Telescope (VATT).

  20. Pediatric medical complexity algorithm: a new method to stratify children by medical complexity.

    PubMed

    Simon, Tamara D; Cawthon, Mary Lawrence; Stanford, Susan; Popalisky, Jean; Lyons, Dorothy; Woodcox, Peter; Hood, Margaret; Chen, Alex Y; Mangione-Smith, Rita

    2014-06-01

    The goal of this study was to develop an algorithm based on International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM), codes for classifying children with chronic disease (CD) according to level of medical complexity and to assess the algorithm's sensitivity and specificity. A retrospective observational study was conducted among 700 children insured by Washington State Medicaid with ≥1 Seattle Children's Hospital emergency department and/or inpatient encounter in 2010. The gold standard population included 350 children with complex chronic disease (C-CD), 100 with noncomplex chronic disease (NC-CD), and 250 without CD. An existing ICD-9-CM-based algorithm called the Chronic Disability Payment System was modified to develop a new algorithm called the Pediatric Medical Complexity Algorithm (PMCA). The sensitivity and specificity of PMCA were assessed. Using hospital discharge data, PMCA's sensitivity for correctly classifying children was 84% for C-CD, 41% for NC-CD, and 96% for those without CD. Using Medicaid claims data, PMCA's sensitivity was 89% for C-CD, 45% for NC-CD, and 80% for those without CD. Specificity was 90% to 92% in hospital discharge data and 85% to 91% in Medicaid claims data for all 3 groups. PMCA identified children with C-CD (who have accessed tertiary hospital care) with good sensitivity and good to excellent specificity when applied to hospital discharge or Medicaid claims data. PMCA may be useful for targeting resources such as care coordination to children with C-CD. Copyright © 2014 by the American Academy of Pediatrics.

Top