Sample records for ccd sensor operating

  1. Comparison of a CCD and an APS for soft X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Stewart, Graeme; Bates, R.; Blue, A.; Clark, A.; Dhesi, S. S.; Maneuski, D.; Marchal, J.; Steadman, P.; Tartoni, N.; Turchetta, R.

    2011-12-01

    We compare a new CMOS Active Pixel Sensor (APS) to a Princeton Instruments PIXIS-XO: 2048B Charge Coupled Device (CCD) with soft X-rays tested in a synchrotron beam line at the Diamond Light Source (DLS). Despite CCDs being established in the field of scientific imaging, APS are an innovative technology that offers advantages over CCDs. These include faster readout, higher operational temperature, in-pixel electronics for advanced image processing and reduced manufacturing cost. The APS employed was the Vanilla sensor designed by the MI3 collaboration and funded by an RCUK Basic technology grant. This sensor has 520 x 520 square pixels, of size 25 μm on each side. The sensor can operate at a full frame readout of up to 20 Hz. The sensor had been back-thinned, to the epitaxial layer. This was the first time that a back-thinned APS had been demonstrated at a beam line at DLS. In the synchrotron experiment soft X-rays with an energy of approximately 708 eV were used to produce a diffraction pattern from a permalloy sample. The pattern was imaged at a range of integration times with both sensors. The CCD had to be operated at a temperature of -55°C whereas the Vanilla was operated over a temperature range from 20°C to -10°C. We show that the APS detector can operate with frame rates up to two hundred times faster than the CCD, without excessive degradation of image quality. The signal to noise of the APS is shown to be the same as that of the CCD at identical integration times and the response is shown to be linear, with no charge blooming effects. The experiment has allowed a direct comparison of back thinned APS and CCDs in a real soft x-ray synchrotron experiment.

  2. An Overview of the CBERS-2 Satellite and Comparison of the CBERS-2 CCD Data with the L5 TM Data

    NASA Technical Reports Server (NTRS)

    Chandler, Gyanesh

    2007-01-01

    CBERS satellite carries on-board a multi sensor payload with different spatial resolutions and collection frequencies. HRCCD (High Resolution CCD Camera), IRMSS (Infrared Multispectral Scanner), and WFI (Wide-Field Imager). The CCD and the WFI camera operate in the VNIR regions, while the IRMSS operates in SWIR and thermal region. In addition to the imaging payload, the satellite carries a Data Collection System (DCS) and Space Environment Monitor (SEM).

  3. Active pixel sensors: the sensor of choice for future space applications?

    NASA Astrophysics Data System (ADS)

    Leijtens, Johan; Theuwissen, Albert; Rao, Padmakumar R.; Wang, Xinyang; Xie, Ning

    2007-10-01

    It is generally known that active pixel sensors (APS) have a number of advantages over CCD detectors if it comes to cost for mass production, power consumption and ease of integration. Nevertheless, most space applications still use CCD detectors because they tend to give better performance and have a successful heritage. To this respect a change may be at hand with the advent of deep sub-micron processed APS imagers (< 0.25-micron feature size). Measurements performed on test structures at the University of Delft have shown that the imagers are very radiation tolerant even if made in a standard process without the use of special design rules. Furthermore it was shown that the 1/f noise associated with deep sub-micron imagers is reduced as compared to previous generations APS imagers due to the improved quality of the gate oxides. Considering that end of life performance will have to be guaranteed, limited budget for adding shielding metal will be available for most applications and lower power operations is always seen as a positive characteristic in space applications, deep sub-micron APS imagers seem to have a number of advantages over CCD's that will probably cause them to replace CCD's in those applications where radiation tolerance and low power operation are important

  4. On a photon-counting array using the Fairchild CCD-201

    NASA Technical Reports Server (NTRS)

    Currie, D. G.

    1975-01-01

    The evaluation of certain performance parameters of the Fairchild CCD 201 and the proposed method of operation of an electron bombarded charge coupled device are described. Work in progress on the evaluation of the parameters relevant to remote, low noise operation is reported. These tests have been conducted using light input. The video data from the CCD are amplified, digitized, stored in a minicomputer memory, and then recorded on magnetic tape for analyzing. The device will be used in an array of sensors in the aperture plane of a telescope to discriminate between photoelectron events, and in the focal plane operating at single photoelectron sensitivity at a minimum of blooming and lag.

  5. LED characterization for development of on-board calibration unit of CCD-based advanced wide-field sensor camera of Resourcesat-2A

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhijit; Verma, Anurag

    2016-05-01

    The Advanced Wide Field Sensor (AWiFS) camera caters to high temporal resolution requirement of Resourcesat-2A mission with repeativity of 5 days. The AWiFS camera consists of four spectral bands, three in the visible and near IR and one in the short wave infrared. The imaging concept in VNIR bands is based on push broom scanning that uses linear array silicon charge coupled device (CCD) based Focal Plane Array (FPA). On-Board Calibration unit for these CCD based FPAs is used to monitor any degradation in FPA during entire mission life. Four LEDs are operated in constant current mode and 16 different light intensity levels are generated by electronically changing exposure of CCD throughout the calibration cycle. This paper describes experimental setup and characterization results of various flight model visible LEDs (λP=650nm) for development of On-Board Calibration unit of Advanced Wide Field Sensor (AWiFS) camera of RESOURCESAT-2A. Various LED configurations have been studied to meet dynamic range coverage of 6000 pixels silicon CCD based focal plane array from 20% to 60% of saturation during night pass of the satellite to identify degradation of detector elements. The paper also explains comparison of simulation and experimental results of CCD output profile at different LED combinations in constant current mode.

  6. Performance of 4x5120 Element Visible and 2x2560 Element Shortwave Infrared Multispectral Focal Planes

    NASA Astrophysics Data System (ADS)

    Tower, J. R.; Cope, A. D.; Pellion, L. E.; McCarthy, B. M.; Strong, R. T.; Kinnard, K. F.; Moldovan, A. G.; Levine, P. A.; Elabd, H.; Hoffman, D. M.

    1985-12-01

    Performance measurements of two Multispectral Linear Array focal planes are presented. Both pushbroom sensors have been developed for application in remote sensing instruments. A buttable, four-spectral-band, linear-format charge coupled device (CCD) and a but-table, two-spectral-band, linear-format, shortwave infrared charge coupled device (IRCCD) have been developed under NASA funding. These silicon integrated circuits may be butted end to end to provide very-high-resolution multispectral focal planes. The visible CCD is organized as four sensor lines of 1024 pixels each. Each line views the scene in a different spectral window defined by integral optical bandpass filters. A prototype focal plane with five devices, providing 4x5120-pixel resolution has been demonstrated. The high quantum efficiency of the backside-illuminated CCD technology provides excellent signal-to-noise performance and unusually high MTF across the entire visible and near-IR spectrum. The shortwave infrared (SWIR) sensor is organized as two line sensors of 512 detectors each. The SWIR (1-2.5 μm) spectral windows may be defined by bandpass filters placed in close proximity to the devices. The dual-band sensor consists of Schottky barrier detectors read out by CCD multiplexers. This monolithic sensor operates at 125°K with radiometric performance. A prototype five-device focal plane providing 2x2560 detectors has been demonstrated. The devices provide very high uniformity, and excellent MTF across the SWIR band.

  7. Detection of cavitated or non-cavitated approximal enamel caries lesions using CMOS and CCD digital X-ray sensors and conventional D and F-speed films at different exposure conditions.

    PubMed

    Bottenberg, Peter; Jacquet, Wolfgang; Stachniss, Vitus; Wellnitz, Johann; Schulte, Andreas G

    2011-04-01

    To determine the ability of digital sensors (CMOS and CCD sensors) and D and F-speed films to detect cavitated and non-cavitated enamel caries lesions at different exposure conditions compared to a gold standard. 100 extracted human molars and premolars were selected and mounted in a block between two neighboring teeth. Sensors or films were exposed with voltages of 60 or 70 kVp at varying times. Three observers assessed each approximal site independently. Lesion depth was rated according to an anatomical five-point scale (0 = no lesion to 4 = lesion reaching inner half of dentin). Serial sections of resin-embedded teeth were prepared. Gold-standard scores were established by consensus based on histological sectioning. A carious lesion was present at scores of 1 and higher. Statistical evaluation (sensitivity, specificity and receiver-operating curves) was based on caries-free surfaces and those presenting enamel caries (n=116). The ROC curves had "area under the curve" values (Az) from 0.50 (F-speed, 70 kVp, 0.20 seconds) to 0.58 (CCD 60 kVp, 0.08 seconds). The detection percentage of cavitated lesions was generally higher (0-52%, depending on technique and observer) than that of non-cavitated lesions (3-32%). The CMOS sensor showed Az values comparable to the CCD sensors but required higher exposure times. There was no significant difference between 60 and 70 kVp.

  8. High-speed line-scan camera with digital time delay integration

    NASA Astrophysics Data System (ADS)

    Bodenstorfer, Ernst; Fürtler, Johannes; Brodersen, Jörg; Mayer, Konrad J.; Eckel, Christian; Gravogl, Klaus; Nachtnebel, Herbert

    2007-02-01

    Dealing with high-speed image acquisition and processing systems, the speed of operation is often limited by the amount of available light, due to short exposure times. Therefore, high-speed applications often use line-scan cameras, based on charge-coupled device (CCD) sensors with time delayed integration (TDI). Synchronous shift and accumulation of photoelectric charges on the CCD chip - according to the objects' movement - result in a longer effective exposure time without introducing additional motion blur. This paper presents a high-speed color line-scan camera based on a commercial complementary metal oxide semiconductor (CMOS) area image sensor with a Bayer filter matrix and a field programmable gate array (FPGA). The camera implements a digital equivalent to the TDI effect exploited with CCD cameras. The proposed design benefits from the high frame rates of CMOS sensors and from the possibility of arbitrarily addressing the rows of the sensor's pixel array. For the digital TDI just a small number of rows are read out from the area sensor which are then shifted and accumulated according to the movement of the inspected objects. This paper gives a detailed description of the digital TDI algorithm implemented on the FPGA. Relevant aspects for the practical application are discussed and key features of the camera are listed.

  9. Design and DSP implementation of star image acquisition and star point fast acquiring and tracking

    NASA Astrophysics Data System (ADS)

    Zhou, Guohui; Wang, Xiaodong; Hao, Zhihang

    2006-02-01

    Star sensor is a special high accuracy photoelectric sensor. Attitude acquisition time is an important function index of star sensor. In this paper, the design target is to acquire 10 samples per second dynamic performance. On the basis of analyzing CCD signals timing and star image processing, a new design and a special parallel architecture for improving star image processing are presented in this paper. In the design, the operation moving the data in expanded windows including the star to the on-chip memory of DSP is arranged in the invalid period of CCD frame signal. During the CCD saving the star image to memory, DSP processes the data in the on-chip memory. This parallelism greatly improves the efficiency of processing. The scheme proposed here results in enormous savings of memory normally required. In the scheme, DSP HOLD mode and CPLD technology are used to make a shared memory between CCD and DSP. The efficiency of processing is discussed in numerical tests. Only in 3.5ms is acquired the five lightest stars in the star acquisition stage. In 43us, the data in five expanded windows including stars are moved into the internal memory of DSP, and in 1.6ms, five star coordinates are achieved in the star tracking stage.

  10. A design of driving circuit for star sensor imaging camera

    NASA Astrophysics Data System (ADS)

    Li, Da-wei; Yang, Xiao-xu; Han, Jun-feng; Liu, Zhao-hui

    2016-01-01

    The star sensor is a high-precision attitude sensitive measuring instruments, which determine spacecraft attitude by detecting different positions on the celestial sphere. Imaging camera is an important portion of star sensor. The purpose of this study is to design a driving circuit based on Kodak CCD sensor. The design of driving circuit based on Kodak KAI-04022 is discussed, and the timing of this CCD sensor is analyzed. By the driving circuit testing laboratory and imaging experiments, it is found that the driving circuits can meet the requirements of Kodak CCD sensor.

  11. Flame Imaging System

    NASA Technical Reports Server (NTRS)

    Barnes, Heidi L. (Inventor); Smith, Harvey S. (Inventor)

    1998-01-01

    A system for imaging a flame and the background scene is discussed. The flame imaging system consists of two charge-coupled-device (CCD) cameras. One camera uses a 800 nm long pass filter which during overcast conditions blocks sufficient background light so the hydrogen flame is brighter than the background light, and the second CCD camera uses a 1100 nm long pass filter, which blocks the solar background in full sunshine conditions such that the hydrogen flame is brighter than the solar background. Two electronic viewfinders convert the signal from the cameras into a visible image. The operator can select the appropriate filtered camera to use depending on the current light conditions. In addition, a narrow band pass filtered InGaAs sensor at 1360 nm triggers an audible alarm and a flashing LED if the sensor detects a flame, providing additional flame detection so the operator does not overlook a small flame.

  12. Smear correction of highly variable, frame-transfer CCD images with application to polarimetry.

    PubMed

    Iglesias, Francisco A; Feller, Alex; Nagaraju, Krishnappa

    2015-07-01

    Image smear, produced by the shutterless operation of frame-transfer CCD detectors, can be detrimental for many imaging applications. Existing algorithms used to numerically remove smear do not contemplate cases where intensity levels change considerably between consecutive frame exposures. In this report, we reformulate the smearing model to include specific variations of the sensor illumination. The corresponding desmearing expression and its noise properties are also presented and demonstrated in the context of fast imaging polarimetry.

  13. Performance of the STIS CCD Dark Rate Temperature Correction

    NASA Astrophysics Data System (ADS)

    Branton, Doug; STScI STIS Team

    2018-06-01

    Since July 2001, the Space Telescope Imaging Spectrograph (STIS) onboard Hubble has operated on its Side-2 electronics due to a failure in the primary Side-1 electronics. While nearly identical, Side-2 lacks a functioning temperature sensor for the CCD, introducing a variability in the CCD operating temperature. Previous analysis utilized the CCD housing temperature telemetry to characterize the relationship between the housing temperature and the dark rate. It was found that a first-order 7%/°C uniform dark correction demonstrated a considerable improvement in the quality of dark subtraction on Side-2 era CCD data, and that value has been used on all Side-2 CCD darks since. In this report, we show how this temperature correction has performed historically. We compare the current 7%/°C value against the ideal first-order correction at a given time (which can vary between ~6%/°C and ~10%/°C) as well as against a more complex second-order correction that applies a unique slope to each pixel as a function of dark rate and time. At worst, the current correction has performed ~1% worse than the second-order correction. Additionally, we present initial evidence suggesting that the variability in pixel temperature-sensitivity is significant enough to warrant a temperature correction that considers pixels individually rather than correcting them uniformly.

  14. High-resolution CCD imaging alternatives

    NASA Astrophysics Data System (ADS)

    Brown, D. L.; Acker, D. E.

    1992-08-01

    High resolution CCD color cameras have recently stimulated the interest of a large number of potential end-users for a wide range of practical applications. Real-time High Definition Television (HDTV) systems are now being used or considered for use in applications ranging from entertainment program origination through digital image storage to medical and scientific research. HDTV generation of electronic images offers significant cost and time-saving advantages over the use of film in such applications. Further in still image systems electronic image capture is faster and more efficient than conventional image scanners. The CCD still camera can capture 3-dimensional objects into the computing environment directly without having to shoot a picture on film develop it and then scan the image into a computer. 2. EXTENDING CCD TECHNOLOGY BEYOND BROADCAST Most standard production CCD sensor chips are made for broadcast-compatible systems. One popular CCD and the basis for this discussion offers arrays of roughly 750 x 580 picture elements (pixels) or a total array of approximately 435 pixels (see Fig. 1). FOR. A has developed a technique to increase the number of available pixels for a given image compared to that produced by the standard CCD itself. Using an inter-lined CCD with an overall spatial structure several times larger than the photo-sensitive sensor areas each of the CCD sensors is shifted in two dimensions in order to fill in spatial gaps between adjacent sensors.

  15. Experimental research on thermal conductive fillers for CCD module in space borne optical remote sensor

    NASA Astrophysics Data System (ADS)

    Zeng, Yi; Han, Xue-bing; Yang, Dong-shang; Gui, Li-jia; Zhao, Xiao-xiang; Si, Fu-qi

    2016-03-01

    A space-borne differential optical absorption spectrometer is a high precision aerospace optical remote sensor. It obtains the hyper-spectral,high spatial resolution radiation information by using the spectrometer with CCD(Charge Coupled Device)array detectors. Since a few CCDs are used as the key detector, the performance of the entire instrument is greatly affected by working condition of CCDs. The temperature of CCD modules has a great impact on the instrument measurement accuracy. It requires strict temperature control. The selection of the thermal conductive filler sticking CCD to the radiator is important in the CCD thermal design. Besides,due tothe complex and compact structure, it needs to take into account the anti-pollution of the optical system. Therefore, it puts forward high requirements on the selection of the conductive filler. In this paper, according to the structure characteristics of the CCD modules and the distribution of heat consumption, the thermal analysis tool I-DEAS/TMG is utilized to compute and simulate the temperature level of the CCD modules, while filling in thermal grease and thermal pad respectively. The temperature distribution of CCD heat dissipation in typical operating conditions is obtained. In addition, the heat balance test was carried out under the condition of two kinds of thermal conductive fillers. The thermal control of CCD was tested under various conditions, and the results were compared with the results of thermal analysis. The results show that there are some differences in thermal performance between the two kinds of thermal conductive fillers. Although they both can meet the thermal performance requirements of the instrument, either would be chosen taking account of other conditions and requirements such as anti-pollution and insulation. The content and results of this paper will be a good reference for the thermal design of the CCD in the aerospace optical payload.

  16. Isolation Mounting for Charge-Coupled Devices

    NASA Technical Reports Server (NTRS)

    Goss, W. C.; Salomon, P. M.

    1985-01-01

    CCD's suspended by wires under tension. Remote thermoelectric cooling of charge coupled device allows vibration isolating mounting of CCD assembly alone, without having to suspend entire mass and bulk of thermoelectric module. Mounting hardware simple and light. Developed for charge-coupled devices (CCD's) in infrared telescope support adaptable to sensors in variety of environments, e.g., sensors in nuclear reactors, engine exhausts and plasma chambers.

  17. Study the performance of star sensor influenced by space radiation damage of image sensor

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Li, Yudong; Wen, Lin; Guo, Qi; Zhang, Xingyao

    2018-03-01

    Star sensor is an essential component of spacecraft attitude control system. Spatial radiation can cause star sensor performance degradation, abnormal work, attitude measurement accuracy and reliability reduction. Many studies have already been dedicated to the radiation effect on Charge-Coupled Device(CCD) image sensor, but fewer studies focus on the radiation effect of star sensor. The innovation of this paper is to study the radiation effects from the device level to the system level. The influence of the degradation of CCD image sensor radiation sensitive parameters on the performance parameters of star sensor is studied in this paper. The correlation among the radiation effect of proton, the non-uniformity noise of CCD image sensor and the performance parameter of star sensor is analyzed. This paper establishes a foundation for the study of error prediction and correction technology of star sensor on-orbit attitude measurement, and provides some theoretical basis for the design of high performance star sensor.

  18. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    NASA Astrophysics Data System (ADS)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  19. Event-based Sensing for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Cohen, G.; Afshar, S.; van Schaik, A.; Wabnitz, A.; Bessell, T.; Rutten, M.; Morreale, B.

    A revolutionary type of imaging device, known as a silicon retina or event-based sensor, has recently been developed and is gaining in popularity in the field of artificial vision systems. These devices are inspired by a biological retina and operate in a significantly different way to traditional CCD-based imaging sensors. While a CCD produces frames of pixel intensities, an event-based sensor produces a continuous stream of events, each of which is generated when a pixel detects a change in log light intensity. These pixels operate asynchronously and independently, producing an event-based output with high temporal resolution. There are also no fixed exposure times, allowing these devices to offer a very high dynamic range independently for each pixel. Additionally, these devices offer high-speed, low power operation and a sparse spatiotemporal output. As a consequence, the data from these sensors must be interpreted in a significantly different way to traditional imaging sensors and this paper explores the advantages this technology provides for space imaging. The applicability and capabilities of event-based sensors for SSA applications are demonstrated through telescope field trials. Trial results have confirmed that the devices are capable of observing resident space objects from LEO through to GEO orbital regimes. Significantly, observations of RSOs were made during both day-time and nighttime (terminator) conditions without modification to the camera or optics. The event based sensor’s ability to image stars and satellites during day-time hours offers a dramatic capability increase for terrestrial optical sensors. This paper shows the field testing and validation of two different architectures of event-based imaging sensors. An eventbased sensor’s asynchronous output has an intrinsically low data-rate. In addition to low-bandwidth communications requirements, the low weight, low-power and high-speed make them ideally suitable to meeting the demanding challenges required by space-based SSA systems. Results from these experiments and the systems developed highlight the applicability of event-based sensors to ground and space-based SSA tasks.

  20. Development of CMOS Active Pixel Image Sensors for Low Cost Commercial Applications

    NASA Technical Reports Server (NTRS)

    Gee, R.; Kemeny, S.; Kim, Q.; Mendis, S.; Nakamura, J.; Nixon, R.; Ortiz, M.; Pain, B.; Staller, C.; Zhou, Z; hide

    1994-01-01

    JPL, under sponsorship from the NASA Office of Advanced Concepts and Technology, has been developing a second-generation solid-state image sensor technology. Charge-coupled devices (CCD) are a well-established first generation image sensor technology. For both commercial and NASA applications, CCDs have numerous shortcomings. In response, the active pixel sensor (APS) technology has been under research. The major advantages of APS technology are the ability to integrate on-chip timing, control, signal-processing and analog-to-digital converter functions, reduced sensitivity to radiation effects, low power operation, and random access readout.

  1. Electron-bombarded CCD detectors for ultraviolet atmospheric remote sensing

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Opal, C. B.

    1983-01-01

    Electronic image sensors based on charge coupled devices operated in electron-bombarded mode, yielding real-time, remote-readout, photon-limited UV imaging capability are being developed. The sensors also incorporate fast-focal-ratio Schmidt optics and opaque photocathodes, giving nearly the ultimate possible diffuse-source sensitivity. They can be used for direct imagery of atmospheric emission phenomena, and for imaging spectrography with moderate spatial and spectral resolution. The current state of instrument development, laboratory results, planned future developments and proposed applications of the sensors in space flight instrumentation is described.

  2. Proximal caries detection: Sirona Sidexis versus Kodak Ektaspeed Plus.

    PubMed

    Khan, Emad A; Tyndall, Donald A; Ludlow, John B; Caplan, Daniel

    2005-01-01

    This study compared the accuracy of intraoral film and a charge-coupled device (CCD) receptor for proximal caries detection. Four observers evaluated images of the proximal surfaces of 40 extracted posterior teeth. The presence or absence of caries was scored using a five-point confidence scale. The actual status of each surface was determined from ground section histology. Responses were evaluated by means of receiver operating characteristic (ROC) analysis. Areas under ROC curves (Az) were assessed through a paired t-test. The performance of the CCD-based intraoral sensor was not different statistically from Ektaspeed Plus film in detecting proximal caries.

  3. Very-large-area CCD image sensors: concept and cost-effective research

    NASA Astrophysics Data System (ADS)

    Bogaart, E. W.; Peters, I. M.; Kleimann, A. C.; Manoury, E. J. P.; Klaassens, W.; de Laat, W. T. F. M.; Draijer, C.; Frost, R.; Bosiers, J. T.

    2009-01-01

    A new-generation full-frame 36x48 mm2 48Mp CCD image sensor with vertical anti-blooming for professional digital still camera applications is developed by means of the so-called building block concept. The 48Mp devices are formed by stitching 1kx1k building blocks with 6.0 µm pixel pitch in 6x8 (hxv) format. This concept allows us to design four large-area (48Mp) and sixty-two basic (1Mp) devices per 6" wafer. The basic image sensor is relatively small in order to obtain data from many devices. Evaluation of the basic parameters such as the image pixel and on-chip amplifier provides us statistical data using a limited number of wafers. Whereas the large-area devices are evaluated for aspects typical to large-sensor operation and performance, such as the charge transport efficiency. Combined with the usability of multi-layer reticles, the sensor development is cost effective for prototyping. Optimisation of the sensor design and technology has resulted in a pixel charge capacity of 58 ke- and significantly reduced readout noise (12 electrons at 25 MHz pixel rate, after CDS). Hence, a dynamic range of 73 dB is obtained. Microlens and stack optimisation resulted in an excellent angular response that meets with the wide-angle photography demands.

  4. Systems approach to the design of the CCD sensors and camera electronics for the AIA and HMI instruments on solar dynamics observatory

    NASA Astrophysics Data System (ADS)

    Waltham, N.; Beardsley, S.; Clapp, M.; Lang, J.; Jerram, P.; Pool, P.; Auker, G.; Morris, D.; Duncan, D.

    2017-11-01

    Solar Dynamics Observatory (SDO) is imaging the Sun in many wavelengths near simultaneously and with a resolution ten times higher than the average high-definition television. In this paper we describe our innovative systems approach to the design of the CCD cameras for two of SDO's remote sensing instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI). Both instruments share use of a custom-designed 16 million pixel science-grade CCD and common camera readout electronics. A prime requirement was for the CCD to operate with significantly lower drive voltages than before, motivated by our wish to simplify the design of the camera readout electronics. Here, the challenge lies in the design of circuitry to drive the CCD's highly capacitive electrodes and to digitize its analogue video output signal with low noise and to high precision. The challenge is greatly exacerbated when forced to work with only fully space-qualified, radiation-tolerant components. We describe our systems approach to the design of the AIA and HMI CCD and camera electronics, and the engineering solutions that enabled us to comply with both mission and instrument science requirements.

  5. CCD TV focal plane guider development and comparison to SIRTF applications

    NASA Technical Reports Server (NTRS)

    Rank, David M.

    1989-01-01

    It is expected that the SIRTF payload will use a CCD TV focal plane fine guidance sensor to provide acquisition of sources and tracking stability of the telescope. Work has been done to develop CCD TV cameras and guiders at Lick Observatory for several years and have produced state of the art CCD TV systems for internal use. NASA decided to provide additional support so that the limits of this technology could be established and a comparison between SIRTF requirements and practical systems could be put on a more quantitative basis. The results of work carried out at Lick Observatory which was designed to characterize present CCD autoguiding technology and relate it to SIRTF applications is presented. Two different design types of CCD cameras were constructed using virtual phase and burred channel CCD sensors. A simple autoguider was built and used on the KAO, Mt. Lemon and Mt. Hamilton telescopes. A video image processing system was also constructed in order to characterize the performance of the auto guider and CCD cameras.

  6. Timing generator of scientific grade CCD camera and its implementation based on FPGA technology

    NASA Astrophysics Data System (ADS)

    Si, Guoliang; Li, Yunfei; Guo, Yongfei

    2010-10-01

    The Timing Generator's functions of Scientific Grade CCD Camera is briefly presented: it generates various kinds of impulse sequence for the TDI-CCD, video processor and imaging data output, acting as the synchronous coordinator for time in the CCD imaging unit. The IL-E2TDI-CCD sensor produced by DALSA Co.Ltd. use in the Scientific Grade CCD Camera. Driving schedules of IL-E2 TDI-CCD sensor has been examined in detail, the timing generator has been designed for Scientific Grade CCD Camera. FPGA is chosen as the hardware design platform, schedule generator is described with VHDL. The designed generator has been successfully fulfilled function simulation with EDA software and fitted into XC2VP20-FF1152 (a kind of FPGA products made by XILINX). The experiments indicate that the new method improves the integrated level of the system. The Scientific Grade CCD camera system's high reliability, stability and low power supply are achieved. At the same time, the period of design and experiment is sharply shorted.

  7. ARGOS wavefront sensing: from detection to correction

    NASA Astrophysics Data System (ADS)

    Orban de Xivry, Gilles; Bonaglia, M.; Borelli, J.; Busoni, L.; Connot, C.; Esposito, S.; Gaessler, W.; Kulas, M.; Mazzoni, T.; Puglisi, A.; Rabien, S.; Storm, J.; Ziegleder, J.

    2014-08-01

    Argos is the ground-layer adaptive optics system for the Large Binocular Telescope. In order to perform its wide-field correction, Argos uses three laser guide stars which sample the atmospheric turbulence. To perform the correction, Argos has at disposal three different wavefront sensing measurements : its three laser guide stars, a NGS tip-tilt, and a third wavefront sensor. We present the wavefront sensing architecture and its individual components, in particular: the finalized Argos pnCCD camera detecting the 3 laser guide stars at 1kHz, high quantum efficiency and 4e- noise; the Argos tip-tilt sensor based on a quad-cell avalanche photo-diodes; and the Argos wavefront computer. Being in the middle of the commissioning, we present the first wavefront sensing configurations and operations performed at LBT, and discuss further improvements in the measurements of the 3 laser guide star slopes as detected by the pnCCD.

  8. Intelligent optical fiber sensor system for measurement of gas concentration

    NASA Astrophysics Data System (ADS)

    Pan, Jingming; Yin, Zongmin

    1991-08-01

    A measuring, controlling, and alarming system for the concentration of a gas or transparent liquid is described. In this system, a Fabry-Perot etalon with an optical fiber is used as the sensor, a charge-coupled device (CCD) is used as the photoelectric converter, and a single- chip microcomputer 8031 along with an interface circuit is used to measure the interference ring signal. The system has such features as real-time and on-line operation, continuous dynamic handling, and intelligent control.

  9. Typical effects of laser dazzling CCD camera

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Zhang, Jianmin; Shao, Bibo; Cheng, Deyan; Ye, Xisheng; Feng, Guobin

    2015-05-01

    In this article, an overview of laser dazzling effect to buried channel CCD camera is given. The CCDs are sorted into staring and scanning types. The former includes the frame transfer and interline transfer types. The latter includes linear and time delay integration types. All CCDs must perform four primary tasks in generating an image, which are called charge generation, charge collection, charge transfer and charge measurement. In camera, the lenses are needed to input the optical signal to the CCD sensors, in which the techniques for erasing stray light are used. And the electron circuits are needed to process the output signal of CCD, in which many electronic techniques are used. The dazzling effects are the conjunct result of light distribution distortion and charge distribution distortion, which respectively derive from the lens and the sensor. Strictly speaking, in lens, the light distribution is not distorted. In general, the lens are so well designed and fabricated that its stray light can be neglected. But the laser is of much enough intensity to make its stray light obvious. In CCD image sensors, laser can induce a so large electrons generation. Charges transfer inefficiency and charges blooming will cause the distortion of the charge distribution. Commonly, the largest signal outputted from CCD sensor is restricted by capability of the collection well of CCD, and can't go beyond the dynamic range for the subsequent electron circuits maintaining normal work. So the signal is not distorted in the post-processing circuits. But some techniques in the circuit can make some dazzling effects present different phenomenon in final image.

  10. Is flat fielding safe for precision CCD astronomy?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumer, Michael; Davis, Christopher P.; Roodman, Aaron

    The ambitious goals of precision cosmology with wide-field optical surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST) demand precision CCD astronomy as their foundation. This in turn requires an understanding of previously uncharacterized sources of systematic error in CCD sensors, many of which manifest themselves as static effective variations in pixel area. Such variation renders a critical assumption behind the traditional procedure of flat fielding—that a sensor's pixels comprise a uniform grid—invalid. In this work, we present a method to infer a curl-free model of a sensor's underlying pixel grid from flat-field images,more » incorporating the superposition of all electrostatic sensor effects—both known and unknown—present in flat-field data. We use these pixel grid models to estimate the overall impact of sensor systematics on photometry, astrometry, and PSF shape measurements in a representative sensor from the Dark Energy Camera (DECam) and a prototype LSST sensor. Applying the method to DECam data recovers known significant sensor effects for which corrections are currently being developed within DES. For an LSST prototype CCD with pixel-response non-uniformity (PRNU) of 0.4%, we find the impact of "improper" flat fielding on these observables is negligible in nominal .7'' seeing conditions. Furthermore, these errors scale linearly with the PRNU, so for future LSST production sensors, which may have larger PRNU, our method provides a way to assess whether pixel-level calibration beyond flat fielding will be required.« less

  11. Is flat fielding safe for precision CCD astronomy?

    DOE PAGES

    Baumer, Michael; Davis, Christopher P.; Roodman, Aaron

    2017-07-06

    The ambitious goals of precision cosmology with wide-field optical surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST) demand precision CCD astronomy as their foundation. This in turn requires an understanding of previously uncharacterized sources of systematic error in CCD sensors, many of which manifest themselves as static effective variations in pixel area. Such variation renders a critical assumption behind the traditional procedure of flat fielding—that a sensor's pixels comprise a uniform grid—invalid. In this work, we present a method to infer a curl-free model of a sensor's underlying pixel grid from flat-field images,more » incorporating the superposition of all electrostatic sensor effects—both known and unknown—present in flat-field data. We use these pixel grid models to estimate the overall impact of sensor systematics on photometry, astrometry, and PSF shape measurements in a representative sensor from the Dark Energy Camera (DECam) and a prototype LSST sensor. Applying the method to DECam data recovers known significant sensor effects for which corrections are currently being developed within DES. For an LSST prototype CCD with pixel-response non-uniformity (PRNU) of 0.4%, we find the impact of "improper" flat fielding on these observables is negligible in nominal .7'' seeing conditions. Furthermore, these errors scale linearly with the PRNU, so for future LSST production sensors, which may have larger PRNU, our method provides a way to assess whether pixel-level calibration beyond flat fielding will be required.« less

  12. Multispectral linear array visible and shortwave infrared sensors

    NASA Astrophysics Data System (ADS)

    Tower, J. R.; Warren, F. B.; Pellon, L. E.; Strong, R.; Elabd, H.; Cope, A. D.; Hoffmann, D. M.; Kramer, W. M.; Longsderff, R. W.

    1984-08-01

    All-solid state pushbroom sensors for multispectral linear array (MLA) instruments to replace mechanical scanners used on LANDSAT satellites are introduced. A buttable, four-spectral-band, linear-format charge coupled device (CCD) and a buttable, two-spectral-band, linear-format, shortwave infrared CCD are described. These silicon integrated circuits may be butted end to end to provide multispectral focal planes with thousands of contiguous, in-line photosites. The visible CCD integrated circuit is organized as four linear arrays of 1024 pixels each. Each array views the scene in a different spectral window, resulting in a four-band sensor. The shortwave infrared (SWIR) sensor is organized as 2 linear arrays of 512 detectors each. Each linear array is optimized for performance at a different wavelength in the SWIR band.

  13. Design and performance of 4 x 5120-element visible and 2 x 2560-element shortwave infrared multispectral focal planes

    NASA Astrophysics Data System (ADS)

    Tower, J. R.; Cope, A. D.; Pellon, L. E.; McCarthy, B. M.; Strong, R. T.

    1986-06-01

    Two solid-state sensors for use in remote sensing instruments operating in the pushbroom mode are examined. The design and characteristics of the visible/near-infrared (VIS/NIR) device and the short-wavelength infrared (SWIR) device are described. The VIS/NIR is a CCD imager with four parallel sensor lines, each 1024 pixel long; the chip design and filter system of the VIS/NIR are studied. The performance of the VIS/NIR sensor with mask and its system performance are measured. The SWIR is a dual-band line imager consisting of palladium silicide Schottky-barrier detectors coupled to CCD multiplexers; the performance of the device is analyzed. The substrate materials and layout designs used to assemble the 4 x 5120-element VIS/NIR array and the 2 x 2560-element SWIR array are discussed, and the planarity of the butted arrays are verified using a profilometer. The optical and electrical characteristics, and the placement and butting accuracy of the arrays are evaluated. It is noted that the arrays met or exceed their expected performance.

  14. The research of digital circuit system for high accuracy CCD of portable Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Yin, Yu; Cui, Yongsheng; Zhang, Xiuda; Yan, Huimin

    2013-08-01

    The Raman spectrum technology is widely used for it can identify various types of molecular structure and material. The portable Raman spectrometer has become a hot direction of the spectrometer development nowadays for its convenience in handheld operation and real-time detection which is superior to traditional Raman spectrometer with heavy weight and bulky size. But there is still a gap for its measurement sensitivity between portable and traditional devices. However, portable Raman Spectrometer with Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) technology can enhance the Raman signal significantly by several orders of magnitude, giving consideration in both measurement sensitivity and mobility. This paper proposed a design and implementation of driver and digital circuit for high accuracy CCD sensor, which is core part of portable spectrometer. The main target of the whole design is to reduce the dark current generation rate and increase signal sensitivity during the long integration time, and in the weak signal environment. In this case, we use back-thinned CCD image sensor from Hamamatsu Corporation with high sensitivity, low noise and large dynamic range. In order to maximize this CCD sensor's performance and minimize the whole size of the device simultaneously to achieve the project indicators, we delicately designed a peripheral circuit for the CCD sensor. The design is mainly composed with multi-voltage circuit, sequential generation circuit, driving circuit and A/D transition parts. As the most important power supply circuit, the multi-voltage circuits with 12 independent voltages are designed with reference power supply IC and set to specified voltage value by the amplifier making up the low-pass filter, which allows the user to obtain a highly stable and accurate voltage with low noise. What's more, to make our design easy to debug, CPLD is selected to generate sequential signal. The A/D converter chip consists of a correlated double sampler; a digitally controlled variable gain amplifier and a 16-bit A/D converter which can help improve the data quality. And the acquired digital signals are transmitted into the computer via USB 2.0 data port. Our spectrometer with SHINERS technology can acquire the Raman spectrum signals efficiently in long time integration and weak signal environment, and the size of our system is well controlled for portable application.

  15. Laser pulse detection method and apparatus

    NASA Technical Reports Server (NTRS)

    Goss, W.; Janesick, J. R. (Inventor)

    1984-01-01

    A sensor is described for detecting the difference in phase of a pair of returned light pulse components, such as two components of a light pulse of an optical gyro. In an optic gyro, the two light components have passed in opposite directions through a coil of optical fiber, with the difference in phase of the returned light components determining the intensity of light shining on the sensor. The sensor includes a CCD (charge coupled device) that receives the pair of returned light components to generate a charge proportional to the number of photons in the received light. The amount of the charge represents the phase difference between the two light components. At a time after the transmission of the light pulse and before the expected time of arrival of the interfering light components, charge accumulating in the CCD as a result of reflections from components in the system, are repeatedly removed from the CCD, by transferring out charges in the CCD and dumping these charges.

  16. Characterization of Electrically Active Defects in Si Using CCD Image Sensors

    DTIC Science & Technology

    1978-02-01

    63 35 Dislocation Segments in CCD Imager . . . . . . . . . . . . . 64 36 422 Reflection Topograph of Dislocation Loop ir... Loops . . . . . 3 39 422 Reflection Topograph of Scratch on CCD Imager, . . . 69 40 Dark Current Display of a CCD Imager with 32 ms integration Time...made of each slice using the elon -asoorbio aold developer described in Appendix D. The inagers were then thinned using the procedure at Appendix taor

  17. Flat Field Anomalies in an X-ray CCD Camera Measured Using a Manson X-ray Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. J. Haugh and M. B. Schneider

    2008-10-31

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 μm square pixels, and 15 μm thick. Amore » multi-anode Manson X-ray source, operating up to 10kV and 10W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE≈10. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager.« less

  18. A computer-aided telescope pointing system utilizing a video star tracker

    NASA Technical Reports Server (NTRS)

    Murphy, J. P.; Lorell, K. R.; Swift, C. D.

    1975-01-01

    The Video Inertial Pointing (VIP) System developed to satisfy the acquisition and pointing requirements of astronomical telescopes is described. A unique feature of the system is the use of a single sensor to provide information for the generation of three axis pointing error signals and for a cathode ray tube (CRT) display of the star field. The pointing error signals are used to update the telescope's gyro stabilization and the CRT display is used by an operator to facilitate target acquisition and to aid in manual positioning of the telescope optical axis. A model of the system using a low light level vidicon built and flown on a balloon-borne infrared telescope is briefly described from a state of the art charge coupled device (CCD) sensor. The advanced system hardware is described and an analysis of the multi-star tracking and three axis error signal generation, along with an analysis and design of the gyro update filter, are presented. Results of a hybrid simulation are described in which the advanced VIP system hardware is driven by a digital simulation of the star field/CCD sensor and an analog simulation of the telescope and gyro stabilization dynamics.

  19. Tests of commercial colour CMOS cameras for astronomical applications

    NASA Astrophysics Data System (ADS)

    Pokhvala, S. M.; Reshetnyk, V. M.; Zhilyaev, B. E.

    2013-12-01

    We present some results of testing commercial colour CMOS cameras for astronomical applications. Colour CMOS sensors allow to perform photometry in three filters simultaneously that gives a great advantage compared with monochrome CCD detectors. The Bayer BGR colour system realized in colour CMOS sensors is close to the astronomical Johnson BVR system. The basic camera characteristics: read noise (e^{-}/pix), thermal noise (e^{-}/pix/sec) and electronic gain (e^{-}/ADU) for the commercial digital camera Canon 5D MarkIII are presented. We give the same characteristics for the scientific high performance cooled CCD camera system ALTA E47. Comparing results for tests of Canon 5D MarkIII and CCD ALTA E47 show that present-day commercial colour CMOS cameras can seriously compete with the scientific CCD cameras in deep astronomical imaging.

  20. Solid state television camera (CCD-buried channel)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The development of an all solid state television camera, which uses a buried channel charge coupled device (CCD) as the image sensor, was undertaken. A 380 x 488 element CCD array is utilized to ensure compatibility with 525 line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (a) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (b) techniques for the elimination or suppression of CCD blemish effects, and (c) automatic light control and video gain control (i.e., ALC and AGC) techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a deliverable solid state TV camera which addressed the program requirements for a prototype qualifiable to space environment conditions.

  1. Solid state television camera (CCD-buried channel), revision 1

    NASA Technical Reports Server (NTRS)

    1977-01-01

    An all solid state television camera was designed which uses a buried channel charge coupled device (CCD) as the image sensor. A 380 x 488 element CCD array is utilized to ensure compatibility with 525-line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (1) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (2) techniques for the elimination or suppression of CCD blemish effects, and (3) automatic light control and video gain control techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a deliverable solid state TV camera which addressed the program requirements for a prototype qualifiable to space environment conditions.

  2. Solid state, CCD-buried channel, television camera study and design

    NASA Technical Reports Server (NTRS)

    Hoagland, K. A.; Balopole, H.

    1976-01-01

    An investigation of an all solid state television camera design, which uses a buried channel charge-coupled device (CCD) as the image sensor, was undertaken. A 380 x 488 element CCD array was utilized to ensure compatibility with 525 line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (a) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (b) techniques for the elimination or suppression of CCD blemish effects, and (c) automatic light control and video gain control techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a design which addresses the program requirements for a deliverable solid state TV camera.

  3. An integrated optical sensor for GMAW feedback control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P.L.; Watkins, A.D.; Larsen, E.D.

    1992-08-01

    The integrated optical sensor (IOS) is a multifunction feedback control sensor for arc welding, that is computer automated and independent of significant operator interaction. It is based on three major ``off-the-shelf`` components: a charged coupled device (CCD) camera, a diode laser, and a processing computer. The sensor head is compact and lightweight to avoid interference with weld head mobility, hardened to survive the harsh operating environment, and free of specialized cooling and power requirements. The sensor is positioned behind the GMAW torch and measures weld pool position and width, standoff distance, and postweld centerline cooling rate. Weld pool position andmore » width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint, thus allowing compensation for such phenomena as arc blow. Sensor stand off distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to infer the final metallurgical state of the weld bead and heat affected zone, thereby providing a means of controlling post weld mechanical properties.« less

  4. An integrated optical sensor for GMAW feedback control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P.L.; Watkins, A.D.; Larsen, E.D.

    1992-01-01

    The integrated optical sensor (IOS) is a multifunction feedback control sensor for arc welding, that is computer automated and independent of significant operator interaction. It is based on three major off-the-shelf'' components: a charged coupled device (CCD) camera, a diode laser, and a processing computer. The sensor head is compact and lightweight to avoid interference with weld head mobility, hardened to survive the harsh operating environment, and free of specialized cooling and power requirements. The sensor is positioned behind the GMAW torch and measures weld pool position and width, standoff distance, and postweld centerline cooling rate. Weld pool position andmore » width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint, thus allowing compensation for such phenomena as arc blow. Sensor stand off distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to infer the final metallurgical state of the weld bead and heat affected zone, thereby providing a means of controlling post weld mechanical properties.« less

  5. CCD image sensor induced error in PIV applications

    NASA Astrophysics Data System (ADS)

    Legrand, M.; Nogueira, J.; Vargas, A. A.; Ventas, R.; Rodríguez-Hidalgo, M. C.

    2014-06-01

    The readout procedure of charge-coupled device (CCD) cameras is known to generate some image degradation in different scientific imaging fields, especially in astrophysics. In the particular field of particle image velocimetry (PIV), widely extended in the scientific community, the readout procedure of the interline CCD sensor induces a bias in the registered position of particle images. This work proposes simple procedures to predict the magnitude of the associated measurement error. Generally, there are differences in the position bias for the different images of a certain particle at each PIV frame. This leads to a substantial bias error in the PIV velocity measurement (˜0.1 pixels). This is the order of magnitude that other typical PIV errors such as peak-locking may reach. Based on modern CCD technology and architecture, this work offers a description of the readout phenomenon and proposes a modeling for the CCD readout bias error magnitude. This bias, in turn, generates a velocity measurement bias error when there is an illumination difference between two successive PIV exposures. The model predictions match the experiments performed with two 12-bit-depth interline CCD cameras (MegaPlus ES 4.0/E incorporating the Kodak KAI-4000M CCD sensor with 4 megapixels). For different cameras, only two constant values are needed to fit the proposed calibration model and predict the error from the readout procedure. Tests by different researchers using different cameras would allow verification of the model, that can be used to optimize acquisition setups. Simple procedures to obtain these two calibration values are also described.

  6. Fiber-MZI-based FBG sensor interrogation: comparative study with a CCD spectrometer.

    PubMed

    Das, Bhargab; Chandra, Vikash

    2016-10-10

    We present an experimental comparative study of the two most commonly used fiber Bragg grating (FBG) sensor interrogation techniques: a charge-coupled device (CCD) spectrometer and a fiber Mach-Zehnder interferometer (F-MZI). Although the interferometric interrogation technique is historically known to offer the highest sensitivity measurements, very little information exists regarding how it compares with the current commercially available spectral-characteristics-based interrogation systems. It is experimentally established here that the performance of a modern-day CCD spectrometer interrogator is very close to a F-MZI interrogator with the capability of measuring Bragg wavelength shifts with sub-picometer-level accuracy. The results presented in this research study can further be used as a guideline for choosing between the two FBG sensor interrogator types for small-amplitude dynamic perturbation measurements down to nano-level strain.

  7. [Nitrogen stress measurement of canola based on multi-spectral charged coupled device imaging sensor].

    PubMed

    Feng, Lei; Fang, Hui; Zhou, Wei-Jun; Huang, Min; He, Yong

    2006-09-01

    Site-specific variable nitrogen application is one of the major precision crop production management operations. Obtaining sufficient crop nitrogen stress information is essential for achieving effective site-specific nitrogen applications. The present paper describes the development of a multi-spectral nitrogen deficiency sensor, which uses three channels (green, red, near-infrared) of crop images to determine the nitrogen level of canola. This sensor assesses the nitrogen stress by means of estimated SPAD value of the canola based on canola canopy reflectance sensed using three channels (green, red, near-infrared) of the multi-spectral camera. The core of this investigation is the calibration methods between the multi-spectral references and the nitrogen levels in crops measured using a SPAD 502 chlorophyll meter. Based on the results obtained from this study, it can be concluded that a multi-spectral CCD camera can provide sufficient information to perform reasonable SPAD values estimation during field operations.

  8. Onboard TDI stage estimation and calibration using SNR analysis

    NASA Astrophysics Data System (ADS)

    Haghshenas, Javad

    2017-09-01

    Electro-Optical design of a push-broom space camera for a Low Earth Orbit (LEO) remote sensing satellite is performed based on the noise analysis of TDI sensors for very high GSDs and low light level missions. It is well demonstrated that the CCD TDI mode of operation provides increased photosensitivity relative to a linear CCD array, without the sacrifice of spatial resolution. However, for satellite imaging, in order to utilize the advantages which the TDI mode of operation offers, attention should be given to the parameters which affect the image quality of TDI sensors such as jitters, vibrations, noises and etc. A predefined TDI stages may not properly satisfy image quality requirement of the satellite camera. Furthermore, in order to use the whole dynamic range of the sensor, imager must be capable to set the TDI stages in every shots based on the affecting parameters. This paper deals with the optimal estimation and setting the stages based on tradeoffs among MTF, noises and SNR. On-board SNR estimation is simulated using the atmosphere analysis based on the MODTRAN algorithm in PcModWin software. According to the noises models, we have proposed a formulation to estimate TDI stages in such a way to satisfy the system SNR requirement. On the other hand, MTF requirement must be satisfy in the same manner. A proper combination of both parameters will guaranty the full dynamic range usage along with the high SNR and image quality.

  9. Analysis of Dark Current in BRITE Nanostellite CCD Sensors †

    PubMed Central

    Popowicz, Adam

    2018-01-01

    The BRightest Target Explorer (BRITE) is the pioneering nanosatellite mission dedicated for photometric observations of the brightest stars in the sky. The BRITE charge coupled device (CCD) sensors are poorly shielded against extensive flux of energetic particles which constantly induce defects in the silicon lattice. In this paper we investigate the temporal evolution of the generation of the dark current in the BRITE CCDs over almost four years after launch. Utilizing several steps of image processing and employing normalization of the results, it was possible to obtain useful information about the progress of thermal activity in the sensors. The outcomes show a clear and consistent linear increase of induced damage despite the fact that only about 0.14% of CCD pixels were probed. By performing the analysis of temperature dependencies of the dark current, we identified the observed defects as phosphorus-vacancy (PV) pairs, which are common in proton irradiated CCD matrices. Moreover, the Meyer-Neldel empirical rule was confirmed in our dark current data, yielding EMN=24.8 meV for proton-induced PV defects. PMID:29415471

  10. CCD imaging sensors

    NASA Technical Reports Server (NTRS)

    Janesick, James R. (Inventor); Elliott, Stythe T. (Inventor)

    1989-01-01

    A method for promoting quantum efficiency (QE) of a CCD imaging sensor for UV, far UV and low energy x-ray wavelengths by overthinning the back side beyond the interface between the substrate and the photosensitive semiconductor material, and flooding the back side with UV prior to using the sensor for imaging. This UV flooding promotes an accumulation layer of positive states in the oxide film over the thinned sensor to greatly increase QE for either frontside or backside illumination. A permanent or semipermanent image (analog information) may be stored in a frontside SiO.sub.2 layer over the photosensitive semiconductor material using implanted ions for a permanent storage and intense photon radiation for a semipermanent storage. To read out this stored information, the gate potential of the CCD is biased more negative than that used for normal imaging, and excess charge current thus produced through the oxide is integrated in the pixel wells for subsequent readout by charge transfer from well to well in the usual manner.

  11. Hyperspectral CMOS imager

    NASA Astrophysics Data System (ADS)

    Jerram, P. A.; Fryer, M.; Pratlong, J.; Pike, A.; Walker, A.; Dierickx, B.; Dupont, B.; Defernez, A.

    2017-11-01

    CCDs have been used for many years for Hyperspectral imaging missions and have been extremely successful. These include the Medium Resolution Imaging Spectrometer (MERIS) [1] on Envisat, the Compact High Resolution Imaging Spectrometer (CHRIS) on Proba and the Ozone Monitoring Instrument operating in the UV spectral region. ESA are also planning a number of further missions that are likely to use CCD technology (Sentinel 3, 4 and 5). However CMOS sensors have a number of advantages which means that they will probably be used for hyperspectral applications in the longer term. There are two main advantages with CMOS sensors: First a hyperspectral image consists of spectral lines with a large difference in intensity; in a frame transfer CCD the faint spectral lines have to be transferred through the part of the imager illuminated by intense lines. This can lead to cross-talk and whilst this problem can be reduced by the use of split frame transfer and faster line rates CMOS sensors do not require a frame transfer and hence inherently will not suffer from this problem. Second, with a CMOS sensor the intense spectral lines can be read multiple times within a frame to give a significant increase in dynamic range. We will describe the design, and initial test of a CMOS sensor for use in hyperspectral applications. This device has been designed to give as high a dynamic range as possible with minimum cross-talk. The sensor has been manufactured on high resistivity epitaxial silicon wafers and is be back-thinned and left relatively thick in order to obtain the maximum quantum efficiency across the entire spectral range

  12. Cryogenic irradiation of an EMCCD for the WFIRST coronagraph: preliminary performance analysis

    NASA Astrophysics Data System (ADS)

    Bush, Nathan; Hall, David; Holland, Andrew; Burgon, Ross; Murray, Neil; Gow, Jason; Jordan, Douglas; Demers, Richard; Harding, Leon K.; Nemati, Bijan; Hoenk, Michael; Michaels, Darren; Peddada, Pavani

    2016-08-01

    The Wide Field Infra-Red Survey Telescope (WFIRST) is a NASA observatory scheduled to launch in the next decade that will settle essential questions in exoplanet science. The Wide Field Instrument (WFI) offers Hubble quality imaging over a 0.28 square degree field of view and will gather NIR statistical data on exoplanets through gravitational microlensing. An on-board coronagraph will for the first time perform direct imaging and spectroscopic analysis of exoplanets with properties analogous to those within our own solar system, including cold Jupiters, mini Neptunes and potentially super Earths. The Coronagraph Instrument (CGI) will be required to operate with low signal flux for long integration times, demanding all noise sources are kept to a minimum. The Electron Multiplication (EM)-CCD has been baselined for both the imaging and spectrograph cameras due its ability to operate with sub-electron effective read noise values with appropriate multiplication gain setting. The presence of other noise sources, however, such as thermal dark signal and Clock Induced Charge (CIC), need to be characterized and mitigated. In addition, operation within a space environment will subject the device to radiation damage that will degrade the Charge Transfer Effciency (CTE) of the device throughout the mission lifetime. Irradiation at the nominal instrument operating temperature has the potential to provide the best estimate of performance degradation that will be experienced in-flight, since the final population of silicon defects has been shown to be dependent upon the temperature at which the sensor is irradiated. Here we present initial findings from pre- and post- cryogenic irradiation testing of the e2v CCD201-20 BI EMCCD sensor, baselined for the WFIRST coronagraph instrument. The motivation for irradiation at cryogenic temperatures is discussed with reference to previous investigations of a similar nature. The results are presented in context with those from a previous room temperature irradiation investigation that was performed on a CCD201-20 operated under the same conditions. A key conclusion is that the measured performance degradation for a given proton fluence is seen to measurably differ for the cryogenic case compared to the room temperature equivalent for the conditions of this study.

  13. An ultrahigh-speed color video camera operating at 1,000,000 fps with 288 frame memories

    NASA Astrophysics Data System (ADS)

    Kitamura, K.; Arai, T.; Yonai, J.; Hayashida, T.; Kurita, T.; Maruyama, H.; Namiki, J.; Yanagi, T.; Yoshida, T.; van Kuijk, H.; Bosiers, Jan T.; Saita, A.; Kanayama, S.; Hatade, K.; Kitagawa, S.; Etoh, T. Goji

    2008-11-01

    We developed an ultrahigh-speed color video camera that operates at 1,000,000 fps (frames per second) and had capacity to store 288 frame memories. In 2005, we developed an ultrahigh-speed, high-sensitivity portable color camera with a 300,000-pixel single CCD (ISIS-V4: In-situ Storage Image Sensor, Version 4). Its ultrahigh-speed shooting capability of 1,000,000 fps was made possible by directly connecting CCD storages, which record video images, to the photodiodes of individual pixels. The number of consecutive frames was 144. However, longer capture times were demanded when the camera was used during imaging experiments and for some television programs. To increase ultrahigh-speed capture times, we used a beam splitter and two ultrahigh-speed 300,000-pixel CCDs. The beam splitter was placed behind the pick up lens. One CCD was located at each of the two outputs of the beam splitter. The CCD driving unit was developed to separately drive two CCDs, and the recording period of the two CCDs was sequentially switched. This increased the recording capacity to 288 images, an increase of a factor of two over that of conventional ultrahigh-speed camera. A problem with the camera was that the incident light on each CCD was reduced by a factor of two by using the beam splitter. To improve the light sensitivity, we developed a microlens array for use with the ultrahigh-speed CCDs. We simulated the operation of the microlens array in order to optimize its shape and then fabricated it using stamping technology. Using this microlens increased the light sensitivity of the CCDs by an approximate factor of two. By using a beam splitter in conjunction with the microlens array, it was possible to make an ultrahigh-speed color video camera that has 288 frame memories but without decreasing the camera's light sensitivity.

  14. Test of CCD Precision Limits for Differential Photometry

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Dunham, E. W.; Wei, M. Z.; Robinson, L. B.; Ford, C. H.; Granados, A. F.

    1995-01-01

    Results of tests to demonstrate the very high differential-photometric stability of CCD light sensors are presented. The measurements reported here demonstrate that in a controlled laboratory environment, a front-illuminated CCD can provide differential-photometric measurements with reproducible precision approaching one part in 105. Practical limitations to the precision of differential-photometric measurements with CCDs and implications for spaceborne applications are discussed.

  15. A 100 Mfps image sensor for biological applications

    NASA Astrophysics Data System (ADS)

    Etoh, T. Goji; Shimonomura, Kazuhiro; Nguyen, Anh Quang; Takehara, Kosei; Kamakura, Yoshinari; Goetschalckx, Paul; Haspeslagh, Luc; De Moor, Piet; Dao, Vu Truong Son; Nguyen, Hoang Dung; Hayashi, Naoki; Mitsui, Yo; Inumaru, Hideo

    2018-02-01

    Two ultrahigh-speed CCD image sensors with different characteristics were fabricated for applications to advanced scientific measurement apparatuses. The sensors are BSI MCG (Backside-illuminated Multi-Collection-Gate) image sensors with multiple collection gates around the center of the front side of each pixel, placed like petals of a flower. One has five collection gates and one drain gate at the center, which can capture consecutive five frames at 100 Mfps with the pixel count of about 600 kpixels (512 x 576 x 2 pixels). In-pixel signal accumulation is possible for repetitive image capture of reproducible events. The target application is FLIM. The other is equipped with four collection gates each connected to an in-situ CCD memory with 305 elements, which enables capture of 1,220 (4 x 305) consecutive images at 50 Mfps. The CCD memory is folded and looped with the first element connected to the last element, which also makes possible the in-pixel signal accumulation. The sensor is a small test sensor with 32 x 32 pixels. The target applications are imaging TOF MS, pulse neutron tomography and dynamic PSP. The paper also briefly explains an expression of the temporal resolution of silicon image sensors theoretically derived by the authors in 2017. It is shown that the image sensor designed based on the theoretical analysis achieves imaging of consecutive frames at the frame interval of 50 ps.

  16. Coded aperture detector: an image sensor with sub 20-nm pixel resolution.

    PubMed

    Miyakawa, Ryan; Mayer, Rafael; Wojdyla, Antoine; Vannier, Nicolas; Lesser, Ian; Aron-Dine, Shifrah; Naulleau, Patrick

    2014-08-11

    We describe the coded aperture detector, a novel image sensor based on uniformly redundant arrays (URAs) with customizable pixel size, resolution, and operating photon energy regime. In this sensor, a coded aperture is scanned laterally at the image plane of an optical system, and the transmitted intensity is measured by a photodiode. The image intensity is then digitally reconstructed using a simple convolution. We present results from a proof-of-principle optical prototype, demonstrating high-fidelity image sensing comparable to a CCD. A 20-nm half-pitch URA fabricated by the Center for X-ray Optics (CXRO) nano-fabrication laboratory is presented that is suitable for high-resolution image sensing at EUV and soft X-ray wavelengths.

  17. Large Format CMOS-based Detectors for Diffraction Studies

    NASA Astrophysics Data System (ADS)

    Thompson, A. C.; Nix, J. C.; Achterkirchen, T. G.; Westbrook, E. M.

    2013-03-01

    Complementary Metal Oxide Semiconductor (CMOS) devices are rapidly replacing CCD devices in many commercial and medical applications. Recent developments in CMOS fabrication have improved their radiation hardness, device linearity, readout noise and thermal noise, making them suitable for x-ray crystallography detectors. Large-format (e.g. 10 cm × 15 cm) CMOS devices with a pixel size of 100 μm × 100 μm are now becoming available that can be butted together on three sides so that very large area detector can be made with no dead regions. Like CCD systems our CMOS systems use a GdOS:Tb scintillator plate to convert stopping x-rays into visible light which is then transferred with a fiber-optic plate to the sensitive surface of the CMOS sensor. The amount of light per x-ray on the sensor is much higher in the CMOS system than a CCD system because the fiber optic plate is only 3 mm thick while on a CCD system it is highly tapered and much longer. A CMOS sensor is an active pixel matrix such that every pixel is controlled and readout independently of all other pixels. This allows these devices to be readout while the sensor is collecting charge in all the other pixels. For x-ray diffraction detectors this is a major advantage since image frames can be collected continuously at up 20 Hz while the crystal is rotated. A complete diffraction dataset can be collected over five times faster than with CCD systems with lower radiation exposure to the crystal. In addition, since the data is taken fine-phi slice mode the 3D angular position of diffraction peaks is improved. We have developed a cooled 6 sensor CMOS detector with an active area of 28.2 × 29.5 cm with 100 μm × 100 μm pixels and a readout rate of 20 Hz. The detective quantum efficiency exceeds 60% over the range 8-12 keV. One, two and twelve sensor systems are also being developed for a variety of scientific applications. Since the sensors are butt able on three sides, even larger systems could be built at reasonable cost.

  18. Active Pixel Sensors: Are CCD's Dinosaurs?

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.

    1993-01-01

    Charge-coupled devices (CCD's) are presently the technology of choice for most imaging applications. In the 23 years since their invention in 1970, they have evolved to a sophisticated level of performance. However, as with all technologies, we can be certain that they will be supplanted someday. In this paper, the Active Pixel Sensor (APS) technology is explored as a possible successor to the CCD. An active pixel is defined as a detector array technology that has at least one active transistor within the pixel unit cell. The APS eliminates the need for nearly perfect charge transfer -- the Achilles' heel of CCDs. This perfect charge transfer makes CCD's radiation 'soft,' difficult to use under low light conditions, difficult to manufacture in large array sizes, difficult to integrate with on-chip electronics, difficult to use at low temperatures, difficult to use at high frame rates, and difficult to manufacture in non-silicon materials that extend wavelength response.

  19. Flat field anomalies in an x-ray charge coupled device camera measured using a Manson x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haugh, M. J.; Schneider, M. B.

    2008-10-15

    The static x-ray imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the x rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The charge coupled device (CCD) chip is an x-ray sensitive silicon sensor, with a large format array (2kx2k), 24 {mu}m square pixels, and 15 {mu}mmore » thick. A multianode Manson x-ray source, operating up to 10 kV and 10 W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/{delta}E{approx_equal}10. The x-ray beam intensity was measured using an x-ray photodiode that has an accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The x-ray beam provides full CCD illumination and is flat, within {+-}1% maximum to minimum. The spectral efficiency was measured at ten energy bands ranging from 930 to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an x-ray CCD imager. These errors are quite different from those found in a visible CCD imager.« less

  20. Experimental Evaluation of Optically Polished Aluminum Panels on the Deep Space Network's 34 Meter Antenna

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V.

    2011-01-01

    The potential development of large aperture ground?based "photon bucket" optical receivers for deep space communications has received considerable attention recently. One approach currently under investigation is to polish the aluminum reflector panels of 34?meter microwave antennas to high reflectance, and accept the relatively large spotsize generated by state of?the?art polished aluminum panels. Theoretical analyses of receiving antenna pointing, temporal synchronization and data detection have been addressed in previous papers. Here we describe the experimental effort currently underway at the Deep Space Network (DSN) Goldstone Communications Complex in California, to test and verify these concepts in a realistic operational environment. Two polished aluminum panels (a standard DSN panel polished to high reflectance, and a custom designed aluminum panel with much better surface quality) have been mounted on the 34 meter research antenna at Deep?Space Station 13 (DSS?13), and a remotely controlled CCD camera with a large CCD sensor in a weather?proof container has been installed next to the subreflector, pointed directly at the custom polished panel. The point?spread function (PSF) generated by the Vertex polished panel has been determined to be smaller than the sensor of the CCD camera, hence a detailed picture of the PSF can be obtained every few seconds, and the sensor array data processed to determine the center of the intensity distribution. In addition to estimating the center coordinates, expected communications performance can also been evaluated with the recorded data. The results of preliminary pointing experiments with the Vertex polished panel receiver using the planet Jupiter to simulate the PSF generated by a deep?space optical transmitter are presented and discussed in this paper.

  1. Planar and finger-shaped optical tactile sensors for robotic applications

    NASA Technical Reports Server (NTRS)

    Begej, Stefan

    1988-01-01

    Progress is described regarding the development of optical tactile sensors specifically designed for application to dexterous robotics. These sensors operate on optical principles involving the frustration of total internal reflection at a waveguide/elastomer interface and produce a grey-scale tactile image that represents the normal (vertical) forces of contact. The first tactile sensor discussed is a compact, 32 x 32 planar sensor array intended for mounting on a parallel-jaw gripper. Optical fibers were employed to convey the tactile image to a CCD camera and microprocessor-based image analysis system. The second sensor had the shape and size of a human fingertip and was designed for a dexterous robotic hand. It contained 256 sensing sites (taxels) distributed in a dual-density pattern that included a tactile fovea near the tip measuring 13 x 13 mm and containing 169 taxels. The design and construction details of these tactile sensors are presented, in addition to photographs of tactile imprints.

  2. Test of CCD Precision Limits for Differential Photometry

    NASA Technical Reports Server (NTRS)

    Robinson, L. B.; Wei, M. Z.; Borucki, W. J.; Dunham, E. W.; Ford, C. H.; Granados, A. F.

    1995-01-01

    Results of tests to demonstrate the very high differential-photometric stability of CCD light sensors are presented. The measurements reported here demonstrate that in a controlled laboratory environment, a front-illuminated CCD can provide differential-photometric measurements with reproducible precision approaching one part in 10(exp 5). Practical limitations to the precision of differential-photometric measurements with CCDs and implications for spaceborne applications are discussed.

  3. Quadrilinear CCD sensors for the multispectral channel of spaceborne imagers

    NASA Astrophysics Data System (ADS)

    Materne, Alex; Gili, Bruno; Laubier, David; Gimenez, Thierry

    2001-12-01

    The PLEIADES-HR Earth Observation satellites will combine a high resolution panchromatic channel -- 0.7 m at nadir -- and a multispectral channel allowing a 2.8 m resolution. This paper presents the main specifications, design and performances of a 52 microns pitch quadrilinear CCD sensor developed by ATMEL under CNES contract, for the multispectral channel of the PLEIADES-HR instrument. The monolithic CCD device includes four lines of 1500 pixels, each line dedicated to a narrow spectral band within blue to near infra red spectrum. The design of the photodiodes and CCD registers, with larger size than those developed up to now for CNES spaceborne imagers, needed some specific structures to break the large equipotential areas where charge do not flow properly. Results are presented on the options which were experimented to improve sensitivity, maintain transfer efficiency and reduce power dissipation. The four spectral bands are achieved by four stripe filters made by SAGEM-REOSC PRODUCTS on a glass substrate, to be assembled on the sensor window. Line to line spacing on the silicon die takes into account the results of straylight analysis. A mineral layer, with high optical absorption performances is deposited between photosensitive lines to further reduce straylight.

  4. CCD sensors in synchrotron X-ray detectors

    NASA Astrophysics Data System (ADS)

    Strauss, M. G.; Naday, I.; Sherman, I. S.; Kraimer, M. R.; Westbrook, E. M.; Zaluzec, N. J.

    1988-04-01

    The intense photon flux from advanced synchrotron light sources, such as the 7-GeV synchrotron being designed at Argonne, require integrating-type detectors. Charge-coupled devices (CCDs) are well suited as synchrotron X-ray detectors. When irradiated indirectly via a phosphor followed by reducing optics, diffraction patterns of 100 cm 2 can be imaged on a 2 cm 2 CCD. With a conversion efficiency of ˜ 1 CCD electron/X-ray photon, a peak saturation capacity of > 10 6 X-rays can be obtained. A programmable CCD controller operating at a clock frequency of 20 MHz has been developed. The readout rate is 5 × 10 6 pixels/s and the shift rate in the parallel registers is 10 6 lines/s. The test detector was evaluated in two experiments. In protein crystallography diffraction patterns have been obtained from a lysozyme crystal using a conventional rotating anode X-ray generator. Based on these results we expect to obtain at a synchrotron diffraction images at a rate of ˜ 1 frame/s or a complete 3-dimensional data set from a single crystal in ˜ 2 min. In electron energy-loss spectroscopy (EELS), the CCD was used in a parallel detection mode which is similar to the mode array detectors are used in dispersive EXAFS. With a beam current corresponding to 3 × 10 9 electron/s on the detector, a series of 64 spectra were recorded on the CCD in a continuous sequence without interruption due to readout. The frame-to-frame pixel signal fluctuations had σ = 0.4% from which DQE = 0.4 was obtained, where the detector conversion efficiency was 2.6 CCD electrons/X-ray photon. These multiple frame series also showed the time-resolved modulation of the electron microscope optics by stray magnetic fields.

  5. Accurate measurement of chest compression depth using impulse-radio ultra-wideband sensor on a mattress

    PubMed Central

    Kim, Yeomyung

    2017-01-01

    Objective We developed a new chest compression depth (CCD) measuring technology using radar and impulse-radio ultra-wideband (IR-UWB) sensor. This study was performed to determine its accuracy on a soft surface. Methods Four trials, trial 1: chest compressions on the floor using an accelerometer device; trial 2: chest compressions on the floor using an IR-UWB sensor; trial 3: chest compressions on a foam mattress using an accelerometer device; trial 4: chest compressions on a foam mattress using an IR-UWB sensor, were performed in a random order. In all the trials, a cardiopulmonary resuscitation provider delivered 50 uninterrupted chest compressions to a manikin. Results The CCD measured by the manikin and the device were as follows: 57.42 ± 2.23 and 53.92 ± 2.92 mm, respectively in trial 1 (p < 0.001); 56.29 ± 1.96 and 54.16 ± 3.90 mm, respectively in trial 2 (p < 0.001); 55.61 ± 1.57 and 103.48 ± 10.48 mm, respectively in trial 3 (p < 0.001); 57.14 ± 3.99 and 55.51 ± 3.39 mm, respectively in trial 4 (p = 0.012). The gaps between the CCD measured by the manikin and the devices (accelerometer device vs. IR-UWB sensor) on the floor were not different (3.50 ± 2.08 mm vs. 3.15 ± 2.27 mm, respectively, p = 0.136). However, the gaps were significantly different on the foam mattress (48.53 ± 5.65 mm vs. 4.10 ± 2.47 mm, p < 0.001). Conclusion The IR-UWB sensor could measure the CCD accurately both on the floor and on the foam mattress. PMID:28854262

  6. Accurate measurement of chest compression depth using impulse-radio ultra-wideband sensor on a mattress.

    PubMed

    Yu, Byung Gyu; Oh, Je Hyeok; Kim, Yeomyung; Kim, Tae Wook

    2017-01-01

    We developed a new chest compression depth (CCD) measuring technology using radar and impulse-radio ultra-wideband (IR-UWB) sensor. This study was performed to determine its accuracy on a soft surface. Four trials, trial 1: chest compressions on the floor using an accelerometer device; trial 2: chest compressions on the floor using an IR-UWB sensor; trial 3: chest compressions on a foam mattress using an accelerometer device; trial 4: chest compressions on a foam mattress using an IR-UWB sensor, were performed in a random order. In all the trials, a cardiopulmonary resuscitation provider delivered 50 uninterrupted chest compressions to a manikin. The CCD measured by the manikin and the device were as follows: 57.42 ± 2.23 and 53.92 ± 2.92 mm, respectively in trial 1 (p < 0.001); 56.29 ± 1.96 and 54.16 ± 3.90 mm, respectively in trial 2 (p < 0.001); 55.61 ± 1.57 and 103.48 ± 10.48 mm, respectively in trial 3 (p < 0.001); 57.14 ± 3.99 and 55.51 ± 3.39 mm, respectively in trial 4 (p = 0.012). The gaps between the CCD measured by the manikin and the devices (accelerometer device vs. IR-UWB sensor) on the floor were not different (3.50 ± 2.08 mm vs. 3.15 ± 2.27 mm, respectively, p = 0.136). However, the gaps were significantly different on the foam mattress (48.53 ± 5.65 mm vs. 4.10 ± 2.47 mm, p < 0.001). The IR-UWB sensor could measure the CCD accurately both on the floor and on the foam mattress.

  7. Subframe Burst Gating for Raman Spectroscopy in Combustion

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Fischer, David; Nguyen, Quang-Viet

    2010-01-01

    We describe an architecture for spontaneous Raman scattering utilizing a frame-transfer CCD sensor operating in a subframe burst-gating mode to realize time-resolved combustion diagnostics. The technique permits all-electronic optical gating with microsecond shutter speeds 5 J.Ls) without compromising optical throughput or image fidelity. When used in conjunction with a pair of orthogonally polarized excitation lasers, the technique measures single-shot vibrational Raman scattering that is minimally contaminated by problematic optical background noise.

  8. Automatic calibration system for analog instruments based on DSP and CCD sensor

    NASA Astrophysics Data System (ADS)

    Lan, Jinhui; Wei, Xiangqin; Bai, Zhenlong

    2008-12-01

    Currently, the calibration work of analog measurement instruments is mainly completed by manual and there are many problems waiting for being solved. In this paper, an automatic calibration system (ACS) based on Digital Signal Processor (DSP) and Charge Coupled Device (CCD) sensor is developed and a real-time calibration algorithm is presented. In the ACS, TI DM643 DSP processes the data received by CCD sensor and the outcome is displayed on Liquid Crystal Display (LCD) screen. For the algorithm, pointer region is firstly extracted for improving calibration speed. And then a math model of the pointer is built to thin the pointer and determine the instrument's reading. Through numbers of experiments, the time of once reading is no more than 20 milliseconds while it needs several seconds if it is done manually. At the same time, the error of the instrument's reading satisfies the request of the instruments. It is proven that the automatic calibration system can effectively accomplish the calibration work of the analog measurement instruments.

  9. Radioactive Quality Evaluation and Cross Validation of Data from the HJ-1A/B Satellites' CCD Sensors

    PubMed Central

    Zhang, Xin; Zhao, Xiang; Liu, Guodong; Kang, Qian; Wu, Donghai

    2013-01-01

    Data from multiple sensors are frequently used in Earth science to gain a more complete understanding of spatial information changes. Higher quality and mutual consistency are prerequisites when multiple sensors are jointly used. The HJ-1A/B satellites successfully launched on 6 September 2008. There are four charge-coupled device (CCD) sensors with uniform spatial resolutions and spectral range onboard the HJ-A/B satellites. Whether these data are keeping consistency is a major issue before they are used. This research aims to evaluate the data consistency and radioactive quality from the four CCDs. First, images of urban, desert, lake and ocean are chosen as the objects of evaluation. Second, objective evaluation variables, such as mean, variance and angular second moment, are used to identify image performance. Finally, a cross validation method are used to ensure the correlation of the data from the four HJ-1A/B CCDs and that which is gathered from the moderate resolution imaging spectro-radiometer (MODIS). The results show that the image quality of HJ-1A/B CCDs is stable, and the digital number distribution of CCD data is relatively low. In cross validation with MODIS, the root mean square errors of bands 1, 2 and 3 range from 0.055 to 0.065, and for band 4 it is 0.101. The data from HJ-1A/B CCD have better consistency. PMID:23881127

  10. Radioactive quality evaluation and cross validation of data from the HJ-1A/B satellites' CCD sensors.

    PubMed

    Zhang, Xin; Zhao, Xiang; Liu, Guodong; Kang, Qian; Wu, Donghai

    2013-07-05

    Data from multiple sensors are frequently used in Earth science to gain a more complete understanding of spatial information changes. Higher quality and mutual consistency are prerequisites when multiple sensors are jointly used. The HJ-1A/B satellites successfully launched on 6 September 2008. There are four charge-coupled device (CCD) sensors with uniform spatial resolutions and spectral range onboard the HJ-A/B satellites. Whether these data are keeping consistency is a major issue before they are used. This research aims to evaluate the data consistency and radioactive quality from the four CCDs. First, images of urban, desert, lake and ocean are chosen as the objects of evaluation. Second, objective evaluation variables, such as mean, variance and angular second moment, are used to identify image performance. Finally, a cross validation method are used to ensure the correlation of the data from the four HJ-1A/B CCDs and that which is gathered from the moderate resolution imaging spectro-radiometer (MODIS). The results show that the image quality of HJ-1A/B CCDs is stable, and the digital number distribution of CCD data is relatively low. In cross validation with MODIS, the root mean square errors of bands 1, 2 and 3 range from 0.055 to 0.065, and for band 4 it is 0.101. The data from HJ-1A/B CCD have better consistency.

  11. Periodicity analysis on cat-eye reflected beam profiles of optical detectors

    NASA Astrophysics Data System (ADS)

    Gong, Mali; He, Sifeng

    2017-05-01

    The cat-eye effect reflected beam profiles of most optical detectors have a certain characteristic of periodicity, which is caused by array arrangement of sensors at their optical focal planes. It is the first time to find and prove that the reflected beam profile becomes several periodic spots at the reflected propagation distance corresponding to half the imaging distance of a CCD camera. Furthermore, the spatial cycle of these spots is approximately constant, independent of the CCD camera's imaging distance, which is related only to the focal length and pixel size of the CCD sensor. Thus, we can obtain the imaging distance and intrinsic parameters of the optical detector by analyzing its cat-eye reflected beam profiles. This conclusion can be applied in the field of non-cooperative cat-eye target recognition.

  12. Improved sensitivity high-definition interline CCD using the KODAK TRUESENSE color filter pattern

    NASA Astrophysics Data System (ADS)

    DiBella, James; Andreghetti, Marco; Enge, Amy; Chen, William; Stanka, Timothy; Kaser, Robert

    2010-01-01

    The KODAK TRUESENSE Color Filter Pattern has technology that for the first time is applied to a commercially available interline CCD. This 2/3" true-HD sensor will be described along with its performance attributes, including sensitivity improvement as compared to the Bayer CFA version of the same sensor. In addition, an overview of the system developed for demonstration and evaluation will be provided. Examples of the benefits of the new technology in specific applications including surveillance and intelligent traffic systems will be discussed.

  13. MOSES: a modular sensor electronics system for space science and commercial applications

    NASA Astrophysics Data System (ADS)

    Michaelis, Harald; Behnke, Thomas; Tschentscher, Matthias; Mottola, Stefano; Neukum, Gerhard

    1999-10-01

    The camera group of the DLR--Institute of Space Sensor Technology and Planetary Exploration is developing imaging instruments for scientific and space applications. One example is the ROLIS imaging system of the ESA scientific space mission `Rosetta', which consists of a descent/downlooking and a close-up imager. Both are parts of the Rosetta-Lander payload and will operate in the extreme environment of a cometary nucleus. The Rosetta Lander Imaging System (ROLIS) will introduce a new concept for the sensor electronics, which is referred to as MOSES (Modula Sensor Electronics System). MOSES is a 3D miniaturized CCD- sensor-electronics which is based on single modules. Each of the modules has some flexibility and enables a simple adaptation to specific application requirements. MOSES is mainly designed for space applications where high performance and high reliability are required. This concept, however, can also be used in other science or commercial applications. This paper describes the concept of MOSES, its characteristics, performance and applications.

  14. Interference-free optical detection for Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    Fischer, David G (Inventor); Kojima, Jun (Inventor); Nguyen, Quang-Viet (Inventor)

    2012-01-01

    An architecture for spontaneous Raman scattering (SRS) that utilizes a frame-transfer charge-coupled device (CCD) sensor operating in a subframe burst gating mode to realize time-resolved combustion diagnostics is disclosed. The technique permits all-electronic optical gating with microsecond shutter speeds (<5 .mu.s), without compromising optical throughput or image fidelity. When used in conjunction with a pair of orthogonally-polarized excitation lasers, the technique measures time-resolved vibrational Raman scattering that is minimally contaminated by problematic optical background noise.

  15. Optical cell monitoring system for underwater targets

    NASA Astrophysics Data System (ADS)

    Moon, SangJun; Manzur, Fahim; Manzur, Tariq; Demirci, Utkan

    2008-10-01

    We demonstrate a cell based detection system that could be used for monitoring an underwater target volume and environment using a microfluidic chip and charge-coupled-device (CCD). This technique allows us to capture specific cells and enumerate these cells on a large area on a microchip. The microfluidic chip and a lens-less imaging platform were then merged to monitor cell populations and morphologies as a system that may find use in distributed sensor networks. The chip, featuring surface chemistry and automatic cell imaging, was fabricated from a cover glass slide, double sided adhesive film and a transparent Polymethlymetacrylate (PMMA) slab. The optically clear chip allows detecting cells with a CCD sensor. These chips were fabricated with a laser cutter without the use of photolithography. We utilized CD4+ cells that are captured on the floor of a microfluidic chip due to the ability to address specific target cells using antibody-antigen binding. Captured CD4+ cells were imaged with a fluorescence microscope to verify the chip specificity and efficiency. We achieved 70.2 +/- 6.5% capturing efficiency and 88.8 +/- 5.4% specificity for CD4+ T lymphocytes (n = 9 devices). Bright field images of the captured cells in the 24 mm × 4 mm × 50 μm microfluidic chip were obtained with the CCD sensor in one second. We achieved an inexpensive system that rapidly captures cells and images them using a lens-less CCD system. This microfluidic device can be modified for use in single cell detection utilizing a cheap light-emitting diode (LED) chip instead of a wide range CCD system.

  16. Dosimetry of heavy ions by use of CCD detectors

    NASA Technical Reports Server (NTRS)

    Schott, J. U.

    1994-01-01

    The design and the atomic composition of Charge Coupled Devices (CCD's) make them unique for investigations of single energetic particle events. As detector system for ionizing particles they detect single particles with local resolution and near real time particle tracking. In combination with its properties as optical sensor, particle transversals of single particles are to be correlated to any objects attached to the light sensitive surface of the sensor by simple imaging of their shadow and subsequent image analysis of both, optical image and particle effects, observed in affected pixels. With biological objects it is possible for the first time to investigate effects of single heavy ions in tissue or extinguished organs of metabolizing (i.e. moving) systems with a local resolution better than 15 microns. Calibration data for particle detection in CCD's are presented for low energetic protons and heavy ions.

  17. Signal processing applications of massively parallel charge domain computing devices

    NASA Technical Reports Server (NTRS)

    Fijany, Amir (Inventor); Barhen, Jacob (Inventor); Toomarian, Nikzad (Inventor)

    1999-01-01

    The present invention is embodied in a charge coupled device (CCD)/charge injection device (CID) architecture capable of performing a Fourier transform by simultaneous matrix vector multiplication (MVM) operations in respective plural CCD/CID arrays in parallel in O(1) steps. For example, in one embodiment, a first CCD/CID array stores charge packets representing a first matrix operator based upon permutations of a Hartley transform and computes the Fourier transform of an incoming vector. A second CCD/CID array stores charge packets representing a second matrix operator based upon different permutations of a Hartley transform and computes the Fourier transform of an incoming vector. The incoming vector is applied to the inputs of the two CCD/CID arrays simultaneously, and the real and imaginary parts of the Fourier transform are produced simultaneously in the time required to perform a single MVM operation in a CCD/CID array.

  18. Improving the Ability of Image Sensors to Detect Faint Stars and Moving Objects Using Image Deconvolution Techniques

    PubMed Central

    Fors, Octavi; Núñez, Jorge; Otazu, Xavier; Prades, Albert; Cardinal, Robert D.

    2010-01-01

    In this paper we show how the techniques of image deconvolution can increase the ability of image sensors as, for example, CCD imagers, to detect faint stars or faint orbital objects (small satellites and space debris). In the case of faint stars, we show that this benefit is equivalent to double the quantum efficiency of the used image sensor or to increase the effective telescope aperture by more than 30% without decreasing the astrometric precision or introducing artificial bias. In the case of orbital objects, the deconvolution technique can double the signal-to-noise ratio of the image, which helps to discover and control dangerous objects as space debris or lost satellites. The benefits obtained using CCD detectors can be extrapolated to any kind of image sensors. PMID:22294896

  19. Improving the ability of image sensors to detect faint stars and moving objects using image deconvolution techniques.

    PubMed

    Fors, Octavi; Núñez, Jorge; Otazu, Xavier; Prades, Albert; Cardinal, Robert D

    2010-01-01

    In this paper we show how the techniques of image deconvolution can increase the ability of image sensors as, for example, CCD imagers, to detect faint stars or faint orbital objects (small satellites and space debris). In the case of faint stars, we show that this benefit is equivalent to double the quantum efficiency of the used image sensor or to increase the effective telescope aperture by more than 30% without decreasing the astrometric precision or introducing artificial bias. In the case of orbital objects, the deconvolution technique can double the signal-to-noise ratio of the image, which helps to discover and control dangerous objects as space debris or lost satellites. The benefits obtained using CCD detectors can be extrapolated to any kind of image sensors.

  20. Development of CCD imaging sensors for space applications, phase 1

    NASA Technical Reports Server (NTRS)

    Antcliffe, G. A.

    1975-01-01

    The results of an experimental investigation to develop a large area charge coupled device (CCD) imager for space photography applications are described. Details of the design and processing required to achieve 400 X 400 imagers are presented together with a discussion of the optical characterization techniques developed for this program. A discussion of several aspects of large CCD performance is given with detailed test reports. The areas covered include dark current, uniformity of optical response, square wave amplitude response, spectral responsivity and dynamic range.

  1. Accuracy of Conventional and Digital Radiography in Detecting External Root Resorption

    PubMed Central

    Mesgarani, Abbas; Haghanifar, Sina; Ehsani, Maryam; Yaghub, Samereh Dokhte; Bijani, Ali

    2014-01-01

    Introduction: External root resorption (ERR) is associated with physiological and pathological dissolution of mineralized tissues by clastic cells and radiography is one of the most important methods in its diagnosis. The aim of this experimental study was to evaluate the accuracy of conventional intraoral radiography (CR) in comparison with digital radiographic techniques, i.e. charge-coupled device (CCD) and photo-stimulable phosphor (PSP) sensors, in detection of ERR. Methods and Materials: This study was performed on 80 extracted human mandibular premolars. After taking separate initial periapical radiographs with CR technique, CCD and PSP sensors, the artificial defects resembling ERR with variable sizes were created in apical half of the mesial, distal and buccal surfaces of the teeth. Ten teeth were used as control samples without any resorption. The radiographs were then repeated with 2 different exposure times and the images were observed by 3 observers. Data were analyzed using SPSS version 17 and chi-squared and Cohen’s Kappa tests with 95% confidence interval (CI=95%). Result: The CCD had the highest percentage of correct assessment compared to the CR and PSP sensors, although the difference was not significant (P=0.39). It was shown that the higher dosage of radiation increases the accuracy of diagnosis; however, it was only significant for CCD sensor (P=0.02). Also, the accuracy of diagnosis increased with the increase in the size of lesion (P=0.001). Conclusion: Statistically significant difference was not observed for accurate detection of ERR by conventional and digital radiographic techniques. PMID:25386202

  2. The fast and accurate 3D-face scanning technology based on laser triangle sensors

    NASA Astrophysics Data System (ADS)

    Wang, Jinjiang; Chang, Tianyu; Ge, Baozhen; Tian, Qingguo; Chen, Yang; Kong, Bin

    2013-08-01

    A laser triangle scanning method and the structure of 3D-face measurement system were introduced. In presented system, a liner laser source was selected as an optical indicated signal in order to scanning a line one times. The CCD image sensor was used to capture image of the laser line modulated by human face. The system parameters were obtained by system calibrated calculated. The lens parameters of image part of were calibrated with machine visual image method and the triangle structure parameters were calibrated with fine wire paralleled arranged. The CCD image part and line laser indicator were set with a linear motor carry which can achieve the line laser scanning form top of the head to neck. For the nose is ledge part and the eyes are sunk part, one CCD image sensor can not obtain the completed image of laser line. In this system, two CCD image sensors were set symmetric at two sides of the laser indicator. In fact, this structure includes two laser triangle measure units. Another novel design is there laser indicators were arranged in order to reduce the scanning time for it is difficult for human to keep static for longer time. The 3D data were calculated after scanning. And further data processing include 3D coordinate refine, mesh calculate and surface show. Experiments show that this system has simply structure, high scanning speed and accurate. The scanning range covers the whole head of adult, the typical resolution is 0.5mm.

  3. The impact of radiation damage on photon counting with an EMCCD for the WFIRST-AFTA coronagraph

    NASA Astrophysics Data System (ADS)

    Bush, Nathan; Hall, David; Holland, Andrew; Burgon, Ross; Murray, Neil; Gow, Jason; Soman, Matthew; Jordan, Douglas; Demers, Richard; Harding, Leon; Hoenk, Michael; Michaels, Darren; Nemati, Bijan; Peddada, Pavani

    2015-09-01

    WFIRST-AFTA is a 2.4m class NASA observatory designed to address a wide range of science objectives using two complementary scientific payloads. The Wide Field Instrument (WFI) offers Hubble quality imaging over a 0.28 square degree field of view, and will gather NIR statistical data on exoplanets through gravitational microlensing. The second instrument is a high contrast coronagraph that will carry out the direct imaging and spectroscopic analysis of exoplanets, providing a means to probe the structure and composition of planetary systems. The coronagraph instrument is expected to operate in low photon flux for long integration times, meaning all noise sources must be kept to a minimum. In order to satisfy the low noise requirements, the Electron Multiplication (EM)-CCD has been baselined for both the imaging and spectrograph cameras. The EMCCD was selected in comparison with other candidates because of its low effective electronic read noise at sub-electron values with appropriate multiplication gain setting. The presence of other noise sources, however, such as thermal dark signal and Clock Induced Charge (CIC), need to be characterised and mitigated. In addition, operation within a space environment will subject the device to radiation damage that will degrade the Charge Transfer Efficiency (CTE) of the device throughout the mission lifetime. Here we present our latest results from pre- and post-irradiation testing of the e2v CCD201-20 BI EMCCD sensor, baselined for the WFIRST-AFTA coronagraph instrument. A description of the detector technology is presented, alongside considerations for operation within a space environment. The results from a room temperature irradiation are discussed in context with the nominal operating requirements of AFTA-C and future work which entails a cryogenic irradiation of the CCD201-20 is presented.

  4. Low power, compact charge coupled device signal processing system

    NASA Technical Reports Server (NTRS)

    Bosshart, P. W.; Buss, D. D.; Eversole, W. L.; Hewes, C. R.; Mayer, D. J.

    1980-01-01

    A variety of charged coupled devices (CCDs) for performing programmable correlation for preprocessing environmental sensor data preparatory to its transmission to the ground were developed. A total of two separate ICs were developed and a third was evaluated. The first IC was a CCD chirp z transform IC capable of performing a 32 point DFT at frequencies to 1 MHz. All on chip circuitry operated as designed with the exception of the limited dynamic range caused by a fixed pattern noise due to interactions between the digital and analog circuits. The second IC developed was a 64 stage CCD analog/analog correlator for performing time domain correlation. Multiplier errors were found to be less than 1 percent at designed signal levels and less than 0.3 percent at the measured smaller levels. A prototype IC for performing time domain correlation was also evaluated.

  5. Producing CCD imaging sensor with flashed backside metal film

    NASA Technical Reports Server (NTRS)

    Janesick, James R. (Inventor)

    1988-01-01

    A backside illuminated CCD imaging sensor for reading out image charges from wells of the array of pixels is significantly improved for blue, UV, far UV and low energy x-ray wavelengths (1-5000.ANG.) by so overthinning the backside as to place the depletion edge at the surface and depositing a thin transparent metal film of about 10.ANG. on a native-quality oxide film of less than about 30.ANG. grown on the thinned backside. The metal is selected to have a higher work function than that of the semiconductor to so bend the energy bands (at the interface of the semiconductor material and the oxide film) as to eliminate wells that would otherwise trap minority carriers. A bias voltage may be applied to extend the frontside depletion edge to the interface of the semiconductor material with the oxide film in the event there is not sufficient thinning. This metal film (flash gate), which improves and stabilizes the quantum efficiency of a CCD imaging sensor, will also improve the QE of any p-n junction photodetector.

  6. CCD imaging sensor with flashed backside metal film

    NASA Technical Reports Server (NTRS)

    Janesick, James R. (Inventor)

    1991-01-01

    A backside illuminated CCD imaging sensor for reading out image charges from wells of the array of pixels is significantly improved for blue, UV, far UV and low energy x-ray wavelengths (1-5000.ANG.) by so overthinning the backside as to place the depletion edge at the surface and depositing a thin transparent metal film of about 10.ANG. on a native-quality oxide film of less than about 30.ANG. grown on the thinned backside. The metal is selected to have a higher work function than that of the semiconductor to so bend the energy bands (at the interface of the semiconductor material and the oxide film) as to eliminate wells that would otherwise trap minority carriers. A bias voltage may be applied to extend the frontside depletion edge to the interface of the semiconductor material with the oxide film in the event there is not sufficient thinning. This metal film (flash gate), which improves and stabilizes the quantum efficiency of a CCD imaging sensor, will also improve the QE of any p-n junction photodetector.

  7. High-speed high-resolution epifluorescence imaging system using CCD sensor and digital storage for neurobiological research

    NASA Astrophysics Data System (ADS)

    Takashima, Ichiro; Kajiwara, Riichi; Murano, Kiyo; Iijima, Toshio; Morinaka, Yasuhiro; Komobuchi, Hiroyoshi

    2001-04-01

    We have designed and built a high-speed CCD imaging system for monitoring neural activity in an exposed animal cortex stained with a voltage-sensitive dye. Two types of custom-made CCD sensors were developed for this system. The type I chip has a resolution of 2664 (H) X 1200 (V) pixels and a wide imaging area of 28.1 X 13.8 mm, while the type II chip has 1776 X 1626 pixels and an active imaging area of 20.4 X 18.7 mm. The CCD arrays were constructed with multiple output amplifiers in order to accelerate the readout rate. The two chips were divided into either 24 (I) or 16 (II) distinct areas that were driven in parallel. The parallel CCD outputs were digitized by 12-bit A/D converters and then stored in the frame memory. The frame memory was constructed with synchronous DRAM modules, which provided a capacity of 128 MB per channel. On-chip and on-memory binning methods were incorporated into the system, e.g., this enabled us to capture 444 X 200 pixel-images for periods of 36 seconds at a rate of 500 frames/second. This system was successfully used to visualize neural activity in the cortices of rats, guinea pigs, and monkeys.

  8. Development of CCD Cameras for Soft X-ray Imaging at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teruya, A. T.; Palmer, N. E.; Schneider, M. B.

    2013-09-01

    The Static X-Ray Imager (SXI) is a National Ignition Facility (NIF) diagnostic that uses a CCD camera to record time-integrated X-ray images of target features such as the laser entrance hole of hohlraums. SXI has two dedicated positioners on the NIF target chamber for viewing the target from above and below, and the X-ray energies of interest are 870 eV for the “soft” channel and 3 – 5 keV for the “hard” channels. The original cameras utilize a large format back-illuminated 2048 x 2048 CCD sensor with 24 micron pixels. Since the original sensor is no longer available, an effortmore » was recently undertaken to build replacement cameras with suitable new sensors. Three of the new cameras use a commercially available front-illuminated CCD of similar size to the original, which has adequate sensitivity for the hard X-ray channels but not for the soft. For sensitivity below 1 keV, Lawrence Livermore National Laboratory (LLNL) had additional CCDs back-thinned and converted to back-illumination for use in the other two new cameras. In this paper we describe the characteristics of the new cameras and present performance data (quantum efficiency, flat field, and dynamic range) for the front- and back-illuminated cameras, with comparisons to the original cameras.« less

  9. A Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Software

    NASA Astrophysics Data System (ADS)

    Oh, S. H.; Kang, Y. W.; Byun, Y. I.

    2007-12-01

    We present a software which we developed for the multi-purpose CCD camera. This software can be used on the all 3 types of CCD - KAF-0401E (768×512), KAF-1602E (15367times;1024), KAF-3200E (2184×1472) made in KODAK Co.. For the efficient CCD camera control, the software is operated with two independent processes of the CCD control program and the temperature/shutter operation program. This software is designed to fully automatic operation as well as manually operation under LINUX system, and is controled by LINUX user signal procedure. We plan to use this software for all sky survey system and also night sky monitoring and sky observation. As our results, the read-out time of each CCD are about 15sec, 64sec, 134sec for KAF-0401E, KAF-1602E, KAF-3200E., because these time are limited by the data transmission speed of parallel port. For larger format CCD, the data transmission is required more high speed. we are considering this control software to one using USB port for high speed data transmission.

  10. Fully depleted back illuminated CCD

    DOEpatents

    Holland, Stephen Edward

    2001-01-01

    A backside illuminated charge coupled device (CCD) is formed of a relatively thick high resistivity photon sensitive silicon substrate, with frontside electronic circuitry, and an optically transparent backside ohmic contact for applying a backside voltage which is at least sufficient to substantially fully deplete the substrate. A greater bias voltage which overdepletes the substrate may also be applied. One way of applying the bias voltage to the substrate is by physically connecting the voltage source to the ohmic contact. An alternate way of applying the bias voltage to the substrate is to physically connect the voltage source to the frontside of the substrate, at a point outside the depletion region. Thus both frontside and backside contacts can be used for backside biasing to fully deplete the substrate. Also, high resistivity gaps around the CCD channels and electrically floating channel stop regions can be provided in the CCD array around the CCD channels. The CCD array forms an imaging sensor useful in astronomy.

  11. Modelling and testing the x-ray performance of CCD and CMOS APS detectors using numerical finite element simulations

    NASA Astrophysics Data System (ADS)

    Weatherill, Daniel P.; Stefanov, Konstantin D.; Greig, Thomas A.; Holland, Andrew D.

    2014-07-01

    Pixellated monolithic silicon detectors operated in a photon-counting regime are useful in spectroscopic imaging applications. Since a high energy incident photon may produce many excess free carriers upon absorption, both energy and spatial information can be recovered by resolving each interaction event. The performance of these devices in terms of both the energy and spatial resolution is in large part determined by the amount of diffusion which occurs during the collection of the charge cloud by the pixels. Past efforts to predict the X-ray performance of imaging sensors have used either analytical solutions to the diffusion equation or simplified monte carlo electron transport models. These methods are computationally attractive and highly useful but may be complemented using more physically detailed models based on TCAD simulations of the devices. Here we present initial results from a model which employs a full transient numerical solution of the classical semiconductor equations to model charge collection in device pixels under stimulation from initially Gaussian photogenerated charge clouds, using commercial TCAD software. Realistic device geometries and doping are included. By mapping the pixel response to different initial interaction positions and charge cloud sizes, the charge splitting behaviour of the model sensor under various illuminations and operating conditions is investigated. Experimental validation of the model is presented from an e2v CCD30-11 device under varying substrate bias, illuminated using an Fe-55 source.

  12. Backthinned TDI CCD image sensor design and performance for the Pleiades high resolution Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Materne, A.; Bardoux, A.; Geoffray, H.; Tournier, T.; Kubik, P.; Morris, D.; Wallace, I.; Renard, C.

    2017-11-01

    The PLEIADES-HR Earth observing satellites, under CNES development, combine a 0.7m resolution panchromatic channel, and a multispectral channel allowing a 2.8 m resolution, in 4 spectral bands. The 2 satellites will be placed on a sun-synchronous orbit at an altitude of 695 km. The camera operates in push broom mode, providing images across a 20 km swath. This paper focuses on the specifications, design and performance of the TDI detectors developed by e2v technologies under CNES contract for the panchromatic channel. Design drivers, derived from the mission and satellite requirements, architecture of the sensor and measurement results for key performances of the first prototypes are presented.

  13. Evolution of the Concordia seismological observatory station CCD (GEOSCOPE network): a new post-hole installation on Antarctica inlandsis

    NASA Astrophysics Data System (ADS)

    Zigone, D.; Danecek, P.; Bès de Berc, M.; Maggi, A.; Thore, J. Y.; Leveque, J. J.; Vallee, M.; Bernard, A.; Sayadi, J.; Morelli, A.; Delladio, A.; Chappellaz, J. A.; Alemany, O.; Possenti, P.; Stutzmann, E.; Bonaime, S.; Pesqueira, F.; Pardo, C.; Vincent, D.

    2017-12-01

    Concordia (75°S 123°E) is a scientific base operated by French polar institute IPEV (Institut Paul-Emile Victor) and Italian Antarctic Program PNRA (Programma Nazionale di Ricerche in Antartide), and is located at Dome C, on the ice sheet of the East Antarctica plateau. It hosts a seismological observatory (CCD), which is jointly operated by EOST (Strasbourg) and INGV (Roma). The highly strategic location and remoteness is the key strength of our program, which has provided observatory quality data since 2000. The station has been integrated into the GEOSCOPE network in 2008 and the data are now available in real time through GEOSCOPE and IRIS. The observatory is located at distance of 1km from the base. The current installation is placed at a depth of 12m in an artificial vault constructed from two shipping containers and buried in the snow. The vault is thermally very stable, but the relatively close proximity to the base causes increased diurnal noise ( 40 dB) at frequencies above 1Hz, especially during the summer season. The uppermost 100 m thick firn (snow) layer forms a waveguide, where anthropic noise from the base is trapped and easily picked up by the seismometers (T240 and STS2). Another limitation comes from the hydrostatic pressure of the snow which is continuously deforming the metallic structures: we record container cracking events on the seismograms, and we see visual evidence of structural deformations inside the tunnel and the vault. We propose an evolution of the CCD station towards a post-hole installation. Placing a sensor at a depth of approximately 130 meters, will reduce noise from thermal effects, from tilting and from anthropogenic activity, because it would be located below the firn layer waveguide and the ice pinch-out depth. In order to operate the borehole station for several years, we intend to keep the hole open and the sensor accessible, while ensuring good coupling between the sensor and the surrounding hard ice. To achieve these goals and to avoid any hydrostatic movement, we shall install a PEHD casing in the upper section of the borehole located in the firn layer. After installing the instrument in the hard ice, we shall then fill the hole with silicone oil whose density is similar to that of ice. The drilling is scheduled to start in January 2018. Updates on the project will be presented at the meeting.

  14. Ionizing doses and displacement damage testing of COTS CMOS imagers

    NASA Astrophysics Data System (ADS)

    Bernard, Frédéric; Petit, Sophie; Courtade, Sophie

    2017-11-01

    CMOS sensors begin to be a credible alternative to CCD sensors in some space missions. However, technology evolution of CMOS sensors is much faster than CCD one's. So a continuous technology evaluation is needed for CMOS imagers. Many of commercial COTS (Components Off The Shelf) CMOS sensors use organic filters, micro-lenses and non rad-hard technologies. An evaluation of the possibilities offered by such technologies is interesting before any custom development. This can be obtained by testing commercial COTS imagers. This article will present electro-optical performances evolution of off the shelves CMOS imagers after Ionizing Doses until 50kRad(Si) and Displacement Damage environment tests (until 1011 p/cm2 at 50 MeV). Dark current level and non uniformity evolutions are compared and discussed. Relative spectral response measurement and associated evolution with irradiation will also be presented and discussed. Tests have been performed on CNES detection benches.

  15. Integrative Multi-Spectral Sensor Device for Far-Infrared and Visible Light Fusion

    NASA Astrophysics Data System (ADS)

    Qiao, Tiezhu; Chen, Lulu; Pang, Yusong; Yan, Gaowei

    2018-06-01

    Infrared and visible light image fusion technology is a hot spot in the research of multi-sensor fusion technology in recent years. Existing infrared and visible light fusion technologies need to register before fusion because of using two cameras. However, the application effect of the registration technology has yet to be improved. Hence, a novel integrative multi-spectral sensor device is proposed for infrared and visible light fusion, and by using the beam splitter prism, the coaxial light incident from the same lens is projected to the infrared charge coupled device (CCD) and visible light CCD, respectively. In this paper, the imaging mechanism of the proposed sensor device is studied with the process of the signals acquisition and fusion. The simulation experiment, which involves the entire process of the optic system, signal acquisition, and signal fusion, is constructed based on imaging effect model. Additionally, the quality evaluation index is adopted to analyze the simulation result. The experimental results demonstrate that the proposed sensor device is effective and feasible.

  16. Direct Detection Electron Energy-Loss Spectroscopy: A Method to Push the Limits of Resolution and Sensitivity.

    PubMed

    Hart, James L; Lang, Andrew C; Leff, Asher C; Longo, Paolo; Trevor, Colin; Twesten, Ray D; Taheri, Mitra L

    2017-08-15

    In many cases, electron counting with direct detection sensors offers improved resolution, lower noise, and higher pixel density compared to conventional, indirect detection sensors for electron microscopy applications. Direct detection technology has previously been utilized, with great success, for imaging and diffraction, but potential advantages for spectroscopy remain unexplored. Here we compare the performance of a direct detection sensor operated in counting mode and an indirect detection sensor (scintillator/fiber-optic/CCD) for electron energy-loss spectroscopy. Clear improvements in measured detective quantum efficiency and combined energy resolution/energy field-of-view are offered by counting mode direct detection, showing promise for efficient spectrum imaging, low-dose mapping of beam-sensitive specimens, trace element analysis, and time-resolved spectroscopy. Despite the limited counting rate imposed by the readout electronics, we show that both core-loss and low-loss spectral acquisition are practical. These developments will benefit biologists, chemists, physicists, and materials scientists alike.

  17. Establishing imaging sensor specifications for digital still cameras

    NASA Astrophysics Data System (ADS)

    Kriss, Michael A.

    2007-02-01

    Digital Still Cameras, DSCs, have now displaced conventional still cameras in most markets. The heart of a DSC is thought to be the imaging sensor, be it Full Frame CCD, and Interline CCD, a CMOS sensor or the newer Foveon buried photodiode sensors. There is a strong tendency by consumers to consider only the number of mega-pixels in a camera and not to consider the overall performance of the imaging system, including sharpness, artifact control, noise, color reproduction, exposure latitude and dynamic range. This paper will provide a systematic method to characterize the physical requirements of an imaging sensor and supporting system components based on the desired usage. The analysis is based on two software programs that determine the "sharpness", potential for artifacts, sensor "photographic speed", dynamic range and exposure latitude based on the physical nature of the imaging optics, sensor characteristics (including size of pixels, sensor architecture, noise characteristics, surface states that cause dark current, quantum efficiency, effective MTF, and the intrinsic full well capacity in terms of electrons per square centimeter). Examples will be given for consumer, pro-consumer, and professional camera systems. Where possible, these results will be compared to imaging system currently on the market.

  18. Photon-counting image sensors for the ultraviolet

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.

    1985-01-01

    An investigation on specific performance details of photon counting, ultraviolet image sensors having 2-dimensional formats is reviewed. In one study, controlled experiments were performed which compare the quantum efficiencies, in pulse counting mode, of CsI photocathodes deposited on: (1) the front surface of a microchannel plate (MCP), (2) a solid surface in front of an MCP, and (3) an intensified CCD image sensor (ICCD) where a CCD is directly bombarded by accelerated photoelectrons. Tests indicated that the detection efficiency of the CsI-coated MCP at 1026 A is lower by a factor of 2.5 than that of the MCP with a separate, opaque CsI photocathode, and the detection efficiency ratio increases substantially at longer wavelengths (ratio is 5 at 1216 A and 20 at 1608 A).

  19. Attitude measurement: Principles and sensors

    NASA Technical Reports Server (NTRS)

    Duchon, P.; Vermande, M. P.

    1981-01-01

    Tools used in the measurement of satellite attitude are described. Attention is given to the elements that characterize an attitude sensor, the references employed (stars, moon, Sun, Earth, magnetic fields, etc.), and the detectors (optical, magnetic, and inertial). Several examples of attitude sensors are described, including sun sensors, star sensors, earth sensors, triaxial magnetometers, and gyrometers. Finally, sensor combinations that make it possible to determine a complete attitude are considered; the SPOT attitude measurement system and a combined CCD star sensor-gyrometer system are discussed.

  20. Fixed mount wavefront sensor

    DOEpatents

    Neal, Daniel R.

    2000-01-01

    A rigid mount and method of mounting for a wavefront sensor. A wavefront dissector, such as a lenslet array, is rigidly mounted at a fixed distance relative to an imager, such as a CCD camera, without need for a relay imaging lens therebetween.

  1. Smart Sensors: Why and when the origin was and why and where the future will be

    NASA Astrophysics Data System (ADS)

    Corsi, C.

    2013-12-01

    Smart Sensors is a technique developed in the 70's when the processing capabilities, based on readout integrated with signal processing, was still far from the complexity needed in advanced IR surveillance and warning systems, because of the enormous amount of noise/unwanted signals emitted by operating scenario especially in military applications. The Smart Sensors technology was kept restricted within a close military environment exploding in applications and performances in the 90's years thanks to the impressive improvements in the integrated signal read-out and processing achieved by CCD-CMOS technologies in FPA. In fact the rapid advances of "very large scale integration" (VLSI) processor technology and mosaic EO detector array technology allowed to develop new generations of Smart Sensors with much improved signal processing by integrating microcomputers and other VLSI signal processors. inside the sensor structure achieving some basic functions of living eyes (dynamic stare, non-uniformity compensation, spatial and temporal filtering). New and future technologies (Nanotechnology, Bio-Organic Electronics, Bio-Computing) are lightning a new generation of Smart Sensors extending the Smartness from the Space-Time Domain to Spectroscopic Functional Multi-Domain Signal Processing. History and future forecasting of Smart Sensors will be reported.

  2. Exploiting Satellite Focal Plane Geometry for Automatic Extraction of Traffic Flow from Single Optical Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Krauß, T.

    2014-11-01

    The focal plane assembly of most pushbroom scanner satellites is built up in a way that different multispectral or multispectral and panchromatic bands are not all acquired exactly at the same time. This effect is due to offsets of some millimeters of the CCD-lines in the focal plane. Exploiting this special configuration allows the detection of objects moving during this small time span. In this paper we present a method for automatic detection and extraction of moving objects - mainly traffic - from single very high resolution optical satellite imagery of different sensors. The sensors investigated are WorldView-2, RapidEye, Pléiades and also the new SkyBox satellites. Different sensors require different approaches for detecting moving objects. Since the objects are mapped on different positions only in different spectral bands also the change of spectral properties have to be taken into account. In case the main distance in the focal plane is between the multispectral and the panchromatic CCD-line like for Pléiades an approach for weighted integration to receive mostly identical images is investigated. Other approaches for RapidEye and WorldView-2 are also shown. From these intermediate bands difference images are calculated and a method for detecting the moving objects from these difference images is proposed. Based on these presented methods images from different sensors are processed and the results are assessed for detection quality - how many moving objects can be detected, how many are missed - and accuracy - how accurate is the derived speed and size of the objects. Finally the results are discussed and an outlook for possible improvements towards operational processing is presented.

  3. Autonomous Mobile Platform for Research in Cooperative Robotics

    NASA Technical Reports Server (NTRS)

    Daemi, Ali; Pena, Edward; Ferguson, Paul

    1998-01-01

    This paper describes the design and development of a platform for research in cooperative mobile robotics. The structure and mechanics of the vehicles are based on R/C cars. The vehicle is rendered mobile by a DC motor and servo motor. The perception of the robot's environment is achieved using IR sensors and a central vision system. A laptop computer processes images from a CCD camera located above the testing area to determine the position of objects in sight. This information is sent to each robot via RF modem. Each robot is operated by a Motorola 68HC11E micro-controller, and all actions of the robots are realized through the connections of IR sensors, modem, and motors. The intelligent behavior of each robot is based on a hierarchical fuzzy-rule based approach.

  4. CTK-II & RTK: The CCD-cameras operated at the auxiliary telescopes of the University Observatory Jena

    NASA Astrophysics Data System (ADS)

    Mugrauer, M.

    2016-03-01

    The Cassegrain-Teleskop-Kamera (CTK-II) and the Refraktor-Teleskop-Kamera (RTK) are two CCD-imagers which are operated at the 25 cm Cassegrain and 20 cm refractor auxiliary telescopes of the University Observatory Jena. This article describes the main characteristics of these instruments. The properties of the CCD-detectors, the astrometry, the image quality, and the detection limits of both CCD-cameras, as well as some results of ongoing observing projects, carried out with these instruments, are presented. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.

  5. Sensor performance and weather effects modeling for intelligent transportation systems (ITS) applications

    NASA Astrophysics Data System (ADS)

    Everson, Jeffrey H.; Kopala, Edward W.; Lazofson, Laurence E.; Choe, Howard C.; Pomerleau, Dean A.

    1995-01-01

    Optical sensors are used for several ITS applications, including lateral control of vehicles, traffic sign recognition, car following, autonomous vehicle navigation, and obstacle detection. This paper treats the performance assessment of a sensor/image processor used as part of an on-board countermeasure system to prevent single vehicle roadway departure crashes. Sufficient image contrast between objects of interest and backgrounds is an essential factor influencing overall system performance. Contrast is determined by material properties affecting reflected/radiated intensities, as well as weather and visibility conditions. This paper discusses the modeling of these parameters and characterizes the contrast performance effects due to reduced visibility. The analysis process first involves generation of inherent road/off- road contrasts, followed by weather effects as a contrast modification. The sensor is modeled as a charge coupled device (CCD), with variable parameters. The results of the sensor/weather modeling are used to predict the performance on an in-vehicle warning system under various levels of adverse weather. Software employed in this effort was previously developed for the U.S. Air Force Wright Laboratory to determine target/background detection and recognition ranges for different sensor systems operating under various mission scenarios.

  6. Charge shielding in the In-situ Storage Image Sensor for a vertex detector at the ILC

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Stefanov, K. D.; Bailey, D.; Banda, Y.; Buttar, C.; Cheplakov, A.; Cussans, D.; Damerell, C.; Devetak, E.; Fopma, J.; Foster, B.; Gao, R.; Gillman, A.; Goldstein, J.; Greenshaw, T.; Grimes, M.; Halsall, R.; Harder, K.; Hawes, B.; Hayrapetyan, K.; Heath, H.; Hillert, S.; Jackson, D.; Pinto Jayawardena, T.; Jeffery, B.; John, J.; Johnson, E.; Kundu, N.; Laing, A.; Lastovicka, T.; Lau, W.; Li, Y.; Lintern, A.; Lynch, C.; Mandry, S.; Martin, V.; Murray, P.; Nichols, A.; Nomerotski, A.; Page, R.; Parkes, C.; Perry, C.; O'Shea, V.; Sopczak, A.; Tabassam, H.; Thomas, S.; Tikkanen, T.; Velthuis, J.; Walsh, R.; Woolliscroft, T.; Worm, S.

    2009-08-01

    The Linear Collider Flavour Identification (LCFI) collaboration has successfully developed the first prototype of a novel particle detector, the In-situ Storage Image Sensor (ISIS). This device ideally suits the challenging requirements for the vertex detector at the future International Linear Collider (ILC), combining the charge storing capabilities of the Charge-Coupled Devices (CCD) with readout commonly used in CMOS imagers. The ISIS avoids the need for high-speed readout and offers low power operation combined with low noise, high immunity to electromagnetic interference and increased radiation hardness compared to typical CCDs. The ISIS is one of the most promising detector technologies for vertexing at the ILC. In this paper we describe the measurements on the charge-shielding properties of the p-well, which is used to protect the storage register from parasitic charge collection and is at the core of device's operation. We show that the p-well can suppress the parasitic charge collection by almost two orders of magnitude, satisfying the requirements for the application.

  7. Design and build a compact Raman sensor for identification of chemical composition

    NASA Astrophysics Data System (ADS)

    Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Sandford, Stephen P.; Elsayed-Ali, Hani

    2008-04-01

    A compact remote Raman sensor system was developed at NASA Langley Research Center. This sensor is an improvement over the previously reported system, which consisted of a 532 nm pulsed laser, a 4-inch telescope, a spectrograph, and an intensified CCD camera. One of the attractive features of the previous system was its portability, thereby making it suitable for applications such as planetary surface explorations, homeland security and defense applications where a compact portable instrument is important. The new system was made more compact by replacing bulky components with smaller and lighter components. The new compact system uses a smaller spectrograph measuring 9 x 4 x 4 in. and a smaller intensified CCD camera measuring 5 in. long and 2 in. in diameter. The previous system was used to obtain the Raman spectra of several materials that are important to defense and security applications. Furthermore, the new compact Raman sensor system is used to obtain the Raman spectra of a diverse set of materials to demonstrate the sensor system's potential use in the identification of unknown materials.

  8. Design and Build a Compact Raman Sensor for Identification of Chemical Composition

    NASA Technical Reports Server (NTRS)

    Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Sandford, Stephen P.; Elsayed-Ali, Hani

    2008-01-01

    A compact remote Raman sensor system was developed at NASA Langley Research Center. This sensor is an improvement over the previously reported system, which consisted of a 532 nm pulsed laser, a 4-inch telescope, a spectrograph, and an intensified charge-coupled devices (CCD) camera. One of the attractive features of the previous system was its portability, thereby making it suitable for applications such as planetary surface explorations, homeland security and defense applications where a compact portable instrument is important. The new system was made more compact by replacing bulky components with smaller and lighter components. The new compact system uses a smaller spectrograph measuring 9 x 4 x 4 in. and a smaller intensified CCD camera measuring 5 in. long and 2 in. in diameter. The previous system was used to obtain the Raman spectra of several materials that are important to defense and security applications. Furthermore, the new compact Raman sensor system is used to obtain the Raman spectra of a diverse set of materials to demonstrate the sensor system's potential use in the identification of unknown materials.

  9. Development of a Robust star identification technique for use in attitude determination of the ACE spacecraft

    NASA Technical Reports Server (NTRS)

    Woodard, Mark; Rohrbaugh, Dave

    1995-01-01

    The Advanced Composition Explorer (ACE) spacecraft is designed to fly in a spin-stabilized attitude. The spacecraft will carry two attitude sensors - a digital fine Sun sensor and a charge coupled device (CCD) star tracker - to allow ground-based determination of the spacecraft attitude and spin rate. Part of the processing that must be performed on the CCD star tracker data is the star identification. Star data received from the spacecraft must be matched with star information in the SKYMAP catalog to determine exactly which stars the sensor is tracking. This information, along with the Sun vector measured by the Sun sensor, is used to determine the spacecraft attitude. Several existing star identification (star ID) systems were examined to determine whether they could be modified for use on the ACE mission. Star ID systems which exist for three-axis stabilized spacecraft tend to be complex in nature and many require fairly good knowledge of the spacecraft attitude, making their use for ACE excessive. Star ID systems used for spinners carrying traditional slit star sensors would have to be modified to model the CCD star tracker. The ACE star ID algorithm must also be robust, in that it will be able to correctly identify stars even though the attitude is not known to a high degree of accuracy, and must be very efficient to allow real-time star identification. The paper presents the star ID algorithm that was developed for ACE. Results from prototype testing are also presented to demonstrate the efficiency, accuracy, and robustness of the algorithm.

  10. Autonomous star tracker based on active pixel sensors (APS)

    NASA Astrophysics Data System (ADS)

    Schmidt, U.

    2017-11-01

    Star trackers are opto-electronic sensors used onboard of satellites for the autonomous inertial attitude determination. During the last years, star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The Jena-Optronik GmbH is active in the field of opto-electronic sensors like star trackers since the early 80-ties. Today, with the product family ASTRO5, ASTRO10 and ASTRO15, all marked segments like earth observation, scientific applications and geo-telecom are supplied to European and Overseas customers. A new generation of star trackers can be designed based on the APS detector technical features. The measurement performance of the current CCD based star trackers can be maintained, the star tracker functionality, reliability and robustness can be increased while the unit costs are saved.

  11. Development of low-noise CCD drive electronics for the world space observatory ultraviolet spectrograph subsystem

    NASA Astrophysics Data System (ADS)

    Salter, Mike; Clapp, Matthew; King, James; Morse, Tom; Mihalcea, Ionut; Waltham, Nick; Hayes-Thakore, Chris

    2016-07-01

    World Space Observatory Ultraviolet (WSO-UV) is a major Russian-led international collaboration to develop a large space-borne 1.7 m Ritchey-Chrétien telescope and instrumentation to study the universe at ultraviolet wavelengths between 115 nm and 320 nm, exceeding the current capabilities of ground-based instruments. The WSO Ultraviolet Spectrograph subsystem (WUVS) is led by the Institute of Astronomy of the Russian Academy of Sciences and consists of two high resolution spectrographs covering the Far-UV range of 115-176 nm and the Near-UV range of 174-310 nm, and a long-slit spectrograph covering the wavelength range of 115-305 nm. The custom-designed CCD sensors and cryostat assemblies are being provided by e2v technologies (UK). STFC RAL Space is providing the Camera Electronics Boxes (CEBs) which house the CCD drive electronics for each of the three WUVS channels. This paper presents the results of the detailed characterisation of the WUVS CCD drive electronics. The electronics include a novel high-performance video channel design that utilises Digital Correlated Double Sampling (DCDS) to enable low-noise readout of the CCD at a range of pixel frequencies, including a baseline requirement of less than 3 electrons rms readout noise for the combined CCD and electronics system at a readout rate of 50 kpixels/s. These results illustrate the performance of this new video architecture as part of a wider electronics sub-system that is designed for use in the space environment. In addition to the DCDS video channels, the CEB provides all the bias voltages and clocking waveforms required to operate the CCD and the system is fully programmable via a primary and redundant SpaceWire interface. The development of the CEB electronics design has undergone critical design review and the results presented were obtained using the engineering-grade electronics box. A variety of parameters and tests are included ranging from general system metrics, such as the power and mass, to more detailed analysis of the video performance including noise, linearity, crosstalk, gain stability and transient response.

  12. A New Remote Sensing Filter Radiometer Employing a Fabry-Perot Etalon and a CCD Camera for Column Measurements of Methane in the Earth Atmosphere

    NASA Technical Reports Server (NTRS)

    Georgieva, E. M.; Huang, W.; Heaps, W. S.

    2012-01-01

    A portable remote sensing system for precision column measurements of methane has been developed, built and tested at NASA GSFC. The sensor covers the spectral range from 1.636 micrometers to 1.646 micrometers, employs an air-gapped Fabry-Perot filter and a CCD camera and has a potential to operate from a variety of platforms. The detector is an XS-1.7-320 camera unit from Xenics Infrared solutions which combines an uncooled InGaAs detector array working up to 1.7 micrometers. Custom software was developed in addition to the graphical user basic interface X-Control provided by the company to help save and process the data. The technique and setup can be used to measure other trace gases in the atmosphere with minimal changes of the etalon and the prefilter. In this paper we describe the calibration of the system using several different approaches.

  13. CNES developments of key detection technologies to prepare next generation focal planes for high resolution Earth observation

    NASA Astrophysics Data System (ADS)

    Materne, A.; Virmontois, C.; Bardoux, A.; Gimenez, T.; Biffi, J. M.; Laubier, D.; Delvit, J. M.

    2014-10-01

    This paper describes the activities managed by CNES (French National Space Agency) for the development of focal planes for next generation of optical high resolution Earth observation satellites, in low sun-synchronous orbit. CNES has launched a new programme named OTOS, to increase the level of readiness (TRL) of several key technologies for high resolution Earth observation satellites. The OTOS programme includes several actions in the field of detection and focal planes: a new generation of CCD and CMOS image sensors, updated analog front-end electronics and analog-to-digital converters. The main features that must be achieved on focal planes for high resolution Earth Observation, are: readout speed, signal to noise ratio at low light level, anti-blooming efficiency, geometric stability, MTF and line of sight stability. The next steps targeted are presented in comparison to the in-flight measured performance of the PLEIADES satellites launched in 2011 and 2012. The high resolution panchromatic channel is still based upon Backside illuminated (BSI) CCDs operated in Time Delay Integration (TDI). For the multispectral channel, the main evolution consists in moving to TDI mode and the competition is open with the concurrent development of a CCD solution versus a CMOS solution. New CCDs will be based upon several process blocks under evaluation on the e2v 6 inches BSI wafer manufacturing line. The OTOS strategy for CMOS image sensors investigates on one hand custom TDI solutions within a similar approach to CCDs, and, on the other hand, investigates ways to take advantage of existing performance of off-the-shelf 2D arrays CMOS image sensors. We present the characterization results obtained from test vehicles designed for custom TDI operation on several CIS technologies and results obtained before and after radiation on snapshot 2D arrays from the CMOSIS CMV family.

  14. Rigorous Photogrammetric Processing of CHANG'E-1 and CHANG'E-2 Stereo Imagery for Lunar Topographic Mapping

    NASA Astrophysics Data System (ADS)

    Di, K.; Liu, Y.; Liu, B.; Peng, M.

    2012-07-01

    Chang'E-1(CE-1) and Chang'E-2(CE-2) are the two lunar orbiters of China's lunar exploration program. Topographic mapping using CE-1 and CE-2 images is of great importance for scientific research as well as for preparation of landing and surface operation of Chang'E-3 lunar rover. In this research, we developed rigorous sensor models of CE-1 and CE-2 CCD cameras based on push-broom imaging principle with interior and exterior orientation parameters. Based on the rigorous sensor model, the 3D coordinate of a ground point in lunar body-fixed (LBF) coordinate system can be calculated by space intersection from the image coordinates of con-jugate points in stereo images, and the image coordinates can be calculated from 3D coordinates by back-projection. Due to uncer-tainties of the orbit and the camera, the back-projected image points are different from the measured points. In order to reduce these inconsistencies and improve precision, we proposed two methods to refine the rigorous sensor model: 1) refining EOPs by correcting the attitude angle bias, 2) refining the interior orientation model by calibration of the relative position of the two linear CCD arrays. Experimental results show that the mean back-projection residuals of CE-1 images are reduced to better than 1/100 pixel by method 1 and the mean back-projection residuals of CE-2 images are reduced from over 20 pixels to 0.02 pixel by method 2. Consequently, high precision DEM (Digital Elevation Model) and DOM (Digital Ortho Map) are automatically generated.

  15. Advances in CCD detector technology for x-ray diffraction applications

    NASA Astrophysics Data System (ADS)

    Thorson, Timothy A.; Durst, Roger D.; Frankel, Dan; Bordwell, Rex L.; Camara, Jose R.; Leon-Guerrero, Edward; Onishi, Steven K.; Pang, Francis; Vu, Paul; Westbrook, Edwin M.

    2004-01-01

    Phosphor-coupled CCDs are established as one of the most successful technologies for x-ray diffraction. This application demands that the CCD simultaneously achieve both the highest possible sensitivity and high readout speeds. Recently, wafer-scale, back illuminated devices have become available which offer significantly higher quantum efficiency than conventional devices (the Fairchild Imaging CCD 486 BI). However, since back thinning significantly changes the electrical properties of the CCD the high speed operation of wafer-scale, back-illuminated devices is not well understood. Here we describe the operating characteristics (including noise, linearity, full well capacity and CTE) of the back-illuminated CCD 486 at readout speeds up to 4 MHz.

  16. Soft x-ray imager (SXI) onboard the NeXT satellite

    NASA Astrophysics Data System (ADS)

    Tsuru, Takeshi Go; Takagi, Shin-Ichiro; Matsumoto, Hironori; Inui, Tatsuya; Ozawa, Midori; Koyama, Katsuji; Tsunemi, Hiroshi; Hayashida, Kiyoshi; Miyata, Emi; Ozawa, Hideki; Touhiguchi, Masakuni; Matsuura, Daisuke; Dotani, Tadayasu; Ozaki, Masanobu; Murakami, Hiroshi; Kohmura, Takayoshi; Kitamoto, Shunji; Awaki, Hisamitsu

    2006-06-01

    We give overview and the current status of the development of the Soft X-ray Imager (SXI) onboard the NeXT satellite. SXI is an X-ray CCD camera placed at the focal plane detector of the Soft X-ray Telescopes for Imaging (SXT-I) onboard NeXT. The pixel size and the format of the CCD is 24 x 24μm (IA) and 2048 x 2048 x 2 (IA+FS). Currently, we have been developing two types of CCD as candidates for SXI, in parallel. The one is front illumination type CCD with moderate thickness of the depletion layer (70 ~ 100μm) as a baseline plan. The other one is the goal plan, in which we develop back illumination type CCD with a thick depletion layer (200 ~ 300μm). For the baseline plan, we successfully developed the proto model 'CCD-NeXT1' with the pixel size of 12μm x 12μm and the CCD size of 24mm x 48mm. The depletion layer of the CCD has reached 75 ~ 85μm. The goal plan is realized by introduction of a new type of CCD 'P-channel CCD', which collects holes in stead of electrons in the common 'N-channel CCD'. By processing a test model of P-channel CCD we have confirmed high quantum efficiency above 10 keV with an equivalent depletion layer of 300μm. A back illumination type of P-channel CCD with a depletion layer of 200μm with aluminum coating for optical blocking has been also successfully developed. We have been also developing a thermo-electric cooler (TEC) with the function of the mechanically support of the CCD wafer without standoff insulators, for the purpose of the reduction of thermal input to the CCD through the standoff insulators. We have been considering the sensor housing and the onboard electronics for the CCD clocking, readout and digital processing of the frame date.

  17. Toward one Giga frames per second--evolution of in situ storage image sensors.

    PubMed

    Etoh, Takeharu G; Son, Dao V T; Yamada, Tetsuo; Charbon, Edoardo

    2013-04-08

    The ISIS is an ultra-fast image sensor with in-pixel storage. The evolution of the ISIS in the past and in the near future is reviewed and forecasted. To cover the storage area with a light shield, the conventional frontside illuminated ISIS has a limited fill factor. To achieve higher sensitivity, a BSI ISIS was developed. To avoid direct intrusion of light and migration of signal electrons to the storage area on the frontside, a cross-sectional sensor structure with thick pnpn layers was developed, and named "Tetratified structure". By folding and looping in-pixel storage CCDs, an image signal accumulation sensor, ISAS, is proposed. The ISAS has a new function, the in-pixel signal accumulation, in addition to the ultra-high-speed imaging. To achieve much higher frame rate, a multi-collection-gate (MCG) BSI image sensor architecture is proposed. The photoreceptive area forms a honeycomb-like shape. Performance of a hexagonal CCD-type MCG BSI sensor is examined by simulations. The highest frame rate is theoretically more than 1Gfps. For the near future, a stacked hybrid CCD/CMOS MCG image sensor seems most promising. The associated problems are discussed. A fine TSV process is the key technology to realize the structure.

  18. Nonlinear time dependence of dark current in charge-coupled devices

    NASA Astrophysics Data System (ADS)

    Dunlap, Justin C.; Bodegom, Erik; Widenhorn, Ralf

    2011-03-01

    It is generally assumed that charge-coupled device (CCD) imagers produce a linear response of dark current versus exposure time except near saturation. We found a large number of pixels with nonlinear dark current response to exposure time to be present in two scientific CCD imagers. These pixels are found to exhibit distinguishable behavior with other analogous pixels and therefore can be characterized in groupings. Data from two Kodak CCD sensors are presented for exposure times from a few seconds up to two hours. Linear behavior is traditionally taken for granted when carrying out dark current correction and as a result, pixels with nonlinear behavior will be corrected inaccurately.

  19. Atmospheric simulation using a liquid crystal wavefront-controlling device

    NASA Astrophysics Data System (ADS)

    Brooks, Matthew R.; Goda, Matthew E.

    2004-10-01

    Test and evaluation of laser warning devices is important due to the increased use of laser devices in aerial applications. This research consists of an atmospheric aberrating system to enable in-lab testing of various detectors and sensors. This system employs laser light at 632.8nm from a Helium-Neon source and a spatial light modulator (SLM) to cause phase changes using a birefringent liquid crystal material. Measuring outgoing radiation from the SLM using a CCD targetboard and Shack-Hartmann wavefront sensor reveals an acceptable resemblance of system output to expected atmospheric theory. Over three turbulence scenarios, an error analysis reveals that turbulence data matches theory. A wave optics computer simulation is created analogous to the lab-bench design. Phase data, intensity data, and a computer simulation affirm lab-bench results so that the aberrating SLM system can be operated confidently.

  20. CMOS Active Pixel Sensor Star Tracker with Regional Electronic Shutter

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly; Pain, Bedabrata; Staller, Craig; Clark, Christopher; Fossum, Eric

    1996-01-01

    The guidance system in a spacecraft determines spacecraft attitude by matching an observed star field to a star catalog....An APS(active pixel sensor)-based system can reduce mass and power consumption and radiation effects compared to a CCD(charge-coupled device)-based system...This paper reports an APS (active pixel sensor) with locally variable times, achieved through individual pixel reset (IPR).

  1. Multi-Image Registration for an Enhanced Vision System

    NASA Technical Reports Server (NTRS)

    Hines, Glenn; Rahman, Zia-Ur; Jobson, Daniel; Woodell, Glenn

    2002-01-01

    An Enhanced Vision System (EVS) utilizing multi-sensor image fusion is currently under development at the NASA Langley Research Center. The EVS will provide enhanced images of the flight environment to assist pilots in poor visibility conditions. Multi-spectral images obtained from a short wave infrared (SWIR), a long wave infrared (LWIR), and a color visible band CCD camera, are enhanced and fused using the Retinex algorithm. The images from the different sensors do not have a uniform data structure: the three sensors not only operate at different wavelengths, but they also have different spatial resolutions, optical fields of view (FOV), and bore-sighting inaccuracies. Thus, in order to perform image fusion, the images must first be co-registered. Image registration is the task of aligning images taken at different times, from different sensors, or from different viewpoints, so that all corresponding points in the images match. In this paper, we present two methods for registering multiple multi-spectral images. The first method performs registration using sensor specifications to match the FOVs and resolutions directly through image resampling. In the second method, registration is obtained through geometric correction based on a spatial transformation defined by user selected control points and regression analysis.

  2. Development of a Portable 3CCD Camera System for Multispectral Imaging of Biological Samples

    PubMed Central

    Lee, Hoyoung; Park, Soo Hyun; Noh, Sang Ha; Lim, Jongguk; Kim, Moon S.

    2014-01-01

    Recent studies have suggested the need for imaging devices capable of multispectral imaging beyond the visible region, to allow for quality and safety evaluations of agricultural commodities. Conventional multispectral imaging devices lack flexibility in spectral waveband selectivity for such applications. In this paper, a recently developed portable 3CCD camera with significant improvements over existing imaging devices is presented. A beam-splitter prism assembly for 3CCD was designed to accommodate three interference filters that can be easily changed for application-specific multispectral waveband selection in the 400 to 1000 nm region. We also designed and integrated electronic components on printed circuit boards with firmware programming, enabling parallel processing, synchronization, and independent control of the three CCD sensors, to ensure the transfer of data without significant delay or data loss due to buffering. The system can stream 30 frames (3-waveband images in each frame) per second. The potential utility of the 3CCD camera system was demonstrated in the laboratory for detecting defect spots on apples. PMID:25350510

  3. Real-Time Label-Free Detection of Suspicious Powders Using Noncontact Optical Methods

    DTIC Science & Technology

    2013-11-05

    energy in a small, 1 pound, low power consumption package; and 2) new technology resistive gate linear CCD array detectors developed by Hamamatsu Corp...as a wide range of possible interferent or confusant organic materials such as powdered sugar, granulate sugar, fruit pectin, flower, corn starch ...resolution, room temperature, resistive gate linear CCD array, the BRANE sensor SWAP decreases along with a decrease in sensitivity, but the information

  4. Design of multi-mode compatible image acquisition system for HD area array CCD

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Sui, Xiubao

    2014-11-01

    Combining with the current development trend in video surveillance-digitization and high-definition, a multimode-compatible image acquisition system for HD area array CCD is designed. The hardware and software designs of the color video capture system of HD area array CCD KAI-02150 presented by Truesense Imaging company are analyzed, and the structure parameters of the HD area array CCD and the color video gathering principle of the acquisition system are introduced. Then, the CCD control sequence and the timing logic of the whole capture system are realized. The noises of the video signal (KTC noise and 1/f noise) are filtered by using the Correlated Double Sampling (CDS) technique to enhance the signal-to-noise ratio of the system. The compatible designs in both software and hardware for the two other image sensors of the same series: KAI-04050 and KAI-08050 are put forward; the effective pixels of these two HD image sensors are respectively as many as four million and eight million. A Field Programmable Gate Array (FPGA) is adopted as the key controller of the system to perform the modularization design from top to bottom, which realizes the hardware design by software and improves development efficiency. At last, the required time sequence driving is simulated accurately by the use of development platform of Quartus II 12.1 combining with VHDL. The result of the simulation indicates that the driving circuit is characterized by simple framework, low power consumption, and strong anti-interference ability, which meet the demand of miniaturization and high-definition for the current tendency.

  5. Diffraction-based optical sensor detection system for capture-restricted environments

    NASA Astrophysics Data System (ADS)

    Khandekar, Rahul M.; Nikulin, Vladimir V.

    2008-04-01

    The use of digital cameras and camcorders in prohibited areas presents a growing problem. Piracy in the movie theaters results in huge revenue loss to the motion picture industry every year, but still image and video capture may present even a bigger threat if performed in high-security locations. While several attempts are being made to address this issue, an effective solution is yet to be found. We propose to approach this problem using a very commonly observed optical phenomenon. Cameras and camcorders use CCD and CMOS sensors, which include a number of photosensitive elements/pixels arranged in a certain fashion. Those are photosites in CCD sensors and semiconductor elements in CMOS sensors. They are known to reflect a small fraction of incident light, but could also act as a diffraction grating, resulting in the optical response that could be utilized to identify the presence of such a sensor. A laser-based detection system is proposed that accounts for the elements in the optical train of the camera, as well as the eye-safety of the people who could be exposed to optical beam radiation. This paper presents preliminary experimental data, as well as the proof-of-concept simulation results.

  6. The astro-geodetic use of CCD for gravity field refinement

    NASA Astrophysics Data System (ADS)

    Gerstbach, G.

    1996-07-01

    The paper starts with a review of geoid projects, where vertical deflections are more effective than gravimetry. In alpine regions the economy of astrogeoids is at least 10 times higher, but many countries do not make use of this fact - presumably because the measurements are not fully automated up to now. Based upon the experiences of astrometry of high satellites and own tests the author analyses the use of CCD for astro-geodetic measurements. Automation and speeding up will be possible in a few years, the latter depending on the observation scheme. Sensor characteristics, cooling and reading out of the devices should be harmonized. Using line sensors in small prism astrolabes, the CCD accuracy will reach the visual one (±0.2″) within 5-10 years. Astrogeoids can be combined ideally with geological data, because vertical variation of rock densities does not cause systematic effects (contrary to gravimetry). So a geoid of ±5 cm accuracy (achieved in Austria and other alpine countries by 5-10 points per 1000 km 2) can be improved to ±2 cm without additional observations and border effects.

  7. Proton radiation damage experiment on P-Channel CCD for an X-ray CCD camera onboard the ASTRO-H satellite

    NASA Astrophysics Data System (ADS)

    Mori, Koji; Nishioka, Yusuke; Ohura, Satoshi; Koura, Yoshiaki; Yamauchi, Makoto; Nakajima, Hiroshi; Ueda, Shutaro; Kan, Hiroaki; Anabuki, Naohisa; Nagino, Ryo; Hayashida, Kiyoshi; Tsunemi, Hiroshi; Kohmura, Takayoshi; Ikeda, Shoma; Murakami, Hiroshi; Ozaki, Masanobu; Dotani, Tadayasu; Maeda, Yukie; Sagara, Kenshi

    2013-12-01

    We report on a proton radiation damage experiment on P-channel CCD newly developed for an X-ray CCD camera onboard the ASTRO-H satellite. The device was exposed up to 109 protons cm-2 at 6.7 MeV. The charge transfer inefficiency (CTI) was measured as a function of radiation dose. In comparison with the CTI currently measured in the CCD camera onboard the Suzaku satellite for 6 years, we confirmed that the new type of P-channel CCD is radiation tolerant enough for space use. We also confirmed that a charge-injection technique and lowering the operating temperature efficiently work to reduce the CTI for our device. A comparison with other P-channel CCD experiments is also discussed. We performed a proton radiation damage experiment on a new P-channel CCD. The device was exposed up to 109 protons cm-2 at 6.7 MeV. We confirmed that it is radiation tolerant enough for space use. We confirmed that a charge-injection technique reduces the CTI. We confirmed that lowering the operating temperature also reduces the CTI.

  8. Design of area array CCD image acquisition and display system based on FPGA

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Ning; Li, Tianting; Pan, Yue; Dai, Yuming

    2014-09-01

    With the development of science and technology, CCD(Charge-coupled Device) has been widely applied in various fields and plays an important role in the modern sensing system, therefore researching a real-time image acquisition and display plan based on CCD device has great significance. This paper introduces an image data acquisition and display system of area array CCD based on FPGA. Several key technical challenges and problems of the system have also been analyzed and followed solutions put forward .The FPGA works as the core processing unit in the system that controls the integral time sequence .The ICX285AL area array CCD image sensor produced by SONY Corporation has been used in the system. The FPGA works to complete the driver of the area array CCD, then analog front end (AFE) processes the signal of the CCD image, including amplification, filtering, noise elimination, CDS correlation double sampling, etc. AD9945 produced by ADI Corporation to convert analog signal to digital signal. Developed Camera Link high-speed data transmission circuit, and completed the PC-end software design of the image acquisition, and realized the real-time display of images. The result through practical testing indicates that the system in the image acquisition and control is stable and reliable, and the indicators meet the actual project requirements.

  9. Optics design of laser spotter camera for ex-CCD sensor

    NASA Astrophysics Data System (ADS)

    Nautiyal, R. P.; Mishra, V. K.; Sharma, P. K.

    2015-06-01

    Development of Laser based instruments like laser range finder and laser ranger designator has received prominence in modern day military application. Aiming the laser on the target is done with the help of a bore sighted graticule as human eye cannot see the laser beam directly. To view Laser spot there are two types of detectors available, InGaAs detector and Ex-CCD detector, the latter being a cost effective solution. In this paper optics design for Ex-CCD based camera is discussed. The designed system is light weight and compact and has the ability to see the 1064nm pulsed laser spot upto a range of 5 km.

  10. MagAO: status and science

    NASA Astrophysics Data System (ADS)

    Morzinski, Katie M.; Close, Laird M.; Males, Jared R.; Hinz, Phil M.; Esposito, Simone; Riccardi, Armando; Briguglio, Runa; Follette, Katherine B.; Pinna, Enrico; Puglisi, Alfio; Vezilj, Jennifer; Xompero, Marco; Wu, Ya-Lin

    2016-07-01

    "MagAO" is the adaptive optics instrument at the Magellan Clay telescope at Las Campanas Observatory, Chile. MagAO has a 585-actuator adaptive secondary mirror and 1000-Hz pyramid wavefront sensor, operating on natural guide stars from R-magnitudes of -1 to 15. MagAO has been in on-sky operation for 166 nights since installation in 2012. MagAO's unique capabilities are simultaneous imaging in the visible and infrared with VisAO and Clio, excellent performance at an excellent site, and a lean operations model. Science results from MagAO include the first ground-based CCD image of an exoplanet, demonstration of the first accreting protoplanets, discovery of a new wide-orbit exoplanet, and the first empirical bolometric luminosity of an exoplanet. We describe the status, report the AO performance, and summarize the science results. New developments reported here include color corrections on red guide stars for the wavefront sensor; a new field stop stage to facilitate VisAO imaging of extended sources; and eyepiece observing at the visible-light diffraction limit of a 6.5-m telescope. We also discuss a recent hose failure that led to a glycol coolant leak, and the recovery of the adaptive secondary mirror (ASM) after this recent (Feb. 2016) incident.

  11. Optical sample-position sensing for electrostatic levitation

    NASA Technical Reports Server (NTRS)

    Sridharan, G.; Chung, S.; Elleman, D.; Whim, W. K.

    1989-01-01

    A comparative study is conducted for optical position-sensing techniques applicable to micro-G conditions sample-levitation systems. CCD sensors are compared with one- and two-dimensional position detectors used in electrostatic particle levitation. In principle, the CCD camera method can be improved from current resolution levels of 200 microns through the incorporation of a higher-pixel device and more complex digital signal processor interface. Nevertheless, the one-dimensional position detectors exhibited superior, better-than-one-micron resolution.

  12. Degradation of optical components in space

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1993-01-01

    This report concerns two types of optical components: multilayer filters and mirrors, and self-scanned imaging arrays using charge coupled device (CCD) readouts. For the filters and mirrors, contamination produces a strong reduction in transmittance in the ultraviolet spectral region, but has little or no effect in the visible and infrared spectral regions. Soft substrates containing halides are unsatisfactory as windows or substrates. Materials choice for dielectric layers should also reflect such considerations. Best performance is also found for the harder materials. Compaction of the layers and interlayer diffusion causes a blue shift in center wavelength and loss of throughput. For sensors using CCD's, shifts in gate voltage and reductions in transfer efficiency occur. Such effects in CCD's are in accord with expectations of the effects of the radiation dose on the device. Except for optical fiber, degradation of CCD's represents the only ionizing-radiation induced effect on the Long Duration Exposure Facility (LDEF) optical systems components that has been observed.

  13. CTK: A new CCD Camera at the University Observatory Jena

    NASA Astrophysics Data System (ADS)

    Mugrauer, M.

    2009-05-01

    The Cassegrain-Teleskop-Kamera (CTK) is a new CCD imager which is operated at the University Observatory Jena since begin of 2006. This article describes the main characteristics of the new camera. The properties of the CCD detector, the CTK image quality, as well as its detection limits for all filters are presented. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.

  14. Mosad and Stream Vision For A Telerobotic, Flying Camera System

    NASA Technical Reports Server (NTRS)

    Mandl, William

    2002-01-01

    Two full custom camera systems using the Multiplexed OverSample Analog to Digital (MOSAD) conversion technology for visible light sensing were built and demonstrated. They include a photo gate sensor and a photo diode sensor. The system includes the camera assembly, driver interface assembly, a frame stabler board with integrated decimeter and Windows 2000 compatible software for real time image display. An array size of 320X240 with 16 micron pixel pitch was developed for compatibility with 0.3 inch CCTV optics. With 1.2 micron technology, a 73% fill factor was achieved. Noise measurements indicated 9 to 11 bits operating with 13.7 bits best case. Power measured under 10 milliwatts at 400 samples per second. Nonuniformity variation was below noise floor. Pictures were taken with different cameras during the characterization study to demonstrate the operable range. The successful conclusion of this program demonstrates the utility of the MOSAD for NASA missions, providing superior performance over CMOS and lower cost and power consumption over CCD. The MOSAD approach also provides a path to radiation hardening for space based applications.

  15. A programmable CCD driver circuit for multiphase CCD operation

    NASA Technical Reports Server (NTRS)

    Ewin, Audrey J.; Reed, Kenneth V.

    1989-01-01

    A programmable CCD (charge-coupled device) driver circuit was designed to drive CCDs in multiphased modes. The purpose of the drive electronics is to operate developmental CCD imaging arrays for NASA's tiltable moderate resolution imaging spectrometer (MODIS-T). Five objectives for the driver were considered during its design: (1) the circuit drives CCD electrode voltages between 0 V and +30 V to produce reasonable potential wells, (2) the driving sequence is started with one input signal, (3) the driving sequence is started with one input signal, (4) the circuit allows programming of frame sequences required by arrays of any size, (5) it produces interfacing signals for the CCD and the DTF (detector test facility). Simulation of the driver verified its function with the master clock running up to 10 MHz. This suggests a maximum rate of 400,000 pixels/s. Timing and packaging parameters were verified. The design uses 54 TTL (transistor-transistor logic) chips. Two versions of hardware were fabricated: wirewrap and printed circuit board. Both were verified functionally with a logic analyzer.

  16. FlyEyes: A CCD-Based Wavefront Sensor for PUEO, the CFHT Curvature AO System

    DTIC Science & Technology

    2010-09-28

    Charles Cuillandre, Kevin K.Y. Ho, Marc Baril , Tom Benedict, Jeff Ward, Jim Thomas, Derrick Salmon, Chueh-Jen Lin, Shiang-Yu Wang, Gerry Luppino...sensor for PUEO, the CFHT curvature AO system Olivier Lai, Jean-Charles Cuillandre , Kevin K.Y. Ho, lVIarc Baril , Tom Benedict, Jeff ’Varel, Jim Thomas

  17. Three-channel imaging fabry-perot interferometer for measurement of mid-latitude airglow.

    PubMed

    Shiokawa, K; Kadota, T; Ejiri, M K; Otsuka, Y; Katoh, Y; Satoh, M; Ogawa, T

    2001-08-20

    We have developed a three-channel imaging Fabry-Perot interferometer with which to measure atmospheric wind and temperature in the mesosphere and thermosphere through nocturnal airglow emissions. The interferometer measures two-dimensional wind and temperature for wavelengths of 630.0 nm (OI, altitude, 200-300 km), 557.7 nm (OI, 96 km), and 839.9 nm (OH, 86 km) simultaneously with a time resolution of 20 min, using three cooled CCD detectors with liquid-N(2) Dewars. Because we found that the CCD sensor moves as a result of changes in the level of liquid N(2) in the Dewars, the cooling system has been replaced by thermoelectric coolers. The fringe drift that is due to changes in temperature of the etalon is monitored with a frequency-stabilized He-Ne laser. We also describe a data-reduction scheme for calculating wind and temperature from the observed fringes. The system is fully automated and has been in operation since June 1999 at the Shigaraki Observatory (34.8N, 136.1E), Shiga, Japan.

  18. Turbulent Mixing and Combustion for High-Speed Air-Breathing Propulsion Application

    DTIC Science & Technology

    2007-08-12

    deficit (the velocity of the wake relative to the free-stream velocity), decays rapidly with downstream distance, so that the streamwise velocity is...switched laser with double-pulse option) and a new imaging system (high-resolution: 4008x2672 pix2, low- noise (cooled) Cooke PCO-4000 CCD camera). The...was designed in-house for high-speed low- noise image acquisition. The KFS CCD image sensor was designed by Mark Wadsworth of JPL and has a resolution

  19. Scanning Microscopes Using X Rays and Microchannels

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2003-01-01

    Scanning microscopes that would be based on microchannel filters and advanced electronic image sensors and that utilize x-ray illumination have been proposed. Because the finest resolution attainable in a microscope is determined by the wavelength of the illumination, the xray illumination in the proposed microscopes would make it possible, in principle, to achieve resolutions of the order of nanometers about a thousand times as fine as the resolution of a visible-light microscope. Heretofore, it has been necessary to use scanning electron microscopes to obtain such fine resolution. In comparison with scanning electron microscopes, the proposed microscopes would likely be smaller, less massive, and less expensive. Moreover, unlike in scanning electron microscopes, it would not be necessary to place specimens under vacuum. The proposed microscopes are closely related to the ones described in several prior NASA Tech Briefs articles; namely, Miniature Microscope Without Lenses (NPO-20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43; and Reflective Variants of Miniature Microscope Without Lenses (NPO-20610), NASA Tech Briefs, Vol. 26, No. 9 (September 2002) page 6a. In all of these microscopes, the basic principle of design and operation is the same: The focusing optics of a conventional visible-light microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. A microchannel plate containing parallel, microscopic-cross-section holes much longer than they are wide is placed between a specimen and an image sensor, which is typically the CCD. The microchannel plate must be made of a material that absorbs the illuminating radiation reflected or scattered from the specimen. The microchannels must be positioned and dimensioned so that each one is registered with a pixel on the image sensor. Because most of the radiation incident on the microchannel walls becomes absorbed, the radiation that reaches the image sensor consists predominantly of radiation that was launched along the longitudinal direction of the microchannels. Therefore, most of the radiation arriving at each pixel on the sensor must have traveled along a straight line from a corresponding location on the specimen. Thus, there is a one-to-one mapping from a point on a specimen to a pixel in the image sensor, so that the output of the image sensor contains image information equivalent to that from a microscope.

  20. Estimate of accuracy of determining the orientation of the star sensor system according to the experimental data

    NASA Astrophysics Data System (ADS)

    Avanesov, G. A.; Bessonov, R. V.; Kurkina, A. N.; Nikitin, A. V.; Sazonov, V. V.

    2018-01-01

    The BOKZ-M60 star sensor (Unit for Measuring Star Coordinates) is intended for determining the parameters of the orientation of the axes of the intrinsic coordinate system relative to the axes of the inertial system by observations of the regions of the stellar sky. It is convenient to characterize an error of the single determination of the orientation of the intrinsic coordinate system of the sensor by the vector of an infinitesimal turn of this system relative to its found position. Full-scale ground-based tests have shown that, for a resting sensor the root-mean-square values of the components of this vector along the axes of the intrinsic coordinate system lying in the plane of the sensor CCD matrix are less than 2″ and the component along the axis perpendicular to the matrix plane is characterized by the root-mean-square value of 15″. The joint processing of one-stage readings of several sensors installed on the same platform allows us to improve the indicated accuracy characteristics. In this paper, estimates of the accuracy of systems from BOKZ-M60 with two and four sensors performed from measurements carried out during the normal operation of these sensors on the Resurs-P satellite are given. Processing the measurements of the sensor system allowed us to increase the accuracy of determining the each of their orientations and to study random and systematic errors in these measurements.

  1. UV-visible sensors based on polymorphous silicon

    NASA Astrophysics Data System (ADS)

    Guedj, Cyril S.; Cabarrocas, Pere R. i.; Massoni, Nicolas; Moussy, Norbert; Morel, Damien; Tchakarov, Svetoslav; Bonnassieux, Yvan

    2003-09-01

    UV-based imaging systems can be used for low-altitude rockets detection or biological agents identification (for instance weapons containing ANTHRAX). Compared to conventional CCD technology, CMOS-based active pixel sensors provide several advantages, including excellent electro-optical performances, high integration, low voltage operation, low power consumption, low cost, long lifetime, and robustness against environment. The monolithic integration of UV, visible and infrared detectors on the same uncooled CMOS smart system would therefore represent a major advance in the combat field, for characterization and representation of targets and backgrounds. In this approach, we have recently developped a novel technology using polymorphous silicon. This new material, fully compatible with above-IC silicon technology, is made of nanometric size ordered domains embedded in an amorphous matrix. The typical quantum efficiency of detectors made of this nano-material reach up to 80 % at 550 nm and 30 % in the UV range, depending of the design and the growth parameters. Furthermore, a record dark current of 20 pA/cm2 at -3 V has been reached. In addition, this new generation of sensors is significantly faster and more stable than their amorphous silicon counterparts. In this paper, we will present the relationship between the sensor technology and the overall performances.

  2. A metagenomic survey of microbes in honey bee colony collapse disorder.

    PubMed

    Cox-Foster, Diana L; Conlan, Sean; Holmes, Edward C; Palacios, Gustavo; Evans, Jay D; Moran, Nancy A; Quan, Phenix-Lan; Briese, Thomas; Hornig, Mady; Geiser, David M; Martinson, Vince; vanEngelsdorp, Dennis; Kalkstein, Abby L; Drysdale, Andrew; Hui, Jeffrey; Zhai, Junhui; Cui, Liwang; Hutchison, Stephen K; Simons, Jan Fredrik; Egholm, Michael; Pettis, Jeffery S; Lipkin, W Ian

    2007-10-12

    In colony collapse disorder (CCD), honey bee colonies inexplicably lose their workers. CCD has resulted in a loss of 50 to 90% of colonies in beekeeping operations across the United States. The observation that irradiated combs from affected colonies can be repopulated with naive bees suggests that infection may contribute to CCD. We used an unbiased metagenomic approach to survey microflora in CCD hives, normal hives, and imported royal jelly. Candidate pathogens were screened for significance of association with CCD by the examination of samples collected from several sites over a period of 3 years. One organism, Israeli acute paralysis virus of bees, was strongly correlated with CCD.

  3. CCD Detects Two Images In Quick Succession

    NASA Technical Reports Server (NTRS)

    Janesick, James R.; Collins, Andy

    1996-01-01

    Prototype special-purpose charge-coupled device (CCD) designed to detect two 1,024 x 1,024-pixel images in rapid succession. Readout performed slowly to minimize noise. CCD operated in synchronism with pulsed laser, stroboscope, or other pulsed source of light to form pairs of images of rapidly moving objects.

  4. OWL-Net: A global network of robotic telescopes for satellite observation

    NASA Astrophysics Data System (ADS)

    Park, Jang-Hyun; Yim, Hong-Suh; Choi, Young-Jun; Jo, Jung Hyun; Moon, Hong-Kyu; Park, Young-Sik; Bae, Young-Ho; Park, Sun-Youp; Roh, Dong-Goo; Cho, Sungki; Choi, Eun-Jung; Kim, Myung-Jin; Choi, Jin

    2018-07-01

    The OWL-Net (Optical Wide-field patroL Network) is composed of 0.5-m wide-field optical telescopes spread over the globe (Mongolia, Morocco, Israel, South Korea, and USA). All the observing stations are identical, operated in a fully robotic manner, and controlled by the headquarters located in Daejeon, Korea. The main objective of the OWL-Net is to obtain the orbital information of Korean LEO and GEO satellites using purely optical means and to maintain their orbital elements. The aperture size of the mirror is 0.5 m in the Ritchey-Chretien configuration, and its field of view is 1.1 deg on the CCD sensor. The telescope is equipped with an electrically cooled 4 K CCD camera with a 9-μm pixel size, and its pixel scale is 1 arcsec/pixel. A chopper wheel with variable speed is adopted to obtain multiple points in a single shot. Each observatory is equipped with a heavy-duty environment monitoring system for robust robotic observation. The headquarters has components for status monitoring, scheduling, network operation, orbit calculation, and database management. The test-phase operation of the whole system began in early 2017, although test runs for individual sites began in 2015. Although the OWL-Net has 7 observation modes for artificial satellites and astronomical objects, we are concentrating on a few modes for LEO satellites and calibration during the early phase. Some early results and analysis for system performance will be presented, and their implications will be discussed.

  5. Research-grade CMOS image sensors for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Saint-Pe, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Martin-Gonthier, Philippe; Corbiere, Franck; Belliot, Pierre; Estribeau, Magali

    2004-11-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid-90s, CMOS Image Sensors (CIS) have been competing with CCDs for consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding space applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this paper will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments and performances of CIS prototypes built using an imaging CMOS process will be presented in the corresponding section.

  6. A Wide Dynamic Range Tapped Linear Array Image Sensor

    NASA Astrophysics Data System (ADS)

    Washkurak, William D.; Chamberlain, Savvas G.; Prince, N. Daryl

    1988-08-01

    Detectors for acousto-optic signal processing applications require fast transient response as well as wide dynamic range. There are two major choices of detectors: conductive or integration mode. Conductive mode detectors have an initial transient period before they reach then' i equilibrium state. The duration of 1 his period is dependent on light level as well as detector capacitance. At low light levels a conductive mode detector is very slow; response time is typically on the order of milliseconds. Generally. to obtain fast transient response an integrating mode detector is preferred. With integrating mode detectors. the dynamic range is determined by the charge storage capability of the tran-sport shift registers and the noise level of the image sensor. The conventional net hod used to improve dynamic range is to increase the shift register charge storage capability. To achieve a dynamic range of fifty thousand assuming two hundred noise equivalent electrons, a charge storage capability of ten million electrons would be required. In order to accommodate this amount of charge. unrealistic shift registers widths would be required. Therefore, with an integrating mode detector it is difficult to achieve a dynamic range of over four orders of magnitude of input light intensity. Another alternative is to solve the problem at the photodetector aml not the shift, register. DALSA's wide dynamic range detector utilizes an optimized, ion implant doped, profiled MOSFET photodetector specifically designed for wide dynamic range. When this new detector operates at high speed and at low light levels the photons are collected and stored in an integrating fashion. However. at bright light levels where transient periods are short, the detector switches into a conductive mode. The light intensity is logarithmically compressed into small charge packets, easily carried by the CCD shift register. As a result of the logarithmic conversion, dynamic ranges of over six orders of magnitide are obtained. To achieve the short integration times necessary in acousto-optic applications. t he wide dynamic range detector has been implemented into a tapped array architecture with eight outputs and 256 photoelements. Operation of each 01)1,1)111 at 16 MHz yields detector integration times of 2 micro-seconds. Buried channel two phase CCD shift register technology is utilized to minimize image sensor noise improve video output rates and increase ease of operation.

  7. High-frame rate multiport CCD imager and camera

    NASA Astrophysics Data System (ADS)

    Levine, Peter A.; Patterson, David R.; Esposito, Benjamin J.; Tower, John R.; Lawler, William B.

    1993-01-01

    A high frame rate visible CCD camera capable of operation up to 200 frames per second is described. The camera produces a 256 X 256 pixel image by using one quadrant of a 512 X 512 16-port, back illuminated CCD imager. Four contiguous outputs are digitally reformatted into a correct, 256 X 256 image. This paper details the architecture and timing used for the CCD drive circuits, analog processing, and the digital reformatter.

  8. Accurate attitude determination of the LACE satellite

    NASA Technical Reports Server (NTRS)

    Miglin, M. F.; Campion, R. E.; Lemos, P. J.; Tran, T.

    1993-01-01

    The Low-power Atmospheric Compensation Experiment (LACE) satellite, launched in February 1990 by the Naval Research Laboratory, uses a magnetic damper on a gravity gradient boom and a momentum wheel with its axis perpendicular to the plane of the orbit to stabilize and maintain its attitude. Satellite attitude is determined using three types of sensors: a conical Earth scanner, a set of sun sensors, and a magnetometer. The Ultraviolet Plume Instrument (UVPI), on board LACE, consists of two intensified CCD cameras and a gimbal led pointing mirror. The primary purpose of the UVPI is to image rocket plumes from space in the ultraviolet and visible wavelengths. Secondary objectives include imaging stars, atmospheric phenomena, and ground targets. The problem facing the UVPI experimenters is that the sensitivity of the LACF satellite attitude sensors is not always adequate to correctly point the UVPI cameras. Our solution is to point the UVPI cameras at known targets and use the information thus gained to improve attitude measurements. This paper describes the three methods developed to determine improved attitude values using the UVPI for both real-time operations and post observation analysis.

  9. General Model of Photon-Pair Detection with an Image Sensor

    NASA Astrophysics Data System (ADS)

    Defienne, Hugo; Reichert, Matthew; Fleischer, Jason W.

    2018-05-01

    We develop an analytic model that relates intensity correlation measurements performed by an image sensor to the properties of photon pairs illuminating it. Experiments using an effective single-photon counting camera, a linear electron-multiplying charge-coupled device camera, and a standard CCD camera confirm the model. The results open the field of quantum optical sensing using conventional detectors.

  10. A TV Camera System Which Extracts Feature Points For Non-Contact Eye Movement Detection

    NASA Astrophysics Data System (ADS)

    Tomono, Akira; Iida, Muneo; Kobayashi, Yukio

    1990-04-01

    This paper proposes a highly efficient camera system which extracts, irrespective of background, feature points such as the pupil, corneal reflection image and dot-marks pasted on a human face in order to detect human eye movement by image processing. Two eye movement detection methods are sugested: One utilizing face orientation as well as pupil position, The other utilizing pupil and corneal reflection images. A method of extracting these feature points using LEDs as illumination devices and a new TV camera system designed to record eye movement are proposed. Two kinds of infra-red LEDs are used. These LEDs are set up a short distance apart and emit polarized light of different wavelengths. One light source beams from near the optical axis of the lens and the other is some distance from the optical axis. The LEDs are operated in synchronization with the camera. The camera includes 3 CCD image pick-up sensors and a prism system with 2 boundary layers. Incident rays are separated into 2 wavelengths by the first boundary layer of the prism. One set of rays forms an image on CCD-3. The other set is split by the half-mirror layer of the prism and forms an image including the regularly reflected component by placing a polarizing filter in front of CCD-1 or another image not including the component by not placing a polarizing filter in front of CCD-2. Thus, three images with different reflection characteristics are obtained by three CCDs. Through the experiment, it is shown that two kinds of subtraction operations between the three images output from CCDs accentuate three kinds of feature points: the pupil and corneal reflection images and the dot-marks. Since the S/N ratio of the subtracted image is extremely high, the thresholding process is simple and allows reducting the intensity of the infra-red illumination. A high speed image processing apparatus using this camera system is decribed. Realtime processing of the subtraction, thresholding and gravity position calculation of the feature points is possible.

  11. Undersampled digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Halaq, H.; Demoli, N.; Sović, I.; Šariri, K.; Torzynski, M.; Vukičević, D.

    2008-04-01

    In digital holography, primary holographic fringes are recorded using a matricial CCD sensor. Because of the low spatial resolution of currently available CCD arrays, the angle between the reference and object beams must be limited to a few degrees. Namely, due to the digitization involved, the Shannon's criterion imposes that the Nyquist sampling frequency be at least twice the highest signal frequency. This means that, in the case of the recording of an interference fringe pattern by a CCD sensor, the inter-fringe distance must be larger than twice the pixel period. This in turn limits the angle between the object and the reference beams. If this angle, in a practical holographic interferometry measuring setup, cannot be limited to the required value, aliasing will occur in the reconstructed image. In this work, we demonstrate that the low spatial frequency metrology data could nevertheless be efficiently extracted by careful choice of twofold, and even threefold, undersampling of the object field. By combining the time-averaged recording with subtraction digital holography method, we present results for a loudspeaker membrane interferometric study obtained under strong aliasing conditions. High-contrast fringes, as a consequence of the vibration modes of the membrane, are obtained.

  12. Cameras for digital microscopy.

    PubMed

    Spring, Kenneth R

    2013-01-01

    This chapter reviews the fundamental characteristics of charge-coupled devices (CCDs) and related detectors, outlines the relevant parameters for their use in microscopy, and considers promising recent developments in the technology of detectors. Electronic imaging with a CCD involves three stages--interaction of a photon with the photosensitive surface, storage of the liberated charge, and readout or measurement of the stored charge. The most demanding applications in fluorescence microscopy may require as much as four orders of greater magnitude sensitivity. The image in the present-day light microscope is usually acquired with a CCD camera. The CCD is composed of a large matrix of photosensitive elements (often referred to as "pixels" shorthand for picture elements, which simultaneously capture an image over the entire detector surface. The light-intensity information for each pixel is stored as electronic charge and is converted to an analog voltage by a readout amplifier. This analog voltage is subsequently converted to a numerical value by a digitizer situated on the CCD chip, or very close to it. Several (three to six) amplifiers are required for each pixel, and to date, uniform images with a homogeneous background have been a problem because of the inherent difficulties of balancing the gain in all of the amplifiers. Complementary metal oxide semiconductor sensors also exhibit relatively high noise associated with the requisite high-speed switching. Both of these deficiencies are being addressed, and sensor performance is nearing that required for scientific imaging. Copyright © 1998 Elsevier Inc. All rights reserved.

  13. A fringe projector-based study of the Brighter-Fatter Effect in LSST CCDs

    DOE PAGES

    Gilbertson, W.; Nomerotski, A.; Takacs, P.

    2017-09-07

    In order to achieve the goals of the Large Synoptic Survey Telescope for Dark Energy science requires a detailed understanding of CCD sensor effects. One such sensor effect is the Point Spread Function (PSF) increasing with flux, alternatively called the `Brighter-Fatter Effect.' Here a novel approach was tested to perform the PSF measurements in the context of the Brighter-Fatter Effect employing a Michelson interferometer to project a sinusoidal fringe pattern onto the CCD. The Brighter-Fatter effect predicts that the fringe pattern should become asymmetric in the intensity pattern as the brighter peaks corresponding to a larger flux are smeared bymore » a larger PSF. By fitting the data with a model that allows for a changing PSF, the strength of the Brighter-Fatter effect can be evaluated.« less

  14. A Simple Method Based on the Application of a CCD Camera as a Sensor to Detect Low Concentrations of Barium Sulfate in Suspension

    PubMed Central

    de Sena, Rodrigo Caciano; Soares, Matheus; Pereira, Maria Luiza Oliveira; da Silva, Rogério Cruz Domingues; do Rosário, Francisca Ferreira; da Silva, Joao Francisco Cajaiba

    2011-01-01

    The development of a simple, rapid and low cost method based on video image analysis and aimed at the detection of low concentrations of precipitated barium sulfate is described. The proposed system is basically composed of a webcam with a CCD sensor and a conventional dichroic lamp. For this purpose, software for processing and analyzing the digital images based on the RGB (Red, Green and Blue) color system was developed. The proposed method had shown very good repeatability and linearity and also presented higher sensitivity than the standard turbidimetric method. The developed method is presented as a simple alternative for future applications in the study of precipitations of inorganic salts and also for detecting the crystallization of organic compounds. PMID:22346607

  15. A fringe projector-based study of the Brighter-Fatter Effect in LSST CCDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbertson, W.; Nomerotski, A.; Takacs, P.

    In order to achieve the goals of the Large Synoptic Survey Telescope for Dark Energy science requires a detailed understanding of CCD sensor effects. One such sensor effect is the Point Spread Function (PSF) increasing with flux, alternatively called the `Brighter-Fatter Effect.' Here a novel approach was tested to perform the PSF measurements in the context of the Brighter-Fatter Effect employing a Michelson interferometer to project a sinusoidal fringe pattern onto the CCD. The Brighter-Fatter effect predicts that the fringe pattern should become asymmetric in the intensity pattern as the brighter peaks corresponding to a larger flux are smeared bymore » a larger PSF. By fitting the data with a model that allows for a changing PSF, the strength of the Brighter-Fatter effect can be evaluated.« less

  16. Modeling the impact of preflushing on CTE in proton irradiated CCD-based detectors

    NASA Astrophysics Data System (ADS)

    Philbrick, R. H.

    2002-04-01

    A software model is described that performs a "real world" simulation of the operation of several types of charge-coupled device (CCD)-based detectors in order to accurately predict the impact that high-energy proton radiation has on image distortion and modulation transfer function (MTF). The model was written primarily to predict the effectiveness of vertical preflushing on the custom full frame CCD-based detectors intended for use on the proposed Kepler Discovery mission, but it is capable of simulating many other types of CCD detectors and operating modes as well. The model keeps track of the occupancy of all phosphorous-silicon (P-V), divacancy (V-V) and oxygen-silicon (O-V) defect centers under every CCD electrode over the entire detector area. The integrated image is read out by simulating every electrode-to-electrode charge transfer in both the vertical and horizontal CCD registers. A signal level dependency on the capture and emission of signal is included and the current state of each electrode (e.g., barrier or storage) is considered when distributing integrated and emitted signal. Options for performing preflushing, preflashing, and including mini-channels are available on both the vertical and horizontal CCD registers. In addition, dark signal generation and image transfer smear can be selectively enabled or disabled. A comparison of the charge transfer efficiency (CTE) data measured on the Hubble space telescope imaging spectrometer (STIS) CCD with the CTE extracted from model simulations of the STIS CCD show good agreement.

  17. Intelligent error correction method applied on an active pixel sensor based star tracker

    NASA Astrophysics Data System (ADS)

    Schmidt, Uwe

    2005-10-01

    Star trackers are opto-electronic sensors used on-board of satellites for the autonomous inertial attitude determination. During the last years star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The active pixel sensor (APS) technology, introduced in the early 90-ties, allows now the beneficial replacement of CCD detectors by APS detectors with respect to performance, reliability, power, mass and cost. The company's heritage in star tracker design started in the early 80-ties with the launch of the worldwide first fully autonomous star tracker system ASTRO1 to the Russian MIR space station. Jena-Optronik recently developed an active pixel sensor based autonomous star tracker "ASTRO APS" as successor of the CCD based star tracker product series ASTRO1, ASTRO5, ASTRO10 and ASTRO15. Key features of the APS detector technology are, a true xy-address random access, the multiple windowing read out and the on-chip signal processing including the analogue to digital conversion. These features can be used for robust star tracking at high slew rates and under worse conditions like stray light and solar flare induced single event upsets. A special algorithm have been developed to manage the typical APS detector error contributors like fixed pattern noise (FPN), dark signal non-uniformity (DSNU) and white spots. The algorithm works fully autonomous and adapts to e.g. increasing DSNU and up-coming white spots automatically without ground maintenance or re-calibration. In contrast to conventional correction methods the described algorithm does not need calibration data memory like full image sized calibration data sets. The application of the presented algorithm managing the typical APS detector error contributors is a key element for the design of star trackers for long term satellite applications like geostationary telecom platforms.

  18. Cross delay line sensor characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, Israel J; Remelius, Dennis K; Tiee, Joe J

    There exists a wealth of information in the scientific literature on the physical properties and device characterization procedures for complementary metal oxide semiconductor (CMOS), charge coupled device (CCD) and avalanche photodiode (APD) format detectors. Numerous papers and books have also treated photocathode operation in the context of photomultiplier tube (PMT) operation for either non imaging applications or limited night vision capability. However, much less information has been reported in the literature about the characterization procedures and properties of photocathode detectors with novel cross delay line (XDL) anode structures. These allow one to detect single photons and create images by recordingmore » space and time coordinate (X, Y & T) information. In this paper, we report on the physical characteristics and performance of a cross delay line anode sensor with an enhanced near infrared wavelength response photocathode and high dynamic range micro channel plate (MCP) gain (> 10{sup 6}) multiplier stage. Measurement procedures and results including the device dark event rate (DER), pulse height distribution, quantum and electronic device efficiency (QE & DQE) and spatial resolution per effective pixel region in a 25 mm sensor array are presented. The overall knowledge and information obtained from XDL sensor characterization allow us to optimize device performance and assess capability. These device performance properties and capabilities make XDL detectors ideal for remote sensing field applications that require single photon detection, imaging, sub nano-second timing response, high spatial resolution (10's of microns) and large effective image format.« less

  19. The astrometric lessons of Gaia-GBOT experiment

    NASA Astrophysics Data System (ADS)

    Bouquillon, S.; Mendez, R. A.; Altmann, M.

    2017-07-01

    To ensure the full capabilities of the Gaia's measurements, a programme of daily observations with Earth-based telescopes of the satellite itself - called Ground Based Optical Tracking (GBOT) - was implemented since the beginning of the Gaia mission (for more details concerning GBOT operating see Altmann et al. 2014 and concerning GBOT software facilities see Bouquillon et al. 2014). These observations are carried out mainly with two facilities: the 2.6m VLT Survey Telescope (ESO's VST) at the Cerro Paranal in Chile and the 2.0m Liverpool Telescope (LT) on the Canary Island of La Palma. The constraint of 20 mas on the tracking astrometric quality and the fact that Gaia is a faint and relatively fast moving target (its magnitude in a red passband is around 21 and its apparent speed around 0.04"/s), lead us to rigorously analyse the reachable astrometric precision for CCD observations of this kind of celestial objects. During LARIM 2016, we presented the main results of this study which uses the Cramér-Rao lower bound to characterize the precision limit for the PSF center when drifting in the CCD-frame. This work extends earlier studies dealing with one-dimensional detectors and stationary sources (Mendez et al. 2013 & 2014) firstly to the case of standard two-dimensional CCD sensors, and then, to moving sources. These new results have been submitted for a publication in A&A journal this year (Bouquillon et al. 2017).

  20. Effects of space-radiation damage and temperature on CCD noise for the Lyman FUSE mission

    NASA Astrophysics Data System (ADS)

    Murowinski, Richard G.; Gao, Linzhuang; Deen, Mohamed J.

    1993-09-01

    Charge coupled device (CCD) imaging arrays are becoming more frequently used in space vehicles and equipment, especially space-based astronomical telescopes. It is important to understand the effects of radiation on a CCD so that its performance degradation during mission lifetime can be predicted, and so that methods to prevent unacceptable performance degradation can be found. Much recent work by various groups has focused on the problems surrounding the loss of charge transfer efficiency and the increase in dark current and dark current spikes in CCDs. The use of a CCD as the fine error sensor in the Lyman Far Ultraviolet Spectroscopic Explorer (FUSE) is limited by its noise performance. In this work we attempt to understand some of the factors surrounding the noise degradation due to radiation in a space environment. Later, we demonstrate how low frequency noise can be used as a characterization tool for studying proton radiation damage in CCDs.

  1. Development and Application of a Structural Health Monitoring System Based on Wireless Smart Aggregates

    PubMed Central

    Ma, Haoyan; Li, Peng; Song, Gangbing; Wu, Jianxin

    2017-01-01

    Structural health monitoring (SHM) systems can improve the safety and reliability of structures, reduce maintenance costs, and extend service life. Research on concrete SHMs using piezoelectric-based smart aggregates have reached great achievements. However, the newly developed techniques have not been widely applied in practical engineering, largely due to the wiring problems associated with large-scale structural health monitoring. The cumbersome wiring requires much material and labor work, and more importantly, the associated maintenance work is also very heavy. Targeting a practical large scale concrete crack detection (CCD) application, a smart aggregates-based wireless sensor network system is proposed for the CCD application. The developed CCD system uses Zigbee 802.15.4 protocols, and is able to perform dynamic stress monitoring, structural impact capturing, and internal crack detection. The system has been experimentally validated, and the experimental results demonstrated the effectiveness of the proposed system. This work provides important support for practical CCD applications using wireless smart aggregates. PMID:28714927

  2. Development and Application of a Structural Health Monitoring System Based on Wireless Smart Aggregates.

    PubMed

    Yan, Shi; Ma, Haoyan; Li, Peng; Song, Gangbing; Wu, Jianxin

    2017-07-17

    Structural health monitoring (SHM) systems can improve the safety and reliability of structures, reduce maintenance costs, and extend service life. Research on concrete SHMs using piezoelectric-based smart aggregates have reached great achievements. However, the newly developed techniques have not been widely applied in practical engineering, largely due to the wiring problems associated with large-scale structural health monitoring. The cumbersome wiring requires much material and labor work, and more importantly, the associated maintenance work is also very heavy. Targeting a practical large scale concrete crack detection (CCD) application, a smart aggregates-based wireless sensor network system is proposed for the CCD application. The developed CCD system uses Zigbee 802.15.4 protocols, and is able to perform dynamic stress monitoring, structural impact capturing, and internal crack detection. The system has been experimentally validated, and the experimental results demonstrated the effectiveness of the proposed system. This work provides important support for practical CCD applications using wireless smart aggregates.

  3. 3D digital image correlation using single color camera pseudo-stereo system

    NASA Astrophysics Data System (ADS)

    Li, Junrui; Dan, Xizuo; Xu, Wan; Wang, Yonghong; Yang, Guobiao; Yang, Lianxiang

    2017-10-01

    Three dimensional digital image correlation (3D-DIC) has been widely used by industry to measure the 3D contour and whole-field displacement/strain. In this paper, a novel single color camera 3D-DIC setup, using a reflection-based pseudo-stereo system, is proposed. Compared to the conventional single camera pseudo-stereo system, which splits the CCD sensor into two halves to capture the stereo views, the proposed system achieves both views using the whole CCD chip and without reducing the spatial resolution. In addition, similarly to the conventional 3D-DIC system, the center of the two views stands in the center of the CCD chip, which minimizes the image distortion relative to the conventional pseudo-stereo system. The two overlapped views in the CCD are separated by the color domain, and the standard 3D-DIC algorithm can be utilized directly to perform the evaluation. The system's principle and experimental setup are described in detail, and multiple tests are performed to validate the system.

  4. Novel low-cost vision-sensing technology with controllable of exposal time for welding

    NASA Astrophysics Data System (ADS)

    Zhang, Wenzeng; Wang, Bin; Chen, Nian; Cao, Yipeng

    2005-02-01

    In the process of robot Welding, position of welding seam and welding pool shape is detected by CCD camera for quality control and seam tracking in real-time. It is difficult to always get a clear welding image in some welding methods, such as TIG welding. A novel idea that the exposal time of CCD camera is automatically controlled by arc voltage or arc luminance is proposed to get clear welding image. A set of special device and circuits are added to a common industrial CCD camera in order to flexibly control the CCD to start or close exposal by control of the internal clearing signal of the accumulated charge. Two special vision sensors according to the idea are developed. Their exposal grabbing can be triggered respectively by the arc voltage and the variety of the arc luminance. Two prototypes have been designed and manufactured. Experiments show that they can stably grab clear welding images at appointed moment, which is a basic for the feedback control of automatic welding.

  5. Failure Analysis of CCD Image Sensors Using SQUID and GMR Magnetic Current Imaging

    NASA Technical Reports Server (NTRS)

    Felt, Frederick S.

    2005-01-01

    During electrical testing of a Full Field CCD Image Senor, electrical shorts were detected on three of six devices. These failures occurred after the parts were soldered to the PCB. Failure analysis was performed to determine the cause and locations of these failures on the devices. After removing the fiber optic faceplate, optical inspection was performed on the CCDs to understand the design and package layout. Optical inspection revealed that the device had a light shield ringing the CCD array. This structure complicated the failure analysis. Alternate methods of analysis were considered, including liquid crystal, light and thermal emission, LT/A, TT/A SQUID, and MP. Of these, SQUID and MP techniques were pursued for further analysis. Also magnetoresistive current imaging technology is discussed and compared to SQUID.

  6. Solid State Research

    DTIC Science & Technology

    1998-05-15

    2 Bioaerosol fluorescence sensor concept. 2 1-3 Bioaerosol fluorescence sensor detection geometry: (a) signal collection (side view... wavelength light, (b) Strength of output signal along vertical line trace indicated by arrow in (a). 37 5-2 Brick wall pattern revealed by chemical...etchant. 38 5-3 (a) Flat-field illumination of improved laser-annealed CCD at -90°C with 410-nm wavelength light, (b) Strength of output signal along

  7. ManPortable and UGV LIVAR: advances in sensor suite integration bring improvements to target observation and identification for the electronic battlefield

    NASA Astrophysics Data System (ADS)

    Lynam, Jeff R.

    2001-09-01

    A more highly integrated, electro-optical sensor suite using Laser Illuminated Viewing and Ranging (LIVAR) techniques is being developed under the Army Advanced Concept Technology- II (ACT-II) program for enhanced manportable target surveillance and identification. The ManPortable LIVAR system currently in development employs a wide-array of sensor technologies that provides the foot-bound soldier and UGV significant advantages and capabilities in lightweight, fieldable, target location, ranging and imaging systems. The unit incorporates a wide field-of-view, 5DEG x 3DEG, uncooled LWIR passive sensor for primary target location. Laser range finding and active illumination is done with a triggered, flash-lamp pumped, eyesafe micro-laser operating in the 1.5 micron region, and is used in conjunction with a range-gated, electron-bombarded CCD digital camera to then image the target objective in a more- narrow, 0.3$DEG, field-of-view. Target range determination is acquired using the integrated LRF and a target position is calculated using data from other onboard devices providing GPS coordinates, tilt, bank and corrected magnetic azimuth. Range gate timing and coordinated receiver optics focus control allow for target imaging operations to be optimized. The onboard control electronics provide power efficient, system operations for extended field use periods from the internal, rechargeable battery packs. Image data storage, transmission, and processing performance capabilities are also being incorporated to provide the best all-around support, for the electronic battlefield, in this type of system. The paper will describe flash laser illumination technology, EBCCD camera technology with flash laser detection system, and image resolution improvement through frame averaging.

  8. 3D space positioning and image feature extraction for workpiece

    NASA Astrophysics Data System (ADS)

    Ye, Bing; Hu, Yi

    2008-03-01

    An optical system of 3D parameters measurement for specific area of a workpiece has been presented and discussed in this paper. A number of the CCD image sensors are employed to construct the 3D coordinate system for the measured area. The CCD image sensor of the monitoring target is used to lock the measured workpiece when it enters the field of view. The other sensors, which are placed symmetrically beam scanners, measure the appearance of the workpiece and the characteristic parameters. The paper established target image segmentation and the image feature extraction algorithm to lock the target, based on the geometric similarity of objective characteristics, rapid locking the goal can be realized. When line laser beam scan the tested workpiece, a number of images are extracted equal time interval and the overlapping images are processed to complete image reconstruction, and achieve the 3D image information. From the 3D coordinate reconstruction model, the 3D characteristic parameters of the tested workpiece are gained. The experimental results are provided in the paper.

  9. Research of optical coherence tomography microscope based on CCD detector

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Xu, Zhongbao; Zhang, Shuomo

    2008-12-01

    The reference wave phase was modulated with a sinusoidal vibrating mirror attached to a Piezoelectric Transducer (PZT), the integration was performed by a CCD, and the charge storage period of the CCD image sensor was one-quarter period of the sinusoidal phase modulation. With the frequency- synchronous detection technique, four images (four frames of interference pattern) were recorded during one period of the phase modulation. In order to obtain the optimum modulation parameter, the values of amplitude and phase of the sinusoidal phase modulation were determined by considering the measurement error caused by the additive noise contained in the detected values. The PZT oscillation was controlled by a closed loop control system based on PID controller. An ideal discrete digital sine function at 50Hz with adjustable amplitude was used to adjust the vibrating of PZT, and a digital phase shift techniques was used to adjust vibrating phase of PZT so that the phase of the modulation could reach their optimum values. The CCD detector was triggered with software at 200Hz. Based on work above a small coherent signal masked by the preponderant incoherent background with a CCD detector was obtained.

  10. Fiber optic, Fabry-Perot high temperature sensor

    NASA Technical Reports Server (NTRS)

    James, K.; Quick, B.

    1984-01-01

    A digital, fiber optic temperature sensor using a variable Fabry-Perot cavity as the sensor element was analyzed, designed, fabricated, and tested. The fiber transmitted cavity reflection spectra is dispersed then converted from an optical signal to electrical information by a charged coupled device (CCD). A microprocessor-based color demodulation system converts the wavelength information to temperature. This general sensor concept not only utilizes an all-optical means of parameter sensing and transmitting, but also exploits microprocessor technology for automated control, calibration, and enhanced performance. The complete temperature sensor system was evaluated in the laboratory. Results show that the Fabry-Perot temperature sensor has good resolution (0.5% of full seale), high accuracy, and potential high temperature ( 1000 C) applications.

  11. NGS2: a focal plane array upgrade for the GeMS multiple tip-tilt wavefront sensor

    NASA Astrophysics Data System (ADS)

    Rigaut, François; Price, Ian; d'Orgeville, Céline; Bennet, Francis; Herrald, Nick; Paulin, Nicolas; Uhlendorf, Kristina; Garrel, Vincent; Sivo, Gaetano; Montes, Vanessa; Trujillo, Chad

    2016-07-01

    NGS2 is an upgrade for the multi-natural guide star tip-tilt & plate scale wavefront sensor for GeMS (Gemini Multi-Conjugate Adaptive Optics system). It uses a single Nüvü HNü-512 Electron-Multiplied CCD array that spans the entire GeMS wavefront sensor focal plane. Multiple small regions-of-interest are used to enable frame rates up to 800Hz. This set up will improve the optical throughput with respect to the current wavefront sensor, as well as streamline acquisition and allow for distortion compensation.

  12. Can direct electron detectors outperform phosphor-CCD systems for TEM?

    NASA Astrophysics Data System (ADS)

    Moldovan, G.; Li, X.; Kirkland, A.

    2008-08-01

    A new generation of imaging detectors is being considered for application in TEM, but which device architectures can provide the best images? Monte Carlo simulations of the electron-sensor interaction are used here to calculate the expected modulation transfer of monolithic active pixel sensors (MAPS), hybrid active pixel sensors (HAPS) and double sided Silicon strip detectors (DSSD), showing that ideal and nearly ideal transfer can be obtained using DSSD and MAPS sensors. These results highly recommend the replacement of current phosphor screen and charge coupled device imaging systems with such new directly exposed position sensitive electron detectors.

  13. Research-grade CMOS image sensors for demanding space applications

    NASA Astrophysics Data System (ADS)

    Saint-Pé, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Belliot, Pierre

    2004-06-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid-90s, CMOS Image Sensors (CIS) have been competing with CCDs for more and more consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA, and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this talk will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments of CIS prototypes built using an imaging CMOS process and of devices based on improved designs will be presented.

  14. Research-grade CMOS image sensors for demanding space applications

    NASA Astrophysics Data System (ADS)

    Saint-Pé, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Belliot, Pierre

    2017-11-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid- 90s, CMOS Image Sensors (CIS) have been competing with CCDs for more and more consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA, and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this talk will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments of CIS prototypes built using an imaging CMOS process and of devices based on improved designs will be presented.

  15. Design considerations for imaging charge-coupled device

    NASA Astrophysics Data System (ADS)

    1981-04-01

    The image dissector tube, which was formerly used as detector in star trackers, will be replaced by solid state imaging devices. The technology advances of charge transfer devices, like the charge-coupled device (CCD) and the charge-injection device (CID) have made their application to star trackers an immediate reality. The Air Force in 1979 funded an American Aerospace company to develop an imaging CCD (ICCD) star sensor for the Multimission Attitude Determination and Autonomous Navigation (MADAN) system. The MADAN system is a technology development for a strapdown attitude and navigation system which can be used on all Air Force 3-axis stabilized satellites. The system will be autonomous and will provide real-time satellite attitude and position information. The star sensor accuracy provides an overall MADAN attitude accuracy of 2 arcsec for star rates up to 300 arcsec/sec. The ICCD is basically an integrating device. Its pixel resolution in not yet satisfactory for precision applications.

  16. Combining Charge Couple Devices and Rate Sensors for the Feedforward Control System of a Charge Coupled Device Tracking Loop.

    PubMed

    Tang, Tao; Tian, Jing; Zhong, Daijun; Fu, Chengyu

    2016-06-25

    A rate feed forward control-based sensor fusion is proposed to improve the closed-loop performance for a charge couple device (CCD) tracking loop. The target trajectory is recovered by combining line of sight (LOS) errors from the CCD and the angular rate from a fiber-optic gyroscope (FOG). A Kalman filter based on the Singer acceleration model utilizes the reconstructive target trajectory to estimate the target velocity. Different from classical feed forward control, additive feedback loops are inevitably added to the original control loops due to the fact some closed-loop information is used. The transfer function of the Kalman filter in the frequency domain is built for analyzing the closed loop stability. The bandwidth of the Kalman filter is the major factor affecting the control stability and close-loop performance. Both simulations and experiments are provided to demonstrate the benefits of the proposed algorithm.

  17. Evaluation of a New Prototype Geodetic Astrolabe for Measuring Deflections of the Vertical

    NASA Astrophysics Data System (ADS)

    Slater, J. A.; Thompson, N.; Angell, L. E.; Belenkii, M. S.; Bruns, D. G.; Johnson, D. O.

    2009-12-01

    During the last three years, the National Geospatial-Intelligence Agency (NGA), with assistance from the U.S. Naval Observatory (USNO), sponsored the development of a new electronic geodetic astrolabe for measuring deflections of the vertical (DoV). NGA’s current operational astrolabes, built in 1995, have a number of undesirable features including the need for a pool of liquid mercury as a reflecting surface. The new state-of-the-art prototype instrument, completed by Trex Enterprises in early 2009, was designed to meet a 0.2 arcsec accuracy requirement. It reduces the weight, eliminates the mercury, and dramatically reduces observation times. The new astrolabe consists of a 101 mm aperture telescope with a 1.5° field of view and an inclinometer mounted inside a 92-cm high, 30-cm diameter tube, an external GPS receiver for timing, and a laptop computer that controls and monitors the instrument and performs the computations. Star images are recorded by an astronomical-grade camera with a 2,048 x 2,048 pixel CCD sensor that is externally triggered by time pulses from the GPS receiver. The prototype was designed for nighttime observation of visible stars equal to or brighter than magnitude 10.0. The inclinometer is a system of two orthogonal pendula that define the local gravitational vertical, each consisting of a brass plumb bob suspended from an aluminized polymer ribbon set between two electrodes. An internal reference collimator is rigidly tied to the inclinometer and projects an array of reference points of light onto the CCD sensor. After the astrolabe is coarsely leveled to within 20 arcsec, voice coil actuators automatically adjust and maintain the inclinometer vertical to within 0.02 arcsec. Independent images are collected at 6 second intervals using a 200 msec exposure time. The CCD coordinates are determined for each star and a collimator reference point on each image. Stars are identified by referencing a customized star catalog produced by USNO. A plate model is fitted to the topocentric coordinates of the stars, and then used to solve for the astronomical latitude and longitude of the vertical reference point on the CCD. The average of 100-150 individual image solutions (10-15 minutes) defines the astronomical position for the observation session. In order to remove an azimuthal orientation bias, the astrolabe is rotated 180°, a new observation session solution is produced for that orientation and then averaged with the first solution to get the final astronomical position of the site. By combining these coordinates with GPS-derived geodetic latitude and longitude, one obtains the DoV. Initial testing of the prototype at a known astronomic position has been completed. The tests evaluated the session-to-session and day-to-day repeatability of the solutions, the number of observations required for a solution, the accuracy with respect to the known position, and the operational robustness of the hardware and software. Based on the field tests, Trex will make improvements to the prototype hardware and software and then produce operational units for use by NGA.

  18. Advances in detector technologies for visible and infrared wavefront sensing

    NASA Astrophysics Data System (ADS)

    Feautrier, Philippe; Gach, Jean-Luc; Downing, Mark; Jorden, Paul; Kolb, Johann; Rothman, Johan; Fusco, Thierry; Balard, Philippe; Stadler, Eric; Guillaume, Christian; Boutolleau, David; Destefanis, Gérard; Lhermet, Nicolas; Pacaud, Olivier; Vuillermet, Michel; Kerlain, Alexandre; Hubin, Norbert; Reyes, Javier; Kasper, Markus; Ivert, Olaf; Suske, Wolfgang; Walker, Andrew; Skegg, Michael; Derelle, Sophie; Deschamps, Joel; Robert, Clélia; Vedrenne, Nicolas; Chazalet, Frédéric; Tanchon, Julien; Trollier, Thierry; Ravex, Alain; Zins, Gérard; Kern, Pierre; Moulin, Thibaut; Preis, Olivier

    2012-07-01

    The purpose of this paper is to give an overview of the state of the art wavefront sensor detectors developments held in Europe for the last decade. The success of the next generation of instruments for 8 to 40-m class telescopes will depend on the ability of Adaptive Optics (AO) systems to provide excellent image quality and stability. This will be achieved by increasing the sampling, wavelength range and correction quality of the wave front error in both spatial and time domains. The modern generation of AO wavefront sensor detectors development started in the late nineties with the CCD50 detector fabricated by e2v technologies under ESO contract for the ESO NACO AO system. With a 128x128 pixels format, this 8 outputs CCD offered a 500 Hz frame rate with a readout noise of 7e-. A major breakthrough has been achieved with the recent development by e2v technologies of the CCD220. This 240x240 pixels 8 outputs EMCCD (CCD with internal multiplication) has been jointly funded by ESO and Europe under the FP6 programme. The CCD220 and the OCAM2 camera that operates the detector are now the most sensitive system in the world for advanced adaptive optics systems, offering less than 0.2 e readout noise at a frame rate of 1500 Hz with negligible dark current. Extremely easy to operate, OCAM2 only needs a 24 V power supply and a modest water cooling circuit. This system, commercialized by First Light Imaging, is extensively described in this paper. An upgrade of OCAM2 is foreseen to boost its frame rate to 2 kHz, opening the window of XAO wavefront sensing for the ELT using 4 synchronized cameras and pyramid wavefront sensing. Since this major success, new developments started in Europe. One is fully dedicated to Natural and Laser Guide Star AO for the E-ELT with ESO involvement. The spot elongation from a LGS Shack Hartman wavefront sensor necessitates an increase of the pixel format. Two detectors are currently developed by e2v. The NGSD will be a 880x840 pixels CMOS detector with a readout noise of 3 e (goal 1e) at 700 Hz frame rate. The LGSD is a scaling of the NGSD with 1760x1680 pixels and 3 e readout noise (goal 1e) at 700 Hz (goal 1000 Hz) frame rate. New technologies will be developed for that purpose: advanced CMOS pixel architecture, CMOS back thinned and back illuminated device for very high QE, full digital outputs with signal digital conversion on chip. In addition, the CMOS technology is extremely robust in a telescope environment. Both detectors will be used on the European ELT but also interest potentially all giant telescopes under development. Additional developments also started for wavefront sensing in the infrared based on a new technological breakthrough using ultra low noise Avalanche Photodiode (APD) arrays within the RAPID project. Developed by the SOFRADIR and CEA/LETI manufacturers, the latter will offer a 320x240 8 outputs 30 microns IR array, sensitive from 0.4 to 3.2 microns, with 2 e readout noise at 1500 Hz frame rate. The high QE response is almost flat over this wavelength range. Advanced packaging with miniature cryostat using liquid nitrogen free pulse tube cryocoolers is currently developed for this programme in order to allow use on this detector in any type of environment. First results of this project are detailed here. These programs are held with several partners, among them are the French astronomical laboratories (LAM, OHP, IPAG), the detector manufacturers (e2v technologies, Sofradir, CEA/LETI) and other partners (ESO, ONERA, IAC, GTC). Funding is: Opticon FP6 and FP7 from European Commission, ESO, CNRS and Université de Provence, Sofradir, ONERA, CEA/LETI and the French FUI (DGCIS).

  19. Multi-image acquisition-based distance sensor using agile laser spot beam.

    PubMed

    Riza, Nabeel A; Amin, M Junaid

    2014-09-01

    We present a novel laser-based distance measurement technique that uses multiple-image-based spatial processing to enable distance measurements. Compared with the first-generation distance sensor using spatial processing, the modified sensor is no longer hindered by the classic Rayleigh axial resolution limit for the propagating laser beam at its minimum beam waist location. The proposed high-resolution distance sensor design uses an electronically controlled variable focus lens (ECVFL) in combination with an optical imaging device, such as a charged-coupled device (CCD), to produce and capture different laser spot size images on a target with these beam spot sizes different from the minimal spot size possible at this target distance. By exploiting the unique relationship of the target located spot sizes with the varying ECVFL focal length for each target distance, the proposed distance sensor can compute the target distance with a distance measurement resolution better than the axial resolution via the Rayleigh resolution criterion. Using a 30 mW 633 nm He-Ne laser coupled with an electromagnetically actuated liquid ECVFL, along with a 20 cm focal length bias lens, and using five spot images captured per target position by a CCD-based Nikon camera, a proof-of-concept proposed distance sensor is successfully implemented in the laboratory over target ranges from 10 to 100 cm with a demonstrated sub-cm axial resolution, which is better than the axial Rayleigh resolution limit at these target distances. Applications for the proposed potentially cost-effective distance sensor are diverse and include industrial inspection and measurement and 3D object shape mapping and imaging.

  20. Solar Extreme Ultraviolet Rocket Telesope Spectrograph ** SERTS ** Detector and Electronics subsystems

    NASA Astrophysics Data System (ADS)

    Payne, L.; Haas, J. P.; Linard, D.; White, L.

    1997-12-01

    The Laboratory for Astronomy and Solar Physics at Goddard Space Flight Center uses a variety imaging sensors for its instrumentation programs. This paper describes the detector system for SERTS. The SERTS rocket telescope uses an open faceplate, single plate MCP tube as the primary detector for EUV spectra from the Sun. The optical output of this detector is fiber-optically coupled to a cooled, large format CCD. This CCD is operated using a software controlled Camera controller based upon a design used for the SOHO/CDS mission. This camera is a general purpose design, with a topology that supports multiple types of imaging devices. Multiport devices (up to 4 ports) and multiphase clocks are supportable as well as variable speed operation. Clock speeds from 100KHz to 1MHz have been used, and the topology is currently being extended to support 10MHz operation. The form factor for the camera system is based on the popular VME buss. Because the tube is an open faceplate design, the detector system has an assortment of vacuum doors and plumbing to allow operation in vacuum but provide for safe storage at normal atmosphere. Vac-ion pumps (3) are used to maintain working vacuum at all times. Marshall Space Flight Center provided the SERTS programs with HVPS units for both the vac-ion pumps and the MCP tube. The MCP tube HVPS is a direct derivative of the design used for the SXI mission for NOAA. Auxiliary equipment includes a frame buffer that works either as a multi-frame storage unit or as a photon counting accumulation unit. This unit also performs interface buffering so that the camera may appear as a piece of GPIB instrumentation.

  1. Experimental Evaluation of the "Polished Panel Optical Receiver" Concept on the Deep Space Network's 34 Meter Antenna

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A.

    2012-01-01

    The potential development of large aperture ground-based "photon bucket" optical receivers for deep space communications has received considerable attention recently. One approach currently under investigation proposes to polish the aluminum reflector panels of 34-meter microwave antennas to high reflectance, and accept the relatively large spotsize generated by even state-of-the-art polished aluminum panels. Here we describe the experimental effort currently underway at the Deep Space Network (DSN) Goldstone Communications Complex in California, to test and verify these concepts in a realistic operational environment. A custom designed aluminum panel has been mounted on the 34 meter research antenna at Deep-Space Station 13 (DSS-13), and a remotely controlled CCD camera with a large CCD sensor in a weather-proof container has been installed next to the subreflector, pointed directly at the custom polished panel. Using the planet Jupiter as the optical point-source, the point-spread function (PSF) generated by the polished panel has been characterized, the array data processed to determine the center of the intensity distribution, and expected communications performance of the proposed polished panel optical receiver has been evaluated.

  2. Performance of a day time star sensor for a stabilized balloon platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, E.; DiCocco, G.; Donati, A.

    1989-02-01

    A modified version of a CCD star tracker originally designed for use on the ROSAT X ray astronomy satellite, has been built for use on a three axis stabilized balloon platform. The first flight of this star sensor was planned for may 1988 from the NASA Balloon base at Palestine, Texas. The expected performance of this instrument is described along with the preflight results.

  3. Design and Calibration of a Novel Bio-Inspired Pixelated Polarized Light Compass.

    PubMed

    Han, Guoliang; Hu, Xiaoping; Lian, Junxiang; He, Xiaofeng; Zhang, Lilian; Wang, Yujie; Dong, Fengliang

    2017-11-14

    Animals, such as Savannah sparrows and North American monarch butterflies, are able to obtain compass information from skylight polarization patterns to help them navigate effectively and robustly. Inspired by excellent navigation ability of animals, this paper proposes a novel image-based polarized light compass, which has the advantages of having a small size and being light weight. Firstly, the polarized light compass, which is composed of a Charge Coupled Device (CCD) camera, a pixelated polarizer array and a wide-angle lens, is introduced. Secondly, the measurement method of a skylight polarization pattern and the orientation method based on a single scattering Rayleigh model are presented. Thirdly, the error model of the sensor, mainly including the response error of CCD pixels and the installation error of the pixelated polarizer, is established. A calibration method based on iterative least squares estimation is proposed. In the outdoor environment, the skylight polarization pattern can be measured in real time by our sensor. The orientation accuracy of the sensor increases with the decrease of the solar elevation angle, and the standard deviation of orientation error is 0 . 15 ∘ at sunset. Results of outdoor experiments show that the proposed polarization navigation sensor can be used for outdoor autonomous navigation.

  4. Multiple Sensor Camera for Enhanced Video Capturing

    NASA Astrophysics Data System (ADS)

    Nagahara, Hajime; Kanki, Yoshinori; Iwai, Yoshio; Yachida, Masahiko

    A resolution of camera has been drastically improved under a current request for high-quality digital images. For example, digital still camera has several mega pixels. Although a video camera has the higher frame-rate, the resolution of a video camera is lower than that of still camera. Thus, the high-resolution is incompatible with the high frame rate of ordinary cameras in market. It is difficult to solve this problem by a single sensor, since it comes from physical limitation of the pixel transfer rate. In this paper, we propose a multi-sensor camera for capturing a resolution and frame-rate enhanced video. Common multi-CCDs camera, such as 3CCD color camera, has same CCD for capturing different spectral information. Our approach is to use different spatio-temporal resolution sensors in a single camera cabinet for capturing higher resolution and frame-rate information separately. We build a prototype camera which can capture high-resolution (2588×1958 pixels, 3.75 fps) and high frame-rate (500×500, 90 fps) videos. We also proposed the calibration method for the camera. As one of the application of the camera, we demonstrate an enhanced video (2128×1952 pixels, 90 fps) generated from the captured videos for showing the utility of the camera.

  5. Design and Calibration of a Novel Bio-Inspired Pixelated Polarized Light Compass

    PubMed Central

    Hu, Xiaoping; Lian, Junxiang; He, Xiaofeng; Zhang, Lilian; Wang, Yujie; Dong, Fengliang

    2017-01-01

    Animals, such as Savannah sparrows and North American monarch butterflies, are able to obtain compass information from skylight polarization patterns to help them navigate effectively and robustly. Inspired by excellent navigation ability of animals, this paper proposes a novel image-based polarized light compass, which has the advantages of having a small size and being light weight. Firstly, the polarized light compass, which is composed of a Charge Coupled Device (CCD) camera, a pixelated polarizer array and a wide-angle lens, is introduced. Secondly, the measurement method of a skylight polarization pattern and the orientation method based on a single scattering Rayleigh model are presented. Thirdly, the error model of the sensor, mainly including the response error of CCD pixels and the installation error of the pixelated polarizer, is established. A calibration method based on iterative least squares estimation is proposed. In the outdoor environment, the skylight polarization pattern can be measured in real time by our sensor. The orientation accuracy of the sensor increases with the decrease of the solar elevation angle, and the standard deviation of orientation error is 0.15∘ at sunset. Results of outdoor experiments show that the proposed polarization navigation sensor can be used for outdoor autonomous navigation. PMID:29135927

  6. Shortwave infrared 512 x 2 line sensor for earth resources applications

    NASA Astrophysics Data System (ADS)

    Tower, J. R.; Pellon, L. E.; McCarthy, B. M.; Elabd, H.; Moldovan, A. G.; Kosonocky, W. F.; Kalshoven, J. E., Jr.; Tom, D.

    1985-08-01

    As part of the NASA remote-sensing Multispectral Linear Array Program, an edge-buttable 512 x 2 IRCCD line image sensor with 30-micron Pd2Si Schottky-barrier detectors is developed for operation with passive cooling at 120 K in the 1.1-2.5 micron short infrared band. On-chip CCD multiplexers provide one video output for each 512 detector band. The monolithic silicon line imager performance at a 4-ms optical integration time includes a signal-to-noise ratio of 241 for irradiance of 7.2 microwatts/sq cm at 1.65 microns wavelength, a 5000 dynamic range, a modulation transfer function, greater than 60 percent at the Nyquist frequency, and an 18-milliwatt imager chip total power dissipation. Blemish-free images with three percent nonuniformity under illumination and nonlinearity of 1.25 percent are obtained. A five SWIR imager hybrid focal plane was constructed, demonstrating the feasibility of arrays with only a two-detector loss at each joint.

  7. First laboratory results with the LINC-NIRVANA high layer wavefront sensor.

    PubMed

    Zhang, Xianyu; Gaessler, Wolfgang; Conrad, Albert R; Bertram, Thomas; Arcidiacono, Carmelo; Herbst, Thomas M; Kuerster, Martin; Bizenberger, Peter; Meschke, Daniel; Rix, Hans-Walter; Rao, Changhui; Mohr, Lars; Briegel, Florian; Kittmann, Frank; Berwein, Juergen; Trowitzsch, Jan; Schreiber, Laura; Ragazzoni, Roberto; Diolaiti, Emiliano

    2011-08-15

    In the field of adaptive optics, multi-conjugate adaptive optics (MCAO) can greatly increase the size of the corrected field of view (FoV) and also extend sky coverage. By applying layer oriented MCAO (LO-MCAO) [4], together with multiple guide stars (up to 20) and pyramid wavefront sensors [7], LINC-NIRVANA (L-N for short) [1] will provide two AO-corrected beams to a Fizeau interferometer to achieve 10 milliarcsecond angular resolution on the Large Binocular Telescope. This paper presents first laboratory results of the AO performance achieved with the high layer wavefront sensor (HWS). This sensor, together with its associated deformable mirror (a Xinetics-349), is being operated in one of the L-N laboratories. AO reference stars, spread across a 2 arc-minute FoV and with aberrations resulting from turbulence introduced at specific layers in the atmosphere, are simulated in this lab environment. This is achieved with the Multi-Atmosphere Phase screen and Stars (MAPS) [2] unit. From the wavefront data, the approximate residual wavefront error after correction has been calculated for different turbulent layer altitudes and wind speeds. Using a somewhat undersampled CCD, the FWHM of stars in the nearly 2 arc-minute FoV has also been measured. These test results demonstrate that the high layer wavefront sensor of LINC-NIRVANA will be able to achieve uniform AO correction across a large FoV. © 2011 Optical Society of America

  8. French Meteor Network for High Precision Orbits of Meteoroids

    NASA Technical Reports Server (NTRS)

    Atreya, P.; Vaubaillon, J.; Colas, F.; Bouley, S.; Gaillard, B.; Sauli, I.; Kwon, M. K.

    2011-01-01

    There is a lack of precise meteoroids orbit from video observations as most of the meteor stations use off-the-shelf CCD cameras. Few meteoroids orbit with precise semi-major axis are available using film photographic method. Precise orbits are necessary to compute the dust flux in the Earth s vicinity, and to estimate the ejection time of the meteoroids accurately by comparing them with the theoretical evolution model. We investigate the use of large CCD sensors to observe multi-station meteors and to compute precise orbit of these meteoroids. An ideal spatial and temporal resolution to get an accuracy to those similar of photographic plates are discussed. Various problems faced due to the use of large CCD, such as increasing the spatial and the temporal resolution at the same time and computational problems in finding the meteor position are illustrated.

  9. Improved Space Object Orbit Determination Using CMOS Detectors

    NASA Astrophysics Data System (ADS)

    Schildknecht, T.; Peltonen, J.; Sännti, T.; Silha, J.; Flohrer, T.

    2014-09-01

    CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contains their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, we simulated several observation scenarios for ground- and space-based sensor by assuming different observation and sensor properties. We will introduce the analyzed end-to-end simulations of the ground- and space-based strategies in order to investigate the orbit determination accuracy and its sensitivity which may result from different values for the frame-rate, pixel scale, astrometric and epoch registration accuracies. Two cases were simulated, a survey using a ground-based sensor to observe objects in LEO for surveillance applications, and a statistical survey with a space-based sensor orbiting in LEO observing small-size debris in LEO. The ground-based LEO survey uses a dynamical fence close to the Earth shadow a few hours after sunset. For the space-based scenario a sensor in a sun-synchronous LEO orbit, always pointing in the anti-sun direction to achieve optimum illumination conditions for small LEO debris, was simulated. For the space-based scenario the simulations showed a 20 130 % improvement of the accuracy of all orbital parameters when varying the frame rate from 1/3 fps, which is the fastest rate for a typical CCD detector, to 50 fps, which represents the highest rate of scientific CMOS cameras. Changing the epoch registration accuracy from a typical 20.0 ms for a mechanical shutter to 0.025 ms, the theoretical value for the electronic shutter of a CMOS camera, improved the orbit accuracy by 4 to 190 %. The ground-based scenario also benefit from the specific CMOS characteristics, but to a lesser extent.

  10. Calibration of a shock wave position sensor using artificial neural networks

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Weiland, Kenneth E.

    1993-01-01

    This report discusses the calibration of a shock wave position sensor. The position sensor works by using artificial neural networks to map cropped CCD frames of the shadows of the shock wave into the value of the shock wave position. This project was done as a tutorial demonstration of method and feasibility. It used a laboratory shadowgraph, nozzle, and commercial neural network package. The results were quite good, indicating that artificial neural networks can be used efficiently to automate the semi-quantitative applications of flow visualization.

  11. CCDiode: an optimal detector for laser confocal microscopes

    NASA Astrophysics Data System (ADS)

    Pawley, James B.; Blouke, Morley M.; Janesick, James R.

    1996-04-01

    The laser confocal microscope (LCM) is now an established research tool in biology and materials science. In biological applications, it is usually employed to detect the location of fluorescent market molecules and, under these conditions, signal levels from bright areas are often < 20 photons/pixel (from the specimen, assuming a standard 512 X 768, 1 sec. scan). Although this data rate limits the speed at which information can be derived from the specimen, saturation of the fluorophor, photobleaching of the dye, and phototoxicity prevent it being increased. Currently, most LCMs use photomultiplier tubes (PMT, QE equals 1 - 30% 400 - 900 nm). By contrast, rear-illuminated, scientific charge-coupled devices (CCD) now routinely readout the signal from square sensors approximately 30 micrometers on a side with a QE of 80 - 90%, a noise of only +/- 3 e-/pix and with no multiplicative noise. For this reason, in 1989, one of us (JJ) developed a rear-illuminated, single-channel Si sensor, called the Turbodiode, employing some of the sophisticated readout techniques used to measure charge in a scientific CCD. We are now extending this work to a device in which a single 36 X 36 micrometers sensor is read out through a low-noise FET charge amplifier with a reset circuit and then passed to a correlated, double-sampling digitizer. To maintain the desired +/- 3 e noise level at the relatively high data rate of 1 MHz, our new device utilizes 64 separate readout amplifier/digitizer systems, operating in sequence. The resulting detector is more compact, efficient and reliable than the PMT it replaces but as its sensitive area is smaller than that of a PMT, it will require auxiliary optics when used with any LCM having a large (mm) pinhole. As the signal light is parallel, a simple lens mounted axially and with the CCDiode at its focus would suffice. Future versions may use 3 X 3 or 5 X 5 arrays of sensors to `track' the confocal spot as it is deflected by inhomogeneities of the specimen, change its effective size or shape or detect system misalignment.

  12. Characterising CCDs with cosmic rays

    DOE PAGES

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-06

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. The small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurementmore » technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.« less

  13. Hybrid imaging: a quantum leap in scientific imaging

    NASA Astrophysics Data System (ADS)

    Atlas, Gene; Wadsworth, Mark V.

    2004-01-01

    ImagerLabs has advanced its patented next generation imaging technology called the Hybrid Imaging Technology (HIT) that offers scientific quality performance. The key to the HIT is the merging of the CCD and CMOS technologies through hybridization rather than process integration. HIT offers exceptional QE, fill factor, broad spectral response and very low noise properties of the CCD. In addition, it provides the very high-speed readout, low power, high linearity and high integration capability of CMOS sensors. In this work, we present the benefits, and update the latest advances in the performance of this exciting technology.

  14. Ground truth and benchmarks for performance evaluation

    NASA Astrophysics Data System (ADS)

    Takeuchi, Ayako; Shneier, Michael; Hong, Tsai Hong; Chang, Tommy; Scrapper, Christopher; Cheok, Geraldine S.

    2003-09-01

    Progress in algorithm development and transfer of results to practical applications such as military robotics requires the setup of standard tasks, of standard qualitative and quantitative measurements for performance evaluation and validation. Although the evaluation and validation of algorithms have been discussed for over a decade, the research community still faces a lack of well-defined and standardized methodology. The range of fundamental problems include a lack of quantifiable measures of performance, a lack of data from state-of-the-art sensors in calibrated real-world environments, and a lack of facilities for conducting realistic experiments. In this research, we propose three methods for creating ground truth databases and benchmarks using multiple sensors. The databases and benchmarks will provide researchers with high quality data from suites of sensors operating in complex environments representing real problems of great relevance to the development of autonomous driving systems. At NIST, we have prototyped a High Mobility Multi-purpose Wheeled Vehicle (HMMWV) system with a suite of sensors including a Riegl ladar, GDRS ladar, stereo CCD, several color cameras, Global Position System (GPS), Inertial Navigation System (INS), pan/tilt encoders, and odometry . All sensors are calibrated with respect to each other in space and time. This allows a database of features and terrain elevation to be built. Ground truth for each sensor can then be extracted from the database. The main goal of this research is to provide ground truth databases for researchers and engineers to evaluate algorithms for effectiveness, efficiency, reliability, and robustness, thus advancing the development of algorithms.

  15. pnCCD for photon detection from near-infrared to X-rays

    NASA Astrophysics Data System (ADS)

    Meidinger, Norbert; Andritschke, Robert; Hartmann, Robert; Herrmann, Sven; Holl, Peter; Lutz, Gerhard; Strüder, Lothar

    2006-09-01

    A pnCCD is a special type of charge-coupled device developed for spectroscopy and imaging of X-rays with high time resolution and quantum efficiency. Its most famous application is the operation on the XMM-Newton satellite, an X-ray astronomy mission that was launched by the European space agency in 1999. The excellent performance of the focal plane camera has been maintained for more than 6 years in orbit. The energy resolution in particular has shown hardly any degradation since launch. In order to satisfy the requirements of future X-ray astronomy missions as well as those of ground-based experiments, a new type of pnCCD has been developed. This ‘frame-store pnCCD’ shows an enhanced performance compared to the XMM-Newton type of pnCCD. Now, more options in device design and operation are available to tailor the detector to its respective application. Part of this concept is a programmable analog signal processor, which has been developed for the readout of the CCD signals. The electronic noise of the new detector has a value of only 2 electrons equivalent noise charge (ENC), which is less than half of the figure achieved for the XMM-Newton-type pnCCD. The energy resolution for the Mn-Kα line at 5.9 keV is approximately 130 eV FWHM. We have close to 100% quantum efficiency for both low- and high-energy photon detection (e.g. the C-K line at 277 eV, and the Ge-Kα line at 10 keV, respectively). Very high frame rates of 1000 images/s have been achieved due to the ultra-fast readout accomplished by the parallel architecture of the pnCCD and the analog signal processor. Excellent spectroscopic performance is shown even at the relatively high operating temperature of -25 °C that can be achieved by a Peltier cooler. The applications of the low-noise and fast pnCCD detector are not limited to the detection of X-rays. With an anti-reflective coating deposited on the photon entrance window, we achieve high quantum efficiency also for near-infrared and optical photons. A novel type of pnCCD is in preparation, which allows single optical photon counting. This feature is accomplished by implementation of an avalanche-type amplifier in the pnCCD concept.

  16. Internal reflection sensors with high angular resolution

    NASA Astrophysics Data System (ADS)

    Shavirin, I.; Strelkov, O.; Vetskous, A.; Norton-Wayne, L.; Harwood, R.

    1996-07-01

    We discuss the use of total internal reflection for the production of sensors with high angular resolution. These sensors are intended for measurement of the angle between a sensor's axis and the direction to a source of radiation or reflecting object. Sensors of this type are used in controlling the position of machine parts in robotics and industry, orienting space vehicles and astronomic devices in relation to the Sun, and as autocollimators for checking angles of deviation. This kind of sensor was used in the Apollo space vehicle some 20 years ago. Using photodetectors with linear and area CCD arrays has opened up new application possibilities for appropriately designed sensors. A generalized methodology is presented applicable to a wide range of tasks. Some modifications that can improve the performance of the basic design are described.

  17. Automated micromanipulation desktop station based on mobile piezoelectric microrobots

    NASA Astrophysics Data System (ADS)

    Fatikow, Sergej

    1996-12-01

    One of the main problems of present-day research on microsystem technology (MST) is to assemble a whole micro- system from different microcomponents. This paper presents a new concept of an automated micromanipulation desktop- station including piezoelectrically driven microrobots placed on a high-precise x-y-stage of a light microscope, a CCD-camera as a local sensor subsystem, a laser sensor unit as a global sensor subsystem, a parallel computer system with C167 microcontrollers, and a Pentium PC equipped additionally with an optical grabber. The microrobots can perform high-precise manipulations (with an accuracy of up to 10 nm) and a nondestructive transport (at a speed of about 3 cm/sec) of very small objects under the microscope. To control the desktop-station automatically, an advanced control system that includes a task planning level and a real-time execution level is being developed. The main function of the task planning sub-system is to interpret the implicit action plan and to generate a sequence of explicit operations which are sent to the execution level of the control system. The main functions of the execution control level are the object recognition, image processing and feedback position control of the microrobot and the microscope stage.

  18. Visible-infrared micro-spectrometer based on a preaggregated silver nanoparticle monolayer film and an infrared sensor card

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Peng, Jing-xiao; Ho, Ho-pui; Song, Chun-yuan; Huang, Xiao-li; Zhu, Yong-yuan; Li, Xing-ao; Huang, Wei

    2018-01-01

    By using a preaggregated silver nanoparticle monolayer film and an infrared sensor card, we demonstrate a miniature spectrometer design that covers a broad wavelength range from visible to infrared with high spectral resolution. The spectral contents of an incident probe beam are reconstructed by solving a matrix equation with a smoothing simulated annealing algorithm. The proposed spectrometer offers significant advantages over current instruments that are based on Fourier transform and grating dispersion, in terms of size, resolution, spectral range, cost and reliability. The spectrometer contains three components, which are used for dispersion, frequency conversion and detection. Disordered silver nanoparticles in dispersion component reduce the fabrication complexity. An infrared sensor card in the conversion component broaden the operational spectral range of the system into visible and infrared bands. Since the CCD used in the detection component provides very large number of intensity measurements, one can reconstruct the final spectrum with high resolution. An additional feature of our algorithm for solving the matrix equation, which is suitable for reconstructing both broadband and narrowband signals, we have adopted a smoothing step based on a simulated annealing algorithm. This algorithm improve the accuracy of the spectral reconstruction.

  19. A curved surface micro-moiré method and its application in evaluating curved surface residual stress

    NASA Astrophysics Data System (ADS)

    Zhang, Hongye; Wu, Chenlong; Liu, Zhanwei; Xie, Huimin

    2014-09-01

    The moiré method is typically applied to the measurement of deformations of a flat surface while, for a curved surface, this method is rarely used other than for projection moiré or moiré interferometry. Here, a novel colour charge-coupled device (CCD) micro-moiré method has been developed, based on which a curved surface micro-moiré (CSMM) method is proposed with a colour CCD and optical microscope (OM). In the CSMM method, no additional reference grating is needed as a Bayer colour filter array (CFA) installed on the OM in front of the colour CCD image sensor performs this role. Micro-moiré fringes with high contrast are directly observed with the OM through the Bayer CFA under the special condition of observing a curved specimen grating. The principle of the CSMM method based on a colour CCD micro-moiré method and its application range and error analysis are all described in detail. In an experiment, the curved surface residual stress near a welded seam on a stainless steel tube was investigated using the CSMM method.

  20. First Carlsberg Meridian Telescope (CMT) CCD Catalogue.

    NASA Astrophysics Data System (ADS)

    Bélizon, F.; Muiños, J. L.; Vallejo, M.; Evans, D. W.; Irwin, M.; Helmer, L.

    2003-11-01

    The Carlsberg Meridian Telescope (CMT) is a telescope owned by Copenhagen University Observatory (CUO). It was installed in the Spanish observatory of El Roque de los Muchachos on the island of La Palma (Canary Islands) in 1984. It is operated jointly by the CUO, the Institute of Astronomy, Cambridge (IoA) and the Real Instituto y Observatorio de la Armada of Spain (ROA) in the framework of an international agreement. From 1984 to 1998 the instrument was provided with a moving slit micrometer and with its observations a series of 11 catalogues were published, `Carlsberg Meridian Catalogue La Palma (CMC No 1-11)'. Since 1997, the telescope has been controlled remotely via Internet. The three institutions share this remote control in periods of approximately three months. In 1998, the CMT was upgraded by installing as sensor, a commercial Spectrasource CCD camera as a test of the possibility of performing meridian transits observed in drift-scan mode. Once this was shown possible, in 1999, a second model of CCD camera, built in the CUO workshop with a better performance, was installed. The Spectrasource camera was loaned to ROA by CUO and is now installed in the San Fernando Automatic Meridian Circle in San Juan (CMASF). In 1999, the observations were started of a sky survey from -3deg to +30deg in declination. In July 2002, a first release of the survey was published, with the positions of the observed stars in the band between -3deg and +3deg in declination. This oral communication will present this first release of the survey.

  1. Object recognition for autonomous robot utilizing distributed knowledge database

    NASA Astrophysics Data System (ADS)

    Takatori, Jiro; Suzuki, Kenji; Hartono, Pitoyo; Hashimoto, Shuji

    2003-10-01

    In this paper we present a novel method of object recognition utilizing a remote knowledge database for an autonomous robot. The developed robot has three robot arms with different sensors; two CCD cameras and haptic sensors. It can see, touch and move the target object from different directions. Referring to remote knowledge database of geometry and material, the robot observes and handles the objects to understand them including their physical characteristics.

  2. Toolkit for testing scientific CCD cameras

    NASA Astrophysics Data System (ADS)

    Uzycki, Janusz; Mankiewicz, Lech; Molak, Marcin; Wrochna, Grzegorz

    2006-03-01

    The CCD Toolkit (1) is a software tool for testing CCD cameras which allows to measure important characteristics of a camera like readout noise, total gain, dark current, 'hot' pixels, useful area, etc. The application makes a statistical analysis of images saved in files with FITS format, commonly used in astronomy. A graphical interface is based on the ROOT package, which offers high functionality and flexibility. The program was developed in a way to ensure future compatibility with different operating systems: Windows and Linux. The CCD Toolkit was created for the "Pie of the Sky" project collaboration (2).

  3. Adjustment of multi-CCD-chip-color-camera heads

    NASA Astrophysics Data System (ADS)

    Guyenot, Volker; Tittelbach, Guenther; Palme, Martin

    1999-09-01

    The principle of beam-splitter-multi-chip cameras consists in splitting an image into differential multiple images of different spectral ranges and in distributing these onto separate black and white CCD-sensors. The resulting electrical signals from the chips are recombined to produce a high quality color picture on the monitor. Because this principle guarantees higher resolution and sensitivity in comparison to conventional single-chip camera heads, the greater effort is acceptable. Furthermore, multi-chip cameras obtain the compete spectral information for each individual object point while single-chip system must rely on interpolation. In a joint project, Fraunhofer IOF and STRACON GmbH and in future COBRA electronic GmbH develop methods for designing the optics and dichroitic mirror system of such prism color beam splitter devices. Additionally, techniques and equipment for the alignment and assembly of color beam splitter-multi-CCD-devices on the basis of gluing with UV-curable adhesives have been developed, too.

  4. Fourier transform digital holographic adaptive optics imaging system

    PubMed Central

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects. PMID:23262541

  5. Deflection Measurements of a Thermally Simulated Nuclear Core Using a High-Resolution CCD-Camera

    NASA Technical Reports Server (NTRS)

    Stanojev, B. J.; Houts, M.

    2004-01-01

    Space fission systems under consideration for near-term missions all use compact. fast-spectrum reactor cores. Reactor dimensional change with increasing temperature, which affects neutron leakage. is the dominant source of reactivity feedback in these systems. Accurately measuring core dimensional changes during realistic non-nuclear testing is therefore necessary in predicting the system nuclear equivalent behavior. This paper discusses one key technique being evaluated for measuring such changes. The proposed technique is to use a Charged Couple Device (CCD) sensor to obtain deformation readings of electrically heated prototypic reactor core geometry. This paper introduces a technique by which a single high spatial resolution CCD camera is used to measure core deformation in Real-Time (RT). Initial system checkout results are presented along with a discussion on how additional cameras could be used to achieve a three- dimensional deformation profile of the core during test.

  6. The development of a multifunction lens test instrument by using computer aided variable test patterns

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Jen; Wu, Wen-Hong; Huang, Kuo-Cheng

    2009-08-01

    A multi-function lens test instrument is report in this paper. This system can evaluate the image resolution, image quality, depth of field, image distortion and light intensity distribution of the tested lens by changing the tested patterns. This system consists of a tested lens, a CCD camera, a linear motorized stage, a system fixture, an observer LCD monitor, and a notebook for pattern providing. The LCD monitor displays a serious of specified tested patterns sent by the notebook. Then each displayed pattern goes through the tested lens and images in the CCD camera sensor. Consequently, the system can evaluate the performance of the tested lens by analyzing the image of CCD camera with special designed software. The major advantage of this system is that it can complete whole test quickly without interruption due to part replacement, because the tested patterns are statically displayed on monitor and controlled by the notebook.

  7. Camera-on-a-Chip

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Jet Propulsion Laboratory's research on a second generation, solid-state image sensor technology has resulted in the Complementary Metal- Oxide Semiconductor Active Pixel Sensor (CMOS), establishing an alternative to the Charged Coupled Device (CCD). Photobit Corporation, the leading supplier of CMOS image sensors, has commercialized two products of their own based on this technology: the PB-100 and PB-300. These devices are cameras on a chip, combining all camera functions. CMOS "active-pixel" digital image sensors offer several advantages over CCDs, a technology used in video and still-camera applications for 30 years. The CMOS sensors draw less energy, they use the same manufacturing platform as most microprocessors and memory chips, and they allow on-chip programming of frame size, exposure, and other parameters.

  8. Development of a driving method suitable for ultrahigh-speed shooting in a 2M-fps 300k-pixel single-chip color camera

    NASA Astrophysics Data System (ADS)

    Yonai, J.; Arai, T.; Hayashida, T.; Ohtake, H.; Namiki, J.; Yoshida, T.; Etoh, T. Goji

    2012-03-01

    We have developed an ultrahigh-speed CCD camera that can capture instantaneous phenomena not visible to the human eye and impossible to capture with a regular video camera. The ultrahigh-speed CCD was specially constructed so that the CCD memory between the photodiode and the vertical transfer path of each pixel can store 144 frames each. For every one-frame shot, the electric charges generated from the photodiodes are transferred in one step to the memory of all the parallel pixels, making ultrahigh-speed shooting possible. Earlier, we experimentally manufactured a 1M-fps ultrahigh-speed camera and tested it for broadcasting applications. Through those tests, we learned that there are cases that require shooting speeds (frame rate) of more than 1M fps; hence we aimed to develop a new ultrahigh-speed camera that will enable much faster shooting speeds than what is currently possible. Since shooting at speeds of more than 200,000 fps results in decreased image quality and abrupt heating of the image sensor and drive circuit board, faster speeds cannot be achieved merely by increasing the drive frequency. We therefore had to improve the image sensor wiring layout and the driving method to develop a new 2M-fps, 300k-pixel ultrahigh-speed single-chip color camera for broadcasting purposes.

  9. A high-resolution line sensor-based photostereometric system for measuring jaw movements in 6 degrees of freedom.

    PubMed

    Hayashi, T; Kurokawa, M; Miyakawa, M; Aizawa, T; Kanaki, A; Saitoh, A; Ishioka, K

    1994-01-01

    Photostereometry has widely been applied to the measurement of mandibular movements in 6 degrees of freedom. In order to improve the accuracy of this measurement, we developed a system utilizing small LEDs mounted on the jaws in redundant numbers and a 5000 pixel linear charge-coupled device (CCD) as a photo-sensor. A total of eight LEDs are mounted on the jaws, in two sets of four, by means of connecting facebows, each weighing approximately 55 g. The position of the LEDs are detected in three-dimensions by two sets of three CCD cameras, located bilaterally. The position and orientation of the mandible are estimated from the positions of all LEDs measured in the sense of least-squares, thereby effectively reducing the measurement errors. The static overall accuracy at all tooth and condylar points was considered to lie within 0.19 and 0.34 mm, respectively, from various accuracy verification tests.

  10. Sensors for 3D Imaging: Metric Evaluation and Calibration of a CCD/CMOS Time-of-Flight Camera.

    PubMed

    Chiabrando, Filiberto; Chiabrando, Roberto; Piatti, Dario; Rinaudo, Fulvio

    2009-01-01

    3D imaging with Time-of-Flight (ToF) cameras is a promising recent technique which allows 3D point clouds to be acquired at video frame rates. However, the distance measurements of these devices are often affected by some systematic errors which decrease the quality of the acquired data. In order to evaluate these errors, some experimental tests on a CCD/CMOS ToF camera sensor, the SwissRanger (SR)-4000 camera, were performed and reported in this paper. In particular, two main aspects are treated: the calibration of the distance measurements of the SR-4000 camera, which deals with evaluation of the camera warm up time period, the distance measurement error evaluation and a study of the influence on distance measurements of the camera orientation with respect to the observed object; the second aspect concerns the photogrammetric calibration of the amplitude images delivered by the camera using a purpose-built multi-resolution field made of high contrast targets.

  11. Cat-eye effect reflected beam profiles of an optical system with sensor array.

    PubMed

    Gong, Mali; He, Sifeng; Guo, Rui; Wang, Wei

    2016-06-01

    In this paper, we propose an applicable propagation model for Gaussian beams passing through any cat-eye target instead of traditional simplification consisting of only a mirror placed at the focal plane of a lens. According to the model, the cat-eye effect of CCD cameras affected by defocus is numerically simulated. An excellent agreement of experiment results with theoretical analysis is obtained. It is found that the reflectivity distribution at the focal plane of the cat-eye optical lens has great influence on the results, while the cat-eye effect reflected beam profiles of CCD cameras show obvious periodicity.

  12. A small CCD zenith camera (ZC-G1) - developed for rapid geoid monitoring in difficult projects

    NASA Astrophysics Data System (ADS)

    Gerstbach, G.; Pichler, H.

    2003-10-01

    Modern Geodesy by terrestrial or space methods is accurate to millimetres or even better. This requires very exact system definitions, together with Astronomy & Physics - and a geoid of cm level. To reach this precision, astrogeodetic vertical deflections are more effective than gravimetry or other methods - as shown by the 1st author 1996 at many projects in different European countries and landscapes. While classical Astrogeodesy is rather complicated (time consuming, heavy instruments and observer's experience) new electro-optical methods are semi-automatic and fill our "geoid gap" between satellite resolution (150 km) and local requirements (2-10 km): With CCD we can speed up and achieve high accuracy almost without observer's experience. In Vienna we construct a mobile zenith camera guided by notebook and GPS: made of Dur-Al, f=20 cm with a Starlite MX-sensor (752×580 pixels à 11μm). Accuracy ±1" within 10 min, mounted at a usual survey tripod. Weight only 4 kg for a special vertical axis, controlled by springs (4×90°) and 2 levels (2002) or sensor (2003). Applications 2003: Improving parts of Austrian geoid (±4 cm→2 cm); automatic astro-points in alpine surveys (vertical deflection effects 3-15 cm per km). Transform of GPS heights to ±1 cm. Tunneling study: heighting up to ±0.1 mm without external control; combining astro-topographic and geological data. Plans 2004: Astro control of polygons and networks - to raise accuracy and economy by ~40% (Sun azimuths of ±3"; additional effort only 10-20%). Planned with servo theodolites and open co-operation groups.

  13. Photon Counting Imaging with an Electron-Bombarded Pixel Image Sensor

    PubMed Central

    Hirvonen, Liisa M.; Suhling, Klaus

    2016-01-01

    Electron-bombarded pixel image sensors, where a single photoelectron is accelerated directly into a CCD or CMOS sensor, allow wide-field imaging at extremely low light levels as they are sensitive enough to detect single photons. This technology allows the detection of up to hundreds or thousands of photon events per frame, depending on the sensor size, and photon event centroiding can be employed to recover resolution lost in the detection process. Unlike photon events from electron-multiplying sensors, the photon events from electron-bombarded sensors have a narrow, acceleration-voltage-dependent pulse height distribution. Thus a gain voltage sweep during exposure in an electron-bombarded sensor could allow photon arrival time determination from the pulse height with sub-frame exposure time resolution. We give a brief overview of our work with electron-bombarded pixel image sensor technology and recent developments in this field for single photon counting imaging, and examples of some applications. PMID:27136556

  14. Improved Space Object Observation Techniques Using CMOS Detectors

    NASA Astrophysics Data System (ADS)

    Schildknecht, T.; Hinze, A.; Schlatter, P.; Silha, J.; Peltonen, J.; Santti, T.; Flohrer, T.

    2013-08-01

    CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contain their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. Presently applied and proposed optical observation strategies for space debris surveys and space surveillance applications had to be analyzed. The major design drivers were identified and potential benefits from using available and future CMOS sensors were assessed. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, the characteristics of a particular CMOS sensor available at the Zimmerwald observatory were analyzed by performing laboratory test measurements.

  15. A Vision-Based Motion Sensor for Undergraduate Laboratories.

    ERIC Educational Resources Information Center

    Salumbides, Edcel John; Maristela, Joyce; Uy, Alfredson; Karremans, Kees

    2002-01-01

    Introduces an alternative method to determine the mechanics of a moving object that uses computer vision algorithms with a charge-coupled device (CCD) camera as a recording device. Presents two experiments, pendulum motion and terminal velocity, to compare results of the alternative and conventional methods. (YDS)

  16. DAMIC at SNOLAB

    DOE PAGES

    Chavarria, Alvaro E.; Tiffenberg, Javier; Aguilar-Arevalo, Alexis; ...

    2015-03-24

    We introduce the fully-depleted charge-coupled device (CCD) as a particle detector. We demonstrate its low energy threshold operation, capable of detecting ionizing energy depositions in a single pixel down to 50 eV ee. We present results of energy calibrations from 0.3 keV ee to 60 ke Vee, showing that the CCD is a fully active detector with uniform energy response throughout the silicon target, good resolution (Fano ~0.16), and remarkable linear response to electron energy depositions. We show the capability of the CCD to localize the depth of particle interactions within the silicon target. We discuss the mode of operationmore » and unique imaging capabilities of the CCD, and how they may be exploited to characterize and suppress backgrounds. We present the first results from the deployment of 250 μm thick CCDs in SNOLAB, a prototype for the upcoming DAMIC100. DAMIC100 will have a target mass of 0.1 kg and should be able to directly test the CDMS-Si signal within a year of operation.« less

  17. Development and Control of the Naval Postgraduate School Planar Autonomous Docking Simulator (NPADS)

    NASA Astrophysics Data System (ADS)

    Porter, Robert D.

    2002-09-01

    The objective of this thesis was to design, construct and develop the initial autonomous control algorithm for the NPS Planar Autonomous Docking Simulator (NPADS) The effort included hardware design, fabrication, installation and integration; mass property determination; and the development and testing of control laws utilizing MATLAB and Simulink for modeling and LabView for NPADS control, The NPADS vehicle uses air pads and a granite table to simulate a 2-D, drag-free, zero-g space environment, It is a completely self-contained vehicle equipped with eight cold-gas, bang-bang type thrusters and a reaction wheel for motion control, A 'star sensor' CCD camera locates the vehicle on the table while a color CCD docking camera and two robotic arms will locate and dock with a target vehicle, The on-board computer system leverages PXI technology and a single source, simplifying systems integration, The vehicle is powered by two lead-acid batteries for completely autonomous operation, A graphical user interface and wireless Ethernet enable the user to command and monitor the vehicle from a remote command and data acquisition computer. Two control algorithms were developed and allow the user to either control the thrusters and reaction wheel manually or simply specify a desired location and rotation angle,

  18. OSIRIS-REx OCAMS detector assembly characterization

    NASA Astrophysics Data System (ADS)

    Hancock, J.; Crowther, B.; Whiteley, M.; Burt, R.; Watson, M.; Nelson, J.; Fellows, C.; Rizk, B.; Kinney-Spano, E.; Perry, M.; Hunten, M.

    2013-09-01

    The OSIRIS-REx asteroid sample return mission carries a suite of three cameras referred to as OCAMS. The Space Dynamics Laboratory (SDL) at Utah State University is providing the CCD-based detector assemblies for OCAMS to the Lunar Planetary Lab (LPL) at the University of Arizona. Working with the LPL, SDL has designed the electronics to operate a 1K by 1K frame transfer Teledyne DALSA Multi-Pinned Phase (MPP) CCD. The detector assembly electronics provides the CCD clocking, biasing, and digital interface with the OCAMS payload Command Control Module (CCM). A prototype system was built to verify the functionality of the detector assembly design and to characterize the detector system performance at the intended operating temperatures. The characterization results are described in this paper.

  19. Note: A simple multi-channel optical system for modulation spectroscopies.

    PubMed

    Solís-Macías, J; Sánchez-López, J D; Castro-García, R; Flores-Camacho, J M; Flores-Rangel, G; Ciou, Jian-Jhih; Chen, Kai-Wei; Chen, Chang-Hsiao; Lastras-Martínez, L F; Balderas-Navarro, R E

    2017-12-01

    Photoreflectance-difference (PR/PRD) and reflectance-difference (RD) spectroscopies employ synchronic detection usually with lock-in amplifiers operating at moderate (200-1000 Hz) and high (50-100 KHz) modulation frequencies, respectively. Here, we report a measurement system for these spectroscopies based on a multichannel CCD spectrometer without a lock-in amplifier. In the proposed scheme, a typical PRD or RD spectrum consists of numerical subtractions between a thousand CCD captures recorded, while a photoelastic modulator is either operating or inhibited. This is advantageous and fits the slow response of CCD detectors to high modulation frequencies. The resulting spectra are processed with Savitzky-Golay filtering and compared well with those measured with conventional scanning systems based on lock-in amplifiers.

  20. Targeting excited states in all-trans polyenes with electron-pair states.

    PubMed

    Boguslawski, Katharina

    2016-12-21

    Wavefunctions restricted to electron pair states are promising models for strongly correlated systems. Specifically, the pair Coupled Cluster Doubles (pCCD) ansatz allows us to accurately describe bond dissociation processes and heavy-element containing compounds with multiple quasi-degenerate single-particle states. Here, we extend the pCCD method to model excited states using the equation of motion (EOM) formalism. As the cluster operator of pCCD is restricted to electron-pair excitations, EOM-pCCD allows us to target excited electron-pair states only. To model singly excited states within EOM-pCCD, we modify the configuration interaction ansatz of EOM-pCCD to contain also single excitations. Our proposed model represents a simple and cost-effective alternative to conventional EOM-CC methods to study singly excited electronic states. The performance of the excited state models is assessed against the lowest-lying excited states of the uranyl cation and the two lowest-lying excited states of all-trans polyenes. Our numerical results suggest that EOM-pCCD including single excitations is a good starting point to target singly excited states.

  1. The Development of the Spanish Fireball Network Using a New All-Sky CCD System

    NASA Astrophysics Data System (ADS)

    Trigo-Rodríguez, J. M.; Castro-Tirado, A. J.; Llorca, J.; Fabregat, J.; Martínez, V. J.; Reglero, V.; Jelínek, M.; Kubánek, P.; Mateo, T.; Postigo, A. De Ugarte

    2004-12-01

    We have developed an all-sky charge coupled devices (CCD) automatic system for detecting meteors and fireballs that will be operative in four stations in Spain during 2005. The cameras were developed following the BOOTES-1 prototype installed at the El Arenosillo Observatory in 2002, which is based on a CCD detector of 4096 × 4096 pixels with a fish-eye lens that provides an all-sky image with enough resolution to make accurate astrometric measurements. Since late 2004, a couple of cameras at two of the four stations operate for 30 s in alternate exposures, allowing 100% time coverage. The stellar limiting magnitude of the images is +10 in the zenith, and +8 below ~ 65° of zenithal angle. As a result, the images provide enough comparison stars to make astrometric measurements of faint meteors and fireballs with an accuracy of ~ 2°arcminutes. Using this prototype, four automatic all-sky CCD stations have been developed, two in Andalusia and two in the Valencian Community, to start full operation of the Spanish Fireball Network. In addition to all-sky coverage, we are developing a fireball spectroscopy program using medium field lenses with additional CCD cameras. Here we present the first images obtained from the El Arenosillo and La Mayora stations in Andalusia during their first months of activity. The detection of the Jan 27, 2003 superbolide of ± 17 ± 1 absolute magnitude that overflew Algeria and Morocco is an example of the detection capability of our prototype.

  2. Design of automatic leveling and centering system of theodolite

    NASA Astrophysics Data System (ADS)

    Liu, Chun-tong; He, Zhen-Xin; Huang, Xian-xiang; Zhan, Ying

    2012-09-01

    To realize the theodolite automation and improve the azimuth Angle measurement instrument, the theodolite automatic leveling and centering system with the function of leveling error compensation is designed, which includes the system solution, key components selection, the mechanical structure of leveling and centering, and system software solution. The redesigned leveling feet are driven by the DC servo motor; and the electronic control center device is installed. Using high precision of tilt sensors as horizontal skew detection sensors ensures the effectiveness of the leveling error compensation. Aiming round mark center is located using digital image processing through surface array CCD; and leveling measurement precision can reach the pixel level, which makes the theodolite accurate centering possible. Finally, experiments are conducted using the automatic leveling and centering system of the theodolite. The results show the leveling and centering system can realize automatic operation with high centering accuracy of 0.04mm.The measurement precision of the orientation angle after leveling error compensation is improved, compared with that of in the traditional method. Automatic leveling and centering system of theodolite can satisfy the requirements of the measuring precision and its automation.

  3. Vacuum compatible miniature CCD camera head

    DOEpatents

    Conder, Alan D.

    2000-01-01

    A charge-coupled device (CCD) camera head which can replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating x-rays, such as within a target chamber where laser produced plasmas are studied. The camera head is small, capable of operating both in and out of a vacuum environment, and is versatile. The CCD camera head uses PC boards with an internal heat sink connected to the chassis for heat dissipation, which allows for close(0.04" for example) stacking of the PC boards. Integration of this CCD camera head into existing instrumentation provides a substantial enhancement of diagnostic capabilities for studying high energy density plasmas, for a variety of military industrial, and medical imaging applications.

  4. System of launchable mesoscale robots for distributed sensing

    NASA Astrophysics Data System (ADS)

    Yesin, Kemal B.; Nelson, Bradley J.; Papanikolopoulos, Nikolaos P.; Voyles, Richard M.; Krantz, Donald G.

    1999-08-01

    A system of launchable miniature mobile robots with various sensors as payload is used for distributed sensing. The robots are projected to areas of interest either by a robot launcher or by a human operator using standard equipment. A wireless communication network is used to exchange information with the robots. Payloads such as a MEMS sensor for vibration detection, a microphone and an active video module are used mainly to detect humans. The video camera provides live images through a wireless video transmitter and a pan-tilt mechanism expands the effective field of view. There are strict restrictions on total volume and power consumption of the payloads due to the small size of the robot. Emerging technologies are used to address these restrictions. In this paper, we describe the use of microrobotic technologies to develop active vision modules for the mesoscale robot. A single chip CMOS video sensor is used along with a miniature lens that is approximately the size of a sugar cube. The device consumes 100 mW; about 5 times less than the power consumption of a comparable CCD camera. Miniature gearmotors 3 mm in diameter are used to drive the pan-tilt mechanism. A miniature video transmitter is used to transmit analog video signals from the camera.

  5. Visible and shortwave infrared focal planes for remote sensing instruments

    NASA Astrophysics Data System (ADS)

    Tower, J. R.; McCarthy, B. M.; Pellon, L. E.; Strong, R. T.; Elabd, H.

    1984-01-01

    The development of solid-state sensor technology for multispectral linear array (MLA) instruments is described. A buttable four-spectral-band linear-format CCD and a buttable two-spectral band linear-format short-wave IR CCD have been designed, and first samples have been demonstrated. In addition, first-sample four-band interference filters have been fabricated, and hybrid packaging technology is being developed. Based on this development work, the design and construction of focal planes for a Shuttle sortie MLA instrument have begun. This work involves a visible and near-IR focal plane with 2048 pixels x 4 spectral bands and a short-wave IR focal plane with 1024 pixels x 2 spectral bands.

  6. Grating array systems having a plurality of gratings operative in a coherently additive mode and methods for making such grating array systems

    DOEpatents

    Kessler, Terrance J [Mendon, NY; Bunkenburg, Joachim [Victor, NY; Huang, Hu [Pittsford, NY

    2007-02-13

    A plurality of gratings (G1, G2) are arranged together with a wavefront sensor, actuators, and feedback system to align the gratings in such a manner, that they operate like a single, large, monolithic grating. Sub-wavelength-scale movements in the mechanical mounting, due to environmental influences, are monitored by an interferometer (28), and compensated by precision actuators (16, 18, 20) that maintain the coherently additive mode. The actuators define the grating plane, and are positioned in response to the wavefronts from the gratings and a reference flat, thus producing the interferogram that contains the alignment information. Movement of the actuators is also in response to a diffraction-limited spot on the CCD (36) to which light diffracted from the gratings is focused. The actuator geometry is implemented to take advantage of the compensating nature of the degrees of freedom between gratings, reducing the number of necessary control variables.

  7. Aluminum/ammonia heat pipe gas generation and long term system impact for the Space Telescope's Wide Field Planetary Camera

    NASA Technical Reports Server (NTRS)

    Jones, J. A.

    1983-01-01

    In the Space Telescope's Wide Field Planetary Camera (WFPC) project, eight heat pipes (HPs) are used to remove heat from the camera's inner electronic sensors to the spacecraft's outer, cold radiator surface. For proper device functioning and maximization of the signal-to-noise ratios, the Charge Coupled Devices (CCD's) must be maintained at -95 C or lower. Thermoelectric coolers (TEC's) cool the CCD's, and heat pipes deliver each TEC's nominal six to eight watts of heat to the space radiator, which reaches an equilibrium temperature between -15 C to -70 C. An initial problem was related to the difficulty to produce gas-free aluminum/ammonia heat pipes. An investigation was, therefore, conducted to determine the cause of the gas generation and the impact of this gas on CCD cooling. In order to study the effect of gas slugs in the WFPC system, a separate HP was made. Attention is given to fabrication, testing, and heat pipe gas generation chemistry studies.

  8. Data Reduction and Control Software for Meteor Observing Stations Based on CCD Video Systems

    NASA Technical Reports Server (NTRS)

    Madiedo, J. M.; Trigo-Rodriguez, J. M.; Lyytinen, E.

    2011-01-01

    The SPanish Meteor Network (SPMN) is performing a continuous monitoring of meteor activity over Spain and neighbouring countries. The huge amount of data obtained by the 25 video observing stations that this network is currently operating made it necessary to develop new software packages to accomplish some tasks, such as data reduction and remote operation of autonomous systems based on high-sensitivity CCD video devices. The main characteristics of this software are described here.

  9. The placido wavefront sensor and preliminary measurement on a mechanical eye.

    PubMed

    Carvalho, Luis Alberto; Castro, Jarbas C

    2006-02-01

    The hardware and software of a novel wavefront sensor was developed (The sensor presented here is patent pending.). It has the same principal of the Hartmann-Shack (HS) and other sensors that are based on slope information for recovery of wavefront surface, but a different symmetry, and does not use individual microlenses. This polar symmetry might offer differences during practical measurements that may add value to current and well-established "gold standard" techniques. The sensor consists of a set of concentric "half-donut" surfaces (longitudinally sectioned toroids) molded on an acrylic surface with a CCD located at the focal plane. When illuminated with a plane wavefront, it focuses a symmetric pattern of concentric discs on the CCD plane; for a distorted wavefront, a nonsymmetric disc pattern is formed (similar to images of a placido-based videokeratographer). From detection of shift in the radial direction, radial slopes are computed for a maximum of 2880 points, and the traditional least-squares procedure is used to fit these partial derivatives to a set of 15 conventional OSA-VSIA Zernike polynomials. Theoretical computations for several synthetic surfaces containing low-order aberration (LOA) and high-order aberration (HOA) were implemented for both the HS and the new sensor. Root mean square error (RMSE) in microns when theoretical data was taken as control, for HS sensor and new sensor, was 0.02 and 0.00003 for LOA (defocus, astigmatism) and 0.07 and 0.06 for HOA (coma, spherical, and higher terms), respectively. After this, practical preliminary measurements on a mechanical eye with a 5-mm pupil and 10 different defocus aberrations ranging from -5 D to 5 D, in steps of 1 D, were compared between sensors. RMSE for difference in measurements for HS and new sensor for sphere, cylinder, and axis, was 0.13 D, 0.07 D, and 11. Measurements were taken only on defocus aberrations. Qualitative images for astigmatism are shown. Although practical in vivo tests were not conducted in this first study, we also discuss certain possible alignment differences that may arise as a result of the different symmetry of the new sensor. To take any conclusive assumption regarding the accuracy and/or precision of this new sensor, when compared with other well-established sensors, statistically significant in vivo measurements will need to be conducted.

  10. On the development of new SPMN diurnal video systems for daylight fireball monitoring

    NASA Astrophysics Data System (ADS)

    Madiedo, J. M.; Trigo-Rodríguez, J. M.; Castro-Tirado, A. J.

    2008-09-01

    Daylight fireball video monitoring High-sensitivity video devices are commonly used for the study of the activity of meteor streams during the night. These provide useful data for the determination, for instance, of radiant, orbital and photometric parameters ([1] to [7]). With this aim, during 2006 three automated video stations supported by Universidad de Huelva were set up in Andalusia within the framework of the SPanish Meteor Network (SPMN). These are endowed with 8-9 high sensitivity wide-field video cameras that achieve a meteor limiting magnitude of about +3. These stations have increased the coverage performed by the low-scan allsky CCD systems operated by the SPMN and, besides, achieve a time accuracy of about 0.01s for determining the appearance of meteor and fireball events. Despite of these nocturnal monitoring efforts, we realised the need of setting up stations for daylight fireball detection. Such effort was also motivated by the appearance of the two recent meteorite-dropping events of Villalbeto de la Peña [8,9] and Puerto Lápice [10]. Although the Villalbeto de la Peña event was casually videotaped, and photographed, no direct pictures or videos were obtained for the Puerto Lápice event. Consequently, in order to perform a continuous recording of daylight fireball events, we setup new automated systems based on CCD video cameras. However, the development of these video stations implies several issues with respect to nocturnal systems that must be properly solved in order to get an optimal operation. The first of these video stations, also supported by University of Huelva, has been setup in Sevilla (Andalusia) during May 2007. But, of course, fireball association is unequivocal only in those cases when two or more stations recorded the fireball, and when consequently the geocentric radiant is accurately determined. With this aim, a second diurnal video station is being setup in Andalusia in the facilities of Centro Internacional de Estudios y Convenciones Ecológicas y Medioambientales (CIECEM, University of Huelva), in the environment of Doñana Natural Park (Huelva province). In this way, both stations, which are separated by a distance of 75 km, will work as a double video station system in order to provide trajectory and orbit information of mayor bolides and, thus, increase the chance of meteorite recovery in the Iberian Peninsula. The new diurnal SPMN video stations are endowed with different models of Mintron cameras (Mintron Enterprise Co., LTD). These are high-sensitivity devices that employ a colour 1/2" Sony interline transfer CCD image sensor. Aspherical lenses are attached to the video cameras in order to maximize image quality. However, the use of fast lenses is not a priority here: while most of our nocturnal cameras use f0.8 or f1.0 lenses in order to detect meteors as faint as magnitude +3, diurnal systems employ in most cases f1.4 to f2.0 lenses. Their focal length ranges from 3.8 to 12 mm to cover different atmospheric volumes. The cameras are arranged in such a way that the whole sky is monitored from every observing station. Figure 1. A daylight event recorded from Sevilla on May 26, 2008 at 4h30m05.4 +-0.1s UT. The way our diurnal video cameras work is similar to the operation of our nocturnal systems [1]. Thus, diurnal stations are automatically switched on and off at sunrise and sunset, respectively. The images taken at 25 fps and with a resolution of 720x576 pixels are continuously sent to PC computers through a video capture device. The computers run a software (UFOCapture, by SonotaCo, Japan) that automatically registers meteor trails and stores the corresponding video frames on hard disk. Besides, before the signal from the cameras reaches the computers, a video time inserter that employs a GPS device (KIWI-OSD, by PFD Systems) inserts time information on every video frame. This allows us to measure time in a precise way (about 0.01 sec.) along the whole fireball path. EPSC Abstracts, Vol. 3, EPSC2008-A-00319, 2008 European Planetary Science Congress, Author(s) 2008 However, one of the issues with respect to nocturnal observing stations is the high number of false detections as a consequence of several factors: higher activity of birds and insects, reflection of sunlight on planes and helicopters, etc. Sometimes some of these false events follow a pattern which is very similar to fireball trails, which makes absolutely necessary the use of a second station in order to discriminate between them. Other key issue is related to the passage of the Sun before the field of view of some of the cameras. In fact, special care is necessary with this to avoid any damage to the CCD sensor. Besides, depending on atmospheric conditions (dust or moisture, for instance), the Sun may saturate most of the video frame. To solve this, our automated system determines which camera is pointing towards the Sun at a given moment and disconnects it. As the cameras are endowed with autoiris lenses, its disconnection means that the optics is fully closed and, so, the CCD sensor is protected. This, of course, means that when this happens the atmospheric volume covered by the corresponding camera is not monitored. It must be also taken into account that, in general, operation temperatures are higher for diurnal cameras. This results in higher thermal noise and, so, poses some difficulties to the detection software. To minimize this effect, it is necessary to employ CCD video cameras with proper signal to noise ratio. Refrigeration of the CCD sensor with, for instance, a Peltier system, can also be considered. The astrometric reduction procedure is also somewhat different for daytime events: it requires that reference objects are located within the field of view of every camera in order to calibrate the corresponding images. This is done by allowing every camera to capture distant buildings that, by means of said calibration, would allow us to obtain the equatorial coordinates of the fireball along its path by measuring its corresponding X and Y positions on every video frame. Such calibration can be performed from stars positions measured from nocturnal images taken with the same cameras. Once made, if the cameras are not moved it is possible to estimate the equatorial coordinates of any future fireball event. We don't use any software for automatic astrometry of the images. This crucial step is made via direct measurements of the pixel position as in all our previous work. Then, from these astrometric measurements, our software estimates the atmospheric trajectory and radiant for each fireball ([10] to [13]). During 2007 and 2008 the SPMN has also setup other diurnal stations based on 1/3' progressive-scan CMOS sensors attached to modified wide-field lenses covering a 120x80 degrees FOV. They are placed in Andalusia: El Arenosillo (Huelva), La Mayora (Málaga) and Murtas (Granada). They have also night sensitivity thanks to a infrared cut filter (ICR) which enables the camera to perform well in both high and low light condition in colour as well as provide IR sensitive Black/White video at night. Conclusions First detections of daylight fireballs by CCD video camera are being achieved in the SPMN framework. Future expansion and set up of new observing stations is currently being planned. The future establishment of additional diurnal SPMN stations will allow an increase in the number of daytime fireballs detected. This will also increase our chance of meteorite recovery.

  11. NEUTRON RADIATION DAMAGE IN CCD CAMERAS AT JOINT EUROPEAN TORUS (JET).

    PubMed

    Milocco, Alberto; Conroy, Sean; Popovichev, Sergey; Sergienko, Gennady; Huber, Alexander

    2017-10-26

    The neutron and gamma radiations in large fusion reactors are responsible for damage to charged couple device (CCD) cameras deployed for applied diagnostics. Based on the ASTM guide E722-09, the 'equivalent 1 MeV neutron fluence in silicon' was calculated for a set of CCD cameras at the Joint European Torus. Such evaluations would be useful to good practice in the operation of the video systems. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Integrated optical sensor

    DOEpatents

    Watkins, Arthur D.; Smartt, Herschel B.; Taylor, Paul L.

    1994-01-01

    An integrated optical sensor for arc welding having multifunction feedback control. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties.

  13. Integrated optical sensor

    DOEpatents

    Watkins, A.D.; Smartt, H.B.; Taylor, P.L.

    1994-01-04

    An integrated optical sensor for arc welding having multifunction feedback control is described. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties. 6 figures.

  14. Printed circuit board for a CCD camera head

    DOEpatents

    Conder, Alan D.

    2002-01-01

    A charge-coupled device (CCD) camera head which can replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating x-rays, such as within a target chamber where laser produced plasmas are studied. The camera head is small, capable of operating both in and out of a vacuum environment, and is versatile. The CCD camera head uses PC boards with an internal heat sink connected to the chassis for heat dissipation, which allows for close (0.04" for example) stacking of the PC boards. Integration of this CCD camera head into existing instrumentation provides a substantial enhancement of diagnostic capabilities for studying high energy density plasmas, for a variety of military industrial, and medical imaging applications.

  15. A Real-Time Optical 3D Tracker for Head-Mounted Display Systems

    DTIC Science & Technology

    1990-03-01

    paper. OPTOTRAK [Nor88] uses one camera with two dual-axis CCD infrared position sensors. Each position sen- sor has a dedicated processor board to...enhance the use- [Nor88] Northern Digital. Trade literature on Optotrak fulness of head-mounted display systems. - Northern Digital’s Three Dimensional

  16. Tracking a Head-Mounted Display in a Room-Sized Environment with Head-Mounted Cameras

    DTIC Science & Technology

    1990-04-01

    poor resolution and a very limited working volume [Wan90]. 4 OPTOTRAK [Nor88] uses one camera with two dual-axis CCD infrared position sensors. Each...Nor88] Northern Digital. Trade literature on Optotrak - Northern Digital’s Three Dimensional Optical Motion Tracking and Analysis System. Northern Digital

  17. Two-Dimensional Light Diffraction from an EPROM Chip

    ERIC Educational Resources Information Center

    Ekkens, Tom

    2018-01-01

    In introductory physics classes, a laser pointer and a compact disc are all the items required to illustrate diffraction of light in a single dimension. If a two-dimensional diffraction pattern is desired, double axis diffraction grating material is available or a CCD sensor can be extracted from an unused electronics device. This article presents…

  18. Video semaphore decoding for free-space optical communication

    NASA Astrophysics Data System (ADS)

    Last, Matthew; Fisher, Brian; Ezekwe, Chinwuba; Hubert, Sean M.; Patel, Sheetal; Hollar, Seth; Leibowitz, Brian S.; Pister, Kristofer S. J.

    2001-04-01

    Using teal-time image processing we have demonstrated a low bit-rate free-space optical communication system at a range of more than 20km with an average optical transmission power of less than 2mW. The transmitter is an autonomous one cubic inch microprocessor-controlled sensor node with a laser diode output. The receiver is a standard CCD camera with a 1-inch aperture lens, and both hardware and software implementations of the video semaphore decoding algorithm. With this system sensor data can be reliably transmitted 21 km form San Francisco to Berkeley.

  19. Towards fish-eye camera based in-home activity assessment.

    PubMed

    Bas, Erhan; Erdogmus, Deniz; Ozertem, Umut; Pavel, Misha

    2008-01-01

    Indoors localization, activity classification, and behavioral modeling are increasingly important for surveillance applications including independent living and remote health monitoring. In this paper, we study the suitability of fish-eye cameras (high-resolution CCD sensors with very-wide-angle lenses) for the purpose of monitoring people in indoors environments. The results indicate that these sensors are very useful for automatic activity monitoring and people tracking. We identify practical and mathematical problems related to information extraction from these video sequences and identify future directions to solve these issues.

  20. Event-Driven Random-Access-Windowing CCD Imaging System

    NASA Technical Reports Server (NTRS)

    Monacos, Steve; Portillo, Angel; Ortiz, Gerardo; Alexander, James; Lam, Raymond; Liu, William

    2004-01-01

    A charge-coupled-device (CCD) based high-speed imaging system, called a realtime, event-driven (RARE) camera, is undergoing development. This camera is capable of readout from multiple subwindows [also known as regions of interest (ROIs)] within the CCD field of view. Both the sizes and the locations of the ROIs can be controlled in real time and can be changed at the camera frame rate. The predecessor of this camera was described in High-Frame-Rate CCD Camera Having Subwindow Capability (NPO- 30564) NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 26. The architecture of the prior camera requires tight coupling between camera control logic and an external host computer that provides commands for camera operation and processes pixels from the camera. This tight coupling limits the attainable frame rate and functionality of the camera. The design of the present camera loosens this coupling to increase the achievable frame rate and functionality. From a host computer perspective, the readout operation in the prior camera was defined on a per-line basis; in this camera, it is defined on a per-ROI basis. In addition, the camera includes internal timing circuitry. This combination of features enables real-time, event-driven operation for adaptive control of the camera. Hence, this camera is well suited for applications requiring autonomous control of multiple ROIs to track multiple targets moving throughout the CCD field of view. Additionally, by eliminating the need for control intervention by the host computer during the pixel readout, the present design reduces ROI-readout times to attain higher frame rates. This camera (see figure) includes an imager card consisting of a commercial CCD imager and two signal-processor chips. The imager card converts transistor/ transistor-logic (TTL)-level signals from a field programmable gate array (FPGA) controller card. These signals are transmitted to the imager card via a low-voltage differential signaling (LVDS) cable assembly. The FPGA controller card is connected to the host computer via a standard peripheral component interface (PCI).

  1. Driving techniques for high frame rate CCD camera

    NASA Astrophysics Data System (ADS)

    Guo, Weiqiang; Jin, Longxu; Xiong, Jingwu

    2008-03-01

    This paper describes a high-frame rate CCD camera capable of operating at 100 frames/s. This camera utilizes Kodak KAI-0340, an interline transfer CCD with 640(vertical)×480(horizontal) pixels. Two output ports are used to read out CCD data and pixel rates approaching 30 MHz. Because of its reduced effective opacity of vertical charge transfer registers, interline transfer CCD can cause undesired image artifacts, such as random white spots and smear generated in the registers. To increase frame rate, a kind of speed-up structure has been incorporated inside KAI-0340, then it is vulnerable to a vertical stripe effect. The phenomena which mentioned above may severely impair the image quality. To solve these problems, some electronic methods of eliminating these artifacts are adopted. Special clocking mode can dump the unwanted charge quickly, then the fast readout of the images, cleared of smear, follows immediately. Amplifier is used to sense and correct delay mismatch between the dual phase vertical clock pulses, the transition edges become close to coincident, so vertical stripes disappear. Results obtained with the CCD camera are shown.

  2. PN-CCD camera for XMM: performance of high time resolution/bright source operating modes

    NASA Astrophysics Data System (ADS)

    Kendziorra, Eckhard; Bihler, Edgar; Grubmiller, Willy; Kretschmar, Baerbel; Kuster, Markus; Pflueger, Bernhard; Staubert, Ruediger; Braeuninger, Heinrich W.; Briel, Ulrich G.; Meidinger, Norbert; Pfeffermann, Elmar; Reppin, Claus; Stoetter, Diana; Strueder, Lothar; Holl, Peter; Kemmer, Josef; Soltau, Heike; von Zanthier, Christoph

    1997-10-01

    The pn-CCD camera is developed as one of the focal plane instruments for the European photon imaging camera (EPIC) on board the x-ray multi mirror (XMM) mission to be launched in 1999. The detector consists of four quadrants of three pn-CCDs each, which are integrated on one silicon wafer. Each CCD has 200 by 64 pixels (150 micrometer by 150 micrometers) with 280 micrometers depletion depth. One CCD of a quadrant is read out at a time, while the four quadrants can be processed independently of each other. In standard imaging mode the CCDs are read out sequentially every 70 ms. Observations of point sources brighter than 1 mCrab will be effected by photon pile- up. However, special operating modes can be used to observe bright sources up to 150 mCrab in timing mode with 30 microseconds time resolution and very bright sources up to several crab in burst mode with 7 microseconds time resolution. We have tested one quadrant of the EPIC pn-CCD camera at line energies from 0.52 keV to 17.4 keV at the long beam test facility Panter in the focus of the qualification mirror module for XMM. In order to test the time resolution of the system, a mechanical chopper was used to periodically modulate the beam intensity. Pulse periods down to 0.7 ms were generated. This paper describes the performance of the pn-CCD detector in timing and burst readout modes with special emphasis on energy and time resolution.

  3. Ion profiling in an ambient drift tube-ion mobility spectrometer using a high pixel density linear array detector IonCCD.

    PubMed

    Davila, Stephen J; Hadjar, Omar; Eiceman, Gary A

    2013-07-16

    A linear pixel-based detector array, the IonCCD, is characterized for use under ambient conditions with thermal (<1 eV) positive ions derived from purified air and a 10 mCi (63)Ni foil. The IonCCD combined with a drift tube-ion mobility spectrometer permitted the direct detection of gas phase ions at atmospheric pressure and confirmed a limit of detection of 3000 ions/pixel/frame established previously in both the keV (1-2 keV) and the hyper-thermal (10-40 eV) regimes. Results demonstrate the "broad-band" application of the IonCCD over 10(5) orders in ion energy and over 10(10) in operating pressure. The Faraday detector of a drift tube for an ion mobility spectrometer was replaced with the IonCCD providing images of ion profiles over the cross-section of the drift tube. Patterns in the ion profiles were developed in the drift tube cross-section by control of electric fields between wires of Bradbury Nielson and Tyndall Powell shutter designs at distances of 1-8 cm from the detector. Results showed that ion beams formed in wire sets, retained their shape with limited mixing by diffusion and Coulombic repulsion. Beam broadening determined as 95 μm/cm for hydrated protons in air with moisture of ~10 ppmv. These findings suggest a value of the IonCCD in further studies of ion motion and diffusion of thermalized ions, enhancing computational results from simulation programs, and in the design or operation of ion mobility spectrometers.

  4. Cryostat and CCD for MEGARA at GTC

    NASA Astrophysics Data System (ADS)

    Castillo-Domínguez, E.; Ferrusca, D.; Tulloch, S.; Velázquez, M.; Carrasco, E.; Gallego, J.; Gil de Paz, A.; Sánchez, F. M.; Vílchez Medina, J. M.

    2012-09-01

    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is the new integral field unit (IFU) and multi-object spectrograph (MOS) instrument for the GTC. The spectrograph subsystems include the pseudo-slit, the shutter, the collimator with a focusing mechanism, pupil elements on a volume phase holographic grating (VPH) wheel and the camera joined to the cryostat through the last lens, with a CCD detector inside. In this paper we describe the full preliminary design of the cryostat which will harbor the CCD detector for the spectrograph. The selected cryogenic device is an LN2 open-cycle cryostat which has been designed by the "Astronomical Instrumentation Lab for Millimeter Wavelengths" at INAOE. A complete description of the cryostat main body and CCD head is presented as well as all the vacuum and temperature sub-systems to operate it. The CCD is surrounded by a radiation shield to improve its performance and is placed in a custom made mechanical mounting which will allow physical adjustments for alignment with the spectrograph camera. The 4k x 4k pixel CCD231 is our selection for the cryogenically cooled detector of MEGARA. The characteristics of this CCD, the internal cryostat cabling and CCD controller hardware are discussed. Finally, static structural finite element modeling and thermal analysis results are shown to validate the cryostat model.

  5. High-performance visible/UV CCD focal plane technology for spacebased applications

    NASA Technical Reports Server (NTRS)

    Burke, B. E.; Mountain, R. W.; Gregory, J. A.; Huang, J. C. M.; Cooper, M. J.; Savoye, E. D.; Kosicki, B. B.

    1993-01-01

    We describe recent technology developments aimed at large CCD imagers for space based applications in the visible and UV. Some of the principal areas of effort include work on reducing device degradation in the natural space-radiation environment, improvements in quantum efficiency in the visible and UV, and larger-device formats. One of the most serious hazards for space based CCD's operating at low signal levels is the displacement damage resulting from bombardment by energetic protons. Such damage degrades charge-transfer efficiency and increases dark current. We have achieved improved hardness to proton-induced displacement damage by selective ion implants into the CCD channel and by reduced temperature of operation. To attain high quantum efficiency across the visible and UV we have developed a technology for back-illuminated CCD's. With suitable antireflection (AR) coatings such devices have quantum efficiencies near 90 percent in the 500-700-nm band. In the UV band from 200 to 400 nm, where it is difficult to find coatings that are sufficiently transparent and can provide good matching to the high refractive index of silicon, we have been able to substantially increase the quantum efficiency using a thin film of HfO2 as an AR coating. These technology efforts were applied to a 420 x 420-pixel frame-transfer imager, and future work will be extended to a 1024 x 1024-pixel device now under development.

  6. STK: A new CCD camera at the University Observatory Jena

    NASA Astrophysics Data System (ADS)

    Mugrauer, M.; Berthold, T.

    2010-04-01

    The Schmidt-Teleskop-Kamera (STK) is a new CCD-imager, which is operated since begin of 2009 at the University Observatory Jena. This article describes the main characteristics of the new camera. The properties of the STK detector, the astrometry and image quality of the STK, as well as its detection limits at the 0.9 m telescope of the University Observatory Jena are presented. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.

  7. Remote media vision-based computer input device

    NASA Astrophysics Data System (ADS)

    Arabnia, Hamid R.; Chen, Ching-Yi

    1991-11-01

    In this paper, we introduce a vision-based computer input device which has been built at the University of Georgia. The user of this system gives commands to the computer without touching any physical device. The system receives input through a CCD camera; it is PC- based and is built on top of the DOS operating system. The major components of the input device are: a monitor, an image capturing board, a CCD camera, and some software (developed by use). These are interfaced with a standard PC running under the DOS operating system.

  8. A High Fidelity Approach to Data Simulation for Space Situational Awareness Missions

    NASA Astrophysics Data System (ADS)

    Hagerty, S.; Ellis, H., Jr.

    2016-09-01

    Space Situational Awareness (SSA) is vital to maintaining our Space Superiority. A high fidelity, time-based simulation tool, PROXOR™ (Proximity Operations and Rendering), supports SSA by generating realistic mission scenarios including sensor frame data with corresponding truth. This is a unique and critical tool for supporting mission architecture studies, new capability (algorithm) development, current/future capability performance analysis, and mission performance prediction. PROXOR™ provides a flexible architecture for sensor and resident space object (RSO) orbital motion and attitude control that simulates SSA, rendezvous and proximity operations scenarios. The major elements of interest are based on the ability to accurately simulate all aspects of the RSO model, viewing geometry, imaging optics, sensor detector, and environmental conditions. These capabilities enhance the realism of mission scenario models and generated mission image data. As an input, PROXOR™ uses a library of 3-D satellite models containing 10+ satellites, including low-earth orbit (e.g., DMSP) and geostationary (e.g., Intelsat) spacecraft, where the spacecraft surface properties are those of actual materials and include Phong and Maxwell-Beard bidirectional reflectance distribution function (BRDF) coefficients for accurate radiometric modeling. We calculate the inertial attitude, the changing solar and Earth illumination angles of the satellite, and the viewing angles from the sensor as we propagate the RSO in its orbit. The synthetic satellite image is rendered at high resolution and aggregated to the focal plane resolution resulting in accurate radiometry even when the RSO is a point source. The sensor model includes optical effects from the imaging system [point spread function (PSF) includes aberrations, obscurations, support structures, defocus], detector effects (CCD blooming, left/right bias, fixed pattern noise, image persistence, shot noise, read noise, and quantization noise), and environmental effects (radiation hits with selectable angular distributions and 4-layer atmospheric turbulence model for ground based sensors). We have developed an accurate flash Light Detection and Ranging (LIDAR) model that supports reconstruction of 3-dimensional information on the RSO. PROXOR™ contains many important imaging effects such as intra-frame smear, realized by oversampling the image in time and capturing target motion and jitter during the integration time.

  9. Next generation of pnCCDs for X-ray spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Meidinger, Norbert; Andritschke, Robert; Hälker, Olaf; Hartmann, Robert; Herrmann, Sven; Holl, Peter; Lutz, Gerhard; Kimmel, Nils; Schaller, Gerhard; Schnecke, Martina; Schopper, Florian; Soltau, Heike; Strüder, Lothar

    2006-11-01

    A special type of charge-coupled device, the pnCCD, has been developed in the nineties as focal-plane detector for the X-ray astronomy mission XMM-Newton of the European Space Agency. The pnCCD detector has been in operation since the satellite launch in 1999. It is performing up to date spectroscopy of X-rays in combination with imaging and high time resolution. The excellent performance of the flight camera is still maintained; in particular, the energy resolution has been nearly constant since launch. In order to satisfy the requirements of future X-ray astronomy missions as well as those of ground-based experiments, a new type of pnCCD has been developed. The ‘frame store pnCCD’ shows various optimizations in device design and fabrication process. Devices with up to 256×512 pixels have been fabricated in 2004 and recently tested. Simultaneously, a programmable analog signal processor for the readout of the CCD signals, the DUO CAMEX, has been developed. The readout noise of the new detector has a value of 2 electrons ENC which is less than half of the figure of the XMM-Newton pnCCD. We measured an energy resolution that is close to the theoretical limit given by the Fano noise. In particular the low-energy response of the new devices was substantially improved. The quantum efficiency for X-rays is at least 90% in the entire energy band from 0.3 keV up to 11 keV. This is due to the ultra-thin photon entrance window as well as the full depletion of the 450 μm thick back-illuminated pnCCD. The position resolution is better than the pixel sizes of 75 μm×75 μm or 51 μm×51 μm because the signal charge is spread over up to four pixels which allows a more accurate event position determination. ‘Out of time’ events are substantially reduced to the order of 0.1% by operating the pnCCD in frame store mode. Higher operating temperatures, e.g. -20 °C, are possible due to the smaller thermally generated dark-current level of the new devices and the operation at higher frame rates. Low power consumption applications like for the ROSITA X-ray astronomy mission with low frame rates of, e.g. 20 images/s, as well as high frame rate applications, e.g. 200 images/s, are possible with the same device.

  10. Validation of Noninvasive MOEMS-Assisted Measurement System Based on CCD Sensor for Radial Pulse Analysis

    PubMed Central

    Malinauskas, Karolis; Palevicius, Paulius; Ragulskis, Minvydas; Ostasevicius, Vytautas; Dauksevicius, Rolanas

    2013-01-01

    Examination of wrist radial pulse is a noninvasive diagnostic method, which occupies a very important position in Traditional Chinese Medicine. It is based on manual palpation and therefore relies largely on the practitioner′s subjective technical skills and judgment. Consequently, it lacks reliability and consistency, which limits practical applications in clinical medicine. Thus, quantifiable characterization of the wrist pulse diagnosis method is a prerequisite for its further development and widespread use. This paper reports application of a noninvasive CCD sensor-based hybrid measurement system for radial pulse signal analysis. First, artery wall deformations caused by the blood flow are calibrated with a laser triangulation displacement sensor, following by the measurement of the deformations with projection moiré method. Different input pressures and fluids of various viscosities are used in the assembled artificial blood flow system in order to test the performance of laser triangulation technique with detection sensitivity enhancement through microfabricated retroreflective optical element placed on a synthetic vascular graft. Subsequently, the applicability of double-exposure whole-field projection moiré technique for registration of blood flow pulses is considered: a computational model and representative example are provided, followed by in vitro experiment performed on a vascular graft with artificial skin atop, which validates the suitability of the technique for characterization of skin surface deformations caused by the radial pulsation. PMID:23609803

  11. Validation of noninvasive MOEMS-assisted measurement system based on CCD sensor for radial pulse analysis.

    PubMed

    Malinauskas, Karolis; Palevicius, Paulius; Ragulskis, Minvydas; Ostasevicius, Vytautas; Dauksevicius, Rolanas

    2013-04-22

    Examination of wrist radial pulse is a noninvasive diagnostic method, which occupies a very important position in Traditional Chinese Medicine. It is based on manual palpation and therefore relies largely on the practitioner's subjective technical skills and judgment. Consequently, it lacks reliability and consistency, which limits practical applications in clinical medicine. Thus, quantifiable characterization of the wrist pulse diagnosis method is a prerequisite for its further development and widespread use. This paper reports application of a noninvasive CCD sensor-based hybrid measurement system for radial pulse signal analysis. First, artery wall deformations caused by the blood flow are calibrated with a laser triangulation displacement sensor, following by the measurement of the deformations with projection moiré method. Different input pressures and fluids of various viscosities are used in the assembled artificial blood flow system in order to test the performance of laser triangulation technique with detection sensitivity enhancement through microfabricated retroreflective optical element placed on a synthetic vascular graft. Subsequently, the applicability of double-exposure whole-field projection moiré technique for registration of blood flow pulses is considered: a computational model and representative example are provided, followed by in vitro experiment performed on a vascular graft with artificial skin atop, which validates the suitability of the technique for characterization of skin surface deformations caused by the radial pulsation.

  12. Study of digital charge coupled devices

    NASA Technical Reports Server (NTRS)

    Wilson, D. D.; Young, V. F.

    1980-01-01

    Charge coupled devices represent unique usage of the metal oxide semiconductor concept. These devices can sample an AC signal at the input, transfer charge proportional to this signal through the CCD shift register and then provide an output of the same frequency and shape as the input. The delay time between input and output is controlled by the CCD operating frequency and the number of stages in the shift resistor. This work is a reliability evaluation of the buried channel and surface channel CCD technologies. The constructions are analyzed, failure modes are described, and test results are reported.

  13. ESA's CCD test bench for the PLATO mission

    NASA Astrophysics Data System (ADS)

    Beaufort, Thierry; Duvet, Ludovic; Bloemmaert, Sander; Lemmel, Frederic; Prod'homme, Thibaut; Verhoeve, Peter; Smit, Hans; Butler, Bart; van der Luijt, Cornelis; Heijnen, Jerko; Visser, Ivo

    2016-08-01

    PLATO { PLAnetary Transits and Oscillations of stars { is the third medium-class mission to be selected in the European Space Agency (ESA) Science and Robotic Exploration Cosmic Vision programme. Due for launch in 2025, the payload makes use of a large format (8 cm x 8 cm) Charge-Coupled Devices (CCDs), the e2v CCD270 operated at 4 MHz and at -70 C. To de-risk the PLATO CCD qualification programme initiated in 2014 and support the mission definition process, ESA's Payload Technology Validation section from the Future Missions Office has developed a dedicated test bench.

  14. Method of orthogonally splitting imaging pose measurement

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong

    2018-01-01

    In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.

  15. The Operation and Evolution of the Swift X-ray Telescope

    NASA Technical Reports Server (NTRS)

    Kennea, Jamie; Burrows, D. N.; Pagani, C.; Hill, Joanne; Racusin, J. L.; Morris, D. C.; Abbey, A. F.; Beardmore, A. P.; Campana, G.; Chincarini, G.; hide

    2007-01-01

    The Swift X-ray Telescope (XRT) is a CCD based X-ray telescope designed for localization, spectroscopy and long term light curve monitoring of Gamma-Ray Bursts and their X-ray afterglows. Since the launch of Swift in November 2004, the XRT has undergone significant evolution in the way it is operated. Shortly after launch there was a failure of the thermo-electric cooler on the XRT CCD, which led to the XRT team being required to devise a method of keeping the XRT CCD temperature below 50C utilizing only passive cooling by minimizing the exposure of the XRT radiator to the Earth. We present in this paper an update on how the modeling of this passive cooling method has improved in first -1000 days since the method was devised, and the success rate of this method in day-to-day planning. We also discuss the changes to the operational modes and onboard software of the XRT. These changes include improved rapid data product generation in order to improve speed of rapid Gamma-Ray Burst response and localization to the community; changes to the way XRT observation modes are chosen in order to better fine tune data aquisition to a particular science goal; reduction of "mode switching" caused by the contamination of the CCD by Earth light or high temperature effects.

  16. Optical readout of a two phase liquid argon TPC using CCD camera and THGEMs

    NASA Astrophysics Data System (ADS)

    Mavrokoridis, K.; Ball, F.; Carroll, J.; Lazos, M.; McCormick, K. J.; Smith, N. A.; Touramanis, C.; Walker, J.

    2014-02-01

    This paper presents a preliminary study into the use of CCDs to image secondary scintillation light generated by THick Gas Electron Multipliers (THGEMs) in a two phase LAr TPC. A Sony ICX285AL CCD chip was mounted above a double THGEM in the gas phase of a 40 litre two-phase LAr TPC with the majority of the camera electronics positioned externally via a feedthrough. An Am-241 source was mounted on a rotatable motion feedthrough allowing the positioning of the alpha source either inside or outside of the field cage. Developed for and incorporated into the TPC design was a novel high voltage feedthrough featuring LAr insulation. Furthermore, a range of webcams were tested for operation in cryogenics as an internal detector monitoring tool. Of the range of webcams tested the Microsoft HD-3000 (model no:1456) webcam was found to be superior in terms of noise and lowest operating temperature. In ambient temperature and atmospheric pressure 1 ppm pure argon gas, the THGEM gain was ≈ 1000 and using a 1 msec exposure the CCD captured single alpha tracks. Successful operation of the CCD camera in two-phase cryogenic mode was also achieved. Using a 10 sec exposure a photograph of secondary scintillation light induced by the Am-241 source in LAr has been captured for the first time.

  17. Swap intensified WDR CMOS module for I2/LWIR fusion

    NASA Astrophysics Data System (ADS)

    Ni, Yang; Noguier, Vincent

    2015-05-01

    The combination of high resolution visible-near-infrared low light sensor and moderate resolution uncooled thermal sensor provides an efficient way for multi-task night vision. Tremendous progress has been made on uncooled thermal sensors (a-Si, VOx, etc.). It's possible to make a miniature uncooled thermal camera module in a tiny 1cm3 cube with <1W power consumption. For silicon based solid-state low light CCD/CMOS sensors have observed also a constant progress in terms of readout noise, dark current, resolution and frame rate. In contrast to thermal sensing which is intrinsic day&night operational, the silicon based solid-state sensors are not yet capable to do the night vision performance required by defense and critical surveillance applications. Readout noise, dark current are 2 major obstacles. The low dynamic range at high sensitivity mode of silicon sensors is also an important limiting factor, which leads to recognition failure due to local or global saturations & blooming. In this context, the image intensifier based solution is still attractive for the following reasons: 1) high gain and ultra-low dark current; 2) wide dynamic range and 3) ultra-low power consumption. With high electron gain and ultra low dark current of image intensifier, the only requirement on the silicon image pickup device are resolution, dynamic range and power consumption. In this paper, we present a SWAP intensified Wide Dynamic Range CMOS module for night vision applications, especially for I2/LWIR fusion. This module is based on a dedicated CMOS image sensor using solar-cell mode photodiode logarithmic pixel design which covers a huge dynamic range (> 140dB) without saturation and blooming. The ultra-wide dynamic range image from this new generation logarithmic sensor can be used directly without any image processing and provide an instant light accommodation. The complete module is slightly bigger than a simple ANVIS format I2 tube with <500mW power consumption.

  18. The design and development of low- and high-voltage ASICs for space-borne CCD cameras

    NASA Astrophysics Data System (ADS)

    Waltham, N.; Morrissey, Q.; Clapp, M.; Bell, S.; Jones, L.; Torbet, M.

    2017-12-01

    The CCD remains the pre-eminent visible and UV wavelength image sensor in space science, Earth and planetary remote sensing. However, the design of space-qualified CCD readout electronics is a significant challenge with requirements for low-volume, low-mass, low-power, high-reliability and tolerance to space radiation. Space-qualified components are frequently unavailable and up-screened commercial components seldom meet project or international space agency requirements. In this paper, we describe an alternative approach of designing and space-qualifying a series of low- and high-voltage mixed-signal application-specific integrated circuits (ASICs), the ongoing development of two low-voltage ASICs with successful flight heritage, and two new high-voltage designs. A challenging sub-system of any CCD camera is the video processing and digitisation electronics. We describe recent developments to improve performance and tolerance to radiation-induced single event latchup of a CCD video processing ASIC originally developed for NASA's Solar Terrestrial Relations Observatory and Solar Dynamics Observatory. We also describe a programme to develop two high-voltage ASICs to address the challenges presented with generating a CCD's bias voltages and drive clocks. A 0.35 μm, 50 V tolerant, CMOS process has been used to combine standard low-voltage 3.3 V transistors with high-voltage 50 V diffused MOSFET transistors that enable output buffers to drive CCD bias drains, gates and clock electrodes directly. We describe a CCD bias voltage generator ASIC that provides 24 independent and programmable 0-32 V outputs. Each channel incorporates a 10-bit digital-to-analogue converter, provides current drive of up to 20 mA into loads of 10 μF, and includes current-limiting and short-circuit protection. An on-chip telemetry system with a 12-bit analogue-to-digital converter enables the outputs and multiple off-chip camera voltages to be monitored. The ASIC can drive one or more CCDs and replaces the many discrete components required in current cameras. We also describe a CCD clock driver ASIC that provides six independent and programmable drivers with high-current capacity. The device enables various CCD clock parameters to be programmed independently, for example the clock-low and clock-high voltage levels, and the clock-rise and clock-fall times, allowing configuration for serial clock frequencies in the range 0.1-2 MHz and image clock frequencies in the range 10-100 kHz. Finally, we demonstrate the impact and importance of this technology for the development of compact, high-performance and low-power integrated focal plane electronics.

  19. Camera sensor arrangement for crop/weed detection accuracy in agronomic images.

    PubMed

    Romeo, Juan; Guerrero, José Miguel; Montalvo, Martín; Emmi, Luis; Guijarro, María; Gonzalez-de-Santos, Pablo; Pajares, Gonzalo

    2013-04-02

    In Precision Agriculture, images coming from camera-based sensors are commonly used for weed identification and crop line detection, either to apply specific treatments or for vehicle guidance purposes. Accuracy of identification and detection is an important issue to be addressed in image processing. There are two main types of parameters affecting the accuracy of the images, namely: (a) extrinsic, related to the sensor's positioning in the tractor; (b) intrinsic, related to the sensor specifications, such as CCD resolution, focal length or iris aperture, among others. Moreover, in agricultural applications, the uncontrolled illumination, existing in outdoor environments, is also an important factor affecting the image accuracy. This paper is exclusively focused on two main issues, always with the goal to achieve the highest image accuracy in Precision Agriculture applications, making the following two main contributions: (a) camera sensor arrangement, to adjust extrinsic parameters and (b) design of strategies for controlling the adverse illumination effects.

  20. Rolling Shutter Effect aberration compensation in Digital Holographic Microscopy

    NASA Astrophysics Data System (ADS)

    Monaldi, Andrea C.; Romero, Gladis G.; Cabrera, Carlos M.; Blanc, Adriana V.; Alanís, Elvio E.

    2016-05-01

    Due to the sequential-readout nature of most CMOS sensors, each row of the sensor array is exposed at a different time, resulting in the so-called rolling shutter effect that induces geometric distortion to the image if the video camera or the object moves during image acquisition. Particularly in digital holograms recording, while the sensor captures progressively each row of the hologram, interferometric fringes can oscillate due to external vibrations and/or noises even when the object under study remains motionless. The sensor records each hologram row in different instants of these disturbances. As a final effect, phase information is corrupted, distorting the reconstructed holograms quality. We present a fast and simple method for compensating this effect based on image processing tools. The method is exemplified by holograms of microscopic biological static objects. Results encourage incorporating CMOS sensors over CCD in Digital Holographic Microscopy due to a better resolution and less expensive benefits.

  1. Consequences of CCD imperfections for cosmology determined by weak lensing surveys: from laboratory measurements to cosmological parameter bias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okura, Yuki; Petri, Andrea; May, Morgan

    Weak gravitational lensing causes subtle changes in the apparent shapes of galaxies due to the bending of light by the gravity of foreground masses. By measuring the shapes of large numbers of galaxies (millions in recent surveys, up to tens of billions in future surveys) we can infer the parameters that determine cosmology. Imperfections in the detectors used to record images of the sky can introduce changes in the apparent shape of galaxies, which in turn can bias the inferred cosmological parameters. Here in this paper we consider the effect of two widely discussed sensor imperfections: tree-rings, due to impuritymore » gradients which cause transverse electric fields in the Charge-Coupled Devices (CCD), and pixel-size variation, due to periodic CCD fabrication errors. These imperfections can be observed when the detectors are subject to uniform illumination (flat field images). We develop methods to determine the spurious shear and convergence (due to the imperfections) from the flat-field images. We calculate how the spurious shear when added to the lensing shear will bias the determination of cosmological parameters. We apply our methods to candidate sensors of the Large Synoptic Survey Telescope (LSST) as a timely and important example, analyzing flat field images recorded with LSST prototype CCDs in the laboratory. In conclusion, we find that tree-rings and periodic pixel-size variation present in the LSST CCDs will introduce negligible bias to cosmological parameters determined from the lensing power spectrum, specifically w,Ω m and σ 8.« less

  2. Consequences of CCD imperfections for cosmology determined by weak lensing surveys: from laboratory measurements to cosmological parameter bias

    DOE PAGES

    Okura, Yuki; Petri, Andrea; May, Morgan; ...

    2016-06-27

    Weak gravitational lensing causes subtle changes in the apparent shapes of galaxies due to the bending of light by the gravity of foreground masses. By measuring the shapes of large numbers of galaxies (millions in recent surveys, up to tens of billions in future surveys) we can infer the parameters that determine cosmology. Imperfections in the detectors used to record images of the sky can introduce changes in the apparent shape of galaxies, which in turn can bias the inferred cosmological parameters. Here in this paper we consider the effect of two widely discussed sensor imperfections: tree-rings, due to impuritymore » gradients which cause transverse electric fields in the Charge-Coupled Devices (CCD), and pixel-size variation, due to periodic CCD fabrication errors. These imperfections can be observed when the detectors are subject to uniform illumination (flat field images). We develop methods to determine the spurious shear and convergence (due to the imperfections) from the flat-field images. We calculate how the spurious shear when added to the lensing shear will bias the determination of cosmological parameters. We apply our methods to candidate sensors of the Large Synoptic Survey Telescope (LSST) as a timely and important example, analyzing flat field images recorded with LSST prototype CCDs in the laboratory. In conclusion, we find that tree-rings and periodic pixel-size variation present in the LSST CCDs will introduce negligible bias to cosmological parameters determined from the lensing power spectrum, specifically w,Ω m and σ 8.« less

  3. Concordia CCD - A Geoscope station in continental Antarctica

    NASA Astrophysics Data System (ADS)

    Maggi, A.; Lévêque, J.; Thoré, J.; Bes de Berc, M.; Bernard, A.; Danesi, S.; Morelli, A.; Delladio, A.; Sorrentino, D.; Stutzmann, E.; Geoscope Team

    2010-12-01

    Concordia (Dome C, Antarctica) has had a permanent seismic station since 2005. It is run by EOST and INGV in collaboration with the French and Italian polar institutes (IPEV and PNRA). It is installed in an ice-vault, at 12m depth, distant 1km from the permanent scientific base at Concordia. The temperature in the vault is a constant -55°C. The data quality at the station has improved continuously since its installation. In 2007, the station was declared at ISC as an open station with station code CCD (ConCorDia), with data available upon request. It is only the second permanent station in the Antarctic continent, after South Pole. In 2010, CCD was included in the Geoscope network. Data from CCD starting in 2007 are now freely available from the Geoscope Data Center and IRIS. We present an analysis of the data quality at CCD, and describe the technical difficulties of operating an observatory-quality seismic station in the extreme environmental conditons present in continental Antarctica.

  4. Measurement of pixel response functions of a fully depleted CCD

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yukiyasu; Niwa, Yoshito; Yano, Taihei; Gouda, Naoteru; Hara, Takuji; Yamada, Yoshiyuki

    2014-07-01

    We describe the measurement of detailed and precise Pixel Response Functions (PRFs) of a fully depleted CCD. Measurements were performed under different physical conditions, such as different wavelength light sources or CCD operating temperatures. We determined the relations between these physical conditions and the forms of the PRF. We employ two types of PRFs: one is the model PRF (mPRF) that can represent the shape of a PRF with one characteristic parameter and the other is the simulated PRF (sPRF) that is the resultant PRF from simulating physical phenomena. By using measured, model, and simulated PRFs, we determined the relations between operational parameters and the PRFs. Using the obtained relations, we can now estimate a PRF under conditions that will be encountered during the course of Nano-JASMINE observations. These estimated PRFs will be utilized in the analysis of the Nano-JASMINE data.

  5. Fast noninvasive eye-tracking and eye-gaze determination for biomedical and remote monitoring applications

    NASA Astrophysics Data System (ADS)

    Talukder, Ashit; Morookian, John M.; Monacos, Steve P.; Lam, Raymond K.; Lebaw, C.; Bond, A.

    2004-04-01

    Eyetracking is one of the latest technologies that has shown potential in several areas including human-computer interaction for people with and without disabilities, and for noninvasive monitoring, detection, and even diagnosis of physiological and neurological problems in individuals. Current non-invasive eyetracking methods achieve a 30 Hz rate with possibly low accuracy in gaze estimation, that is insufficient for many applications. We propose a new non-invasive visual eyetracking system that is capable of operating at speeds as high as 6-12 KHz. A new CCD video camera and hardware architecture is used, and a novel fast image processing algorithm leverages specific features of the input CCD camera to yield a real-time eyetracking system. A field programmable gate array (FPGA) is used to control the CCD camera and execute the image processing operations. Initial results show the excellent performance of our system under severe head motion and low contrast conditions.

  6. Spectral analysis using CCDs

    NASA Technical Reports Server (NTRS)

    Hewes, C. R.; Brodersen, R. W.; De Wit, M.; Buss, D. D.

    1976-01-01

    Charge-coupled devices (CCDs) are ideally suited for performing sampled-data transversal filtering operations in the analog domain. Two algorithms have been identified for performing spectral analysis in which the bulk of the computation can be performed in a CCD transversal filter; the chirp z-transform and the prime transform. CCD implementation of both these transform algorithms is presented together with performance data and applications.

  7. Dynamic multisensor fusion for mobile robot navigation in an indoor environment

    NASA Astrophysics Data System (ADS)

    Jin, Taeseok; Lee, Jang-Myung; Luk, Bing L.; Tso, Shiu K.

    2001-10-01

    In this study, as the preliminary step for developing a multi-purpose Autonomous robust carrier mobile robot to transport trolleys or heavy goods and serve as robotic nursing assistant in hospital wards. The aim of this paper is to present the use of multi-sensor data fusion such as sonar, CCD camera dn IR sensor for map-building mobile robot to navigate, and presents an experimental mobile robot designed to operate autonomously within both indoor and outdoor environments. Smart sensory systems are crucial for successful autonomous systems. We will give an explanation for the robot system architecture designed and implemented in this study and a short review of existing techniques, since there exist several recent thorough books and review paper on this paper. Instead we will focus on the main results with relevance to the intelligent service robot project at the Centre of Intelligent Design, Automation & Manufacturing (CIDAM). We will conclude by discussing some possible future extensions of the project. It is first dealt with the general principle of the navigation and guidance architecture, then the detailed functions recognizing environments updated, obstacle detection and motion assessment, with the first results form the simulations run.

  8. Technical guidance for the development of a solid state image sensor for human low vision image warping

    NASA Technical Reports Server (NTRS)

    Vanderspiegel, Jan

    1994-01-01

    This report surveys different technologies and approaches to realize sensors for image warping. The goal is to study the feasibility, technical aspects, and limitations of making an electronic camera with special geometries which implements certain transformations for image warping. This work was inspired by the research done by Dr. Juday at NASA Johnson Space Center on image warping. The study has looked into different solid-state technologies to fabricate image sensors. It is found that among the available technologies, CMOS is preferred over CCD technology. CMOS provides more flexibility to design different functions into the sensor, is more widely available, and is a lower cost solution. By using an architecture with row and column decoders one has the added flexibility of addressing the pixels at random, or read out only part of the image.

  9. Advanced optical position sensors for magnetically suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Lafleur, S.

    1985-01-01

    A major concern to aerodynamicists has been the corruption of wind tunnel test data by model support structures, such as stings or struts. A technique for magnetically suspending wind tunnel models was considered by Tournier and Laurenceau (1957) in order to overcome this problem. This technique is now implemented with the aid of a Large Magnetic Suspension and Balance System (LMSBS) and advanced position sensors for measuring model attitude and position within the test section. Two different optical position sensors are discussed, taking into account a device based on the use of linear CCD arrays, and a device utilizing area CID cameras. Current techniques in image processing have been employed to develop target tracking algorithms capable of subpixel resolution for the sensors. The algorithms are discussed in detail, and some preliminary test results are reported.

  10. A high-sensitivity EM-CCD camera for the open port telescope cavity of SOFIA

    NASA Astrophysics Data System (ADS)

    Wiedemann, Manuel; Wolf, Jürgen; McGrotty, Paul; Edwards, Chris; Krabbe, Alfred

    2016-08-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) has three target acquisition and tracking cameras. All three imagers originally used the same cameras, which did not meet the sensitivity requirements, due to low quantum efficiency and high dark current. The Focal Plane Imager (FPI) suffered the most from high dark current, since it operated in the aircraft cabin at room temperatures without active cooling. In early 2013 the FPI was upgraded with an iXon3 888 from Andor Techonolgy. Compared to the original cameras, the iXon3 has a factor five higher QE, thanks to its back-illuminated sensor, and orders of magnitude lower dark current, due to a thermo-electric cooler and "inverted mode operation." This leads to an increase in sensitivity of about five stellar magnitudes. The Wide Field Imager (WFI) and Fine Field Imager (FFI) shall now be upgraded with equally sensitive cameras. However, they are exposed to stratospheric conditions in flight (typical conditions: T≍-40° C, p≍ 0:1 atm) and there are no off-the-shelf CCD cameras with the performance of an iXon3, suited for these conditions. Therefore, Andor Technology and the Deutsches SOFIA Institut (DSI) are jointly developing and qualifying a camera for these conditions, based on the iXon3 888. These changes include replacement of electrical components with MIL-SPEC or industrial grade components and various system optimizations, a new data interface that allows the image data transmission over 30m of cable from the camera to the controller, a new power converter in the camera to generate all necessary operating voltages of the camera locally and a new housing that fulfills airworthiness requirements. A prototype of this camera has been built and tested in an environmental test chamber at temperatures down to T=-62° C and pressure equivalent to 50 000 ft altitude. In this paper, we will report about the development of the camera and present results from the environmental testing.

  11. A safety monitoring system for taxi based on CMOS imager

    NASA Astrophysics Data System (ADS)

    Liu, Zhi

    2005-01-01

    CMOS image sensors now become increasingly competitive with respect to their CCD counterparts, while adding advantages such as no blooming, simpler driving requirements and the potential of on-chip integration of sensor, analogue circuitry, and digital processing functions. A safety monitoring system for taxi based on cmos imager that can record field situation when unusual circumstance happened is described in this paper. The monitoring system is based on a CMOS imager (OV7120), which can output digital image data through parallel pixel data port. The system consists of a CMOS image sensor, a large capacity NAND FLASH ROM, a USB interface chip and a micro controller (AT90S8515). The structure of whole system and the test data is discussed and analyzed in detail.

  12. e2v CMOS and CCD sensors and systems for astronomy

    NASA Astrophysics Data System (ADS)

    Jorden, P. R.; Jerram, P. A.; Fryer, M.; Stefanov, K. D.

    2017-07-01

    e2v designs and manufactures a wide range of sensors for space and astronomy applications. This includes high performance CCDs for X-ray, visible and near-IR wavelengths. In this paper we illustrate the maturity of CMOS capability for these applications; examples are presented together with performance data. The majority of e2v sensors for these applications are back-thinned for highest spectral response and designed for very low read-out noise; the combination delivers high signal to noise ratio in association with a variety of formats and package designs. The growing e2v capability in delivery of sub-systems and cryogenic cameras is illustrated—including the 1.2 Giga-pixel J-PAS camera system.

  13. Composite x-ray image assembly for large-field digital mammography with one- and two-dimensional positioning of a focal plane array

    NASA Technical Reports Server (NTRS)

    Halama, G.; McAdoo, J.; Liu, H.

    1998-01-01

    To demonstrate the feasibility of a novel large-field digital mammography technique, a 1024 x 1024 pixel Loral charge-coupled device (CCD) focal plane array (FPA) was positioned in a mammographic field with one- and two-dimensional scan sequences to obtain 950 x 1800 pixel and 3600 x 3600 pixel composite images, respectively. These experiments verify that precise positioning of FPAs produced seamless composites and that the CCD mosaic concept has potential for high-resolution, large-field imaging. The proposed CCD mosaic concept resembles a checkerboard pattern with spacing left between the CCDs for the driver and readout electronics. To obtain a complete x-ray image, the mosaic must be repositioned four times, with an x-ray exposure at each position. To reduce the patient dose, a lead shield with appropriately patterned holes is placed between the x-ray source and the patient. The high-precision motorized translation stages and the fiber-coupled-scintillating-screen-CCD sensor assembly were placed in the position usually occupied by the film cassette. Because of the high mechanical precision, seamless composites were constructed from the subimages. This paper discusses the positioning, image alignment procedure, and composite image results. The paper only addresses the formation of a seamless composite image from subimages and will not consider the effects of the lead shield, multiple CCDs, or the speed of motion.

  14. Improved Underwater Excitation-Emission Matrix Fluorometer

    NASA Technical Reports Server (NTRS)

    Moore, Casey; daCunha, John; Rhoades, Bruce; Twardowski, Michael

    2007-01-01

    A compact, high-resolution, two-dimensional excitation-emission matrix fluorometer (EEMF) has been designed and built specifically for use in identifying and measuring the concentrations of organic compounds, including polluting hydrocarbons, in natural underwater settings. Heretofore, most EEMFs have been designed and built for installation in laboratories, where they are used to analyze the contents of samples collected in the field and brought to the laboratories. Because the present EEMF can be operated in the field, it is better suited to measurement of spatially and temporally varying concentrations of substances of interest. In excitation-emission matrix (EEM) fluorometry, fluorescence is excited by irradiating a sample at one or more wavelengths, and the fluorescent emission from the sample is measured at multiple wavelengths. When excitation is provided at only one wavelength, the technique is termed one-dimensional (1D) EEM fluorometry because the resulting matrix of fluorescence emission data (the EEM) contains only one row or column. When excitation is provided at multiple wavelengths, the technique is termed two-dimensional (2D) EEM fluorometry because the resulting EEM contains multiple rows and columns. EEM fluorometry - especially the 2D variety - is well established as a means of simultaneously detecting numerous dissolved and particulate compounds in water. Each compound or pool of compounds has a unique spectral fluorescence signature, and each EEM is rich in information content, in that it can contain multiple fluorescence signatures. By use of deconvolution and/or other mixture-analyses techniques, it is often possible to isolate the spectral signature of compounds of interest, even when their fluorescence spectra overlap. What distinguishes the present 2D EEMF over prior laboratory-type 2D EEMFs are several improvements in packaging (including a sealed housing) and other aspects of design that render it suitable for use in natural underwater settings. In addition, the design of the present 2D EEMF incorporates improvements over the one prior commercial underwater 2D EEMF, developed in 1994 by the same company that developed the present one. Notable advanced features of the present EEMF include the following: 1) High sensitivity and spectral resolution are achieved by use of an off-the-shelf grating spectrometer equipped with a sensor in the form of a commercial astronomical- grade 256 532-pixel charge-coupled-device (CCD) array. 2) All of the power supply, timing, control, and readout circuits for the illumination source and the CCD, ancillary environmental monitoring sensors, and circuitry for controlling a shutter or filter motor are custom-designed and mounted compactly on three circuit boards below a fourth circuit board that holds the CCD (see figure). 3) The compactness of the grating spectrometer, CCD, and circuit assembly makes it possible to fit the entire instrument into a compact package that is intended to be maneuverable underwater by one person. 4) In mass production, the cost of the complete instrument would be relatively low - estimated at approximately $30,000 at 2005 prices.

  15. Computer simulation and discussion of high-accuracy laser direction finding in real time

    NASA Astrophysics Data System (ADS)

    Chen, Wenyi; Chen, Yongzhi

    1997-12-01

    On condition that CCD is used as the sensor, there are at least five methods that can be used to realize laser's direction finding with high accuracy. They are: image matching method, radiation center method, geometric center method, center of rectangle envelope method and center of maximum run length method. The first three can get the highest accuracy but working in real-time it is too complicated to realize and the cost is very expansive. The other two can also get high accuracy, and it is not difficult to realize working in real time. By using a single-chip microcomputer and an ordinary CCD camera a very simple system can get the position information of a laser beam. The data rate is 50 times per second.

  16. Real Time Revisited

    NASA Astrophysics Data System (ADS)

    Allen, Phillip G.

    1985-12-01

    The call for abolishing photo reconnaissance in favor of real time is once more being heard. Ten years ago the same cries were being heard with the introduction of the Charge Coupled Device (CCD). The real time system problems that existed then and stopped real time proliferation have not been solved. The lack of an organized program by either DoD or industry has hampered any efforts to solve the problems, and as such, very little has happened in real time in the last ten years. Real time is not a replacement for photo, just as photo is not a replacement for infra-red or radar. Operational real time sensors can be designed only after their role has been defined and improvements made to the weak links in the system. Plodding ahead on a real time reconnaissance suite without benefit of evaluation of utility will allow this same paper to be used ten years from now.

  17. Digital solar edge tracker for the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E., III; Moore, A. S.; Stump, C. W.; Mayo, L. S.

    1987-01-01

    The optical and electronic design of the Halogen Occultation Experiment (Haloe) elevation sun sensor is described. The Haloe instrument is a gas-correlation radiometer now being developed at NASA Langley for the Upper Atmosphere Research Satellite. The system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned monolithic CCD. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the Haloe science instantaneous field of view (IFOV) across the vertical solar diameter during instrument calibration and then to maintain the science IFOV 4 arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 700-nm operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability.

  18. Development of InSb charge-coupled infrared imaging devices: Linear imager

    NASA Technical Reports Server (NTRS)

    Phillips, J. D.

    1976-01-01

    The following results were accomplished in the development of charge coupled infrared imaging devices: (1) a four-phase overlapping gate with 9 transfers (2-bits) and 1.0-mil gate lengths was successfully operated, (2) the measured transfer efficiency of 0.975 for this device is in excellent agreement with predictions for the reduced gate length device, (3) mask revisions of the channel stop metal on the 8582 mask have been carried out with the result being a large increase in the dc yield of the tested devices, (4) partial optical sensitivity to chopped blackbody radiation was observed for an 8582 9-bit imager, (5) analytical consideration of the modulation transfer function degradation caused by transfer inefficiency in the CCD registers was presented, and (6) for larger array lengths or for the insertion of isolated bits between sensors, improvements in InSb fabrication technology with corresponding decrease in the interface state density are required.

  19. Autonomous intelligent cruise control system

    NASA Astrophysics Data System (ADS)

    Baret, Marc; Bomer, Thierry T.; Calesse, C.; Dudych, L.; L'Hoist, P.

    1995-01-01

    Autonomous intelligent cruise control (AICC) systems are not only controlling vehicles' speed but acting on the throttle and eventually on the brakes they could automatically maintain the relative speed and distance between two vehicles in the same lane. And more than just for comfort it appears that these new systems should improve the safety on highways. By applying a technique issued from the space research carried out by MATRA, a sensor based on a charge coupled device (CCD) was designed to acquire the reflected light on standard-mounted car reflectors of pulsed laser diodes emission. The CCD is working in a unique mode called flash during transfer (FDT) which allows identification of target patterns in severe optical environments. It provides high accuracy for distance and angular position of targets. The absence of moving mechanical parts ensures high reliability for this sensor. The large field of view and the high measurement rate give a global situation assessment and a short reaction time. Then, tracking and filtering algorithms have been developed in order to select the target, on which the equipped vehicle determines its safety distance and speed, taking into account its maneuvering and the behaviors of other vehicles.

  20. Optical and dark characterization of the PLATO CCD at ESA

    NASA Astrophysics Data System (ADS)

    Verhoeve, Peter; Prod'homme, Thibaut; Oosterbroek, Tim; Duvet, Ludovic; Beaufort, Thierry; Blommaert, Sander; Butler, Bart; Heijnen, Jerko; Lemmel, Frederic; van der Luijt, Cornelis; Smit, Hans; Visser, Ivo

    2016-07-01

    PLATO - PLAnetary Transits and Oscillations of stars - is the third medium-class mission (M3) to be selected in the European Space Agency (ESA) Science and Robotic Exploration Cosmic Vision programme. It is due for launch in 2025 with the main objective to find and study terrestrial planets in the habitable zone around solar-like stars. The payload consists of >20 cameras; with each camera comprising 4 Charge-Coupled Devices (CCDs), a large number of flight model devices procured by ESA shall ultimately be integrated on the spacecraft. The CCD270 - specially designed and manufactured by e2v for the PLATO mission - is a large format (8 cm x 8 cm) back-illuminated device operating at 4 MHz pixel rate and coming in two variants: full frame and frame transfer. In order to de-risk the PLATO CCD procurement and aid the mission definition process, ESA's Payload Technology Validation section is currently validating the PLATO CCD270. This validation consists in demonstrating that the device achieves its specified electrooptical performance in the relevant environment: operated at 4 MHz, at cold and before and after proton irradiation. As part of this validation, CCD270 devices have been characterized in the dark as well as optically with respect to performance parameters directly relevant for the photometric application of the CCDs. Dark tests comprise the measurement of gain sensitivity to bias voltages, charge injection tests, and measurement of hot and variable pixels after irradiation. In addition, the results of measurements of Quantum Efficiency for a range of angles of incidence, intra- pixel response (non-)uniformity, and response to spot illumination, before and after proton irradiation. In particular, the effect of radiation induced degradation of the charge transfer efficiency on the measured charge in a star-like spot has been studied as a function of signal level and of position on the pixel grid, Also, the effect of various levels of background light on the amount of charge lost from a star image are described. These results can serve as a direct input to the PLATO consortium to study the mission performance and as a basis for further optimization of the CCD operation.

  1. The Mapping X-ray Fluorescence Spectrometer (MapX)

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  2. Readout of the UFFO Slewing Mirror Telescope to detect UV/optical photons from Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Kim, J. E.; Lim, H.; Nam, J. W.; Brandt, S.; Budtz-Jørgensen, C.; Castro-Tirado, A. J.; Chen, P.; Choi, H. S.; Grossan, B.; Huang, M. A.; Jeong, S.; Jung, A.; Kim, M. B.; Kim, S.-W.; Lee, J.; Linder, E. V.; Liu, T.-C.; Na, G. W.; Panasyuk, M. I.; Park, I. H.; Ripa, J.; Reglero, V.; Smoot, G. F.; Svertilov, S.; Vedenkin, N.; Yashin, I.

    2013-07-01

    The Slewing Mirror Telescope (SMT) was proposed for rapid response to prompt UV/optical photons from Gamma-Ray Bursts (GRBs). The SMT is a key component of the Ultra-Fast Flash Observatory (UFFO)-pathfinder, which will be launched aboard the Lomonosov spacecraft at the end of 2013. The SMT utilizes a motorized mirror that slews rapidly forward to its target within a second after triggering by an X-ray coded mask camera, which makes unnecessary a reorientation of the entire spacecraft. Subsequent measurement of the UV/optical is accomplished by a 10 cm aperture Ritchey-Chrètien telescope and the focal plane detector of Intensified Charge-Coupled Device (ICCD). The ICCD is sensitive to UV/optical photons of 200-650 nm in wavelength by using a UV-enhanced S20 photocathode and amplifies photoelectrons at a gain of 104-106 in double Micro-Channel Plates. These photons are read out by a Kodak KAI-0340 interline CCD sensor and a CCD Signal Processor with 10-bit Analog-to-Digital Converter. Various control clocks for CCD readout are implemented using a Field Programmable Gate Array (FPGA). The SMT readout is in charge of not only data acquisition, storage and transfer, but also control of the slewing mirror, the ICCD high voltage adjustments, power distribution, and system monitoring by interfacing to the UFFO-pathfinder. These functions are realized in the FPGA to minimize power consumption and to enhance processing time. The SMT readout electronics are designed and built to meet the spacecraft's constraints of power consumption, mass, and volume. The entire system is integrated with the SMT optics, as is the UFFO-pathfinder. The system has been tested and satisfies the conditions of launch and those of operation in space: those associated with shock and vibration and those associated with thermal and vacuum, respectively. In this paper, we present the SMT readout electronics: the design, construction, and performance, as well as the results of space environment test.

  3. Optical design of a novel instrument that uses the Hartmann-Shack sensor and Zernike polynomials to measure and simulate customized refraction correction surgery outcomes and patient satisfaction

    NASA Astrophysics Data System (ADS)

    Yasuoka, Fatima M. M.; Matos, Luciana; Cremasco, Antonio; Numajiri, Mirian; Marcato, Rafael; Oliveira, Otavio G.; Sabino, Luis G.; Castro N., Jarbas C.; Bagnato, Vanderlei S.; Carvalho, Luis A. V.

    2016-03-01

    An optical system that conjugates the patient's pupil to the plane of a Hartmann-Shack (HS) wavefront sensor has been simulated using optical design software. And an optical bench prototype is mounted using mechanical eye device, beam splitter, illumination system, lenses, mirrors, mirrored prism, movable mirror, wavefront sensor and camera CCD. The mechanical eye device is used to simulate aberrations of the eye. From this device the rays are emitted and travelled by the beam splitter to the optical system. Some rays fall on the camera CCD and others pass in the optical system and finally reach the sensor. The eye models based on typical in vivo eye aberrations is constructed using the optical design software Zemax. The computer-aided outcomes of each HS images for each case are acquired, and these images are processed using customized techniques. The simulated and real images for low order aberrations are compared using centroid coordinates to assure that the optical system is constructed precisely in order to match the simulated system. Afterwards a simulated version of retinal images is constructed to show how these typical eyes would perceive an optotype positioned 20 ft away. Certain personalized corrections are allowed by eye doctors based on different Zernike polynomial values and the optical images are rendered to the new parameters. Optical images of how that eye would see with or without corrections of certain aberrations are generated in order to allow which aberrations can be corrected and in which degree. The patient can then "personalize" the correction to their own satisfaction. This new approach to wavefront sensing is a promising change in paradigm towards the betterment of the patient-physician relationship.

  4. Constraining neutrinos as background to wimp-nucleon dark matter particle searches for DaMIC: CCD physics analysis and electronics development

    NASA Astrophysics Data System (ADS)

    Butner, Melissa Jean

    The DaMIC (Dark Matter in CCDs) experiment searches for dark matter particles using charge coupled devices (CCDs) operated at a low detection threshold of ˜40 eV electron equivalent energy (eVee). A multiplexor board is tested for DAMIC100+ which has the ability to control up to 16 CCDs at one time allowing for the selection of a single CCD for readout while leaving all others static and maintaining sub-electron noise. A dark matter limit is produced using the results of physics data taken with the DAMIC experiment. Next, the contribution from neutrino-nucleus coherent scattering is investigated using data from the Coherent Neutrino Nucleus Interaction Experiment (CONnuIE) using the same CCD technology. The results are used to explore the performance of CCD detectors that ultimately will limit the ability to differentiate incident solar and atmospheric neutrinos from dark matter particles.

  5. Final Report, January 1991 - July 1992

    NASA Astrophysics Data System (ADS)

    Ferrara, Jon

    1992-07-01

    This report covers final schedules, expenses and billings, monthly reports, testing, and deliveries for this contract. The goal of the detector development program for the Solar and Heliospheric Spacecraft (SOHO) EUV Imaging Telescope (EIT) is an Extreme UltraViolet (EUV) CCD (Change Collecting Device) camera. As a part of the CCD screening effort, the quantum efficiency (QE) of a prototype CCD has been measured in the NRL EUV laboratory over the wavelength range of 256 to 735 Angstroms. A simplified model has been applied to these QE measurements to illustrate the relevant physical processes that determine the performance of the detector. The charge transfer efficiency (CTE) characteristics of the Tektronix 1024 X 1024 CCD being developed for STIS/SOHO space imaging applications have been characterized at different signal levels, operating conditions, and temperatures using a variety of test methods. A number of CCD's have been manufactured using processing techniques developed to improve CTE, and test results on these devices will be used in determining the final chip design. In this paper, we discuss the CTE test methods used and present the results and conclusions of these tests.

  6. Flexible distributed architecture for semiconductor process control and experimentation

    NASA Astrophysics Data System (ADS)

    Gower, Aaron E.; Boning, Duane S.; McIlrath, Michael B.

    1997-01-01

    Semiconductor fabrication requires an increasingly expensive and integrated set of tightly controlled processes, driving the need for a fabrication facility with fully computerized, networked processing equipment. We describe an integrated, open system architecture enabling distributed experimentation and process control for plasma etching. The system was developed at MIT's Microsystems Technology Laboratories and employs in-situ CCD interferometry based analysis in the sensor-feedback control of an Applied Materials Precision 5000 Plasma Etcher (AME5000). Our system supports accelerated, advanced research involving feedback control algorithms, and includes a distributed interface that utilizes the internet to make these fabrication capabilities available to remote users. The system architecture is both distributed and modular: specific implementation of any one task does not restrict the implementation of another. The low level architectural components include a host controller that communicates with the AME5000 equipment via SECS-II, and a host controller for the acquisition and analysis of the CCD sensor images. A cell controller (CC) manages communications between these equipment and sensor controllers. The CC is also responsible for process control decisions; algorithmic controllers may be integrated locally or via remote communications. Finally, a system server images connections from internet/intranet (web) based clients and uses a direct link with the CC to access the system. Each component communicates via a predefined set of TCP/IP socket based messages. This flexible architecture makes integration easier and more robust, and enables separate software components to run on the same or different computers independent of hardware or software platform.

  7. Single Particle Damage Events in Candidate Star Camera Sensors

    NASA Technical Reports Server (NTRS)

    Marshall, Paul; Marshall, Cheryl; Polidan, Elizabeth; Wacyznski, Augustyn; Johnson, Scott

    2005-01-01

    Si charge coupled devices (CCDs) are currently the preeminent detector in star cameras as well as in the near ultraviolet (uv) to visible wavelength region for astronomical observations in space and in earth-observing space missions. Unfortunately, the performance of CCDs is permanently degraded by total ionizing dose (TID) and displacement damage effects. TID produces threshold voltage shifts on the CCD gates and displacement damage reduces the charge transfer efficiency (CTE), increases the dark current, produces dark current nonuniformities and creates random telegraph noise in individual pixels. In addition to these long term effects, cosmic ray and trapped proton transients also interfere with device operation on orbit. In the present paper, we investigate the dark current behavior of CCDs - in particular the formation and annealing of hot pixels. Such pixels degrade the ability of a CCD to perform science and also can present problems to the performance of star camera functions (especially if their numbers are not correctly anticipated). To date, most dark current radiation studies have been performed by irradiating the CCDs at room temperature but this can result in a significantly optimistic picture of the hot pixel count. We know from the Hubble Space Telescope (HST) that high dark current pixels (so-called hot pixels or hot spikes) accumulate as a function of time on orbit. For example, the HST Advanced Camera for Surveys/Wide Field Camera instrument performs monthly anneals despite the loss of observational time, in order to partially anneal the hot pixels. Note that the fact that significant reduction in hot pixel populations occurs for room temperature anneals is not presently understood since none of the commonly expected defects in Si (e.g. divacancy, E center, and A-center) anneal at such a low temperature. A HST Wide Field Camera 3 (WFC3) CCD manufactured by E2V was irradiated while operating at -83C and the dark current studied as a function of temperature while the CCD was warmed to a sequence of temperatures up to a maximum of +30C. The device was then cooled back down to -83 and re-measured. Hot pixel populations were tracked during the warm-up and cool-down. Hot pixel annealing began below 40C and the anneal process was largely completed before the detector reached +3OC. There was no apparent sharp temperature dependence in the annealing. Although a large fraction of the hot pixels fell below the threshold to be counted as a hot pixel, they nevertheless remained warmer than the remaining population. The details of the mechanism for the formation and annealing of hot pixels is not presently understood, but it appears likely that hot pixels are associated with displacement damage occurring in high electric field regions.

  8. A novel method to increase LinLog CMOS sensors' performance in high dynamic range scenarios.

    PubMed

    Martínez-Sánchez, Antonio; Fernández, Carlos; Navarro, Pedro J; Iborra, Andrés

    2011-01-01

    Images from high dynamic range (HDR) scenes must be obtained with minimum loss of information. For this purpose it is necessary to take full advantage of the quantification levels provided by the CCD/CMOS image sensor. LinLog CMOS sensors satisfy the above demand by offering an adjustable response curve that combines linear and logarithmic responses. This paper presents a novel method to quickly adjust the parameters that control the response curve of a LinLog CMOS image sensor. We propose to use an Adaptive Proportional-Integral-Derivative controller to adjust the exposure time of the sensor, together with control algorithms based on the saturation level and the entropy of the images. With this method the sensor's maximum dynamic range (120 dB) can be used to acquire good quality images from HDR scenes with fast, automatic adaptation to scene conditions. Adaptation to a new scene is rapid, with a sensor response adjustment of less than eight frames when working in real time video mode. At least 67% of the scene entropy can be retained with this method.

  9. Space infrared telescope pointing control system. Infrared telescope tracking in the presence of target motion

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Schneider, J. B.

    1986-01-01

    The use of charge-coupled-devices, or CCD's, has been documented by a number of sources as an effective means of providing a measurement of spacecraft attitude with respect to the stars. A method exists of defocussing and interpolation of the resulting shape of a star image over a small subsection of a large CCD array. This yields an increase in the accuracy of the device by better than an order of magnitude over the case when the star image is focussed upon a single CCD pixel. This research examines the effect that image motion has upon the overall precision of this star sensor when applied to an orbiting infrared observatory. While CCD's collect energy within the visible spectrum of light, the targets of scientific interest may well have no appreciable visible emissions. Image motion has the effect of smearing the image of the star in the direction of motion during a particular sampling interval. The presence of image motion is incorporated into a Kalman filter for the system, and it is shown that the addition of a gyro command term is adequate to compensate for the effect of image motion in the measurement. The updated gyro model is included in this analysis, but has natural frequencies faster than the projected star tracker sample rate for dim stars. The system state equations are reduced by modelling gyro drift as a white noise process. There exists a tradeoff in selected star tracker sample time between the CCD, which has improved noise characteristics as sample time increases, and the gyro, which will potentially drift further between long attitude updates. A sample time which minimizes pointing estimation error exists for the random drift gyro model as well as for a random walk gyro model.

  10. The iQID Camera: An Ionizing-Radiation Quantum Imaging Detector

    DOE PAGES

    Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; ...

    2014-06-11

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detectors response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The detector’s response to a broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated particle interactions is optically amplified by the intensifier andmore » then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. Individual particles are identified and their spatial position (to sub-pixel accuracy) and energy are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, high sensitivity, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discrimate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is single-particle, real-time digital autoradiography. In conclusion, we present the latest results and discuss potential applications.« less

  11. Collaborative Point Paper on Border Surveillance Technology

    DTIC Science & Technology

    2007-06-01

    Systems PLC LORHIS (Long Range Hyperspectral Imaging System ) can be configured for either manned or unmanned aircraft to automatically detect and...Airships, and/or Aerostats, (RF, Electro-Optical, Infrared, Video) • Land- based Sensor Systems (Attended/Mobile and Unattended: e.g., CCD, Motion, Acoustic...electronic surveillance technologies for intrusion detection and warning. These ground- based systems are primarily short-range, up to around 500 meters

  12. Solar Polarimetry: Proceedings of the National Solar Observatory/ Sacramento Peak Summer Workshop 11th Held in Sunspot, New Mexico on 27-31 August 1990

    DTIC Science & Technology

    1991-01-01

    test at Arosa A,,t rphys- ical Observatory of the ETH Zdrich. Two beam splitters are positioned behind the mcdulat(r parkac’e if three CCD array sensors...data obtained with the Horizontal Telescope of the Arosa Astrophysical Observatory (HAT). The latter consist of simultaneous recordings of the Stokes

  13. Optical Readout System for Bi-Material Terahertz Sensors

    DTIC Science & Technology

    2011-09-01

    CCD Charged-Coupled Device DFG Difference-Frequency Generation FOV Field of View FPA Focal Plane Array fps Frames Per Second FTIR Fourier ...techniques in the THz range may be classified as either coherent or incoherent. Basically, coherent detection measures the amplitude and phase of the field...using a lock-in amplifier. In a piezoresistive detector, two electrodes are connected to two deformable temperature–sensitive legs. Monitoring the

  14. Performance evaluation of integrating detectors for near-infrared fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Banghe; Rasmussen, John C.; Sevick-Muraca, Eva M.

    2014-05-01

    Although there has been a plethora of devices advanced for clinical translation, there has been no standards to compare and determine the optical device for fluorescence molecular imaging. In this work, we compare different CCD configurations using a solid phantom developed to mimic pM - fM concentrations of near-infrared fluorescent dyes in tissues. Our results show that intensified CCD systems (ICCDs) offer greater contrast at larger signal-tonoise ratios (SNRs) in comparison to their un-intensified CCD systems operated at clinically reasonable, sub-second acquisition times. Furthermore, we compared our investigational ICCD device to the commercial NOVADAQ SPY system, demonstrating different performance in both SNR and contrast.

  15. Automatic Welding System of Aluminum Pipe by Monitoring Backside Image of Molten Pool Using Vision Sensor

    NASA Astrophysics Data System (ADS)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    An automatic welding system using Tungsten Inert Gas (TIG) welding with vision sensor for welding of aluminum pipe was constructed. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position and moving welding torch with the AC welding machine. The monitoring system consists of a vision sensor using a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Neural network model for welding speed control were constructed to perform the process automatically. From the experimental results it shows the effectiveness of the control system confirmed by good detection of molten pool and sound weld of experimental result.

  16. Image sensor for testing refractive error of eyes

    NASA Astrophysics Data System (ADS)

    Li, Xiangning; Chen, Jiabi; Xu, Longyun

    2000-05-01

    It is difficult to detect ametropia and anisometropia for children. Image sensor for testing refractive error of eyes does not need the cooperation of children and can be used to do the general survey of ametropia and anisometropia for children. In our study, photographs are recorded by a CCD element in a digital form which can be directly processed by a computer. In order to process the image accurately by digital technique, formula considering the effect of extended light source and the size of lens aperture has been deduced, which is more reliable in practice. Computer simulation of the image sensing is made to verify the fineness of the results.

  17. A temperature controller board for the ARC controller

    NASA Astrophysics Data System (ADS)

    Tulloch, Simon

    2016-07-01

    A high-performance temperature controller board has been produced for the ARC Generation-3 CCD controller. It contains two 9W temperature servo loops and four temperature input channels and is fully programmable via the ARC API and OWL data acquisition program. PI-loop control is implemented in an on-board micro. Both diode and RTD sensors can be used. Control and telemetry data is sent via the ARC backplane although a USB-2 interface is also available. Further functionality includes hardware timers and high current drivers for external shutters and calibration LEDs, an LCD display, a parallel i/o port, a pressure sensor interface and an uncommitted analogue telemetry input.

  18. Chromatic Modulator for High Resolution CCD or APS Devices

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor); Hull, Anthony B. (Inventor)

    2003-01-01

    A system for providing high-resolution color separation in electronic imaging. Comb drives controllably oscillate a red-green-blue (RGB) color strip filter system (or otherwise) over an electronic imaging system such as a charge-coupled device (CCD) or active pixel sensor (APS). The color filter is modulated over the imaging array at a rate three or more times the frame rate of the imaging array. In so doing, the underlying active imaging elements are then able to detect separate color-separated images, which are then combined to provide a color-accurate frame which is then recorded as the representation of the recorded image. High pixel resolution is maintained. Registration is obtained between the color strip filter and the underlying imaging array through the use of electrostatic comb drives in conjunction with a spring suspension system.

  19. Environmental performance evaluation of an advanced-design solid-state television camera

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The development of an advanced-design black-and-white solid-state television camera which can survive exposure to space environmental conditions was undertaken. A 380 x 488 element buried-channel CCD is utilized as the image sensor to ensure compatibility with 525-line transmission and display equipment. Specific camera design approaches selected for study and analysis included: (1) component and circuit sensitivity to temperature; (2) circuit board thermal and mechanical design; and (3) CCD temperature control. Preferred approaches were determined and integrated into the final design for two deliverable solid-state TV cameras. One of these cameras was subjected to environmental tests to determine stress limits for exposure to vibration, shock, acceleration, and temperature-vacuum conditions. These tests indicate performance at the design goal limits can be achieved for most of the specified conditions.

  20. CCD developments for particle colliders

    NASA Astrophysics Data System (ADS)

    Stefanov, Konstantin D.

    2006-09-01

    Charge Coupled Devices (CCDs) have been successfully used in several high-energy physics experiments over the last 20 years. Their small pixel size and excellent precision provide superb tool for studying of short-lived particles and understanding the nature at fundamental level. Over the last years the Linear Collider Flavour Identification (LCFI) collaboration has developed Column-Parallel CCDs (CPCCD) and CMOS readout chips to be used for the vertex detector at the International Linear Collider (ILC). The CPCCDs are very fast devices capable of satisfying the challenging requirements imposed by the beam structure of the superconducting accelerator. First set of prototype devices have been designed, manufactured and successfully tested, with second-generation chips on the way. Another idea for CCD-based device, the In-situ Storage Image Sensor (ISIS) is also under development and the first prototype is in production.

  1. CCD-based vertex detector for ILC

    NASA Astrophysics Data System (ADS)

    Stefanov, Konstantin D.

    2006-12-01

    Charge Coupled Devices (CCDs) have been successfully used in several high-energy physics experiments over the last 20 years. Their small pixel size and excellent precision provide a superb tool for studying of short-lived particles and understanding the nature at fundamental level. Over the last few years the Linear Collider Flavour Identification (LCFI) collaboration has developed Column-Parallel CCDs (CPCCD) and CMOS readout chips, to be used for the vertex detector at the International Linear Collider (ILC). The CPCCDs are very fast devices capable of satisfying the challenging requirements imposed by the beam structure of the superconducting accelerator. The first set of prototype devices have been successfully designed, manufactured and tested, with second generation chips on the way. Another idea for CCD-based device, the In-situ Storage Image Sensor (ISIS) is also under development and the first prototype has been manufactured.

  2. An LOD with improved breakdown voltage in full-frame CCD devices

    NASA Astrophysics Data System (ADS)

    Banghart, Edmund K.; Stevens, Eric G.; Doan, Hung Q.; Shepherd, John P.; Meisenzahl, Eric J.

    2005-02-01

    In full-frame image sensors, lateral overflow drain (LOD) structures are typically formed along the vertical CCD shift registers to provide a means for preventing charge blooming in the imager pixels. In a conventional LOD structure, the n-type LOD implant is made through the thin gate dielectric stack in the device active area and adjacent to the thick field oxidation that isolates the vertical CCD columns of the imager. In this paper, a novel LOD structure is described in which the n-type LOD impurities are placed directly under the field oxidation and are, therefore, electrically isolated from the gate electrodes. By reducing the electrical fields that cause breakdown at the silicon surface, this new structure permits a larger amount of n-type impurities to be implanted for the purpose of increasing the LOD conductivity. As a consequence of the improved conductance, the LOD width can be significantly reduced, enabling the design of higher resolution imaging arrays without sacrificing charge capacity in the pixels. Numerical simulations with MEDICI of the LOD leakage current are presented that identify the breakdown mechanism, while three-dimensional solutions to Poisson's equation are used to determine the charge capacity as a function of pixel dimension.

  3. A multi-characteristic based algorithm for classifying vegetation in a plateau area: Qinghai Lake watershed, northwestern China

    NASA Astrophysics Data System (ADS)

    Ma, Weiwei; Gong, Cailan; Hu, Yong; Li, Long; Meng, Peng

    2015-10-01

    Remote sensing technology has been broadly recognized for its convenience and efficiency in mapping vegetation, particularly in high-altitude and inaccessible areas where there are lack of in-situ observations. In this study, Landsat Thematic Mapper (TM) images and Chinese environmental mitigation satellite CCD sensor (HJ-1 CCD) images, both of which are at 30m spatial resolution were employed for identifying and monitoring of vegetation types in a area of Western China——Qinghai Lake Watershed(QHLW). A decision classification tree (DCT) algorithm using multi-characteristic including seasonal TM/HJ-1 CCD time series data combined with digital elevation models (DEMs) dataset, and a supervised maximum likelihood classification (MLC) algorithm with single-data TM image were applied vegetation classification. Accuracy of the two algorithms was assessed using field observation data. Based on produced vegetation classification maps, it was found that the DCT using multi-season data and geomorphologic parameters was superior to the MLC algorithm using single-data image, improving the overall accuracy by 11.86% at second class level and significantly reducing the "salt and pepper" noise. The DCT algorithm applied to TM /HJ-1 CCD time series data geomorphologic parameters appeared as a valuable and reliable tool for monitoring vegetation at first class level (5 vegetation classes) and second class level(8 vegetation subclasses). The DCT algorithm using multi-characteristic might provide a theoretical basis and general approach to automatic extraction of vegetation types from remote sensing imagery over plateau areas.

  4. Design Method For Ultra-High Resolution Linear CCD Imagers

    NASA Astrophysics Data System (ADS)

    Sheu, Larry S.; Truong, Thanh; Yuzuki, Larry; Elhatem, Abdul; Kadekodi, Narayan

    1984-11-01

    This paper presents the design method to achieve ultra-high resolution linear imagers. This method utilizes advanced design rules and novel staggered bilinear photo sensor arrays with quadrilinear shift registers. Design constraint in the detector arrays and shift registers are analyzed. Imager architecture to achieve ultra-high resolution is presented. The characteristics of MTF, aliasing, speed, transfer efficiency and fine photolithography requirements associated with this architecture are also discussed. A CCD imager with advanced 1.5 um minimum feature size was fabricated. It is intended as a test vehicle for the next generation small sampling pitch ultra-high resolution CCD imager. Standard double-poly, two-phase shift registers were fabricated at an 8 um pitch using the advanced design rules. A special process step that blocked the source-drain implant from the shift register area was invented. This guaranteed excellent performance of the shift registers regardless of the small poly overlaps. A charge transfer efficiency of better than 0.99995 and maximum transfer speed of 8 MHz were achieved. The imager showed excellent performance. The dark current was less than 0.2 mV/ms, saturation 250 mV, adjacent photoresponse non-uniformity ± 4% and responsivity 0.7 V/ μJ/cm2 for the 8 μm x 6 μm photosensor size. The MTF was 0.6 at 62.5 cycles/mm. These results confirm the feasibility of the next generation ultra-high resolution CCD imagers.

  5. Radiation tolerant compact image sensor using CdTe photodiode and field emitter array (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Masuzawa, Tomoaki; Neo, Yoichiro; Mimura, Hidenori; Okamoto, Tamotsu; Nagao, Masayoshi; Akiyoshi, Masafumi; Sato, Nobuhiro; Takagi, Ikuji; Tsuji, Hiroshi; Gotoh, Yasuhito

    2016-10-01

    A growing demand on incident detection is recognized since the Great East Japan Earthquake and successive accidents in Fukushima nuclear power plant in 2011. Radiation tolerant image sensors are powerful tools to collect crucial information at initial stages of such incidents. However, semiconductor based image sensors such as CMOS and CCD have limited tolerance to radiation exposure. Image sensors used in nuclear facilities are conventional vacuum tubes using thermal cathodes, which have large size and high power consumption. In this study, we propose a compact image sensor composed of a CdTe-based photodiode and a matrix-driven Spindt-type electron beam source called field emitter array (FEA). A basic principle of FEA-based image sensors is similar to conventional Vidicon type camera tubes, but its electron source is replaced from a thermal cathode to FEA. The use of a field emitter as an electron source should enable significant size reduction while maintaining high radiation tolerance. Current researches on radiation tolerant FEAs and development of CdTe based photoconductive films will be presented.

  6. Fifty Years of Lightning Observations from Space

    NASA Astrophysics Data System (ADS)

    Christian, H. J., Jr.

    2017-12-01

    Some of the earliest satellites, starting with OSO (1965), ARIEL (1967), and RAE (1968), detected lightning using either optical and RF sensors, although that was not their intent. One of the earliest instruments designed to detect lightning was the PBE (1977). The use of space to study lightning activity has exploded since these early days. The advent of focal-plane imaging arrays made it possible to develop high performance optical lightning sensors. Prior to the use of charged-coupled devices (CCD), most space-based lightning sensors used only a few photo-diodes, which limited the location accuracy and detection efficiency (DE) of the instruments. With CCDs, one can limit the field of view of each detector (pixel), and thus improve the signal to noise ratio over single-detectors that summed the light reflected from many clouds with the lightning produced by a single cloud. This pixelization enabled daytime DE to increase from a few percent to close to 90%. The OTD (1995), and the LIS (1997), were the first lightning sensors to utilize focal-plane arrays. Together they detected global lightning activity for more than twenty years, providing the first detailed information on the distribution of global lightning and its variability. The FORTE satellite was launched shortly after LIS, and became the first dedicated satellite to simultaneously measure RF and optical lightning emissions. It too used a CCD focal plane to detect and locate lightning. In November 2016, the GLM became the first lightning instrument in geostationary orbit. Shortly thereafter, China placed its GLI in orbit. Lightning sensors in geostationary orbit significantly increase the value of space-based observations. For the first time, lightning activity can be monitored continuously, over large areas of the Earth with high, uniform DE and location accuracy. In addition to observing standard lightning, a number of sensors have been placed in orbit to detect transient luminous events and tropospheric gamma-ray flashes. A lineal history of space-based lightning observations will be presented as well as a discussion of the scientific contributions made possible by these instruments. In addition, relative merits of space versus ground measurements will be addressed, as well as an effort to demonstrate the complementary nature of the two approaches.

  7. Detection of Spatially Unresolved (Nominally Sub-Pixel) Submerged and Surface Targets Using Hyperspectral Data

    DTIC Science & Technology

    2012-09-01

    Feasibility (MT Modeling ) a. Continuum of mixture distributions interpolated b. Mixture infeasibilities calculated for each pixel c. Valid detections...Visible/Infrared Imaging Spectrometer BRDF Bidirectional Reflectance Distribution Function CASI Compact Airborne Spectrographic Imager CCD...filtering (MTMF), and was designed by Healey and Slater (1999) to use “a physical model to generate the set of sensor spectra for a target that will be

  8. Real-time two-dimensional imaging of potassium ion distribution using an ion semiconductor sensor with charged coupled device technology.

    PubMed

    Hattori, Toshiaki; Masaki, Yoshitomo; Atsumi, Kazuya; Kato, Ryo; Sawada, Kazuaki

    2010-01-01

    Two-dimensional real-time observation of potassium ion distributions was achieved using an ion imaging device based on charge-coupled device (CCD) and metal-oxide semiconductor technologies, and an ion selective membrane. The CCD potassium ion image sensor was equipped with an array of 32 × 32 pixels (1024 pixels). It could record five frames per second with an area of 4.16 × 4.16 mm(2). Potassium ion images were produced instantly. The leaching of potassium ion from a 3.3 M KCl Ag/AgCl reference electrode was dynamically monitored in aqueous solution. The potassium ion selective membrane on the semiconductor consisted of plasticized poly(vinyl chloride) (PVC) with bis(benzo-15-crown-5). The addition of a polyhedral oligomeric silsesquioxane to the plasticized PVC membrane greatly improved adhesion of the membrane onto Si(3)N(4) of the semiconductor surface, and the potential response was stabilized. The potential response was linear from 10(-2) to 10(-5) M logarithmic concentration of potassium ion. The selectivity coefficients were K(K(+),Li(+))(pot) = 10(-2.85), K(K(+),Na(+))(pot) = 10(-2.30), K(K(+),Rb(+))(pot) =10(-1.16), and K(K(+),Cs(+))(pot) = 10(-2.05).

  9. High frame rate imaging systems developed in Northwest Institute of Nuclear Technology

    NASA Astrophysics Data System (ADS)

    Li, Binkang; Wang, Kuilu; Guo, Mingan; Ruan, Linbo; Zhang, Haibing; Yang, Shaohua; Feng, Bing; Sun, Fengrong; Chen, Yanli

    2007-01-01

    This paper presents high frame rate imaging systems developed in Northwest Institute of Nuclear Technology in recent years. Three types of imaging systems are included. The first type of system utilizes EG&G RETICON Photodiode Array (PDA) RA100A as the image sensor, which can work at up to 1000 frame per second (fps). Besides working continuously, the PDA system is also designed to switch to capture flash light event working mode. A specific time sequence is designed to satisfy this request. The camera image data can be transmitted to remote area by coaxial or optic fiber cable and then be stored. The second type of imaging system utilizes PHOTOBIT Complementary Metal Oxygen Semiconductor (CMOS) PB-MV13 as the image sensor, which has a high resolution of 1280 (H) ×1024 (V) pixels per frame. The CMOS system can operate at up to 500fps in full frame and 4000fps partially. The prototype scheme of the system is presented. The third type of imaging systems adopts charge coupled device (CCD) as the imagers. MINTRON MTV-1881EX, DALSA CA-D1 and CA-D6 camera head are used in the systems development. The features comparison of the RA100A, PB-MV13, and CA-D6 based systems are given in the end.

  10. Design, development, and testing of the DCT Cassegrain instrument support assembly

    NASA Astrophysics Data System (ADS)

    Bida, Thomas A.; Dunham, Edward W.; Nye, Ralph A.; Chylek, Tomas; Oliver, Richard C.

    2012-09-01

    The 4.3m Discovery Channel Telescope delivers an f/6.1 unvignetted 0.5° field to its RC focal plane. In order to support guiding, wavefront sensing, and instrument installations, a Cassegrain instrument support assembly has been developed which includes a facility guider and wavefront sensor package (GWAVES) and multiple interfaces for instrumentation. A 2-element, all-spherical, fused-silica corrector compensates for field curvature and astigmatism over the 0.5° FOV, while reducing ghost pupil reflections to minimal levels. Dual roving GWAVES camera probes pick off stars in the outer annulus of the corrected field, providing simultaneous guiding and wavefront sensing for telescope operations. The instrument cube supports 5 co-mounted instruments with rapid feed selection via deployable fold mirrors. The corrected beam passes through a dual filter wheel before imaging with the 6K x 6K single CCD of the Large Monolithic Imager (LMI). We describe key development strategies for the DCT Cassegrain instrument assembly and GWAVES, including construction of a prime focus test assembly with wavefront sensor utilized in fall 2011 to begin characterization of the DCT primary mirror support. We also report on 2012 on-sky test results of wavefront sensing, guiding, and imaging with the integrated Cassegrain cube.

  11. A CMOS-based large-area high-resolution imaging system for high-energy x-ray applications

    NASA Astrophysics Data System (ADS)

    Rodricks, Brian; Fowler, Boyd; Liu, Chiao; Lowes, John; Haeffner, Dean; Lienert, Ulrich; Almer, John

    2008-08-01

    CCDs have been the primary sensor in imaging systems for x-ray diffraction and imaging applications in recent years. CCDs have met the fundamental requirements of low noise, high-sensitivity, high dynamic range and spatial resolution necessary for these scientific applications. State-of-the-art CMOS image sensor (CIS) technology has experienced dramatic improvements recently and their performance is rivaling or surpassing that of most CCDs. The advancement of CIS technology is at an ever-accelerating pace and is driven by the multi-billion dollar consumer market. There are several advantages of CIS over traditional CCDs and other solid-state imaging devices; they include low power, high-speed operation, system-on-chip integration and lower manufacturing costs. The combination of superior imaging performance and system advantages makes CIS a good candidate for high-sensitivity imaging system development. This paper will describe a 1344 x 1212 CIS imaging system with a 19.5μm pitch optimized for x-ray scattering studies at high-energies. Fundamental metrics of linearity, dynamic range, spatial resolution, conversion gain, sensitivity are estimated. The Detective Quantum Efficiency (DQE) is also estimated. Representative x-ray diffraction images are presented. Diffraction images are compared against a CCD-based imaging system.

  12. Characterization of a 512x512-pixel 8-output full-frame CCD for high-speed imaging

    NASA Astrophysics Data System (ADS)

    Graeve, Thorsten; Dereniak, Eustace L.

    1993-01-01

    The characterization of a 512 by 512 pixel, eight-output full frame CCD manufactured by English Electric Valve under part number CCD13 is discussed. This device is a high- resolution Silicon-based array designed for visible imaging applications at readout periods as low as two milliseconds. The characterization of the device includes mean-variance analysis to determine read noise and dynamic range, as well as charge transfer efficiency, MTF, and quantum efficiency measurements. Dark current and non-uniformity issues on a pixel-to-pixel basis and between individual outputs are also examined. The characterization of the device is restricted by hardware limitations to a one MHz pixel rate, corresponding to a 40 ms readout time. However, subsections of the device have been operated at up to an equivalent 100 frames per second. To maximize the frame rate, the CCD is illuminated by a synchronized strobe flash in between frame readouts. The effects of the strobe illumination on the imagery obtained from the device is discussed.

  13. Development of integrated semiconductor optical sensors for functional brain imaging

    NASA Astrophysics Data System (ADS)

    Lee, Thomas T.

    Optical imaging of neural activity is a widely accepted technique for imaging brain function in the field of neuroscience research, and has been used to study the cerebral cortex in vivo for over two decades. Maps of brain activity are obtained by monitoring intensity changes in back-scattered light, called Intrinsic Optical Signals (IOS), that correspond to fluctuations in blood oxygenation and volume associated with neural activity. Current imaging systems typically employ bench-top equipment including lamps and CCD cameras to study animals using visible light. Such systems require the use of anesthetized or immobilized subjects with craniotomies, which imposes limitations on the behavioral range and duration of studies. The ultimate goal of this work is to overcome these limitations by developing a single-chip semiconductor sensor using arrays of sources and detectors operating at near-infrared (NIR) wavelengths. A single-chip implementation, combined with wireless telemetry, will eliminate the need for immobilization or anesthesia of subjects and allow in vivo studies of free behavior. NIR light offers additional advantages because it experiences less absorption in animal tissue than visible light, which allows for imaging through superficial tissues. This, in turn, reduces or eliminates the need for traumatic surgery and enables long-term brain-mapping studies in freely-behaving animals. This dissertation concentrates on key engineering challenges of implementing the sensor. This work shows the feasibility of using a GaAs-based array of vertical-cavity surface emitting lasers (VCSELs) and PIN photodiodes for IOS imaging. I begin with in-vivo studies of IOS imaging through the skull in mice, and use these results along with computer simulations to establish minimum performance requirements for light sources and detectors. I also evaluate the performance of a current commercial VCSEL for IOS imaging, and conclude with a proposed prototype sensor.

  14. X-ray imaging using digital cameras

    NASA Astrophysics Data System (ADS)

    Winch, Nicola M.; Edgar, Andrew

    2012-03-01

    The possibility of using the combination of a computed radiography (storage phosphor) cassette and a semiprofessional grade digital camera for medical or dental radiography is investigated. We compare the performance of (i) a Canon 5D Mk II single lens reflex camera with f1.4 lens and full-frame CMOS array sensor and (ii) a cooled CCD-based camera with a 1/3 frame sensor and the same lens system. Both systems are tested with 240 x 180 mm cassettes which are based on either powdered europium-doped barium fluoride bromide or needle structure europium-doped cesium bromide. The modulation transfer function for both systems has been determined and falls to a value of 0.2 at around 2 lp/mm, and is limited by light scattering of the emitted light from the storage phosphor rather than the optics or sensor pixelation. The modulation transfer function for the CsBr:Eu2+ plate is bimodal, with a high frequency wing which is attributed to the light-guiding behaviour of the needle structure. The detective quantum efficiency has been determined using a radioisotope source and is comparatively low at 0.017 for the CMOS camera and 0.006 for the CCD camera, attributed to the poor light harvesting by the lens. The primary advantages of the method are portability, robustness, digital imaging and low cost; the limitations are the low detective quantum efficiency and hence signal-to-noise ratio for medical doses, and restricted range of plate sizes. Representative images taken with medical doses are shown and illustrate the potential use for portable basic radiography.

  15. Experimental research on femto-second laser damaging array CCD cameras

    NASA Astrophysics Data System (ADS)

    Shao, Junfeng; Guo, Jin; Wang, Ting-feng; Wang, Ming

    2013-05-01

    Charged Coupled Devices (CCD) are widely used in military and security applications, such as airborne and ship based surveillance, satellite reconnaissance and so on. Homeland security requires effective means to negate these advanced overseeing systems. Researches show that CCD based EO systems can be significantly dazzled or even damaged by high-repetition rate pulsed lasers. Here, we report femto - second laser interaction with CCD camera, which is probable of great importance in future. Femto - second laser is quite fresh new lasers, which has unique characteristics, such as extremely short pulse width (1 fs = 10-15 s), extremely high peak power (1 TW = 1012W), and especially its unique features when interacting with matters. Researches in femto second laser interaction with materials (metals, dielectrics) clearly indicate non-thermal effect dominates the process, which is of vast difference from that of long pulses interaction with matters. Firstly, the damage threshold test are performed with femto second laser acting on the CCD camera. An 800nm, 500μJ, 100fs laser pulse is used to irradiate interline CCD solid-state image sensor in the experiment. In order to focus laser energy onto tiny CCD active cells, an optical system of F/5.6 is used. A Sony production CCDs are chose as typical targets. The damage threshold is evaluated with multiple test data. Point damage, line damage and full array damage were observed when the irradiated pulse energy continuously increase during the experiment. The point damage threshold is found 151.2 mJ/cm2.The line damage threshold is found 508.2 mJ/cm2.The full-array damage threshold is found to be 5.91 J/cm2. Although the phenomenon is almost the same as that of nano laser interaction with CCD, these damage thresholds are substantially lower than that of data obtained from nano second laser interaction with CCD. Then at the same time, the electric features after different degrees of damage are tested with electronic multi meter. The resistance values between clock signal lines are measured. Contrasting the resistance values of the CCD before and after damage, it is found that the resistances decrease significantly between the vertical transfer clock signal lines values. The same results are found between the vertical transfer clock signal line and the earth electrode (ground).At last, the damage position and the damage mechanism were analyzed with above results and SEM morphological experiments. The point damage results in the laser destroying material, which shows no macro electro influence. The line damage is quite different from that of point damage, which shows deeper material corroding effect. More importantly, short circuits are found between vertical clock lines. The full array damage is even more severe than that of line damage starring with SEM, while no obvious different electrical features than that of line damage are found. Further researches are anticipated in femto second laser caused CCD damage mechanism with more advanced tools. This research is valuable in EO countermeasure and/or laser shielding applications.

  16. A High-Speed Vision-Based Sensor for Dynamic Vibration Analysis Using Fast Motion Extraction Algorithms.

    PubMed

    Zhang, Dashan; Guo, Jie; Lei, Xiujun; Zhu, Changan

    2016-04-22

    The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD) sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features.

  17. Using a trichromatic CCD camera for spectral skylight estimation.

    PubMed

    López-Alvarez, Miguel A; Hernández-Andrés, Javier; Romero, Javier; Olmo, F J; Cazorla, A; Alados-Arboledas, L

    2008-12-01

    In a previous work [J. Opt. Soc. Am. A 24, 942-956 (2007)] we showed how to design an optimum multispectral system aimed at spectral recovery of skylight. Since high-resolution multispectral images of skylight could be interesting for many scientific disciplines, here we also propose a nonoptimum but much cheaper and faster approach to achieve this goal by using a trichromatic RGB charge-coupled device (CCD) digital camera. The camera is attached to a fish-eye lens, hence permitting us to obtain a spectrum of every point of the skydome corresponding to each pixel of the image. In this work we show how to apply multispectral techniques to the sensors' responses of a common trichromatic camera in order to obtain skylight spectra from them. This spectral information is accurate enough to estimate experimental values of some climate parameters or to be used in algorithms for automatic cloud detection, among many other possible scientific applications.

  18. Ultrafast Imaging using Spectral Resonance Modulation

    NASA Astrophysics Data System (ADS)

    Huang, Eric; Ma, Qian; Liu, Zhaowei

    2016-04-01

    CCD cameras are ubiquitous in research labs, industry, and hospitals for a huge variety of applications, but there are many dynamic processes in nature that unfold too quickly to be captured. Although tradeoffs can be made between exposure time, sensitivity, and area of interest, ultimately the speed limit of a CCD camera is constrained by the electronic readout rate of the sensors. One potential way to improve the imaging speed is with compressive sensing (CS), a technique that allows for a reduction in the number of measurements needed to record an image. However, most CS imaging methods require spatial light modulators (SLMs), which are subject to mechanical speed limitations. Here, we demonstrate an etalon array based SLM without any moving elements that is unconstrained by either mechanical or electronic speed limitations. This novel spectral resonance modulator (SRM) shows great potential in an ultrafast compressive single pixel camera.

  19. The Multi-site All-Sky CAmeRA (MASCARA). Finding transiting exoplanets around bright (mV < 8) stars

    NASA Astrophysics Data System (ADS)

    Talens, G. J. J.; Spronck, J. F. P.; Lesage, A.-L.; Otten, G. P. P. L.; Stuik, R.; Pollacco, D.; Snellen, I. A. G.

    2017-05-01

    This paper describes the design, operations, and performance of the Multi-site All-Sky CAmeRA (MASCARA). Its primary goal is to find new exoplanets transiting bright stars, 4 < mV < 8, by monitoring the full sky. MASCARA consists of one northern station on La Palma, Canary Islands (fully operational since February 2015), one southern station at La Silla Observatory, Chile (operational from early 2017), and a data centre at Leiden Observatory in the Netherlands. Both MASCARA stations are equipped with five interline CCD cameras using wide field lenses (24 mm focal length) with fixed pointings, which together provide coverage down to airmass 3 of the local sky. The interline CCD cameras allow for back-to-back exposures, taken at fixed sidereal times with exposure times of 6.4 sidereal seconds. The exposures are short enough that the motion of stars across the CCD does not exceed one pixel during an integration. Astrometry and photometry are performed on-site, after which the resulting light curves are transferred to Leiden for further analysis. The final MASCARA archive will contain light curves for 70 000 stars down to mV = 8.4, with a precision of 1.5% per 5 minutes at mV = 8.

  20. An automated system to measure the quantum efficiency of CCDs for astronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coles, R.; Chiang, J.; Cinabro, D.

    We describe a system to measure the Quantum Efficiency in the wavelength range of 300 nm to 1100 nm of 40 × 40 mm n-channel CCD sensors for the construction of the 3.2 gigapixel LSST focal plane. The technique uses a series of instrument to create a very uniform flux of photons of controllable intensity in the wavelength range of interest across the face the sensor. This allows the absolute Quantum Efficiency to be measured with an accuracy in the 1% range. Finally, this system will be part of a production facility at Brookhaven National Lab for the basic componentmore » of the LSST camera.« less

  1. An automated system to measure the quantum efficiency of CCDs for astronomy

    DOE PAGES

    Coles, R.; Chiang, J.; Cinabro, D.; ...

    2017-04-18

    We describe a system to measure the Quantum Efficiency in the wavelength range of 300 nm to 1100 nm of 40 × 40 mm n-channel CCD sensors for the construction of the 3.2 gigapixel LSST focal plane. The technique uses a series of instrument to create a very uniform flux of photons of controllable intensity in the wavelength range of interest across the face the sensor. This allows the absolute Quantum Efficiency to be measured with an accuracy in the 1% range. Finally, this system will be part of a production facility at Brookhaven National Lab for the basic componentmore » of the LSST camera.« less

  2. Night Vision Camera

    NASA Technical Reports Server (NTRS)

    1996-01-01

    PixelVision, Inc. developed the Night Video NV652 Back-illuminated CCD Camera, based on the expertise of a former Jet Propulsion Laboratory employee and a former employee of Scientific Imaging Technologies, Inc. The camera operates without an image intensifier, using back-illuminated and thinned CCD technology to achieve extremely low light level imaging performance. The advantages of PixelVision's system over conventional cameras include greater resolution and better target identification under low light conditions, lower cost and a longer lifetime. It is used commercially for research and aviation.

  3. New nova candidate in M81

    NASA Astrophysics Data System (ADS)

    Henze, M.; Sala, G.; Jose, J.; Figueira, J.; Hernanz, M.

    2016-06-01

    We report the discovery of a new nova candidate in the M81 galaxy on 16x200s stacked R filter CCD images, obtained with the 80 cm Ritchey-Chretien F/9.6 Joan Oro telescope at Observatori Astronomic del Montsec, owned by the Catalan Government and operated by the Institut d'Estudis Espacials de Catalunya, Spain, using a Finger Lakes PL4240-1-BI CCD Camera (with a Class 1 Basic Broadband coated 2k x 2k chip with 13.5 microns sq. pixels).

  4. Binary/Analog CCD Correlator Development.

    DTIC Science & Technology

    1981-07-01

    architecture , design and performance of a general purpose, 1,024-stage, programmable transversal filter implemented in CCD/NMOS technology is described. The device features programmability of the reference signal, the filter length and weighting coefficient resolution. Off-ship circuitry is minimized by incorporating both analog and digital support circuitry, on-chip. This results in a monolithic analog signal processing system that has the flexibility to be operated in nine programmable configurations, from 1,024-stages by 1-bit, to 128-stages by 8-bits. The versatility

  5. Practical Method to Identify Orbital Anomaly as Breakup Event in the Geostationary Region

    DTIC Science & Technology

    2015-01-14

    point ! Geocentric distance at the pinch point Table 4 summarizes the results of the origin identifications. One object labeled x15300 was...Table 4. The result of origin identification of the seven detected objects Object name Parent object Inclination vector Pinch point Geocentric distance...of the object. X-Y, X’-Y’, and R.A.-Dec. represent the Image Coordinate before rotating the CCD sensor, after rotation, and the Geocentric Inertial

  6. A system design of data acquisition and processing for side-scatter lidar

    NASA Astrophysics Data System (ADS)

    Zhang, ZhanYe; Xie, ChenBo; Wang, ZhenZhu; Kuang, ZhiQiang; Deng, Qian; Tao, ZongMing; Liu, Dong; Wang, Yingjian

    2018-03-01

    A system for collecting data of Side-Scatter lidar based on Charge Coupled Device (CCD),is designed and implemented. The system of data acquisition is based on Microsoft. Net structure and the language of C# is used to call dynamic link library (DLL) of CCD for realization of the real-time data acquisition and processing. The software stores data as txt file for post data acquisition and analysis. The system has ability to operate CCD device in all-day, automatic, continuous and high frequency data acquisition and processing conditions, which will catch 24-hour information of the atmospheric scatter's light intensity and retrieve the spatial and temporal properties of aerosol particles. The experimental result shows that the system is convenient to observe the aerosol optical characteristics near surface.

  7. A Star Image Extractor for Small Satellites

    NASA Astrophysics Data System (ADS)

    Yamada, Yoshiyuki; Yamauchi, Masahiro; Gouda, Naoteru; Kobayashi, Yukiyasu; Tsujimoto, Takuji; Yano, Taihei; Suganuma, Masahiro; Nakasuka, Shinichi; Sako, Nobutada; Inamori, Takaya

    We have developed a Star Image Extractor (SIE) which works as an on-board real-time image processor. It is a logic circuit written on an FPGA(Field Programmable Gate Array) device. It detects and extracts only an object data from raw image data. SIE will be required with the Nano-JASMINE 1) satellite. Nano-JASMINE is the small astrometry satellite that observes objects in our galaxy. It will be launched in 2010 and needs two years mission period. Nano-JASMINE observes an object with the TDI (Time Delayed Integration) observation mode. TDI is one of operation modes of CCD detector. Data is obtained, by rotating the imaging system including CCD at a rated synchronized with a vertical charge transfer of CCD. Obtained image data is sent through SIE to the Mission-controller.

  8. Optical digitizing and strategies to combine different views of an optical sensor

    NASA Astrophysics Data System (ADS)

    Duwe, Hans P.

    1997-09-01

    Non-contact digitization of objects and surfaces with optical sensors based on fringe or pattern projection in combination with a CCD-camera allows a representation of surfaces with pointclouds equals x, y, z data points. To digitize the total surface of an object, it is necessary to combine the different measurement data obtained by the optical sensor from different views. Depending on the size of the object and the required accuracy of the measured data, different sensor set-ups with handling system or a combination of linear and rotation axes are described. Furthermore, strategies to match the overlapping pointclouds of a digitized object are introduced. This is very important especially for the digitization of large objects like 1:1 car models, etc. With different sensor sizes, it is possible to digitize small objects like teeth, crowns, inlays, etc. with an overall accuracy of 20 micrometer as well as large objects like car models, with a total accuracy of 0.5 mm. The various applications in the field of optical digitization are described.

  9. A Novel Method to Increase LinLog CMOS Sensors’ Performance in High Dynamic Range Scenarios

    PubMed Central

    Martínez-Sánchez, Antonio; Fernández, Carlos; Navarro, Pedro J.; Iborra, Andrés

    2011-01-01

    Images from high dynamic range (HDR) scenes must be obtained with minimum loss of information. For this purpose it is necessary to take full advantage of the quantification levels provided by the CCD/CMOS image sensor. LinLog CMOS sensors satisfy the above demand by offering an adjustable response curve that combines linear and logarithmic responses. This paper presents a novel method to quickly adjust the parameters that control the response curve of a LinLog CMOS image sensor. We propose to use an Adaptive Proportional-Integral-Derivative controller to adjust the exposure time of the sensor, together with control algorithms based on the saturation level and the entropy of the images. With this method the sensor’s maximum dynamic range (120 dB) can be used to acquire good quality images from HDR scenes with fast, automatic adaptation to scene conditions. Adaptation to a new scene is rapid, with a sensor response adjustment of less than eight frames when working in real time video mode. At least 67% of the scene entropy can be retained with this method. PMID:22164083

  10. A Low-cost Environmental Control System for Precise Radial Velocity Spectrometers

    NASA Astrophysics Data System (ADS)

    Sliski, David H.; Blake, Cullen H.; Halverson, Samuel

    2017-12-01

    We present an environmental control system (ECS) designed to achieve milliKelvin (mK) level temperature stability for small-scale astronomical instruments. This ECS is inexpensive and is primarily built from commercially available components. The primary application for our ECS is the high-precision Doppler spectrometer MINERVA-Red, where the thermal variations of the optical components within the instrument represent a major source of systematic error. We demonstrate ±2 mK temperature stability within a 0.5 m3 thermal enclosure using resistive heaters in conjunction with a commercially available PID controller and off-the-shelf thermal sensors. The enclosure is maintained above ambient temperature, enabling rapid cooling through heat dissipation into the surrounding environment. We demonstrate peak-to-valley (PV) temperature stability of better than 5 mK within the MINERVA-Red vacuum chamber, which is located inside the thermal enclosure, despite large temperature swings in the ambient laboratory environment. During periods of stable laboratory conditions, the PV variations within the vacuum chamber are less than 3 mK. This temperature stability is comparable to the best stability demonstrated for Doppler spectrometers currently achieving m s-1 radial velocity precision. We discuss the challenges of using commercially available thermoelectrically cooled CCD cameras in a temperature-stabilized environment, and demonstrate that the effects of variable heat output from the CCD camera body can be mitigated using PID-controlled chilled water systems. The ECS presented here could potentially provide the stable operating environment required for future compact “astrophotonic” precise radial velocity (PRV) spectrometers to achieve high Doppler measurement precision with a modest budget.

  11. CCD-Based Skinning Injury Recognition on Potato Tubers (Solanum tuberosum L.): A Comparison between Visible and Biospeckle Imaging

    PubMed Central

    Gao, Yingwang; Geng, Jinfeng; Rao, Xiuqin; Ying, Yibin

    2016-01-01

    Skinning injury on potato tubers is a kind of superficial wound that is generally inflicted by mechanical forces during harvest and postharvest handling operations. Though skinning injury is pervasive and obstructive, its detection is very limited. This study attempted to identify injured skin using two CCD (Charge Coupled Device) sensor-based machine vision technologies, i.e., visible imaging and biospeckle imaging. The identification of skinning injury was realized via exploiting features extracted from varied ROIs (Region of Interests). The features extracted from visible images were pixel-wise color and texture features, while region-wise BA (Biospeckle Activity) was calculated from biospeckle imaging. In addition, the calculation of BA using varied numbers of speckle patterns were compared. Finally, extracted features were implemented into classifiers of LS-SVM (Least Square Support Vector Machine) and BLR (Binary Logistic Regression), respectively. Results showed that color features performed better than texture features in classifying sound skin and injured skin, especially for injured skin stored no less than 1 day, with the average classification accuracy of 90%. Image capturing and processing efficiency can be speeded up in biospeckle imaging, with captured 512 frames reduced to 125 frames. Classification results obtained based on the feature of BA were acceptable for early skinning injury stored within 1 day, with the accuracy of 88.10%. It is concluded that skinning injury can be recognized by visible and biospeckle imaging during different stages. Visible imaging has the aptitude in recognizing stale skinning injury, while fresh injury can be discriminated by biospeckle imaging. PMID:27763555

  12. CCD-Based Skinning Injury Recognition on Potato Tubers (Solanum tuberosum L.): A Comparison between Visible and Biospeckle Imaging.

    PubMed

    Gao, Yingwang; Geng, Jinfeng; Rao, Xiuqin; Ying, Yibin

    2016-10-18

    Skinning injury on potato tubers is a kind of superficial wound that is generally inflicted by mechanical forces during harvest and postharvest handling operations. Though skinning injury is pervasive and obstructive, its detection is very limited. This study attempted to identify injured skin using two CCD (Charge Coupled Device) sensor-based machine vision technologies, i.e., visible imaging and biospeckle imaging. The identification of skinning injury was realized via exploiting features extracted from varied ROIs (Region of Interests). The features extracted from visible images were pixel-wise color and texture features, while region-wise BA (Biospeckle Activity) was calculated from biospeckle imaging. In addition, the calculation of BA using varied numbers of speckle patterns were compared. Finally, extracted features were implemented into classifiers of LS-SVM (Least Square Support Vector Machine) and BLR (Binary Logistic Regression), respectively. Results showed that color features performed better than texture features in classifying sound skin and injured skin, especially for injured skin stored no less than 1 day, with the average classification accuracy of 90%. Image capturing and processing efficiency can be speeded up in biospeckle imaging, with captured 512 frames reduced to 125 frames. Classification results obtained based on the feature of BA were acceptable for early skinning injury stored within 1 day, with the accuracy of 88.10%. It is concluded that skinning injury can be recognized by visible and biospeckle imaging during different stages. Visible imaging has the aptitude in recognizing stale skinning injury, while fresh injury can be discriminated by biospeckle imaging.

  13. The Cross-Cultural Dementia Screening (CCD): A new neuropsychological screening instrument for dementia in elderly immigrants.

    PubMed

    Goudsmit, Miriam; Uysal-Bozkir, Özgül; Parlevliet, Juliette L; van Campen, Jos P C M; de Rooij, Sophia E; Schmand, Ben

    2017-03-01

    Currently, approximately 3.9% of the European population are non-EU citizens, and a large part of these people are from "non-Western" societies, such as Turkey and Morocco. For various reasons, the incidence of dementia in this group is expected to increase. However, cognitive testing is challenging due to language barriers and low education and/or illiteracy. The newly developed Cross-Cultural Dementia Screening (CCD) can be administered without an interpreter. It contains three subtests that assess memory, mental speed, and executive function. We hypothesized the CCD to be a culture-fair test that could discriminate between demented patients and cognitively healthy controls. To test this hypothesis, 54 patients who had probable dementia were recruited via memory clinics. Controls (N = 1625) were recruited via their general practitioners. All patients and controls were aged 55 years and older and of six different self-defined ethnicities (Dutch, Turkish, Moroccan-Arabic, Moroccan-Berber, Surinamese-Creole, and Surinamese-Hindustani). Exclusion criteria included current or previous conditions that affect cognitive functioning. There were performance differences between the ethnic groups, but these disappeared after correcting for age and education differences between the groups, which supports our central hypothesis that the CCD is a culture-fair test. Receiver-operating characteristic (ROC) and logistic regression analyses showed that the CCD has high predictive validity for dementia (sensitivity: 85%; specificity: 89%). The CCD is a sensitive and culture-fair neuropsychological instrument for dementia screening in low-educated immigrant populations.

  14. Nano-JASMINE: cosmic radiation degradation of CCD performance and centroid detection

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yukiyasu; Shimura, Yuki; Niwa, Yoshito; Yano, Taihei; Gouda, Naoteru; Yamada, Yoshiyuki

    2012-09-01

    Nano-JASMINE (NJ) is a very small astrometry satellite project led by the National Astronomical Observatory of Japan. The satellite is ready for launch, and the launch is currently scheduled for late 2013 or early 2014. The satellite is equipped with a fully depleted CCD and is expected to perform astrometry observations for stars brighter than 9 mag in the zw-band (0.6 µm-1.0 µm). Distances of stars located within 100 pc of the Sun can be determined by using annual parallax measurements. The targeted accuracy for the position determination of stars brighter than 7.5 mag is 3 mas, which is equivalent to measuring the positions of stars with an accuracy of less than one five-hundredth of the CCD pixel size. The position measurements of stars are performed by centroiding the stellar images taken by the CCD that operates in the time and delay integration mode. The degradation of charge transfer performance due to cosmic radiation damage in orbit is proved experimentally. A method is then required to compensate for the effects of performance degradation. One of the most effective ways of achieving this is to simulate observed stellar outputs, including the effect of CCD degradation, and then formulate our centroiding algorithm and evaluate the accuracies of the measurements. We report here the planned procedure to simulate the outputs of the NJ observations. We also developed a CCD performance-measuring system and present preliminary results obtained using the system.

  15. Digital holographic diagnostics of near-injector region

    NASA Astrophysics Data System (ADS)

    Lee, Jaiho

    Study of primary breakup of liquid jets is important because it is motivated by the application to gas turbine fuel injectors, diesel fuel injectors, industrial cleaning and washing machine, medical spray, and inkjet printers, among others. When it comes to good injectors, a liquid jet has to be disintegrated into a fine spray near injector region during primary breakup. However the dense spray region near the injectors is optically obscure for Phase Doppler Interferometer like Phase Doppler Particle Analyzers (PDPA). Holography can provide three dimensional image of the dense spray and eliminate the problem of the small depth of focus associated with shadowgraphs. Traditional film-based holographic technique has long been used for three dimensional measurements in particle fields, but it is time consuming, expensive, chemically hazardous. With the development of the CCD sensor, holograms were recorded and reconstructed digitally. Digital microscopic holography (DMH) is similar to digital inline holography (DIH) except that no lens is used to collimate the object beam. The laser beams are expanded with an objective lens and a spatial filter. This eliminates two lenses from the typical optical path used for in-line holography, which results in a much cleaner hologram recording. The DMH was used for drop size and velocity measurements of the breakup of aerated liquid jets because it is unaffected by the non-spherical droplets that are encountered very close to the injector exit, which would cause problems for techniques such as Phase Doppler Particle Analyzer, otherwise. Large field of view was obtained by patching several high resolution holograms. Droplet velocities in three dimensions were measured by tracking their displacements in the streamwise and cross-stream direction and by tracking the change in the plane of focus in the spanwise direction. The uncertainty in spanwise droplet location and velocity measurements using single view DMH was large at least 33%. This large uncertainty in the spanwise direction, however, can be reduced to 2% by employing double view DMH. Double view DMH successfully tracked the three dimensional bending trajectories of polymer jets during electrospinning. The uncertainty in the spatial growth measurements of the bending instability was reduced using orthogonal double view DMH. Moreover, a commercial grade CCD was successfully used for single- and double-pulsed DMH of micro liquid jet breakup. Using a commercial grade CCD for the DMH, the cost of CCD sensor needed for recording holograms can be reduced.

  16. Star tracker operation in a high density proton field

    NASA Technical Reports Server (NTRS)

    Miklus, Kenneth J.; Kissh, Frank; Flynn, David J.

    1993-01-01

    Algorithms that reject transient signals due to proton effects on charge coupled device (CCD) sensors have been implemented in the HDOS ASTRA-l Star Trackers to be flown on the TOPEX mission scheduled for launch in July 1992. A unique technique for simulating a proton-rich environment to test trackers is described, as well as the test results obtained. Solar flares or an orbit that passes through the South Atlantic Anomaly can subject the vehicle to very high proton flux levels. There are three ways in which spurious proton generated signals can impact tracker performance: the many false signals can prevent or extend the time to acquire a star; a proton-generated signal can compromise the accuracy of the star's reported magnitude and position; and the tracked star can be lost, requiring reacquisition. Tests simulating a proton-rich environment were performed on two ASTRA-1 Star Trackers utilizing these new algorithms. There were no false acquisitions, no lost stars, and a significant reduction in reported position errors due to these improvements.

  17. A novel imaging method for photonic crystal fiber fusion splicer

    NASA Astrophysics Data System (ADS)

    Bi, Weihong; Fu, Guangwei; Guo, Xuan

    2007-01-01

    Because the structure of Photonic Crystal Fiber (PCF) is very complex, and it is very difficult that traditional fiber fusion splice obtains optical axial information of PCF. Therefore, we must search for a bran-new optical imaging method to get section information of Photonic Crystal Fiber. Based on complex trait of PCF, a novel high-precision optics imaging system is presented in this article. The system uses a thinned electron-bombarded CCD (EBCCD) which is a kind of image sensor as imaging element, the thinned electron-bombarded CCD can offer low light level performance superior to conventional image intensifier coupled CCD approaches, this high-performance device can provide high contrast high resolution in low light level surveillance imaging; in order to realize precision focusing of image, we use a ultra-highprecision pace motor to adjust position of imaging lens. In this way, we can obtain legible section information of PCF. We may realize further concrete analysis for section information of PCF by digital image processing technology. Using this section information may distinguish different sorts of PCF, compute some parameters such as the size of PCF ventage, cladding structure of PCF and so on, and provide necessary analysis data for PCF fixation, adjustment, regulation, fusion and cutting system.

  18. Line scanning system for direct digital chemiluminescence imaging of DNA sequencing blots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karger, A.E.; Weiss, R.; Gesteland, R.F.

    A cryogenically cooled charge-coupled device (CCD) camera equipped with an area CCD array is used in a line scanning system for low-light-level imaging of chemiluminescent DNA sequencing blots. Operating the CCD camera in time-delayed integration (TDI) mode results in continuous data acquisition independent of the length of the CCD array. Scanning is possible with a resolution of 1.4 line pairs/mm at the 50% level of the modulation transfer function. High-sensitivity, low-light-level scanning of chemiluminescent direct-transfer electrophoresis (DTE) DNA sequencing blots is shown. The detection of DNA fragments on the blot involves DNA-DNA hybridization with oligonucleotide-alkaline phosphatase conjugate and 1,2-dioxetane-based chemiluminescence.more » The width of the scan allows the recording of up to four sequencing reactions (16 lanes) on one scan. The scan speed of 52 cm/h used for the sequencing blots corresponds to a data acquisition rate of 384 pixels/s. The chemiluminescence detection limit on the scanned images is 3.9 [times] 10[sup [minus]18] mol of plasmid DNA. A conditional median filter is described to remove spikes caused by cosmic ray events from the CCD images. 39 refs., 9 refs.« less

  19. A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008.

    PubMed

    van Engelsdorp, Dennis; Hayes, Jerry; Underwood, Robyn M; Pettis, Jeffery

    2008-01-01

    Honey bees are an essential component of modern agriculture. A recently recognized ailment, Colony Collapse Disorder (CCD), devastates colonies, leaving hives with a complete lack of bees, dead or alive. Up to now, estimates of honey bee population decline have not included losses occurring during the wintering period, thus underestimating actual colony mortality. Our survey quantifies the extent of colony losses in the United States over the winter of 2007-2008. Surveys were conducted to quantify and identify management factors (e.g. operation size, hive migration) that contribute to high colony losses in general and CCD symptoms in particular. Over 19% of the country's estimated 2.44 million colonies were surveyed. A total loss of 35.8% of colonies was recorded; an increase of 11.4% compared to last year. Operations that pollinated almonds lost, on average, the same number of colonies as those that did not. The 37.9% of operations that reported having at least some of their colonies die with a complete lack of bees had a total loss of 40.8% of colonies compared to the 17.1% loss reported by beekeepers without this symptom. Large operations were more likely to have this symptom suggesting that a contagious condition may be a causal factor. Sixty percent of all colonies that were reported dead in this survey died without dead bees, and thus possibly suffered from CCD. In PA, losses varied with region, indicating that ambient temperature over winter may be an important factor. Of utmost importance to understanding the recent losses and CCD is keeping track of losses over time and on a large geographic scale. Given that our surveys are representative of the losses across all beekeeping operations, between 0.75 and 1.00 million honey bee colonies are estimated to have died in the United States over the winter of 2007-2008. This article is an extensive survey of U.S. beekeepers across the continent, serving as a reference for comparison with future losses as well as providing guidance to future hypothesis-driven research on the causes of colony mortality.

  20. A Survey of Honey Bee Colony Losses in the U.S., Fall 2007 to Spring 2008

    PubMed Central

    vanEngelsdorp, Dennis; Hayes, Jerry; Underwood, Robyn M.; Pettis, Jeffery

    2008-01-01

    Background Honey bees are an essential component of modern agriculture. A recently recognized ailment, Colony Collapse Disorder (CCD), devastates colonies, leaving hives with a complete lack of bees, dead or alive. Up to now, estimates of honey bee population decline have not included losses occurring during the wintering period, thus underestimating actual colony mortality. Our survey quantifies the extent of colony losses in the United States over the winter of 2007–2008. Methodology/Principal Findings Surveys were conducted to quantify and identify management factors (e.g. operation size, hive migration) that contribute to high colony losses in general and CCD symptoms in particular. Over 19% of the country's estimated 2.44 million colonies were surveyed. A total loss of 35.8% of colonies was recorded; an increase of 11.4% compared to last year. Operations that pollinated almonds lost, on average, the same number of colonies as those that did not. The 37.9% of operations that reported having at least some of their colonies die with a complete lack of bees had a total loss of 40.8% of colonies compared to the 17.1% loss reported by beekeepers without this symptom. Large operations were more likely to have this symptom suggesting that a contagious condition may be a causal factor. Sixty percent of all colonies that were reported dead in this survey died without dead bees, and thus possibly suffered from CCD. In PA, losses varied with region, indicating that ambient temperature over winter may be an important factor. Conclusions/Significance Of utmost importance to understanding the recent losses and CCD is keeping track of losses over time and on a large geographic scale. Given that our surveys are representative of the losses across all beekeeping operations, between 0.75 and 1.00 million honey bee colonies are estimated to have died in the United States over the winter of 2007–2008. This article is an extensive survey of U.S. beekeepers across the continent, serving as a reference for comparison with future losses as well as providing guidance to future hypothesis-driven research on the causes of colony mortality. PMID:19115015

  1. Measuring the Human Ultra-Weak Photon Emission Distribution Using an Electron-Multiplying, Charge-Coupled Device as a Sensor.

    PubMed

    Ortega-Ojeda, Fernando; Calcerrada, Matías; Ferrero, Alejandro; Campos, Joaquín; Garcia-Ruiz, Carmen

    2018-04-10

    Ultra-weak photon emission (UPE) is the spontaneous emission from living systems mainly attributed to oxidation reactions, in which reactive oxygen species (ROS) may play a major role. Given the capability of the next-generation electron-multiplying CCD (EMCCD) sensors and the easy use of liquid crystal tunable filters (LCTF), the aim of this work was to explore the potential of a simple UPE spectrometer to measure the UPE from a human hand. Thus, an easy setup was configured based on a dark box for inserting the subject's hand prior to LCTF as a monochromator and an EMCCD sensor working in the full vertical binning mode (FVB) as a spectra detector. Under controlled conditions, both dark signals and left hand UPE were acquired by registering the UPE intensity at different selected wavelengths (400, 450, 500, 550, 600, 650, and 700 nm) during a period of 10 min each. Then, spurious signals were filtered out by ignoring the pixels whose values were clearly outside of the Gaussian distribution, and the dark signal was subtracted from the subject hand signal. The stepped spectrum with a peak of approximately 880 photons at 500 nm had a shape that agreed somewhat with previous reports, and agrees with previous UPE research that reported UPE from 420 to 570 nm, or 260 to 800 nm, with a range from 1 to 1000 photons s -1 cm -2 . Obtaining the spectral distribution instead of the total intensity of the UPE represents a step forward in this field, as it may provide extra information about a subject's personal states and relationship with ROS. A new generation of CCD sensors with lower dark signals, and spectrographs with a more uniform spectral transmittance, will open up new possibilities for configuring measuring systems in portable formats.

  2. Cloud detection method for Chinese moderate high resolution satellite imagery (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhong, Bo; Chen, Wuhan; Wu, Shanlong; Liu, Qinhuo

    2016-10-01

    Cloud detection of satellite imagery is very important for quantitative remote sensing research and remote sensing applications. However, many satellite sensors don't have enough bands for a quick, accurate, and simple detection of clouds. Particularly, the newly launched moderate to high spatial resolution satellite sensors of China, such as the charge-coupled device on-board the Chinese Huan Jing 1 (HJ-1/CCD) and the wide field of view (WFV) sensor on-board the Gao Fen 1 (GF-1), only have four available bands including blue, green, red, and near infrared bands, which are far from the requirements of most could detection methods. In order to solve this problem, an improved and automated cloud detection method for Chinese satellite sensors called OCM (Object oriented Cloud and cloud-shadow Matching method) is presented in this paper. It firstly modified the Automatic Cloud Cover Assessment (ACCA) method, which was developed for Landsat-7 data, to get an initial cloud map. The modified ACCA method is mainly based on threshold and different threshold setting produces different cloud map. Subsequently, a strict threshold is used to produce a cloud map with high confidence and large amount of cloud omission and a loose threshold is used to produce a cloud map with low confidence and large amount of commission. Secondly, a corresponding cloud-shadow map is also produced using the threshold of near-infrared band. Thirdly, the cloud maps and cloud-shadow map are transferred to cloud objects and cloud-shadow objects. Cloud and cloud-shadow are usually in pairs; consequently, the final cloud and cloud-shadow maps are made based on the relationship between cloud and cloud-shadow objects. OCM method was tested using almost 200 HJ-1/CCD images across China and the overall accuracy of cloud detection is close to 90%.

  3. Intelligent imaging systems for automotive applications

    NASA Astrophysics Data System (ADS)

    Thompson, Chris; Huang, Yingping; Fu, Shan

    2004-03-01

    In common with many other application areas, visual signals are becoming an increasingly important information source for many automotive applications. For several years CCD cameras have been used as research tools for a range of automotive applications. Infrared cameras, RADAR and LIDAR are other types of imaging sensors that have also been widely investigated for use in cars. This paper will describe work in this field performed in C2VIP over the last decade - starting with Night Vision Systems and looking at various other Advanced Driver Assistance Systems. Emerging from this experience, we make the following observations which are crucial for "intelligent" imaging systems: 1. Careful arrangement of sensor array. 2. Dynamic-Self-Calibration. 3. Networking and processing. 4. Fusion with other imaging sensors, both at the image level and the feature level, provides much more flexibility and reliability in complex situations. We will discuss how these problems can be addressed and what are the outstanding issues.

  4. Attitude determination for high-accuracy submicroradian jitter pointing on space-based platforms

    NASA Astrophysics Data System (ADS)

    Gupta, Avanindra A.; van Houten, Charles N.; Germann, Lawrence M.

    1990-10-01

    A description of the requirement definition process is given for a new wideband attitude determination subsystem (ADS) for image motion compensation (IMC) systems. The subsystem consists of either lateral accelerometers functioning in differential pairs or gas-bearing gyros for high-frequency sensors using CCD-based star trackers for low-frequency sensors. To minimize error the sensor signals are combined so that the mixing filter does not allow phase distortion. The two ADS models are introduced in an IMC simulation to predict measurement error, correction capability, and residual image jitter for a variety of system parameters. The IMC three-axis testbed is utilized to simulate an incoming beam in inertial space. Results demonstrate that both mechanical and electronic IMC meet the requirements of image stabilization for space-based observation at submicroradian-jitter levels. Currently available technology may be employed to implement IMC systems.

  5. Honeywell's Compact, Wide-angle Uv-visible Imaging Sensor

    NASA Technical Reports Server (NTRS)

    Pledger, D.; Billing-Ross, J.

    1993-01-01

    Honeywell is currently developing the Earth Reference Attitude Determination System (ERADS). ERADS determines attitude by imaging the entire Earth's limb and a ring of the adjacent star field in the 2800-3000 A band of the ultraviolet. This is achieved through the use of a highly nonconventional optical system, an intensifier tube, and a mega-element CCD array. The optics image a 30 degree region in the center of the field, and an outer region typically from 128 to 148 degrees, which can be adjusted up to 180 degrees. Because of the design employed, the illumination at the outer edge of the field is only some 15 percent below that at the center, in contrast to the drastic rolloffs encountered in conventional wide-angle sensors. The outer diameter of the sensor is only 3 in; the volume and weight of the entire system, including processor, are 1000 cc and 6 kg, respectively.

  6. Sensor system development for the WSO-UV (World Space Observatory-Ultraviolet) space-based astronomical telescope

    NASA Astrophysics Data System (ADS)

    Hayes-Thakore, Chris; Spark, Stephen; Pool, Peter; Walker, Andrew; Clapp, Matthew; Waltham, Nick; Shugarov, Andrey

    2015-10-01

    As part of a strategy to provide increasingly complex systems to customers, e2v is currently developing the sensor solution for focal plane array for the WSO-UV (World Space Observatory - Ultraviolet) programme, a Russian led 170 cm space astronomical telescope. This is a fully integrated sensor system for the detection of UV light across 3 channels: 2 high resolution spectrometers covering wavelengths of 115 - 176 nm and 174 - 310 nm and a Long-Slit Spectrometer covering 115 nm - 310 nm. This paper will describe the systematic approach and technical solution that has been developed based on e2v's long heritage, CCD experience and expertise. It will show how this approach is consistent with the key performance requirements and the overall environment requirements that the delivered system will experience through ground test, integration, storage and flight.

  7. Miss-distance indicator for tank main gun systems

    NASA Astrophysics Data System (ADS)

    Bornstein, Jonathan A.; Hillis, David B.

    1994-07-01

    The initial development of a passive, automated system to track bullet trajectories near a target to determine the `miss distance,' and the corresponding correction necessary to bring the following round `on target' is discussed. The system consists of a visible wavelength CCD sensor, long focal length optics, and a separate IR sensor to detect the muzzle flash of the firing event; this is coupled to a `PC' based image processing and automatic tracking system designed to follow the projectile trajectory by intelligently comparing frame to frame variation of the projectile tracer image. An error analysis indicates that the device is particularly sensitive to variation of the projectile time of flight to the target, and requires development of algorithms to estimate this value from the 2D images employed by the sensor to monitor the projectile trajectory. Initial results obtained by using a brassboard prototype to track training ammunition are promising.

  8. 64 x 64 thresholding photodetector array for optical pattern recognition

    NASA Astrophysics Data System (ADS)

    Langenbacher, Harry; Chao, Tien-Hsin; Shaw, Timothy; Yu, Jeffrey W.

    1993-10-01

    A high performance 32 X 32 peak detector array is introduced. This detector consists of a 32 X 32 array of thresholding photo-transistor cells, manufactured with a standard MOSIS digital 2-micron CMOS process. A built-in thresholding function that is able to perform 1024 thresholding operations in parallel strongly distinguishes this chip from available CCD detectors. This high speed detector offers responses from one to 10 milliseconds that is much higher than the commercially available CCD detectors operating at a TV frame rate. The parallel multiple peaks thresholding detection capability makes it particularly suitable for optical correlator and optoelectronically implemented neural networks. The principle of operation, circuit design and the performance characteristics are described. Experimental demonstration of correlation peak detection is also provided. Recently, we have also designed and built an advanced version of a 64 X 64 thresholding photodetector array chip. Experimental investigation of using this chip for pattern recognition is ongoing.

  9. Taking the Observatory to the Astronomer

    NASA Astrophysics Data System (ADS)

    Bisque, T. M.

    1997-05-01

    Since 1992, Software Bisque's Remote Astronomy Software has been used by the Mt. Wilson Institute to allow interactive control of a 24" telescope and digital camera via modem. Software Bisque now introduces a comparable, relatively low-cost observatory system that allows powerful, yet "user-friendly" telescope and CCD camera control via the Internet. Utilizing software developed for the Windows 95/NT operating systems, the system offers point-and-click access to comprehensive celestial databases, extremely accurate telescope pointing, rapid download of digital CCD images by one or many users and flexible image processing software for data reduction and analysis. Our presentation will describe how the power of the personal computer has been leveraged to provide professional-level tools to the amateur astronomer, and include a description of this system's software and hardware components. The system software includes TheSky Astronomy Software?, CCDSoft CCD Astronomy Software?, TPoint Telescope Pointing Analysis System? software, Orchestrate? and, optionally, the RealSky CDs. The system hardware includes the Paramount GT-1100? Robotic Telescope Mount, as well as third party CCD cameras, focusers and optical tube assemblies.

  10. Honey Bee Colonies Remote Monitoring System.

    PubMed

    Gil-Lebrero, Sergio; Quiles-Latorre, Francisco Javier; Ortiz-López, Manuel; Sánchez-Ruiz, Víctor; Gámiz-López, Victoria; Luna-Rodríguez, Juan Jesús

    2016-12-29

    Bees are very important for terrestrial ecosystems and, above all, for the subsistence of many crops, due to their ability to pollinate flowers. Currently, the honey bee populations are decreasing due to colony collapse disorder (CCD). The reasons for CCD are not fully known, and as a result, it is essential to obtain all possible information on the environmental conditions surrounding the beehives. On the other hand, it is important to carry out such information gathering as non-intrusively as possible to avoid modifying the bees' work conditions and to obtain more reliable data. We designed a wireless-sensor networks meet these requirements. We designed a remote monitoring system (called WBee) based on a hierarchical three-level model formed by the wireless node, a local data server, and a cloud data server. WBee is a low-cost, fully scalable, easily deployable system with regard to the number and types of sensors and the number of hives and their geographical distribution. WBee saves the data in each of the levels if there are failures in communication. In addition, the nodes include a backup battery, which allows for further data acquisition and storage in the event of a power outage. Unlike other systems that monitor a single point of a hive, the system we present monitors and stores the temperature and relative humidity of the beehive in three different spots. Additionally, the hive is continuously weighed on a weighing scale. Real-time weight measurement is an innovation in wireless beehive-monitoring systems. We designed an adaptation board to facilitate the connection of the sensors to the node. Through the Internet, researchers and beekeepers can access the cloud data server to find out the condition of their hives in real time.

  11. A fast double shutter for CCD-based metrology

    NASA Astrophysics Data System (ADS)

    Geisler, R.

    2017-02-01

    Image based metrology such as Particle Image Velocimetry (PIV) depends on the comparison of two images of an object taken in fast succession. Cameras for these applications provide the so-called `double shutter' mode: One frame is captured with a short exposure time and in direct succession a second frame with a long exposure time can be recorded. The difference in the exposure times is typically no problem since illumination is provided by a pulsed light source such as a laser and the measurements are performed in a darkened environment to prevent ambient light from accumulating in the long second exposure time. However, measurements of self-luminous processes (e.g. plasma, combustion ...) as well as experiments in ambient light are difficult to perform and require special equipment (external shutters, highspeed image sensors, multi-sensor systems ...). Unfortunately, all these methods incorporate different drawbacks such as reduced resolution, degraded image quality, decreased light sensitivity or increased susceptibility to decalibration. In the solution presented here, off-the-shelf CCD sensors are used with a special timing to combine neighbouring pixels in a binning-like way. As a result, two frames of short exposure time can be captured in fast succession. They are stored in the on-chip vertical register in a line-interleaved pattern, read out in the common way and separated again by software. The two resultant frames are completely congruent; they expose no insensitive lines or line shifts and thus enable sub-pixel accurate measurements. A third frame can be captured at the full resolution analogue to the double shutter technique. Image based measurement techniques such as PIV can benefit from this mode when applied in bright environments. The third frame is useful e.g. for acceleration measurements or for particle tracking applications.

  12. Honey Bee Colonies Remote Monitoring System

    PubMed Central

    Gil-Lebrero, Sergio; Quiles-Latorre, Francisco Javier; Ortiz-López, Manuel; Sánchez-Ruiz, Víctor; Gámiz-López, Victoria; Luna-Rodríguez, Juan Jesús

    2016-01-01

    Bees are very important for terrestrial ecosystems and, above all, for the subsistence of many crops, due to their ability to pollinate flowers. Currently, the honey bee populations are decreasing due to colony collapse disorder (CCD). The reasons for CCD are not fully known, and as a result, it is essential to obtain all possible information on the environmental conditions surrounding the beehives. On the other hand, it is important to carry out such information gathering as non-intrusively as possible to avoid modifying the bees’ work conditions and to obtain more reliable data. We designed a wireless-sensor networks meet these requirements. We designed a remote monitoring system (called WBee) based on a hierarchical three-level model formed by the wireless node, a local data server, and a cloud data server. WBee is a low-cost, fully scalable, easily deployable system with regard to the number and types of sensors and the number of hives and their geographical distribution. WBee saves the data in each of the levels if there are failures in communication. In addition, the nodes include a backup battery, which allows for further data acquisition and storage in the event of a power outage. Unlike other systems that monitor a single point of a hive, the system we present monitors and stores the temperature and relative humidity of the beehive in three different spots. Additionally, the hive is continuously weighed on a weighing scale. Real-time weight measurement is an innovation in wireless beehive—monitoring systems. We designed an adaptation board to facilitate the connection of the sensors to the node. Through the Internet, researchers and beekeepers can access the cloud data server to find out the condition of their hives in real time. PMID:28036061

  13. Scientific grade CCDs from EG & G Reticon

    NASA Technical Reports Server (NTRS)

    Cizdziel, Philip J.

    1990-01-01

    The design and performance of three scientific grade CCDs are summarized: a 1200 x 400 astronomical array of 27 x 27 sq micron pixels, a 512 x 512 scientific array of 27 x 27 sq micron pixels and a 404 x 64 VNIR array of 52 x 52 sq micron pixels. Each of the arrays is fabricated using a four phase, double poly, buried n-channel, multi-pinned phase CCD process. Performance data for each sensor is presented.

  14. Imaging Sensor Development for Scattering Atmospheres.

    DTIC Science & Technology

    1983-03-01

    subtracted out- put from a CCD imaging detector for a single frame can be written as A _ S (2-22) V B + B{ shot noise thermal noise , dark current shot ...addition, the spectral re- sponses of current devices are limited to the visible region and their sensitivities are not very high. Solid state detectors ...are generally much more sensitive than spatial light modulators, and some (e.g., HgCdTe detectors ) can re- spond up to the 10 um region. Several

  15. An Underwater Target Detection System for Electro-Optical Imagery Data

    DTIC Science & Technology

    2010-06-01

    detection and segmentation of underwater mine-like objects in the EO images captured with a CCD-based image sensor. The main focus of this research is to...develop a robust detection algorithm that can be used to detect low contrast and partial underwater objects from the EO imagery with low false alarm rate...underwater target detection I. INTRODUCTION Automatic detection and recognition of underwater objects from EO imagery poses a serious challenge due to poor

  16. Silver-choline chloride modified graphene oxide: Novel nano-bioelectrochemical sensor for celecoxib detection and CCD-RSM model.

    PubMed

    Parsaee, Zohreh; Karachi, Nima; Abrishamifar, Seyyed Milad; Kahkha, Mohammad Reza Rezaei; Razavi, Razieh

    2018-07-01

    In this study, silver nanoparticles modified choline chloride functionalized graphene oxide (AgNPs-ChCl-GO) was synthesized using sonochemical method and utilized as a bioelectrochemical sensor for detection of celecoxib (CEL). The characterization studies were ultimately performed in order to acheive a more complete understanding of the morphological and structural features of the AgNPs-ChCl-GO using different techniques including FT-IR, AFM, FE-SEM, EDX, and XRD. AgNPs-ChCl-GO demonstrated a significant improvement in the reduction activity of CEL due to the enhancement in the current response compared to the bare carbon paste electrode (CPE). The optimum experimental conditions, were optimized using central composite design (CCD) methodology. The differential pulse voltammetry (DPVs) showed an expanded linear dynamic ranges of 9.6 × 10 -9 -7.4 × 10 -7  M for celecoxib in Britton-Robinson buffer in pH 5.0 with. LOD (S/N = 3) and LOQ (S/N = 10) were obtained 2.51 × 10 -9  M and 6.58 × 10 -9  M respectively. AgNPs-ChCl-GO-carbon paste electrode exhibited suitable properties and high accuracy determination of celecoxib in the human plasma sample. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. The CTIO Acquisition CCD-TV camera design

    NASA Astrophysics Data System (ADS)

    Schmidt, Ricardo E.

    1990-07-01

    A CCD-based Acquisition TV Camera has been developed at CTIO to replace the existing ISIT units. In a 60 second exposure, the new Camera shows a sixfold improvement in sensitivity over an ISIT used with a Leaky Memory. Integration times can be varied over a 0.5 to 64 second range. The CCD, contained in an evacuated enclosure, is operated at -45 C. Only the image section, an area of 8.5 mm x 6.4 mm, gets exposed to light. Pixel size is 22 microns and either no binning or 2 x 2 binning can be selected. The typical readout rates used vary between 3.5 and 9 microseconds/pixel. Images are stored in a PC/XT/AT, which generates RS-170 video. The contrast in the RS-170 frames is automatically enhanced by the software.

  18. An Experimental Optical Three-axis Tactile Sensor Featured with Hemispherical Surface

    NASA Astrophysics Data System (ADS)

    Ohka, Masahiro; Kobayashi, Hiroaki; Takata, Jumpei; Mitsuya, Yasunaga

    We are developing an optical three-axis tactile sensor capable of acquiring normal and shearing force to mount on a robotic finger. The tactile sensor is based on the principle of an optical waveguide-type tactile sensor, which is composed of an acrylic hemispherical dome, a light source, an array of rubber sensing elements, and a CCD camera. The sensing element of the silicone rubber comprises one columnar feeler and eight conical feelers. The contact areas of the conical feelers, which maintain contact with the acrylic dome, detect the three-axis force applied to the tip of the sensing element. Normal and shearing forces are then calculated from integration and centroid displacement of the grayscale value derived from the conical feeler's contacts. To evaluate the present tactile sensor, we conducted a series of experiments using an x-z stage, a rotational stage, and a force gauge. Although we discovered that the relationship between the integrated grayscale value and normal force depends on the sensor's latitude on the hemispherical surface, it is easy to modify the sensitivity based on the latitude to make the centroid displacement of the grayscale value proportional to the shearing force. When we examined the repeatability of the present tactile sensor with 1,000 load/unload cycles, the error was 2%.

  19. C2D8: An eight channel CCD readout electronics dedicated to low energy neutron detection

    NASA Astrophysics Data System (ADS)

    Bourrion, O.; Clement, B.; Tourres, D.; Pignol, G.; Xi, Y.; Rebreyend, D.; Nesvizhevsky, V. V.

    2018-02-01

    Position-sensitive detectors for cold and ultra-cold neutrons (UCN) are in use in fundamental research. In particular, measuring the properties of the quantum states of bouncing neutrons requires micro-metric spatial resolution. To this end, a Charge Coupled Device (CCD) coated with a thin conversion layer that allows a real time detection of neutron hits is under development at LPSC. In this paper, we present the design and performance of a dedicated electronic board designed to read-out eight CCDs simultaneously and operating under vacuum.

  20. New optical nova candidate in the M 31 disk

    NASA Astrophysics Data System (ADS)

    Henze, M.; Sala, G.; Jose, J.; Figueira, J.; Hernanz, M.; Pietsch, W.,

    2014-07-01

    We report the discovery of a possible nova in the disk of M 31 on two 4x200s stacked R filter CCD images, obtained with the the 80 cm Ritchey-Chretien F/9.6 Joan Oro telescope at Observatori Astronomic del Montsec, owned by the Catalan Government and operated by the Institut d'Estudis Espacials de Catalunya, Spain, using a Finger Lakes PL4240-1-BI CCD Camera (with a Class 1 Basic Broadband coated 2k x 2k chip with 13.5 microns sq.

  1. A New Serial-direction Trail Effect in CCD Images of the Lunar-based Ultraviolet Telescope

    NASA Astrophysics Data System (ADS)

    Wu, C.; Deng, J. S.; Guyonnet, A.; Antilogus, P.; Cao, L.; Cai, H. B.; Meng, X. M.; Han, X. H.; Qiu, Y. L.; Wang, J.; Wang, S.; Wei, J. Y.; Xin, L. P.; Li, G. W.

    2016-10-01

    Unexpected trails have been seen subsequent to relative bright sources in astronomical images taken with the CCD camera of the Lunar-based Ultraviolet Telescope (LUT) since its first light on the Moon’s surface. The trails can only be found in the serial-direction of CCD readout, differing themselves from image trails of radiation-damaged space-borne CCDs, which usually appear in the parallel-readout direction. After analyzing the same trail defects following warm pixels (WPs) in dark frames, we found that the relative intensity profile of the LUT CCD trails can be expressed as an exponential function of the distance i (in number of pixels) of the trailing pixel to the original source (or WP), i.e., {\\mathtt{\\exp }}(α {\\mathtt{i}}+β ). The parameters α and β seem to be independent of the CCD temperature, intensity of the source (or WP), and its position in the CCD frame. The main trail characteristics show evolution occurring at an increase rate of ˜(7.3 ± 3.6) × 10-4 in the first two operation years. The trails affect the consistency of the profiles of different brightness sources, which make smaller aperture photometry have larger extra systematic error. The astrometric uncertainty caused by the trails is too small to be acceptable based on LUT requirements for astrometry accuracy. Based on the empirical profile model, a correction method has been developed for LUT images that works well for restoring the fluxes of astronomical sources that are lost in trailing pixels.

  2. Solution processed integrated pixel element for an imaging device

    NASA Astrophysics Data System (ADS)

    Swathi, K.; Narayan, K. S.

    2016-09-01

    We demonstrate the implementation of a solid state circuit/structure comprising of a high performing polymer field effect transistor (PFET) utilizing an oxide layer in conjunction with a self-assembled monolayer (SAM) as the dielectric and a bulk-heterostructure based organic photodiode as a CMOS-like pixel element for an imaging sensor. Practical usage of functional organic photon detectors requires on chip components for image capture and signal transfer as in the CMOS/CCD architecture rather than simple photodiode arrays in order to increase speed and sensitivity of the sensor. The availability of high performing PFETs with low operating voltage and photodiodes with high sensitivity provides the necessary prerequisite to implement a CMOS type image sensing device structure based on organic electronic devices. Solution processing routes in organic electronics offers relatively facile procedures to integrate these components, combined with unique features of large-area, form factor and multiple optical attributes. We utilize the inherent property of a binary mixture in a blend to phase-separate vertically and create a graded junction for effective photocurrent response. The implemented design enables photocharge generation along with on chip charge to voltage conversion with performance parameters comparable to traditional counterparts. Charge integration analysis for the passive pixel element using 2D TCAD simulations is also presented to evaluate the different processes that take place in the monolithic structure.

  3. Optical Observation, Image-processing, and Detection of Space Debris in Geosynchronous Earth Orbit

    NASA Astrophysics Data System (ADS)

    Oda, H.; Yanagisawa, T.; Kurosaki, H.; Tagawa, M.

    2014-09-01

    We report on optical observations and an efficient detection method of space debris in the geosynchronous Earth orbit (GEO). We operate our new Australia Remote Observatory (ARO) where an 18 cm optical telescope with a charged-coupled device (CCD) camera covering a 3.14-degree field of view is used for GEO debris survey, and analyse datasets of successive CCD images using the line detection method (Yanagisawa and Nakajima 2005). In our operation, the exposure time of each CCD image is set to be 3 seconds (or 5 seconds), and the time interval of CCD shutter open is about 4.7 seconds (or 6.7 seconds). In the line detection method, a sufficient number of sample objects are taken from each image based on their shape and intensity, which includes not only faint signals but also background noise (we take 500 sample objects from each image in this paper). Then we search a sequence of sample objects aligning in a straight line in the successive images to exclude the noise sample. We succeed in detecting faint signals (down to about 1.8 sigma of background noise) by applying the line detection method to 18 CCD images. As a result, we detected about 300 GEO objects up to magnitude of 15.5 among 5 nights data. We also calculate orbits of objects detected using the Simplified General Perturbations Satellite Orbit Model 4(SGP4), and identify the objects listed in the two-line-element (TLE) data catalogue publicly provided by the U.S. Strategic Command (USSTRATCOM). We found that a certain amount of our detections are new objects that are not contained in the catalogue. We conclude that our ARO and detection method posse a high efficiency detection of GEO objects despite the use of comparatively-inexpensive observation and analysis system. We also describe the image-processing specialized for the detection of GEO objects (not for usual astronomical objects like stars) in this paper.

  4. Satellite observations and modeling of oil spill trajectories in the Bohai Sea.

    PubMed

    Xu, Qing; Li, Xiaofeng; Wei, Yongliang; Tang, Zeyan; Cheng, Yongcun; Pichel, William G

    2013-06-15

    On June 4 and 17, 2011, separate oil spill accidents occurred at two oil platforms in the Bohai Sea, China. The oil spills were subsequently observed on different types of satellite images including SAR (Synthetic Aperture Radar), Chinese HJ-1-B CCD and NASA MODIS. To illustrate the fate of the oil spills, we performed two numerical simulations to simulate the trajectories of the oil spills with the GNOME (General NOAA Operational Modeling Environment) model. For the first time, we drive the GNOME with currents obtained from an operational ocean model (NCOM, Navy Coastal Ocean Model) and surface winds from operational scatterometer measurements (ASCAT, the Advanced Scatterometer). Both data sets are freely and openly available. The initial oil spill location inputs to the model are based on the detected oil spill locations from the SAR images acquired on June 11 and 14. Three oil slicks are tracked simultaneously and our results show good agreement between model simulations and subsequent satellite observations in the semi-enclosed shallow sea. Moreover, GNOME simulation shows that the number of 'splots', which denotes the extent of spilled oil, is a vital factor for GNOME running stability when the number is less than 500. Therefore, oil spill area information obtained from satellite sensors, especially SAR, is an important factor for setting up the initial model conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Evaluation on Radiometric Capability of Chinese Optical Satellite Sensors.

    PubMed

    Yang, Aixia; Zhong, Bo; Wu, Shanlong; Liu, Qinhuo

    2017-01-22

    The radiometric capability of on-orbit sensors should be updated on time due to changes induced by space environmental factors and instrument aging. Some sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS), have onboard calibrators, which enable real-time calibration. However, most Chinese remote sensing satellite sensors lack onboard calibrators. Their radiometric calibrations have been updated once a year based on a vicarious calibration procedure, which has affected the applications of the data. Therefore, a full evaluation of the sensors' radiometric capabilities is essential before quantitative applications can be made. In this study, a comprehensive procedure for evaluating the radiometric capability of several Chinese optical satellite sensors is proposed. In this procedure, long-term radiometric stability and radiometric accuracy are the two major indicators for radiometric evaluation. The radiometric temporal stability is analyzed by the tendency of long-term top-of-atmosphere (TOA) reflectance variation; the radiometric accuracy is determined by comparison with the TOA reflectance from MODIS after spectrally matching. Three Chinese sensors including the Charge-Coupled Device (CCD) camera onboard Huan Jing 1 satellite (HJ-1), as well as the Visible and Infrared Radiometer (VIRR) and Medium-Resolution Spectral Imager (MERSI) onboard the Feng Yun 3 satellite (FY-3) are evaluated in reflective bands based on this procedure. The results are reasonable, and thus can provide reliable reference for the sensors' application, and as such will promote the development of Chinese satellite data.

  6. MMW/THz imaging using upconversion to visible, based on glow discharge detector array and CCD camera

    NASA Astrophysics Data System (ADS)

    Aharon, Avihai; Rozban, Daniel; Abramovich, Amir; Yitzhaky, Yitzhak; Kopeika, Natan S.

    2017-10-01

    An inexpensive upconverting MMW/THz imaging method is suggested here. The method is based on glow discharge detector (GDD) and silicon photodiode or simple CCD/CMOS camera. The GDD was previously found to be an excellent room-temperature MMW radiation detector by measuring its electrical current. The GDD is very inexpensive and it is advantageous due to its wide dynamic range, broad spectral range, room temperature operation, immunity to high power radiation, and more. An upconversion method is demonstrated here, which is based on measuring the visual light emitting from the GDD rather than its electrical current. The experimental setup simulates a setup that composed of a GDD array, MMW source, and a basic CCD/CMOS camera. The visual light emitting from the GDD array is directed to the CCD/CMOS camera and the change in the GDD light is measured using image processing algorithms. The combination of CMOS camera and GDD focal plane arrays can yield a faster, more sensitive, and very inexpensive MMW/THz camera, eliminating the complexity of the electronic circuits and the internal electronic noise of the GDD. Furthermore, three dimensional imaging systems based on scanning prohibited real time operation of such imaging systems. This is easily solved and is economically feasible using a GDD array. This array will enable us to acquire information on distance and magnitude from all the GDD pixels in the array simultaneously. The 3D image can be obtained using methods like frequency modulation continuous wave (FMCW) direct chirp modulation, and measuring the time of flight (TOF).

  7. The superiority of L3-CCDs in the high-flux and wide dynamic range regimes

    NASA Astrophysics Data System (ADS)

    Butler, Raymond F.; Sheehan, Brendan J.

    2008-02-01

    Low Light Level CCD (L3-CCD) cameras have received much attention for high cadence astronomical imaging applications. Efforts to date have concentrated on exploiting them for two scenarios: post-exposure image sharpening and ``lucky imaging'', and rapid variability in astrophysically interesting sources. We demonstrate their marked superiority in a third distinct scenario: observing in the high-flux and wide dynamic range regimes. We realized that the unique features of L3-CCDs would make them ideal for maximizing signal-to-noise in observations of bright objects (whether variable or not), and for high dynamic range scenarios such as faint targets embedded in a crowded field of bright objects. Conventional CCDs have drawbacks in such regimes, due to a poor duty cycle-the combination of short exposure times (for time-series sampling or to avoid saturation) and extended readout times (for minimizing readout noise). For different telescope sizes, we use detailed models to show that a range of conventional imaging systems are photometrically out-performed across a wide range of object brightness, once the operational parameters of the L3-CCD are carefully set. The cross-over fluxes, above which the L3-CCD is operationally superior, are surprisingly faint-even for modest telescope apertures. We also show that the use of L3-CCDs is the optimum strategy for minimizing atmospheric scintillation noise in photometric observations employing a given telescope aperture. This is particularly significant, since scintillation can be the largest source of error in timeseries photometry. These results should prompt a new direction in developing imaging instrumentation solutions for observatories.

  8. Investigation of crack initiation with a three color digital holographic interferometer

    NASA Astrophysics Data System (ADS)

    Karray, Mayssa; Poilane, Christophe; Mounier, Denis; Gargoury, Mohamed; Picart, Pascal

    2012-10-01

    This paper proposes a three-color holographic interferometer devoted to the deformation analysis of a composite material submitted to a short beam shear test. The simultaneous recording of three laser wavelengths using a triple CCD sensor results in the evaluation of shear strains at the lateral surface of the sample. Such an evaluation provides a pertinent parameter to detect premature crack in the structure, long before it becomes visible on the real time stress/strain curve, or with a classical microscope.

  9. Filtered Rayleigh Scattering Measurements in a Buoyant Flowfield

    DTIC Science & Technology

    2007-03-01

    common filter used in FRS applications . Iodine is more attractive than mercury to use in a filter due to its broader range of blocking and transmission...is a 4032x2688 pixel camera with a monochrome or colored CCD imaging sensor. The binning range of the camera is (HxV) 1x1 to 2x8. The manufacturer...center position of the jet of the time averaged image . The z center position is chosen so that it is the average z value bounding helium

  10. A Web-Remote/Robotic/Scheduled Astronomical Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Denny, Robert

    2011-03-01

    Traditionally, remote/robotic observatory operating systems have been custom made for each observatory. While data reduction pipelines need to be tailored for each investigation, the data acquisition process (especially for stare-mode optical images) is often quite similar across investigations. Since 1999, DC-3 Dreams has focused on providing and supporting a remote/robotic observatory operating system which can be adapted to a wide variety of physical hardware and optics while achieving the highest practical observing efficiency and safe/secure web browser user controls. ACP Expert consists of three main subsystems: (1) a robotic list-driven data acquisition engine which controls all aspects of the observatory, (2) a constraint-driven dispatch scheduler with a long-term database of requests, and (3) a built-in "zero admin" web server and dynamic web pages which provide a remote capability for immediate execution and monitoring as well as entry and monitoring of dispatch-scheduled observing requests. No remote desktop login is necessary for observing, thus keeping the system safe and consistent. All routine operation is via the web browser. A wide variety of telescope mounts, CCD imagers, guiding sensors, filter selectors, focusers, instrument-package rotators, weather sensors, and dome control systems are supported via the ASCOM standardized device driver architecture. The system is most commonly employed on commercial 1-meter and smaller observatories used by universities and advanced amateurs for both science and art. One current project, the AAVSO Photometric All-Sky Survey (APASS), uses ACP Expert to acquire large volumes of data in dispatch-scheduled mode. In its first 18 months of operation (North then South), 40,307 sky images were acquired in 117 photometric nights, resulting in 12,107,135 stars detected two or more times. These stars had measures in 5 filters. The northern station covered 754 fields (6446 square degrees) at least twice, the southern station covered 951 fields (8500 square degrees) at least twice. The database of photometric calibrations is available from AAVSO. The paper will cover the ACP web interface, including the use of AJAX and JSON within a micro-content framework, as well as dispatch scheduler and acquisition engine operation.

  11. Intra-cavity upconversion to 631 nm of images illuminated by an eye-safe ASE source at 1550 nm.

    PubMed

    Torregrosa, A J; Maestre, H; Capmany, J

    2015-11-15

    We report an image wavelength upconversion system. The system mixes an incoming image at around 1550 nm (eye-safe region) illuminated by an amplified spontaneous emission (ASE) fiber source with a Gaussian beam at 1064 nm generated in a continuous-wave diode-pumped Nd(3+):GdVO(4) laser. Mixing takes place in a periodically poled lithium niobate (PPLN) crystal placed intra-cavity. The upconverted image obtained by sum-frequency mixing falls around the 631 nm red spectral region, well within the spectral response of standard silicon focal plane array bi-dimensional sensors, commonly used in charge-coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) video cameras, and of most image intensifiers. The use of ASE illumination benefits from a noticeable increase in the field of view (FOV) that can be upconverted with regard to using coherent laser illumination. The upconverted power allows us to capture real-time video in a standard nonintensified CCD camera.

  12. Stare and chase of space debris targets using real-time derived pointing data

    NASA Astrophysics Data System (ADS)

    Steindorfer, Michael A.; Kirchner, Georg; Koidl, Franz; Wang, Peiyuan; Antón, Alfredo; Fernández Sánchez, Jaime; Merz, Klaus

    2017-09-01

    We successfully demonstrate Stare & Chase: Space debris laser ranging to uncooperative targets has been achieved without a priori knowledge of any orbital information. An analog astronomy CCD with a standard objective, piggyback mounted on our 50 cm Graz SLR receive telescope, 'stares' into the sky in a fixed direction. The CCD records the stellar background within a field of view of approx. 7°. From the stellar X/Y positions on the sensor a plate solving algorithm determines the pointing data of the image center with an accuracy of approx. 15 arc seconds. If a sunlit target passes through this field of view, its equatorial coordinates are calculated, stored and a Consolidated Prediction Format (CPF) file is created in near real time. The derived CPF data is used to start laser ranging ('chase' the object) within the same pass to retrieve highly accurate distance information. A comparison of Stare & Chase CPFs with standard TLE predictions shows the possibilities and limits of this method.

  13. Imaging of transient surface acoustic waves by full-field photorefractive interferometry.

    PubMed

    Xiong, Jichuan; Xu, Xiaodong; Glorieux, Christ; Matsuda, Osamu; Cheng, Liping

    2015-05-01

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz.

  14. Fringing in MonoCam Y4 filter images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, J.; Fisher-Levine, M.; Nomerotski, A.

    Here, we study the fringing patterns observed in MonoCam, a camera with a single Large Synoptic Survey Telescope (LSST) CCD sensor. Images were taken at the U.S. Naval Observatory in Flagstaff, Arizona (NOFS) employing its 1.3 m telescope and an LSST y4 filter. Fringing occurs due to the reflection of infrared light (700 nm or larger) from the bottom surface of the CCD which constructively or destructively interferes with the incident light to produce a net "fringe" pattern which is superimposed on all images taken. Emission lines from the atmosphere, dominated by hydroxyl (OH) spectra, can change in their relativemore » intensities as the night goes on, producing different fringe patterns in the images taken. We found through several methods that the general shape of the fringe patterns remained constant, though with slight changes in the amplitude and phase of the fringes. Lastly, we also found that a superposition of fringes from two monochromatic lines taken in the lab offered a reasonable description of the sky data.« less

  15. A study of astrometric distortions due to “tree rings” in CCD sensors using LSST Photon Simulator

    DOE PAGES

    Beamer, Benjamin; Nomerotski, Andrei; Tsybychev, Dmitri

    2015-05-22

    Imperfections in the production process of thick CCDs lead to circularly symmetric dopant concentration variations, which in turn produce electric fields transverse to the surface of the fully depleted CCD that displace the photogenerated charges. We use PhoSim, a Monte Carlo photon simulator, to explore and examine the likely impacts these dopant concentration variations will have on astrometric measurements in LSST. The scale and behavior of both the astrometric shifts imparted to point sources and the intensity variations in flat field images that result from these doping imperfections are similar to those previously observed in Dark Energy Camera CCDs, givingmore » initial confirmation of PhoSim's model for these effects. In addition, the organized shape distortions were observed as a result of the symmetric nature of these dopant variations, causing nominally round sources to be imparted with a measurable ellipticity either aligned with or transverse to the radial direction of this dopant variation pattern.« less

  16. Characterization and Processing of Non-Uniformities in Back-Illuminated CCDs

    NASA Astrophysics Data System (ADS)

    Lemm, Alia D.; Della-Rose, Devin J.; Maddocks, Sally

    2018-01-01

    In astronomical photometry, Charged Coupled Device (CCD) detectors are used to achieve high precision photometry and must be properly calibrated to correct for noise and pixel non-uniformities. Uncalibrated images may contain bias offset, dark current, bias structure and uneven illumination. In addition, standard data reduction is often not sufficient to “normalize” imagery to single-digit millimagnitude (mmag) precision. We are investigating an apparent non-uniformity, or interference pattern, in a back-illuminated sensor, the Alta U-47, attached to a DFM Engineering 41-cm Ritchey-Chrétien f/8 telescope. Based on the amplitude of this effect, we estimate that instrument magnitude peak-to-valley deviations of 50 mmag or more may result. Our initial testing strongly suggests that reflected skylight from high pressure sodium city lights may be the cause of this interference pattern. Our research goals are twofold: to fully characterize this non-uniformity and to determine the best method to remove this interference pattern from our reduced CCD images.

  17. Fringing in MonoCam Y4 filter images

    DOE PAGES

    Brooks, J.; Fisher-Levine, M.; Nomerotski, A.

    2017-05-05

    Here, we study the fringing patterns observed in MonoCam, a camera with a single Large Synoptic Survey Telescope (LSST) CCD sensor. Images were taken at the U.S. Naval Observatory in Flagstaff, Arizona (NOFS) employing its 1.3 m telescope and an LSST y4 filter. Fringing occurs due to the reflection of infrared light (700 nm or larger) from the bottom surface of the CCD which constructively or destructively interferes with the incident light to produce a net "fringe" pattern which is superimposed on all images taken. Emission lines from the atmosphere, dominated by hydroxyl (OH) spectra, can change in their relativemore » intensities as the night goes on, producing different fringe patterns in the images taken. We found through several methods that the general shape of the fringe patterns remained constant, though with slight changes in the amplitude and phase of the fringes. Lastly, we also found that a superposition of fringes from two monochromatic lines taken in the lab offered a reasonable description of the sky data.« less

  18. DQE analysis for CCD imaging arrays

    NASA Astrophysics Data System (ADS)

    Shaw, Rodney

    1997-05-01

    By consideration of the statistical interaction between exposure quanta and the mechanisms of image detection, the signal-to-noise limitations of a variety of image acquisition technologies are now well understood. However in spite of the growing fields of application for CCD imaging- arrays and the obvious advantages of their multi-level mode of quantum detection, only limited and largely empirical approaches have been made to quantify these advantages on an absolute basis. Here an extension is made of a previous model for noise-free sequential photon-counting to the more general case involving both count-noise and arbitrary separation functions between count levels. This allows a basic model to be developed for the DQE associated with devices which approximate to the CCD mode of operation, and conclusions to be made concerning the roles of the separation-function and count-noise in defining the departure from the ideal photon counter.

  19. Charged Coupled Device Debris Telescope Observations of the Geosynchronous Orbital Debris Environment - Observing Year: 1998

    NASA Technical Reports Server (NTRS)

    Jarvis, K. S.; Thumm, T. L.; Matney, M. J.; Jorgensen, K.; Stansbery, E. G.; Africano, J. L.; Sydney, P. F.; Mulrooney, M. K.

    2002-01-01

    NASA has been using the charged coupled device (CCD) debris telescope (CDT)--a transportable 32-cm Schmidt telescope located near Cloudcroft, New Mexico-to help characterize the debris environment in geosynchronous Earth orbit (GEO). The CDT is equipped with a SITe 512 x 512 CCD camera whose 24 m2 (12.5 arc sec) pixels produce a 1.7 x 1.7-deg field of view. The CDT system can therefore detect l7th-magnitude objects in a 20-sec integration corresponding to an approx. 0.6-m diameter, 0.20 albedo object at 36,000 km. The telescope pointing and CCD operation are computer controlled to collect data automatically for an entire night. The CDT has collected more than 1500 hrs of data since November 1997. This report describes the collection and analysis of 58 nights (approx. 420 hrs) of data acquired in 1998.

  20. Update on the Status of the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Hernandez, Svea; Aloisi, A.; Bostroem, K. A.; Cox, C.; Debes, J. H.; DiFelice, A.; Roman-Duval, J.; Hodge, P.; Holland, S.; Lindsay, K.; Lockwood, S. A.; Mason, E.; Oliveira, C. M.; Penton, S. V.; Proffitt, C. R.; Sonnentrucker, P.; Taylor, J. M.; Wheeler, T.

    2013-06-01

    The Space Telescope Imaging Spectrograph (STIS) has been on orbit for approximately 16 years as one of the 2nd generation instruments on the Hubble Space Telescope (HST). Its operations were interrupted by an electronics failure in 2004, but STIS was successfully repaired in May 2009 during Service Mission 4 (SM4) allowing it to resume science observations. The Instrument team continues to monitor its performance and work towards improving the quality of its products. Here we present updated information on the status of the FUV and NUV MAMA and the CCD detectors onboard STIS and describe recent changes to the STIS calibration pipeline. We also discuss the status of efforts to apply a pixel-based correction for charge transfer inefficiency (CTI) effects to STIS CCD data. These techniques show promise for ameliorating the effects of ongoing radiation damage on the quality of STIS CCD data.

  1. A compact multi-channel fluorescence sensor with ambient light suppression

    NASA Astrophysics Data System (ADS)

    Egly, Dominik; Geörg, Daniel; Rädle, Matthias; Beuermann, Thomas

    2012-03-01

    A multi-channel fluorescence sensor has been developed for process monitoring and fluorescence diagnostics. It comprises a fiber-optic set-up with an immersion probe and an intensity-modulated high power ultraviolet light-emitting diode as a light source for fluorescence excitation. By applying an electronic lock-in procedure, fluorescence signals are selectively detectable at ambient light levels of 1000 000 times higher intensity. The sensor was designed to be compact, low cost and easily adaptable to a wide field of application. The set-up was used to simultaneously monitor three important metabolic fluorophores: NAD(P)H, flavins and porphyrins during the cultivation of a baker's yeast. Moreover, the accumulation and degradation kinetics of protoporphyrin IX induced by 5-aminolevulinic acid on the skin could be recorded by the sensor. The detection limit for protoporphyrin IX was determined to be 4 × 10-11 mol L-1. The linear signal amplification of the sensor and time courses of fluorescence signals monitored during yeast fermentations were validated using a commercial CCD spectrometer. The robust and flexible set-up of the fiber-optic measurement system promises easy implementation of this non-invasive analytical tool to fluorescence monitoring and diagnostics in R&D and production.

  2. A new and highly selective turn-on fluorescent sensor with fast response time for the monitoring of cadmium ions in cosmetic, and health product samples

    NASA Astrophysics Data System (ADS)

    Khani, Rouhollah; Ghiamati, Ebrahim; Boroujerdi, Ramin; Rezaeifard, Abdolreza; Zaryabi, Mohadeseh Hosseinpour

    2016-06-01

    Cadmium (Cd) which is an extremely toxic could be found in many products like plastics, fossil fuel combustion, cosmetics, water resources, and wastewaters. It is capable of causing serious environmental and health problems such as lung, prostate, renal cancers and the other disorders. So, the development of a sensor to continually monitor cadmium is considerably demanding. Tetrakis(4-nitrophenyl)porphyrin, T(4-NO2-P)P, was synthesized and used as a new and highly selective fluorescent probe for monitoring cadmium ions in the "turn-on" mode. There was a linear relationship between fluorescence intensity and the concentration of Cd(II) in the range of 1.0 × 10- 6 to 1.0 × 10- 5 mol L- 1 with a detection limit of 0.276 μM. To examine the most important parameters involved and their interactions in the sensor optimization procedure, a four-factor central composite design (CCD) combined with response surface modeling (RSM) was implemented. The practical applicability of the developed sensor was investigated using real cosmetic, and personal care samples.

  3. The readout and control system of the mid-size telescope prototype of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Oya, I.; Anguner, O.; Behera, B.; Birsin, E.; Fuessling, M.; Melkumyan, D.; Schmidt, T.; Schwanke, U.; Sternberger, R.; Wegner, P.; Wiesand, S.; Cta Consortium,the

    2014-06-01

    The Cherenkov Telescope Array (CTA) is one of the major ground-based astronomy projects being pursued and will be the largest facility for ground-based y-ray observations ever built. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different type and size. A prototype for the Mid-Size Telescope (MST) with a diameter of 12 m has been installed in Berlin and is currently being commissioned. This prototype is composed of a mechanical structure, a drive system and mirror facets mounted with powered actuators to enable active control. Five Charge-Coupled Device (CCD) cameras, and a wide set of sensors allow the evaluation of the performance of the instrument. The design of the control software is following concepts and tools under evaluation within the CTA consortium in order to provide a realistic test-bed for the middleware: 1) The readout and control system for the MST prototype is implemented with the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) distributed control middleware; 2) the OPen Connectivity-Unified Architecture (OPC UA) is used for hardware access; 3) the document oriented MongoDB database is used for an efficient storage of CCD images, logging and alarm information: and 4) MySQL and MongoDB databases are used for archiving the slow control monitoring data and for storing the operation configuration parameters. In this contribution, the details of the implementation of the control system for the MST prototype telescope are described.

  4. The Mapping X-Ray Fluorescence Spectrometer (MAPX)

    NASA Technical Reports Server (NTRS)

    Blake, David; Sarrazin, Philippe; Bristow, Thomas; Downs, Robert; Gailhanou, Marc; Marchis, Franck; Ming, Douglas; Morris, Richard; Sole, Vincente Armando; Thompson, Kathleen; hide

    2016-01-01

    MapX will provide elemental imaging at =100 micron spatial resolution over 2.5 X 2.5 centimeter areas, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks. MapX is a full-frame spectroscopic imager positioned on soil or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample surface with X-rays or alpha-particles / gamma rays, resulting in sample X-ray Fluorescence (XRF). Fluoresced X-rays pass through an X-ray lens (X-ray µ-Pore Optic, "MPO") that projects a spatially resolved image of the X-rays onto a CCD. The CCD is operated in single photon counting mode so that the positions and energies of individual photons are retained. In a single analysis, several thousand frames are stored and processed. A MapX experiment provides elemental maps having a spatial resolution of =100 micron and quantitative XRF spectra from Regions of Interest (ROI) 2 centimers = x = 100 micron. ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. The MapX geometry is being refined with ray-tracing simulations and with synchrotron experiments at SLAC. Source requirements are being determined through Monte Carlo modeling and experiment using XMIMSIM [1], GEANT4 [2] and PyMca [3] and a dedicated XRF test fixture. A flow-down of requirements for both tube and radioisotope sources is being developed from these experiments. In addition to Mars lander and rover missions, MapX could be used for landed science on other airless bodies (Phobos/Deimos, Comet nucleus, asteroids, the Earth's moon, and the icy satellites of the outer planets, including Europa.

  5. Standardized Photometric Calibrations for Panchromatic SSA Sensors

    NASA Astrophysics Data System (ADS)

    Castro, P.; Payne, T.; Battle, A.; Cole, Z.; Moody, J.; Gregory, S.; Dao, P.

    2016-09-01

    Panchromatic sensors used for Space Situational Awareness (SSA) have no standardized method for transforming the net flux detected by a CCD without a spectral filter into an exo-atmospheric magnitude in a standard magnitude system. Each SSA data provider appears to have their own method for computing the visual magnitude based on panchromatic brightness making cross-comparisons impossible. We provide a procedure in order to standardize the calibration of panchromatic sensors for the purposes of SSA. A technique based on theoretical modeling is presented that derives standard panchromatic magnitudes from the Johnson-Cousins photometric system defined by Arlo Landolt. We verify this technique using observations of Landolt standard stars and a Vega-like star to determine empirical panchromatic magnitudes and compare these to synthetically derived panchromatic magnitudes. We also investigate color terms caused by differences in the quantum efficiency (QE) between the Landolt standard system and panchromatic systems. We evaluate calibrated panchromatic satellite photometry by observing several GEO satellites and standard stars using three different sensors. We explore the effect of satellite color terms by comparing the satellite signatures. In order to remove other variables affecting the satellite photometry, two of the sensors are at the same site using different CCDs. The third sensor is geographically separate from the first two allowing for a definitive test of calibrated panchromatic satellite photometry.

  6. A simple, low-cost, versatile CCD spectrometer for plasma spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Den Hartog, D. J.; Holly, D. J.

    1996-06-01

    The authors have constructed a simple, low-cost CCD spectrometer capable of both high resolution ({Delta}{lambda} {le} 0.015 nm) and large bandpass (110 nm with {Delta}{lambda} {approximately}0.3 nm). These two modes of operation provide two broad areas of capability for plasma spectroscopy. The first major application is measurement of emission line broadening; the second is emission line surveys from the ultraviolet to the near infrared. Measurements have been made on a low-temperature plasma produced by a miniature electrostatic plasma source and the high-temperature plasma in the MST Reversed-Field Pinch. The spectrometer is a modified Jarrell-Ash 0.5 m Ebert-Fastie monochromator. Light ismore » coupled into the entrance slit with a fused silica fiber optic bundle. The exposure time (2 ms minimum) is controlled by a fast electromechanical shutter. The exit plane detector is a compact and robust CCD detector developed for amateur astronomy by Santa Barbara Instrument Group. The CCD detector is controlled and read out by a Macintosh{reg_sign} computer. This spectrometer is sophisticated enough to serve well in a research laboratory, yet is simple and inexpensive enough to be affordable for instructional use.« less

  7. Signal detectability in diffusive media using phased arrays in conjunction with detector arrays.

    PubMed

    Kang, Dongyel; Kupinski, Matthew A

    2011-06-20

    We investigate Hotelling observer performance (i.e., signal detectability) of a phased array system for tasks of detecting small inhomogeneities and distinguishing adjacent abnormalities in uniform diffusive media. Unlike conventional phased array systems where a single detector is located on the interface between two sources, we consider a detector array, such as a CCD, on a phantom exit surface for calculating the Hotelling observer detectability. The signal detectability for adjacent small abnormalities (2 mm displacement) for the CCD-based phased array is related to the resolution of reconstructed images. Simulations show that acquiring high-dimensional data from a detector array in a phased array system dramatically improves the detectability for both tasks when compared to conventional single detector measurements, especially at low modulation frequencies. It is also observed in all studied cases that there exists the modulation frequency optimizing CCD-based phased array systems, where detectability for both tasks is consistently high. These results imply that the CCD-based phased array has the potential to achieve high resolution and signal detectability in tomographic diffusive imaging while operating at a very low modulation frequency. The effect of other configuration parameters, such as a detector pixel size, on the observer performance is also discussed.

  8. A merged pipe organ binary-analog correlator

    NASA Astrophysics Data System (ADS)

    Miller, R. S.; Berry, M. B.

    1982-02-01

    The design of a 96-stage, programmable binary-analog correlator is described. An array of charge coupled device (CCD) delay lines of differing lengths perform the delay and sum functions. Merging of several CCD channels is employed to reduce the active area. This device architecture allows simplified output detection while maintaining good device performance at higher speeds (5-10 MHz). Experimental results indicate a 50 dB broadband dynamic range and excellent agreement with the theoretical processing gain (19.8 dB) when operated at a 6 MHz sampling frequency as a p-n sequence matched filter.

  9. Sensory Interactive Teleoperator Robotic Grasping

    NASA Technical Reports Server (NTRS)

    Alark, Keli; Lumia, Ron

    1997-01-01

    As the technological world strives for efficiency, the need for economical equipment that increases operator proficiency in minimal time is fundamental. This system links a CCD camera, a controller and a robotic arm to a computer vision system to provide an alternative method of image analysis. The machine vision system which was employed possesses software tools for acquiring and analyzing images which are received through a CCD camera. After feature extraction on the object in the image was performed, information about the object's location, orientation and distance from the robotic gripper is sent to the robot controller so that the robot can manipulate the object.

  10. VizieR Online Data Catalog: Vi' LCs and RVs of the EB star TYC 5227-1023-1 (Traven+, 2017)

    NASA Astrophysics Data System (ADS)

    Traven, G.; Munari, U.; Dallaporta, S.; Zwitter, T.

    2017-11-01

    CCD photometry in the Landolt V and SLOAN i' bands of TYC5227-1023-1 has been obtained with ANS Collaboration telescope N.36 located in Cembra (Trento, Italy). Spectra of TYC 5227-1023-1 were secured in 2015-2016 with the Echelle+CCD spectrograph mounted on the 1.82m telescope operated by Osservatorio Astronomico di Padova atop Mt. Ekar (Asiago). Here we recall that the 3600-7400Å wavelength region is covered in 30 orders at a resolving power of 20000. (2 data files).

  11. Simulation comparison of aircraft landing performance in foggy conditions aided by different UV sensors.

    PubMed

    Lavigne, Claire; Durand, Gérard; Roblin, Antoine

    2009-04-20

    In the atmosphere pointlike sources are surrounded by an aureole due to molecular and aerosol scattering. UV phase functions of haze droplets have a very important forward peak that limits signal angular spreading in relation to the clear atmosphere case where Rayleigh scattering predominates. This specific property can be exploited using solar blind UV source detection as an aircraft landing aid under foggy conditions. Two methods have been used to compute UV light propagation, based on the Monte Carlo technique and a semi-empirical approach. Results obtained after addition of three types of sensor and UV runway light models show that an important improvement in landing conditions during foggy weather could be achieved by use of a solar blind UV intensified CCD camera with two stages of microchannel plates.

  12. Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application.

    PubMed

    Grepstad, Jon Olav; Kaspar, Peter; Solgaard, Olav; Johansen, Ib-Rune; Sudbø, Aasmund S

    2012-03-26

    A sensor designed to detect bio-molecules is presented. The sensor exploits a planar 2D photonic crystal (PC) membrane with sub-micron thickness and through holes, to induce high optical fields that allow detection of nano-particles smaller than the diffraction limit of an optical microscope. We report on our design and fabrication of a PC membrane with a nano-particle trapped inside. We have also designed and built an imaging system where an optical microscope and a CCD camera are used to take images of the PC membrane. Results show how the trapped nano-particle appears as a bright spot in the image. In a first experimental realization of the imaging system, single particles with a radius of 75 nm can be detected.

  13. A pH sensing system using fluorescence-based fibre optical sensor capable of small volume sample measurement

    NASA Astrophysics Data System (ADS)

    Deng, Shijie; McAuliffe, Michael A. P.; Salaj-Kosla, Urszula; Wolfe, Raymond; Lewis, Liam; Huyet, Guillaume

    2017-02-01

    In this work, a low cost optical pH sensing system that allows for small volume sample measurements was developed. The system operates without the requirement of laboratory instruments (e.g. laser source, spectrometer and CCD camera), this lowers the cost and enhances the portability. In the system, an optical arrangement employing a dichroic filter was used which allows the excitation and emission light to be transmitted using a single fibre thus improving the collection efficiency of the fluorescence signal and also the ability of inserting measurement. The pH sensor in the system uses bromocresol purple as the indicator which is immobilised by sol-gel technology through a dip-coating process. The sensor material was coated on the tip of a 1 mm diameter optical fibre which makes it possible for inserting into very small volume samples to measure the pH. In the system, a LED with a peak emission wavelength of 465 nm is used as the light source and a silicon photo-detector is used to detect the uorescence signal. Optical filters are applied after the LED and in front of the photo-detector to separate the excitation and emission light. The fluorescence signal collected is transferred to a PC through a DAQ and processed by a Labview-based graphic-user-interface (GUI). Experimental results show that the system is capable of sensing pH values from 5.3 to 8.7 with a linear response of R2=0.969. Results also show that the response times for a pH changes from 5.3 to 8.7 is approximately 150 s and for a 0.5 pH changes is approximately 50 s.

  14. Radiographic endodontic working length estimation: comparison of three digital image receptors.

    PubMed

    Athar, Anas; Angelopoulos, Christos; Katz, Jerald O; Williams, Karen B; Spencer, Paulette

    2008-10-01

    This in vitro study was conducted to evaluate the accuracy of the Schick wireless image receptor compared with 2 other types of digital image receptors for measuring the radiographic landmarks pertinent to endodontic treatment. Fourteen human cadaver mandibles with retained molars were selected. A fine endodontic file (#10) was introduced into the canal at random distances from the apex and at the apex of the tooth; images were made with 3 different #2-size image receptors: DenOptix storage phosphor plates, Gendex CCD sensor (wired), and Schick CDR sensor (wireless). Six raters viewed the images for identification of the radiographic apex of the tooth and the tip of a fine (#10) endodontic file. Inter-rater reliability was also assessed. Repeated-measures analysis of variance revealed a significant main effect for the type of image receptor. Raters' error in identifying structures of interest was significantly higher for Denoptix storage phosphor plates, whereas the least error was noted with the Schick CDR sensor. A significant interaction effect was observed for rater and type of image receptor used, but this effect contributed only 6% (P < .01; eta(2) = 0.06) toward the outcome of the results. Schick CDR wireless sensor may be preferable to other solid-state sensors, because there is no cable connecting the sensor to the computer. Further testing of this sensor for other diagnostic tasks is recommended, as well as evaluation of patient acceptance.

  15. Electronic still camera

    NASA Astrophysics Data System (ADS)

    Holland, S. Douglas

    1992-09-01

    A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.

  16. Developing handheld real time multispectral imager to clinically detect erythema in darkly pigmented skin

    NASA Astrophysics Data System (ADS)

    Kong, Linghua; Sprigle, Stephen; Yi, Dingrong; Wang, Fengtao; Wang, Chao; Liu, Fuhan

    2010-02-01

    Pressure ulcers have been identified as a public health concern by the US government through the Healthy People 2010 initiative and the National Quality Forum (NQF). Currently, no tools are available to assist clinicians in erythema, i.e. the early stage pressure ulcer detection. The results from our previous research (supported by NIH grant) indicate that erythema in different skin tones can be identified using a set of wavelengths 540, 577, 650 and 970nm. This paper will report our recent work which is developing a handheld, point-of-care, clinicallyviable and affordable, real time multispectral imager to detect erythema in persons with darkly pigmented skin. Instead of using traditional filters, e.g. filter wheels, generalized Lyot filter, electrical tunable filter or the methods of dispersing light, e.g. optic-acoustic crystal, a novel custom filter mosaic has been successfully designed and fabricated using lithography and vacuum multi layer film technologies. The filter has been integrated with CMOS and CCD sensors. The filter incorporates four or more different wavelengths within the visual to nearinfrared range each having a narrow bandwidth of 30nm or less. Single wavelength area is chosen as 20.8μx 20.8μ. The filter can be deposited on regular optical glass as substrate or directly on a CMOS and CCD imaging sensor. This design permits a multi-spectral image to be acquired in a single exposure, thereby providing overwhelming convenience in multi spectral imaging acquisition.

  17. Electronic Still Camera

    NASA Technical Reports Server (NTRS)

    Holland, S. Douglas (Inventor)

    1992-01-01

    A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.

  18. Cochlear implantation outcomes in children with common cavity deformity; a retrospective study.

    PubMed

    Zhang, Li; Qiu, Jianxin; Qin, Feifei; Zhong, Mei; Shah, Gyanendra

    2017-09-01

    A common cavity deformity (CCD) is a deformed inner ear in which the cochlea and vestibule are confluent forming a common rudimentary cystic cavity that results in profound hearing loss. There are few studies paying attention to common cavity. Our group is engrossed in observing the improvement of auditory and verbal abilities in children who have received cochlear implantation (CI), and comparing these targets between children with common cavity and normal inner ear structure. A retrospective study was conducted in 12 patients with profound hearing loss that were divided into a common cavity group and a control group, six in each group matched in sex, age and time of implantation, based on inner ear structure. Categories of Auditory Performance (CAP) and speech intelligibility rating (SIR) scores and aided hearing thresholds were collected and compared between the two groups. All patients wore CI for more than 1 year at the Cochlear Center of Anhui Medical University from 2011 to 2015. Postoperative CAP and SIR scores were higher than before operation in both groups (p < 0.05), although the scores were lower in the CCD group than in the control group (p < 0.05). The aided threshold was also lower in the control group than in the CCD group (p < 0.05). Even though audiological improvement in children with CCD was not as good as in those without CCD, CI provides benefits in auditory perception and communication skills in these children.

  19. A four-lens based plenoptic camera for depth measurements

    NASA Astrophysics Data System (ADS)

    Riou, Cécile; Deng, Zhiyuan; Colicchio, Bruno; Lauffenburger, Jean-Philippe; Kohler, Sophie; Haeberlé, Olivier; Cudel, Christophe

    2015-04-01

    In previous works, we have extended the principles of "variable homography", defined by Zhang and Greenspan, for measuring height of emergent fibers on glass and non-woven fabrics. This method has been defined for working with fabric samples progressing on a conveyor belt. Triggered acquisition of two successive images was needed to perform the 3D measurement. In this work, we have retained advantages of homography variable for measurements along Z axis, but we have reduced acquisitions number to a single one, by developing an acquisition device characterized by 4 lenses placed in front of a single image sensor. The idea is then to obtain four projected sub-images on a single CCD sensor. The device becomes a plenoptic or light field camera, capturing multiple views on the same image sensor. We have adapted the variable homography formulation for this device and we propose a new formulation to calculate a depth with plenoptic cameras. With these results, we have transformed our plenoptic camera in a depth camera and first results given are very promising.

  20. [Development of a Surgical Navigation System with Beam Split and Fusion of the Visible and Near-Infrared Fluorescence].

    PubMed

    Yang, Xiaofeng; Wu, Wei; Wang, Guoan

    2015-04-01

    This paper presents a surgical optical navigation system with non-invasive, real-time, and positioning characteristics for open surgical procedure. The design was based on the principle of near-infrared fluorescence molecular imaging. The in vivo fluorescence excitation technology, multi-channel spectral camera technology and image fusion software technology were used. Visible and near-infrared light ring LED excitation source, multi-channel band pass filters, spectral camera 2 CCD optical sensor technology and computer systems were integrated, and, as a result, a new surgical optical navigation system was successfully developed. When the near-infrared fluorescence was injected, the system could display anatomical images of the tissue surface and near-infrared fluorescent functional images of surgical field simultaneously. The system can identify the lymphatic vessels, lymph node, tumor edge which doctor cannot find out with naked eye intra-operatively. Our research will guide effectively the surgeon to remove the tumor tissue to improve significantly the success rate of surgery. The technologies have obtained a national patent, with patent No. ZI. 2011 1 0292374. 1.

  1. Full-Physics Inverse Learning Machine for Satellite Remote Sensing of Ozone Profile Shapes and Tropospheric Columns

    NASA Astrophysics Data System (ADS)

    Xu, J.; Heue, K.-P.; Coldewey-Egbers, M.; Romahn, F.; Doicu, A.; Loyola, D.

    2018-04-01

    Characterizing vertical distributions of ozone from nadir-viewing satellite measurements is known to be challenging, particularly the ozone information in the troposphere. A novel retrieval algorithm called Full-Physics Inverse Learning Machine (FP-ILM), has been developed at DLR in order to estimate ozone profile shapes based on machine learning techniques. In contrast to traditional inversion methods, the FP-ILM algorithm formulates the profile shape retrieval as a classification problem. Its implementation comprises a training phase to derive an inverse function from synthetic measurements, and an operational phase in which the inverse function is applied to real measurements. This paper extends the ability of the FP-ILM retrieval to derive tropospheric ozone columns from GOME- 2 measurements. Results of total and tropical tropospheric ozone columns are compared with the ones using the official GOME Data Processing (GDP) product and the convective-cloud-differential (CCD) method, respectively. Furthermore, the FP-ILM framework will be used for the near-real-time processing of the new European Sentinel sensors with their unprecedented spectral and spatial resolution and corresponding large increases in the amount of data.

  2. SOUL: the Single conjugated adaptive Optics Upgrade for LBT

    NASA Astrophysics Data System (ADS)

    Pinna, E.; Esposito, S.; Hinz, P.; Agapito, G.; Bonaglia, M.; Puglisi, A.; Xompero, M.; Riccardi, A.; Briguglio, R.; Arcidiacono, C.; Carbonaro, L.; Fini, L.; Montoya, M.; Durney, O.

    2016-07-01

    We present here SOUL: the Single conjugated adaptive Optics Upgrade for LBT. Soul will upgrade the wavefront sensors replacing the existing CCD detector with an EMCCD camera and the rest of the system in order to enable the closed loop operations at a faster cycle rate and with higher number of slopes. Thanks to reduced noise, higher number of pixel and framerate, we expect a gain (for a given SR) around 1.5-2 magnitudes at all wavelengths in the range 7.5 70% in I-band and 0.6asec seeing) and the sky coverage will be multiplied by a factor 5 at all galactic latitudes. Upgrading the SCAO systems at all the 4 focal stations, SOUL will provide these benefits in 2017 to the LBTI interferometer and in 2018 to the 2 LUCI NIR spectro-imagers. In the same year the SOUL correction will be exploited also by the new generation of LBT instruments: V-SHARK, SHARK-NIR and iLocater.

  3. The GOES-R Lightning Mapper Sensor

    NASA Technical Reports Server (NTRS)

    Buechler, Dennis; Christian, Hugh; Goodman, Steve

    2004-01-01

    The Lightning Mapper Sensor on GOES-R builds on previous measurements of lightning from low earth orbit by the OTD (Optical Transient Detector) and LIS (Lightning Imaging Sensor) sensors. Unlike observations from low earth orbit, the GOES-R platform will allow continuous monitoring of lightning activity over the Continental United States and southern Canada, Central and South America, and portions of the Atlantic and Pacific Oceans. The LMS will detect total (cloud-to-ground and intracloud) lightning at storm scale resolution (approx. 8 km) using a highly sensitive Charge Coupled Device (CCD) detector array. Discrimination between lightning optical transients and a bright sunlit background scene is accomplished by employing spectral, spatial, and temporal filtering along with a background subtraction technique. The result is 24 hour detection capability of total lightning. These total lightning observations can be made available to users within about 20 seconds. Research indicates a number of ways that total lightning observations from LMS could benefit operational activities, including 1) potential increases in lead times and reduced false alarms for severe thunderstorm and tornado Warnings, 2) improved routing of &rail around thunderstorms, 3) support for spacecraft launches and landings, 4) improved ability to monitor tropical cyclone intensity, 5) ability to monitor thunderstorm intensification/weakening during radar outages or where radar coverage is poor, 6) better identification of deep convection for the initialization of numerical prediction models, 7) improved forest fire forecasts, 8) identification of convective initiation, 9) identification of heavy convective snowfall, and 10) enhanced temporal resolution of storm evolution (1 minute) than is available from radar observations. Total lightning data has been used in an operational environment since July 2003 at the Huntsville, Alabama National Weather Service office. Total lightning measurements are obtained by the North Alabama Lightning Mapping Array (LMA) and have successfully been used in warning decisions. Every 2 minutes, total lightning counts in 2 km by 2 km horizontal, 1 km vertical grids are available to forecasters on an AWIPS (Advanced Weather Interactive Processing System) workstation. Experience with the LMA total lightning data is used to illustrate the potential use of LMS data that would be available to forecasters across the US. This abstract is for submission as a presentation to the National Weather Association Annual Meeting to be held 16-21 October 2004 in Portland, OR. This abstract will be published in the conference proceedings.

  4. Cloud Forecasting and 3-D Radiative Transfer Model Validation using Citizen-Sourced Imagery

    NASA Astrophysics Data System (ADS)

    Gasiewski, A. J.; Heymsfield, A.; Newman Frey, K.; Davis, R.; Rapp, J.; Bansemer, A.; Coon, T.; Folsom, R.; Pfeufer, N.; Kalloor, J.

    2017-12-01

    Cloud radiative feedback mechanisms are one of the largest sources of uncertainty in global climate models. Variations in local 3D cloud structure impact the interpretation of NASA CERES and MODIS data for top-of-atmosphere radiation studies over clouds. Much of this uncertainty results from lack of knowledge of cloud vertical and horizontal structure. Surface-based data on 3-D cloud structure from a multi-sensor array of low-latency ground-based cameras can be used to intercompare radiative transfer models based on MODIS and other satellite data with CERES data to improve the 3-D cloud parameterizations. Closely related, forecasting of solar insolation and associated cloud cover on time scales out to 1 hour and with spatial resolution of 100 meters is valuable for stabilizing power grids with high solar photovoltaic penetrations. Data for cloud-advection based solar insolation forecasting with requisite spatial resolution and latency needed to predict high ramp rate events obtained from a bottom-up perspective is strongly correlated with cloud-induced fluctuations. The development of grid management practices for improved integration of renewable solar energy thus also benefits from a multi-sensor camera array. The data needs for both 3D cloud radiation modelling and solar forecasting are being addressed using a network of low-cost upward-looking visible light CCD sky cameras positioned at 2 km spacing over an area of 30-60 km in size acquiring imagery on 30 second intervals. Such cameras can be manufactured in quantity and deployed by citizen volunteers at a marginal cost of 200-400 and operated unattended using existing communications infrastructure. A trial phase to understand the potential utility of up-looking multi-sensor visible imagery is underway within this NASA Citizen Science project. To develop the initial data sets necessary to optimally design a multi-sensor cloud camera array a team of 100 citizen scientists using self-owned PDA cameras is being organized to collect distributed cloud data sets suitable for MODIS-CERES cloud radiation science and solar forecasting algorithm development. A low-cost and robust sensor design suitable for large scale fabrication and long term deployment has been developed during the project prototyping phase.

  5. Optical transient monitor

    NASA Astrophysics Data System (ADS)

    Bernas, Martin; Páta, Petr; Hudec, René; Soldán, Jan; Rezek, Tomáš; Castro-Tirado, Alberto J.

    1998-05-01

    Although there are several optical GRB follow-up systems in operation and/or in development, some of them with a very short response time, they will never be able to provide true simultaneous (no delay) and pre-burst optical data for GRBs. We report on the development and tests of a monitoring experiment expected to be put into test operation in 1998. The system should detect Optical Transients down to mag 6-7 (few seconds duration assumed) over a wide field of view. The system is based on the double CCD wide-field cameras ST8. For the real time evaluation of the signal from both cameras, two TMS 320C40 processors are used. Using two channels differing in spectral sensitivity and processing of temporal sequence of images allows us to eliminate man-made objects and defects of the CCD electronics. The system is controlled by a standard PC computer.

  6. Pi of the Sky full system and the new telescope

    NASA Astrophysics Data System (ADS)

    Mankiewicz, L.; Batsch, T.; Castro-Tirado, A.; Czyrkowski, H.; Cwiek, A.; Cwiok, M.; Dabrowski, R.; Jelínek, M.; Kasprowicz, G.; Majcher, A.; Majczyna, A.; Malek, K.; Nawrocki, K.; Obara, L.; Opiela, R.; Piotrowski, L. W.; Siudek, M.; Sokolowski, M.; Wawrzaszek, R.; Wrochna, G.; Zaremba, M.; Żarnecki, A. F.

    2014-12-01

    The Pi of the Sky is a system of wide field of view robotic telescopes, which search for short timescale astrophysical phenomena, especially for prompt optical GRB emission. The system was designed for autonomous operation, monitoring a large fraction of the sky to a depth of 12(m}-13({m)) and with time resolution of the order of 1 - 10 seconds. The system design and observation strategy were successfully tested with a prototype detector operational at Las Campanas Observatory, Chile from 2004-2009 and moved to San Pedro de Atacama Observatory in March 2011. In October 2010 the first unit of the final Pi of the Sky detector system, with 4 CCD cameras, was successfully installed at the INTA El Arenosillo Test Centre in Spain. In July 2013 three more units (12 CCD cameras) were commissioned and installed, together with the first one, on a new platform in INTA, extending sky coverage to about 6000 square degrees.

  7. An investigation of potential applications of OP-SAPS: Operational sampled analog processors

    NASA Technical Reports Server (NTRS)

    Parrish, E. A.; Mcvey, E. S.

    1976-01-01

    The impact of charge-coupled device (CCD) processors on future instrumentation was investigated. The CCD devices studied process sampled analog data and are referred to as OP-SAPS - operational sampled analog processors. Preliminary studies into various architectural configurations for systems composed of OP-SAPS show that they have potential in such diverse applications as pattern recognition and automatic control. It appears probable that OP-SAPS may be used to construct computing structures which can serve as special peripherals to large-scale computer complexes used in real time flight simulation. The research was limited to the following benchmark programs: (1) face recognition, (2) voice command and control, (3) terrain classification, and (4) terrain identification. A small amount of effort was spent on examining a method by which OP-SAPS may be used to decrease the limiting ground sampling distance encountered in remote sensing from satellites.

  8. Photon counting image sensor development for astronomical applications

    NASA Technical Reports Server (NTRS)

    Jenkins, Edward B.

    1987-01-01

    Specially built intensified CCD (ICCD) detector tubes were purchased and the performance of the electron bombardment process was investigated. In addition to studying the signal characteristics of the photoevents, there was interest in demonstrating that back-illuminated chips were not susceptible to radiation damage to their clocking electrodes. How to perform a centroid analysis for a 2-dimensional Gaussian distribution of charge is described. Measurement of the projection (along columns or rows) of the average charge spread profile is discussed. The development and flight of the Interstellar Medium Absorption Profile Spectrograph (IMAPS) is discussed.

  9. Performance measurement of commercial electronic still picture cameras

    NASA Astrophysics Data System (ADS)

    Hsu, Wei-Feng; Tseng, Shinn-Yih; Chiang, Hwang-Cheng; Cheng, Jui-His; Liu, Yuan-Te

    1998-06-01

    Commercial electronic still picture cameras need a low-cost, systematic method for evaluating the performance. In this paper, we present a measurement method to evaluating the dynamic range and sensitivity by constructing the opto- electronic conversion function (OECF), the fixed pattern noise by the peak S/N ratio (PSNR) and the image shading function (ISF), and the spatial resolution by the modulation transfer function (MTF). The evaluation results of individual color components and the luminance signal from a PC camera using SONY interlaced CCD array as the image sensor are then presented.

  10. Simple interrogator for optical fiber-based white light Fabry-Perot interferometers.

    PubMed

    Yu, Zhihao; Tian, Zhipeng; Wang, Anbo

    2017-02-15

    In this Letter, we present the design of a simple signal interrogator for optical fiber-based white light Fabry-Perot (F-P) interferometers. With the hardware being composed of only a flat fused silica wafer and a CCD camera, this interrogator translates the spectral interference into a spatial interference pattern, and then demodulates the F-P cavity length with the use of a relatively simple demodulation algorithm. The concept is demonstrated experimentally in a fiber optic sensor with a sapphire wafer as the F-P cavity.

  11. Diffraction mode terahertz tomography

    DOEpatents

    Ferguson, Bradley; Wang, Shaohong; Zhang, Xi-Cheng

    2006-10-31

    A method of obtaining a series of images of a three-dimensional object. The method includes the steps of transmitting pulsed terahertz (THz) radiation through the entire object from a plurality of angles, optically detecting changes in the transmitted THz radiation using pulsed laser radiation, and constructing a plurality of imaged slices of the three-dimensional object using the detected changes in the transmitted THz radiation. The THz radiation is transmitted through the object as a two-dimensional array of parallel rays. The optical detection is an array of detectors such as a CCD sensor.

  12. Manipulating Digital Holograms to Modify Phase of Reconstructed Wavefronts

    NASA Astrophysics Data System (ADS)

    Ferraro, Pietro; Paturzo, Melania; Memmolo, Pasquale; Finizio, Andrea

    2010-04-01

    We show that through an adaptive deformation of digital holograms it is possible to manage the depth of focus in the numerical reconstruction. Deformation is applied to the original hologram with the aim to put simultaneously in-focus, and in one reconstructed image plane, different objects lying at different distance from the hologram plane (i.e. CCD sensor), but in the same field of view. In the same way it is possible to extend the depth of field for 3D object having a tilted object whole in-focus.

  13. Adaptive optics system for the IRSOL solar observatory

    NASA Astrophysics Data System (ADS)

    Ramelli, Renzo; Bucher, Roberto; Rossini, Leopoldo; Bianda, Michele; Balemi, Silvano

    2010-07-01

    We present a low cost adaptive optics system developed for the solar observatory at Istituto Ricerche Solari Locarno (IRSOL), Switzerland. The Shack-Hartmann Wavefront Sensor is based on a Dalsa CCD camera with 256 pixels × 256 pixels working at 1kHz. The wavefront compensation is obtained by a deformable mirror with 37 actuators and a Tip-Tilt mirror. A real time control software has been developed on a RTAI-Linux PC. Scicos/Scilab based software has been realized for an online analysis of the system behavior. The software is completely open source.

  14. Research on coding and decoding method for digital levels.

    PubMed

    Tu, Li-fen; Zhong, Si-dong

    2011-01-20

    A new coding and decoding method for digital levels is proposed. It is based on an area-array CCD sensor and adopts mixed coding technology. By taking advantage of redundant information in a digital image signal, the contradiction that the field of view and image resolution restrict each other in a digital level measurement is overcome, and the geodetic leveling becomes easier. The experimental results demonstrate that the uncertainty of measurement is 1 mm when the measuring range is between 2 m and 100 m, which can meet practical needs.

  15. A compact high-speed pnCCD camera for optical and x-ray applications

    NASA Astrophysics Data System (ADS)

    Ihle, Sebastian; Ordavo, Ivan; Bechteler, Alois; Hartmann, Robert; Holl, Peter; Liebel, Andreas; Meidinger, Norbert; Soltau, Heike; Strüder, Lothar; Weber, Udo

    2012-07-01

    We developed a camera with a 264 × 264 pixel pnCCD of 48 μm size (thickness 450 μm) for X-ray and optical applications. It has a high quantum efficiency and can be operated up to 400 / 1000 Hz (noise≍ 2:5 ° ENC / ≍4:0 ° ENC). High-speed astronomical observations can be performed with low light levels. Results of test measurements will be presented. The camera is well suitable for ground based preparation measurements for future X-ray missions. For X-ray single photons, the spatial position can be determined with significant sub-pixel resolution.

  16. Microgravity

    NASA Image and Video Library

    1991-04-03

    The USML-1 Glovebox (GBX) is a multi-user facility supporting 16 experiments in fluid dynamics, combustion sciences, crystal growth, and technology demonstration. The GBX has an enclosed working space which minimizes the contamination risks to both Spacelab and experiment samples. The GBX supports four charge-coupled device (CCD) cameras (two of which may be operated simultaneously) with three black-and-white and three color camera CCD heads available. The GBX also has a backlight panel, a 35 mm camera, and a stereomicroscope that offers high-magnification viewing of experiment samples. Video data can also be downlinked in real-time. The GBX also provides electrical power for experiment hardware, a time-temperature display, and cleaning supplies.

  17. Microgravity

    NASA Image and Video Library

    1995-08-29

    The USML-1 Glovebox (GBX) is a multi-user facility supporting 16 experiments in fluid dynamics, combustion sciences, crystal growth, and technology demonstration. The GBX has an enclosed working space which minimizes the contamination risks to both Spacelab and experiment samples. The GBX supports four charge-coupled device (CCD) cameras (two of which may be operated simultaneously) with three black-and-white and three color camera CCD heads available. The GBX also has a backlight panel, a 35 mm camera, and a stereomicroscope that offers high-magnification viewing of experiment samples. Video data can also be downlinked in real-time. The GBX also provides electrical power for experiment hardware, a time-temperature display, and cleaning supplies.

  18. Astrometric Quality of the USNO CCD Astrograph (UCA)

    NASA Astrophysics Data System (ADS)

    Zacharias, N.

    1997-05-01

    The USNO 8-inch astrograph has been equipped with a Kodak 1536x1024 pixel CCD since June 1995, operating in a 570-650 nm bandpass. With 3-minute exposures well exposed images are obtained in the magnitude range R ~ 8.5 - 13.5(m) . An astrometric precision of 10 to 15 mas for those stars is estimated from frame-to-frame comparisons. External comparisons reveal an accuracy of about 15 mas for those stars in a 20' field of view. For fainter stars, the error budget is dominated by the S/N ratio, reaching ~ 100 mas at R=16(m) under good observing conditions.

  19. Brazil's remote sensing activities in the Eighties

    NASA Technical Reports Server (NTRS)

    Raupp, M. A.; Pereiradacunha, R.; Novaes, R. A.

    1985-01-01

    Most of the remote sensing activities in Brazil have been conducted by the Institute for Space Research (INPE). This report describes briefly INPE's activities in remote sensing in the last years. INPE has been engaged in research (e.g., radiance studies), development (e.g., CCD-scanners, image processing devices) and applications (e.g., crop survey, land use, mineral resources, etc.) of remote sensing. INPE is also responsible for the operation (data reception and processing) of the LANDSATs and meteorological satellites. Data acquisition activities include the development of CCD-Camera to be deployed on board the space shuttle and the construction of a remote sensing satellite.

  20. Near-infrared fluorescence imaging with a mobile phone (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ghassemi, Pejhman; Wang, Bohan; Wang, Jianting; Wang, Quanzeng; Chen, Yu; Pfefer, T. Joshua

    2017-03-01

    Mobile phone cameras employ sensors with near-infrared (NIR) sensitivity, yet this capability has not been exploited for biomedical purposes. Removing the IR-blocking filter from a phone-based camera opens the door to a wide range of techniques and applications for inexpensive, point-of-care biophotonic imaging and sensing. This study provides proof of principle for one of these modalities - phone-based NIR fluorescence imaging. An imaging system was assembled using a 780 nm light source along with excitation and emission filters with 800 nm and 825 nm cut-off wavelengths, respectively. Indocyanine green (ICG) was used as an NIR fluorescence contrast agent in an ex vivo rodent model, a resolution test target and a 3D-printed, tissue-simulating vascular phantom. Raw and processed images for red, green and blue pixel channels were analyzed for quantitative evaluation of fundamental performance characteristics including spectral sensitivity, detection linearity and spatial resolution. Mobile phone results were compared with a scientific CCD. The spatial resolution of CCD system was consistently superior to the phone, and green phone camera pixels showed better resolution than blue or green channels. The CCD exhibited similar sensitivity as processed red and blue pixels channels, yet a greater degree of detection linearity. Raw phone pixel data showed lower sensitivity but greater linearity than processed data. Overall, both qualitative and quantitative results provided strong evidence of the potential of phone-based NIR imaging, which may lead to a wide range of applications from cancer detection to glucose sensing.

  1. Flemish general dental practitioners' knowledge of dental radiology

    PubMed Central

    Aps, J K M

    2010-01-01

    The aim of this study was to assess general dental practitioners' knowledge of dental radiography and radiation protection in order to alert the Belgian authorities and dental professional societies. Prior to attending a postgraduate course on intraoral radiology, general dental practitioners in Flanders, Belgium, were asked to fill in a questionnaire regarding the radiological equipment and the techniques they used for intraoral radiography. The availability and type of dental panoramic equipment were also assessed. A total of 374 questionnaires were available for this study. 15% of the attendants used radiographic equipment that was more than 27 years old and 43% reported equipment that operated with a clockwork timer. 32% and 75% respectively had no idea what the kV or mA settings were on their intraoral equipment. 5% were unaware which cone geometry or geometric technique (paralleling or bisecting angle technique) they were using. 81% claimed to be using a short cone technique. 47% did not know what collimation meant, whereas 40% stated that they were using circular collimation. 38% used digital intraoral image detectors (63% were photostimulable storage phosphorplate (PSPP)), but 16% were not sure about the type of sensor they were using (PSPP or solid-state sensors). 61% also had dental panoramic equipment available, 25% of which was digital (10% charge coupled device (CCD) and 15% PSPP). These results clearly indicate the need for continued education on this subject. The latter is an important signal to Belgian authorities and dental professional societies. PMID:20100924

  2. A Brightness-Referenced Star Identification Algorithm for APS Star Trackers

    PubMed Central

    Zhang, Peng; Zhao, Qile; Liu, Jingnan; Liu, Ning

    2014-01-01

    Star trackers are currently the most accurate spacecraft attitude sensors. As a result, they are widely used in remote sensing satellites. Since traditional charge-coupled device (CCD)-based star trackers have a limited sensitivity range and dynamic range, the matching process for a star tracker is typically not very sensitive to star brightness. For active pixel sensor (APS) star trackers, the intensity of an imaged star is valuable information that can be used in star identification process. In this paper an improved brightness referenced star identification algorithm is presented. This algorithm utilizes the k-vector search theory and adds imaged stars' intensities to narrow the search scope and therefore increase the efficiency of the matching process. Based on different imaging conditions (slew, bright bodies, etc.) the developed matching algorithm operates in one of two identification modes: a three-star mode, and a four-star mode. If the reference bright stars (the stars brighter than three magnitude) show up, the algorithm runs the three-star mode and efficiency is further improved. The proposed method was compared with other two distinctive methods the pyramid and geometric voting methods. All three methods were tested with simulation data and actual in orbit data from the APS star tracker of ZY-3. Using a catalog composed of 1500 stars, the results show that without false stars the efficiency of this new method is 4∼5 times that of the pyramid method and 35∼37 times that of the geometric method. PMID:25299950

  3. A brightness-referenced star identification algorithm for APS star trackers.

    PubMed

    Zhang, Peng; Zhao, Qile; Liu, Jingnan; Liu, Ning

    2014-10-08

    Star trackers are currently the most accurate spacecraft attitude sensors. As a result, they are widely used in remote sensing satellites. Since traditional charge-coupled device (CCD)-based star trackers have a limited sensitivity range and dynamic range, the matching process for a star tracker is typically not very sensitive to star brightness. For active pixel sensor (APS) star trackers, the intensity of an imaged star is valuable information that can be used in star identification process. In this paper an improved brightness referenced star identification algorithm is presented. This algorithm utilizes the k-vector search theory and adds imaged stars' intensities to narrow the search scope and therefore increase the efficiency of the matching process. Based on different imaging conditions (slew, bright bodies, etc.) the developed matching algorithm operates in one of two identification modes: a three-star mode, and a four-star mode. If the reference bright stars (the stars brighter than three magnitude) show up, the algorithm runs the three-star mode and efficiency is further improved. The proposed method was compared with other two distinctive methods the pyramid and geometric voting methods. All three methods were tested with simulation data and actual in orbit data from the APS star tracker of ZY-3. Using a catalog composed of 1500 stars, the results show that without false stars the efficiency of this new method is 4~5 times that of the pyramid method and 35~37 times that of the geometric method.

  4. A matter of collection and detection for intraoperative and noninvasive near-infrared fluorescence molecular imaging: To see or not to see?

    PubMed Central

    Zhu, Banghe; Rasmussen, John C.; Sevick-Muraca, Eva M.

    2014-01-01

    Purpose: Although fluorescence molecular imaging is rapidly evolving as a new combinational drug/device technology platform for molecularly guided surgery and noninvasive imaging, there remains no performance standards for efficient translation of “first-in-humans” fluorescent imaging agents using these devices. Methods: The authors employed a stable, solid phantom designed to exaggerate the confounding effects of tissue light scattering and to mimic low concentrations (nM–pM) of near-infrared fluorescent dyes expected clinically for molecular imaging in order to evaluate and compare the commonly used charge coupled device (CCD) camera systems employed in preclinical studies and in human investigational studies. Results: The results show that intensified CCD systems offer greater contrast with larger signal-to-noise ratios in comparison to their unintensified CCD systems operated at clinically reasonable, subsecond acquisition times. Conclusions: Camera imaging performance could impact the success of future “first-in-humans” near-infrared fluorescence imaging agent studies. PMID:24506637

  5. A matter of collection and detection for intraoperative and noninvasive near-infrared fluorescence molecular imaging: To see or not to see?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Banghe; Rasmussen, John C.; Sevick-Muraca, Eva M., E-mail: Eva.Sevick@uth.tmc.edu

    2014-02-15

    Purpose: Although fluorescence molecular imaging is rapidly evolving as a new combinational drug/device technology platform for molecularly guided surgery and noninvasive imaging, there remains no performance standards for efficient translation of “first-in-humans” fluorescent imaging agents using these devices. Methods: The authors employed a stable, solid phantom designed to exaggerate the confounding effects of tissue light scattering and to mimic low concentrations (nM–pM) of near-infrared fluorescent dyes expected clinically for molecular imaging in order to evaluate and compare the commonly used charge coupled device (CCD) camera systems employed in preclinical studies and in human investigational studies. Results: The results show thatmore » intensified CCD systems offer greater contrast with larger signal-to-noise ratios in comparison to their unintensified CCD systems operated at clinically reasonable, subsecond acquisition times. Conclusions: Camera imaging performance could impact the success of future “first-in-humans” near-infrared fluorescence imaging agent studies.« less

  6. Design and development of a fiber optic TDI CCD-based slot-scan digital mammography system

    NASA Astrophysics Data System (ADS)

    Toker, Emre; Piccaro, Michele F.

    1993-12-01

    We previously reported on the development, design, and clinical evaluation of a CCD-based, high performance, filmless imaging system for stereotactic needle biopsy procedures in mammography. The MammoVision system has a limited imaging area of 50 mm X 50 mm, since it is designed specifically for breast biopsy applications. We are currently developing a new filmless imaging system designed to cover the 18 cm X 24 cm imaging area required for screening and diagnostic mammography. The diagnostic mammography system is based on four 1100 X 330 pixel format, full-frame, scientific grade, front illuminated, MPP mode CCDs, with 24 micrometers X 24 micrometers square pixels Each CCD is coupled to an x-ray intensifying screen via a 1.7:1 fiber optic reducer. The detector assembly (180 mm long and 13.5 mm wide) is scanned across the patient's breast synchronously with the x-ray source, with the CCDs operated in time-delay integration (TDI) mode. The total scan time is 4.0 seconds.

  7. Follow-up study of children with cerebral coordination disturbance (CCD, Vojta).

    PubMed

    Imamura, S; Sakuma, K; Takahashi, T

    1983-01-01

    713 children (from newborn to 12-month-old) with delayed motor development were carefully examined and classified into normal, very light cerebral coordination disturbance (CCD, Vojta), light CCD, moderate CCD, severe CCD, suspected cerebral palsy (CP) and other diseases at their first visit, and were followed up carefully. Finally, 89.0% of very light CCD, 71.4% of light CCD, 56.0% of moderate CCD and 30.0% of severe CCD developed into normal. 59.5% of moderate CCD and 45.5% of severe CCD among children who were given Vojta's physiotherapy developed into normal. The classification of cases with delayed motor development into very light, light, moderate and severe CCD based on the extent of abnormality in their postural reflexes is useful and well correlated with their prognosis. Treatment by Vojta's method seems to be efficient and helpful for young children with delayed motor development.

  8. Atmospheric lidar co-alignment sensor: flight model electro-optical characterization campaign

    NASA Astrophysics Data System (ADS)

    Valverde Guijarro, Ángel Luis; Belenguer Dávila, Tomás.; Laguna Hernandez, Hugo; Ramos Zapata, Gonzalo

    2017-10-01

    Due to the difficulty in studying the upper layer of the troposphere by using ground-based instrumentation, the conception of a space-orbit atmospheric LIDAR (ATLID) becomes necessary. ATLID born in the ESA's EarthCare Programme framework as one of its payloads, being the first instrument of this kind that will be in the Space. ATLID will provide vertical profiles of aerosols and thin clouds, separating the relative contribution of aerosol and molecular scattering to know aerosol optical depth. It operates at a wavelength of 355 nm and has a high spectral resolution receiver and depolarization channel with a vertical resolution up to 100m from ground to an altitude of 20 km and, and up to 500m from 20km to 40km. ATLID measurements will be done from a sun-synchronous orbit at 393 km altitude, and an alignment (co-alignment) sensor (CAS) is revealed as crucial due to the way in which LIDAR analyses the troposphere. As in previous models, INTA has been in charge of part of the ATLID instrument co-alignment sensor (ATLID-CAS) electro-optical characterization campaign. CAS includes a set of optical elements to take part of the useful signal, to direct it onto the memory CCD matrix (MCCD) used for the co-alignment determination, and to focus the selected signal on the MCCD. Several tests have been carried out for a proper electro-optical characterization: CAS line of sight (LoS) determination and stability, point spread function (PSF), absolute response (AbsRes), pixel response non uniformity (PRNU), response linearity (ResLin) and spectral response. In the following lines, a resume of the flight model electrooptical characterization campaign is reported on. In fact, results concerning the protoflight model (CAS PFM) will be summarized. PFM requires flight-level characterization, so most of the previously mentioned tests must be carried out under simulated working conditions, i.e., the vacuum level (around 10-5 mbar) and temperature range (between 50°C and -30°C) that are expected during ATLID Space operation.

  9. Optical system design of CCD star sensor with large aperture and wide field of view

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Jiang, Lun; Li, Ying-chao; Liu, Zhuang

    2017-10-01

    The star sensor is one of the sensors which are used to determine the spatial attitude of the space vehicle. An optical system of star sensor with large aperture and wide field of view was designed in this paper. The effective focal length of the optics was 16mm, and the F-number is 1.2, the field of view of the optical system is 20°.The working spectrum is 500 to 800 nanometer. The lens system selects a similar complicated Petzval structure and special glass-couple, and get a high imaging quality in the whole spectrum range. For each field-of-view point, the values of the modulation transfer function at 50 cycles/mm is higher than 0.3. On the detecting plane, the encircled energy in a circle of 14μm diameter could be up to 80% of the total energy. In the whole range of the field of view, the dispersion spot diameter in the imaging plane is no larger than 13μm. The full field distortion was less than 0.1%, which was helpful to obtain the accurate location of the reference star through the picture gotten by the star sensor. The lateral chromatic aberration is less than 2μm in the whole spectrum range.

  10. Superresolution with the focused plenoptic camera

    NASA Astrophysics Data System (ADS)

    Georgiev, Todor; Chunev, Georgi; Lumsdaine, Andrew

    2011-03-01

    Digital images from a CCD or CMOS sensor with a color filter array must undergo a demosaicing process to combine the separate color samples into a single color image. This interpolation process can interfere with the subsequent superresolution process. Plenoptic superresolution, which relies on precise sub-pixel sampling across captured microimages, is particularly sensitive to such resampling of the raw data. In this paper we present an approach for superresolving plenoptic images that takes place at the time of demosaicing the raw color image data. Our approach exploits the interleaving provided by typical color filter arrays (e.g., Bayer filter) to further refine plenoptic sub-pixel sampling. Our rendering algorithm treats the color channels in a plenoptic image separately, which improves final superresolution by a factor of two. With appropriate plenoptic capture we show the theoretical possibility for rendering final images at full sensor resolution.

  11. Pair creation energy and Fano factor of silicon measured at 185 K using 55 F e X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotov, Ivan V.; Neal, H.; O'Connor, P.

    Here, the pair creation energy, ωω and the Fano factor of silicon were measured using a CCD sensor and X-rays from an 55Fe source. The measurements were performed at a sensor temperature of 185K. The pair creation energy was measured for X-rays in the 1.7–6.5 keV range. The measured pair creation energy is ω=(3.650 ± 0.009) eV at the MnK α line energy. The Fano factor at this energy is F = 0.128±0.001. The agreement with theory and previous measurements is satisfactory. The system gain was obtained from flat field exposures using the Poisson distribution properties. These results and themore » details of our measurement procedure are presented below.« less

  12. Pair creation energy and Fano factor of silicon measured at 185 K using 55 F e X-rays

    DOE PAGES

    Kotov, Ivan V.; Neal, H.; O'Connor, P.

    2018-06-14

    Here, the pair creation energy, ωω and the Fano factor of silicon were measured using a CCD sensor and X-rays from an 55Fe source. The measurements were performed at a sensor temperature of 185K. The pair creation energy was measured for X-rays in the 1.7–6.5 keV range. The measured pair creation energy is ω=(3.650 ± 0.009) eV at the MnK α line energy. The Fano factor at this energy is F = 0.128±0.001. The agreement with theory and previous measurements is satisfactory. The system gain was obtained from flat field exposures using the Poisson distribution properties. These results and themore » details of our measurement procedure are presented below.« less

  13. High-Speed Imaging of the First Kink Mode Instability in a Magnetoplasmadynamic Thruster

    NASA Technical Reports Server (NTRS)

    Walker, Jonathan A.; Langendof, Samuel; Walker, Mitchell L. R.; Polzin, Kurt; Kimberlin, Adam

    2013-01-01

    One of the biggest challenges to efficient magnetoplasmadynamic thruster (MPDT) operation is the onset of high-frequency voltage oscillations as the discharge current is increased above a threshold value. The onset regime is closely related to magnetohydrodynamic instabilities known as kink modes. This work documents direct observation of the formation and quasi-steady state behavior of an argon discharge plasma in a MPDT operating at discharge currents of 8 to 10 kA for a pulse length of approximately 4 ms. A high-speed camera images the quasi-steady-state operation of the thruster at 26,143 fps with a frame exposure time of 10 micro s. A 0.9 neutral density filter and 488-nm argon line filter with a 10-nm bandwidth are used on separate trials to capture the time evolution of the discharge plasma. Frame-by-frame analysis of the power flux incident on the CCD sensor shows both the initial discharge plasma formation process and the steady-state behavior of the discharge plasma. Light intensity levels on the order of 4-6 W/m2 indicate radial and azimuthal asymmetries in the concentration of argon plasma in the discharge channel. The plasma concentration exhibits characteristics that suggest the presence of a helical plasma column. This helical behavior has been observed in previous experiments that characterize plasma kink mode instabilities indirectly. Therefore, the direct imaging of these plasma kink modes further supports the link between MPDT onset behavior and the excitation of the magnetohydrodynamic instabilities.

  14. Evaluation on Radiometric Capability of Chinese Optical Satellite Sensors

    PubMed Central

    Yang, Aixia; Zhong, Bo; Wu, Shanlong; Liu, Qinhuo

    2017-01-01

    The radiometric capability of on-orbit sensors should be updated on time due to changes induced by space environmental factors and instrument aging. Some sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS), have onboard calibrators, which enable real-time calibration. However, most Chinese remote sensing satellite sensors lack onboard calibrators. Their radiometric calibrations have been updated once a year based on a vicarious calibration procedure, which has affected the applications of the data. Therefore, a full evaluation of the sensors’ radiometric capabilities is essential before quantitative applications can be made. In this study, a comprehensive procedure for evaluating the radiometric capability of several Chinese optical satellite sensors is proposed. In this procedure, long-term radiometric stability and radiometric accuracy are the two major indicators for radiometric evaluation. The radiometric temporal stability is analyzed by the tendency of long-term top-of-atmosphere (TOA) reflectance variation; the radiometric accuracy is determined by comparison with the TOA reflectance from MODIS after spectrally matching. Three Chinese sensors including the Charge-Coupled Device (CCD) camera onboard Huan Jing 1 satellite (HJ-1), as well as the Visible and Infrared Radiometer (VIRR) and Medium-Resolution Spectral Imager (MERSI) onboard the Feng Yun 3 satellite (FY-3) are evaluated in reflective bands based on this procedure. The results are reasonable, and thus can provide reliable reference for the sensors’ application, and as such will promote the development of Chinese satellite data. PMID:28117745

  15. A multimodal image sensor system for identifying water stress in grapevines

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Zhang, Qin; Li, Minzan; Shao, Yongni; Zhou, Jianfeng; Sun, Hong

    2012-11-01

    Water stress is one of the most common limitations of fruit growth. Water is the most limiting resource for crop growth. In grapevines, as well as in other fruit crops, fruit quality benefits from a certain level of water deficit which facilitates to balance vegetative and reproductive growth and the flow of carbohydrates to reproductive structures. A multi-modal sensor system was designed to measure the reflectance signature of grape plant surfaces and identify different water stress levels in this paper. The multi-modal sensor system was equipped with one 3CCD camera (three channels in R, G, and IR). The multi-modal sensor can capture and analyze grape canopy from its reflectance features, and identify the different water stress levels. This research aims at solving the aforementioned problems. The core technology of this multi-modal sensor system could further be used as a decision support system that combines multi-modal sensory data to improve plant stress detection and identify the causes of stress. The images were taken by multi-modal sensor which could output images in spectral bands of near-infrared, green and red channel. Based on the analysis of the acquired images, color features based on color space and reflectance features based on image process method were calculated. The results showed that these parameters had the potential as water stress indicators. More experiments and analysis are needed to validate the conclusion.

  16. In situ microscopy for on-line determination of biomass.

    PubMed

    Bittner, C; Wehnert, G; Scheper, T

    1998-10-05

    A sensor is presented, which allows on-line microscopic observation of microorganisms during fermentations in bioreactors. This sensor, an In Situ Microscope (ISM) consists of a direct-light microscope with a measuring chamber, integrated in a 25 mm stainless steel tube, two CCD-cameras, and two frame-grabbers. The data obtained are processed by an automatic image analysis system. The ISM is connected with the bioreactor via a standard port, and it is immersed directly in the culture liquid-in our case Saccharomyces cerevisiae in a synthetic medium. The microscopic examination of the liquid is performed in the measuring chamber, which is situated near the front end of the sensor head. The measuring chamber is opened and closed periodically. In the open state, the liquid in the bioreactor flows unrestricted through the chamber. In closing, a defined volume of 2,2. 10(-8) mL of the liquid becomes enclosed. After a few seconds, when the movement of the cells in the enclosed culture has stopped, they are examined with the microscope. The microscopic images of the cells are registered with the CCD-cameras and are visualized on a monitor, allowing a direct view of the cell population. After detection, the measuring chamber reopens, and the enclosed liquid is released. The images obtained are evaluated as to cell concentration, cell size, cell volume, biomass, and other relevant parameters simultaneously by automatic image analysis. With a PC (486/33 MHz), image processing takes about 15 s per image. The detection range tested when measuring cells of S. cerevisiae is about 10(6) to 10(9) cells/mL (equivalent to a biomass of 0.01 g/L to 12 g/L). The calculated biomass values correlate very well with those obtained using dry weight analysis. Furthermore, histograms can be calculated, which are comparable to those obtained by flow cytometry. Copyright 1998 John Wiley & Sons, Inc.

  17. Back-illuminated large area frame transfer CCDs for space-based hyper-spectral imaging applications

    NASA Astrophysics Data System (ADS)

    Philbrick, Robert H.; Gilmore, Angelo S.; Schrein, Ronald J.

    2016-07-01

    Standard offerings of large area, back-illuminated full frame CCD sensors are available from multiple suppliers and they continue to be commonly deployed in ground- and space-based applications. By comparison the availability of large area frame transfers CCDs is sparse, with the accompanying 2x increase in die area no doubt being a contributing factor. Modern back-illuminated CCDs yield very high quantum efficiency in the 290 to 400 nm band, a wavelength region of great interest in space-based instruments studying atmospheric phenomenon. In fast framing (e.g. 10 - 20 Hz), space-based applications such as hyper-spectral imaging, the use of a mechanical shutter to block incident photons during readout can prove costly and lower instrument reliability. The emergence of large area, all-digital visible CMOS sensors, with integrate while read functionality, are an alternative solution to CCDs; but, even after factoring in reduced complexity and cost of support electronics, the present cost to implement such novel sensors is prohibitive to cost constrained missions. Hence, there continues to be a niche set of applications where large area, back-illuminated frame transfer CCDs with high UV quantum efficiency, high frame rate, high full well, and low noise provide an advantageous solution. To address this need a family of large area frame transfer CCDs has been developed that includes 2048 (columns) x 256 (rows) (FT4), 2048 x 512 (FT5), and 2048 x 1024 (FT6) full frame transfer CCDs; and a 2048 x 1024 (FT7) split-frame transfer CCD. Each wafer contains 4 FT4, 2 FT5, 2 FT6, and 2 FT7 die. The designs have undergone radiation and accelerated life qualification and the electro-optical performance of these CCDs over the wavelength range of 290 to 900 nm is discussed.

  18. Application of CCD drift-scan photoelectric technique on monitoring GEO satellites

    NASA Astrophysics Data System (ADS)

    Yu, Yong; Zhao, Xiao-Fen; Luo, Hao; Mao, Yin-Dun; Tang, Zheng-Hong

    2018-05-01

    Geosynchronous Earth Orbit (GEO) satellites are widely used because of their unique characteristics of high-orbit and remaining permanently in the same area of the sky. Precise monitoring of GEO satellites can provide a key reference for the judgment of satellite operation status, the capture and identification of targets, and the analysis of collision warning. The observation using ground-based optical telescopes plays an important role in the field of monitoring GEO targets. Different from distant celestial bodies, there is a relative movement between the GEO target and the background reference stars, which makes the conventional observation method limited for long focal length telescopes. CCD drift-scan photoelectric technique is applied on monitoring GEO targets. In the case of parking the telescope, the good round images of the background reference stars and the GEO target at the same sky region can be obtained through the alternating observation of CCD drift-scan mode and CCD stare mode, so as to improve the precision of celestial positioning for the GEO target. Observation experiments of GEO targets were carried out with 1.56-meter telescope of Shanghai Astronomical Observatory. The results show that the application of CCD drift-scan photoelectric technique makes the precision of observing the GEO target reach the level of 0.2″, which gives full play to the advantage of the long focal length of the telescope. The effect of orbit improvement based on multi-pass of observations is obvious and the prediction precision of extrapolating to 72-h is in the order of several arc seconds in azimuth and elevation.

  19. VizieR Online Data Catalog: Mission Accessible Near-Earth Objects Survey (Thirouin+, 2016)

    NASA Astrophysics Data System (ADS)

    Thirouin, A.; Moskovitz, N.; Binzel, R. P.; Christensen, E.; DeMeo, F. E.; Person, M. J.; Polishook, D.; Thomas, C. A.; Trilling, D.; Willman, M.; Hinkle, M.; Burt, B.; Avner, D.; Aceituno, F. J.

    2017-06-01

    The data were obtained with the 4.3m Lowell Discovery Channel Telescope (DCT), the 4.1m Southern Astrophysical Research (SOAR) telescope, the 4m Nicholas U. Mayall Telescope, the 2.1m at Kitt Peak Observatory, the 1.8m Perkins telescope, the 1.5m Sierra Nevada Observatory (OSN), and the 1.3m SMARTS telescope between 2013 August and 2015 October. The DCT is forty miles southeast of Flagstaff at the Happy Jack site (Arizona, USA). Images were obtained using the Large Monolithic Imager (LMI), which is a 6144*6160 CCD. The total field of view is 12.5*12.5 with a plate scale of 0.12''/pixel (unbinned). Images were obtained using the 3*3 or 2*2 binning modes. Observations were carried out in situ. The SOAR telescope is located on Cerro Pachon, Chile. Images were obtained using the Goodman High Throughput Spectrograph (Goodman-HTS) instrument in its imaging mode. The instrument consists of a 4096*4096 Fairchild CCD, with a 7.2' diameter field of view (circular field of view) and a plate scale of 0.15''/pixel. Images were obtained using the 2*2 binning mode. Observations were conducted remotely. The Mayall telescope is a 4m telescope located at the Kitt Peak National Observatory (Tucson, Arizona, USA). The National Optical Astronomy Observatory (NOAO) CCD Mosaic-1.1 is a wide field imager composed of an array of eight CCD chips. The field of view is 36'*36', and the plate scale is 0.26''/pixel. Observations were performed remotely. The 2.1m at Kitt Peak Observatory was operated with the STA3 2k*4k CCD, which has a plate scale of 0.305''/pixel and a field of view of 10.2'*6.6'. The instrument was binned 2*2 and the observations were conducted in situ. The Perkins 72'' telescope is located at the Anderson Mesa station at Lowell Observatory (Flagstaff, Arizona, USA). We used the Perkins ReImaging SysteM (PRISM) instrument, a 2*2k Fairchild CCD. The PRISM plate scale is 0.39''/pixel for a field of view of 13'*13'. Observations were performed in situ. The 1.5m telescope located at the OSN at Loma de Dilar in the National Park of Sierra Nevada (Granada, Spain) was operated in situ. Observations were carried out with a 2k*2k CCD, with a total field of view of 7.8'*7.8'. We used 2*2 binning mode, resulting in an effective plate scale of 0.46''/pixel. The 1.3m SMARTS telescope is located at the Cerro Tololo Inter-American Observatory (Coquimbo region, Chile). This telescope is equipped with a camera called ANDICAM (A Novel Dual Imaging CAMera). ANDICAM is a Fairchild 2048*2048 CCD. The pixel scale is 0.371''/pixel, and the field of view is 6'*6'. Observations were carried out in queue mode. (2 data files).

  20. A new and highly selective turn-on fluorescent sensor with fast response time for the monitoring of cadmium ions in cosmetic, and health product samples.

    PubMed

    Khani, Rouhollah; Ghiamati, Ebrahim; Boroujerdi, Ramin; Rezaeifard, Abdolreza; Zaryabi, Mohadeseh Hosseinpour

    2016-06-15

    Cadmium (Cd) which is an extremely toxic could be found in many products like plastics, fossil fuel combustion, cosmetics, water resources, and wastewaters. It is capable of causing serious environmental and health problems such as lung, prostate, renal cancers and the other disorders. So, the development of a sensor to continually monitor cadmium is considerably demanding. Tetrakis(4-nitrophenyl)porphyrin, T(4-NO2-P)P, was synthesized and used as a new and highly selective fluorescent probe for monitoring cadmium ions in the "turn-on" mode. There was a linear relationship between fluorescence intensity and the concentration of Cd(II) in the range of 1.0×10(-6) to 1.0×10(-5)molL(-1) with a detection limit of 0.276μM. To examine the most important parameters involved and their interactions in the sensor optimization procedure, a four-factor central composite design (CCD) combined with response surface modeling (RSM) was implemented. The practical applicability of the developed sensor was investigated using real cosmetic, and personal care samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Vulnerability of CMOS image sensors in Megajoule Class Laser harsh environment.

    PubMed

    Goiffon, V; Girard, S; Chabane, A; Paillet, P; Magnan, P; Cervantes, P; Martin-Gonthier, P; Baggio, J; Estribeau, M; Bourgade, J-L; Darbon, S; Rousseau, A; Glebov, V Yu; Pien, G; Sangster, T C

    2012-08-27

    CMOS image sensors (CIS) are promising candidates as part of optical imagers for the plasma diagnostics devoted to the study of fusion by inertial confinement. However, the harsh radiative environment of Megajoule Class Lasers threatens the performances of these optical sensors. In this paper, the vulnerability of CIS to the transient and mixed pulsed radiation environment associated with such facilities is investigated during an experiment at the OMEGA facility at the Laboratory for Laser Energetics (LLE), Rochester, NY, USA. The transient and permanent effects of the 14 MeV neutron pulse on CIS are presented. The behavior of the tested CIS shows that active pixel sensors (APS) exhibit a better hardness to this harsh environment than a CCD. A first order extrapolation of the reported results to the higher level of radiation expected for Megajoule Class Laser facilities (Laser Megajoule in France or National Ignition Facility in the USA) shows that temporarily saturated pixels due to transient neutron-induced single event effects will be the major issue for the development of radiation-tolerant plasma diagnostic instruments whereas the permanent degradation of the CIS related to displacement damage or total ionizing dose effects could be reduced by applying well known mitigation techniques.

  2. Miniature Spatial Heterodyne Raman Spectrometer with a Cell Phone Camera Detector.

    PubMed

    Barnett, Patrick D; Angel, S Michael

    2017-05-01

    A spatial heterodyne Raman spectrometer (SHRS) with millimeter-sized optics has been coupled with a standard cell phone camera as a detector for Raman measurements. The SHRS is a dispersive-based interferometer with no moving parts and the design is amenable to miniaturization while maintaining high resolution and large spectral range. In this paper, a SHRS with 2.5 mm diffraction gratings has been developed with 17.5 cm -1 theoretical spectral resolution. The footprint of the SHRS is orders of magnitude smaller than the footprint of charge-coupled device (CCD) detectors typically employed in Raman spectrometers, thus smaller detectors are being explored to shrink the entire spectrometer package. This paper describes the performance of a SHRS with 2.5 mm wide diffraction gratings and a cell phone camera detector, using only the cell phone's built-in optics to couple the output of the SHRS to the sensor. Raman spectra of a variety of samples measured with the cell phone are compared to measurements made using the same miniature SHRS with high-quality imaging optics and a high-quality, scientific-grade, thermoelectrically cooled CCD.

  3. Photosensor with enhanced quantum efficiency

    NASA Technical Reports Server (NTRS)

    Janesick, James R. (Inventor); Elliott, Stythe T. (Inventor)

    1989-01-01

    A method to significantly increase the quantum efficiency (QE) of a CCD (or similar photosensor) applied in the UV, far UV and low energy x-ray regions of the spectrum. The increase in QE is accomplished by overthinning the backside of a CCD substrate beyond the epitaxial interface and UV flooding the sensor prior to use. The UV light photoemits electrons to the thinned surface and charges the backside negatively. This in turn forms an accumulation layer of holes near the Si-SiO.sub.2 interface creating an electric field gradient in the silicon which directs the photogenerated signal to the frontside where they are collected in pixel locations and later transferred. An oxide film, in which the backside charge resides, must have quality equivalent to a well aged native oxide which typically takes several years to form under ambient conditions. To reduce the amount of time in growing an oxide of sufficient quality, a process has been developed to grow an oxide by using deionized steam at 95.degree. C. which takes less than one hour to grow.

  4. A novel approach of an absolute coding pattern based on Hamiltonian graph

    NASA Astrophysics Data System (ADS)

    Wang, Ya'nan; Wang, Huawei; Hao, Fusheng; Liu, Liqiang

    2017-02-01

    In this paper, a novel approach of an optical type absolute rotary encoder coding pattern is presented. The concept is based on the principle of the absolute encoder to find out a unique sequence that ensures an unambiguous shaft position of any angular. We design a single-ring and a n-by-2 matrix absolute encoder coding pattern by using the variations of Hamiltonian graph principle. 12 encoding bits is used in the single-ring by a linear array CCD to achieve an 1080-position cycle encoding. Besides, a 2-by-2 matrix is used as an unit in the 2-track disk to achieve a 16-bits encoding pattern by using an area array CCD sensor (as a sample). Finally, a higher resolution can be gained by an electronic subdivision of the signals. Compared with the conventional gray or binary code pattern (for a 2n resolution), this new pattern has a higher resolution (2n*n) with less coding tracks, which means the new pattern can lead to a smaller encoder, which is essential in the industrial production.

  5. Method for eliminating artifacts in CCD imagers

    DOEpatents

    Turko, B.T.; Yates, G.J.

    1992-06-09

    An electronic method for eliminating artifacts in a video camera employing a charge coupled device (CCD) as an image sensor is disclosed. The method comprises the step of initializing the camera prior to normal read out and includes a first dump cycle period for transferring radiation generated charge into the horizontal register while the decaying image on the phosphor being imaged is being integrated in the photosites, and a second dump cycle period, occurring after the phosphor image has decayed, for rapidly dumping unwanted smear charge which has been generated in the vertical registers. Image charge is then transferred from the photosites and to the vertical registers and read out in conventional fashion. The inventive method allows the video camera to be used in environments having high ionizing radiation content, and to capture images of events of very short duration and occurring either within or outside the normal visual wavelength spectrum. Resultant images are free from ghost, smear and smear phenomena caused by insufficient opacity of the registers and, and are also free from random damage caused by ionization charges which exceed the charge limit capacity of the photosites. 3 figs.

  6. Design and fabrication of an angle-scanning based platform for the construction of surface plasmon resonance biosensor

    NASA Astrophysics Data System (ADS)

    Hu, Jiandong; Cao, Baiqiong; Wang, Shun; Li, Jianwei; Wei, Wensong; Zhao, Yuanyuan; Hu, Xinran; Zhu, Juanhua; Jiang, Min; Sun, Xiaohui; Chen, Ruipeng; Ma, Liuzheng

    2016-03-01

    A sensing system for an angle-scanning optical surface-plasmon-resonance (SPR) based biosensor has been designed with a laser line generator in which a P polarizer is embedded to utilize as an excitation source for producing the surface plasmon wave. In this system, the emitting beam from the laser line generator is controlled to realize the angle-scanning using a variable speed direct current (DC) motor. The light beam reflected from the prism deposited with a 50 nm Au film is then captured using the area CCD array which was controlled by a personal computer (PC) via a universal serial bus (USB) interface. The photoelectric signals from the high speed digital camera (an area CCD array) were converted by a 16 bit A/D converter before it transferred to the PC. One of the advantages of this SPR biosensing platform is greatly demonstrated by the label-free and real-time bio-molecular analysis without moving the area CCD array by following the laser line generator. It also could provide a low-cost surface plasmon resonance platform to improve the detection range in the measurement of bioanalytes. The SPR curve displayed on the PC screen promptly is formed by the effective data from the image on the area CCD array and the sensing responses of the platform to bulk refractive indices were calibrated using various concentrations of ethanol solution. These ethanol concentrations indicated with volumetric fraction of 5%, 10%, 15%, 20%, and 25%, respectively, were experimented to validate the performance of the angle-scanning optic SPR biosensing platform. As a result, the SPR sensor was capable to detect a change in the refractive index of the ethanol solution with the relative high linearity at the correlation coefficient of 0.9842. This greatly enhanced detection range is obtained from the position relationship between the laser line generator and the right-angle prism to allow direct quantification of the samples over a wide range of concentrations.

  7. Design and Fabrication of High-Efficiency CMOS/CCD Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2007-01-01

    An architecture for back-illuminated complementary metal oxide/semiconductor (CMOS) and charge-coupled-device (CCD) ultraviolet/visible/near infrared- light image sensors, and a method of fabrication to implement the architecture, are undergoing development. The architecture and method are expected to enable realization of the full potential of back-illuminated CMOS/CCD imagers to perform with high efficiency, high sensitivity, excellent angular response, and in-pixel signal processing. The architecture and method are compatible with next-generation CMOS dielectric-forming and metallization techniques, and the process flow of the method is compatible with process flows typical of the manufacture of very-large-scale integrated (VLSI) circuits. The architecture and method overcome all obstacles that have hitherto prevented high-yield, low-cost fabrication of back-illuminated CMOS/CCD imagers by use of standard VLSI fabrication tools and techniques. It is not possible to discuss the obstacles in detail within the space available for this article. Briefly, the obstacles are posed by the problems of generating light-absorbing layers having desired uniform and accurate thicknesses, passivation of surfaces, forming structures for efficient collection of charge carriers, and wafer-scale thinning (in contradistinction to diescale thinning). A basic element of the present architecture and method - the element that, more than any other, makes it possible to overcome the obstacles - is the use of an alternative starting material: Instead of starting with a conventional bulk-CMOS wafer that consists of a p-doped epitaxial silicon layer grown on a heavily-p-doped silicon substrate, one starts with a special silicon-on-insulator (SOI) wafer that consists of a thermal oxide buried between a lightly p- or n-doped, thick silicon layer and a device silicon layer of appropriate thickness and doping. The thick silicon layer is used as a handle: that is, as a mechanical support for the device silicon layer during micro-fabrication.

  8. Results of the engineering run of the Coherent Neutrino Nucleus Interaction Experiment (CONNIE)

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A.; Bertou, X.; Bonifazi, C.; Butner, M.; Cancelo, G.; Castañeda Vázquez, A.; Cervantes Vergara, B.; Chavez, C. R.; Da Motta, H.; D'Olivo, J. C.; Dos Anjos, J.; Estrada, J.; Fernandez Moroni, G.; Ford, R.; Foguel, A.; Hernández Torres, K. P.; Izraelevitch, F.; Kavner, A.; Kilminster, B.; Kuk, K.; Lima, H. P., Jr.; Makler, M.; Molina, J.; Moreno-Granados, G.; Moro, J. M.; Paolini, E. E.; Sofo Haro, M.; Tiffenberg, J.; Trillaud, F.; Wagner, S.

    2016-07-01

    The CONNIE detector prototype is operating at a distance of 30 m from the core of a 3.8 GWth nuclear reactor with the goal of establishing Charge-Coupled Devices (CCD) as a new technology for the detection of coherent elastic neutrino-nucleus scattering. We report on the results of the engineering run with an active mass of 4 g of silicon. The CCD array is described, and the performance observed during the first year is discussed. A compact passive shield was deployed around the detector, producing an order of magnitude reduction in the background rate. The remaining background observed during the run was stable, and dominated by internal contamination in the detector packaging materials. The in-situ calibration of the detector using X-ray lines from fluorescence demonstrates good stability of the readout system. The event rates with the reactor ON and OFF are compared, and no excess is observed coming from nuclear fission at the power plant. The upper limit for the neutrino event rate is set two orders of magnitude above the expectations for the standard model. The results demonstrate the cryogenic CCD-based detector can be remotely operated at the reactor site with stable noise below 2 e- RMS and stable background rates. The success of the engineering test provides a clear path for the upgraded 100 g detector to be deployed during 2016.

  9. Early Eocene to Late Miocene Variations in the South Atlantic CCD: Constraints from the Walvis Ridge Depth-Transect (ODP Leg 208)

    NASA Astrophysics Data System (ADS)

    Lindsey, M. M.; Schellenberg, S. A.

    2006-12-01

    Carbonate saturation profiles are complex and dynamic products of processes operating on spatiotemporal scales from the "short-term local" (e.g. carbonate export production, carbonate ion concentration) to the "long- term global" (e.g. carbonate-silicate weathering, shelf:basin carbonate partitioning). Thus, a refined history of carbonate saturation may provide insight on global carbon-cycle dynamics. An established, if crude, proxy for reconstructing carbonate saturation is the wt% carbonate content of pelagic sediments, where <20 wt% is ascribed to deposition below the carbonate compensation depth (CCD). A number of now classic works (e.g. Berger and Roth, 1975; van Andel, 1977) established first-order and presumably global Cenozoic CCD fluctuations. The Walvis Ridge depth-transect of ODP Leg 208 represents an excellent opportunity to refine our understanding of the South Atlantic Cenozoic CCD. Wt% carbonate determinations (n = 299) through the Early Eocene to Late Miocene section at Site 1267 are significantly correlated with associated natural gamma ray values (r2 = 0.92). This relationship was used to produce a cm-scale synthetic wt% carbonate record ordinated in the time-domain via the ship-board age-model and in the paleodepth-domain via Sclater and Parsons (1977) crustal age-depth relationship. The Site 1267 record shows good general agreement with previous low-resolution (>10^{5-6} yr) CCD reconstructions and correlates relatively well with estimates of eustatic sea level fluctuations. Ongoing research expands this general approach to shallower and deeper ODP Leg 208 sites to provide greater constraints on the history of the South Atlantic CCD. These data, combined with other proxies (e.g. planktonic foraminifer fragmentation, stable isotopes) and placed within evolving Leg 208 age-models, will provide valuable constraints on cyclic and secular fluctuations in the South Atlantic carbonate saturation profile and their relation to various components of the earth system (e.g. pCO2, sea level, tectonics).

  10. Theodolite with CCD Camera for Safe Measurement of Laser-Beam Pointing

    NASA Technical Reports Server (NTRS)

    Crooke, Julie A.

    2003-01-01

    The simple addition of a charge-coupled-device (CCD) camera to a theodolite makes it safe to measure the pointing direction of a laser beam. The present state of the art requires this to be a custom addition because theodolites are manufactured without CCD cameras as standard or even optional equipment. A theodolite is an alignment telescope equipped with mechanisms to measure the azimuth and elevation angles to the sub-arcsecond level. When measuring the angular pointing direction of a Class ll laser with a theodolite, one could place a calculated amount of neutral density (ND) filters in front of the theodolite s telescope. One could then safely view and measure the laser s boresight looking through the theodolite s telescope without great risk to one s eyes. This method for a Class ll visible wavelength laser is not acceptable to even consider tempting for a Class IV laser and not applicable for an infrared (IR) laser. If one chooses insufficient attenuation or forgets to use the filters, then looking at the laser beam through the theodolite could cause instant blindness. The CCD camera is already commercially available. It is a small, inexpensive, blackand- white CCD circuit-board-level camera. An interface adaptor was designed and fabricated to mount the camera onto the eyepiece of the specific theodolite s viewing telescope. Other equipment needed for operation of the camera are power supplies, cables, and a black-and-white television monitor. The picture displayed on the monitor is equivalent to what one would see when looking directly through the theodolite. Again, the additional advantage afforded by a cheap black-and-white CCD camera is that it is sensitive to infrared as well as to visible light. Hence, one can use the camera coupled to a theodolite to measure the pointing of an infrared as well as a visible laser.

  11. Quantitative evaluation of the accuracy and variance of individual pixels in a scientific CMOS (sCMOS) camera for computational imaging

    NASA Astrophysics Data System (ADS)

    Watanabe, Shigeo; Takahashi, Teruo; Bennett, Keith

    2017-02-01

    The"scientific" CMOS (sCMOS) camera architecture fundamentally differs from CCD and EMCCD cameras. In digital CCD and EMCCD cameras, conversion from charge to the digital output is generally through a single electronic chain, and the read noise and the conversion factor from photoelectrons to digital outputs are highly uniform for all pixels, although quantum efficiency may spatially vary. In CMOS cameras, the charge to voltage conversion is separate for each pixel and each column has independent amplifiers and analog-to-digital converters, in addition to possible pixel-to-pixel variation in quantum efficiency. The "raw" output from the CMOS image sensor includes pixel-to-pixel variability in the read noise, electronic gain, offset and dark current. Scientific camera manufacturers digitally compensate the raw signal from the CMOS image sensors to provide usable images. Statistical noise in images, unless properly modeled, can introduce errors in methods such as fluctuation correlation spectroscopy or computational imaging, for example, localization microscopy using maximum likelihood estimation. We measured the distributions and spatial maps of individual pixel offset, dark current, read noise, linearity, photoresponse non-uniformity and variance distributions of individual pixels for standard, off-the-shelf Hamamatsu ORCA-Flash4.0 V3 sCMOS cameras using highly uniform and controlled illumination conditions, from dark conditions to multiple low light levels between 20 to 1,000 photons / pixel per frame to higher light conditions. We further show that using pixel variance for flat field correction leads to errors in cameras with good factory calibration.

  12. Linear dependence between the wavefront gradient and the masked intensity for the point source with a CCD sensor

    NASA Astrophysics Data System (ADS)

    Yang, Huizhen; Ma, Liang; Wang, Bin

    2018-01-01

    In contrast to the conventional adaptive optics (AO) system, the wavefront sensorless (WFSless) AO system doesn't need a WFS to measure the wavefront aberrations. It is simpler than the conventional AO in system architecture and can be applied to the complex conditions. The model-based WFSless system has a great potential in real-time correction applications because of its fast convergence. The control algorithm of the model-based WFSless system is based on an important theory result that is the linear relation between the Mean-Square Gradient (MSG) magnitude of the wavefront aberration and the second moment of the masked intensity distribution in the focal plane (also called as Masked Detector Signal-MDS). The linear dependence between MSG and MDS for the point source imaging with a CCD sensor will be discussed from theory and simulation in this paper. The theory relationship between MSG and MDS is given based on our previous work. To verify the linear relation for the point source, we set up an imaging model under atmospheric turbulence. Additionally, the value of MDS will be deviate from that of theory because of the noise of detector and further the deviation will affect the correction effect. The theory results under noise will be obtained through theoretical derivation and then the linear relation between MDS and MDS under noise will be discussed through the imaging model. Results show the linear relation between MDS and MDS under noise is also maintained well, which provides a theoretical support to applications of the model-based WFSless system.

  13. Development of nine-channel 10-micrometer (Hg, Cd)Te pushbroom IR/CCD system

    NASA Technical Reports Server (NTRS)

    White, W. J.; Wasa, S.

    1977-01-01

    The engineering development of the 9-channel detector array is documented. The development of the array demonstrates the feasibility of a self scanned multi-element infrared detector focal plane. Procedures for operating the array are outlined.

  14. 24/7 security system: 60-FPS color EMCCD camera with integral human recognition

    NASA Astrophysics Data System (ADS)

    Vogelsong, T. L.; Boult, T. E.; Gardner, D. W.; Woodworth, R.; Johnson, R. C.; Heflin, B.

    2007-04-01

    An advanced surveillance/security system is being developed for unattended 24/7 image acquisition and automated detection, discrimination, and tracking of humans and vehicles. The low-light video camera incorporates an electron multiplying CCD sensor with a programmable on-chip gain of up to 1000:1, providing effective noise levels of less than 1 electron. The EMCCD camera operates in full color mode under sunlit and moonlit conditions, and monochrome under quarter-moonlight to overcast starlight illumination. Sixty frame per second operation and progressive scanning minimizes motion artifacts. The acquired image sequences are processed with FPGA-compatible real-time algorithms, to detect/localize/track targets and reject non-targets due to clutter under a broad range of illumination conditions and viewing angles. The object detectors that are used are trained from actual image data. Detectors have been developed and demonstrated for faces, upright humans, crawling humans, large animals, cars and trucks. Detection and tracking of targets too small for template-based detection is achieved. For face and vehicle targets the results of the detection are passed to secondary processing to extract recognition templates, which are then compared with a database for identification. When combined with pan-tilt-zoom (PTZ) optics, the resulting system provides a reliable wide-area 24/7 surveillance system that avoids the high life-cycle cost of infrared cameras and image intensifiers.

  15. Sonoluminescence and sonochemiluminescence study of cavitation field in a 1.2MHz focused ultrasound

    NASA Astrophysics Data System (ADS)

    Yin, Hui; Qiao, Yangzi; Cao, Hua; Wan, Mingxi

    2017-03-01

    An intensified CCD (ICCD) and an electron-multiplying CCD (EMCCD) were employed to observe the spatial distribution of sonoluminescence (SL) and sonochemiluminescence (SCL) generated by cavitation bubbles in a 1.2MHz HIFU field. Various sonication conditions, which are free field and focal region near a water-parenchyma interface, were studied. In addition, the differences of two shells coated UCAs were also investigated. In this study, an acoustic radiation force (ARF) counterbalance appliance was added to reduce bubble displacement. Cavitation mapping in this situation was also operated through SCL recording. SCL was also employed to measure cavitation does and map the spatial distribution of cavitation near a boundary of parenchyma.

  16. Colorimetric Sensor Array for White Wine Tasting.

    PubMed

    Chung, Soo; Park, Tu San; Park, Soo Hyun; Kim, Joon Yong; Park, Seongmin; Son, Daesik; Bae, Young Min; Cho, Seong In

    2015-07-24

    A colorimetric sensor array was developed to characterize and quantify the taste of white wines. A charge-coupled device (CCD) camera captured images of the sensor array from 23 different white wine samples, and the change in the R, G, B color components from the control were analyzed by principal component analysis. Additionally, high performance liquid chromatography (HPLC) was used to analyze the chemical components of each wine sample responsible for its taste. A two-dimensional score plot was created with 23 data points. It revealed clusters created from the same type of grape, and trends of sweetness, sourness, and astringency were mapped. An artificial neural network model was developed to predict the degree of sweetness, sourness, and astringency of the white wines. The coefficients of determination (R2) for the HPLC results and the sweetness, sourness, and astringency were 0.96, 0.95, and 0.83, respectively. This research could provide a simple and low-cost but sensitive taste prediction system, and, by helping consumer selection, will be able to have a positive effect on the wine industry.

  17. Colorimetric Sensor Array for White Wine Tasting

    PubMed Central

    Chung, Soo; Park, Tu San; Park, Soo Hyun; Kim, Joon Yong; Park, Seongmin; Son, Daesik; Bae, Young Min; Cho, Seong In

    2015-01-01

    A colorimetric sensor array was developed to characterize and quantify the taste of white wines. A charge-coupled device (CCD) camera captured images of the sensor array from 23 different white wine samples, and the change in the R, G, B color components from the control were analyzed by principal component analysis. Additionally, high performance liquid chromatography (HPLC) was used to analyze the chemical components of each wine sample responsible for its taste. A two-dimensional score plot was created with 23 data points. It revealed clusters created from the same type of grape, and trends of sweetness, sourness, and astringency were mapped. An artificial neural network model was developed to predict the degree of sweetness, sourness, and astringency of the white wines. The coefficients of determination (R2) for the HPLC results and the sweetness, sourness, and astringency were 0.96, 0.95, and 0.83, respectively. This research could provide a simple and low-cost but sensitive taste prediction system, and, by helping consumer selection, will be able to have a positive effect on the wine industry. PMID:26213946

  18. Planetary exploration with optical imaging systems review: what is the best sensor for future missions

    NASA Astrophysics Data System (ADS)

    Michaelis, H.; Behnke, T.; Bredthauer, R.; Holland, A.; Janesick, J.; Jaumann, R.; Keller, H. U.; Magrin, D.; Greggio, D.; Mottola, Stefano; Thomas, N.; Smith, P.

    2017-11-01

    When we talk about planetary exploration missions most people think spontaneously about fascinating images from other planets or close-up pictures of small planetary bodies such as asteroids and comets. Such images come in most cases from VIS/NIR- imaging- systems, simply called `cameras', which were typically built by institutes in collaboration with industry. Until now, they have nearly all been based on silicon CCD sensors, they have filter wheels and have often high power-consuming electronics. The question is, what are the challenges for future missions and what can be done to improve performance and scientific output. The exploration of Mars is ongoing. NASA and ESA are planning future missions to the outer planets like to the icy Jovian moons. Exploration of asteroids and comets are in focus of several recent and future missions. Furthermore, the detection and characterization of exo-planets will keep us busy for next generations. The paper is discussing the challenges and visions of imaging sensors for future planetary exploration missions. The focus of the talk is monolithic VIS/NIR- detectors.

  19. Biomechanical and mathematical analysis of human movement in medical rehabilitation science using time-series data from two video cameras and force-plate sensor

    NASA Astrophysics Data System (ADS)

    Tsuruoka, Masako; Shibasaki, Ryosuke; Box, Elgene O.; Murai, Shunji; Mori, Eiji; Wada, Takao; Kurita, Masahiro; Iritani, Makoto; Kuroki, Yoshikatsu

    1994-08-01

    In medical rehabilitation science, quantitative understanding of patient movement in 3-D space is very important. The patient with any joint disorder will experience its influence on other body parts in daily movement. The alignment of joints in movement is able to improve under medical therapy process. In this study, the newly developed system is composed of two non- metri CCD video cameras and a force plate sensor, which are controlled simultaneously by a personal computer. By this system time-series digital data from 3-D image photogrammetry, each foot pressure and its center position, is able to provide efficient information for biomechanical and mathematical analysis of human movement. Each specific and common points are indicated in any patient movement. This study suggests more various, quantitative understanding in medical rehabilitation science.

  20. A Real-Time Ultraviolet Radiation Imaging System Using an Organic Photoconductive Image Sensor†

    PubMed Central

    Okino, Toru; Yamahira, Seiji; Yamada, Shota; Hirose, Yutaka; Odagawa, Akihiro; Kato, Yoshihisa; Tanaka, Tsuyoshi

    2018-01-01

    We have developed a real time ultraviolet (UV) imaging system that can visualize both invisible UV light and a visible (VIS) background scene in an outdoor environment. As a UV/VIS image sensor, an organic photoconductive film (OPF) imager is employed. The OPF has an intrinsically higher sensitivity in the UV wavelength region than those of conventional consumer Complementary Metal Oxide Semiconductor (CMOS) image sensors (CIS) or Charge Coupled Devices (CCD). As particular examples, imaging of hydrogen flame and of corona discharge is demonstrated. UV images overlapped on background scenes are simply made by on-board background subtraction. The system is capable of imaging weaker UV signals by four orders of magnitude than that of VIS background. It is applicable not only to future hydrogen supply stations but also to other UV/VIS monitor systems requiring UV sensitivity under strong visible radiation environment such as power supply substations. PMID:29361742

  1. Optical fiber sensor for low dose gamma irradiation monitoring

    NASA Astrophysics Data System (ADS)

    de Andrés, Ana I.; Esteban, Ã.`scar; Embid, Miguel

    2016-05-01

    An optical fiber gamma ray detector is presented in this work. It is based on a Terbium doped Gadolinium Oxysulfide (Gd2O2S:Tb) scintillating powder which cover a chemically etched polymer fiber tip. This etching improves the fluorescence gathering by the optical fiber. The final diameter has been selected to fulfill the trade-off between light gathering and mechanical strength. Powder has been encapsulated inside a microtube where the fiber tip is immersed. The sensor has been irradiated with different air Kerma doses up to 2 Gy/h with a 137Cs source, and the spectral distribution of the fluorescence intensity has been recorded in a commercial grade CCD spectrometer. The obtained signal-to-noise ratio is good enough even for low doses, which has allowed to reduce the integration time in the spectrometer. The presented results show the feasibility for using low cost equipment to detect/measure ionizing radiation as gamma rays are.

  2. The CAOS camera platform: ushering in a paradigm change in extreme dynamic range imager design

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.

    2017-02-01

    Multi-pixel imaging devices such as CCD, CMOS and Focal Plane Array (FPA) photo-sensors dominate the imaging world. These Photo-Detector Array (PDA) devices certainly have their merits including increasingly high pixel counts and shrinking pixel sizes, nevertheless, they are also being hampered by limitations in instantaneous dynamic range, inter-pixel crosstalk, quantum full well capacity, signal-to-noise ratio, sensitivity, spectral flexibility, and in some cases, imager response time. Recently invented is the Coded Access Optical Sensor (CAOS) Camera platform that works in unison with current Photo-Detector Array (PDA) technology to counter fundamental limitations of PDA-based imagers while providing high enough imaging spatial resolution and pixel counts. Using for example the Texas Instruments (TI) Digital Micromirror Device (DMD) to engineer the CAOS camera platform, ushered in is a paradigm change in advanced imager design, particularly for extreme dynamic range applications.

  3. Environmental Recognition and Guidance Control for Autonomous Vehicles using Dual Vision Sensor and Applications

    NASA Astrophysics Data System (ADS)

    Moriwaki, Katsumi; Koike, Issei; Sano, Tsuyoshi; Fukunaga, Tetsuya; Tanaka, Katsuyuki

    We propose a new method of environmental recognition around an autonomous vehicle using dual vision sensor and navigation control based on binocular images. We consider to develop a guide robot that can play the role of a guide dog as the aid to people such as the visually impaired or the aged, as an application of above-mentioned techniques. This paper presents a recognition algorithm, which finds out the line of a series of Braille blocks and the boundary line between a sidewalk and a roadway where a difference in level exists by binocular images obtained from a pair of parallelarrayed CCD cameras. This paper also presents a tracking algorithm, with which the guide robot traces along a series of Braille blocks and avoids obstacles and unsafe areas which exist in the way of a person with the guide robot.

  4. Restoration of out-of-focus images based on circle of confusion estimate

    NASA Astrophysics Data System (ADS)

    Vivirito, Paolo; Battiato, Sebastiano; Curti, Salvatore; La Cascia, M.; Pirrone, Roberto

    2002-11-01

    In this paper a new method for a fast out-of-focus blur estimation and restoration is proposed. It is suitable for CFA (Color Filter Array) images acquired by typical CCD/CMOS sensor. The method is based on the analysis of a single image and consists of two steps: 1) out-of-focus blur estimation via Bayer pattern analysis; 2) image restoration. Blur estimation is based on a block-wise edge detection technique. This edge detection is carried out on the green pixels of the CFA sensor image also called Bayer pattern. Once the blur level has been estimated the image is restored through the application of a new inverse filtering technique. This algorithm gives sharp images reducing ringing and crisping artifact, involving wider region of frequency. Experimental results show the effectiveness of the method, both in subjective and numerical way, by comparison with other techniques found in literature.

  5. Smart image sensors: an emerging key technology for advanced optical measurement and microsystems

    NASA Astrophysics Data System (ADS)

    Seitz, Peter

    1996-08-01

    Optical microsystems typically include photosensitive devices, analog preprocessing circuitry and digital signal processing electronics. The advances in semiconductor technology have made it possible today to integrate all photosensitive and electronical devices on one 'smart image sensor' or photo-ASIC (application-specific integrated circuits containing photosensitive elements). It is even possible to provide each 'smart pixel' with additional photoelectronic functionality, without compromising the fill factor substantially. This technological capability is the basis for advanced cameras and optical microsystems showing novel on-chip functionality: Single-chip cameras with on- chip analog-to-digital converters for less than $10 are advertised; image sensors have been developed including novel functionality such as real-time selectable pixel size and shape, the capability of performing arbitrary convolutions simultaneously with the exposure, as well as variable, programmable offset and sensitivity of the pixels leading to image sensors with a dynamic range exceeding 150 dB. Smart image sensors have been demonstrated offering synchronous detection and demodulation capabilities in each pixel (lock-in CCD), and conventional image sensors are combined with an on-chip digital processor for complete, single-chip image acquisition and processing systems. Technological problems of the monolithic integration of smart image sensors include offset non-uniformities, temperature variations of electronic properties, imperfect matching of circuit parameters, etc. These problems can often be overcome either by designing additional compensation circuitry or by providing digital correction routines. Where necessary for technological or economic reasons, smart image sensors can also be combined with or realized as hybrids, making use of commercially available electronic components. It is concluded that the possibilities offered by custom smart image sensors will influence the design and the performance of future electronic imaging systems in many disciplines, reaching from optical metrology to machine vision on the factory floor and in robotics applications.

  6. Chronic Compression of the Dorsal Root Ganglion Enhances Mechanically Evoked Pain Behavior and the Activity of Cutaneous Nociceptors in Mice.

    PubMed

    Wang, Tao; Hurwitz, Olivia; Shimada, Steven G; Qu, Lintao; Fu, Kai; Zhang, Pu; Ma, Chao; LaMotte, Robert H

    2015-01-01

    Radicular pain in humans is usually caused by intraforaminal stenosis and other diseases affecting the spinal nerve, root, or dorsal root ganglion (DRG). Previous studies discovered that a chronic compression of the DRG (CCD) induced mechanical allodynia in rats and mice, with enhanced excitability of DRG neurons. We investigated whether CCD altered the pain-like behavior and also the responses of cutaneous nociceptors with unmyelinated axons (C-fibers) to a normally aversive punctate mechanical stimulus delivered to the hairy skin of the hind limb of the mouse. The incidence of a foot shaking evoked by indentation of the dorsum of foot with an aversive von Frey filament (tip diameter 200 μm, bending force 20 mN) was significantly higher in the foot ipsilateral to the CCD surgery as compared to the contralateral side on post-operative days 2 to 8. Mechanically-evoked action potentials were electrophysiologically recorded from the L3 DRG, in vivo, from cell bodies visually identified as expressing a transgenically labeled fluorescent marker (neurons expressing either the receptor MrgprA3 or MrgprD). After CCD, 26.7% of MrgprA3+ and 32.1% MrgprD+ neurons exhibited spontaneous activity (SA), while none of the unoperated control neurons had SA. MrgprA3+ and MrgprD+ neurons in the compressed DRG exhibited, in comparison with neurons from unoperated control mice, an increased response to the punctate mechanical stimuli for each force applied (6, 20, 40, and 80 mN). We conclude that CCD produced both a behavioral hyperalgesia and an enhanced response of cutaneous C-nociceptors to aversive punctate mechanical stimuli.

  7. Preliminary study of the reliability of imaging charge coupled devices

    NASA Technical Reports Server (NTRS)

    Beall, J. R.; Borenstein, M. D.; Homan, R. A.; Johnson, D. L.; Wilson, D. D.; Young, V. F.

    1978-01-01

    Imaging CCDs are capable of low light level response and high signal-to-noise ratios. In space applications they offer the user the ability to achieve extremely high resolution imaging with minimum circuitry in the photo sensor array. This work relates the CCD121H Fairchild device to the fundamentals of CCDs and the representative technologies. Several failure modes are described, construction is analyzed and test results are reported. In addition, the relationship of the device reliability to packaging principles is analyzed and test data presented. Finally, a test program is defined for more general reliability evaluation of CCDs.

  8. Imaging using a supercontinuum laser to assess tumors in patients with breast carcinoma

    NASA Astrophysics Data System (ADS)

    Sordillo, Laura A.; Sordillo, Peter P.; Alfano, R. R.

    2016-03-01

    The supercontinuum laser light source has many advantages over other light sources, including broad spectral range. Transmission images of paired normal and malignant breast tissue samples from two patients were obtained using a Leukos supercontinuum (SC) laser light source with wavelengths in the second and third NIR optical windows and an IR- CCD InGaAs camera detector (Goodrich Sensors Inc. high response camera SU320KTSW-1.7RT with spectral response between 900 nm and 1,700 nm). Optical attenuation measurements at the four NIR optical windows were obtained from the samples.

  9. Hologram production and representation for corrected image

    NASA Astrophysics Data System (ADS)

    Jiao, Gui Chao; Zhang, Rui; Su, Xue Mei

    2015-12-01

    In this paper, a CCD sensor device is used to record the distorted homemade grid images which are taken by a wide angle camera. The distorted images are corrected by using methods of position calibration and correction of gray with vc++ 6.0 and opencv software. Holography graphes for the corrected pictures are produced. The clearly reproduced images are obtained where Fresnel algorithm is used in graph processing by reducing the object and reference light from Fresnel diffraction to delete zero-order part of the reproduced images. The investigation is useful in optical information processing and image encryption transmission.

  10. An improved arterial pulsation measurement system based on optical triangulation and its application in the traditional Chinese medicine

    NASA Astrophysics Data System (ADS)

    Wu, Jih-Huah; Lee, Wen-Li; Lee, Yun-Parn; Lin, Ching-Huang; Chiou, Ji-Yi; Tai, Chuan-Fu; Jiang, Joe-Air

    2011-08-01

    An improved arterial pulsation measurement (APM) system that uses three LED light sources and a CCD image sensor to measure pulse waveforms of artery is presented. The relative variations of the pulses at three measurement points near wrist joints can be determined by the APM system simultaneously. The height of the arterial pulsations measured by the APM system achieves a resolution of better than 2 μm. These pulsations contain useful information that can be used as diagnostic references in the traditional Chinese medicine (TCM) in the future.

  11. A real-time monitoring system for night glare protection

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Ni, Xuxiang

    2010-11-01

    When capturing a dark scene with a high bright object, the monitoring camera will be saturated in some regions and the details will be lost in and near these saturated regions because of the glare vision. This work aims at developing a real-time night monitoring system. The system can decrease the influence of the glare vision and gain more details from the ordinary camera when exposing a high-contrast scene like a car with its headlight on during night. The system is made up of spatial light modulator (The liquid crystal on silicon: LCoS), image sensor (CCD), imaging lens and DSP. LCoS, a reflective liquid crystal, can modular the intensity of reflective light at every pixel as a digital device. Through modulation function of LCoS, CCD is exposed with sub-region. With the control of DSP, the light intensity is decreased to minimum in the glare regions, and the light intensity is negative feedback modulated based on PID theory in other regions. So that more details of the object will be imaging on CCD and the glare protection of monitoring system is achieved. In experiments, the feedback is controlled by the embedded system based on TI DM642. Experiments shows: this feedback modulation method not only reduces the glare vision to improve image quality, but also enhances the dynamic range of image. The high-quality and high dynamic range image is real-time captured at 30hz. The modulation depth of LCoS determines how strong the glare can be removed.

  12. NASDA life science experiment facilities for ISS

    NASA Astrophysics Data System (ADS)

    Tanigaki, F.; Masuda, D.; Yano, S.; Fujimoto, N.; Kamigaichi, S.

    National Space Development Agency of Japan (NASDA) has been developing various experiment facilities to conduct space biology researches in KIBO (JEM). The Cell Biology Experiment Facility (CBEF) and the Clean Bench (CB) are installed into JEM Life Science Rack. The Biological Experiment Units (BEU) are operated in the CBEF and the CB for many kinds of experiments on cells, tissues, plants, microorganisms, or small animals. It is possible for all researchers to use these facilities under the system of the International Announcement of Opportunity. The CBEF is a CO2 incubator to provide a controlled environment (temperature, humidity, and CO2 concentration), in which a rotating table is equipped to make variable gravity (0-2g) for reference experiments. The containers called "Canisters" can be used to install the BEU in the CBEF. The CBEF supplies power, command, sensor, and video interfaces for the BEU through the utility connectors of Canisters. The BEU is a multiuser system consisting of chambers and control segments. It is operated by pre-set programs and by commands from the ground. NASDA is currently developing three types of the BEU: the Plant Experiment Unit (PEU) for plant life cycle observations and the Cell Experiment Unit (CEU1&2) for cell culture experiments. The PEU has an automated watering system with a water sensor, an LED matrix as a light source, and a CCD camera to observe the plant growth. The CEUs have culture chambers and an automated cultural medium exchange system. Engineering models of the PEU and CEU1 have been accomplished. The preliminary design of CEU2 is in progress. The design of the BEU will be modified to meet science requirements of each experiment. The CB provides a closed aseptic work-space (Operation Chamber) with gloves for experiment operations. Samples and the BEU can be manually handled in the CB. The CB has an air lock (Disinfection Chamber) to prevent contamination, and HEPA filters to make class-100-equivalent clean air inside the Operation Chamber. Alcohol swabs and built-in ultraviolet lamps are used to sterilize instruments and insides of the CB. The phase contrast / fluorescent microscope is equipped in the Operation Chamber to support experiments. The observed image is monitored either on the CB LCD display or on the ground through a video downlink channel. Researchers on the ground can also operate the microscope with its remote control function. Flight models of the CBEF and the CB are scheduled for completion in 2002.

  13. Automation of the Lowell Observatory 0.8-m Telescope

    NASA Astrophysics Data System (ADS)

    Buie, M. W.

    2001-11-01

    In the past year I have converted the Lowell Observatory 0.8-m telescope from a classically scheduled and operated telescope to an automated facility. The new setup uses an existing CCD camera and the existing telescope control system. The key steps in the conversion were writing a new CCD control and data acquisition module plus writing communication and queue control software. The previous CCD control program was written for DOS and much of the code was reused for this project. The entire control system runs under Linux and consists of four daemons: MOVE, PCCD, CMDR, and PCTL. The MOVE daemon is a process that communciates with the telescope control system via an RS232 port, keeping track of its state and forwarding commands from other processes to the telescope. The PCCD daemon controls the CCD camera and collects data. The CMDR daemon maintains a FIFO queue of commands to be executed during the night. The PCTL daemon receives notification from any other deamon of execution failures and sends an error code to the on-duty observer via a numeric pager. This system runs through the night much as you would traditionally operate a telescope. However, this system permits queuing up all the commands for a night and they execute one after another in sequence. Additional commands are needed to replace the normal human interaction during observing (ie., target acquisition, field registration, focusing). Also, numerous temporal synchronization commands are required so that observations happen at the right time. The system was used for this year's photometric monitoring of Pluto and Triton and is in general use for 2/3 of time on the telescope. Pluto observations were collected on 30 nights out of a potential pool of 90 nights. Detailed system design and capabilites plus sample observations will be presented. Also, a live demonstration will be provided if the weather is good. This work was supported by NASA Grant NAG5-4210 and the NSF REU Program grant to NAU.

  14. Vision communications based on LED array and imaging sensor

    NASA Astrophysics Data System (ADS)

    Yoo, Jong-Ho; Jung, Sung-Yoon

    2012-11-01

    In this paper, we propose a brand new communication concept, called as "vision communication" based on LED array and image sensor. This system consists of LED array as a transmitter and digital device which include image sensor such as CCD and CMOS as receiver. In order to transmit data, the proposed communication scheme simultaneously uses the digital image processing and optical wireless communication scheme. Therefore, the cognitive communication scheme is possible with the help of recognition techniques used in vision system. By increasing data rate, our scheme can use LED array consisting of several multi-spectral LEDs. Because arranged each LED can emit multi-spectral optical signal such as visible, infrared and ultraviolet light, the increase of data rate is possible similar to WDM and MIMO skills used in traditional optical and wireless communications. In addition, this multi-spectral capability also makes it possible to avoid the optical noises in communication environment. In our vision communication scheme, the data packet is composed of Sync. data and information data. Sync. data is used to detect the transmitter area and calibrate the distorted image snapshots obtained by image sensor. By making the optical rate of LED array be same with the frame rate (frames per second) of image sensor, we can decode the information data included in each image snapshot based on image processing and optical wireless communication techniques. Through experiment based on practical test bed system, we confirm the feasibility of the proposed vision communications based on LED array and image sensor.

  15. Multiport backside-illuminated CCD imagers for high-frame-rate camera applications

    NASA Astrophysics Data System (ADS)

    Levine, Peter A.; Sauer, Donald J.; Hseuh, Fu-Lung; Shallcross, Frank V.; Taylor, Gordon C.; Meray, Grazyna M.; Tower, John R.; Harrison, Lorna J.; Lawler, William B.

    1994-05-01

    Two multiport, second-generation CCD imager designs have been fabricated and successfully tested. They are a 16-port 512 X 512 array and a 32-port 1024 X 1024 array. Both designs are back illuminated, have on-chip CDS, lateral blooming control, and use a split vertical frame transfer architecture with full frame storage. The 512 X 512 device has been operated at rates over 800 frames per second. The 1024 X 1024 device has been operated at rates over 300 frames per second. The major changes incorporated in the second-generation design are, reduction in gate length in the output area to give improved high-clock-rate performance, modified on-chip CDS circuitry for reduced noise, and optimized implants to improve performance of blooming control at lower clock amplitude. This paper discusses the imager design improvements and presents measured performance results at high and moderate frame rates. The design and performance of three moderate frame rate cameras are discussed.

  16. Taking a look at the calibration of a CCD detector with a fiber-optic taper

    PubMed Central

    Alkire, R. W.; Rotella, F. J.; Duke, N. E. C.; Otwinowski, Zbyszek; Borek, Dominika

    2016-01-01

    At the Structural Biology Center beamline 19BM, located at the Advanced Photon Source, the operational characteristics of the equipment are routinely checked to ensure they are in proper working order. After performing a partial flat-field calibration for the ADSC Quantum 210r CCD detector, it was confirmed that the detector operates within specifications. However, as a secondary check it was decided to scan a single reflection across one-half of a detector module to validate the accuracy of the calibration. The intensities from this single reflection varied by more than 30% from the module center to the corner of the module. Redistribution of light within bent fibers of the fiber-optic taper was identified to be a source of this variation. The degree to which the diffraction intensities are corrected to account for characteristics of the fiber-optic tapers depends primarily upon the experimental strategy of data collection, approximations made by the data processing software during scaling, and crystal symmetry. PMID:27047303

  17. [Virtual reality in ophthalmological education].

    PubMed

    Wagner, C; Schill, M; Hennen, M; Männer, R; Jendritza, B; Knorz, M C; Bender, H J

    2001-04-01

    We present a computer-based medical training workstation for the simulation of intraocular eye surgery. The surgeon manipulates two original instruments inside a mechanical model of the eye. The instrument positions are tracked by CCD cameras and monitored by a PC which renders the scenery using a computer-graphic model of the eye and the instruments. The simulator incorporates a model of the operation table, a mechanical eye, three CCD cameras for the position tracking, the stereo display, and a computer. The three cameras are mounted under the operation table from where they can observe the interior of the mechanical eye. Using small markers the cameras recognize the instruments and the eye. Their position and orientation in space is determined by stereoscopic back projection. The simulation runs with more than 20 frames per second and provides a realistic impression of the surgery. It includes the cold light source which can be moved inside the eye and the shadow of the instruments on the retina which is important for navigational purposes.

  18. The development of a cryogenic over-pressure pump

    NASA Astrophysics Data System (ADS)

    Alvarez, M.; Cease, H.; Flaugher, B.; Flores, R.; Garcia, J.; Lathrop, A.; Ruiz, F.

    2014-01-01

    A cryogenic over-pressure pump (OPP) was tested in the prototype telescope liquid nitrogen (LN2) cooling system for the Dark Energy Survey (DES) Project. This OPP consists of a process cylinder (PC), gas generator, and solenoid operated valves (SOVs). It is a positive displacement pump that provided intermittent liquid nitrogen (LN2) flow to an array of charge couple devices (CCDs) for the prototype Dark Energy Camera (DECam). In theory, a heater submerged in liquid would generate the drive gas in a closed loop cooling system. The drive gas would be injected into the PC to displace that liquid volume. However, due to limitations of the prototype closed loop nitrogen system (CCD cooling system) for DECam, a quasiclosed-loop nitrogen system was created. During the test of the OPP, the CCD array was cooled to its designed set point temperature of 173K. It was maintained at that temperature via electrical heaters. The performance of the OPP was captured in pressure, temperature, and flow rate in the CCD LN2 cooling system at Fermi National Accelerator Laboratory (FNAL).

  19. Hand-held Raman sensor head for in-situ characterization of meat quality applying a microsystem 671 nm diode laser

    NASA Astrophysics Data System (ADS)

    Schmidt, Heinar; Sowoidnich, Kay; Maiwald, Martin; Sumpf, Bernd; Kronfeldt, Heinz-Detlef

    2009-05-01

    A hand-held Raman sensor head was developed for the in-situ characterization of meat quality. As light source, a microsystem based external cavity diode laser module (ECDL) emitting at 671 nm was integrated in the sensor head and attached to a miniaturized optical bench which contains lens optics for excitation and signal collection as well as a Raman filter stage for Rayleigh rejection. The signal is transported with an optical fiber to the detection unit which was in the initial phase a laboratory spectrometer with CCD detector. All elements of the ECDL are aligned on a micro optical bench with 13 x 4 mm2 footprint. The wavelength stability is provided by a reflection Bragg grating and the laser has an optical power of up to 200 mW. However, for the Raman measurements of meat only 35 mW are needed to obtain Raman spectra within 1 - 5 seconds. Short measuring times are essential for the hand-held device. The laser and the sensor head are characterized in terms of stability and performance for in-situ Raman investigations. The function is demonstrated in a series of measurements with raw and packaged pork meat as samples. The suitability of the Raman sensor head for the quality control of meat and other products will be discussed.

  20. Computational design and multivariate optimization of an electrochemical metoprolol sensor based on molecular imprinting in combination with carbon nanotubes.

    PubMed

    Nezhadali, Azizollah; Mojarrab, Maliheh

    2016-06-14

    This work describes the development of an electrochemical sensor based on a new molecularly imprinted polymer for detection of metoprolol (MTP) at ultra-trace level. The polypyrrole (PPy) was electrochemically synthesized on the tip of a pencil graphite electrode (PGE) which modified whit functionalized multi-walled carbon nanotubes (MWCNTs). The fabrication process of the sensor was characterized by cyclic voltammetry (CV) and the measurement process was carried out by differential pulse voltammetry (DPV). A computational approach was used to screening functional monomers and polymerization solvent for rational design of molecularly imprinted polymer (MIP). Based on computational results, pyrrole and water were selected as functional monomer and polymerization solvent, respectively. Several significant parameters controlling the performance of the MIP sensor were examined and optimized using multivariate optimization methods such as Plackett-Burman design (PBD) and central composite design (CCD). Under the selected optimal conditions, MIP sensor was showed a linear range from 0.06 to 490 μmol L(-1) MTP, a limit of detection of 2.88 nmol L(-1), a highly reproducible response (RSD 3.9%) and a good selectivity in the presence of structurally related molecules. Furthermore, the applicability of the method was successfully tested with determination of MTP in real samples (tablet, and serum). Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Crystallization of the C-terminal domain of the addiction antidote CcdA in complex with its toxin CcdB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buts, Lieven; De Jonge, Natalie; Loris, Remy, E-mail: reloris@vub.ac.be

    2005-10-01

    The CcdA C-terminal domain was crystallized in complex with CcdB in two crystal forms that diffract to beyond 2.0 Å resolution. CcdA and CcdB are the antidote and toxin of the ccd addiction module of Escherichia coli plasmid F. The CcdA C-terminal domain (CcdA{sub C36}; 36 amino acids) was crystallized in complex with CcdB (dimer of 2 × 101 amino acids) in three different crystal forms, two of which diffract to high resolution. Form II belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 37.6, b = 60.5, c = 83.8 Å and diffracts to 1.8more » Å resolution. Form III belongs to space group P2{sub 1}, with unit-cell parameters a = 41.0, b = 37.9, c = 69.6 Å, β = 96.9°, and diffracts to 1.9 Å resolution.« less

  2. Measured and calculated K-fluorescence effects on the MTF of an amorphous-selenium based CCD x-ray detector.

    PubMed

    Hunter, David M; Belev, George; Kasap, Safa; Yaffe, Martin J

    2012-02-01

    Theoretical reasoning suggests that direct conversion digital x-ray detectors based upon photoconductive amorphous-selenium (a-Se) could attain very high values of the MTF (modulation transfer function) at spatial frequencies well beyond 20 cycles mm(-1). One of the fundamental factors affecting resolution loss, particularly at x-ray energies just above the K-edge of selenium (12.66 keV), is the K-fluorescence reabsorption mechanism, wherein energy can be deposited in the detector at locations laterally displaced from the initial x-ray interaction site. This paper compares measured MTF changes above and below the Se K-edge of a CCD based a-Se x-ray detector with theoretical expectations. A prototype 25 μm sampling pitch (Nyquist frequency = 20 cycles mm(-1), 200 μm thick a-Se layer based x-ray detector, utilizing a specialized CCD readout device (200 × 400 area array), was used to make edge images with monochromatic x-rays above and below the K-edge of Se. A vacuum double crystal monochromator, exposed to polychromatic x-rays from a synchrotron, formed the monochromatic x-ray source. The monochromaticity of the x-rays was 99% or better. The presampling MTF was determined using the slanted edge method. The theory modeling the MTF performance of the detector includes the basic x-ray interaction physics in the a-Se layer as well as effects related to the operation of the CCD and charge trapping at a blocking layer present at the CCD/a-Se interface. The MTF performance of the prototype a-Se CCD was reduced from the theoretical value prescribed by the basic Se x-ray interaction physics, principally by the presence of a blocking layer. Nevertheless, the K-fluorescence reduction in the MTF was observed, approximately as predicted by theory. For the CCD prototype detector, at five cycles mm(-1), there was a 14% reduction of the MTF, from a value of 0.7 below the K-edge of Se, to 0.6 just above the K-edge. The MTF of an a-Se x-ray detector has been measured using monochromatic x-rays above and below the K-edge of selenium. The MTF is poorer above the K-edge by an amount consistent with theoretical expectations.

  3. Linear CCD attitude measurement system based on the identification of the auxiliary array CCD

    NASA Astrophysics Data System (ADS)

    Hu, Yinghui; Yuan, Feng; Li, Kai; Wang, Yan

    2015-10-01

    Object to the high precision flying target attitude measurement issues of a large space and large field of view, comparing existing measurement methods, the idea is proposed of using two array CCD to assist in identifying the three linear CCD with multi-cooperative target attitude measurement system, and to address the existing nonlinear system errors and calibration parameters and more problems with nine linear CCD spectroscopic test system of too complicated constraints among camera position caused by excessive. The mathematical model of binocular vision and three linear CCD test system are established, co-spot composition triangle utilize three red LED position light, three points' coordinates are given in advance by Cooperate Measuring Machine, the red LED in the composition of the three sides of a triangle adds three blue LED light points as an auxiliary, so that array CCD is easier to identify three red LED light points, and linear CCD camera is installed of a red filter to filter out the blue LED light points while reducing stray light. Using array CCD to measure the spot, identifying and calculating the spatial coordinates solutions of red LED light points, while utilizing linear CCD to measure three red LED spot for solving linear CCD test system, which can be drawn from 27 solution. Measured with array CCD coordinates auxiliary linear CCD has achieved spot identification, and has solved the difficult problems of multi-objective linear CCD identification. Unique combination of linear CCD imaging features, linear CCD special cylindrical lens system is developed using telecentric optical design, the energy center of the spot position in the depth range of convergence in the direction is perpendicular to the optical axis of the small changes ensuring highprecision image quality, and the entire test system improves spatial object attitude measurement speed and precision.

  4. Geostationary Environment Monitoring Spectrometer (gems) Over the Korea Peninsula and Asia-Pacific Region

    NASA Astrophysics Data System (ADS)

    Lasnik, J.; Stephens, M.; Baker, B.; Randall, C.; Ko, D. H.; Kim, S.; Kim, Y.; Lee, E. S.; Chang, S.; Park, J. M.; SEO, S. B.; Youk, Y.; Kong, J. P.; Lee, D.; Lee, S. H.; Kim, J.

    2014-12-01

    Introduction: The Geostationary Environment Monitoring Spectrometer (GEMS) is one of two instruments manifested aboard the South Korean Geostationary Earth Orbit KOrea Multi-Purpose SATellite-2B (GEO-KOMPSAT-2B or GK2B), which is scheduled to launch in 2018. Jointly developed/built by KARI and Ball Aerospace, GEMS is a geostationary UV-Vis hyperspectral imager designed to monitor trans-boundary tropospheric pollution events over the Korean peninsula and Asia-Pacific region. The spectrometer provides high temporal and spatial resolution (3.5 km N/S by 7.2 km E/W) measurements of ozone, its precursors, and aerosols. Over the short-term, hourly measurements by GEMS will improve early warnings for potentially dangerous pollution events and monitor population exposure. Over the 10-year mission-life, GEMS will serve to enhance our understanding of long-term climate change and broader air quality issues on both a regional and global scale. The GEMS sensor design and performance are discussed, which includes an overview of measurement capabilities and the on-orbit concept of operations. GEMS Sensor Overview: The GEMS hyperspectral imaging system consists of a telescope and Offner grating spectrometer that feeds a single CCD detector array. A spectral range of 300-500 nm and sampling of 0.2 nm enables NO2, SO2, HCHO, O3, and aerosol retrieval. The GEMS field of regard (FOR), which extends from 5°S to 45°N in latitude and 75°E to 145°E in longitude, is operationally achieved using an onboard two-axis scan mirror. On-orbit, the radiometric calibration is maintained using solar measurements, which are performed using two onboard diffusers: a working diffuser that is deployed routinely for the purpose of solar calibration, and a reference diffuser that is deployed sparingly for the purpose of monitoring working diffuser performance degradation.

  5. VUV Testing of Science Cameras at MSFC: QE Measurement of the CLASP Flight Cameras

    NASA Technical Reports Server (NTRS)

    Champey, Patrick; Kobayashi, Ken; Winebarger, Amy; Cirtain, Jonathan; Hyde, David; Robertson, Bryan; Beabout, Brent; Beabout, Dyana; Stewart, Mike

    2015-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512x512 detector, dual channel analog readout electronics and an internally mounted cold block. At the flight operating temperature of -20 C, the CLASP cameras achieved the low-noise performance requirements (less than or equal to 25 e- read noise and greater than or equal to 10 e-/sec/pix dark current), in addition to maintaining a stable gain of approximately equal to 2.0 e-/DN. The e2v CCD57-10 detectors were coated with Lumogen-E to improve quantum efficiency (QE) at the Lyman- wavelength. A vacuum ultra-violet (VUV) monochromator and a NIST calibrated photodiode were employed to measure the QE of each camera. Four flight-like cameras were tested in a high-vacuum chamber, which was configured to operate several tests intended to verify the QE, gain, read noise, dark current and residual non-linearity of the CCD. We present and discuss the QE measurements performed on the CLASP cameras. We also discuss the high-vacuum system outfitted for testing of UV and EUV science cameras at MSFC.

  6. One-Meter Telescope in Kolonica Saddle - 4 Years of Operation

    NASA Astrophysics Data System (ADS)

    Kudzej, I.; Dubovsky, P. A.

    2010-12-01

    The actual technical status of 1 meter Vihorlat National Telescope (VNT) at Astronomical Observatory at Kolonica Saddle is presented. Cassegrain and Nasmyth focus, autoguiding system, computer controlled focusing and fine movements and other improvements achieved recently. For two channel photoelectric photometer the system of channels calibration based on artificial light source is described. For CCD camera FLI PL1001E actually installed in Cassegrain focus we presents transformation coefficients from our instrumental to international photometric BVRI system. The measurements were done during regular observations when good photometry of the constant field stars was available. Before FLI camera acquisition we used SBIG ST9 camera. Transformation coefficients for this instrument are presented as well. In the second part of the paper we presents results of variable stars observations with 1 meter telescope in recent four years. The first experimental electronic measurements were done in 2006. Both with CCD cameras and with two channel photoelectric photometer. Starting in 2007 the regular observing program is in operation. There are only few stars suitable for two channel photoelectric photometer observation. Generally the photometer is better when fast brightness changes (time scale of seconds) must be recorded. Thus the majority of observations is done with CCD detectors. We presents an brief overview of most important observing programs: long term monitoring of selected intermediate polars, eclipse observations of SW Sex stars. Occasional observing campaigns were performed on several interesting objects: OT J071126.0+440405, V603 Aql, V471 Tau eclipse timings, Z And in outburst.

  7. Performance Evaluation of Large Aperture 'Polished Panel' Optical Receivers Based on Experimental Data

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor

    2013-01-01

    Recent interest in hybrid RF/Optical communications has led to the development and installation of a "polished-panel" optical receiver evaluation assembly on the 34-meter research antenna at Deep-Space Station 13 (DSS-13) at NASA's Goldstone Communications Complex. The test setup consists of a custom aluminum panel polished to optical smoothness, and a large-sensor CCD camera designed to image the point-spread function (PSF) generated by the polished aluminum panel. Extensive data has been obtained via realtime tracking and imaging of planets and stars at DSS-13. Both "on-source" and "off-source" data were recorded at various elevations, enabling the development of realistic simulations and analytic models to help determine the performance of future deep-space communications systems operating with on-off keying (OOK) or pulse-position-modulated (PPM) signaling formats with photon-counting detection, and compared with the ultimate quantum bound on detection performance for these modulations. Experimentally determined PSFs were scaled to provide realistic signal-distributions across a photon-counting detector array when a pulse is received, and uncoded as well as block-coded performance analyzed and evaluated for a well-known class of block codes.

  8. High-resolution deployable telescope for satellite applications

    NASA Astrophysics Data System (ADS)

    Pica, Giulia; Ciofaniello, Luca; Mattei, Stefania; Santovito, Maria Rosaria; Gardi, Roberto

    2004-02-01

    CO.RI.S.T.A. is involved in a research project funded by ASI (Italian Space Agency), named MITAR, to realise a very compact, lightweight deployable telescope in visible wavelength range to get earth images from microsatellite. The satellite considered for the study is SMART, an Italian academic multi-mission microsatellite operating on circular sun-synchronous orbits. The telescope has a Cassegrain configuration with a parabolic primary mirror and an hyperbolic secondary mirror. This configuration guaranties the best aberrations corrections and the best compactness. The primary and the secondary mirror are 40 cm and 10 cm in diameter respectively, while their relative distance is 52cm. Mirrors will be realised with innovative composite material to obtain lightweight optical elements. Thanks to its limited size and light weight, the system can be easily deployed. The deployable structure will keep the secondary mirror close to the primary one during launch phases. Once in orbit, a system of lenticular tape springs and dumpers will extend the structure. The structure will be enclosed in multilayer blankets that will shield the sensor from light and will thermally stabilize the structure, preventing excessive thermal deformation. The images will be detected by a very high resolution CCD camera installed onboard the satellite.

  9. Performance of laser guide star adaptive optics at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S.S.; An, J.; Avicola, K.

    1995-07-19

    A sodium-layer laser guide star adaptive optics system has been developed at Lawrence Livermore National Laboratory (LLNL) for use on the 3-meter Shane telescope at Lick Observatory. The system is based on a 127-actuator continuous-surface deformable mirror, a Hartmann wavefront sensor equipped with a fast-framing low-noise CCD camera, and a pulsed solid-state-pumped dye laser tuned to the atomic sodium resonance line at 589 nm. The adaptive optics system has been tested on the Shane telescope using natural reference stars yielding up to a factor of 12 increase in image peak intensity and a factor of 6.5 reduction in image fullmore » width at half maximum (FWHM). The results are consistent with theoretical expectations. The laser guide star system has been installed and operated on the Shane telescope yielding a beam with 22 W average power at 589 nm. Based on experimental data, this laser should generate an 8th magnitude guide star at this site, and the integrated laser guide star adaptive optics system should produce images with Strehl ratios of 0.4 at 2.2 {mu}m in median seeing and 0.7 at 2.2 {mu}m in good seeing.« less

  10. The Remote Observatories of the Southeastern Association for Research in Astronomy (SARA)

    NASA Astrophysics Data System (ADS)

    Keel, William C.; Oswalt, Terry; Mack, Peter; Henson, Gary; Hillwig, Todd; Batcheldor, Daniel; Berrington, Robert; De Pree, Chris; Hartmann, Dieter; Leake, Martha; Licandro, Javier; Murphy, Brian; Webb, James; Wood, Matt A.

    2017-01-01

    We describe the remote facilities operated by the Southeastern Association for Research in Astronomy (SARA) , a consortium of colleges and universities in the US partnered with Lowell Observatory, the Chilean National Telescope Allocation Committee, and the Instituto de Astrofísica de Canarias. SARA observatories comprise a 0.96 m telescope at Kitt Peak, Arizona; one of 0.6 m aperture on Cerro Tololo, Chile; and the 1 m Jacobus Kapteyn Telescope at the Roque de los Muchachos, La Palma, Spain. All are operated using standard VNC or Radmin protocols communicating with on-site PCs. Remote operation offers considerable flexibility in scheduling, allowing long-term observational cadences difficult to achieve with classical observing at remote facilities, as well as obvious travel savings. Multiple observers at different locations can share a telescope for training, educational use, or collaborative research programs. Each telescope has a CCD system for optical imaging, using thermoelectric cooling to avoid the need for frequent local service, and a second CCD for offset guiding. The Arizona and Chile telescopes also have fiber-fed echelle spectrographs. Switching between imaging and spectroscopy is very rapid, so a night can easily accommodate mixed observing modes. We present some sample observational programs. For the benefit of other groups organizing similar consortia, we describe the operating structure and principles of SARA, as well as some lessons learned from almost 20 years of remote operations.

  11. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, Bedabrata; Norton, Timothy J.; Haas, J. Patrick; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest of by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  12. The AstroSat Production Line: From AstroSat 100 to AstroSat 1000

    NASA Astrophysics Data System (ADS)

    Maliet, E.; Pawlak, D.; Koeck, C.; Beaufumé, E.

    2008-08-01

    From the late 90s onward, Astrium Satellites has developed and improved several classes of high resolution optical Earth Observation satellites. The resulting product line ranges from micro-satellites (about 120 kg) type to the large satellites (in the range of 1 200 kg). They all make uses of state of the art technologies for optical payloads, as well as for avionics. Several classes of platforms have thus been defined and standardised: AstroSat 100 for satellites up to 150 kg, allowing affordable but fully operational missions, AstroSat 500 for satellites up to 800 kg, allowing complex high resolution missions, and AstroSat 1000 for satellites up to 1 200 kg, providing very high resolution and outstanding imaging and agility capabilities. A new class, AstroSat 250, has been developed by Astrium Satellites, and is now proposed, offering a state-of-the-art 3-axis agile platform for high- resolution missions, with a launch mass below 550 kg. The Astrosat platforms rely on a centralised architecture avionics based on an innovative AOCS hybridising of measurements from GPS, stellar sensors and inertial reference unit. Operational safety has been emphasised through thruster free safe modes. All optical payloads make use of all Silicon Carbide (SiC) telescopes. High performance and low consumption linear CCD arrays provide state of the art images. The satellites are designed for simple flight operations, large data collection capability, and large versatility of payload and missions. They are adaptable to a large range of performances. Astrium satellites have already been selected by various customers worldwide.

  13. Pattern-Recognition Processor Using Holographic Photopolymer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Cammack, Kevin

    2006-01-01

    proposed joint-transform optical correlator (JTOC) would be capable of operating as a real-time pattern-recognition processor. The key correlation-filter reading/writing medium of this JTOC would be an updateable holographic photopolymer. The high-resolution, high-speed characteristics of this photopolymer would enable pattern-recognition processing to occur at a speed three orders of magnitude greater than that of state-of-the-art digital pattern-recognition processors. There are many potential applications in biometric personal identification (e.g., using images of fingerprints and faces) and nondestructive industrial inspection. In order to appreciate the advantages of the proposed JTOC, it is necessary to understand the principle of operation of a conventional JTOC. In a conventional JTOC (shown in the upper part of the figure), a collimated laser beam passes through two side-by-side spatial light modulators (SLMs). One SLM displays a real-time input image to be recognized. The other SLM displays a reference image from a digital memory. A Fourier-transform lens is placed at its focal distance from the SLM plane, and a charge-coupled device (CCD) image detector is placed at the back focal plane of the lens for use as a square-law recorder. Processing takes place in two stages. In the first stage, the CCD records the interference pattern between the Fourier transforms of the input and reference images, and the pattern is then digitized and saved in a buffer memory. In the second stage, the reference SLM is turned off and the interference pattern is fed back to the input SLM. The interference pattern thus becomes Fourier-transformed, yielding at the CCD an image representing the joint-transform correlation between the input and reference images. This image contains a sharp correlation peak when the input and reference images are matched. The drawbacks of a conventional JTOC are the following: The CCD has low spatial resolution and is not an ideal square-law detector for the purpose of holographic recording of interference fringes. A typical state-of-the-art CCD has a pixel-pitch limited resolution of about 100 lines/mm. In contrast, the holographic photopolymer to be used in the proposed JTOC offers a resolution > 2,000 lines/mm. In addition to being disadvantageous in itself, the low resolution of the CCD causes overlap of a DC term and the desired correlation term in the output image. This overlap severely limits the correlation signal-to-noise ratio. The two-stage nature of the process limits the achievable throughput rate. A further limit is imposed by the low frame rate (typical video rates) of low- and medium-cost commercial CCDs.

  14. Performance evaluation of low-cost airglow cameras for mesospheric gravity wave measurements

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Shiokawa, K.

    2016-12-01

    Atmospheric gravity waves significantly contribute to the wind/thermal balances in the mesosphere and lower thermosphere (MLT) through their vertical transport of horizontal momentum. It has been reported that the gravity wave momentum flux preferentially associated with the scale of the waves; the momentum fluxes of the waves with a horizontal scale of 10-100 km are particularly significant. Airglow imaging is a useful technique to observe two-dimensional structure of small-scale (<100 km) gravity waves in the MLT region and has been used to investigate global behaviour of the waves. Recent studies with simultaneous/multiple airglow cameras have derived spatial extent of the MLT waves. Such network imaging observations are advantageous to ever better understanding of coupling between the lower and upper atmosphere via gravity waves. In this study, we newly developed low-cost airglow cameras to enlarge the airglow imaging network. Each of the cameras has a fish-eye lens with a 185-deg field-of-view and equipped with a CCD video camera (WATEC WAT-910HX) ; the camera is small (W35.5 x H36.0 x D63.5 mm) and inexpensive, much more than the airglow camera used for the existing ground-based network (Optical Mesosphere Thermosphere Imagers (OMTI) operated by Solar-Terrestrial Environmental Laboratory, Nagoya University), and has a CCD sensor with 768 x 494 pixels that is highly sensitive enough to detect the mesospheric OH airglow emission perturbations. In this presentation, we will report some results of performance evaluation of this camera made at Shigaraki (35-deg N, 136-deg E), Japan, where is one of the OMTI station. By summing 15-images (i.e., 1-min composition of the images) we recognised clear gravity wave patterns in the images with comparable quality to the OMTI's image. Outreach and educational activities based on this research will be also reported.

  15. Biometric iris image acquisition system with wavefront coding technology

    NASA Astrophysics Data System (ADS)

    Hsieh, Sheng-Hsun; Yang, Hsi-Wen; Huang, Shao-Hung; Li, Yung-Hui; Tien, Chung-Hao

    2013-09-01

    Biometric signatures for identity recognition have been practiced for centuries. Basically, the personal attributes used for a biometric identification system can be classified into two areas: one is based on physiological attributes, such as DNA, facial features, retinal vasculature, fingerprint, hand geometry, iris texture and so on; the other scenario is dependent on the individual behavioral attributes, such as signature, keystroke, voice and gait style. Among these features, iris recognition is one of the most attractive approaches due to its nature of randomness, texture stability over a life time, high entropy density and non-invasive acquisition. While the performance of iris recognition on high quality image is well investigated, not too many studies addressed that how iris recognition performs subject to non-ideal image data, especially when the data is acquired in challenging conditions, such as long working distance, dynamical movement of subjects, uncontrolled illumination conditions and so on. There are three main contributions in this paper. Firstly, the optical system parameters, such as magnification and field of view, was optimally designed through the first-order optics. Secondly, the irradiance constraints was derived by optical conservation theorem. Through the relationship between the subject and the detector, we could estimate the limitation of working distance when the camera lens and CCD sensor were known. The working distance is set to 3m in our system with pupil diameter 86mm and CCD irradiance 0.3mW/cm2. Finally, We employed a hybrid scheme combining eye tracking with pan and tilt system, wavefront coding technology, filter optimization and post signal recognition to implement a robust iris recognition system in dynamic operation. The blurred image was restored to ensure recognition accuracy over 3m working distance with 400mm focal length and aperture F/6.3 optics. The simulation result as well as experiment validates the proposed code apertured imaging system, where the imaging volume was 2.57 times extended over the traditional optics, while keeping sufficient recognition accuracy.

  16. Hand portable thin-layer chromatography system

    DOEpatents

    Haas, Jeffrey S.; Kelly, Fredrick R.; Bushman, John F.; Wiefel, Michael H.; Jensen, Wayne A.

    2000-01-01

    A hand portable, field-deployable thin-layer chromatography (TLC) unit and a hand portable, battery-operated unit for development, illumination, and data acquisition of the TLC plates contain many miniaturized features that permit a large number of samples to be processed efficiently. The TLC unit includes a solvent tank, a holder for TLC plates, and a variety of tool chambers for storing TLC plates, solvent, and pipettes. After processing in the TLC unit, a TLC plate is positioned in a collapsible illumination box, where the box and a CCD camera are optically aligned for optimal pixel resolution of the CCD images of the TLC plate. The TLC system includes an improved development chamber for chemical development of TLC plates that prevents solvent overflow.

  17. Illumination box and camera system

    DOEpatents

    Haas, Jeffrey S.; Kelly, Fredrick R.; Bushman, John F.; Wiefel, Michael H.; Jensen, Wayne A.; Klunder, Gregory L.

    2002-01-01

    A hand portable, field-deployable thin-layer chromatography (TLC) unit and a hand portable, battery-operated unit for development, illumination, and data acquisition of the TLC plates contain many miniaturized features that permit a large number of samples to be processed efficiently. The TLC unit includes a solvent tank, a holder for TLC plates, and a variety of tool chambers for storing TLC plates, solvent, and pipettes. After processing in the TLC unit, a TLC plate is positioned in a collapsible illumination box, where the box and a CCD camera are optically aligned for optimal pixel resolution of the CCD images of the TLC plate. The TLC system includes an improved development chamber for chemical development of TLC plates that prevents solvent overflow.

  18. First Light for USNO 1.3-meter Telescope

    NASA Astrophysics Data System (ADS)

    Monet, A. K. B.; Harris, F. H.; Harris, H. C.; Monet, D. G.; Stone, R. C.

    2001-11-01

    The US Naval Observatory Flagstaff Station has recently achieved first light with its newest telescope -- a 1.3--meter, f/4 modified Ritchey-Chretien,located on the grounds of the station. The instrument was designed to produce a well-corrected field 1.7--degrees in diameter, and is expected to provide wide-field imaging with excellent astrometric properties. A number of test images have been obtained, using a temporary CCD camera in both drift and stare mode, and the results have been quite encouraging. Several astrometric projects are planned for this instrument, which will be operated in fully automated fashion. This paper will describe the telescope and its planned large-format mosaic CCD camera, and will preview some of the research for which it will be employed.

  19. Astrometrica: Astrometric data reduction of CCD images

    NASA Astrophysics Data System (ADS)

    Raab, Herbert

    2012-03-01

    Astrometrica is an interactive software tool for scientific grade astrometric data reduction of CCD images. The current version of the software is for the Windows 32bit operating system family. Astrometrica reads FITS (8, 16 and 32 bit integer files) and SBIG image files. The size of the images is limited only by available memory. It also offers automatic image calibration (Dark Frame and Flat Field correction), automatic reference star identification, automatic moving object detection and identification, and access to new-generation star catalogs (PPMXL, UCAC 3 and CMC-14), in addition to online help and other features. Astrometrica is shareware, available for use for a limited period of time (100 days) for free; special arrangements can be made for educational projects.

  20. Effects of the source, surface, and sensor couplings and colorimetric of laser speckle pattern on the performance of optical imaging system

    NASA Astrophysics Data System (ADS)

    Darwiesh, M.; El-Sherif, Ashraf F.; El-Ghandour, Hatem; Aly, Hussein A.; Mokhtar, A. M.

    2011-03-01

    Optical imaging systems are widely used in different applications include tracking for portable scanners; input pointing devices for laptop computers, cell phones, and cameras, fingerprint-identification scanners, optical navigation for target tracking, and in optical computer mouse. We presented an experimental work to measure and analyze the laser speckle pattern (LSP) produced from different optical sources (i.e. various color LEDs, 3 mW diode laser, and 10mW He-Ne laser) with different produced operating surfaces (Gabor hologram diffusers), and how they affects the performance of the optical imaging systems; speckle size and signal-to-noise ratio (signal is represented by the patches of the speckles that contain or carry information, and noise is represented by the whole remaining part of the selected image). The theoretical and experimental studies of the colorimetry (color correction is done in the color images captured by the optical imaging system to produce realistic color images which contains most of the information in the image by selecting suitable gray scale which contains most of the informative data in the image, this is done by calculating the accurate Red-Green-Blue (RGB) color components making use of the measured spectrum for light sources, and color matching functions of International Telecommunication Organization (ITU-R709) for CRT phosphorus, Tirinton-SONY Model ) for the used optical sources are investigated and introduced to present the relations between the signal-to-noise ratios with different diffusers for each light source. The source surface coupling has been discussed and concludes that the performance of the optical imaging system for certain source varies from worst to best based on the operating surface. The sensor /surface coupling has been studied and discussed for the case of He-Ne laser and concludes the speckle size is ranged from 4.59 to 4.62 μm, which are slightly different or approximately the same for all produced diffusers (which satisfies the fact that the speckle size is independent on the illuminating surface). But, the calculated value of signal-tonoise ratio takes different values ranged from 0.71 to 0.92 for different diffuser. This means that the surface texture affects the performance of the optical sensor because, all images captured for all diffusers under the same conditions [same source (He-Ne laser), same distances of the experimental set-up, and the same sensor (CCD camera)].

Top